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The Empire doesn’t consider a small,  
one-man fighter to be any threat  
or they’d have a tighter defense. 

—General Dodonna
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This book would be different from cover to cover if not for the 
stunning and deep worldbuilding by George Lucas, and the crew 

and cast of Star Wars who first brought it to life. That first crew not 
sweating the details could have robbed us all of so much.

This book has been a five-year mission to clearly explain security 
to engineers. In 2017, a gentleman in Cupertino asked me the simple 
question, “Where do I go to learn more about these threats?” I didn’t 
write down his name, but if you see this, thank you for the question, 
and sorry it took so long to answer.

In my explorations, I’ve spoken with hundreds of people about the 
frame of “what every engineer needs to know.” I want to gratefully 
acknowledge all their contributions, and whatever errors remain  
are mine.

My amazing team of teachers at Shostack + Associates (Valery 
Berestetsky, Jamie Dicken, and Caroline Emmott) also read the entire 
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are answered.

While I worked on this book, I also worked on a set of courses with 
LinkedIn Learning. My team there, including Alyssa Pratt, Rae Hoyt, 
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on this book improved the separate content in each.
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How does R2-D2 know who Ben Kenobi is? How does he decide 
to play the recording of Princess Leia for Ben, but not Luke? 

How does Princess Leia tell R2 her intentions? These three questions 
touch on fundamental issues of security: authentication, authoriza-
tion, and usability. (Star Wars geeks have an answer to the first from 
the prequels, but Leia does not know that answer.) What’s more, the 
way the world of Star Wars engages with technology and computers 
gives us a familiar base from which to learn about how technology 
works in our world.

I was a Star Wars fan before I ever wrote a line of code and long 
before I broke my first system. As I became an expert in computer 
security, it became clear to me that we in the field are much better at 
code than with stories, and while it’s tempting to say “That is why you 
fail,” telling better stories is not our only hope. As I reflected on Star 
Wars, I realized that as the crawl fades, the camera descends onto 
Princess Leia’s ship being pursued over…a stolen data tape! I realized 
Star Wars is not only the story of Luke’s hero’s journey and growth 
into adulthood but also a story of information disclosure and its con-
sequences. Over the last decade, I’ve used Star Wars to tell the story 
of computer security because the epic stories give us reference points 
and illustrations of important issues.

In this book, almost every reference is to the original trilogy. There 
is material I could use in Rogue One, in the prequels and sequels, and 
in the TV shows, the books, and more. But I’ll assume that most read-
ers have only watched and rewatched the core three: Star Wars, 
Empire, and Jedi.

Preface
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Like the Force is a property of all living things, security is a prop-
erty of all technological systems. And like the Force has a light side 
and a dark side, security has defenses and attacks. This book is 
focused primarily on the attacks, the threats, the problems. You need 
to understand the threats to select appropriate defenses. It’s dramatic 
to watch the Emperor unleash purple force lightning on Luke 
Skywalker, but better training could have alerted Luke to the threat 
and how to defend against it. Neither a firewall nor a checklist will 
block force lightning.

If you want to make a home secure, you need to think through the 
many things that might go wrong. Some are natural (floods), some 
can be natural or manmade (fire), and some (theft) are the acts of 
intelligent beings.

We have implicit models of what a home is, the types of homes, 
and the common types of problems. Those problems vary somewhat: 
the central plain of the United States has tornados, southeast Asia has 
monsoons, and the Middle East has sandstorms. But you can go to 
your insurer and get a list. (It’s split across “optional coverage” and 
“exclusions.”)

Our implicit models of how technical systems are set up are weaker. 
Technology has more variety and more rapid change than our homes 
or office buildings. Three-tier architectures are unlike microservices. 
Microservice cloud deployments differ from the virtual machines 
deployed a mere decade ago.

Technological builders and defenders have a disadvantage: it’s hard 
to get away from thinking about making the system work. We all 
know it’s hard to make a system work. That there are trade-offs and 
compromises made to get the code to work, to get it to customers, and 
even to deploy it.

Security’s traditional response to this has been an exhortation to 
“Think like an attacker!” That’s hard. In response I encourage people 
to think like a professional chef, planning for hundreds of diners to sit 
down tonight. Most of us wouldn’t know where to start. But we don’t 
have to “think like an attacker” to get different perspectives on the 
systems we’re working on.
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Security also differs from other potential problems because we 
have intelligent attackers who can learn and adapt. If we think about 
a person wanting to steal your stereo, then they can come through the 
front door in many ways: they can kick it in, jimmy the latch, pick the 
lock, or steal a key. Some attacks exploit vulnerabilities: the lock has 
a weak front plate that’s easily drilled because of a defect in the  
casting. Some exploit design flaws: the lock has only a few pins, mak-
ing it easy to pick. They can bypass our defense, walking over to a 
window. And in technological systems, the range of attacks seems 
endless and perhaps unknowable—a problem this book solves.

One of the reasons that we fail at making secure systems is attackers  
have a great many advantages. They can study their target, plan their 
attacks, and launch them only when they feel confident. They can do 
what they will to take control of a system, make it misbehave, or 
embarrass its creator. And some of what attackers do is really very 
clever, and all of it is unexpected. That’s tremendously important. In 
a great little video The Death Star Architect Speaks Out, the architect 
says, “The shot was literally not possible unless you had magic  
powers. Maybe if someone would have told me to account for space 
wizards when designing the exhaust ports, we would still have a 
Death Star!”

He has a good point. Too often, security researchers get publicity 
for taking a completed system and pointing out flaws…like engineers 
not knowing a torpedo could fly through miles of piping without tur-
bulence deflecting it. It can feel like security experts are judging you 
and answering every question by rolling their eyes and saying “Search 
your feelings.” This book focuses on the important threats.

Security expert and author Bruce Schneier once wrote, “When  
I visited the National Security Agency, I asked to see the ‘big book of 
attacks.’ They told me there’s no single place where it’s all written 
down.” This book aims to fix that. It’s important because understand-
ing “the attacks” is easier if there is a defined set of “the attacks.” This 
is not an attempt to categorize every attack or to be comprehensive. 
That last is probably surprising and may even worry you. But the  
reality is that security issues are violations of security requirements. 
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The requirements for different systems are different. Should I include 
violations of the requirements for nuclear bombs or currency print-
ing? (“Fewer than two people can activate the system” or “Another 
customer can obtain the same paper stock.”) Completeness would 
obscure the more common attacks and make it hard to quickly refer-
ence threats that may inspire and enable you to reason by analogy and 
discover attacks on your own systems. Understanding the threats is 
the crux, and until now they’ve been hard to understand.

Someone else wrote “All interesting systems surprise their creator.” 
That’s the property that takes them from useful to interesting. And 
security issues are often issues of surprise. They rely not only on mis-
takes in what’s there, but in the failure of architects to develop defenses.

Human attention is a harsh master. It is hard to perceive what is 
missing. My intent in cataloging common issues is to say: these mat-
ter. These must be considered and, by collecting, organizing, and pre-
senting them, provide some clarity about what is in the set of things 
“you must consider.” If what’s in this book is ignored, maybe it’s rea-
sonable to claim that is a failure of the engineer. That’s not to say “You 
can ignore anything else.” Just as a pilot must land the plane beyond 
the checklist or a surgeon must treat the patient, what must be 
addressed is not limited to what’s in the pages of this book.

Human attention is really a harsh master. Daniel Kahneman is a 
Nobel Prize–winning founder of behavioral economics. In his lovely 
book, Thinking Fast and Slow, he uses only a single acronym: WYSIATI. 
What You See Is All There Is. The importance of what’s in front of you 
is so great, it crowds out our efforts to “remain aware” and to “keep in 
mind.” Yet as an engineer you must do exactly that—keep in mind 
reliability, performance, usability, maintainability, and a great many 
other properties. We have many tools for managing such things, 
including automation, checklists, and the judgment of diverse teams.

For this book, I am making a design trade-off and assuming that 
defenses are known and understood, or at least understandable once 
you understand the threats. So I focus on the threats and touch briefly 
on the defenses. That’s a conscious trade-off to make the book shorter 
and more approachable.
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Introduction

My students teach me so much. As I hear the questions they ask and 
read the assignments they submit, I learn where they face challenges 
in securing their systems. I learned about threats over a decades-long 
career, from a few wise teachers and from many mistakes. As I men-
tion in the acknowledgments, this book really was catalyzed by a sim-
ple question: “Where do I go to learn about the threats?”

A bit like “There’s good in him, I’ve felt it,” I’ve felt that question in 
so many conversations. The word security subsumes a great deal of 
complexity and nuance. I was going to say we tend to learn about 
threats by osmosis, but that’s not true. We tend to learn about threats 
when something blows up. Even when that something is smaller than 
a Death Star, the lessons are often traumatic, sometimes career-
changing. Tragedy is a bad teacher.

If we want to be systematic in our search for threats to our prod-
ucts, we must be structured in how we learn and teach about 
those threats.

Who This Book Is For
This book is for every engineer. 

It will be most useful to those who build or operate complex 
software-rich systems. There are hard trade-offs in engineering, which 
are made harder when security goals are obscure or vague. The book 
is focused on systems that incorporate code, but these days, what 
doesn’t? Engineers who work in more traditional parts of the field 
(aerospace, chemical, civil, mechanical) are finding that these more 
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elegant systems from a more mechanical time are being supplanted. 
Your systems must now interface with code, and you must address its 
security properties.

Over the last few decades, the job of software development and 
systems operation has changed. We’ve learned that our hopes of ret-
rofitting properties from accessibility to reliability to usability have 
cost us dearly and that we need to incorporate each from the start. We 
are learning that security is much the same way. Choices made during 
system development have consequences. We see the need to address 
security earlier and more holistically.

This book is also for security professionals and enthusiasts. There 
are many pathways into many fields focused on security and hacking. 
Few of them provide a broad framework that will serve to organize 
the flood of information about threats, vulnerabilities, and exploits 
that you’ll encounter. My hope is that this book serves all of them.

This book is for every engineer, even if they’re not a science-fiction 
fan, and if you are, whatever world you love. As I spoke about this 
book, Star Trek fans came out of the nebulas to ask “Why?” And I love 
Trek. I love the optimistic view of the future, how the series reveres 
competence and science, and the writing and character development. 
I turned in the manuscript with the dedication: “to boldly secure 
what no one has secured before,” as an attempt at a loving homage. 
My team told me that it was too jarring for the opening, and they 
were right.

What You’ll Gain from This Book
Security.

More specifically, you’ll gain the understanding of security in ways 
that enables you to build and operate systems that perform despite 
the efforts of adversaries. Much like understanding force (the mass 
times acceleration kind) allows us to think about many different parts 
of the world and bring it to bear on our projects, this book provides 
you with an enduring framework to anticipate threats.
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It’s traditional to include a breathless list of security flaws here, in 
the hopes of motivating readers. It hasn’t seemed to work, so I’m not 
going to bother. In 2023, the issue with security is no longer why. It’s 
what and how.

A Few Words for the Nonengineer
This book is written for engineers: people who build or operate com-
plex technical systems, especially the algorithms, chips, sensors, and 
actuator parts of those systems. It’s written to be as clear as reasonably 
possible, and if you’re a nontechnologist looking for advice, I want to 
include the three things you should do.

First, turn on automatic update on everything, most especially 
devices, operating systems, and web browsers. The updates that engi-
neers ship often address security problems that can be exploited auto-
matically. If your vendor mixes functionality changes with security 
fixes, complain loudly. But this step is a crucial defense against those 
exploitable problems.

Second, use a password manager, and have it create long, random 
passwords for you. One of the ways security fails is when websites 
leak your email address and password. Attackers gather and trade 
those lists, and they test the combinations on every website they can. 
They also test variants. They know that my Amazon password might 
be “adamamazon” or “amazonas1?” and computers are very good at 
testing those sorts of combinations, along with amazon-feb and the 
others you’ve thought of. Use a long, random password. If I expect I’ll 
need to type it in regularly, I’ll use the feature that gives me three or 
four random words as a password. By the way, I use 1Password from 
Agilebits as my password manager and recommend it. (We have no 
business relationship.)

Third, trust your feelings. If you feel a website isn’t safe, leave. Find 
the company by searching or with a bookmark. If you think an email 
is suspicious, call the person or entity that claimed to have sent it. Use 
the number on the back of your card to call your bank. In each of 
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these cases, you’re taking control, and you’re using resources that an 
attacker can’t influence.

Maybe an attacker can replace the card in your wallet, and if you 
have attackers like that, seek professional help. I’m not saying that 
sarcastically. If you’re up against a spy agency who will spend the time 
and energy to create a card and put it in your wallet, this advice isn’t 
going to save you.

Two more optional steps if you want extra safety. First, craft special 
email addresses for special relationships. Set up something like hiufd-
suapre8wafdsjkf@gmail.com and use it for either one bank or all your 
banks. This protects you if an attacker takes over your main email 
account, and it helps you sort out phishing emails. If you only use 
that for your bank, then any mail from “your bank” in your main 
account is automatically suspicious. See above about trusting 
your feelings.

Lastly, I use a different browser and browser profile for online 
banking. Browser software is pretty solid these days, but with all the 
attacks, I feel more comfortable having a low-use browser for that. 
(These days, one is Firefox, the other is Chrome. At other times, it 
was two different Firefox profiles, with two dramatically different 
visual themes.)

That’s it. That’s my advice. Thank you for buying this book. You’re 
welcome to read it or pass it on to a technologist or budding technolo-
gist who you know. Either way, I’m going to assume a technical reader, 
so we start speaking the binary languages that underpin both a galaxy 
far, far away and our own world.

Let me draw your attention to a principle that underlies the advice: 
isolation. A password manager isolates sites from each other, as does 
using two email accounts or two browsers. Leaving a site or calling 
your bank leaves the locus of an attack. That isolation, separating 
parts of a system from each other, is also the reason we have different 
computer accounts, firewalls, and a host of other defensive techniques.

mailto:hiufdsuapre8wafdsjkf@gmail.com
mailto:hiufdsuapre8wafdsjkf@gmail.com
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Of course, each layer of isolation comes at a cost of convenience. 
Not allowing software to seamlessly work together means you have to 
do the things that make them work together, because that way attack-
ers have to trick you into doing those things.

This advice is sadly not the advice you’ll get from everyone. We 
lack information on the root causes and history of incidents that 
would help us prioritize, which is a problem I write about elsewhere 
and don’t dwell on much in this book.1

Security Terminology
This book is about threats. We all know a threat when we hear one—
“Give me your money, or else!” “I have altered the terms of the deal. 
Pray I do not alter them…any further.” I use threat to mean a future 
problem and one that can often be averted if we take preventa-
tive action.

Security folks use the word threat in a variety of ways. We call an 
attacker a threat, or sometimes a threat agent. The anti-malware part 
of the industry calls each virus or bit of malware a threat.

Carrying out a threat is an attack. Each of the threat, its manifesta-
tion, and its impact can be a concern. The law considers a credible 
threat as assault; the act of hitting someone is the battery in “assault 
and battery.” These can result in injury. In cybersecurity, we often 
worry about both the threat and its result. If someone breaks in by 
spoofing a legitimate user, they can quickly chain other threats, such 
as tampering or information disclosure. Especially as you are learn-
ing, being specific about the relationship between mechanism and 
impact can be helpful. A risk is the quantified refinement of a threat, 
and those quantifications often involve probability of success and the 
magnitude of the impact in dollars or lives.

1You can find more on that at shostack.org/resources/lessons.

http://shostack.org/resources/lessons
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An attacker uses an exploit to take advantage of a vulnerability. An 
exploit (as a noun) is a bit of software that allows its user to do some-
thing that the system owner would like to prevent. To exploit (as a 
verb) is to use that software against a target. A vulnerability is either a 
specific code issue (a bug), a flaw where design requirements have 
been overlooked, or the result of a trade-off made by designers or 
operators. Sometimes specificity helps with clarity; other times it 
descends into pedantry.

The word trust is used a lot in computer security and can be trusted 
to trip up the unwary. In normal English, trust means “a firm belief in 
someone’s reliability, honesty, or ability.” Trustworthy means someone 
who lives up to that trust. In computer security, trusted means some-
thing with the ability to break your security. Cambridge University 
professor Ross Anderson provides an example: “The spy caught sell-
ing secrets was trusted but not trustworthy.” Others have pointed out 
that the word is often used in a passive or Orwellian voice. A “trusted 
system” fails to specify who trusts it. The Galactic Empire often 
labeled systems as “trusted” to bypass any discussion of their impact 
on the people it touches.

Aphorisms

There are a few bits of pithy wisdom I’d like to share because they can 
broadly inform your work as it touches on security.

“Attacks only get better; they never get worse.” Bruce Schneier 
attributes this as a saying at the American National Security Agency 
(NSA). While defenses do get deployed, the lesson of an attack is 
never lost. The tools developed to execute it don’t go away. They’re 
honed and refined.

“Theories of security come from theories of insecurity,” said Rick 
Proto of the NSA. Those attacks get better, and the collection of 
attacks inform how we think about what security is.

“All models are wrong; some models are useful.” British statistician 
George Box said this.
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“Computer security is perverse. When you want something to be 
difficult, it’s easy, and when you want it to be easy, it’s hard.” (Me.) 
Consider file deletion. When you want to make a file really disappear, 
it’s difficult, and when you want to recover it, it is surprisingly hard. 
It’s hard to really make a file disappear because deletion usually just 
removes the pointers within the file system. If you try to overwrite the 
bits on a magnetic disk, it turns out that the physical records on the 
disk vary in size and so can be read after overwriting. And flash drives 
make it tough to ever write to the same locations. Similarly, random-
ness is easy to find when you want predictability. Computers seem 
unpredictable and heisenbugs are common, but just try writing a safe 
random number generator.

“Attackers will spend their budget how they want, not how you 
hope.” (Me again.) You may hope that attackers will behave in very 
specific ways, but then they wouldn’t be attackers.

“Security is a systems property.” It’s unclear who first said this. This 
is a true claim, and what it means is that system security is often lim-
ited by weak links. This book helps you remove the obviously 
weak links.

“Shipping is a feature.” This is a common saying at Microsoft. All 
the new features that have been built do no good until they’re being 
used by your customers, so delaying to add a few more is often unwise. 
Similarly, delaying delivery in the hopes of achieving perfect security 
means no one can use your new features. I’m making that same call in 
shipping this book now: I hope its virtues outweigh its flaws.

“The devil is in the details.” Whoever said this wasn’t thinking of 
security, but they could well have been. A great many things turn out 
to be less secure as one delves in, and security experts have great 
respect for talented reverse engineers who pry systems apart to under-
stand their inner workings and in doing so discover unexpected prop-
erties of the system.
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How This Book Is Organized
This book starts with STRIDE, a classic way of thinking about threats. 
STRIDE stands for Spoofing, Tampering, Repudiation, Information 
Disclosure, Denial of Service, Expansion of Authority. STRIDE is a 
mnemonic that helps us remember six major groups of threats, cov-
ered in the first six chapters. Those are followed by chapters on pre-
dictability, parsing, and kill chains.

Most chapters in this book follow the same general plan: start with 
an explanation of the threat, then how it manifests in specific tech-
nologies, the mechanisms that attackers use, and finally a short sec-
tion on defenses.

There are many organizational choices to make writing a book like 
this. I grappled with the different ways computing now works and the 
way various threats impact them. Those ways include the Internet of 
Things, mobile, the cloud, and AI/ML. The specifics in these sections 
are in addition to the broader points made in the chapter, not a 
replacement for them—the fact that a computer has the shape of an 
internet of things teddy bear doesn’t mean the rest of the chapter 
doesn’t apply. A few of these sections in other chapters have addi-
tional sections because the nature of the threat has interesting proper-
ties in a specific scenario that’s worth discussing.

The sole emergent technology not treated in this way is quantum 
computing. Most of the STRIDE threats will work on the systems that 
surround a quantum core, and probably work on that core. For exam-
ple, the power draw of the mirrors in quantum cryptography leads to 
important information disclosure attacks. (Quantum crypto uses spin 
information to distribute cryptographic key information in ways that 
are hard to eavesdrop on, often relying on fiber between sites. It is 
very different from the use of quantum mechanics for computing.) 
The primary early impact of quantum computing seems to be break-
ing most classical asymmetric cryptography by discovering the keys, 
an information disclosure threat. If you’re curious about quantum, 
Law and Policy for the Quantum Age (Hoofnagle and Garfinkel, 2021) 
is an excellent primer.
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Another crucial organizational choice is to revisit threats. I’ve 
learned from teaching the first time someone encounters some infor-
mation, it may not sink in. Coming back to it from a different angle 
often helps.

Style and Conventions

Many organizations and products are named. Product names are used 
to make examples concrete, and no malice is meant toward the crea-
tor or trademark owner. The passe convention of including a “for 
example” with each one wastes the time of most readers for the pos-
sible benefit of a few particularly literal-minded ones, who might be 
confused however many clarifiers are included.

A Few Words from a Jedi Master

Yoda:…a Jedi’s strength flows from the Force. But beware of the Dark 
Side. Anger, fear, aggression; the Dark Side of the Force are they. 
Easily they flow, quick to join you in a fight. If once you start down 
the dark path, forever will it dominate your destiny, consume you 
it will, as it did Obi-Wan’s apprentice.

Luke: Vader…Is the Dark Side stronger?

Yoda: No, no, no. Quicker, easier, more seductive.

Luke: But how am I to know the good side from the bad?

Yoda: You will know…when you are calm, at peace, passive. A Jedi 
uses the Force for knowledge and defense, never for attack.

The dark path is the path of ignoring security. Easily, the code 
flows. But once you start down that path, forever will it dominate 
your destiny. The easy choice is to ignore security and focus entirely 
on features that are more visible to customers. Modern languages 
make complete static analysis feasible by constraining some of the 
seductive power of pointers. There’s a cost: the dark side of C is faster 
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code, but forever will it dominate your security advisories. And 20 
years ago, when security mattered less, that was a choice many com-
panies made, often thoughtlessly. It was the choice that Microsoft 
made in its heyday.

But Yoda was right: “Consume you it will.” I worked at Microsoft 
for most of a decade, and I have tremendous respect for my colleagues 
who have been bolting security onto Office and Windows and replac-
ing parts of their guts. They have achieved far more than I would have 
thought possible. But the very different innards of IoS and ChromeOS 
allow those competitors to move faster today.

Lastly, there is a security career path open to you, a path of attack. 
It’s flashy. It’s powerful: “Let me show you how I can pwn your sys-
tem.” And if you want to follow that path, my only request is that you 
do so ethically, using your skills and knowledge to conduct author-
ized attacks to build stronger defenses. My own path started with 
vulnerability discovery but lately has been focused on delivering 
stronger systems. It’s a harder path, but the impact long term can be 
much greater.
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Shortly after we first meet Luke Skywalker, he is cleaning his newly 
acquired droids, and R2-D2 teases him with part of a message that 

is only supposed to play for Obi-Wan Kenobi. How does R2-D2 know 
who Obi-Wan Kenobi is? How does he decide to play the recording of 
Princess Leia for Obi-Wan, but not Luke? As I mention in the book’s 
introduction, these questions are multifaceted. Let’s go deeper into 
questions of names and authenticity.

As we look at this interaction, I’ll treat droids as computers. And so 
we can ask questions like “How does a computer identify a human?” 
This is one of several crucial types of authentication. We can also ask 
how a human identifies a computer, or one computer identifies 
another. Star Wars is full of problems that stem from challenges with 
how humans identify other humans. In the prequels, why don’t the 
members of the Jedi Council realize that the Chancellor is also the 
Sith Lord Darth Sidious?

Authentic means something is “the genuine article” or “the real 
thing.” R2-D2 only wants to play the video for the real, authentic  
Obi-Wan, not anyone who walks up and asks for it. To do that,  
we need identifiers and authenticators. Spoofing threats are violations  
of authenticity; you get someone or something that is not what  

Spoofing and 
Authenticity
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you’re expecting. The Death Star fails to authenticate R2-D2 when he 
plugs in, a common flaw in the world of Star Wars. In our world, 
spoofed authentication codes are a common problem: we call them 
stolen passwords. But it’s not just fake people; it’s also fake websites 
for phishing and other scams.

Identifiers and Authentication
Authenticity first requires an identifier: a statement of who you are. 
This might be a name (Han Solo) or a role (Stormtrooper). Either 
might be true or false, and given the risk of impersonation, confusion, 
or lies, we look for authentication factors, such as an ID, a password, 
or a uniform, as we evaluate if the identifier is authentic and grant (or 
deny) authorization. This chapter will start with identifiers both 
human and technical. We’ll naturally touch on authentication as we 
go through the various specific ways that human and technical identi-
ties are spoofed and then learn about it more in depth later in the 
chapter. There are many forms of authentication to consider, depend-
ing on if the authentication is by a person or a computer and to a 
person or a computer. From there, we’ll look at spoofing in different 
scenarios, the mechanisms used, and the defenses. This chapter is 
longer than many that follow because spoofing manifests very differ-
ently when a person or a computer is impersonated, and the ways of 
checking are different when performed by people or computers.

As shown in Figure 1.1, the means of authentication differ, based 
on what sort of entity is trying to prove its identity and what sort of 
entity is checking.

Frankly, some of the methods shown in Figure 1.1 are not very reli-
able. For example, the computer in front of you is authenticated by its 
physical location: you trust it with your password because you’re typ-
ing on it. Sometimes that weak authentication is OK, and other times 
the party checking the other entity wants the authentication to be 
stronger. See Figure 1.2.
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Technical Identifiers

There are many types of technical identifiers including identifiers for 
services, machines, files, processes, and users. Some are designed for 
humans, such as threatsbook.com, others are designed for comput-
ers, such as 172.18.19.20. Of course, tools exist to map between 
them. These matter because each mapping is a looming opportunity 
for errors to creep in or for threats to impact your system.

In fact, any time there’s a mapping from a real object to a representa-
tion of that object, there can be confusion. Calls like listen(socket) 
and open(file) are fraught with threats as you map from a filename to 
a file descriptor.

Human Computer

Human

Computer

Password

Authentication by

Authenticating to

Recognition
ID badge

Physical location
Brand

Certificate

FIGURE 1.1  Ways of authenticating

Human Computer

Human

Computer

Hard
Remote: very hard

Authentication by

Authenticating to

Person we know: easy
Organization: hard

Physically present: medium
Remote: very hard Certificates: easy

FIGURE 1.2  Difficulty of authenticating

http://threatsbook.com
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Machine or service identity involves a name, such as rebelbase 
.threatsbook.com. Computer namespaces are usually unique for 
some scope. Ideally, rebelbase.threatsbook.com will be globally 
unique, but there can be many computers with a DNS name of  
rebelbase.local—one on Yavin, one on Hoth, one on your 
local network.

The service might be being spoofed with a lookalike name,  
rebe1base. If it’s a website and you give it a username and password, 
its operators may log in to the real rebelbase, thus spoofing you. 
Almost all connections that are vulnerable to spoofing have vulnera-
bilities in both directions, with the impact of an attack falling on dif-
ferent parties.

Computers will often have DNS names like rebelbase.threatsbook 
.com. That address can refer to more than one physical machine, but 
these are not the only names a physical computer can have. It can have a 
UNC (Windows) name and other names. The name may refer to more 
than one machine, via, say, DNS round-robin, and there may be layers 
of mapping with cnames and other systems for indirection.

Similarly, files have both names and technical identifiers, such as 
inode numbers, which the filesystem uses for efficiency.

The identity of a process can often be represented by a file or port, 
or even an executable name. For example, someone might expect that 
the thing listening on port 25 is a mail server, or the first process 
named Chrome is our web browser. Processes can change their names 
in the process table, and malicious code will often try to change pro-
cess names to masquerade as something harmless.

Lastly, users have various sorts of usernames, display names, and 
other identifiers, and understanding those brings in enough complex-
ity that it’s worth considering the very broad range of human identi-
fiers and then how computers represent them.

http://rebelbase.threatsbook.com
http://rebelbase.threatsbook.com
http://rebelbase.threatsbook.com
http://rebelbase.threatsbook.com
http://rebelbase.threatsbook.com
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Human Identifiers

In Star Wars, Luke and Han pretend to be Stormtroopers. One of them 
is apparently Stormtrooper TK-421. We never learn the other troop-
er’s name, but it doesn’t matter: he has a role, assigned guard, and 
that’s enough for some authentication purposes. Ben Kenobi pretends 
not to be Obi-Wan Kenobi and, while doing, so lies to Luke about his 
father Anakin being killed by Darth Vader. Princess Leia pretends not 
to be a rebel leader, and we’re less than 30 minutes into Star Wars.

Identifying people seems easy. That’s Uncle Owen. That’s Aunt 
Beru. Many people have more than one name that they use, without 
any malice.

Many people use more than one name. The Simpsons character can 
be Fat Tony or Marion D’Amico, and some people probably call him 
Uncle Tony. William becomes Bill. You and I mean someone different 
when we say Mom, and there are several people in the world named 
John Smith. People can usually handle this. Computers are not so 
flexible. They want unique, controlled namespaces for their identifi-
ers and accounts. The Empire feels the same way, and so poor  
FN-2187 has no other name until Poe Dameron gives him the nick-
name Finn in The Force Awakens.

Faking human identifiers has a long and distinguished tradition, 
predating the Internet. Pretending to be who you are not, or not who 
you are, or pretending to a title or role you don’t have is all in 
Shakespeare, but no one remembers Shakespeare. Importantly, these 
fakes predate technology. They’re at the human level.

This variety matters because our technological designs need to 
interpret names and map them to identifiers: logins, email addresses, 
and more. Each interpretation may exist in an interplay between 
human and machine meaning, and as it does the discrepancies, dis-
continuities, or differences in interpretation may lead to unexpected  
outcomes.
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Authenticating People to People

People are exceptionally good at identifying people they know well, 
even after a long time without seeing them. Not recognizing someone 
is awkward because we expect to be recognized. Recognizing those 
you’re close to, such as friends and family, or even co-workers, is 
implicit and automatic. We don’t need authenticators. But outside 
that circle, it gets rapidly harder. We use a lot of implicit identifiers 
such as uniforms, knowledge, patterns of speech, and we use explicit 
ones, such as ID cards.

Ben Kenobi leaps into action when someone he’s never met sends a 
hologram saying, “You served my father in the clone wars.” Shouldn’t 
they have set up a passphrase?

If you’re not trying to impersonate a specific person, it can be even 
easier. Anyone can portray themselves as a lawyer who’s reached out 
to you to try to settle a distant relative’s estate, as a customer support 
agent to ask for your credit card information, or as an attractive young 
person looking for companionship. The first is a classic con, while the 
last has a new facet—technology allows anyone to play an attractive 
young person in romance scams, where your new love interest needs 
money for a plane ticket to come visit you, or in catphishing where 
they wheedle knowledge or embarrassing photos out of classmates or 
famous people. This relates to the idea of authenticating to an organi-
zation, which is covered later in this chapter.

Authenticating People to Computers

Unlike Romeo and Juliet whose themes of identity and fakery end 
tragically in the human realm, Star Wars gives us examples of how 
people and technology interact: How does Ben Kenobi authenticate to 
R2-D2 to see the hologram of Leia? When R2-D2 plugs into the Death 
Star to find where she’s being held, what UID gets used for his 
SQL request?
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(By the way, your first answer, which was probably that R2-D2 is 
sentient, is insufficient. Leia does not know that this specific R2 unit 
knew Kenobi, so how can she write an access control rule?)

The first question of Ben Kenobi authenticating to a machine after 
20 years is a hard problem. But even the simpler versions of the prob-
lems are hard. When you needed physical access to a computer, a 
password was usually sufficient to distinguish people. But those pass-
words were stolen, and access to machines became more and more 
available over networks, so authentication had to improve.

Different types of information can factor into an authentication 
decision. The following are the most commonly used factors and an 
example of each:

•	 Knowledge: The combination to a safe
•	 An object you have: The key to a safety deposit box or an ID card
•	 A biometric: Your physical being, measured or assessed in vari-

ous ways (including a photograph)
•	 Location: In front of the computer
•	 The channel you’re using: Internet, phone, in person
•	 Who you know: Trustees and designates

Factors also have strength: a passport is generally seen as a stronger 
proof of identity than a library card. The password “secret” is not very 
strong, while u8fdFN288jerfskla-#$d is pretty good.1

Using more than one type of factor is much better and is com-
monly referred to as multifactor authentication. The term multistep 
usually refers to the same thing and shifts the focus to the steps a 
person goes through, rather than their strength.

The traditional factors are labeled “what you know,” “what you 
have,” and “what you are.” These were augmented by “where you are,” 
“how you’re communicating,” and “who you know.” “Where you are” 

1 Pushing for passwords to be more than pretty good is a waste. People can’t remember 

many passwords that are meaningfully strong.
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was implicit early in the history of computing (near the glass room 
with the mainframe), disappeared for a while, and reappeared recently, 
including the use of GPS signals and Apple using nanosecond timings 
for its watch to unlock an associated computer. The channel you’re 
using may expose you to risk (in person) or be harder for an imper-
sonator. Getting on the phone will expose that I don’t speak Wookie.

“Who you know” can include your new password being given to 
your manager or social authentication systems, seeing if you know 
your friends to get back into Facebook, or having trustees authenti-
cate you to get you back into some other account. These social 
authenticators are less common, but if you’re interested, I discuss 
threats to them in Chapter 14, “Accounts and Identity,” of my book 
Threat Modeling: Designing for Security.

The traditional authentication factors are often parodied as what 
you’ve forgotten, what you’ve lost, or what you were when you were 
younger and healthier. These challenges mean we need backup 
authentication techniques.

Backup authentication is variously called forgot your password, 
password recovery, or account recovery. The last is closest to accurate: 
No one cares about getting their password back; they care about get-
ting into the account. I don’t need to have ever known your password 
to use the feature, and in fact, it doesn’t need to be my account at all. 
This isn’t just nitpicking—understanding the problem is key to 
addressing it well. These backup authentication systems work best 
when they use secrets, known to as few people as possible. (“Where 
were the last three places you used your credit card?” is known only 
to you, your bank, the credit card processing networks, the mer-
chants, and their marketing analytics firms, while “Where did you go 
to high school?” is known to all your Facebook friends and friends 
of friends.)

Sometimes, additional steps or factors are invoked as part of authori-
zation: you may log in with a password, but adding a payee requires 
more. This pattern buys some usability at the price of confidential 
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information, such as your most recent transactions, that might otherwise 
be used in that stronger authentication. Or in some cases, it’s done at the 
expense of the security of the account, when that confidential informa-
tion is used despite its exposure. We’ll cover authority and authorization 
in more depth in Chapter 6, “Expansion of Authority and Isolation.”

Malware increasingly emulates a person, and there is a new aspect 
to authenticating people, which is authentic gestures. These are cap-
tured by the local operating system at a low level and used to unlock 
password vaults and the like. They are designed to ensure that “com-
modity malware” can’t emulate a person. However, they rely on hard-
ware to be trustworthy, so an attacker that gives you a new mouse may 
be able to bypass them.

Authenticating Computers to People

It’s hard to say when the first spoofed login screen was created, but it 
was probably around the time teletypes were replaced with electronic 
terminals. It was easy to write a program that would display LOGIN:, 
accept and store a name and password, display “Login incorrect,” and 
log out, allowing the real login program to run.

This is why Ctrl+Alt+Delete helped keep your computer secure: it 
brought you to a real login screen. Similarly, the home button on your 
phone can’t be intercepted by a program, and ideally the same is true 
of the gestures that replace the physical buttons. Phishing is a varia-
tion of this: the computer you’re sending your authentication infor-
mation to is just further away. Modern phishing scams will prompt 
you for the code texted to your phone or sent to your email. Similarly, 
fraudsters will fake caller ID information to make it appear that they’re 
calling from an institution you trust: your bank or the Galactic 
Empire’s Imperial Security Bureau.

It’s hard for a person to authenticate remote computers. We usually 
trust that our local computer is doing a good job of understanding 
what we mean and communicating back in a way we’ll interpret 
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correctly. (I am even more skeptical of this than I sound, but the prob-
lem is incredibly difficult.)

Can we understand what computer we’re talking to? Sure, from a 
certain point of view. Most websites we use have some combination of 
independently operated computer systems underlying them: the web 
server, a content distribution network, or various advertising, track-
ing, and analytic tools. When this is by design, we don’t think of it as 
a problem, except perhaps for privacy, but I bring it up to illustrate 
that most people don’t think deeply about what computer they’re 
talking to. Having assurance of the identity of the remote computer is 
most important when it’s asking for authentication information or 
other confidential data—we want our mental representation to be 
accurate enough, even if our understanding is limited.

We can recognize C3-PO because of the distinctive voice and man-
nerisms that Anthony Daniels created. Sadly, most computers are far 
less easy to recognize. There are many tools that try to make it easier 
for you to recognize a computer, and they change frequently to make 
it easier for attackers to confuse you about what you ought to expect 
today. Wait, I don’t think that’s the intended reason, but it is a real 
effect of the change. They change frequently in the hopes of handling 
new attacks. The way to protect yourself against all of these is to take 
control of the situation: press Ctrl+Alt+Delete, visit a bookmark for 
your bank, call the number on the back of your card. That works far 
better when organizations make it easy for you to reach the right per-
son or a person with the right information when you do take control 
of the authentication process.

Authenticating Computers to Computers

Authentication is important anytime that you have a call like 
listen(socket_id). The thing on the far side of that socket needs to 
be identified. When R2-D2 plugs into a socket, the Death Star allows 
all sorts of queries to be run, returning highly sensitive information 
about the location of prisoners. Given the sensitive data returned, we 
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can only hope the account wasn’t guest or rebelscum, but what was 
it, and how did R2-D2 prove the ability to use that account?

Each authentication may have some layered combination of tech-
nical and human identifiers. For example, the remote host probably 
has an IP address. It might have some form of client identifier like a 
cookie or an OAuth token. And it may have human or service 
identifiers.

When a client initiates a connection to a server, either side may 
require authentication. There are complexities when the act of con-
necting can be influenced by another computer or when that authen-
tication is on behalf of a person. The simplest case might be using 
Telnet to connect to an IP address: it happens in response to a human 
typing a command, which is hard to influence. But only slightly more 
complex examples, like sending email, are subject to influence. If I try 
to send email to luke@threatsbook.com, my mail client will connect 
to my mail server, which will use DNS to look up the MX record for 
threatsbook.com and connect to that site. The DNS server for 
threatsbook.com can influence where my mail server will connect.

Spoofing can happen when your code calls listen() directly or 
indirectly. In the indirect case, perhaps a web server calls listen(), 
parses the TLS and HTTP messages, and passes in something more 
“refined.” The code still needs to identify the caller. The web server 
may do some of that work, and even so, you may well need to map 
from the server’s accounts table to one used in your databases. For 
example, I might log in as adam@threatsbook.com and may have a 
customer_id of 1234.

Computers identify each other, often using a mix of cryptographic 
certificates and human-readable identifiers. For example, if darth 
vader@threatsbook.com sends mail to anakin@threatmodeling 
book.com, then the threatsbook mail server needs to look up the 
threatmodelingbook domain and decide about using the TLS cer-
tificate it serves. The threatmodelingbook mail server needs to 
make decisions about the mail coming from threatsbook and decide 

mailto:luke@threatsbook.com
http://threatsbook.com
http://threatsbook.com
mailto:adam@threatsbook.com
mailto:darth
vader@threatsbook.com
mailto:darth
vader@threatsbook.com
mailto:anakin@threatmodeling
book.com
mailto:anakin@threatmodeling
book.com
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if it’s trustworthy. At many of the steps in this process, there’s a cryp-
tographic key, signed in what’s called a certificate, and a tool that 
delivers a policy that this certificate should be trusted. These generally 
relate to either the root authority that’s signed the certificate or to per-
sistence. Persistence means the key was previously authorized to be 
used in conjunction with a hostname. SSH demonstrates a good pat-
tern of prompting when a new key is presented, emphasizing if it’s 
changed from what was previously presented.

Spoofing Attacks
This chapter introduced spoofing as a violation of authenticity. I want 
you to think about that broadly—think of spoofing attacks as break-
ing or confusing a link between an identifier and an object.

Many of these are where an attacker is injecting that confusion 
intentionally. But if we think of spoofing as violations of authenticity, 
we can end up in unexpected places. For example, if your mail client 
autocompletes an email address, that can be a mismatch between 
intent, action, and the authentic matching of that autocompletion to 
intent. It might seem like a strange thing to list under spoofing, but 
it’s reasonable to do so in the context of authenticity.

Spoofing Files

Confusion about the exact file represented by a name can be the result 
of human imprecision or of an attacker substituting a file. And unlike 
C3-PO, most computers won’t ask “What plans? What are you talking 
about?” Humans will give files the most awful names and save files 
under multiple directories, but the threats are where an attacker can 
substitute a file.
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Opening Files
A file’s identity is the name of the file. It can be spoofed when a file is 
underspecified (open "config.txt"). When a file contains a remote 
reference such as http://example.com/config.txt, the connec-
tion to example.com may be spoofed.

The simplest form of spoofed files is a failure to get the file you 
expect when you open it. For example, what file does fd = open 
("./file.txt") open?

If you tell your computer to open("~/.ssh/id_rsa"), then what 
file you get back depends on the implementation of open() and either 
the effective or real UID of the process. It’s a mistake to focus too 
much on the definition of the threat of spoofing here. Far more impor-
tant is that your code handles these potential imprecisions or confu-
sion in a safe, reliable, and secure way. More important is that if you’re 
not sure precisely what resource you’re going to get, or how it maps 
to your expectations and history with that file, there are security risks 
that your parser must handle.

A full pathname is a better statement of identity. You can be confi-
dent when you call open("/etc/passwd") or when you prepend a 
carefully validated prefix (/usr/local). But that won’t always get 
you the file you expect!

For example, /tmp/file.txt can be owned by any user on the 
system and have surprising content. Appending random numbers 
doesn’t protect you; open("/tmp/file2345.txt") only requires an 
attacker to create 10,000 files (or symlinks) to ensure that they con-
trol the file you open.

Opening an unexpected file becomes more distressing when the 
file opened is interpreted as code, such as when open is replaced by 
dlopen or LoadLibrary. (Opening a file and having it unexpectedly 
interpreted as code is even more distressing but is covered in 
Chapter 8, “Parsing and Corruption.”) Each library loading function 

http://example.com/config.txt
http://example.com
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has a search path, and that search path can be influenced. On Unix 
systems, LD_LIBRARY_PATH and other environment variables influ-
ence what’s opened, posing a problem, especially for setuid code. On 
Windows, the default library path has long included the current 
directory (.), and that creates problems for code run from an undif-
ferentiated downloads directory. All an attacker needs to do is to find 
a library that not all systems have then get it downloaded to a down-
loads directory, and any programs run from there will dutifully use 
that library. This is frequently called a drive-by download problem, but 
it’s really a spoofed library problem.

The introduction of a new library into “trusted” directories can 
alter the behavior of already installed programs. Of course, there are 
other ways to open a program, such as the exec family of calls, all of 
which can be invoked with nonspecific paths. There’s a variant of this 
where the file to be obtained has a name like npm:leftpad or 
BigBankValidationLibrary. Many build systems also have a search 
path and so will look for BigBankValidationLibrary wherever it 
looks for packages, such as NPM or Maven. And it turns out that the 
answer is not persistent, so if yesterday that library was in a private 
repository and today there’s a version in a public repository, well, we 
should get the public version, right? (Security researcher Alex Birsan 
created an impressive demonstration of this in 2021, with a variety of 
tricks to demonstrate that his libraries were being run so he could 
collect bug bounties. See (Montalbano, 2021 for the details.)

The nature of a path becomes even more fraught when the name 
is not rooted in the local machine. At one extreme of complexity are 
URLs, which are discussed in Chapter 8. It may be that specifying a 
file via a URL can make the pointer more specific, or it can add secu-
rity via TLS. But it can also add parsing complexity, failure modes, or 
opportunities for attack, even when the URL is a static string in your 
code. Complexity is added because a library needs to take file:/// 
etc/passwd, parse that it’s a file URL, and follow the appropriate 
codepath. More failure modes appear when remote machines are 
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invoked. If you refer to a file as https://example.com/style 
.css, there’s a chance that that style file will be unavailable, or you’ll 
get back either an old or cleverly inserted cached version. If you own 
the example.com domain and personally maintain it, that risk is 
lower and gets higher as those conditions are loosened. There are 
also malicious failure modes, also covered in more detail in Chapter 8. 
For now, imagine someone breaks into www.example.com and 
replaces the file that you rely on. It’s reasonable to think this falls 
more cleanly under tampering, but examples where the host is 
spoofed are more complex to explain and are covered in the “Spoofing 
Machines” section.

Faking Files
Another way to spoof a file is to cause someone to open a file they 
think is authenticated. An attacker can do this by taking over a 
machine to offer up tampered files, altering digital signatures, or 
abusing weak authentication schemes. For example, perhaps when 
R2-D2 is opening files on the Death Star, those files are coming from 
a honeypot, and that’s why it’s so easy to find where Princess 
Leia is held.

Attacks on digital signature schemes can happen because the algo-
rithm used for signing is weak or even broken, because the key is too 
short, poorly generated, stolen, or replaced, or because of encoding 
issues where parts of the file are not signed. They can also happen 
when a strong algorithm is used with a well-generated and well-
protected key and the system verifying the signature displays insuffi-
cient information about the signature. That might be as minimal as 
saying “signature validated” or “signature validated as from Adam 
Shostack,” rather than saying what key was used, when, and why that 
key is treated as trusted. (This can be a lot of information, and making 
that understandable can be tricky.)

It can also be possible to modify a file without breaking the signa-
ture scheme. This is more prevalent than you may expect. For exam-
ple, in Windows it is possible to append additional information into a 

https://example.com/style.css
https://example.com/style.css
http://example.com
http://www.example.com
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signed file and execute it. (The details are complex, but variants of the 
issue were issued the identifiers CVE-2012-0151 and CVE-2013- 
3900.)

Spoofing Processes

Files are not the only namespace on a computer. Processes also have 
names and ways of referring to them. Many local interprocess com-
munication protocols assume that only the right code could listen on 
a specific port or file socket. Similarly, code often assumes that a 
remote process must be owned by root because it’s listening on a port 
less than 1024.

After being kidnapped by Jawas, R2-D2 is able to evade the control 
of the “restraining bolt” they install and continue his mission to bring 
a message to Obi-Wan Kenobi. Perhaps he ran a virtual machine and 
allowed the restraining bolt to reconfigure it, not his main system? Or 
maybe I’m overthinking it. (The ambiguity was first pointed out by 
Jim Davies.)

Spoofing Machines

Let’s start with a simple model of communication between two 
machines We’ll call the source machine SRC and the destination 
machine DST, as shown in Figure  1.3. SRC sends a packet, and it 
arrives at DST. Magical, right? And as long as SRC and DST are in a 
threat-free network, easy! But there may be more than one machine 
named DST on the Internet. There might be DST.example.org and 
DST.example.com, and there may be other machines that send or 
receive packets pretending to be one or the other. That’s a useful and 
common mental model of the way machines communicate, and like 
all models, it’s wrong. An attacker can send packets, claiming in vari-
ous ways that they’re from a machine named SRC. Many of the sys-
tems that authorize based on IP address, like rsh, have been deprecated, 
but others, like firewalls, remain in common use.

http://dst.example.org
http://dst.example.com
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The names of machines are subject to spoofing at every layer of the 
network stack and at each interplay between such naming. Consider 
a “simple” request for dst.threatsbook.com/index.html, and let’s 
get more specific about the data flows that support that request. As 
shown in Figure 1.4, there are many connections being made, each of 
which is subject to spoofing.

At each layer and at each hop, an attacker can fake a from address 
to make a packet appear it’s coming from an authorized machine. 
Perhaps the spoofed machine is authorized to send mail or to allow a 

SRC DST

FIGURE 1.3  A simple model of communication

SRC DHCP

Offer
Discover

Request

A DST

GET / HTTP/2.0

Acknowledge

DST

DNS

10.1.2.3

Router

Not Found

FIGURE 1.4  Many connections to support a request

http://dst.threatsbook.com/index.html
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login without multifactor authentication. Fake source addresses often 
abuse the authorization associated with the sources, or they can be 
used to provide additional layers of authentication failure. When the 
faked message is an IP or UDP packet, you can spoof “blindly.” The 
fake source will get responses, but you don’t have a need to manage 
sequence numbers or other things. That’s getting harder to pull off if 
you’re many network hops away, as many networks now implement 
source address filtering and will not forward packets that should not 
have originated within their networks.

We’ll assume that this is a newly booted laptop, connected to a 
physical Ethernet. Each layer is subject to threats. For example, per-
haps the DHCP server has given us a bad DNS server, or perhaps it’s 
been manually configured poorly. Causes are marked with a capital, 
their effects with a lowercase letter. Thus, D means threats that misdi-
rect IP packets, and d is packets being sent to the wrong place. See 
Table 1.1.

You might think of a TCP frame containing the string GET http://
dst.threatsbook.com/index.html HTTP/2.0. But that frame 
doesn’t transport itself. It’s encapsulated in IP, which might go over 

TABLE 1.1  Actions and Threats

Action Threat

PC makes DHCP 
request

DHCP response with bad IP (A), DNS (B), or 
router (C) (either a bad server or a fake 
response).

PC uses bad IP for 
self (a)

Can’t get responses—switch sends responses 
elsewhere.

PC uses bad DNS 
(b)

DNS provides faulty information—bad IP for 
DST (D).

Uses bad router (c) Router either drops packets or engages in 
monkey-in-the-middle (MITM) attacks (D).

Sends packets to 
wrong IP address (d)

The other IP address can do what it wants.

http://dst.threatsbook.com/index.html
http://dst.threatsbook.com/index.html
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Wi-Fi for the first hop, cable modem for the next, and who knows 
what over the backbone. We usually ignore the encapsulations and 
decapsulation, but it can matter, because threats are possible at each 
layer of the stack and by each system that adds, removes, or changes 
a layer. Figure 1.4 shows a message going from SRC to DST, with a 
router in the middle, and this is often a useful model. And that model 
makes it easy to forget that at each hop, the packet is translated. 
Perhaps the first hop is Wi-Fi, and the access point accepts the packet 
and adds an Ethernet header to send it to a cable modem. The cable 
modem discards the Ethernet frame and adds a docsys header, and so 
it goes on its way. As shown in Figure 1.5, the IP datagram is the same 
per hop, but the local encapsulation changes. Each of these systems is 
a machine in the middle, and we either hope it does its job faithfully 
or we add defenses to ensure it does.

So, for any of the D threats from Table 1.1, the router can send 
packets (IP, TCP, HTTP) to the actual spoofed.example.com and 
modify the responses, or it can send packets to an alternate machine, 

Wi-Fi
access
point

SRC
Cable

modem

Wi-Fi Get / HTTP/2.0

Ethernet Get / HTTP/2.0

DOCSIS Get / HTTP/2.0

FIGURE 1.5  Packet encapsulation, hops

http://spoofed.example.com
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configured to pretend it’s spoofed.example.com. Other infrastruc-
ture along the route has the same ability, and some of it, such as load 
balancers, is put there to execute precisely this technical fakery, often 
with good intent.

Extending this set of attacks to the HTTPS variation with a stolen 
certificate or one issued to the wrong requestor or a self-signed certifi-
cate that’s accepted by the verifier is left as an exercise for the reader.

Spoofing in Specific Scenarios
Spoofing threats don’t go away because your device is small. There are 
both threats as the devices authenticate and opportunities to exploit 
integrated sensors. Mobile phones can be a locus of hopeful thinking 
replacing rigorous analysis, and so we’ll cover a few common prob-
lems. Lastly, we’ll cover spoofing around blockchain technology.

Internet of Things

Designers have to consider who legitimate users are and how they’ll 
authenticate to the device. We also need to consider how to authenti-
cate the device to others, including Wi-Fi, cloud servers, etc.

Many simple devices have a single user, and simple presence may 
be enough authentication. For example, televisions have a single user, 
who’s local, and TV remote controls used infrared light, which was 
nice because walls blocked it. Even if you don’t think your device will 
need multiple accounts, having more than one account will probably 
come in handy, and having code not run as root is an important appli-
cation of the principle of least privilege and is easy if you apply it from 
the start.

The world is often surprisingly complex. For example, we put that 
TV in a hotel with adult content for sale, and it suddenly needs a way 
to control access to that content for some users and not others, and 
the hotel needs a way to reset the PIN when a guest checks out. 

http://spoofed.example.com
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Similarly, some phones now have work accounts and kid accounts. 
Fancy cars come with valet keys.

Some devices, especially those deployed at businesses, need to 
integrate with directory services. Conference room tooling is a good 
example. You’ll need to decide on a secure initialization flow, remem-
bering that an attacker may be able to reset the device.

Safely authenticating to a new device can be tricky. For many 
devices, a password has been easily found with Google, because it’s 
common to all devices made by a manufacturer, or worse, it’s some-
thing like admin and works across manufacturers. This is the elec-
tronic equivalent of a lockless door with an “authorized staff only” 
sign. Attackers have lists of common passwords in their heads and 
tools to try thousands of default passwords, which are collected and 
published. For other devices, the password is something like the 
device’s Ethernet address, available to anyone on the local network. In 
many jurisdictions, this is no longer allowable, and each device needs 
a unique password. You’ll need to decide if this is visible to guests, 
waitstaff, and others who might have access to the device.

Voice access means physical location is less bounded than you may 
think. Open windows are like open doors, or you can ask Siri to open 
them for you. (We’ll consider voice cloning in the “Attacks on ‘What 
You Are’” section later in this chapter.) Devices may not be deployed 
in homes and private offices, but in shops where staff or customers 
may be motivated to attack it, or in an Airbnb, where the attacker has 
substantial time to attack it should they so choose.

Today’s many voice-controlled devices have no accounts or authen-
tication. When they do, it’s likely they’ll be set up to be forgiving to 
reduce frustration. It won’t be like the movie Sneakers where much 
effort was required to tape (!) Robert Redford saying, “My voice is my 
password; verify me.” Rather, your voice will probably be your user-
name and password, rolled into one, and likely eminently spoofable.

Small devices tend to have limited user interfaces, which makes it 
hard to input secrets like passwords. Some devices overcome this by 
authenticating the device to the cloud and the user to the cloud and 
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giving them tools to associate the user account to the device account. 
In this architecture, there are two important authentications and an 
important and tricky set of authorizations. The authorizations must 
include both adding an account and removing them. Good scenarios 
to consider include a valet parking your car, an Airbnb guest, a device 
sold at a yard sale, and an ugly divorce.

Those limited user interfaces also make it hard to display security 
indicators or data that might be used in a security decision, including 
URLs. There’s a good argument that asking people to parse URLs is a 
waste of time and effort (Herley, 2010), and the argument is strength-
ened by the constraints of both IoT and mobile phones.

Mobile Phones

The problem of small user interfaces also shows up on phones, where 
screen real estate is limited and provenance of UI elements is hard. 
Intuitively, it would make sense for apps to be able to send a message 
to an app store app. For example, a game might send a message to the 
app store, and the app store could charge me a few dollars for the 
magic sword. How do I know that I’m in the app store and not a fake 
UI that looks like it? How do I know I am giving my credit card to the 
right app, rather than a spoofed one? I expect similar spoofing threats 
with voice apps and voice-controlled devices.

A couple of common bad beliefs are that phones are mapped one to 
one to people and that phone numbers are good authenticators. Many 
people believe in the deeply democratic principle of “one person, one 
phone,” but it’s wrong. Some people have more than one phone or 
more than one SIM, especially outside of the United States.

Some phones are used by more than one person; think about par-
ents loaning their phone to their kid or partners picking up each oth-
er’s phone. Couples (especially elderly ones) may share a phone, 
while younger ones may have full access to each other’s phones. There 
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are also people who don’t have phones because of their life circum-
stances. Poor people (especially those in less developed countries) 
may not be able to afford a modern mobile phone with plenty of 
bandwidth. Older people may give up on phones because of trouble 
hearing; young people may not yet have phones.

On the other side of the scarcity-plenty spectrum, phone numbers 
are easy to come by in small quantities and not particularly hard to get 
in bulk. For the former, stop at any big-box store, and for the latter, 
set up a business and buy lines in bulk.

Mobile phones also have many of the issues of other small things, 
especially when it comes to entering secrets such as passwords or 
keys. They have also become crucial to many authentications and are 
thus tempting targets for attackers to either exploit the technology or 
trick a person into revealing authentication information.

Cloud

Many cloud systems support complex, layered delegation of author-
ity. One cloud provider’s “Organizations terminology and concepts” 
starts by discussing a “a basic organization that consists of five 
accounts that are organized into four organizational units under the 
root.” There’s a management account, which has a great deal of 
authority, and then the ability to assign permissions to those accounts 
in policies. If there’s more than one account that a person is expected 
to regularly use, confusion is a likely result. (Emphasis added—the 
complexity grows rapidly.)

If a machine image contains either passwords or cryptographic 
keys, then each running instance will have the same authenticators, 
and anyone who steals the machine image will have copies as well. 
Modern practice is generally to have the machine request or register 
random keys in a secret store of some form. Each major cloud pro-
vider has guidance on bootstrapping these keys safely.
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Considerations in Authenticating to Organizations

We regularly need to authenticate ourselves to organizations, includ-
ing our banks, schools, utility companies, and the like. We also need 
to prove properties about ourselves such as creditworthiness, ability 
to work, or age to buy alcohol.

When people are responsible for checking details about strangers, 
it is surprisingly hard to define what “good” is and to execute on that 
well. It’s hard to match a person to a small photograph taken years ago 
and printed as part of an ID card. When the property is “fellow 
employee of a large organization,” the social pressure to say OK can 
feel high. Attackers will study manuals for a targeted organization so 
they can talk like their victims. Luke and Han know that they have no 
good answer for “What’s your operator number?” when pretending to 
be Stormtroopers, so they pantomime that their radios are 
malfunctioning.

There are many nuances. For example, my state university ID card 
is a “government-issued ID,” but it’s probably not going to get me on 
an airplane. The level of required proof generally must balance secu-
rity and business—good enough to say “We made an honest effort to 
comply with the rules” without turning away too much business. 
Many properties of these authentications are shared with authenticat-
ing to computers; people generally handle these exceptions, but the 
computer is less flexible, for good and ill. Similarly, demands for 
extensive documentation must be balanced with the customers who 
might feel it’s overly intrusive. Security is one of several important 
properties in this calculation.

We also regularly need to authenticate that someone who’s con-
tacted us really represents the organization they claim to represent. 
Your bank, the IRS, a store with delivery problems…how do we know 
who they are? My advice to you is to take control of the conversation 
by initiating a new one to a trustworthy address. In other words, call 
the phone number on your card, log in using a bookmark to reach  
the authentic bank, or otherwise ensure that you’re reaching the  
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right place. Often, it’s hard to get to the person who knows about your 
problem. Most organizations could deal with this much better.

Mechanisms for Spoofing Attacks
We’ve talked about spoofing files and processes on a computer, spoof-
ing between nodes in a network, and spoofing people. I want to turn 
your attention next to some commonalities in the mechanics, not in 
the victim.

The mechanisms used include misrepresentation, theft, takeover, 
namespace confusion, exploiting mapping between layers, and confu-
sion by deputies. There are also an extensive set of attacks on authen-
tication techniques.

Misrepresentation

Misrepresentation is simply asserting a different identity. I might set 
the display name on an email to Luke Skywalker, but, by itself, no one 
would confuse me with the Jedi Master. After all, Jedi don’t have 
email. But I am not putting forward an accurate representation.  
I might have an account “threat modeling instructor,” which is accu-
rate but not the name on my ID. I don’t usually count that as misrep-
resentation. People should be able to call themselves what they want, 
as long as they’re not doing it to deceive, and rules to try to constrain 
them to “real names” almost always cause more trouble than they’re  
worth.

There are layers in which misrepresentation can take place. I might 
set my display name to Bill Gates; I might get the email address 
billg59@example.com. I might register a domain, gatesfoundation 
.com or gatesfoundat1on.com, that someone might think repre-
sents the Gates Foundation (and its nonexistent lottery).

Sometimes what happens is direct misrepresentation: “I am a 
Nigerian Prince,” while other times the claims are implied. Still other 

mailto:billg59@example.com
http://gatesfoundation.com
http://gatesfoundation.com
http://gatesfoundat1on.com
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times, the claim may be true and misleading: there’s more than one 
Gates with a foundation, but only one who springs to mind.

There is also misrepresentation where text does not show what you 
think it shows. For example, the easily recognized string Υοda does 
not match the seemingly identical string Yoda. If you look at 
Figure 1.6, you’ll see the following characters (identified here with 
their Unicode numbers). The top line consists of a Greek capital upsi-
lon (03a5), Greek small omicron (03Bf), Cyrillic small letter komi di 
(0501), and what the heck, I used a Latin small a (0061). The bottom 
string uses a capital Y (0059), a small o (006F), a small d (0064), and 
a small a (0061). Unicode calls these confusables and has a nice tool 
to generate a list of confusable text. But the fun doesn’t stop there.

As you read this, you’re reading left to right, but not all languages 
work that way. Many languages are read right to left, and so text pro-
cessors often need a way to indicate a change of direction. Adding this 
to those confusables (to produce decoy text) means that the source 
code an editor displays may not be the code that the compiler parses. 
Ways to exploit these include an early return call, making apparently 
executable code into comments, and more (Anderson, 2021).

Theft
Either static authenticators (passwords, single-use URLs) or crypto-
graphic keys can be stolen and used by an attacker.

Fake sites often use stolen HTML code. Even if the spoofer doesn’t 
update their version of your site, people cannot avoid being trusting: 
they’ve learned that the world of the Web involves nearly constant 

FIGURE 1.6  Spoofing Yoda
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minor changes, and so minor discrepancies are indistinguishable 
from the latest edits your brand team has implemented.

Takeover
I might not need to misrepresent myself, if I can use your account to 
do things that people attribute to you or that you are authorized to 
do. To do this, I bypass the authentication factors that protect your 
account or violate the integrity of the system that you use to log in.  
I can do that with malware, with systems management tools, or with 
other code or scripts.

Names, Mapping, and Canonicalization
A rose by any other name might smell as sweet, but you can’t call the 
florist, order by some other name, and expect them all to show up 
roses. We use names to refer to things, and commonality between the 
names you and I use is a useful and difficult property. The names of 
people are freeform, not intended to be unique. In computers, names 
are often controlled by some authority whose goal is to ensure unique-
ness for everyone who accepts the namespace. Some namespaces are 
local; /etc/passwd refers to a different file on each machine. Others 
such as IP address, email, or domain names are global. But not all 
addresses are global, and not all routing systems will respect the 
global nature of an address. The IP address space is generally global, 
until you get to addresses like 10.0.0.2, but that doesn’t mean that 
every router will route 1.2.3.4 to the same place. If I control your 
router, I can easily write special-purpose routing tables that send 
packets to that machine to any place I’d like. Odds are I’ll send them 
to a proxy of some form, which will tell you it’s 1.2.3.4 and pretend to 
be you to that machine.

Email addresses, intuitively, have the property that an email  
address maps to a person, but that’s not actually the case. Consider 
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noreply@bank.com or support@bank.com. We think domain names 
map to an IP address, which maps to a machine, so everyone referring 
to www.google.com gets to the same place. What we really get differs 
from what we expect, and attackers often sit in those differences. This 
mapping between layers is another source of confusion and attack. If 
we return to the earlier example of the dst.threatsbook.com in the 
“Spoofing Machines” section, we can see that many of the attacks 
happen at the point of mapping, but, as you’ll discover, a great deal 
depends on your point of view.

We hope that canonicalization reduces these problems. Intuitively, 
the simplest form of a name is better. If you canonicalize until the 
output of the canonicalization function is the same as the input you 
gave it, you are far less likely to have problems. But let’s say you’re 
making a canonical form of file://../../.././////etc/ 

passwd, which should simplify to file:/etc/passwd. You can do 
that before checking whether you want to allow it, and that is helpful. 
But it may not be sufficient for safety. Let’s say that you simplify to 
file:///10.0.0.1:/etc/passwd. Is that OK access? Your canonical 
friends cannot save you now.

Attacks on Authentication Mechanisms

From Ben Kenobi telling Stormtroopers that they don’t need to see 
Luke’s identification to modern mind tricks of phishing or printing 
fake fingerprints, authentication mechanisms come under attack. 
They come under attack because if an attacker can impersonate, they 
can do all sorts of things the spoofee is authorized to do. Let’s look at 
the mechanisms that recur.

Replay
There are many attacks that rely on an authenticator being static and 
thus reusable. If the string “stink,TheSithDo” authenticates Yoda’s 

mailto:noreply@bank.com
mailto:support@bank.com
http://www.google.com
http://dst.threatsbook.com
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login, then an attacker can replay that string if a system isn’t carefully 
designed to prevent replay attacks. This is the case if Yoda uses the 
same password on multiple systems, and it can even be a concern if 
the string is encrypted. Surprisingly, that’s the case even if it’s encrypted 
with a good cryptographic algorithm, but in a way that allows an 
attacker to replay the encrypted packet or message. For example, if 
the login sequence is always the same (login, password), then if I have 
the encrypted password for Yoda, I can just replay it. The defenses 
start with sending nonces (random numbers) that are incorporated 
into the messages.

Reflection
When adding cryptography to a system, even if there’s good use of 
public key algorithms, messages tend to be encrypted with a symmet-
ric algorithm. An effect of that efficiency choice is that packets can be 
decrypted by any endpoint of a protocol.

Attacks that reflect messages back to the party that sent them used 
to be remarkably effective, especially when encodings were either 
very tightly packed to work over slow connections, when the proto-
cols are complex, or when decoders were designed to be liberal in 
what they accepted. Today’s encodings tend to label data. To be con-
crete, a tightly packed encoding might be 1,Leia,16,74, while a 
labeled one would be {"id":1,"name":"Leia","role":"princess",  
"role":"general"}.

Confused People
People are easily confused. We make mistakes and get distracted even 
when we’re not being attacked. These problems are exploited by 
attackers in many, many ways, and highly relevant to multifactor 
authentication is how people can be tricked into helpfully bypassing 
such systems.

The same sort of attack works against many familiar forms  
of enhanced authentication, such as authenticator apps or text mes-
sages with a code. A person will happily enter the extra code on a 
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phishing website. Attackers also have success saying “Oops, I entered 
the wrong phone number; can you send me the code you just got 
from my bank?” These approaches do require an attacker to be attack-
ing live, rather than storing credentials and using them later.

People will also instruct their password managers that github 
.com and github.io are equivalent. They’re not. Take a moment to 
think about why not and why the difference matters to security. Most 
people will guess that they’re operated by different entities, which 
isn’t true. Both are operated by GitHub. The io domain is used for 
user content. So, entering your password is very different (Burnett,  
2017).

Confused Deputy Attacks
A deputy is a program that works on your behalf in some  
way, as a proxy. A “confused deputy” is when a program uses those 
privileges of a user on behalf of an attacker, who doesn’t have  
those privileges. For example, a website directs your browser to  
request a resource in a cross-site request forgery, for example,  
<img src="//192.168.1.1/password.cgi?change=secret'>. Your 
browser is your deputy, and it’s acting, confused, on behalf of an attacker 
who redirects it to change the password on your local router.

Threats Against Authentication Types

Each type of authentication factor (what you have, what you know, 
and the others) can be threatened in ways that are unique to that fac-
tor. Additionally, many authentication systems rely on sensors. Those 
sensors can be attacked separately from the attacks on the various 
factors or mechanisms. Sensors are the computers or peripherals that 
measure some physical properties, such as a fingerprint scanner or a 
GPS chip. Sensors are often remote relative to those who trust them 
and are subject to attacks such as tampering with the real sensor  
or spoofing it (claiming that some other computer or device is  

http://github.com
http://github.com
http://github.io
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the sensor). For example, I might tamper with a fingerprint scanner 
in my laptop or attach my own device via USB. The way the biometric 
system’s database storage maps from factor to account is subject to 
information disclosure, tampering, and denial of service. Those 
attacks vary by type of sensor, and the economics of sensor deploy-
ment often mean that the resistant sensors, or the sensor packages 
that may be harder to trick, are replaced with more vulnerable ones.

Attacks on “What You Know”
Passwords are the most traditional form of what you know, but there’s 
been a rise in alternate forms, including a variety of systems that  
are intended to address the reality that humans frequently forget 
passwords.

“What you know” is attacked in two ways, guessing and theft, but 
it fails in more ways. There are innocent failures of such systems, 
where preferences change, memory fails, spelling doesn’t match, etc. 
There are also failures where there are no passwords, default pass-
words, well-known passwords, or predictable passwords. Predictable 
passwords include using the username, date of birth, Ethernet address, 
an IMEI, a passport number, or similar elements that are “widely 
shared secrets.”

Guessing
Guessing works because memorizing random strings is hard, so peo-
ple want memorable passwords, and there’s a short list of approaches. 
They include memorable words or keyboard sequences and tech-
niques to appease the password edicts—appending a 1 or !, the 
month, the name of the site, and the like.

Attackers build dictionaries of likely passwords: secret, letmein, 
qwertyui, and password are all perennial favorite passwords. They can 
also be likely relative to a particular target. That likelihood can be 
informed by either password leaks or personal information about the 
target. Personal information used in passwords includes birthdays, 
kids’ names, sports team preferences, Star Wars references, and more.
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There are knowledge-based authentication systems that restrict the 
list of possible answers to a very small set, such as “What color are 
your eyes?” or “What’s your favorite pizza topping?” While these sys-
tems may slow attackers (at the expense of customers needing to call 
and probably use yet another bad authentication system), a persistent 
attacker, such as a stalker, who keeps notes can still exhaust the search 
space. If you’re breaking into Lando Calrissian’s account, you can bet 
his favorite bird is probably a falcon, not an eagle or a hawk.

Attacks against each authentication factor can be split into online 
and offline attacks. Online means the attack is against the live system, 
including defenses that detect and respond to problems, for example, 
by getting exponentially slower at responding to login attempts within 
the same TCP session. A common aspiration is that you can rate-limit 
attacks testing passwords by IP address. It turns out that there is code 
available that will detect your rate limits and tune the attacks to come 
in just underneath them.

Offline attacks are those that disconnect some of those defenses, 
say using a stolen copy of an authentication database or a discon-
nected instance like a laptop with its Wi-Fi off. We’ll revisit offline 
and offline attacks in Chapter 7.

Theft
Attackers can steal the answers from anyone who knows them. For a 
password, that includes your own site or other sites where a person 
uses the same password. For secret questions, it’s anyone with access 
to the same data. (In this sense, use of the SSN as an authenticator is 
a success catastrophe.) The people who know the answers include the 
person whose data it is, who can be tricked into handing it out with 
“games” like “your Harry Potter name” asking about the street you 
grew up on. Attackers are also setting up sites that offer value for free 
registration. They mirror the secret questions of more popular sites 
and thus collect answers from those who answer honestly. Carleton 
University Professor Paul van Oorschot calls this variant an interleave 
attack in his excellent Internet Security: Tools and Jewels (Oorschot, 
2019). These interleave attacks are an extension of a classic MITM 
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attack but are less tied to being classically “in the middle.” Credentials 
can also be stolen when people are tricked into providing their cre-
dentials to a program that shouldn’t have them. This can be phishing, 
local copies of ssh or sudo, or a fake login screen. Thus, there’s a 
strong relationship between spoofing and information disclosure.

Credentials can be stolen in transit, when they are being changed 
or federated, or from storage at a server, a client, a key distribution or 
directory server, or a third party where credentials are also used. 
Cryptographic credential schemes can reduce vulnerability by keep-
ing a secret on a local machine, and a validator on remote ones. These 
schemes are great for those cases where you don’t have to support 
arbitrary people on arbitrary devices with arbitrary software, which 
means you need passwords.

One particularly failure-rich transit is the mobile phone system, 
where “what you know” is interpreted as “what was sent to your 
phone number.” This is so full of fails that words nearly fail me. There 
are all sorts of attacks, including attacks on routing and attacks that 
exploit convenience tools. Routing attacks include number porting, 
where someone convinces a phone company that you want to move 
your number to them. Then all the messages (and calls) get routed to 
“your” new phone company. Closely related are SIM swapping attacks, 
where someone convinces your phone company that they’re you and 
need a new SIM. Those work within a phone company. Even if your 
phone company or SIM doesn’t change, someone who can convince 
your mobile phone company that you’re roaming can get your mes-
sages. That’s less common. Additionally, modern communications 
tools want to make it easy to read your text messages, and so Outlook, 
iMessage, Google Voice, and others will pull your text messages into 
your email, so anyone who can read your email can read your texts.

Attacks on “What You Are”
Using “what you are” to authenticate you requires not only you but 
some stored information about you that is used for later authentica-
tion. These can be as simple as a photograph or as complex to meas-
ure as DNA. This is called biometrics, either from the Latin for “life 
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measurements” or the Dutch for “gummy bear.” Overall, there are 
threats to the enrollment process, where either the wrong person is 
measured or the wrong measurements are recorded. There are threats 
to the storage of the measured data, most importantly including tam-
pering and denial of service, but depending on the data or who is 
holding it, information disclosure might matter. (“Do explain to me, 
Mr. Corleone, why the Polezia were so excited by your fingerprints?”) 
Lastly, there are threats to checking a biometric, either fooling the 
instruments or fooling the evaluator. Of course, the evaluator can lie.

Let’s make a few of these concrete. Looking at photographs first, 
people are bad at matching a photograph to the face of a stranger in 
front of them. Even if we are excellent at recognizing the faces of  
people we know, matching the faces of strangers to small pictures of 
them is hard, and the vast majority of the people you look at will have 
a matching ID, which makes it hard to maintain vigilance, and claim-
ing that a person doesn’t match is a socially awkward interaction even 
in structured systems like border control.

Somewhat surprisingly, no one in Star Wars ever seems to fake a 
hologram. But in our world today, there’s voice cloning and deep-
fakes. Voice cloning is just what it sounds like: a computer takes a 
sample of a voice and says things in that voice. You can buy a teddy 
bear that talks like grandpa. And deepfakes are the video equivalent. 
Today, the tools are complex, slow to use, and don’t work perfectly. 
Attacks only get better, those weaknesses in the attack code are being 
worked on, and our ability to use phone calls or video calls to distin-
guish the real you from a fake you at a distance will diminish.

Technological attempts to replace the person with a system may 
address the issue of boredom but are still terrifyingly imperfect. There 
are credible reports of people passing border control even when iris 
scans are in use (Youssef, 2010). Border control is useful as an exam-
ple because it’s a system where we can expect the technology to be at 
its most effective. Many interesting threats can be better managed, 
including fake equipment, tampering with the signal from real 
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equipment, prostheses, and lazy, friendly, or bribed staff. So, biomet-
ric systems should operate around their peak of reliability.

Recently, there were claims that a set of generated master finger-
prints could fool phone fingerprint scanners 65 percent of the time 
(Ross, 2017). There are questions about the research, but attacks only 
get better. The Chaos Computer Club (ccc) has demonstrated going 
from photographs taken at 5 meters to iris prints that fool the iris sen-
sor on a high-end smartphone (ccc, 2017).

Physical attacks to steal body parts are not just the stuff of Minority 
Report; such have been reported in the real world. And while I don’t 
want to get ahead of myself, we must face the possibility that we’ll be 
up to our necks in biometrics like FaceID.

Voice systems are in increasing use, in part because they can be used 
surreptitiously. Systems to create synthetic audio of a person speaking 
in real time are on the near horizon. It’s not just computers that may 
be confused. Link one of these systems to a phone call, and you can 
confuse another person into thinking that you’re someone else. This 
will confound many call centers, whose operators want to move to 
voice authentication, because it has the potential to be used secretly 
(or perhaps unobtrusively) in the background. It seems likely the 
voice authentication system will detect some voice cloning tools, and 
attackers will search for or build tools that allow them to impersonate.

Attacks on “What You Have”
Things that you have can be lost, stolen, or duplicated. If the answer 
to what you have is a physical token for multifactor authentication 
and you want to outsource your job to a programmer in China, you 
can point a webcam at it so they can do your job.

Also, what you have might be a device, with device identifiers. It 
might be an IP address at which you can receive packets. The word 
receive is very important—it is far easier to spoof a sending address 
than to get packets to come back to you. There have been TCP spoof-
ing attacks that have leveraged predictable identifiers and sequence 
numbers so they didn’t need to receive responses.
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Attacks on “Where You Are”
Location can be a helpful addition to other authentication factors. 
Physical location is hard. Most systems do not have sufficient timing 
resolution and reliability to determine how far radio signals have 
moved; radio travels at a foot per nanosecond, so if your timing is 
“merely” microseconds, you have accuracy on the order of 2,000 feet. 
(If you’re unlucky signals are sent at the very start of a microsecond 
and received at the very end of the next.) As of 2022, the Linux 
time(7) man page still says “microsecond accuracy is typical of mod-
ern hardware.”

If you are translating an IP address into a physical location, don’t 
forget that IP addresses are flexible. The geolocation of an IP address 
is tricky; many mobile devices silently connect through complex 
proxy systems designed to improve performance. People often want 
to appear to be coming from somewhere else to watch television (!), 
so the tools for spoofing are easily available.

Attacks on Authentication Chains
Closely related to the attacks on who you know are attacks on chained 
authentication.

Many systems are moving to make it easy to send either a one-time 
code or a password reset to the email associated with your account. 
This is a practical recognition that as we all have too many accounts, 
it’s easy to forget or lose your password. This means that those other 
email providers become or are acknowledged as a crucial part of the 
security of those systems.

This requires that the person still has access to the email account 
they used when setting up the account. Systems that have rare com-
munication with customers, such as banks with retirement accounts, 
need to be careful that the account may be reassigned. This differs 
from a confused deputy because your email provider is not your dep-
uty for account security (or at least perceptions about this differ.)
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Defenses
Authentication is one of the tasks most frequently demanded of  
people through their day, so even your real, cooperative users or cus-
tomers may find themselves worn down. It’s important to design 
defenses that authenticate well without unduly burdening people.

Authenticating People

No single factor works well for authenticating people, and using more 
than one factor is the best way to overcome those weaknesses. (By 
this, I mean more than one type of factor, such as what you have and 
what you know, not many iterations or variations of what you know.) 
We discussed the factors overall above in Authenticating People to 
Computers, and I’d like to revisit “what you know.”

“What You Know”
Defending password systems includes managing what people select as 
their password, dealing with the reality that people will reuse their 
passwords, understanding that other sites will leak them, and storing 
the passwords safely.

Defenders can expect, detect, and respond to dictionary-driven 
attacks. It’s useful to include common passwords and to update the 
list each year. I’m reasonably certain we saw an uptick in murderhornet 
in 2020 and covid in 2021.

Offline attacks against what you know rely on direct access to a 
copy of the authentication database. Well-designed authentication 
databases use many iterations of a cryptographic hash to store not the 
password, but its hashed value. The hash function is designed so 
there’s no way to go from the output to its input. (This is called a pre-
image attack on the hashing function.) If your framework has features 
for password setting and checking, they probably do this for you. The 
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nuances of defending stored authenticators are very educational if 
you want to go deeper into defense, but the simple answer is use 
Argon2, the winner of the Password Hashing Competition. You’ll also 
need to use a salt (a random value per password, stored in cleartext) 
so that two users using the same password will have different stored 
authentication information. (See Chapter 7 for details.)

If you’re using other secrets (“the street you grew up on”), then an 
irreversible hash imposes a requirement of precise matches. You 
might adjust people’s answers before checking (changing Street or St. 
to street) as an alternative to storing the answers in plaintext.

Authentic Gestures—What You’ve Done
Desktop operating systems used to treat all software that was running 
“as the logged-in user” as equivalent. A program could read or write 
all your files. Ransomware loves this type of feature. That’s evolved, 
and the way it’s evolved, with a focus on “authentic gestures,” is cov-
ered in Chapter 6. If you’re developing a platform, consider if it’s help-
ful to distinguish physical input from virtual.

Authenticating Computers

The ability to address spoofing varies with the type of software. If 
your clients use a web browser, you cannot control where that browser 
goes. Creators of connected devices often have more control. Their 
devices may need to connect to only a small number of destinations, 
and those destinations may be within the control of the device maker. 
That control allows you to specify the certificates or certificate author-
ity (CA) that is trusted. (Doing so carries the risk of breaking things 
if the certificates are lost or the CA is unavailable.) Spoofing of local 
files that only your application accesses is relatively easy but gets 
harder as those files are accessed over a network.
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Conclusion
Let’s return to the question of how R2-D2 knows to play the hologram 
of Princess Leia saying, “Help me, Obi-Wan Kenobi.” Perhaps as a 
high-level operative, the droid maintains a biometric database of 
trusted participants in the resistance? In that case, getting him off the 
ship and away from the Empire really is crucial—if captured, his stor-
age might be retrieved by forensic specialists, and the entire resistance 
might be unmasked at once. Privacy is important to many people. 
Keeping customer lists or membership lists confidential matters even 
when you’re not fighting a galactic empire.

More generally, because we allow action based on which account is 
being used and what authority it’s granted, we must ensure that peo-
ple and computers are sufficiently well-authenticated.
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2

When the Millennium Falcon escapes from the Death Star, Han 
is right to worry that it’s too easy. There are two reasons for 

that: Obi-Wan has tampered with the power supply to a tractor beam, 
and the Falcon itself has been tampered with: a homing beacon has 
been placed onboard.

Introduction
Tampering, where the data you get is not what was stored or sent, is a 
threat to the integrity of that data. The most common ways tampering 
manifests are failures of storage integrity and failures of communica-
tion integrity, but there are also many ways to tamper with the integ-
rity of a process or with the physical integrity of a device. There’s 
tampering with systems after an attack has succeeded. There also are 
questions of integrity in distributed systems and issues of atomicity in 
database systems. Integrity protections can protect you from both 
intentional tampering and reliability failures, caused by cosmic rays, 
mechanical or logical failures, or other random processes.

Tampering and 
Integrity
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There are situations where the integrity of either storage or com-
munication fails because you’re talking to the wrong file or the wrong 
server. When that’s enemy action, rather than a mistake, each of those 
can be a spoofing problem, which leads to the same problems as an 
integrity failure, but the actual files are intact or the right server would 
provide you with the right response. Integrity also bleeds into availa-
bility when the attack is to delete a file.

Targets of Tampering
When the Millennium Falcon was hiding in an asteroid field, crea-
tures known as mynocks attached to it, threatening the integrity of 
the ship’s power systems and hull. All tampering takes place in some 
context. Something is being tampered with, and the thing being tar-
geted may be storage, communication, or time. There’s also tampering 
with a process, which is a little different.

Tampering with Storage

When you open a file on your local computer, you expect that file to 
be as you left it. You’d like that to be the case even if something 
crashed. If you find garbage in it, that’s an accidental integrity failure. 
For files you own and have locked, only you can make changes (well, 
you and root). Of course, there are files that are intentionally writable 
by more than one person or account.

You might consider using digital signatures to protect important 
files, such as binaries, which is a lovely defense. You’ll need to check 
at least who signed the file, and you may need to check that the sig-
nature or date are what you expect. If you don’t, you’re subject to 
roll-forward or rollback attack. That is, if you have a signature for 
Microsoft Word 11.2 that is fully patched and someone can replace it 
with 11.1, then the integrity check of “is this the file we want?” is 
underspecified.
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Data stores include shared memory, databases, filesystems, cloud 
storage, archival systems such as tapes or CD-ROMs, and sticky notes. 
Attacks are less dependent on the type of store, except that the type of 
store is correlated with how strongly it’s attached to a system. Data 
stores are attached with various degrees of firmness to a particular 
computer. Filesystems are often on disks inside a computer, but 
sometimes on removable media or attached over a network. Tapes are 
stored in R2-D2 and transported through the most wretched hives of 
scum and villainy. (It’s frankly shocking that the Rebel systems used 
to analyze the Death Star plans aren’t running ransomware.) More 
often, tapes are stored on the very edge of a truck, poised to fall off, or 
in the mail, where they go missing.

When an attacker has physical possession of a data store, they can 
bypass operating system protections. But even if they don’t, they may 
be able to bypass the kernel by accessing raw memory or devices, 
bypass the integrity checks, or convince a confused deputy to write 
for them. If your data store is in the cloud, then your integrity depends 
on isolation relative to other cloud customers.

Storage has limits, including capacity. When a disk is full, you can 
discard either the earliest or latest information. (I suppose you could 
get creative and throw away data randomly, or in the middle.) If you’re 
going to constrain storage use algorithmically, consider that the deci-
sion to store N weeks of logs was last revisited for both Windows and 
Linux in the 1990s, when disks cost dollars per megabyte.

Distributed systems can prioritize write integrity (for example, 
Amazon really wants to make sure that “add to cart” is highly reliable) 
or read integrity (any “Alice’s account is locked” flag will be seen by 
any read by every bank application), and they can prioritize either 
speed of convergence or speed of action, accepting some inconsistency.

Tampering with Communications

Messages flow through channels; email messages flow through an 
SMTP channel, and HTML pages go through an HTTP channel (and 



Tampering and Integrity44

often also through a TLS channel). In today’s world, we are accus-
tomed to TCP transparently giving us reliable and ordered delivery of 
TCP segments over the unreliable IP backbone. You can tamper with 
the message or the channel, and the means and effects of doing so are 
different. Tampering with a message is generally easier to imagine 
before or after it is in a particular channel, especially when the chan-
nel has protection like TLS. (See Figure 2.1.)

Princess Leia’s ship is the Tantive IV, and it’s one of the two hosts 
shown in Figure 2.1. For some reason, it’s communicating with some 
Bothans. There’s a channel, shown as a tube, and messages that flow 
through it. (There are important privacy threats with this design, and 
we’ll talk about them in Chapter  4, “Information Disclosure and 
Confidentiality.”) A Bothan communications staffer can tamper with 
message 1 as it’s being prepared, the Empire can tamper with message 
2, and an Imperial spy working for the Rebels can alter message 3 
before it gets to Leia.

Sometimes messages have integrity protection, such as a digital 
signature. Sometimes channels have integrity protection, such as each 
message being protected by a keyed hash.

If your messages have no integrity protection, nothing prevents 
tampering or helps you detect it. If you have integrity in a messaging 
system, you likely have a tricky process of selecting which headers are 
included in the integrity protection. With email messages, for exam-
ple, you can’t include the “Signature” header(s), but more interest-
ingly, you can’t predict the route the messages will take and therefore 

Tantiveiv.rebelalliance.example.comBothans.example.org
Channel

Message 1 Message 2 Message 3

FIGURE 2.1  Channels and messages
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can’t include the Received lines that are added along the way. And so 
many such schemes will be vulnerable to header injection. Header 
injection is the addition of new headers in ways that are not parsed 
properly by receivers.

Header injection attacks may take advantage of duplicate headers, 
depending on how the code is written. Human and automated parsers 
will likely interpret things differently, or worse, signature verification 
might be separate from display parsing, and an unsigned header might 
be displayed to the user because it’s first or last or whatever the  
UI code decides to show in this revision. More on this attack is in 
Chapter 8, “Parsing and Corruption.”

Of course, when you’re signing or authenticating messages, you 
have to store and manage keys. The key storage can be threatened by 
tampering or information disclosure, and the management code is 
subject to tampering, information disclosure, or expansion of author-
ity threats. These can result in keys being stolen or used outside their 
normal path. Either will break message integrity. Exception handling 
is hard, which is why, after the Rebel Alliance steals authentication 
codes, an assault team can land on a small moon of Endor. How to 
deal with expired keys is an infuriating problem; see Chapter  3, 
“Repudiation and Proof.”

Channel integrity can be important as a system property, protect-
ing a group of messages as a set, or as a backstop, making it harder to 
tamper with particular messages. For example, it might be useful to 
protect the information that a Bothan sent three messages to a rebel, 
even if you have no information about their contents. If you want to 
tamper with a channel, you can do so because the integrity protec-
tions are nonexistent or poor or because the keys are not managed 
well. Metadata about messages that a channel might protect from 
tampering include time, size, direction, participant entry and exit, 
and/or mappings between participants and system or display names. 
For example, if you protect information about the IP addresses associ-
ated with a channel, you might also capture and protect information 
about how those IP addresses map to domain names, SMB names, or 



Tampering and Integrity46

other naming systems at other layers. Systems management software 
will often modify these mappings over time and may not maintain the 
logs you want, maintain them for as long as you want, or be in sync 
with your timings. These modifications are a feature, and thus we say 
“modify,” but attackers may do the same, in which case we call it tam-
pering. Also, the mapping between the names your system uses and 
other identifiers such as email or phone number is often information 
that at least some people will want to keep private.

When you are focused on integrity, it can be easy to ignore inter-
mediates, historically labeled man in the middle (MITM). MITM also 
stands for monkeys in the middle. Assuming you can get set up as a 
MITM, there are ways to monkey around beyond adding or deleting 
messages. These ways include replaying signed messages, reflecting 
them back (which is more often interesting in the context of symmet-
ric authentication such as message authentication codes), or sending 
bad messages with apparently good sequence numbers. If you’re han-
dling sequence numbers before message authentication has suc-
ceeded, then you may treat future valid messages as invalid because 
you’ve already parsed that sequence number.

Also, if you have a channel from point A to point B, how good are 
the endpoint guards? Can someone insert a message into one side and 
have it come out the other? When it does, will it be treated as a  
message from A by B or C? This can be a confused deputy or one 
who’s accepted a bribe.

Tampering with Time

Most systems have at least several opinions about the meaning of 
“now,” and disagreements, misunderstandings, or even attacks on 
time are either a hindrance to operations or a building block to an 
attack. There’s the system time, which is either set to wall time or to 
UTC, and a display time, which likely takes time zones into account. 
Phones and laptops are often physically moved to new time zones, 
and the abomination of daylight saving time means that time doesn’t 
always increase one second at a time.



Targets of Tampering 47

When you rely on time, it’s important to understand that it can 
change for both malicious and well-intentioned reasons. The motiva-
tion doesn’t change the problem, and the defensive design and imple-
mentation patterns that you’ll want to use to protect you from 
malicious changes can also help your systems be more reliable.

Sometimes a system time second is longer than an hour, like when 
a virtual machine goes to sleep. Other times, wall time can shift in 
unpredictable ways. The government of Samoa once decided that a 
particular Friday was not essential as they relocated to the far side of 
the date line, meaning that the time difference between Samoa and 
everywhere else except the island of Tokelau changed. (Yes, Samoa 
really did this in 2011 to bring their time zones closer to important 
trading partners [Mydans, 2011; Sussman, 2012]). Keeping system 
time in UTC, rather than local wall time, means that you have fewer 
concerns created by changes to local wall time. So unless you’re on an 
intergalactic mission, keep system time in UTC. (This also applies for 
shorter-range spacecraft—Mars rovers get an exception.)

Most system time is managed by an onboard clock, with correc-
tions from time servers, often via NTP or GPS, or maybe from a cell 
tower. Clock drift is a problem for log correlation even absent an 
attacker. Attackers take advantage of this design to tamper with  
system time. Many systems will implicitly trust a DHCP’s direction of 
what NTP server to use. A remote attacker who can forge NTP pack-
ets, GPS signals, or cell signals can use those tools to alter a system’s 
idea of what time it is. Similarly, a local user may be able to alter the 
system’s idea of time offset (wall time to system time), time zone, or 
system time. This may or may not require administrator rights.

Attackers can take advantage of time by changing the time. Moving 
it back may lead to a certificate, license key, or other data being treated 
as valid after its expiration date, or invalid because it’s before the  
go-live date. Moving it forward can have similar effects. On the local 
computer, this might let you use expensive software longer, block 
access to a site because the system sees that site’s certificate as no 
longer valid, or play extra Star Wars games because parental controls 
aren’t working as planned. If you can adjust a server’s idea of the time, 
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you might be able to buy concert tickets before they go on sale or 
prevent your procrastinating rivals from submitting by closing a  
submission window early. Similarly, you might trade stocks when the 
market is closed. Each place where there’s a window of allowed activ-
ity, tampering with time can help you, hurt your rivals, or both.

Process Tampering

In all but the simplest cases, processes can rely on the operating sys-
tem to protect them from processes owned by other users. (Bootloaders 
such as MS-DOS, smartcards, and the other low-end systems of the 
day usually fail to provide these protections.) This isolation function-
ality sometimes has two modes: protection against processes from 
other users and a weaker protection against processes running as the 
same user. At the stronger end, an operating system should provide 
controls as to which process can read or write the memory of another 
process. Historically, this was weakened in the context of processes 
running as the same user: you want to be able to debug your own 
processes and influence them to behave in different ways. Apple 
declared a different set of defaults in IoS, and while certain function-
ality was hard to add, it was also harder to write malware.

Network Attacks Against Processes
An operating system mediates access to hardware, including network 
hardware, and provides an interface to streams or packets, which can 
contain anything that passes the (very minimalistic) limits of the net-
work stack. Processes must protect themselves from what these 
attackers might do. For example, a remote client might tamper with a 
nonce that you’ve provided or tamper with the value of admin=no, 
add a token admin=yes, or even remove the token rebel_ 

sympathizer. They might also attempt to tamper with your inputs 
that are coming in via remote file systems or generate confusion 
between code and data or otherwise damage the integrity of your pro-
cess. The attacks on process integrity are covered in Chapter  6, 
“Expansion of Authority and Isolation,” and Chapter 8.
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Tampering by Other Users
An operating system creates channels that allow communication and 
interference between different user IDs, including file access,  
signals, and shared memory. For tampering, it is write permissions 
that matter most. Usually, these protections are quite strong for what 
they intend to protect against. For example, if your operating system 
or cloud provider has an append-only mode for logs, you can likely 
rely on it working, and only the authorized log reaper is able to 
delete logs.

Protecting your process against tampering by root, admin, or the 
hypervisor is hard, and trying or worrying about it is a waste of effort 
if you don’t have hardware support. With hardware support, such as 
Intel SGX or Apple’s Secure Execution Environment, there are explicit 
authorization paths that control what the operating system adminis-
trator can do and that provide strong integrity protections. The spe-
cifics are beyond the scope of this book, but recall that all code has 
bugs, bugs in security code are often security bugs, and this hardware 
requires unusual skills and access to test.

Tampering by the Same User ID
When a process is invoked, a great many things about its environ-
ment can be controlled by the caller and possibly tampered with later 
by the creator. Most prominently under the caller’s control are envi-
ronmental things like working directory and environment variables, 
including environment variables that control the behavior of the 
dynamic library loader. Less conspicuous, but no less important are 
open file descriptors for input or output.

Convincing a person to tamper with their own computer is an 
interesting and perhaps unexpected form of attack. As computers 
become ever less scrutable, “Google the error message” is not only a 
frequent response, but a reasonable one. There are sites that are rife 
with advice that will leave you insecure, sometimes by accident and 
sometimes because people seem to be filling them with bad advice, 
such as “Download this software and run it as administrator.” These 
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attacks may seem hard to target, and many of them are likely harvest-
ing low-value targets. But if you make heavy use of TB-65B X-Wing 
Fighters and your opponent knows that, then they might use a star-
ship mechanic website to convince your mechanics to adjust the in-
flight radios in a way that makes the fighters easier to track over long 
distances.

Library Tampering
There are three interesting cases of tampering via libraries. The first 
is library load paths, such as the Downloads directory or the LD_
LOAD_LIBRARY environment variable; the second is libraries 
loaded via a package manager; and the last is libraries loaded 
via the Web.

The Downloads directory is used to store lots of downloads. If 
someone downloads an installer and that installer is imprecise about 
what DLLs it wants, then downloaded copies of those DLLs can be 
loaded into the installer. Of course, this applies to any code, not just 
installers, but installers are a common victim of this form of tamper-
ing, since running them in downloads seems reasonable and normal 
(Lawrence, 2019). The best fix for application vendors is to ship an 
installer package, such as an .app, MSI, or .dmg, rather than an exe-
cutable. Operating system vendors should also use special-case direc-
tories, such as Downloads and tmp, and require special build flags to 
load dependencies from such directories. A variant on this is checking 
that a library is in a trusted directory, such as system32, which has 
untrusted and writable subdirectories such as Tasks (Forshaw, 2017). 
As tempting as it is to mock Microsoft for this, all systems have vari-
ants of this.

Modern package management systems make it easy to manage 
dependencies. In fact, it’s so easy that developers often add the same 
library repeatedly to web pages. They add both the same and different 
versions (Lauinger, 2018). There’s a problem, which is that calls to 
the versions will be imprecise, and the result is accidental library 
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tampering. One common fix to this is to version-lock dependencies 
to help manage compatibility. That leads to old versions, full of soft-
ware vulnerabilities being locked in (Morszczyzna 2017, Pieczul,  
2017).

The web approach to library tampering builds on the Web’s use 
of libraries included from other sites. There’s more than one way to 
do it, but <script src=URI> is common. An attacker who breaks 
into the site serving the URI can tamper with all the sites that 
depend on it. For example, in November 2018, someone broke into 
Statcounter, an audience measurement site whose code was used on 
2 million sites at the time (Faou, 2018). The attackers inserted six 
lines of JavaScript, which triggered if the loading page URL included 
/myaccount/withdraw/BTC. That URL was probably only present 
on cryptocurrency site gate.io. If the URL matched, additional 
code was loaded. As an aside, this represents either a wasted oppor-
tunity to attack 1,999,999 other sites, or good tradecraft, making 
the attack less likely to be detected on another site.

Input and Tampering
Lastly, you need to protect the integrity of your code and control flow 
against corruption by your input. Attacks that exploit this are covered 
in Chapter 8.

Tampering in Specific Technologies
When Luke removes the restraining bolt from R2-D2, that’s droid-
specific tampering. (Let’s not worry about how that bolt interacts with 
the rest of the droid technology.) Although most readers are not pro-
ducing droids, many are working with specific technologies, and so 
it’s worth exploring how tampering manifests in devices, AI/ML, and 
the cloud.

http://gate.io
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Tampering with Devices
Many software people think that attacks on devices are “out of 
scope.” Microsoft, in its “10 immutable laws of computer security,” 
says, “If a bad guy has unrestricted physical access to your com-
puter, it’s not your computer anymore.” Operations people often put 
a cage around the computers they care about, because the locks on 
most commodity PCs and servers can be easily opened with a 
paperclip.

Building solid tamper resistance into devices is expensive. A decent 
safe you buy to hold valuables at home resists attackers due to its 
mass and an expectation that there are easier pickings elsewhere. 
Safes that are tested and rated to resist a skilled attacker with tools for 
15 minutes will cost upward of $1,000. (The ones you buy for hun-
dreds lack that “TL15” certification.)

Of course, safes are not the only smart devices, and many of them 
are far more exposed to random passers-by. There are Bluetooth-
enabled padlocks, doorbells with cameras and Wi-Fi, and security 
cameras that are designed to be outside and thus outside (or on) your 
perimeter. Building defenses into these devices isn’t cheap, and the 
hardware limits often converge on some special screwhead and some-
times a tamper sensor. Devices are exposed to retailers, installers, 
housecleaners, landlords, and guests, including the nice people your 
teenagers bring home. You as a system designer or end user should 
expect that your device is subject to physical tampering.

If you care, and are not targeting the hobbyist market where that’s 
encouraged, you should consider identifying weaknesses in your sys-
tem by tampering with hardware and especially tampering with your 
storage (often on an SD card) or tampering with RAM. Cooling RAM 
with a can of compressed air allows an attacker to remove it from 
power, connect it to a new system, and read its contents. This is easier 
when the RAM isn’t soldered. There’s also an important recurrent 
problem with “JTAG” interfaces. JTAG stands for Joint Test Action 
Group and refers to a specific interface for debugging and testing 
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electronics. JTAG interfaces are often left available after devices leave 
the factory, and this allows attackers all sorts of access.

The case of Jedi Knights is interesting—is it fair to critique the 
Death Star engineers for not better locking down the tractor beam 
controls? Having given this question more thought than it deserves,  
I think it’s unfair. The Death Star was a controlled military installa-
tion, and there’s a potential need for emergency maintenance when 
the tractor beam is pulling something in too quickly.

Tampering with AI/ML
Attackers who can influence the selection or storage of training data 
can do all sorts of things from that vantage point. Some systems 
attempt to update their models by learning from data in the field. 
These systems come under attack. Sometimes that’s very public, as in 
the case of Microsoft’s Tay AI, who, when exposed to Twitter, rapidly 
started spewing racist garbage gibberish. Other times it’s less publicly 
visible. Microsoft has spoken publicly about malware uploads that 
seem engineered to influence the machine learning systems they use 
to improve detection. (Parikh, 2018) Training models are subject to 
tampering where they are fielded. When a learning system is decen-
tralized, or federated, it can become vulnerable for attack. These fed-
erated learning models may be subject to either false inputs or false 
reports between collaborators.

Tampering with the Cloud
Cloud systems like Gmail or Facebook have the interesting property 
that they allow logins from anywhere. Attackers who manage to 
authenticate into an account will routinely tamper with the controls, 
including security and operational controls. For example, they’ll add 
an email they control to account recovery, and in a mail service, they’ll 
add rules that cause replies to their messages to be forwarded off and 
not shown to you.
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There are new venues for tampering in the cloud. These include 
both the code you get from others, and the code you create yourself. 
Code you get from others includes possibly public virtual machine 
images, Docker containers, and other software you use. Then there’s 
the code you create. Both are combined as part of your own deploy-
ment pipeline. Both the public and private storage can be tampered 
with. For example, when you get a prebuilt Amazon Machine Image, 
how sure are you that the people who built it and stored it are giving 
you what you expect? Least likely but most powerful would be an 
attacker getting some admin rights within the cloud provider. Don’t 
focus too much on this—your ability to influence it is low, and the 
cloud provider knows how damaging it would be to their business.

Mechanisms for Tampering
Having discussed tampering with storage, communication, time, and 
processes, as well as how these manifest in the cloud, IoT, and AI/ML, 
let’s turn our attention to some of the mechanics involved.

Location for Tampering

There are many mechanisms by which people can tamper, and each of 
them requires authority of one sort or another.1 In the classical com-
puting world, the most important privileges were to run code, to do 
so as the administrator or domain administrator, or to be attached to 
a corporate or physical network. Being attached to a corporate net-
work meant being “behind the firewall” in the quaint phrase of the 
days when there was a single firewall. It also meant you could freely 
connect to all sorts of resources that were private-ish. Being attached 

1Sometimes that authority is granted freely, as on Wikipedia. But Wikipedia does not 

allow anyone to edit it; they have blocked access to those using the Tor privacy system.
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to a physical network meant you could see all the packets that went 
by because they were broadcast to everyone on the wire. Being able to 
see them, you might also be able to modify them at least enough to 
break a checksum and then send a fake version in their place. Wired 
networks that once used coaxial cable have generally been replaced 
by direct-run Ethernet over twisted pair, with broadcasts tamped 
down at a switch. Of course, if you control the switch or router, you 
can modify anything that goes through it.

It may seem quaint to be talking about wired networks in today’s 
age of mobile phones and computers, but wires are still very much in 
use in dense environments like data centers, and in those installa-
tions, like embassies, where the risk of wireless eavesdropping (or 
tampering) is sufficiently important. For these networks and for many 
IOT devices, physical access is an important privilege required for 
tampering. Physical access is traditionally defended via fences, walls, 
and sometimes even the enclosures of the device. These are often aug-
mented by guards and dogs. (Sometimes those dogs are dedicated to 
guarding, perhaps like a Doberman Pinscher; other times they’re fam-
ily pets like Cocker Spaniels.) Those controls are effective to various 
degrees and also porous in surprising ways. Universities, coffee shops, 
hotels, churches, and other welcoming spaces are shockingly open if 
you’re paranoid, and our homes are open during neighborhood 
socials, sales, or when rented out as Airbnbs.

Our homes and businesses are also usually open to radios, and 
radios are often surprisingly powerful. (Radios are another example 
of perversity in security: when you want the wireless to work, the 
range is surprisingly short, and when you’re worried about attackers, 
surprisingly far.)

Lastly, there is tampering in the supply chain. The people who 
design, fabricate, assemble, or ship physical things can deliver prod-
ucts that are not quite what you expect, and there’s not a great deal 
most software developers and security engineers will do about that. 
See The Huawei and Snowden Questions (Lysne, 2018) if you think 
you’ll do something about it; otherwise, move along. Our general 
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inability to build software that’s secure even when we want to means 
that most attackers don’t need to bother.

There is also tampering in software. If a compiler designer wants to 
insert a backdoor into the machine code their compiler produces, 
they can do so. They can even write a version of their compiler that 
recognizes that it’s compiling a compiler and insert the extra code into 
the output compiler. Having done so, they can delete the trojan code. 
But have you ever looked at the code for GCC? You could hide a 
Sandcrawler in there and no one would ever see it. So, you almost 
don’t need to delete it, except for deniability. Ken Thompson talked 
about this in his Turing Award Lecture, “Reflections on Trusting 
Trust” (Thompson, 1984).

Tools for Tampering

The mechanisms by which someone tampers intentionally range from 
general tools to specialized ones. If I’m logged in and can write a file, 
I can simply open it in a text editor. This works even if the file isn’t 
text, although it might be tricky to make the alterations you want, 
and your editor might “fix” irregularities in the file. That is, it might 
tamper with your tampering. Such chutzpah! Such trouble can be 
avoided by using the standard clients: a database client for a database 
file, Word for .docx, emacs for .html, or gdb or windbg for a process. 
There are also specialized clients for both analysis and modification of 
local files, some of which are fairly nifty, such as the Veles file visual-
izer or a code obfuscator. (What’s that you say, an obfuscator isn’t 
there to modify the file but to prevent someone from understanding 
it? Of course it is, and it does that through tampering with its con-
tents. Believe those modifications are authorized? Listen to the devel-
oper swear a gray streak while debugging.) A great many of these 
tools now work in a web browser, which makes them no less special-
ized but does reduce the installation and configuration burden.
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Modifying a network connection usually requires specialized tools 
of some form. There are tools that are designed to modify network 
connections you control and to modify networks as an attacker. You 
modify your own network connections to gain capabilities such as 
recording or easily modifying complex streams like web sessions 
using the OWASP Zed Attack Proxy (ZAP). Someone might want to 
noncooperatively modify your network connections, as happens most 
times you stay at a hotel, or modify the network by sending routing 
commands to reroute all traffic through their system.

One interesting tampering technique is the rowhammer family of 
attacks. If you think of RAM as lots of tightly packed cells, with each 
cell holding either a zero or a one, you’re spot on—and it’s a very tiny 
spot. As RAM density increases, current can leak from one cell to an 
adjacent one and actually cause a bit to flip, because as that philoso-
pher of engineering Martin Gore has pointed out, everything counts 
in large amounts.2 And with large amounts of writing to adjacent 
memory, bits can be flipped, which is to say tampered with. After 
rowhammer was announced, memory makers added a technique 
called target row refresh to protect against it (Ducklin, 2021). If you 
are working with standard PC components, this is likely not an issue 
for you, but if you are implementing hardware, it’s worth ensuring 
your components protect against this and other, related attacks.

Another interesting tampering technique is via Internet advice 
pages. This technique exploits a very confused deputy, the human 
owner of some system, who is trying to solve some problem. Even 
great “user-generated content” can include insecure steps, but these 
sites can also be overwhelmed by attackers who provide bad advice 
either intentionally or accidentally. Links from these sites can be bad 
from the start, or the targets of the links can rot away and be replaced 
by attackers distributing malware.

2He also commented insightfully on the impact of latency issues in ‘People are People.’
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Defenses
Integrity is provided by preventative and detective controls. Either 
can work cryptographically or by relying on something with more 
authority: a security kernel, a cloud provider, or hardware. The secu-
rity kernel approach works only when all access to files goes through 
it, which usually means the local machine or a cloud service that 
intermediates all access to its storage.

Cryptography

Cryptography can prevent tampering by either malicious storage or 
network attackers. Malicious storage includes any storage that might 
be controlled by an attacker. A simple example is a USB drive that’s 
plugged into an attacker’s computer. You can no longer trust the oper-
ating system to protect you. And over a network, there’s no operating 
system to protect the packets.

Crypto defenses include both asymmetric and symmetric tech-
niques. Symmetric cryptographic techniques, where both parties 
share a key, can be used to protect messages. For example, keyed hash 
techniques can protect messages from tampering. The asymmetric 
(public key) techniques allow one-to-many integrity protection; for 
example, everyone can see that this file was signed by this key, which 
is associated with Adobe and used for signing software updates. So, 
asymmetric techniques can also be used for authenticating files to 
yourself after they’ve been through possibly untrustworthy storage or 
between different systems under your control while keeping the pri-
vate portion of a public key pair on a single machine.

The Kernel

The kernel—the part of the operating system that runs all user-level 
code—is the canonical example of something with more authority. 
Today, a fuller list includes not only “the kernel,” but a hypervisor, a 
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security chip, a corporate Identity and Access Management (IAM) 
tool, and more. Whichever it is, as long as it really controls all access 
to your data, it can provide integrity protection.

Regardless of how it’s implemented, it’s important to tell it what 
you want to have happen, and to be sure that your intent is clear, via 
permissions. Your local operating system has a security kernel, as 
does your mobile phone and your cloud provider. Each has unique 
and important properties.

Mobile operating systems (iOS, Android) generally protect apps 
from tampering with each other when running, protect them from 
tampering with other apps’ storage, and limit app installation to an 
app store. They will also check the app store signature before loading 
an app, protecting it against tampering on the device.

Cloud services have layers of administration, help desk, and 
“enterprise” administration. Providers of Infrastructure or Platforms 
as a Service, which encourage their customers to upload powerful and 
flexible code, are exposed to tampering by those customers. (This 
relates to expansion of authority and other concepts discussed in 
more detail in Chapter 6.)

Telling the kernel what to do can be harder than you expect when 
permissions are inherited in various ways, when multiple roles can set 
permissions (for example, you and your Office Applications administra-
tor), and when the permissions that the kernel grants change. Debugging 
or fixing permissions quickly will often result in “it works now,” even if 
what works is permissions that were more open than intended.

Hardware is not made of magic security dust. From read-only 
memory to cordoned-execution, encrypted memory, or even a sepa-
rate chip, hardware can offer security at a more trusted level of execu-
tion to protect you against tampering and other threats. Read-only 
memory can be hard-coded ROMs, or it can be protected in various 
ways, ranging from a switch that must be moved, a wire that must be 
cut, or simply RAM to which only a special chip has write access. It is 
worth considering threats to each of these when you are able to spec-
ify them, for example if you’re designing a connected device where 
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you integrate the hardware, software, and perhaps cloud service into 
a single package. Security people often recoil from the idea of accept-
ing a defense whose quality we’re not sure of. This uncertainty is com-
mon in dealing with hardware. It’s difficult and expensive to inspect, 
even when that JTAG port is left open. It’s reasonable to depend on 
the hardware, even when you can’t specify exactly what the hardware 
will be. It’s likely harder to attack than the higher levels you’re 
working on.

When there is no kernel to rely upon, for example if an attacker 
can tamper with local storage either at or underneath the OS level, it 
is hard to defend against them. It’s tempting to sprinkle magic crypto 
dust, but an attacker who can modify files can likely alter your verifi-
cation routines, your user interface, or other bits that will fool you. In 
other words, a kernel that would allow your files to get twiddled 
would also twiddle your code. So, it is likely not worth worrying 
about within an operating system or application, but at an enterprise 
or system level, it might be worth examining files now and again via 
forensic imaging, remote integrity checks, or other such mechanisms. 
It’s much more rewarding to defend storage that is over a network or 
cloud. Such storage can be checked cryptographically.

Detection

When they are detected, failures of integrity can be addressed by 
throwing away the bad bits and getting a clean copy, say, by  
re-downloading a file or restoring it from backup. Bits that are cor-
rupted can rarely be cleaned up. Detection can also lead to investiga-
tion of why the corruption happened, and that can reveal either 
accidents or attacks.

Detection can also be an adjunct to preventative controls. It can be 
hard to get the rules exactly the way you want them, and the permis-
sions granted to an account will be exploited by an unauthorized user 
of that account. Such detection can be done by audit logs or 
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cryptography. Cryptographic defenses are sometimes rolled into “file 
integrity management” tools.

Conclusion
When your opponent has unfettered access to a large, complex sys-
tem like the Millennium Falcon, detecting a small homing beacon 
that they’ve planted there can be like finding a needle in a haystack. 
This is the case even if the system were regularly and properly main-
tained. If the subsystems were each individually protected, the  
job would be easier, and that’s why you should ensure that each  
component has appropriate integrity.
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3

Lando Calrissian: “You said they’d be left in the city under my 
supervision!”

Darth Vader: “I am altering the deal. Pray I do not alter it…any further.”

Here we see Darth Vader reneging on a deal he made. He doesn’t 
claim that he didn’t make the deal. He just repudiates it, then 

threatens Lando.

Introduction
Repudiation is the threat that some party will refute or deny some 
responsibility. The merchandise didn’t arrive; the payment didn’t go 
through. The claim that they aren’t responsible may or may not be 
true. The word repudiate can provoke broader thinking about refusal, 
rejection, and even words that don’t start with re.

Repudiation is an unusual word. If I could, I’d repudiate its inclu-
sion in the STRIDE mnemonic, but the replacements are no better, so 

Repudiation and 
Proof



Repudiation and Proof64

we’ll start with definitions. Repudiation is a specific form of denial or 
rejection. Here are some examples, inspired by dictionary definitions:

•	 Refuse to accept or be associated with: She has repudiated poli-
cies associated with the Jedi Council.

•	 Deny the truth or validity of: The Moff repudiated claims that 
Alderaan was a peaceful planet.

•	 Decide that an agreement is no longer effective: The Emperor 
has repudiated the Senate and swept away the last vestiges of the 
old Republic.

•	 Refuse to fulfill or discharge an agreement, obligation, or debt: 
Darth Vader repudiated his agreement to leave Cloud City neutral.

It’s helpful to understand that the concept of repudiation overlaps 
with fraud. Not all fraud is repudiation, and not all repudiation is 
fraud. For example, I can sell you a fake Gucci bag, which is fraud, 
and if I claim I didn’t know it was fake, that’s me repudiating the mer-
chandise. Where they overlap, eventually, society’s rules about fraud, 
misrepresentation, or theft can come into play. An important stage in 
such processes is often that someone complains to the police. This 
can be a fine ending point for your technical designs. A long time ago, 
a friend wrote that “‘and then the cops show up’ is a rotten step to 
include in your protocols.” This is a true statement; to the extent that 
you can design and operate systems in which fraud can’t happen or 
there’s no need to call the cops, then those systems are probably more 
resilient and secure than others where the police are regularly involved 
to resolve disputes. Also, you’re front-loading the cost of security, 
which may be more expensive than back-loading and securing a 
smaller number of transactions. Also, “going to the police” has many 
important properties, including that lying to police is usually a crime 
and that police are trained to investigate: to establish facts, to assess 
the credibility of witnesses, etc. Thus, a police report is an authorita-
tive repudiation of many debts that stem from identity theft. Vader’s 
repudiation of his deal with Lando is simply reneging, not a fraud.

In this chapter, we’re going to focus primarily on repudiation as a 
threat to security, but I’d like to mention two other facets of the word. 



The Threat: Repudiation 65

One can repudiate past action: “I’m no longer going to get drunk and 
yell.” (Here the repudiation is implicit, and of course, it matters more 
if someone goes beyond just repudiation and apologizes for such 
behavior.) Second, repudiation is also a philosophically interesting 
threat because in security, the threat is repudiation, but in privacy, 
non-repudiation is a threat. That is, to preserve our privacy, we want 
to be able to disavow words, actions, associations, and other aspects 
of our selves or our social milieus. We want our association with the 
Rebel Alliance to remain private. Lastly, because repudiation is an 
unusual word, it can be awkward to work it into a sentence. To help 
you see the collection of threats, I’ll sometimes use another word to 
clarify what’s being repudiated (argued with) and put one or the other 
in parentheses.

This chapter starts with message repudiation, including denying 
either sending or receiving those messages (“That wasn’t from me!”). 
From there, we’ll consider fraud by sellers and buyers, issues with 
intermediaries, and account takeover, a hall of mirrors from which 
some never escape. Each of these is important both because fraud 
often leads to repudiation and because the defenses are similar. We’ll 
look at voice cloning and deepfakes. These make it more plausible to 
repudiate recordings. Someone can say “I never said that; it was a 
deepfake.” We then move to the back and forth chess game of attacks 
on logs, attacks via logs, and attacks that exploit responses to fraud 
and repudiation. We’ll look at how repudiation interacts with various 
technologies, especially the cloud and AI and, specific to this chapter, 
the special issues with cryptography and blockchains. We’ll close 
with defenses.

The Threat: Repudiation
Repudiation of past behavior can happen between people:

Grand Moff Tarkin: Since you are reluctant to provide us with the 
location of the rebel base, I have chosen to test this station’s 
destructive power on your home planet of Alderaan.
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Princess Leia Organa: No! Alderaan is peaceful. We have no weapons. 
You can’t possibly…

Tarkin: You would prefer another target? A military target? Then 
name the system. I grow tired of asking this, so it will be the last 
time. Where is the rebel base?

Leia:…Dantooine. They’re on Dantooine.

Tarkin: There. You see, Lord Vader, she can be reasonable. Continue 
with the operation; you may fire when ready.

Leia: WHAT?
Tarkin: You’re far too trusting. Dantooine is too remote to make an 

effective demonstration, but don’t worry; we will deal with your 
rebel friends soon enough.

Here, we see Tarkin offer a deal: name another system. He proceeds 
to immediately repudiate the deal he just made, demonstrating that 
he’s evil. We don’t repudiate our judgment of his nature when we—
and he—learns Leia lied.

Repudiation can also happen between a person and an organiza-
tion, often through the organization’s customer support channels. 
The customer can repudiate receipt of the product or argue that it 
wasn’t what they expected.

There’s an interesting variant of repudiation in development and 
operations, around the question of what code was in production. For 
example, someone might say, “That shouldn’t be happening with the 
new rev of that library.” Part of the value we get from DevOps is that 
changes go through a change control system, and so the accuracy of 
someone saying “I didn’t do that” becomes far easier to check. Failure 
to commit a configuration file becomes easier to note.

More frequent are message repudiation and fraud, and we’ll exam-
ine each in depth. Many of these schemes have crazy labels and names 
associated with them, like brushing or the Spanish Prisoner…a Jedi 
troubles themselves not with such things.
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Message Repudiation

Perhaps today’s most common lie is “I didn’t see your email.” It’s com-
mon because people frequently do overlook messages, so it’s believa-
ble. Even if you have a “read receipt,” perhaps the recipient was 
distracted?

Closely related but less frequent is “I didn’t mean to copy every-
one” after a snarky reply. The first is repudiation of receipt, the later 
repudiation of intent to copy everyone or, perhaps, implicitly of the 
snarky tone or a hope to evade (repudiate) accountability.

Messages can be lost or eaten by a spam filter. The check may have 
been in the mail and lost by a sorting machine or gust of wind. (Such 
problems are incredibly rare, but at scale, a one-in-a-million event 
happens regularly.)

More subtle than claims about delivery are claims that data was 
tampered with, which is repudiation of a message’s contents or integ-
rity. Each copy of a message, document, or file may or may not reflect 
the state in which they were created. Some messages are digitally 
signed by various intermediaries to help manage spam. For example, 
most email today is signed by DKIM (it stands for Domain Key 
Identified Mail, and that will not be on my exam). DKIM is a standard 
that’s used to reduce email spam. So most email today is signed, but 
verifying those signatures requires a perfect copy of the email as sent, 
including message headers that many systems don’t display by default. 
So, a copy printed by your mail client can’t have the digital signature 
checked. Preserving evidence is surprisingly hard.

An attacker can create messages and simply attribute them to 
someone else, requiring that someone else to say “it wasn’t me,” repu-
diating the attribution. But sometimes it’s possible for them to re-send 
a real message, such as “I saw your message, and let’s go ahead,” or 
“You’re fired” in a way that it’s read out of context. If that message is 
digitally signed, then what the original sender wants to repudiate is 
the context in which their words are misleadingly presented. This 
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context elimination is also easy to do with screenshots from a phone. 
Many modern cryptographic protocols include cryptographic digests 
of all previous messages as a way to mitigate this sort of problem.

Common as these claims are, they become more meaningful when 
the message is a package or a check: “I didn’t get your package” or 
“The check is in the mail.” The latter was a denial of nonpayment or 
a denial that other actions or bills took precedence. In email, Microsoft 
Exchange has a feature, message recall, which does not work once 
your message has gone to another mail server. (That second mail 
server may be outside your domain. Maybe other Exchange servers 
respect it, but I’m not looking up the answer because you have no 
idea what a mail server is really doing with your message, and I’d hate 
to have to repudiate my answer when Microsoft changes the behavior 
of Exchange servers.)

Fraud

Fraud is a large, complex topic, and it’s tempting to keep it simple by 
restricting this section to fraud against retailers, but there are other 
forms of fraud that are instructive and, more important, in the space 
of what every engineer should know. Those other forms include fraud 
against an employer. That fraud can either be simple, against account-
ing systems (that’s where the money is), or abuse or misuse of the 
duties, expectations, or responsibilities of a position. Sometimes these 
will involve an accomplice, such a fake vendor. The heart of fraud 
exploits our belief that people are generally decent and that they 
wouldn’t do that.

Responding to fraud involves various parties like a merchant or 
customer producing evidence, often contradictory, which bolsters 
their view of the situation and challenges (repudiates) that of another 
participant.

In dealing with fraud, some participants are directly involved, 
either as the one complaining or as the one perpetrating the fraud. 
Others are involved as providers of evidence. The role of a participant 
may shift as the story unfolds. For example, I might go from thinking 
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that a merchant on an auction site never shipped me the package to 
thinking that the package was stolen by a delivery driver.

As moving money by apps becomes increasingly popular, there are 
newish frauds involving it. Many take advantage of the new apps try-
ing to reduce friction (the amount of work involved in adding a payee 
or sending money) or round-trips (the back and forth over “Do you 
really want to do this?”). “Send money to any phone number” may be 
based in part on the silly idea that phone numbers are tied to people, 
so if there’s fraud, it’s easy to track down the perpetrator.

Fraud by Sellers
Sellers will lie about what they’re selling. They’ll take the money and 
run. They’ll send fake goods or goods that match a carefully mislead-
ing description. (There was a rash of sales of “Mac boxes,” which 
were literally just the cardboard box in which the Mac came. Perhaps 
that’s useful if you’re moving and need to pack your expensive com-
puter? Usually, sending an empty box is a different fraud.) Each of 
these will lead to the buyer wanting to repudiate the transaction to get 
their money back.

Con artists may sell things—from the Brooklyn Bridge to droids—
that aren’t even theirs! Factories make fake products in quantity. This 
is both in facilities making their own versions of “designer” bags for 
sale at flea markets and in authorized factories running an unauthor-
ized midnight production line. The maker of the authentic bags, say, 
Gucci, would want to repudiate both. In one case, the fakes may cause 
people to question the quality of the real bag; in the other, the profits 
are going to someone else.

It’s important to remember that fraud can happen early in the sup-
ply chain, and sellers may be unaware that they are selling counterfeit 
goods. Is that real Bantha milk, or something else with blue 
food coloring?

Fraud can also happen when a buyer sells or gifts a Trojan horse. 
Luke falsely represents that R2-D2 and C3-PO are gifts to Jabba the 
Hutt to help him smuggle in his lightsaber.
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Fraud by Buyers
Buyers, too, will commit all sorts of repudiations. I didn’t buy this, I 
didn’t consent to that, I didn’t get the package, the package didn’t 
contain what I ordered or expected, I returned it, etc. Many times 
these claims are truthful.

Buyers will often leave reviews, and some of them will relate to the 
product they bought. Others will relate to the seller’s moral character, 
gender, ancestry, or sexual predilections.

More broadly than just buyers, customers will leave reviews for all 
sorts of reasons. One of those reasons is that they are paid to leave 
reviews. When you detect or suspect that this has happened, you 
might want ways to repudiate (remove) all their reviews rapidly.

Issues with Intermediaries
Retail intermediaries like eBay or Etsy are in a complex place where 
both buyer and seller may cheat, or buyers may use dispute resolution 
systems to express dissatisfaction with a product, for example, claim-
ing that they didn’t get the product as advertised. Beyond the bounds 
of repudiation, intermediaries make choices on what they will carry. 
Amazon is not the everything store: it restricts a wide and sometimes 
surprising range of items including alcohol, animals, drugs, fine art, 
explosives, human parts, offensive or controversial materials, pesti-
cides, postage meters, and surveillance equipment (Amazon, 2022).

App stores have some control over content, which means in addi-
tion to buyer repudiation fake apps are a problem they want to con-
trol. And there needs to be a way for eBay (or others) to repudiate an 
app that claims to be eBay, probably having it removed from the app 
store. The app store needs to be able to flow the effects through to my 
account, and eBay might want those logs to bring to the police. If 
you’re selling software on an app store, you don’t care about fraud (by 
you), but the app store operators do care about the refund requests 
(repudiations) by your buyers, including reviews claiming that the 
software doesn’t work or demands to get their money back. You might 
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care about fraud by people who’ve sold you an advertising system. 
Such fraud could include sending bots to visit pages to drive up view 
counts, sending bots to follow links to drive up “click counts,” pre-
senting ads to badly matched visitors, changing affiliate links so they 
collect fees that should go elsewhere, and more.

Shippers end up in repudiation disputes: Was the package shipped? 
Was it left in a mailroom or on a porch? How much did it weigh? 
Shippers also divert or replace expensive goods or notify thieves of 
shipments. In a publicized case, a delivery contractor was taking cell 
phone pictures of packages on people’s porches and then picking up 
the packages and taking them to pawn shops. In another, the UK’s 
Royal Mail had a delivery tracking service that tracked only the post-
code to which a package is delivered. Fraudsters would Photoshop 
the delivery address and send an empty package. In 2020, there was a 
well-publicized spate of packages of seeds being delivered from China, 
with a customs label claiming they were earrings or something simi-
lar. There were even claims that the seeds were a “bioweapon” 
(Saldana, 2020; WSDA, 2020).

There are several plausible explanations for these seed shipments, 
including review fraud and shipment fraud. A review fraud would 
involve two conspirators: a seller and a buyer via a marketplace site 
like Amazon or Etsy. The buyer buys something (probably expen-
sive), the seller ships a package of seeds, and the reviewer leaves a 
glowing review. The package is shown as shipped by the post office. 
This review scenario sets the stage for future fraud. Shipment fraud 
would be an innocent buyer who gets a package of seeds rather than 
their expensive item. The buyer complains, repudiating that they got 
what they were supposed to get. The seller claims to have shipped the 
real item, and look! Here’s the shipping receipt! Someone might also 
put a bag of sand in place of the treasure, but this is a Star Wars book, 
and no one who appears in Star Wars would do such a thing.

Payment processors can also be pulled into repudiation, most obvi-
ously of credit cards. That a payment was sent, delivered, or charged 
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back is relevant to the transaction. The flow of money can also be 
influenced by laws, and that may be information that you can’t reveal 
to one party or another. Laws about bribery, money laundering, or 
export-restricted countries or people can all cause a payment proces-
sor to delay, deny, or hold funds for payment. For example, news 
reports in 2019  indicated that although medical equipment was 
exempted from sanctions on Iran, banks wouldn’t process any pay-
ments from Iran (Inskeep, 2019). Any of these can lead to repudiation-
like issues, and some preventative controls can ensnare legitimate 
buyers engaged in behaviors that look strange.

Games that allow you to trade cash for goods have to deal with 
buyer fraud (“I paid, but the sword never arrived!”), and multiplayer 
games have to deal with all the frauds outlined here, carried 
out in-game.

Other Fraud
Accounting fraud is, in many ways, far from repudiation, but the 
mechanisms that are used to manage accounting fraud can inform 
defenses that allow proper repudiation and manage false ones. For 
example, the process of one company paying another starts when the 
buyer issues a purchase order. Eventually, the seller generates an 
invoice, and each is numbered to allow for cross-reference, a job that 
is assigned to someone and audited. Expenses are cross-checked 
against receipts, but the cost of getting, tracking, sending, and check-
ing receipts is high enough that systems are often designed with slop, 
such as “receipts are only required for amounts over $50.” Often there 
are additional controls in the background, such as noticing that a par-
ticular employee seems to lose a lot of receipts, which can trigger 
additional analysis of their spending. The Imperial answer, force-
choking those who lose receipts, is probably not a good one.

Account Takeover

Attackers who steal your credentials can log in to your account. Once 
there, they can do the things you can do: send messages, post, buy 
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magic swords or diamond rings…the only limits are the same limits 
to what you can do with your account on a given service (or all  
the services where you use the same username and password). If the 
account taken over is a bank account, money can be moved, and if  
the account is a credit card, then the thief can spend money that the 
account holder is expected to pay back. (That expectation may  
be influenced by consumer-protection law or card-issuer business 
practice. Because these are common, there’s a clear workflow for an 
account holder to repudiate the charges.) If it’s a social media account 
and you were drunk tweeting, an easy out is to claim the account 
was hacked.

The ease and frequency of credit card theft have led to it being 
given a name, identity theft, and there are several important variants, 
including account takeover and new account setup.

Real Account Takeover
When Princess Leia presents herself at Jabba’s Palace, she masquer-
ades as the real bounty hunter Boushh to insinuate herself as a known 
criminal. As far as we know, Boushh never finds out.

For us to react to a takeover, it must be detected, either by the ser-
vice or by the customer. If the detection is by the customer, they have 
to convince the service that the account was hacked, re-authenticate, 
and break the attacker’s ability to authenticate. If the service detects 
it, they need to inform the real customer and get their cooperation (in 
either case, repudiating the change of control of the account). Then 
the account needs to be remediated both at a technical and business 
level. Attackers will add extra applications with access to an account, 
extra recovery options such as new secret questions, or new backup 
authentication mechanisms. Attackers will also take specific actions 
based on the account type. For example, attackers engaged in busi-
ness email compromise will add email processing rules to hide 
their activity.

Whether an account takeover can be remediated in a business 
sense, and the person who is responsible for the fixes, is dependent 
on the type of account. An attacker has your emails; who knows 
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where they’ve gone? The diamond ring shipped to New York has to be 
paid for by someone. Attackers will transfer magic swords in-game for 
dollars outside of it, complicating the work game operators must do 
to address the problem. If Alice’s account was compromised and the 
attackers bought a magic sword with her credit card and then sold it 
in-game to Lancelot, do you take the sword from Lancelot? What 
happens if the player behind Lancelot says she sent bitcoins to Alice? 
Let’s count the possible repudiations: Alice is repudiating her pur-
chase of the sword and possibly lying. Lancelot will certainly claim to 
be an innocent victim, repudiating his part in the fraud. If you take 
his toy away, he may attempt to repudiate the payment. You might 
want a vorpal blade to try to cut through the complexity, but the vor-
pal blade is no lightsaber, it just goes snicker-snicker.

False Claims of Account Takeover
Since accounts can be taken over, people can falsely claim their 
accounts were taken over as a way of repudiating its actions. It is dif-
ficult for either party to conclusively prove fault. System operators 
like to believe that bad security (malware, bad passwords) were at 
fault. People like to believe there was nothing else they could 
have done.

Account takeover is a frequent problem, and so false claims of 
account takeover can be credible. Such takeovers lead to the need for 
repudiation and mechanisms for asserting and managing those claims. 
It’s also possible to create a real account that doesn’t tie to the real 
person and produce messages that must be repudiated by the 
real person.

Someone who wants to engage in defamation, pranking, catphish-
ing, or other mischief can simply create a new account with a name or 
label that’s plausibly related to that of their victim. That victim must 
repudiate both the messages and the account.
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Identity Theft
The term identity theft has many overlapping meanings including 
account takeover and new account fraud. Critics have pointed out 
that these are simply fraud, and the term identity theft is used to shift 
blame to victims who have little influence over the information used 
to commit the crime or the mechanisms exploited to commit these 
frauds. This is an important point, but incomplete. Certainly, the best 
way to deal with fraud is to assign costs to those who have the ability 
to prevent it.

The incompleteness of the argument that “identity theft is simply 
fraud” overlooks the damage to people whose “identity is stolen.” 
They must spend time going to the police and repudiating claims by 
creditors. (As mentioned earlier, police reports are treated as authori-
tative.) However, the problems are exacerbated by aspects of the 
American credit reporting system. Credit reporting agencies will com-
bine information that is only weakly linked (for example, the same 
name and SSN with a different address or similar name and addresses, 
such as Will Smith and Willow Smith).

Bad information in credit reports is excluded from libel laws and 
addressed by arcane, difficult to use “dispute systems,” designed and 
operated by the credit reporting agencies. In at least one major breach, 
those dispute systems turned out to be insecure (Bomey, 2020).

The Identity Theft Resource Center points out that the long-term 
damage to some victims is a form of trauma, where victims become 
averse to applying for or using credit because they fear having to 
again deal with the red tape. In this sense, their good name is stolen 
from them.

Fake Account Creation
While it’s not the same as account takeover, on many systems, it’s easy 
to set up an account with any name you want. You can use these for 
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impersonation either one on one or in some social space. For exam-
ple, after creating the account Darthvader57, you could send email to 
Imperial contractors asking for secrets. Or you could set up an 
account for Yoda900 on a website, and use it to “confess” to false 
claims about the Jedi. Do, or do not. There is no try, because it’s so easy.

Deepfakes
Voice cloning or deepfake video may portray someone saying words 
they never said or doing things they didn’t do. When the person really 
didn’t do it, they want to repudiate the deepfake. When they did, they 
can claim that the video was faked. The ease of creating such fakes 
makes repudiation more complex. Is it really a deepfake or a false 
claim to distract from the real content? Voice cloning, deepfake video, 
and similar attacks on “what you are” are discussed further in 
Chapter 1, “Spoofing and Authenticity.”

Logging Threats

Logs are a primary tool for incident discovery and response. Incident 
discovery and response go far beyond repudiation, and if you think 
about repudiating the belief that “No one has broken into our sys-
tems” or “This fully armed and operational battle station,” then logs 
are primary tools for response to incidents. (“You think this battle 
station is fully operational? Nobody noticed the ransomware on the 
main gun control computers!”) These include repudiation “inci-
dents,” when someone requests a refund through your call center, 
initiates a card chargeback, or rages on social media. All these logs are 
attacked in a variety of ways. There are attacks against the logs them-
selves, there are attacks that are carried into the logs, and there are 
attacks via response systems.

Attacks Against Logs
Because logs help defenders investigate attacks—including repudiation 
attacks—attackers try to corrupt or destroy them or introduce false 
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evidence. This leads to attacks on how logs are created, transmitted, 
received, routed, and stored.

Log creation can be attacked by tampering with the logging client 
library or by turning off logging features at the client. There’s a battle 
there between people who want privacy and advertisers. The techni-
cal implementation means that a similar conflict plays out over and 
over in different contexts. Those contexts include browsers and pri-
vacy plugins, enterprises that can block log transmission, and mobile 
apps. In each, log creation or collection is being attacked. (This shines 
a light on an important question of “security against whom?” If you 
move from delivering secure systems to delivering security systems, 
you must grapple with this. The ACM Code of Ethics is a fine place to 
start, even if you’re not an ACM member.) If the software offers a fea-
ture to stop sending logs, then there’s no threat. The same effect can 
be caused by someone tampering with the software, DNS, or routing.

Log transmission can be attacked, say, with firewall rules. 
Transmitted logs can be attacked in transit, either by an unexpected 
MITM inserted by an attacker or by software that’s designed into the 
path, like a web application firewall or an API gateway. Those attacks 
can be intentional, by someone who’s taken over such a system, or 
accidental, as they “helpfully” alter the messages. The log receiver can 
be overwhelmed with input so it drops log messages. And log storage 
can be overwhelmed. This depends on storage being expensive, and 
so it manifests more in cheap devices than in larger systems. Of 
course, if you keep enough data, disk space eventually gets expensive.

Attacks via Logs
Useful logs contain lots of data supplied by outsiders, some small 
fraction of whom are attackers. Data in logs is often in a raw form—
logging sanitized or canonicalized data limits the usefulness of a log. 
We often forget to treat logs as hostile.

The log4shell family of attacks was where a popular Java log pars-
ing library had “remote code execution by design.” It will likely be the 
canonical example of attacks via logs for quite some time.
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Some other examples of attacks that come through logs include 
attempts to log in as </td>root or /table. They can include invoca-
tions such as a backtick for a shell, or commands or string termina-
tors (` ; \0) that lead to the next characters being read as a new 
command. Another powerful attack is the regexp exploder, a regular 
expression with backreferences or complex matches that slow the 
regexp parser. Each stage in a log processing routine (often a series of 
shell scripts) can come under attack. For more discussion of these 
issues, see Chapter 8, “Parsing and Corruption,” but remember logs 
are radioactive by design: they’re full of attacker-influenced data and 
possibly personal data.

Attacks via Response Systems
Luke Skywalker leaves his Jedi training because he senses his friends 
are in danger. Many of us would give our right hand for a detection 
system that’s so well-tuned, but here I’d like to focus on Darth Vader’s 
abuse of the response system. Luke is tricked into acting in a way 
Vader has planned, and that is a problem with many response systems.

We must also think about how attacks are carried by logs through 
to analysis and presentation systems and how automatic defenses can 
be triggered by attackers. For example, we might deter sellers from 
buying glowing and false reviews of themselves by closing their 
account. If we do, those same companies will then simply buy false 
glowing reviews for their competitors, goading us to close the account 
of that competitor. Naturally, that competitor will repudiate the 
reviews and claim they have no idea how they got there. Here the 
platform is detecting (repudiating) the false review, responding by 
closing the merchant’s account (repudiating the relationship).

Social media and other platform companies see floods of attacks 
via their “report a problem” links. These are often in response to 
unpopular or even reprehensible things people say or do either on 
those sites or elsewhere, but sometimes they’re used to report a prob-
lem with someone drawing attention to that first offensive statement. 
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Copyright management systems have also been attacked by people 
playing copyrighted music so that videos taken of them will be taken 
down. An early example that came to public attention involved a 
police officer playing Beatles music.

For intermediaries, like an online store or payment system, 
responses to repudiation attacks usually involve either increasing fees 
or terminating a relationship. Credit card companies will increase 
merchant fees (and often demand manual effort) for merchants with 
an abnormally high chargeback rate. Business relationships can also 
be terminated or curtailed. That might be an Amazon shop being 
closed, a startup forbidden from distributing via Apple’s App Store, or, 
more personally, the end of a Gmail account.

Any response system can be tricked, and response systems are 
often kept confidential, leading to situations that can fairly be 
described as Orwellian. People who violate your rules, intentionally 
or not, maliciously or not, may use social media or news outlets to 
attack your repudiation system’s responses. It’s enough to make a 
droid’s head spin.

Repudiation in Specific Technologies
While repudiation often starts with humans saying something, the 
particular nature of systems can influence how it plays out. This 
seems as good a place as any to note that as the world is more and 
more controlled by algorithms, it’s also possible for a repudiation to 
be started by a bot, managed by bots, and never noticed by a human 
who’s paying attention.

Internet of Things (Including Phones)

Some devices, like security cameras, can provide information that 
informs repudiation claims. We tend to trust videos, but deepfakes 
are getting easier, and if the goal is to show a package being stolen, it 



Repudiation and Proof80

might be reasonable that faces are obscured. So look for real video 
showing a fake theft to support a fraudulent repudiation claim.  
(I might ask a friend to walk onto my porch, pick up an expensive 
package, and walk away. I then send the security video to the mer-
chant to show that the package has been stolen and ask for my money 
back. The video shows all the facts and none of the motivations or 
connections.)

Devices will come under attack to either support or prevent repu-
diation. If I think a device logs locally, perhaps destroying it will pre-
vent it from ever revealing those logs.

More generally, inexpensive IoT devices usually have simpler user 
interfaces than a traditional computer. The opportunity for a person 
to repudiate, to say “I didn’t mean to do that,” is higher, and the 
opportunity for a normal person to dig into logs is lower.

Cloud

Issues of log integrity and availability to end users used to be a bigger 
deal with the big IaaS cloud providers, and they may still happen with 
smaller ones. With a SaaS provider, you may or may not get the logs 
you want, and it’s important to test that you get sufficient logs for 
your needs. You’ll also need to understand how long those logs are kept.

Cloud services can provide “third-party” attestation as to what 
they saw at certain times. If you are trusting them for non-repudiation,  
you should consider what happens if a company providing such ser-
vices goes out of business, or even changes their business model. For 
example, if all of your contracts are stored in DocuSign and it quad-
ruples its prices, do you need to keep paying them to get access to 
those validated signatures? (I believe they add a cryptographic signa-
ture to the PDF file and lock the document to prevent editing.) 
Perhaps their competitors do this as well, and it’s important 
that you know.



Repudiation in Specific Technologies 81

AI/ML

One of the best aspects of machine learning systems is that they can 
find hidden patterns and surprise you with their insights and their 
willingness to select random correlates of the things you care about. 
The story about an AI learning to detect tanks based on them being 
photographed on a grassy field is probably apocryphal (worth repudi-
ating), but it carries truthiness in that we all suspect ML systems act 
weird sometimes.

That suspicion makes AI a great scapegoat for inexplicable, embar-
rassing, or otherwise hard-to-defend systematic errors. Unfortunately, 
until ML systems develop the ability to explain themselves, this trend 
is likely to continue. And so “The AI made us do it” is a “great” repu-
diation of responsibility by an organization.

At a more technical level, we cannot predict what systems should 
do; updates to the models may be made outside more rigorous soft-
ware development processes, and we cannot tell if the files in the 
model were the ones we intended. These potential tampering prob-
lems exacerbate repudiation.

Crypto and Blockchain

Cryptographic tools including digital signatures, message authentica-
tion codes, and hash trees can provide exceptionally strong evidence 
that something has not been tampered with and thus support the 
security property of non-repudiation. As good as those technologies 
are, they are stronger when they are interlocked, and that’s a key to 
the distributed ledger aspect of blockchains.

Key Expiration and Repudiation
As the Rebels approach the second Death Star in a stolen shuttle, 
they’re challenged for an authentication code. Admiral Piett tells 
Darth Vader, “It’s an older code, sir, but it checks out.” It’s enough to 
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make a Grand Moff tear his hair out. Keys are vulnerable to theft, and 
so you want to expire them. After you expire them, you don’t want to 
trust them, but you must. For example, if you rotate keys annually, 
then you must use an expired key to validate a digital signature gen-
erated years ago. You use expired keys to decrypt old backup tapes. 
By their nature, these older keys cannot be discarded, but they also 
should not be used for new material. The expiration is analogous to 
repudiation: we’d like a clean break, but we may have to 
apply judgment.

The difficulty of generating, distributing, and managing key mate-
rial led Soviet spies to reuse one-time pad key material. A one-time 
pad uses keys that are as long as the messages and, used properly, are 
“information-theoretically secure.” The sender and the receiver each 
xor a message with the key. If you reuse the key, the xor of the two 
messages is the xor of the plaintext. (The key is effectively xor’d with 
itself, resulting in a key of all zeros, and what remains is the xor’d 
plaintext.) The United States took advantage of this failure in a pro-
ject called VENONA. Exploiting stolen or misused keys is not limited 
to intelligence agencies; attackers stealing data routinely look in con-
figuration files, code directories, and anywhere they can reach to get 
copies of the keys for the data you were trying to protect. When the 
keys are used for encryption, then the result is a confidentiality fail-
ure. When used for digital signatures, the result can be repudiation or 
integrity attacks.

Blockchains
One of the most salient aspects of blockchains is their wholesale 
rejection of repudiation mechanisms. A key technological innovation 
of Bitcoin was a way to generate and maintain a distributed consensus 
ledger. Data that is on a blockchain is there for as long as the block-
chain is maintained. Bitcoin has no way to repudiate a transaction, 
which is either a bug or a feature, depending on who you ask.
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Repudiation Mechanisms

You’ve seen a large set of ways in which repudiation can happen, and 
I’d like to now help you organize those into a more useful framework. 
We’ll cover denial and misdirection, destruction, social media, and a 
particular case that incident response folks call “loss of view.”

Denial and Misdirection
The first step in a repudiation is some statement that X didn’t happen 
or something that shouldn’t have happened did. Claims are made, and 
someone eventually makes a judgment of some form. The exact steps 
are extremely scenario dependent, but they usually start with “Where’s 
the email/package/money I was expecting?” (They rarely continue 
with “Tell Jabba I have his money!”)

Destruction
Destruction of logs or evidence can be an important part of a repudia-
tion and are generally, but not always, done by an attacker, rather than 
by a business partner or customer. This can be physical destruction 
by destroying the media, logical destruction by deleting or overwrit-
ing files, or destroying comprehensibility by deleting a crypto-
graphic key.

Social Media
Increasingly, people use the power of social media as part of a repu-
diation or customer service escalation. These seem unfair to the peo-
ple who designed the customer service mechanisms that reasonably 
optimize costs by making customers wait on hold for half an hour to 
talk to a person with no authority. Less sarcastically, social media is 
being used to rebalance power and the perception of power, and when 
thinking about business processes to manage repudiation, it can help 
to ask “What would we do if a B-list celebrity with 100,000 followers 
complains about this?”
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Loss of View
One approach to repudiation is to cause a loss of view: the inability to 
see the state of a system, or the prior states. This is done by attackers 
to incident responders. Attackers can tamper with monitoring or 
analysis tools; or they can destroy logs or tamper with the logs or log 
analysis systems. Destruction of evidence is narrower than the idea of 
“loss of view.” The evidence might be present, in many different sys-
tems, with timestamps that don’t make sense. This might be seen as 
“failure to develop view.”

“Loss of view” is a framing in common use by incident response 
teams to describe a situation where they’re having trouble figuring 
out what’s happening. Loss of view happens at a technical level and, 
more important, at an operational level. When an oxygen tank on 
Apollo 13 blew up, there was no “oxygen tank exploded” indicator. It 
took nearly 15 minutes before anyone looked outside and noticed a 
cloud of gas and longer before Mission Control accepted the report 
from astronauts.

These failures to observe or failures to believe probably don’t rise 
to the level of repudiation, but repudiation may be a convenient place 
to consider them.

Defenses
The key to defense is to have ways to understand what has happened 
in the past and to be able to use the evidence to convince others of 
your perspective. That can be cryptographic proof, logs, or other 
tools. Star Wars stores such evidence in “holocrons” and asks that 
Jedi Knights search their feelings for answers. This doesn’t turn out 
very well, and I recommend more modern defenses.

Cryptography

One of the first uses of public key cryptography is to create digital 
signatures: testable bindings between some cryptographic key and 
some document. The signature is a mathematical operation performed 
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with a document and the private part of a keypair. Anyone with the 
public part of the keypair can check that the signature was applied to 
the document. There are a number of caveats: the document is usually 
represented by a cryptographic hash for efficiency reasons. The signa-
ture is created and tested by software, which might lie.

Digital signatures are not the only way to use cryptography to 
authenticate bits. Hash trees are a specific subset of the classic tree 
data structure, where each lead node is hashes of documents; the par-
ents are a hash of the children. Thus, inserting a new node only 
requires calculating hashes equal to the log of the size of the tree. This 
tree was invented by cryptographer Ralph Merkle and is often called 
a Merkle tree. If you both store changelogs and publish the root of the 
tree in a trusted place (such as a physical newspaper), then you can 
demonstrate that certain hashes were in the tree at that time, and thus 
the documents associated with those hashes existed then.

At the opposite end of the efficiency spectrum, various blockchains 
provide distributed consensus and ways to ensure that all parties will 
come to a convergent view. The mechanisms are labeled “mining” and 
involve some hard to perform and rewarded calculation. That calcula-
tion might be finding a partial hash collision for a new block and the 
previous block. This collision is hard to find, requiring possibly  
billions of hash calculations, but easy to verify, requiring just one. The 
block is a set of hashes of documents, often treated as transactions. 
The hash “commits” the block, consisting of that set of transactions, 
to the chain. Anyone who validates the chain can see that a block, and 
the associated hashes, was committed at a specific time.

Keeping Logs

Generating logs is incredibly helpful for many goals, including debug-
ging, handling repudiations, and detecting attacks. If you’re writing 
code, make sure you include logging options. If you’re operating the 
code, make sure you turn logging on. Without logs, it’s hard to estab-
lish what happened in the past. So you want logs.

Lots and lots of logs. But lots of logs are not enough. You need the 
right logs to deal with the problems you’ll face. This chapter, along 
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with some threat modeling and use and abuse cases, can help you 
think through many ways in which repudiation attacks might take 
place. Test them and see if the logs give you enough to find the attacks 
and satisfy yourself about what happened. This chapter is focused on 
repudiation, but logs are also used in responses to attacks. So as you 
engineer your log generation, analysis, and access, it’s helpful to think 
about both, so I’ll cover both here.

What to Log
While it’s important to have lots and lots of logs, it’s also important for 
the logs to be useful, and “log everything” is not useful advice. The 
signal would get lost in the noise. So, choosing what to log when 
you’re writing software is hard. The best logging tends to relate to 
code with strange bugs or obvious failure modes.

As a set of principles, log three things: input, actions, and deci-
sions. Log the context that informs them. Log who, what, why, when, 
and where. Log both successes and failures, and think about how 
your logs will be used by an investigator asking who, what, how, and 
when. They’ll also be asking why, and your logs can help them answer 
why your software did something.

When I say log the who, that means a collection of identifiers 
(what you did to authenticate each is covered under why). This 
includes the following:

•	 The remote machine and all the names it currently has. 
(Machines have at least an IP address and a DNS name; often-
times they’ll have other names, such as WINS names, Zigbee 
names, Bluetooth names, MAC addresses, and the like.)

•	 The account can be one or more of an account name and an 
application-centered name, or bank or credit card numbers. (For 
example, I log in as shostack and invoke mysql -user 

wordpress.)
•	 Who created the log. (This means what machine and application 

created the log, because log aggregation means that “localhost” 
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may not be very meaningful to the person or system reading a 
log message.)

“Log the what” means log what the other side sent or did. For a 
human, that will be the input, including text, mouse, voice, gestures, 
and brainwaves. Log the commands and the arguments, and if the 
responses are from somewhere else, maybe log those too. For a remote 
machine, capturing complete communication is useful for debugging 
but too verbose to store long.

“Logging the what” also means what outside input your code is 
taking and from where. That might include files, URLs, or IP addresses. 
Logging full file paths and perhaps even hashes can be very helpful to 
investigators.

“Logging why” means logging your decisions: Where did your 
software branch, and why? What authentication or authorization 
decisions is your code making, and why? If you checked a password, 
log “password success,” not “password1  was used to successfully 
authenticate.” If you give up the ghost, say so.

“Log when” means log events that happen. As we discuss in 
Chapter 7, “Predictability and Randomness,” keep your logs in UTC.

There is an approach to logging called canonical logs that involves 
augmenting “in-the-moment” messages with a summary log message 
containing all the useful information in a single message to save oper-
ators the work of reconstructing and correlating it. That shouldn’t 
prevent you from emitting logs as you go, especially if your code is 
attacked and never reaches the function that emits a canonical log.

The “who” and the “why” will be heavily used in responding to a 
repudiation. If a consumer says, “I didn’t make that transaction,” then 
we can go back and check: were there factors that stood out as unu-
sual? If there were many (different IP or geolocation, different 
browser), we are more likely to believe them. Who and why are also 
heavily used in responding to more complex attacks. If an attacker is 
able to authenticate as Han with the right password, we probably 
want to look at each place Han uses that password.
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All of this can lead to chatty logs. Apply judgment to what gets 
logged at what debug levels, but set thoughtful defaults. Writing 
deeply sensitive information (passwords, cryptographic keys, social 
security numbers) might require a special debug option.

Operational Logging
You have to consider where the logs are created, where they end up, 
and who has what access to them. Maybe your software is a local 
application, and the logs stay on that system. Perhaps the logs go to 
the cloud or to a log aggregation service.

Access to raw logs, or the ability to run arbitrary code on logs, is 
powerful (and risky if there’s confidential information in those logs). 
When the logs contain personal information, being able to track who’s 
accessed them will be important. So generally, you’ll want to build 
tools that support the common use cases. Repudiation will be the 
most common use case when you have human customers, and auto-
matically collecting and analyzing the relevant information speeds up 
responses and makes them more consistent. Those tools will never 
quite replace raw log access for dealing with new or different attack 
patterns. (More on this in the section “Who Sees What Evidence?”)

Having your logs around for a long time is sensible but can be 
expensive. You’ll need to consider how long you hold what informa-
tion. There are regulatory and operational needs. Operational needs 
vary, but it’s not infrequent to hear of a break-in being discovered 
years after the fact, and being able to discover what the attacker did 
can save you from having to tell your customers, “We don’t know if 
the attacker accessed the private information you entrusted to us 
because we have no logs.”

While repudiation by a consumer is often immediate, attacks are 
often detected after years. Unfortunately, today’s operating systems 
have log rotation policies that were designed when disks cost dollars 
per megabyte, and those policies haven’t been updated. Your operat-
ing systems are throwing out logs before your intrusion detection 
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catches an attacker. Generally, rotation and regulation lead to moving 
logs to some central store.

Lastly, the UK’s National Computer Security Centre has some solid 
guidance in a page titled “Introduction to logging for security pur-
poses” (NCSC, 2018).

Personal Information in Logs
Logs will include personal information and need to be treated care-
fully as a result. Careful treatment includes managing permissions of 
who can read them, possibly splitting data into several logs, tokeniz-
ing data, or writing tools to extract data from the logs at various levels 
of detail.

It’s generally a good practice to tokenize all personal information. 
That means replacing the sensitive data with a random string and 
keeping a map from tokens to the protected values. Sometimes tokeni-
zation is conflated with cryptographic techniques such as hashing or 
encryption. Hashing is subject to a dictionary attack. The attacker 
creates a dictionary of, say, all possible phone numbers or SSNs and 
then hashes each. They now have a dictionary of all the plaintext and 
hashed values, and for small lists, like billions of phone numbers, it’s 
pretty fast. Also, if you tokenize, it may be that deleting the link from 
the token to identifiable information can help satisfy obligations 
under “right to be forgotten” rules.

Responding to consumer repudiations of transactions can check 
the tokenized information, rather than the raw information. Similarly, 
exercising that right to be forgotten is like repudiating a customer’s 
relationship with you. (The implementation may even be identical, 
but this book is not legal advice.)

Also, you may need to log that you’ve deleted all the information 
about a person. (Don’t look at me; look at European law!) Ironically, 
this may require that you log what you once knew. Storing field 
names, rather than values, is probably a good start. You might also 
store a hash of an index key, like an email or phone number in that 
particular circumstance when you cannot keep the map.
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Third-Party Logs
There are many reasons to have third parties keep logs. It’s not trivial 
to serve lots of transparent 1-pixel GIFs quickly to track when people 
view emails, open documents, or display web pages. Why not let 
someone else do it and own the attack surface and scaling?

Also useful is that an independent third party who generates logs 
can act as a bulwark against false repudiations. Records kept in the 
ordinary course of doing business are treated as reliable, at least in the 
United States. (There are limits. I have not magically become a lawyer 
since you started this book, and even if I were, this would not be legal 
advice.) Thus, companies like DocuSign not only can help manage 
the signing process but also maintain logs or cryptographically sign 
the documents. (I don’t know what DocuSign actually does; this is 
just a hypothetical example.)

Using Logs

By themselves, logs do nothing. Repudiation is handled by techno-
logical systems that gather logs for people to use. That can be simple, 
in the case of “Here’s a screenshot of your email in my spam folder,” 
or far more complex in the case of a credit card chargeback.

Visibility is implicit in how we address repudiation, account takeo-
ver, and fraud. The claim in “I’m sorry I didn’t respond to your email; 

Logging vs. Audit System

Microsoft calls the Windows logging system the audit system 
(Microsoft, 2017). This can lead to confusion about what an 
audit is, as shown by statements like “We have audit ena-
bled.” An audit is an inspection or examination to see if 
you’re keeping appropriate records and that the actions 
you’re taking match your commitments. Audits can be ena-
bled by logs or inhibited by their absence or insufficiency.
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I didn’t get it” is simply bizarre absent someone saying “Why didn’t 
you respond to my email?” Similarly, someone needs to investigate to 
look into a claim of account takeover or fraud.

Some uses of logs will be more frequent than others. Requests that 
are frequent and consistent should be automated, for efficiency and 
accuracy. Other log uses will require bespoke queries and analysis.

Frequent Views
Let’s use account takeover as a lens into what might require frequent 
and repetitive analysis. If you run a large system accessible by the 
public, you will face account takeovers. These are exacerbated by 
weak authentication (see Chapter  1, “Spoofing and Authenticity”), 
but for high-value accounts, like those with access to lots of crypto-
currency, attackers will dedicate weeks of background research.

When dealing with repudiation in the form of a claim of account 
takeover, you’ll want to marshal evidence and evaluate it. You want to 
check the various elements both for themselves and in combination. 
Does the person typically log in from the same IP address? Same cli-
ent? Do they have a regular pattern? You’ll also want to look for 
abnormalities that might inform your judgment. Were there hundreds 
of login attempts from that IP address? Millions of attempts to log in 
with that username or password? Is there a history of complaints by 
the account owner?

Another way to say that is you should actively look for evidence 
that either bolsters or undermines the claim, rather than one or the 
other. And when you do this regularly, the factors that play into your 
decisions can be standardized, and decisions can be handed off to 
systems. Such systems can be designed to avoid the various cognitive 
biases that influence people. There are entire jobs where a person is 
still in the loop because someone fantasizes that they might notice 
something strange through mind-numbing tedious repetition. But I 
wouldn’t bet on it. I would bet there are better ways to bring them in, 
such as audit or analysis, rather than having them click OK all day. 
(Airport luggage screeners are presented with fake weapons and 
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bombs, because the job is so tedious that system designers expect 
them to miss the very rare real ones. We should learn from that—if 
log analysis is incredibly boring, people trying to do it will become 
uncomfortably numb.)

What makes a frequent view frequent is that the same evidence 
needs to be marshalled each time, making these excellent candidates 
for automation.

Less Frequent Views
There are other situations, such as when a human attacker takes over 
a corporate Windows box, where the steps that they take and  
the investigation involve both standard steps like asking what tools 
were installed or run or what did they connect to, and less standard 
like looking at the output of those tools, looking at RAR files of data 
to be extracted, or following the trail through additional compro-
mised accounts or machines.

These situations, where investigation cannot be as automated, hap-
pen more frequently in investigation or audit than they do in 
repudiation.

Predictable vs. Frequent

It’s easy to fall into talking about “predictable” and “unpre-
dictable” use cases. Frankly, all use cases are predictable to 
some degree. We run into problems when we forget there’s 
a spectrum, rather than a binary choice. Details may differ, 
but that makes them less common, not unpredictable. (Also, 
as you increase detail, things become less common. It is less 
likely that someone is both tall and a basketball player than 
simply tall, because not every tall person plays. But, in study 
after study, people routinely describe the combination as 
more likely.)
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Sharing Logs
Who gets to see what evidence? There is a strong argument that good 
system security should not depend on anything that is hard to change, 
so you ought to be able to expose the decisions your system has made. 
(For more on security by obscurity and Kerckhoffs’ principle, about 
things that are hard to change, see Chapter  7, “Predictability and 
Randomness.”)

Consider this: A customer has disputed that a package ever arrived. 
You’ve reviewed the shipping company logs, and someone signed for 
it at their address. It’s easy to show them that log. But many organiza-
tions use heuristics that they believe block amateur fraudsters. And 
while these are often anecdotal or unsubstantiated, those who main-
tain them may argue against sharing logs that show those factors that 
you keep secret to help prevent fraud.

When your service bans a bunch of accounts, do you share that 
with your competitors? A sharing agreement can keep everyone safer, 
sooner. Well, except for the customers caught in a Kafka-esque shut-
down of their accounts when you or your competitors have banned 
them, and they can’t find out why.

Who trusts whom to maintain the evidence? This can be an advan-
tage of logs generated or stored by a third party or of using block-
chains or Merkle trees to provide evidence of what was logged when.

Antifraud Tools

There are a lot of commercial antifraud tools available that fit neatly 
into antirepudiation tooling. Cybersource publishes a useful survey, 
which it characterizes as validation services, your proprietary data, 
multimerchant data, and purchase device tracking. Validation tools 
include checking cards and checking phone numbers or addresses for 
validity. Your data includes what the customer has bought, order 
velocity, and website behavior. Device tracking are tools like finger-
printing and geolocation. Using these can reduce fraudulent orders 
substantially while minimizing impact on real orders and real 
customers.
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Conclusion
Repudiation threats matter in all systems that involve humans. These 
threats can involve truth or lies, and as engineers, our job is to ensure 
that we can establish the facts.

Returning to the dialogue from the beginning of the chapter, Darth 
Vader doesn’t merely alter a few terms of the deal—he repudiates it 
entirely. The deal was supposed to be trading “somebody called 
Skywalker” for the Empire turning a blind eye to Cloud City. By the 
end, it’s Luke, Leia, and Chewie taken away by the Empire, and Han 
given to Boba Fett, with the threat of an Imperial garrison left behind.

Another example of repudiation occurs when Luke Skywalker con-
fronts Obi-Wan Kenobi, saying, “You told me that Darth Vader 
betrayed and murdered my father!” Obi-Wan’s response is, at its heart: 
“So, what I told you was true…from a certain point of view.” The 
exchange ties to a deeper truth, which is that in many repudiations 
trust has already frayed. Dead Jedi are not alone in twisting things to 
try to appear consistent. Having signatures or logs and software  
to search them consistently can save you from trying to fall back to 
searching your feelings. While that may arguably work for Jedi, it’s a 
poor form of proof.
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4

The very first scene of Star Wars shows Princess Leia’s ship being 
pursued, and we quickly learn that the Empire is hoping to recov-

er the stolen Death Star plans. From the opening scene through the 
climax, Star Wars: A New Hope is the story of information disclosure 
and its consequences. I have no idea why people say it’s about Luke’s 
journey to adulthood, his relationship to his father, or anything else. 
Of course, throughout Star Wars there’s plenty of undisclosed infor-
mation, such as what happened to Luke’s father, where the Rebel base 
is really located, or the Empire’s plan to destroy Alderaan to demon-
strate the awesome power of the Death Star.

An important attribute of information disclosure is that the infor-
mation is someone’s secret. Breaches of confidentiality can be a disclo-
sure to a select few, the public, or any set beyond those who are 
supposed to be “in the know.”

Information disclosure can be from one account on a system to 
another; information can be disclosed to those who observe the net-
work your packets traverse, and there can be disclosure to unaffiliated 
entities, those who aren’t along the expected network path.

Information 
Disclosure and 
Confidentiality
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Confidential information is often about the data itself, but some-
times it’s information about data, or metadata. This can also include 
information about who is talking to whom. Information about files, 
even the existence of the Manhattan Project, needs to be concealed 
(hey, come on, I have to move off Star Wars occasionally).

Threats to Confidentiality
The US National Security Agency (NSA) has a model of the data they 
steal: they either get it when it’s at rest or when it’s in motion. We’ll 
follow that here in part because how we protect data can depend on 
the attack we’re concerned about. In STRIDE-per-element threat 
modeling, this theft manifests as information disclosure against a data 
store or a data flow. There are also threats of data leakage by a process, 
including side effects of computation, which often result in covert 
channels that someone can use to communicate stealthily, and infor-
mation about human connections. These data leakage, side effects, 
and data about human relationships don’t cleanly fit the model of data 
at rest/data in motion. That’s OK—we care more about the threat than 
the model.

Incidentally, while we often use words like theft, the threat is usu-
ally about making copies or having access, not taking it away from 
its owner.

Information Disclosure, at Rest

Data “at rest” usually has authorization checks that protect it, imple-
mented by the operating system, database, or cloud provider. Data at 
rest is data in files, in memory, or in databases. It can be physically 
tied to a computer—inside a processor, on disk, or even on removable 
media like backup tape. It can be stolen by an attacker, discarded by 
its owner, leaked by an unhappy or insufficiently careful employee, or 
dropped off the back of a truck. Entertainingly, we consider the 



Threats to Confidentiality 97

moving box of tapes to be data at rest, because the best protection will 
be storage encryption.

Of all the files in the world, only a very small set of them are truly 
intended to be world-readable, although that proportion may be 
changing as the Web makes more files available to everyone. Some of 
that change is accidental. Amazon’s customers had enough trouble 
locking their S3 that Amazon built new features to draw attention to 
“buckets” that were public and to help find sensitive data in those 
buckets (Barr, 2017; Macie, 2017).

Of course, not all file access is intentionally authorized. There’s a set 
of failures based on confusing the reference monitor about canonical 
filenames (which are discussed in Chapter  1, “Spoofing and 
Authenticity.”) There’s also a set of failures based on access control 
failures, either the explicit ones provided by an operating system or 
the ones implied by an email address. Most systems that encrypt an 
email do not harangue the sender for independent confirmation of the 
addressee’s email address and cryptographic key identifier. Such con-
firmation might, now and then, reveal that the person has accidentally 
selected two different identifiers, and we could even envision a UI to 
learn which is correct, such as buttons labeled with the two identifiers. 
However, the extra effort needed would likely be infuriating—“I’ve 
already told you where the email is going!”

The issues with data exposure don’t require a lot more explanation. 
Metadata can be much more subtle.

Metadata
You might think that metadata is when an android locks all the 
humans out of the holodeck and makes a fantasy world that’s just 
duplicates of himself. And you’d be in the wrong fictional world. In a 
galaxy far, far away—and in ours—metadata is data about data. For 
example, the fact that Brent Spinner was on Star Trek: The Next 
Generation is data. That he played Data is data…OK, I’ll stop.

Data can rest in files or in databases, and each has associated meta-
data, like file names or path. Many people are likely interested in the 
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content of JuneLayoffs.xlsx. The content of staffing/Alice 
JuneLayoff.docx is implied, but it might be a letter saying “Alice, 
your job is safe.” The file Junelayoffs/Alice.docx is more interest-
ing because of a combination of metadata: the directory and name are 
each less interesting on their own.

Information can be disclosed about any of the following:

•	 The contents of a file
•	 The file’s name
•	 The pathname where the file is stored (full or partial)
•	 If file or path exists or not
•	 The size of a file
•	 The permissions on a file
•	 Access or modification time on disk or in a version control system
•	 Tags

If there’s no file staffing/DarthJuneLayoff.docx, then the non-
existence of the file is information that someone might really want. 
(As an aside, I wouldn’t want to be the one tasked with informing 
Darth Vader that his job as a Sith Lord has been eliminated.)

Even hard-to-understand names can provide information. For 
example, if you spot a file EgotisticalGiraffe.txt on a system 
and later discover the existence of a secret program called Egotistical 
Giraffe, you might suspect that the files are related. Similarly, size, 
format, and access times are metadata that may be interesting.

All of these are generally accessible to an authorized user of a clas-
sic operating system, and many of these—and analogous metadata—
are exposed in modern SaaS or cloud systems.

Metadata is often subject to interpretation. There was an interest-
ing tiff between Tesla Motors and the New York Times (Bishop, 2013). 
The undisputed fact is that a reporter drove a Tesla around a parking 
lot until the battery ran out. He panned the car in his review but did 
not mention driving around the lot in his initial story. Tesla claimed 
in a press release that he was “looking to run down the battery.” He 
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claimed that he was looking for a charging station. My take? Data can 
be cast in many lights, and metadata is even more subject to 
interpretation.

You can tie yourself into an intellectual knot over the question of 
“is a cryptographic key a form of metadata?” On the one hand, it’s not 
the data itself that anyone cares about; but because of what it enables, 
you care deeply about its confidentiality (or integrity, in the case of a 
public key). The right answer is that it’s the wrong question. You need 
to protect the keys to protect the data. That’s easier because they’re 
smaller and because you can treat them with greater care.

Databases may use a file system provided by the OS or one they 
provide themselves. This “raw disk mode” of course has abstractions 
like those of the OS, but optimized for the database’s usage.

While metadata that exists is often easily found, there is also plenty 
of information that’s present but hard to see.

Obscured Data
Files can contain data that’s explicitly hidden—just use the “hide col-
umns” feature in a spreadsheet. They can also contain data that’s 
“occluded,” which is to say hidden or obscured. For example, if you 
make the highlighter in Word black, you can obscure information.1 If 
you distribute the file as a Microsoft Word document, then anyone 
with the file can change the color of the highlight and read what you’d 
redacted. There are less silly versions of this, from looking at change 
history to using the Unix strings utility to unzipping the file and 
examining its constituent parts. If you draw a black box and then 
“print” to PDF, you might be surprised to learn that the PDF format 
has layers. American intelligence agencies will often release printed 
and scanned versions of documents, which is a reasonable way to 
avoid these problems, even if it does make the documents less useful. 

1The Onion’s “CIA Realizes It’s Been Using Black Highlighters All These Years” is a  

classic.
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Modern, variable-width font rendering means the precise length of a 
phrase can also reveal information about the words that are covered. 
This is easier with shorter strings, such as names, rather than sen-
tences or even paragraphs.

There’s also a set of attacks where you get an authorized party to 
gather data on your behalf. For example, if I tell your browser that 
there’s an image at file://etc/passwd, then will your browser read 
it? Will it make the content of the image available to the DOM (the 
way a browser represents a web page in memory)? These “confused 
deputy” attacks bypass authorization and can result in information 
disclosure, tampering, and other effects, and are covered in their own 
subsection in Chapter 6, “Expansion of Authority and Isolation.”

Physical Storage
It’s easy to forget that storage eventually requires a physical device 
that can be attacked. An attacker who bypasses the authorization 
checks imposed by the system has tremendous power to access not 
only the data that is currently there but also the data that was previ-
ously there. Data that is supposedly destroyed may still be present but 
not easily found. For example, memory that you’ve freed is probably 
not overwritten with zeros. Removing in-memory secrets that you no 
longer need takes only a few lines of code and, often, instructions to 
the compiler to not optimize away the cleaning.

When storage is designed to be long term, this problem is bigger. 
An attacker with physical access or low-level logical access may still 
find data on disk. We can replace the contents of the file with random 
data and then unlink the fit. We can do similar things to the files or 
free space on a filesystem or to filesystem indexes, although that can 
be more complex. Unfortunately, flash storage devices started imple-
menting leveling algorithms that carefully wrote data in different 
places to reduce wear on the device, reducing assurance that the data 
is really gone. Reputedly, Apple removed the srm command (secure 
rm) around the time of macOS Sierra (Harris, 2016) because of the 
difficulties involved in secure deletion.
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Once you dispose of a disk, you no longer care if the files on it are 
tampered with, but confidential data is still subject to information 
disclosure. Encrypting hard drives and other data storage is a solid 
start at a defense and is a very solid defense if done carefully.

Offsite backups are the ultimate version of data at rest. Getting 
assurance that the tapes have been kept safe or destroyed can be 
tricky, so encrypting tapes means destroying (or losing) the key is 
technically as good as destroying the tape. Designing cryptographic 
key storage that is assuredly as reliable as the underlying backup 
mechanisms is tricky. This complexity, not the demands of the plot, 
were what really caused the Empire to store data unencrypted in the 
archives at Scarif.

The NSA’s longstanding practice of physical device destruction 
seems more prescient every year.

Information Disclosure, in Motion

Data in motion is data that is transmitted by radio, over a wire, or by 
some other means, like on a tape, a truck, or an escape pod. (A droid 
in an escape pod is still just data in motion.) However the data is mov-
ing, you cannot rely on an operating system or other program to pro-
tect it. Data carried by a courier can also be seen as data in motion, 
and protection for the data in motion may be less. Princess Leia’s ship, 
the Tantive IV, is less protected than a base. A courier with a briefcase 
full of cryptographic keys has to maintain discipline for an extended 
period to keep the keys safe.

Data in motion can be disclosed because it’s sent in cleartext, 
because of a failure in the crypto, or because of a failure in the rout-
ing. There’s disclosure because the channel isn’t protected and disclo-
sure because the messages aren’t protected. (See Chapter 2, “Tampering 
and Integrity,” for more on channels and messages.) You can also 
think about the exposure of metadata of several types: existence and 
timing of communication, addresses, quantity (volume and fre-
quency), and even tooling. An easy-to-understand example of tool 
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metadata is that Twitter exposes the operating system and tool used to 
tweet. At least one maker of Android phones has disciplined an 
employee for tweeting from an iPhone.

As discussed in Chapter 2, the difference between a channel and a 
message is important. A channel carries messages. For example, email 
messages are carried over an SMTP channel. You can encrypt the mes-
sages with PGP, S/MIME, or other email encryption tools, and you can 
encrypt the SMTP channel with StartTLS. You should do both, because 
the channel is protecting the headers and the content as messages 
move between servers, while the message encryption protects the 
content at rest on those servers. Similarly, Chapter 1 presented the 
idea of a monkey-in-the-middle (MITM) threat, where messages are 
routed to an attacker, and the attacker may choose to simply observe, 
rather than tamper. Authentications are a particularly important type 
of message to protect—sending passwords unprotected is so 1990s.

There are a few common reasons data is generally not encrypted. 
Sometimes the engineer doesn’t even think about it. Other times the 
engineer believes that the receivers are too expensive or tricky to 
build or install. Compatibility or operations can also make deploying 
hard. (Remarkably, as late as 2014, video from Predator drones was 
not encrypted [Schactman, 2012; Pocock, 2015].) Crypto failures are 
from bad algorithm choice or evaluation. During the Second World 
War, there were several German evaluations of the strength of the 
Enigma cryptosystem. All of those evaluations arrived at the wrong 
answer. They attributed to coincidence what was in fact the Allied 
invention of the computer. Your adversaries probably spend less, and 
while they certainly don’t have Alan Turing, they might have some-
one almost as brilliant. More frequent than bad algorithms are bad 
key management practices. Keys are subject to all the disclosure 
threats in this chapter and are far easier to sneak out than other 
information. For example, a 2048-bit key can easily be encoded in 
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two old-style tweets2; if you encode 8 bytes per DNS lookup, then it’s 
just 32 lookups for domains like ifgdnexp.threatsbook.com. With 
more lookups, the names can look even less suspicious. Those chan-
nels are less useful if you want to steal a copy of the plaintext.

Shockingly, not all information flows over the Internet. There are 
other systems that still use radios or cables. Sometimes people con-
fuse the “private” nature of the network with “privacy” features. 
There is a long history of faulty assumptions that receivers (or  
transmitters) would be too challenging to build or install. This has 
impacted cell phones, global positioning systems, submarine cables,  
and more.

Metadata that can be captured when data is well-encrypted with 
well-managed keys exposes the fact of communication. No amount of 
encryption will help a Bothan who’s trading daily emails with Rebel 
leader Mon Mothma. Of course, those large files may be pictures of 
the grandkids or otherwise be entirely innocent. That’s the trouble 
with metadata.

Communications metadata is subject to interpretation. Why is 
someone repeatedly calling a drug abuse hotline? Are they addicted, 
getting help for a loved one, or establishing a help program for their 
employer? The ability of different observers or participants to describe 
the same set of observations very differently is often called the 
Rashomon effect, after a beautiful 1950 movie of that name. Some 
observers even claim that Rashomon is a better film than Star Wars or 
that its director, Kurosawa, was a major influence on George Lucas. It 
would all be a matter of interpretation—except Lucas has explicitly 
acknowledged Kurosawa’s influence.

If you think concern about metadata is overblown, I’ll leave you 
with a quote from Michael Hayden, former head of the NSA: “We kill 
people based on metadata” (Ferran, 2014).

2The 140 byte ones.

http://ifgdnexp.threatsbook.com


Information Disclosure and Confidentiality104

Information Disclosure from a Process

Processes tell the world about themselves in a variety of ways. 
Processes that listen on the network often emit a banner saying some-
thing like “Sendmail 4.6.2 running on a 32-bit OpenVMS Alpha,  
vulnerable to CVE-2002-1234.” OK, that’s a very slight exaggeration. 
You need to do a lookup on a banner to get a list of known vulnera-
bilities, some of which might be patched without a change to the  
version number. Even if your process doesn’t emit a true banner,  
it probably has headers that evolve with version changes.

The behavior of the process will often be enough to identify it. For 
example, perhaps it responds to “HELO” and “helo” in the same way, 
but not ELHO and elho. Perhaps your firewall drops connections 
silently, or perhaps it sends back a FIN or RST packet. Attackers will 
catalog such changes to use in fingerprinting, that is, using these 
behaviors to identify the software, and to use that identification to 
focus the next stage of an attack.

Processes contain data. You use Word to open the layoff docu-
ments, and you use EmpireCAD to read the plans for the Death Star. 

Limits of “At Rest/In Motion”

A box of backup tapes falling off a truck. An email stored on 
disk. Is each data at rest or data in motion? It’s important 
that you not get caught up in that sort of question. You 
have a concern—metadata in a tweet led to an issue. You 
want to be thinking about where data exists in your system, 
where it’s transmitted, and what that can mean. My book 
on threat modeling opens with this quote from statistician 
George Box: “All models are wrong, but some models are 
useful” (Threat Modeling: Designing for Security [Wiley, 2014]).
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Having done so, those processes obviously have a copy of the data, 
but processes also contain security-relevant data, including the 
following:

•	 Cryptographic keys
•	 Random numbers
•	 Memory layout information
•	 Authorized file or socket handles

Each of these should remain secret. Memory layout is important 
when the layout is randomized as a defense against attacks (for exam-
ple, Address Space Layout Randomization, explained further in 
Chapter 7, “Predictability and Randomness”) or when the end of the 
stack contains canaries to prevent overwriting. Authorized file han-
dles may be kept open when a process forks and execs another pro-
cess or may otherwise be made available to another entity.

There are also threats of information disclosure when the process 
intentionally sends data to logs or debug files. Simple examples 
include passwords entered as usernames, but connection data (by IP 
address, username, or machine name) is commonly logged. Different 
systems have different approaches to system log confidentiality. 
Windows has a separate security log, which is writable only by pro-
cesses with the SeAuditPrivilege, and the SeSecurityPrivilege is 
needed to read it (Microsoft, 2017). Unix has a variety of log files with 
various permissions. At the application level, thought must be brought 
to the questions of what’s logged where and who needs to access 
it for what.

There are also ways that a process can accidentally send informa-
tion to storage, including dumping core, swapping, or using a chunk 
of its own memory to overwrite confidential data. Swapping is a strat-
egy used by operating systems to pretend that slow disk is really RAM 
and that the machine has more memory than it actually does. It was 
more noticeable when memory was expensive, disk was slow, and 
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swap algorithms were less cleverly optimized, most of which means 
this is probably still happening on cheap devices. If your operating 
system doesn’t allow you to mark memory as “unsuitable for swap-
ping,” then secrets like crypto keys may end up in the swap files when 
the machine loses power.

There are also attacks that cause a process to emit information. 
Sometimes this is just badly designed error messages: “cannot  
connect to database with username dba and password 

secret1!.” Sometimes the information is influenced by an attacker. 
The Heartbleed bug allowed a client to ask for a message of a certain 
size to be returned, and the code copied that much data from memory 
(rather than filling the memory with zeros, a counter, or 0xdeadbeef). 
The memory copied could include secrets such as crypto keys, user-
name and password combinations, or other arbitrary information. On 
the positive side, it was hard for an attacker to predict or influence 
what would come back. On the negative side, the attack allowed a 
practically unlimited number of requests.

Human Connections

There is a tremendous amount of information in who talks to whom 
and who’s listening. What accounts do you follow on Twitter? What 
groups have you joined on Facebook? Even if you don’t interact or 
post, your choices can be used to make inferences. Those may be 
good inferences or bad ones, but since this is a threats book, we’re 
going to focus on Luke Skywalker’s active participation in the 
Rebellion and his willingness to talk about his desire to join the rebel-
lion and fight the Empire. Additionally, his social circle includes a 
suspected radical he calls “Old Ben,” a fugitive religious fanatic for-
merly known as Obi-Wan Kenobi. (I’m drawing here on the insight of 
a blogger writing under the name “Comfortably Smug” (Smug, 2015).)
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Data Linkages
Data gets linked in a wide variety of ways. For example, from a street 
address, I can look up a list of who lives at that location. The address 
can be used to infer race, income, and other demographic factors. I 
can infer relationships between the residents based on name and age. 
I might be wrong, but I am unlikely to be penalized for being wrong, 
unless I’m doing so in a country with privacy laws that have been 
updated this century. The stream of interesting things that might be 
inferred can seem never ending.

You can make decisions about what is exposed and what is not. For 
example, Twitter exposes usernames but not phone numbers. But 
anyone with a Twitter account can search for users by phone number 
and link them with people whose phone numbers they have. If the 
API for this function allows you to upload a list of contacts, then it 
also allows you to search by phone number. If you upload a lot of 
contacts, you can create a list of “cell phone to Twitter handle” map-
pings. For people who keep their cell number private, this informa-
tion disclosure would be a privacy breach.

Side Effects and Covert Channels

Processing information requires energy. Monitoring the energy con-
sumed or emitted by a computer or its components is a never-ending 
source of exciting information disclosures. These range from learning 
about the exponents of public keys to tracking phones through bat-
tery levels after someone clears their cookies. (Each 1 bit in the expo-
nent requires computation, but the zero bits do not, so having more 1 
bits consumes more energy.) You can monitor energy use directly, by 
plugging the computer into a device designed to monitor power usage 
(with either your own or a smart meter that samples at thousands of 
samples per second) or just by asking it, “Hey, web browser, how 
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much battery do you have left? I’d like all the significant figures, 
please” (Fleishman, 2016).

Technology also emits energy in other forms, frequently heat and 
sound. Monitors are designed to emit information in the visual spec-
trum, and the guy next to me on the plane keeps glancing at what I’m 
writing. But the attack works from farther away. Monitors draw and 
refresh pixels sequentially, and so each line displayed can be recon-
structed with a photovoltaic cell looking through a telescope. 
Monitors also emit radiation outside the visual spectrum, and intelli-
gence agencies care a lot about this, which implies that they take 
advantage of it. Hobbyists and academics have built systems to recon-
struct displays from hundreds of meters away. As attacks always get 
better, the ability to reconstruct the contents of a display is probably 
commercially available. Monitors probably also emit sound in inter-
esting ways, but I am not aware of anyone who’s reconstructed it. The 
CPU and its enclosure also emit light and sound. The sound has been 
used to reconstruct cryptographic keys. These attacks have been 
shown to work both in labs and in noisy environments like data centers.

Our computers are getting much smaller, and designers are includ-
ing sensors including compasses, location, gyroscopes, microphones 
and cameras, and radios including (in rough order of increasing 
transmission power) near-field, Bluetooth, Wi-Fi, and the cellular 
protocols. Sensors are going to get much better and much more per-
vasive over the next couple of years. In 2019, there was a case of a 
Japanese pop star who was kidnapped. The kidnapper was able to 
read a bus sign that was reflected in her eye from a news photo, use 
this information to determine where she lived, and then kidnap her. 
(Fortunately, she was not physically harmed.) Sensors are far better 
than we expect.

These side effects are all accidental. When they are intentionally 
used to communicate, they are called covert channels. A covert chan-
nel is a connection between two parties that’s designed to be unno-
ticed and even unnoticeable. The first public analysis of this possibility 
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was in nuclear test treaty verification. The United States and Soviet 
Union agreed to the placement of very sensitive instruments in their 
respective territory, with the ability to send messages back home. The 
problem arose, how to ensure that the messages that the sensors sent 
were only about nuclear tests?3 Obviously, that creates a requirement 
that the message be in cleartext, but then it can be spoofed or tam-
pered with.

Digital signatures are perfect for this! To ensure that each signature 
is unique, we usually prepend a random initialization vector (IV). 
Imagine a sensor that creates signed messages, where each message is 
a message, s, and s=rsa

k
 (IV, message, padding). If IV, the initialization 

vector, is supposed to be random, then how do you demonstrate that 
it’s not really a secret encrypted message? You can’t accept an IV from 
the outside without serious security problems, and we certainly don’t 
want the Russians sending encrypted messages to their sensors, hid-
den in IVs or signatures! The covert channel problem is unsolved, 
and it seems unlikely to be solvable. (Publishing source code doesn’t 
guarantee that that code is what’s in an executable, even if you com-
pile it yourself. Unix creator Ken Thompson explains why in his 
Turing Award lecture [1984].)

You Call It a Cable, I Call It an Antenna
Robert Morris (Senior) said that, over and over. His point was that at 
the time, many devices used cables to send data from one point to 
another, and all those cables (and their connectors) acted as antennas. 
Today, we’ve replaced many cables with transmitters, moving from 
implicit side effects of wires to explicit Bluetooth, and we rarely stop 
to consider all the ways this goes wrong.

Not only is the signal broadcast, but as your body moves through 
the fields, you divert them by enough to produce measurable effects; 

3I suspect that this problem only really arose because it was an argument against the 

treaty, but that’s beside the point.
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both your gestures and your typing can be measured from the data 
coming off the antennae and transmitters in the environment.

All Will Be Revealed in “Do” Time
The time a computation takes is often data dependent. Skilled poker 
players will often count seconds before making a move, because bet-
ting or folding quickly can leak information.

Several classic technology examples include password checking. 
One early example was a 1960s algorithm that performed a character-
by-character comparison of entered passwords and stored passwords, 
and it returned a failure message when the passwords didn’t match, 
exposing the number of correctly matched characters. A variant of 
this problem is mentioned in Morris and Thompson’s classic paper, 
“Password Security: A Case History” (1979). They said “The encryp-
tion was done only if the username was valid, because otherwise there 
was no encrypted password to compare with the supplied password. 
The result was that the response was delayed by about one-half sec-
ond if the name was valid but was immediate if invalid. The bad guy 
could find out whether a particular username was valid.” Another 
classic example is when the time that it takes to exponentiate is “obvi-
ously” dependent on the data. You can optimize out the time it takes 
to shift bits when the exponent has a zero-bit, and thus, the time for 
exponentiation is dependent on the Hamming weight of the expo-
nent. (The “Hamming weight” is the count of 1 bits in a string. As 
mentioned in the “Side Effects and Covert Channels” section, each 1 
bit in the exponent requires computation [Kocher, 1996].) Timing 
attacks over a network have more jitter than when the measurements 
are local. On a LAN, that jitter can be as low as nanoseconds and 
“over the Internet” on the order of microseconds (Crosby 2009, 
Hale, 2009).

Thus, processing of sensitive data should return after a set time, 
and then you’re safe, right? Not so fast. If an attacker can run code on 
the same processor as yours, perhaps in a cloud data center, then they 
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can count cycles available to them and thus infer how many you’re 
using (processors, not virtual machines [Sinan, 2015]). Similarly, 
attacks like Spectre exploit branch prediction to learn about vari-
ous caches.

Information Disclosure Mechanisms
The simplest way to get information is to look for it. Information is 
often broadcast. It’s put on “obscure” fileshares or websites (and then 
browsers tell Google about this exciting new URL). You can search for 
“Company Confidential Information” in many places, not just Google.

If the information isn’t broadcast, you might have to ask for it, 
either directly or indirectly. A direct request is of the form open (file), 
select * from SSNs, or GET /rest/API/customer/fullinfo/. Given the 
difficulty in setting access control rules, this often works. Indirect 
requests include asking another program to make a request on your 
behalf or exploiting a vulnerability or misconfiguration that allows 
reading storage that shouldn’t be read.

Developers often engage in information disclosure by storing 
secrets in source code or binaries. The source code is checked into 
GitHub; the binary is not treated as a secret. It would be better to ask 
the OS to store the secret for you.

If the information an attacker wants to see is protected, they may 
be able to guess at it and check their guesses. For example, if you 
think my password is “darthvader,” you can try to log in to my account 
using it. You might also try “Darthvader” and “DarthVader,” and if 
you’re typing each, you might stop there. It’s easy to write code to 
permute these guesses, and we call that brute force.

There’s a close relationship between the direct mechanism of “just 
look” and the indirect mechanism of guessing. That relationship leads 
to this chapter having many callouts to Chapter  7. As you might 
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guess, predictability as a threat can lead to more than just information 
disclosure, which is why it gets its own chapter.

Information Disclosure 
with Specific Scenarios
Smart devices are smart because they gather information from the 
physical world, and those sensors are often surprisingly good. They 
also often have radios, and those radios have real implications for 
privacy that we’ve barely begun to grapple with—and privacy more 
generally strongly intertwines with information disclosure. Sending 
information to the cloud always entails disclosing it, except when we 
use encryption. Machine learning (ML) is threatened by information 
disclosure from training data and data sources through the models 
themselves and to their outcomes. Blockchains are tools for consen-
sus, and the information contained within them cannot be private, 
but it can be hard to interpret. We’ll cover each of these in this section.

Internet of Things

It isn’t just nannycams that have hidden cameras; it’s all sorts of 
things. They also have microphones, pressure sensors, and barometers.

These sensors in things are far better than we expect. Phone cam-
eras can resolve the text on folded papers from dozens of feet away. 
Microphones pick up ultrasonic signals in stores or TV ads. Gyroscopes 
reveal where on the screen someone tapped, thus revealing their pass-
words (Schmitt, 2020). GPS data from exercise trackers reveals the 
location of special forces bases and running paths. The sensors make 
inferences: what you typed, what you were watching, where you were, 
sometimes despite explicit preference settings. (It is unclear to me 
why it is not considered deceptive to collect location information 
when an app has been told it has been denied access to location data, 
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or when the FTC or European Data Commissioners will prosecute 
such a case.) The inferences and raw data are transmitted to places we 
don’t expect.

There is an argument that such data is governed by consent in 
EULAs or terms of service. However, that argument doesn’t credibly 
address devices used in public, or places open to the public like stores. 
It also doesn’t address devices deployed in other people’s homes, 
devices in hotels, or even smart locks installed in apartment build-
ings, giving landlords insight into when you enter or leave in a way 
that mechanical keys did not. This issue is not limited to these devices. 
Most jobs these days, even low-paying ones, require you to have a 
smart phone and to run employer-selected apps. You have to use 
devices and software they select, and the legalese gives the creators 
unlimited ability to change those terms in the future.

The intrusive nature of these systems came into ironic focus when 
Examplify blocked future lawyers from taking the 2022 bar exam. 
Examplify is software marketed to prevent cheating. It attempts to 
ensure it’s not running in a virtual machine, and that makes it incom-
patible with Windows on Intel’s latest CPUs (Roth, 2022).

As an engineer, it is important to understand the impacts of the 
software we build and to design so that we can live in the world we build.

Sometimes devices have more sensors than we think. Microphones 
are now so cheap that manufacturers will include them against poten-
tial future use cases (Fussell, 2019). Apple phones have included 
barometers since the iPhone 6.

Mobile Phones

In addition to the excellent sensors already discussed, mobile phones 
have a set of radios that can be triangulated to an accuracy of as little 
as a few feet. Technologies such as Ultrawideband hope to improve 
that to a few centimeters.

Combining location data and movement data with compass data 
allows marketers to assess who in a crowd is talking to whom. The 
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only way to limit that tracking is to put the phone into airplane mode 
(which may no longer turn off the Wi-Fi).

These tracking technologies are creating an increasingly detailed 
record of where roughly every person has been, and the data is being 
kept for years. In a brief to the Supreme Court that I was able to con-
tribute to, we described how “cell site location information is becom-
ing increasingly detailed, contemporaneous and precise,” how it is 
collected without the knowledge or consent of people, how it “reveals 
an extraordinarily detailed picture of an individual’s life, every bit as 
revealing as the content of their communications” (Soltani, 2017). I 
urge technologists to not accidentally create such surveillance tech-
nologies. We have very little idea of what they will do to our world 
and very little control over how the data is stored and used.

Cloud

If “the cloud is just someone else’s computer,” then your data, and 
your code, your cryptographic secrets, in the cloud, are in someone 
else’s computer. That’s information disclosure within the cloud. 
There’s also information disclosure to cloud services that are inte-
grated into your systems and the code that they run. URLs are subject 
to two information disclosure threats. First, they can contain confi-
dential information, and second, they can point to such information. 
Each of these aspects of the cloud is covered in this section.

One other aspect of cloud and information disclosure is many 
backup systems send data to the cloud. Whether or not your backup 
system does, backups are often like the cloud in that they’re offsite 
and outside of your control. I’m hopeful that at this point you can see 
the tampering and information disclosure threats to that, and you’ll 
learn about denial-of-service threats in Chapter 5, “Denial of Service 
and Availability.”
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Information Disclosure Within a Cloud Platform
The word platform can be used either in its broad English sense or in 
the sense of platform as a service (PaaS). Using the term broadly, the 
owner of the platform, their employees, their attackers, and their 
other customers can all peek (or try to peek) at your data or metadata 
more easily than when the data is on your computer. There are 
defenses against this including contracts, particular types of cryptog-
raphy such as homomorphic encryption, or technical features such as 
Intel’s Software Guard Extensions, which provides an encrypted area 
of memory and protection for that memory down to very low levels of 
hardware. There are also systems that are labeled “Bring Your Own 
Key.” The word “bring” is, well, crucial. Most of these systems dis-
close the key to the cloud provider, who promises to take substantial 
steps to control it.

One of the ways in which someone else who can run arbitrary code 
in the cloud can peek at your data is by using side channel attacks of 
various forms. Most notable recently are attacks such as SPECTRE 
and Rowhammer. Each of these attacks will expose the contents of 
memory, and the details are fascinating, especially to people who care 
about hardware architecture and optimization. There are other side 
channels, which include accessing a built-in microphone, which, 
being more effective than you might expect, collects the sound that 
the CPU makes as it executes different instructions.

Information Disclosure to or by Cloud Systems
Many people think of cloud as infrastructure as a service (IaaS) or 
software as a service (SaaS). Not precisely within that definition but 
also worth discussing are the various and sundry web toolkits, such 
as analysis providers, which, by design, are information disclosure to 
the analysis system. These often collect a great deal of detail, includ-
ing full URLs, which might contain secrets.
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More generally, information is disclosed by design far more broadly 
than analytics libraries: it’s available to all the code you include. In 
fact, that’s not all that’s available, but information disclosure can be a 
very subtle attack. If the library tampers with your data, website, or 
app, you’re more likely to notice.

These attacks by included code are not limited to the Web, of 
course. A great deal of modern development involves pulling in arbi-
trary libraries, all of which can steal your data.

Also in the world of modern development are cloud-driven devel-
opment tools. Many of these, intentionally or accidentally, get infor-
mation that you want kept secret. GitHub offers private repos, and it 
seems reasonable to think that at least some of those are accidentally 
more open than their owners intend.

URLs
There are two information disclosure threats associated with URLs. 
The first is direct information disclosure when someone shares a link 
or when a link is processed by a proxy, cache, or analytics software. 
Information in such a link (&username=darth&password=youweremy 
friend) is directly exposed. Anyone with the URL can simply click it. 
If the password is not replaced, they can attempt to log in as darth on 
any site they want. Replacing all potentially sensitive data with tokens 
reduces both risks.

The second threat is that the URL is used as a kind of “capability,” 
replacing access control checks with an assumption that anyone with 
the URL is authorized to get to the data it refers to.

AI/ML

You may want to keep one or more of your training data, data sources, 
your models, or their analysis confidential.

An attacker who can read your training data may be able to repro-
duce your AI or find flaws that you’re not aware of. The trained model 
is much smaller and may be much more valuable. It is also subject to 
disclosure by attackers.
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All deep neural networks inevitably memorize information, and 
the better they’re optimized, the more they need to memorize. So 
unfortunately, if you put your ML learning system in a haven with 
highly private data and then take the model out, you’re taking some 
of that highly private data with the model (Feldman, 2021).

In 2019, the OpenAI institute created a very competent text gen-
eration tool (GPT-3). They worried that giving away the full model 
could lead to its abuse and released it in stages. They followed the 
same pattern for their image generator (DALL-E).

Blockchain

Information on a blockchain is public, by design, as is metadata about 
transactions. Putting a hash of non-public information allows you to 
use the non-repudiation features without revealing the information 
that was hashed. Unless the system has been specifically designed to 
prevent it, transactions are linkable: you can say that the same wallet 
executed transactions 1234 and 2345 because of metadata about the 
wallet. Because transactions are linkable, if any of them are traceable 
(namely, someone can connect them to a person), then all those trans-
actions are traceable. As such, Obi-Wan Kenobi probably should get a 
new wallet when he ensconces on Tatooine and disappears.

Privacy

Tracking and using disclosed information are at the heart of many 
privacy issues. The information may be disclosed by the subject or by 
others. It may be inferred. Many people feel uncomfortable as the 
subject of scrutiny or judgment; some privacy scholars argue that 
public policy should focus on harm reduction. Many large security 
breaches are disclosed because of laws requiring that when a data 
custodian loses track of personal data they’ve collected. A full treat-
ment of privacy is larger than the scope of this book.
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Defenses
Defenses against information disclosure depend on if you can rely on 
an operating system to help, if you’re designing your own program, or 
if you’re communicating over a network. If you can leverage an oper-
ating system to protect data at rest, permissions are a useful place to 
start. Even if you can, you may want to use cryptography, and you’ll 
need to do so while communicating. When writing your software, 
you’ll need to consider metadata and the data it leaks.

Those new to security often want to use obscurity as a defense, and 
that’s fine, if what’s obscure is also protected. By way of example, 
major search engines will respect a website’s /robots.txt file telling 
them what not to index. Curious attackers also respect this file, but as 
a great roadmap to the good stuff. Predictability also comes into play. 
There’s been at least one prosecution of someone who predicted the 
URL for a company’s earnings report and was able to access it early. 
The details of the legal case don’t matter for our purposes—what mat-
ters is the defender relied on obscurity, and it didn’t work. It’s much 
better to rely on something stronger a topic we revisit in Chapter 7.

The rest of this section explores defenses related to operating sys-
tems, processes, and cryptography.

Operating System Defenses

One of the key jobs of an operating system is to intermediate between 
processes and control who can access what resource. Permissions are 
a primary tool for that. The operating system also produces, tracks, 
and manages metadata, and you may need to adjust your behavior or 
code to control what metadata is available to whom. Modern operat-
ing systems also include search functionality that you may need to 
consider if you’re creating such a service, or more likely, if metadata is 
a concern.
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Permissions (and ACLs)
The way permissions are handled depends on what you’re working 
with. Unix and Windows have two fairly different access control 
models. One is very simple, the other quite complex, and with the 
benefit of hindsight, neither is “just right.”

The Unix mechanism is that of files having a set of independent 
permissions (read, write, and execute) that can be set for the user, 
group, or “other,” meaning all users of that system. Permissions are 
stored in 4 octets, with the 4th being used for special permissions: 
setuid, setgid, and a “sticky bit.” When the sticky bit is set on a direc-
tory, deletion is restricted; thus shared directories can be somewhat 
protected against a user deleting (and possibly creating replacements 
for) another’s files.

The Windows mechanism is an access control list (ACL). There are 
multiple entries in a list, and they’re evaluated sequentially. Darth 
Vader is granted Read and Execute access to all objects. Princess Leia 
denies Read access to all members of the Imperial group. Which rule 
takes precedence? I honestly don’t remember, and if I have to consult 
an expert to understand, most developers and users will get it right 
only by luck (Microsoft, 2021).

Setting permissions or ACLs gets difficult quickly. Assigning rights 
to some Unix groups is not particularly expressive, and the more 
expressive Windows model is so confusing that a colleague got their 
PhD researching how it breaks (Reeder, 2008). Respected security 
expert Dan Geer has made a strong case that openness, including 
accepting failures, is cheaper than carefully configuring permissions 
(Udell, 2004). Lastly, when troubleshooting, it’s easy to set permis-
sions to be very permissive, and noticing that permissions are set 
wide open requires diligence. Once “it works for me,” who goes to 
look to see who else can get access to data?

The design of access control systems is a special subdiscipline of 
computer security. It gets complex very quickly as you deal with 
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prioritization of rules and how to deal with groups. For example, 
what to do when an account is in groups with contradictory rules? 
This design challenge is well outside what every engineer needs to 
know—just know that it’s not something to undertake lightly.

There are two additional design challenges when the permissions 
are for an online service: compatibility and usability. If I set my per-
missions today to enable read access by the “editors” group, what 
happens to those permissions when the service replaces groups with 
teams or separates “comments” as a specific thing that can be allowed 
or denied? Should editors have that new comment capability? 
Similarly, a service like Facebook that regularly adds permissions will 
eventually end up with a complex sprawl. They’ll inevitably encoun-
ter these sorts of issues when they refactor, leading to either more 
usability or frustrated people, or both. (Google has a suggested search 
“why do my privacy settings on Facebook keep changing” [Cassidy, 
2022; Coldewey, 2021].) You probably want to avoid emulating 
Facebook for this detail.

Metadata Management
Metadata including directory names and filenames can be protected 
by a level of folders. Create a directory called private that contains 
the Junelayoffs directory, and make sure that only authorized par-
ties can read the contents of private and then apply this recursively. 
This works for local computers, cloud storage sites such as Dropbox, 
or websites that expose a directory structure.

If you provide a search service or indexer, then you need to ensure 
that the data it returns is what’s authorized for the searcher to see. 
Returning the file “Order 66” when someone searches for “Jedi” is 
revealing even without being able to see the contents of the file.4

Timing can provide meta-metadata about what’s in the index. Also, 
authorization can be tricky: if today Alice has set permissions on her 

4Order 66 is the secret order that declared Jedi are traitors subject to summary execution.
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bookmarks file to allow Bob to read it but tomorrow revokes those 
permissions, the indexer should stop revealing the contents of that 
file to Bob and no longer reveal that the contents match a given search 
string. But what if the indexer read in the file, checked the latest per-
missions, and then Alice changes them? Traversing every file to check 
its permissions will slow down a search function; traversing a subset 
might reveal information about the subset.

If the “confused deputy” way of thinking works for you, your 
search services can be easily confused. If not, it may be a good exam-
ple that helps you grasp the concept.

As filesystems become more complex and add journaling features, 
protecting the metadata becomes practically impossible. Allegedly, 
the complexities of protecting files on NTFS (and WinFS) were part 
of the justification for Microsoft creating BitLocker as a full disk 
encryption product. (I’m repeating this claim not because I have evi-
dence, but because I find it plausible.)

Defending Your Process

For code you create, it’s important to consider what information it 
reveals. Your code will need to emit logs and error messages, and 
there may be secrets it needs to manage.

Well-Designed Logs and Error Handling
Secrets can often end up in error messages and logs. That’s better than 
showing them to the end user, and when you put secrets in logs, you 
must consider who can see what logs and who’s using what log analy-
sis tool. In addition to secrets, personal data often ends up in logs, 
and thus those logs need protection under privacy laws. That per-
sonal data can be in unexpected places, like a machine named “Tim 
Cook’s iPhone” or “Tim Cook’s Wi-Fi.”

To avoid putting sensitive data in too many places, there’s a pattern 
called tokenization: replacing personal or sensitive data with a token. 
For example, you can display a GUID or other long string to the user 
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and then include that GUID in the canonical log message so your sup-
port staff can find it. That’s a lookup key approach to tokenization. 
You can also take an encryption approach. If you encrypt data, then 
information disclosure of the key can retroactively expose the data to 
anyone who has a copy of the logs. Additionally, if the information 
being encrypted is small (say, an SSN), then an attacker with a list of 
SSNs can encrypt them all and see if any match.

This sort of indirection is a time-honored technique. Spies use 
dead drops where they leave packages so they can avoid being seen 
with a handler. Mafia bosses have underlings talk to the hit man. If 
the metadata of concern is who’s talking to whom, then publishing 
(or broadcasting) messages may be a valuable defense. Again, spies 
will broadcast messages to each other to avoid having to be in the 
same place. In the days of analog transmission, the messages were 
taped and played back at high speed so direction-finding had less 
time to work.

Careful Secrets Management
The Empire is careful with the plans for the Death Star. They’re secret, 
so they’re not scattered around or stored in many places. You need to 
be careful with your secrets, and you need to be careful with crypto-
graphic keys: secrets that protect other secrets.

Secrets  Secrets include but are not limited to cryptographic keys. 
Highly sensitive data like Social Security numbers, medical records, 
or intimate partners should also be treated like secrets.

Secrets need to be handled carefully. That includes identifying 
them, using them for defined purposes, storing them properly, and 
overwriting them when they are no longer needed so they can’t be 
revealed by accident.

Modern systems have APIs to store and retrieve secrets, and mod-
ern cloud systems have ways for newly running processes to get 
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secrets from a service so that the secrets are not checked into version 
control or compiled into machine images.

It’s generally a good idea to get rid of secrets you no longer need, 
and you’ll be unsurprised to learn that it’s hard to reliably delete a 
secret. Compilers and runtimes will often optimize away code 
like this:

for char in array[0..sizeof(secret)] 
{ array[char]=0 ;
char++ ;} 
free (array);

After all, who cares about the value of free memory? Not compiler 
designers. They’re all about the optimizations. Your crypto library 
probably has a routine that is designed to carefully free memory, and 
the authors will worry about keeping that current.

Cryptographic Keys  Cryptographic keys come under special 
attack because they are the keys to the kingdom, or at least whatever 
they protect. I’ll take as a given that the entire system is known to the 
attacker, and the only unknown would be the cryptographic key. (If 
you question that assumption, see Chapter 7.) In some, very unusual 
circumstances, the attacker has to be online to test keys, in which case 
exponential backoff and attack detection can be helpful.

Cryptography

Cryptography is the very best way to protect confidentiality. With 
modern crypto, access to plaintext is conditioned on having both the 
ciphertext and the key. Ciphertext on disk? Safe. Ciphertext on the 
wire? Safe. Ciphertext installed as art at CIA headquarters? Safe. 
(Really! The Kryptos sculpture has stood undeciphered for more than 
30 years.)
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Ciphertext is the result of an encryption function, e, being fed a 
key and a plaintext message, m. This is usually written c = e

k
(p) 

because cryptographers are mathematicians, not programmers, and I 
have just made a thousand enemies. When the encryption function is 
symmetric, then there’s a function d (decrypt), which takes the 
ciphertext, the same key k, and produces the message: p = d

k
(c). 

There are other cryptographic systems where the recipients have dif-
ferent keys, which is very cool mathematically and incredibly useful 
when you have more than a few participants, because each participant 
can have a small set of keys and communicate so that no other partici-
pant can eavesdrop. (If we have 100 people using the symmetric sys-
tem and each has k, each can decrypt one another’s messages.)

Many times, we analyze a system pretending that the goal of the 
attacker is to determine k. (That’s not usually the attacker’s goal, but 
it’s an excellent stepping stone to real goals.) Also, for this section, 
let’s focus our attacks on the key itself, rather than how Alice and Bob 
agree on it. See Chapter 7 for more on guessing keys.

It is, of course, important to use a modern cipher designed and 
analyzed by experts, with a well-protected random key, and probably 
a random initialization vector. Initialization vectors are important 
because otherwise similarities in plaintext can show through. In 
almost all cases, that means AES-256 using the right modes.

There are some remarkably interesting use cases that cryptographic 
tools can enable. There are schemes called forward secrecy that allow 
you to encrypt data so that even if someone steals the long term key 
you’re using, they can’t decrypt the messages. Some optimists are so 
optimistic that they call it perfect forward secrecy. There are other 
schemes like secret sharing that allow you to split a secret into m 
shares, of which you need any n to recover the secret. For example, 3 
out of 5. In that case, n would be 3, m would be 5, and these are often 
called n-of-m.

There are attacks where what you know is the ciphertext and you 
want to recover the key. There are also important attacks where what 
you know is some plaintext and you want to know what ciphertext it 
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will produce. There are many variants of chosen plaintext attacks. If 
you find yourself dealing with terms like known plaintext and chosen 
plaintext, you may well need a book on cryptography.

You also need a book on cryptography if you ever try to write cryp-
tographic code yourself or use a cryptographic function in a funky or 
innovative way. The code is unforgiving, the implementation com-
plexities are high, and there’s no reason to not let someone else do the 
hard work.

Data at Rest
You can encrypt either individual files or entire disks, or both. 
Similarly, you can encrypt a database, columns, or cells. In each case, 
you need to manage the keys.

It can be useful to encrypt a volume with a key stored outside the 
disk so that on disposal, the key and the ciphertext are separated. 
There are lots of hard drives that will encrypt the data with a key 
stored inside the drive. This design allows drive owners to reliably 
block access to the filesystem, should they remember to do so when 
disposing of the disk. Modern operating systems also now come with 
full disk encryption.

Neither design protects against someone with logical access to the 
system, and the question of protecting against an attacker with physi-
cal access gets complex quickly. For example, if your Airbnb includes 
a guest computer, then a guest has some operating system access, and 
full disk encryption won’t defend against that guest, or others who 
have the ability to run code on the computer. Many devices store 
secrets in a way that can easily be accessed in this scenario. Effective 
protection requires that the operating system have support for disk 
crypto with the keys stored securely. (To be precise, there may be 
some other component that manages the disk crypto, other than the 
hard drive.)

There are security models for encrypted database security that pro-
tect against an attacker who can execute queries, and those who can 
snapshot the encrypted data. There are also database security models 
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where the data is supposed to be private, but queries against it are 
allowed. This is useful, for example, with census data. Differential 
privacy is an approach that measures the data that queries return and 
limits it in useful ways. Differential privacy is moving from academia 
to deployment at companies such as Apple and Uber.

Data in Motion
Data in motion, between systems, is only as safe as those wires or 
radio waves that carry it. Encrypting it protects you from attackers 
who can compromise those interconnections, but not from those who 
can compromise the cryptosystem.

Engineers tend to have a few mental models of how data gets from 
one system to another, and none are labeled “data in motion.” So to 
be explicit, those mental models are often things like RPC, calling an 
API, or HTTP. Another mental model is that of network traffic, where 
we know that data is flowing from one system or cloud provider to 
another. For many of these, we now reflexively slap TLS onto those 
flows and assume it’s good. And TLS is much better than not TLS. 
However, TLS relies on a system of “certificate authorities.” You met 
certificate authorities (CAs) in Chapter 1.

Let’s revisit those “authorities.” They’re the ones issuing identifica-
tion, and in the digital world, a great many companies and a few gov-
ernments issue them. My Mac has about 130 authorities that it will 
trust, including, as I look through the list, FNMT-RCM. Who are 
they? I think they’re part of the Spanish government. Why does my 
Mac trust them? This is a tricky trade-off of usability. Without these 
roots of trust, how could my computer make a decision? Most of us, 
myself included, generally trust the folks who make our computers to 
make this call, and we accept the risk that these 130 authorities have 
a lot of power.

Let’s assume that the Sith operate a CA, and my Mac trusts it. The 
threat is that SithCA will issue a certificate for threatsbook.com and 
install it on their fake version of my website. But my website usually 
gets its certificate from LetsEncrypt.

http://threatsbook.com
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Smart folks at Google built a system to observe how they’re using 
that power. It’s called Certificate Transparency, and a lot of software, 
such as web browsers, report the certificates they see to the Certificate 
Transparency (CT) system, and CT points out anomalies. That acts as 
a deterrent to misuse of power.

In the previous paragraph, the words “a lot of software” are doing 
a lot of work. If your custom software trusts 130 certificate authori-
ties, does it also participate in CT? You can configure either your 
computer or a particular program to trust a smaller set of CAs, partici-
pate in CT, or both. You can also “pin” your system to a particular CA. 
This turns out to be operationally risky—if you make a mistake in 
how you describe that pinning or need to switch CAs, you can deny 
service to your own systems.

Limits of Encryption
Managing keys is hard. It requires discipline and processes, and code 
is excellent at providing those. Managing keys is also easier than pro-
tecting everything that the keys protect. As an engineer, you must 
consider the life cycle of a key from creation to distribution to 
destruction.

If I have a database of math grades (A–F), each stored as an 
encrypted block next to the student’s name, I can see that there are 
only five ciphertext values. I can guess that Albert Einstein got an A 
and probably also see which ciphertext means a C with some elemen-
tary statistics. Switching the grades is then trivial, and so integrity and 
binding are also important. I might encrypt ciphertext = e

k
(IV, name, 

grade). Using nonces, times, and initialization vectors is a great start, 
as is using the right mode for encryption.

Cryptography protects the confidentiality of the communication, 
but the ciphertext itself might reveal things: for example, the number 
of students in the class. This doesn’t seem super-interesting, but the 
size of ciphertext coming off a web server can also reveal what page 
someone is visiting (most obviously because of images of various 
sizes, but certainly not limited to that). More, simply visiting a 
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website can be interpreted by others. You can “pad” the data so it’s a 
standard size.

Perhaps you’re visiting Planned Parenthood’s website to gather 
information about healthcare choices for you or a friend, or you might 
be looking for things you can quote for political reasons. The art of 
analyzing encrypted communications to learn things is called traffic 
analysis, and it’s remarkably powerful. There are well-studied crypto-
graphic defenses against traffic analysis beyond the scope of this 
book. Those interested should study the design of Tor for protecting 
low-latency data, and Mixmaster for when higher latency is acceptable.

Steganography is the art of secret writing, and there are crypto-
graphic techniques for hiding the existence of either communication 
in network traffic or content hidden in other files.

Information Disclosures in Star Wars

I’ve often said Star Wars is the story of information disclo-
sure, and its consequences. To emphasize that, let me point 
out how often it’s an important plot device. The computer-
ized information disclosures in Star Wars include the 
following:

•	 A New Hope:
•	 The Death Star plans stolen on tape.
•	 Floor plans and prisoner locations when R2-D2 plugs 

into the Death Star.
•	 The Empire Strikes Back:

•	 None spring to mind!
•	 Return of the Jedi:

•	 The Bothan discovery of the location of the new Death 
Star appears to be information disclosure, but…it’s a trap!

There is other information that is kept confidential: Leia 
withholds the location of the Rebel base, and Obi-Wan hides 
Darth Vader’s true nature, but these are not computerized. 
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Conclusion
Information can be disclosed to just one person or the whole galaxy; 
it can be small or voluminous. In the context of a galactic empire, 
Darth Vader’s famous words “No, I am your father!” is a small piece of 
information, disclosed to just one person, but with tremendous 
consequences.

Information can be observed at rest or in motion. The data in 
motion reveals that the endpoints communicate, even if the contents 
of those communications are protected. Information can be disclosed 
digitally or as side effects of computation. Disclosing information 
about human relationships can have tremendous effects, even 
beyond family.

The mechanisms for information disclosure are relatively straight-
forward, but guessing—and checking those guesses—can be surpris-
ingly effective. Sensors have surprising and increasing power in both 
smart devices and phones. The cloud has information disclosure 
threats that range from incredibly obvious to very subtle or surpris-
ing. These can manifest or be seen as either security or privacy issues.

Defenses can sometimes be provided by an operating system, and 
sometimes they must be part of your code, or operational processes. 
Especially with logs, those operational processes are easiest when 
supported by good design. Similarly, good design makes effective use 
of a breadth of cryptographic defenses.

The Death Star plans are important not in and of themselves, but 
because of the risk they’ll be used to plan an attack. Much data has 
this property: we keep it confidential because it’s the best way of pre-
venting its misuse, or even preserving an advantage we have. We don’t 
need to fully predict or evaluate the chain of events that follow its 
disclosure to know that we want to keep things confidential.

R2 playing the hologram is authorized (by R2) each time. In 
The Empire Strikes Back, Luke feels Han Solo being tortured, 
but that’s by design.
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Resources are always finite and sometimes constrained. Denial-of-
service attacks threaten availability by consuming some resource, 

slowing, crashing, or freezing things. Freezing Han Solo in carbonite 
was easy—heck, Luke Skywalker was nearly frozen just because he 
went outside on the ice planet Hoth. It’s freezing in a way that allows 
recovery that requires cleverness. As an aside, Han was supposedly 
frozen to test the system, and it’s not clear why Darth Vader doesn’t 
demand that he be fully thawed out. The goal of full-cycle testing is 
especially important for denial of service.

Brute force is the easiest form of denial-of-service attacks. But there 
are plenty of clever denial-of-service attacks that use knowledge of 
(or assumptions about) what’s expensive for a specific target. Denial 
of service is often focused on an organization, but not always. These 
attacks are used to disconnect opponents from games, to “split” IRC 
networks so someone can be given operator privileges), and for many 
other reasons.

Denial of service is often abbreviated DoS or DOS. (The latter is 
less confusing now that no one uses Microsoft’s Disk Operating 
System.) These attacks often come from many small systems, leading 
to the acronym DDoS, for distributed denial of service.

Denial of Service 
and Availability
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Like an Ewok, each attacker can be smaller and weaker than  
its target, but with sheer numbers can overwhelm a well-defended 
target. This property is shared with many distributed denial-of-
service attacks.

These distributed threats, like Ewoks, cascade in surprising ways. 
One of the most famous DDoS attacks was executed by the Mirai bot-
net against a DNS provider, Dyn. It was widely noticed because Dyn 
supported a lot of sites that people needed for work, reputedly includ-
ing Office 365, Amazon, and Slack. The people who used Slack 
included a great many IT teams, some of whom had never heard of 
Dyn but were unable to collaborate to understand and remediate the 
problem. As Turing Award winner Leslie Lamport quipped long ago, 
“A distributed system is one in which the failure of a computer you 
didn’t even know existed can render your own computer unusable” 
(ACM, 2013). The Mirai attack was also notable because most of the 
machines in the botnet were IoT security cameras that had been com-
promised. Lastly, most of the cascade was an accident. The perpetra-
tors were looking for an advantage in Minecraft hosting, by damaging 
the reputation of a leading provider (Bours, 2017).

Resources Consumed by  
Denial-of-Service Threats
All denial of service depletes some resource to limit availability. 
Traditionally, when servers were plugged into a data center, these 
attacks targeted compute, storage, or network. More recently, they’ve 
been used against budgets and batteries.

Compute

R2-D2 is able to save our heroes from being squished in a garbage 
compactor because it’s computer-controlled. Maybe he crashes the 
process, maybe he sends it a new command. And maybe it’s just a 



Resources Consumed by Denial-of-Service Threats 133

movie, and so we don’t need the precise mechanism. Either way, caus-
ing a process (or a whole computer) to crash breaks availability. These 
attacks are important, and most new low-level network protocols 
have these vulnerabilities until they’re discovered, exploited, and 
patched. Examples have included teardrop, where faking a TCP SYN 
with the target’s IP address as both source and destination could cause 
an entire system to crash. But more often, we hear about attacks that 
slow a system, rather than crashing it.

The simplest way to exhaust a service is to ask it to do a lot of what 
it’s supposed to do. Do that enough and systems will get loaded. If a 
website will let you download videos in any size you want, asking for 
a video to be displayed in 2580 × 1480 will absorb compute cycles. 
(The QuadHD standard is 2560 × 1440.) Most websites will have a 
limited set of sizes and will cache results. Caching is a great resilience 
and performance strategy. It can be harder to apply defensively in 
features that search large datasets (especially when those queries can 
be made to invoke database joins).

The video coding example is one in which an attacker can ask you 
to do hard work without having done such themselves. They send a 
web request, you transcode video. The request is cheap, the response 
is expensive. TLS had this problem. A client shows up, and then the 
TCP handshake says, “Please do a cryptographic signature on this 
nonce.” Cryptographic signatures were expensive in the 1990s, and a 
high-end server might do a thousand per second if it did nothing else. 
Of course, as it did that work, it was adding milliseconds to every 
other response it was trying to send. More recently, optimizations in 
TLS have reduced these costs substantially. Cryptocurrency mining is 
designed to be expensive in terms of compute, so getting someone 
else to do it is delectable: the victim spends money, the attacker claims 
it. That is, the victim is paying for compute cycles at a cloud provider, 
and the attacker whisks away any cryptocurrency that emerges. From 
the attacker’s perspective, the worst case is they get nothing.

There are other ways to break a process, such as holding a mutex 
or other lock. Because these are designed to control what part of a 
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process can run, holding them holds the process from proceeding. 
Additionally, accidents teach us a lot about various failure modes, and 
many of them can be caused by an attacker. If you have an accidental 
issue, it’s worth asking what would have happened if an attacker had 
caused it and if variants might be possible. That can jolt you away 
from the “it was really unlikely” line of thinking.

Storage

Much like compute, storage attacks can be simple or complex, and 
they can apply to any form of storage, including tape, disk, RAM, or 
cache. At the simple end, an attacker uploads a lot of files. You’d be 
right to think that we cared more when disk was dollars per mega-
byte, and the attacks were somewhat easier then, but the issues haven’t 
gone away. If you provide storage and let people sign up for free 
accounts, someone who doesn’t like you can sign up for a lot of 

“Proof of Work Proves Not to Work” 
Proven Wrong

In the early 2000s, there were a set of defensive proposals 
called proof of work. The idea was that you couldn’t just walk 
up and ask for resources; you had to prove you’d done some 
work first. These schemes were going to solve spam and 
denial-of-service attacks.

A paper in 2004 was titled “Proof of Work Proves Not to 
Work,” and it pointed out the trouble with these schemes 
was that if you had other people’s computers, the proofs of 
work didn’t do much good. Bitcoin, based in proof of work, 
showed that proof of work can be a useful building block, 
when the proofs are sufficiently expensive.
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accounts, store files, and walk away. Walking away also works great 
with USB drives.

More complexly, there are storage expansion attacks, where com-
pressed files are designed to have surprising expansion. A feature of 
most compression algorithms is that they’ll say, “and then one billion 
bytes of 0x40.” That’s amazing compression! Close to 100 million to 
one! And it’s amazing decompression, too. Compressing files before 
they transit networks is increasingly common: Microsoft Office’s 2007 
file formats such as .docx and .xlsx are zipped XML. HTML is 
typically served compressed by modern servers. These implicit uses 
put decompression on more code execution paths, and so zip bombs 
will set off more reliably.

For most of the threats in this section, such as compute or electri-
cal power, an application’s limits are similar to the platform’s limits. 
However, programs often implement storage limits in fixed-size buff-
ers, queues, or lists. If an attacker can exploit your small storage lim-
its, they don’t need to overwhelm the platform’s overall capabilities.

Until the late 1990s, the Unix TCP stack had room for exactly 
five “half-open” connections. A TCP request is half-open be-
tween the receipt of a SYN and the receipt of a SYN-ACK, 
when the connection becomes fully open. That was enough 
until the public execution of a SYN flood attack. The first fix, 
expanding the buffer, ate kernel memory and wasn’t suffi-
cient. The nature of the TCP handshake exacerbated the issue, 
because a forged IP source address could include the TCP SYN 
request, and the server would be left hanging. The more per-
manent fix included adding a clever authentication step: TCP 
sequence numbers were computed with a hash of a secret 
and a counter, and so TCP SYN-ACK packets could be tested 

for plausibility without storing the half-open connections.
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If what you’re working on is a cloud service, your denial of service 
will be very different from that which impacts a small smart device, 
where storage is quite constrained. Some devices implement fixed-
sized buffers for things like “known devices.” I recently rented a car 
where I had to figure out how to disassociate the previous set of cell 
phones before I could Bluetooth my music in. Fortunately, the denial 
of service on my attention as I careened down the highway wasn’t too 
bad, because someone else was driving as I figured out the “entertain-
ing” entertainment system.

As an aside, some compression libraries seem to pass full paths to 
indicate where the data should be stored. Most recently, these were 
re-discovered under the name zipslip (Snyk, 2018). These are yet 
another example of a confused deputy, where the unzipper is working 
for the person who created the zip, not the person who wanted the 
zip unpacked.

Networks

There are threats where someone sends a lot of data, often from a lot 
of their devices, and others where they send a little data and someone 
amplifies it. IP networks have features that can be used as amplifiers, 
such as pinging the broadcast address. These are covered in the 
“Amplification” section later in this chapter. Of course, these attacks 
are not limited to IP; token ring fails if you fail to give up the token.

In an age of abundant IP bandwidth such as “fiber to the home,” 
we can forget that bandwidth is always constrained. Radio bandwidth 
is more constrained than communication over wires. In airplanes, 
where all the passengers share one radio, bandwidth is dramatically 
limited. Even local, lower-power radios have important constraints. 
As bandwidth use increases, so does contention. Ask anyone who’s 
debugged Wi-Fi in a dense apartment building. Zigbee, Wave, and 
other very low-power systems can also be overwhelmed. In one dem-
onstration, they were overwhelmed by (ahem) smart lightbulbs, 
which are a useful attack tool because their radios are plugged into a 
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power source. Even without saying anything useful, they can flood 
the local network or interfere with message delivery. This interference 
is easiest to imagine with radio broadcasts, but a MITM can also inter-
fere with delivery or alter messages in a way that causes them to fail 
integrity checks. That tampering can lead to denial of service as a 
side effect.

This current section of the chapter is named “Networks” rather 
than “Bandwidth” because a network denial of service can work by 
using either very large packets or very small ones. Very large ones 
consume bandwidth, while very small ones consume the processing 
power of routers and switches (Emmons, 2020).

Beyond attacks on network capacity, there are attacks on data 
flows. These include corrupting messages. If you have a good mes-
sage integrity check, the corrupt packets may get thrown away. The 
resultant code path is probably less optimized, and there may be a 
cascade of compute or storage issues as you manage and log the 
strange packets.

Electrical Power

Most devices don’t use as much power as a tractor beam. (It’s worth 
asking—when an intruder turns off the power, is that a denial-of-
service threat? It’s certainly a threat to the availability of the system, 
even if it feels different than other threats we discuss.)

When electricity is provided by batteries, battery drain can be a sub-
stantial problem. Battery-powered devices can be subjected to compu-
tational attacks, because, of course, computation requires power, and 
they can be subjected to attacks on other power draws. Simply asking a 
device to wake up more often than planned can drain the battery, as 
does operating peripherals like screens, radios, or hard drives.

There are also batteries that are hard to reach. These might be in a 
security camera, high on a wall, or distant, detecting something deep 
in the wilderness, or even deep in outer space. And while we think of 
those as “painful” to reach, it’s literally painful to open someone’s 
chest to replace the battery in their pacemaker.
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More frequently, electrical power comes from a socket, and most 
uses outside a data center won’t change power draw enough to make 
for practical DoS attacks. As anyone who’s worked in a data center 
knows, it gets complex quickly, and that complexity can lead to fail-
ures. Those failures, like those induced by storms, are generally man-
aged by people building data centers.

Money

The cloud exposes a new resource to exhaustion, your budget. The 
cloud provider can take quite a bit of abuse on their pipes, spin up 
new compute nodes for you, and give you unimaginable amounts of 
storage, all for an unimaginable and probably unmanageable bill.

Cloud providers will happily sell you more cloud, and generally 
they’re happy to sell you as much cloud as you want or can afford. 
That’s great as long as your computers are doing money-making work. 
Your need to scale is, ideally, correlated with increases in business. 
But when your systems come under resource-intensive attacks, those 
attacks can transcend storage, compute, and bandwidth and hit you 
directly in the pocketbook.

When you’re buying these resources in small chunks, what runs 
out first might not be the resources but your budget. As the bankrupt 
folks at Long-Term Capital Management remarked, “The market can 
remain irrational far longer than you can remain solvent,” but the 
market wasn’t even irrational; the firm succumbed to a coordinated 
attack on its budget.

Money, of course, is a great motivator. Attackers prefer taking your 
money to having you pay a cloud provider. So, if you use text mes-
sages for notifications, reminders, or the like, attackers can give you a 
premium-rate number. These are numbers where the sender is charged 
to send a message, like those used to charge per vote for reality TV. 
This attack is common enough that there’s an acronym: IRSF (which 
stands for international revenue sharing fraud). This attack also 
applies to using text messages for authentication, which was always a 
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bad idea, as discussed in Chapter 1, “Spoofing and Authenticity.” It’s 
made worse by these attacks. Setting a budget for sending texts can be 
a backstop defense (after checking area codes against a list or using a 
service that does so). If the budget stops texts, you likely should have 
real-time access to the state of your budget. Only discovering that 
your budget was entirely spent when your service is cut off or the 
monthly bill shows up is another kind of denial of service, this time 
executed by your defenses.

Many of those attacks might be more logically grouped under fraud 
and thus repudiation. But keep in mind that all models are ultimately 
wrong, and if thinking about “how would someone eat our budget” 
leads to good discoveries, you should run with them.

Other Resources

All systems have resource limits that can be run out, often in surpris-
ing ways. The five slots for SYNs (discussed earlier in the “Storage” 
section) was a surprising limit. There are limits on file descriptors, 
process IDs, and memory size, and most can be attacked. For exam-
ple, a fork bomb is a simple program that repeatedly calls fork() to 
launch more copies of itself until no more processes can be created.

Triggering defenses as a means of denying service to someone else 
can be quite effective. Passwords that lock after five tries mean attack-
ers can lock you out. In Chapter  3, “Repudiation and Proof,” we 
learned about buying obviously fake reviews for competitors to get 
their accounts shut down. There are certainly defenses that can’t be 
abused into denial of service, such as carefully controlled issuance of 
digital signatures, but they are less common than you might hope. It 
can be an effective trade-off to intentionally degrade service when 
under attack, when the trade-offs aren’t accidents.

Not all denial-of-service attacks are against technical targets. All 
resources are finite. Some customers need way more handholding 
than others. Terrorists engage in multiple simultaneous attacks to 
strain the capacity of responders from ambulances or police through 
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hospitals. Supply chain issues in 2021 and 2022 exposed many places 
where “optimization” assumed that everything would keep flowing 
smoothly, and when it didn’t, factory capacity went unused, and cus-
tomers either went without or switched brands. There are frequent 
discussions of trust and resilience becoming depleted, and those are 
beyond the scope of this book.

Denial-of-Service Properties
Denial-of-service threats can be generic, or they can be intensely spe-
cialized to a targeted system. They can rely on the capabilities of the 
attacker or be amplified by some property of your system. They can 
persist or go away on their own.

Bespoke or Generalized

Attack mechanisms like a zip bomb or a DDoS require little knowl-
edge of the target. They are common because they work. When they 
don’t work or when they’re insufficiently disruptive, dedicated attack-
ers will design bespoke attacks just for you. A clever attacker needs to 
jam only one bottleneck to gum up the whole works. That bottleneck 
can be in components from your suppliers or in your bespoke code.

Your bespoke code is more likely to have these bottlenecks because 
they tend to go undiscovered. An attacker gets a less general payoff 
from exploiting them, and your engineers and ops folks get a lot less 
help from the defender community at large. These may be simple: 
fixed-size buffers, compute pools, storage, or they may be more com-
plex. Attackers may aim for cache misses or complex database joins. 
They may be empirical (“That seems slow, can we make it slower?”) 
or theory-driven (“I bet if we combine three random dictionary words, 
no one will have done that search.”).

Attackers, like Ewoks, often surprise us with the cleverness of their 
attacks. Their lack of technical sophistication doesn’t prevent their 
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old-fashioned rope net from capturing people or their logs from 
swinging and crushing advanced vehicles.

Amplification

Some attacks are relatively symmetrical: they use attacker resources at 
the rate they use yours. Others, like the zip bomb, use an amplifier of 
some form, where the problem is worse. The amplification factor is 
the ratio of resources consumed, and the higher the ratio, the more 
value to attackers. Amplification factors cluster in the range 10x–50x 
but range up to 51,000x (CERT, 2019).

Network protocols still have substantial amplification, and it used 
to be far worse. The Internet was a different place in the 80s, and 
many Unix systems exposed a service, chargen, that just sent a stream 
of characters. It’s a useful debugging tool if your networks aren’t 
highly resilient. It was fun to send a packet saying “Hey, can you send 
lots of characters.” It’s more fun if you send it with a spoofed source 
of the broadcast address so that every machine in a network suddenly 
gets a stream of characters. (Both are fun from the perspective of the 
attacker.) There are lots of current equivalents. Some of them are from 
servers, like DNS, that are designed to serve all callers. Others are 
systems like memcache, which are designed to return results as 
quickly as possible. Running on UDP to avoid setup costs and not 
authenticating are great properties if speed is all that matters. And if 
there are no controls on who can call the system, then it can be used 
to send data to any system whose UDP packets you can fake.

Caches, by design, want to send lots of data quickly. That’s great for 
attackers, and caches can amplify attacks by a factor of tens of thou-
sands. That is, the attacker sends bytes of request, and the system 
sends back tens of thousands of bytes.

Amplification doesn’t happen only with network requests: the 
video transcoding request discussed earlier in the “Compute” section 
of this chapter amplifies both in compute and network band-
width costs.
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Authentication Targets

The attacker doesn’t need to be logged in to flood your network with 
packets. They do need to be logged in to run a fork bomb. Authorized 
users can usually consume more resources than anonymous ones, and 
that plays into why DDoS attacks can be so irksome: anyone can join 
in, and chasing them all down is uneconomical. Retail store websites 
will expose potentially expensive search to anyone to help sell. Others 
may restrict more expensive queries to authenticated users.

Ephemeral or Persistent

Some interruptions are transient. When a tractor beam stops, a ship 
can fly away. Others are more permanent. When Han Solo shoots a 
communications console, someone needs to send a repair tech.

There are attacks that work until the attacker (or their computer) 
loses interest, and there are attacks that work until you clean them 
up. From the attacker’s perspective, when the packets stop, the fun 
stops, but if your disk is full, your disk is full. So, networks will often 
recover fairly quickly at the network layer, and network load balanc-
ers and similar tools will recover more slowly (if they fail over, do 
they fail back? Should they, or is the secondary the primary until it 
has problems?). Similarly, compute attacks like fork bombs went 
away with a kill() or a reboot. Thus, attacks on compute or net-
work are mostly transient, while attacks on storage, bandwidth, and 
battery require intervention.

Early in my career, DDoS and compute attacks were the most 
common form of DoS, so most attacks were transient. A little noticed 
impact of the rise of the cloud and IoT is a change to a property of 
threats: persistence is more common. This change in property is 
unusual. Despite the popularity of phrases like “the fast moving 
world of cyber,” if we step back a little bit, threats remain remarkably 
stable. The first six chapters of this book follow “STRIDE” because 
even though it is a decades-old model, it remains useful today. Attacks 
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such as spoofing users or login screens continue, and remote code 
execution via memory corruption has not been solved (although 
attack techniques have improved dramatically to overcome evolving 
defenses). This is useful to you as an engineer, because the knowl-
edge in this book will serve you well over many years.

Direct or Emergent

Denial of service often directly threatens a resource, such as network 
capacity, and when the attack stops, things come back to normal. But 
there are also emergent denial-of-service threats.

Those who’ve worked on complex systems know that they display 
emergent and unexpected behavior under load, including cascade 
and bloat behaviors, and that these can pile up. If a system is sending 
lots of messages because it can’t get through to some service, then 
resources, especially network and storage, can be consumed. If many 
systems are unable to reach that service, their logging and reconnect 
attempts may magnify the problem. This is not just theoretical. In 
December 2021, Amazon’s AWS East-1 displayed exactly this behav-
ior. And it gummed up not only AWS but a great many services that 
depend on it (Amazon, 2021).

Denial of Service in Specific 
Technologies
While the mechanisms of denial of service are broad, the ways it man-
ifests, like many other threats, has technology-specific aspects. Budget 
and battery matter for cloud and IoT, respectively. Authentication ser-
vices can amplify denial or service, and some standards even encour-
age a version of that. Some deride blockchain as a denial of service on 
the energy grid, and there’s certainly have been instances where min-
ers moving en masse to locations with cheap energy has stressed  
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local capacities. There do not seem to be AI-specific elements of 
denial of service, although some would claim that ever-greater costs 
to train and operate models or neural nets themselves constitute a 
denial of service.

Authentication Services

Authentication services can come under denial-of-service attacks, 
and when they do, the availability of the rest of your system only mat-
ters to those who are logged in (and aren’t automatically logged out). 
If your authentication service relies on text messaging, then connec-
tivity failures, including people who are simply in a bad reception 
zone, can’t log in.

Some security standards call for exponential backoff, and attackers 
can turn such systems into denial-of-service services by just attempt-
ing to log in. Consider very small exponents, such as 1.01 or 1.1. I 
was going to comment on the odds that your auditors would ever 
notice, but Han Solo asks that we never tell him the odds. (I won’t, 
and they won’t.)

Cloud

The cloud brings us an interesting defensive opportunity as we come 
under attack: we can make trade-offs between spending money and 
accepting slowdowns. (It’s more flexible and useful if we make deci-
sions before we come under attack.)

There are predictable spikes in traffic. One is a Christmas morning 
spike as new devices are brought online, impacting both services and 
bandwidth in predictable and intense waves. When power comes 
back on after a storm outage, there’s a version of that spike, but it’s 
smaller and less predictable.



Denial of Service in Specific Technologies 145

Protocol Design

The design of protocols offers opportunities both to design for grace-
ful degradation under load and to contribute to denial-of-service 
attacks against others. This applies even if you’re designing a restful 
API on top of HTTP over TLS. If you are outside that space, consider 
how your design will operate under pressure, if it has the ability to say 
“ask again later” and how it might be used to amplify attacks.

IoT and Mobile

Battery issues will be exceptionally important to IoT devices, many of 
which have batteries that are not replaceable. For widely distributed 
devices, bringing a battery pack to the device may not be feasible. 
Battery recharge cycle counts may also result in denial of service.

In the Mirai attack discussed at the beginning of the chapter, IoT 
devices with default passwords were used to form a botnet. IoT 
devices, even ones that have been working, may be impacted by a 
“Christmas morning spike” attack on cloud services. Devices that rely 
heavily on the cloud can be impacted. In 2016, the Petnet pet feeder 
stopped working because of a server issue. (Apparently, they didn’t 
properly dogfood the system.)

Smart devices can also contribute to TCP-amplification denial-of-
service attacks. These are surprising, because of the TCP three-way 
handshake, but there are a set of problems that device designers 
should be aware of, including sending a great many RST packets, 
SYN-ACKs, or using PSH packets to send data before the handshake 
is complete. Marc Kührer of Ruhr University Bochum and his collabo-
rators continue to find innovative ways to abuse TCP for denial-of-
service attacks, and many of those attacks seem to relate to specific 
choices made by IoT vendors.
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Many smart devices degrade poorly when their cloud disappears. 
These disappearances can be temporary or even permanent. The per-
manent ones can happen for budget reasons. For example, Logitech 
used to sell a remote called the Harmony. When the company discon-
tinued its cloud service, it had the effect of “essentially bricking the 
otherwise functional smart remotes devices.” The company relented 
in the face of the outcry (Palladino, 2017).

IoT, and in particular phones and wearables, may be subject to 
weather, droppage, and similar accidental physical denials of service. 
It can be hard to distinguish accidents from enemy action, especially 
if your device isn’t well-hardened. There was a case of an IoT lock, 
which, after you used a suction cup to unscrew the “jar lid” back, you 
could open it with a screwdriver (McCarthy, 2018). Devices that are 
hardened and tested are more expensive. The standard for safes 
involves testing their ability to withstand 15 or 30 minutes of attack 
by a skilled attacker. A TL-15 safe is often $1,000 or more and is quite 
different than the $100–200 safe you’ll see at an office supply store. 
Don’t forget that devices will be used in stores, offices, and other 
places that get visitors. People’s homes get visitors, and some people 
rent out their homes. Other devices are used in apartment buildings, 
where the building owner and the residents may disagree about the 
devices or who should control them.

Defenses
Defenses against denial of service include having abundant resources, 
graceful degradation, and systems testing. In this section, we’ll explore 
each of these defenses.

Abundance and Quotas

Abundance is the simplest defense against many forms of denial of 
service. When the Internet was in competition with other networking 
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technologies, quality of service was raised as a feature of the legacy 
carrier backbones. Internet folks liked to say that quantity of service 
beats quality of service every time. But eventually, abundance runs 
out, and we need to discuss economics. That includes artificial scar-
city such as quotas, but also thinking about the economics of scaling 
or degradation.

When your system supports them, quotas for compute or storage 
ensure that subsystems can’t run out of control. This helps even 
“single-purpose” servers. If you cap consumption to “most” rather 
than “all,” your logs and systems management tools keep functioning 
when that business function runs amok. Similar to scarcity, network 
providers can help with defenses against bandwidth-flooding denial 
of service at the Internet layer. (Defenses against radio spectrum 
flooding are a complex topic.)

Designing for availability can also include pushing intelligence to 
the edge. Toward the end of the first prequel, The Phantom Menace, 
Anakin Skywalker saves the day by destroying a single Droid Control 
Ship, and all the droids shut down. The baddies learn their lesson and 
move intelligence to the edge, to each droid. You can learn the same 
lesson. For example, the Petnet pet feeder could have sent cron jobs 
to the device so that it wasn’t reliant on the network or cloud service 
being available. Content distribution networks (such as Akamai or 
Cloudflare) are helpful for protecting web services from DoS. Some 
will also allow you to push business logic of various forms.

Regardless of your use of quotas, its crucial to consider graceful 
degradation and resilience testing. Even more than other security 
properties, availability is a systems property. A system is only as 
secure, or as available, as its weakest link.

Graceful Degradation

Graceful degradation is a systems property that can be engineered at 
many layers of the system. Like security, it’s easier to design it in than 
to bolt it on, and the operations community has a great deal of 
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experience trying to maximize the availability of systems whose avail-
ability was treated as a simple problem.

It’s easy to fall into thinking about simple request/response models. 
Many systems are far more complex, and it’s important to engineer 
both component availability and service-level resilience. At the ser-
vice level, being aware of which requests are expensive, and gracefully 
turning them off can allow the overall system to provide gracefully 
degraded service. To the extent that you control the protocols in use, 
being able to send a “too busy, come back later” message is helpful. 
Your attackers will ignore it, but your friendly clients can stop con-
tributing to the problem.

Even without such a message, “client” components should be 
designed to back off gracefully, rather than becoming part of the prob-
lem with rapid and insistent retries.

The components being attacked should be able to actively refuse 
expensive operations to let the less expensive activities continue. In 
the extreme, that may be a server just sending “overloaded” error 
messages, but doing so is far better than disappearing. Your clients 
can start backing off intelligently.

There are a variety of graceful backoff algorithms. Most involve 
exponentially slower requests, where a system will wait a random 
amount between 0 and 2n seconds, sometimes starting at something a 
little larger than zero, and sometimes with the backoff or recounts 
capped. Whatever algorithm you choose should be designed to avoid 
hammering the servers 2n seconds after the servers drop offline. 
(Naive exponential backoff can have precisely this effect.)

Similarly, you should recover gracefully from an abnormal shut-
down. If your device knows it lost power, an extra little delay will 
help your service recover gracefully, rather than getting hammered 
when power comes on after a disaster.
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Resilience Testing

Again, resilience is a systems property. Checking that each compo-
nent is hard to tamper with should roughly compose to a system that’s 
hard to tamper with. (Confused deputies are a primary way this com-
position fails.) In contrast, testing that each component of a system is 
available under load tells you less about the availability of the system 
as a whole.

Resilience testing is important. Cloud systems often have strange 
dependency chains that are best exposed by testing, with tools like 
chaos monkeys. Intentionally breaking your cloud service is a wise  
practice.

Resilience is easier to achieve with a business model. When 
Logitech remotes didn’t require a subscription, there was little budget 
to update the cloud backend. But who wants a subscription for a 
remote control?

Maintaining a resilient and tested infrastructure for emergency 
administration and disaster response can appear expensive until you 
don’t have it. Google reputedly maintains a separate network of IRC 
servers, designed to be resilient when everything else is failing.

Budget management services are a must for elastic cloud services. 
These can be explicit, and for smaller cloud services, it may be sensi-
ble to simply react and beg for mercy if your bill jumps 10- or 100-
fold in a month.

Both graceful degradation and resilience testing are covered over 
many chapters of the excellent Building Secure and Reliable Systems 
(O’Reilly, 2020).

Conclusion
Building the second Death Star so it was fully functional as a  
battle station is an unusual response to the unusually thorough and 
permanent denial-of-service attack on its predecessor. But graceful 



Denial of Service and Availability150

accumulation of features and properties to face anticipated threats 
can be as important as graceful degradation. Before moving on from 
praise for the Empire, I would like to take a moment to say I hope you 
can plan for resilience without such massive loss of life and resources, 
and I also hope you’re not working on anything planet-destroying.

All systems have constraints, and all resources are scarce. Design 
and testing mean that even if the attackers have analyzed your 
defenses and found a weakness, you can maintain availability.
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6

These aren’t the droids you’re looking for,” Ben Kenobi tells the 
Stormtroopers who have just stopped him. On whose author-

ity? In fact, this is the first time we see the application of Jedi mind 
control because, in fact, those are the droids the Stormtroopers are 
looking for. Kenobi shouldn’t be able to convince the Stormtroopers 
to let them move along. He uses his power to expand his effective 
authority and accomplish his goal.

In the prequels, Kenobi is a general and was removed from 
rank only as a result of a coup and an order to commit war 
crimes. Star Wars geeks may focus on the idea that Kenobi is 
still a general. So, at a stretch, he might be able to issue orders 
to troops. Regardless, he does not assert authority as a general 
but rather uses his Jedi powers. So…that’s not the argument 
you’re looking for.

The E in STRIDE stands for “expansion of authority.” Historically, 
it has also stood for “elevation of privilege,” “escalation of privilege,” 

Expansion 
of Authority and 
Isolation

“
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or “privilege escalation.” The privilege versions are all synonymous. 
They’re also better known than the expansion of authority definition. 
For most of this chapter, we’ll consider authority in a broad sense and 
get precise about how these all relate only at the end of the chapter. If 
all these terms are new to you, focus on the idea of authority. If you’ve 
been exposed to the privilege frame, stay with me. At the end of the 
chapter, I’ll explain why I’m shifting my thinking to authority.

Expansion of authority can feel different from other threats. 
Tampering or spoofing can feel like mechanisms or even goals. 
Expansion can appear (or even be) more like an effect or a stepping 
stone. But each is a threat: an action an attacker can take, and a threat 
to a property we want a system to have. Expansion of authority is a 
threat to the authorization system.

Authority means “the effects that a program may cause on objects it 
can access, either directly by permission, or indirectly by permitted 
interactions with other programs” (Miller, 2005). Generally, there are 
three ways to control the use of authority. They are permissions, 
attenuation, and isolation.

Permissions may be the easiest to understand. For example, Unix 
protects itself by setting the ownership and permissions of files in  
/etc, /usr/bin, and many other places on which the operating sys-
tem relies. Attenuation means to reduce or limit; the login process 
will attenuate its own authority by changing user ID from root before 
spawning a shell for a regular user. Thus, that shell doesn’t inherit the 
authority to call the setuid API or bind to low-numbered ports. 
Isolation means software or hardware that limits what the code can 
do. For example, a user can send signals or attach a debugger only to 
their own processes, not those of other users. That’s isolation pro-
vided by the kernel.

Moving down from Unix to raw hardware, isolation is provided by 
the CPU’s execution levels (rings). And moving off a single system to 
networks, isolation is provided by firewalls.
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Another way to think about these defenses is that the second Death 
Star is a fully armed and operational battle station—it can implement 
permissions and use Stormtroopers to enforce them. It also has a 
shield, operated on a small moon, which provides isolation for it. 
We’ll talk about all three—permissions, attenuation, and isolation—in 
the “Defenses” section.

Expanding authority means moving from one level of authority to 
a greater one: from unable to run code to able to do so; from regular 
user to root to kernel; from unable to set permissions to the admin of 
a cloud service; from “random droid trapped in a net” to god of the 
Ewoks. Figure 6.1 shows an example of how this works on a Unix 
system. Luke’s processes can interfere with each other, but Luke’s can-
not interfere with Leia’s (and vice versa). Leia might expand her 
authority to be able to run code as root, and as a general, she might 
claim that authority over rebel systems. Because she’s wise, she prob-
ably would choose to use a limited account to reduce the impact of 
any mistakes she makes. We often talk about “lower levels” of the 
system, and from that point of view, Figure 6.1 is drawn inverted to 
align with the “higher privileges” framing.

Hypervisor

Kernel

Root (uid 0)

Luke (uid 501)

emacs Chrome

/home/luke /home/leia
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vi Firefox
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FIGURE 6.1  Authority levels
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Many well-known attacks and attack types have authority expan-
sion as their effect.

Log4shell led to logged data being executed. The “Shellshock” vul-
nerability in bash let environment variables be executed as com-
mands. (As an aside, many of these have shell in their name because 
getting to unattenuated shell access is a powerful milestone for the 
attacker.)

Moving to families of attack, SQL injection lets web users embed 
SQL commands in strings passed by web parsers. The SQL interpreter 
treats those strings as commands. The web parser does not mean to 
give the web user the authority to craft commands. Cross-site script-
ing (XSS) exceeds the authority of the person crafting a URL to cause 
those who use that URL to run commands that the attacker intended. 
Stack smashing leads to code execution, either local or remote.

Locally, stack smashing might exploit a vulnerability in a setuid 
root program and let an unprivileged user run arbitrary commands 
with root’s full authority. Remotely, a program that accepts connec-
tions over the Internet allows those Internet-connected users to run 
commands. You’ll learn specifics about the issues that allow these 
expansions in Chapter 8, “Parsing and Corruption.”

Authority is granted by system owners to principals, and by prin-
cipals to programs. For example, as shown in Figure  6.2, George 
Lucas is a system owner. He creates an account “george” on his lap-
top. User george can set permissions on the file “Empire Strikes 
Back script.”

He can also create accounts for his collaborators Leigh Brackett 
and Lawrence Kasdan to log in to his computer. They’re principals, 
and they’re represented by those accounts. As they run programs like 
emacs or vi (obviously) to edit the script, they implicitly grant author-
ity to those programs to access any file that their user ID can access.

Moving from the local system to the network, the authority to 
communicate on various networks implies a responsibility to identify 
and categorize remote connections. Those connections should get 
only limited access to the listener’s authorities. Those authorities 
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include calling operating system APIs and acting on behalf of, as a 
deputy to, some principal. For example, if a program, let’s call it 
“login,” creates a shell on behalf of a user, then that shell has tremen-
dous authority, including reading and writing files, creating and delet-
ing them, and invoking other programs. Another program, say, 
“simple-httpd,” might be designed with more limited authority: to 
read files.

At least that would be the intent. Programs often have lots of 
authority and may even try to attenuate or delegate that in various 
controlled ways. A simple httpd might have a notion of accounts and 
let specific accounts see specific files. A result of that requirement is 
that it must have access to all those files, at least at some point in its 
execution. It may implement code to check that that user can access 
that file, or the httpd may shed that access by setting its user ID to 
that user and defer the checking to something else.

Many expansion of authority threats involve violating the inten-
tionally designed controls, while others rely on unexpected behavior 
of those controls.

In this chapter, we’ll look at those common privileges that are both 
targets and jumping-off points for common forms of attack. Each of 

George
George’s laptop 

Userid(george)

George’s laptop

groupid(authors) 

emacs

Userid(leigh)

emacs

Userid(lawrence)
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Strikes
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Permissions rw-rw----

FIGURE 6.2  Authority grants
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these violates the goal of authorization. Authorization is much like its 
English meaning: to give permission, assent, or approval. Accounts 
like root have permission to do a great deal more to your computer 
than a website does.

Expansion Mechanisms and Effects
While the details are infinitely varied, the mechanisms attackers use 
to expand authority are all fairly similar. Jedi, Sith, and even bounty 
hunters sneak onto a ship, and their local access gives them complete 
access to the computers. In our world, vulnerabilities that allow for 
remote code execution by a parsing or execution error result in the 
attacker having more authority. These are discussed in more detail in 
Chapter 8, “Parsing and Corruption.” To give you a brief idea, remote 
code execution can happen because an instruction processor is tricked 
into treating data (from input) as code. This happens when a CPU 
gets instructions at the end of a stack. They also happen when a Unix 
shell sees a semicolon or backticks, indicating the next command, or 
executes the contents of the backticks. They happen when a SQL 
parser gets a semicolon or forward ticks. In each case, there is code/
data confusion.

An attacker can also gain authority when we intentionally run 
their code not knowing what it is.

Let’s consider this common pattern:

curl $URL | bash

In this instance, bash doesn’t know where curl is getting its data. 
The Unix design philosophy included “small programs that do one 
thing well” and combining them via pipes. Because they were gener-
ally running in the same user context, they assumed that input wasn’t 
malicious. What would be the point? The bash shell tends to expect 
that its input is from a trusted source.
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If you haven’t run across the pattern, curl is a command-line 
web browser, and it will fetch the contents of a (presumably  
remote) URL and feed those commands directly to the bash 
shell, giving that site the authority of your local shell and 
probably installing (at least) the software you want. Some  
security people get apoplectic at the pattern, which is slightly 
worse than other installer methods. I don’t like the pattern 
for interactive use and worry about it more when it’s used 
in build scripts reaching out to arbitrary sites, because it  
bypasses code or artifact repositories and so makes your builds 
less reliable.

Code in the middle of such a chain will frequently, unwittingly, 
help attackers demonstrate that point. Sometimes these alter control 
flow; other times the flow of control remains in accordance with the 
original design, and arguments or effects are unexpected.

For example, SQL injection happens because a web server includes 
its input in the SQL commands it sends to the database. The web 
server’s control flow is unaltered. The database trusts the web front 
end to send it well-formed code.

Running code written by someone else usually results in that code 
having all the authority that your account does. (This is less the case 
on modern phone operating systems.) This applies equally to com-
piled code or a shell script. Web browsers are an unusual case. They 
work hard to attenuate the authority they grant to HTML, JavaScript, 
or WASM, and even that granted to browser extensions.

Code that carefully tests its inputs for validity for carefully defined 
purposes may be attacked if it tests that input while the attacker can 
still change it. For example, if you put your validation code in 
JavaScript that runs in a browser, it is trivial for the browser owner to 
tamper with it.
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Code is not the only thing you might regret taking as input. If your 
program takes filenames and if it can act on behalf of many users—for 
example a web server or a mail server—then you have to ensure that 
the user can act on that specific file. This problem is hard because of 
complexities such as canonicalization of filenames, symbolic links, 
union views of filesystems, or quarantines for Internet files. This is an 
example of the “confused deputy” problem, which we’ll discuss more 
throughout this chapter.

The final major cause of expansion of authority is permissions 
whose technical meaning is broader than a person intended. This can 
happen because of usability flaws in an access control system or 

Canonicalization Is Hard

To make the complexities more concrete, let’s consider 
restricting access to the file .HTAccess, as served by the 
Apache web server on a Mac. Should Apache HTTPd recog-
nize that as the file that defines access control? The Mac HFS 
filesystem is case insensitive, while Apache is generally writ-
ten with an assumption that the underlying filesystem is 
case sensitive. So moving a perfect copy of a website from 
Linux to macOS might change its behavior. (Or perhaps 
Apache accounts for this—checking requires more than 
grepping the code.) Alternately, still on the Mac, consider 
the case of the humble Calculator app in /Applications. If 
you open /Applications in the Finder, you’ll see the app. 
But if you open a terminal and type ls /Applications, it’s 
not there (in macOS Monterey, anyway). Which is right? I 
have an opinion, but what’s more important is for you to 
understand that these views of the filesystem can get 
tricky quickly.

If you don’t know the answers, how well can you carefully 
delegate authority?
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because controls are relaxed for debugging, and once things work, 
they’re rarely further tightened up.

There are many starting and ending points when someone expands 
authority, and Table  6.1 shows some common examples. (Specific 
brand names are shown only as examples.) I’m using “normal” to 
mean an account without administrator rights or privileges.

Authority in Specific Scenarios
As complex as authority is for traditional desktop computers, at least 
their span of control was local, and the user interfaces can be rich. 
Who has which authority is often incomprehensible with smart 

TABLE 6.1  Common Authority Expansions

Environment
Starting 
Authority

Ending 
Authority Comment

Traditional Unix 
server

Remote entity Normal user Remote code 
execution

Normal user Root Classic “privilege 
escalation”

Multiuser Unix 
server

Normal user 
Anakin

Normal user 
Obi-Wan

Sometimes called 
“horizontal” 
elevation

Windows 
desktop

Normal user Local admin

Local admin Domain admin

Mobile device Local app 
(Angry Birds)

Local apps 
(Angry Birds, 
Bank)

Person with 
device

Full authority 
over device

Jailbreak

Cloud User Enterprise 
administrator

See also Table 6.2

Any less 
privileged

Cloud admin
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devices, sometimes by design and sometimes because of lack of 
design. This boiled to the surface with years of exploitation and 
patching for jailbreaking phones. Cloud systems quickly require com-
plexity. Each of these will be treated in its own section. First, we’ll 
discuss the new models of authority that blockchains are exploring.

Bitcoin popularized a new authority mechanism: proof of work. 
Having done the work to mine a new coin, the chain was extended in 
a way that all participants had to accept to make future commitments 
to the chain. It’s unclear how important this will be over time.

AI/ML systems don’t have a lot of unique expansion of authority 
threats, but they do suffer an interesting issue, which is that an 
attacker who can feed you training data has implicit capability to 
change your model and thus the actions of your system. This is 
slightly outside the strict definition of authority, because ultimately 
it’s people who are empowered to select the training data.

Confused Deputies

Up to this point in the book, I’ve been using the term confused deputy 
somewhat loosely. It’s time to ground it in authority and explain it 
more fully. First, C3-PO is not a confused deputy because he never 
gets tricked into using his capabilities to help the Empire.

A program we see as a deputy usually has some extra authority and 
tries to ensure that it uses it in constrained ways. A confused deputy 
uses its authority in a way that, with the benefit of hindsight, it 
shouldn’t. There are distinct groups of programs that display the same 
sort of confusion.

•	 Setuid programs insufficiently reduce their authority and inad-
vertently provide it to others.

•	 Daemons—either network listening daemons, which pass 
authority to remote callers, or local privileged daemons, which 
pass it to local callers. Sometimes one daemon enthusiastically 
serves both populations at once! Avoiding that anti-pattern 
informs the design of the qmail mail transport system.
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•	 Exposed API servers are a special case of daemon code. This 
includes public APIs, app APIs, and private APIs.

•	 Internet of Things gateways, including hubs and cloud systems.
•	 Normal programs, such as zip.

This may lead you to ask: is there anything that is not a deputy? 
Yes. Most video games are not. Classic programs like Microsoft Word 
are not, but it may become one as it becomes more cloud integrated, 
especially if the cloud can direct where it stores or caches files; where 
it collects, installs, or runs fonts; where it collects templates and what 
it calls them; or otherwise influence how it acts.

We met the zipslip issues in Chapter  5, “Denial of Service and 
Availability.” You may remember they’re what happens when the crea-
tor of a zip file specifies full paths and the unzipper writes to those 
paths. Doing so, it uses the authority of the person running “unzip” 
on behalf of the person who wrote the zip file. It made sense to bring 
them up since we were learning about surprising things that happen 
when you uncompress data. But really, the confusion is about how 
authority is used. We were previously talking about the impact, not 
the threat.

Another, older zip issue was preservation of permissions. The 
attacker created a zip with a setuid file in it, and unzip faithfully pre-
served it on decompression (Galacia, 2005). The setuid program 
would be setuid whatever user ran unzip. If you use the root account 
routinely, it would thus be setuid root; otherwise, it would allow hori-
zontal (user to user) expansion, as shown in Table 6.1.

A web server is an example of a daemon deputy. Early web servers 
mirrored filesystems: making the directory /users/obiwan/ 

public_html/ available as jedicouncil.galaxy/~obiwan/  
made it easy to deploy a web server and have users opt-in by creating 
a directory. The deputy pattern’s trade-offs contributed to the rapid 
growth of the Web, and the pattern also made it feasible to confuse 
those web servers.
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In each case, the issue is someone can specify enough control 
information that the program acts on their behalf. This can be because 
of parsing failures with filenames, race conditions, policy specifica-
tion, or interpretation problems. The canonical example of a filename 
parsing issue was reading ../../etc/password, or in today’s world, 
/etc/shadow. Naïve filters might remove .. before, say, Unicode 
decoding, which conveniently translates %2E2E into .. and now 
your string is problematic again. Race conditions happen when a tem-
porary filename is predictable, when a link can be inserted and 
changed, or otherwise when a gap between the time of check and the 
time of use allows an attacker to redefine what the deputy is looking at.

But “deputy” is a fine description of a lot of code that attempts to 
attenuate, or even simply handle complex data types (such as an 
unzipper). We build deputies as we build abstraction layers or isola-
tion boundary. Similarly, in the world of very small devices, deputies 
are a common design pattern to let those very small devices commu-
nicate more broadly.

Generally, parsing problems that lead to an attacker being able to 
run arbitrary code (the sort covered in “Parsing and Corruption”) are 
not seen as confused deputy issues.

Threats vs. Impacts
If someone threatens to sue you, the threat is the lawsuit.  
A lawsuit can have many impacts: your time and money are 
spent on lawyers. The court may impose damages. If you 
mouth off to the judge, they may threaten you with con-
tempt, and the penalty might be jail. Even if your behavior 
raises an eyebrow, very few people would be so pedantic as 
to argue with the sentence “The judge is threatening to 
throw me in jail for contempt!” This overlap between threat 
and impact is a part of the way we speak. Even experienced 
security people will conflate them, perhaps to our detriment.
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Internet of Things

In Chapter 1, “Spoofing and Authenticity,” we considered a set of sce-
narios from the perspective of spoofing, which is crucial, but we also 
need to consider authorization more broadly. A “valet key” doesn’t 
allow access to the car’s trunk or glovebox. Many thermostats have a 
“hotel mode” that constrains available temperatures. If someone sells 
a device at a yard sale, is it easy for the new owner to remove cloud 
authorization? Similarly, when a couple breaks up, can whoever ends 
up with a device or devices quickly and confidently set the new 
authorizations?

Authority on devices is often distributed in complex or even 
baroque ways between the device maker, owner, and authorized  
users. Common patterns include commands being sent from cloud 
services, often as a proxy for apps. Device hubs running platforms 
like Zigbee, Powered by Alexa, or Apple Home are also authorized to 
run commands, possibly with the participation of an app. So, for 
example, if you use Alexa to tell a third-party soundbar to play a song, 
Alexa (and thus AWS) has authority to control the soundbar. If you 
use Apple home to control the lock on your door, the hub and Apple’s 
iCloud servers probably have the authority to unlock your door. The 
details are very implementation dependent. The best of them may 
relay signed commands and be unable to initiate the commands them-
selves. The very best will also have those signed commands contain 
both dates and nonces to prevent replay attacks.

Mobile

In mobile, apps are isolated. So you not only can elevate but expand: 
“move sideways” between permissions of various apps. This, too, is 
an elevation of privilege. If you are running as App A and take over 
App B, you go from permission set A, granted to your app, to A+B, 
which may be small but was not intended by the designer of B, or the 
operating system that should have constrained or managed those 
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permissions. Calling this elevation can be confusing, and this “hori-
zontal elevation” contributed to me preferring expansion.

There are also the issues of jailbreaking or sideloading. Jailbreaking 
refers to breaking the manufacturer’s controls on what applications 
can be executed; sideloading refers to various ways of bypassing those 
controls or loosened versions thereof. This can include loading an 
Android package via USB or installing with an IoS developer certificate.

Depending on your point of view, jailbreaking and sideloading are 
people either taking control of devices they’ve paid for or breaking 
important controls designed to keep mobile systems free of the threats 
that plague more traditional (Windows) computers. However you feel 
about the moral answers to these questions, these are questions of 
technical authority. The phone and operating system manufacturers 
reserve, for themselves, the authority to decide what code is run on 
which device. The authority rules gets no clearer when we add corpo-
rate mobile device management tools.

Cloud

When we consider infrastructure or platforms as a service, we’ve all 
gotten used to running code in the cloud, and we accept assurance 
that the cloud provider won’t interfere with our instances. Is that 
decision technically grounded? (We can consider that question sepa-
rately from the contractual obligations.) Most cloud systems run on 
something approximating other server computers: Linux on Intel or 
ARM processors. They’re nominally managed by software that runs 
underneath the virtual machines, containers, or “serverless” pro-
cesses that we use as we deploy our cloud systems. That software has 
authority, like root. The cloud infrastructure software generally atten-
uates how that authority is exercised. Either no one or a very limited 
set of people can log in interactively. We expect that interactive shells 
are forbidden because they’re unscalable and a source of implementa-
tion error, but we have limited tools with which to check that. (There 
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are designs that are stronger, which allow software to process 
encrypted data or to perform database operations on data that’s never 
in plaintext. There are also designs that seem to sprinkle magic cryp-
tography dust around, without ever addressing the fact that the ser-
vice operator has the authority to change the software that uses that 
key, to read memory from the VM host layer, or otherwise to bypass 
that expensive magic dust.)

When we move to software as a service, the software designer has 
probably implemented an authority system. It may or may not be well 
considered. Frequently, systems distribute authority, with hooks for 
events like login or message receipt that deliver great flexibility to the 
customer—or an attacker who’s broken in. Even when the designers 
have not implemented such, “software robots” or other automation 
systems may layer them on. Reasoning about the security of these 
systems can get very complicated very quickly.

For example, as shown in Table 6.2, a software system could easily 
have three major groups of authority: that at their cloud provider, that 
within their cloud account, and those for their customers. The first is 
entirely outside their control, the second they must manage using the 
tools provided by their cloud provider, and the third they must define.

TABLE 6.2  Authority in a Cloud System

Authority 
Category Levels of Authority

Cloud provider, say, 
AWS

Root @ AWS

Administrator at AWS

Administrator for S3

Customer service rep for S3

Company deploying 
SaaS on AWS, say, 
Slack

Slack’s AWS account administrator

Slack’s IAM administrators group

Slack employee, AWS service user

Slack employee, root @ instance (assuming 
they deploy virtual machines)

(continued)
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Defenses
There are two types of important defensive patterns. One group is 
what your code does; the other is the context in which your code 
executes. Defenses against expansion and elevation attacks are con-
ceptually simple. Unfortunately, despite that simplicity, they’re often 
practically either intricate or nuanced.

When your code takes input from untrustworthy parties, it parses 
that input and acts on it in various ways. When you use insufficient 
care, your code will give attackers their way.

So it’s crucial that you don’t accidentally create a parser, a deputy, 
or a permission system. Thoughtful design and avoidance of technical 
debt will repay itself quickly in both security and reliability, perhaps 
more than any other investment in security. The trouble is these 
things sneak up on you, especially parsing. If you wake up to discover 
you’ve accidentally created such a thing, the best move is to take off 
and nuke it from orbit. Then rebuild cleanly. However difficult that 
happens to be, it will probably be less difficult, over time, than main-
taining it. However, management will often demure for a variety of 
business or psychological reasons.

Those business reasons, along with the general difficulty of getting 
code right even without those categories of problems, means that 

Authority 
Category Levels of Authority

Slack customer: 
rebelalliance 

.slack.com

General Leia (company admin)

Luke (Slack user)

Slack Application 
provider

Giphy can read a channel and post

Google Apps can read a channel and change 
permissions on documents, create calendar 
invites and more in its own system

TABLE 6.2  (Continued)

http://rebelalliance.slack.com
http://rebelalliance.slack.com
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isolation tools and design patterns are incredibly useful. (This is also 
a place where “zero trust” can come in handy.) These tools include 
the following:

•	 Permissions or capabilities.
•	 Sandboxes.
•	 Containers.
•	 “Side-effect-free” code such as Lamba functions. (A Lambda 

function runs code where someone else provides the server 
infrastructure, and the Lambda can’t alter any files on disk. 
Amazon took the term from computer science; Google and 
Microsoft call the same thing Functions, as in Azure Functions.)

•	 “Phoenix” systems that are regularly burnt down and rebuilt. 
(That takes away an attacker’s current access, but if you rebuild 
exactly the same system, the same exploit will work when the 
attacker uses it again.)

The final step for each defense is to ensure its usability: by the nor-
mal humans who use it and also by the developers who develop on 
top of it.

Least Privilege and Separation of Privilege

“Your weapons, you will not need them,” Yoda tells Luke as he enters 
a place that’s strong with the dark side of the force. Yoda is advocating 
for the principle of least privilege. Without weapons, Luke is less 
likely to hurt himself.1

An attacker who exploits your code has added its privileges to 
theirs. They may go from unable to run arbitrary code on a machine 
to able to do so. Once they can run arbitrary code, they may be able 
to achieve their objectives, or there may be additional barriers. Those 
barriers are imposed by an architectural feature. If your code runs as 

1If you have other justifications, I’ll just say…the danger is only what you take with you.



Expansion of Authority and Isolation168

domain admin or root, then the attacker can likely do what they want 
without further barriers, because it has all the privilege. This is such 
an anti-pattern that in recent versions of macOS, Apple has been 
steadily reducing the power of the root account, and by the early 
2020s, root was no longer able to alter the core operating system files.

The “root can do anything” pattern is incomprehensibly danger-
ous. Actually, that’s not quite right. Giving all the authority to an 
account (root, domain admin) is comprehensibly dangerous. Security 
professionals enjoy arguing about how hard it is to become root from 
a normal user account, and the answer is complex to quantify. If you 
develop code to run as a normal user from the start, there’s plenty of 
security and reliability benefits and very little downside.

We can contrast code that has all, or most, privileges with the 
opposite pattern: code that has only the privilege it needs to accom-
plish specific goals. The phrases least privilege and separation of privi-
lege (or duty) are common in security. Least privilege refers to 
minimizing a program’s authority: designing it to work with as little 
authority as it can. Separation of privilege means giving the authority 
that a system needs to a set of programs, separated in meaningful 
ways, like running as different Unix user IDs. (You may have noticed 
that I’ve switched the words privilege and authority here; we’ll return 
to the goal later.) Separation of duty refers to breaking responsibilities 
across people. For example, a bank manager has the keys to the safe 
deposit room, and I have a key to my safe deposit box. You can simi-
larly design a system that separates the authority granted to principals 
and thus programs.

Limiting privileges and the “principle of least privilege” seem like 
excellent ideas. There’s an old joke: the difference between theory and 
practice is that in theory there’s no difference. A first step is to ensure 
that programs can run as “a regular user” rather than administrator. 
I’d like to assert that first step is obvious, but looking out at the world, 
that’s empirically untrue.

In the early days of Windows, the default user was an administra-
tor. Developers shipped programs that assumed they always ran as 
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administrator, often for no reason except they never bothered to test 
if they could run without administrative authority, and so they put 
various files in directories that later became protected.

Microsoft spent the better part of a decade increasing the pressure 
on those software creators. Some were companies that were still 
around and that upgraded the latest versions of their software to run 
without such privileges. Other software, well, the company was gone, 
it was created by the boss’s nephew during an internship and the 
code’s gone, or there’s no budget. So that difference between theory 
and practice has a very long tail.

Both writing your code to run as a normal user and using a normal 
user account day to day dramatically improves security.

In practice, deciding if you’ve achieved “least” can be complex. 
Programs that are very flexible, such as the Windows Shell, the macOS 
Finder, and web browsers, present a challenge for the principle of 
least privilege. In these instances, “privilege management” systems 
that temporarily grant increased authority can help implement least 
privilege.

In more constrained circumstances, least privilege implementa-
tions can learn from the qmail mail transport of the late 1990s, which 
has a small constellation of programs. Each program runs as a sepa-
rate Unix user, and most of the programs have the authority to read 
from exactly one directory and write to one other. (This is imple-
mented with a mix of user and group permissions.) Thus, the qmail 
family of programs are designed, as a whole, with the least authority 
that they need, and the authorities are separated between the various 
parts of the system. Figure 6.3 shows how this works in more detail. 
You don’t need to understand the details to continue, but you can see 
that code runs as five user IDs (qmaild, qmailq, qmailr, qmails, and 
root). Qmaild listens on port 25, collects mail, and passes it to the 
queuing system. Qmails sends it either to a remote system (via qmailr) 
or to a local user. In the local user case, qmail-lspawn, running as 
root, creates a user process for local mail delivery. Because only that 
process runs as root, it can be subjected to greater scrutiny.
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Figure 6.3 is redrawn from a paper on the security architecture of 
qmail (Hafiz, 2004). If you’d like to learn more, it’s a worthwhile side 
quest. That qmail was supplanted by Postfix had little to do 
with security.

A similar sort of design can be implemented in modern microser-
vice architectures. This requires that the permissions assigned to 
those services are considered and managed, rather than a spa-
ghetti of calls.

Architecture as Barrier

Perhaps you can simplify your parsing, perhaps not. Parsing remains 
risky, and the more exposed code is, the more sensible it is to isolate 
that code. The earliest patterns for this leveraged accounts and per-
missions. Over time, Unix daemons moved from running as root to 
running as their own user ID, and permissions for those accounts 
were restricted. A modern version of this is illustrated by the previous 
qmail example. Running as a separate user ID is a form of isolation, 
which is a crucial part of any resilient defensive strategy.

Qmail-inject

Local user such as Luke

qmailid root

qmails

qmailrqmailq

Qmail-smtpd Qmail-
lspawn

Qmail-send

Qmail-
rspawn

Qmail-
remote

Qmail-queue

Qmail-clean

Mail queue

Qmail-local Daemon

Legend

Spawned
process

Trust
boundary

uid

Mailbox

FIGURE 6.3  Major qmail processes
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Permissions
Traditional permissions can be used to protect files and other objects 
from other principals. However, permissions have problems of expres-
siveness, and as Mark Miller writes, “In practice, programmers con-
trol access partially by manipulating the access graph and partially by 
writing programs whose behavior attenuates the authority that flows 
through them.” (We’ll delve into Dr. Miller’s work on authority later 
in the chapter.) Understanding the interplay of permissions was hard 
even when systems were simpler, and Cops (a very early system con-
figuration checking tool) included a graph construction tool that 
looked at all permissions for ways to exploit them.

Capabilities
A capability is a specific software pattern, and a pretty nifty one. It com-
bines two things that are often thought of separately: identity and 
access. If you have the capability, you have both. The capability equiva-
lent to (read, /etc/hosts) might be 789432. You call open(789432), 
and you can read the hosts file. Similarly, (write, /etc/hosts) might 
be 723190. They’re similar to file handles or secure pointers.

Of course, the numbers are much longer to make them unguessa-
ble, or, in some implementations, it includes a message authentica-
tion code to make guessing easy to catch. Thus, giving a program a 
capability explicitly grants the authority associated with that capabil-
ity. Because the numbers are unguessable, programs can use only the 
capabilities they’re given. This contrasts with setting permissions to a 
principal and results in much more strictly limited access.

The term capability is a nifty bit of naming, because it works both 
as a noun, meaning that software object, and as a verb, the ability  
to do something. In this subsection I’ve been italicizing capability to 
mean the specific software object, in the hope of not being  
too clever by half.

Unfortunately, we have no Emperor who can force-lightning peo-
ple for overloading a term, and capability has another, incompatible 
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meaning. According to the capabilities man page: “Starting with ker-
nel 2.2, Linux divides the privileges traditionally associated with 
superuser into distinct units, known as capabilities, which can be 
independently enabled and disabled.”

Isolation Tools
Isolation tools provide a property called non-interference. That means 
whatever a developer does, their code can’t interfere with someone 
else’s code. It’s not optional; the isolation tools prevent it. Files can’t 
be opened; memory can’t be read or written to. Isolation also means 
an attacker whose code takes over the intentionally running code also 
can’t interfere. This was an essential goal in building time-sharing 
functionality into early computers, and it’s also tremendously helpful 
for security. There’s a wide range of isolation tools, ranging from user 
accounts and sandboxes within those accounts to application identity 
on mobile phones to virtual private clouds.

The very best way to isolate your code from other code is to remove 
that other code. Code that isn’t running can’t be exploited; code that 
isn’t present can’t be started. Reducing extraneous code not only 
makes a system more secure, it’s also faster because that extraneous 
code never uses a CPU cycle or a bit of storage or network.

Of course, the isolation tools can be buggy, hard to configure, or 
configured too openly. You can also reduce their power, for example, 
running as root by default. Creators of desktop and mobile platforms 
are making this impossible, but on Linux or the IoT, you’re free to 
disable the safeties.

Sandboxes are intended to constrain what can happen within an 
account. A common way to break in to a Unix server was to exploit a 
network-listening daemon (a long-running program). Those servers 
had many setuid root programs. An attacker who broke in and who 
had an exploit for that setuid program could expand their authority. 
The Unix permission model doesn’t make it easy to say “not execut-
able by a member of the group daemons,” never mind “not executable 
by (a member of the group daemons) or (a member of the 
group qmaild).”
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This led to the creation of a sandbox, called chroot. It gave a  
program a limited filesystem with only known dependencies availa-
ble. Unfortunately, it was hard to use and relatively easy to break. 
More modern sandboxes, including AppArmor, sandboxd, and 
AppContainer, add a layer of constraints that surround and protect 
the operating system and other accounts from a daemon. (The name 
sandbox implied it was safe to let an attacker play there, and it unfor-
tunately stuck.)

Containers, such as Docker, are yet another set of boundaries, 
designed to prevent anything inside the container from reaching out-
side of it. Similarly, a virtual machine is intended to be isolated from 
the hypervisor and other code. Many times, this is frustrating, and so 
we use configuration to reduce the isolation. For example, not being 
able to copy and paste between a host operating system and a virtual-
ized guest operating system leads to tools like VMware Tools that 
reduce the isolation in favor of usability.

Code as Barrier

Once you’ve designed your system to run with the least authority it 
can and you’ve separated the authorities it needs into various sub-
components, there are plenty of opportunities to have code act as a 
protective barrier. Those include attenuation and careful handoff 
between programs. It’s also crucial to parse input carefully. It’s so 
important that the topic gets an entire chapter to itself: Chapter 8, 
“Parsing and Corruption.”

Attenuation
To attenuate is to reduce the force or effect of something. A program 
can attenuate authority by choosing to not grant it to its clients. For 
example, a normal Unix shell allows the user to run any executable 
program with the convention of ./mycode. We could create a shell 
that allows the execution of programs only in the system path and not 
allow the user to set a path. (The bash shell can be invoked as rbash 
to do this.)
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Similarly, we have different ways to design an API that takes com-
mands. We could accept full commands from our counterparty, say, 
ping 1.2.3.4. We could also accept a list of commands, or even 
pointers to commands. We could do this with a table of mappings, 
such as command1:netstat, command2:ping, and others we antici-
pate. The remote caller would send command2 1.2.3.4. This last 
design minimizes the likelihood of errors, but many parsing risks 
remain and will be covered in Chapter 8.

Many interpreters will take an argument of a script, such as python 
mycode.py. We could create a version of Python that does less and 
requires all code to be in an approved directory, like /usr/ 
local/python/site/. Each of these attenuates the authority granted 
to their caller in different ways, tuned to the functionality they offer.

The sudo program is designed to allow its callers to run code with 
root privileges. Sudo itself could run anything, but the design goal is 
to attenuate that authority so that only specified users can run speci-
fied commands. This turns out to be tricky, in part because sudo must 
parse not only the input command but also a policy file that declares 
who can do what. That policy language is written in a moderately 
complex language to let administrators specify a wide variety of 
allowable commands.

Defenses for Deputies
It’s easy to say “Don’t create a deputy that can be confused!” It’s harder 
to do, and even harder when your code is already in production.

So, it’s not easy to create a deputy that can’t be confused. In fact, 
sudo, a program that exists almost entirely to do this, has had a long 
string of security issues (not all of which were confused deputy prob-
lems). Confusion, at the programmer, system, or user level is hardest 
to prevent when the abstractions seem like thin layers that we can 
peer through.

The first step is be aware that your code is a deputy. This is easy 
with daemons, setuid code, and code that processes complex file 
structures. It is less obvious with some of the emergent cloud 
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patterns, and especially as we borrow expensive technical debt by 
integrating libraries we don’t fully understand. When you know your 
code is a deputy, build that functionality into a small, isolation-
friendly subset that’s easy to reason about.

The second step is to be careful about configuration. If you take 
configuration from a user-controllable file, you must scope either that 
configuration to that user or the entire execution to that user. If your 
code makes API calls that use your authority and those APIs don’t 
specify the user as a parameter, that will likely lead to confusion.

Third, be careful with input and output, such as where you take 
input or especially if your code has extra authority.

Fourth, don’t attenuate. Do I have your attention? Good. It’s true, 
I’ve been talking about attenuating, but rather than attenuating, build 
up precisely the set of authorities you want to pass to each client. (For 
example, when your code is on a traditional Windows or Unix sys-
tem, it may be reasonable to pass file descriptors rather than filenames.

Fifth, deputy access control should be either precisely the same as 
the next layer or obviously different. Almost the same is a prescrip-
tion for misunderstanding. Subtly different is a nice label for “shock-
ingly easy to misuse.”

Handoff
A common modern handoff is via application protocols, such as 
“mailto:” These protocols seem simple and safe, in that they are one-
way, and the data associated with them is limited to anything that can 
be encoded into a URL. But the application to which data is handed 
may well have been coded with the assumption that it would be 
invoked by a user, and that user won’t be attacking themselves, as 
they already have the ability to run code. Violating this assumption 
often has hilarious results, assuming you’re the attacker (Lawrence19).

Mailto takes as arguments an email address, as well as subject, cc, 
bcc, and body content. I’m sure my mail program is ready for bizarre 
content in the bcc field, but I’m not sure yours is. More prosaically, if 
you implement such a handoff system, it’s important to realize that 
the clients may not expect random content from the Internet.
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The defenses you build in code and the architectural patterns that 
you deploy will serve to constrain attackers and, we hope, prevent 
them from reaching their goals. With that, we turn our full attention 
to concepts of authority and privilege.

Authority and Privilege
To this point, I’ve treated authority and privilege as interchangeable 
terms, on the assumption that you might have heard of privilege but 
haven’t really thought about what it means. If that’s the case, you can 
transfer those loose understandings over. It turns out that the concept 
of privilege in computer security is a mess, and it makes your job 
much harder than it should be. For example, on Unix systems, “bind 
to a low-numbered port” was a privilege reserved to root; on Windows, 
it was not. (It wasn’t even reserved to the Administrators group.)

If you’re forced to work in privilege and permission systems, 
understanding why they can go wrong can help you think about con-
structing solid defenses. If you can replace them, it’s like moving from 
a language with implicit casting to one that’s typesafe. It’s a little 
harder at first, but entire classes of bugs may disappear, and you can 
code faster and more confidently.

Access Control (Background)

The fundamental task of an operating system is to manage access to 
resources, including processors, storage, and peripherals. It defines 
accounts and uses them to define and check authorization via various 
system calls. Operating systems also mediate how often these 
resources (especially processor) can be accessed, or how much, 
via quotas.
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Access Control Implementation
These calls often involve a tuple like (userid, action, object). 
Here’s an example: (adam, read, /home/adam/.bashrc).

To be explicit, the code that implements access control generally 
looks something like this:

fd = open(uid, file, flags) { 
  // flags are read, write, execute, etc 
  if (uid == root) return (kernel_open(file, flags)) 
  if (check_permissions (uid, file, flags) return  
(kernel_open(file, flags ) 
  // uid should be handled at a different layer, but 
it's illustrative to call it out here. 
  // Also, this design means any caller can open a file 
as any UID, which is probably not what the 
designer wants 

The uid is a subject, the finest-grained unit that may be granted 
access rights. The file is an object, the finest-grained unit on which 
access rights can be defined.

Flags can be simple, like read, write, execute, create, or delete, or 
more nuanced like append. This pattern exists across a great many 
systems including desktop or mobile operating systems and cloud 
providers such as Dropbox. The pattern shows in databases or other 
applications, with file being replaced by some other descriptor, such 
as a row or column or stored procedure.

These tuples are often expressed as permissions or access control. 
An example permission might be (adam, execute, a.out). There 
are limits to how expressive one can be in the Unix model of permis-
sions for user, group, and everyone, so some systems define access 
control lists (ACLs), which are lists of access control statements and 
rules about how to handle conflict, such as “any deny rule wins” or 
“the most specific rule wins.” To be precise, those are access control 
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entries (ACEs), stored in ACLs. In practice, “ACL” is sometimes used 
to refer to either an entry, the list of entries, or the sound that a con-
fused engineer makes trying to make sense of it all.

Expansion of authority can allow an attacker to bypass these types 
of checks or to do things beyond the intent of the human being 
responsible.

Permissions and Policy in Access Control
Expressions like (adam, ~/.bashrc, read), (group:staff, a.out, 
execute), or (adam@example.org, flickr.com/photos, modify) are 
statements of policy. They are structured expressions of the intent of the 
system owner or users about who may do what.

Ideally, they are comprehensible and match the intent of the user 
who sets the policy; both turn out to be hard. Users may not know 
who’s in a group; cascades of ACL inheritance may work differently 
than expected. Data may be accessible to unexpected parties, and it 
may be hard to grant access to exactly the right group. You might 
want to allow “system designers who know the location of the second 
Death Star” but exclude members of the groups “Bothans” and 
“bounty hunters.”2

The (user, object, action) tuples have several serious down-
sides, including name resolution, but more importantly, we give each 
program very broad authority to act on objects on our behalf because 
predicting the authority that program will need is very difficult.

Predictions Are Hard, Especially About Policy
If I need to express policy against future needs, I will likely do so in a 
way that’s expansive, because I don’t know what the future will hold. 

2If you’re paying close attention rather than getting distracted by my Star Wars jokes, 

you may notice that it’s unclear if I mean to exclude only Bothan bounty hunters, or 

anyone who’s either. In fact, I meant to exclude anyone who’s either, and in reading my 

own text noticed that I had been accidentally unclear, accidentally proving my own 

point about how hard it is to get it exactly right.

mailto:adam@example.org
http://flickr.com/photos
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But in the moment, I might be able to describe very specific policies. 
For example, an expansive policy might be “Microsoft Word can read 
and write in ~/Documents and subfolders.” That’s what I usually 
want, until Word is corrupted and the attacker uses that delegated 
authority to ransomware all my files. Today, I only want Word to write 
to ~/Documents/threatsbook/expansion.docx.

If you’re going to introduce a sandbox, one of the challenges is how 
to get a person to say, “This program may access this file, but no other 
file I have access to,” and to do so in a way that’s fluid, not annoying, 
and protects against future threats.

When Windows 8 was introduced, it took away the ability of sand-
boxed apps to call the traditional open(). Rather, apps call 
FileOpenPicker and FileSavePicker. As shown in Figure  6.4, 
those APIs and the associated user interfaces (file pickers) run at a 
higher level of authority than the app, and the person behind the 
computer uses them to say where the app may read or write. Most 
people are not even aware that there’s a security difference between 
the file picker dialog and the app. As perhaps an entertaining side 
note, I knew about this because of conversations with the people who 
designed it, and it was challenging to find the documentation that 
verifies the claims. The Microsoft documentation “Open files and 
folders with a picker” doesn’t mention security or capabilities. The 
file picker is not listed as a boundary in the “Security Boundaries” 
page, (which, to be fair, is a COM page, highly ranked by search 
engines for its title), but access to Documents is listed as a restricted 
capability in “App capability declarations” (Microsoft, 2018-a, 
c, and d).

Problems with Privileges and Permissions
Related to permissions is the idea of privilege. For a moment, let’s 
define privilege as the ability to alter security functions, properties, or 
rules within a system. I tend to think of permissions as tied to objects, 
and privileges as tied to accounts, but we reach the limits of that 
model quickly.
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Privileges can be implicit or explicit. On a Windows or Mac even a 
“normal” account has an incredibly rare and implicit privilege: to run 
code on that machine. Most of the people in the world are not author-
ized to do so. “Execute code” is a privilege, often granted implicitly to 
any authorized user of a traditional operating system, but on mobile 
phones, it’s gated via app stores, and on kiosks it’s denied. Similarly, 
“send network packets” is a privilege, as is “listen for packets” and 
“listed on ports below 1024” is a separate privilege. As you’ve seen, 
Linux now tries to break these privileges up into what it calls 
capabilities.

Mobile applications must accept that network privileges can be 
arbitrarily removed when cellular bandwidth is a concern. They can 
also be removed by airplane mode, but that’s turning off the radio, a 
separate privilege. There’s a subtle and important difference. An appli-
cation that elevates privilege might send its data via another app when 
the first apps’s “send packets” privilege is removed, or turn airplane 
mode off entirely, a privilege that should not be accessible to any nor-
mal application. (I can make the same statements with the concept of 
authority—an app with authority to send or receive with the radio 
may not have the authority to power the radio on or off.) As an aside, 
this is a reliability feature for the cellular network, not the airplane.  

Firefox

Open()

Leia (uid 502)

/home/leia /home/leia

Firefox

FIleOpenPicker()

Leia (uid 502)

Restricted

FIGURE 6.4  A file picker architecture
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If airplanes crashed when phones were in normal mode, some terror-
ist would be boarding with a backpack of phones.

Privileges can be direct or transitive. Web browsers grant a subset 
of the execute code privilege to every website we visit, along with 
every website to whom it passes the favor and every proxy that can 
tamper with HTTP connections. The intent is that the browser grants 
that privilege only within the browser, but browsers also have com-
plex behaviors about downloading files, and the permissions associ-
ated with a file already on your computer are different than the 
permissions with a file loaded via the Web.

Permissions are useful in part because they’re familiar. We’ve 
learned to understand them. Designing permissions to grant addi-
tional capabilities that are not equivalent to Administrator is hard. 
For example, the Windows Backup Operator was always equivalent 
to Administrator, and the various Windows privileges have been qui-
etly deprecated. Droids were given access to entire facilities through 
access ports, until a certain R2 unit ruined it for everyone.

In fact, system designers can define both permissions and privi-
leges and can use either to deliver the same effects. For example, on 
Unix, an account is created by modifying /etc/passwd. Thus, per-
mission to write to the file /etc/passwd grants the ability to create 
accounts. This write permission can be granted by calling chmod on 
the file, by adding a user to the wheel group, by using sudo, or per-
haps in other ways. On Windows, an account is created by calling 
NetUserAdd() or other APIs each of which checks the caller for 
membership in the group Administrators or Account Operators. 
Therefore, on Unix account creation is a matter of permissions, while 
on Windows account creation is a privilege.

Stepping back, trying to understand privilege via an object/account 
definition doesn’t even work well. On Windows, users are objects, 
objects are turtles, and madness lies down this path. It’s not even the 
Dark Side—my anger has not made me powerful. We need to walk 
this path for a short while so you can see why we need alternative 
ways to make progress.
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This squishy base makes it hard to reason about privileges and 
permissions. My goal for this book is to enable every engineer to rea-
son crisply about security. And so this chapter has been a struggle. I’d 
been using the concepts of permissions and privilege for more than 
25 years. I’ve reconfigured daemons that had no concept of sandboxes 
to run in sandboxes. I believed I understood these concepts. I discov-
ered that I’d never really disentangled them. Figuring out what a per-
mission was and what a privilege was to explain the old frame of 
“elevation of privilege” nearly and unexpectedly scuttled this project. 
It was only in rereading Mark Miller’s 2005 PhD thesis that I gained 
an appreciation for his approach of considering authority.

Most of today’s desktop systems use permissions rather than 
authority, and it’s to their detriment and ours. Systems that delegate 
via authority, which implement the principle of least authority, can be 
far more secure. I now refer to the E in STRIDE as “expansion of 
authority.”

Newer Approaches to Policy

Again, authority means the effects that a program may cause on 
objects it can access, either directly by permission or indirectly by 
permitted interactions with other programs. This allows us to reason 
at a policy level and design mechanisms to support those policies. 
(You may think we’re in esoterica here, but it’s important for giving 
your designs a solid basis.) But if you’re designing modern technology 
for something like an IoT device or a microservice cloud architecture, 
it’s helpful to ask what authority each process should have. That ques-
tion informs the answers to “What permissions should be set?” and 
also prompts you to think about “Where and how do we set policy for 
the system?”

Authority as Design Pattern
The old solution is that each program runs with the full authority  
of the user who invokes it. Newer solutions use capabilities and 
authority models.
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A simple example, quoting Dr. Mark Miller, is the difference 
between these:

$ cp foo.txt bar.txt

Your shell passes to the cp program the two strings “foo.txt” and 
“bar.txt”. The cp program uses these strings to determine which 
files it should copy.

By contrast consider how cat performs its task:

$ cat < foo.txt > bar.txt

Your shell uses these strings to determine which files you mean 
to designate. Once these names are resolved, your shell passes 
direct access to the files to cat, as open file descriptors. The cat 
program uses these descriptors to perform the copy. Now con-
sider the least authority that each one needs to perform its task. 
With cp, you tell it which files to copy by passing it strings. By 
these strings, you mean particular files in your file system, to be 
resolved using your namespace of files. In order for cp to open 
the files you name, it must already have the authority to use 
your namespace, and it must already have the authority to read 
and write any file you might name. Given this way of using 
names, cp’s least authority still includes all of your authority to 
the file system. The least authority it needs is so broad as to 
make achieving either security or reliability hopeless.

With cat, you tell it which files to copy by passing it the desired 
(read or write) access to those two specific files. Like the cp 
example, you still use names in your namespace to say which 
files you wish to have cat copy, but these names get evaluated in 
your namespace prior to being passed to cat. By passing cat file 
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descriptors rather than strings to convert to descriptors, we 
reduce the authority it needs to do its job. Its least authority is 
what you’d expect—the right to foo.txt and the right to write 
your bar.txt. It needs no further access to your file system.

In other words, if cp is running as anakin, his shell gives cp the 
authority to read any file anakin can read; it is given all of his author-
ity, and we know how that works out. In contrast, cat is given the 
authority to read exactly one file and write another.

In the policies expressed in the previous section, there are no pro-
gram identities. Any program running as uid adam may read .bashrc. 
For many, this seems like a natural state of affairs. In an authority-
centered system, we need to be able to reason about the set of access 
that a program has.

Changing a system from the permission and privileges approach to 
an authority or capabilities approach is hard work. That hard work is 
worth it because few programs running as user george have the full 
authority of his account. Each has the authority, and only the author-
ity, it needs to do the job it’s given in the moment.

For example, emacs is very powerful. It can run Lisp code that can 
do anything that the user who invokes it can do. Let’s assume that we 
modify it so that all calls to read() are replaced by a file picker UI, of 
the sort discussed in “Predictions Are Hard, Especially About Policy.” 
(We’ll ignore some complications like reading startup files.)

Now our modified emacs can’t read the script for Revenge of the Jedi 
unless Larry or Becky or George click it. It can’t run ransomware that 
encrypts the script for the Phantom Menace. (OK, maybe that would 
have been nice, but whatever you think of the idea, we don’t want to 
grant that authority to every program we run.)

It turns out this can be easy if you control the operating system. 
You “just” make fopen() a call that requires special permission to use 
and add a file picker API that requires human input. (There are again, 
gotchas. If you change fopen()then anything that calls it has to be 
re-tested.)
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Apple has made a change like this to macOS, requiring apps that 
want to edit arbitrary files to have a permission called Full Disk 
Access. In contrast, Microsoft has only imposed this on “modern 
apps.” The approaches represent different philosophies and priorities: 
Microsoft values application compatibility more than Apple. Apple 
was willing to impose an extra step on backup software and other 
tools that require this greater level of authority.

Capabilities in Access Control
Sadly, almost all of today’s systems use permissions and privileges, 
rather than authority and capabilities, so it’s worth understanding 
them both so you can work with them and so you can design better.

But! Technology is being built and rebuilt at remarkable speed, and 
new systems can work in new ways. Key-centric references can be 
built into new systems with relative ease, and they make implementa-
tion and reasoning about implementation much easier.

For example, if you’re building microservices in the cloud, you’re 
probably building them to call service discovery APIs. Those service 
discovery APIs can choose when to return access and when not to. If 
your final API endpoints are changed with the permissions, you have 
something similar to a capability system. That is, if I have RESTful 
API endpoints of /1234567/ to read Darth Vader’s calendar and 
/8ddf8e78/ to write them, then my service discovery can choose 
who reads and who writes. If I call /calendar/darthvader/ 
read or /calendar/write/darthvader, then each has to ensure 
that they implement a proper access control chokepoint.

Framing our understanding in authority makes it easier to reason 
about the security of what we’re building or deploying. Constraining 
the authority of each component and using isolation and attenuation 
as we delegate or invoke further functionality makes our systems 
more reliable and secure.
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Conclusion
Why is it possible for the Empire to install a tracking device on the 
Millennium Falcon? The panels have no locks, and the connections 
to power are accessible throughout. Perhaps it’s better for anyone on 
the ship to be able to quickly make repairs? (Especially on that ship…)

And why does no one find that tracking device? Perhaps it’s the 
complexity of finding it among the “special modifications” that Han 
Solo has made. Perhaps it’s the urgency of getting to the Rebel Base on 
Yavin before the Death Star arrives.

Like the Falcon, modern systems accumulate complexity and fail 
to implement isolation or defense in depth, and attackers take advan-
tage of that.

A few modern programs, running on desktops, need broad and 
flexible authority to act on behalf of their users. Most of what we  
create needs far less authority, and even less if we’re thoughtful about 
its design. This means we can code defensively, pass on our authority 
carefully, and backstop both by planning for accidents with isolation 
techniques. Each of these means that we alone can exercise our 
authority.
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Engineers like predictability. It would be hard to build a Death Star 
if halfway through setting up the superstructure, gravity kicked  

in like a tractor beam. Attackers also like predictability. If your main 
program runs commands it stores in /tmp/setup.sh, then an 
attacker who can create that file gets to run their commands and is  
in the money. If your Sabbac game sets its card order based on the date 
each night at midnight, then an attacker who discovers that is really 
in the money.

It’s important for you to understand when unpredictability or ran-
domness matter, and it’s important to understand that they are (pre-
dictably) different. You can have numbers that are difficult to predict 
from a few examples, or you can have ones that are random. For now, 
let’s define random to mean even perfect knowledge of the system 
won’t help you anticipate the next output. For example, well-shaken 
new dice are effectively random, and when those are used with care-
fully designed rules and operations, they can give the house a predict-
able advantage and pay for nice casinos like the ones in Las Vegas or 
Canto Bight.

Predictability and 
Randomness
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Computers, however, are predictable. That predictability leads to 
threats from informed or brute-force guessing (and testing those 
guesses) and some surprising truths about the odds of those guesses 
succeeding. We’ll also look at threats to time itself, or at least how 
technical systems track it. From there, we’ll cover predictability in 
specific scenarios, defenses including permissions and authority, large 
search spaces, and the importance of assuming transparency.

Predictability Threats
Attackers love to imitate the Emperor and cackle that “Everything is 
proceeding as I have foreseen!” They might be predicting a filename 
so they can write it before you, a sequence number on a network pro-
tocol so they can spoof packets, or how you’ll change your password 
by incrementing a trailing digit so it passes the password update 
requirements.

Think back to the discussion of capabilities in Chapter 6, “Expansion 
of Authority and Isolation.” Remember that a capability is a long  
number that’s hard to guess, such as 67890123 being the capability to 
write to Documents/threatsbook/predictability.docx. 
We can be more specific about the threats to such a system: they 
include both finding a specific capability and finding any valid capabil-
ity. In that chapter, I mentioned “unguessably long,” and in this chap-
ter we’ll get specific about how to think about that phrase.

If you want to ransomware my files, any valid capability is useful 
to you; if you want to read this book before it’s ready, then only a few 
of my documents will satisfy.

Guessing and Testing

Some things are predictable: what’s the next number in the sequence 
1, 4, 9, 16…? (It’s 25.) Other things are guessable: I’m thinking of a 
number between 1 and 5. (I’m thinking of .) What’s that? Choosing 
π is cheating? It’s a real number between 1 and 5. Get used to your 
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assumptions being invalidated. Now I’m thinking of an integer in the 
range 1 through 1 million, inclusive. No silly tricks, but I’m giving 
you only a single guess. I can personally enforce the single-guess rule, 
but having a computer do so can be tricky.

Each guess takes some time, as does testing it, which means that 
clever attackers seek to optimize the order of their guessing, and 
smart defenders make optimization impossible.

Dictionaries and Guessing
Which of these is more likely to be someone’s password: 
RememberAlderaan or dg1298L;dsaf4lt? While we might hope that 
they’re equally likely, or even that people will shy away from predict-
able passwords, RememberAlderaan seems more likely than the other, 
equally long string. And perhaps RememberAlderaan1 or even 
RememberAlderaan1! are still more likely as people are pushed by 
password rules. Smart attackers will build “dictionaries,” lists of pos-
sible answers; organize them by their best understanding of likeli-
hood; use them to structure their guessing—and even publish them 
on the Internet.

Dictionaries are enabled by three things: a small search space, a 
lack of randomness, and human limits. The search space is the num-
ber of total possibilities. So, a lock with three spinning dials, each 
settable to a number between 0 and 9, has 1,000 possible combina-
tions. The padlock on a school locker, with three numbers between 1 
and 36, might have 36^3 (46,656) possible combinations, which 
seems like a lot. If you have to test them all one after the next and can 
test one a second, it could take almost 13 hours, which would be 
pretty boring. (We’ll assume that the lock is both silent, so a stetho-
scope won’t help, and physically high tolerance, so there’s no chance 
that it will accept a 32 in place of a 33.)

More specifically, by lack of randomness, I mean that the distribu-
tion of answers is not uniform. Some answers are more likely than 
others. Human limits include memory and willingness or ability to 
type or tap long random strings reliably.
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Uninformed Guessing (Brute Force)  Computers excel at boring, 
repetitive work, and 13 hours isn’t a very big search space. 
Cryptographic keys tend to be 128 bits or more to create a very large 
search problem. (On average an attacker will test half of perfectly 
random keys before finding the right one for a specific message. In 
this case, that would be 2^127, which is give or take “a trillion trillion 
trillions”—it’s roughly 170 followed by 37 zeros. Even for computers 
that are good at repetitive work repetition, that’s infeasible, and I’ll get 
more specific about what that means when we reach “large search 
spaces” in the “Defenses” section.) This form of guessing, where each 
answer is equally likely, is called “brute force.”

The difference between brute force and The Force is that brute 
force requires neither magic powers nor extensive training. In fact, 
brute force is usually performed by software that’ll do that boring, 
repetitive work.

By design, a guess in a cryptosystem applies to only one tuple of 
plaintext, key, and ciphertext. If you have to test whether a particular 
password gets you into my account at my mail server, you’re checking 
a username/password combination. If you have a list of hashed pass-
words, you may be able to run an algorithm like the following one 
(we’ll come to why I’m using the term “hashed” in just a minute):

List dictionary[words] // a set of candidate passwords 
List passwords[hashes] // a set of hashed passwords
For word in dictionary {
  Candidate = hash(word);
  If 'Candidate' in passwords: print 'Candidate'

From the attacker’s perspective, this is nice because the output of 
each hash operation gets compared to each entry in the passwords 
list. If the list is 50 hashed passwords, they do the hash once and get 
to compare it to 50 stored passwords.

We use a hash algorithm because if we encrypted the list of pass-
words, then anyone who steals the encryption key can simply decrypt 
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the list. And in fact, we use what’s called a salted hash. The “salt” is a 
small random value that changes per password, and we hash (salt, 
password) and store salt, hash. (To be concrete, “small” here 
means enough to have a unique salt per item in a list—usually 32 bits 
or more—and there are few arguments against 128 or 256 bits.)

So, as shown in Table 7.1, even if we have the same password, our 
stored password values are different. (For readability, I’m using short 
salts and truncated hashes.)

The end result is that the attacker’s work to hash one salt potential 
password combination reveals at most one password, rather than one 
hash leading to revealing every user whose password is 
RememberAlderaan. (The galaxy is teeming with Rebel sympathiz-
ers.) If we assume that table lookups are faster than hashes, then that’s 
a good thing for the defender. In fact, we design hash algorithms so 
they can’t be sped up.

A brute-force attack will always work, given enough time, which is 
why cryptosystems have very large search spaces (key lengths).

Informed Guessing  Now, if RememberAlderaan is a common 
password, maybe attackers will order their dictionaries so it comes 
before other 17 character candidates. The attacker can put their dic-
tionary in any order they want, and today, the order is informed by the 
large password breaches that exposed tens of millions of passwords. 
Attackers are generally guessing at a biased search space. As they tar-
get a specific person, knowing the other passwords that person has 

TABLE 7.1  Passwords and Salts

Password Salt Stored Value

RememberAlderaan abc abc,d2224c78779

RememberAlderaan cde cde,eea78a17ab5f
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used, or their hobbies, family names, and important dates like birth-
days and anniversaries, can dramatically change the odds.

Memorable strings are much easier to remember and even to type, 
and that contributes to the effectiveness of dictionaries. (As an aside, 
if you’re still typing in your passwords like a pre-industrial Ewok, get 
a password manager.)

Time/Memory Trade-Offs Including Rainbow Tables  If you 
have an expensive operation, caching results can be helpful. If that 
operation is hashing passwords, attackers might store hashes of the 
most common billion or trillion possible passwords, or password-salt 
combinations. If a salt is only 12 bits (as was the case for Unix pass-
word storage), that’s only a 4,096-fold expansion in storage needs. 
Yes, only. It seems like a lot, and it is, but if you have a billion 8 byte 
sequences and a billion 16 byte hashes, that’s 24 billion bytes, which 
is 24 GB. Expanding that by 4,096 times would require roughly 100 
TB. But that’s to store a billion passwords—roughly three for every 
person in the United States.

As we think about what to store, we come to time-memory trade-
offs. If salts are missing or small, you can precompute values for pop-
ular passwords (say the top few million.) Rather than re-computing, 
you store the results. That trades off the storage against later 
compute time.

There are much more clever optimizations available, including 
“rainbow tables.” These allow for a flexible trade-off of storage space 
and the cost of a lookup.

The Birthday Problem
There are attacks where the attacker needs to get a very specific hit; 
other times any match will be fine. Forgetting about the second case 
is easy and will lead to trouble.

For example, let’s say you have a web server and you want  
to require the right big number to access photos, so you create URLs 
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of the form /pictures/19800521/photo1, /pictures/ 
19800521/photo2, etc. Now, I might not guess the right big num-
ber to see the pictures that George Lucas has uploaded. If  
/pictures/19800522/ are photos from Empire Strikes Back 
director Lawrence Kasdan, I might be excited anyway. Of course, 
that’s a trivial increment by one, which is worse than small random 
numbers, which are worse than big random numbers.

If you’re trying to guess my password, you have to match a single 
line in the list of stored passwords. But if any password will serve, 
your work factor goes way down.

There is an important insight from statistics, called the birthday 
problem. It’s a simple problem: how many people have to be in a room 
before there’s a 50 percent chance that two of them share a birthday? 
Now, I’m hopeful that by this point you’ll sense a trap. If you didn’t 
sense a trap, that’s okay; consider yourself warned. With that warn-
ing, write down the number. Some people will have written down 
182, because that’s an intuitively obvious number, and it’s very wrong. 
The first person has a perfect shot at not sharing a birthday. The sec-
ond person has a 364/365 chance of not matching the one person 
already there. The next person has a 363/365 chance of not matching, 
and the overall odds are 1 × 364/365 × 363/365. As we add people, the 
odds of not matching anyone in the room drop to just under 1 in 2 at 
a mere 23 people. Now, what are the odds that with 23 people in the 
room, someone will share your birthday? This goes back to 1 in 365—
again the difference between needing to guess any valid value and the 
need to guess a specific one.

The birthday attack is relevant because an attacker sometimes 
needs to match a particular birthday, sometimes they need to match 
any birthday, and the odds of doing that climb surprisingly rapidly. 
For example, maybe they need a file that hashes to a particular 
SHA-2 value, or maybe they need a file that hashes to any SHA-2 value 
that’s been signed by your key? (SHA-2 is a cryptographic hash 
standard.)
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Cryptographic Threats

Sometimes those new to security want to design their own cryptosys-
tems, which is awesome. It can be a lovely learning experience, like 
seeing your Battle Station destroyed by some farm boy flying a fighter 
he’s sitting in for the first time. The chances that your system will 
survive are way, way worse than the odds of successfully navigating 
an asteroid field. So feel free to design something, but please 
don’t field it.

There are also threats from timing—if your cryptography works 
faster in some circumstances than others, attackers will use that to 
siphon information. That brings us to: time.

Time and Timing Threats
That “time is an illusion” doesn’t prevent systems from relying on it 
for security purposes. There are attacks that rely on changing the 
time, attacks that rely on timing, and this is as good a time as any to 
talk about sequence issues, if we don’t run out of time.

Many network protocols rely on clocks being in rough alignment. 
They expect remote systems to respect expiration times. Threats 
include messages that appear too early, too late, or where time is used 
in place of sequence numbers or nonces.

Information Disclosure and Time

Either knowing what time a remote system thinks it is or how long an 
action took can be useful to attackers.

As we saw in Chapter 4, “Information Disclosure and Confidentiality,” 
measuring how long an encryption or decryption takes can tell you 
how many bits are in a key. Similarly, attacks like Spectre use timing to 
see what data is in a cache and if a given operation results in a cache 
hit or miss.
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It turns out that when you let an attacker run code, even con-
strained code, they can determine local time accurately enough for all 
sorts of mischief. In fact, in a document about Spectre, Google engi-
neers write both “Merely enumerating all the clocks is difficult” and 
“Surprisingly coarse clocks are still useful for exploitation” (awhal-
ley, 2018).

Remote systems helpfully serve up the time in a great many ways, 
ranging from the time protocol (port 37) through banners, headers, 
message content, logs, and other details exposed by mail servers, web 
servers, and other protocols.

Tampering with Time

Attackers can reset the clocks on their own computers, moving them 
backward to avoid expiry of various secrets or software licenses, to 
send messages in the past (“Oh, yes, I sent the cancelation email 
before the trial expired!”). They can move them forward to unlock 
time-release items or challenges. If they can’t manipulate the clock 
directly, they may be able to move time zones (McKenna, 2019). Both 
are often exploited against mobile games. It’s also easy to speed up or 
slow down the apparent clock speed on a computer.

Somewhat more surprisingly, you can change the time of a remote 
computer, spoofing a DHCP or NTP server. (NTP has defenses against 
making large adjustments all at once.)

Predictability in Specific Scenarios
Either a cloud or IoT system may have a lack of high-quality random-
ness, read your specs carefully for cryptographic-quality randomness. 
There are also threats to network traffic, local systems, and even busi-
ness processes.
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Network Traffic

Many of the core IP network protocols, including TCP and DNS, have 
very predictable message formats and do not support cryptographic 
authentication or integrity. Many TCP/IP stacks originally used pre-
dictable initial sequence numbers. Some of these were predictable 
without any interaction. In other cases, they were related to other 
initial sequence numbers, so anyone who initiated a connection with 
a host could make better guesses about other TCP sequence number 
in use. “Better” here includes a range from “you can’t miss” to “it’ll 
take many guesses.” In the 90s, sequence numbers were incremented 
by a predictable counter, so if you knew one, you could predict the 
ones being used in either existing or new connections (Bellovin, 
1996). Such prediction allowed nearly perfect network traffic spoof-
ing, splicing, and other tricks.

Similar problems existed in the many higher-level protocols, where 
they are sometimes protected by lower-level cryptography. These 
problems are best known in Internet-style networks, whose designs 
are transparent. But the core problems of performance and bootstrap-
ping trust are not specific to Internet protocols.

Local System Threats

When an attacker can run code on a local machine, there are many 
places where a lack of randomness makes an attack easier. These 
include the filesystem, memory layout, and a host of operating system 
details like process IDs.

Filesystem Threats
There’s a family of threats where attackers and defenders race to con-
trol a shared resource. These attacks have a few names, including race 
condition, because it’s a race to see who writes the file and “time of 
check, time of use.” That’s a description of the issue: something is 
checked and then used while the thing being checked is subject to 
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manipulation after checking. (The phrase is commonly abbreviated 
TOCTOU and pronounced “tock-too.”)

Historically, files in /tmp/, such as install.sh, were  
a favorite target for attackers, and defenders evolved from  
/tmp/install.sh to appending a process ID or even a random 
number ( /tmp/install.pid, /tmp/install.ABCD). Attackers  
could often predict the next process ID (pid) because most operating 
systems assign process IDs sequentially. So if your process is PID 421, 
then creating /tmp/file.422, file.423, and file.424 is likely to 
create a file that another process will rely upon, especially if you’re in a 
position to invoke the process that will look for /tmp/file.422. 
Similarly, if the name has a random four-digit number, the attacker just 
needs to make 10,000 files (or links, if they’re considerate of your disk 
space, or apprehensive about an accidental denial-of-service attack 
interfering with their expansion of authority).

Writing content to a file that someone else’s code relies on is a com-
mon race attack. There are also variants where an attacker will create 
a symbolic link to a file that you own and then change the link to 
point to a file they own. If you’ve checked the link and the target of 
the link, can the link still change?

There are other important temporal logic issues with code, espe-
cially in large distributed systems. (For example, if two processes on 
opposite sides of the planet write to the same address in a filesystem, 
whose data does the consistency algorithm pick?) These are security 
issues in the sense that they can hurt the integrity of a system, attack-
ers can certainly invoke them, and they are also called race condi-
tions. They’re harder for an attacker to leverage to get an advantage 
than the local system versions.

Memory Layout Threats
For the first 50 or so years of computing, the layout of code in mem-
ory was highly predictable. That made it easy to write attacks that 
overwrote memory on the stack or heap or to assemble chains of 
instructions from existing code. The first tools to make memory 
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unpredictable simply inserted a canary on the end of the stack, and if 
the canary wasn’t present, then leaving the stack was handled differ-
ently. The value of the canary was unpredictable, so an attacker had to 
take care to not overwrite it. More recently, libraries are loaded at dif-
ferent addresses via address space layout randomization (ASLR), and 
other randomization tactics are used to reduce predictability.

Many software exploits include a stage where they write executable 
code into memory and then execute that memory by causing control 
flow to jump there. Randomizing memory layout in various ways 
makes these attacks harder but not impossible. These defenses are 
now generally enabled by default but can be turned off. (If you’re on 
a low-end platform, it’s worth ensuring address randomization and 
other memory-safety tools are enabled.) If your process discloses 
arbitrary memory, it makes it easy to bypass these defenses. We’ll 
touch on these defenses again in Chapter 8, “Parsing and Corruption.”

Business Processes

Race conditions can impact any system where there are unique 
resources, such as droids in inventory or dollars in a bank account. If 
you allow calls such as “check balance” and “send money” to happen 
without explicit locking, then an attacker will find a way to overdraw 
an account.

Defenses
Defenses against prediction attacks are generally simple and reliable. 
Many race conditions took advantage of design patterns that are dis-
appearing. Defenses against guessing and prediction attacks require 
design work and sometimes nuanced trade-offs, but they’re pleasantly 
mathematical. The hardest defense for many to wrap their heads 
around is transparency, so we’ll close the “Defenses” section with that.
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Preventing Races

To avoid races in database systems, apply locks to crucial sections, 
and patterns like ACID in design. (ACID stands for atomicity, consist-
ency, isolation, and durability.)

The pattern of writing crucial files into shared temporary space 
made a certain amount of sense when disk space was expensive and 
scarce. Avoiding filling up a crucial filesystem might have been worth 
the risk, but those days are behind us.

To avoid shared storage races, the best pattern is simply to use pri-
vate storage for crucial resources. Set up a new storage space for the 
purpose, rather than using /tmp. If you need to share, set the permis-
sions to share with a very small set of principals, like a single user or 
group, and then check that the permissions are what you expect 
them to be.

The jargony label of “time of check/time of use” is helpful insofar 
as it suggests a fix: ensure that the thing you’re working with cannot 
change between the time you check it and the time you use it. For 
example, if you open the file and then check the file handle, you at 
least know that no one has swapped the file out from under you. (An 
attacker might still have an open handle to the file.)

Formal mathematical methods can be used to reason about state 
and are showing increasing use in industry. One of these tools, TLA+, 
helps deal with large distributed system temporal logic, and Amazon 
has talked about how it has found important edge conditions with it 
(Lamport, 2021, Newcombe, 2015).

Defenses Against Guessing and Searching

Han Solo may want to never hear the odds, and that makes him a bad 
role model. Understanding and even manipulating the odds is a cru-
cial part of defending our systems.
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Large Search Spaces
Large search spaces make both prediction and guessing harder. The 
smallest meaning of large is “relative to fleets of modern computers 
working for days or months.” At the larger end, completely random 
256-bit keys can take so long to search for the key that if every atom 
in the universe was a supercomputer, they still wouldn’t have a chance 
until the real Death Star destroys the Earth, or even until the 
sun explodes.

For cryptographic keys, large is at least 128 bits. (Asymmetric 
keys need to have specific mathematical properties. So not every 
number makes a good key, and keys need to be larger.) If you can 
try a few billion keys a second (say, 232), it will still take you 295 
seconds to try half the possible keys. A year, as you’ll recall, is a 
bit under 225 seconds, so someone will write “a long time ago” in 
about 1,000,000,000,000,000,000 years.

Up to here, I’ve tried to expand the powers of two, and I’ll encour-
age you to start thinking in terms of doubling each time the power 
goes up by one. So 2^2 is 4, 2^3 is 8, 2^10 is 1024. The growth has 
literally given us the commonplace “exponential.”

Salts expand the search space for an attacker who’s gotten a copy of 
something they can attack offline. Salts multiply the search space and 
should be unique per item. For example, if you have 2^32 salts 
(roughly 4 billion) and your database is “people alive on Earth,” on 
average every salt will map to two people.

Slow Guessing
With older password storage algorithms, we can measure attacks in 
hundreds of gigahashes per second (a gig is 2^32). Cloud costs for 
those speeds are on the order of tens of dollars an hour. When attack-
ers can test guesses at those speeds, it changes the effectiveness of 
defenses, especially when there are dictionaries of common passwords.

There are two types of techniques to slow them down: online and 
offline. Online defenses are when your software can notice and 
respond to attacks. Either these can be constant rate slowdowns or 
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they can grow with repeated test failures, possibly even exponentially, 
or block clients. This is why it’s OK to have four-character PINs on 
ATMs. After a few bad guesses, the ATM will eat the card.

Offline defenses work even if your attacker can bypass your soft-
ware and directly access the database of values. The offline ones store 
the output of functions that are intentionally slow to compute, like 
iterated cryptographic hashes.

Newer algorithms such as Argon2 or Balloon are designed to be 
tunable and generally allow you to increase iteration counts to adjust 
the safety margins for stored passwords.

What parameters to use is an interesting conundrum. Some secu-
rity people recommend times into the seconds per hash, while 
acknowledging that can create a denial of service on your application 
(Burman, 2019). It’s certainly tempting to make very conservative 
recommendations, but even moving from 2^36 hashes per second to 
2^10 is a dramatic improvement. I suggest a good bound is “as slow 
as you can make it without frustrating users.” Doing specific calcula-
tions with your parameters—the number of users, the length of the 
salts, the password rules—may result in different answers for your 
application.

Key Derivation
It turns out that people are bad at remembering random 128-bit or 
2048-bit numbers, however nicely we encode them. Key derivation is 
a term for taking a human-memorable secret and turning it into some-
thing that resists dictionary attacks. (It’s also called key stretching or 
password stretching.) For example, let’s say you want to encrypt a 
spreadsheet with a list of Bothan spies. If we naively use “remember-
Alderaan” as the password, then an Imperial cryptographer can sim-
ply run the sort of dictionary attack already discussed. So, we use an 
approach that’s very much like protecting a password that’s going to 
be stored in a database: we hash it repeatedly, with a salt. (There’s a 
little more to it, and there are standards for key derivation, like the 
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cleverly named password-based key derivation function, PBKDF-2.  
I guess calling it R2-D2 would have made searching harder.)

The derivation usually involves a “key-stretching” approach, which 
is designed to defend against dictionary attacks against the password. 
For example, Microsoft Office uses 10,000 iterations of PBKDF-2 with 
the password to produce a document key. This stretching is important 
anywhere human-controlled data is used for security; the key stretch-
ing is nearly identical to the way passwords are stored on a Unix sys-
tem, with the differences being how the stored values are used and 
possibly the algorithm used for stretching.

A common pattern is to use a user-memorable password to protect 
a fully random cryptographic key. In other words, derive key1 from a 
password. Then use key1 to encrypt a strongly random key2, and use 
key2 to encrypt the data you want to protect. There are variants on 
this, such as random keys per document (or other data elements such 
as a database row or cell), with the master key stored in a system key-
chain. Most important, the key is derived from the password, rather 
than the password being used directly.

Rotation
“It’s an older code, sir, but it checks out.” Those words allowed Rebels 
to land on a moon of Endor, leading to the destruction of the second 
Death Star. And they incidentally show us just how good Star Wars 
world building can be. Rotating keys so that an attacker who steals 
one has a limited time to exploit it is excellent security practice. It 
risks breaking things. But rotation is a powerful tool for limit-
ing exposure.

And as the quote from Return of the Jedi illuminates, there are cir-
cumstances where not shooting your own shuttle craft requires man-
aging your codes (or keys) so that more than one is valid at a given 
point in time. That’s not trivial work. It requires discipline and careful 
consideration about what to do with each key and when to do it. 
Password expiry also shows the downside to rotation. If people have 
to be involved in each rotation, that can be a lot of frustrating work, 
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and it turns out people will cleverly manage by appending things like 
Feb22 to their password; attackers will also try such things, especially 
when they’re engaged in a focused attack and may have several sam-
ples of Han Solo’s password.

Randomness
A lack of randomness makes searching much easier, and even a subtle 
pattern can be tremendously helpful to an attacker.

As much as some bugs feel like they randomly appear, computers 
as algorithmic systems are predictable, not random. Systems can pro-
duce something that appears random, but it’s really just “pseudoran-
dom.” (NIST defines random as “A value in a set that has an equal 
probability of being selected from the total population of possibilities 
and, hence, is unpredictable.” They define pseudorandom as “a deter-
ministic process (or data produced by such a process) whose output 
values are effectively indistinguishable from those of a random pro-
cess as long as the internal states…are unknown” (NIST, 2018). The 
difference is computers have state, dice don’t.

These functions would take a seed and iterate over it in ways that 
are designed to make it hard to predict the next or previous output. 
(Earlier, I talked about predicting next values—being able to deter-
mine earlier states is also a flaw. For example, if we’re guessing TCP 
sequence numbers, if we can get the latest value, and we can back-
track, that lets us spoof an ongoing connection.)

For many years, this was the practical limit. Systems that really 
needed randomness would ask the user to type randomly or other-
wise use microsecond timing of physical input and use that as the 
seed (or fold it in with other data to be the seed). Obviously, that 
works better for a desktop computer than a cloud server. As the cloud 
grew in importance, chip makers added special hardware that (essen-
tially) derives very high quality randomness by measuring thermal 
noise (Hamburg, 2012).
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Today’s operating systems tend to have fairly high-quality random-
ness available, and experts pay very close attention to making sure 
those functions work. However, you may have to ask for the crypto-
graphic quality randomness. Many systems will default to giving you 
bad randomness because it’s faster. There’s advice—which often pre-
dates the inclusion of true randomness in chips—that you shouldn’t 
trust the random number code in the operating system, and you 
should run your own. There may be circumstances where this is true 
or where mixing in additional randomness may be helpful to you. But 
you’ll probably make your system less secure if you go down this road.

By way of example, people will often look for randomness in 
changing aspects of the environment, looking to things like process 
IDs and uptime.

Process IDs are one of many predictable elements of an operating 
system. User ID numbers are predictable on Unix. Uptimes tend to 
cluster around the smaller numbers, and various populations of 
machines have characteristic bell-like curves. Xboxes might cluster 
around a few hours; phones and desktops at days to weeks. Computers 
treated like crops might cluster around half a week.

Counterintuitively, if we take 8 bits of randomness from uptime 
and combine it with 8 bits of randomness from hardware, we have 
increased the predictability of the data we’re using, and that’s bad. It 
is, of course, possible to do this in a way that defends your system 
against a biased hardware random number generator and a bug, 
design flaw, or backdoor in the system cryptography. This is so excep-
tionally specialized that I myself would look to get expert help.

The last aspect of randomness to be aware of is that it’s impossible 
to statistically test if a stream is security-quality randomness. A test 
can find (some) flaws, but not the absence of flaws. In other words, a 
stream of data can pass a statistical test while still being highly pre-
dictable to someone who knows how it’s being produced.

Usability

Engineering systems that are both usable and lack predictability is 
hard. The better answer usually involves either avoiding the trade-off 
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or hiding the randomness from people with abstraction layers. 
Pretending that people can handle a barrage of randomness quickly 
and accurately is bad engineering; demanding that they spend their 
precious attention on it is a poor use of their energy.

The tension between what people can remember and the effective-
ness of password cracking is one of the reasons that multifactor 
authentication is so important. There’s little overlap between the con-
flicting requirements of usable and protectable in passwords.

More generally, people are generalizing machines. We seek pat-
terns and causation as part of how we make sense of the world. When 
security seems arbitrary, incomprehensible, or ineffective, many rebel 
against it. Explaining your security so that people can work with it 
helps both you and them and brings us to the question of transpar-
ency versus secrecy in security systems.

Assume Transparency

Some attackers are dedicated and focused and will spend time to learn 
how your specific defenses work so they can bypass them. If you dis-
cover they’ve succeeded, you’ll have to change your defenses. So, it’s 
better to design for that eventuality.

Some of the oldest principles we have in computer security predate 
computers but come to us from cryptography. In 1883, Dutch linguist 
Auguste Kerckhoffs published articles on military cryptography. The 
principles he espoused include “The system must not require secrecy 
and can be stolen by the enemy without causing trouble” (Translation 
from Petitcolas, 1997). That is, the security of the system should 
depend on keys that can be changed without requiring the whole sys-
tem be replaced. Despite putting forward six principles, “Kerckhoffs 
Principle” today is broadly used as shorthand for “Don’t rely on 
obscurity.”

A classic example of obscurity would be to store a house key under 
a potted plant. Anyone who knows which plant can access the key. If 
you put the key in a lockbox with a combination, the defenses are the 
physical strength of the lockbox and a combination. So, we can place 
the lockbox right next to the lock.
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Cryptographic systems today are designed with this principle in 
mind. AES-256 is better than anything you or I would design. It has 
undergone years of careful analysis. Its security is only dependent on 
the key being kept secret.

Moving from cryptography to software more broadly, locally 
installed software such as Microsoft Outlook is carefully reverse engi-
neered by attackers in labs. Microsoft both fixes specific memory cor-
ruption issues and, to make exploitation trickier, randomizes memory 
layouts every time an Office app runs. In contrast, Visual Basic for 
Application (VBA) macros have been a well-known source of security 
problems. Changing the behavior of VBA causes substantial trouble, 
because many organizations have made extensive investments in doc-
ument macros for business automation (Gatlan, 2022).

Software as a service can’t easily be put into a lab, so it’s natural to 
ask, should we use obscurity to protect it? After all, we know how 
hard it is to deploy the darn thing—an attacker won’t be able to stand 
up a copy! As hard as that may be, getting it to work perfectly is not a 
prerequisite for analysis. But much more importantly, if (or when) an 
analyst discovers a flaw, it’s better if the system isn’t relying on secu-
rity through obscurity.

Software as a service can also have an advantage of observability. 
Sending logs to the Empire seems intrusive, if you sell classic pack-
aged software or give away open source.1 When the software runs in 
your cloud, you may be able to detect attacks as they are being devel-
oped and address them. From the attacker’s perspective, they’re no 
longer in a lab, and their economics or even personal criminal risk 
may change somewhat. (By “economics,” I mean the work to find an 
attack may be higher, or defenders can respond sooner, or both, in 
each case affecting return on investment.)

1And possibly in other situations. Expanding respect for privacy may lead to conflict 

over what can be sent from mobile apps, or even cloud-enabled systems.



Defenses 207

This brings us to the interesting question of secrecy for machine 
learning models in the cloud. Machine learning can be a helpful cat-
egory of tools for defenders. Such tools are used heavily for detecting 
spam and other abusive content, and they’re expensive to create and 
tune. So how do we best apply Kerckhoffs principle? At one level, we 
can consider the model as a whole as a key: we expect to regularly 
tune and update it, and so our reliance on the secrecy of the model is 
bounded. Attempts to quantify the attacker’s work effort are attractive 
on the surface, but they’re easy to get wrong, and the results are often 
fragile. That is, a clever new attack can dramatically reduce the attack-
er’s work effort.

However, there is a class of attack, or “model theft,” against such 
models. There is a debate about how practical such attacks are against 
fielded implementations, but first, recall that attacks only get better. 
Second, recall that we’re in a section about assuming transparency. 
Engineering always involves trade-offs, and in this case, the models 
may be less aligned with Kerkhoffs principle but still worthwhile in 
the cloud. (I hope it’s now obvious that a downloaded machine learn-
ing model is pretty easy to steal and analyze, and so your security 
should not depend on attackers not doing that.)

It is very tempting to get nuanced about this. It’s a trap. There are 
good reasons that these principles have been in use for a century 
and a half.

If describing your defenses provides a “roadmap for attackers to 
bypass them,” your defenses are weak. Your designs should be strong 
even if an attacker knows what they are, and you should absolutely 
analyze what your own staff can do with questions like “How would 
you attack this?” I’m frequently surprised by the answers from people 
outside the security organization.

That brings us to the Death Star plans. First, the Star Wars answers. 
The Death Star is indeed weak. We know from Rogue One that Galen 
Erso has secretly built a vulnerability into the Death Star. More to the 
point, the design flaw is obvious. There are no dampers or blow-out 
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panels around the reactor. The Rebellion needs only a very short time 
to find the flaw, plan an attack, and brief pilots before the Death Star 
shows up. Lastly, if you’ll accompany for a few more moments of even 
deeper Star Wars theorizing, Vader knows. He’s not just hopping in 
his TIE Fighter to go hunt Rebel scum, he’s making sure that he’s not 
in the Death Star if it blows up. (Also, as mentioned in the introduc-
tion, that brilliant little short from Dorkly, The Death Star Architect 
Speaks Out, has the architect explain that no one asked him to account 
for space wizards who can make that shot and a torpedo that can go 
miles down a narrow shaft.)

Moving from the Star Wars answers, the trouble was that the 
Empire has a habit of punishing people who question its plans, so no 
one felt free to question or criticize the Death Star system. As a result, 
it blew up with countless lives on board. Make sure your security 
remains strong even if rebels steal the tape backup containing your 
system architecture. Now it may sound like I’m still in Star Wars, but 
these lessons translate well to our world.

Obscurity Hurts Defenders
A set of attacks that we now call stack smashing have been known 
since at least the early 1970s. It wasn’t until after they were widely 
publicized in the 1990s that they were addressed (Shostack, 2008).

The proximate cause of many was the C library str functions had 
no information about the length strings. When you copied data from 
one to another, you could “smash the stack” when the target of the 
copy was at the end of the stack. This resulted in the contents of the 
source string overwriting the memory. As long as the details remained 
obscure, system designers didn’t understand the scope of the problem.

Conclusion
Fear leads to hate. Hate leads to anger. Anger leads…to the dark side. 
It’s predictable, and it’s why Jedi learn to search their feelings. If Jedi 

.
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just guessed at what they were feeling (“I feel bad!”), then their ability 
to resist the Dark Side would be much lower.

Prediction and guessing attacks are powerful. It’s easy to forget the 
amazing speed of modern computers. We can build quite strong secu-
rity against them, requiring large search spaces, slowing our responses, 
and using quality randomness to influence how long the search 
will take.

And time can be an important part of defenses as well. Keeping our 
clocks synced allows us to better expire and rotate keys so searchers 
don’t have sufficient time to exhaust our randomness.
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Like the corruption of a Jedi, the corruption of memory proceeds 
in stages. A seed is planted, it grows, and eventually, a Sith tries to 

harvest it. The seed may be as small as a single bit, and the reward 
harvested is often the ability to run code of the attacker’s choosing.

Input corrupts, and unconstrained input corrupts deviously. Input 
corrupts because it is the source, the carrier, the medium whose mes-
sage is LULZ. Almost all attacks are inputs. But useful programs must 
process input, and interesting programs, those that surprise, delight, 
or even merely serve us, take complex input. That input is sometimes 
deviously and cunningly designed to have specific and detrimental 
effects. To be clear, the surprise is to the programmer who wrote the 
code, not the one who crafts the input.

This chapter will look at memory corruption, which happens fre-
quently when parsing input; it is a step on the way to exploitation but 
is not synonymous with it. Memory can become corrupt accidentally. 
Usually these bugs (or cosmic rays) will lead to a crash or uselessly 
weird behaviors.

After we look at corruption and the threats to parsers, we’ll con-
sider defenses, including input validation in its many flavors, memory 
safety tools that seek to limit and constrain corruption, and then 

Parsing and 
Corruption
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robust defensive patterns, including Recognizer, Single Parser, and 
safer language design. The Recognizer pattern concentrates all pars-
ing in a Recognizer, which hands it off to the rest of your code. It’s 
helpful to have the idea in the back of your mind as you go through 
the chapter. The quick version is, when parsing is concentrated, it’s 
easier to evaluate. When it’s distributed, it becomes easy to interleave 
with business logic or even forget that the input hasn’t been checked.

What Is Parsing?
Parsing is the act of taking input, separating it into tokens, and put-
ting those tokens into a structure of one or more objects in memory. 
(A token is the smallest unit that has a distinct meaning.) It sounds so 
simple! Anyone who’s ever stared at a regular expression and won-
dered why it matched—or didn’t—has the start of an intuition for 
why parsing is hard. Tokens can be as small as a single bit and are 
frequently more than one character: numbers, operators like ++ or +=, 
and variable names are all tokens.

Parsers work over a wide range of input complexity, from handling 
simple text input like a phone number in a form to parsing the human 
or machine-readable code of a program or a PDF or a web page. Parser 
output is used directly by our programs—sometimes with a valida-
tion step, sometimes combined with other information, and some-
times passed on to other code. A validation step ensures that the data 
meets business rules. Validation is sometimes performed on raw input 
or intermingled with parsing in what’s been described as a “shotgun” 
approach, as opposed to a targeted one.

How Parsers Work

We often imagine that parsers read and validate input and produce a 
sane object for us to work with. Parsing a phone number, we might 
read exactly 10 digits, which works OK if you’re in the United States 
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and the person entering the number hasn’t included parentheses, 
dashes, or spaces. So, you might read 15 or 20 characters and use a 
regular expression like [-()0123456789]+ to check it. Of course that 
allows 86-75(309), but maybe that’s an acceptable input to your 
dialer code.

If you need to parse phone numbers that go to more than one 
country, you have to account for a leading plus and a length that var-
ies based on the country code. And as you go down this apparently 
simple path, you end up with regular expressions like this:

^(?:(?:[\+]?(?<Country>[\d]{1,3}(?:[ ]+|[\-.])))? 
[(]?(?<Area>[\d]{3})[\-/)]?(?:[ ]+)?)?(?<Num>[a-z2-9] 
[a-z0-9 \-.]{6,})?$

That’s a cut-down version of a recommendation (Reick, 2008). 
Don’t miss the inclusion of “a-z” in the number part! The apparently 
simple problem turns out to be complex enough that there are librar-
ies to manage it. Google’s libphonenumber documents the complexi-
ties in an FAQ and a “myths programmers believe about phone  
numbers.”

And so we see how even nominally simple data can get complex 
quickly. One of the challenges in parsing a phone number is that the 
format varies based on the data. That is, a phone number starting with 
+1 (North America) will most likely have 10 digits, while in parts of 
Europe, landlines have 7 digits and mobile numbers have 8, so the 
content of the data influences the control flow of the parser, a prob-
lem that quickly leads to surprising behavior. Similarly, common date 
formats, like 4/1/04 are impossible to parse without context. Most 
obviously, is it an American date that could be more specifically writ-
ten April 1, 1904, or a British date, like 4 January, 2004?1

1For the online sources in the bibliography, I gave up and just copied in dates as they’re 

presented on the sites I saw. Probably some lovely person has now had a heart attack and 

fixed my formatting; I hope they also made sure to figure out what the source format was.
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More generally, parsers recognize input and produce an object to 
be handled. We’ll return to that after a discussion of how we think 
about that input.

A “Bit” of Context

It’s common to say that “our input is a JPG” or “our input is JSON.” 
But that’s not really true. Your input is a stream of bits. That stream 
may be coming over a network or from the local disk. You may well 
hope that it’s a JPG or JSON or even some format that doesn’t start 
with a J, but really, in memory, there’s a set of bits to be organized into 
something useful.

All Input Is Bits
All input is bits.

Or, as we say in hex:

41 6c 6c 20 69 6e 70 75 74 20 69 73 20 62 69 74 73 0a

Perhaps you prefer binary? As C3-PO knows, that’s the language of 
moisture vaporators (and everything else?):

01000011 0011000 10010000 … 

These are the phrase “All input is bits” as displayed by hexdump. 
Each representation carries the same meaning, once decoded in a spe-
cific way. We can look at each in more than one way. There’s the  
on-the-page representation, starting with “All” or “41 6c.” We might 
shift our thinking and think of them as a hexadecimal representation 
of the string. But they’re also a set of ASCII characters, and I could 
sneakily replace a zero with the letter O. As long as they’re on a page, 
you might not notice. If I swap the font for a programming one, then 
the zeros are displayed quite differently (Ø or 0), even though the data 
hasn’t changed. Similarly, Unicode contains a RLO (right-left order-
ing) indicator that changes display order without the underlying 
data changing.
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The key point is that there is more than one correct way to inter-
pret the data. They are simultaneously true. (In the future, those bits 
will be translated into curves in a PDF, and we’ll express those curves 
with ink on paper, or raster images to show on your screen. And there 
will be even more true interpretations.)

All Code Is Bits, Too
A little understanding of how computers execute instructions may 
give you more visceral wariness for input. When most books show 
low-level code, they show assembler instructions, like MOV, ADD, or 
JMP. These are mnemonics.

All code is bits. Those assembler instructions are transformed into 
machine instructions and stored in memory as bits. And that means 
that if you can write into a location where the processor expects an 
instruction…well, it’s all bits.

As Ben Kenobi explains it, binary is what gives a computer its 
instructions. It’s an energy field used by all digital things. It surrounds 
them and penetrates them, and it binds the Internet together. Oh 
wait, I think he was talking about the Force.

Understanding that all code is bits, you may be able to start to 
imagine what happens when “data” bits show up in a place where 
something expects code bits. The binary language of moisture vapora-
tors does something when fed to a dehydrator. In fact, it probably 
crashes the dryer because the processors are a little different. But if 
the series of bits is crafted by someone fluent in over 6 million forms 
of communication, then perhaps they can craft a series of bits that 
does something unexpected, and that brings us to the threats in pars-
ing. It’s easy to say that the CPU should just track what bits are what. 
But generally, the CPU will execute whatever the execution pointer 
points to.2

2This is largely true for mainstream systems. There are designs that seek to change this, 

such as memory that is not executable and cool historical and experimental technolo-

gies that track the code/data distinction for reliability or security.
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So what does the instruction pointer point to? Bits. Instructions 
are just sequences of bits. For example, 0x88 might be MOV, while 
0x80 might be ADD. Easy, right? You just move from byte to byte and 
it’s code. Or maybe it’s the data that the code operates on. So after an 
0x88, there’s a byte of source and a byte of destination. Hah! No. There 
are variants for handling 8-, 16-, and 32-bit words in x86. There are 
18 or so variants that are described as “MOV,” and more for special-
ized forms of move (Mazegen, 2017). So, it’s not trivial to decide 
“This sequence of bits is code,” or even “This sequence of bits has 
these boundaries or will do this if executed.”

When I say all code is bits when executed, I’m illustrating this  
with code we often assume is executed by the CPU, but in reality, 
even that code requires a runtime such as crt0. The same is true of 
Java bytecode and even higher-level languages like PostScript.

All Data Is Tainted

Just like you can never quite get the smell of Tauntaun out of your 
clothes, you can never quite get data to be perfectly clean. You can 
check it, sanitize it (more on that later), and as you pass it around 
from function to function, it always has some potential to surprise you.

Security experts call data “tainted.” As it goes from layer to layer, 
we can reduce that taint, by checking it against various expectations 
that we have and becoming more confident that it meets our goals. 
But new functions or methods might not run the same input checks 
and so tracking what it’s been checked for is a helpful practice. You 
can document that with types, with comments, and with unit tests.

Threats to Parsers
Attackers don’t want to run code, but running code is often a fine 
route to their actual objectives. Two common building blocks are 
writing bits to locations where they’ll be treated as code or writing 
bits that cause your code to behave unexpectedly.
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Threats to parsers include getting them confused about order 
issues, how tokens are delimited (where one ends and another starts), 
code versus data, and ingenious ways to pass attacks as arguments. 
There are also problems that stem from complex formats, formats 
with external dependencies, and shotgun parsing, that is, scattered 
parsing code, the opposite of Recognizers.3

All of these problems are magnified when combined, and they are 
frequently combined in elaborate, compounded formats. To the extent 
that we can control the formats we parse, simplification is a powerful 
lever for reducing security flaws.

Most of the security bugs that get fixed each day are problems with 
parsers, which are often described as “memory safety” issues. As I 
write this, the sarcastically named “Fish in A Barrel” group stated that 
“70 of 78 vulnerabilities disclosed [via an open source fuzzing plat-
form] in the past week are memory unsafety,” and “13 of 21 (7 of 9 
high/critical) vulnerabilities fixed in Google Chrome 105.0.5195.52 
are memory unsafety.” Similarly, Microsoft reports that “70% of secu-
rity vulnerabilities that Microsoft fixes” are memory safety (Fish, 
2022; Levick, 2019).

It’s important for us to keep our eyes on a broader set of threats, 
while understanding that parser issues are tremendously frequent 
sources of problems.

SQL Injection Example

Let’s take a relatively simple to understand example, with an attack 
form you may have heard of: SQL injection. The way SQL injection 
works is pretty straightforward: a program constructs SQL statements 

3This section and the “Defenses” section are strongly influenced by an analysis called 

LangSec. Papers I’m drawing on heavily include Bratus, 2014 and 2017; Momot, 2016; 

Poll, 2018; and Sassaman, 2012.
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from input and sends them to a database. The code to create a list of 
products based on customer input looks something like this:

sprintf(*Query, "SELECT * FROM products WHERE name = ", 
"%s", input);

If the input is "OR 1=1;', then Query will be as follows:

SELECT * FROM products WHERE name =" OR 1=1;'

Well, 1=1 is always true, and so the code will always match, and 
we’ll get back a list of everything in the products table. What’s hap-
pened is that input was parsed and then used in a way that led the 
database to treat it as an instruction. The fix for SQL injection is to 
use parameterized statements. A parameterized query tells the SQL 
parser what structure to expect, and then everything in the data is…
parameters. This works way better than trying to add checks that 
sanitize the input. Parameterized statements are an example of the 
controlled input grammars that we’ll discuss in defenses.

SQL injection is sometimes understood as “the attacker can read 
your database.” This is true but incomplete. The attacker can send 
arbitrary SQL code to the database. They borrow the authority of  
the database user, and their code can do anything the attacker  
imagines—a category that certainly includes many things we didn’t 
expect. That includes reading more data than expected, writing data, 
and possibly even invoking a shell and passing it arbitrary commands.

Surprising Output

Shortly after he chortles that “Everything is proceeding as I have fore-
seen,” the Emperor discovers that things are not going precisely as 
he’s foreseen, and it’s only a few more minutes before his protégé 
throws him over the safety railing into the reactor.4 Attackers are sur-
prising like that. One little slip can ruin your whole day.

4At least there’s a safety railing there, because we can predict that without one, people 

will fall in.
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What we really want is to know that input will not make our pro-
grams surprise us.

A parser takes some input and produces an object in memory. That 
object will be handled by other code that expects it to be well-formed 
(whatever that means). The goal of a parser is to put only bits that will 
be safely handled into only the expected objects.

This is shockingly hard.
This section could well be titled “surprising input,” but what we’re 

worried about is not the input, but the effects that input has on our 
code. We want those effects, including the object the parser produces, 
to be unsurprising to any other part of our code, even if the input was 
surprising. That is, the parser should protect the rest of the system. 
That includes avoiding memory corruption as it runs. It also means 
prioritizing safety over taking every bit of input. You may have to 
truncate long strings, not include message parts that fail sanity tests, 
or otherwise discard input to ensure the result is safe.

If you choose the quick and easy path—as Vader did—your code 
will become an agent of evil, terrorizing generations of developers.

Tokenization Problems
As data is parsed, the issue of what constitutes a token is crucial. If 
you’re parsing C code and you reach a +, is that a token? It’s undecid-
able until we see the next character. If it’s an =, then that’s part of the 
+= operator; if it’s a 1, then that’s the start of the next token. And so 
our parsing is context dependent. Each character is not independent.

In an ideal world, encodings would be simple, and parsing would 
be easy. In our world, there are overloaded meanings and encoding 
flaws, each of which makes tokenization harder. (There are other 
problems, such as the complexity of the language. The previous men-
tion of regular expressions is a forerunner of complexity that we’ll get 
to, and this sentence is intentionally complexified as an example of 
how jumping backward and forward makes your brain hurt. Parsers 
struggle in related ways.)
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Overloaded meanings are where a single input can have two effects 
on the parser. For example, if you have a token that’s bounded by 
spaces, say a filename, what if you have a filename with a space in it? 
Frequently, we use escape characters, and now the parser is 
more complex.

Similarly, if you’re parsing HTML and you encounter a fragment 
that is missing a closing quote or two, how should you handle it? 
Consider code like this:

<a href="https://threatsbook.com rel=" noopener>

Is the href target https://threatsbook.com rel= or https://
threatsbook.com? If it’s the longer string, what do you do with the 
characters noopener? Does the > close the a tag, or is it part of the 
value of the rel key?

Your code might choose to try to help, speculatively attempting to 
find an insertion that reduces parsing errors and perhaps treating a 
space as if it were preceded by a quote. Of course, that doesn’t work 
with the img alt tag, which is a natural language description of an 
image, usually a phrase or even sentences.

It’s unclear if what’s missing is really closing quotes. We’ve barely 
scratched the surface of two tags, and complexities are multiplying. 
Imagine what the code would look like.

If you can’t tokenize reliably, how can you build objects reliably? 
You might hope to end up with a parser that’s fully predictable. And 
while rebellions are built on hope, parsers should be built to 
enforce order.

Repeated Input
There are also threats from repeated input, that is, the same key 
repeated with different values. If you receive an email with the follow-
ing headers, how will your mail client display it?

From Darth Sideous <darthsideous@sith.org>
From: Darth Sideous <sideous@sith.org>

https://threatsbook.com
https://threatsbook.com
https://threatsbook.com
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From: Senator Palpatane <Palpatane@senate.republic 
.galaxy>

Obviously, this is a trick question. We all know that the Sith are too 
contentious to share sith.org. But that’s not the real trick. The real 
trick is that there is no correct answer in the sense that even if there 
is an answer in a standard, your email client may not be compliant.

Some parsers will look for a From address and proceed when they 
find one. Others will parse the headers all the way through and sim-
ply overwrite early values with late ones. A modern library might 
have a method like parseheaders() that returns a dictionary of 
(name, value) pairs. Inside that method, the dictionary is likely 
constructed by taking each line and breaking it into a name and a 
value and inserting it into the dictionary, possibly with overwrite 
checks (which results in the first value being kept) or without (which 
will result in either an overwrite or the value being a set of values).

Yet other parsers may match on '^From' or 'From:' (Yes, with 
and without trailing colons. One is the SMTP envelope, which older 
mail servers would include; the other is the SMTP header.)

Ambiguous Types
Programs take input in many ways, including standard input or from 
files they explicitly open. Many of these are either accidentally or 
maliciously ambiguous or overloaded. For example, when a filename 
starts with a dash, how do you provide it as an argument to a 
command-line tool? (“How do you remove a file named "-f"?”). 
Ambiguous semantics means programs must have a way to disam-
biguate them. When we want to help the program, we can use a path 
like “./-f”, and when an attacker wants to confuse it, they can use 
overloading.

A similar issue can arise with files with semicolons in their names, 
or other characters that the shell treats as special. (For a good laugh, 
create a file with a slash in its name on Windows, and share that file 
system with a Unix client you don’t mind rebooting.) The issue of 

http://sith.org
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determining type from input plagues Excel, with genes being offi-
cially renamed to avoid Excel treating them as dates. Membrane 
Associated Ring-CH-Type 1 is no longer March1, but now MarchF1 
(Whitwam, 2020).

If the special characters are command separators like a semicolon 
or backtick, then the shell may treat the remainder of the name as a 
command to run. This can happen with filenames, with environment 
variables, or with other input.

Length and Counting
A failure to check lengths was a key security flaw in the C string func-
tions. Older code that assumes that a char is a byte that is a character 
can get confused when it encounters Unicode.

There are many problems with integer math: underflows, over-
flows, and type conversions that happen when you accept numbers 
from clients.

It won’t be long before you encounter systems with nested length 
information, and you’ll have to decide what to do when the sum of 
the subparts is not the same as the container length. For example, do 
you stop parsing at the HTTP content length or keep going until you 
reach a </html> tag?

If the two disagree and there’s further content to be parsed, you 
have to choose where to put the read pointer. If your code does one 
thing and someone else’s code does the other, your parsing of the 
same input will differ.

The “HTTP request smuggling” family of attacks uses precisely 
these sorts of inconsistencies between content lengths and transfer 
encoding headers to send extra headers past HTTP proxies.

Shotgun Parsing
A “shotgun parser” is one that’s scattered all over the place, in derisive 
contrast to one that’s concentrated. When the parser is scattered all 
over the place, Worf has to run back and forth. Wait, what’s Worf 
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doing here? Isn’t this a Star Wars book? This illustrates when the 
parser is scattered all over the place, it’s harder to understand 
what it does.

Shotgun parsing also tends to mix transformation logic and busi-
ness logic in. Many codebases develop shotgun parsing over time. As 
you’ll see in defenses, refactoring (and isolating) such code is a tre-
mendously powerful response to repeated attacks against the 
same surface.

Nested Formats
It’s fine for marriage to be “that dream within a dream,” but a dream 
within a dream is a parsing nightmare (Reiner, 1987). It’s not just that 
dreams are unstructured and ephemeral, it’s the nesting. For example 
XML has no limit on how deeply elements can go.

Each layer of nesting adds complexity to parsing code. Unlimited 
nesting means the parser must depend on the data being parsed in 
order to terminate. (If nesting is limited, you can use a countdown 
loop and know how many iterations you’ll have.)

External Dependencies
When Darth Vader says, “Join me, and together, we can rule the gal-
axy as father and son,” he’s imaging how Luke will respond. It’s either 
Vader’s undoing or his salvation, but when you join external docu-
ments with your own, you have a galaxy of new parsing challenges.

Structures whose parsing relies on external information create a set 
of problems. For example, let’s look at XML’s external Data Type 
Definitions (DTDs). First, we have to retrieve the entity, which creates 
denial-of-service issues if the server is unavailable, and we have to 
figure out what to do. Second, retrieval may disclose who’s processing 
a document. Third, we have to retrieve it so authentically and without 
integrity issues. Fourth, we have to believe that the server won’t send 
us a special version based on properties of the client, such as IP 
address or geolocation. Most important, we have to pause our 
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parsing, get the external dependency, parse it, and then resume pars-
ing the initial data. The whole parser has to hang out and wait while 
those other methods run.

Also, if the external entity can contain another external entity 
without limits, you may end up with an endless loop of depend-
ency fetching.

Code/Data Confusion
Even if your parser doesn’t intentionally run code, there are frequent 
accidents where code and data get confused. How does that happen?

That can happen because something overwrites the stack or 
because input isn’t tokenized the way each parser expects. In a Unix 
shell command, a semicolon (;) generally separates commands and 
allows you to enter more than one on a command line.

In a very real way, all of these problems are parsing problems.  
A stream of bits gets put somewhere the attacker wants them to be 
and interpreted in the way they hope.

Overly Powerful Input

There are a few ways in which parsers give control of their parsing or 
execution to their input, including giving environment variables con-
trol over execution through a less-careful input parser.

There are a few environment variables, such as LD_LIBRARY_
PATH and IFS, which dramatically change execution. LOCALE 
changes how numbers are parsed. (Is 1,33 “one and a third” or “one 
comma thirty three”? The first is a common European presentation; 
the second is common in North America.) It’s tempting to clear out 
such known dangerous variables; see the “Allowlists and Denylists” 
section of this chapter to see why it’s better to select the input you 
know how to parse.



Threats to Parsers 225

Intentionally Running Code
Some parsers are designed to execute code as they run. There’s some-
thing nice about a format that explicitly runs code. That nice thing is: 
no one can claim to be surprised when a malicious program does 
malicious things; after all, it’s by design. Formats that intentionally 
run code include Microsoft Office documents (macros), PDFs (the 
entire format is essentially a program to be run), HTML with 
JavaScript, and even TrueType fonts. At least, we can hope no one is 
surprised. But people frequently are. There is an important question 
of who it was that intended the code runs.

There are other formats that are Turing complete, which is to say 
we can’t even determine if they’ll stop, never mind what effects they’ll 
have. There are things that are surprisingly Turing-complete, includ-
ing the card game, Magic The Gathering, and PowerPoint—even with 
macros turned off (Wildenhain, 2020)!

Sometimes, of course, an application benefits from or even requires 
programmability. Clearly, Magic The Gathering does not, and one 
could debate if PowerPoint does. Such a debate may be intellectually 
interesting, but more to the point, we can ask, could we achieve those 
goals with less authority?

An interesting edge case of this is package installers, where some 
packages will run arbitrary code during setup and others pause to ask 
permission. PyPi unavoidably runs a setup.py function when you 
install code, while the Mac package installer asks, “This package will 
run a program to determine if the software can be installed.” Here, the 
usual expected result is that new code will run, and the package man-
ager knows that it will end up with all the authority of your account. 
The dialog is about ensuring the person knows that, too, as it contin-
ues, “To keep your computer secure, you should only run programs 
or install software from a trusted source. If you’re not sure about this 
software’s source, click Cancel to stop the program and the installa-
tion” (Lakshmanan, 2022).
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Denial-of-Service Threats to Parsers

Parsers are also subject to denial-of-service attacks. When the first 
step in processing a format is to decompress it, the expansion can lead 
to either memory or a CPU denial of service before we even get to the 
other threats discussed earlier. Generally, see Chapter 5, “Denial of 
Service and Availability.”

Bad Advice

The last threat to individual parsers is bad advice. There is a lot of bad 
advice out there; I’m sure I’ve given some of it. I don’t mean to cast 
stones from a glass house but to prepare you so when you face these 
threats from the Dark Side, ready you will be, young Jedi.

The bad advice includes “parse carefully,” “canonicalize,” and “use 
a type-safe language.” These are actually reasonable starting points 
but insufficient. Parse carefully isn’t clear. Canonicalization is good, 
but we need to check that the use of the data matches the rules by 
which it was made canonical: data normalized as a URL may still be 
an unexpected file path. And type-safe languages are great, but not all 
threats are type confusion. Each of these commonplaces is bad 
because they tempt us into complacency. They are good, but not 
good enough.

The really bad advice is to sanitize, and “it’s just deserialization.” 
Sanitization is covered in the “Input Validation” section. Deserialization 
is parsing and carries all the complexities of any other parsing.

Chained Parsers

Systems are often built from smaller systems, and each of those sys-
tems may have a parser. In fact, SQL injection is a good example of 
this. The web server has an HTTP parser, and the database has a SQL 
parser. These are chained, and the chaining may have a formally 
defined grammar or contract. (If it doesn’t, someone is almost certain 
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to be surprised by data that’s passed; that’s one of the reasons that 
fuzzing, discussed later in this chapter, is so effective.)

Each successive parser must be explicit about what it recognizes 
and passes on. For example, if we have a phone number in an HTTP 
post, then perhaps the HTTP parser checks that it’s no more than 20 
characters and passes it on but makes no attempt to do sanity check-
ing that the phone number and the address are in the same country.

It’s not enough to say, “The HTTP parser passed it,” and it’s cer-
tainly dangerous to continue with “Therefore, it’s safe.” Safety comes 
from a precise understanding of what an object variable, field, or ele-
ment will be used for and not making unwarranted assumptions 
about what it will be. For example, the XML parser might pass on a 
file with as yet unfetched remote files hosted at sith.org. Perhaps 
those have been fetched and integrated and no more remote includes 
are possible. The object might contain a set of exploits as CDATA that 
have not been further analyzed. In consuming the object the XML 
parser produces, there must be a clear contract about what’s emitted 
and what’s consumable.

Use of those bits can include calling another API. When you do so, 
being conservative in what you send it is a baseline of reliability. 
Including elements of your input may be unavoidable, and you may 
lack the context to check or validate it. To the extent that you can 
communicate what you did, it will put a limit on the tendency to 
blindly trust.

Layering
In much the way that all input is bits and the interpretation of those 
bits is layered, attacks are usually carried in many layers of encoding. 
Lower layers probably cannot perfectly parse data intended for higher 
layers. They cannot at the network layer because of packet recon-
struction and other complexities (Ptacek, 1998) and should not 
because of speed and the Single Parser pattern: they are likely to get it 
wrong. (The pattern is described in the “Defenses” section.)

http://sith.org
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For a concrete example, consider a phishing email. It is sent from 
the phishing sender to your mail server, and in that sending, it is an 
SMTP message in an SMTP envelope, sent over STARTTLS, which is 
SMTP over TLS. That TLS message is in a set of TCP frames, broken 
into IP packets, and further fragmented into Ethernet frames. Should 
the Ethernet switch attempt to validate the IP packets? Should the 
router validate the TCP stream? Should the Ethernet switch check the 
email message for URLs on some list of phishing sites?

Many security devices, such as firewalls or intrusion detection sys-
tems, attempt to violate layering with the very best of intentions. And, 
to the extent that they catch some naive attackers, that’s fine. But the 
history of that subfield is one of bypass attacks. Almost all these 
attacks have, at their core, the difficulty of perfectly understanding 
and reproducing the ways in which the receiving parser will operate.

Specific Parsing Scenario Threats
At the very low end of IoT devices, there may be a bootloader that 
hands control to something, often integrated by a compiler into a 
single image. These systems are less likely to have memory defenses 
(described in the “Defenses” section) and so parsing code that is 
viewed as safer on modern operating systems may be riskier in IoT.

Parsing Protocols + Document Formats

Broadly speaking, network protocols, APIs, and document formats 
are all agreements on how different programs can communicate. 
Agreement on message formats and content allows parties to com-
municate. When defining a new protocol, careful specification is 
expensive and slows us down. So, we tend to be informal and agile, 
potentially taking on enormous technical debt as we do.

When we have more than one codebase handling an API or a  
file format, we end up with interoperability issues. Those magnify  
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the debt. Each time a counterparty implements something slightly 
different, we have a choice: the apparent bugginess of strictness or 
interoperability with its attendant riskiness and code complexity.

As examples of that document challenge, both Microsoft and 
Adobe went through a process of improving their document parsers 
to address abundant security issues (in Office and PDF, respectively). 
Each faced an uproar over “anti-competitive” behavior when they 
stopped reading “malformed” documents. Each process was initiated 
for security and had the effect that competitors had to spend money 
to rewrite what they thought was perfectly good code.

Replacing the early C library’s string handling APIs created a simi-
lar compatibility problem. It was infeasible to break every program 
that called strcpy, so new functions were added to the libraries. Each 
programmer had to rewrite their code to use those new functions.

A final example of the security/compatibility trade-off is that the 
Web has 30 years of accumulated badly written HTML. A browser 
that strictly parsed HTML and rendered only what’s standards-
compliant would render a very small fraction of that. Many of the 
authors of the code…well, their fire has gone out of the universe. No 
one will rewrite that enormous pile of documents, and so we’re stuck.

C Code + Memory Safety

When parsers are not sufficiently cautious with their input, memory 
corruption can be a result.

The myriad ways attackers make use of that corruption are fasci-
nating. This chapter is not a guide to exploitation, writing exploits, or 
weaponizing exploits, which is to say making them work reliably 
under a variety of circumstances. Even though I don’t want to over-
whelm you with the details, it is worth taking a quick tour. My goal is 
to reinforce your understanding that an attacker gaining control of 
even a single bit is exceptionally dangerous.

For some, this may be a gateway into a new world. If you want to 
really understand what a computer is doing, these techniques expose 
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deep innards of systems. Classic books like The Shellcoder’s Handbook 
(Anley, 2011) and Exploiting Software (Hoglund, 2004) teach the 
details well.

•	 Stack smashing attacks involve writing to executable memory. 
The first public demonstrations overwrote the execution stack, 
specifically the pointer to the next function. The term stack 
smashing is used both as shorthand for memory overwriting and 
specifically for the problems where the stack is overwritten.

•	 Return to libc attacks change control flow to jumps to attacker-
selected but existing memory. The standard C library is a popu-
lar target because it has calls like system() and exec() that 
allow for arbitrary command execution.

•	 Return-oriented programming is a set of techniques that takes 
advantage of code already in (executable) memory space, string-
ing it together to achieve an attacker’s goal. The code in memory 
is treated as “gadgets,” and the gadgets are given unexpected 
input. Because gadgets are in executable memory, this bypasses 
many of the memory safety techniques listed in the “Defenses” 
section. This can be clever. Not only can you jump from gadget 
to gadget to execute commands of your choice, but you can 
build branching code! (This is useful if you need to adjust 
parameters to evade memory defenses.) In fact, it’s been shown 
that the small gadgets that return-oriented programming uses 
are a Turing-complete language.

•	 Use after free happens when there are two pointers to the same 
section of memory. One of the pointers is deleted when the 
object is released but the code forgets to clean out the other one. 
Depending on the attacker’s control of the forgotten pointer, it 
could be used to read or write or execute. One typical flow is 
as follows:
1.	 The attacker gets the OS to free the original object.
2.	 The attacker gets the OS to fill the space of the original object 

with data that they control.
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3.	 The attacker gets the code to de-reference the dangling 
pointer, which now points to the attacker’s memory.
(There are use after free issues without multiple pointers, 

which I’m leaving out for space reasons.)

•	 Type conversion and promotion. If you have C code like this:

char char1, char2, char3; 
char3 = char1 + char2;

then the value char3 may be greater than a char. Therefore, char3 
may be promoted to be a larger type, and it may drag char1 and char2 
with it! Exploitation of these issues is more subtle, but the easiest 
problem to understand is that these values are used in tests that con-
trol execution flow.

If you do decide to learn more about these techniques, be warned: 
the road to the dark side brings much suffering on the way to power.

Discovering these techniques required deep technical insight and 
mad skills. Today you need neither—tools and sample code make 
them easy. You need to know that input is like plutonium. A small 
amount can be dangerous for a very long time. You need to be careful 
where you take it in, you need to be careful in how you store it, and 
you need to be cognizant of where it goes. You do not need an under-
standing of the mechanisms by which it will kill you.

Memory Structures

I’ve referenced “the stack,” and it’s time to be more explicit 
about what that is. The local variables of an executing pro-
gram are stored on a stack, subject to push and pop, and 
handling a mix of code and data. (Think of a stack of plates, 
perhaps on a cafeteria spring. You can push plates onto the 
stack, or pop one off, but only at the top of the stack.)
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You’re expecting hex dumps here, aren’t you? The sort of 
thing that looks like this and makes your eyes glaze over?

Dump of assembler code for function main:
0x8000490 <main>:       pushl  %ebp
0x8000491 <main+1>:     movl   %esp,%ebp
0x8000493 <main+3>:     subl   $0x4,%esp
0x8000496 <main+6>:     movl   $0x0,0xfffffffc(%ebp)
...

(From Aleph1, 1996) Well, don’t worry. While it’s interesting 
knowledge, and you need to know it to write some attacks, 
I don’t think you need to see stack listings, learn to read 
them, or understand them to understand the key message. 
That key message is in a few parts:

•	 Strings and other variables containing user-supplied data 
often end up on the stack.

•	 If you copy more data than expected, you can smash the 
stack with that user-supplied data.

•	 Some users are attackers.
•	 The instruction pointer points to the smashable end of 

the stack.
•	 Code is bits. Data is bits. They are stored identically in 

memory, and there’s no way for the CPU to distinguish.
•	 The CPU does what the instruction pointer tells it.

So, the fix is to stop putting unbounded data onto the 
stack. Most modern languages will manage memory for you 
in a forgiving way. C will handle memory exactly the way 
you tell it to. Exactly. EXACTLY. You need to understand 



Defenses 233

Defenses
It’s both crucial and insufficient to say the defense against parsing 
problems is extreme care. It’s crucial because so many security prob-
lems happen in parsing, and it’s insufficient because it’s not actiona-
ble. The LangSec community is an academic movement. They see 
“the Internet insecurity epidemic as a consequence of ad hoc pro-
gramming of input handling at all layers…” They make a convincing 
case that the total cost of formal specification is frequently worth-
while. But they don’t have to pay the cost of changing your software 
or the software of your competitors or ecosystem.

what you’re telling C, C++, and other languages that allow 
manual memory management.

Complementing the stack, the other major type of mem-
ory is the heap. The heap is where persistent variables and 
data structures live, and the memory has to be managed 
with the alloc family of calls. (You also can’t write 
unbounded data to the heap.) Modern languages will man-
age memory for you. They track the memory they’ve allo-
cated so that a garbage collector can come through, pause 
your code at the least convenient time possible, have a cup 
of java, and sweep up your unused memory, leaving little 
bits here and there so that new allocations are fragmented. 
I kid! Java is not the only language with annoying garbage 
collection. More importantly for our purposes, the heap is a 
convenient place for an attacker to drop code or other 
resources that they’d like to have available as they run an 
exploit. This is often accomplished via “heap spraying.” The 
memory is then accessed by attacker code.
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This section is focused on a set of defenses including how to think 
about robustness, defensive parsing, and validation techniques. From 
there we’ll look at stronger patterns from LangSec, and then we’ll 
close with a discussion of memory safety because so frequently the 
corrupting effect of bad input is memory corruption leading to code 
execution.

The Robustness Principle

An early expression of Postel’s Robustness Principle was “Be liberal in 
what you accept and conservative in what you send.” In 2012, a set of 
researchers focused on language security “patched” the principle to 
read as follows:

•	 Be definite about what you accept.
•	 Treat valid or expected inputs as formal languages, accept them 

with a matching computational power, and generate their 
Recognizer from their grammar.

•	 Reduce the computational complexity of your parsing. (This last 
one is paraphrased; all from Sassaman, 2012.)

As Sassaman and his collaborators point out, even Postel’s formula-
tion doesn’t require being naïve. It doesn’t require you to accept 
bizarre input. You can be robust, recognize the message is bad, and 
discard it.

Even if you have no control over the formats you must accept, you 
can be conservative in what you send. Don’t make it hard to parse 
your output. Emitting relative path names, escape sequences that 
could be simplified, or expressions destined for eval where you could 
avoid that means that parsers are locked into needing to parse such 
constructs. Being conservative in what you send remains solid advice 
and can help us avoid creeping complexity.
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Input Validation

Validating input means ensuring that it matches your expectation and 
that you can predict its effect on your code and the objects your 
code emits.

Because all data is bits and can be used in an endless variety of 
ways, validation can’t be “complete” without specifying the format or 
contract against which validation was performed. In the SQL injec-
tion example, prepared statements put code and data into carefully 
separated variables.

Validation is best accomplished before writing to a strictly typed 
variable, such as Signed32bitInt, email_address, URL, and the 
like. The string type, which could be used for any of those, makes it 
hard to form a specific contract (Poll, 2018, Arce, 2014). You might 
make more specific types, such as unsafe_path or filesystem_path_ 
canonicalized_from_user. Notice the naming: “unsafe” implies 
we’ve done no checking, and filesystem_path_canonicalized 
makes it easy to track that those are performed before assigning any 
data to it, without implying anything else. Calling a variable safe 
would make it easy to be dangerously optimistic.

There’s a crucial question of where security validation happens. 
Security validation must happen when the data can no longer be 
altered by untrusted parties. In the web context, that means the server 
checks what’s sent to it. Even if you have a list of dates in a drop-down 
menu, if someone alters the HTML with the browser’s source editor, 
or the HTTP call with a proxy, they can insert an arbitrary or even 
malformed input. Similarly, calls to the kernel need to copy data into 
kernel-only memory before validating it.

That doesn’t mean you can’t put a “courtesy validation” in the 
browser, something that checks the input is likely going to be parsed 
correctly on the server. It’s nice for usability reasons, and you may 
worry that that will either violate the single parser principle or 
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disclose your validation routine. Don’t worry about disclosing your 
validation routine; if your security depends on its secrecy, you’re in 
trouble. Recall the section on transparency in Chapter 7, “Predictability 
and Randomness.”

Validation Challenges
Validating input is crazy hard. We aspire to check both the format and 
the semantics. Let me tell you the story of Joda the Conservative 
Librarian of Time. Some software, which recorded only birthdays, set 
the time to 00:00, a nice, conservative choice. On April 13, 1941, the 
clocks in Saskatchewan, Canada, “sprung forward” at midnight as 
part of a daylight saving transition. And so, patients who were born 
on that day could not be born at midnight. And so the validation 
functions of a widely used library, Joda-Time, were unable to accept a 
patient’s date of birth when lab tests were ordered (Lyon, 2020).

What should you do with a partially invalid input like that? If your 
answer starts with “obviously,” please take a deep breath and consider 
how that might go wrong. One common pattern is to attempt to repair 
the data, or sanitize it, which we cover in the next section. Another 
would be to use the date without the time, which makes sense when 
the patient is an adult but perhaps exact age is crucial in natal 
intensive care.

Another problem with validation happens when your validation 
tables lag behind reality. Here’s an example:

Planets = [Mercury Venus Earth Mars Jupiter Saturn 
Uranus Neptune Pluto]

When Pluto was demoted, previously correct code became wrong.5 
A more down-to-Earth version of the problem is when a new 

5 Planetary scientists dispute the authority of the International Astronomical Union to 

decide what’s a planet and question the process by which the vote passed only on the last 

day of the conference, after many attendees had left (Stern, 2018). And as Han Solo 

pointed out, Pluto’s too big to be a space station.
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subdivision is built; it takes time for the names and geographical 
coordinates of the new streets to propagate, and some companies can’t 
handle providing services until their databases are updated. To make 
matters worse, when you update your validation tables, input that 
was acceptable before may break.

Careful documentation of precisely what’s being checked helps us 
write code that manages these challenges to reliable functioning. 
Careful definition of contracts and unit tests helps ensure our code is 
unsurprising.

Sanitization
On seeing spoiled produce at a grocery store, most of us would point 
it out to an employee for removal. You don’t pick it up, ask for a dis-
count, and try to make use of it. Bad input is like spoiled produce. You 
should not attempt to sanitize it. You should reject it, explain your 
rejection, and move on to the next request. Otherwise, you risk trans-
forming the input into something dangerous.

Examples of failed sanitization are easy to find. Perhaps the most 
famous was PHP’s Magic Quotes feature. The failures were complex 
and require some understanding of the feature, so let’s go with a 
slightly contrived example. Say that you reject any input with the 
string “script” and then uppercase it all. (You might not even think of 
uppercasing as sanitization.) But if the input contains scrıpt, you’ll 
end up with SCRIPT, as you can see in Table 8.1.

Surprise! If you up case ı (U+0131, a lowercase, dot-less i), you get 
an I (U+0049, the common English uppercase i.) Having sanitized the 
input, you broke your own validation.

TABLE 8.1  Sanitization Rule Results

Input Rule Output

scrıpt Remove script scrıpt

scrıpt uppercase SCRIPT
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The goal of sanitization is often to deal with data that fails an 
explicit validation check. If you must parse data that fails validation, 
throwing some of it away may be feasible, and it may also be possible 
to invoke a more sandboxed parser to try to make sense of it.

Canonicalization
There are a wide variety of valid, usable interpretations of any set of 
bits. It’s common to aspire to a “canonical” representation and to 
believe that will solve your parsing problems. And while canonicali-
zation is useful because it simplifies checking, it’s no panacea.

A typical example of canonicalizing is a Unix path. We resolve 
symbolic links, replace a leading ~ with a user’s home directory, and 
on seeing a .., we remove it and the preceding directory name. Ideally, 
this looks like the output of realpath(), and we can check it and 
pass it to open(). That checking might ensure, for example, that it 
starts with /usr/local/include, which is nice for open, but if we 
pass it to another program, especially one that is setuid, then that 
other program may need to do different checks.

As formats become more complex, the definition of canonical can 
become complex. Dates are (ahem) a canonical example. But let’s 
look at URLs. The URL encoding of % is %25. If I do a Google search 
on “%25,” that will be encoded as %2525 (Nadel, 2021). When I 
canonicalize that string, do I return a % or a %25? That is, should I 
ensure that the output of the canonical function, passed to itself, 
returns an identical string? We expect both that it returns something 
unambiguous and that ambiguity does not overly restrict use. You 
might assert that this is ambiguity over the encoding we’re using, and 
we can solve the problem by being specific. And while that’s a key 
point of this chapter, the various encodings continue to trip up real 
system designers.

When a format has layers of encoding, it gets complex quickly. You 
want to translate anything starting with a percent marker (%) into 
their ASCII equivalents before doing your UTF-8 decoding.  
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Or perhaps it’s the other way around? I am not being glib or evasive 
here, I honestly don’t know, and the references I checked do not give 
me a simple answer (OWASP, 2013; Zalewski, 2011).

Allowlists and Denylists
Allowlists and denylists are ways of constraining input. They’re also 
called whitelists and blacklists, but the technology world has been 
steadily moving toward clearer and more inclusive language. For 
example, is a blacklist like a business that’s “in the black,” or is it a 
negative thing (NIST, 2021)? Denylists can be a “garden path.” 
Perhaps because we think of an attack and say, “We should disallow 
that!” The denylist grows until we can’t think of another bit of evil, 
and we hope our attackers stop at the same point. So, allowlists are far 
more effective for security, because they fail relatively safely.

To explain, let’s say we have a list of characters we won’t accept in 
input destined for HTML output (that is, an HTML denylist):

evil = ["';`&<>]
while (c = input[i]) {
    if { c ~= /evil/ then i++ ;} 
    else { output += c ; i++ ;}}

Take a moment to think about the way this goes wrong. (Hint 1: 
What’s missing from the list? Hint 2: How does that generalize?) In 
contrast, an allowlist looks like this:

acceptable = [A-Za-z0-9]
while (c = input[i]) {
    if { c ~= /acceptable/ then output += c } 
    i++ ;}

You can use an allowlist pattern within a Validator. Ideally, your 
allowlist is a courtesy, for reliability, because your Recognizer has 
already ensured compliance with a grammar. Good selection of what’s 



Parsing and Corruption240

allowed must be both constrained and sensitive. Don’t be naïve about 
it. Early attempts to prevent SQL injection led to people named 
O’Connor being unable to log in or to email addresses with + signs 
being rejected. Especially if the text contains names, it may extend 
beyond a basic A–Z/a–z character set.6

Memory Safety

The challenges in safely parsing arbitrary protocols with handcrafted 
code can feel like raising an X-Wing Fighter out of a swamp. 
Fortunately, help is available. It takes the form of using safer code, 
analyzing your less-safe code with static analysis, and compiling it 
with defenses that make exploitation harder. Lastly, you can use test-
ing techniques, including fuzzing, to detect issues in your com-
piled code.

More generally, if you’re writing in C or C++, there are many secu-
rity specific pitfalls and gotchas. Defensive books such as Effective C 
(Seacord, 2019) are broader than Secure Coding in C and C++ (Seacord, 
2005), which remains an excellent deep reference.

Safer Languages and Libraries
Many modern languages, including Python and Go, have been 
designed to protect developers from some of the flaws that pervaded 
C, C++, and even Java. Popular improvements include type safety and 
safer string handling. Not all modern languages have made the same 
choices, and note that I’m using the term “safer,” rather than “safe.” 
You can write bad code in any language.

Selecting a safer language for new projects can pay off handsomely. 
The initial work to learn a new language results in fewer bugs in the 
future. Of course, it’s hard to rewrite entire projects, but it’s possible 
to rewrite parts of a system, such as the parsers.

6Microsoft Word will replace the English word naive with naïve with a dieresis, a pair of 

dots. However, it will not mark the n in Señor, which it considers a separate letter.
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There are libraries designed to make parsing safer. For example, 
Microsoft’s Everparse project takes C-like definitions, produces F* 
code, formally proves its security, and then compiles it into C without 
losing provability. (F* is a programming language designed for prov-
ability.) Everparse has been used to produce verified versions of pro-
tocols like TLS and the Signal messaging protocol.

Static Analysis
Static analysis is a family of techniques to analyze code “statically,” 
that is, without running it. It can find vulnerable code constructs and 
be integrated into build pipelines, and there is a wide range of tooling 
available.

Static analysis tools are justifiably criticized for sometimes incom-
prehensible output, false positives, and sometimes for speed—they 
can be slow to run on large codebases. They can also be challenging 
to deploy, producing copious warnings. Despite these challenges, 
static analysis is a powerful tool for your toolbox. Many organizations 
deploy them slowly, using settings to ensure that new code is clean, 
and gradually deploying rules to older code.

Defenses in Depth
Major platform vendors have dedicated teams that design defenses to 
make memory safety issues harder to exploit. These defenses, with 
names like “address space layout randomization” or “nonexecutable” 
memory regions (ASLR, NX), are outside the scope of this book. 
Variation in those defenses means that the same issue of memory cor-
ruptibility in the same code may compile into something exploitable 
on one platform but not on another.

It’s crucial to emphasize it is extremely dangerous for an attacker to 
be able to read or write memory in ways that are not precisely and 
carefully constrained. If memory can be corrupted, good program-
ming practice is to fix the corruption rather than arguing over exploit-
ability. Memory can be corrupted in ways that are exploitable on one 
platform but not another. It can be corrupted in ways whose 
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exploitability is not yet understood, because the art of turning cor-
ruption into an exploit is advancing, as are the defenses that make 
that transformation difficult. Your correct belief that an issue is not 
exploitable may depend on a parser detail that changes later, making 
you vulnerable.

In the best case, you spend scarce skilled resources to prove that 
you should do what I just told you, which is to address the corrup-
tion. In the worst, you mistakenly assess that an exploitable vulnera-
bility is not, and leave your code subject to attack. (If fixing corruption 
issues is an overwhelming or seemingly Sisyphean task, perhaps your 
code needs refactoring.)

Dynamic Analysis Including Fuzzing
Dynamic analyses are those that run your code to see how it behaves 
when fed input that’s malicious, malformed, or even just random.

Recall that processor instructions are just bits, like those that run a 
moisture vaporator. Fuzzing, sending random input and seeing what 
happens, is remarkably effective at finding bugs. This is especially 
true for code written in low-level languages like C but not limited to 
such code. Because parsing is hard, when fuzzing was invented, 
between a quarter and a third of programs failed to what we now call 
dumb fuzzing (Miller, 1990). And to be clear, fuzzing can be excep-
tionally simple, on the order of cat /dev/random | target.

Of course, the parser failures that simple fuzzing exposes tend to 
express as crashes. It would be remarkable to see those random bits 
do something interesting. Fuzzers also tend to produce many crashes 
around the same line of code.

Fuzzing is most dramatic when targeting C-like languages, but that 
doesn’t mean it only works against them. As you apply it to programs 
in languages with type safety and modern parsing libraries, basic 
fuzzing discovers fewer problems, but context-aware fuzzers are 
now common.
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Earlier in this chapter I cited some statistics (“70 of 78 vulnerabili-
ties disclosed via OSS-Fuzz in the past week are memory unsafety”). 
This shows that fuzzers are much better at finding memory safety 
issues than other issues, and the issues they find tend to be inarguably 
high severity.

LangSec

LangSec, or language-theoretic security, is an academic movement. 
They point out that parsing failures are intertwined with security 
pain, and that as the languages and code parsing them grow in com-
plexity, the opportunities to make them do shocking things also 
grows. This chapter draws heavily on their work, while acknowledg-
ing that every engineer may not have the budget, skills, or scope of 
control to act on all of their suggestions.

Simple design, like formats that can be parsed with regular expres-
sions, makes parsing far less risky. Conversely, powerful languages 
with complex grammars (say, PDF or Office) are more dangerous. 
Compound length declarations, where both outer and inner objects 
have lengths that may disagree, are more dangerous than simpler dec-
larations. Other flawed patterns include self-modifying formats, for-
mats that require multiple passes, and eval-style commands. And 
please, don’t write another Turing-complete language by accident.

Many developers never get to define a named language or file for-
mat, so the recommendations of LangSec may seem like they’re in a 
galaxy far, far away. But many of us get to define little languages, little 
state machines, or little protocols. The contract between an API caller 
and a callee is a language, and simplicity and predictability contribute 
to not only security but predictability, testability, and resilience.

If the problems here are ones you focus on, learn more at 
LangSec.org.

http://langsec.org
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Recognizer Pattern
A Recognizer takes input and produces output that is limited to what 
the rest of your code expects. When you unify parsing code into a 
single place, it becomes easier to reason about. A Recognizer accepts 
valid input and discards invalid input. (This may lead to rejecting an 
entire message or rejecting part of it, passing on a data structure that 
differs from the input.) In the Recognizer pattern, valid input is 
defined by a grammar, and parsing is completed before an object  
is passed to validation or application logic. What your code expects is 
ideally defined by explicit grammars, or sometimes by contracts, sup-
ported by unit tests or the random behavior of clients.

It may be helpful to run the Recognizer isolated from the rest of the 
application. As discussed in Chapter 6, qmail took this to the level of 
running as a separate user ID and passed messages through files. Of 
course, that requires you to deserialize those files, which is yet another 
parser to secure.

It may also be helpful to consider Recognizer and Validator as con-
nected patterns. The Recognizer simply parses (tokenizes and con-
structs an object), while a Validator checks the meaningfulness of 
those objects, beyond what’s in the grammar. For example, ensuring 
that a URL is currently “valid” (perhaps the server returns an HTTP 
OK message and an HTML document) or that an email doesn’t get 
rejected at a delivery attempt.

Single Parser Pattern
For any format you handle, select and use one parser. Of course, for 
most of the formats we parse, we didn’t write the parser. Why write 
your own JPG parser or renderer when there’s a dozen open-source 
versions? The selection of an unsafe parser will lead to a never-ending 
parade of bounty hunters at your door. And while people earning 
money in bug bounties aren’t scum or villainy, selecting a better parser 
will let you focus on other work. A few things to look for include an 
Open Source Security Foundation Badge and use of memory-safe lan-
guages. Having at least a few security issues acknowledged can be an 
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indication of maturity; having a parade is probably a good predictor 
of the future.

If you have two parsers that take the same input, use the same 
schema, and produce two different outputs, then at least one of them 
has to be wrong. At the least, their wrongness will produce inconsist-
ency. Depending on the nature of the inconsistency, clever attackers 
may be able to take advantage of it. (Of course, this also means that 
changing a legacy system to use a single parser will cause behavior 
changes, which makes it an expensive change.)

Therefore, one organization having two parsers for a format is an 
expensive way to cause errors and a great way to incentivize finger-
pointing and blaming. On the error front, Apple created two parsers 
for its plist format, and differences in the way they handled com-
ments led to one (in place to perform security checks) passing a file 
to another, which ran commands the first ignored as parts of com-
ments. The Saskatchewan/Joda birthday story is another instance of 
multiple parsers with incompatible Validators.

As we shift from a single organization to an ecosystem of software 
handling the same network protocol or file format, having more than 
one parser is a great way to check a specification. Such parsers, run-
ning on different systems, don’t need to produce the same object in 
memory, but they do need to act in unsurprising ways when commu-
nicating. For a long time the IETF claimed7 to require two parsers for 
any standard network protocol.

A variant of the two-parser problem shows in network intrusion 
detection. A classic paper by researchers Tom Ptacek and Tim 
Newsham shows what attacks they label insertion and evasion are 
inevitable with a network observer (Ptacek, 1998). This also applies 
to web application firewalls: if they have a different parser than your 
endpoint, they may not interpret connections the same way. For 
example, if the firewall gets a packet with time to live set to 2 and thus 

7For several years in the late 1990s, I delighted in pointing out that BIND was the only 

DNS implementation.
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the packet will transit only two more hops, should it expect the end-
point will see the packet or not? And the point applies to more than 
firewalls. If an application proxy terminates a TCP connection, it 
parses the protocol and crafts messages to send on. As a separate 
parser, it may construct an object and then use that object to con-
struct messages. (It may also either blindly copy or apply a zero-copy 
philosophy, in either case giving less protection.)

Designing Protocols and File Formats
In discussing parsing in specific situations, I assume the format has 
been defined. If it has not, the effort you spend to specifically, con-
cretely, and formally define the protocol will pay off. Additionally, 
there are some design principles. These include simple design, limit-
ing recursion or nesting, and ensuring that the full document is pre-
sent (avoiding includes, especially remotely). Sometimes there are 
good engineering reasons to include other input. Doing so in a clearly 
delineated “includes” section at the start of a document will at least 
constrain parsing complexity, and the pattern of “include anywhere” 
has enabled an awful lot of remote file inclusion issues.

Language Complexity

Computer scientists have a way of discussing the complexity 
of languages. They divide languages into several categories, 
including regular languages, context-free languages, and 
context-sensitive and recursively enumerable languages. 
C3-P0 understands this entire hierarchy of language com-
plexity and would be excited to explain it to someone! If 
C3-P0 is not available and you’d like to learn more, a good 
place to start is with a paper by Sergey Bratus and collabora-
tors, Beyond Planted Bugs in ‘Trusting Trust’ (2014).
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Conclusion
Like a Jedi is tempted by the power of the Dark Side, attackers are 
tempted by the power of unconstrained parsers.

Yoda warns Luke Skywalker that only a fully trained Jedi Knight 
with the Force as his ally will conquer Vader and his Emperor. 
Similarly, only a fully trained parser will conquer all the inputs its fed. 
Unfortunately, we don’t have Yoda, or even dramatic music, to warn 
us of the dangers of parsing. It’s easy to lose track of where input came 
from or what validation has been done. It’s easy to lose track of the 
many threats as we parse.

But finding a careless parser is the fastest route to SQL injection, 
cross-site scripting, stack smashing, buffer overflows, remote code 
execution, and other forms of expansion of authority.

Eternal vigilance is the price of liberty, and it’s also the price of 
maintaining a parser. There are fewer heart-stopping moments if you 
build on solid foundations.
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9

Up to this point, we’ve talked about individual threats. But in the 
real world, individual threats are less interesting than the chains 

that bring them together into an attack on a system.
Rebels analyze the stolen Death Star plans and find a weakness. 

The Death Star conveniently shows up (rather than a fleet of Star 
Destroyers), and the Rebels are able to use their X-Wing fighters and 
Jedi-in-training to deliver a torpedo to precisely the right spot, where 
it destroys the Death Star.

Other than X-Wings and Death Stars, threats don’t show up in a 
vacuum. Technology has a context, and that context defines the 
attacker’s journey. For every attack, an attacker will engage in some 
reconnaissance or experimentation. That may be as limited as “Send 
attack packets to sequential IP addresses” or as sophisticated as “We’ll 
set up a collection of fake businesses, and then recruit people to ‘work 
from home,’ reshipping packages and laundering money for us.” Even 
the folks who scan sequential IP addresses need to hear the responses, 
put those into a database, and then use the results.

Kill Chains
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To this point, we’ve looked at individual threats: the building 
blocks that attackers will combine into something useful to them. Let 
me present an example of a chain:

1.	 Analyze the plans for the Death Star. (Reconnaissance.)
2.	 Discover that a small fighter might deliver a torpedo. 

(Weaponization.)
3.	 Fly to the Death Star, fly down a trench. (Delivery.)
4.	 Make the shot. It’s like shooting womp rats back home. 

(Exploitation.)
5.	 The torpedo makes it to the reactor system. (Installation.)
6.	 The torpedo blows up at precisely the right place because of 

self-contained control logic. (Command and Control.)
7.	 Actions on Objective: There’s a Death-Star-shattering kaboom.

The parenthetical step names are explained later in the chapter. 
Different chains can have different steps, even different numbers of 
steps. This chapter dives into many widely applicable kill chains.

We’ll consider chains of threats to software that listens for connec-
tions (servers), software that connect out (clients), and the hybrid 
messaging systems where a server is listening for, queuing, and deliv-
ering messages to a client. Both the client and messaging will be 
grouped into “desktops,” where they traditionally run. All of these 
chains—client, server, messaging—end with an attacker gaining the 
authority to run code. Other chains lead to attackers gaining author-
ity by obtaining real credentials.

Those two strategies (exploiting a program or using credentials) 
for gaining authority are followed by chains in specific scenarios, 
such as cloud, AI, and mobile. After that, you’ll learn about the his-
tory of chains and see how the chains can be brought together. (I’ll 
mangle the metaphors, twist the chains together, and develop a braid! 
Sadly, it won’t be as iconic as Leia’s braids, but then again, who is?) 
The chapter closes with a section on defenses.
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Threats: Kill Chains
The kill chain of Reconnaissance, Weaponization, Delivery, 
Exploitation, Installation, Command and Control, and Actions on 
Objectives is a modern classic (Hutchins, 2010). It has a good blend 
of specificity and generality that made it powerful, and we’ll talk 
about its history later in the chapter. But while its creators have trade-
marked it as “Cyber Kill Chain®,” there are many kill chains in cyber-
security, developed to model other attacks. Because of its explanatory 
power, I’ll use those steps as appropriate in this chapter and also vary 
them as needed. Also, I’ll generally use the term step for a discrete 
task, and when multiple, similar steps might be needed, I’ll call that a 
stage. Thus, the Delivery stage of the Death Star kill chain involves 
steps of flying to the Death Star and delivering the torpedo. Of course, 
it was crucial to stay on target as those steps were executed.

The idea of looking at attacks in steps is not new. Security experts 
frequently represent them as either chains or trees. We use chains to 
look back at what attackers did, and trees to represent unfolding pos-
sibilities. We call the chains kill chains and the trees attack trees. Of 
course, a chain is a very simple form of tree, and the distinction is 
largely focused on “did this happen” versus “could this happen,” 
rather than the different representations having inherent comparative 
value. The terms kill and attack are roughly synonymous.

As you read through this chapter, you might notice that some of 
the chains aren’t really chains or even trees, but more braids. Software 
security expert Gary McGraw has called them fractal, and it’s a great 
description. By fractal, he means self-similar. At any point, the attacker 
can fork off an entire side kill chain to obtain some needed stepping-
stone. That chain is a step in a larger chain, much like the triangles in 
a fractal (Sierpiński) triangle are made up of smaller triangles.

You may have noticed that the chain in the introduction skips over 
at least two related chains: “Steal the plans for the Death Star” and 
“Rescue the Princess.” For modeling purposes, we omit these details. 
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Some of the larger, more complex operations, say, those run by intel-
ligence agencies, have included the step “Break into software provider 
and insert malware into their software.” That’s both a complete chain 
in itself and a link in a longer chain. Part of the reason that this chap-
ter is positioned late in the book is because you’re now better able to 
handle that fractal nature. Additionally, the chains or graphs that 
relate to how computers are compromised (as opposed to network 
attacks) have some points of concentration: the ability to run code as 
a given user and the ability to log in as that user. They’re closely 
related: if you can log in to a Unix server as shostack, you can run 
code as me. But if you can log in to my bank as shostack, you can do 
things as me, but my bank doesn’t allow me to upload code and run 
it. (These are places where the attacker has defeated either authenti-
cation or authorization and can thus spoof or expand their authority.)

Server Kill Chain

When I say server, I mean a system that’s primarily running daemons 
or network listeners and has limited interactive use. The hardware 
doesn’t matter—it might be a Raspberry Pi, an expensive rack-
mounted system, or abstracted in someone else’s data center. If used 
like a local desktop computer, all the attacks I cover in desktop chains 
are relevant.

Network Listeners Chain
The attacker finds a server, a system that is listening and waiting for 
clients to connect to it, and attacks the code that’s parsing what that 
listener receives. Attacks you may have heard of like SQL injection or 
remote file inclusion all work against a server. Network worms work 
this way, attacking common listeners like SQL servers, RPC end-
points, or file services.

This can be very broad, attacking vulnerabilities in widespread 
software, often parser vulnerabilities. Worms will often send their 



Threats: Kill Chains 253

exploit code completely indiscriminately, preferring a hope that it 
succeeds to the effort of selectivity. It can also be very narrow, target-
ing your unique software. Penetration testers might spend weeks ana-
lyzing a web application and understanding its composition and then 
craft custom attack code. The links of the kill chain are the same; the 
specific work the attacker performs differs somewhat.

Some of these attacks work directly, using a buffer overflow in the 
code that actually listens on the socket. Some, like SQLi, are passed 
through layers of service code: the web server, all its frameworks, 
your business logic, and then eventually to the database.

The Network Listener kill chain does the following:

1.	 Recon: Find a server that’s listening and information it dis-
closes about the software it’s running.

2.	 Weaponize: Find a vulnerability in that server. (In practice, 
this step may happen first. An attacker whose recon is focused 
on finding software vulnerabilities may then do recon to see 
where it can be used.)

3.	 Deliver: Send the exploit.
4.	 Exploit: If the exploit succeeds, it gains authority, often 

through a parser issue.
5.	 Install: Software is installed to help the attacker.
6.	 Command and control: The software gets commands, like 

“search for credit card numbers” or “find the crypto-
graphic keys.”

7.	 Actions on Objectives: The attacker uses their newly stolen 
authority to achieve goals.

Figure  9.1 shows steps 1–4 of the Network Listener kill chain. 
Steps 5–7 are common to other chains and so are not shown in this 
diagram. (Later in the chapter, you’ll see how the diagrams fit together, 
with those common pieces shown with the many ways attackers 
reach them.)
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SQL Injection Kill Chain (Example)  A SQL injection attack has a 
slightly different kill chain from the general server model, skipping 
the installation and command-and-control steps.

The Reconnaissance stage can be discreet. Find a website that’s 
probably backed by a database, and probe it by sending queries that 
are likely to reveal things about SQL injection. Because it always  
evaluates to true, inserting ' OR ‘1’='1 to web forms has become a 
classic form of recon. It doesn’t get the attacker what they want, but it 
shows that further investigation will probably be fruitful.

The Weaponization stage involves taking a vulnerability found in 
recon and turning it into something that will reliably execute and 

Listener
Threats

Recon:
Discover network

listener

Weaponize:
Develop exploit

Deliver
Send exploit

Exploit:
Exploit network

listener

FIGURE 9.1  Network listening daemon (server) kill chain
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obtain the data you want. You might be thinking SQL injection either 
works or it doesn’t, but if you’re going to extract gigabytes of data, you 
might need to select subsets of the data, rather than ask for it all at 
once. You might need to performance optimize your queries to avoid 
being noticed. You might spin up a cloud instance to hold the loot.

The Exploitation step is to use the weapon against the real target. 
The act on objectives might be using or selling the data you’ve 
extracted, or whatever else the attacker wants to do.

Desktop Kill Chains

This section will look at many common attacks against traditional, 
interactive desktop computers. It starts with attacks on complex cli-
ent software that acts on the instructions of a person behind the com-
puter. From there, we touch briefly on desktops that run server 
software (listening for connections) and then to messages. Those 
messages are similarly initiated by others and can carry out attacks 
much like those against servers but attack the client or through it, 
leaving the server untouched. The extended discussion of message-
borne attacks includes various forms of phishing and scams 
via messages.

These five kill chains result in a compromised desktop. At that 
point, the attacker has access to your authority. They can run code as 
you and focus on their objective. Those chains are as follows:

1.	 Through a client like a web browser
2.	 Through a listening daemon
3.	 Through locally installed code, already present
4.	 Install new code
5.	 Attacks via messages

The first four (clients, servers, and already installed or new code) 
are relatively straightforward. The last, attacks carried by messages, is 
a bridge to attacks on clients or credential theft.



Kill Chains256

Browsers and Other Clients Chain
A client is software that initiates a connection to a server. Again, server 
means software listening for a connection, as opposed to initiating one.

Some clients will connect to a few specified servers, like an email 
or IM client, while others, like a web browser, will connect indis-
criminately. Some of these weapons are delivered by the client to 
another piece of software.

The chain is as follows:

1.	 Recon: Find a server that you think your target might connect 
to. (Reconnaissance is often shortened to recon, because who 
can spell French words?)

2.	 Weaponize:
(a)	 Compromise the server. (See “Server Kill Chain.”)
(b)	 Create a weapon to be delivered to your actual targets.

3.	 Deliver: Use the server to deliver the weapons.
4.	 Exploit:

(a)	 For browsers, the weapon might directly target the client 
software, target a plugin, invoke a whole additional pro-
gram and its parser (such as Word or PDF), or attempt to 
get a file downloaded and then invoked.

(b)	 For message clients in addition to all the attacks against 
browsers, there are links (URLs) pointing to either attack 
sites or credential-stealing stealing ones. Attack sites loop 
back to step  3, which is another layer of delivery, while 
credential-stealing ones jump to that chain.

5.	 Attacking through a downloaded file. (See separate chain)

The underlying reality of the client chain includes multiple steps in 
weaponization and variants in how the exploit step is carried out. It 
starts to resemble a tree.

Figure 9.2 shows the key links in this chain.



Threats: Kill Chains 257

From the server’s perspective, the delivery phase of a kill chain 
involves waiting for clients to arrive. Information disclosure by the 
client may help the server tailor attacks. For example, my browser 
enthusiastically tells every server it talks to its version and my operat-
ing system.

Some clients connect to a very few servers: messaging services like 
iMessage or Facebook messenger connect only to Apple or Facebook 
servers (respectively). A mail client connects to a few servers, each 
selected by the user in a configuration step. As it does so, the client is 
exposed to risk, if one of those servers chooses to attack it. And then 
there are web browsers.

Client Threats

Weaponize:
Develop exploit

Exploit:
browser bug

Exploit:
plugin

Download files
(See

separate chain)

Weaponize:
Break into website

Deliver:
Browse to website

FIGURE 9.2  Client software kill chain (excerpt)
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We generally think of web browsers as following the instructions 
of the human behind them to visit websites. Many protocols have lay-
ers of re-direction at the client layer, and these expose the client to 
additional attacks. For example, when I direct my browser to 
https://nytimes.com, in addition to the New York Times content, 
there are links to nyt.qualtrics.com, www.nytco.com, www 

.tbrandstudio.com, and www.googletagmanager.com, and proba-
bly others. Browsers happily follow such links for usability reasons. 
And so a browser is subject to attack from servers that you may not 
be aware of.

The attacker has three options once a client has been brought to 
their server: they can target the client with an exploit, they can target 
a plugin or invoked document parser, or they can attempt to get a file 
downloaded. The same options are available once their message has 
been delivered.

The client likely has several layers of parser: there’s a parser that 
handles the channel and probably a set of different ones that handle 
messages carried in that channel. Each is subject to attack.

Messaging Systems
Messaging clients get messages from one or a few servers, but those 
servers collect messages from anyone. A delivered message can attack 
the client or present a credential stealing attack. Those classic phish-
ing messages are covered in the “Acquire or use credentials” kill 
chain. The message can also carry a client attack, including URLs or 
malicious attachments, jumping to that tree.

The term phishing has morphed from “an email designed to steal 
your credentials” to “a malicious message of any type.” Many of these 
terms have been created by marketing departments and focus on 
small changes to delivery mechanisms, such as vishing for a voice call 
or smishing, via text messages.

Control of those messaging servers varies. Some, like corporate 
mail servers, are under your control; others, like Gmail, are operated 
by a third party. Some support open protocols like email; others use 
proprietary formats. But in all of these cases, they accept messages 

https://nytimes.com
http://nyt.qualtrics.com
http://www.nytco.com
http://www.tbrandstudio.com
http://www.tbrandstudio.com
http://www.googletagmanager.com
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broadly for delivery. When they’re acting as servers, they’re vulnerable 
as servers, but here, we focus on how the messages they relay to cli-
ents threaten those clients.

Figure 9.3 shows a messaging kill chain. It starts with Recon, col-
lecting addresses, and then Weaponization. The first contact from the 
attacker is when they send the message. That step can lead to an 
attack on a client, such as a web browser, or initiate credential theft, 
each of which has its own kill chains. Messaging can also continue in 
a kill chain against the messaging client with an exploit or a file (see 
the “Downloaded File Chain” or the “‘Please Install Code’ 
Chain” section).

Messaging Threats

Authentication threats

Recon:
Collect emails

Weaponize:
Develop exploit

Deliver:
email (or

other message)

Exploit:
Run code

attachment
Phishing site

Exploit
Design issue

with attachment

Exploit via
attachment

Zip

FIGURE 9.3  Messaging kill chain
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Network Listeners on Desktops
Your desktop computer probably has a set of network listeners on it. 
The computer I’m typing this on has roughly 15 listeners for printing, 
SSH, bonjour, and a virtual camera plugin. Even though the system is 
a desktop, those listeners are vulnerable. (As it turns out, roughly half 
restrict their listening to loopback connections, those from the 
local system.)

The server kill chain applies to any of those 15 listeners, or what-
ever listeners a given desktop computer has. The half that are restrict-
ing their connections to loopback only require another chain. Perhaps 
that’s “break into a low-authority account on the target” or to find 
server-side request forgery or a remote file inclusion attack, which 
will turn it into a proxy.

Local Software Package Chain
A long time ago, many local software packages contained no network-
ing code. Think of the traditional versions of Microsoft Office or a 
game. If they handled files, they were local or via network file service 
protocols (SMB, NFS). Many of these programs did not expect to be 
attacked, so they are helpfully vulnerable links in either client or mes-
sage kill chains.

1.	 Recon: Find a vulnerability in a local software package.
2.	 Weaponize: Craft a reliable exploit.

(a)	 Attacks on parsers
(b)	 Attacks that misuse features (macros, etc.)
(c)	 Attacks that use features as designed (shell scripts)

3.	 Deliver: Send the exploit in a way that reaches the target.

From here, exploitation, installation, command and control, and 
actions on objectives proceed similarly to chains that you’ve seen.

The step “use features as designed” means using existing programs 
that are designed to run other code like shells, interpreters, or build 
systems. Because this local software chain is shorter, I’m not includ-
ing a visual representation.
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Downloaded File Chain
The danger from a file is realized when the file is invoked in some 
way. There are a few chains. Each starts with “deliver the file.” We’ll 
look at a chain for executable files, covering both scripts and com-
piled binaries, and then, after discussion, a chain for libraries.

When a file is an executable:

1.	 Exploit: Convince the user to open it.
2.	 Evade defenses (optional):

(a)	 Pretend the file is a document via icon and names, possibly 
leveraging extension hiding.

(b)	 Compress the file.
3.	 Command and control: The file may have its complete instruc-

tions locally, or it may reach out to a server for instructions.
4.	 Act on Objectives, with the authority given to the program.

For performance reasons, many antivirus programs used to skip 
compressed files. Today, to inhibit defenses, compressed files are also 
encrypted and sent with a password. When the file is a linkable library, 
issues of link ordering become relevant. (These were discussed in 
Chapter 2, “Tampering and Integrity.”)

The Defense Evasion step is a deviation from the seven-step chain 
that we saw in the introduction. That chain (Reconnaissance, 
Weaponization, Delivery, Exploit, Installation, Command and 
Control, Actions on Objectives) is a useful model, and like all models, 
it’s imperfect. Adding steps like Defense Evasion is as much a normal 
part of an analyst’s job as removing steps (like we did for SQL 
injection).

Adding abstracted steps, like Defense Evasion, allows us to ask, “Is 
there another way the attacker could do that?” Frequently, engineers 
who know their systems well can use that knowledge to find such 
variants in ways that are unavailable to security experts with less spe-
cific system knowledge.
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“Please Install” Code Chain
In a sense, the technically easiest way to get code installed is to entice 
an authorized user to do it for you, by telling them that the code has 
some useful function. The code can advertise one function but do 
something else, or it can really fulfil that purpose and surreptitiously 
do more. These are sometimes called Trojan horses.

Attackers have broken into software companies to install malicious 
code that will be delivered to those company’s customers. Examples 
include M.E Doc tax software, used in the infamous NotPetya attack, 
and SolarWinds, each of whom delivered altered code to their cus-
tomers (GAO, 2021, Goodin, 2017). Attackers have also taken over 
open-source repositories. Project developers have even decided they 
were tired of companies using their work uncompensated and inserted 
attack code (Sharma, 2022).

There are many chains that include the step “The attacker delivers 
software to the victim.” The steps that lead to delivery vary widely, as 
discussed in the preceding paragraphs. The result is that the attacker’s 
software now has the authority of the account that invoked it. This is 
the case on traditional desktops and servers, and mobile devices to a 
lesser extent.

Attackers may not need to entice you to install code. The code and 
authority you have may be enough for them, and they may simply ask 
you to use it on their behalf. This is frequently called social engineer-
ing and usually involves some pretext as to why it’s OK for you to take 
these steps. Building systems that defend against social engineering is 
complex. My Threat Modeling has a chapter on usable security, and I 
served as a technical editor on You Can Stop Stupid (Winkler, 2020), 
which is about processes to achieve that goal. (Most books on the 
subject are focused on how to manipulate people, not how to defend 
against the threat.)

Acting on Objectives by Running Code
Many kill chains converge at the point where an attacker has access to 
the authority of a person to run arbitrary code. The routes to get there 
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vary, as do the ways that commands are sent. Perhaps the attacker logs 
in via SSH or RDP and runs commands interactively. Perhaps their 
code reaches out to a command-and-control server. Sometimes that 
code is widely deployed malware; sometimes it’s been developed for a 
particular attack.

Many of the chains we have seen to this point converge on tradi-
tional desktop computers. They have clients that receive messages 
and do other work and pass messages to parsers of tremendous com-
plexity and variety, including playing video, displaying and editing 
rich document formats, and more. They often have listening dae-
mons, and their code is often poorly isolated and high in authority. 
They’re often managed by overworked amateurs. It is sorely tempting 
to claim that if we were to design a weak link, it would look a lot like 
desktop Windows or Linux of the late 1990s. The vulnerabilities of 
such systems remain important to both attackers and defenders.

These chains are brought together in Figure 9.4. You’ve seen the 
components separately, and you can now see how they come together 
(with the addition of “install code” off to the side; downloaded files 
and using local code are not shown.)

Incidentally, attack trees are typically shown with the attacker goal 
at the top. In this case, I’ve put it at the bottom to align with how 
stories tend to flow down the page, not up. (The traditional represen-
tation is because trees are created as a record of analysis.)

But these are not the only major chains. I’ve alluded to phishing, 
and now to bring it all together, Figure 9.5 shows a simplified version 
of Figure 9.4 and adds credential theft and use on the right. I call it a 
sandcrawler because that’s how it ended up. In the next section, we’ll 
expand out the credential-focused chains on the right.

Before we do, let me comment on an aspect of the sandcrawler 
model. The “login” box at the bottom, which leads directly to Act on 
Objectives, is technically wrong but very useful anyway. It’s wrong 
because every login causes code to run. Logging into a bank and 
transferring money causes code to run. The bank’s careful attenuation 
of authority does mean less code is running. So, what makes it useful? 
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It aligns with intuitive models that “That’s not the same as running 
code!” If that’s your model, then the final line of the structure aligns 
with that.

Incidentally, not every use of a password causes code to run. 
Passwords go back to when soldiers needed a way to identify them-
selves to sentries (thus the line in the musical Hamilton, “The code 
word is ‘Rochambeau,’ dig me?/Rochambeau!” They’re repeating it 
back to commit to memory.) It’s not well known, but the older code, 
which checks out for sneaking past a blockade to Endor, was also 
Rochambeau.
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Acquire or Use Credentials

Acquiring credentials is a frequent detour in other kill chains. We’ve 
covered many of the mechanisms in the Chapters 1, 4, and 7, which 
deal with spoofing, information disclosure, and predictability.

Despite its immense place in our psyches, phishing is not the only 
way to steal credentials. Using leaked credentials is an incredibly 
common link in a chain. It’s important to store passwords well (as you 
learned about in Chapter 7, “Predictability and Randomness”). This is 
also why a good password manager is a great way to protect yourself: 
you can use a unique password per site, limiting the impact of a fail-
ure either by the site or by you or your password managing deputy. 
Once a site has leaked a password, you should really stop using it. 
Here’s one of mine: NXcsx2IZ. That’s a real password that I used to 
use on a somewhat high-value site, which leaked it. I’m okay with 
sharing it here, because I’ve stopped using it.

As shown in Figure 9.6, credentials are primarily leaked or phished 
and are used to take over accounts. That can be a personal or corpo-
rate account, and the attacker’s ability to act as you is a powerful route 
to acting on their actual objectives.

Install Code Attack Server

Run Code

Act on
Objectives

Attack Client Message
Borne Get Creds

Use Creds
(VPN)

Login
(Bank, Facebook)

FIGURE 9.5  Adam’s “sandcrawler” model
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Phishing
Classic phishing tricks a person into entering their credentials in a 
fake website. This is a new set of kill chain steps, which we’ll focus on 
to the exclusion of steps we’ve covered that can be delivered in mes-
sages: links to malicious websites (attacks on clients) or attachments 
(attacks on local packages).

A Phishing Kill Chain  This kill chain is for the steps an attacker 
needs to follow to steal money from your bank account:

1.	 Select one or more targets. (Recon)
2.	 Craft an email which spoofs some target bank. (Weaponization)
3.	 Deliver the weapon by sending emails. (Delivery)

Account
TakeOver

(Corporate)

Steal money
(example)Login

VP
N(

?)

Authentication threats

Phishing site Credential leak

Account
TakeOver

(Bank example)

FIGURE 9.6  Account takeover chain
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4.	 Someone clicks the weapon part. (Exploitation)
5.	 They visit a website and enter their credentials. (Exploitation,  

again)
6.	 The attacker uses those credentials to log in to their bank and 

steal money. (Actions on Objectives).

The phisher performs Reconnaissance. They select one or more tar-
gets, by collecting or filtering email addresses. This step will often 
include the output of information disclosure attacks, including the 
bulk theft of email addresses in a break-in, or email servers that 
respond differently when there’s no such user, such as bouncing the 
message. It can also happen via collection of published mail list 
archives or marketing services such as data.com or Spokeo. Those 
attacks can be done for this chain or at another time.

Weaponization is when an attacker develops a weapon by crafting 
an email that spoofs a person or organization you hope the target 
trusts. In classic phishing, the weapon is a message that’s designed to 
convince someone to click on a link. The weapon often involves 
spoofing: URLs like Paypa1.com (with a one, not a lowercase L) or 
display text that says “Paypal.com” but the underlying HTML href 
value points somewhere else. It’s often created by tampering with a 
real email from that bank. These messages are usually designed to cre-
ate a sense of urgency, because phishing infrastructure ends up in 
denylists, messages are retroactively filtered, etc.

Weaponization may be complex. For example, spammers need a 
mail server that lets them send lots of mail. (Modern systems like 
Gmail have substantial defenses against outbound spam.) This can be 
their own mail server, or one they’ve broken into (expanded authority 
onto). The term server may be misleading here: It doesn’t need to be a 
big, rack-mounted system in a data center. Many email worms used to 
include their own SMTP engines, optimized for fast sending. The 
attacker needs a platform that meets the needs of their campaign.

Weaponization may also include creating a domain that plausibly 
appears to belong to the bank, like bank-email-server.com, at least 

http://data.com
http://paypa1.com
http://paypal.com
http://bank-email-server.com
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when a busy person glances at it. That domain might be used for both 
email and a website. The site will involve copyright infringement for 
images and probably also the HTML that displays the bank’s website. 
That HTML might be tampered with to reduce calls back to the real 
web servers, or left intact, to reduce hosting costs.

Deliver the weapon by sending emails, probably spoofing a sender 
in some way, including domains and display names.

The Exploitation step happens when someone clicks the weapon 
part (URL) of the email, and then their browser displays a website 
designed to spoof that of a bank. The victim enters their credentials. 
The browser sends the victim’s credentials to the site. Those creden-
tials enable the attacker to spoof the victim in the future. Sometimes 
the credentials are sent on from the phishing server to somewhere 
else in case the phishing site is taken down. (Password managers use 
different identifiers for sites, and so are less likely to send your cre-
dentials to the spoofed site.)

The final stage of Acting on Objectives happens as the attacker uses 
those credentials to log in to a bank and steal money. They laugh all 
the way to their bank. More seriously, logging in and really sending 
money is complex: your bank probably makes it tricky to add new 
places to send money, alerts you when one is added, limits the amount 
that can be sent to a new recipient, and delays the delivery of that 
money. It’s all a real pain when you really do want to send money to 
Aunt Beru back home on Tatooine. These defenses may align to a 
“move money” kill chain, but that chain isn’t specified here.

As it turns out, no one does all these steps by themselves anymore. 
There are efficient markets for each step. But there are two other 
properties that are far more important from our perspective. First, 
many of the steps leverage types of attack that we’ve been talking 
about in isolation. Second, those attacks have been chained together. 
Attackers chaining threats you’ve discovered into something bigger 
means that all of the problems you discover while threat modeling 
and choose not to fix are like Legos, scattered across the floor. You’ll 
step on some, and attackers will snap others together into a profita-
ble attack.
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An Alternative Phishing Kill Chain  It’s reasonable for different 
analysts to break up a chain in different ways. To illustrate that, let me 
briefly share a different phishing kill chain, developed by Chris 
Meidinger of email security company Agari in 2014. Their breakdown 
was as follows:

1.	 Targeting
2.	 Delivery
3.	 Deception (“The criminal needs to deceive the user into follow-

ing their call to action to the next step”)
4.	 Click
5.	 Surrender (“The user needs to input their data to the phishing 

site, surrendering it to the criminals”)
6.	 Extraction (“The phishing site needs to transmit the stolen cre-

dential or other information to the criminal”)

This variant is included to illustrate George Box’s aphorism that 
“All models are wrong, and some models are useful.” The addition of 
the “surrender” and “extraction” steps serves to anchor defenses such 
as security awareness training or phishing site takedowns.

The addition of the surrender step also raises an interesting conun-
drum. Many security awareness programs have focused on email, 
rather than messages. And so many people are more wary of email 
and less of other forms of messaging.

Business Email Compromise and Other Cons  There is another 
type of attack via messages, and those are traditional cons or scams. 
Perhaps the best known is the “Nigerian Prince” scam, but the Internet 
is…a hive of scams and villainy. Popular variants today include 
romance scams and business email compromise. (This is often abbre-
viated BEC, and the term compromise has a different meaning than the 
one we usually use in technical conversations.) This chain is pre-
sented to help you get a sense for how the Kill Chain technique can 
generalize.
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In BEC, a message comes from your boss saying “We need to pay 
this vendor. I’m traveling; can you handle it?” There’s no attachment, 
breaking many of the defensive scanning techniques in use. There’s 
also either no link or no malicious links in the message, causing the 
messages to go through a scanner darkly.

BEC is an interesting attack because at a technical level, it doesn’t 
really exploit or compromise much technology. (This is discussed in 
Chapter 8, “Parsing and Corruption,” which discusses threats from 
correctly parsed data.) The attack involves convincing staff that an 
executive at their company needs a payment made urgently and that 
they should violate processes or treat the payment as an exception.

The kill chain is as follows:

1.	 Recon: Find a target, their contact details, and possibly details 
about an executive who will be hard to contact.

2.	 Weaponization: Craft a story about someone who needs to be 
paid ASAP.

3.	 Deliver the message, either via spoofing or account takeover.
4.	 If account takeover, install, potentially writing email rules to 

prevent a taken-over account from noticing.
5.	 Exploit: Sell the con.
6.	 Act on objectives.

The Recon stage involves selecting a target, often in finance, 
because they’re the ones who can move money. The level of recon 
needed is higher than for a mass phishing campaign and needs to 
include the discovery of a relationship or hierarchy between individu-
als. This doesn’t need to be ironclad, and a few names on LinkedIn 
can be sufficient. Extra details from Twitter or Facebook posts (or 
even press releases) about the CEO traveling can help.

Weaponization is relatively simple. Craft a story about how some-
one needs to be paid ASAP. These are highly templated, because the 
stories that work have elements of urgency, technical failures, and 
people we need to placate, immediately.
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There are two common approaches to delivery. One is to spoof. If 
your CEO is named Darth Vader, the attacker will set up darth-
vader18@gmail and send you an email explaining that this is their 
personal account. Alternately, if the attacker has expanded their effec-
tive authority and can log in to Lord Vader’s account, then they’ll send 
you a real email from his real account. This will have various trickery 
to ensure that the real Darth Vader doesn’t see the email. That might 
be a reply-to header; it might be rules in the email program that for-
ward emails with the subject “Urgent: Pay Sienar Fleet Systems 
today!” to the attacker’s account.

The attacks are unusual in that there’s no expansion of the attack-
er’s authority. Once you catch on, the attacker is powerless, except 
perhaps for blackmail, but generally, they’re working a playbook that 
doesn’t go there. Yet. The failure to expand authority is also a property 
of many social engineering attacks. (Social engineering someone’s 
password is a common goal, and the slightly awkward phrase is com-
monplace. Once an attacker has succeeded at that, they can, of course, 
make use of it in the relevant kill chains.)

Once the attacker has sent BEC messages, they’ll exploit the vic-
tim’s belief that the conversation is real to provide details of where to 
send the money. This will happen in conversation; once the victim is 
drawn into the story, the mechanisms that con artists have used for 
centuries will all kick in. It’s reasonable to think of BEC as an instance 
of social engineering.

Achieve your objective—aka take the money and run. Once the 
victim has approved the funds transfer, odds are good that the money 
will cascade through several other banks in rapid succession, eventu-
ally moving beyond easy reversal. Either it’s left a bank as cash or it’s 
moved to another country.

As we move into the next section, we’ll move away from email-
borne attacks, because as interesting as phishing is, we don’t want to 
get hooked.
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Account Takeover
An attacker with a set of credentials, say “leia/RememberAlderaan,” 
can attempt to use them to log in as Leia. A recon step would be to 
find sites Leia uses. The attacker might skip over weaponization and 
delivery to exploitation and attempt to log in and then act on objec-
tives using the authority of the account. (The question of “Is using 
the credentials exploitation or delivery?” is a trap. As statistician 
George Box teaches us, “All models are wrong, and some are useful.”)

Stealing credentials isn’t the only way into an account and may not 
be a way into only one account. Hijacking some trusted bit of infra-
structure (like your Gmail account, your phone, or your desktop 
computer) will help an attacker into each and every account that you 
use that ties back to that account for backup authentication.

Acting on Objectives with Acquired Credentials
Once an attacker has a full set of credentials, they can act broadly as 
the user. That may include an interactive login, where they are ena-
bled to run arbitrary commands, send emails, or browse arbitrary 
sites within what’s nostalgically called an intranet, and more. It may 
include any of the actions that account can take, and many sites will 
carefully attenuate that authority. For example, a bank will not let me 
run arbitrary commands on its mainframe but offers me a few con-
strained commands like deposit, withdraw, and send.

These kill chains for traditionally defined client and server systems 
have been the training ground for generations of attackers, and they 
shape much attacker thinking (because they work) and thus much 
defender thinking. Many of them apply to newer technologies with 
minimal adaptation, but some steps will fail, and others are enabled 
by newer technologies, which we’ll see in the next section.

Kill Chains for Specific Scenarios
The kill chain structures can be applied to computers with keyboards 
and monitors or to computers that look like cars and fridges. The 
unique ways those steps manifest are largely captured in Part I, but 
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many of the scenarios that we’ve covered in these sections have 
unique kill chain steps. For blockchain, the transfer of authority 
involved in stealing keys is an unusually powerful instance, enabling 
later actions on objectives.

Cloud

There are a few cloud-specific kill chain steps that focus on the 
DevOps and automation steps that are frequently adopted as part of 
cloud deployments. These include pre-infected machine images. An 
attacker helpfully creates a copy of, say, Ubuntu, with their system 
admin keys and other software pre-installed and makes it available for 
others to use. How helpful!

Attackers will also attack the build system, or dependencies. Most 
cloud deployments automate building both binaries and systems. 
These build systems are often complex and sometimes not as well 
secured as “operational” systems. Many build systems will automati-
cally fetch the latest versions of various dependencies, test those in a 
build, and integrate them into the main development branch if the 
tests pass. This is based on the expectation that the latest is also the 
greatest. But if the latest is both greatest and contains code put there by 
an attacker, then the attacker code gets integrated with everything else.

Cloud often involves the creation of microservices, and in that 
world, server-side request forgery (SSRF) becomes a crucial step in 
many chains. SSRF is an attack where the server makes a request that’s 
influenced by the client. That influence can be on the target (address) 
of the request, on the content of the request, or even on the frequency 
and size of the request. If you’re thinking these sound like confused 
deputies again, you would not be wrong.

In 2020, leading cloud security practitioners Rich Mogull and 
Shawn Harris presented a set of kill chains for the cloud (Mogul, 2020).

•	 Static API Credential Exposure to Account Hijack
•	 Compromised Server via Exposed SSH/RDP/Remote Access
•	 Compromised Database via Inadvertent Exposure
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•	 Object Storage Public Data Exposure (S3, Azure Blob)
•	 Server-Side Request Forgery > Credential Abuse
•	 Cryptomining
•	 Network attack
•	 Compromised Secrets (instance/VM)
•	 Novel Cloud Data Exposure and Exfiltration
•	 Subdomain Takeover

IoT

Unique steps in IoT kill chains include “rooting the device” and 
“physically tampering with device.” This can be impactful if you treat 
your customers as threats, because your device controls what content 
can play or if your customers expose your device to their guests or 
customers. The specific ways these threats manifest, such as attaching 
to JTAG ports or information disclosure from or tampering with soft-
ware on a detached flash drive, have been discussed in prior chapters.

Mobile (IoS, Android)

In addition to the “traditional” attacks against desktops and the IoT 
steps of rooting or tampering, there are stages of a kill chain that 
involve app stores. These include spoofing or suborning a developer 
to upload a fake app to your real account or uploading an app that 
looks like yours or appears to be associated with your brand. There 
are denial of service via complaints to the app store owner getting 
your app de-listed.

The steps involved in “Persistence” are tricky on mobile devices, 
because defenses against rooting tend to block them. (Persistence is a 
broader concept than Installation, and comes from MITRE’s ATT&CK, 
which is pronounced “attack,” and which you’ll meet in the 
“History” section.)
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Weaponization as a Subchain

Weaponization is often a subchain of its own and frequently very 
loosely coupled with others. This book has taken the perspective that 
you don’t need to know how to write exploits, but understanding how 
the weaponization step happens can help you understand security 
researchers. That understanding may lead to avoiding needless con-
flict if they contact you to get a bug fixed. It may also mislead you into 
thinking weaponization is always difficult and slow.

We can apply kill chain thinking to the practice of vulnerability 
discovery. Vulnerabilities (the sort that get CVEs) and patches don’t 
just appear in a vacuum any more than X-Wing fighters. Both have 
backstories. A researcher performs Recon by choosing some targets to 
investigate. That investigation might happen in an artisanal way, load-
ing code in a reverse engineering tool and looking for problematic 
code patterns. It might happen at scale, fuzzing many possible target 
executables. It might happen at scale, scanning websites or IP space. 
The targeting might be loose, looking at either popular programs or 
less popular ones that might be easier targets. It might be focused on 
an obscure program used by your intended target.

The specific work to Weaponize can be very different, driven by 
the researcher’s goal. Often a proof of concept (PoC) will meet their 
goals. A PoC is all you may need to get a bug bounty, convince the 
manufacturer to fix it, get fame via a conference talk, or get a CVE for 
your résumé. The hard work of making the code reliable may not be 
needed. But if the analyst wants to go further along the kill chain, 
then the output of weaponization will likely require higher-quality 
code. That’s one of two qualities that separates a weaponized exploit 
from proof of concept. The other is a weaponized exploit is usually 
embedded in either a convincing framework to get an unwitting 
recipient to open it or a targeted or mass scanning exploitation tool. 
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(Mass scanning tools may also look for evidence that a target is vul-
nerable, such as banners or behavioral edge cases, before trying to 
exploit the vulnerability.)

All that work can lead to conflict when a researcher wants to see 
their vulnerability fixed. They may well believe they are engaged in a 
good-natured outreach. Researcher expectations about bug bounties 
can be misinterpreted by a technology creator as blackmail. The con-
flicts are often amplified because many companies haven’t dealt with 
a vulnerability report and many reporters are young or immature.

Lastly, weaponization is a place where the law of perversity in secu-
rity shines. When you want to develop a PoC to show that a vuln 
should be fixed, it’s hard work. But you can’t rely on it being hard 
when someone else tries it.

“No One Would Ever Do That”

“No one would ever do that” is a phrase that most people in the secu-
rity community love to hate. The claim is frequently made when 
someone doesn’t want to fix something or doesn’t know how. As you 
apply a kill chain, you may be unable to find an end result that seems 
worthwhile. And perhaps there is no there there, and the chain is  
not worth the end point. Or perhaps you’re failing to consider attack-
ers working for fame, for the respect of their peers, for the lulz, or 
because you once failed to meet some bizarre request of theirs and 
now they’re strangely obsessed with you?

Perhaps the chain you see as complete is a side quest for an attacker, 
who wants to use your site as a jumping off-point for mining crypto-
currency, sending phishing emails, pushing their site’s rank in search 
engines, or helping them with a scheme to entrap rebel scum?

Ransomware

Once an attacker has all your authority, they can use it to read and 
write to all your files. The business of ransomware expanded dramati-
cally in the second decade of the century, with startups developing 
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specialized and scalable models. Some provide initial access, some 
provide negotiation services, and some payments management. Of 
course, it’s all criminal but profitable enough that local police can be 
bought off or international police won’t bother.

Ransomware, like other new technology, took a while to become 
established. It was first described in a 1996 academic paper by Adam 
Young and Moti Young, which goes to show, threats can emerge slowly.

Elements of Network Kill Chains

Many of the links of a network kill chain are similar to other kill 
chains, but there are differences. In contrast to host kill chains, net-
work protocols are more standardized and less under the control of 
general software engineers. So while you might write code that man-
ages messages or acts as a server and will need to do so correctly, you 
may also need to understand a bit of behavior of networks.

Recon on Networks
Networks require initialization steps. Things like “Who uses what 
address?” and “How do I find that other computer?” require protocols 
with minimal authentication, and those protocols will often offer up 
valuable information like the address of a router, a domain name, or 
other identifiers.

Many networks use various techniques that are labeled broadcast-
ing. Obviously, radio protocols such as Bluetooth, Wi-Fi, and cell 
phones literally broadcast, while Ethernet does so figuratively. 
Antennas and amplifiers are better than you expect, especially when 
they’re only eavesdropping. They can pick up signals at ranges that far 
exceed normal operation. Again, the rule of perversity in computer 
security applies. Getting the Wi-Fi to work in your house is hard 
when you want it to work, and an attacker with a Pringles can might 
pick up your signal from a mile away.

Information Disclosure as a Network Threat
On an Ethernet network, any computer connected to the Ethernet 
can read every packet that goes by. By convention, they don’t, and 



Kill Chains278

Ethernet chips will discard packets destined for elsewhere for perfor-
mance. However, Ethernet chips have a “promiscuous” mode where 
they’ll pass each packet up the networking stack (using the older 
meaning of promiscuous as “indiscriminate” or “not selective”). 
Ethernet switches have replaced hubs, and the only packets sent to a 
machine are those addressed to it, or so we expect. There are attacks 
that convince a switch to do otherwise, outside the scope of this book.

At the lowest levels of the network, addresses are often fixed. For 
example, Ethernet addresses are configured at the factory for each 
chip to be unique, and these unique addresses can be used to track 
devices across various network access points. Again, the law of per-
versity applies: if a defender is tracking addresses, attackers can 
change them, so the defense doesn’t work well, but our privacy is 
nevertheless invaded in the hopes the attacker will forget.

Spoofing Addresses
Network protocols generally have a source and destination address, 
used to tell various levels of the protocol stack to “look at this.” In 
internet networks of networks, they’re also used for routing. And at 
each layer of the stack, the addresses are written into packets by soft-
ware. There are many checks to get them right, all of which can be 
overridden for various reasons. Some of those reasons are good, and 
some are nefarious. Spoofing source addresses allows you to send 
denial-of-service attacks, while spoofing destination addresses allows 
you to eavesdrop.

Local networks differ from local computers in that they are unme-
diated. There is no kernel deciding what can talk to what. As such, 
spoofing is easier. As networks interconnect, the routers are more and 
more likely to do source address filtering and only accept packets 
with appropriate source addresses on most of their interfaces, which 
makes packet spoofing at the Internet level complicated, but by no 
means inconceivable.
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History
We can think of STRIDE and kill chains like jazz and rock and roll. 
They’re stable genres, and they’re full of new and exciting instances. 
New details of each threat regularly emerge, like bands releasing new 
songs. Only rarely does a new category really emerge, like punk rock 
or fusion jazz. And even less common are new schools of music like 
hip-hop. It may help to think of STRIDE and kill chains as those 
schools of music. The songs, the vulns, the attacks have fundamental 
similarities, and STRIDE and kill chains help us see and work with 
those similarities.

STRIDE has been relatively stable since 1999. In this book I’ve 
taken the liberty of redefining E to expansion of authority, and there 
are nuanced changes like the rise of deepfakes to implement spoofing. 
In contrast, kill chains are newer and developing more rapidly.

History of Kill Chains

A team at American military supplier Lockheed Martin formalized 
their use of a kill chain for cyber in 2010. The idea comes from mili-
tary doctrine, where if you want to kill a target, you need to go through 
a chain of steps, from identification to selecting weapons to delivering 
them to achieve your objective. For defensive use, the Air Force has a 
set of ways to stop each step from succeeding. These are detect, deny, 
disrupt, degrade, deceive, or destroy. The Lockheed team also noted 
that if you detect an attacker at the installation step, you know that 
controls have not prevented the attacker from getting to install, and 
thus they have gone through recon, weaponization, delivery, and 
exploitation. (For most organizations, recon and weaponization are 
hard to defend against.) If you didn’t detect delivery or exploitation, 
there may be evidence that you can go back and gather. These indica-
tors of compromise can be used to search for other installations that 
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you haven’t yet seen or to tune tools to prevent additional use of the 
same attack vectors.

The idea of a kill chain quickly provided value to defenders, and 
many kill chain variants have been created. By variants I mean vari-
ants of the steps in the chain, not variation of the details within those 
steps. I do not mean “this attacker uses weaponized PowerPoints, and 
that one uses weaponized PDFs.” A variant means that the steps of the 
chain are different, being used to characterize either different attacks 
or the same attack with different nuance or focus. For example, 
MITRE’s ATT&CK adds a step “lateral movement” to talk about how 
an attacker hops from one machine to the next. Lateral is a reference 
back to privilege levels: the attacker doesn’t gain administrative 
authority but uses single sign-on techniques (classically those built 
into Windows via Active Directory) to use the authority of the same 
user on system after system.

Structure and Metastructures
Creating models with the right level of abstraction to help solve a 
problem is an art. Balancing specificity, clarity, and generality is hard. 
Since the Lockheed team published their paper, there’s been a small 
explosion of interesting new work.

The US Director of National Intelligence has created a Cyber Threat 
Framework. They describe it using all caps to distinguish the names 
of the stages:

“The framework captures the adversary life cycle from 
PREPARATION of capabilities and targeting to initial 
ENGAGEMENT with the targets or temporary nonintrusive dis-
ruptions by the adversary, to establishing and expanding the 
PRESENCE on target networks, to the creation of EFFECTS and 
CONSEQUENCES from theft, manipulation, or disruption.”

Researcher Paul Pols has analyzed a set of kill chains and created a 
metastructure he calls the Unified Kill Chain: Initial Foothold*, 
Pivoting, Network propagation*, Access, Action on objectives.*
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Each of the starred elements has additional detail. Both the Cyber 
Threat Framework and the Unified Kill Chain metamodels may be 
fine alternatives to the Lockheed seven-stage chain for either prospec-
tive or retrospective analyses. Both are presented to help you see there 
are many ways to analyze or model a system.

MITRE ATT&CK  MITRE is a US government contractor and 
research organization. It has a set of kill chains that are collectively 
labeled ATT&CK. There are currently three main sets (Enterprise, 
Mobile, and Industrial Control Systems). Each is usually presented as 
a matrix of tactics, techniques, and procedures. Tactics are similar to 
the stages of chains discussed in this chapter, techniques are imple-
mentations of threats, and techniques are broken out into procedures.

For example, persistence techniques include boot or logon scripts, 
account creation, and scheduled jobs, and specific examples are pro-
vided of real-world instances observed by defenders. Part of its useful-
ness comes from moderated community contributions.

The Enterprise matrix covers 14 tactics, many of which are simi-
lar to the “traditional” Lockheed chain, while others are either 
added or subdivided views of the Lockheed chain. I’ll denote those 
with a +. They are Recon, Resource Development, Initial Access, 
Execution, Persistence, Privilege Escalation+, Defense Evasion+, 
Credential Access+, Discovery+, Lateral Movement+, Collection+, 
Command and Control, Exfiltration and Impact. The mobile and 
ICS matrices are similar at a high level and differ substantially in the 
techniques and procedures.

The Sandcrawler Model  The Sandcrawler model, presented in 
Figure 9.5, reminds me a little of the Jawa sandcrawler, and since I 
created it for this book, I’ll give it that name. In contrast to the models 
just presented, each of which seeks to help analyze a single chain, 
Sandcrawler brings many different models together.
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History and Structure of Attack Trees
One of the early precursors to the concepts in this chapter were attack 
trees. Attack trees were defined by Ed Amaroso in 1994 and popular-
ized by Bruce Schneier in 1999.

An attack tree generally starts with an attacker’s objective, such as 
“Read the script to The Empire Strikes Back.” The objective is the root 
of the tree (in contrast to a chain whose goal is at the end). Steps to 
achieve the goal are children under a parent. The three ways I imagine 
to do that would be break into a client or a server or get a copy by 
email. Child nodes in the “break into the desktop” tree might be 
“exploit a vulnerability” and “leverage a misconfiguration.” 
“Exploitation” might have children of “exploit a zero-day vulnerabil-
ity” and “exploit an unpatched vulnerability.” And so drawn graphi-
cally, this looks much more like a tree than a chain. And sometimes it 
has a lot of fanout from a single node. “Exploit a zero day” might have 
many children: Word, Excel, Adobe Reader, Chrome, Firefox, 
Quickbooks, Slack, Jira, Atom, gcc, and so on. The addition of named 
stages as part of the shift to chains seems to have been an important 
improvement. That was accompanied by work to organize indicators 
of compromise and their interchange.

Figure 9.7 shows a sample attack tree. As I’ve said, there is a great 
deal of similarity between trees and chains.

Read “Empire”
Script

Break into server Get emailed copy Break into desktop

Exploit vuln

gcc

Reader

Word

Chrome

Q’books

SlackSpoof email
request

Intercept email

Leverage
misconfiguration

(as shown in Fig 9.1)

FIGURE 9.7  An attack tree
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Crafting a tree or trees for a specific scenario can help you think 
through variations: Is there another way to achieve this goal (reach 
this node)? Are these nodes equivalent? Do we have controls that 
address each of these problems? And crafting that tree, with relatively 
concrete nodes, is relatively easy. Crafting trees that can usefully be 
reused over and over is incredibly hard, which is why most of the 
samples on the Internet are for goals like “get through a door.”

Trees of a few to a dozen nodes are most common, with very few 
being much bigger than two dozen. The largest trees I’ve seen are on 
the order of a few hundred nodes, which I reviewed privately for a 
client. At that scale, using and comprehending the trees was fairly 
difficult.

Other Jargon
There’s a small amount of kill chain jargon that may be helpful to you. 
Be aware that the terminology is changing quickly. For example, as 
this book went to press, Rich Mogull, whose work is referenced in the 
“Cloud” section, announced that he was relabeling his work from 
“kill chains” to “attack sequences.”

APT stands for “advanced persistent threat.” The term threat is 
used differently in this phrase than I’ve been using it in this book. 
Here threat is short for “threat actor,” rather than the promise of 
future violence: “Darth Vader is a threat.” Second, the term APT was 
a bit of a Jedi mind trick, allowing people to imply but not say “nation-
state attacker,” that is, a spy agency or a military that’s going after 
another nation. These attackers bring discipline, organization, and 
separation of work to persistently go after objectives. Early in this 
chapter, I mentioned breaking into a company and compromising its 
products as a step in a chain—allegedly, the Chinese broke into RSA 
to compromise the RSA token used in multifactor authentication as 
part of breaking into Lockheed (Greenberg, 2021). That’s persistence. 
Around the same time, the Stuxnet malware included four zero-day 
exploits and command-and-control software that jumped over air-
gaps by passing software and messages on USB drives. That’s some 
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pretty advanced weaponization and command and control. The 
United States and Israel are believed to have created Stuxnet. 
(Sanger, 2012).

TTPs are tactics, techniques, and procedures that attackers use, 
and attacker TTPs are those that a given attacker has been caught 
using by defenders willing to share that information. Frankly, the 
term is usually thrown around without specificity as to which are 
tactics and which are techniques or procedures. I used step and stage 
to describe sets of tactics. If you care, ATT&CK is a good guide to 
what’s a tactic, technique, or procedure.

“Boom!” is the moment at which a bomb explodes. In a computer 
context, does that equate to when an exploit runs? When it manages 
persistence? When it gets a command from its controller? What is 
boom in a phishing attack? Is it when a user enters their credentials 
in a fake website, when the attacker returns to use them, or when they 
transfer money from the bank? I don’t know, and generally, those say-
ing “boom!” don’t either. You should avoid using it.

Blast radius means the things impacted by an attack. An attack on 
a single computer has that computer as its blast radius; an attack on a 
directory service or build system has a blast radius of an entire opera-
tional domain. Design to isolate systems reduces the blast radius of an 
attack, while administrative and operational needs tend to expose 
more systems to possible damage.

Defenses
There’s a saying: “An attacker needs to get lucky only once, while a 
defender needs to be lucky all the time.” The need for iterative move-
ment along a chain is a strong counterargument to that idea.

That movement along a chain inspired the Lockheed team. One of 
their core insights was that if you find installed malware, it got there 
somehow. If you missed the steps that got it there, you can go back 
and look for them, and you can look for actions taken since 
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installation. The techniques and procedures that an advanced attacker 
uses tend to be pretty similar from attack to attack, so if you find one 
part of a chain and compare it to a database of TTPs, you can find 
other things to look for.

Using a kill chain to proactively inform defenses is an excellent 
way to organize your thinking. The goal of a defense is to counter a 
threat. Defenses that are reliable and address many threats are better 
than the alternatives. Defenses that address chokepoints are more 
effective than those that address rare or obscure threats.

Using a kill chain to inform defenses is also surprisingly nuanced. 
The expression “A chain is only as strong as its weakest link” may not 
apply. A defense that effectively stops an attacker stops that attacker. 
More precisely, it stops them from traversing some link in the chain. 
It protects your system only if the defense can’t easily be sidestepped. 
You may have a weak link, like your employees having social media 
profiles, but that doesn’t stop you from deploying strong defenses 
later in the chain.

An example of a defense that can be easily sidestepped is requiring 
passwords to be changed regularly. People use a small number of well-
understood strategies like appending a 1, and so the third change 
leads to RememberAlderaan111. In contrast, a defense like IoS requir-
ing that binaries be signed to run is hard to bypass. The attacker can 
do all the weaponization and exploitation they want, but running a 
binary requires a signature from the App Store. They may have paths 
around that; nevertheless, the weak link in the chain, a badly coded 
binary, doesn’t mean the overall chain is only that strong.

Using a kill chain to inform defenses is made more complicated 
because there are many aspects to defending a system. Defenses that 
loom large in our minds (patch management, Identity and Access 
Management) often address single stages of a single chain. To make 
the learning curve steeper, many commonly cited market segments 
don’t line up well at all. For example, security information and event 
management (SIEM) is intended to collect and analyze logs. If it does, 
it becomes helpful across or investigating entire chains of events.
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Types of Defenses

When you start thinking about a kill chain, you’re often thinking 
about a system in larger chunks than when you’re applying STRIDE. 
You may be working with parts that others have crafted. In both cases, 
the defenses are different. They’re defensive technologies such as a 
firewall or a file integrity system. They’re defensive operations such as 
intrusion detection or response. These goals are often met with add-on 
technology products (or services) rather than by improving the system.

We can conceive of defenses as achieving five major goals: identify-
ing the things we want to protect, protecting them, detecting attacks, 
responding to attack, and remediating things to an acceptable or 
improved state. (The goals are borrowed from the NIST Cybersecurity 
Framework.) There’s also a goal of ensuring your defenses are appro-
priate and well-managed.

For each step of the kill chain, we can think about a variety of 
responses (the original cyber kill chain paper also adapted a defensive 
model of deceive, disrupt, deny, destroy, and some other words start-
ing with D. It didn’t catch on the same way.) However, the essential 
defenses are protection and detection, especially detection of success-
ful attacks. The success filter is much more helpful when there are 
many failed attacks. Who cares about the many scanners trying to log 
in to your Internet-facing VPN, unless they succeed? Deeper inside 
your systems, I hope the attack is unusual and worth noting.

The goal of this book is to provide deep insight into the threats and 
a survey of defenses. If you think of them as sides of a coin, then it 
would be logical to spend roughly equivalent effort on each. However, 
the relationship is not one to one. They are not sides of a coin, and 
metaphors are likely to lead you down a garden path.

Defensive Scenarios

There are four types of code we need to secure. First, code we run; 
second, code we write; third, code we incorporate; and fourth, 
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pipelines that combine them. The code we run includes products we 
get from elsewhere. Code we run also includes code we write, and we 
have more flexibility in how we secure that. We may provide that 
code to others, who may benefit from our security work. The people 
who created the code we incorporate may or may not have done that, 
and we may want to evaluate their work as we incorporate their code. 
Lastly, we can be concerned about the security of systems that build 
our systems: the pipelines that combine the previous three sets into 
deployable bundles. These four separate scenarios call for four sepa-
rate approaches to address each threat, as shown in Table 9.1.

Many traditional security products have tried to bolt security on to 
code we run, and that approach must overcome many challenges. 
(This is, in part, why security is often expensive, slow, or ineffective.)

For each of these scenarios, we can be concerned about the aspira-
tional security qualities, properties, or defenses that are being built, 
and we can be concerned about our assurance that it’s been built well. 
Each is important, and they are distinct properties. For example, we 
might have a firewall that promises to stop all malware. However 
carefully it’s implemented, I am skeptical of the claim and would 
require strong evidence. In another case, we might have an anti-
malware tool, and I might be skeptical of the quality of its parsers.  

TABLE 9.1  The Four Defensive Scenarios

Scenario Defenses

Code we run Operational security (e.g., NIST CSF, ISO 27001)

Code we write Variously labeled “secure development life cycles” 
or “AppSec”

Code we 
incorporate

Supply chain security

Build pipeline Often labeled “CI/CD pipeline security” but applies 
even if you don’t do CI/CD
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In both of these cases, I would describe my goal as seeking assurance. 
Governments frequently use the word in a mélange of these senses. 
Confusingly, the same term is applied to the work by creators in mak-
ing “an assurance case” and the work by buyers, often delegated to 
assessors, to check it.

The goal of assurance can be undercut at every point in the devel-
opment process. During design, not threat modeling or considering 
“what can go wrong” may lead to development missing crucial threats. 
Selecting an insecure development environment, not training devel-
opers, or ignoring the security qualities of code you include can 
undercut the best designs. Failing to test can lead to errors being 
missed. A reputation for litigiousness can lead those who perceive 
security problems to avoid bringing them to you and a tin ear as you 
talk to those who do can set off a firestorm of misunderstanding.

Defensive Catalogs
There are a great many catalogs of defensive tools. Most, like the NIST 
Cybersecurity Framework or the Center for Internet Security’s CIS 
Controls, focus on the operational needs of companies that acquire 
most of the code they deploy. Some are focused on a particular need, 
such as the SANS Windows Hardening Guide or Cloud Security 
Alliance guidance. Yet others are focused on industry, such as health-
care or finance.

An emergent category is requirements for those who are creating 
(and probably incorporating) code, such as the NIST Secure Software 
Development Framework. These are sometimes labelled “supply 
chain security,” and that may create confusion for those who are in a 
supply chain and those who are at the consumptive end of one.

Therefore, I’m not going to attempt to catalog the plethora of  
defenses that are sold today for personal or business security. (If the 
vendor selling it to you can’t crisply explain what threat they address, 
impolitely show them the door.) I’m also not going to attempt to  
catalog the catalogs, and again, the catalog should explain its goals. 
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Many of them fail to explain what threats they worry about, to their 
detriment and your cost. (I’ve given a talk, “Reverse Engineering 
Compliance,” that explains this point in depth [Shostack, 2021].)

Conclusion
Kill chains are a helpful framework to show how attackers bring 
threats to bear on real systems. Their operational focus brings together 
the many threats you now understand. Their story-like nature helps 
make the threats real, and they may help answer the perennial defend-
er’s question of “Why would someone do that?” But the threats change 
slowly, as do the common chains that integrate them.

The chains by which threats to servers, clients, and networks are 
brought to fruition have changed slowly over the years. The specifics 
certainly change year to year and the chains decade by decade, but the 
frameworks will serve you well through your career. They’re a core 
part of what every engineer needs to know.
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Like the Sith, the threats in this book are often seen as mysterious 
or shadowy. Too many engineers have been fooled into thinking 

that only a fully trained Jedi at the height of their powers can take on 
these threats. Much you have learned, and more to be learned there is. 
Overconfidence, must you avoid.

What you’ve learned in this book are specific threats and ways to 
counter them. These threats are far more powerful if you ignore them. 
Some can be addressed with straightforward engineering; others 
require complex trade-offs with nuance and traps for the careless. As 
you go forward, consider how each can be brought to bear on your 
systems. In Threat Modeling: Designing for Security, I’ve defined threat 
modeling as a family of techniques to help us answer four key 
questions.

•	 What are we working on?
•	 What can go wrong?
•	 What are we going to do about it?
•	 Did we do a good job?

As I teach, I’ve learned that many students struggle to answer the 
question “what can go wrong?” That is, discovering what threats 
apply to a system can be the hardest challenge in threat modeling.

It’s easy for most people to express a few things that can go wrong, 
and it’s hard for many to specify the technical mechanisms that lead 
to those outcomes. Some even feel a bit about security like Han Solo 
feels about the Force.

Epilogue
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Han: Hokey religions and ancient weapons are no match for a good 
blaster at your side, kid.

Luke: You don’t believe in the Force, do you?
Han: Kid, I’ve flown from one side of this galaxy to the other. I’ve seen 

a lot of strange stuff, but I’ve never seen anything to make me 
believe there’s one all-powerful Force controlling everything. 
There’s no mystical energy field controls my destiny! It’s all a lot of 
simple tricks and nonsense.

There’s some wisdom in Han’s skepticism. Some threats are simple 
tricks. Some claims of threats are nonsense. Of course, knocking on 
your helmet and shrugging to pantomime that the radio doesn’t work 
is also a simple trick. We can address threats because of what they do 
to us, our products or our customers. And when we do, they lose their 
power to control our destiny.

The threats that form the spine of this book, from STRIDE to pre-
dictability to parsing, are bound together by kill chains. Knowledge of 
the threats enables you to include them as you’re designing, creating, 
deploying, or operating technical systems. You can now do something 
about each.

The heart of engineering is trade-offs. Every engineer must make 
trade-offs between properties including cost, quality, and speed. Great 
engineers find elegant, clever, or inspiring trade-offs. Frequently, our 
trade-offs include things we should have foreseen: power blocks that 
are hot to the touch waste electricity, components that can’t be recy-
cled destroy the environment, the bridge known as Galloping Gertie 
before its collapse was built with a width to length ratio half that of its 
contemporaries. Other times, we are surprised. The magic glow of 
radioactivity kills the watchmaker? A single packet can take over 
a database?

This book, What Every Engineer Should Learn from Star Wars, was 
designed to bring threats into that trade-off space. From small deci-
sions to large, security is a property of our designs.
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The prequels begin with the story of Anakin Skywalker and his 
corruption and fall. The core trilogy has two intertwined stories of 
growth. The first is how Darth Vader’s yearning for the love of his son 
leads to his redemption. The second is how Luke, Han, and Leia grow.

Luke, Han, and Leia are thrown together by circumstances outside 
their control or understanding. Each tries to avoid their hero’s jour-
ney. Yet through confronting the many challenges and threats that 
they face, each grows stronger, and they grow stronger together.

You, your products, and even your teams can go through a similar, 
hopefully less perilous journey. We all have a fear of the unknown, 
and we have a vague feeling (or even a dread certainty) that our prod-
ucts are less secure than they could have been. But that’s the past. The 
code is literally committed, not just into version control, but some-
times it’s burned into silicon and soldered onto boards. We can con-
trol only where we go in the future.

When Luke goes to confront Vader at the end of Return of the Jedi, 
he tells Leia, “There’s good in him. I’ve felt it.” Even if you don’t feel 
there’s good in these threats, confronting them will enable you to find 
and address them. To deliver security. You can discover them on your 
own, or you can discover them as a part of how your organization 
delivers software.

From now, you may choose to continue a lifelong journey into 
security. If you do, you might choose the light side or the dark to fol-
low, or even decide that you’re the chosen one who’ll bring balance…

But we’re not Jedi, we’re engineers.
From the very start and in every part of their delivery, the products 

and services you engineer can now incorporate security.
It’s our only hope.
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This glossary is primarily intended to supplement NIST’s Computer 
Security Resource Center’s Glossary, available at csrc.nist 

.gov/glossary/. Entries that don’t have a base in the NIST glossary 
are marked with a (+). Where my definitions differ, the entry is 
marked with a (*), and the difference is explained.

ACL  A mechanism that implements access control for a system 
resource by enumerating the identities of the system entities that 
are permitted to access the resources.

address space layout randomization (ASLR) (+)  One of the earlier 
memory safety techniques, ASLR randomizes memory addresses to 
make it harder to write exploits. Used imprecisely to refer to mem-
ory defenses more generally.

advanced persistent threat (APT) (*)  “An adversary with sophisti-
cated levels of expertise and significant resources, allowing it 
through the use of multiple different attack vectors (e.g., cyber, 
physical, and deception)…moreover, the advanced persistent 
threat pursues its objectives repeatedly over an extended period of 
time, adapting to a defender’s efforts to resist it, and with determi-
nation to maintain the level of interaction needed to execute its 
objectives.” Generally means government attackers and their 
agents and cutouts.

asymmetric cryptosystem  Any cryptosystem involving more than 
one key, where at least one key is kept private and one is public or 
published. For example, RSA or Diffie-Hellman. The published key 

Glossary

http://csrc.nist.gov/glossary
http://csrc.nist.gov/glossary
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(or keys) are often vouched for by a public key infrastructure, or 
PKI, or signed and thus made into a certificate.

authority (+)  The ability of a user or other entity to make changes 
to a system.

business email compromise (BEC) (+)  An attack where someone 
takes over an email account and then uses it to ask for payments to 
be made to bank accounts they control.

capability (*)  Either the noun in its traditional English sense (the 
power or ability to do something) or an implementation of an 
authority system, where a capability is a hard-to-guess pointer to 
an object and an associated permission. For example, 60616 
d8b9bbd962b045abc5d8e78c7f3 might be the ability to read /etc/
shadow. Only those tools given 6061... can read the file. (NIST 
does not list this well-established meaning.)

certificate  A data structure that contains an entity’s identifier(s), the 
entity’s public key (including an indication of the associated set of 
domain parameters), and possibly other information, along with a 
signature on that data set that is generated by a trusted party, i.e., a 
certificate authority, thereby binding the public key to the included 
identifier(s).

confused deputy (+)  A program whose authority is used in unex-
pected ways by those whose input is fed to it. (“Those whose input 
is fed” is a broad set, not just those who directly feed data to it.)

Control+Alt+Delete (+)  A secure attention sequence used by 
Microsoft Windows.

credentials (+)  The information used to identify and authenticate a 
principal, such as a username and password combination.

crypto (*)  Crypto means cryptography, not cryptocurrency. NIST’s 
sole definition is strangely narrow.

cryptography (*)  The discipline that embodies the principles, 
means, and methods for the transformation of data in order to hide 
their semantic content, prevent their unauthorized use, or prevent 
their undetected modification (NIST SP 800-59).
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Additionally, Ron Rivest has defined cryptography as the art of 
securely communicating in the presence of enemies. Implicit in 
use in this book is that cryptographic systems are fit for purpose: 
well selected and well implemented.

daemon (+)  “A daemon is a type of program on Unix-like operating 
systems that runs unobtrusively in the background, rather than 
under the direct control of a user, waiting to be activated by the 
occurrence of a specific event or condition. Unix-like systems typi-
cally run numerous daemons, mainly to accommodate requests for 
services from other computers on a network, but also to respond to 
other programs and to hardware activity. Examples of actions or 
conditions that can trigger daemons into activity are a specific time 
or date, passage of a specified time interval, a file landing in a par-
ticular directory, receipt of an e-mail or a Web request made 
through a particular communication line. It is not necessary that 
the perpetrator of the action or condition be aware that a daemon 
is listening, although programs frequently will perform an action 
only because they are aware that they will implicitly arouse a dae-
mon.” (From www.linfo.org/daemon.html.)

document (+)  A file intended to be parsed by an interpreter and 
displayed or used by a person. Others, like HTML, contain code or 
macros while still being thought of as documents. Some docu-
ments, like Python code, blend further toward being executables. 
I’d like to say that a document interpreter warns you before run-
ning code, but see HTML, and so the distinction is less clear 
than I’d hope.

dogfood (+)  To dogfood, or eat one’s own dogfood, is to use early 
versions of your own product to understand its limits. The term 
was popularized by Microsoft, where the behavior was a norm 
from the late 1980s through the early 2010s.

EULA (+)  End user license agreement. The license that you click 
through to be allowed to use a product you’ve purchased. Generally 
full of incomprehensible legalese, overly long, and not tested for 

http://www.linfo.org/daemon.html
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readability or comprehensibility. Eventually, the courts may catch 
onto the reality that there’s a gap between a “meeting of the minds” 
and today’s EULAs.

executable (+)  A program to be run. Most traditionally, it consists of 
machine code that’s run or things with the Unix +x bit, but 
see document.

exploit (+)  (noun) A program that takes advantage of a bug or flaw 
in a computer system, changing the flow of control to instructions 
contained in or pointed to by the exploit.

fingerprinting (+)  Fingerprinting entails the collection, categoriza-
tion, indexing, and retrieval of information that identifies a system 
or program. For example, operating system fingerprinting relies on 
ambiguity and implementation choices in the TCP stage, including 
responses to TTL, window size, max segment size, etc. (Lyon, 
2009). Fingerprinting requires the identification and collection of 
such details, indexed to operating system, and then the collection 
of details from a system to be identified. Fingerprinting applied to 
web browsers can often identify a very small population (1,500 or 
so) of web browsers, based on fonts, plugins, and other character-
istics (Eckersley, 2010).

flaw (+)  A design issue that can be used to achieve some goal that’s 
counter to the intent of the designer. Includes failures to meet 
explicit goals and is also used to describe violations of implicit 
goals. The term flaw is contrasted with a bug, which is a simple 
implementation defect (IEEE).

hash algorithm  Hash algorithms map arbitrarily long inputs into a 
fixed-size output such that it is difficult (computationally infeasi-
ble) to find two different hash inputs that produce the same out-
put. Such algorithms are an essential part of the process of 
producing fixed-size digital signatures that can both authenticate 
the signer and provide for data integrity checking (detection of 
input modification after signature).
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indicator  A technical artifact or observable that suggests an attack is 
imminent or is currently underway or that a compromise may have 
already occurred. (Some definitions are less specific.)

indicator of compromise (IOC) (+)  A subset of indicators that 
emerge from investigations of compromises rather than immi-
nent attacks.

metadata (+)  Data about other data, for example, creation time of a 
file, size of a file or message, or source destination of a message.

MITM (*)  Monkey-in-the-middle. Historically man-in-the-middle. 
“An attack where the adversary positions himself [sic] in between 
the user and the system so that he [sic] can intercept and alter data 
traveling between them.”

NSA (+)  The National Security Agency of the United States, focused 
on electronic warfare and intelligence gathering, mostly on the 
attack side, and with responsibility for helping defend the United 
States, especially military and intelligence agencies. At one time 
the largest employer of mathematicians in the world.

one-way function (+)  A one-way function is easy to compute, but it 
is difficult or impossible to compute its input from its output. Hash 
algorithms are a subset of all possible one-way functions, for exam-
ple, the Rabin function of repeatedly squaring some number mod-
ulo n is easy to compute and hard to reverse.

one-time pad (+)  A cryptosystem that uses a random stream of key 
material as long as the message. Used properly, as secure as the key 
distribution. Reusing the pads means an attacker who xors the 
ciphertext gets the xor of the plaintext. (That is, let’s call cipher-
text_1 = message_1 xor pad and ciphertext_2 = message_2 xor 
pad. If we take ciphertext_1 xor ciphertext_2, we get (message_1 
xor pad) xor (message_2 xor pad) and the pad, xor’d with itself, 
cancels out, and you get target = message_21 xor message_2. 
Because words like the or headquarters are more common, you can 
xor those with target and see if words pop out. When they do, you 
know one message had headquarters and the other had whatever 
word was revealed.
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PBKDF-2 (+)  Password-Based Key Derivation Function #2. A one-
way function designed with a configurable cost to execute, based 
on the number of rounds.

permission (*)  Authorization to perform some action on a system 
object. (NIST is less specific.)

persistence (+)  Either an attacker’s work to retain access to victim 
systems, or the practice of tracking and checking authentication 
data, such as a server’s SSH public key. A persistence defense is to 
check that the key is unchanged from use to use. The second sense 
is used for clarity over the otherwise equivalent “TOFU.”

phishing (*)  “A digital form of social engineering that uses 
authentic-looking—but bogus—e-mails to request information 
from users or direct them to a fake Web site that requests 
information.”

It’s common to see phishing used to refer to any attack carried in any 
messaging system. This includes messages with attachments. 
Those attachments might be documents or executables.

principal (+)  The smallest unit to which authority can be granted 
on a system, such as a user ID.

private key (*)  “A cryptographic key that is kept secret and is used 
with a public-key cryptographic algorithm. A private key is associ-
ated with a public key.” Many definitions overly restrictively refer 
to signature schemes, key pairs, or unique entities.

privilege (*)  The ability to alter security functions, properties, or 
rules within a system. NIST’s definition, “A special authorization 
that is granted to particular users to perform security relevant 
operations,” excludes privileges granted to programs.

protocol (+)  “A set of rules (i.e., formats and procedures) to imple-
ment and control some type of association (e.g., communication) 
between systems.” Many people implicitly prepend “network-” 
implying that all protocols are network-protocols. A file is a single 
message with a data structure.

pseudorandom  A deterministic process (or data produced by such 
a process) whose output values are effectively indistinguishable 
from those of a random process as long as the internal states and 
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internal actions of the process are unknown. For cryptographic 
purposes, “effectively indistinguishable” means “not within the 
computational limits established by the intended security strength.”

public (key)  The public portion of an asymmetric key.
public key infrastructure  “The architecture, organization, techniques,  

practices, and procedures that collectively support the implementa-
tion and operation of a certificate-based public key cryptographic 
system. Framework established to issue, maintain, and revoke pub-
lic key certificates.” Look for the one who accepts liability for their 
claims. Quis custodiet ipsos custodes?

random  A value in a set that has an equal probability of being 
selected from the total population of possibilities and, hence, is 
unpredictable. A random number is an instance of an unbiased 
random variable, that is, the output produced by a uniformly dis-
tributed random process.

RCE (+)  Remote Code Execution, a common effect of an exploit. 
“That vuln allows for unauthenticated RCE.” Remote indicates that 
the attacker doesn’t start with code execution authority on the tar-
geted system.

reference monitor (*)  The traditional term for IT functionality that 
(1) controls all access, (2) cannot be bypassed, (3) is tamper-
resistant, and (4) provides confidence that the other three items 
are true. Often provided by the operating system kernel, but also 
by tools such as web servers or databases.

secure attention sequence (+)  A physical action to open a secure 
channel between a person and a system.

Social Security number (*)  Described in practical terms as a 
national ID; officiously it is not.

symmetric cryptosystem  A cryptographic algorithm that uses the 
same secret key for its operation and, if applicable, for reversing 
the effects of the operation (e.g., an AES key for encryption and 
decryption).

threat (+)  Amongst NIST’s 20 or so definitions are: “Any circum-
stance or event with the potential to adversely impact organiza-
tional operations;” “A possible danger to a computer system, which 
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may result in the interception, alteration, obstruction, or destruction  
of computational resources, or other disruption to the system.”

To those, add “a suggestion that something unpleasant or violent will 
happen, especially if a particular action or order is not followed.”

threat actor  “An individual or a group posing a threat.” (Also called 
threat agent or threat source.)

TTP  The behavior of an actor. A tactic is the highest-level descrip-
tion of this behavior, while techniques give a more detailed descrip-
tion of behavior in the context of a tactic, and procedures an even 
lower-level, highly detailed description in the context of a 
technique.

TOFU (+)  Trust On First Use. See persistence.
vulnerability (*)  (1) A weakness in an information system, system 

security procedures, internal controls, or implementation that 
could be exploited or triggered by a threat source. (2*) A weakness 
in software that can be exploited by exploit code. (3*) A weakness 
in software that, once discovered is clearly a bug that should be 
fixed. Definitions 2 and 3 are mine, to add specificity. Often short-
ened to vuln.

zero-day (0-day) (+)  A vulnerability for which there is no patch 
available from the creator when information on the issue is first 
released. “That was a zero day, but now it’s patched.” (Pronounced 
either “zero day” or “Oh day.”)

zip bomb (+)  An attack where a compressed file expands more than 
expected. Don’t be fooled by the name; all compression formats 
have the same problems.
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Throughout this book, I’ve used Star Wars as a sort of memory 
palace—a way for you to put your new knowledge into fun cub-

byholes. If you’ve forgotten the technical details but remember the 
storyline it was tied to, well, you could just reread the book, but fail-
ing that…this index might be your only hope.

The sources are listed in Star Wars Universe chronological order, 
not order of release in our galaxy. Within each, a short scene descrip-
tion or a quotation is followed by a reference to the chapter and most 
immediate heading to encourage you to re-read for the reference. 
(The table of contents lists sections; this story index contains lower-
level headings.)

Episode I: The Phantom Menace
• “Fear leads to hate. Hate leads to anger. Anger leads…” (Conclusion 

of Chapter 7, “Predictability and Randomness”)
• Anakin destroys a droid control ship (Abundance and quotas in

Chapter 5, “Denial of Service and Availability”)

Episode III: Revenge of the Sith
• “You were my friend!” (URLs in Chapter  4, “Information

Disclosure and Confidentiality”)

Story Index
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Obi-Wan (Television Series)
• Obi-Wan meets a child Leia, breaking my claims in Chapter 1,

“Spoofing and Authenticity.” Perhaps “You served my father”
should now be read as an authenticator?

Rogue One
• Archives at Scarif (Physical storage in Chapter 4, “Information

Disclosure and Confidentiality”)
• Building a Death Star (Opening of Chapter 7, “Predictability and

Randomness”)

Star Wars: A New Hope
• Princess Leia’s ship being pursued (Opening words of

“Introduction;” opening words of Chapter  4, “Information
Disclosure and Confidentiality”)

• R2-D2 displays the hologram (Opening words of Chapter  1,
“Spoofing and Authenticity”)

• “These aren’t the droids you’re looking for” (Opening words of
Chapter 6, “Expansion of Authority and Isolation”)

• Destruction of Alderaan (The threat: Repudiation in Chapter 3,
“Repudiation and Proof”)

• Luke and Han dress as Stormtrooper TK-421 (Human identifiers
in Chapter 1, “Spoofing and Authenticity”)

• Han shoots the comms console (Ephemeral or persistent in
Chapter 5, “Denial of Service and Availability”)

• R2-D2 shuts down the garbage compactor (Compute in
Chapter 5, “Denial of Service and Availability”)
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• Obi-Wan shuts down the tractor beam (Opening words of
Chapter 2, “Tampering and Integrity” and Ephemeral or persis-
tent in Chapter 5, “Denial of Service and Availability”)

• “If you strike me down now, I shall become more powerful than
you can imagine.” This would have been in Chapter  6,
“Expansion of Authority and Isolation,” but it’s a hard line to
make work.

• Millenium Falcon escapes the Death Star (Opening words of
Chapter  2, “Tampering and Integrity”, and of Chapter  6,
“Expansion of Authority and Isolation”)

• A tracking device is placed on the Millenium Falcon (Conclusion 
of Chapter 6, “Expansion of Authority and Isolation”)

• Rebels analyze the Death Star Plans
• The Rebel systems are exposed to ransomware (Tampering

with Storage in Chapter 2, “Tampering and Integrity”)
• Discussion of the Death Star plans and transparency (Assume

Transparency in Chapter 7, “Predictability and Randomness”)
• Finding and taking advantage of a weakness in the Death Star

(Opening words of Chapter 9, “Kill Chains”)

The Empire Strikes Back
• Luke is told “Your weapons, you will not need them” as he enters

the dark side tree (Least Privilege and Separation of Chapter 6,
“Expansion of Authority and Isolation”)

• Raising an X-Wing Fighter out of a swamp (Memory safety,
Chapter 8, “Parsing and Corruption”)

• Han flies through the asteroid field, saying “never tell me the
odds” (Cryptographic threats in Chapter 7, “Predictability and
Randomness”)



Story Index320

• Mynocks attach to the Millenium Falcon when it’s hidden
(Targets of Tampering in Chapter 2, “Tampering and Integrity”)

• Luke leaves his Jedi training (Attacks via response systems in
Chapter 3, “Repudiation and Proof”)

• Lando: You said they’d be left in the city!/I am altering the terms
of the deal (“Introduction;” Chapter 3, “Repudiation and Proof”)

• Luke confronts Obi Wan: “You told me Darth Vader betrayed
and murdered my father” (Conclusion of Chapter 3, “Repudiation 
and Proof”)

• Han Solo, frozen in carbonite (Opening words of Chapter  5,
“Denial of Service and Availability”)

• “Join me, and together we can rule” (External dependencies in
Chapter 8, “Parsing and Corruption”)

Return of the Jedi
• Leia pretends to be a bounty hunter (Real account takeover in

Chapter 3, “Repudiation and Proof”)
• Luke pretends to gift R2-D2 and C3-P0 to Jabba (Fraud by sell-

ers in Chapter 3, “Repudiation and Proof”)
• Building a Death Star (Opening of Chapter 7, “Predictability and

Randomness”)
• “Many Bothans died to bring us this information.”/Bothans trad-

ing emails with Mon Mothma (Chapter 4, Information disclosure
in motion in “Information Disclosure and Confidentiality”)—
how Mon Mothma communicated with those Bothans is
unexplained.

• “It’s an older code, but it checks out” (Defenses Against Guessing
and Searching in Chapter 7, “Predictability and Randomness”)
and theft of the codes (Tampering with storage in Chapter 2,
“Tampering and Integrity”)

• C3-P0 impersonating a god (Opening words of Chapter  6,
“Expansion of Authority and Isolation”)
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•	 Second Death Star architecture (Opening words of Chapter 6, 
“Expansion of Authority and Isolation”)

•	 Emperor declares “Everything is proceeding as I have foreseen” 
(Predictability threats in Chapter  7, “Predictability and 
Randomness;” Surprising output in Chapter  8, “Parsing and 
Corruption”)

•	 Ewoks overwhelming a target (Opening words of Chapter  5, 
“Denial of Service and Availability”)
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access control list (ACL), 

119–120, 177–178
account takeover, 72–76
artificial intelligence (AI), 53, 

81, 116–117
attenuation, 152, 173–174
authentic/authentication
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nisms of, 28–30
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