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Modelling in Atomic Layer 

Deposition Processes
While thin film technology has benefited greatly from artificial intelligence (AI) 
and machine learning (ML) techniques, there is still much to be learned from a full-
scale exploration of these technologies in atomic layer deposition (ALD). This book 
provides in-depth information regarding the application of ML-based modeling tech-
niques in thin film technology as a standalone approach integrated with the classical 
simulation and modeling methods. It is the first of its kind to present detailed infor-
mation regarding approaches in ML-based modeling, optimization, and prediction of 
the behaviors and characteristics of ALD for improved process quality control and 
discovery of new materials. As such, this book fills significant knowledge gaps in the 
existing resources as it provides extensive information on ML and its applications in 
thin film technology.

• Offers an in-depth overview of the fundamentals of thin film technology, 
state-of-the-art computational simulation approaches in ALD, ML tech-
niques, algorithms, applications, and challenges.

• Establishes the need for and significance of ML applications in ALD while 
introducing integration approaches for ML techniques with computation 
simulation approaches.

• Explores the application of key techniques in ML, such as predictive analy-
sis, classification techniques, feature engineering, image processing capabil-
ity, and microstructural analysis of deep learning algorithms and generative 
model benefits in ALD.

• Helps readers gain a holistic understanding of the exciting applications of 
ML-based solutions to ALD problems and apply them to real-world issues.

Aimed at materials scientists and engineers, this book fills significant knowledge 
gaps in existing resources as it provides extensive information on ML and its appli-
cations in film thin technology. It also opens space for future intensive research and 
intriguing opportunities for ML-enhanced ALD processes, which scale from aca-
demic to industrial applications.
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Preface
Machine learning has gained traction in recent years as a tool for understanding 
complex systems. Their ability to understand complex systems has revolutionized 
science and technology, making them more necessary than ever in this era of big 
data. Thin film technology is one area that has benefited greatly from these tech-
niques, and there is still vast potential for full exploration of their capabilities in 
atomic layer deposition (ALD). This book titled Machine Learning-Based Modelling 
in Atomic Layer Deposition Processes provides a comprehensive overview of the 
application of machine-learning-based modeling techniques in thin film technology. 
This innovative approach can be used either as a standalone method or integrated 
with classical simulation and modeling techniques to optimize and predict the behav-
ior and characteristics of ALD, leading to improved process quality control. This 
book is the first of its kind to provide comprehensive information on the application 
of machine learning in ALD, addressing important knowledge gaps in the literature. 
Based on analyses of literature-based case studies, it provides a thorough analysis of 
current uses and potential future applications for ALD procedures.

This book covers the current research  in these two emerging spaces. It targets 
researchers, engineers, and students interested in ALD modeling machine learning 
algorithm creation and implementation. There are three sections in the book and 
15 chapters in all. The first section introduces the fundamentals of ALD and thin 
film technology. The chapters in this section address ALD and thin film overview, 
state-of-the-art modeling and simulation approaches in ALD, ALD characterization 
methods, and industry 4.0 in thin film technology.   The second section discusses 
the fundamentals of machine learning. The chapters in this section discuss machine 
learning techniques and algorithms, applications, challenges and limitations, and 
methods of optimal model development.  Specifically, Chapters 6–8 discuss super-
vised learning, unsupervised learning, and deep learning, respectively, while Chapter 
9 examines the hard and soft computing techniques.

The third section explores various applications of machine learning-based 
ALD modeling, ranging from simple predictive analysis and classification tasks in 
machine to complex deep learning-based applications such as microstructural image 
analysis, image blurring, 3D characterization, structural zone diagram analysis, 
and dimensionality reduction. Chapter 10 introduces this section by discussing the 
need and significance of machine learning-based modeling in ALD, while present-
ing the opportunities for the integration of numerical computational approaches and 
machine learning models. Chapter 10 further discusses some of the potential sources 
of data such as experimental and simulated data and the required pre-processing 
techniques for ALD data. Chapters 11–13 explore the application of prominent 
machine learning techniques, namely, predictive analysis, classification task, and 
deep learning for thin film properties prediction, material classification, microstruc-
tural image processing, and materials discovery. Chapter 14 discusses feature engi-
neering, a pertinent machine learning approach that determines the quality of other 
machine learning model development and implementation in ALD and thin films. 



xixPreface

Chapter 15 concludes the chapter by presenting some of the limitations of this book, 
challenges in machine learning application scaling up to industrial applications, and 
future directions.

Numerous examples and case studies that highlight the practical value of machine 
learning-based ALD modeling are provided by the authors throughout the entire 
book. In addition, the authors emphasize how this strategy has the potential to revo-
lutionize the ALD industry and open the door for the creation of new products with 
improved functionality and performance. We anticipate that this book will be an 
invaluable tool for academics and industry professionals working in the disciplines 
of machine learning and ALD, and that it will spark more investigation and advance-
ment in this fascinating field.
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University of Johannesburg
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Overview of Atomic 
Layer Deposition and 
Thin Film Technology

1.1 INTRODUCTION

Thin films are widespread in modern technology, with uses ranging from surface 
coatings to cutting-edge nanoelectronics. Thin films are broadly used in an array of 
materials, procedures, and applications, particularly in terms of electronics. They are 
essential to advancing the development of ever-more-powerful computing, data stor-
age, communication, energy storage, energy harvesting, and sensing systems. Most 
of this technology needs high-precision and high-quality film materials of thickness 
less 100 nm which is achievable by chemical vapor deposition methods. Moreover, the 
compatibility of process condition, such as temperature and deposition techniques, 
plays a vital role in the success of these technologies. Atomic layer deposition (ALD) 
is an effective coating technique for fabrication of high quality and uniform thin 
films and precise material growths at a nanometric scale. ALD is a special variation 
of chemical vapor deposition (CVD) technique where gaseous reactants (precursors), 
each containing various elements, are injected to the reaction chamber to generate 
the desired thickness of film through chemical vapor interactions. These interactions 
are in the base of chemisorption which provide strong adsorption of precursor ele-
ment with surface atoms. ALD properties known as sequential, self-limiting deposi-
tion allow controllable film growth, pin hole free, and conformality.

The first use of ALD was the production of ZnS thin films for electrolumines-
cent displays, but subsequently it was expanded to produce ternary and quadric 
composites [1,2]. For the same purpose, the technique was also employed to deposit 
amorphous Al2O3 dielectric thin films. However, until the 1990s, Atomic layer epi-
taxy (ALE) was the main industrial use for electroluminescent displays. Further, 
Suntola et al. [3] pioneered the ALD process for commercial application in Finland 
in the mid-1980s. Currently, ALD is developed for synthesis of different compounds 
such as metal oxides, metals, carbides, nitrides, fluorides, sulfurs, and selenides [4]. 
Also, there are a lot of universities, research institutions, and industries that perform 
ALD-related research. Meanwhile, by increasing the interest in amorphous and poly-
crystalline film compounds, the importance of high insulating oxide films with low-
leakage high-k dielectrics for use in dynamic random-access memory (DRAM) and 
complementary metal oxide semiconductors (CMOS) was felt more. Thus, ALD has 
a key role in continuous miniaturization of semiconductor devices.

This chapter first outlines the fundamentals of ALD process and features, and 
highlights a brief survey on the current status of ALD. Some chemical examples 
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accomplished by ALD are summarized to present a different surface chemistry. 
Various ALD reactor types are defined. Advantages and disadvantages of ALD are 
discussed, and a comparison of thin film deposition methods are explained. The pos-
sible fast-growing application of ALD in various fields is described to manifest its 
use in practise. Finally, the possible challenge and perspective of ALD are discussed.

1.2 PRINCIPLE OF ATOMIC LAYER DEPOSITION

1.2.1 Process and Methods

In this section, the basic of an ideal ALD process and some important concepts that 
are helpful for understanding ALD process and intrinsic features is highlighted. In the 
ALD process, thin films are generated by repeating deposition cycles through exposit-
ing different gaseous species on material surface maintained in a fixed temperature. 
ALD films are very highly uniform and conformal. ALD is typically regarded as a 
bottom-up framework, and ideally, a monolayer is formed per ALD cycle. Each ALD 
cycle is split into two individual half cycles, which consist of four stages as follows:

 i. introducing the precursor gas on substrate surface through chemisorption 
process

 ii. purging away the excess decomposed residual generated by precursor and 
surface reactions

 iii. introducing second precursor (co-reactant) to terminate the surface with 
functional groups

 iv. second purging

Therefore, the film growth achieved by ALD is controlled and self-limiting, which 
prohibits spontaneous gas-phase reactions. However, certain similar cycles can be 
repeated to deposit the desired thickness of film. As an example, Figure 1.1 depicts 
the steps in the ALD process for the deposition of aluminum oxide utilizing trimeth-
ylaluminum (TMA) and water (H2O) as the precursor gases. In the process, TMA 
undergoes various chemisorptions on the surface as described in Equations 1.1 and 
1.2 when ( )≤ ≤X1 3 :

 ( ) ( )( ) ( )( )− + → − +−X X gX X| OH Al CH g | O Al CH CH  3 3 3 3 4  (1.1)

( )( )( ) ( ) ( ) ( ) ( )− + − → − + −− −X XX X X X| OH Al CH 3 H O | OH Al OH 3 CH g3 3 2 3 4   
 (1.2)

TMA molecules contain three methyl groups, and each of them can undergo the dis-
sociation and association process via multi exchange reaction (X). Similarly, ALD 
Al2O3 film consists of two half cycles. The initial substrate surface terminated by OH 
functional groups was presumed. At first, the Precursor A (TMA) was exposed to the 
surface to react with OH surface groups, and it led to Al-O bond formation through 
chemisorption and generation of CH4 residuals. However, the exposure continues to 
saturate the surface and terminate it with -CH3 groups which are poor in reactivity, 
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meaning the limitation of further precursor reactions. Then, the excessive products 
were purged away from the chamber zone by inert N2 or argon gases. During the sec-
ond half of the cycle, water vapour is introduced to the surface, where it undergoes a 
reaction with -CH3 groups, resulting in the production of residual CH4 and termina-
tion of the surface with -OH groups, thereby preparing it for the subsequent deposi-
tion cycle. Then, the second purging process removed residuals from the chamber. 
The physical separation of the precursors and co-reactants during the purge phase 
following each reaction step is essential for maintaining the self-limiting character of 
ALD reactions and ensuring that no reactions take place. A targeted material with a 
specified thickness and composition can be formed in a precisely controlled manner 
by repeating the cycle of these stages.

The film growth rate of ALD is highly dependent on the precursors type, process 
condition including temperature and pressure, and process parameters such as gas 
flows rate, pulsing, and purging times [6]. However, the cycle time can be modified 
from seconds to minutes, depending on the precursors’ chemistry and reactivity, and 
substrates’ geometry. Planar or simple substrates, such as silicon substrates, often 
need fewer cycles to produce high-quality films than complicated substrates such 
as biological substrate [7]. Moreover, each ALD reaction needs a certain amount 
of activation energy to trigger precursor reactions with reactive sites of surface. 
This activation energy can be provided by heat in thermal ALD, plasma power in 
plasma-enhanced ALD, and UV light in UV-assisted ALD. Growth per cycle (GPC) 
is an important factor to analyze an ALD process. Figure 1.2 presents the ALD 
temperature window which indicates the temperature range when the growth is con-
stant. The failed ALD deposition or poor GPC is frequently caused by temperature 
outside of the window that can be affected by fast desorption and decomposition of 
precursor at high temperature or weak reaction kinetic and precursor condensation 
at low temperature. However, the temperature windows cover most of the precur-
sors; therefore, slight changes in precursor input or temperature have little impact 
on the GPC.

Generally, ALD process can be carried out by two methods: thermal ALD and 
plasma enhanced ALD (PEALD). In thermal ALD, the reactions between precursor 

FIGURE 1.1 Schematic demonstration of atomic layer deposition (ALD) Al2O3 film growth 
mechanism by using precursors trimethylaluminum (TMA) and H2O [5].
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and co-reactants and surface occur in a thermodynamically favorable manner, and 
heat plays a major role during the reactions between precursors and surfaces and pro-
vides the required energy for possible reactions. Typically, thermal ALD is mostly 
used for depositing metal oxide films, and the temperature range for successful che-
misorption between precursor and surface in thermal ALD is 150°C–350°C. The 
advantage of this method is the precise control of thickness, which is independent of 
reactor design and surface morphology.

PEALD is an advanced version of conventional thermal ALD, which is equipped 
with plasma power and beneficial for performing ALD process in lower temperature 
(even in room temperature), and it provides wider selection for substrate materials 
such as organics, polymers, and drug powders. During chemical reactions in the 
chamber, plasma generates energetic species such as ions and electrons to facilitate 
the mechanism of reactions. Moreover, PEALD allows the use of various types of co-
reactants such as O3, O2, H2, N2, H2S, and NH3, which enables deposition of metal, 
metal nitride, metal sulfide, metal selenide, metal phosphide, etc. ALD offers a wide 
range of elements to create various compounds. Table  1.1 and Figure  1.3 present 
the overview of different elements utilized for ALD materials [9] and thin films. 
However, besides the advantages, the PEALD has some drawbacks including causing 

FIGURE 1.2 Schematic representation of a general atomic layer deposition (ALD) tempera-
ture window [8].

TABLE 1.1
List of Materials Deposited by ALD [10]

ALD, atomic layer deposition.
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undesirable reactions such as nitridation and oxidation, bombardment of energetic 
ions, which causes bond breaking, atom destabilization, and propagation of charge 
in the dielectric layer, which may damage the film conformality. Also, the industrial 
scale-up approach and equipment development are challenging. Although the ALD 
can deposit a variety of materials, it is still not feasible to create every material as 
seen in the periodic table of elements in Figure 1.3.

1.3 ADVANTAGES AND DISADVANTAGES OF ALD

1.3.1  advantages

Table 1.2 summarizes the advantages of ALD in the base of the self-limiting and 
surface-controlled properties which may support choosing a coating process for a 
particular application. ALD is a reliable strategy to offer the film growth solution 
when one or more of these benefits are essential for purposes ranging from research 
to industrial application. Some of these advantages are discussed in the following.

1.3.1.1  Uniformity and Conformality
The thin films generated by the ALD technique are extremely uniform and confor-
mal over 3D materials surface such as porous materials, deep trenches, and vias, 
which is one of the unique advantages of ALD compared to other coating methods. 
Conformal coating follows the contours of the surface and is independent of surface 
defects or roughness. ALD coating has the same thickness over the whole surface. 
Figure 1.4 presents the properties of different thin film coating methods. As seen, 
ALD film has the best uniformity and conformality compared to the sol-gel, CVD, 
and PVD methods. Thus, ALD is a prominent technique for use in trench coating 
of semiconductor memory device and trench filling deposition of diffractive optics 
parts as illustrated in Figure 1.5a and b, respectively.

FIGURE  1.3 A list of the elements utilized in atomic layer deposition (ALD) material. 
Adopted from reference [9].
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1.3.1.2 Pinhole-Free
Due to the bottom-up film growth scheme, the ALD thin films are inherently pin-
hole-free. For instance, the properties mentioned above offer advantages in a variety 
of applications involving barriers and passivation film. For example, 10 nm thick bar-
riers film are critical to keep oxygen and moisture away from electronic devices and 
organic materials [13]. Additionally, thin-film electroluminescent (TFEL) screens 
are classified as high electrical field devices, and the implementation of ALD tech-
nology facilitates the production of a high-quality insulating layer for these screens. 
This insulating layer plays a crucial role in ensuring the reliability of the product [14].

1.3.1.3  Controllable Film Thickness
By virtue of ALD, film growth can be achieved layer by layer and the thickness can be 
controlled precisely. Generally, the GPC for different ALD films are often less than 
2Å/cycle, which is depending on the deposition condition and the material type [15]. 

(a) (b)

FIGURE 1.5 (a) A cross-section Scanning Electron Microscopy (SEM) images of a deep 
trench with 20 nm HfO2 coated by a (CpMe)2HfMe2/O3 precursor at 450°C and (b) atomic 
layer deposition (ALD) filling of optical parts trench. Adopted from references [11,12].

FIGURE 1.4 Schematic comparison of different thin film coating methods.
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ALD is more effective than other thin film deposition methods with thickness  control 
at the nanoscale level, such as CVD and PVD. For example, recent experimental 
study showed the GPC of V2O5 film (i.e., 0.7 Å/cycle) by using PEALD and vana-
dium pentoxide (VTIP) and O2 as precursors [16]. Figure 1.6 presents the compari-
son ALD windows of VTIP and H2O and O2 precursors in two different methods, 
namely, thermal and plasma.

1.3.1.4  Controllable Film Composition
Another prominent advantage of ALD is the ability to control the composition of a 
material accurately. In an ALD process, the deposited film’s stoichiometry is often 
near to its theoretical result, but it can be affected by deposition temperature and 
type of precursors. ALD can tailor the composition by supercycle which consists of 
different ALD processes [10]. For example, the conductivity and optical features of 
the film can be modified by tailoring the zinc tin oxide composition by ALD [17].

1.3.1.5  Low-Temperature Deposition
Low-temperature operation of ALD is another advantage that distinguishes it from 
other conventional methods like CVD. In addition, different types of materials can 
be deposited using ALD under 100°C or even in ambient temperature [18]. This 
characteristic of ALD enables it to be used on temperature-sensitive materials such 
as polymers and organic compounds. Thus, ALD allows wider material selection 
for deposition. So far, various metal and metal oxides including TiO2 [19], SiO2 [20], 
SnO2 [21], Al2O3 [22], ZnO [23], Pd [24], and Cu [25] are coated by ALD at close to 
ambient temperature.

1.3.1.6  Artificial Material
ALD is a particularly potent supportive technique in cutting-edge nanotechnology 
science and surface functionalization. The capacity of ALD to mix two or more mate-
rials at nanoscale level allows for the production of new “artificial” materials with 
distinctive properties, which is perhaps its most prominent advantage. Accordingly, 

FIGURE  1.6 Temperature-dependent growth per cycle (GPC) for thermal and plasma 
atomic layer deposition (ALD) with oxygen and water.
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when these functional materials are incorporated with high scalability and repeat-
ability of ALD, it allows for production of novel nanomaterials.

1.3.2  disadvantages of aLd

Although ALD has multiple advantages, it suffers from some issues including high 
cost, high material waste, complicated preparation process, slow deposition rates, 
and limited precursor availability compared to CVD. However, these issues can be 
mitigated by utilizing appropriate precursors and optimal reactor design. For com-
parison, Table 1.2 summarized some specific advantages and disadvantages, while 
Table 1.3 compares different thin film coating methods based on different properties.

1.4  ALD REACTORS

At the heart of an ALD reactor is a set of valves that control the entry and outflow 
of different gases to a substrate that has to be coated. Represented in Figure 1.7 is 
a typical laboratory scale reactor with typical ALD reactor components. Although 
there are many kinds of ALD reactors, they all contain several fundamental parts 

TABLE 1.2
A Brief Comparison of Different Thin Film Deposition Methods in Terms of 
Advantages and Disadvantages

Coating Method Advantages Disadvantages

ALD High-density film, conformality, 
uniformity, great stoichiometry, accurate 
thickness control 

Costly, high waste rate, slow 
deposition rate, complicated 
preparation process

CVD Precursor availability, easy operation, 
reproducibility, great deposition rate

Low reactive precursors,  
high-temperature operation

PVD Low toxicity, cheap, low temperature, 
safer

Needs annealing time, poor 
stoichiometry, low deposition rate, 
bad uniformity

PLD Simple, great deposition rate, flexible, 
short test time, low temperature

Limited surface area deposition, 
impurities, low deposition rate

Spin coating Simple setup, fast operation, low cost Low accuracy, nonuniform, lack of 
material efficiency, limited surface 
area

Electroplating

Sol gel Adhesive strength, simple, low cost,  
low temperature

Nonuniform, large volume shrinkage 
and cracking, uncontrollable film 
thickness and composition 

RF sputtering Low deposition rate, film thickness 
accuracy, great purity, complicated

Expensive, cracks, ion loss and low 
conductivity

Hydrothermal Low cost, simple, flexible, low toxicity Very slow, difficult condition

ALD, atomic layer deposition; CVD, chemical vapor deposition; PVD, physical vapor deposition; Pulsed 
laser deposition (PLD); Radio-frequency (RF).
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that enable it to carry out ALD functions. Some of the important parts of the ALD 
reactor are the following:

 i. Reaction chamber: This is the area where the ALD process takes place and 
substrates are kept. For example, in the thermal ALD, the reaction chamber 
is frequently heated to stimulate reactions.

 ii. Precursor sources: Chemicals in the form of liquid, solid, and gas which 
all incorporate in the ALD reaction.

 iii. Purging gas: Typically uses inert gases such as argon and nitrogen to purge 
away the by-product from reaction chamber.

TABLE 1.3
Comparison of Different Thin Film Coating Method Properties [26]

Properties

Coating Method

ALD CVD PLD Sputtering Evaporation MBE

Film density Good Good Good Good Fair Good

Uniformity Good Good Fair Good Fair Fair

Deposition rate Poor Good Good Good Good Fair

Pinhole-free Good Good Fair Fair Fair Good

Low temperature Good Varies Good Good Good Good

No plasma damage Good Varies Fair Poor Good Good

Sharp dopant profile Good Fair Varies Poor Good Good

Step coverage Good Varies Poor Poor Poor Poor

Smooth interface Good Varies Varies Varies Good Good

ALD, atomic layer deposition; CVD, chemical vapor deposition; Pulsed laser deposition (PLD).

FIGURE 1.7 Schematic illustration of typical atomic layer deposition (ALD) reactor com-
ponents [27].
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 iv. Vacuum pump: It provides low-pressure condition inside the chamber 
and also facilitates the way to exhaust by-products and excess precursors. 
Typically, reactions take place at 1–10 mTorr.

 v. Valving: The flow of precursors is controlled by a variety of valves (sole-
noid, pneumatic, and gate), which are also utilized to isolate different reac-
tor components. 

 vi. A flow tube reactor: The simplest type of ALD reactor that operates by 
continuously circulating inert gas. Individual precursor sources are dosed 
into the stream of inert gas via valves, which transports the reactant to the 
substrate. Then, the valve shuts off the source when a suitable dosage is 
attained, and the inert gas then transports the reaction by-products and extra 
precursor to the exhaust. The second precursor is injected in the same way 
as the first after a purge to assure the removal of unwanted CVD reactions.

1.4.1 tyPes of aLd reactors

ALD reactors can be set up in a variety of ways depending on the substrate type, 
deposited materials, the ability to do in situ characterization, and many other param-
eters. In general, reactors may be distinguished by the kind of ALD processes per-
formed, thermal or plasma, and the manner in which precursors are delivered to 
the substrate, temporally or spatially. However, the ALD reactors can be classified 
as thermal ALD (only heat drives both reactions), plasma ALD (plasma is incorpo-
rated to assist the surface to become activated for one or more reactions), temporal 
ALD (precursors are injected separately, and the substrate is fixed), and spatial ALD 
(precursor flows continuously through zones where the substrate is moving). The 
different ALD reactor designs are depicted in Figure 1.8. Two single-wafer, temporal 
reactors for thermal ALD are shown in the top half, one on the left with a flow-
type reactor and the other on the right with a showerhead reactor. Batch, energy-
enhanced, and spatial alternative types are displayed in the bottom half, starting at 
the bottom left. Moreover, the Computational fluid dynamics (CFD) tool is a useful 
simulation technique to model and design an optimal configuration of an ALD reac-
tor and further analyze the capability of flows and reactions inside the chamber. 
Figure 1.9 represents the 3D design of the Picosun R-200 ALD reactor.

1.5 ALD RECIPE

The ALD recipe typically displays the details of a specific ALD process. An ALD 
recipe consists of the complete setting of an ALD process including pulsing and 
purging times, process temperature, flow rate of species, and the number and type of 
deposition cycles. For example, Figure 1.10 indicates the various model systems with 
different types of ALD cycle described as AB cycle with one precursor and one co-
reactant. Regular AB cycle can be used to deposit Li2O, LiOH, and LiF. A multistep 
ABC cycle or supercycle technique can be employed by ALD to create doped and 
ternary materials. For example, Li2CO3 ALD requires a multistep process. However, 
in the supercycle method, various AB processes are merged together to create an 
ALD deposition. In other words, by repeating the AB cycle m times and the CD cycle 
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FIGURE  1.8 The illustration of the different atomic layer deposition (ALD) reactor 
designs [28].

FIGURE 1.9 Schematic of CFD 3D designed R-200 atomic layer deposition (ALD) reactor.
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n times, the supercycle (AB)m(CD)n is created. Then, the desired thickness can be 
achieved by repeating the f supercycle. For instance, a supercycle strategy was used 
in the development of the AlPxOy process. Here, the supercycle consists of one Al2O3 
cycle and n POx cycles [29]. Furthermore, Figure 1.11 demonstrates an example of 
ALD recipe approximation for fabrication of NiFe compound with different material 
dosages (Four Models) by considering obtained GPC of each material. For example, 
model A presents the NiFe film with the same element concentration. Therefore, for 
attaining this type of film, we need to predict the GPC ratio of each element which 
may be available in research literature or need to be found experimentally. However, 
by considering the GPC ratio of Fe and Ni, which is about 1/10, the number of Ni 
cycles needs to be 10 times more than Fe cycle to achieve the same coating thickness 
of each layer. The other models show the different GPC ratios of NiFe composition.

1.6 ALD PRECURSORS

In general, ALD precursors are chemical compounds constructed by metal atoms in 
the center which are surrounded by organic ligands and can be found in the forms 
of liquid, gas, and solid. Specific bubblers are designed for ALD tools to keep the 
precursor chemicals and can be converted to the gas phase through vaporization or 

FIGURE 1.11 An atomic layer deposition (ALD) recipe approximation of NiFe film compo-
sition with different material dosages (four models) by considering the growth rate of nickel 
(Ni) and iron (Fe).

FIGURE 1.10 Various cycle types of an atomic layer deposition (ALD) process. In the regu-
lar AB, A denotes the precursor and B denotes the co-reactant. The multiple model ABC 
refers to the deposition of three different elements. The supercycle (AB)m(CD)n is character-
ized by m repeats of the AB cycle followed by n repetitions of the CD cycle. This process is 
then repeated f times.
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sublimation phenomenon. The temperature of these containers can be regulated in 
terms of chemical properties to have an optimal phase transition. In comparison to 
other gas-phase chemical techniques, ALD has different general criteria since all 
gas-phase reactions must be avoided and only the reaction with the surface should 
occur.

Nowadays, varied precursors have been developed for ALD which are highly 
reactive compared to the CVD precursors. However, some of the CVD precursors 
can be utilized for ALD. ALD precursors must have a great thermal stability in 
the gas phase and during contact with material surface in the high temperature 
(150°C–200°C) to prevent unwanted reactions. Stability is a critical factor especially 
for industrial application which needs long process time. Due to the self-limiting 
nature of ALD, just a little quantity of the precursor is needed to load into the sur-
face throughout one pulse, and any more will be evacuated by the inert gas. ALD 
is known as the gas-phase process; therefore, its precursors must be volatile enough 
under certain pressure and temperature. An excellent precursor must be highly reac-
tive and completely decompose when reacting with the substrate’s active sites at 
lower temperatures which affect the growth progress. However, the following are a 
few standard specifications for ALD precursors:

 i. Highly stable and no self-decomposition at high temperature
 ii. High volatility at process temperature
 iii. Nontoxicity and safe operating
 iv. Availability and low cost
 v. Sufficient reactivity with the surface site at low temperature

Figure 1.12 provides an overview of some of the aforementioned precursor proper-
ties with regard to volatility. An ideal ALD precursor must be stable at low tem-
peratures and should not simply decompose. This is shown by volatilization at a 
low temperature and is characterized by a rapid mass decrease to 0%. However, 
many compounds do not meet these criteria of TG curve, where volatilization 
occurs slowly over a large temperature range that is greater than that required by 
the majority of ALD procedures. Accordingly, a substantial residual mass and the 
loss of ligands, which are shown by several plateaus and mass decreases in the TG 
curve, are two indicators that the mass loss in this case is most likely an occurrence 
of decomposition.

Notably, intermolecular forces, such as hydrogen bonds or electrostatic interac-
tions (primarily van der Waals’ forces), have an impact on a compound’s volatility, 
which can be affected by molecular weight and coherence of precursor molecule. 
Thermogravimetric analysis (TG) curve presents weight loss of a compound as a 
function of temperature. However, the vapor pressure of a precursor can be deter-
mined. In general, highly asymmetric, lighter compounds are relatively volatile, 
whereas heavier, symmetrical molecules tend to possess lower volatilities. However, 
there are some exceptions. Using a heteroleptic precursor (metal centered with two 
or multiple ligands) and asymmetry in the compound structure is a common strategy 
for enhancing volatility. Moreover, the ligands themselves have an impact on the 
molecular weight and intermolecular forces.
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Accordingly, to specify an appropriate precursor for an ALD process, some criti-
cal factors should be taken into account including material of interest, deposition 
condition, desired application, reactivity to other chemical species, and required film 
properties such as conductivity, dielectric constant, current loos, antibacterial activ-
ity, permeability, adsorption ability, and photochemical activity.

Five major groups can be applied to classify the most common volatile metal-con-
taining ALD precursors: -diketonate compounds, halides, alkoxides, N-coordinated 
complexes (amidinates, amides), and organometallics, which include cyclopentadie-
nyl-type and metal alkyls groups. The detailed types of ALD precursors for metals 
are summarized in Table 1.4.

However, other species, such as carboxylates, metal nitrates, and isocyanates, 
have often been utilized as ALD precursors [30,31]. Moreover, a variety of metal 
halide precursors with O2 and H2O as co-reactants have been utilized for ALD. The 

TABLE 1.4
Brief Details of Various ALD Precursors for Metals

ALD Precursors Species

Pure elements -

Metal hydrides -

Metal halides Bromides, chlorides, fluorides, iodides

Metal carbon bonds Alkyls, cyclopentadienyls

Metal oxygen bonds Alkoxides, beta-diketonates

Metal nitrogen bonds Amides, imides, amidinates

ALD, atomic layer deposition. 

FIGURE 1.12 Thermogravimetric characterization of an ideal and nonideal atomic layer 
deposition (ALD) precursor (the mass loss of a precursor as a function of temperature at a 
fixed heating rate, typically 10 C/min).
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deposition rate of metal halide precursors is acceptable and affordable for use in 
industrial applications. Nevertheless, this type of precursors can contaminate the 
surface at low process temperatures and may cause the etching or corrosion of film 
through generation of species such as HCl, HF, HBr, and HI [32,33].

Organometallic precursors are often classified as very reactive precursors in 
ALD process, since their molecule contains metal to carbon bonding. ALD of Al2O3 
is the most frequently investigated film in thin film technology. For instance, the 
TMA (Al(CH3)3) precursor has been utilized with oxygen, ozone, and water as co-
reactants in the ALD to form Al2O3 film [34–36]. Moreover, Alumina has also been 
obtained from other metal alkyls precursors, such as 3Al (CH3CH2), AlCl(CH3)2, or 
AlH(CH3)2 [37,38]. The ALD of TMA/water can be performed in a wide tempera-
ture range of 100°C–500°C with a GPC of 1.2 Å/cycle. However, impurities such 
as OH can arise at low deposition temperature; thus, the plasma ALD with oxygen 
source offers solution to mitigate the impurities content which may enhance the 
electrical features.

Cyclopentadienyl compounds (metallocenes) are another type of ALD precursors, 
and their chemicals have at least one metal-carbon bonded to C5H5 ligand. These 
precursors are very volatile and stable in high temperatures, and their high reactiv-
ity can be regulated by sequentially pulsing the precursor. Despite the existence of a 
wide variety of diverse ligands based on C5H5, only a few of the alkylated cyclopen-
tadiene complexes have been utilized as ALD precursors. Metal oxides such as MgO 
[39], In2O3 [40], and Sc2O3 [41] have been deposited using metallocene precursors. 
Figure 1.13 represents the variety of metal precursors for ALD and only highlights 
examples of homoleptic precursors. Furthermore, Table 1.5 lists ALD precursors for 
different species.

FIGURE 1.13 Variety of metal precursors for atomic layer deposition (ALD). The words in 
bold refer to the category of the precursor. The name in below indicates the example of the 
compound.
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1.7  APPLICATIONS OF ALD

In many fields of science and technology, advancements have been made as a result 
of the revolutionary use of ALD in the creation of novel materials and gadgets. In this 
section, we will examine some of the most fascinating and promising ALD applica-
tions and how they are influencing future developments in science and technology.

1.7.1  MicroeLectronics and seMiconductors

Devices have been driven to scale down to the nano and atomic scales with 
increasingly highly dispersed structures as technology development. A rising 
trend involves creating highly organized 3D structures that offer a larger surface 
area and, as a result, increase device performance. Consequently, the significance 
of the ALD process has enhanced, and it will eventually be used to manufac-
ture semiconductor devices. Recently, research and development efforts have 
focused mostly on using ALD to produce uniform films with highly adjustable 
thickness, high dielectric constant, and pinhole-free structure. ALD is frequently 
utilized in the production of TFMHs for disk drives and DRAM stack capacitors. 
ALD development is presently focused on the deposition of films for metal gates 
and gate dielectrics. The device scalability to 45 nm architecture and beyond is 
enabled by this method.

Moreover, numerous studies on the fabrication of transistors using ALD process 
have been reported [42–45]. Liu et al. [46] carried out ALD process to coat zinc 
oxide on graphene for thin film transistor. In another work, in order to efficiently 
reduce the hole carrier concentration during the construction of high-performance 
p-type thin film transistors, Kim et al. employed ALD method on SnO film [47]. 
Furthermore, high-performance capacitors can be fabricated by ALD on porous 

TABLE 1.5
List of ALD Precursors for Different Species

Species ALD Precursors

Oxygen Water vapor, Hydrogen peroxide (H2O2), Methanol, Ethanol, Ozone (O3), Oxygen 
(O2), Nitrogen dioxide (NO2), ROH

Nitrogen Ammonia (NH3), Hydrazine (N2H4), Dinitrogen (N2), Nitric oxide (NO)

Carbon Acetylene gas, Formic acid vapor, Carbon contained metal compound

Fluorine Hydrogen fluoride (HF), Fluorine contained metal compound (WF6)

Sulfur Sulfur vapor (Sn), Hydrogen sulfide (H2S)

Selenium Bis(triethylsilyl)selenium, (Et3Si)2Se

Tellurium Bis(triethylsilyl)tellurium, (Et3Si)2Te

Phosphorous Phosphine gas (PH3)

Arsenic Arsine gas, (AsH3)

Antinomy Antimony trichloride (SbCl3), tris(dimethylamido)antimony

Pure metal H2, H2N2, NH3, O2N2, O2, SixHy, formalin

ALD, atomic layer deposition.
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alumina membranes [48]. The PEALD was employed by Dustin et al. [49] to create 
Al2O3/SiO2-based metal-insulator-metal capacitors.

1.7.2  energy storage

Batteries, hydrogen storage, and supercapacitors are just a few examples of the 
energy storage technologies that have been effective in reducing the use of fossil 
fuels, addressing environmental concerns and facilitating the growth of the elec-
tric vehicle industry. To achieve the highest efficiency for the various energy-related 
devices, the manufacturing and interface/surface engineering of electrode materials 
with optimized architectures are essential.

The most often used ALD films are metal oxides, which are also excellent options 
for Lithium ion battery (LIB) electrode materials. TiO2 is a desirable anode mate-
rial for LIBs, which has a great rate capability, chemical stability, minimal volume 
expansion during cycling, and inherent safety. SnO2 is another metal oxide that has 
received a lot of research attention because it has a great specific capacity and energy 
density than traditional graphite anodes. The use of ALD SnO2 as an anode material 
for LIBs was initially presented when it was coated on graphene nanolayers [50]. In 
another work for the first time, FePO4 compound was deposited via ALD by Gandrud 
et al. [51] by merging two subcycles of FeOx and POx. Trimethyl phosphate and H2O/
O3 are utilized as oxygen precursors in this process for deposition of Pox.

Another significant electrochemical energy storage solution that has a better 
power density than batteries is the supercapacitor [52]. Nevertheless, supercapaci-
tors have a lower energy density than conventional LIB. To create the electrodes for 
supercapacitors, transition metal oxides, such as NiO, Co3O4, Mn3O4, and Fe2O3, are 
coated by ALD on various conductive substrates [53–57].

1.7.3  desaLination MeMbrane

The majority of water filtration facilities across the world use membrane-based sepa-
ration techniques. Utilizing new membranes or modifying current ones can enhance 
industrial separation applications, particularly gas and water purification. An inno-
vative method called ALD is being proposed to improve certain membrane types 
regardless of their chemical structure and shape. All membrane varieties can benefit 
from the ALD of inorganic materials, primarily metal oxides, on the membrane sur-
face to increase hydrophilicity, permeability, selectivity, and antifouling. However, 
the use of ALD-based photocatalytic coatings on membranes could represent a via-
ble strategy for the simultaneous isolation and decay of pollutants, with the potential 
to significantly reduce membrane fouling.

1.7.4  MedicaL and bioLogicaL aPPLications

ALD offers a number of benefits for the development of thin films that might be 
used in bioelectronic devices, implanted medical devices, biosensors, drug delivery 
systems, tissue engineering scaffolds, bioassay systems, and other medical devices. 
ALD’s low processing temperatures make it possible to employ temperature-sensitive 
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materials such as organic materials, polymeric materials, naturally generated materi-
als, and more that are often used in biological and medical applications.

1.7.5  oPticaL coMPonents

To image or change laser light with regard to a particular application, laser systems 
require nonplanar or 3D-shaped optics. For example, an axicon transforms the point-
source laser beam into a ring of light used for optical trapping or laser eye sur-
gery. All of these optical components, from extremely curved lenses to specially 
constructed aspheres and multi-sided lenses, are designed to shape light. Almost all 
optical components require thin film coatings to improve their efficiency, such as 
AR coatings, that lower transmission losses or mirror coatings that reflect beams. 
The typical method of physical vapor deposition (PVD) exhibits constraints in this 
application. ALD MgF2 coatings were successfully developed using a commercially 
available ALD reactor [58,59]. Al2O3, SiO2, HfO2, and TiO2 are other ALD methods 
that may be used to create optical films [60–63]. New applications for barrier layer 
and optical coatings are made possible through ALD coating techniques.

1.7.6  fueL ceLL

Proton-exchange membrane (PEM) fuel cells due to their great efficiency in convert-
ing hydrogen’s chemical energy into electrical power, functioning at close to room 
temperature, and lack of pollutants are potential alternative power sources for mobil-
ity and portable applications [64]. According to reports, platinum is the most effec-
tive catalyst for the oxygen reduction reaction (ORR) in PEM [65,66]. However, Pt is 
classified as a rare and very expensive metal. ALD is a technology that has promise 
for resolving issues with cost. Aaltonen et al. [67] achieved significant advancements 
in the synthesis by ALD through depositing Ru metal from RuCp2 and O2, and the 
method has now been expanded to include additional metals including Pt, Rh, and 
Ir [68].

Hydrogen is classified as clean fuel and can be utilized as the energy source in 
PEM fuel cells. Water electrolysis is one potential environmentally friendly method 
for producing hydrogen. When water is electrolyzed, one of the half-reactions is the 
hydrogen evolution reaction (HER), and Pt-based catalysts have demonstrated excel-
lent activity throughout this process. By applying ALD, Pt catalyst can be fabricated 
in the optimal content which leads to cost reduction. Alshareef et al. [69] used ALD 
to synthesize monolithic 3D graphitic scaffolds with conformally deposited Pt.

1.7.7  Protective fiLM

Metal parts can be damaged and fail in industrial applications, particularly in semi-
conductor manufacturing applications, as a result of exposure to reactive chemicals. 
Therefore, protecting metals from corrosion is crucial from a technological stand-
point, particularly in harsh conditions. The application of protective films or coat-
ings to metal surfaces is a popular form of protection. Numerous protective coatings, 
including nitrides and metal oxides, have undergone extensive research and testing. 



21Overview of ALD and Thin Film Technology

These coatings have excellent levels of corrosion resistance, wear resistance, and 
mechanical strength.

TiO2 and Al2O3 offer great strength, strong oxidation, and corrosion resistance. 
They are among the most significant reinforcing materials used as a protective layer. 
TiO2, in particular, is known to exhibit strong corrosion resistance against aqueous 
solutions, making it a viable choice to address shortcomings of Al2O3 as a sealing 
layer against moisture in multilayer coatings. Ta2O5 [70], SiO2 [71], ZrO2 [72], and 
HfO2 [73] were also created for corrosion protection, either as a single layer or inter-
spersed as a stack similar to TiO2. When traditional metal oxides may not be strong 
or thin enough to guard against fluorine, chlorine, or bromine plasmas, ALD’s anti-
corrosion application focuses on techniques for plasma etch-resistant films.

1.8  CHALLENGES AND FUTURE PERSPECTIVES

Despite major advancements in the development of an ALD approach for the syn-
thesis of different materials, the ALD still confronts a number of difficulties. For 
example, there hasn’t been much research done on 2D materials by ALD, especially 
in the field of energy storage and conversion devices such as graphene, WS2, and 
MoS2. Moreover, the toxicity of ALD precursors, such as H2S, has severely con-
strained ALD research. As a result, research into the effective application of ALD 
for this family of 2D materials is still ongoing.

The high cost is another challenge of ALD technique, since some of the ALD 
precursors of rare metals such as Au, Pt, Ag, and Pd that are frequently employed 
for ALD are expensive. Moreover, the substitution of very toxic ALD precursors 
(such as H2S) has not been well investigated before. In addition, future research must 
thus concentrate on some other ALD pathways to either use this type of precursors 
with strong safety standards or replace them with some nontoxic and inexpensive 
precursors.

In addition, more clarification is needed on the doping process over substrate sur-
face through an ALD process. The key challenge is balancing the dopant and sub-
strate surface in the proper ratio [74,75]. Hence, an effective doping technique must 
be developed. However, during ALD cycles, it is possible to investigate the simul-
taneous usage of a number of dopant precursors in a parallel or series arrangement.

While the typical ALD method can produce a polycrystalline or amorphous com-
plex, creating a single crystalline material is extremely desirable. So, further study 
must focus on designing the morphology and internal framework of the coated mate-
rials. In addition, the ALD can be investigated for the synthesis of materials com-
monly used for high-performance electrochemical energy applications, including 
(i) alumina-coated polymeric separators, (ii) treated electrode materials for Li-ion 
batteries (surface treatment via chemical/thermal processes), and (iii) applying a 
precise surface oxidation level on carbon materials (e.g., oxidized graphene, carbon 
nanotubes).

Consequently, a successful pilot-scale use in industrial scale of the ALD pro-
cess must be developed in order to evaluate the variances in operating cost at bigger 
levels. Thus, it must be possible to optimize the configuration of such a large-scale 
system for different applications such as electronic devices. Moreover, other ALD 



22 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

methods in the energy field are also required to prepare the foundation for such a 
wide viewpoint. Nowadays, numerous interesting ALD techniques have been devel-
oped in an attempt to improve performance while upholding high standards in terms 
of excellent uniformity and precisely accurately controlled film thickness, including 
roll-to-roll ALD, batch ALD, and spatial ALD.

1.9  CONCLUSION

ALD has grown rapidly because of its capacity to build thin films with atomic precision 
and control. In this chapter, we have covered basics, pros and cons, and reactor types 
of ALD. We also examined the importance and precursor kinds of ALD recipe. ALD 
is used in microelectronics, energy storage, biomedical engineering, and nanotechnol-
ogy, while it has helped develop new materials and gadgets, and advance science and 
technology. However, challenges still exist in the field of ALD, including the need for 
more efficient precursors and better control over film properties. ALD technology’s 
continuing development will overcome these hurdles and lead to exciting new advances 
in the future. Many fascinating opportunities await as ALD technology and applica-
tions improve. Atomic-scale film deposition could transform microelectronics, energy 
storage, and biomedical engineering. ALD helped produce thin film transistors, solar 
cells, and nanoscale coatings. ALD has several benefits, but optimizing procedures, 
discovering novel precursors, and understanding its science are still difficult. ALD will 
continue to improve and develop new applications and breakthroughs with continuing 
research and development. As we learn more about ALD, new materials and gadgets 
that could revolutionize science and technology will be developed.
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State of the Art 
Modeling and Simulation 
Approaches in ALD

2.1  INTRODUCTION

Atomic layer deposition (ALD) has become a crucial technique for the development 
of nanostructured materials through the formation of ultra-thin films which play an 
important role in various applications including energy science, biomedicals, semi-
conductors, microelectronics, etc. Accordingly, ALD with the specific characteristic 
of thin film fabrication over surface of substrate such as conformity, pinhole-free, 
sub-monolayer film growth, and atomic accuracy has garnered more and more inter-
est over the past few decades from both theorists and experimentalists. However, 
ALD has some limitations; for example, ALD experiments cannot provide a compre-
hensive understanding of the reaction processes during film generation. Furthermore, 
different deposition conditions, such as precursor type, temperature, pulse and purge 
time, flow rate, need to be examined to ensure the reproducibility of the samples 
and for achieving optimized ALD film growth for the desired application, which is 
practically very costly and may be impossible. In addition, the most of ALD precur-
sors are hazardous and expensive and their usage should be minimized as much 
as possible. Therefore, in order to mitigate the limitations of ALD, the incorpora-
tion of a theoretical framework is essential and important in validating experimen-
tal data. Theoretical methods are appropriate for designing new materials based on 
existing experimental data and predicting their properties before synthesizing them. 
Currently, theoretical methods have been implemented by many researchers to simu-
late, optimize, and estimate various ALD attributes, including reaction mechanism, 
growth rate, and materials, under different deposition conditions. Thus, this strategy 
can be effectively validating the experimental data. This chapter highlights the role 
of theoretical modeling methods and calculation in developing the ALD research 
and describes how theoretical approaches might improve the effectiveness of exper-
iments. These theoretical modeling methods also provide useful insights into the 
physics and chemistry of ALD.

2.2  THEORETICAL MODELING METHODS

The complexity of ALD processes and the necessity to optimize deposition param-
eters have led to theoretical models to better explain and predict ALD system behav-
ior. Theoretical modeling can anticipate and optimize ALD film properties, bringing 
up interesting new paths for academics and engineers. This section will discuss the 
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state-of-the-art theoretical modeling such as density function theory, computational 
fluid dynamics, and molecular dynamics (MD) in ALD and its implications on next-
generation materials

2.2.1  density functionaL theory

Density functional theory (DFT) is known as the first principles (ab initio) method 
and is an efficient computational approach based on fundamental laws of quantum 
mechanical for estimating chemical and physical properties of various types of nano-
materials including atoms, molecules, crystals, complexes in both gas and liquid 
phase with high accuracy. DFT can predicts the electronic characteristics, thermo-
dynamic properties, energy parameters, atomic forces of materials based on particle 
interactions without the need for any experimental data. In addition, DFT can deter-
mine the reaction mechanism, such as initial surface reactions, reaction pathways, 
and the precursor chemisorption process, which is useful for the investigation of 
ALD process.

Nowadays, DFT has been widely used by researchers due to the low computational 
efforts. Nevertheless, until the 1990s, DFT was not thought to be precise enough for 
calculations in quantum chemistry and to solve the Schrödinger’s equation, Ab ini-
tio Hartree-Fock (HF) and second-order MØller–Plesset perturbation theory [1]. The 
Schrödinger’s equation can be expressed in several ways, and a straightforward form 
is nonrelativistic and time-independent, but in order to effectively interpret it, we need 
to specify the quantities. The simple Schrödinger’s equation is described as follows:

 H E  ψ ψ=  (2.1)

where H presents the Hamiltonian operator and c refers to the set of solutions, or 
eigenstates, of the Hamiltonian. nψ  is correlated with an eigenvalue of En, which is 
a real integer that solves the eigenvalue equation according to Sholl and Steckel [2]. 
The Schrödinger equation can be accurately solved in various established circum-
stances, such as the particle confined within a box and the harmonic oscillator, both 
of which are dependent on the specific physical system. However, in the case that 
multiple electrons interact with several nuclei, the Schrödinger’s equation is defined 
as follows:
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where m denotes the electron mass, the first bracket presents the kinetic energy of 
each electron, and the second bracket shows the interaction energy among electrons 
and set of atomic nuclei and the next interaction energy between electrons. Symbol ψ  
indicates the function for electronic wave, which is determined by the spatial coordi-
nates of each of the N  electrons. Then, the individual electron wave functions can be 
used to estimate parameter ψ .

Later, in 1965, Lu Jeu Sham and Walter Kohn [3] proposed a hybrid algorithm of 
HF to solve the Schrödinger equation, which offers a variational concept for density 
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functionals and enables the many-body electronic ground state to be described using 
an effective potential and a single-electron equation. In addition, the Hartree approach 
is a good argument to describe the entire wave function in this way using the sum of 
one electron wave functions. When compared to conventional techniques, such as the 
exchange limited Hartree-Fock concept, the computational cost is quite inexpensive 
due to incorporating the electron correlation. Accordingly, as a product of the various 
electron functions, Ψ can be determined using the following Hartree equation [4]:

 r r rN, ,  1 2( ) ( ) ( )Ψ = Ψ Ψ … Ψ  (2.3)

The quantum nature of matter can be accurately described if an accurate exchange-
correlation functional is used. However, the Schrödinger equation can only be solved 
for systems with one electron; therefore, in the late 1980s, the local density cor-
rected approximation (LDA) functional was introduced as a complementary method 
to integrate with DFT for resolving Schrödinger equation for multiple electron con-
figurations. While the HF method is capable of predicting the energy of quantum 
many-body systems and the wave function in a stationary state, it is important to 
note that the calculated values for the total energy and the energy associated with 
electron-electron repulsion may be overestimated as a result of the assumption of 
independent electron migration [5].

Two key mathematical theorems established by Kohn and Hohenberg and a series 
of equations derived by Kohn and Sham in the mid-1960s provided the foundation for 
the whole area of DFT [6]. In the first theory, the ground-state energy derived from 
Schroedinger’s equation is a special function of electron density. The ground-state 
energy E can be stated as E[nr)], where n(r) presents the electron density. However, 
the main flaw of this theory is the absence of a functional definition. Therefore, 
the second theorem of Kohn and Sham proposed the special character of functional 
which minimizes the energy of the total functional and ensures the correct electron 
density associated with the entire solution of the Schrödinger equation. This energy 
functional can be described as follows:

 E E Ei known i xc i { } { } { }Ψ  = Ψ  + Ψ  (2.4)

where E i{ }Ψ  denotes the function that defines the exchange-correlation functional 
and Exc i{ }Ψ  presents the exchange correlation functional. The Eknown i{ }Ψ  arises 
from four contributions which are described as follows:
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The first right term is the electrons kinetic energies, the second is interactions of 
Coulomb between the electrons and nuclei, the third is the Coulomb interactions 
among sets of electrons, and the last is the Coulomb interactions among sets of nuclei.
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Kohn and Sham demonstrated that in order to determine the proper electron den-
sity, a series of equations including a single electron need to be solved as follows:
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where V r( ) expresses the potential that describes the set of electrons to atomic nuclei 
interaction. V rH ( ) is the Hartree potential defining the Coulomb repulsion among 
one individual electron accounted for one of the Kohn–Sham equations and the total 
electron density assumed by all electrons, which is defined by:

 V r e
n r

r r
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V rXC ( ) denotes a potential addressing contribution of exchange and correlation to the 
single-electron equations, which is known as a functional derivative and is defined 
as follows:
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Equation 2.6 is similar to Equation 2.2, with the exception of the presence of summa-
tions in the complete Schroedinger’s equation. This is due to the fact that the solution 
of the Kohn–Sham equations is a single-electron wave function that only depends on 
three spatial variables of ri ( )Ψ .

To determine the Schroedinger equation’s ground-state energy, there are several 
concerns, which make it quite challenging. Therefore, it is necessary to specify the 
exchange-correlation function, Exc i{ }Ψ , in order to solve the Kohn–Sham equa-
tions, which is difficult to define by Equations 2.4 and 2.5. There is just one situation 
in which exchange correlation functional may be deduced precisely in a uniform 
electron gas which offers a useful strategy for using the Kohn–Sham equations in 
practise. In this case, n(r) is constant because the electron density is constant across 
space. This situation can exist with limited value in every real material due to the fact 
that changes in electron density establish chemical bonds and allow materials to be 
attractive. Therefore, the exchange–correlation potential can be applied at each point 
from the uniform electron gas and can be defined as follows:

 V r V n rXC XC
electron gas  [ ]( ) ( )=  (2.9)

This approach implements only local density to express the exchange–correlation 
functional which is known as local density approximation (LDA). The Kohn–Sham 
equations may be fully defined using the LDA. However, it is important to consider 
that the data provided by these equations do not perfectly resolve the real Schrödinger 
equation since the real exchange–correlation functional is not being used.

Besides the LDA functional, there is another functional called generalized gra-
dient approximation (GGA) which incorporates more physical data than the LDA 
and is thus expected to be more accurate. GGA implements information regarding 
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the local electron density and the local gradient in the electron density and to miti-
gate the difficulties of the HF. In 1993, Becke employed GGA along with DFT and 
combined with Lee-Yang-Parr (LYP) gradient-corrected correlation functionals [7]. 
Additionally, in another study, Xu et al. [8] incorporated the Becke three-parameter 
LYP (B3LYP) hybrid functional  to develop the HF method to determine electron 
correlation.

2.2.1.1  Emerging Applications of DFT in ALD
Generally, an ALD cycle includes two half cycles which are two precursors incor-
porated to form one thin layer. Understanding the detailed mechanism of possible 
reactions during an ALD process is necessary for selecting an appropriate precur-
sor. The DFT can be utilized to investigate the reaction mechanism during ALD 
process between the precursor molecule and substrate. The compounds’ reactions 
lead to cause different chemical phenomenon including decomposition, transition, 
and formation of new compounds. Therefore, by virtue of DFT, the nature of atoms 
interaction, reaction mechanism, and final by-product can be predicted. Geometry 
equilibrium at absolute zero is one of the usual quantities that can be obtained from 
ground-state DFT computations. At this state, DFT can determine the electronic 
properties including partial charge of atoms, electron migration, band gap, density 
of state, mechanical properties, formation energy, magnetic properties, and optical 
properties. Moreover, DFT can be used to probe the reaction pathway during initial, 
transition, and final state of an ALD first and second half cycles. DFT can be used to 
provide a basis for research, distinguish between potential exploration possibilities, 
and validate the results of experimental studies. In addition, DFT is helpful in learn-
ing about a material’s surface characteristics in surface science and catalysis.

Surfaces are significant in many technical sectors, including semiconductor man-
ufacture catalysis, gas separation membranes, and interfaces. It’s critical to under-
stand the electrical structure and geometry of surfaces. DFT techniques have been 
crucial in revealing and better understanding the processes behind the relevant reac-
tions on catalytic metals, oxides, and zeolites which have improved the efficiency 
and mitigated the cost of catalytic converter design. DFT and surface science experi-
ments have frequently performed together on highly successful projects. DFT has 
been implemented to analyze the surface structure of nanoparticles, metals, metal 
oxides, sulfides, and carbides in conjunction with ultra-high vacuum surface science 
experiments like temperature programmed desorption, scanning tunneling micros-
copy (STM), X-ray photoelectron spectroscopy, and X-ray diffraction. In the fol-
lowing section, we highlighted the basics of some important analysis which can be 
accommodated by DFT.

2.2.1.1.1 Electronic Structure
DFT is basically a theory of electronic ground-state structure expressed in terms of 
the electronic density distribution n(r). First-principles DFT simulations have tradi-
tionally been utilized to derive the density of states (DOS). The electronic DOS is 
one of the basic quantities used to define a material’s electronic state. In material 
science and solid-state physics, the electronic DOS plays a crucial role in determin-
ing the characteristics of metals such as density distributions of free electrons in 
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materials. A plane-wave DFT calculation’s fundamental concept is to represent the 
electron density using functions of the type exp (ik.r). This type of plane wave’s 
associated electrons has energy E = (hk)2/2m. The result of DOS can be obtained by 
integrating the resultant electron density in k space. The DOS for electrons, photons, 
or phonons can be computed and provided as a function of either energy or the wave 
vector k, depending on the quantum mechanical system. The system-specific relation 
between E and k for the energy dispersion must be understood in order to convert 
between the DOS as a function of energy and the DOS as a function of the wave 
vector. The number of modes per unit frequency range is expressed by the DOS of a 
system and described as follows:

 D E
N E

V
 ( ) ( )=  (2.10)

where N E Eδ( )  denotes the quantity of states in the system with volume V, where the 
energy range is between E and E + E.δ  The dispersion relationships of the system’s 
properties are directly correlated with the DOS. High DOS at a certain energy level 
indicates that there are several states that are occupiable; for example, in a semicon-
ductor, by examining the DOS of electrons at the boundary between the conduction 
and valence bands. So, it is obvious that an increase in electron energy expands the 
range of states that an electron in the conduction band can occupy. Nevertheless, 
when the DOS is discontinuous at an interval of energy, means that no states are 
accessible for electrons to occupy inside the material’s band gap. Therefore, an elec-
tron at the conduction band edge is unable to migrate to a different valence band state 
without losing a minimum band gap energy of the material. Figure 2.1 demonstrates 

FIGURE 2.1 Density functional theory (DFT) calculated density of states (DOS) for bulk 
Si [9].
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the DFT calculated DOS plot for a bulk Si. As seen in the figure, the valence band and 
the conduction band are the two distinct zones that establish the DOS. The valence 
band contains all occupied electronic states, whereas the conduction band contains 
all unoccupied states (at T = 0 K). The band gap is the area of energy between the 
valence and conduction bands that includes no electronic states at all.

2.2.1.1.2 Magnetic Properties
The nonzero spin of electrons has a direct impact on magnetism. Each electronic 
state in diamagnetic materials has two electrons, one with spin up and the other 
with spin down. Figure 2.2 depicts this scenario graphically for a periodic material. 
However, there are electronic states that only have one electron in magnetic materials. 
Unpaired electrons can be arranged in a wide variety of ways, with each establishing 
a diverse magnetic state. Figure 2.2b and c displays the two most prevalent magnetic 
states. On nearby atoms, there is the antiferromagnetic state, in which electron spins 
alternate, and the ferromagnetic state, in which all electron spins point in the same 
direction. In Figure 2.2d, a straightforward example shows that more delicate spin 

FIGURE  2.2 Schematic diagrams of two-dimensional periodic material’s spin states. 
Individual atoms are depicted by circles, while a single supercell is shown by dotted lines. 
(a) On each atom, every pair of electrons is present. In the subsequent cases, each atom has a 
single unpaired electron. (b–d) Depicts examples of ferromagnetic states, antiferromagnetic 
states, and more complicated magnetic states, respectively [10].
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orderings are also conceivable. The magnetic moment is the measure of the typical 
electron spin per atom. All other cases have magnetic moments of zero, except for 
the ferromagnetic condition depicted in Figure 2.2b, which has a magnetic value of 1.

Due to the fact that this approximation speeds up computations, electron spin is gen-
erally not explicitly taken into account in DFT calculations. Therefore, it is essential that 
spin is considered in materials where spin effects are significant. For instance, the metal 
iron is widely recognized for having magnetic characteristics. Figure 2.3 compares com-
putations with and without ferromagnetic spin ordering to illustrate the energy of bulk 
Fe with bcc crystal structure. Electron spins significantly reduce energy and raise the 
estimated equilibrium lattice constant by 0.1 A, which shows a significant difference.

Figure  2.3 presents an important effect of applying spin in DFT calculations 
meaning that there are a variety of conceivable magnetic orderings for electron 
spins. The optimization of electron spins within a single DFT computation is analo-
gous to the optimization of atom locations inside a crystal structure. The spins are 
approximated first, and the computation then identifies a local minimum associated 
with this first approximation. A ferromagnetic state is often employed as a first 
approximation. This technique can only provide a local minimum on the energy sur-
face defined by all feasible spin orderings, which is a critical finding in this context. 
However, it is more challenging to determine the spin ordering related to the global 
minimum on this energy surface and similar to finding the ideal crystal structure for 
a substance from all potential crystals. Thus, it is advisable to look at more than one 
starting estimate for the spin ordering while looking at magnetic ordering, similar 
to when using DFT to study crystal structures. Figure 2.3 illustrates the energy of 

FIGURE 2.3 An analysis of the energy of bcc Fe as a function of the Fe lattice constant 
using density functional theory (DFT) simulations with various spin states. Plot without spin 
polarization denoted as “No spin.” [10].
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fcc-Fe with antiferromagnetic ordering calculated from a series of computations in 
which this ordering was utilized as a starting estimate for the spin states.

According to experimental evidence, Fe is ferromagnetic, and the antiferromag-
netic energies are far greater in energy than the ferromagnetic outcomes. It should be 
noted that these calculations don’t reveal anything regarding the potential existence 
of ordered spin states with structures that are more sophisticated than basic ferro-
magnetic or antiferromagnetic ordering.

Notably, this introduction has only raised a small portion of the extremely large 
topic of magnetic characteristics. Most methods for digital data storing rely on mag-
netic characteristics. Moreover, intense global studies have been conducted on the 
different magnetic phenomena for decades.

2.2.1.1.3 Mechanical Properties
Understanding a material’s mechanical characteristics is crucial to the great majority 
of material scientists and engineers. A material’s mechanical characteristics provide 
information about its durability, capacity to withstand damage, and prospective appli-
cations including flexible electronics [11], sensors [12], ferroelectrics [13], biomate-
rials [14], and pharmaceutical nanocrystals [15]. Therefore, for their exploitation, 
design, and screening, it is essential to understand the mechanical characteristics of 
crystalline materials. In the hunt for novel materials for hard coating applications, 
Pugh mechanical analysis expansions have recently been employed to derive hard-
ness descriptors [16].

DFT continues to be one of the most useful computational techniques for quan-
titatively forecasting and rationalizing the mechanical reaction of the materials. 
Several experimental methods, including nanoindentation, high-pressure X-ray crys-
tallography, impedance spectroscopy, and spectroscopic ellipsometry, have been 
proven to quantitatively correspond with DFT predictions. DFT simulations can be 
used to determine bulk mechanical parameters, and this computational approach 
enables a thorough comprehension of the elastic anisotropy in complicated crystal-
line structures. Elastic tensors may also be used to identify materials with particular 
thermal characteristics since they make it possible to predict trends in thermal con-
ductivities and heat capacity [17]. When paired with mathematical homogenization 
concepts, the elastic behavior of composite materials may be anticipated by knowing 
the complete anisotropic elastic tensor. This has enabled the development of materi-
als with controlled stiffness [18,19]. The several DFT strategies that may be used to 
determine a crystal’s mechanical characteristics are covered in this book, along with 
additional computational chemistry techniques that are currently being employed in 
this attempt.

Second-order elastic constant calculations may be used to describe the elastic and 
mechanical characteristics of various materials. Under the scope of Hooke’s law, they 
serve as a gauge of the proportionality between stress and strain. By applying a strain 
on a crystal and measuring the resultant stress, elastic constants can be generally 
calculated [20]. However, ultrasonic techniques that depend on elastodynamics can 
be used to experimentally estimate the elastic constants of molecular crystals [21]. 
In order to direct experiments and reduce the need for trial-and-error examinations, 
theoretical studies have recently been employed to determine elastic constants with 
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the use of first-principles approaches. Increased computer capacity has made it pos-
sible for DFT-led investigations to find materials with the best qualities before they 
are synthesized or developed in the lab.

Discussions of their hardness, plasticity, yield strength, and fracture behavior are 
also essential. For the materials, high-pressure X-ray crystallography may be used to 
compare anticipated elastic characteristics including compressibility and bulk moduli 
[22,23]. Recently, nanoindentation data have been utilized to develop machine learn-
ing algorithms. Nanoindentation has become a fundamental technique for assessing 
the mechanical characteristics of crystalline materials as illustrated in Figure 2.4.

Moreover, DFT is capable of database creation and mechanical property screen-
ing. Several researches have made efforts to create databases of elastic moduli using 
first-principles computational techniques [24,25]. These computational methods are 
useful because they enable clear comparisons across several kinds of materials and 
allow for the consistent extraction of all data. For example, De Jong et al. [26] have 
developed on this strategy, creating the biggest library of computed elastic character-
istics of crystalline inorganic compounds to date, spanning from metallic complexes 
to insulators and semiconductors. The computations were carried out as part of a 
wider high-throughput effort conducted by the Materials Project [27]. Using DFT, it 
was regularly demonstrated that the predicted elastic constants were within 15% of 
the experimental values, which, in some circumstances, indicates a lower dispersion 
than that seen in experimental measurements. As illustrated in Figure 2.5, the cal-
culations conducted in this study result in elastic characteristics that exhibit a strong 
correlation with experimental values, according to Spearman (ρ) and Pearson (r) and 
coefficients which is enabling the database to be used for screening materials having 
elastic tensor-based characteristics.

2.2.1.1.4 Optical Properties
New research has been motivated by the need to find stable materials with improved 
nonlinear optical characteristics for application in computer information transmis-
sion and storage and in telecommunications [28]. Recently, the nonlinear optical 
characteristics of molecules have attracted the interest of chemists [29,30]. DFT is 

FIGURE 2.4 Method of nanoindentation and the measurement. (a) Diagram illustrating the 
loading and unloading processes used to imprint the sample. (b) A similar load-displacement 
curve illustrative of the influence of the loading and unloading procedure. S indicates the 
contact stiffness of unloading [21].
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a potential approach for quantitatively calculating the optical characteristics of mol-
ecules in a feasible size range. The approach depends on employing two sets of local-
ized, atom-centered, in situ optimized orbitals to represent the optical response of 
the system and to accurately capture both the electron and hole wavefunctions of the 
excitations.

DFT can calculate the optical properties such as optical conductivity, dielectric 
function, absorption coefficient, refractive index, electron energy loss and reflec-
tivity. DFT has the benefits of an ab initio technique and, while requiring less com-
puting work, often produces results for a wide range of features that are superior 
to those obtained via the HF approximation. While DFT requires more calcula-
tion than semi-empirical approaches, it produces results that are significantly more 
trustworthy when a wide variety of molecule types and attributes are considered. 
Hence, DFT is a viable method for treating the optical characteristics of molecules 
in systems that are sophisticated enough to be of interest to chemists and material 
scientists.

Experiment optical spectra can be regarded as the outcome of averaging across 
multiple low-energy configurational structures of the system under consideration and 
are frequently well replicated by numerical simulations on a singular, averaged low-
energy structure of that system.

Baek et al. [31] employed DFT to clarify deposition properties and the mechanism 
of the first TiCl4 half-cycle reaction for TiO2 deposition on the surface of Pt nanopar-
ticles. In this work, the selective ALD process of the precursor TiCl4 on Pt catalyst 
surfaces is explained quantitatively. They demonstrated that the release of HCl from 

FIGURE 2.5 Comparison of calculated experimental and bulk moduli for a modeled set 
of systems, with calculated Spearman correlation coefficient ρ and Pearson correlation coef-
ficient r [26].
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the Pt (111) surface occurs through a favorable pathway, improving the material’s 
reactivity to the surface reaction. In another work, Lee et al. [32] used DFT tech-
niques to describe the silicon oxide ALD processes over the tungsten oxide substrate. 
They compare the surface reactions of various aminosilane precursors with a range 
of amino ligands, such as diisopropylaminosilane (DIPAS), bis(diethylamino)silane 
(BDEAS), and tris(dimethylamino)silane (TDMAS), over the hydroxyl-terminated 
WO3 (001) surface to evaluate the ligand influence of precursors.

In another study, Shirazi et al. [33] implemented DFT to study the MoS2 nanolayer 
formation on SiO2 surface by ALD. ALD mechanism of MoS2 is accommodated 
by the exposure of metal precursor Mo(NMe2)2(NtBu)2 (bis(tert-butylimido) bis 
(dimethylamido) molybdenum) to the SiO2 surface presented in Figure 2.6. Moreover, 
Figure 2.7 shows the chemical adsorption of Mo(NMe2)4 at S sites. Diethyl disulfide, 
diethyl trisulfide, dimethyl tetrasulfide, and dimethyl pentasulfide all exhibit exother-
mic chemical adsorption of Mo(NMe2)4 at S with exothermic energies of 0.69, 0.13, 
0.50, and 0.15 eV, respectively.

FIGURE 2.6 Demonstration of building block formation and underpinned building block 
from different metal precursors. (a) Adsorption of Mo(NMe2)2(NtBu)2 precursor at the ter-
minal O at the SiO2 (001) surface. (b) Indicates the coordinated Mo and S atoms at the SiO2 
surface after the H2S pulse. (c) Adsorption of MoS2(tBuAMD)2 at the terminal O site at the 
surface. (d) Presents the coordinated Mo and S atoms at the SiO2 (001) surface which com-
pose an underpinned building block at the end of H2S pulse.
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2.2.1.2  Challenges of DFT
One of DFT’s limitations is its failure to estimate energy gap values for semiconduc-
tors and insulators, underestimating by up to 50%. DFT simulations require esti-
mations since the Schrödinger equation for a multi-body system cannot be solved 
accurately. However, the utility of their DFT simulations for numerous characteris-
tics is dependent on the accuracy of the chosen approximation [34]. Keeping some 
kind of simplicity as its foundation presents one of DFT’s biggest problems. The 
theory starts to lose one of its key characteristics, namely, its simplicity, if DFT 
functionals grow as complex as full configuration interaction. Through DFT calcula-
tions, in order to provide a more thorough understanding of chemistry, it is required 
to explain weakly interacting molecules and transition states in chemical processes 
in addition to molecules at their equilibrium geometry.

FIGURE 2.7 Chemical adsorption of Mo(NMe2)4 at the terminal S sites, deposited from 
sulfur co-reagents pulse. (a) The chemical adsorption at S of diethyl disulfide is exothermic 
by 0.69 eV. (b) The chemical adsorption at S of diethyl trisulfide is exothermic by 0.13 eV. 
(c) The chemical adsorption at S of dimethyl tetrasulfide is exothermic by 0.50 eV. (d) The 
chemical adsorption at S of dimethyl pentasulfide is exothermic by 0.15 eV [33].
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2.2.2  MoLecuLar dynaMic siMuLation

The fact that the atoms in the materials that surround us are constantly moving 
is an inevitable fact. A vast number of subjects require knowledge of how atoms 
in a material move as a function of time to describe some attribute of practical 
importance. This section focuses on MD techniques, which are a set of compu-
tational tools that allow us to track the motion of flowing atoms. In other words, 
MD simulation determines the forces between the atoms at each time step by using 
Newton’s equation of movements, and it updates the atoms’ locations for the sub-
sequent time step [35]. MD explores the concept of atoms, molecules, and crystals 
in the fluid and condensed phases [36]. MD methods depend on the description 
of the force field and molecular interaction to identify each atom or molecule’s 
motion and equilibrium conditions. It is utilized in various engineering and science 
areas, including physics, materials, and chemistry engineering. The MD approach 
is applicable to simulating different physical processes in both equilibrium and 
nonequilibrium states.

Kinetic properties are time-dependent transformations of compounds. The kinetic 
characteristics of molecules can be predicted using the MD approach [37]. MD 
can predict the thermodynamic properties, melting and boiling point, free binding 
energy, pressure, heat of vaporization, and free energy perturbation. These estima-
tions are based on intermolecular interactions. MD also can be used for prediction of 
diffusion coefficients and mean-square displacements in materials. The MD may be 
used to simulate protein shapes and optimize X-ray structures, and stability of pro-
tein–ligand interactions. Another advantage of MD simulations is the ability to cal-
culate vibrational DOS using the velocity auto-correlation function or power spectral 
density analysis. Multiple simulation softwares were developed for MD calculation 
including LAMMPS [38], GROMACS [39], NAMD [40], AMBER [41], FORCITE 
[42], and ReaxFF [43]. In MD simulations, the parameters of Lennard-Jones and 
columbic potentials are used to determine the nonbonded interactions between atoms 
[44,45] and are defined as follows:
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where   and σ  parameters refer to the potentials and distance between any two 
atoms, respectively. q qi j denote the electronic charges between atoms I and j. dε is the 
dielectric constant and r shows the distances between atoms I and j. MD can incor-
porate constant Energy for the calculation. The classical MD is a well-established 
method that is frequently employed in various areas of computational chemistry and 
materials modeling. For understanding the dynamic behavior of the modeled system, 
it will account for a case in which there are N atoms inside of a volume V. Therefore, 
in order to characterize the arrangement of the atoms at any given instant in time, 
we need to define 3N locations, (r1, …, r3N) and 3N velocities, (v1, …, v3N). The total 
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kinetic energy and total potential energy of our system are two metrics that are help-
ful for defining its overall condition as follows:
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where mi is the atom’s mass corresponding to the ith coordinate. Moreover, MD can 
be performed in the Canonical Ensemble. In the many cases, we need to compare the 
experimental results with theoretical outcome. The atoms of a material can exchange 
heat with their environment under standard experimental settings. In this case, the 
atoms form a canonical ensemble in which N, V, and T are constants. There are 
several methods to modify the microcanonical MD algorithm described above to 
simulate a canonical ensemble. Nose was the first to use the extended Lagrangian for 
the microcanonical ensemble defined by Equation 2.14:
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Ab initio MD makes it possible to study chemical processes in condensed phases 
objectively and accurately, opening up new paradigms for the explanation of micro-
scopic mechanisms, the justification of experimental results, and the development of 
testable predictions of novel phenomena. The classical MD description above was 
supposed to highlight how atom dynamics may be explained if the atoms’ potential 
energy is known as U U r r N,  , 1 3( )= … , which is the function of the atomic coordina-
tion. However, it uses common DFT calculation. In other words, quantum mechan-
ics can be used to determine the potential energy of the system of interest. This is 
the fundamental idea behind ab initio MD and the Lagrangian can be expressed as 
follows:
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where r r N,  , 1 3ϕ( )…  is the full set of Kohn–Sham one-electron wave functions for 
the electronic ground state of the system. This Lagrangian recommends performing 
the calculations in the following order: first, compute the ground-state energy; next, 
advance the locations of the nuclei by one MD step, then the new ground-state energy 
is computed, and so on. Ab initio MD is the term used to describe any technique that 
uses forces derived from DFT to move nuclear locations along paths specified by 
classical mechanics.

2.2.2.1  Application of MD in ALD Research
Due to high expenses and challenging chemical management associated with 
ALD investigations, most of the researchers prefer to perform numerical model-
ing of the ALD process to comprehend and investigate the deposition process. 
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Therefore, more understanding of the ALD process is achieved by modeling, which 
minimizes precursor usage and waste as well as potential environmental effects 
in future industrial outputs [46]. MD can predict the overall ALD process in the 
reaction chamber such as the stability of occurred bonds between the substrate and 
precursor, their binding energy, and kinetic properties of molecules, structure, and 
complex. Similarly, in the second half cycle, MD can predict the mechanism of 
the purging process, precursor reduction mechanism, and by-product formation. 
However, nature of reaction and stability of formed bonds between molecules can 
be accommodated by MD. Moreover, based on intermolecular interactions, MD 
can be utilized to determine the thermodynamic characteristics of the ALD thin-
film material.

In 2008, Turner et al. [47] performed MD simulation to investigate the growth 
dynamic of amorphous Al2O3 films at the atomic scale. They showed MD simula-
tion can reveal the growth mechanism of ALD AL2O3 thin film and several impor-
tant properties which can link the atomic scale data with experimental information. 
Moreover, as demonstrated in Figures 2.8–2.10, the effect of operating condition on 
film formation showed that according to the models, the growth rate, surface rough-
ness, and growth mode of the deposited films would be strongly influenced by the 
starting surface composition and process temperature. Furthermore, they showed 
that the Al2O3 growth rate is about 0.06 nm per cycle, which is in agreement with the 
experimental values (around 0.08 nm per cycle).

FIGURE 2.8 Surface –OH density and roughness of the Al2O3 film at 300°C as a function 
of ALD cycles [47].
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2.2.3  Monte carLo

The use of Monte Carlo (MC) techniques to solve molecular issues is known as MC 
molecular modeling. The MD approach may also be used to model these issues. The 
distinction is that, as opposed to MD, this method is based on equilibrium statistical 
mechanics. The MC method has the capacity to deal with far wider temporal and 
space scales. MC creates states in accordance with the proper Boltzmann distribu-
tion rather than attempting to replicate the dynamics of a system. As a result, it is 

FIGURE 2.10 The evolution of the surface roughness during the atomic layer deposition 
(ALD) process at two different temperatures [47].

FIGURE 2.9 The evolution of the growth rate during the Al2O3 atomic layer deposition 
(ALD) starting with two different initial –OH densities at 300°C [47].
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a subset of the broader MC approach in statistical physics. It uses a Markov chain 
approach to derive a new state for a system from an old one. The acceptance of this 
new state is stochastically determined by its stochastic character. Accordingly, each 
trial counts as one move. In comparison to continuum-type models like the reaction-
diffusion models, MC also provides a far more in-depth understanding of the surface 
processes.

In MC/kMC, the system is transferred stochastically through the phase-space 
while the particles (atoms, molecules, and beads) move in accordance with prede-
termined rules (events/processes), roughly approaching the mean values of different 
attributes. Unlike other molecular techniques like MD, the system in MC may be 
transferred to different states by including complex events, thus it is less likely to 
become stuck in local energy minima. In addition, kMC runs across considerably 
greater spatial and temporal scales than MD because it excludes vibrational motions. 
Images from the MC/kMC simulation may be readily compared to those from STM, 
particularly in the context of film growth. Several software programs have been 
developed especially for the Metropolis MC method’s use to molecular simulations 
including: BOSS, MCPro, Faunus, Sire, and CP2K.

Most deposition processes include physicochemical surface phenomena, which 
are studied using MC and kinetic Monte Carlo (kMC) models. This includes atomic 
layer, chemical vapor, and physical deposition, as well as electrochemical deposition. 
MC/kMC has significant applications in the research of film deposition processes, 
such as in the production of semiconductor devices. Deposition processes have been 
widely investigated due to their relevance using MC/kMC models either alone or 
in combination with other methods in the framework of multiscale modeling [48]. 
Sequential situations are processed randomly in the MC and kMC techniques. The 
steady-state Master Equation is solved by MC, whereas the transient one is solved by 
kMC. The temporary ME is defined as follows:
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Where ρi(t) denote the probability of the system to be found in state i at time t. Tij 
and Tji are the transition probabilities or transition rates from state i to j and vice 
versa. Lattice theory is crucial when considering the deposition processes. The 
lattice symbolizes the deposition surface and is made up of locations where all 
events take place, simplifying the rate collection generation. Depending on the 
physical/chemical phenomena of interest, different numbers and types of events at 
a lattice site appear in MC/kMC. The mechanisms of adsorption, surface reaction, 
desorption, and surface diffusion are engaged in the deposition of materials. This 
sequence of actions as presented in Figure 2.11 has been specifically designed to 
record the physical and chemical mechanisms particular to each deposition phase. 
The main objective of a MC/kMC model is to specify the growth rate, predict the 
profile of the surface-growing film, and describe how particles interact with the 
surface.

Shirazi et al. [50] utilized the MC method incorporated with DFT to investigate 
the atomistic kinetics of ALD. They examined the ALD precursor’s early stages of 
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adsorption, surface proton kinetics, steric effects, the impact of leftover fragments on 
adsorption sites, the precursor’s compression, migration, and cooperative behavior of 
the precursors. They came to the conclusion that the local environment at the surface 
affects the fundamental chemistry of the ALD processes. In another work, Knoops  
et al. [51] employed the MC approach to analyze the conformality of plasma enhanced 
ALD (PEALD) utilizing the recombination possibility, reaction occurrence, and par-
ticle diffusion rate to monitor conformal deposition in high aspect ratio structures. 
They found three deposition states: a reaction restricted regime, a diffusion limited 
regime, and a recombination limited regime. According to their results, conformal 
deposition may be obtained in high aspect ratio structures with a minimal recombi-
nation chance.

FIGURE  2.11 Schematic illustration of the fundamental concepts underlying deposition 
processes at the molecular level of Physical vapor deposition (PVD), Chemical vapor deposi-
tion (CVD), and atomic layer deposition (ALD) methods [49].
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2.2.4  coMPutationaL fLuid dynaMic (cfd)

CFD is the method that studies the multiphysics systems by using numerical models 
to describe the behavior of fluids and their thermodynamic characteristics. The devel-
opment of CFD dates back to the middle of the 20th century, when the fusion of fluid 
dynamics, mathematics, and computing technology paved the way for a revolution 
in how we analyze and comprehend fluid movement. Then, John von Neumann and  
R. Courant began investigating the possibility of utilizing computers to solve chal-
lenging fluid dynamics issues in the 1940s and 1950s. The 1960s witnessed the devel-
opment of the finite volume method (FVM) and the finite difference method (FDM), 
two potent methods for discretizing fluid flow equations. In 1970–1980, faster com-
puters, along with the development of the finite element method (FEM) and advance-
ments in turbulence modeling, allowed for more precise and thorough simulations of 
fluid flow phenomena. Then, commercial CFD software began to appear in the 1990s 
and 2000s, opening up the technology to a larger audience of users.

CFD can analyze complex problems involving fluid–fluid, fluid–solid, or fluid–
gas interactions. Fluid behavior may be highly complicated, influenced by a variety 
of variables including pressure, temperature, and viscosity. CFD enables the model-
ing of complicated fluid flow problems that might otherwise be unsolvable by split-
ting the fluid domain into a finite number of cells or components. CFD gives helpful 
details on the fundamental mass, momentum, or heat transfer phenomena in chemi-
cal and biological processes. Scientists and engineers employ mathematical formu-
las, such as the Navier–Stokes equations using computers and advanced algorithms, 
to define fluid movement to comprehend these intricacies. However, solving these 
equations analytically is often unfeasible due to their inherent complication and the 
broad range of variables involved.

The CFD approach employs the governing equations of mass, momentum, energy, 
and species transport in an effort to numerically solve the ALD process [52]. The 
associated partial differential equations for these processes are computed numeri-
cally on predetermined nodes in a mesh domain. Nonetheless, research in the litera-
ture have favored and focused only on the mechanical or chemical aspects because of 
the intricacy of this production process [53–55]. Despite this, researchers have used 
this approach in recent years to merge mechanical and chemical features, where the 
required chemical data are provided by DFT chemical simulation tools or through 
chemical reaction experiments [56,57].

The DFT method is essential to the CFD modeling approach. The DFT approach 
contains the necessary information to model the heterogeneous and homogeneous 
processes involved in the ALD process, including differentiating between the 
adsorption/desorption kinetics aspects of various chemical recipes [58]. The study 
using combined DFT/CFD is now scarce but is becoming more significant as ALD 
advances into the industrial sphere. By integrating and extracting the source terms of 
the chemical processes from the earlier governing equations, these features are then 
applied in the following equations:
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where R, J, and keff  represent the reaction source term, diffusion flux term, and effect 
of conductivity, respectively.

Accordingly, the rth irreversible surface reaction can be defined as follows:
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where B, S, and G represent the bulk, site, and gaseous species, respectively. The 
formula below can be used to calculate the molar reaction rate for the irreversible 
surface reaction:
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With an emphasis on macroscopic factors, these equations may be used to determine 
desirable characteristics of the ALD process, such as the mass deposition rate ( mdep) 
that can be measured at the substrate surface as follows:
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In a research, Gakis et al. [59] investigated the special flow characteristics of the 
Ultratech Fiji F200 reactor as represented in Figure 2.12. Their report showed how 
the reactor’s configuration and operating circumstances affected temperature fields, 
gas flow, and the spreading of species on the heated substrate surface. However, they 
ignored the substrate’s chemical processes. Moreover, their result showed that non-
uniform flow during pulse and purge process injected to the reactor had an impact 
on the reactants’ content and temperature on the surface of substrate. As seen in 
Figure 2.13a, the gas enters the reactor at a temperature that is similar to that of the 
walls (270°C), with the exception of the cold entrance zones and the substrate, which 
is hotter (300°C), respectively. Due to the cooling supplied by the gas entering from 
the nearby areas of the reactor walls, the substrate is not isothermal (Figure 2.13b).

The design concept of the reactor is also very important to comprehend the ALD 
process. These investigations may disclose the ideal parameter settings, an error in 
the ALD recipe, chemical dose and distribution parameters, the heat flow impact, 
etc. Coetzee et al. [60] explored the internal behavior of an ALD reactor (Gemstar 6 
square model). They examined the influence of flow in these reactors and the buffer 
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layers that were generated on the substrate surface as a result of the injection sequence 
used to form the Al2O3 thin film. The previously described investigations by Pan 
et al. [61] and Shaeri [62] were carried out using a standard Cambridge Nanotech 
Savannah S100 reactor. More recently, CFD simulations were used to analyze a few 

FIGURE 2.13 (a) Temperature field inside the reactor chamber. (b) Temperature profile on 
the substrate surface for the substrate center at 300°C [59].

FIGURE 2.12 Schematics of the atomic layer deposition (ALD) system (Ultratech® Fiji 
F200). (a) The ALD reactor chamber. (b) The reactant feeding system [59].
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different reactor designs. Moreover, Shaeri [63] used the CFD approach to study the 
impacts of high substrate temperatures, multiple inlets, and reactor inlet position. 
These investigations demonstrated the impacts of the growth rate, deposition rate, 
coverage, and mass fraction which were comparable to experimental results.

In an effort to optimize the ALD process, Deng et al. [64] quantitatively analyzed 
the temperature, pressure, mass flow, and precursor mass fractions. They came to 
the conclusion that greater temperatures enhanced the processes of surface coating 
and improved growth rates. In another work, Holmqvist et al. [53] studied the factors 
that influenced the deposition of a thin layer of ZnO in a continuous cross-flow ALD 
reactor. Their study was focused on the optimization and control of the film thickness 
profile by analyzing the effects of altering operational factors including the process 
cycles, local coordinate variable, and temperature.

The researchers are presently examining these studies as well as those that include 
adsorption/desorption kinetics, alternative ALD film recipes, system optimization, 
reactor and substrate mass/fluid flow behaviors, and the development of enhanced 
ALD processes. It is worth mentioning that the process analysis approach is rare in 
most other ALD reactor designs and manufacturers. Because of the various designs 
of the reactors, future ideas in the refinement of the ALD process will have to be 
explored similarly in order to produce optimal thin film manufacturing processes for 
the different kinds of thin films ALD recipes.

2.3  CHALLENGES AND FUTURE DIRECTIONS IN 
ALD SIMULATION AND MODELING

Simulations and modeling have improved our understanding of ALD processes, 
allowing researchers to accurately forecast and optimize thin film properties. The 
accuracy and dependability of ALD simulations and modeling various hurdles 
remain. The process of ALD process complexity is a major issue. ALD involves 
many chemical reactions involving substrates, precursor molecules, and reaction 
intermediates. Temperature, pressure, and other environmental conditions make 
these processes complex and hard to model. These models and simulations for ALD 
need experimental data to validate. Experimental data can be scarce. This makes 
realistic models and simulations of ALD film characteristics and deposition mecha-
nisms difficult to build. The simulations and modeling in ALD demand enormous 
computational resources. Simulations must account for thousands of atom interac-
tions in ALD processes. This is computationally expensive and time-consuming. 
Different research groups use different ALD modeling and simulation methods. This 
makes it difficult to compare study results and create ALD modeling and simula-
tion best practices. New ALD modeling and simulation methods could progress 
nanotechnology to solve these difficulties. Multi-scale modeling can connect atomic-
scale simulations to macroscopic ALD process models. This method can simulate 
atomic-scale and macroscopic ALD processes. Data-driven modeling is another 
trend. Artificial neural networks can predict ALD film qualities from little experi-
mental data. Predicting ALD film characteristics with data-driven modeling is faster. 
Experimental and theoretical methods can validate and improve ALD simulations 
and modeling. This method helps researchers understand ALD processes and test 
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their models and simulations. Finally, standardizing ALD modeling and simulation 
may increase accuracy and dependability. A uniform strategy can assist compare 
study results and develop ALD modeling and simulation best practices. Simulations 
and models have substantially improved our understanding of ALD processes, but 
several difficulties remain to increase their accuracy and dependability. However, 
multi-scale modeling, data-driven modeling, integration of experimental and theo-
retical techniques, and standardization offer enormous potential for ALD simula-
tions and modeling.

2.4  CONCLUSION

Simulations and modeling have transformed our understanding of ALD processes, 
allowing researchers to precisely forecast and optimize thin film features. ALD sim-
ulations and models face problems such as the complexity of ALD processes, the 
scarcity of experimental data, and the requirement for considerable computational 
resources, yet new modeling and simulation paths seem promising. Multi-scale mod-
eling, data-driven modeling, integration of experimental and theoretical methodolo-
gies, and standardization of modeling and simulation techniques can solve these 
problems and increase ALD simulations and modeling accuracy and dependability. 
Simulations and modeling must improve as ALD continues to develop better materi-
als and devices to harness its full potential. Modern ALD simulations and model-
ing are promising and will continue to impact materials science and engineering. 
The combination of simulation and experimental methodologies, the development 
of new simulation techniques, and the standardization of modeling and simulation 
approaches will increase ALD simulation and modeling accuracy and dependability. 
Thus, ALD will continue to generate improved materials and devices with desirable 
features, impacting electronics, energy, and catalysis.

REFERENCES

 [1] A. D. Kulkarni, and D. G. Truhlar, “Performance of density functional theory and 
Møller-Plesset second-order perturbation theory for structural parameters in complexes 
of Ru,” Journal of Chemical Theory and Computation, vol. 7, pp. 2325–2332, 2011. 
https://doi.org/10.1021/CT200188N/SUPPL_FILE/CT200188N_SI_001.PDF.

 [2] D. Sholl, Density Functional Theory: A Practical Introduction, 2022. https://www.
wiley.com/en-us/Density+Functional+Theory%3A+A+Practical+Introduction%2C+ 
2nd+Edition-p-9781119840862 (accessed April 14, 2023).

 [3] W. Kohn, and L. J. Sham, “Self-consistent equations including exchange and corre-
lation effects,” Physical Review, vol. 140, pp. A1133, 1965. https://doi.org/10.1103/
PHYSREV.140.A1133/FIGURE/1/THUMB.

 [4] D. R. Douglas, and R. Hartree, The Calculation of Atomic Structures, New York:  
J. Wiley, 1957.

 [5] R. A. van Rutger, A. Santen, and P. Sautet, Computational Methods in Catalysis  
and Materials Science, p. 455, 2009. https://www.wiley.com/en-us/Computational+ 
Methods+in+Catalysis+and+Materials+Science%3A+An+Introduction+for+ 
Scientists+and+Engineers-p-9783527320325 (accessed April 14, 2023). 

 [6] M. Penz, and R. van Leeuwen, “Density-functional theory on graphs,” Journal of 
Chemical Physics, vol. 155, p. 244111, 2021. https://doi.org/10.1063/5.0074249.

https://doi.org/10.1021/CT200188N/SUPPL_FILE/CT200188N_SI_001.PDF
https://www.wiley.com
https://www.wiley.com
https://doi.org/10.1103/PHYSREV.140.A1133/FIGURE/1/THUMB
https://doi.org/10.1103/PHYSREV.140.A1133/FIGURE/1/THUMB
https://www.wiley.com
https://doi.org/10.1063/5.0074249
https://www.wiley.com
https://www.wiley.com
https://www.wiley.com


51State of the Art Modeling and Simulation Approaches in ALD

 [7] M. D. Halls, J. Velkovski, H. B., and Schlegel, “Harmonic frequency scaling factors 
for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ 
electric property basis set,” Theoretical Chemistry Accounts, vol. 105, pp. 413–421, 
2001. https://doi.org/10.1007/S002140000204/METRICS.

 [8] X. Xu, and W. A. Goddard, “The X3LYP extended density functional for accurate 
descriptions of nonbond interactions, spin states, and thermochemical properties,” 
Proceedings of the National Academy of Sciences, vol. 101, pp. 2673–2677, 2004. 
https://doi.org/10.1073/PNAS.0308730100.

 [9] N. Medvedev, and B. Rethfeld, “Dynamics of electronic excitation of solids with ultra-
short laser pulse,” AIP Conference Proceedings, vol. 1278, pp. 250–261, 2010. https://
doi.org/10.1063/1.3507110.

 [10] D. S. Sholl, and J. A. Steckel, Density Functional Theory: A Practical Introduction, pp. 
1–238. 2009. https://doi.org/10.1002/9780470447710.

 [11] P. S. Maydannik, T. O. Kääriäinen, K. Lahtinen, D. C. Cameron, M. Söderlund, P. 
Soininen, P. Johansson, J. Kuusipalo, L. Moro, and X. Zeng, “Roll-to-roll atomic layer 
deposition process for flexible electronics encapsulation applications,” Journal of 
Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, p. 051603, 
2014. https://doi.org/10.1116/1.4893428.

 [12] X. Du, and S. M. George, “Thickness dependence of sensor response for CO gas sens-
ing by tin oxide films grown using atomic layer deposition,” Sensors Actuators B: 
Chemical, vol. 135, pp. 152–160, 2008. https://doi.org/10.1016/J.SNB.2008.08.015.

 [13] R. Alcala, C. Richter, M. Materano, P. D. Lomenzo, C. Zhou, J. L. Jones, T. Mikolajick, 
and U. Schroeder, “Influence of oxygen source on the ferroelectric properties of ALD 
grown Hf1-xZrxO2 films,” Journal of Physics D: Applied Physics, vol. 54, p. 035102, 
2020. https://doi.org/10.1088/1361-6463/ABBC98.

 [14] S. M. Lee, E. Pippel, and M. Knez, “Metal infiltration into biomaterials by ALD and 
CVD: A comparative study,” ChemPhysChem, vol. 12, pp. 791–798, 2011. https://doi.
org/10.1002/CPHC.201000923.

 [15] J. Wang, N. Muhammad, T. Li, H. Wang, Y. Liu, B. Liu, and H. Zhan, “Hyaluronic acid-
coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer effi-
cacy,” Molecular Pharmaceutics, vol. 17, pp. 2411–2425, 2020. https://doi.org/10.1021/
ACS.MOLPHARMACEUT.0C00161/SUPPL_FILE/MP0C00161_SI_001.PDF.

 [16] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. K. 
Ande, S. Van Der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, and 
M. Asta, “Charting the complete elastic properties of inorganic crystalline compounds,” 
Scientific Data, vol. 21, no. 2, pp. 1–13, 2015. https://doi.org/10.1038/sdata.2015.9.

 [17] W. Bao, D. Liu, P. Li, and Y. Duan, “Elastic anisotropies and thermal properties of 
cubic TMIr (TM=Sc, Y, Lu, Ti, Zr and Hf): A DFT calculation,” Materials Research 
Express, vol. 6, 2019. https://doi.org/10.1088/2053-1591/AB1F01. 

 [18] S. Ryu, S. Lee, J. Jung, J. Lee, and Y. Kim, “Micromechanics-based homogenization of 
the effective physical properties of composites with an anisotropic matrix and interfa-
cial imperfections,” Frontiers in Materials, vol. 6, p. 21, 2019. https://doi.org/10.3389/
FMATS.2019.00021/BIBTEX. 

 [19] R. Penta, and A. Gerisch, “The asymptotic homogenization elasticity tensor properties for 
composites with material discontinuities,” Continuum Mechanics and Thermodynamics, 
vol. 29, pp. 187–206, 2017. https://doi.org/10.1007/S00161-016-0526-X/METRICS.

 [20] D. A. Papaconstantopoulos, and M. J. Mehl, “Tight-binding method in electronic struc-
ture,” Encyclopedia of Condensed Matter Physics, pp. 194–206, 2005. https://doi.
org/10.1016/B0-12-369401-9/00452-6. 

 [21] E. Kiely, R. Zwane, R. Fox, A. M. Reilly, and S. Guerin, “Density functional theory 
predictions of the mechanical properties of crystalline materials,” CrystEngComm, vol. 
23, pp. 5697–5710, 2021. https://doi.org/10.1039/D1CE00453K.

https://doi.org/10.1007/S002140000204/METRICS
https://doi.org/10.1073/PNAS.0308730100
https://doi.org/10.1063/1.3507110
https://doi.org/10.1063/1.3507110
https://doi.org/10.1002/9780470447710
https://doi.org/10.1116/1.4893428
https://doi.org/10.1016/J.SNB.2008.08.015
https://doi.org/10.1088/1361-6463/ABBC98
https://doi.org/10.1002/CPHC.201000923
https://doi.org/10.1002/CPHC.201000923
https://doi.org/10.1021/ACS.MOLPHARMACEUT.0C00161/SUPPL_FILE/MP0C00161_SI_001.PDF
https://doi.org/10.1021/ACS.MOLPHARMACEUT.0C00161/SUPPL_FILE/MP0C00161_SI_001.PDF
https://doi.org/10.1038/sdata.2015.9
https://doi.org/10.1088/2053-1591/AB1F01
https://doi.org/10.3389/FMATS.2019.00021/BIBTEX
https://doi.org/10.3389/FMATS.2019.00021/BIBTEX
https://doi.org/10.1007/S00161-016-0526-X/METRICS
https://doi.org/10.1016/B0-12-369401-9/00452-6
https://doi.org/10.1016/B0-12-369401-9/00452-6
https://doi.org/10.1039/D1CE00453K


52 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

 [22] X. Guo, X. Lü, J. T. White, C. J. Benmore, A. T. Nelson, R. C. Roback, and H. Xu, “Bulk 
moduli and high pressure crystal structure of U3Si2,” Journal of Nuclear Materials, 
vol. 523, pp. 135–142, 2019. https://doi.org/10.1016/J.JNUCMAT.2019.06.006.

 [23] J. Sánchez-Martín, R. Turnbull, A. Liang, D. Díaz-Anichtchenko, S. Rahman, H. Saqib, 
M. Ikram, C. Popescu, P. Rodríguez-Hernández, A. Muñoz, J. Pellicer-Porres, and 
D. Errandonea, “High-pressure x-ray diffraction and DFT studies on spinel FeV2O4, 
Crystals, vol. 13, p. 53, 2022. https://doi.org/10.3390/CRYST13010053. 

 [24] P. R. C. da Silveira, C. R. S. da Silva, and R. M. Wentzcovitch, “Metadata management 
for distributed first principles calculations in VLab-A collaborative cyberinfrastructure 
for materials computation,” Computer Physics Communications, vol. 178, pp. 186–198, 
2008. https://doi.org/10.1016/J.CPC.2007.09.001. 

 [25] C. R. S. da Silva, P. R. C. da Silveira, B. Karki, R. M. Wentzcovitch, P. A. Jensen, E. 
F. Bollig, M. Pierce, G. Erlebacher, and D. A. Yuen, “Virtual laboratory for planetary 
materials: System service architecture overview,” Physics of the Earth and Planetary 
Interiors, vol. 163, pp. 321–332, 2007. https://doi.org/10.1016/J.PEPI.2007.04.018. 

 [26] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. K. 
Ande, S. Van Der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, and 
M. Asta, “Charting the complete elastic properties of inorganic crystalline compounds,” 
Scientific Data, vol. 21, no. 2, pp. 1–13, 2015. https://doi.org/10.1038/sdata.2015.9. 

 [27] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, 
D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The materials project: A mate-
rials genome approach to accelerating materials innovation,” APL Materials, vol. 1,  
p. 011002, 2013. https://doi.org/10.1063/1.4812323. 

 [28] C.J. Bottcher, “Theory of electric polarization: dielectrics in static fields,” Elsevier 
Science, Department of Physical Chemistry, University of Leiden, The Netherlands,  
p. 398, 1973.

 [29] D. M. Burland, “Optical nonlinearities in chemistry: Introduction,” Chemical Reviews, 
vol. 94, pp. 1–2, 1994. https://doi.org/10.1021/CR00025A600/ASSET/CR00025A600.
FP.PNG_V03.

 [30] H. Sekino, and R. J. Bartlett, “New algorithm for high-order time-dependent har-
tree-fock theory for nonlinear optical properties,” International Journal of Quantum 
Chemistry, vol. 43, pp. 119–134, 1992. https://doi.org/10.1002/QUA.560430111.

 [31] J. Baek, K. Nam, J. yeon Park, and J. H. Cha, “Adsorption selectivity of TiCl4 precursor 
on Pt surfaces for atomic layer deposition via density functional theory,” Applied Surface 
Science, vol. 606, p. 154695, 2022. https://doi.org/10.1016/J.APSUSC.2022.154695. 

 [32] K. Lee, and Y. Shim, “First-principles study of the surface reactions of aminosilane 
precursors over WO3(001) during atomic layer deposition of SiO 2,” RSC Advances, 
vol. 10, pp. 16584–16592, 2020. https://doi.org/10.1039/D0RA01635G.

 [33] M. Shirazi, W. M. M. Kessels, and A. A. Bol, “Strategies to facilitate the formation 
of free standing MoS2 nanolayers on SiO2 surface by atomic layer deposition: A DFT 
study,” APL Materials, vol. 6, p. 111107, 2018. https://doi.org/10.1063/1.5056213.

 [34] P. Verma, and D. G. Truhlar, “Status and challenges of density functional the-
ory,” Trends in Chemistry, vol. 2, pp. 302–318, 2020. https://doi.org/10.1016/J.
TRECHM.2020.02.005.

 [35] D. Cohen-Tanugi, Nanoporous Graphene as a Water Desalination Membrane, 
Technology, 2015. https://dspace.mit.edu/handle/1721.1/98743 (accessed April 13, 2023). 

 [36] P. Brault, “Multiscale molecular dynamics simulation of plasma processing: Application 
to plasma sputtering,” Frontiers in Physics, vol. 6, p. 59, 2018. https://doi.org/10.3389/
FPHY.2018.00059/BIBTEX.

https://doi.org/10.1016/J.JNUCMAT.2019.06.006
https://doi.org/10.3390/CRYST13010053
https://doi.org/10.1016/J.CPC.2007.09.001
https://doi.org/10.1016/J.PEPI.2007.04.018
https://doi.org/10.1038/sdata.2015.9
https://doi.org/10.1063/1.4812323
https://doi.org/10.1021/CR00025A600/ASSET/CR00025A600.FP.PNG_V03
https://doi.org/10.1002/QUA.560430111
https://doi.org/10.1016/J.APSUSC.2022.154695
https://doi.org/10.1039/D0RA01635G
https://doi.org/10.1063/1.5056213
https://doi.org/10.1016/J.TRECHM.2020.02.005
https://dspace.mit.edu
https://doi.org/10.3389/FPHY.2018.00059/BIBTEX
https://doi.org/10.3389/FPHY.2018.00059/BIBTEX
https://doi.org/10.1021/CR00025A600/ASSET/CR00025A600.FP.PNG_V03
https://doi.org/10.1016/J.TRECHM.2020.02.005


53State of the Art Modeling and Simulation Approaches in ALD

 [37] A. Hospital, J. R. Goñi, M. Orozco, and J. L. Gelpí, “Molecular dynamics simula-
tions: Aadvances and applications,” Advances and Applications in Bioinformatics and 
Chemistry, vol. 8, pp. 37–47, 2015. https://doi.org/10.2147/AABC.S70333.

 [38] S. Karimzadeh, B. Safaei, and T. C. Jen, “Predicting phonon scattering and tunable 
thermal conductivity of 3D pillared graphene and boron nitride heterostructure,” 
International Journal of Heat and Mass Transfer, vol. 172, p. 121145, 2021. https://doi.
org/10.1016/j.ijheatmasstransfer.2021.121145.

 [39] S. Karimzadeh, B. Safaei, and T.C. Jen, “Prediction effect of ethanol molecules on 
doxorubicin drug delivery using single-walled carbon nanotube carrier through POPC 
cell membrane,” Journal of Molecular Liquids, vol. 330, p. 115698, 2021. https://doi.
org/10.1016/j.molliq.2021.115698.

 [40] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. 
Skeel, L. Kalé, and K. Schulten, “Scalable molecular dynamics with NAMD,” Journal of 
Computational Chemistry, vol. 26, pp. 1781–1802, 2005. https://doi.org/10.1002/JCC.20289.

 [41] B. Leimkuhler, and C. Matthews, Molecular Dynamics, vol. 39, 2015. https://doi.
org/10.1007/978-3-319-16375-8.

 [42] K. Ledwaba, S. Karimzadeh, and T. C. Jen, “Enhancement in the hydrogen storage 
capability of borophene through yttrium doping: A theoretical study,” Journal of 
Energy Storage, vol. 55, p. 105500, 2022. https://doi.org/10.1016/J.EST.2022.105500.

 [43] K. Chenoweth, A. C. T. Van Duin, and W. A. Goddard, “ReaxFF reactive force field for 
molecular dynamics simulations of hydrocarbon oxidation,” The Journal of Physical 
Chemistry A, vol. 112, pp. 1040–1053, 2008. https://doi.org/10.1021/JP709896W/
SUPPL_FILE/JP709896W-FILE005.PDF. 

 [44] A. Hospital, J. R. Goñi, M. Orozco, and J. L. Gelpí, “Molecular dynamics simula-
tions: Advances and applications,” Advances and Applications in Bioinformatics and 
Chemistry, vol. 8, pp. 37–47, 2015. https://doi.org/10.2147/AABC.S70333. 

 [45] M. Heiranian, Y. Wu, and N. R. Aluru, “Molybdenum disulfide and water interaction 
parameters,” The Journal of Chemical Physics, vol. 147, p. 104706, 2017. https://doi.
org/10.1063/1.5001264.

 [46] D. Pan, T. Li, T. C. Jen, and C. Yuan, “Numerical modeling of carrier gas flow in 
atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann 
models,” Journal of Vacuum Science & Technology, vol. 32, p. 01A110, 2013. https://
doi.org/10.1116/1.4833561. 

 [47] Z. Hu, J. Shi, and C. Heath Turner, “Molecular dynamics simulation of the Al2O3 film 
structure during atomic layer deposition,” Molecular Simulation, vol. 35, pp. 270–279, 
2009. https://doi.org/10.1080/08927020802468372. 

 [48] N. Cheimarios, G. Kokkoris, and A. G. Boudouvis, “Multiscale modeling in chemical 
vapor deposition processes: Models and methodologies,” Chemical Engineering Science, 
vol. 282, no. 28, pp. 637–672, 2020. https://doi.org/10.1007/S11831-019-09398-W. 

 [49] N. Cheimarios, D. To, G. Kokkoris, G. Memos, and A. G. Boudouvis, “Monte Carlo and 
Kinetic Monte Carlo models for deposition processes: A review of recent works,” Frontiers 
in Physics, vol. 9, p. 165, 2021. https://doi.org/10.3389/FPHY.2021.631918/BIBTEX.

 [50] J. I. Hochstein, and A. L. Gerhart, Young, Munson and Okiishi’s A Brief Introduction 
to Fluid Mechanics, 2021. https://books.google.com/books?hl=en&lr=&id=RNoPEA
AAQBAJ&oi=fnd&pg=PA1&ots=FcTJZOWCqa&sig=ticiptic0DhJ3VECnlXs2fLQ
Kzk (accessed April 13, 2023). 

 [51] H.C.M. Knoops, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, “Conformality of 
plasma-assisted ALD: physical processes and modeling,” Journal of the Electrochemical 
Society, vol. 157, G241, 2010. https://doi.org/10.1149/1.3491381

https://doi.org/10.2147/AABC.S70333
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121145
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121145
https://doi.org/10.1016/j.molliq.2021.115698
https://doi.org/10.1016/j.molliq.2021.115698
https://doi.org/10.1002/JCC.20289
https://doi.org/10.1007/978-3-319-16375-8
https://doi.org/10.1007/978-3-319-16375-8
https://doi.org/10.1016/J.EST.2022.105500
https://doi.org/10.1021/JP709896W/SUPPL_FILE/JP709896W-FILE005.PDF
https://doi.org/10.1021/JP709896W/SUPPL_FILE/JP709896W-FILE005.PDF
https://doi.org/10.2147/AABC.S70333
https://doi.org/10.1063/1.5001264
https://doi.org/10.1063/1.5001264
https://doi.org/10.1116/1.4833561
https://doi.org/10.1116/1.4833561
https://doi.org/10.1080/08927020802468372
https://doi.org/10.1007/S11831-019-09398-W
https://doi.org/10.3389/FPHY.2021.631918/BIBTEX
https://books.google.com
https://doi.org/10.1149/1.3491381
https://books.google.com
https://books.google.com


54 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

 [52] R. A. M. Coetzee, T. C. Jen, M. Bhamjee, and J. Lu, “The mechanistic effect over the 
 substrate in a square type atomic layer deposition reactor,” International Journal of 
Modern Physics, vol. 33, 2019. https://doi.org/10.1142/S0217979219400186. 

 [53] A. Holmqvist, T. Törndahl, and S. Stenström, “A model-based methodology for the 
analysis and design of atomic layer deposition processes-Part I: Mechanistic model-
ling of continuous flow reactors,” Chemical Engineering Science, vol. 81, pp. 260–272, 
2012. https://doi.org/10.1016/J.CES.2012.07.015.

 [54] P. Peltonen, V. Vuorinen, G. Marin, A. J. Karttunen, and M. Karppinen, “Numerical study 
on the fluid dynamical aspects of atomic layer deposition process,” Journal of Vacuum 
Science & Technology A, vol. 36, p. 021516, 2018. https://doi.org/10.1116/1.5018475.

 [55] R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage 
by atomic layer deposition in narrow holes or trenches,” Chemical Vapor Deposition, 
vol. 9, pp. 73–78, 2003. https://doi.org/10.1002/CVDE.200390005.

 [56] J. Lu, J.W. Elam, and P. C. Stair, “Atomic layer deposition-sequential self-limiting sur-
face reactions for advanced catalyst “bottom-up” synthesis,” Surface Science Reports, 
vol. 71, pp. 410–472, 2016. https://doi.org/10.1016/J.SURFREP.2016.03.003.

 [57] S. Suh, S. Park, H. Lim, Y.-J. Choi, C. S. Hwang, H. J. Kim, and S.-J. Won, “Investigation 
on spatially separated atomic layer deposition by gas flow simulation and depositing 
Al2O3 films,” Journal of Vacuum Science & Technology A, vol. 30, p. 051504, 2012. 
https://doi.org/10.1116/1.4737123. 

 [58] D. Pan, D. Guan, T. C. Jen, and C. Yuan, “Atomic layer deposition process model-
ing and experimental investigation for sustainable manufacturing of nano thin films,” 
Journal of Manufacturing Science and Engineering, vol. 138, 2016. https://doi.
org/10.1115/1.4034475/375126. 

 [59] G. P. Gakis, H. Vergnes, E. Scheid, C. Vahlas, B. Caussat, and A. G. Boudouvis, 
“Computational fluid dynamics simulation of the ALD of alumina TMA and H2O in a 
commercial reactor,” Chemical Engineering Research and Design, vol. 132, pp. 795–
811, 2018. https://doi.org/10.1016/J.CHERD.2018.02.031.

 [60] R. M. Kumar, K. Rajesh, S. Halder, P. Gupta, K. Murali, P. Roy, and D. Lahiri, “Surface 
modification of CNT reinforced UHMWPE composite for sustained drug delivery,” 
Journal of Drug Delivery Science and Technology, vol. 52, pp. 748–759, 2019. https://
jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201902211438034076 (accessed February 
23, 2021). 

 [61] D. Pan, “Numerical and experimental studies of atomic layer deposition for sustain-
ability improvement,” Thesis and Dissertation, The University of Wisconsin, 2016.

 [62] M. R. Shaeri, “Reactor scale simulation of atomic layer deposition,” Thesis and 
Dissertation, The University of Wisconsin, 2014.

 [63] M. R. Shaeri, T. C. Jen, C. Y. Yuan, and M. Behnia, “Investigating atomic layer deposi-
tion characteristics in multi-outlet viscous flow reactors through reactor scale simula-
tions,” International Journal of Heat and Mass Transfer, vol. 89, pp. 468–481, 2015. 
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.05.079.

 [64] Z. Deng, W. He, C. Duan, B. Shan, and R. Chen, “Atomic layer deposition process 
optimization by computational fluid dynamics,” Vacuum, vol. 123, pp. 103–110, 2016. 
https://doi.org/10.1016/J.VACUUM.2015.10.023.

https://doi.org/10.1142/S0217979219400186
https://doi.org/10.1016/J.CES.2012.07.015
https://doi.org/10.1116/1.5018475
https://doi.org/10.1002/CVDE.200390005
https://doi.org/10.1016/J.SURFREP.2016.03.003
https://doi.org/10.1116/1.4737123
https://doi.org/10.1115/1.4034475/375126
https://doi.org/10.1115/1.4034475/375126
https://doi.org/10.1016/J.CHERD.2018.02.031
https://jglobal.jst.go.jp
https://jglobal.jst.go.jp
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.05.079
https://doi.org/10.1016/J.VACUUM.2015.10.023


3 Characterization 
Methods in ALD

3.1 INTRODUCTION

The requirements and methods for the characterization of thin films have grown 
greatly along with the number of technologies available for producing a wide range 
of thin films, especially atomic layer deposition (ALD) thin films, due to the atomic 
scale of film formation. The proper way to characterize a generated thin film relies 
on the fabrication process, required endurance, and the intended or possible applica-
tions. Moreover, techniques with high spatial resolution are becoming more essen-
tial due to the growing significance of nanostructures and microstructures by ALD 
method. In most of the cases, accurate characterization necessitates the employment 
of multiple tools. Accordingly, in situ analytical techniques for ALD process are 
imperative which can enable direct inspection of ALD chemistry and a number of 
film-growing process features. They are the correct option to precisely track the reac-
tion processes and minimize the change in film properties by avoiding air exposure 
to the sample. In addition, for in situ analysis to yield reliable data on reaction pro-
cesses, there must be a certain setup and interpretation criteria. In this respect, this 
chapter provides more insight into in situ analytical methods to explore the thin film 
growth during ALD process and also presents an overview of some of the most fre-
quently implemented analytical methods for chemical and physical characterization 
of ALD films and surfaces as well as highlighting their fundamental techniques and 
benefits.

3.2  SIGNIFICANCE OF RIGHT SELECTION OF ALD 
CHARACTERIZATION TECHNIQUES

The quality and usefulness of ALD films for certain applications depend on the 
characterization method chosen. Thickness, composition, and electrical, optical, 
mechanical, and tribological properties may vary for ALD applications. Thus, accu-
rate characterization methods are needed to measure these features. ALD layer thick-
ness and composition affect device performance in electronics and optoelectronics. 
Ellipsometry, quartz crystal microbalance, and spectroscopic ellipsometry (SE) are 
used to measure film thickness and composition nondestructively. For accurate film 
property control in electrical and optoelectronic devices, these methods can give 
sub-nanometer measurements while ALD film performance in electronic, photovol-
taic, and display applications depends on electrical and optical characterization. Hall 
effect, four-point probe resistivity, and capacitance-voltage measurements can reveal 
film electrical properties like conductivity, carrier concentration, and mobility. 
Photoluminescence spectroscopy may also characterize film optical properties such 
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as bandgap, defect density, and luminescence efficiency. The durability and wear 
resistance of ALD films in protective coatings and Micro-electromechanical systems 
(MEMS) depend on mechanical and tribological evaluation. Nanoindentation and 
scratch testing can reveal the film’s hardness, modulus, and adhesion while tribom-
eter testing can reveal the film’s friction coefficient and wear rate. Likewise, the qual-
ity and functioning of ALD film for specific applications depend on characterization 
methodologies. Accurate film property measurements can optimize the ALD pro-
cess and improve product performance. Thus, application-specific characterization 
approaches must be carefully evaluated and chosen.

An improper characterization technique can give misleading or partial infor-
mation about the ALD film, resulting in poor device performance or failure. A 
semiconductor device’s conductivity and carrier concentration can be affected by 
an ALD film’s thickness. A protective covering with poor adherence might pre-
maturely wear and fail the substrate. The procedure and materials of ALD may 
require distinct characterization methods. Ellipsometry or quartz crystal microbal-
ance may struggle to estimate layer thickness in various ALD processes because of 
high roughness or porosity. Rutherford backscattering spectroscopy or X-ray reflec-
tivity may work better. X-ray diffraction is challenging to use on amorphous ALD 
films. Transmission electron microscopy can then reveal the film’s microstructure. 
The correct characterization technique can optimize the ALD process and decrease 
manufacturing costs. Ellipsometry, a nondestructive method for measuring film 
thickness, can eliminate the requirement for transmission electron microscopy, 
which is expensive and time-consuming. Scratch testing can reliably determine 
the adhesion strength of a protective coating, eliminating the need for costly and 
time-consuming environmental testing. Finally, selecting the right characterization 
methods for ALD applications is crucial. Using appropriate methods to measure the 
film’s properties helps optimize the ALD process and improve the product’s per-
formance. Thus, application-specific characterization approaches must be carefully 
evaluated and selected.

3.3 ALD CHEMISTRY

ALD includes alternate precursors reacting with a substrate’s surface to generate 
a monolayer of the desired substance. The film’s qualities depend on these precur-
sors’ chemistry. ALD chemistry depends on the precursors—metalorganic chemi-
cals, metal halides, or metal alkyls. These precursors react with the substrate surface 
self-limitingly, depositing a homogeneous layer each cycle. ALD precursors affect 
film composition, crystallinity, and density. The chemicals processed involved in 
ALD are characterized using numerous methods. These methods investigate depos-
ited films’ properties and guarantee their composition and structure, thereby meeting 
standards. ALD is characterized by methods like X-ray photoelectron spectroscopy 
(XPS), Fourier transform infrared spectroscopy (FTIR), and ellipsometry, amongst 
others. The XPS surface examination reveals material chemical composition. XPS 
can identify the film’s elements and chemical states by studying its surface X-ray 
emissions. However, FTIR uses spectroscopy to identify functional groups in a sub-
stance. To study the chemistry, it can reveal the chemical bonds in the deposited 
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film. ALD also uses ellipsometry to quantify light polarization after reflection from 
a sample surface. ALD requires measuring thin film thickness and refractive index, 
which this method does well.

In conclusion, ALD chemistry determines film properties, hence understanding 
it is crucial for achieving desired film qualities. XPS, FTIR, and ellipsometry help 
examine ALD’s chemistry and ensure film qualities satisfy specifications. In order 
to comprehend the connection between ALD process and material characteristics, 
a more thorough understanding of the reaction mechanism is required. The process 
and the formed film’s properties may then be adjusted using this knowledge. The 
reaction processes are strongly affected by the selected precursors and co-reactants, 
as well as other factors like temperature, pressure of deposition, and pulse and purge 
times. However, understanding the surface reaction products at each stage of the 
process is crucial to understanding the ALD chemistry of the process.

3.4 CHARACTERIZATION METHODS IN ALD

ALD characterization procedures ensure that deposited films have the correct 
thickness, composition, and crystallinity. This section discusses some of the most 
common ALD characterization approaches and how they help us understand and 
optimize the process.

3.4.1 QuadruPoLe Mass sPectroMetry (QMs)

QMS is a method which is commonly used for the tracking and monitoring of gas-
eous species reaction in the reactor during the ALD process. The volatile by-products 
produced during the ALD process undergo ionization and decomposition through 
the utilization of electrons generated by a filament source. These ionized by-products 
are subsequently detected and analyzed by the quadrupole analyzer. In other words, 
it can estimate which reactions have occurred in the reactor. Therefore, it makes it 
possible to change the parameters of the process. High vacuum conditions are neces-
sary for the QMS, and these conditions are attained by differentially pumping a tur-
bomolecular pump via an aperture. The signal is obtained as a function of the mass 
to charge ratio (m/z). The typical visual representation of a mass spectrum acquired 
by QMS is in the form of a bar graph, where each bar indicates an ion with a certain 
mass-to-charge ratio (m/z). Since most ions have a charge of +1, the m/z ratio is 
often equal to the mass. The major drawback of this method is the challenge of dis-
tinguishing a single segment from an m/z signal. For example, multiple by-products 
generation from various sources, such as hydrogenated ligands and ozone combus-
tion, can produce different compositions at the same m/z, so the signal detected by 
the QMS may consist of several participations. These signals can be distinguished by 
comparing their occurrence with the signal of one component. The interpretation is 
still challenging, particularly when combustion processes are taking place. Another 
limitation of QMS is tracking few numbers of masses simultaneously through ALD 
cycle that can be mitigated by employing a different type of analyzer, such as a 
Time-of-Flight. Figure 3.1 shows a schematic representation of the mass spectrom-
eter working mechanism. At first a little amount of gas species is captured by the 
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orifice in QMS system. Then, electrons with an energy of around 70 eV impact with 
the gas molecules to ionize them as described in Equation 3.1:

 AB e AB e2+ → +− + − (3.1)

However, a large portion of the molecules will be split into smaller segments of the 
original molecule as indicated in Equation 3.2:

 AB e A B e2+ → + +− + − (3.2)

Since ions are unstable and highly reactive, and a high vacuum condition is 
required for their creation and processed. The Residual Gas Analyzer (RGA) 
is an instrument that has a similar working mechanism as that of a quadrupole 
mass analyzer and consists of four parallel cylindrical rods, a mass spectrometer, 
an ion source, and a measurement part as illustrated in Figure 3.2. Contaminants 
can be found in vacuum chambers owing to the hydrocarbons or system leakages 
that backstream into the process chamber from the vacuum system. RGA is capa-
ble of analyzing small amounts of residual gas that remain in a vacuum chamber 
after pump down. When the thermo-electrons discharged from the high-tem-
perature filament collide with the remaining gas, the generated ions which are 
separated by mass to charge ratio (m/z) accelerated and then converted as a mass 
spectrometer.

FIGURE 3.2 Functional components of a quadrupole mass spectrometer (Residual Gas 
Analyzer, RGA) [1].

FIGURE 3.1 Schematic diagram of a mass spectrometer. The ionized gas species are clas-
sified and segregated based on their mass and charge. The processed ions are then analyzed 
by the detector. The obtained data are reflected on a graph.v
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3.4.2 Quartz crystaL MicrobaLance (QcM)

QCM method has evolved as a powerful instrument for monitoring and measuring 
real mass change of particles vs time on the reaction surface throughout the ALD 
process. It can accurately detect deposition of less than a monolayer and provide 
information such as reaction occurrence and molecular interactions. QCM is a sen-
sitive method that determines changes in a quartz crystal’s resonance frequency in 
terms of mass variation per unit area with accuracy of nanogram to microgram. It 
is therefore appropriate for gas detection applications at low concentration levels. A 
quartz crystal’s resonance frequency fluctuates in accordance with the amount of 
mass deposited on it and this variation in frequency depends on the different factors 
such as deposition region and process temperature. QCM system consists of quartz 
disk which is constructed by piezoelectric materials that can oscillate at a certain 
frequency when the proper voltage is applied through metal electrodes. QCM has 
been employed in vacuum and gas phase for 60 years, and around 40 years ago it was 
demonstrated that this approach was also suitable in liquid media.

Figure 3.3 depicts the fundamental working mechanism of QCM, which is based 
on the piezoelectric effect of quartz crystal. The oscillation or mechanical vibra-
tion is generated by the quartz crystal of the QCM when an alternating voltage is 
introduced to its two poles. The thickness of the crystal on the electrode system and 
the acoustic frequency have a significant impact on this resonance. The resonance 
frequency is influenced by mass variation on quartz crystal and then the generated 
output electric signal is transferred into the computer system for data interpretation.

Figure 3.4 represents an example of the generated QCM data during the ALD 
process of TMA and H2O*. In the pulsing of the metal precursor, a sharp mass 

FIGURE 3.3 Schematic working mechanism of a quartz crystal microbalance (Quartz 
Crystal Microbalance, QCM) sensor [2].



60 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

increase at initial times has been observed. The mass stabilization in plateau during 
the metal precursor pulse illustrates the self-limiting characteristic of the performed 
ALD process. The slight reduction in mass during the pulse process occurred in 
terms of dissociation of ligands or desorption of residual molecules from the sur-
face. The subsequent oscillation in mass change is due to the introduction of the 
oxygen co-reactant (D2O) pulse during the process of surface oxidation, along with 
the subsequent decomposition of ligands. An increment in mass change depends on 
the mass ratio between the ligand and the reactive surface species such as active 
oxygen and hydroxyl groups. As seen from Figure 3.4, typically in the majority 
of operations, the elimination of heavy ligands causes mass reduction during the 
oxygen precursor pulse. Furthermore, QCM data can be affected by some other fac-
tors such as abrupt temperature or pressure change and the nature of the precursor. 
For example, ozone pulsing induces a prominent error to the QCM data; therefore, 
further stabilization time is required for the purging of residual that is formed after 
ozone injection.

3.4.3 sPectroscoPic eLLiPsoMetry (se)

SE is a powerful and most accurate tool for investigation of coated films which can 
measure thickness from sub Å to tens of microns. SE technique is nondestructive, 
contactless, surface sensitive, and noninvasive optical which relies on the alteration 
in the polarization state of light upon diagonally reflecting from a thin film sur-
face. For a variety of application requirements, SE can be carried out in situ or ex 
situ, kinetic or in static scheme. SE is a critical instrument for the ALD thin film 
analytical research and can be employed for the characterization of film thickness, 
surface and interface roughness, composition, electrical conductivity, anisotropy, 
optical properties, doping concentration, and crystalline nature by area and depth. 
Figure 3.5a demonstrates the principle of SE method. As seen, the light source emits 
electromagnetic radiation, then it is linearly polarized by a polarizer, the compensa-
tor as a quarter wave plate or retarder can be supplied before exposure on sample 

FIGURE 3.4 The example Quartz Crystal Microbalance (QCM) data result of one atomic 
layer deposition (ALD) cycle. m1 represents the mass increase during pulsing of metal precur-
sor. m0 shows the overall mass change following the full cycle [3].
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surface. Then, the reflection passes through the second compensator and analyzer 
and finally reaches the detector. The polarization-change is defined as an amplitude 
ratio (Ψ) and a phase difference (Δ). Phase modulator also can be used instead of 
compensator in the path of an incident light beam.

3.4.4 X-ray PhotoeLectron sPectroscoPy (XPs)

XPS is known as a nondestructive and surface-sensitive technique, which is an 
extensively employed method to determine the surface chemistry including elemen-
tal composition except hydrogen and helium, within the depths of the substrate 
when integrated with ion-beam etching or on the surface outermost at ~10 nm. In 
addition, the chemical state of the material is determined by measuring the bonding 
strength and the electronic state of elements with surrounding atoms. The value of 
atomic percentage for each element is determined in the base of relative sensitivity 
coefficient. Figure 3.6 demonstrates the basic setup of an XPS instrument. The fun-
damental working of XPS is in the base of photoelectric detection which is firstly 
reported by Hertz in 1887 [6] and further introduced by Einstein in 1905 and was 
later developed to surface characterization by K. Siegbahn’s research team in 1960 
at Uppsala university [7]. When electromagnetic radiation colloids with an atom 
and causes electrons to be emitted from the atom, which is known as an electron 
emission. The energy of impacting photons exceeds the binding energy of electrons 
in that substance, photoelectrons would be generated from that material. Energy 
and frequency are inversely related. Since atoms contain several orbitals at various 
energy levels, the binding energy of each electron influences the kinetic energy of 
an emitted electron. The obtained result as an XPS spectrum shows a variety of 
released electrons with various kinetic and binding energies. Equation 3.3 repre-
sents these relationships:

 E E Ebinding photon kinetic  φ= − −  (3.3)

where Ebinding  is the binding energy of a given electron, Ephoton is the incident photon 
energy of the used X-ray, Ekinetic is the kinetic energy of the photoelectron determined 

(a) (b)

FIGURE 3.5 (a) Schematic principle of spectroscopic ellipsometry (SE) system. (b) SE 
instrument [4,5].
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by the detector of XPS tool, and φ is the work function which refers to the minimum 
energy at which an electron must be emitted from an atom—the energy difference 
between the vacuum energy (Ev) level and the Fermi (Ef) level of a solid.

XPS is operated in the ultra-high vacuum (p < 10−7 Pa) condition, which occasion-
ally overestimates the real state of elements. XPS is utilized to analyze the surfaces of 
a wide range of materials, including coated thin films, semiconductors, metal alloys, 
catalysts, organic compounds, and biomaterials. In addition, surface-mediated pro-
cesses such as adsorption, dissolution/precipitation, catalysis, corrosion, redox, and 
evaporation/deposition type reactions are studied using XPS. Since the ALD deposi-
tion under vacuum condition may disrupt the XPS setup, XPS analyses do not even 
perform directly in situ. To overcome this issue between each cycle or half cycle, the 
sample is transferred from the reaction chamber to the XPS chamber for character-
ization without disturbing the vacuum. In addition to mitigating substrate contami-
nation through the avoidance of air exposure, it is essential to maintain ultra-high 
vacuum (UHV) conditions within the XPS chamber to facilitate accurate data acqui-
sition. An alteration in the appearance of an XPS oscillation demonstrates a change 
in the atom’s surroundings state which provides accurate information regarding the 
quality of initial growth rate on substrate and creation of interface layer [8].

In order to probe the specific element transfer such as dopant through in-depth 
profile of the bulk or thick films, the ion beam etching analysis (IBA) can be applied 
for quantitative composition measurement in ex situ XPS by determining the suc-
cessive XPS spectra versus etching time. Thus, ion beam analysis integrated with 

FIGURE 3.6 Setup of an X-ray photoelectron spectroscopy (X-ray photoelectron spectros-
copy, XPS) instrument. Four different metals’ XPS (intensity vs. binding energy) are dis-
played together with the distribution of core-level photoemission unique to each element [9].
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XPS to further supply the thin film characterization. IBA technique is very sensitive 
and is capable of scanning few nanometers to few micrometers in depth of material. 
However, for determining the mass density and hydrogen atoms’ presence in compo-
sition of thin films, the use of other integrated methods, such as elastic backscattering 
(EBS), elastic recoil detection (ERD), and Rutherford backscattering spectrometry 
(RBS), are required to verify the XPS results. Figure 3.7 elucidates the basic prin-
ciple of IBA in a high-energy beam light (~1 MeV/amu). The emitted heavy ion which 
is typically (He+) ions should have a larger mass than the target atom located at 
the sample. This hard sphere collision should be elastic enough to prevent energy 
migration between the incident atoms. The energy distribution and efficiency of the 
reflected He+ ions are measured at a certain angle. RBS can be applied for the films 
up to 1 μm thickness. This reflection is appeared for the atoms which are heavier than 
the emitted ions. So, the RBS method cannot detect the hydrogen atom. However, 
for probing hydrogen atoms and its isotopes, the ERD method can be performed. In 
addition, the EBS method can be used to measure the elements more accurately in 
layer. Unlike RBS, this method uses high-energy protons as projectiles rather than 
He+ ion, which has the benefit of enhancing the cross sections for light elements. The 
obtained result data of IBA are presented by the areal density (at·cm−2) of the atoms 
in the deposited film and can be verified by simulation data.

3.4.5 scanning eLectron MicroscoPy (seM)

SEM is broadly used and is a versatile method for characterizing the morphology 
and composition of solid surfaces’ texture. SEM generates high-resolution images 
of surface by using the focused beam of electrons with high kinetic energy which 
are emitted to atoms of surface in different depths and lead to generating multiple 
signals. This signal can be found in various forms such as backscattered, second 
scattered electrons, characteristic X-ray photons, lights, and current of sample which 
are utilized to learn about the physical properties, topography, and composition of 
the surface. Each of these electrons or photons can be detected using a different 
kind of detector. SEM is capable of achieving resolutions greater than 1 nm. SEM 
by imaging the cross section of thin film can determine its thickness. High vacuum 

FIGURE 3.7 Schematic basic principle of ion beam etching analysis (IBA).
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condition is essential for SEM operation to guaranty high-quality imaging, protect-
ing electron source from noise and vibration, and avoid interaction between electron 
beams and atoms of surface. Schematic component of SEM tool, including electron 
source, anode, condenser lens, scanning coils, and objective lens, is demonstrated 
in Figure 3.8. The emission of high-energy electrons from an electron source is fol-
lowed by their absorption by the positively charged anode plate, resulting in the for-
mation of a beam. The condenser lens or apertures regulate the beam’s size and 
counts the electrons in the beam. The image resolution is determined by the beam’s 
size. The  scanning coil inspects the surface of the specimen in raster pattern by 

FIGURE 3.8 Major components of a scanning electron microscopy (SEM) instrument [10].
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reflecting the beam in the X and Y directions. Finally, the electromagnetic objective 
lens focuses the beam to a very tiny spot in the sample.

3.4.6 energy-disPersive X-ray sPectroscoPy (eds)

EDS is a qualitative analytical method referred to as energy dispersive X-ray (EDX) 
spectroscopy implemented for the elemental determination and chemical analysis 
of the materials. The EDS is typically integrated with the SEM instrument. When 
a high-intensity electron beam interacts with the electron structure of a material, 
it induces excitation of electrons and subsequently leads to the emission of x-rays 
from core-shell electrons. These x-rays possess energies that are determined by the 
orbital configuration of each element present in the sample. Although the EDS is 
a powerful method, it has some drawbacks that hinder its utility. The first, EDS 
is interaction volume, or the quantity of material that is activated by the incident 
electrons, and is a downside of employing EDS on thin films. Second, EDS is not 
accurate enough to identify too small proportions of trace elements with concen-
tration lower than 0.01 wt. %. Third, EDS cannot measure the elements with low 
atomic number such as Hydrogen and Helium elements since both only have a n = 1 
shell, and no core electrons need to be removed for generating X-ray emission. 
Meanwhile, the typical outcome result of an EDS is in the form of appearance of 
the peaks in the spectrum, which indicates the elements, whilst the signal’s strength 
reflects the element’s concentration. Moreover, the image of elemental mapping can 
be generated by EDS.

3.4.7 transMission eLectron MicroscoPy (teM)

TEM is a powerful microscopy tool for imaging of materials through a beam of 
electrons as an ejection source. In the fields of physical, chemical, and biological 
research, TEM is a crucial analytical technique. Typically, the material is an ultra-
thin sample with the thickness of less than 100 nm; thin films and many other types 
of specimens can be examined using electron microscopy which makes it multi-
technique. TEM provides high-resolution image by means of interaction between 
electrons emission and specimen as beam passes through the sample and then the 
image magnified. TEM is a quantitative technique to verify the growth of films, 
shape, morphology, composition, size, and diffusion of the nanoparticles. TEM 
provides much higher quality image compared to light microscope tools and SEM , 
as the wavelength of electrons is substantially shorter than that of light. The major 
difference between TEM and SEM is in the method of image generation. TEM pro-
vides the image by transmitted electrons and SEM through detection of reflected 
electrons. However, better spatial resolution of (0.0001 μm) which is two times 
higher than SEM and the great capacity of analytical measurements are TEM’s 
benefits over SEM. Although TEM has advantages, there are also some limita-
tions including sample preparation, which is difficult and time-consuming, and the 
proper preparation process affects the quality of generated images. The samples 
containing lithium could not be subjected to TEM examination and destructive 
analysis is probable. However, to overcome this issue using higher acceleration 
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voltage could be helpful. The general layout of a TEM and Ray diagram is illus-
trated in Figure 3.9. 

3.4.8 X-ray diffraction (Xrd)

XRD is a broadly used technique for analyzing the crystallinity and periodical 
structures of thin films and materials such as metals, polycrystal ceramics, miner-
als, semiconductors, and powders, with their component molecules, atoms, and ions 
aligned in a regular pattern. XRD is a useful technique for determining the thickness 
and atomic structures, and internal stress and strain of deposited thin films. When 
using XRD, a material is exposed to emitted X-rays, as waves of electromagnetic 
radiation in nanometer and the intensity and scattering angles of the X-rays that 
backscattered from the atoms are then measured. This is schematically indicated in 
Figure 3.10. The components of a crystalline substance are represented by dots. The 
incident X-ray beam scatters at various planes of the substrate. The interferences 
phenomena occurred between the different diffracted wavelengths, which are com-
monly destructive. However, a few constructive interferences occurred in specific 
directions, which are defined by the famous Bragg’s law [12]:

 n d2 sin  λ θ=  (3.4)

where λ is the beam wavelength, n is any integer, d is the spacing between diffract-
ing planes, and θ  is the incident angle. By this law, the atomic spacing, density of 

(a) (b)

FIGURE 3.9 (a) Typical layout of a Transmission Electron Microscopy (TEM) describing 
the path of an electron beam in a TEM. (b) A ray diagram for the diffraction mechanism in 
TEM [11].
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electrons, and crystal structure can be measured. It is possible to infer several details 
from the electron density, including the average location of the atoms inside the crys-
tal, the type and length of chemical bonds, crystallographic disorder, etc. The mea-
surement’s output of XRD is generated as a diffractogram. This is a graph that shows 

the relationship between the X-ray intensity on the y-axis and the angle 2θ  (where 2θ  

is the angle between the incident and diffracted beams) on the x-axis. The obtained 
diffractogram provides specific qualitative crystal information, like a fingerprint, 
that can be used to identify any type of material. In the case of impurity of the 
sample, the relative quantities of the various components can also be determined. In 
addition, XRD can determine the orientation and unit cell lattice dimension of crys-
tal films also in a nonambient condition which can verify DFT calculation results.

3.4.9 X-ray fLuorescence sPectroscoPy (Xrf)

XRF is in situ and a nondestructive analytical technique, which can quantitatively 
and qualitatively determine the elemental composition of ALD thin film and bulk 
material. During an ALD cycle, XRF can accurately monitor the crystallinity and 
the number of deposited atoms by means of high intensity synchrotron, which illu-
minates the secondary X-rays on thin film. In addition, this method is critical for 
studying the effect of reaction temperature on crystalline film formation and nucle-
ation process. Figure 3.11 represents the fundamentals of the XRF process. XRF 
works based on the atoms behavior which are excited and interacted with radiation. 
The substrate is ionized and excited by high intensity, and short wavelength emis-
sion of X-rays. If the radiation’s energy is high enough to shift an inner electron 
with its stable position, an outer electron alters the missing inner electron. Then, 
due to the inner electron orbital’s lower binding energy compared to the outer one, 
the energy as fluorescent radiation is generated. This obtained radiation consists 
of data about a feature of an element’s transition between a certain set of electron 
orbitals. In addition, each element of the substrate generates the specific fluores-
cence X-ray (fingerprint) which makes XRF an unique method for determining 
of material composition. Therefore, XRF can be a very useful method in ALD 
for investigating the initial growth or nucleation phenomenon on the nanoporous 
and planar materials. However, XRF has few limitations including identification 

FIGURE 3.10 Schematic representation of Bragg’s Law reflection.
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of light atoms such as Hydrogen, Nitrogen, Carbon, and Oxygen. Second, there is 
limited access to XRF facilities and they require very expensive instruments that 
limit further use of this technique.

3.4.10 atoMic force MicroscoPy (afM)

AFM is a powerful analytical tool and a form of scanning probe microscope 
(SPM) technique. It provides atomic resolution images of nano-/microstructured 
thin films’ coating and many other inorganic and organic materials. AFM is typi-
cally applied in chemistry and physics to probe the formation of atoms over sur-
face. AFM is essential for the fabrication, improvement, and inspection of thin 
film growth processes as well as for simplifying design routes to obtain required 
functional attributes including mechanical, magnetic, and electric (conductivity) 
properties. However, AFM can be used for three main applications including topo-
graphic imaging, force calculation, and manipulation. The mechanical properties 
such as Young’s modulus, stiffness, strength, scratch resistance, friction coeffi-
cient, adhesion, elastic, and inelastic displacement of thin films can be measured 
by AFM and these properties can be very much influenced by interatomic poten-
tials, grain topography, surface energy, and crystallography of thin films. It pro-
vides qualitative and quantitative data on various physical properties of thin film 
such as roughness, morphology, thickness, spatial distribution, and surface area. 
In addition, AFM can measure many types of forces including chemical bonding, 

FIGURE 3.11 Principle of X-ray fluorescence spectroscopy (XRF) [13].
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electrostatic, Van der Waals, mechanical, capillary, magnetic, etc. AFM has also 
been shown to be an effective method for analyzing the nanomechanical charac-
teristics of thin coatings and employed in nanotribological research for the fabrica-
tion of microelectromechanical systems (MEMS). AFM can also integrate with 
infrared spectroscope (AFM-IR) to provide super resolution characterization of 
nanocomposites and polymeric surfaces. AFM is a developed conventional scan-
ning tunneling microscope (STM) technique and can be applied to a variety of 
substrates and does not have the limitations of the STM, which is only applicable 
to conductive or semiconducting materials.

Figure 3.12 demonstrates the simplified basic principles of AFM. The tool scans 
the sample surface in raster pattern using a cantilever that contains a sharp tip with 
a nanometer scale at the end. The cantilever typically is silicone and bends as the tip 
comes into touch with the sample, and the cantilever is deflected by the generated 
force between the tip and sample (Hook’s law) [14], leading to regulating the amount 
of laser light which is reflected into the detector to convert to electrical signal. The 
height of the cantilever is then modified in accordance with the response signal, 
allowing the topography of the sample to be determined.

3.4.11 therMograviMetric anaLysis (tga)

TGA or thermography analysis is a versatile and useful experimental technique 
for investigating the precursor of deposition systems such as ALD and Chemical 
vapor deposition (CVD) methods, with their kinetically controlled process strongly 
depending on the volatility, reactivity, and thermal stability of the precursors that 
verify the desired film quality. TGA can help in designing successful precursors of 
ALD by determining the precursor stability and decomposition during the heating 
process from room temperature to over 1,000°C. TGA works in the base of continu-
ous recording of mass fluctuation of precursor molecules as a function of tempera-
ture change or time corresponds to the chemical reaction in the inert atmosphere, 

FIGURE 3.12 Simplified schematic fundamental of atomic force microscopy (AFM) [15].
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as most of ALD precursors are not stable in an ambitious condition. However, other 
different atmospheric conditions such as oxidizing and reactivity can be accom-
modated along with the measurement. Furthermore, the heat capacity and phase 
change can be measured by TGA. The heat subjection commonly can be applied in 
three variations:

 1. Dynamic TGA records the mass change during continuous heat treatment 
and reveals the decomposition temperature and amount of gas reduction.

 2. Static TGA records the mass change at the fixed temperature which deter-
mines more information of precursor decomposition at specific temperature 
and explores the precursor durability at a certain temperature versus time.

 3. Quasistatic TGA is employed to examine the behavior of a precursor 
substance that can undergo decomposition under varying conditions. This 
analysis includes subjecting the precursor to heat treatment at multiple tem-
perature intervals, maintaining each interval for a specific duration until a 
mass stabilization is attained.

The choice of the heat treatment method depends on the type of the demanded 
information about the precursor. Nevertheless, TGA cannot be a sufficient method 
for characterization of ALD precursors; therefore, chemical testing or differential 
calorimetry must be used in conjunction with TGA to confirm the identification of 
residuals. The obtained result data of a TGA (Figure 3.13) is plotted as a TGA curve, 
which is the displayed amount of mass or percentage mass change versus tempera-
ture or time. In addition, another complementary curve known as the differential 
TGA (DTG) is plotted. It represents the rate during mass change and facilitates easy 

FIGURE 3.13 The example of data obtained by the thermogravimetric analysis (TGA) 
technique [16].
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identification of the point at which various mass changes happen. This curve is typi-
cally significant for multiple decompositions that occur simultaneously.

3.5 CONCLUSION

This chapter has provided an overview of the most utilized characterization tech-
niques for ALD thin film samples and surface technology and is intended to guide 
the readers for implementing appropriate analytical methods by understanding 
their principles for various applications. Moreover, their capabilities in investigat-
ing chemical, structural, physical, and electronic properties of ALD thin films and 
coating in situ and ex situ relying on electron, ion, and photon approaches were high-
lighted. The fundamental working mechanism of the characterization techniques 
was discussed. Their advantages and disadvantages and their capability to integrate 
with other methods as a multi-technique to enhance the sensitivity, resolution, and 
application were discussed. Instruments with improved sensitivity and the capabil-
ity to function in realistic conditions (in situ) and combination of tools are being 
developed by researchers and industries to meet the evolving and current research 
demands. These multidisciplinary engagements are anticipated to have a big influ-
ence on material characterization and support the ongoing dynamic progress of tech-
nologies that heavily depend on thin films and coating technology.
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Industry 4.0, 
Manufacturing Sector 
and Thin Film Technology

4.1  INTRODUCTION

Artificial intelligence (AI) and other Industry 4.0 technologies have been a game 
changer in upgrading the critical metrics of manufacturing industries. The intercon-
nected dynamics of Industry 4.0, manufacturing and thin film deposition is critical to 
the future trajectories of companies that are currently faced with new manufacturing 
hurdles as a result of social, economic, and technical advances. Industry 4.0 utiliza-
tion provides physical and virtual frameworks to businesses, enabling collaboration 
and swift adaption along the entire value chain [1]. Its integration has assisted busi-
ness areas that generate value, and the entire value chain by adopting the idea of 
digital production, or “smart factory” [2]. The sector has been revolutionized with 
potential benefits of the AI such as improved operation efficiency, enhanced quality, 
minimization of downtimes, and cost effectiveness. In this chapter, we shall examine 
the key enabling technologies of the Industry 4.0, and their potential impacts on thin 
film deposition. Further to this, an overview of the pros and cons of Industry 4.0 in 
thin film are presented while issues in its adoption in thin film and manufacturing 
sector are addressed. According to Schwab [3], unlike previous industrial revolu-
tions, Industry 4.0 is increasing exponentially as opposed to linearly, changing not 
only “what” and “how” we do things but also “who” we are. Significant transforma-
tion is ongoing in today’s industries encompassing novel business models and shifts 
in production and consumption [4].

4.2 A BRIEF OVERVIEW OF INDUSTRY 4.0

A swift shift from the old nomadic lifestyle was significantly influenced by agricul-
tural and industrial revolution [5]. To better comprehend the trend and emergence 
of the present version Industry 4.0, it is essential to obtain a grasp of these ear-
lier versions vis-à-vis “1.0”, “2.0” and “3.0”. The generation of mechanical energy 
in steam engines was the most significant development in the industry around the 
18th century. This heralded the advent of Industry 1.0, which resulted in significant 
improvements in human living conditions and the economy. The increased demand 
for raw materials was a prominent feature of this expansion. The Industry 2.0 was 
associated with the second revolution in the industrial growth in the 19th century 
which involves the generation of electricity and massive production instead of indi-
vidual hand-made tools and products. The birth of steam engine in the first revolution 
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enhanced the railway transportation development which facilitated easy movement 
of raw materials from place to place, factory to factory, thus boosting production 
speed and capacity.

The Industry 3.0 emerged in the early 20th century, and characterized by elec-
tricity generation. The later part of the century was delineated by automations and 
expansion in information and communication technology. A new improved comput-
erized production line emerged with automated and programmable devices, equip-
ment, and machines. In some developed regions of the world, their factories had 
begun the use of automated processes with robots [6]. In the era of Industry 4.0 
in the 21st century, the production sector now looks very different thanks to ICT 
advancements like AI, the internet, and big data. All facets of life now employ digi-
tal technologies. Without the involvement of humans, production in the industries 
has become editable [5].

According to its high-tech strategy 2020, the German Federal Government first 
introduced “Industry 4.0” at its Hannover Fair in 2011 with a goal to work at a higher 
level of automation, achieving a higher level of operational productivity and effi-
ciency by connecting the “real” and “virtual” worlds [7]. The trajectories of the 
manufacturing sector were re-invented through a considerable use of these technolo-
gies with regards to this project [8]. Industry 4.0 serves as the framework for the 
integration of tangible items, machinery, systems, and processes over a networked 
environment [1,9]. Industry 4.0 is transforming the global industrial environment by 
integrating digital technology into how businesses create, enhance, and distribute 
their goods. Industry 4.0 introduces nine cutting-edge technologies, which enables 
and drives the automation and digitalization trend in Industry 4.0 [10]. As shown in 
Figure 4.1, these technologies include:

• Internet of things (IoT)
• Cloud computing
• Big data and analytics
• Additive manufacturing
• Autonomous robotics
• Cybersecurity

Addi�ve 
manufacturing

Cloud 
compu�ng

Big data 
analy�cs

Internet of 
things

Simula�ons

Augmented 
Reality

Autonomous 
Robots

Cyber 
security

System 
integrat ion

Industry 4.0

FIGURE 4.1 Enabling technologies of Industry 4.0.
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• Augmented reality
• Simulation technologies
• System integration

4.3 FEATURES OF INDUSTRY 4.0

4.3.1 interconnectivity and interoPerabiLity

Interconnectivity is one of Industry 4.0’s core characteristics. Interconnectivity 
entails the real-time ability to share information amongst several equipment, sen-
sors, and machine components. Better visibility and control throughout the whole 
manufacturing process, from the supply chain to production and logistics, are made 
possible by this interconnectedness. This movement links computers not just to dis-
tant users but also to one another [11]. 

4.3.2 advanced autoMation and eXPonentiaL technoLogy

Another important aspect of Industry 4.0 is intelligent automation. A manufactur-
ing system which integrates these modern AI techniques would be able to achieve 
intelligent process automation. Smart automation paves the way for the creation of 
autonomous equipment and systems that can improve their performance over time. 
This could boost manufacturing operations’ effectiveness, precision, and productiv-
ity. The businesses that benefit the most from digital transformation spend up to 60% 
more on machine learning than their rivals. Organizations can adopt a mindset of 
continuous improvement when they concentrate on technologies that offer long-term 
optimization advantages. As a result, surroundings for Industry 4.0 are constantly 
changing.

4.3.3 data-driven decision and PoLicy Making

Big data and analytics are also key components of Industry 4.0. These businesses 
leverage historical and real-time information on daily activities, sales, and surround-
ing areas to make better decisions. These insights assist businesses in better antici-
pating the future, but they are not possible without cutting-edge technologies like the 
IOT and AI [11]. One of the most typical applications for this data-driven decision-
making is sales forecasting. This technique builds virtual replicas of factory floors 
using data from the floors to simulate what-if scenarios that show how various adjust-
ments could enhance operations

4.3.4 custoMization

Exciting benefits of 3D printing and digital manufacturing have been explored in 
customization of goods and services for addressing specific needs of different cus-
tomers towards a personalized and flexible production process. This can result in 
significant cost reductions and improved manufacturing efficiency. Manufacturers 
may develop virtual versions of their products and test them under various scenarios 
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thanks to digital simulation, allowing them to spot and fix potential problems before 
the product is ever built. This lowers the possibility of defects and raises the standard 
of the product.

4.3.5   transParency of inforMation

Information transparency is one of Industry 4.0’s other major components. This 
speaks to the capacity to gather, examine, and communicate data among various 
systems and procedures. As a result, manufacturers can gain a deeper understand-
ing of their business operations, including their production capacity, inventory 
holdings, and resource usage. Manufacturers can improve their operations for 
greater effectiveness and productivity by using this information to make better-
informed decisions. Real-time data-sharing options through cloud computing are 
necessary to achieve this level of transparency. In addition, it highlights the neces-
sity for trustworthy cybersecurity in Industry 4.0 operations as the risk of data 
breaches increases with increased information sharing. But, with adequate secu-
rity, this transparency produces value chains that are much more effective and 
adaptable [11].

4.4  INDUSTRY 4.0 IN MANUFACTURING AND SERVICE SECTOR

Upon the introduction of the high-tech strategy by the German government, other 
nations have adopted the paradigm by launching the USA’s “Smart Manufacturing,” 
“Made in China 2025,” “Future of Manufacturing” in the United Kingdom, “Smart 
Advanced Manufacturing and Rapid Transformation Hub (SAMARTH)—Udyog 
Bharat 4.0” in India, among others [12,13]. Through contemporary technologies like 
cloud computing, the Internet of Things (IoT), and cyber-physical systems, Industry 
4.0 aims to create intelligent organizations [14]. The advantages of implementing 
Industry 4.0 should outweigh the efforts in both nonfinancial and financial elements 
in order to persuade traditional firms of the value of such a large scale [15].

When manufacturing businesses prioritize the adoption of the industrial 4.0 tech-
nologies, they can concentrate on various needs they may have. However, recent 
findings have demonstrated that the benefits anticipated by those technologies for 
industrial performance vary by industry, and businesses should consider systemi-
cally using such technologies to reach a higher Industry 4.0 maturity level [16]. One 
of the key advantages of Industry 4.0 in production is the ability to customize prod-
ucts to particularly address the specific demands of the different customers using 3D 
printing, intelligent simulations, and modeling. By doing so, products and service 
are created, as well as virtual models and prototypes. Supply chain management has 
improved as a result of Industry 4.0 technology in the service industry. For instance, 
real-time tracking and monitoring of product location and condition with IoT sensors 
enables more effective logistics and inventory management.

Industry 4.0 has empowered the development of novel models and services for 
businesses in the service industry by utilizing the Industry 4.0 enabling technolo-
gies. For example, using machine learning algorithms and AI has made it less dif-
ficult to create specialized services, such as customer-centered specifications and 
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recommendations. Consequently, businesses are now able to provide their clients 
with experiences that are more distinctive and exciting. In order to process data from 
intelligent and dispersed system interaction from the perspectives of production and 
service management, Industry 4.0 (4IR) aims at creating a system that is able to com-
municate intelligently between machine and humans [16]. 4IR promotes indepen-
dent interoperability, responsiveness, adaptability, decision-making, effectiveness, 
or reductions in expenses in addition to other features [17]. The adoption of these 
technologies which are the building blocks of 4IR in manufacturing and service sec-
tor are briefly defined in Table 4.1.

A new type of production that combines sensors, computer platforms, commu-
nication technology, control, simulation, data-intensive modeling, and predictive 
engineering with today’s and tomorrow’s manufacturing assets is termed “smart 
manufacturing” [13]. The major building block technologies of the 4IR are driving 
principles in cyber-physical systems that are used in this system. Once put into prac-
tice, these ideas and innovations would make smart manufacturing the defining fea-
ture of the upcoming industrial revolution. The ideas that were mostly established in 
the field of computing have served as inspiration for smart manufacturing. Figure 4.2 
depicts a broad outline of a smart manufacturing. The manufacturing equipment 
layer and the cyber layer are the two fundamental layers of the idea in Figure 4.2.

They are connected through an interface. Manufacturing equipment has its 
own intelligence, but the cyber layer provides system-wide intelligence. Smart 
manufacturing will frequently use dynamic predictive models, and virtual and 
augmented reality. The expanding volume of data in smart manufacturing will 
inevitably provide opportunities for the distribution of value derived from the 
data. Data-driven modeling techniques will become more popular as they make 
it possible to incorporate parameters from other domains (such as products, pro-
cesses, and logistics) into models that would be challenging to create using the 
conventional technique.

Smart manufacturing has its own identity, which is defined in six pillars that are 
described below. The ultimate pillars could be explicitly established in a variety of 
ways, such as by using text and data mining algorithms to cluster academic articles, 
industry reports, and information about emerging technologies. According to Kusiak 
et al. [13], some of the pillars of smart manufacturing are as follows:

• Data
• Materials
• Predictive engineering
• Sustainability
• Resource sharing and networking
• Manufacturing technology and processes

4.5  ADVANTAGES OF INDUSTRY 4.0 IN 
MANUFACTURING INDUSTRIES

Some of the benefits of the implementation of Industry 4.0 in the manufacturing and 
service sector are highlighted as follows.
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TABLE 4.1
Description of Industry 4.0 Enabling Technologies in Manufacturing [7,16]

S/N 4IR Technology Description

1 Big data and 
analytics

It details the acquisition, storage, distribution, management, and analysis of 
enormous volumes of high velocity, complex, and variable data requiring 
advanced procedures and techniques. Manufacturing businesses can now make 
data-driven decisions that enhance operational effectiveness, product quality, 
and customer pleasure thanks to big data and analytics, which are 
revolutionizing the sector. Predictive maintenance, quality control, supply 
chain, and production optimization are other benefits of this technology to this 
manufacturing industry. 

2 System 
integration 

Industry 4.0 is driven to function at its best by the fusion of diverse computing 
systems and software packages in order to form a larger system. System 
integration adds value to a system by combining subsystems and software 
applications to provide new functionality. Information technology supports 
systems integration in product development and manufacturing for information 
sharing. System integration has many advantages in the context of 
manufacturing sector, such as enhanced flexibility, better decision, and reduced 
cost. 

3 Cloud 
computing/
service

Cloud computing describes a broad network access, on demand self-service, and 
resource pooling with quick elasticity and measured service. Utilizing cloud 
computing in products to increase their functionality and provide associated 
services. The manufacturing sector is changing because of cloud-based 
services, which allow businesses to optimize operations, store and back-up 
data, enhance collaboration and communication, and get real-time business 
performance data.

4 Additive 
manufacturing 

This is a flexible manufacturing system that uses versatile manufacturing 
equipment to turn digital 3D models into real products. It includes rapid 
prototyping, solid freeform manufacturing, layer manufacturing, digital 
manufacturing, and 3D printing. With the use of additive manufacturing, 
manufacturers may build goods and parts just when they are needed, as 
opposed to keeping vast stockpiles. Rapid prototyping is made possible by 
additive manufacturing, allowing companies to test and improve their product 
designs rapidly and affordably. Additive manufacturing can reduce waste by 
using only the material needed to produce a part.

5 Augmented 
reality 

This technology is still in the development stage; however, there has been a rise 
in the rate of its use and adoption in recent times. Augmented reality 
technology, which uses reality operators, enhances the awareness of reality 
based on unreal knowledge regarding the environment. Augment reality is 
compatible with different kinds of technology provided. It involves human 
senses. In the manufacturing industry, augmented reality has the potential to 
alter how products are designed, produced, and maintained.

6 Autonomous 
robots

The needed reconfigurable automation technologies as the manufacturing 
paradigm rapidly shifts output from mass to customized production is the 
autonomous robots. Adaptive robots are highly helpful in manufacturing 
systems for operations like product development, manufacture, and assembly. 
In the manufacturing sector, autonomous robots are being used to carry out a 
range of duties, from material handling to assembly and inspection.

(Continued)
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FIGURE 4.2 General concept of smart manufacturing [13].

TABLE 4.1 (Continued)
Description of Industry 4.0 Enabling Technologies in Manufacturing [7,16]

S/N 4IR Technology Description

7 Simulations The computer simulation such as finite element, computational fluid dynamics, 
etc. are crucial and effective instruments for the adoption of digital 
manufacturing for engineering projects and model-based system design, where 
synthesized models imitate the characteristics of the implemented model.

8 Internet of 
things (IoT)

IoT refers to physical things (or groups of such things) equipped with sensors, 
computing power, software, and other technologies that communicate with one 
another and exchange data over the Internet or other communication networks. 
Different things or items interact and work together for a shared goal, 
digitalizing all physical systems. IoT is being utilized in the manufacturing 
sector to connect machines, sensors, and devices to enhance operational 
effectiveness, cut costs, and raise product quality.

9 Cyber security As fundamental components of the supply chain, the IoT must be constructed 
on the foundation of safety communications at every stage of the 
manufacturing and safety interoperability between facilities. Technology to 
identify phishing scams and how to create strong passwords has helped 
industries to prevent attacks and improve the overall security of the 
manufacturing environment.

10 Computer-aided 
design and 
manufacturing 
(CAD/CAM)

Creation of projects and work schedules for manufacturing and product 
development based on system. CAD wouldn’t exist without CAM. The design 
of a product or part is the main emphasis of CAD. How it seems and works. 
CAM emphasizes how to create it.

11 Flexible 
manufacturing 
lines

This Reconfigurable Manufacturing Systems (RMS) are encouraged by digital 
automation with sensor technology in manufacturing processes (such as radio 
frequency identification, or RFID, in product components and raw materials), 
allowing for cost-effective product integration and rearrangement with the 
industrial environment.

12 Data automation 
with sensors 
(sensoring)

This is an automation system for monitoring via data collection with embedded 
sensor technologies. The output of the sensor could be used to direct a process, 
serve as input to another system, or give information to a final user. Almost any 
physical element may be found with sensors.
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4.5.1  iMProved Production efficiency, fLeXibiLity, and agiLity

The use of technologies associated with Industry 4.0 will increase the efficiency of 
many parts of the production line such as the ability to produce more products more 
quickly and experience less machine downtime [15]. Faster batch changeovers, auto-
matic track & trace procedures, and automated reporting are additional instances 
of increased efficiency. NPIs (New Product Introductions) and business decision-
making both improve in efficiency. Industry 4.0 ensures manufacturing process 
configuration flexibility to produce customized goods. Industry 4.0 improves orga-
nizational effectiveness by vertically, horizontally, and end-to-end integrating indus-
trial processes. Additional advantages of Industry 4.0 include increased adaptability 
and agility. For instance, scaling production up or down is simpler in a smart factory. 
In addition, it is simpler to add new goods to the production line, opening up pos-
sibilities for high-mix manufacturing, one-off production runs, and other processes.

4.5.2  custoMer satisfaction

Industry 4.0 ensures that product failures are decreased by the use of digital tech-
nologies in manufacturing and procedures. There are less faults and problems in the 
items thanks to real-time monitoring employing intelligent sensors, software, IoTs, 
etc. [15]. The digital supply chain is a vital component of every business that can 
enable organizations to fully realize their Industry 4.0 objectives. The digital sup-
ply chain, which spans design, manufacturing, asset management, and shipping, can 
be used to play a crucial part in guaranteeing great customer satisfaction. Leading 
businesses, however, are integrating the digital supply chain across formerly distinct 
business sectors, production, supply chain planning, logistics, and after-sales support 
and maintenance, in order to get there

4.5.3  reaL-tiMe data-based decisions

The integration of real-time data is crucial to align the supply chain with consumer 
expectations. The speed at which data is captured and transmitted in critical locations 
is directly influenced by the increased value that clients obtain as they progress through 
the supply chain. Critical and intelligent data-driven decisions in the manufacturing 
sector are essential metrics of transformation in improved efficiency and service deliv-
ery. The value generation chain may now be organized and managed in entirely new 
ways across the entire product life cycle and beyond. Its core is a never-ending flow of 
pertinent, real-time data. As soon as the parties in the horizontal and vertical value cre-
ation chains are networked, the streams of real-time data ensure that they have imme-
diate access to the knowledge they need to carry out their tasks successfully.

4.5.4  custoMization of sMart Products

Industry 4.0 makes manufacturing processes more adaptable so that they can create 
items with a degree of customization that is similar to the period of crafts manu-
facturing. Personalization is a differentiation tactic used by manufacturers to stay 
unique in the face of increased worldwide competition. Small- and medium-sized 



81Industry 4.0, Manufacturing Sector and Thin Film Technology

businesses (SMEs) can meet the need for customized products where individual-
ization adds value by adding personalized products alongside their core offerings. 
Yet, because of limited production runs or even products that are uniquely unique, 
personalization is accompanied by substantial variety [17,18] Smart and highly per-
sonalized products are increasingly in demand. Industry 4.0–related technologies 
like as automation, simulations, collaborative robots (COBOTS), and others make it 
possible to build such items with the flexibility of a made process [15].

4.5.5  enhanced Productivity and Less downtiMe

Industry 4.0 technologies’ optimization and automation result in higher production 
rates, less waste production, fewer manufacturing defects, and higher profitability. 
Industry 4.0 technologies let you accomplish more with less resources increasing 
throughput while more effectively and economically deploying your resources. 
Deeper levels of integration, improved machine monitoring, and automated/semi-
automated decision-making will all reduce downtime on your manufacturing lines. 
As your facility gets closer to becoming an Industry 4.0 Smart Factory, overall equip-
ment effectiveness increases.

4.6  DISADVANTAGES OF INDUSTRY 4.0 IN 
THE MANUFACTURING INDUSTRY

There are certain drawbacks of automations in Industry 4.0 to the manufacturing 
industry. Some of these demerits of Industry 4.0 to the sector are highlighted as 
follows.

4.6.1  ineQuaLity chaLLenge

The beneficiaries of these technologies and the significant results they facilitate in 
the manufacturing process are of notable consequences. In actuality, innovators and 
investors are typically the largest beneficiaries when they invest in people and physi-
cal capital. The decline in income can be attributed to technology, particularly for the 
high-income region of the world. Eventually, it won’t be able to bridge the demand 
discrepancy between highly qualified and educated employees and lesser qualified 
and skilled employees. Therefore, this can also lead to future job losses. It is impera-
tive to address the difficulties that emerging countries face in terms of technology, 
infrastructure, and talent.

4.6.2  cyber threat and insecurity

There is a higher likelihood that data will be hacked, altered, or used maliciously 
when everything is interconnected. There is less containment as it once was. We are 
hearing the dreadful news of a new data security breach more and more frequently. 
In fact, it happens so frequently that it no longer surprises us. In addition, it poses 
fundamental concerns about privacy and identification, particularly in the light of the 
expanding use of data analytics and machine learning.
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4.6.3  Job insecurity and threat

While it is simple to tout the advantages of 4IR, there is a disconnect between com-
pany leaders’ optimism and employees’ concerns about the potential effects on their 
jobs. In a UK survey by the Social Market Foundation (SMF), 45% of workers voiced 
worries about their job security. The same proportion of people (49%) expressed 
concern over “machines and software making decisions that humans once made” 
[19]. In contrast, 4IR technologies were seen as having the potential for employment 
generation by 69% of business leaders. However, there was a general agreement that 
traditional career trajectories were altering due to the automation of middle man-
agement positions in addition to entry-level and low-skilled occupations. Employers 
can optimize resourcing by using data analytics to reduce employment during slow 
periods and approach human capital as a “just-in-time” good. Although switching 
workers to zero-hour contracts may be economically advantageous, it leads to social 
unrest and income volatility [19].

4.6.4  MoraL and ethicaL chaLLenges

There are new ethical issues and moral issues that are coming up with the emer-
gence and adoption of improved AI, genetic engineering, and increasing automa-
tion, which varies from individual to individual, and industry to industry. The 
possibility of exploring more information on a person or a group of people for 
one’s own benefit or to manipulate others increases with increased access to such 
information. For instance, the Cambridge Analytica data crisis from the beginning 
of 2018, when it was exposed that Cambridge Analytica had improperly acquired 
the personal information from millions of Facebook profiles and utilized it for 
political advertising. In addition, this is just one of the data misuses that we are 
aware of [20].

4.7  INDUSTRY 4.0 AND THIN FILM TECHNOLOGY

According to Sinha [21], nanostructured materials have been highlighted by the 
World Economic Forum (WEF) as a technology that will enable Industry 4.0. Cyber-
physical infrastructure supported by a cluster of computing and communication tech-
nologies is one example of an Industry 4.0 technology. That moment when industry 
acquires cutting-edge nanomanufacturing methods in order to deposit the best nano-
thin films on nano-gadgets has arrived, thanks to recent advancements in higher 
computation. This effort resulted in thin-film fabrication methods that produce a thin 
film of extremely high uniformity, conformity, and pin-hole-free quality.

There exists an indispensable relationship between thin film technology and criti-
cal elements of Industry 4.0. The recent acceleration of research and application in 
thin film technology has been identified as a key driver for Industry 4.0. Atomic 
layer deposition (ALD) technology, which creates a multilayer thin film with a hybrid 
inorganic-organic structure, has undergone vigorous research and development for 
10 years, preparing for the fourth industrial revolution. According to Jae-hac [22], 
the South Korean engineering firm creates ALD machinery for coating objects with 
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an incredibly thin layer, a crucial step in the mass manufacture of semiconductors, 
solar cell, display, and biotech devices. It is believed that these devices will be a key 
component of the future with a wide range of nanotechnology applications.

Some of the components of Industry 4.0 which relies on the thin films technology 
developments are as follows [23]:

• Sensor
• Real-time monitoring
• Smart materials
• Efficient energy systems
• Smart devices/gadgets
• Self-healing gadgets
• Nano-devices

The advancement in digital technology has caused a paradigm shift from the applica-
tion of traditional sensors to high precision nano-sensors. Different industries employ 
sensors for a variety of everyday and commercial applications. Sensor system use 
in industrial demonstrations has recently increased, showcasing their extraordinary 
capabilities. Ordinary sensors have become intelligent sensors thanks to the Internet 
of Things (IoT), which allows complicated calculations to be made locally in a sensor 
module from observed data [24]. High accuracy sensors can be made using thin film 
technology, which is well known for doing so. For example, thin film methods like 
ALD, ion beam, and sputtering help to produce biological sensors for a stable health 
monitoring of various states. High-performance digital devices offered by sensors 
are needed for remote surgical procedures. A crucial function is played by thin film 
coating.

The potential benefits, impacts, and roles of Industry 4.0 and the thin film tech-
nology are intertwined. The Industry 4.0 components like AI, big data analytics, 
and machine learning would greatly benefit from thin film technology. Through 
other 4IR digital technology, enormous amount of data are generated through sen-
sors. The complex thin film technology process can be modeled utilizing data-
driven machine learning and process optimization for maximum output. Utilizing 
these models will enable material, cost, and process output optimization. In the 
chapters in the next section, these are covered in more detail. By adopting the 
digital technologies made available by Industry 4.0, miniaturized devices are vital 
in these complex systems with little input power supply. With great success, the 
potential of thin film solar and fuel cells has been assessed. In order to create 
efficient nano- and micro-power sources for these devices, thin film technology 
is being developed and will continue to be developed [23]. Several other Industry 
4.0–driven technologies are contingent on the application of thin film technology. 
The desire for smart phones, smart watches, and other handmade smart devices is 
rising. The use of smart technologies in building for services like power supply, 
security, control, and consumption surveillance, among others, has gained traction, 
while the demand for solar-powered jackets and backpacks for remote harvesting 
and powering portable devices has been growing. These technologies all utilize 
thin film technology [23,24].
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4.8  CHALLENGES OF ADOPTING INDUSTRY 4.0 AND 
THIN FILM TECHNOLOGY IN MANUFACTURING

Some of the key difficulties that businesses encounter while using Industry 4.0 and 
thin film technologies in the industrial sector are highlighted as follows.

4.8.1  high initiaL investMent cost

The large initial investment needed to integrate Industry 4.0 and thin film technol-
ogy is one of the key obstacles to its adoption. This high cost involves the cost of 
new equipment, software, and workers developmental programs. This cost limitation 
might pose a significant barrier to small and medium-scale enterprises since they 
could lack the resources to make the necessary start-up investments.

4.8.2  Paucity of coMPetent and skiLLfuL Labor

Another vital challenge that can be encountered while adopting Industry 4.0 and 
thin film technologies in the manufacturing sector is the paucity of skilled labor. The 
successful adoption of these technologies is contingent on employees with sophisti-
cated skills in cutting-edge 4IR technologies like robotics, AI, and data analytics. 
However, the inability of businesses to employ individuals with these skills limits the 
businesses’ ability to use these individuals in their enterprises.

4.8.3  interoPerabiLity with Legacy systeMs

Integration of new Industry 4.0 technologies with legacy systems is another chal-
lenge that many businesses must deal with. Although new hardware and software 
are frequently needed for these technologies, the procedure can be complicated and 
incompatible with current systems. The shift to Industry 4.0 and thin film technology 
may therefore need businesses to make investments in new hardware or software.

4.8.4  data Privacy and security

Using Industry 4.0 and thin film technology presents significant hurdles in terms of 
data security and privacy. Huge amounts of data, some of which may be confidential 
and discrete, must be gathered and processed in order for these technologies to func-
tion. Businesses must guarantee the safety of these data and safeguard the confiden-
tiality of both customers and employees. The creation of new policies and procedures 
as well as large investments in cybersecurity measures may be necessary.

4.8.5  coMPLiance to reguLations

Businesses need to take steps to ensure they are abiding by a number of regulations, 
such as those that deal with confidentiality and safety of information, environmental 
sustainability, and the welfare and security of employees. It might be required to 
develop novel regulations and processes and make substantial investments to imple-
ment the measures.
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4.9  CONCLUSION

The paradigm shift in the manufacturing sector heralded by the industrial revolutions 
and the emergence of cutting-edge technologies in the Industry 4.0 era has been a 
game changer in transforming the trajectories of service delivery, production quality 
and efficiency. This chapter presented an overview of the far-reaching effects of the 
industry 4.0 on the thin film deposition and manufacturing processes. However, these 
technologies grapple with some hurdles such as data security and privacy difficulties, 
high initial expenditures, integration with existing systems, a lack of qualified staff, 
and regulatory compliance. To fully harness these inherent benefits in the adoption 
of these technologies in the manufacturing, the dynamics of these critical challenges 
must be given reasonable considerations. Moreover, companies must invest in these 
technologies, learn new skills, and overcome implementation challenges. This will 
position them for potential achievement while contributing to the ongoing develop-
ment of the industrial sector.
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Part II

Machine Learning Techniques
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5 Fundamentals of 
Machine Learning

5.1 INTRODUCTION

In this chapter, we provide a brief survey of machine learning (ML) basics and intro-
duce its core ideas, algorithms, and applications in diverse fields as a background 
information for understanding its application in atomic layer deposition and thin film 
deposition. A swift transition from mere theoretical framework to real-life and prac-
tical applications of artificial intelligence (AI) and ML has been observed in recent 
years. Thus, there is an increasing interest by different businesses, organization, and 
public sectors in deploying AI techniques in solving most of their complex problems. 
Despite the fact that it would be nearly impossible to give a comprehensive review 
of this extremely dynamic topic, this chapter will attempt to give a brief overview 
of salient information needed to build the foundation for its deployment in atomic 
layer deposition applications. Many books have been written on ML theories and 
processes. For a more thorough examination of the subject, we suggest the reader 
consult one of the more specialized ML textbooks.

5.2  ARTIFICIAL INTELLIGENCE, MACHINE 
LEARNING, AND DEEP LEARNING

There is an upsurge in the adoption of AI, ML, and deep learning (DL) in contem-
porary times by different businesses and sectors to construct intelligent devices and 
products, making them the most talked-about technologies in business. Although 
these terminologies dominate business conversations worldwide, many people have 
trouble distinguishing them. Figure 5.1 depicts their interconnectivity. Today, the 
phrase “artificial intelligence” refers to a wide area of research in computer science 
that aims to create AI systems that can think, see visually, and solve problems, all of 
which are generally attributed to human intelligence.
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Based on learning capabilities, the following are the categories of AI which also 
represents the three stages through which AI has evolved:

 1. Artificial narrow intelligence: The only kind of AI we have so far effec-
tively generated is artificial narrow intelligence (ANI). ANI is goal-oriented, 
created to carry out a single task, such as driving a car, and is exceptionally 
intelligent at carrying out the particular task it is taught to do. It is a high-
functioning system that duplicates and possibly exceeds human intelligence 
for making a specific goal possible [1]. All modern types of AI such as pat-
tern, face and image recognition, and autonomous vehicle amongst others 
are examples of ANI. ANI often performs better than humans; however, a 
major demerit of this AI type is that it can only perform the tasks for which 
they were created and can only decide based on the training data.

 2. Artificial general intelligence: The artificial general intelligence (AGI) 
otherwise referred to as strong AI enables machines to use knowledge and 
skills in various contexts. AGI distinguishes itself from the ANI by thinking 
and carrying an assignment independently on human programming while 
its process can change in response to various circumstances [2]. AGI aims 
to build machines that can reason and think like humans, as opposed to ANI 
applications, which can perform singular, automated, and repetitive activi-
ties [3]. Many of the issues with ANI are resolved with AGI. For instance, 
ANI concentrates on a single task, while the performance of algorithms 
can be negatively impacted by minor alterations since it is only trained to 
accomplish its objective without taking any unintentional actions.

 3. Artificial super intelligence: The stage at which computer intelligence 
surpasses that of humans is known as artificial superintelligence. Human-
impossible ideas and interpretations will be understandable to super intel-
ligent computers [4]. This is attributed to the fact that just a little fraction 
of the billions of neurons in the human brain are capable of thought. The 
idea of artificial superintelligence is centered on the capacity to comprehend 
human feelings and experiences such as to excite its own beliefs and desires 
through the comprehension of its own functionality. This is in addition to 
replicating the multifaceted human behavioral intelligence.

Based on functionality, AI can be categorized as follows [5]:

 1. Reactive AI: Reactive AI is the most fundamental form of AI; it is designed 
to give a predictable result based on the information it receives. Reactive 
machines never change how they react to the same circumstances and can-
not learn behavior or imagine the past or future. Reactive AI represented a 
significant advance in AI research, although these AIs are limited to doing 
the tasks for which they were initially created. They are hence intrinsi-
cally constrained and open to improvement. From this basis, other forms of 
AI were developed. Common examples are spam mails filters in our mail 
inboxes, recommendation engines for Netflix, and super-computer IBM 
machine for chess playing amongst others.



91Fundamentals of Machine Learning

 2. Limited memory AI: Limited memory AI alludes to the capacity of AI to 
retain past information and forecasts and use it to inform future predictions. 
The complexity of ML design increases slightly when memory is limited. 
To create predictions and carry out challenging classification assignment, 
limited memory AI combines pre-programmed information with historical, 
observational data. Every ML model is contingent on limited memory to 
be built, but the model can be used as a reactive machine type, being the 
fundamental and simplest kind of AI. Machine learning algorithms which 
deploy the limited memory AI are the reinforcement learning, long-short-
term memory (LSTM), and Evolutionary Generative adversarial network 
(E-GAN).

 3. Theory of mind AI: Theory of mind (ToM) AI is based on the awareness 
of distinctiveness of one’s intent, views, and emotions from others’ and how 
it influences their actions and behaviors. Sequel to this, machines would be 
able to develop actual, human-like decision-making abilities with the help 
of this kind of AI. When interacting with humans, machines with ToM AI 
will be able to recognize, comprehend, and remember emotions in order to 
modify their behavior. Because human communication involves a process 
of behavior adjustment based on rapidly changing emotions, there are still a 
lot of challenges to the ToM AI. ToM AI is the distinction between present 
AI machines and those to be built in the future. Although ToM robots are 
not yet a reality, science has been making steady progress toward this goal.

 4. Self-aware AI: Self-aware AI is the most sophisticated kind. Machines will 
resemble humans in consciousness and intellect when they can recognize 
their own emotions as well as the emotions of those around them. This kind 
of AI will also have needs, wants, and emotions. This kind of AI will enable 
machines to be aware of their own feelings and mental states. They will 
be able to draw conclusions that other forms of AI cannot. More attention 
should be on efforts to comprehend memory, learning, and the capacity to 
draw conclusions from the past even though there is a long way to go before 
building computers that have self-awareness.

ML is simply one subfield of AI that deals with techniques for enabling machines 
to “learn” or to perform tasks more effectively depending on prior knowledge 
or supplied data [6]. It is also referred to as a set of techniques within AI that 
are based on “learning” to model patterns in data using mathematical functions. 
Despite the enormous impact that other fields of AI like symbolic reasoning, heu-
ristics, and evolutionary algorithms have had on science and technology, ML is 
undoubtedly the most intriguing and promising branch of AI across all fields of 
application. Figure 5.2 shows the branches of AI including ML.

ML creates a set of rules automatically using answers and data, as opposed to 
symbolic AI, which uses rules and data to make responses. In order to facilitate a 
response or action, these rules can then be applied to fresh, unobserved data [6]. ML 
is frequently referred to as “statistical learning” since its mathematical foundation is 
largely based on the ideas of conventional statistics [7,8]. It works on the principle 
of learning new patterns from data structures instead of having these characteristics 
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explicitly programmed. DL method involves the creation of a deep network of artifi-
cial “neurons” whose function is meant to be analogous to that of real neurons found 
in biological systems such as the human brain [1]. The use of features to characterize 
or extract information from the data is one of the primary contrasts that can be made 
between DL and more conventional ML techniques. A feature is a quality about the 
people and event under study and collecting data from. A feature could be simple and 
straightforward, or it can be more complex and represent transformations of combi-
nations of many variables [9].

According to King et al. [9], it’s customary to distinguish between hand-crafted 
and learned features as a way to distinguish the ordinary ML and DL. Hand-crafted 
characteristics are those that the algorithm developer has chosen to emphasize utiliz-
ing some domain expertise from the application under study. The ML model itself 
will frequently recognize learned properties as relevant for a particular job. Sequel 
to this, ordinary ML models employ hand-crafted features, whereas DL models use 
learned features. Figure 5.3 illustrates this significant difference in the methodolo-
gies of the DL and ML. The DL strategy offers a number of significant benefits. First, 
compared to conventional ML, DL is able to create models from vast volumes of data 
that are more accurate. In addition, the adoption of DL can drastically shorten train-
ing timeframes while removing the need for expert subject knowledge [10].

The common distinguishing features of the DL from the traditional ML are the 
kind of data it uses and the ways in which it learns. ML develops a predictive model 
using structured, labeled data, which means that the model’s input data are used to 
extract certain patterns that are then arranged in tables [11]. This doesn’t necessary 
imply that it doesn’t employ unstructured data; it only implies that, if it does, it usually 
goes through some pre-processing to put it in a structured manner. However, some of 
the data pre-processing steps common with ML are abolished with DL. These algo-
rithms systematize feature extraction and can absorb and interpret unstructured data, 
including text and images, thus reducing the reliance on human specialists.

Most DL approaches use neural network topologies; hence, DL models are also 
referred to as deep neural networks (DNNs). The number of hidden layers in the 
neural network is typically indicated by the term “deep.” While deep networks can 
have up to 150 hidden layers, traditional neural networks only have two to three 
hidden layers [12]. Convolutional neural networks (CNN or ConvNet) are among 
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FIGURE 5.2 Branches of artificial intelligence including machine learning.
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the most commonly used varieties of DNNs. A CNN uses 2D convolutional layers 
and combines learned features with input data, making it an excellent architecture 
for processing 2D data, including images [12]. You no longer need to recognize the 
features that are utilized to categorize photos since CNNs eliminate the necessity for 
manual feature extraction [12]. A deep ML model is one that uses numerous layers 
of neural networks, and this is known as DL-based architecture. DL has the features 
of hierarchical and distributed abstraction since it translates the input data from low-
level to high-level to a new feature space during the learning process. This enables 
the processing of high-dimensional nonlinear input data and the accurate fitting of 
complex nonlinear functions [13]. MathWorks [12] demonstrated the distinction in 
the operations of the ML and DL as illustrated by their approaches in categorizing a 
vehicle as shown in Figure 5.4. In ML, features and a classifier are manually selected 
to sort images. The phases of feature extraction and modeling are automatic with DL.

5.3 UNDERSTANDING MACHINE LEARNING

The application of techniques based on ML has been shown to be an effective method 
for extracting hidden features and patterns in a given set of information from data in 
different approaches [14]. The effectiveness and success of ML utilization is contin-
gent on data accessibility and availability for the purpose of training the computer 
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to carry out the special task and make intelligent decisions. This has therefore posi-
tioned it to be especially well-suited to scenarios in which an output is projected from 
a set of inputs based on some properties of the input [6].

The study of statistical models and techniques that enable computers to “learn” 
from data without being explicitly programmed to carry out particular tasks is known 
as ML. Large datasets are used to train ML algorithms to find patterns and relation-
ships that can be utilized to forecast or decide. The model’s performance can then 
be automatically enhanced over time by applying these judgments and predictions to 
fresh data. The advance in technology, sensors, and IoT has caused an upsurge in the 
volume of data generated, and its storage. ML has the ability to process these huge 
data. Thus, it has transformed many different industries, including the health care 
industry, the financial industry, and the retail sector by developing data-driven-based 
decisions. It has thus become imperative to ensure that their use is objective and 
complies with ethical requirement owing to their societal impact.

You may think of the ML paradigm as “programming by example.” It learns 
from experience E  about some set of tasks T , and performance metrics P , if its 
performance at tasks in T , as evaluated using P , gets better with experience E . For 
instance, we have a certain assignment such as email spam detection and filtering 
in mind. ML then seeks approaches by which the computer will create its own pro-
gram based on examples that we offer, rather than programming it to do the problem 
directly. Therefore, ML generally entails learning to perform better in the future 
based on prior experiences.

Nowadays, computers may outperform skilled human operators at tasks like pic-
ture classification, object identification (such as face detection and recognition), and 
landmark localization. Numerous viewpoints have been used to discuss the capabili-
ties of machines, including their capacity to gather knowledge [15], think [16], feel 
[17], be creative [18], and make intelligence-based decisions [19]. ML addresses how 
machines learn. ML can tackle many real-world problems by using computer sys-
tems that can learn to execute a task without being explicitly programmed [20]. ML 
can transform human history, so everyone expecting to compete in today’s fast-paced 
digital environment must study it.

The great majority of ML models also include operations that are either directly 
or indirectly connected to Equation 5.1 [21].

 y f x c,  β( )= +  (5.1)

In this equation, y is the response/output we wish to predict, using the function 
f x,β( ), while x is a vector of the input variables and β is the model’s parameters 
vector. Since the input data are imperfect in real life, there will always be some noise 
and/or unobserved data. This is typically denoted by the error component  , which is 
a random variable, thus making y a random variable by itself. Equation 5.2 depicts a 
linear form of the function f x,β( ):

 f x x x xo n n,  1 1 2 2β β β β β( ) = + + +…+  (5.2)

The best combination of the values of β which best approximate the linear relation-
ship with a dataset with pairs of (x, y) is achieved through an optimization process 
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called training, which minimizes the discrepancy between the true values of y and 
the model’s predictions (i.e. the error function).

Some of the critical goals of the ML process are to produce general-purpose, 
efficient, practical, and useful algorithms, a prediction rule that makes predictions as 
accurately as feasible, versatile as possible, simple to use with a wide range of learn-
ing challenges, interpretability of the prediction rules produced by learning. When 
faced with a complicated assignment or problem that involves big data and a lot of 
variables but no formula or equation, think about employing ML.

5.4 BRIEF HISTORY OF MACHINE LEARNING

The creation of general-purpose computers, pioneered during World War II and 
made accessible for non-military usage in the 1950s, represents the earliest steps 
toward AI [6]. Fergus and Chalmers [10] reported that the work of Alan Turing [22] 
which proposed the Turing test in 1950 as a way to gauge AI was the most recognized 
out of all other references pointing to the emergence of AI. The introduction of Lisp 
in 1958 made it one of the primary programming languages used to build AI, and 
by 1964, the program became the game changer for computer programmers to build 
algorithms that can understand natural language [3]. Because of the increasingly 
accessible processing power of computing resources, symbolic intelligent programs 
that use a set of rules to simulate reasoning and make decisions have been made pos-
sible [23]. The first-generation chatbots could simulate a natural language dialogue to 
a large extent, while initially developed checkers and chess algorithms had a favor-
able performance as early as the 1970s [24–26].

In 1959, a significant contribution was made to the body of knowledge by Arthur 
Samuel. In his novel publications, he firstly proposed the core idea of “machine learn-
ing” [27]. An article was published in 1986 by a prominent researcher, Geoffrey and his 
research team. The article introduced the concept of artificial neural network (ANN). 
The study was novel and presented some significant contributions to the knowledge in 
computer studies and served as a viable alternative to the rule-based systems which 
existed earlier. This, therefore, formed the foundation for the evolution of ML [28]. 
As processing and computational capacity improved and a further rise in data avail-
ability and accessibility was observed in the 1990s and 2000s, more sophisticated ML 
algorithms were developed. A range of problems were solved using a variety of ML 
techniques including neural networks, linear, logistics, and support vector regression 
(SVR) which demonstrated astonishing accuracy in prediction and decision-making.

The development of ML in its current form is typically credited to Cornel University 
psychologist Frank Rosenblatt, who built an alphabet character recognition machine 
using theories about how the human nervous system functions. The machine is named 
perceptron, being a prototype of the modern day ANN [29]. The previously unknown 
limits of basic neural network architectures were disclosed in a seminal paper pub-
lished in 1969 titled Perceptron [30]. The perceptron, which is still widely used today, 
was one of the first significant developments in ML [31]. Further improvement in the 
development and evolution of neural network machines was noted after the creation 
of Spatial-Numerical Association of Response Codes (SNARC) in 1950 [28]. Around 
this period, the IBM programmers began to create ML algorithms to take on difficult 
games while the field games continued to progress throughout this time, especially 
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after reinforcement learning was introduced [26]. CNNs were first developed as a result 
of research on Neocognitron in 1979, while the adoption of the Hopfield network, a 
branch of the recurrent neural networks (RNN), as content-addressable system firstly 
introduced the algorithm [32,33]. The emergence of the expert systems, notably the 
game logic, remained the dominant area of the growth of AI [10].

The support vector machine (SVM) and random forest (RF) algorithms were first 
introduced in 1995 [33]. In addition, the LSTM RNN was created in 1997 to increase 
the usefulness and efficacy of RNNs in time series prediction [34]. An interesting 
aspect of ML, computer vision, gained traction after the Modified National Institute 
of Standards and Technology database (MNIST) dataset, which comprises a huge 
quantity of handwritten figures, was conceptualized [35]. The simultaneous improve-
ment in ML over time birthed the development of DL through the adoption of the 
concept of integrated perceptron with Public Relation (PR)-campaign [29]. A con-
cept and technique known as DNNs were developed after many years of research on 
multilayer neural networks. Though the exact timeline of its emergence is unclear, it 
is thought that Dechter [34] first suggested the word “deep learning”. DL and large 
data have fueled ML’s rapid growth. Researchers and engineers have pushed the 
frontiers of AI and ML, resulting in continual innovation and development.

5.5  DESCRIPTION OF MACHINE LEARNING 
TYPES AND ALGORITHMS

A wide variety of ML algorithms have been developed to assist in resolving challenging 
situations in the real world in these highly dynamic times. The automatic and self-adaptive 
ML algorithms get better over time. A comprehensive understanding of algorithms for 
various purposes is a vital prerequisite to the successful application of ML. There are no 
one-size-fits-for-all rules for selecting the most suitable ML algorithms for a particular 
task. Each ML method has advantages and disadvantages for a certain application. The 
following must be considered when selecting an appropriate ML algorithm;

 1. The type, size, and format of the data: This is an important consideration 
in the choice of ML algorithms as the accuracy of training such models 
greatly relies on the type, quantity, and quality of the data, which is often 
not practicable to gather [35]. Some algorithms only work best with a large 
volume of data while other algorithms such as those with low variance 
and high bias can perform satisfactorily with little data. Sometimes you 
only need 200 training data samples to produce a solid solution while in 
other times you need 200,000. Data could be discrete values or continuous, 
straightforward, or complex, small or medium or large [36]. According to 
Vidiyala [37], any particular dataset may be entirely of categorical data, 
entirely of numerical data, or both. If your data is categorical or otherwise 
nonnumerical in format, you will need to think of a way to turn it into 
numerical data because algorithms can only function with numerical data.

 2. Model’s explainability and interpretability: A ML model’s explainability 
is its ability to translate its behavior into human terms. It is very crucial 
to explain a model’s outcome and establish its transparency [38]. Sadly, 
most complex algorithms operate like black boxes, making it difficult to 
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understand the findings, despite their effectiveness. A trade-off between a 
model’s interpretability or explainability and its performance has been noted. 
This factor significantly influences the choice of a particular algorithm.

 3. Model’s performance: A critical factor to consider when selecting a model 
is the quality of the model’s outcome. Algorithms that improve the per-
formance should be given top priority. Different performance metrics are 
used for different tasks [39]. For instance, regression problems use common 
metrics like mean square error (MSE) and root mean square error (RMSE), 
while in classification problems, metrics like precision and recall, accuracy, 
confusion matrix, and F1-score are often used. While considering algo-
rithms selection based on performance, it is important to choose a reliable 
statistical metrics to assess your model’s performance.

 4. Computational speed, time, and cost: Machine algorithms need more 
computational time to train on big training data. The longer the training 
period, the higher the accuracy. The preference of an algorithm is thus con-
tingent on the computational time, speed, and complexity [40]. The choice 
between a model that is 99% accurate and training cost is $50,000 or the 
one that is 95% accurate and the training cost is $5,000 is dependent upon 
your specific situation [35].

As presented in Figure 5.5, ML algorithm can be classified into three major categories 
based on the task to be carried out and/or the data. These categories are as follows:

 1. Supervised learning
 2. Unsupervised learning
 3. Reinforcement learning
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FIGURE 5.5 Diagrammatic representations of the types, tasks, algorithms, and applica-
tions of machine learning.



98 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

5.5.1 suPervised Learning

In supervised learning, models are developed using data in which each observation 
in the dataset has a label which could be a categorical variable or a continuous vari-
able. These techniques require supervision in the form of labeled examples just like 
its name suggests, with the objective of predicting the value of one or more outcomes 
using a variety of input features [14]. In supervised learning, family of functions is 
modified, or we say that the model is trained, such that the function provides the right 
output for each input of the dataset. There are inputs x X∈  also called the predictors, 
or covariates and output y Y∈  also called response or target. A supervised learning 
learns from experience E  given a set of task T  with a training data D. The perfor-
mance P  of the model is estimated with a training dataset, D in Equation 5.4 using 
empirical risk L  θ( ) expressed in Equation 5.3 [41]:

 L
N

l y f x
n

N

n n
1

,   ;
1

∑θ θ( )( )( ) =
=

 (5.3)

 D x yn n n
NData  { ; }  1( )( ) = =  (5.4)

The difference between the predicted and observed values is denoted as l y f xn n, ;θ( )( ) , 
fwhile   is the learning function and θ  represents the parameters that define the func-

tion .f  The proposed processes for creating supervised ML models differ slightly 
in how they define the phases; however, they all generally entail three phases: the 
beginning, estimating, and deployment of the model [42]. At the initiation phase, 
an assignment is defined, the data are prepared and processed, and an appropriate 
algorithm is selected. At the performance evaluation phase, the validation of several 
parameter permutations describing the method is carried out while appropriate con-
figuration is selected depending on its performance in carrying out a task. Finally, at 
the deployment stage, the model is implemented and used to complete a task involv-
ing an entirely new dataset.

Supervised learning is often used for regression and classification problems with 
prominent algorithms such as neural networks, decision tree (DT), ensemble learning, 
SVM, and k-nearest neighbor (kNN), amongst others. The neural network has gained 
traction as a viable supervised learning approach owing to its ability to adaptively 
approximate complex function [43,44]. There are basically three categories of neural 
network that are prominently applied in ML-based solutions, namely, ANN, CNN, 
and RNN [45]. Backpropagation optimizes nonlinear problems by computing gradi-
ents in neural network algorithms using the chain rule of derivative. Backpropagation 
trains multilayer perceptron (MLP) or backpropagation neural networks (BPNN) 
and feed-forward neural networks [46]. Figure 5.6 illustrates supervised ML mode of 
operation by labeling the training set. The figure shows that the trained model tests 
the test sample directly.

The DNN learning technique is an approach used in DL with a capacity to auto-
matically extract more features from the input data and having a sophisticated archi-
tecture with more layers and neurons. Common examples of DL models which use 
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the DNN training approaches are the CNN and RNN. The SVR and SVM are other 
types of supervised learning algorithms which are used for regression and classifica-
tion problems, respectively. The goal of the SVR is obtaining a hyperplane in order 
to have as many data points as possible between the hyperplane’s boundaries [45]. 
The DT algorithm has a tree-like structure with decision nodes and leaves which 
are continuously divided at decision nodes according to a particular parameter, and 
the leaves represent the results [48]. The ensemble method is a hybrid of different 
learning algorithms such as Random Forest, boosting, bagging, and AdaBoost, 
amongst others, for a more robust and enhanced model’s performance than stand-
alone algorithms.

Some of the demerits of the supervised learning are as follows. It requires massive 
volumes of labeled data; this limits such models in situations when it is impracti-
cal to produce large-scale labeled datasets [49]. In addition to being laborious and 
tedious, hand labeling calls for knowledge that is costly and hard to come by. These 
shortcomings limit the exploitation of the full potentials of the supervised learning in 
practical applications [14]. An in-depth discussion and more details about these and 
other supervised learning algorithms are presented in subsequent chapters.

5.5.2 unsuPervised Learning

The unsupervised model is focused on discovering the correlations between indi-
vidual data points and the hidden pattern in an unlabeled data structure. Generally 
speaking, an unsupervised algorithm may concomitantly exhibit more than one of 
these features, and the outcomes of unsupervised learning may then be utilized in 
supervised learning. The clustering involves the grouping of different data points in 

FIGURE 5.6 Functionality of the supervised machine learning [47].
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a group based on how similar they are without any manual input. The collections 
of the related data points are called a cluster. The class label (dependent variable) is 
unknown in unsupervised learning. Unsupervised learning algorithms are mainly 
used for clustering, association, and dimensionality reduction task. Figure 5.7 repre-
sents the functionality of the unsupervised learning algorithms for processing unla-
beled data unlike supervised learning in Figure 5.6.

The exceptional ability of the unsupervised learning in finding similarities and 
differences in data structures is accountable to its fitness as the best candidate for 
solving problems such as strategies for customer segmentation, cross-selling, explor-
atory data analysis, and face and image recognition [50]. Unsupervised learning can 
handle a vast amount of data by automatically extracting inherent feature and pattern 
in it. Manual labeling is not required for an unsupervised learning task. So before 
submitting the data to a supervised learning process, unsupervised learning can be 
employed as a preliminary stage.

These unsupervised learning algorithms search for the hidden trend and pat-
tern in the data in a similar approach as the supervised learning, but the distinc-
tion is that the data are not fully understood. For instance, gathering vast amounts 
of data about a particular disease can aid practitioners in understanding symptom 
patterns and connecting them to patient result. To classify all the data sources 
connected to a condition like diabetes would be intensive and time-consuming. 
Consequently, an unsupervised learning strategy would be a viable alternative to 
the supervised learning established results since it may take a longer time in this 
scenario [51].

Clustering is a prominent unsupervised learning task which employs algorithms 
such as k-means clustering and density-based clustering (DBSCAN). While the 
DBSCAN algorithm searches clusters based on a continuous zone of high density 
and a continuous region of low density, the k-means algorithm classifies the points in 

FIGURE 5.7 Approaches of unsupervised learning [47].
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the low-density area as outliers and are not assigned to any clusters, and thus assigns 
all data points to clusters [52]. The K-means clustering is a well-known method 
that divides M points in N dimensions into K clusters while minimizing the sum of 
squares inside each cluster. However, the K-means clustering algorithm’s fundamen-
tal drawback is that K must be known [53]. This challenge has been overcome by 
using the self-organizing maps (SOMS) and DBSCAN. In order to make comparable 
input patterns cluster with nearby data, SOMS algorithm uses lateral interaction 
inside a certain neighborhood [54].

Despite the immense benefits of the unsupervised learning, it is still being faced 
with some shortfalls, such as (i) computational intensity and complexity owing to 
the high volume of data being handled by unsupervised learning and the longer time 
required to process such data, (ii) a high risk of unreliable or inaccurate model out-
come as there is no labeled training data. We are often unable to obtain a precise 
information regarding the output and sorting of the algorithm, (iii) lack of transpar-
ency regarding the principles used to cluster data, and (iv) requirement of human 
involvement in confirming the output variable [35,51,53,55]. An in-depth discussion 
and more details about these and other unsupervised learning algorithms are pre-
sented in subsequent chapters.

5.5.3 reinforceMent Learning

Reinforcement learning is a training approach in ML whose basic principle is based 
on the reward of desired behaviors, while undesirable actions are penalized. It has 
the ability to typically perceive and comprehend its surroundings, act, and learn via 
mistakes [56]. The algorithms allocate a positive value to a beneficial action as a form 
of motivation to the agent while negative value is allocated to nonbeneficial actions. 
Thus, the agent learns from its environment and is trained to pursue long-term and 
optimal overall benefit in order to arrive at the best possible outcome [57]. This is 
realized through the concepts of dynamical systems theory, utilized to depict the 
practices of the complex systems over time and typically formulated as a Markov 
Decision Process (MDP).

The agent is prevented from stagnating on smaller goals by these long-term objec-
tives. Over time, the agent assimilates to focus on the positive goal rather than the 
negative. Reinforcement learning has different objectives from unsupervised learn-
ing. It is focused on creating an appropriate action model that will maximize the 
agent’s overall cumulative reward [58]. The action–reward feedback loop of a typical 
reinforcement learning is shown in Figure 5.8.

FIGURE 5.8 Framework of reinforcement learning [58].
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As long as a distinct reward is available, reinforcement learning can be applied to 
a circumstance. Reinforcement learning algorithms in enterprise resource manage-
ment (ERM) can distribute scarce resources across various assignments in as much 
as there is a broad objective being pursued. In this case, time and resources conserva-
tion would be the objectives.

Prominent applications of reinforcement learning are in robotics, gaming, 
manufacturing, inventory and resource management, and personalized recommen-
dations [56]. Reinforcement learning algorithm are categorized as value-based, 
policy-based, and actor-critic algorithms [57]. Common examples of reinforcement 
learning algorithms are Q-learning, SARSA (State-Action Reward-State-Action), 
Deep Q-Network (DQN), and Deep Deterministic Policy Gradient (DDPG) [58]. 
Reinforcement learning has been used in few restricted experiments in robotics. 
Robots based on this type of learning may be able to learn skills that is not possibly 
exhibited by human teacher, apply previously taught skills to new tasks, or accom-
plish optimization even in the absence of an analytical formulation. Although it has 
great potential, reinforcement learning can be challenging to implement and has only 
a limited number of applications. This form of ML’s dependency on environment 
exploration is one of the challenges to deployment.

5.6 STEPS IN THE MACHINE LEARNING PROCESS

ML processes can be simplified into multiple steps. In this section, we shall discuss 
how each stage affects ML. These steps are necessary to achieve precise and accu-
rate ML outcomes. These steps ensure that the ML model is properly developed and 
ready to provide insightful explanations and predictions. Figure 5.9 represents a typi-
cal workflow of an ML task. 

knowledge

Pa�erns and Rules

Transformed data

Pre-processed data

Target data

Raw data

Data Collec�on & 
cleaning

Data 
preprocessing

Feature 
Engineering

Machine learning 
modeling

Interpreta�on and 
evalua�on

DATA 
PREPARATION

KNOWLEDGE 
DISCOVERY

FIGURE 5.9 Typical workflow of a machine learning task [59].
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5.6.1 data coLLection

The goal of ML methods is to recognize and mathematically express the patterns seen 
in data. Consequently, both the quantity and quality of the data employed are crucial for 
creating effective and usable ML algorithms [7]. It is crucial to gather trustworthy data 
to ensure that your model accurately identify trend and patterns. Faulty data collection 
is a major setback to successful ML modeling. Data collection begins with identifying 
the different data sources. Databases, files, Application Programming Interface (API), 
and online sources supply ML data. Because these sources’ data availability and qual-
ity vary, it’s important to carefully evaluate them before using them. Common issues 
encountered with data collection such as bias, inaccuracy, missing data, and imbalance 
in data are attributed to the involvement of humans. Collecting high-quality data that 
truly reflect the population being studied is attainable by being aware of these common 
issues and taking action to mitigate them. Consequently, the precision and depend-
ability of the outcomes will be increased. Any professional in data science can confirm 
that having too much data is always preferable to having too little data. Thus, when data 
are insufficient, you might need data augmentation techniques such as latent semantics, 
data integration, entity augmentation, and synthetic data generators to increase the data 
size and volume. Thanks to websites like Kaggle, it is now effortless for ML experts to 
get superior-quality data and the assistance to enable data transformations for a variety 
of applications. Moreso, data that are not entirely available can be generated manually 
or automatically using crowdsourcing platforms such as AI-based data collection sys-
tems and Amazon Mechanical Turk [60].

5.6.2 data Pre-Processing

The most crucial and significant factor affecting the generalization capabilities of a 
supervised ML algorithm is data pre-processing [61]. This step is so important that 
it represents about 50%–80% of the entire task in classification [62]. Often-times 
real-life data are unreliable, and devoid of particular trends or pattern. They are also 
probably full of mistakes, such that they might require being pre-processed into an 
acceptable format for the algorithm. The information collected in a dataset must not 
be presumed to be of good quality and is in a satisfactory state. A major competency 
of ML experts is their ability to thoroughly examine the data and analyze it using the 
appropriate techniques and tools [10].

This step precedes the training phase, thus signifying its significance. Common 
pre-processing techniques used by ML modeling are data cleaning, imputations, 
augmentation, reduction, normalization, and oversampling. The transformation T  of 
a data vector Aik in data pre-processing to give an entirely new process data Bij  is 
shown in Equation 5.5 [63].

 B TAij ik     =  (5.5)

The information in Aik  is preserved by ,Bij  while it gets rid of some of the chal-
lenges of the unprocessed data vector Aik, thus presenting Bij   as a more significant 
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dataset than Aik. Variables j k and   represent the number of extracted features after 
and before extraction while i is the object number. The pre-processing approach to be 
adopted depends on the problems identified with the data. For instance, dimensional-
ity reduction might be necessitated for a too large data to enhance its performance 
[61]. Moreover, if the data are too few such that it contains about 20% of the missing 
data, the approach is then to get rid of it [64].

The process of data cleansing involves identifying inaccurate or noisy data and 
either correcting it or eliminating it from the dataset [61]. Data cleaning focuses on 
locating and replacing records and data that are erroneous, irrelevant, or otherwise 
noisy. Another pre-processing method is normalization. When there are several fea-
tures, each one’s characteristics could have a different scale, hence normalization is 
necessary to ensure that they fall in the same scale or the results will be subpar. Thus, 
to establish that the training data conform to a similar range prior to the training 
process, we can use a min-max normalization approach in Equation 5.6. Other forms 
of normalization are z-score and decimal scaling [61]:

 y
x x

x x
norm

min

max min

 
 

 
 = −

−
 (5.6)

where ynorm = the normalized data, x = the mean of the variable, xmin = minimum vari-
able, and xmax  = maximum variable.

There are three methods for handling the noise if it persists in class after the loud 
appearances are already discovered. First, if the model is strong enough to withstand 
over-fitting, noise can be disregarded. Secondly, it is possible to remove, alter, refine, 
or relabel noise from the dataset. If the attribute-containing data remains, methods 
like imputation, filtering, or polishing the incorrect attribute value can reveal other 
suspicious values and anticipate what needs to be cleaned [61].

Excessively large volume of data resulting into higher number of irrelevant fea-
tures could sometimes be undesirable for a particular ML application. It is difficult to 
use high-dimensional data; these models frequently overfit when there aren’t large-
scale datasets available [14]. In such a situation, it becomes imperative to reduce the 
initial data using dimensionality reduction which transforms the high dimensionality 
of the data into a low-dimension while its critical properties are still maintained. 
Dimensionality reduction approaches such as wavelet transforms, principal com-
ponent analysis (PCA), feature extraction, or selection have found application. The 
numerosity reduction could also play a vital role in decreasing the volume of col-
lected data for a smaller representation [61].

5.6.3 seLecting a ModeL or aLgorithM

Your choice of algorithm is contingent on the task you want to carry out. It 
may be overwhelming to handle all the tasks that ML may assist you with, thus 
making the choice of appropriate algorithm demanding and as well significant. 
This step is important because it assists to decide which of the algorithms to 
select, when to apply them, what parameters to take into account, and the testing 
approach.
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As earlier noted, there is no one-size-fits-for-all rule for selecting the most suit-
able ML algorithms. The choice of a suitable algorithm relies on factors such as the 
size, type, and format of the data; model’s interpretability and performance; compu-
tational speed; time; and cost. The following steps would assist in selecting the right 
model [65].

 1. The correct understanding of your project or task goal is important. What 
outcome do you desire? Do you desire an intelligent prediction based on 
historical data, then a supervised training algorithm fits your desire. If you 
want an image recognition model with low-quality images, a classification 
algorithm with dimensionality reduction algorithm would be beneficial.

 2. Analysis, processing, and annotation of collected data. The determination 
of the required output precedes the input selection. How does your data 
look? Is it unprocessed and just collected in raw form from anywhere? Is it 
unorganized, unclean, and biased? Or do you already have a sizable dataset 
with annotations? Do you have enough data, or do you need to collect more 
or perhaps start from scratch? Are you set for the modeling or do you need 
to spend time getting your data ready for the training?

 3. Assess the speed and time of the algorithm’s computation. Answering sig-
nificant questions regarding the speed and time desired helps to select the 
right algorithm for the task desired. Do you require it quickly at the expense 
of training and prediction quality? Better training results from more data of 
greater quality. Can you set aside the time necessary for effective training?

 4. A good knowledge of the environment, dimension of the task at hand, and 
the linearity of the data are significant for algorithm selection. When sim-
plicity and speed is a priority, linear algorithms such as SVM, SVR, and 
linear regression would be the best bet. However, because they work with 
linear data, they are not frequently employed for more complicated issues. 
Linear algorithms might not be adequate for your work if the data are mul-
tidimensional, multifarious, and has numerous overlapping associations.

 5. The decision of the number of features and parameters, preciseness, and 
complexity of your proposed model is equally relevant. Remember that 
an AI model will often perform better and more accurately after a longer 
period of training. If you have the time to let your model train longer, you 
can supply more features and parameters for it to consider. Therefore, giv-
ing your algorithm additional time to learn could be a wise investment in the 
accuracy and interpretability of your output in the future.

5.6.4 training the ModeL

Once data have undergone several pre-processing stages, the transformed data can 
be used to train the model. The primary phase in ML modeling is model training, 
which produces a functioning model that can subsequently be validated, tested, and 
applied. How well a model performs at the training phase ultimately suggests how 
well it will perform when integrated into an application. The process of training a 
ML model entails loading the selected algorithm with the transformed training data 
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so that it can learn. The training process fits the algorithm with the optimal weights 
and biases such that the loss/error function is minimized. During the training phase, 
the algorithm updates the weights and biases until pre-determined criteria for stop-
ping the training are satisfied, or else, new weight is relinquished, and a decreasing 
scalar parameter lowers the training parameters. Equation 5.7 mathematically repre-
sents the learning process for optimizing the weight and biases:

 E x yt t t t
i i. ; ;  1θ θ η θ( )= − ∇θ

( ) ( )
+  (5.7)

where θ  represents the weights and biases, x i  ( ) is the input of the training sample, y i( ) 
is the target label, η  is the learning rate, and E  is the loss/error function. In supervised 
learning, the idea of training entails the transformation of the connection between 
data features and output label into a mathematical expression, while in unsupervised 
learning, the mathematical relationship within the features themselves are developed 
[66]. The effectiveness of the training process is contingent on the optimal choice of 
algorithms, network features and hyper-parameters, and the training data.

5.6.5 ModeL vaLidation and evaLuation

Validation and evaluation are both required to determine whether the ML algo-
rithm’s learned model is good or not. An ordinary claim that a function fits exactly 
for a given set of training data isn’t always sufficient and convincing to the data sci-
ence community and the wide audience. It is imperative to statistically evaluate the 
performance of the model on a set of testing data. It is necessary to establish that a 
function fits training data perfectly. Sometimes in training, overfitting causes mod-
els to perform best on training data while utterly failing when tested on novel data. 
While there are many different methods and tools for evaluating models, employing 
them improperly can lead to an inaccurate assessment of your model’s performance. 
Using the hold-out validation approach, a part of the data is held out for testing the 
model’s performance. A larger amount of the data are used to train the model, and 
holdout data are utilized to test the model’s test metrics [67]. In contrast, when it is 
impracticable to hold out a fraction of the data specifically for validation reasons due 
to the limited size of the training dataset, cross-validation is a beneficial technique. 
Using the k-fold cross validation method, the training dataset is partitioned into k 
equal folds. Each of these k folds is treated as a holdout dataset, and the remaining 
k − 1 folds are used to train the model. There are several performance metrics that 
are used to statistically establish the goodness of fit of a model. The choice of metrics 
depends on the tasks, regression, or classification. This will be discussed in detail in 
the next chapter.

5.6.6 Making Predictions with the ModeL

A model that has been sufficiently and satisfactorily trained and validated can be 
deployed for a real-life application with a novel dataset. It must be ensured that the 
model learns satisfactorily instead of memorizing to ensure a good performance at 
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training and avoid failing at the testing phase. A well-trained classification model 
can effectively classify incoming emails as spam or not, medical images as benign or 
malignant, and customer’s behavior as pushing more sales or not.

5.7 PRACTICAL APPLICATIONS OF MACHINE LEARNING MODELS

Since the dawn of the 21st century, there has been an increased push to incorpo-
rate ML into different fields and sectors ranging from medical sciences, social sci-
ence, engineering, stock market, amongst others. Due to numerous advancements 
in AI-based decision support approaches over the past few years, this interest has 
grown. Notably, the impact of the rapid acceptance of these technologies has been 
particularly widespread in several disciplines, especially science and technology 
while these tools have been used to delve into new areas which have drawn attention.

The ability of ML to apply higher-dimensional mathematical operations on con-
siderably bigger datasets to unravel complicated, nonlinear relationships distin-
guishes it from traditional statistical modeling approach and draws on its roots in 
computer science [7]. The development of statistics-based ML approaches, increased 
processing power of computers, big data collection and storage have all contributed 
to an increased interest in ML-based applications. The list of ML applications is 
inexhaustive. The state-of-the-art algorithms have found wide applications and can-
not all be discussed in a chapter. However, to have a brief basic idea of some of its 
potential benefits in proffering solutions to some real-life problems, we briefly dis-
cuss some of the selected applications of ML.

5.7.1 Predictive anaLysis

Both supervised and unsupervised learning are efficient in making intelligent pre-
dictions of events. On the basis of labeled data, supervised learning algorithms are 
used to forecast outcomes. For instance, given a customer’s prior credit history, it 
could be deployed to forecast the risk that they will default on a loan. Owing to the 
capability of the unsupervised learning to find patterns and connections in unlabeled 
data, it can perform a task such as identifying a client segment based on their pur-
chasing pattern. The exciting ability of ML in making intelligent predictions have 
been beneficial to different fields of specialization such as economy and finance, 
energy sector, manufacturing, construction, and medical field, among others. In 
building construction, the structural performance of fiber-reinforced concrete prior 
to the actual construction process was predicted using Extreme Gradient Booting 
(XGBoot) and Artificial Neural Network (ANN) by Mai et al. [68] and Kilani et al. 
[69], respectively. Smart grid stability was examined and predicted by Mostafa et al. 
[70] using predictive ML models for renewable energy management in smart girds. 
To improve the performance of waste-to-energy thermal plant for optimizing the 
recovery of inherent energy in the waste resources, the studies by Adeleke et al. [71], 
and Olatunji et al. [72] developed adaptive neuro-fuzzy inference model (ANFIS, 
a hybrid of ANN and fuzzy logic) to predict the combustion enthalpy of waste and 
biomass resources, respectively. The quest for a method for valuation that would 
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describe pricing options has spurred the interest of ML applications in the prediction 
of stock prices of frontier markets [73–77]. In detecting fraudulent activities on credit 
card transactions, some studies like Afriyie et al. [78] developed DT, RF, and LR for 
prediction and classification of solutions to credit card transaction frauds.

5.7.2 iMage and video anaLysis

Recently, ML has gained traction as a vital tool for image and video analysis, 
allowing computers to perform the task of analyzing, comprehending, and inter-
preting visual information. Classifying an image into one of the many predefined 
groups, such as landscapes, buildings, or animals, has been made easy with the 
help of DNN such as CNN which are fitting for gird-like structures applications 
[79]. ML-based video segmentation is beneficial in different areas of applications 
such as the analysis of medical image, self-driving cars, augmented reality, and 
video surveillance [79–81]. The CNN is also versatile for detecting objects and 
segmentation. This involves identifying and separating objects within an image. 
Intelligent, autonomous, and smart production and manufacturing systems have 
benefitted from ML-based image detection and segmentations [82]. An algorithm 
like the Generative Adversarial Networks (GANs) can be used for image genera-
tion and style transfer. This entails producing a brand-new image that is similar 
to an already-existing one, either by starting from scratch or by incorporating an 
image’s style into another [83–85]. Human motions such as walking, jumping, or 
sprinting can be conveniently recognized using DNN like convolutional long short-
term memory (ConvLSTM) and RNNs [86–89].

5.7.3 MedicaL diagnostic

ML is gaining popularity in medical industry, and one of its most prominent applica-
tions is in medical diagnosis. ML has been proposed as a way to enhance suicide risk 
prediction models that have historically performed badly using traditional approaches 
[90]. Patient outcomes can be predicted using ML algorithms, and individuals who are 
at a high risk of developing particular illnesses can be found. This can assist medical 
professionals with setting treatment priorities and enhancing patient’s outcomes. The 
study by Lebedev et al. [91] developed a DL approach for a digitized prediction of the 
mental state of a patient. In this study, a deep ANN model to remotely identify emo-
tions was proposed. The task of manually segmenting the size of a brain tumor from 
3D Magnetic Resonance Imaging (MRI) volumes takes a lot of time and strongly 
depends on the operator’s skill. DL and computer-aided cancer detection methods 
have greatly improved this space. Examples of such development are provided in the 
study by Rao et al. [92], which suggested a modified U-Net structure based on residual 
networks that uses sub-pixel convolution at the decoder part and periodic shuffling at 
the encoder section of the original U-Net. ML algorithms can recognize and process 
images from X-rays, CT images, and MRIs. This helps discover common human heath 
challenges like cancer, heart disease, and brain abnormalities earlier. ML algorithms 
can analyze Electronic Health records (EHR) data to uncover patterns and trends that 
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indicate a diagnosis. Drug discovery and personalized medicine may benefit from 
this. To aid medical professionals in making wise choices and boost diagnostic preci-
sion, it can also be incorporated into clinical decision support systems.

5.7.4 naturaL Language Processing

Natural language processing (NLP) uses ML to train computers to process text and 
other natural language data. This technique has already been used to successfully 
classify medical text [93]. There are numerous methods for classifying text, includ-
ing conventional rule-based approaches and DL models like Naive Bayes, SVMs, 
k-NN, DT, RF, and Gradient Boosting. Kaczmarek [94] utilized the NLP technique 
of ML to integrate plans for spatial development and implementation by classifying 
contextual text of plans. Named Entity Recognition (NER) is a branch of NLP that 
focuses on finding and extracting entities from unstructured text, such as persons, 
organizations, places, and dates [95]. The typical process of NER involves several 
steps, including tokenization, part-of-speech (POS) tagging, and entity recognition. 
In the entity recognition step, ML algorithms are often used to classify each word 
or token in the text as an entity or not an entity. In an attempt to investigate the 
susceptibility of urban flood, the study by Fu et al. [96] develops a NER model to 
extract the site of historical flooding. Machine translation (MT) automates language 
translation. Due to the internet and the necessity for cross-language communication, 
NLP research has focused on machine translation [97]. ML-based Neural Machine 
Translation (NMT) is the most used machine translation method. NMT models learn 
to map input sequences in one language to output sequences in another by being 
trained on large parallel corpora of text in two languages [98–100]. Deep neural net-
works, specifically RNNs or transformer networks, underpin NMT models. Chatbots 
are computer programs which are built on DL-based methods such as RNN and 
transformer network and are able to mimic human conversation and perform tasks 
like answering questions and assisting customers with transactions [101,102]. Due to 
their 24/7 customer care capabilities and ability to effectively handle a large amount 
of consumer queries, chatbots have emerged as a crucial tool for businesses and orga-
nizations. Large text datasets are used to train these models, which can recognize 
linguistic patterns and produce coherent and context-sensitive answers.

5.7.5 recoMMender systeM

Another exciting application of ML is the recommender system which gives cus-
tomized recommendations to users [103]. These recommendations are based on 
analysis of the user’s actions, tastes, and interactions with the system in the past. 
Recommender systems are used extensively in many fields, including e-commerce, 
entertainment, and social media, to improve the user experience and increase engage-
ment. Users expect proactive product recommendations from recommender systems, 
which must be able to respond to shifting user tastes and evolving settings [103–105]. 
Recommender systems examine the data and generate recommendations using a 
variety of ML methods, such as matrix factorization [106–108], DL [109–112], and 
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DTs [113]. The accuracy and effectiveness of the recommender system depend on the 
quality and quantity of the data used to train the model, as well as the algorithms and 
techniques used to make the recommendations.

5.7.6 sPeech recognition

The process of turning spoken language into writing is called a fundamental piece 
of technology for NLP which has a wide range of uses, such as voice-activated vir-
tual assistants, hands-free device control, and automatic transcription of audio and 
video recordings [114,115]. DNNs are used in speech recognition to create predic-
tions about the most likely transcription by learning patterns in the spectral repre-
sentations of speech signals [116]. The DNN which is trained using the Connectionist 
Temporal Classification (CTC) for speech recognition has the ability to handle  
variable-length input sequences and enables the network to generate predictions at 
each time step depending on the input and its prior predictions [117]. Spectral repre-
sentations of the speech signal, such as spectrograms or Mel-frequency cepstral coef-
ficients (MFCCs), are frequently used as the input to a DNN for speech recognition. 
Large datasets of speech signals and their accompanying transcribed text can be used 
to train DNNs for speech recognition. The network can learn complex speech signal 
patterns and their link to transcribed text. Voice-activated virtual assistants, hands-
free device control, and audio/video transcription are all possible with the DNN. The 
DNN can real-time transcribe speech after training. Speech recognition uses proba-
bilistic Hidden Markov Models (HMM) [118,119]. Each observation in a sequence is 
produced by a hidden state, and HMMs are made to model these sequences of obser-
vations. The hidden states in speech recognition often correspond to the underlying 
phonemes or sub-word units of speech, while the observations are typically spectral 
representations of the speech signal [118].

5.8  CHALLENGES, LIMITATIONS, AND FUTURE DIRECTIONS 
OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

The adoption of ML has revolutionized the entire spectrum of different sectors across 
the globe as a viable and intelligent tool for solving intricate problems which were 
almost impossible with the traditional approaches. ML techniques has proffered 
several solutions to long-lived problems through its intelligent data-driven decision-
making framework. However, it grapples with several challenges which impedes its 
full-scale exploration. To fully comprehend the trajectories of practical and innova-
tive applications, it is critical to have a grasp of these limitations. Addressing these 
challenges will help ML expand and improve its performance, and become more 
user-friendly. Many ML models are referred to as “black boxes,” which makes it 
challenging to comprehend how they came to a given conclusion. This reduces the 
public confidence in the systems and hinders their wide adoption. Building trust 
and confidence in these systems will require methods to make ML models more 
transparent and understandable. Figure 5.10 represents the future of the AI and ML 
systems with a focus on the improved interpretability of the systems and models. 
With the state-of-the-art AI, humans often perform better in communicating their 
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thoughts and actions to another human. In order to construct more interpretable mod-
els while keeping a high level of learning performance, a set of ML approaches must 
be developed with more focus on their interpretability [120]. Interpretability, accord-
ing to Miller [121], is the extent to which individuals can comprehend the rationale 
behind a decision. This challenge is combated using a rapidly growing concept called 
Explainable Artificial Intelligence (XAI) which aims to increase the transparency 
and interpretability of ML models, in order to build trust and confidence in these 
systems [91,122,123]. There are several approaches to XAI, including saliency map, 
local interpretable model-agnostic explanations (LIME), and DT. These approaches 
aim to provide insights into how ML models make decisions, and to identify the key 
factors and features that are influencing their predictions.

Another giant stride towards overcoming ML hurdles is by improving its  large-
scale applications and enhancing its privacy and security aspects. This can be achieved 
by establishing ML training methods which span across vast decentralized devices 
or data sources. While the conventional approach integrates data onto a centralized 
server, it often missed out significant and valuable data which results in substantial 
loss. This is a major training drawback for machine learning. The emergence of feder-
ated learning approach has proffered a viable solution by utilizing a decentralized data 
source approach which offers many benefits such as enhancing its performance and 
generalizability while allowing models to be trained and updated locally [124]–[126]. 
Federated learning effectively addresses this drawback of the conventional training 
methods while reducing the costs associated with collecting, storing, and processing 
large amounts of data [125]. In addition, it has numerous real-world applications in 
industries like finance, mobile and IoT devices, and healthcare services..

Significant ML limitations such as bias and fairness have the potential to degrade 
the effectiveness and dependability of ML models, especially in applications con-
nected to humans. The systematic error or prejudice in the training data, known 
as bias, leads ML algorithms to generate judgments that are unjust or discriminate 
against particular groups while fairness is the principle that the decision made by the 
algorithms is equitable and indiscriminate against individual or groups based on their 
race, gender, age, or other protected features [127]. It’s critical to address bias and 
fairness in ML not only for ethical reasons but also to enhance model performance 
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and reliability. ML bias mitigation and fairness assurance strategies include data pre-
processing, algorithmic fairness requirements, and post-processing techniques [128]. 
The difficult and ongoing task of addressing bias and fairness in ML systems calls 
for careful examination of the data, algorithms, and decision-making procedures 
employed in the systems. We can make sure that ML is used to develop solutions 
that are moral, just, and dependable and that can have a good impact on society by 
tackling these issues.

Data quality and quantity significantly affect the effectiveness and precision of 
ML models. The accuracy, completeness, and relevance of the data used to train 
ML models are referred to as data quality. Poor data quality can result in unreliable, 
biased, or inaccurate models that can produce poor performance and inaccurate fore-
casts. For instance, it may be challenging for the ML algorithms to produce precise 
predictions if the training data has missing values, erroneous labels, or inconsistent 
data types. Data quantity describes the volume of data utilized to train ML models. 
More data can improve performance, but collecting and analyzing it can be costly 
and time-consuming. Data collection can often be difficult, especially in sensitive or 
private applications. ML professionals utilize feature engineering, data augmenta-
tion, and transfer learning to solve these difficulties using current data. New ML 
algorithms that can handle sparse or noisy data are being developed to expand the 
usage of ML. To overcome these obstacles, significant consideration must be given to 
data selection, pre-processing, and preparation. In addition, new ML algorithms that 
can work with sparse or noisy data must be developed.

Scalability must be carefully examined to support the continued development and 
adoption of ML in various applications. When the data become excessively large, 
some traditional ML algorithms have limitations in processing such a huge volume 
of data. For instance, many traditional ML approaches are troublesome for large-
scale applications because they have high temporal complexity and require a lot of 
computer resources to train and evaluate models. Some ML methods cannot handle 
distributed or parallel computing, which limits their scalability. There is need to cre-
ate new algorithms that can handle massive datasets and complex models that are 
more scalable and efficient. This includes methods for decreasing the computational 
complexity of current algorithms as well as algorithms created for parallel and dis-
tributed processing. It is also becoming simpler to deploy ML models at scale and 
manage the expanding volume of data created by contemporary applications thanks 
to new technologies like cloud computing and edge computing.

A significant future prospect of ML-based applications should take into account, 
from the perspective of biosocial-technical systems, how the various contexts in 
which human societies learn can influence the use of ML techniques that have been 
established in other contexts. Fox et al. [129] opined that a broader study of the ethi-
cal challenges brought on by ML is required. These can be examined at the level of 
many societies, each of which holds a distinct view of the connections between bio-
logical intelligence and AI. The focus of any ML-related submissions in the future 
should discuss if and how widely used ML techniques that have an impact on con-
cepts like social class and social sustainability are inevitable. Also encouraged are 
submissions that link ML to collective human learning which ought to take into 
account nonreinforced learning and reinforcement learning in various types of com-
munities across various geographical regions [129].
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5.9 CONCLUSION

A transformative impact of ML has been felt across all sectors as it shapes the tra-
jectories of industries towards intelligent data-driven decision making. This chapter 
examined the interconnectivity and key distinguishing features of AI, ML and DL 
while exploring their historical context. The chapter proceeded by investigating the 
algorithms, applications, and approaches of different types of ML alongside their 
distinctive features. ML has a wide range of applications across numerous indus-
tries, such as healthcare, banking, retail, and transportation, among others. The 
upsurge in volume, veracity and accessibility of data and computational powers has 
facilitated the widespread use of ML across all organizational spectrums. This has 
significantly enhanced the competitive edge of several spaces through intelligent 
data-driven decision-making. Additionally, the chapter examined some of the major 
limitations of ML applications and some future directions. To fully comprehend the 
trajectories of practical and innovative applications, it is critical to have a grasp of 
these limitations. As the discipline progresses, it is probable that novel algorithms 
will arise and fresh applications will be conceived, resulting in more stimulating 
progress in the next era.

REFERENCES

 [1] J. M. Guerrero, “Chapter 6- Artificial narrow intelligence,” in Mind Mapping and 
Artificial Intelligence, J. M. Guerrero, Ed., Academic Press, 2023, pp. 163–185. doi: 
10.1016/B978-0-12-820119-0.00010-8.

 [2] J. M. Guerrero, “Chapter 7- Artificial general intelligence,” In Mind Mapping and 
Artificial Intelligence, J. M. Guerrero, Ed., Academic Press, 2023, pp. 187–201. doi: 
10.1016/B978-0-12-820119-0.00009-1.

 [3] S. Kumpulainen and V. Terziyan, “Artificial general intelligence vs. industry 4.0: Do 
they need each other?” Procedia Computer Science, vol. 200, pp. 140–150, 2022. doi: 
10.1016/j.procs.2022.01.213. 

 [4] V. Sergievskii, “Super strong artificial intelligence and human mind,” Procedia 
Computer Science, vol. 169, pp. 458–460, 2020. doi: 10.1016/j.procs.2020.02.225.

 [5] Bernard Marr, “What are the four types of AI?” https://bernardmarr.com/what-are-the-
four-types-of-ai/, 2021.

 [6] F. Galbusera, G. Casaroli, and T. Bassani, “Artificial intelligence and machine learning 
in spine research,” JOR Spine, vol. 2, no. 1, 2019. doi: 10.1002/jsp2.1044.

 [7] P. Rattan, D. D. Penrice, and D. A. Simonetto, “Artificial intelligence and machine 
learning: What you always wanted to know but were afraid to ask,” Gastro Hep 
Advances, vol. 1, no. 1, pp. 70–78, 2022, doi: 10.1016/j.gastha.2021.11.001.

 [8] D. W. T. H. R. T. G James, An Introduction to Statistical Learning. New York: Springer 
US, 2013.

 [9] A. P. King and P. Aljabar, “Machine learning,” Matlab(r) Programming for 
Biomedical Engineers and Scientists, pp. 343–372, 2023. doi: 10.1016/B978-0- 
32-385773-4.00023-X. 

 [10] C. C. Paul Fergus, Applied Deep Learning: Tools, techniques and Implementation, 1st 
edition. France: Springers, 2022. 

 [11] IBM, https://www.ibm.com/topics/deep-learning, 2021.
 [12] Mathworks, “What is deep learning?” https://www.mathworks.com/discovery/deep-

learning.html.
 [13] C. Yu, X. Bi, and Y. Fan, “Deep learning for fluid velocity field estimation: A review,” 

Ocean Engineering, vol. 271, p. 113693, 2023, doi: 10.1016/j.oceaneng.2023.113693.

https://bernardmarr.com
https://bernardmarr.com
https://www.ibm.com
https://www.mathworks.com
https://www.mathworks.com
https://doi.org/10.1016/B978-0-12-820119-0.00010-8
https://doi.org/10.1016/B978-0-12-820119-0.00010-8
https://doi.org/10.1016/B978-0-12-820119-0.00009-1
https://doi.org/10.1016/B978-0-12-820119-0.00009-1
https://doi.org/10.1016/j.procs.2022.01.213
https://doi.org/10.1016/j.procs.2022.01.213
https://doi.org/10.1016/j.procs.2020.02.225
https://doi.org/10.1002/jsp2.1044
https://doi.org/10.1016/j.gastha.2021.11.001
https://doi.org/10.1016/B978-0-32-385773-4.00023-X
https://doi.org/10.1016/B978-0-32-385773-4.00023-X
https://doi.org/10.1016/j.oceaneng.2023.113693


114 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

 [14] F. Maleki, K. Ovens, K. Najafian, B. Forghani, C. Reinhold, and R. Forghani, “Overview 
of machine learning part 1: Fundamentals and classic approaches,” Neuroimaging Clinics 
of North America, vol. 30, no. 4, pp. e17–e32, 2020. doi: 10.1016/j.nic.2020.08.007.

 [15] A. Lieto, C. Lebiere, and A. Oltramari, “The knowledge level in cognitive architectures: 
Current limitations and possible developments,” Cognitive Systems Research, vol. 48, 
pp. 39–55, 2018, doi: 10.1016/j.cogsys.2017.05.001.

 [16] A. Hoffmann, “Can machines think? An old question reformulated,” Minds Mach 
(Dordr), vol. 20, no. 2, pp. 203–212, 2010, doi: 10.1007/s11023-010-9193-z.

 [17] J. K. O’Regan, “How to build a robot that is conscious and feels,” Minds Mach (Dordr), 
vol. 22, no. 2, pp. 117–136, 2012, doi: 10.1007/s11023-012-9279-x. 

 [18] T. Veale, P. Gervás, and R. Pérez Y Pérez, “Computational creativity: A continu-
ing journey,” Minds Mach (Dordr), vol. 20, no. 4, pp. 483–487, 2010, doi: 10.1007/
s11023-010-9212-0. 

 [19] H. T. Tavani, “Can we develop artificial agents capable of making good moral decisions?” 
Minds Mach (Dordr), vol. 21, no. 3, pp. 465–474, 2011, doi: 10.1007/s11023-011-9249-8. 

 [20] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, “Automated design of both 
the topology and sizing of analog electrical circuits using genetic programming,” In 
Artificial Intelligence in Design ’96, J. S. Gero, and F. Sudweeks, Eds., Springer, South 
Africa, 1996.

 [21] F. C. Pereira, and S. S. Borysov, “Machine learning fundamentals,” In Mobility 
Patterns, Big Data and Transport Analytics, Elsevier, pp. 9–29, 2018. doi: 10.1016/
B978-0-12-812970-8.00002-6.

 [22] A. M. Turing, Computing Machinery and Intelligence, England, 1950.
 [23] N. J. Nilsson, The Quest for Artificial Intelligence, Cambridge, UK: Cambridge 

University Press, 2009.
 [24] Joseph Weizenbaum, “ELIZA A computer program for the study of natural language 

communication between man and machine,” Communications of the ACM, vol. 9, no. 1, 
pp. 36–45, 1966.

 [25] D. J. State, and R. Lawrence, “Chess 4.5-the Northwestern University chess program,” 
In Chess Skill in Man and Machine, P. W. Frey, Ed., New York: Springer, pp. 80–103, 
1983.

 [26] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM 
Journal, vol. 3, no. 3, pp. 210–229, 1959. 

 [27] G. Wiederhold, and J. McCarthy, “Arthur Samuel: Pioneer in machine learning,” IBM 
Journal of Research and Development, vol. 36, no. 3, pp. 329–331, 1992, doi: 10.1147/
rd.363.0329.

 [28] D. Hillis et al., “In honor of Marvin Minsky’s contributions on his 80th birthday,” AI 
Magazine (Journal), Washington DC, pp. 103–110, 2007.

 [29] A. L. Fradkov, “Early history of machine learning,” IFAC-PapersOnLine, vol. 53, no. 
2, pp. 1385–1390, 2020. doi: 10.1016/j.ifacol.2020.12.1888.

 [30] M. Minsky, and S. Papert, “Perceptron: An introduction to computational geometry,” 
The MIT Press, Cambridge, Expanded Edition, vol. 19, no. 88, p. 2, 1969.

 [31] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and orga-
nization in the brain,” Psychological Reviews, vol. 65, no. 6, pp. 386–408, 1958.

 [32] J. J. Hopfield, “Neural networks and physical systems with emergent collective computa-
tional abilities (associative memory/parallel processing/categorization/content-addressable 
memory/fail-soft devices),” 1982. [Online]. Available: https://www.pnas.org.

 [33] K. Fukushima, Biological Cybernetics Neocognitron: A Self-organizing Neural Network 
Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position, South 
Africa: Springer Link, 1980.

 [34] R. Dechter, “Learning while searching in constraint-satisfaction-problems*,” [Online]. 
Available: www.aaai.org.

https://www.pnas.org
http://www.aaai.org
https://doi.org/10.1016/j.nic.2020.08.007
https://doi.org/10.1016/j.cogsys.2017.05.001
https://doi.org/10.1007/s11023-010-9193-z
https://doi.org/10.1007/s11023-012-9279-x
https://doi.org/10.1007/s11023-010-9212-0
https://doi.org/10.1007/s11023-010-9212-0
https://doi.org/10.1007/s11023-011-9249-8
https://doi.org/10.1016/B978-0-12-812970-8.00002-6
https://doi.org/10.1016/B978-0-12-812970-8.00002-6
https://doi.org/10.1147/rd.363.0329
https://doi.org/10.1147/rd.363.0329
https://doi.org/10.1016/j.ifacol.2020.12.1888


115Fundamentals of Machine Learning

 [35] Santiago Valdarrama, “Considerations when choosing a machine learning model,” 2021, 
https://towardsdatascience.com/considerations-when-choosing-a-machine-learning- 
model-aa31f52c27f3.

 [36] Jorge Garza-Ulloa, Applied Biomedical Engineering Using Artificial Intelligence and 
Cognitive Model, 1st edition. London: Elsevier, 2022.

 [37] Ramya Vidiyala, “How to select the right machine learning algorithm,” https://
towardsdatascience.com/how-to-select-the-right-machine-learning-algorithm-
b907a3460e6f, 2020.

 [38] D. Paudel, A. de Wit, H. Boogaard, D. Marcos, S. Osinga, and I. N. Athanasiadis, 
“Interpretability of deep learning models for crop yield forecasting,” Computers and 
Electronics in Agriculture, vol. 206, 2023, doi: 10.1016/j.compag.2023.107663.

 [39] O. Adeleke, S. Akinlabi, T. C. Jen, and I. Dunmade, “A machine learning approach 
for investigating the impact of seasonal variation on physical composition of munici-
pal solid waste,” Journal of Reliable Intelligent Environments, 2022, doi: 10.1007/
s40860-021-00168-9. 

 [40] P. A. Adedeji, S. A. Akinlabi, N. Madushele, and O. O. Olatunji, “Neuro-fuzzy resource 
forecast in site suitability assessment for wind and solar energy: A mini review,” Journal 
of Cleaner Production, vol. 269, p. 122104, 2020.

 [41] K. P. Murphy, Probabilistic Machine Learning: An Introduction. Cambridge: MIT 
Pres,” 2022.

 [42] N. Kühl, M. Goutier, L. Baier, C. Wolff, and D. Martin, “Human vs. supervised machine 
learning: Who learns patterns faster?” Cognitive Systems Research, vol. 76, pp. 78–92, 
2022, doi: 10.1016/j.cogsys.2022.09.002.

 [43] K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence modeling in the age of data,” 
Annual Review of Fluid Mechanics, vol. 51, pp. 357–377, 2019. 

 [44] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid mechan-
ics,” Annual Review of Fluid Mechanism, vol. 52, pp. 477–508, 2020. 

 [45] L. Zhou, Y. Song, W. Ji, and H. Wei, “Machine learning for combustion,” Energy and 
AI, vol. 7, 2022, doi: 10.1016/j.egyai.2021.100128. 

 [46] H. G. W. RJ. Rumelhart DE, “Learning representations by backpropagating errors,” 
Nature, vol. 323, pp. 533–536, 1986. 

 [47] I. Kumar, S. P. Singh, and Shivam, “Chapter 26- Machine learning in bioinformatics,” 
In Bioinformatics, D. B. Singh and R. K. Pathak, Eds., Academic Press, pp. 443–456, 
2022. doi: 10.1016/B978-0-323-89775-4.00020-1.

 [48] J. R. Quinlan., “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, 1986.
 [49] I. Goodfellow, Y. Bengio, and A. Courville, A Deep Learning. Cambridge, MA: MIT 

Press, 2016.
 [50] R. Polikar, “Ensemble learning,” Ensemble Machine Learning: Methods and 

Applications, pp. 1–34, 2012.
 [51] J. Hurwitz, and D. Kirsch, Machine Learning for Dummies, IBM Limited Edition, New 

Jersey: John Wiley and Sons, Inc., 2018.
 [52] C. Han, Z. He, and A. J. W. Toh, “Pairs trading via unsupervised learning,” European 

Journal of Operational Research, 2022, doi: 10.1016/j.ejor.2022.09.041.
 [53] N. C. Caballé, J. L. Castillo-Sequera, J. A. Gómez-Pulido, J. M. Gómez-Pulido, and M. 

L. Polo-Luque, “Machine learning applied to diagnosis of human diseases: A systematic 
review,” Applied Sciences (Switzerland), vol. 10, no. 15, 2020. doi: 10.3390/app10155135.

 [54] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1–3, 1998.
 [55] J. Wang, and F. Biljecki, “Unsupervised machine learning in urban studies: A system-

atic review of applications,” Cities, vol. 129, 2022, doi: 10.1016/j.cities.2022.103925. 
 [56] J. M. Carew, “Reinforcement learning. In-depth guide to machine learning in the 

 enterprise. Techtarget,” https://www.techtarget.com/searchenterpriseai/definition/ 
reinforcement-learning, 2023.

https://towardsdatascience.com
https://towardsdatascience.com
https://towardsdatascience.com
https://towardsdatascience.com
https://towardsdatascience.com
https://www.techtarget.com
https://www.techtarget.com
https://doi.org/10.1016/j.compag.2023.107663
https://doi.org/10.1007/s40860-021-00168-9
https://doi.org/10.1007/s40860-021-00168-9
https://doi.org/10.1016/j.cogsys.2022.09.002
https://doi.org/10.1016/j.egyai.2021.100128
https://doi.org/10.1016/B978-0-323-89775-4.00020-1
https://doi.org/10.1016/j.ejor.2022.09.041
https://doi.org/10.3390/app10155135
https://doi.org/10.1016/j.cities.2022.103925


116 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

 [57] Í. Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-Hidalgo, S. 
Bøgh, and N. Arana-Arexolaleiba, “A review on reinforcement learning for contact-rich 
robotic manipulation tasks,” Robotics and Computer-Integrated Manufacturing, vol. 
81, 2023. doi: 10.1016/j.rcim.2022.102517.

 [58] S. Bhatt, “Reinforcement learning 101. Towards data science,” 2018, https:// 
towardsdatascience.com/reinforcement-learning-101-e24b50e1d292.

 [59] Z. Wang, L. Xia, H. Yuan, R. S. Srinivasan, and X. Song, “Principles, research sta-
tus, and prospects of feature engineering for data-driven building energy prediction: A 
comprehensive review,” Journal of Building Engineering, vol. 58, 2022. doi: 10.1016/j.
jobe.2022.105028. 

 [60] Yuliia Kniazieva, “What is data collection in machine learning?” https://labely-
ourdata.com/articles/data-collection-methods-AI#:~:text=Simply%20put%2C%20
data%20collection%20is,fed%20into%20an%20ML%20model, 2022.

 [61] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data aug-
mentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, 2022, 
doi: 10.1016/j.gltp.2022.04.020. 

 [62] A. Kadhim, “An evaluation of preprocessing techniques for text classification pattern 
recognition view project improvement text classification using log(TF-IDF) with K-NN 
algorithm view project.” [Online]. Available: https://sites.google.com/site/ijcsis/.

 [63] A. Famili, W.-M. Shen, R. Weber, and E. Simoudis Famili, “Data preprocessing and 
intelligent data analysis,” Intelligent Data Analysis, vol. 1, no. 1–4, pp. 3–23, 1997. 

 [64] J. F. Davis, M. J. Piovoso, K. A. Hoo, and B. R. Bakshi, “Process data analysis and 
interpretation,” Advances in Chemical Engineering, vol. 25, pp. 1–103, 1999. 

 [65] Iryna Sydorenko, “How to choose the right machine learning algorithm: A prag-
matic approach,” 2021, https://labelyourdata.com/articles/how-to-choose-a-machine- 
learning-algorithm.

 [66] David Weedmark, “Machine learning model training: What it is and why it’s impor-
tant,” 2021, https://www.dominodatalab.com/blog/what-is-machine-learning-model- 
training.

 [67] M. Mohammed, M. B. Khan, and E. B. M. Bashie, Machine Learning: Algorithms and 
Applications. CRC Press, 2016. doi: 10.1201/9781315371658.

 [68] H. V. T. Mai, M. H. Nguyen, and H. B. Ly, “Development of machine learning meth-
ods to predict the compressive strength of fiber-reinforced self-compacting concrete 
and sensitivity analysis,” Construction and Building Materials, vol. 367, 2023, doi: 
10.1016/j.conbuildmat.2023.130339. 

 [69] A. J. Kilani, O. Adeleke, and C. A. Fapohunda, “Application of machine learning mod-
els to investigate the performance of concrete reinforced with oil palm empty fruit 
brunch (OPEFB) fibers,” Asian Journal of Civil Engineering, vol. 23, no. 2, pp. 299–
320, 2022, doi: 10.1007/s42107-022-00424-0. 

 [70] N. Mostafa, H. S. M. Ramadan, and O. Elfarouk, “Renewable energy management in 
smart grids by using big data analytics and machine learning,” Machine Learning with 
Applications, vol. 9, p. 100363, 2022, doi: 10.1016/j.mlwa.2022.100363. 

 [71] O. Adeleke, S. Akinlabi, T. C. Jen, P. A. Adedeji, and I. Dunmade, “Evolutionary-
based neuro-fuzzy modelling of combustion enthalpy of municipal solid waste,” Neural 
Computing and Applications, vol. 2, 2022, doi: 10.1007/s00521-021-06870-2. 

 [72] O. Olatunji, S. Akinlabi, N. Madushele, and P. A. Adedeji, “Estimation of municipal solid 
waste (MSW) combustion enthalpy for energy recovery,” EAI Endorsed Transactions 
on Energy Web, vol. 19, no. 23, pp. 1–9, 2019, doi: 10.4108/eai.11-6-2019.159119. 

 [73] R. Chowdhury, M. R. C. Mahdy, T. N. Alam, G. D. al Quaderi, and M. Arifur Rahman, 
“Predicting the stock price of frontier markets using machine learning and modi-
fied black-scholes option pricing model,” Physica A: Statistical Mechanics and its 
Applications, vol. 555, 2020, doi: 10.1016/j.physa.2020.124444. 

http://towardsdatascience.com
https://labelyourdata.com
https://labelyourdata.com
https://sites.google.com
https://labelyourdata.com
https://labelyourdata.com
https://www.dominodatalab.com
https://www.dominodatalab.com
http://towardsdatascience.com
https://labelyourdata.com
https://doi.org/10.1016/j.rcim.2022.102517
https://doi.org/10.1016/j.jobe.2022.105028
https://doi.org/10.1016/j.jobe.2022.105028
https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.1201/9781315371658
https://doi.org/10.1016/j.conbuildmat.2023.130339
https://doi.org/10.1016/j.conbuildmat.2023.130339
https://doi.org/10.1007/s42107-022-00424-0
https://doi.org/10.1016/j.mlwa.2022.100363
https://doi.org/10.1007/s00521-021-06870-2
https://doi.org/10.4108/eai.11-6-2019.159119
https://doi.org/10.1016/j.physa.2020.124444


117Fundamentals of Machine Learning

 [74] M. A. Khattak, M. Ali, and S. A. R. Rizvi, “Predicting the European stock market dur-
ing COVID-19: A machine learning approach,” MethodsX, vol. 8, 2021, doi: 10.1016/j.
mex.2020.101198. 

 [75] Y. Han, J. Kim, and D. Enke, “A machine learning trading system for the stock mar-
ket based on N-period min-max labeling using XGBoost,” Expert Systems with 
Applications, vol. 211, 2023, doi: 10.1016/j.eswa.2022.118581. 

 [76] P. Chhajer, M. Shah, and A. Kshirsagar, “The applications of artificial neural networks, 
support vector machines, and long-short term memory for stock market prediction,” 
Decision Analytics Journal, vol. 2, 2022, doi: 10.1016/j.dajour.2021.100015. 

 [77] M. Bansal, A. Goyal, and A. Choudhary, “Stock market prediction with high accu-
racy using machine learning techniques,” Procedia Computer Science, vol. 215, pp. 
247–265, 2022, doi: 10.1016/j.procs.2022.12.028. 

 [78] J. K. Afriyie et al., “A supervised machine learning algorithm for detecting and pre-
dicting fraud in credit card transactions,” Decision Analytics Journal, vol. 6, 2023, doi: 
10.1016/j.dajour.2023.100163.

 [79] G. Balachandran and J. V. G. Krishnan, “Machine learning based video segmentation 
of moving scene by motion index using IO detector and shot segmentation,” Image and 
Vision Computing, vol. 122, 2022, doi: 10.1016/j.imavis.2022.104443. 

 [80] M. Kawka, T. MH. Gall, C. Fang, R. Liu, and L. R. Jiao, “Intraoperative video analysis 
and machine learning models will change the future of surgical training,” Intelligent 
Surgery, vol. 1, pp. 13–15, 2022, doi: 10.1016/j.isurg.2021.03.001.

 [81] S. S. Harakannanavar, S. R. Sameer, V. Kumar, S. K. Behera, A. v Amberkar, and V. I. 
Puranikmath, “Robust video summarization algorithm using supervised machine learn-
ing,” Global Transitions Proceedings, vol. 3, no. 1, pp. 131–135, 2022, doi: 10.1016/j.
gltp.2022.04.009. 

 [82] L. Malburg, M. P. Rieder, R. Seiger, P. Klein, and R. Bergmann, “Object detection for 
smart factory processes by machine learning,” Procedia Computer Science, pp. 581–
588, 2021, doi: 10.1016/j.procs.2021.04.009.

 [83] Z. Zhang, H. Zhang, J. Wang, Z. Sun, and Z. Yang, “Generating news image captions 
with semantic discourse extraction and contrastive style-coherent learning,” Computers 
and Electrical Engineering, vol. 104, 2022, doi: 10.1016/j.compeleceng.2022.108429. 

 [84] K. Panwar, S. Kukreja, A. Singh, and K. K. Singh, “Towards deep learning for effi-
cient image encryption,” Procedia Computer Science, vol. 218, pp. 644–650, 2023, doi: 
10.1016/j.procs.2023.01.046. 

 [85] M. V. da Silva, L. H. F. P. Silva, J. D. D. Junior, M. C. Escarpinati, A. R. Backes, and J. 
F. Mari, “Generating synthetic multispectral images using neural style transfer: A study 
with application in channel alignment,” Computers and Electronics in Agriculture, vol. 
206, p. 107668, 2023, doi: 10.1016/j.compag.2023.107668. 

 [86] T. v. Nguyen and B. Mirza, “Dual-layer kernel extreme learning machine for action recog-
nition,” Neurocomputing, vol. 260, pp. 123–130, 2017, doi: 10.1016/j.neucom.2017.04.007. 

 [87] A. Iosifidis, A. Tefas, and I. Pitas, “Dynamic action recognition based on dynemes and 
extreme learning machine,” Pattern Recognition Letters, vol. 34, no. 15, pp. 1890–1898, 
2013, doi: 10.1016/j.patrec.2012.10.019. 

 [88] G. Varol, and A. A. Salah, “Efficient large-scale action recognition in videos using 
extreme learning machines,” Expert Systems with Applications, vol. 42, no. 21, pp. 
8274–8282, 2015, doi: 10.1016/j.eswa.2015.06.013. 

 [89] X. Chen, and M. Koskela, “Skeleton-based action recognition with extreme learning 
machines,” Neurocomputing, vol. 149, no. Part A, pp. 387–396, 2015, doi: 10.1016/j.
neucom.2013.10.046. 

 [90] K. Kusuma et al., “The performance of machine learning models in predicting sui-
cidal ideation, attempts, and deaths: A meta-analysis and systematic review,” Journal of 
Psychiatric Research, vol. 155, pp. 579–588, 2022. doi: 10.1016/j.jpsychires.2022.09.050. 

https://doi.org/10.1016/j.mex.2020.101198
https://doi.org/10.1016/j.mex.2020.101198
https://doi.org/10.1016/j.eswa.2022.118581
https://doi.org/10.1016/j.dajour.2021.100015
https://doi.org/10.1016/j.procs.2022.12.028
https://doi.org/10.1016/j.dajour.2023.100163
https://doi.org/10.1016/j.dajour.2023.100163
https://doi.org/10.1016/j.imavis.2022.104443
https://doi.org/10.1016/j.isurg.2021.03.001
https://doi.org/10.1016/j.gltp.2022.04.009
https://doi.org/10.1016/j.gltp.2022.04.009
https://doi.org/10.1016/j.procs.2021.04.009
https://doi.org/10.1016/j.compeleceng.2022.108429
https://doi.org/10.1016/j.procs.2023.01.046
https://doi.org/10.1016/j.procs.2023.01.046
https://doi.org/10.1016/j.compag.2023.107668
https://doi.org/10.1016/j.neucom.2017.04.007
https://doi.org/10.1016/j.patrec.2012.10.019
https://doi.org/10.1016/j.eswa.2015.06.013
https://doi.org/10.1016/j.neucom.2013.10.046
https://doi.org/10.1016/j.neucom.2013.10.046
https://doi.org/10.1016/j.jpsychires.2022.09.050


118 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

 [91] C. (Abigail) Zhang, S. Cho, and M. Vasarhelyi, “Explainable artificial intelligence 
(XAI) in auditing,” International Journal of Accounting Information Systems, vol. 46, 
2022, doi: 10.1016/j.accinf.2022.100572. 

 [92] K. R. Pedada, A. Bhujanga Rao, K. K. Patro, J. P. Allam, M. M. Jamjoom, and N. A. 
Samee, “A novel approach for brain tumour detection using deep learning based tech-
nique,” Biomed Signal Process Control, vol. 82, 2023, doi: 10.1016/j.bspc.2022.104549. 

 [93] J. M. Inglis, S. Bacchi, A. Troelnikov, W. Smith, and S. Shakib, “Automation of peni-
cillin adverse drug reaction categorisation and risk stratification with machine learn-
ing natural language processing,” Journal of Medical Informatics, vol. 156, 2021, doi: 
10.1016/j.ijmedinf.2021.104611. 

 [94] I. Kaczmarek, A. Iwaniak, A. Świetlicka, M. Piwowarczyk, and A. Nadolny, “A 
machine learning approach for integration of spatial development plans based on natu-
ral language processing,” Sustainable Cities and Society, vol. 76, 2022, doi: 10.1016/j.
scs.2021.103479. 

 [95] N. V. Patil, “An emphatic attempt with cognizance of the marathi language for named 
entity recognition,” Procedia Computer Science, vol. 218, pp. 2133–2142, 2023, doi: 
10.1016/j.procs.2023.01.189.

 [96] S. Fu, H. Lyu, Z. Wang, X. Hao, and C. Zhang, “Extracting historical flood loca-
tions from news media data by the named entity recognition (NER) model to assess 
urban flood susceptibility,” Journal of Hydrology, vol. 612, 2022, doi: 10.1016/j.
jhydrol.2022.128312.

 [97] A. v Hujon, T. D. Singh, and K. Amitab, “Transfer learning based neural machine trans-
lation of english-khasi on low-resource settings,” Procedia Computer Science, vol. 218, 
pp. 1–8, 2023, doi: 10.1016/j.procs.2022.12.396.

 [98] M. Brour and A. Benabbou, “ATLASLang NMT: Arabic text language into Arabic 
sign language neural machine translation,” Journal of King Saud University - 
Computer and Information Sciences, vol. 33, no. 9, pp. 1121–1131, 2021, doi: 10.1016/j.
jksuci.2019.07.006.

 [99] S. R. Laskar, B. Paul, P. Pakray, and S. Bandyopadhyay, “English-assamese multi-
modal neural machine translation using transliteration-based phrase augmentation 
approach,” Procedia Computer Science, vol. 218, pp. 979–988, 2023, doi: 10.1016/j.
procs.2023.01.078. 

 [100] S. K. Sheshadri, D. Gupta, and M. R. Costa-Jussà, “A voyage on neural machine transla-
tion for indic languages,” Procedia Computer Science, vol. 218, pp. 2694–2712, 2023, 
doi: 10.1016/j.procs.2023.01.242. 

 [101] L. Gkinko and A. Elbanna, “The appropriation of conversational AI in the workplace: 
A taxonomy of AI chatbot users,” International Journal of Information Management, 
2022, doi: 10.1016/j.ijinfomgt.2022.102568.

 [102] S. Han and M. K. Lee, “FAQ chatbot and inclusive learning in massive open online 
courses,” Computers & Education, vol. 179, 2022, doi: 10.1016/j.compedu.2021.104395. 

 [103] X. Chen, L. Yao, J. McAuley, G. Zhou, and X. Wang, “Deep reinforcement learning in 
recommender systems: A survey and new perspectives,” Knowledge-Based Systems, p. 
110335, 2023, doi: 10.1016/j.knosys.2023.110335. 

 [104] B. Walek and P. Fajmon, “A hybrid recommender system for an online store using a 
fuzzy expert system,” Expert Systems with Applications, vol. 212, 2023, doi: 10.1016/j.
eswa.2022.118565. 

 [105] M. Kuanr and P. Mohapatra, “Outranking relations based multi-criteria recommender 
system for analysis of health risk using multi-objective feature selection approach,” 
Data & Knowledge Engineering, vol. 145, 2023, doi: 10.1016/j.datak.2023.102144. 

 [106] X. Ran, Y. Wang, L. Y. Zhang, and J. Ma, “A differentially private matrix factorization 
based on vector perturbation for recommender system,” Neurocomputing, vol. 483, pp. 
32–41, 2022, doi: 10.1016/j.neucom.2022.01.079. 

https://doi.org/10.1016/j.accinf.2022.100572
https://doi.org/10.1016/j.bspc.2022.104549
https://doi.org/10.1016/j.ijmedinf.2021.104611
https://doi.org/10.1016/j.ijmedinf.2021.104611
https://doi.org/10.1016/j.scs.2021.103479
https://doi.org/10.1016/j.scs.2021.103479
https://doi.org/10.1016/j.procs.2023.01.189
https://doi.org/10.1016/j.procs.2023.01.189
https://doi.org/10.1016/j.jhydrol.2022.128312
https://doi.org/10.1016/j.jhydrol.2022.128312
https://doi.org/10.1016/j.procs.2022.12.396
https://doi.org/10.1016/j.jksuci.2019.07.006
https://doi.org/10.1016/j.jksuci.2019.07.006
https://doi.org/10.1016/j.procs.2023.01.078
https://doi.org/10.1016/j.procs.2023.01.078
https://doi.org/10.1016/j.procs.2023.01.242
https://doi.org/10.1016/j.ijinfomgt.2022.102568
https://doi.org/10.1016/j.compedu.2021.104395
https://doi.org/10.1016/j.knosys.2023.110335
https://doi.org/10.1016/j.eswa.2022.118565
https://doi.org/10.1016/j.eswa.2022.118565
https://doi.org/10.1016/j.datak.2023.102144
https://doi.org/10.1016/j.neucom.2022.01.079


119Fundamentals of Machine Learning

 [107] A. Pujahari and D. S. Sisodia, “Item feature refinement using matrix factoriza-
tion and boosted learning based user profile generation for content-based recom-
mender systems,” Expert Systems with Applications, vol. 206, 2022, doi: 10.1016/j.
eswa.2022.117849. 

 [108] M. H. Aghdam, “A novel constrained non-negative matrix factorization method based 
on users and items pairwise relationship for recommender systems,” Expert Systems 
with Applications, vol. 195, 2022, doi: 10.1016/j.eswa.2022.116593. 

 [109] M. Ahmadian, S. Ahmadian, and M. Ahmadi, “RDERL: Reliable deep ensemble rein-
forcement learning-based recommender system,” Knowledge-Based Systems, vol. 263, 
2023, doi: 10.1016/j.knosys.2023.110289. 

 [110] S. Lee and D. Kim, “Deep learning based recommender system using cross convo-
lutional filters,” Information Sciences, vol. 592, pp. 112–122, 2022, doi: 10.1016/j.
ins.2022.01.033. 

 [111] N. Heidari, P. Moradi, and A. Koochari, “An attention-based deep learning method for 
solving the cold-start and sparsity issues of recommender systems,” Knowledge-Based 
Systems, vol. 256, 2022, doi: 10.1016/j.knosys.2022.109835. 

 [112] M. Dong, F. Yuan, L. Yao, X. Wang, X. Xu, and L. Zhu, “A survey for trust-aware rec-
ommender systems: A deep learning perspective,” Knowledge-Based Systems, vol. 249, 
2022, doi: 10.1016/j.knosys.2022.108954. 

 [113] Y. Ho Cho, J. K. Kim, and S. H. Kim, “A personalized recommender system based on 
web usage mining and decision tree induction,” [Online]. Available: www.elsevier.com/
locate/eswa.

 [114] P. Zhang, Y. Huang, C. Yang, and W. Jiang, “Estimate the noise effect on automatic 
speech recognition accuracy for mandarin by an approach associating articulation 
index,” Applied Acoustics, vol. 203, 2023, doi: 10.1016/j.apacoust.2023.109217.

 [115] C. Guerrero Flores, G. Tryfou, and M. Omologo, “Cepstral distance based channel 
selection for distant speech recognition,” Computer Speech & Language, vol. 47, pp. 
314–332, 2018, doi: 10.1016/j.csl.2017.08.003.

 [116] L. Sun, B. Zou, S. Fu, J. Chen, and F. Wang, “Speech emotion recognition based on 
DNN-decision tree SVM model,” Speech Communication, vol. 115, pp. 29–37, 2019, 
doi: 10.1016/j.specom.2019.10.004. 

 [117] X. Kang, H. Huang, Y. Hu, and Z. Huang, “Connectionist temporal classification loss 
for vector quantized variational autoencoder in zero-shot voice conversion,” Digital 
Signal Processing: A Review Journal, vol. 116, 2021, doi: 10.1016/j.dsp.2021.103110. 

 [118] C. Champion and S. M. Houghton, “Application of continuous state Hidden Markov 
Models to a classical problem in speech recognition,” Computer Speech & Language, 
vol. 36, pp. 347–364, 2016, doi: 10.1016/j.csl.2015.05.001. 

 [119] B. Mouaz, B. H. Abderrahim, and E. Abdelmajid, “Speech recognition of Moroccan 
dialect using hidden Markov models,” Procedia Computer Science, pp. 985–991, 2019. 
doi: 10.1016/j.procs.2019.04.138.

 [120] Z. Shao, R. Zhao, S. Yuan, M. Ding, and Y. Wang, “Tracing the evolution of AI in the 
past decade and forecasting the emerging trends,” Expert Systems with Applications, 
vol. 209, 2022. doi: 10.1016/j.eswa.2022.118221.

 [121] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” 
Artificial Intelligence, vol. 267, pp. 1–38, 2019. doi: 10.1016/j.artint.2018.07.007. 

 [122] A. B. Haque, A. K. M. N. Islam, and P. Mikalef, “Explainable Artificial Intelligence 
(XAI) from a user perspective: A synthesis of prior literature and problematizing 
avenues for future research,” Technological Forecasting and Social Change, vol. 186, 
2023, doi: 10.1016/j.techfore.2022.122120. 

 [123] M. Langer et al., “What do we want from explainable artificial intelligence (XAI)? - A 
stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI 
research,” Artificial Intelligence, vol. 296, 2021, doi: 10.1016/j.artint.2021.103473. 

http://www.elsevier.com
http://www.elsevier.com
https://doi.org/10.1016/j.eswa.2022.117849
https://doi.org/10.1016/j.eswa.2022.117849
https://doi.org/10.1016/j.eswa.2022.116593
https://doi.org/10.1016/j.knosys.2023.110289
https://doi.org/10.1016/j.ins.2022.01.033
https://doi.org/10.1016/j.ins.2022.01.033
https://doi.org/10.1016/j.knosys.2022.109835
https://doi.org/10.1016/j.knosys.2022.108954
https://doi.org/10.1016/j.apacoust.2023.109217
https://doi.org/10.1016/j.csl.2017.08.003
https://doi.org/10.1016/j.specom.2019.10.004
https://doi.org/10.1016/j.dsp.2021.103110
https://doi.org/10.1016/j.csl.2015.05.001
https://doi.org/10.1016/j.procs.2019.04.138
https://doi.org/10.1016/j.eswa.2022.118221
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.techfore.2022.122120
https://doi.org/10.1016/j.artint.2021.103473


120 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

 [124] Y. Chen, L. Liang, and W. Gao, “Non trust detection of decentralized federated learning 
based on historical gradient,” Engineering Applications of Artificial Intelligence, vol. 
120, p. 105888, 2023, doi: 10.1016/j.engappai.2023.105888. 

 [125] I. Ullah, U. U. Hassan, and M. I. Ali, “Multi-level federated learning for industry 4.0- A 
crowdsourcing approach,” Procedia Computer Science, vol. 217, pp. 423–435, 2023, 
doi: 10.1016/j.procs.2022.12.238. 

 [126] Y. Chen, L. Liang, and W. Gao, “Non trust detection of decentralized federated learning 
based on historical gradient,” Engineering Applications of Artificial Intelligence, vol. 
120, p. 105888, 2023, doi: 10.1016/j.engappai.2023.105888. 

 [127] D. Pessach and E. Shmueli, “Improving fairness of artificial intelligence algorithms in 
privileged-group selection bias data settings,” Expert Systems with Applications, vol. 
185, 2021, doi: 10.1016/j.eswa.2021.115667. 

 [128] A. Ashokan and C. Haas, “Fairness metrics and bias mitigation strategies for rating pre-
dictions,” Information Processing & Management, vol. 58, no. 5, 2021, doi: 10.1016/j.
ipm.2021.102646. 

 [129] C. G.-B. Stephen Fox, “Machine learning in society: Technology in society briefing,” 
Technology in Society, vol. 72, p. 102147, 2023.

https://doi.org/10.1016/j.engappai.2023.105888
https://doi.org/10.1016/j.procs.2022.12.238
https://doi.org/10.1016/j.engappai.2023.105888
https://doi.org/10.1016/j.eswa.2021.115667
https://doi.org/10.1016/j.ipm.2021.102646
https://doi.org/10.1016/j.ipm.2021.102646


6 Supervised Learning

6.1 INTRODUCTION

The previous chapter introduced the preliminary information to properly under-
stand the concept of machine learning and its types, algorithms, and applications. In 
this chapter, we want to delve deeper into understanding of a technique in machine 
learning, which is supervised learning. We present an overview of its types and 
components, algorithms, and common practices. Worthy of note is the fact that the 
information provided in this chapter about supervised learning is not exhaustive. The 
reader is advised to consult specialized machine learning textbooks for more infor-
mation beyond what is provided in this chapter.

In supervised learning, algorithms are used to discover a relationship between 
input variables (features) and output variables (labels) based on a labeled training 
dataset. Using input attributes, supervised learning aims to create a model that can 
precisely predict outputs for novel data. A labeled dataset with input variables (fea-
tures) and associated output variables is used to train the model (labels). The model 
learns a function that maps the inputs to the outputs using the relationships between 
the input and output variables. Then, using this function, predictions for fresh, unseen 
data can be made.

Utilizing the statistical relationship between the input and output, supervised 
learning models adjust model parameters in response to the discrepancy between 
the actual result and the prediction [1]. Supervised learning is a potent method for 
resolving issues involving classification or prediction based on input data. It is widely 
employed in a variety of industries, and as artificial intelligence technology develops, 
so do its applications.

6.2 TYPES OF SUPERVISED MACHINE LEARNING

The types and algorithms of the common types of supervised learning is illustrated 
in Figure 6.1 and briefly discussed as follows.

6.2.1 regression anaLysis

A supervised learning method called regression is used to forecast a continuous 
output value. Regression analysis with a continuous objective variable links input 
and output variables. Finance, economics, physics, engineering, and others employ 
regression. Regression analysis may simulate any input–output relationship, linear or 
not. Try estimating a house’s price based on its size, location, and other factors. To 
predict this, you may use a regression model. This requires compilation of a data-
set of homes with information on their capacity, locations, and other characteristics 
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in addition to their sale prices. This dataset would subsequently be used to train 
a regression model. As soon as the model has been trained, it can be deployed to 
predict the anticipated cost of a new home depending on its size, location, and other 
characteristics. The studies by Adetunji et al. [2], Kusan et al. [3] and Gerek [4] were 
carried out to achieve this aim using random forest, fuzzy logic, and adaptive neuro-
fuzzy inference system (ANFIS), respectively.

The study by Adeleke et al. [5] investigated the relationship between the meteoro-
logical parameters and electrical energy consumption at the students’ residence at the 
University of Johannesburg, South Africa. The study developed a neuro-fuzzy model, 
which is a hybrid of artificial neural network (ANN) and fuzzy logic to predict the 
electrical energy consumption of the campus residence based on weather parameters 
such as temperature, humidity, and windspeed. The study is significant for creating 
an intelligent and workable data-driven decision-making approach to manage the 
campus’s electrical energy consumption in the case study. A similar study explored 
the regression analysis task of the supervised machine learning to develop a viable 
system for an on-line and offline monitoring of waste-to-energy (WTE) thermal 
plants. This study developed an ANFIS model optimized with evolutionary algo-
rithms to estimate the combustion enthalpy of municipal solid waste (MSW) based 
on its physical composition [6]. The list of the real-work practical applications of the 
regression analysis of the supervised learning to solve several linear and nonlinear 
problems is inexhaustive, while the literature is replete with several studies that have 
deployed these algorithms across several fields for intelligent decision-making, plan-
ning, and designs.

6.2.2 cLassification

Classification is a type of supervised learning used to predict a categorical output 
variable. This suggests two or more classes: male or female, yes or no, males or 
women, 0 or 1, black or white, etc. Classification seeks a link between input factors 

Supervised learning

Regression
Con�nuous target variable

(real-valued output) 

Classif icat ion
Categorical target variable

(discrete value or categorical output) 

Risk Assessment
Housing price predic�on
Scores predict ion

Energy forecast

Typical Applicat ion Algorithms
Neural Network
Linear regression
Support vector regression 
Decision tree
Ensemble method

Algorithms
Spam email detect ion

Fraud detect ion
Image classif icat ion

Diagnost ic

Naives Bayes
Decision tree
Support vector machine
Random forest
k-Nearest Neighbor

Typical Applica�on
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FIGURE 6.1 Types and algorithms of supervised learning.
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and output variables, usually shown as a judgment border on a graph. Many issues, 
like email spam detection, sentiment analysis, image categorization, etc., can be 
modeled using classification [7]. Common classification tasks are as follows.

6.2.2.1 Binary Classification
Binary classification predicts one of two outputs from the input. The two outcomes 
are called good and negative. A spam filtering system might produce “spam” or “not 
spam” from an email. When employing binary classification, the machine learning 
system recognizes input data patterns related to each class. After training on labeled 
samples, the method can predict new, unlabeled samples. Support vector machines, 
decision trees, and logistic regression are popular binary classification techniques.

6.2.2.2 Multi-Class Classification
Multi-class classification divides input into more than two classes. The input can be 
classified into many categories. For example, a collection of animal photographs with 
species tags. “Dog,” “cat,” “bird,” “fish,” and others may apply here. Classification 
challenges aim to identify each image’s species. Multi-class classification uses logis-
tic regression, decision trees, Support Vector Machine (SVMs), and neural networks. 
The dataset size, feature count, and classification task difficulty affect algorithm 
selection.

6.2.2.3 Multi-Label Classification
In multi-label classification, each input can be classified under more than one class or 
label. This implies that different labels may be simultaneously applied to one input 
[8,9]. The goal of the multi-label classification task would be to predict the genres 
that best describe each movie review. A variety of techniques, including classifier 
chains, binary relevance, and label powersets, can be used to conduct multi-label 
classification.

6.3 COMMON SUPERVISED LEARNING ALGORITHMS

We shall discuss supervised learning algorithms in the following sections. 
Understanding these algorithms is crucial for selecting the optimum algorithm and 
improving model performance. The task to be carried out whether regression or clas-
sification determines the algorithm to select.

6.3.1 Linear regression

Linear regression is a prominent predictive analysis technique in machine learning. 
It is a statistical approach for depicting the relationship between two variables, with 
the objective of identifying the optimal linear model that characterizes this associa-
tion. It seeks for the line of greatest fit that most closely approximates the connection 
between the variables. The determination of the line is achieved by minimizing the 
sum of the squared discrepancies between the anticipated values and the actual val-
ues. Regression analysis may be used to quantify the magnitude of an independent 
variable’s influence over a dependent variable. It can also be applied to project effects 
or change’s influence. Regression analysis gives insights into the understanding of 



124 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

the trend in the variation of the independent variable when one or more independent 
variables change [10]. Linear regression models offer a simple understandable math-
ematical technique that can produce predictions. It is represented mathematically in 
Equation 6.1:

 y b b x  0 1= +  (6.1)

where y is the dependent variable, x is the independent variable, b0 is the y-intercept 
(constant term), while b1 is the slope (regression coefficient). Equation 6.2 describes 
a multiple linear regression which encompasses several explanatory variables to pre-
dict an outcome. In real life scenarios, several variables determine the turnout of 
events, thus multiple linear regression finds more applications in real life context.

 y b b x b x b xn n  0 1 1 2 2= + + +…  (6.2)

where y is the dependent variable, x x xn,  , .1 2 …  are the independent variables, b0 is the 
y-intercept (constant terms), while b b bn,  ,   1 2 … are the slope (regression coefficients).

The Least Squares method is a frequently used method in linear regression to 
minimize the variance between data points [1]. It fits data by minimizing the sum of 
squares of residuals vis-à-vis, r1 and r2, thus helping to search for optimal parameters 
of the linear regression model. Finding the regression coefficient values that reduce 
the mean squared error (MSE) between the observed and predicted values of the 
dependent variable is the aim of Least Mean Squares. Equation 6.3 is used in Least 
Mean Squares to iteratively update the regression coefficients:

 b t b t r t x t1 * *α( ) ( ) ( ) ( )+ = +  (6.3)

In this context, x(t) represents the values of the independent variable at iteration t. 
The residual at iteration t, denoted as r(t), is defined as the discrepancy between the 
actual and predicted. The current estimate of the regression coefficients at iteration 
t is represented by b(t). Additionally, the learning rate α is a parameter that governs 
the magnitude of the update step. The objective of linear regression is to determine 
the line of best fit that minimizes the sum of squared residuals, representing the dis-
crepancy between observed and anticipated values. Additionally, finding an optimal 
value of projection with minimal error function is a major focus of linear regression. 
The error function in linear regression tasks is measured by a vital metric known 
as the R2. When making a comparison between observed and anticipated values, a 
higher R2 value signifies a strong correspondence, whereas a lower R2 value implies 
a worse fit. Linear regression is a machine learning-based statistical approach that 
finds relevance in data analytics and interpretations.

6.3.2 Logistic regression

Logistic regression also known as logit model is another significant supervised 
machine learning algorithm which finds application in classification and predictive 
analysis task. It is a statistical method used for binary classification problems and 
estimating the probability of an event. A primary distinctive feature of the linear 
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regression and logistic regression is their respective outputs. While linear regres-
sion processes a continuous variable spanning over a wide range, logistic regres-
sion computes probability of an instance belonging to a certain group. Furthermore, 
linear regression seeks for a linear best fit while logistic regression finds S-curve. 
Moreover, performance of the linear regression is estimated using a least square esti-
mation while logistic regression employs maximum likelihood for its performance 
estimations. Maximum likelihood estimate seeks to identify the model parameter 
values that maximize the probability of witnessing the data given the model. A 
logistic function as represented in Equation 6.4 is used to represent the connection 
between the independent factors and the dependent variable [11,12];

 F x
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e

ex
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x

1
1 1

( ) =
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=
+−  (6.4)

Since the outcome is often depicted in the form of probability, the dependent variable 
is expressed in the range 0 and 1. However, it involves a categorical or continuous 
independent variable. The logistic transformation of the unbounded linear equation 
p x( ) of the probability is given in Equation 6.5 while Equation 6.6 represents the 
resulting solution for p x( ). [11,12]. This is a logarithm function which maps the pre-
dicted value to a probability, encompassing a real value and threshold value of 0 and 1.
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Now, we can reduce the misclassification rate by predicting y 1=  when p 5≥  and 
y 0 = when p 0.5< , while classes in this case are 1 and 0 [13]:
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Once the model parameters have been determined, predictions based on fresh data 
can be made. By differentiating the Equation 6.7 with respect to various parameters 
and setting it to zero, we may determine the Maximum likelihood estimation. For 
instance, the derivative with regard to aj ,  one of the parameter alpha’s components, 
is given by Equation 6.8 [14]:
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Logistic regression’s key benefit is its capacity to model the relationship between 
dependent and independent variables, even in the face of intricate and nonlinear cor-
relations. In addition, logistic regression is reasonably simple to comprehend because 
each independent variable’s influence on the projected probability of the positive class 
can be determined using the independent variable’s coefficients. Logistic regression 
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assumes linearity. Logistic regression assumes linearity between independent factors 
and dependent variables. To account for nonlinear interactions, the model may need 
to be altered. 

6.3.3 neuraL networks

A form of supervised machine learning algorithm known as a neural network is 
based on the structure and operation of the human brain [15]. These algorithms are 
made to identify data patterns and predict or decide based on those patterns. Neural 
network is one of the most crucial technologies in contemporary artificial intelli-
gence, which is essential to applications including computer vision, natural language 
processing, and autonomous systems.

A neural network is made of artificial neurons which are a group of intercon-
nected processing nodes. Figure 6.2 compares the biological neurons and the design 
of the artificial neuron designs. Each neuron processes input from other neurons 
and outputs to other neurons. Each neuron’s processing and inputs and outputs are 
mathematical vectors. A neuron with label i gets input x ti ( ) from a precursor neuron 
with an activation U ti ( ) whose neuron’s status relies on discreet time parameter. A 
default threshold value of iθ  is always set, except altered by the learning process. The 
new activation in the current neuron at a time t 1+  from precursor neuron’s activation 
U ti ( ) is computed using an activation function f  as shown in Equation 6.9:

 U t f U t x ti i i i  1 ,    ,      θ( )( ) ( ) ( )+ =  (6.9)

The output of the activation of the current neuron is computed using an output func-
tion fout  (identity function) as shown in Equation 6.10:

 y t f U ti out i  ( )( ) ( )=  (6.10)

A neural network typically consists of three types of layers: input, hidden, and out-
put. The input data must be changed by the hidden layers into a format that is better 
suited for the output layer. The network’s ultimate output is produced by the output 
layer. While serving as the network’s input interface, an input neuron has no prede-
cessor, likewise an output neuron has no successor and as a result acts as the net-
work’s output interface.

FIGURE 6.2 (a) Biological neurons and (b) artificial neurons [16].
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A neural network’s core consists of a collection of weights and biases that control 
how the neurons behave. The biases modify the activation of the neurons, while the 
weights regulate the strength of the link between neurons. The design of the network 
and the manner in which input data are processed are both governed by the weights 
and biases combination. Using a method known as backpropagation, the weights 
between neurons are modified during the training phase. The network’s output error 
computed is used to modify weights in backpropagation. This operation is repeated 
several times to improve network performance and eliminate errors. Generally, the 
neural network architecture can be simplified mathematically as in Equation 6.11:
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where w ti ( ) is the weight value in discreet time t, b is the bias, and F  is the transfer 
function.

The common types of neural networks are discussed as follows.

6.3.3.1 Feedforward Neural Network
The feedforward neural network is a type of neural network with a unidirectional 
flow of information from input nodes through the hidden nodes and finally to the 
output nodes. It is also called Multi-Later Perceptron (MLP). In a feedforward neural 
network, there are connections between every neuron in the layer above it but none 
within the layer itself. Weights control the strength of the connections between neu-
rons, and they are modified throughout the learning process to enhance the network’s 
functionality. There are no restrictions on the number of layers, kind of transfer func-
tion employed in each artificial neuron, or the number of connections between each 
artificial neuron. A single perceptron, which is the simplest feed-forward ANN and 
can only learn linear separable problems, is used in this system as shown in Figure 6.3 
[16]. The cost function is a critical factor in a feedforward neural network. The adjust-
ment of the weights and bias is aimed at reducing the error (cost function) between 
the output given by the network and the target outcome Backpropagation, a method 
for accomplishing this, entails sending the error backward across the network and 
modifying the weights as necessary.

FIGURE 6.3 Topology of the feed forward neural network [16].
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6.3.3.2 Recurrent Neural Network
A Recurrent Neural Network (RNN) is a kind of ANN that utilizes feedback con-
nections to handle sequential data. RNNs allows a loop-form flow of information. Its 
internal state or “memory” enables them to recall the input and thus able to process 
sequences of input data. Without restrictions on back loops, it is comparable to a 
feed-forward neural network. In these circumstances, information is no longer only 
sent in one direction but also in reverse, making nodes interconnections to form a 
cycle [16]. An RNN’s architecture as shown in Figure 6.4 typically consists of a 
number of recurrent layers, with several memory cells or “hidden units” included in 
each layer. The network is able to keep a representation of the current context in the 
input sequence because these hidden units are updated at each time step based on 
the current input and the prior hidden state [17,18]. RNNs are applicable in scenarios 
where a sequential dataset is present, and the temporal dynamics linking the data 
have greater signigicance than the spatial characteristics of any individual frame 
[19]. For training an RNN, the weights of the network are changed to minimize some 
loss function through, backpropagation through time (BPTT), a type of backpropa-
gation that takes into account the temporal dependencies in the data [20]. Common 
examples of RNN are Long Short-Term Memory (LSTM) networks, Hierarchical 
RNNs, Bidirectional RNNs, and Gated Recurrent Units (GRUs).

6.3.3.3 Convolutional Neural Network
ANNs have a limited application when the inputs are videos and images. Instead, 
we can utilize a deep neural network such as Convolutional Neural Network (CNN) 
specially designed for such task [21]. CNNs are modeled after the cerebral cortex’s 
primary visual cortex comprising six layers which are in charge of extracting vari-
ous features such as edges, shapes, color, etc. [22]. CNNs are used to selectively 
focus on distinct sections of an image in order to extract features that are pertinent to 
the job at hand, as opposed to fully linked layers in classic neural networks that treat 
each input feature equally. The basic architecture of CNN comprises several layers 
such as convolutional layers, pooling layers, and fully connected layers as shown in 
Figure 6.5. A series of feature maps that highlight various facets of the input image 
are created by each convolutional layer by applying a set of filters to the  image. 

FIGURE 6.4 Topology of the recurrent neural network [16].
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The feature maps are subsequently down sampled by pooling layers, which low-
ers their dimensionality while maintaining crucial characteristics. Features that are 
extracted from the convolutional and pooling layer features are combined by fully 
connected layers into a set of outputs that are appropriate for the task such as image 
classification [23]. In order to reduce any loss function during training, the CNN 
modifies the weights of the filters, often through backpropagation [24].

6.3.4 suPPort vector Machine

The support vector machine (SVM) is a class of supervised learning algorithms used 
to determine the best boundary between two classes. SVMs, which are based on 
statistical learning frameworks, are one of the most reliable prediction techniques 
[26]. An SVM training algorithm creates a model that categorizes fresh samples to 
one of two categories based on a collection of training examples, making it a non-
probabilistic binary linear classifier. In order to maximize the distance between the 
two categories, SVM maps training examples to points in space. Then, depending on 
the gap side where they are positioned, new examples are projected to fit into one of 
the categories by being mapped into that same space. The basic focus of the SVM is 
finding the hyperplane that maximizes the margin between the two classes, i.e., the 
distance between the nearest data points of each class and the hyperplane [27]. The 
margin is defined as the distance between the hyperplane and the closest data points 
of each class. This hyperplane is known as the optimal boundary, and the data points 
closest to it are called support vectors.

Early in the 1960s, a Russian mathematician and computer scientist named 
Vladimir Vapnik originally proposed the idea of structural risk reduction for pattern 
recognition, which is when SVMs initially came into existence [28–30]. The theory 
and method for SVMs in its current version were created in the 1990s by Vapnik and 
his colleagues at AT&T Bell laboratories in the early 1990s, and they later rose to 
become one of the most used machine learning techniques [30]. SVM techniques for 
regression problems were established in 1995 and are now referred to as Support Vector 
Regression (SVR). Instead of classifying the data, SVR algorithms seek to identify the 
hyperplane that best fits the data. SVM algorithms have increased in popularity with 

FIGURE 6.5 Framework of convolutional neural network [25].
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the development of powerful computing systems, and the creation of new kernel func-
tions has allowed for the solution of increasingly challenging problems. The versatil-
ity and efficacy of the method are demonstrated by the history of SVMs, which have 
played a key role in the advancement of machine learning algorithms.

SVMs are used for both regression and classification problem. SVMs can effec-
tively execute nonlinear classification in addition to linear classification and handle 
challenges such as nonlinear, high dimension, and local minimum [26]. The regres-
sion part of the SVM is known as support vector regression (SVR), which has dem-
onstrated greater performance due to its innate capacity to avoid the overfitting 
challenge faced in regression and increased response approximation [31]. The objec-
tive of the classification task of the SVM is to divide two groups by a function which 
is inferred from the examples that are provided, while the classifier performs well 
on unseen instance cases as shown in Figure 6.6a [32]. Although there are numer-
ous alternative linear classifiers that may segregate the data, just one maximizes the 
margin. The optimal separating hyperplane is the linear classifier.

The mathematical framework of the SVM is the optimization problem which 
can be formulated as a quadratic programming problem and can be solved using 
optimization algorithms such as gradient descent or the primal-dual method. Let 
us consider the task of splitting a set of training vectors into two distinct classes 

x y x y x yn n, , , . ,1 1 2 2{ }( ) ( ) ( )…… , while x Rn∈  and y 1,  1( )∈ + −  alongside a hyperplane 
w x b. 0+ = . If there is no error in the separation and the closest vector is as close to 
the hyperplane as possible, an optimal separation of the collection of vectors is said 
to occur by the hyperplane as shown in Figure 6.6b. When the margin 2/w is maxi-
mized, we obtain the optimal hyperplane. The approach can otherwise be depicted 
by minimizing /2w  giving the expression in Equation 6.12:
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Beyond the linear classification techniques, the SVM technique could be utilized for 
nonlinear classification by using the kernel trick methods for inherently charting the 

FIGURE 6.6 (a) Separation of hyperplanes for two-class data and (b) optimal hyperplanes 
to separate two-class data [32].
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inputs into high-dimensional features space. Figure 6.7 illustrates an instance, in which 
the mapping z x z x x z xi ,   2   , 1

2
2 1 2 3 2

2= = =  is used to transform a two-dimensional 
input space x y,1 1( ) into a three-dimensional feature space z z z( , ,1 2 3). According to 
Figure 6.7, it can be observed that the two-class data exhibit linear inseparability inside 
the initial input space. However, it is noteworthy that these classes may be effectively 
differentiated within a three-dimensional feature space.

The SVM can be deployed for a regression task. Considering the same set of train-
ing vector x y x y x yn n, , , . ,1 1 2 2{ }( ) ( ) ( )…… , while x Rn∈ . A point in the space of Rn is 
mapped to the space R by using a regression function, f , represented in Equation 6.13:

 F f x w w f R Rn, ,   | :  { }( )= ∈Λ →  (6.13)

where w represents an unidentified parameter vector to be decided and while Λ rep-
resents a set of parameters. The regression function is further expressed in terms of 
the minimum anticipated risk factor and error function, e, depicted in Equation 6.14:

 R f e y f x w dP x y, ,  

.

∫ ( )( ) ( )( )= −  (6.14)

There are various processes involved in training an SVM model, such as data pre-
processing, feature selection, and model selection. The data must be cleaned and 
standardized during data preprocessing to get rid of any outliers or missing values. 
The process of choosing the features that are most important to the classification of 
the data is then carried through feature selection. Further to this, selecting the suit-
able kernel function and customizing the SVM model’s hyperparameters is a critical 
step. Many different applications of SVM, amongst others, include text classification, 
picture classification, and bioinformatics. SVMs have been used in text classification 
to divide publications into various groups according to their content and to classify 
images into different classes based on their visual features. Bioinformatics has made 
an extensive use of the SVM to forecast protein–protein interactions and categorize 
proteins into several functional groups.

FIGURE 6.7 Input space mapping into high-dimensional feature space [32].
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6.3.5 decision tree

Another prominent machine learning approach for classification and regression of 
tasks is decision trees. They are a kind of supervised learning algorithm that fore-
casts a target variable’s value based on a number of input features. Decision trees 
divide a dataset into ever-smaller subsets, until arriving at a final classification for 
a particular observation [33]. A decision tree is a model that resembles hierarchical 
tree-like structures and has leaf nodes as well as decision nodes. Each leaf node 
represents a class label, and each decision node represents a test on an attribute. With 
regard to the target variable, a decision tree aims to divide the data into subsets that 
are as homogeneous as possible [34].

Due to their transparent decision-making processes and easily comprehensible 
categorization outcomes, decision trees have emerged as being a widely used classifi-
cation design [35,36]. This makes them helpful for outlining a decision’s justification 
to stakeholders who aren’t technically inclined. In addition to this, other benefits of 
the decision tree classifier over other classifiers include [37–40]:

 i. It can handle high-dimensional data without the need for domain knowl-
edge. It is capable of handling missing values and both categorical and 
numerical data.

 ii. It is simple and quick.
 iii. It has good accuracy.
 iv. It can produce rules for classification that are easy to grasp.
 v. It is a versatile technique that may be utilized to solve a wider range of prob-

lems in both classification and regression tasks.

Figure 6.8 represents a decision with nodes and edges. While edges result from a 
split to the next node, nodes divide based on the value of a particular property. The 
internal nodes, sometimes referred to as decision nodes, are fed by the root node’s 

FIGURE 6.8 Decision tree structure.
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outgoing branches. Both node types undertake assessments based on the available 
attributes to create homogenous subsets, which are represented by leaf nodes or ter-
minal nodes.

We begin by creating a decision tree at the root node, which stands in for the 
entire dataset. Then, we select the attribute that divides the data into two subsets most 
effectively. Up until leaf nodes that represent a single class or a range of target vari-
able values, we continue to recursively partition the subsets into smaller subsets. By 
using a greedy search to find the ideal split points inside a tree, decision tree learning 
uses a divide and conquer technique. Once most or all records have been categorized 
under particular class labels, this dividing procedure is then repeated in a top-down, 
recursive fashion [34]. Although there are other approaches to choose the optimal 
attribute at each node, the Gini impurity and information gain methods are the two 
that are most frequently used as a splitting criterion in decision tree models. They 
aid in assessing the effectiveness of each test condition and its capacity to categorize 
samples into a group.

Decision tree algorithms are as follows:

 i. ID3 (Iterative Dichotomiser 3): ID3 is a classic decision which works by 
selecting the attribute that best splits the data based on the information gain 
criterion [41,42].

 ii. C4.5: This algorithm is an improvement over the ID3 algorithm. It uses a 
similar splitting criterion based on information gain, but it can handle both 
categorical and continuous data. C4.5 can also handle missing values and 
can prune the tree to prevent overfitting [43].

 iii. Classification and Regression Trees (CART): CART can handle categor-
ical and numerical data, and as a splitting criterion, it employs the MSE or 
the Gini impurity. CART can be applied to tasks requiring classification and 
regression [44–46].

 iv. Multivariate Adaptive Regression Splines (MARS): A decision tree 
method that is especially effective for regression applications is the MARS. 
To do this, piecewise linear models are fitted to the data, and the attribute 
with the greatest fit at each split is chosen [47,48].

 v. Chi-square Automatic Interaction Detector (CHAID): Decision tree algo-
rithms like CHAID are best suited for categorical data. The attribute that 
gives the greatest significant split is chosen after using the chi-square statistic 
to verify the input features’ independence from the target variable [49–52].

6.3.6 randoM forest

A popular ensemble learning algorithm in machine learning is random forest. It is 
a potent method for resolving binary and multi-class classification and regression 
problems and is a member of the decision tree class [1]. A decision tree–based tech-
nique called random forest makes use of numerous decision trees to increase the 
model’s precision and generalizability. A number of decision trees are trained using 
various subsets of the training data as part of an ensemble learning technique [53]. 
When building each decision tree, a subset of features is randomly chosen, hence 
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the term “Random” in the name random forest. The building of numerous prede-
termined decision trees serves as the foundation for random forests. The result in 
classification is the mode of the classes, whereas the output in regression is the mean 
forecast of the individual trees [54]. The random forest approach used today builds a 
set of decision trees with controlled variance using bagging and a random selection 
of features. Figure 6.9 illustrates the functionality of the random forest classifier and 
the final class from decision trees.

There are three key hyperparameters for random forest algorithms that must be 
set prior to training. Node size, tree count, and sampled feature count are a few of 
them. After that, regression or classification issues can be resolved using the random 
forest classifier.

Each decision tree in the ensemble that makes up the random forest method is 
built of a data sample taken from a training set with replacement known as the boot-
strap sample. One-third of the training dataset, called the out-of-bag (oob) sample, is 
designated as test data sample [56]. The dataset is subsequently given a second ran-
domization injection by feature bagging, increasing dataset diversity and decreasing 
decision tree correlation. The prediction will be determined differently depending 
on the problem. The mean of the individual decision trees will be estimated for the 
regression job, and for the classification task, the predicted class will be determined 
by a majority vote, or the most common categorical variable. The prediction is then 
finalized by cross-validation using the OOB sample.

The way random forest creates predictions is by creating a lot of decision trees and 
combining their outputs. The algorithm operates in the following steps [57]:

 i. Select a random subset of features from the input features.
 ii. Build a decision tree using the selected features and a random subset of the 

training data.

FIGURE 6.9 Vote-based random forest [55].
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 iii. Repeat steps 1 and 2 multiple times to create a forest of decision trees.
 iv. Predict the output by aggregating the results of all decision trees in the 

forest.

Bagging, often referred to as bootstrap aggregating, is the process of choosing a 
random subset of features and a random subset of the training data. By building 
numerous models that are trained on various subsets of the data, bagging aids in the 
reduction of overfitting [53].

Random forest has the following drawbacks [54,58,59]:

 i. For large datasets, random forest can be sluggish, especially when the num-
ber of features is high.

 ii. Understanding how each decision tree contributes to the final forecast in a 
random forest model is challenging.

 iii. If there are too many trees in the forest, random forest may overfit.

6.3.7 naive bayes

Naive Bayes is a widely used machine learning algorithm for classification problems 
based on the Bayes theorem, a probabilistic method. The Bayes theorem enables you 
to calculate the likelihood of an event based on past occurrences [1]. According to 
Bayes’ theorem, the likelihood of an event occurring given some previous knowledge 
is equal to the product of the event’s likelihood and the prior knowledge’s likelihood 
given the event has occurred. “Naive” because it thinks input features are indepen-
dent. Represented in Figure 6.10 is the structure of a hierarchical Naive Bayes model. 
As a probabilistic model, given an instance that needs to be classified, and repre-
sented by a vector x x xi n( )= ……  with some n attributes, the model sets probability 
p C x xk n( | . )1…  for each k potential class Ck . If there are many features (n) or if a fea-
ture can have several values, creating a model using probability tables is impractical. 
Reconstructing the model makes it more manageable. The probability is therefore 
broken down as in Equation 6.15 using Bayes’ theorem:

 p C x
p C p x C

p x
k

k k|
  ( | )

 ( ) ( )
( )

=  (6.15)

FIGURE 6.10 Hierarchical Naive Bayes model [60].
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Thus, a classifier can be constructed based on this Bayes’ theorem as follows:
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Naive Bayes works in the following steps:

 i. Determine each class’s previous probability. This is the likelihood that each 
class will occur before any input is provided.

 ii. Determine the probability of every input feature given every class. This 
represents the likelihood that each input feature will occur given the class.

 iii. Add the likelihood of each input feature given each class to the previous 
probability of each class.

 iv. To determine the posterior probability of each class given the input, normal-
ize the probabilities.

The class with the highest posterior probability is what Naive Bayes produces as its 
result.

6.3.8 k-nearest neighbor

k-Nearest Neighbor (k-NN) algorithm is a non-parametric classifier in supervised 
learning which leverages proximity to classify or predict the grouping of a given data 
point. In this context, the target variable is categorical in situations involving classifica-
tion, while the input data are categorized by the k-nearest neighbor class that appears 
most frequently in the k-NN algorithm. The input data will be classified as belonging to 
class A; for instance, if the k-NN method chooses three neighbors, two of whom are in 
class A and one is in class B [61]. In the context of classification issues, the assignment 
of a class label is determined by a “majority vote” mechanism. This entails selecting 
the label that is more commonly seen among the surrounding data points. The target 
variable is continuous when there is regression problem. A key variable in the k-NN 
algorithm is the value of k which establishes how many neighbors should be taken 
into account when producing a prediction. The elbow method or cross-validation can 
determine k by employing subsets of the training data as test sets to evaluate the model. 
Based on the average of the k-nearest neighbors, the k-NN method predicts the target 
value of the input data. The anticipated target value, for instance, will be equal to the 
average of the target values of the five neighbors chosen by the k-NN algorithm [62].. 
By graphing the model’s performance against various values of k, the elbow technique 
determines the value of k at which the performance begins to plateau. A classification 
of a brand-new observation k 1( )=  using KNN is shown in Figure 6.11.

6.4 COMMON CHALLENGES OF SUPERVISED LEARNING

Although supervised learning has significantly advanced a number of industries, 
including healthcare, banking, and engineering, it is not without its drawbacks, 
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which should not be disregarded or dismissed. We can create better models and 
more precise forecasts while being aware of their ramifications if we are aware of 
these constraints. Challenges with data quality, bias and discrimination, overfit-
ting, and limited generalization are some of these shortfalls which are discussed 
as follows.

6.4.1 overfitting and underfitting

The complexity of the model is one design decision we must make when selecting 
a machine learning model. The quantity of parameters that need to be optimized in 
order to train the model is what we mean by complexity. The model is possibly more 
powerful, the more parameters there are. Yet, we must be cautious of any risks that 
can be associated with models containing lots of parameters. Underfitting and over-
fitting are two pertinent concepts that relates to model’s parameters and complexity 
[64]. When a model is overly complicated and learns the noise in the training data 
rather than the underlying patterns, this is known as overfitting. Because of this, the 
model does well with training data but poorly with novel, untried data. This is due to 
the model’s inability to generalize successfully to new data because it has learned the 
training data so well that it has effectively memorized it [65].

Overfitting usually occurs when a model is too complex for the training dataset. 
The model contains too many degrees of freedom, allowing it to account for data 
noise and randomness. Overfitting can also occur when a model is trained too many 
times and memorizes the training data instead of learning the patterns. Underfitting 
happens when a model is overly simplistic and unable to discern the fundamental 
trends in the data. In essence, the model performs poorly on both the training and 
validation datasets because it is not complicated enough to understand the correla-
tions between the input and output variables. A linear model can match a nonlinear 
data connection. Underfitting can also occur when the model is not trained long 
enough or has insufficient data.

FIGURE 6.11 K-Nearest Neighbour (KNN) classification approach [63].
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The task of finding an optimal model is achieved at a mid-point between underfit-
ted and overfitted points as shown in the learning curve in Figure 6.12 depicting the 
error in training and testing phase based on the model’s complexity [64].

A simple regression analysis for demonstrating overfitting and underfitting is pre-
sented in Figure 6.13. In all three charts, the same data points are displayed. The graphs 
in Figure 6.13a show a first-order polynomial (straight line) fit the data. The model 
underfits the data because it cannot reflect the variability in the data. In Figure 6.13b, 
we have fifth-order polynomial (overfitting). The model’s additional parameters make 
it evidently strong enough to fit the data. The model might not, however, generalize 
very well. For instance, there would likely be huge mistakes if we were to assess how 
well it fits at other x locations. This is known as “overfitting the data”. Figure 6.13c 
shows a third-order polynomial which in this instance most likely indicates a satisfac-
tory fit. The curve is likely to generalize well since it fits the known data well without 
overfitting to the data noise [66]. Although this is a simple illustration, this sample 
applies to complex machine learning models.

In order to prevent overfitting and underfitting, it’s crucial to select a model with 
the right level of complexity and train it on the right quantity of data. By encouraging 
the model to have simpler parameter values, regularization strategies, like adding 
a penalty term to the loss function, can help to prevent overfitting. By evaluating 
the model on various subsets of the data, cross-validation like leave-one-out cross-
validation (LOOCV) and k-fold cross-validation can also aid in the diagnosis and 
prevention of overfitting [67]. In k-fold cross-validation, the model is trained and 
tested on k equal-sized subsets of the dataset.

6.4.2 cLass iMbaLance

With supervised learning, each example has a corresponding class or label because 
the dataset has been labeled. For instance, each case can be classified as either posi-
tive or negative in a binary classification task. Class imbalance happens when one 
class has a disproportionately low number of samples compared to the other classes, 

FIGURE 6.12 Learning curve for model training and testing based on their complexity [64].



139Supervised Learning

making it more challenging for the machine learning algorithm to identify patterns 
and forecast outcomes [68]. Take a binary classification problem with 90% of exam-
ples in class A and 10% in class B. Class B dominates this dataset. If we create a 
binary classification model to predict whether a transaction is fraudulent and only 1% 
is fraudulent, the dataset is highly skewed. Building precise and efficient machine 
learning models requires addressing the class imbalance. The following are some 
strategies for addressing the disparity between classes:

6.4.2.1 Data Resampling
One of the most common methods to address class imbalance is to resample the data 
to balance the number of observations in each class [69]. This can be done either by 
oversampling the minority class or under sampling the majority class. Oversampling 
techniques include random oversampling, where the minority class is replicated to 
match the number of samples in the majority class, and Synthetic Minority Over-
sampling Technique (SMOTE), which generates new synthetic minority class sam-
ples based on the k-nearest neighbors of the minority class samples. Under sampling 
techniques involve randomly selecting a subset of the majority class samples to match 
the number of samples in the minority class [70].

FIGURE 6.13 Illustration of (a) underfitting, (b) overfitting, and (c) good fit [66].
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6.4.2.2 Cost-Sensitive Learning
To do this, the learning algorithm must be changed to increase the cost of misclassi-
fying instances of the minority class. This can be accomplished by giving each class 
weights based on how frequently they occur or by altering the loss function to give 
the minority class greater weight [71,72].

6.4.2.3 Anomaly Detection
Anomaly detection techniques can be used to identify and isolate the minority class 
from the majority class, allowing for targeted analysis and classification of the minor-
ity class [73].

6.4.2.4 Algorithm-Specific Techniques
Some algorithms have built-in methods for addressing class imbalance. For example, 
decision trees can use cost-sensitive learning by assigning weights to each class, and 
SVMs can use class-weighting or use a kernel function that is sensitive to the minor-
ity class.

Figure 6.14 diagrammatically represents some of the approaches adopted for miti-
gating the challenge of class imbalance.

FIGURE 6.14 Overview of approaches in minimizing the effect of class imbalance [74].
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6.4.3 data avaiLabiLity and QuaLity

Supervised machine learning grapples with these two significant hurdles [75]. To 
create a robust supervised learning model, a reasonable amount of data is a vital 
requirement. However, acquiring such a dataset can be time-consuming and costly. 
Poor data quality inhibits the accuracy and decision making capability of machine 
learning models. It might not always be possible to gather enough labeled data to 
solve a particular issue. When working with newer technology or in specialized 
industries where data are limited, this task can be more challenging. The correctness 
and dependability of the labeled data used to train a supervised learning model can 
have a significant impact on the model’s performance, which is why data quality is 
equally crucial. Bad data might hinder a model’s capacity to generalize to new data 
and lead to erroneous model predictions. Incomplete or missing data, labeling errors, 
and data bias may affect data quality. Data availability and quality can be improved 
by using data augmentation to increase and improve the dataset [76]. Techniques 
for data augmentation include adding noise to the data, flipping or rotating photos, 
and altering the brightness or contrast of the images [77]. Using pre-trained mod-
els or transfer learning strategies that can benefit from currently available labeled 
datasets to enhance the model’s performance on fresh data is an additional alterna-
tive. Moreover, techniques like active learning or semi-supervised learning can be 
employed to maximize the use of scant labeled data when training supervised learn-
ing models.

6.4.4 chaLLenges with feature engineering

The act of choosing and converting raw data features into a format that machine 
learning algorithms can use is known as feature engineering. Effective feature 
engineering can lead to improved model performance and better insights into the 
underlying patterns in the data. However, feature engineering can present several 
challenges in supervised learning. Some researchers assert that the primary goal of 
feature engineering is to improve machine learning by optimizing the representa-
tion of the feature space [73]. A crucial phase in supervised learning is feature 
engineering because the effectiveness of the final model depends heavily on the 
caliber and applicability of the features utilized. To reduce data dimensionality, 
eliminate redundancy, and reduce noise, feature engineering also includes feature 
selection and extraction. Effective feature engineering requires domain knowledge, 
an understanding of the problem being solved, and careful consideration of factors 
such as data distribution, missing data, and feature interactions. Common feature-
engineering-related challenges in supervised machine learning are handling missing 
data, including redundant features in feature selections, computational complexities 
amongst others. 

6.5 COMMON SUPERVISED MACHINE LEARNING OPERATIONS

To use supervised learning effectively, we must understand model creation and refine-
ment. This section discusses the main supervised machine learning techniques and 
their importance for model accuracy. From feature selection through regularization, 
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performance evaluation, and hyper-parameter tuning, we will examine machine 
learning practitioners’ best practices for building robust models.

6.5.1 feature seLection

Data gathered from real-world context typically contains a significant number of 
attributes and features [80]. High dimensional data requires more processing power 
and storage space. In addition, bad performance of the classification model is caused 
by noisy, redundant, and irrelevant features in these data. The choice of an effective 
feature subset, minimize the dimensionality of the data, cut down the training time 
and making the model interpretation simpler, feature selection become necessitated 
as it purges redundant, irrelevant, and noisy features from the original feature space 
[81]. It is crucial to remember that feature selection may not be required or advan-
tageous without exception because certain models may perform better with more 
features, and some features may be crucial when combined with other features. 
There is no one-size-fits-all approach to feature selection, thus the way to use will 
depend on the particular issue and dataset at hand. To get the best results in prac-
tice, a combination of techniques gives a satisfactory outcome. The No Free Lunch 
(NFL) Theorem [82] states that no single feature selection strategy can perform 
satisfactorily on datasets generated in different contexts. Although a single feature 
selection technique has some advantages, it also has some drawbacks. Sequel to 
this, Wu et al. [81] suggested an ensemble method of feature selection to overcome 
this challenge.

When there are multiple input features or variables that might not all be perti-
nent to the goal variable(s) being forecasted, evolutionary multi-objective optimi-
zation (EMO) can be utilized as a feature selection strategy. EMO-based approach 
is especially well suited for handling feature selection tasks because it can identify 
a number of nondominated solutions (feature subsets) with the trade-off between 
various competing objectives in a single run [80]. The categories of feature selec-
tion methods in supervised learning is summarized as follows and illustrated in 
Figure 6.15.

FIGURE 6.15 Feature selection techniques.
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6.5.1.1 Wrapper Technique
This method utilizes a model to score many feature subsets before choosing the best 
one. A model is trained on each new subset, and its performance is then assessed 
on a hold-out set. Features subset that produces the best model performance is cho-
sen [83]. Wrapper approaches typically offer the best feature set for the particular 
model type selected, which is a significant advantage. Common feature selection 
approaches in this category are forward and backward selection and recursive feature 
elimination.

6.5.1.2 Filter Technique
The filter technique is a simpler and easier substitute for wrapper technique. They 
statistically establish the importance of each feature with the model’s target and 
rank them accordingly using metrics like correlation or mutual information [84,85]. 
In addition to being quicker than wrappers, filter techniques are also more general 
because they don’t overfit to any one algorithm because they are model-agnostic. 
They are also rather simple to understand: if a feature has no statistical relevance 
to the aim, it is eliminated [83]. Common feature selection approaches in this 
category includes the chi-square, Pearson’s correlation, Spearman’s rank correla-
tion, Kendall rank correlation, mutual information, Point-biserial correlation, and 
ANOVA F-score.

6.5.1.3 Embedded Technique
With the embedded technique, feature selection is included into the model construc-
tion process. The goal is to achieve the best of both methods by combining filter 
speed with the ability to obtain the ideal subset for a given model, much like from a 
wrapper. Examples are the LASSO and auto-encoder with a bottleneck.

6.5.2 reguLarization

The term “regularization” describes methods for calibrating machine learning mod-
els to reduce the adjusted loss function, avoid overfitting or underfitting, and obtain 
an optimal model. It achieves this by instituting additional constraints or penalties 
on their parameters during training. Figure 6.16 illustrates the idea of regularization 
on an over-fitted model. Keep in mind that regularization does not minimize training 

FIGURE 6.16 Overfitted model regularization [86].
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error; rather, it seeks to reduce test or generalization error. The gap between train-
ing and test error is reduced by minimizing the test error, which also reduces model 
overfitting.

6.5.2.1 L1 (LASSO) Regularization
This method involves adding a penalty term to the model’s cost function that is pro-
portional with the total of the parameters’ absolute values. As a result, the model is 
encouraged to have sparse weights, which means that some of the weights will be 
driven to zero, making the model simpler. Equation 6.17 represents the L1 regular-
ization for a linear regression model with a modified cost function:
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6.5.2.2 L2 (Ridge) Regularization
The proposed approach entails augmenting the cost function of the model by includ-
ing a penalty term that is directly proportional to the square of the overall parameter 
count. Consequently, the model is incentivized to possess reduced weights, perhaps 
leading to a more streamlined model. The utilisation of this technique successfully 
mitigates the issue of overfitting and further enhances the interpretability of the 
model. Equation 6.18 denotes the modified cost function employed in linear regres-
sion models that incorporate both ridge and LASSO regularizations [87]:
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6.5.2.3 Elastic Net Regularization
The objective of linear regression is to identify the set of coefficients that minimize 
the sum of squared errors between the predicted and observed values. In this objec-
tive function, elastic net regularization introduces a penalty term that combines L1 
(LASSO) and L2 (ridge) regularization. The elastic net technique can handle corre-
lated predictor variables better than L1 or L2 alone since it uses both L1 and L2 regu-
larization. It is especially helpful for high-dimensional datasets with many features 
since it enables the selection of pertinent predictors and the suppression of ones that 
are irrelevant. Elastic net provides a solution to the problem in equation for a range 
of α -values strictly between 0 and 1 and a nonnegative λ [88]:
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When 1α = , elastic net and LASSO are the same. Elastic net approaches ridge regres-
sion as α  decreases toward 0. The penalty term P β( )α  interpolates between the L1 
norm of β and the squared L2 norm of β for other values of α  [87].

6.5.3 ModeL PerforMance evaLuation

The evaluation of model’s performance on a certain dataset is a critical stage in 
supervised machine learning. It aims to discover any problems or limits with the 
model that needs to be fixed as well as how effectively it can generalize to new, 
untested data. Every machine learning workflow should consider model generaliza-
tion after developing a model from scratch. We need to know if it works to trust 
its projections. These issues can be overcome by evaluating a machine learning 
model. The techniques used for assessing the performance of supervised learning 
are described as follows.

6.5.3.1 Train-Test Split (Hold-Out) Technique
This approach splits the dataset into training and testing sets. Holdout evaluation tests 
a model with data different from its training data. This evaluates learning efficacy 
impartially. The training dataset trains the model, while the testing dataset evaluates 
it. The hold-out method created a training and testing set [89]. Depending on dataset 
size and task complexity, the split is 70:30, 80:20, or 90:10. The training set trains 
the model, whereas the testing set evaluates it. The train-test split technique’s mer-
its include simplicity, speed, minimal computational resources, and instantaneous 
model performance estimation. If the testing set is small or imbalanced, it may have 
large variance [90].

6.5.3.2 Cross-Validation Technique
Cross validation evaluates a supervised machine learning model’s performance by 
dividing the given dataset into numerous folds [91]. When the dataset is tiny or the 
model is prone to overfitting, this method is especially helpful. Cross-validation 
helps tune hyperparameters and estimate model performance by comparing different 
configurations. Popular cross-validation approaches include the following:

 i. k-fold cross-validation: In this approach, the dataset is divided into k folds 
of equal size. The model is tested on the last fold after being tested on k 1−  
folds. Each fold serves as the testing set once during this process, which is 
performed k times. To estimate the model’s performance, the performance 
metrics are averaged over the k folds [92,93].

 ii. Stratified k-fold cross-validation: When the dataset is unbalanced or the 
class distribution is not uniform, stratified k-fold cross-validation is utilized. 
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With this method, each fold has a balanced representation of each class 
because of the way the folds are made [94].

 iii. Leave one-out cross-validation: A special example of k-fold cross-validation, 
where k is the number of samples in the dataset, is LOOCV. Every sample in 
LOOCV serves as the testing set, while the remaining samples are utilized to 
train the model. The performance indicators are averaged across the samples 
after repeating this procedure for each sample [95–97].

 iv. Time-series cross-validation: When the dataset is sorted by time, time 
series cross-validation is preferred. The dataset is divided into training and 
testing sets using this method, with the testing set containing only future 
data points. This makes sure that the model’s performance is measured by 
how well it can forecast upcoming data points [98].

6.5.3.3 Evaluation Metrics
One of the most important factors in determining whether a supervised learning 
algorithm is successful, accurate, reliable, and eligible is performance metrics. These 
metrics evaluate a model’s ability to predict incoming data. Classification, regres-
sion, grouping, and anomaly detection problems determine performance metrics. 
Commonly used performance metrics for classification tasks include accuracy, pre-
cision, F1-score, false-positive rate (FPR), and specificity or recall. For regression 
tasks, metrics such as MSE, mean absolute error (MAE), correlation co-efficient 
(R2), mean absolute deviation (MAD), variance accounted for (VAR), root mean 
bias error (rMBE), and mean absolute percentage error (MAPE), amongst others, are 
often used [6,99]. Beyond the type of problem, the selection of performance indica-
tors is influenced by the objectives of the task and the demands of the stakeholders. 
Table 6.1 summarizes some of the metrics used in supervised learning. To under-
stand metrics used in the classification problem, we must define the different kinds 
of results we always obtain:

 i. True Positive (TP): model outcome accurately predicts that an observation 
is a positive class.

 ii. True Negative (TN): model outcome accurately predicts that an observa-
tion is a negative class.

 iii. False positive (FP): model outcome wrongly predicts that an observation is 
a positive class.

 iv. False negative (FN): model outcome wrongly predicts that an observation 
is a negative class.

6.5.4 hyPerParaMeter tuning

In machine learning, hyperparameters are parameters that the user directly defines 
to regulate the learning process. They are also referred to as settings for the model 
that are not directly learned from the data during training, such as learning rate, 
regularization strength, or number of hidden layers. These hyperparameters are set 
before model learning to improve it [97]. Hyperparameter tuning optimizes machine 
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learning model hyperparameters. These hyperparameters affect how well the model 
learns from data and generalizes to new, unknown data; thus, they must be fine-tuned 
to build a high-performing machine learning model. Iteratively changing a variety 
of hyperparameters and assessing the model’s performance on a validation set are 
the usual methods for hyperparameter tuning [100]. Many methods, including grid 
search, random search, and Bayesian optimization, can automate the hyperparameter 
tuning process. These methods are briefly described as follows.

TABLE 6.1
Performance Evaluation Metrics for Supervised Learning

Task Performance Metrics Mathematical Expression
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6.5.4.1 Grid Search
In this method, each hyperparameter is given a set of values, and the model’s perfor-
mance is assessed for each and every combination of these values. It entails speci-
fying a range of values for every hyperparameter and thoroughly looking through 
all viable value combinations [101]. The combination that yields the highest perfor-
mance for the model after training and evaluation is chosen. Although this approach 
can be computationally expensive, particularly for models with many hyperparam-
eters, it ensures that the best values will be found within the defined search space.

6.5.4.2 Random Search
Random search is a more efficient alternative to grid search. This approach involves 
assessing the model’s performance after randomly selecting some hyperparameters 
from a predetermined range or distribution [102]. When the search space is large and 
complex, this method is computationally more effective than grid search.

6.5.4.3 Bayesian Optimization
This advanced method uses probabilistic models to find the best hyperparameters. 
New hyperparameter configurations are assessed, and the model’s predictions deter-
mine the next set to evaluate [103]. Bayesian optimization is often more efficient than 
grid search and random search, especially when the search space is large.

6.5.4.4 Genetic Algorithms
Genetic algorithms are optimization techniques inspired by the process of natural 
selection. In hyperparameter tuning, the configurations with the best performance 
are chosen to “reproduce” and produce a new generation of hyperparameter configu-
rations from a population of hyperparameter configurations that are generated at ran-
dom [99]. This procedure is repeated until the ideal hyperparameters are identified.

6.5.4.5 Gradient-Based Optimization
Gradient-based hyperparameter optimization uses gradient descent or other optimi-
zation methods [104]. When the search space is continuous and the hyperparameters 
are interdependent, this strategy can be useful.

Hyperparameter tuning is crucial since it can considerably enhance a machine learn-
ing model’s performance. Tuning the hyperparameters can guarantee that the model 
is operating at its best for the particular task because the best hyperparameters can 
change depending on the dataset and the particular problem being addressed [100]. A 
machine learning model may underfit or overfit the data if the hyperparameters are not 
tuned properly, which will lead to subpar performance on new, untried data. There are 
many hyperparameters in supervised learning models. Some of the prominently used 
hyperparameters in supervised machine learning are briefly discussed in the following:

 i. Learning rate: The optimization algorithm’s learning rate defines the step 
size for each iteration. It regulates how quickly the model picks up new 
information from training data. A low learning rate indicates a slow con-
vergence while a high learning rate indicates a high convergence but at the 
expense of accuracy [105].
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 ii. Epoch number: The epoch number establishes how many times the train-
ing algorithm will run over the full training dataset [106]. The performance 
of the model can be significantly impacted by the choice of the epoch num-
ber. Underfitting may be attributed to a low epoch number while a high 
epoch number is accountable for overfitting [107].

 iii. Number of hidden layers: The number of hidden layers in a deep learn-
ing model determines its depth. A more sophisticated model may possess 
enhanced capabilities in discerning nuanced patterns within data, although 
it may also have a higher susceptibility to overfitting [107].

 iv. Number of neurons in each hidden layer: Each hidden layer’s neurons 
determine the model’s width. Larger models may capture more complex 
data patterns, but they may also overfit [107].

 v. Activation function: In order to add nonlinearity to the model, the activation 
function is used. Depending on the data and the job, several activation func-
tions, such as sigmoid, ReLU, and tanh, may perform better or worse [108].

 vi. Dropout rate: To forestall overfitting in deep learning models, dropout is a 
regularization strategy commonly used [109]. The likelihood that each neu-
ron will be lost during training is determined by the dropout rate. Although 
a larger dropout rate might minimize overfitting, it might also reduce the 
model’s precision.

 vii. Batch size: The batch size decides how many samples are utilized to itera-
tively update the model’s parameters [110]. While a bigger batch size might 
hasten convergence, it also might make overfitting more likely.

6.6 CONCLUSION

Supervised learning represents a basic and transformative paradigm in machine 
learning space. In this chapter, we presented an overview of the concept of supervised 
machine learning, which is a subset of machine learning in which the algorithm is 
trained on labeled data or input data that have a known goal value or output. It makes 
intelligent decisions by either classifying a categorical data or predicting a numerical 
output. This chapter provided insights into the distinctive features, types and applica-
tions of different supervised machine learning spectrum while establishing the impor-
tance of right choice of features and data representation. Further to this, we examined 
common supervised learning tasks while establishing the significance of performance 
evaluation of machine learning model. Some of the critical hyper-parameters which 
are significant to its robustness were examined and evaluation metrics used for estab-
lishing their reliability were discussed. Despite the immense benefits of supervised 
machine learning in solving complex real-life problems, it grapples with some chal-
lenges which impedes its full-scale exploration. This chapter identified some of the 
potential drawbacks of supervised learning, including overfitting and the requirement 
for an adequate amount of labeled data, while we present practical solutions for over-
coming these issues, such as regularization, cross-validation, and model selection. To 
shape the trajectories of machine learning applications, a proper understanding of its 
features, types, algorithms, and approaches in addressing some of its challenges is 
pertinent.
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7 Unsupervised Learning

7.1 INTRODUCTION

Going forward from Chapter 6 where we discussed supervised learning, in this current 
chapter we will discuss an alternative machine learning approach, which is unsupervised 
learning. Unsupervised learning, unlike supervised learning, finds structure and patterns 
without labels, making it useful for handling and gaining insights from large, complex 
datasets where it may be difficult or impossible to manually classify all the data. Big data 
has made unsupervised learning crucial in natural language processing, computer vision, 
and anomaly detection. Now, the machine learning model is being trained using the unla-
beled input data. It will first analyze the raw data to identify any hidden patterns in the 
data. Once the appropriate algorithm is deployed, the data objects are split into groups 
based on how similar and different the objects are [1]. In real-world machine learning 
solutions, unsupervised learning has benefits and drawbacks. Clustering, dimensionality 
reduction, and association rule learning are introduced in this chapter. We’ll also look at 
some other important unsupervised learning algorithms, their benefits, as well as draw-
backs and applications to gain knowledge and improve decision-making. This chapter on 
unsupervised learning will help us understand about machine learning and how it can 
solve difficulties in atomic layer deposition (ALD) and thin film technologies. Machine 
learning improves ALD processes. Most of these strategies require labeled data, which 
may be difficult to obtain. Thus, this chapter’s knowledge can advance ALD and acceler-
ate the development of more effective and efficient methods.

7.2 UNSUPERVISED LEARNING TECHNIQUES

As illustrated in Figure 7.1, this section examines some unsupervised learning tech-
niques, typical applications, and corresponding algorithms.
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7.2.1 cLustering

Clustering can be referred to as a technique for arranging the data points into various 
clusters made up of related data points [2–4]. The items with potential resemblances 
continue to be in a group that shares little to no characteristics with another group. 
It accomplishes this by identifying comparable patterns in the unlabeled dataset, 
such as shape, size, color, and behavior, and then classifying the data according to 
the presence or absence of these patterns. Each cluster or group is given a cluster-ID 
after using this clustering technique, which machine learning systems can employ to 
streamline the processing of big and complicated datasets. The full feature set for an 
example can now be reduced to its cluster-ID. Clustering is effective when a compli-
cated example is represented by a simple cluster-ID [1]. Most clustering algorithms 
start by specifying a distance or similarity metric and then iteratively clustering com-
parable locations. The created clusters should have low inter-cluster similarity (items 
in different clusters are dissimilar) and high intra-cluster similarity [2]. Several sec-
tors like marketing, medicine, computer vision, and natural language processing 
find a wide use for clustering tasks such as market division, statistical evaluation of 
data, assessment of social networks, segmentation of images, anomaly detection, and 
medical imaging, amongst others. For instance, clustering can be used to group genes 
in biological studies that have comparable expression patterns or to divide customers 
into groups with similar purchase habits. The classification algorithm and clustering 
share certain similarities, but the type of dataset we are utilizing is different. We use 
the labeled dataset for classification while the unlabeled dataset is used for clustering. 
As illustrated in Figure 7.2, some of the techniques in clustering are, but not limited 
to, the following [5]:

7.2.1.1 Centroid-Based Clustering
Centroid-based clustering is an iterative clustering process where the clusters are 
produced by the proximity of data points to the cluster centroid [6,7]. The centroid is 
constructed in this case such that the least distance is obtained between the data points 
and the center [8]. A central vector is used to represent clusters in centroid-based 
clustering, which might not actually be a part of the data. It’s crucial to have prior 
knowledge of the dataset because these models require that the number of clusters 
needed be stated upfront. These models iteratively search for the regional optimum. 
The most important yet challenging step in the clustering approach is determining 
the number of clusters in advance. It is a widely used clustering strategy for sur-
facing and optimizing huge datasets, notwithstanding the disadvantage. By using 

Clustering Technique

Centroid based
clustering

Hierarchical
clustering

Density-based
clustering

Distribu�on based
clustering

FIGURE 7.2 Types of clustering techniques.
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centroid-based clustering, non-hierarchical groupings are created from the data. The 
feature of determining the distance measure between the clusters and the character-
istic centroids is the fundamental component of all centroid-based algorithms.

The distance measure is often calculated using the common metrics such as 
Manhattan distance, Minkowski distance, or Euclidean distance. The steepest 
descent method, the mean, and the median are the approaches deployed for comput-
ing the distance measures in the Minkowski, Euclidean, and Manhattan distances, 
respectively. These algorithms for iterative clustering draw the idea of similarity 
from how near an observation of data is to the centroid of the clusters [9]. Because 
the optimization problem is NP-hard, solutions are frequently approximated over 
several trials [10]. The typical approximations method is the k-means algorithm that 
often runs numerous times with various random initializations in an effort to locate 
a local optimum. While using k-means clustering, we aim to maximize the distance 
between the centroids of distinct clusters while minimizing the distance between a 
cluster’s centroid and other points within it [11].

7.2.1.2 Hierarchical Clustering
Hierarchical clustering is another technique of clustering, which builds a hierarchy 
of clusters according to how related objects are. The approach is useful when there 
is an inherent hierarchical structure in the data as well as when there is no prior 
knowledge of the cluster number [12]. It is a notably valuable tool for analyzing and 
visualizing the structure of complicated datasets and locating natural groupings or 
specific groups inside the data. Each data point is initially treated as an independent 
cluster, and from there, the algorithm iteratively aggregates the nearest clusters until 
a stopping requirement is met [13]. A dendrogram, which displays the relationships 
between the clusters, can be used to illustrate the resulting hierarchy.

The diagonal values are zeros since a cluster of values against itself is always 0, 
the values on the diagonal are all zeros. The additional numbers represent the separa-
tion between each cluster. For instance, the distance between clusters 1 and 2 is 3 and 
indicates a closer association; however, clusters 1 and 5 have such a distance between 
them of considerably greater magnitude, indicating that the clusters are farther away. 
To create a dendrogram, you will need to use the proximity matrix and the resulting 
clusters. The dendrogram displays the sequence in which the clusters were combined, 
and each node’s height corresponds to the separation between the clusters at that 
particular level of the hierarchy.

Hierarchical clustering can be categorized into two:

 i. Agglomerative (bottom-up) Hierarchical Clustering
 ii. Divisive (top-down) Hierarchical Clustering

The former begins with a single dataset and sequentially combines nearby points 
in line with a set rule till all data points are clustered into a single class. The latter, 
however, involves initially treating the entire dataset as a whole and then segmenting 
it in accordance with predetermined principles till all datasets are isolated from one 
another [14]. Both techniques are essentially reverse processes, and the dendrogram 
produced using the same criteria is identical. Agglomerative clustering provides a 
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clustering sequence with a decreasing cluster count at each iteration. A single cluster 
is produced by combining two clusters into one at each level from the preceding 
clusters while divisive algorithms operate in the reverse manner, that is, they pro-
duce a clustering sequence of m at each stage [15]. At each stage, the clustering is 
produced by splitting a single cluster into two components from the prior one. We 
will dwell much on agglomerative clustering, being the most commonly used tech-
niques in hierarchical clustering. The most important agglomerative algorithm rep-
resentatives are single and full connection algorithms. These are the best algorithms 
for recovering large and small clusters. Agglomerative algorithms, like AGNE, treat 
each point as a separate cluster and repeatedly merge them to form a hierarchy [12]. 
The split algorithm, like DIANA, considers every point as a cluster and splits them 
into smaller clusters iteratively [16]. Since CURE extracts a predetermined number 
of evenly distributed points from each cluster to serve as the cluster’s representative 
points, it can identify nonspherical clusters [17].

7.2.1.3 Density-Based Clustering
Density-based clustering groups data points by proximity in a high-density area 
[18–20]. Density-based clustering is useful for asymmetric or uneven datasets since 
it can locate clusters of any size and shape. Density-based clustering uses density. It 
operates by finding high-density locations, which are places where many data points 
are congregated close to one another. Then, pockets of lower density, often referred 
to as noise or outliers, separate these zones from one another. The recognition and 
categorization of items with comparable densities is done using density-based clus-
tering algorithms. This method divides data collection by point density. Low-density 
data points are clustered together, whereas high-density data points are clustered 
separately [18].

Density-based methods typically involve two key steps. Using data from the 
immediate neighborhood, a suitable technique is utilized to calculate each data 
point’s density in the first stage. The following stage involves identifying and merg-
ing comparable data points in denser regions to create clusters. A data point’s den-
sity is determined in the first stage using information about its nearby neighbors. 
The accuracy of density computation typically reflects the correctness of closeness 
estimation.

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
and fast search and find of density peaks (FDP) algorithm are the most widely used 
density-based clustering algorithms [21]. The DBSCAN algorithm specifies two 
parameters, namely, ε  and MinPts. The minimal number of points necessary to 
establish a dense zone is MinPts, and ε  is the greatest distance between two points 
before they can be regarded as belonging to the same cluster. A border point is a 
point that is less than MinPts neighbors away from a core point but is still within 
distance of the core point. Noise points are locations with less than MinPts neigh-
bors within and are not a part of any dense region [22]. The idea of the noise, 
core, and border object is depicted in Figure 7.3. A density core-based clustering 
technique with dynamic scanning radius (DCNaN) was proposed to replace the 
need for fixed global parameter setting following the success of DBSCAN and FDP 
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[20]. A Fast Density Peaks Clustering Algorithm with Sparse Search (FSDPC) is 
an alternative approach, which was developed to address the FDP’s disadvantage of 
increased computing cost [19].

Density-based clustering has several advantages over k-means and hierarchical 
clustering:

 i. It may discover clusters of any form or size, unlike k-means clustering, 
which assumes spherical and equal-sized clusters.

 ii. As noise points are identified as such and excluded from any cluster, it is 
robust to noise and outliers.

 iii. It does not need the number of clusters beforehand, unlike k-means 
clustering.

 iv. It is computationally efficient because it just needs to calculate distances 
between close sites.

7.2.1.4 Distribution-Based Clustering
The distribution-based clustering algorithm, sometimes referred to as model-based 
clustering, locates clusters in a dataset based on the data’s underlying probability dis-
tribution. The algorithm operates by assigning data points to clusters based on how 
likely they are to belong to each distribution and modeling the probability distribu-
tion of the data [24]. The capacity of distribution-based clustering to handle datasets 
with complex distributions is one of its key benefits. Distribution-based clustering 
may locate clusters of any distribution, unlike k-means, which assumes Gaussian and 
similar-sized clusters [25].

GMM is the most used distribution-based clustering algorithm. GMM assumes 
data points are formed by a combination of Gaussian distributions, each correspond-
ing to a cluster [26]. The Gaussian distribution’s mean and covariance are among the 
parameters of the method that are initially initialized at random. The algorithm 
then assigns each data point to the cluster with the highest probability [27]. Next, 
the Gaussian distribution parameters are changed using the allotted data points 
and repeated until convergence. The Dirichlet Process Gaussian Mixture Model 
(DPGMM) is another distribution-based clustering method. Similar to GMM, but 

FIGURE 7.3 Core, noise, and border objects with MinPts = 3 [23].
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with an unspecified number of clusters, is DPGMM [28]. The procedure begins by 
presuming the existence of a prior distribution over the number of clusters and then 
allocates data points to clusters on the basis of the probability that each distribution 
is a fit for each individual data point [29]. The parameters of the Gaussian distribu-
tions are then automatically changed based on the data to reflect the number of clus-
ters. The potency of the model-based clustering as a viable tool for data analysis has 
been attributed to its capability to handle complex distribution and assign number 
of clusters automatically [30]. However, it is not without its own demerits, which are 
computational intensity and requirement for advance knowledge of the probability 
distribution of the data, which might negatively impact the datasets with unknown 
distributions [30].

7.2.2 diMensionaLity reduction

A dataset’s dimensionality refers to how many properties, features, or input vari-
ables it has. This could be two-dimensional or three-dimensional or more attributes 
[31]. The features of real-world datasets are numerous as well; it is thus difficult to 
comprehend that such datasets’ observations are located in high-dimensional space. 
Dimensionality reduction is the technique of decreasing the number of features in 
data while retaining the same or more variance as is feasible in the original data 
[32]. Dimensionality reduction is a potent unsupervised learning technique that may 
be used to streamline complex datasets and enhance the reliability of clustering. We 
may obtain an equivalent of the dataset using fewer attributes by reducing noise and 
ambiguity in the dataset through dimensionality reduction.

There are primarily two categories of dimensionality reduction techniques which 
lower the number of dimensions in distinct approaches. One approach eliminates the 
redundant characteristics from the dataset and only preserves the most crucial infor-
mation while the set of features receives no transformation [32]. Examples of this 
approach include backward elimination, forward selection, and random forests. The 
alternative approach uncovers a collection of novel attributes while it is transformed 
appropriately. This approach can be further categorized into linear and nonlinear 
techniques [33]. These linear methods work with linear data but fail with nonlinear 
data because they project the data onto a new set of orthogonal basis vectors that 
capture the highest variance.. Nonlinear methods to map data to a lower-dimensional 
space retain the data structure. The nonlinear approaches comprise algorithms such 
as Kernel Principal Component Analysis (PCA), t-distributed Stochastic Neighbor 
Embedding (t-SNE), Multidimensional Scaling (MDS), and Isometric mapping 
(Isomap) [31,33].

One of the most popular methods for reducing linear dimensions in unsupervised 
learning is PCA [33]. The orthogonal basis vectors with the highest variance in the 
data are identified by PCA as the major components of the data [32]. The first prin-
cipal component represents the biggest variation, and the subsequent principal com-
ponents are orthogonal to the first and represent the remaining variance. The next 
section will explain this algorithm. While Singular Value Decomposition (SVD) is 
a closely comparable method to PCA, it decomposes the data matrix into a product 
of three matrices instead of identifying the primary components of the data: a left 
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singular matrix, a diagonal singular value matrix, and a right singular matrix [34–36].  
SVD are used for matrix completion, low-rank approximation, and cooperative 
filtering.

A nonlinear dimensionality reduction technique called manifold learning trains 
a low-dimensional embedding of the data while maintaining its local neighborhood 
framework [37,38]. The visualization, clustering, and outlier detection of data can 
all be accomplished using a variety of learning techniques, including t-SNE [39,40], 
Isomap [41], and locally linear embedding (LLE) [33,42]. By keeping the pairwise 
distances between the data points, t-SNE is particularly helpful for visualizing high-
dimensional data in two or three dimensions. In order to learn a compacted way 
to represent the information in a lower-dimensional space, autoencoders use neural 
networks that reduce the reconstruction error between the input and output data. 
Autoencoders can compress, identify anomalies, and extract features. Variational 
autoencoders (VAEs) learn a probabilistic representation of input to create new data 
samples [43,44].

7.2.3 association ruLe Learning

In huge datasets stored in different forms of databases, association rules are “if-then” 
statements that serve to illustrate the possibility of associations between data ele-
ments [45]. It is frequently used to discover unnoticed links or hidden connections 
between variables. The method in association learning is predicated on the idea of 
locating common patterns or itemset in a dataset. A frequent itemset is a group of 
items that appear in a dataset together more frequently than other groups of items. 
In order to predict the recurrence of one item based on the presence of another, asso-
ciation rule learning algorithms construct rules based on these frequently occurring 
itemset. If you wish to find rules that broadly characterize your data, such as “those 
who buy X also tend to buy Y,” you have an association rule learning problem. In 
order to unveil relevant relationships between features, association rules are created. 
We will employ the following measures, which also constitute the fundamental steps 
in association learning, to choose the most intriguing rules from among the many 
potential rules:

 i. Support: Finding a common itemset is the first step in learning asso-
ciation rules. Support is a metric for determining how frequently a set 
of objects appear in a dataset. The number of transactions that contain 
an itemset divided by the total number of transactions in the dataset is 
referred to as the itemset’s support. The support reflects how often the 
item emerges in the dataset. For instance, the level of product popularity 
in a store. The support for the pairing of A and B would be, P AB( )−  or 
P A( ) for Single A [45].

 ii. Confidence: This creates rules using the frequently occurring itemset from 
the first step. Confidence measures a rule’s antecedent (if) and consequent 
(then) relationships. Divide the total number of transactions by the number 
that contains both the antecedent and the consequent. Confidence reflects 
how often the rule is correct. The rule is reliable. How often do people buy 
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toothpaste and toothbrushes? Confidence also represents the likelihood of 
the consequent given the antecedent, -P(B|A) = P(AB)/P(A) [45].

 iii. Lift: Lift, which accounts for the antecedent and consequent’s separate 
occurrence rates, measures the intensity of a rule’s link. Lift is the differ-
ence between the product of the supports of itemsets that only contain the 
antecedent and the consequent and the support of the itemset that contains 
both. How viable is it to buy another product while regulating the first’s 
popularity? When a lift score is near 1, the antecedent and consequent are 
autonomous and do not affect each other. If the Lift score is more than 1, 
the antecedent and consequent are interconnected and positively affect each 
other. The antecedent and consequent are substitutes if the lift score is less 
than 1 [45].

Some of the prominent applications of association rule learning includes: (i) Market 
Basket Analysis uses association learning to discover goods that are commonly 
bought together and to create tailored marketing campaigns and the improvement 
of product placement in retail establishments. (ii) Health care can find patterns and 
connections between symptoms, diseases, and therapies using association learn-
ing, thus improving the outcomes for patients by using this information to create 
more efficient treatment strategies. (iii) It can be used in the finance industry to 
find links and patterns in financial transactions as well as to spot fraud. These data 
can be utilized to create fraud detection systems that are more effective and to stop 
financial crimes.

Considering a data sample on supermarket transaction data comprising 30 days of 
grocery transactions extracted from R library and reported by Analyn [46], the net-
work diagram in Figure 7.4 illustrates the association between particular items under 
consideration. Red circles indicate greater lift, whereas larger circles indicate greater 
support. Common algorithms used for association learning are Apriori algorithm, 
FP-growth, and Eclat algorithm, amongst others. The Apriori algorithm is predicated 
on the notion of identifying frequent itemsets and producing association rules from 
them. It begins by locating all frequently occurring itemsets, and then, by combining 
them, it develops rules [47,48]. The approach of the FP-growth algorithm is based 
on the FP-Tree, a data structure that compresses data and improves the efficiency of 
mining frequent itemsets. It traverses the FP-Tree to produce rules [49].

7.3 COMMON UNSUPERVISED LEARNING ALGORITHMS

Without a map or a guidebook, picture yourself wandering in a strange city. You’re 
pacing around, taking everything in, trying to make sense of the noise and turmoil. 
You suddenly begin to see connections and patterns in the language, the people, and 
the architecture. You start to put related items together and become aware of any 
outliers that don’t follow the pattern. You should feel proud of using unsupervised 
learning, which computers use to find patterns in data without explicit supervision. 
From detecting fraud to predicting market fluctuations, unsupervised learning helps 
us understand the world around us. In this subsection, we shall examine some of the 
prominent algorithms used in unsupervised learning. These algorithms are based on 
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the category of unsupervised learning techniques discussed in the previous subsec-
tion. Unsupervised learning algorithm can range from clustering methods that group 
comparable data points to dimensionality reduction strategies that simplify huge and 
complicated datasets. Unsupervised learning is used in anomaly detection, photo 
identification, market segmentation, and consumer profiling. Because it lacks explicit 
feedback, it requires thorough data analysis and algorithm selection.

7.3.1 k-Means cLustering aLgorithMs

K-means clustering is one of the most widely used algorithms for centroid-based 
clustering [50]. Using a user-defined parameter called k, it divides a set of n data 
points into k clusters. The technique operates by first selecting k initial centroids 
at random from the data points, allocating each subsequent data point to the closest 
centroid, and then recalculating the centroids of the clusters that result [11]. Up until 
convergence, when no more data points are assigned to new clusters, the process 
is repeated. It remains one of the primary methods used today in data clustering–
related applications [51–53].

FIGURE 7.4 Illustration of association between selected items [46].
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While using k-means clustering, we aim to maximize the distance between the 
centroids of distinct clusters while minimizing the distance between a cluster’s cen-
troid and other points within it [11]. The steps in k-means algorithm operations as 
firstly proposed by Stuart Lloyd [50] are summarized as follows [11,54]:

 i. Specify “k” as the arbitrary clusters. Each point should be assigned at ran-
dom to one of the clusters.

 ii. Estimate the distance between each observation and each cluster centroid 
and assign it to the cluster with the smallest distance.

 iii. Recalculate the k centers. Use the mean vector of the cluster’s points, to 
determine the cluster centroid for each cluster.

 iv. Repeat steps ii and iii until no clusters are changing any more.

The areas of application of k-means are but not limited to the following: crime pre-
diction and detection of fraud [55,56], cyber profiling [57], document processing [58], 
customer segmentation [53], and drone networks [59], amongst others. The extensive 
use of the k-means clustering in most clustering problems has been attributed to its 
simplicity, flexibility with huge datasets, and strong generalization properties [60]. 
k-means can be used in the early phases of machine learning tasks to develop a 
thorough grasp of your data [54]. However, k-means are not ideal for all applications 
due to a variety of disadvantages. Among these are the realities that the value of k- 
means must be known beforehand; thus, the initial cluster centers chosen are not 
always ideal, and the influence of noise results in a drop in accuracy [11]. Although 
these drawbacks haven’t led to the abandonment of clustering, serious users must be 
ready to design algorithms that are better suited to their data than those that are com-
mercially accessible. According to Nayini et al. [60], few other limitations of the k- 
means algorithm are as follows:

 i. The Euclidean distance has a constraint that restricts its use to numerical 
data alone. All data types should be supported by a clustering method in its 
optimal condition.

 ii. The choice of cluster centers and the value of k have significant effect on the 
clustering outcomes.

 iii. Due to the possibility of algorithms based on square-error convergent to 
local minimum, different beginning partitions can result in different final 
clustering. This is particularly accurate if clusters are not properly separated.

 iv. k-means is quite sensitive to data with outliers.
 v. The k-means clustering technique is computationally intensive since it takes 

an iterative approach to tackle the problem, which can increase computation 
time for huge datasets. This makes it inappropriate when there is a large 
amount of data.

The k-means method has been modified in a number of ways to solve some of its 
drawbacks. These several variations of k-means, includes ones that limit the cen-
troids to observations of the dataset (k-medoids), select medians (k-medians), and 
select initial centers less arbitrarily (k-means++), amongst others [9]. These variants 
are discussed as follows.
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7.3.1.1 k-means++
This is an improved k-means clustering algorithm, which develops an initial center 
at random with a focus on a greater degree of dissimilarity. A consecutive center is 
chosen from the samples with a uniform probability to the distance between a sample 
and its closest current center, commencing with a random sample as the initial center 
as illustrated in Equation 7.1 [61]:

 P x
d x

d x
x

( )

( )

2

2∑
( ) =
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where d x( ) is the separation between x and its closest center, x is a sample, while χ  
is a set comprising samples apart from the selected centers. This version of k-means 
reduces the squared distance between the centroids toward enhancing the centroids 
initialization. Thus, the challenge of subpar clustering outcome consequent upon 
very close initialization of centroids is abated [62].

7.3.1.2 k-Medoids
The k-mediods clustering algorithm represents a cluster’s center (or medoid) as 
a specific point within the cluster [63]. Instead of choosing the mean point of a 
cluster as the centroid, K-medoids algorithm chooses the most centrally located 
point in the cluster as the medoids [64]. Due to its resistance to outliers and noise, 
a medoid can serve as a representative of a valid cluster center [65]. Since k- 
medoids algorithms employs medoids (actual data points), instead of mean points 
which might be impacted by outliers, it is more resilient to outliers than K-means. 
Common example is the PAM (Partitioning Around Medoids) or MCA (Minimum 
Cluster Analysis). It minimizes an objective function (absolute error) as shown in 
Equation 7.2 [63]:
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where E  stands for the total absolute error, p is a data point that represents an object 
in the cluster (cj), and obj  is the object that best reflects cj. The method repeats until 
the typical object becomes the medoid or the cluster item with the most centralized 
location.

7.3.1.3 K-Median
A dataset is divided into k clusters using the K-median clustering algorithm, with 
each cluster being represented by its median point [66]. The function of the method 
is to minimize the sum of the distances between each point and its assigned median. 
The k-median algorithm selects k starting medians at random, and then assigns each 
data point to the median that is closest to it. The medians are recomputed as the 
center of all the points assigned to each cluster after the original assignment. Until 
the medians stop fluctuating or a set number of iterations has been reached, this pro-
cedure is repeated [66,67].
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7.3.1.4 Fuzzy k-Means
Each data point in a conventional k-means model only belongs to one cluster; in 
contrast, each point in fuzzy k-means might belong to numerous clusters, each with 
varying degrees of membership [68]. When there is uncertainty or overlap between 
groups, this variance enables additional flexibility in grouping. The fuzzy method of 
clustering is based on a soft grouping of units. The majority of the suggestions take 
into account object data, which are common unit-variable data matrixes containing 
numerical variables [69,70].

7.3.2 gaussian MiXture Method

As previously revealed, k-means clustering algorithm exhibits a critical drawback 
which is the use of hard assignment when categorizing data points. Poor performance 
for several real-life scenarios in k-means application is often attributed to its non-
probabilistic structure and the way it employs the simple distance-from-cluster-center 
to allocate cluster membership. However, to overcome this limitation, the Gaussian 
Mixture Model (GMM) is an extension and also a viable alternative approach to 
k-means owing to their soft assignment strategy [71].

When we are unsure of which cluster a specific data point should belong to, instead 
of employing hard assignment, we can utilize probability to establish the correct clus-
ter assignment for our data point. Being an extension of the K-means methodology, the 
GMM approach uses the clusters created by k-means as a starting point for data point 
customization [54]. GMM is a probabilistic model used for clustering or density estima-
tion tasks. A GMM models the data distribution as the weighted sum of many Gaussian 
distributions (also known as components or clusters). A different subset of the data is rep-
resented by each Gaussian distribution. The percentage of each subpopulation in the total 
distribution is determined by the weights. It is a statistical technique used to represent 
complicated datasets as a combination of simpler Gaussian-shaped distributions [26].

The mixture component (cluster/distribution) weight and the component mean 
and variances are the two reconfigurable parameters in a Gaussian mixture model. 
Each data point is assigned a probability for each cluster, defining its membership, 
with the number of unique probability values corresponding to the number of clusters 
selected by the user [54,71]. Equation 7.3 mathematically represents GMM as a sum 
of M component Gaussian densities [71]:
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where θ  is a D-dimensional continuous-valued data vector, i ki ,  1 .  φ = …  are mixture 
weights, while g i ki i( | ,  ),  1 .θ µ Σ = …  are component Gaussian densities and p x|θ( ) is 
the probability density function. Every element density is depicted by the probability 
distribution function in Equation 7.4 for representing its D-variate Gaussian function:
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Given the covariance matrix iΣ  and the mean vector iµ , the condition 
i

k

i 1 
1

∑φ =
=

 is sat-

isfied by the mixed weights. Finding these parameters that best match the observed 
data is the aim of a GMM. The Expectation–Maximization (EM) algorithm is com-
monly used for this. This iterative technique alternates between calculating each data 
point’s odds of belonging to each cluster (the “E-step”) and updating each cluster’s 
parameters based on these probabilities (the “M-step”). The cluster parameters are 
updated repeatedly by the EM algorithm until convergence is attained or a maximum 
number of repetitions are reached. Each data point can be assigned to the cluster with 
the highest probability to determine the final cluster allocations.

7.3.3 density-based sPatiaL cLustering of aPPLications with noise 

DBSCAN is a dynamic clustering algorithm used for clustering datasets with various 
shapes and sizes [72]. It is especially helpful when the data are noisy or have outliers 
and can’t be effectively clustered using more conventional techniques like k-means or 
hierarchical clustering. The basic working principle of this algorithm is based on the 
concept of density connectivity, which entails connecting points that are adjacent to one 
another in a high-density area of the data space [73]. DBSCAN detects correlations and 
patterns in data that are challenging to find manually but may be pertinent and valuable 
to identify patterns and forecast trends. Consider a real-world scenario using DBSCAN. 
Let’s say we operate an online store and want to increase sales by directing customers 
to pertinent products. We can forecast and recommend a relevant product to a particular 
consumer based on data collection even though we don’t know exactly what they’re 
looking for. By using the DBSCAN on our dataset (which is based on an online store 
database), we may identify clusters based on the items that customers have purchased. 
If customer A bought a pen, book, and scissors, and customer B bought a book and 
scissors, we may recommend a pen to customer B using this clustering technique [74].

DBSCAN can find clusters of any size or density, including nonconvex ones. In 
addition, the system can handle noisy data and recognize points that don’t fit into any 
cluster. The two parameters that DBSCAN uses to operate are ε  and minPts [72].  
ε is the minimal number of points needed to establish a dense region, whereas minPts  
is the minimum number of points needed for two points to be considered to be a part 
of the same cluster [72]. A pair of data points are neighbors if their distances are 
equal or smaller than 54ε [ ]. The technique begins by choosing a random location in 
the dataset and locating every other point that is nearby. A new cluster is created if 
there are more than minPts  within the distance of the starting point [73]. The method 
then goes through each point in the cluster one more time until no more points can 
be added. Figure 7.5 illustrates the DBSCAN algorithms and its generated clusters. 
DBSCAN classifies data points as core, border, or noise based on their proximity to 
other points in the dataset. These points are defined as follows:

 i. Core point (C): A point is a core point if it is surrounded by at least as many 
other points as minPts , including itself. Be aware that these points must also 
be located inside radius ε . In other words, we say that a point in DBSCAN is 
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considered a core point if it has at least a minimum number of other points 
(minPts) within a specified radius ε  around it.

 ii. Border point (B): A border point is a data point that is located within the 
radius of a core point but is not a core point. Border points are nonetheless 
a part of a cluster despite being on the periphery of dense areas and having 
fewer nearby points than core points. If a point can be reached from a core 
point and there are fewer than minPts  surrounding it, it is regarded as a 
border point.

 iii. Noise point (N): Noise point is a data point that does not belong to any 
cluster. Noise or outliers are points that cannot be reached from other core 
points. Noise points are outliers or low-density data points that do not fit 
clustering criteria.

The user initially specifies the values for both minPts  and ε . The technique starts 
by picking a random data point and utilizing its ε -value to determine its neighbor-
hood. A data point is designated as a core point and cluster formation occurs if there 
are minPts  or more nearby data points. In the absence of this, the point is labeled 
as noise. All of the data points nearby the randomly chosen data point become a 
component of cluster 1 when cluster formation (let’s call it cluster 1) begins. If the 
recently added data points are also core points, then cluster 1 will also include all of 
the nearby points [54,73].

Steps in DBSCAN algorithm are summarized as follows:

 i. Choose a random location in the dataset that has not yet been explored.
 ii. Discover every location that is within ε  distance of the starting point.
 iii. If there are more than minPts  within ε distance, create a new cluster and 

include all of the nearby points. If not, label the data point as noise or an 
outlier.

 iv. For each point in the newly formed cluster, repeat steps i–iii.
 v. Repeat steps until all the points have been visited.

FIGURE 7.5 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
algorithm and generated clusters [75].
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The literature is replete with a wide range of applications of the DBSCAN algorithm 
such as but not limited to automated systems for bridge monitoring in structural 
engineering [76], detection and sensitivity analysis of river heat in summer [77], 
field road categorization for farm machinery [78], natural disaster discovery [79], 
identifying the source of acoustic emissions [80], traffic analysis [81], and particulate 
matter (PM2.5) concentration monitoring for environmental safety [82]. Because ε  
and minPts  might have an impact on DBSCAN, choosing the right settings for these 
parameters can be difficult [73]. Finding the ideal values for these parameters may 
need some trial-and-error, while the choice of these parameters might have a con-
siderable impact on the clustering results. DBSCAN might be difficult to utilize on 
datasets with variable densities or when the actual number of clusters is unclear due 
to its sensitivity to parameter changes.

7.3.4 PrinciPaL coMPonent anaLysis

Consider finding trends and correlations in a dataset with multiple variables. Due to 
many factors, data analysis can be difficult. PCA helps here. As earlier noted, high-
dimensional data can pose some challenges for some algorithms, especially when 
there are more attributes than observations [54]. PCA is an unsupervised machine 
learning algorithm used for dimensionality reduction. It transforms a series of pos-
sibly associated variables into a set of new vectors termed as principal components 
[83]. In order to extract features, PCA projects a high-dimensional space into a 
lower-dimensional subspace. PCA attempts to preserve the data section that gives 
the greatest variance while attempting to eliminate attributes that provide less vari-
ance [54,83]. It is a potent statistical method that breaks down complex datasets into 
smaller sets of variables called principal components by selecting the most crucial 
variables. These elements indicate the most important variance in the original data 
and can be used to better describe and evaluate it. PCA measures the link between 
two variables using covariance. If two variables have high covariance values, they 
are strongly connected. PCA seeks new, uncorrelated variables that explain the most 
data variance. These new variables are “principal components”. Dimensionality 
reduction technique with PCA is shown in Figure 7.6. The PCA technique finds prin-
cipal components in these phases [84]:

 i. The first step involves standardizing (normalizing) the variables by dividing 
by the standard deviation and subtracting the mean. This makes sure that all 
variables are identical and operate on the identical scale.

 ii. Calculate the standardized variable covariance matrix. The covariance 
matrix, a square matrix with the same number of rows and columns as vari-
ables, measures all pairwise connections.

 iii. Decompose the covariance matrix’s eigenvalues and eigenvectors. The 
eigenvalues show how much variation each eigenvector (new variables) 
explains.

 iv. Using the eigenvalues as a guide, choose the principal components. As the 
most important source of variation in the data, the components with the 
highest eigenvalues are chosen as the principal components.
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PCA benefits include the following:

 i. Reduces the number of variables present in a data set, which makes it sim-
pler to interpret and visualize.

 ii. PCA enhances data quality. PCA can boost the accuracy of the analysis by 
removing noise and redundant data from the data.

 iii. Improves interpretability: PCA can identify the major causes of data varia-
tion, easier for users to understand the conclusions.

PCA, however, also has several drawbacks, such as:

 i. Information loss: If the most important causes of variation in the data are 
not taken into account by the principal components, PCA may lead to infor-
mation loss.

 ii. Complexity: PCA can be difficult and time-consuming, particularly for 
large datasets.

7.4  TECHNIQUES IN OPTIMAL UNSUPERVISED 
LEARNING PROCESSES

Given the variety of methods and strategies available, choosing the optimal unsuper-
vised learning technique and algorithm can be difficult. Using the incorrect approach or 
algorithm can result in unreliable results or lost opportunities for knowledge and insight. 
Each algorithm has pros and cons. We will go through the crucial elements to take into 
account when choosing an algorithm for optimal performance. Some of the key steps in 
achieving optimal unsupervised learning processes are discussed as follows.

7.4.1 ProbLeM definition

The problem that has to be solved must be identified as the first and most important 
stage in selecting an unsupervised learning algorithm. Understanding the infor-
mation at hand, the desired result, and the kinds of insights being sought are all 

FIGURE 7.6 Dimensionality reduction with Principal Component Analysis (PCA): (a) Adjusted 
axis system and (b) Variable discarded [85].
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necessary for problem definition. The problem specification step lays the ground-
work for choosing the best unsupervised learning algorithm to help find solutions 
to the challenge. The problem must be defined along with the criteria for the unsu-
pervised algorithm. For instance, a challenge would be to find patterns in consumer 
data so that clients can be divided based on their purchase habits. Alternately, it 
can be to make the data less dimensional in order to perform analysis more quickly. 
To choose the optimal algorithm that can produce the desired outcomes, the prob-
lem must be defined explicitly. Several unsupervised learning methods are cre-
ated to address various issues. To choose the most suitable unsupervised learning 
algorithm, it is crucial to comprehend the issue and intended result. The problem 
statement should contain data type, dimensions, noise or outliers, and distribution. 
This information helps identify if data preparation is needed before unsupervised 
learning.

7.4.2 data understanding and Pre-Processing

The optimal selection of an unsupervised learning method requires careful under-
standing of the data and their pre-processing. Data structure, format, and character-
istics must be understood. You must recognize the finest preprocessing methods to 
choose the best unsupervised learning algorithm. In this step, it is critical to consider 
cleaning the data to eliminate any discrepancies, mistakes, or missing values from 
the data. The accuracy and dependability of the data for analysis depend heavily on 
this stage. Further to this, the data must be transformed to change, scale, modify or 
categorically encode it. Finding the features that are most pertinent to the analysis 
is as well crucial in this step as it allows for lowering the data’s dimensionality and 
enhancing the effectiveness of the unsupervised learning algorithm. Exploring the 
data and finding any patterns or trends that may be there need the use of data visu-
alization. This phase might assist you in choosing the best unsupervised learning 
algorithm to employ.

7.4.3 hyPer-ParaMeter tuning

While choosing an unsupervised learning method, hyper-parameter tweaking 
is vital. Hyper-parameters are data-independent variables that must be provided 
before the method is run. Hyper-parameters might be the number of clusters in 
a clustering algorithm, the learning rate in a neural network, or the number of 
principal components in a PCA in unsupervised learning methods. Tuning these 
hyper-parameters to their best settings optimizes algorithm performance. Hyper-
parameter tuning begins with specifying the range of values for each hyper-parameter 
that will be considered throughout the search. This range must be big enough to 
accommodate a variety of sensible values without making the search computa-
tionally prohibitive. Grid search, random search, and Bayesian optimization can 
alter hyper-parameters [86,87]. Previous chapters covered some of these methods. 
Algorithm performance evaluation metrics must also be chosen. It is also impor-
tant to select the kind of evaluation metrics to be used in assessing the performance 
of the algorithms. Some of the significant evaluation metrics for unsupervised 
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learning has been discussed earlier. This evaluation metric needs to be suitable for 
the particular activity and issue being dealt with. Run the hyper-parameter search 
to determine the best values for the hyper-parameters using the search strategy and 
evaluation metric you’ve chosen.

7.5 PERFORMANCE EVALUATION OF UNSUPERVISED LEARNING

Labeled data are needed to test unsupervised learning models. Unsupervised 
learning evaluation criteria assess these models’ efficacy. Internal validation helps 
assess unsupervised learning tasks like grouping and dimensionality reduction. 
Unsupervised learning restricts cluster evaluation [88]. The clustering approach 
determines the measuring method, a well-known quirk of the evaluation process 
[89]. For the validation of the algorithm results, various factors must be considered 
while assessing the clustering results [88,90]:

 i. Assessing propensity of data for clustering (i.e., confirming the existence of 
nonrandom structure).

 ii. Choosing the appropriate number of clusters.
 iii. Evaluating the clustering results’ quality without using outside data.
 iv. Comparing the outcomes with data from outside sources.
 v. Comparing two different cluster sets to see which is more effective.

As there is no usage of outside data, the first three problems are resolved through 
internal or unsupervised validation. The fourth problem is fixed through supervised 
or external validation, while both supervised and unsupervised validation methods 
can address the last problem [90]. Evaluation procedures and metrics are presented 
by Gan et al. [91], and they include methods for both internal and external validation 
as shown in Figure 7.7.

A supervised learning issue may be related to external validation techniques. By 
including extra data, such as external class labels for the training instances, in the 
clustering validation process, external validation moves forward. External valida-
tion approaches are not typically employed on clustering problems because unsuper-
vised learning techniques are typically used when such information is unavailable. 
Nonetheless, they are still applicable when external data are available and when 

FIGURE 7.7 Clustering evaluation metrics [91].
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creating synthetic data from actual data. By relying on the information provided by 
the data used as the clustering algorithm’s input, internal validation methods enable 
the determination of the clustering structure’s quality without requiring access to 
external data

The following are a few often used internal validation metrics commonly used for 
assessing the performance of clustering:

 1. Silhouette coefficient: This metric assesses a data point’s degree of fit 
inside its own cluster in relation to other clusters. A score of +1 denotes 
a well-clustered data point, a score of 0 denotes a point that is on the clus-
ter boundary, and a score of –1 denotes a misclassified data point. The 
Silhouette co-efficient (si) is represented in Equation 7.5 [88,92]:

 s i
b i a i

max a i b i,  { }( ) ( ) ( )
( ) ( )
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where a i  ( ) is the distance between each example in a cluster, while b i( ) is 
the average distance between each example and the examples in each cluster 
that don’t contain the analyzed example and are estimated as Equations 7.6 
and 7.7, respectively:
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 2. Calinski-Harabasz (CH) index: This metric measures the ratio of the 
between-cluster variance to the within-cluster variance. Higher values of 
this metric indicate better-defined clusters. CH is a metric that takes into 
account the dispersion both within and across clusters. The number of clus-
ters that optimizes the CH value for x clusters would be our choice [93]:
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where SSE is the sum of squared error within clusters while SSB is the sum 
of error between clusters.

 3. Dunn index: This metric measures the ratio of the minimum distance 
between clusters to the maximum intra-cluster distance. In other words, 
Dunn index is the fraction of the maximum distance between clusters and 
the minimum distance between data from those clusters [88]. Higher values 
of this metric indicate better-defined clusters [94]. This ratio (D) must be 
maximized as shown in Equation 7.9:
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 4. Ball-Hall index: The Ball-Hall index is a measure of cluster validity used 
in cluster analysis to evaluate the quality of clustering results [89]. It is cal-
culated as the square root of the sum of the squared distances between each 
point in a cluster and its centroid, divided by the cluster’s total number of 
points. It is mathematically expressed as in Equation 7.12:

 BH
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where n is the number of points in the cluster and d i c, 2 ( ) is the squared 
distance between the ith point in the cluster and that cluster’s centroid.

 5. Xie-Beni score: It is a cluster validity score that assesses the performance 
and quality of clustering outcomes. The ratio between the total distances 
between each data point and its nearest cluster center and the total distances 
between each data point and all cluster centers is known as the Xie-Beni 
score. It can be mathematically expressed as follows [88]:

 XD
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where K  is the number of clusters, D is the average distance between all 
data points and all cluster centers, and Wk  is the sum of the squared dis-
tances between each data point and its nearest cluster center.

 6. Hartigan index: By comparing the within-cluster sum of squares (WCSS) 
of the present solution to the WCSS of a random clustering solution, the 
Hartigan index evaluates the quality of a clustering solution. The sum of the 
squared distances between each data point and the centroid of the cluster to 
which it belongs is the WCSS:
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where d is the number of dimensions in the data, k is the number of clusters 
in the current solution, RSSr is the WCSS of a random clustering solution, and 
RSS is the WCSS of the current solution. Clustering performance improves 
with higher Hartigan index values. A number of 1 indicates a perfect clustering 
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solution, whereas 0 indicates a random one. When analyzing the effectiveness 
of hard clustering techniques, where each data point is assigned to a single 
cluster, the Hartigan index is very helpful. For assessing the performance of 
soft clustering techniques, where data points can belong to numerous clusters 
with variable degrees of membership, it might not be as useful.

Common evaluation metrics that are peculiar to dimensionality reductions are as 
follows:

 1. Explained variance ratio: To determine how much of the overall variance 
in the data is explained by each principal component, the explained variance 
ratio is an evaluation statistic used in dimensionality reduction approaches 
like PCA. The percentage of variance in the data that is explained by each 
principal component is measured by the explained variance ratio. Better 
dimensionality reduction outcomes are indicated by a greater explained 
variance ratio. PCA projects the data onto a new set of orthogonal axes that 
captures the most variance in the data. Each primary component’s explained 
variance ratio represents its share of data variation. The first main compo-
nent accounts for 60% of the data’s variation if the explained variance ratio 
is 0.6. The second primary component may explain 30% of variance with 
an explained variance ratio of 0.3.

 2. Reconstruction error: Reconstruction error is a measurement of the differ-
ence between the original data and the reconstructed data following dimen-
sionality reduction and is used in dimensionality reduction techniques like 
autoencoders and matrix factorization [95,96]. After dimensionality reduction, 
this metric compares the original data to the reconstructed data [95]. Better 
dimensionality reduction outcomes are indicated by a smaller reconstruction 
error. These methods use a set of learned parameters to map high-dimensional 
data onto a lower-dimensional space. The low-dimensional representation of 
the data is then transformed in an inverse manner to produce the reconstructed 
data. The reconstruction error is the difference between the original and recon-
structed data, defined by a distance metric like MSE or RMSE.

 3. t-SNE visualization: Visualizing high-dimensional data in two or three 
dimensions is possible with the t-SNE visualization approach. The t-SNE 
plot of a competent dimensionality reduction technique should show well-
separated clusters. Unsupervised learning uses the evaluation metric t-SNE 
(t-Distributed Stochastic Neighbor Embedding) to view high-dimensional 
data in a low-dimensional environment. It is very helpful for displaying intri-
cate and erratic relationships in data. Each data point in the high-dimensional 
space is represented by a probability distribution over its neighbors in the 
t-SNE algorithm. Repetition in low-dimensional space reduces the probability 
distribution discrepancy [97]. Thus, t-SNE can detect local and global data 
correlations. t-SNE creates 2D or 3D scatter plots for each data point in low-
dimensional space. Comparable spots in high-dimensional space are close in 
low-dimensional space. This simplifies data pattern and cluster visualization.
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7.6 CONCLUSION

This chapter has revealed the unsupervised learning as a viable machine learning 
approach which requires no labeled features, with more focus on its ability to identify 
hidden patterns and features in data. This chapter also examined some key tasks in unsu-
pervised learning such as problem identification, data preprocessing, hyperparameters 
settings and performance evaluations. The chapter has demonstrated unique features 
of unsupervised machine learning as it is capable of creating a flexible and versatile 
way to unveil hidden features in data owing to its labeled features independency. This 
significantly contributes to novel knowledge discovery across many fields including 
thin film deposition. In the context of atomic layer deposition, this approach immensely 
benefits the discovery of novel materials for enhancing the quality of deposition. The 
rising potential applications of unsupervised learning are a direct result of the ongoing 
evolution of technology and computational resources. This advancement continues to 
drive the trajectories of machine learning space while deciphering intricate patterns and 
enhancing intelligent decision-making processes in the space of thin film deposition.
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8 Deep Learning

8.1 INTRODUCTION

This chapter extends the previous discussions on machine learning’s principles by 
examining another vital subset of the machine learning i.e., deep learning which is 
based on deep neural network framework. To better comprehend the complexities of 
real-world scenarios and derive useful insights, deep learning has emerged as a revo-
lutionary algorithm that has transformed the way we understand and process real-life 
data. Hence, to fully comprehend the realms of deep learning applications in thin 
films deposition, this chapter provides a strong preliminary background to deep learn-
ing methods, types, algorithms, and applications. Deep learning’s capacity to unveil 
and identify hidden features and patterns automatically in data without needing man-
ual feature engineering is what makes it so exciting. Additionally, other traditional 
machine learning techniques are incapable of handling and deriving insights from 
unstructured data such as image and video data. With a working principle similar to 
the human brain, deep learning algorithms handles a vast amount of data to inform an 
intelligent decision making. However, this approach grapples with some challenges in 
its applications. This chapter concludes by highlighting some of the limitation of the 
deep learning techniques which impedes its exploration while shaping the trajectories 
of industries, businesses, and future applications.

8.2 WHAT IS DEEP LEARNING

Deep learning, a kind of machine learning, employs deep neural networks to carry 
out challenging tasks. Instead of depending on manually created features or subject-
matter knowledge, deep learning algorithms can discover features directly from the 
raw data [1]. A deep neural network’s basic design is made up of various layers, each 
of which applies a particular operation to the incoming data. The first hidden layer 
is given the raw data by the input layer. The input data are transformed nonlinearly 
by each hidden layer before being passed on to the following layer, and so on, until 
the desired result is achieved [2,3]. The model’s ultimate output, which can be a clas-
sification, regression, or prediction, is provided by the output layer. Deep learning’s 
primary benefit is its capacity to learn from enormous volumes of unstructured data 
[4,5]. For instance, by studying millions of photos with identified objects, a deep 
learning model can be trained to identify things in an image [1]. In applications like 
image identification, speech recognition, and natural language processing (NLP), 
this strategy has demonstrated to be incredibly effective [6]. Figure 8.1 represents the 
workflow of deep learning in solving real-life problems.

Backpropagation, a method used to adjust the neural network weights during 
training, is another feature of deep learning. In backpropagation, the weights of the 
network are updated in the direction of the negative gradient after computing the 
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gradient of the loss function with respect to the weights [7]. Iteratively repeating this 
procedure allows the model to reach a minimum of the loss function. The issue of 
overfitting, when the model gets overly specialized to the training data and performs 
badly on unseen data, is one of the most important difficulties in deep learning. 
Many regularization methods, including dropout, early halting, and weight decay, 
can be used to prevent overfitting. These methods aid the model’s improved gener-
alization to fresh data. Some prominent deep learning architecture has been exten-
sively applied in numerous applications. The convolutional neural network (CNN), 
which is largely employed for image and video recognition applications, is one of the 
most widely utilized designs [8]. Convolutional layers are used repeatedly in CNNs 
to extract features from the input image, which are then down sampled by pool-
ing layers. The recurrent neural network (RNN), which is extensively utilized for 
sequential data such as speech and text, is another well-liked architecture. RNNs are 
particularly good at processing input sequences with varied lengths because they use 
recurrent connections to model temporal dependencies in the data [9].

8.3 DEEP LEARNING ALGORITHMS

Deep learning has immense potential for addressing some of the most difficult 
issues facing society today and is a topic that is quickly developing. We’ll exam-
ine the fundamentals of deep learning algorithms and their specific applications. 
Figure 8.2 represents different categories of deep learning techniques and their 
respective algorithms. 

8.3.1 convoLutionaL neuraL network

CNN is a prominent discriminative deep learning architecture [10]. Thus, the CNN 
improves regularized multi-layer perceptron (MLP) network architecture. CNN lay-
ers optimize parameters for meaningful output and reduce model complexity while 
utilizing a “dropout” to prevent overfitting in traditional networks [1]. CNNs are 
used in visual recognition, medical image analysis, image segmentation, NLP, and 
more [11]. It is more powerful than a regular network since it automatically discovers 
key traits from input. CNNs like visual geometry group (VGG) [12], AlexNet [13], 

FIGURE 8.1 A common deep learning flowchart for solving real-world problems.



186 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

Xception [14], Inception [15], ResNet [16], and others can be employed in different 
application domains depending on their learning capabilities. Consider a sample set 
depicted as Xij, where i p1,= …  and j q1, .= …  (p is the input length while q is the 
feature size). The convolution kernel (m) is denoted by the amount of extracted fea-
tures, where n is the stride size. The output flh of CNN in this scenario is expressed 
as shown as equation in Equation 8.1:

 f w Xlh

i

p

i

q

hij ij  
1 1

∑∑= ×
= =

 (8.1)

where h designates the hth convolution kernel and spans from k l1 to  , while  denotes 
the lth sample in the output vector and ranges from r1 to , depicting the length of the 
output vector, which is determined by kernel size m and stride size n as indicated in 
Equation 8.2 [8]:

 r
q m

n
1 = − +  (8.2)

Moreover, whij   is used to denote the weight that each convolution kernel possesses 
because each one’s weight is distinct from the other. This model will enable you 
to obtain the parameter. The final step involves combining the numerous outputs 
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produced by each of the k convolution kernels into a single result. The CNN model’s 
simplified training process, which is made possible by using lesser weights than the 
fully linked design, is a crucial feature [8]. Figure 8.3 displays a CNN with numerous 
convolutions and pooling layers

8.3.2 recurrent neuraL network 

Another well-known neural network is the RNN, which uses sequential or time-
series data and inputs the results of the previous stage into the current stage [1]. 
RNNs are able to process sequences of inputs and keep a “memory” of previous 
inputs, in contrast to typical feedforward neural networks, which only analyze data 
in a single pass [18]. Recurrent networks, like feedforward and CNN, also learn 
from training input, but they set themselves apart by having a “memory” that lets 
them use data from earlier inputs to influence current input and output [19]. RNNs 
have a “hidden state” that updates with each input. This concealed state represents 
the network’s “memory” of prior inputs. Training-learned weights and biases update 
the hidden state. RNN output depends on sequence elements, unlike standard DNN, 
which believes inputs and outputs are independent. Standard recurrent networks have 
vanishing gradients, making learning long data sequences difficult [1]. The Long 
Short-Term Memory (LSTM) network is a prominent RNN variation that handles 
input sequence dependencies well [20]. Three gates control data flow into and out of 
LSTM memory cells, which may store data for lengthy durations [20]. The “Forget 
Gate” determines what information from the previous state cell will be memorized 
and what will be removed, while the “Input Gate” determines which information 
enters the cell state and the “Output Gate” controls outputs [1,20]. LSTM networks 
are successful RNNs because they handle training problems. Bidirectional RNNs is 
another variant of RNN which accept past and future data by connecting two hid-
den layers that run in opposite directions to a single output [21]. Bidirectional RNNs 
can predict both positive and negative temporal directions. Bidirectional LSTMs 
(BiLSTMs) can improve sequence classification model performance.

FIGURE 8.3 Convolutional neural network framework [17].
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8.3.3 generative adversariaL network 

The Generative Adversarial Network (GAN), a generative deep learning model, 
proposed by Goodfellow in 2014, has been called the most revolutionary machine 
learning idea of the last decade [22]. The GAN has a generator and a discriminator 
to generate synthetic data that look like genuine data. The generator and discrimina-
tor models are antagonistic and increase each other’s performance during training 
because their goals are opposing [23]. The generator and discriminator train together 
to improve their ability to distinguish real data from bogus data. The generator is 
trained until it produces data that are indistinguishable from real data. By replicating 
x distribution, the generator G generates G z( ) that is indistinguishable from x. The 
initial GAN model used random variables and input noise, z. After that, controlled z 
or extra labels were used to control G z( )[24,25]. However, the discriminator D cal-
culates the chance for each case to discriminate between input data from the training 
data x or the created fake data G z( ). As with D z 1( ) =  and DG z 0( ) = , the purpose 
is to recognize actual data as “1” and artificially generated data as “0”. GAN’s loss 
function as in equation 3, indicates that the generator and discriminator’s goal func-
tions oppose each other [23]:

 min maxV D G E D x E D G z
G D

x P x z P zdata x, log log(1~ ~[ ] ( )( ) ( ) ( )= + − ( ) ( )  (8.3)

Although GAN may train a generator that creates high-quality data quickly, 
model collapse that cannot dependably handle the balance between generator 
and discriminator has been raised. Accordingly, models like DCGAN, WAGAN, 
BEGAN, and StarGAN have been developed to generate high-quality image data 
by compensating for model instability and generating the required image [23].

8.3.4 autoencoder

Autoencoder neural networks use significant properties to compress and decom-
press data. Data compression, anomaly detection, picture and speech recognition, 
and autoencoders are common autoencoder applications [26,27]. Autoencoders 
contain input, hidden, and output layers. Hidden layers encode input data into a 
lower-dimensional latent space while the encoder maps input data to latent space, 
whereas the decoder maps latent space to output space. Training an autoencoder 
reduces reconstruction error, the discrepancy between input and output data [28]. 
As shown in Figure 8.4, we can structure an unlabeled dataset as a supervised 
learning problem to rebuild. By minimizing the reconstruction error, the differ-
ence between the original input and the reconstruction trains this network. Our net-
work design relies on the bottleneck because without it, our network could readily 
memorize input data by passing them through the network [29]. Autoencoders are 
neural networks that copy input to output. An autoencoder encodes and decodes 
a handwritten digit image. Autoencoders compress data while decreasing recon-
struction error.
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8.3.5 seLf organizing MaP 

The Self-Organizing Map (SOM), also referred to as the Kohonen map, is an 
 unsupervised neural network technique that represents high-dimensional data in a 
lower-dimensional space through a competitive learning process [30,31]. It is frequently 
employed for pattern detection, grouping, and data visualization [32]. A competitive 
learning process that organizes high-dimensional data in a lower-dimensional space 
is the basis of the self-organizing map. A prototype or cluster in the data space is rep-
resented by each node or neuron in the map layer of the SOM, which is made up of an 
input layer and a map layer [30]. In order to reduce the distance between the input data 
and the nearest neuron, the SOM modifies the weights of the neurons in the map layer 
during training. A dataset with p variables observed in n observations could be clus-
tered by variable values. These clusters could be viewed as a two-dimensional “map” 
with proximal clusters having more comparable values than distal clusters. This helps 
view and analyze high-dimensional data. Like most artificial neural networks, SOM’s 
core is training and mapping [33]. Training first generates a lower-dimensional repre-
sentation of an input dataset (the “map space”) from the “input space.” Second, the map 
classifies more input data. Training typically represents a p-dimensional input space as 
a two-dimensional map space. A p-variable input space has p dimensions. Map spaces 
have hexagonal or rectangular grids of “nodes” or “neurons” in two dimensions. Data 
analysis and exploration goals determine the number and placement of nodes [31].

FIGURE 8.4 Framework of autoencoder [28].
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8.4  A BRIEF OVERVIEW OF SOME REAL-LIFE 
APPLICATIONS OF DEEP LEARNING

Deep learning’s ability to absorb massive amounts of data and discover intricate 
patterns has opened up an endless number of potentials for a range of real-life appli-
cations. The notable deep learning real-world applications are discussed as follows.

8.4.1 chatbots

A chatbot is a text- or text-to-speech-based Artificial Intelligence (AI) application for 
online communication. Chatbots can quickly fix consumer issues. The basic concept 
of Chatbots operation lies in the NLP methods to comprehend and respond to inputs 
from user inputs, and learn from prior interactions. It has the ability to interact with 
people and carry out human-like tasks. Chatbots are frequently employed in customer 
service, social media marketing, and instant messaging clients [34]. Inputs from users 
are met with automated responses. To produce various forms of reactions, it employs 
machine learning and deep learning algorithms. A chatbot may very well engage in 
informal conversations while also being aware of users’ requirements and attempting 
to meet those needs [35]. People converse, whereas chatbots speak to consumers in a 
very similar way. It’s an ideal tool for e-learning as well as for sales, customer support, 
and searching [35]. Microsoft’s bots can also fulfill private users’ business wishes. 
They schedule conferences and seminars, making it simple to keep track of tasks and 
maintain order. Figure 8.5 shows typical chatbot training using ensemble-based train-
ing technique proposed by Cuayáhuitl et al. [36] This process in the framework pre-
sented in Figure 8.5 is repeated until the end of a discussion for the required dialogue, 
or until there is no longer any improvement in the performance of the agents.

FIGURE 8.5 A typical chatbot training framework using an ensemble-based training 
approach [36].
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8.4.2 autonoMous vehicLe

The concept of autonomous self-driving vehicles is propelled by deep learning 
[37,38]. To accurately recognize and track items in the car’s environment, such as 
pedestrians, and obstructions, and other vehicles, deep learning models can be uti-
lized [39]. Training these algorithms to distinguish these objects and their motions 
involves massive datasets of tagged photos. Deep learning can be used to design a 
self-driving car’s secure and efficient route as well as to predict the future actions 
of other cars and pedestrians [39]. In order to maintain a safe and pleasurable ride, 
the speed and steering of the car can also be managed by deep learning  models. 
A  newly developed technique for learning driving rules is deep reinforcement 
learning (DRL). Without interference from humans, the autonomous learner may 
use a DRL algorithm to learn to drive by trial-and-error method [40]. To recognize 
road signs, lane lines, and other objects, semantic segmentation involves splitting 
a picture into distinct parts based on their semantic significance. To help the car 
comprehend its surroundings and make judgments, deep learning models can con-
duct semantic segmentation on camera images [41]. Uber Artificial Intelligence 
Laboratories are empowering new autonomous vehicles and creating autonomous 
vehicle for on-demand food delivery in an effort to diversify their business infra-
structure while Amazon has used drones to transport its goods in a few locations 
throughout the world [42].

8.4.3 robotics

Deep learning is employed while creating robots that can carry out activities that 
humans do [43]. Robotics is increasingly using deep learning to enhance robot per-
formance in a variety of tasks, including object detection, navigation, manipula-
tion, and control [44–46]. Robots with deep learning capabilities employ real-time 
updates to detect obstructions in their way and instantaneously organize their route 
[46]. It can be used to transport things in medical facilities, manufacturing facili-
ties, warehouses, inventory control, etc. [42]. Further to this, Robotic gripping and 
manipulation capabilities can also be enhanced via deep learning. The advancements 
in computer vision aspects of deep learning have caused a paradigm in potential 
robot applications. A significant limitation of robots is the restricted movements. 
However, robot’s capabilities in handling vast data sets upon training, often gives 
them more grasping possibilities while confirming to diverse shapes and sizes [45]. 
As a vital preprocessing element, deep learning can process sensor data into feature 
space with lesser dimensions. This is utilized in control process. Furthermore, the 
sensor data analysis can assist informed decision regarding maintenance planning 
as it can predict when parts are likely to break [47]. Thus, the restricted limitation 
challenge is overcome through deep learning, as more control is achieved effectively 
and precisely to carry out difficult activities like walking, sprinting, and jumping. 
One crucial element pertaining to robots is their capacity to alter their surroundings, 
a skill that has proven to be challenging to acquire. Additionally, deep reinforcement 
learning, for instance, can be used to teach robots to master difficult locomotive tasks 
through trial and error [48].
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8.4.4 heaLthcare

Beyond technological and industrial benefits, deep learning technique has extended 
their reach in healthcare services by facilitating rapid, effective and precise 
operations across the entire spectrum of healthcare delivery and clinical prac-
tise. Computer vision, natural language processing, and reinforcement learning 
are widely employed deep learning methodologies within the healthcare domain. 
The ability of healthcare practitioners to swiftly and effectively evaluate massive 
amounts of data has changed the healthcare sector [49]. Image processing and 
microstructural analysis functionality of the deep learning has been a game changer 
in medical image analysis. Other prominent applications in this domain include 
disease diagnosis, prediction and monitoring of patient outcomes, and drug devel-
opment [50–54]. Through the use of medical imaging, it is frequently employed for 
medical research, medication discovery, and the identification of serious illnesses 
like cancer and diabetic retinopathy [48,55]. Deep learning algorithms have the 
ability to analyze medical images such as MRI, CT scans, and X-rays to diagnose 
anomalies and identify infections [49,56]. Deep learning models can analyze elec-
tronic health records (EHR) more precisely and effectively such as laboratory test 
results, diagnoses, and prescription information. A deep learning algorithm, for 
instance, can precisely identify malignant cells in mammograms, assisting doctors 
in early breast cancer detection. Deep learning has the ability to forecast patient 
outcomes [50], including the possibility that a patient will contract a disease, experi-
ence complications, and respond to therapy. Deep learning algorithms can evaluate 
enormous volumes of data to find risk factors and forecast results, enabling indi-
vidualized therapy and care. Deep learning has significantly contributed to drug 
delivery and interaction prediction. They are able to recognize effective therapy by 
integrating genomics, clinical and population datasets. This is a critical advance-
ments in the pharmaceutical industry. Deep learning algorithms have the ability to 
spot anomalies and notify medical staff of potential health issues, allowing for early 
intervention and prevention [51].

8.4.5 recoMMender systeM

The subject of recommender systems has undergone a revolution because of deep 
learning, which has made it possible to model intricate connections and patterns in 
user–item interaction data [57–63]. Deep learning in advertising enables user experi-
ence optimization [63]. Deep Learning assists publishers and marketers in boosting 
advertising campaigns and increasing the significance of the advertisements. Targeted 
display advertising, real-time ad bidding, and data-driven predictive advertising are 
all options [60]. A popular method in recommender systems that bases recommenda-
tions on previous interactions between users is collaborative filtering [64]. Learning 
embeddings that describe users and objects in a low-dimensional space can be accom-
plished using deep learning models like autoencoders, matrix factorization, and neural 
networks [57]. The user–item interactions can then be predicted using these embed-
dings. An approach called content-based recommendation suggests products based on 
their characteristics, such as their genre, director, or actor [65]. Convolutional neural 
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networks and RNNs are examples of deep learning models that can be used to learn 
representations of items based on their qualities and then suggest related items based 
on the learned representations [66,67]. Deep learning has shown to be an effective 
method in recommender systems, giving users precise and customized recommenda-
tions. To attain ideal performance, it also needs a lot of data and computer power, as 
well as thorough model selection and optimization [61].

8.4.6 voice assistance

Virtual assistants are web-based programs that take user commands in natural lan-
guage and carry them out. Virtual assistants like Amazon Alexa, Cortana, Siri, and 
Google Assistant are common examples [42]. To operate to their greatest potential, 
they require computers with an internet connection. Based on prior interactions and 
the usage of Deep learning algorithms, the assistant generally offers a better user 
experience each time a command is given to it [68]. Neural networks are frequently 
used in deep learning voice assistance models [68–70]. Large volumes of data are 
used to train these algorithms to identify patterns and comprehend the subtleties of 
human speech. Utilizing NLP techniques to decipher the intent behind user voice 
commands is a crucial aspect of deep learning models for voice support [71]. This 
entails analyzing the user’s words to determine whether they are an inquiry, a request 
for information, or a command to carry out an action.

8.5 DEEP LEARNING PLATFORMS AND FRAMEWORK

Deep learning model creation and training require a lot of processing power and 
expertise. Fortunately, some platforms offer entire deep learning model creation and 
deployment packages. These platforms offer cloud-based training and deployment, 
neural network libraries, and model optimization. Some of the most popular deep 
learning platforms are discussed as follows.

8.5.1 tensorfLow

TensorFlow is a complete open-source machine learning framework and library for 
deep neural network training and decision-making [72]. TensorFlow allows program-
mers to design and train deep learning models with a number of tools and modules [73]. 
TensorFlow’s computational power with simplicity is one of its key merits. Data flow graphs 
are used by TensorFlow to depict computing in a flexible and effective manner [73,74]. 
This enables developers to easily design complicated models and fully utilize the available 
computational capacity. With TensorFlow, all computation and states in a machine learn-
ing algorithm are represented by a single dataflow graph, including each individual math-
ematical operation, each parameter’s update rules, and the input preprocessing as Figure 
8.6 depicts [75]. Users have the option of creating new functions from scratch or describ-
ing custom functions based on already existing procedures [73]. A considerable advantage 
over CPU-based training applications exists for TensorFlow operators with GPU (Graphics 
Processing Unit) and TPU (Tensor Processing Unit) capabilities. Developers can create 
their own layers by employing custom layer definitions in addition to the existing layers 



194 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

of TensorFlow, such as convolutions, pooling, and dense layers [74]. Hardware accelera-
tion is also used in layers created with TensorFlow operators. Researchers may mix these 
operators to create new layers in TensorFlow because it contains a number of funda-
mental and complex operators in various categories, including mathematics, image pro-
cessing, and neural networks. TensorFlow’s own layer classes make it simpler to include 
built layers in deep learning models [72–75]. The majority of the layers and functions for 
creating and refining deep learning models are included in the TensorFlow library [73].  
Furthermore, it has the adaptability of custom layers, allowing programmers to create 
their own layers [74].

TensorFlow is a powerful machine learning framework with simple tools for develop-
ing and testing deep learning architectures [73]. A low-level Application Programming 
Interface (API) for TensorFlow communicates with hardware like the CPU, GPU, and 
TPU through a tiered structure, as depicted in Figure 8.7 [73]. The use of TensorFlow 
operators on GPU and TPU resources is made possible by low-level API, which also 
speeds up the training and application of deep learning models. A large selection of 
TensorFlow operators offer effective machine learning methods on top of the low-level 
API. The unique class definitions established in TensorFlow can be used by developers 
to construct their own custom layers. The custom layer’s algorithm may be expressed 
using TensorFlow operators, which makes it simple to include the new layer into the 
desired model architecture [73].

8.5.2 Pytorch

The deep learning and machine learning tool, PyTorch, was developed by Facebook’s 
(Now Meta) artificial intelligence group to perform large-scale image analysis; as 
a result, its features include object discovery, classification, and division. It is not 
limited to these tasks, though, and can be used to evaluate sophisticated algorithms 
in conjunction with other tools. It is based on Torch library while performing tasks 
such as natural language processing and computer vision [76]. It requires a few 
modifications to handle large-scale calculations in a GPU environment because it 
is built in Python and C++. However, PyTorch offers a great platform for creating 
automated functions in these GPU contexts [77]. PyTorch is well renowned for its 
adaptability and simplicity. Python’s high-level features and modules can create 
and train deep learning models. PyTorch’s dynamic computation graph is built as 
the program runs. This allows testing out various architectures and debugging the 
code simple. Hybrid graphs, which blend static and dynamic graphs, are another 
feature of PyTorch. The powerful GPU acceleration support that PyTorch offers can 

FIGURE 8.6 An illustration of a TensorFlow dataflow graph [75].
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significantly shorten deep neural network training times. In addition, it has a siz-
able and vibrant developer community, which results in the availability of numerous 
pre-built models and libraries for typical tasks. Two high-level features offered by 
PyTorch are deep neural networks constructed using a tape-based automatic dif-
ferentiation mechanism and tensor computation with strong GPU acceleration [76].

8.5.3 keras

Google created the high-level Keras deep learning API to implement neural net-
works. It is used to make the implementation of neural networks simple and is devel-
oped in Python [78]. In addition, various backend neural network computations are 
supported [79]. Deep learning models may be created and trained quickly and easily 
with the help of Keras. With the high-level interface that Keras offers for creating and 
training neural networks, programmers can quickly prototype and test out various 
topologies and hyperparameters. Keras builds on low-level machine learning frame-
works like TensorFlow and Theano to simplify neural network creation and training 
[78]. It supports feedforward, convolutional, and recurrent networks and has many 
built-in layers, activation functions, and optimization techniques [79]. A variety of 
data pretreatment tools, such as those for text and picture pre-processing, model 
evaluation tools, and visualization tools are also supported by Keras. Researchers 
and developers in the field of machine learning frequently employ Keras because it 
is a strong and adaptable tool for creating and training deep learning models [80,81]. 
As well as a variety of tools to make dealing with picture and text data easier, Keras 
includes multiple implementations of widely used neural-network building blocks 
like layers, objectives, activation functions, and optimizers. This helps to simplify 
the coding required to create deep neural networks. To make deep learning more 
approachable for both researchers and developers, Keras was created; even people 
with modest machine learning expertise may easily develop and train deep learning 
models thanks to its user-friendly API and modular design [79].

8.5.4 caffe

Caffe was developed at the University of California Berkeley Vision and Learning 
Center (BVLC) [82]. It is an open-source framework with a quick, effective, and scal-
able design. Caffe uses CUDA for GPU acceleration and is developed in C++ [83].  

FIGURE 8.7 TensorFlow hierarchical framework for APIs [73].



196 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

Caffe was originally developed to help picture classification and other computer 
vision tasks, but it has now been expanded to serve additional deep learning applica-
tions like object detection and segmentation. The structure of Caffe is built on a data 
flow paradigm, where data passes through a network of layers that carry out differ-
ent operations like convolution, pooling, and activation. The foundation of Caffe’s 
design is a data flow model, in which data passes through a network of layers that 
carry out different tasks [84]. Each layer gets input from the layer before and deliv-
ers output to the layer after via a directed acyclic network [85]. Caffe layers include 
convolutional, pooling, normalizing, and activation functions. Windows, Linux, and 
macOS support Caffe. It supports Python, C++, and MATLAB. APIs connect Caffe 
to TensorFlow and PyTorch [84].

8.5.5 theano

The Montreal Institute for Learning Algorithms (MILA) at the University of Montreal 
created Theano, an open-source numerical computation package for Python [86–88]. 
It enables programmers to effectively define, optimize, and test multi-dimensional 
array-based mathematical equations. Theano can run on both CPUs and GPUs and 
was created to be used for deep learning, namely, for the implementation of neural 
networks [87]. It was one of the first libraries to offer automatic differentiation, a 
feature required for backpropagation-based deep learning training of deep neural 
networks. The popular Python library for numerical calculation, NumPy, had a sig-
nificant impact on the creation of Theano [88]. Similar to NumPy in syntax, Theano 
enables programmers to operate on multi-dimensional arrays in a number of ways, 
including addition, element-wise multiplication, and matrix multiplication. However, 
Theano is substantially quicker than NumPy for some sorts of computations because 
to its optimizations and support for GPU acceleration [89].

8.6 CHALLENGES AND LIMITATIONS OF DEEP LEARNING

Despite deep learning’s widespread success, several issues and obstacles impede its 
practicality. Deep learning’s biggest problem is the massive data needed to train neu-
ral networks. Unlike deep learning models, supervised and unsupervised learning 
algorithms can often perform well with small amounts of data. This section discusses 
challenges of deep learning. Despite these obstacles, deep learning has led to many 
industry-changing advancements. By understanding and overcoming its limitations, 
we can maximize deep learning’s potential and advance artificial intelligence.

8.6.1 coMPuting Power, resources, and hardware reQuireMent

Deep learning’s biggest drawback is its need for powerful computing power and 
resources. Deep learning techniques require massive data for training due to their 
complexity. This massive dataset requires great computational and processing power. 
GPUs and TPUs can only deliver such computing power. Small enterprises may be 
unable to afford these hardware gadgets. Training may take days or weeks depend-
ing on the model’s complexity and data volume. If employed on a big scale or in 
real time, deep learning models may require a lot of computing resources. This may 
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require more hardware and infrastructure to control load and system performance. 
Due to its data storage requirement, tiny or low-budget organizations may struggle 
to meet this storage need.

8.6.2 data avaiLabiLity, integrity, and QuaLity

Data quantity, quality, and integrity determine deep learning model’s success. Deep 
learning algorithms use massive amounts of high-quality data to learn and predict. 
Data integrity is crucial because the model’s accuracy and efficiency depend on its 
training data. Noisy or inadequate data may lead to inaccurate predictions and poor 
model performance. When data are scarce, large-scale data collection and curation 
can take time and money. This need may be problematic for organizations with lim-
ited data access. Skewed training data can bias deep learning algorithms. If the data 
used to train the model does not match real-world scenarios and demographics, pre-
dictions may be inaccurate or unfair. Deep learning’s use of sensitive or classified 
personal data might also raise confidentiality concerns. It’s crucial to protect deep 
learning model data to maintain consumer trust.

8.6.3 eXPLainabiLity and transParency of ModeL’s outcoMe

One of the biggest problems with deep learning is transparency in explaining its 
outcome. Understanding how and why a deep learning model makes a specific 
choice or prediction is referred to as interpretability. In some circumstances, deep 
learning models’ outcome with higher accuracy may also have lower interpretabil-
ity, and vice versa. This trade-off might be difficult since, in some circumstances, 
accuracy may have to be given up for interpretability. Understanding how deep 
learning models’ function is challenging due to their complexity and extensive 
number of parameters. When it’s critical to understand how the model came to its 
conclusion, as it is in areas like healthcare or finance, this lack of transparency and 
interpretability can pose a big issue. It can be difficult to give feedback on each 
choice that a deep learning model makes because it is trained on vast volumes of 
data. Because of this, it could be challenging to find and fix model biases or inaccu-
racies. Deep learning model comparison and validation might be difficult because 
there is currently no accepted approach for interpreting deep learning models. It 
can be difficult to understand the model’s results in the case of its application in 
analyzing complex data, such as photos or natural language. It is crucial to create 
approaches for comprehending how deep learning models function and why they 
produce particular predictions as they get more complicated and are utilized in 
more crucial applications. To overcome this obstacle, new interpretive techniques 
for deep learning models must be created to ensure a compromise between its 
accuracy and interpretability

8.6.4 overfitting

Deep learning models are able to learn complex relationships in the data since they 
can include millions of parameters. Due to the possibility of learning to memorize 
the training data rather than generalizing to new data, they are rendered vulnerable 
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to overfitting. A number of strategies, including regularization, early halting, and 
dropout, can be used to combat overfitting. By adding a penalty term to the loss func-
tion, approaches like L1 or L2 regularization prevent the model from inferring too 
many intricate correlations from the data. Early stopping entails keeping track of the 
model’s performance during training on a validation dataset and terminating train-
ing when the performance begins to deteriorate. Dropout is a strategy that, while the 
model is being trained, randomly removes some neurons, assisting in preventing the 
model from becoming overfit to particular data patterns.

8.7 FUTURE PROSPECT OF DEEP LEARNING

Deep learning has great potential for innovation and growth across many industries. 
Deep learning has transformed how we solve complex challenges in several indus-
tries. New tools and technologies are being developed for deep learning, creating 
great prospects for innovation and groundbreaking research. Deep learning tech-
niques and technologies promise to transform data-driven difficulties and usher in 
a new era of creation and discovery. These techniques range from specialized hard-
ware accelerators to automated machine learning and quantum computing.

Tensor Processing Units (TPUs) are specialized hardware accelerators made to 
expedite the inference and training of deep learning models [90]. These processors 
are perfect for deep learning workloads because they can multiply matrices signifi-
cantly quicker than conventional CPUs and GPUs [91]. The deep learning architec-
ture known as “generative adversarial networks” (GANs) is capable of producing 
new data samples that are comparable to the training data [92]. This technology has 
many uses, including improving data augmentation methods and producing realistic 
photos and movies. In a distributed machine learning strategy known as federated 
learning, only the trained model is shared; the training data are kept on individual 
computers or servers. By enabling the training set to stay private, this method may 
help to overcome privacy problems in deep learning [93].

Automated machine learning (AutoML) is machine learning that has been par-
tially or completely automated [94,95]. By democratizing machine learning and 
making it more approachable for nonexperts, this technology could hasten the devel-
opment of novel deep learning applications [96]. By providing exponential speedups 
for some tasks, quantum computing has the potential to transform deep learning [97]. 
Quantum computing is still in its infancy, but experts are investigating its utility in 
deep learning. GNNs (Graph Neural Networks) are a deep learning architecture for 
graph-data-like social networks, chemical structures, and internet structures [98,99]. 
Many uses for this technology exist, ranging from the development of new drugs to 
personalized recommendations.

Drones and self-driving cars use deep learning algorithms. As technology 
advances, robots may be able to perform challenging tasks without human aid. Deep 
learning can analyze massive medical data to create patient-specific treatment plans. 
Deep learning models could assist doctors in creating more effective and tailored 
medicines by examining elements including genetics, lifestyle, and medical history 
[100]. Deep learning is a rapidly developing discipline, and a number of fascinat-
ing research trends are emerging that could fundamentally alter how we approach 
hard issues in a variety of fields. We can anticipate seeing many more fascinating 
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discoveries and achievements in the years to come as academics continue to inves-
tigate these tendencies. The necessity for interpretability and transparency in deep 
learning models has grown in significance as they get more complicated. To help 
users better comprehend the logic underlying deep learning models’ predictions, 
researchers are looking into novel approaches to make the models more comprehen-
sible and interpretable.

8.8 CONCLUSION

Deep learning has demonstrated superior characteristics of automatic feature extrac-
tion from unprocessed dataset and unravel complex hidden pattern. This has been 
a game changer in several spectrum of human endeavors spanning from entertain-
ment, healthcare, transportation, and finance amongst others. Despite deep learn-
ing’s impressive progress, there are still several issues to address, such as improving 
deep learning models’ interpretability and explainability, addressing AI ethics, and 
making deep learning more accessible and affordable. This chapter provided basic 
information regarding the types, algorithms, and some real-life applications of deep 
learning. While this chapter has laid the foundations for understanding the encom-
passing realms of deep learning applications in ALD and thin film technology, infor-
mation provided in this chapter are not exhaustive, readers interested in more details 
are advised to refer to more in-depth text on deep learning. This space continues to 
emerge as the major driver of innovative research and expanding the capabilities of 
machines while integrating intelligent systems and human comprehension.
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9 Hard and Soft Computing

9.1 INTRODUCTION

Advancement in computing technology has opened the space for more ideas and 
understanding of computational complexities. Hence, the emergence of two comple-
mentary techniques vis-à-vis hard computing and soft computing. While the former 
works based on certainty, accuracy, and rigidity, the latter relies on approximation, 
uncertainty, and flexibility. The upsurge in the adoption of machine learning has 
witnessed significant advancements while creating a novel approach called soft com-
puting for addressing several complex problems including thin film and atomic layer 
deposition (ALD). Intelligent decision-making has necessitated a shift towards the 
soft computing approach owing to the growth in data volume in recent years, par-
ticularly in thin film technology [1]. In this chapter, we examine the key distinguish-
ing features of these complementary approaches while drawing insights from their 
strength and limitations. More attention is drawn to the soft computing approach as 
it influences the trajectories of computing in thin film technology.

9.2 WHAT ARE HARD COMPUTING AND SOFT COMPUTING?

Using exact mathematical models and methods to solve problems is the core of the 
hard computing paradigm. It is frequently applied in situations where the problem 
can be precisely modeled using mathematical models and the data are well-defined. 
Logic-based methods, traditional optimization, and numerical analysis are a few 
examples of hard computing techniques. Hard computing has a solid theoretical 
foundation and seeks to offer precise solutions to problems. These methods can be 
unnecessarily complex and time-consuming to compute since they demand clean, 
noise-free data [2]. Real-life problems have become more complex recently, and data 
collected from manufacturing and production processes tend to be noisy because of 
fluctuating process conditions and subjective evaluations. Moreover, because hard 
computing techniques lack intelligence, it may be difficult to reveal hidden patterns 
in real-time data handling for decision-making. Hence, researching imprecision and 
uncertainty was the driving force behind soft computing systems, which trade off 
certainty and precision for tractability and durability [1].

Since its inception, computing has advanced significantly. Soft computing is one 
of the computer concepts that has been essential to this change. A paradigm known 
as “soft computing” is oriented on problem-solving strategies that imitate human-like 
reasoning [3]. It is frequently employed in situations when the data are ambiguous 
or inaccurate and where it is challenging to formulate the issue using conventional 
mathematical models. Fuzzy logic (FL), artificial neural networks, and evolutionary 
algorithms are a few examples of soft computing techniques [3–6]. These meth-
ods are based on social and biological behavioral trends that form the basis of the 
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emergence of the prominent soft computing techniques mentioned earlier. With 
the use of soft computing, problems can be solved that are reliable and tolerant of 
data noise and ambiguity. Since its start, the discipline of soft computing has seen 
a great amount of application and model refinement. Its use has been noted in both 
the manufacturing and service sectors to increase product and process efficiency and 
effectiveness at a lower cost by making a small sacrifice in precision and certainty 
[1]. Soft computing techniques have found applications in predictive modeling and 
optimization problems with laudable outcomes. The fact that soft computing only 
offers approximations of solutions rather than exact ones is one of its critical draw-
backs. In applications where accurate solutions are required, this might be a draw-
back. Understanding how the system came up with its solution might also be tricky 
because soft computing techniques can be challenging to interpret. Nonetheless, it is 
noteworthy that hard computing and soft computing techniques have distinct char-
acteristics that make them stand out on their own. It is therefore significant to have a 
good grasp of the problem for a proper selection of the suitable technique to deploy.

9.3  CHARACTERISTICS OF HARD COMPUTING 
AND SOFT COMPUTING

9.3.1 hard coMPuting

9.3.1.1 Precision
Hard computing depends heavily on precision since it defines how accurate and 
trustworthy a system’s output will be [7]. In order to create results that are valu-
able and reliable, hard computing frequently calls for a great deal of precision, 
especially in scenarios where minor errors might have massive implications [2]. It 
frequently employs specialized numerical techniques to reduce computational error 
and uncertainty. 

High-precision arithmetic is often employed in hard computing toward high 
degree of precision. Higher digit counts than those used in ordinary arithmetic are 
used to represent numbers in high-precision arithmetic, which can increase calcula-
tion accuracy. Unlike floating-point arithmetic, high-precision may express integers 
with any number of digits. However, high-precision calculation requires expen-
sive software and equipment [8]. Hard computing involves careful consideration of 
numerical methodologies, processing resources, and error-correcting algorithms in 
order to achieve high levels of precision [9].

9.3.1.2 Determinism
Deterministic features in hard computing relate to a system’s capacity to provide 
reliable results based on a given input or group of inputs. This implies that the sys-
tem will always generate the same result, devoid of unpredictability or uncertainty, 
given the same input or set of inputs [7]. In order to produce reliable outcomes, hard 
computing systems rely on exact algorithms and logical principles [9,10].. Every time 
these systems are deployed, their outputs are intended to be reliable and predict-
able because these systems are created to carry out specified duties using explicit 
information and regulations. Hard computing systems’ deterministic nature provides 
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various benefits. Due to the fact that they are created to function in a specified and 
predictable manner, deterministic systems are very dependable. Because of this, cus-
tomers can count on the system to deliver consistent results each and every instance 
they are deployed.

Results can be replicated because hard computing systems are deterministic. This 
means that tests and simulations may be repeated, which is crucial for confirming 
scientific findings and progressing research in a variety of domains. Deterministic 
systems could not work effectively, for instance, in simulation or financial model-
ing applications where unpredictability or uncertainty is essential. Soft computing 
techniques like neural networks or fuzzy logic may be more suitable in certain cir-
cumstances. The nondeterministic characteristics of soft computing systems, such 
as artificial neural networks and fuzzy logic systems, allow them to learn from data 
and modify their inputs over time [1]. The trade-off is that, in comparison to hard 
computing systems, their results may prove less predictable and harder to interpret.

9.3.1.3 Symbolic Computation
A key element of hard computing that employs exact mathematical techniques for 
addressing issues is symbolic computation involving equations, functions, and alge-
braic expressions [11]. Further to this, because algebraic expressions can be altered in 
a variety of ways, symbolic computation is more adaptable than numerical approaches 
[8]. This is especially helpful in applications like optimization where working with 
algebraic formulas to find a solution may be necessary. In addition, analytical for-
mulations for issue solutions can be derived via symbolic computation, which can 
reveal details about the underlying mathematical relationships and structures [2,7]. 
Engineering, physics, and computer science use symbolic computation extensively. 
For performance analysis and optimization of complex systems like control systems, 
analytical solutions are often applied. Computer vision and machine learning tech-
niques use symbolic computation to create closed-form optimization solutions.

9.3.2 soft coMPuting

9.3.2.1 Flexibility
A crucial characteristic that sets soft computing methods apart from conventional 
computing methods is their flexibility. Soft computing techniques can deal with data 
that are imprecise, ambiguous, or uncertain, which enable them to solve issues that 
could be challenging to identify or address with conventional computer techniques 
[3]. Soft computing systems can analyze erroneous and uncertain input and gener-
ate trustworthy conclusions by utilizing fuzzy logic, neural networks, and genetic 
algorithms (GA) [12].

The flexibility of these techniques comes from their capacity to analyze and make 
sense of incomplete and ambiguous data. Because traditional computing techniques 
require exact and correct data, they are inappropriate for issues with ambiguity and 
uncertainty [1,4]. 

Another soft computing technique that can handle ambiguous or imprecise input 
is neural networks [1]. Because they mimic the brain, neural networks can learn and 
adapt. Neural networks can process large volumes of data and identify patterns or 
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generate predictions from defective or unclear data. This is accountable for its effec-
tiveness and robustness in applications like image and speech recognition, where 
the input data may be flawed or missing [6]. A soft computing technique called GAs 
mimics the process of natural selection. Genetic algorithms are highly suited for 
applications like scheduling and resource allocation because they can tackle optimi-
zation problems with many restrictions or objectives [13]. By employing stochastic 
search techniques that explore the search space in a probabilistic manner, GAs may 
also handle noisy or incomplete data.

9.3.2.2 Bio-Inspiration
Soft computing techniques use methods that imitate the behavior of natural systems 
to tackle complicated problems [3]. They are inspired by biological systems. Bio-
inspiration is the process of developing new algorithms, models, and approaches by 
taking inspiration from biological systems [14]. In order to address complex issues, 
soft computing techniques employ a variety of bio-inspired strategies, including neu-
ral networks, GAs, and swarm intelligence. For instance, neural networks, which 
use artificial neurons to learn from instances and draw generalizations from them, 
are modeled after the structure and operation of the human brain. Natural selection 
served as the inspiration for GAs, which use a set of potential solutions to address 
optimization issues [6,15]. 

There are many benefits of using bio-inspired methods in soft computing. Firstly, 
these methods are quite flexible and may be used to address a wide range of issues 
in numerous fields. Furthermore, they frequently produce excellent results and can 
resolve issues that conventional approaches find challenging or impossible. Also, 
solutions derived from bio-inspired methodologies are frequently quite strong and 
adaptable to changes in the environment or input data. Soft computing techniques 
can handle complicated issues that are challenging or impossible to answer using 
conventional methods by utilizing the advantages of bio-inspired techniques and 
addressing their shortcomings [3]. 

The immune system of the human body serves as a model for artificial immune 
systems [16]. They involve a collection of synthetic immune cells that can identify 
and react to antigens like germs and viruses [17]. The foraging habits of ants serve 
as a model for ant colony optimization (ACO) [18,19]. A group of synthetic ants are 
used, and they leave pheromones on a graph that represents an issue. The difficulty 
is solved when a trail forms as a result of the pheromones’ ability to draw in other 
ants. Routing, planning, and allocation of resources are examples of optimization 
problems that are solved using ant colonies..

9.3.2.3 Approximation
Soft computing, which focuses on the use of adaptable, heuristic methods for tack-
ling complicated problems, is fundamentally characterized by approximation [3]. Its 
approximation-based character results from the reality that many real-world issues 
are either too complex or insufficiently understood to be resolved by accurate math-
ematical techniques. The interactions between many variables are frequently com-
plicated and nonlinear, and the data that are provided are frequently inaccurate or 
inadequate [1]. 
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A prominent soft computing method is fuzzy logic, which is founded on the idea 
of using fuzzy sets and fuzzy rules to describe uncertain or inaccurate information 
[20]. In instances when precise numerical data are unavailable or challenging to get, 
fuzzy logic enables the use of continuous truth values that vary from fully false to 
completely true [21]. Neural networks, which are computer models created to imitate 
the structure and operation of the human brain, are a key component of soft comput-
ing. Neural networks are particularly effective at solving nonlinear issues that are 
challenging to model using conventional mathematical techniques [22]. In order to 
make predictions based on the data at hand, neural networks employ approximate 
reasoning. To increase their accuracy over time, they are trained using big datasets.

Another key tactic in soft computing is probabilistic reasoning, which uses statis-
tical models and methods to calculate the likelihood of various outcomes or events 
[23]. When there is insufficient or uncertain data, probabilistic reasoning is very help-
ful since it enables the use of probabilities to express the system’s level of uncertainty. 

9.4 HARD AND SOFT COMPUTING TECHNIQUES

A more adaptable, intuitive strategy, based on experience and instincts could be a 
viable alternative to the conventional and logical strategy when attempting to address 
a challenge. Hard computing and soft computing have proffered remarkable solutions 
in the world of computers. While soft computing uses more flexible, variable ways to 
deal with ambiguity and incomplete data, hard computing focuses on mathematical 
models and algorithms to produce exact calculations and judgments. Both strategies 
have pros and cons, so your choice depends on the issue. In this section, we explore 
the fascinating world of computational problem-solving using hard and soft com-
puting methods, from cutting-edge machine learning algorithms to traditional rule-
based systems, and discuss their benefits.

9.4.1 hard coMPuting techniQues

9.4.1.1 Linear Programming
A linear programming is a mathematical method used in hard computing to optimize 
a linear objective function under a set of linear constraints. It is commonly utilized in 
disciplines including resource allocation, logistics, and operations research. Finding 
the optimum answer that maximizes or minimizes a linear objective function while 
taking into account a number of linear constraints is the core tenet of linear program-
ming. The goal or objective of the problem is represented by the objective function, 
a mathematical expression, and the constraints are the requirements that must be 
met. In order to use linear programming, variables must be defined, constraints must 
be identified, and the objective function, or the desired outcome, must be identified 
[24]. Inequalities must be created and then graphed in order to solve problems using 
linear programming. Linear programming can be done manually in some cases, but 
complex variables and computations require computer software. A and B are sold 
to increase profits. They aim for $5,000 and $6,500 earnings but can only create 
a specific amount of product A and B due to resource limits. The corporation can 
only make 600 A and 800 B with a $120,000 expenditure. To optimize earnings, the 
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corporation is determining A and B unit production. This issue can be expressed 
using a linear programming function with objective function as in Equation 9.1 by 
giving the objective function and limits:

 C A BMaximize  5,000  6,500   = +  (9.1)

If C denotes the overall profit, A is the quantity of Product A while B is the quantity 
of B produced. The constraint would be:

 A 600 ≤  (9.2)

 B 800 ≤  (9.3)

 A B600 800 120,000 9.4+ ≤  (9.4)

Equations 9.2 and 9.3 represent the constraint on production while Equation 9.4 rep-
resents the constraints on budget.

Real-life application of linear programming is practicable. The methods of linear 
programming are used by farmers. By selecting what crops they should cultivate, the 
volume, and as well as their optimal utilization, farmers may enhance their earnings. 
In nutrition, linear programming offers a potent technique to help with nutritional 
planning. Nutritionists can deploy it to give impoverished households food baskets 
that are affordable and nutritious. Dietary recommendations, nutritional advice, cul-
tural acceptance, or some mix of these may all be the constraints. In an assembly 
line, raw materials must pass through various machinery for predetermined lengths 
of time. A business can use a linear formula to determine how much raw material to 
employ in order to optimize profit. The amount of time spent on each computer is one 
restriction. Any equipment causing bottlenecks must be eliminated [24].

The literature is replete with sufficient amount of application of linear program-
ming techniques in solving real-world problems. By taking into consideration the 
reliability of a probabilistic variable, it has been used in the field of hydrology to 
optimize firm output at the design stage of a hydro plant toward a protracted hydro-
power reserve management [25]. The research by Hyun [26] generated a tracking 
profile for an antenna subjected to system constraints toward maximizing transmis-
sion duration. The waste management field has greatly benefited from the use of lin-
ear programming to address a variety of issues, including paint waste management 
optimization [27] and waste management system planning [28–30], health monitor-
ing [31], energy saving optimization [32], and maintenance planning and schedules 
[33], amongst others.

As a hard computing method, linear programming offers many benefits. It can 
handle a wide range of problems, from basic to complex, and can locate the optimum 
solution in a workable area. It is also particularly effective because there are numer-
ous algorithms available to swiftly and precisely handle problems involving linear 
programming. However, linear programming can have some drawbacks. Only linear 
relationships between variables can be handled, which may not be suitable for all 
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issues. Also, it makes the unquestionable assumption that the problem parameters are 
known, which may not always be the case in real-world scenarios.

9.4.1.2 Expert-System
Expert systems are computer programs that simulate human decision-making in a 
given domain by using AI and machine learning techniques [34]. To reach a conclu-
sion or make a suggestion, they frequently use a set of rules, information, and infer-
ence engines [35]. Expert systems use a deterministic method of problem-solving, 
making them a subset of hard computing [1,36]. They don’t use the statistical or prob-
abilistic techniques used in soft computing; instead, they rely on rules and logical 
reasoning to reach a conclusion. They can collect and preserve specialist knowledge, 
increase the accuracy of decisions, and lower expenses, among other benefits. They 
do, however, have drawbacks, such as the requirement for in-depth topic expertise 
and the incapacity to deal with ambiguity and uncertainty. A rule-based or knowledge-
based system is a kind of expert system used in hard computing that makes decisions 
or solves problems using a set of rules and logical reasoning. Another name for it is 
a knowledge-based system.

A collection of rules is formulated by a single expert or by a group of experts in 
a rule-based system [37]. Their field expertise informs these rules. Each rule has an 
antecedent (conditions) and a consequence. Based on the input data, the conditions 
are assessed, and if they are true, the consequent is carried out. The transparency 
and simplicity of rule-based systems is one of their benefits. Each guideline is clearly 
described, which makes it simple to follow the thought and selection processes. 
Human specialists will find it simpler to verify and improve the system’s performance 
as a result [38]. Rules-based systems have major limitations. Since human profession-
als must program the system, they are difficult to design and maintain. They may also 
struggle with unexpected situations not covered by the current rules. Because they 
offer a strong and adaptable tool for encoding knowledge in a formal and structured 
way, logic-based approaches are frequently utilized in the creation of expert systems 
[39,40]. Formal logic is a mathematical framework for inferring conclusions from a set 
of premises and is the foundation of logic-based approaches [41]. Expert systems can 
utilize formal reasoning techniques to reach conclusions and make judgments based 
on the knowledge at their disposal by encoding knowledge in a logical manner.

9.4.1.3 Numerical Methods
Mathematical and computational problems that cannot be addressed analytically 
are solved using numerical methods. These techniques rely on mathematical algo-
rithms that approximate answers to challenging issues using numerical analysis. 
In disciplines like engineering, physics, and computer science where exact math-
ematical solutions are necessary, numerical approaches are frequently used. The fact 
that numerical approaches rely on precise and deterministic algorithms is one of 
its key characteristics. This implies that the numerical methods’ solutions are exact 
and precise, offering a degree of confidence in the outcomes. By offering precise 
solutions that may be utilized to make predictions and wise decisions, numerical 
approaches can aid researchers and engineers in understanding complicated systems 
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and processes. These numerical approaches are frequently computationally demand-
ing in that in order to do calculations, they need substantial computational resources, 
such as high-performance computer systems. However, improvements in processing 
capability and algorithms have made it possible to execute numerical calculations 
on desktop and laptop computers, opening up these techniques to a wider variety of 
academics and professionals.

Engineering uses numerical methods to simulate physical systems, develop and 
analyze structures, and optimize designs [42–45]. Engineering uses numerical meth-
ods for computational fluid dynamics [46,47], finite element analysis [48], and opti-
mization [45]. Numerical approaches model electromagnetism, fluid dynamics, and 
quantum mechanics [49,50]. Astrophysics models stars and galaxies numerically [51]. 
Numerical methods in computer science model complex systems, develop algorithms, 
and solve machine learning and AI concerns [52]. Numerical methods are used in 
Monte Carlo simulations, numerical linear algebra, and optimization [9,53–55].

9.4.2 soft coMPuting techniQues

9.4.2.1 Artificial Neural Network
Artificial neural networks (ANN) are machine learning models that mimic the 
human brain. They are multilayer neural networks with connected nodes. Each neu-
ron receives inputs, applies a weighted sum, and produces an output after passing 
the output via an activation function. The ability to learn from ambiguous or impre-
cise data is one way that ANNs are employed in soft computing [56]. Each example 
in the set of examples used to train ANNs contains a set of input values and an 
associated output value. In order to reduce the disparity between the expected out-
put and the actual output, the network modifies the weights between neurons during 
the training phase. The ability to represent intricate nonlinear interactions between 
input and output variables is another way ANNs are employed in soft computing 
[57]. ANNs are ideal for simulating complicated systems where the underlying link-
ages are unclear since they can approximate any continuous function.

ANN is built on the principles of the structure and operation of the human brain. 
Neurons, the interconnected nodes that make up ANNs, are arranged into lay-
ers. The input layer with inputs x j nj : 1,2( )= … , the hidden layer(s) with neurons 
n j nj : 1,2( )= … , and the output layer with output o j nj : 1,2( )= …  are the three types 
of layers that are commonly present in an ANN as represented in Figure 9.1. The 
neurons in the hidden layers and output layer are in charge of processing and turning 
the input data into useful output, whereas each neuron in the input layer corresponds 
to a feature or input variable of the data.

Weights are used to depict the connections between neurons in various layers and 
to quantify how strong they are [58]. The weights between neurons are changed dur-
ing training in order to reduce the discrepancy between expected and actual output. 
Initial weight for ANN models is updated during training until a stopping condition 
is satisfied; if otherwise, the new weight is ignored, and the learning rate parameters 
are reduced by lowering the scalar parameters [59–61]. For each training set, the 
biases and weights are updated using Equation 9.5:
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 E x yt t t t
i i  . ; ;1θ θ η θ( )= − ∇θ

( ) ( )
+  (9.5)

where θ  represents the weights and biases, x i  ( ) is the input of the training sample, y i( ) 
is the target label, η  is the learning rate, and E  is the loss function.

The multilayer perceptron (MLP) is a common ANN architecture comprising 
several hidden layers. This causes an increase in the complexity of the system. 
The output of the first hidden layer neurons in a network with two hidden layers, 
where the first hidden layer has m1 neurons and the second hidden layer has m2 
neurons, first and second hidden layer weights are wil

1 and wij
2, respectively, and 

first and second hidden layer activation functions are iφ  and jψ , respectively, can 
be expressed in equation. According to Equation 9.7, the second hidden layer’s 
input is provided by the output of the neurons in the first hidden layer as in 
Equation 9.6.
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FIGURE 9.1 Artificial neural network (ANN) architecture [1].
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9.4.2.2 Fuzzy Logic
FL is one of the core aspects of soft computing which is essential to systems with high 
MIQs (machine intelligence quotients) [12]. The FL approach is a variant of multival-
ued logic, often recognized as the logic of approximation reasoning. The idea of the 
fuzzy logic is comparable to the fuzzy set theory, in which nondistinct borders within 
classes persist. The approach establishes the membership function that emerges from 
human logic that all events’ validity is a function of degree [1]. When there is insuf-
ficient or unclear information, fuzzy logic can be used to reason in cases where classic 
Boolean logic cannot. The fuzzy logic is a mathematical approach which addresses 
ambiguity and imprecision. There is no third option in conventional Boolean logic; 
variables can only be true or false. Contrarily, fuzzy logic permits variables to have 
degrees of truth ranging from 0 to 1, which permits more subtle reasoning [62].

In fuzzy logic, two ideas are fundamental to its uses. The first is a linguistic vari-
able, whose values are phrases or clauses in a language, natural or artificial. The 
other is called fuzzy-if-then-rules, and it has premises with linguistic terms as its 
antecedent and consequents. The granularity of elements and their interactions is the 
sole goal of linguistic terms. By granulating, the employment of linguistic variables 
and fuzzy if-then rules produces lossy data compression. In this manner, fuzzy logic 
replicates the amazing potential of the human mind to focus on information that is 
crucial to decisions and synthesize information.

A “fuzzy set” is the main idea behind fuzzy logic. When reasoning about uncer-
tain or imperfect information, fuzzy logic uses fuzzy sets to symbolize the informa-
tion as well as fuzzy logic operations [63]. A value set with degrees of membership 
ranging from 0 to 1 is referred to as a fuzzy set. For example, the fuzzy set “tall 
people” can include individuals who are very tall (membership degree: 0.9), moder-
ately tall (membership degree: 0.5), and individuals who are only slightly taller than 
normal (membership degree: 0.1) [64,65]. In the fuzzy set theory, x belongs to a set A, 
such that µA(x) comparable to the crisp µA(x) = 1 could be partial provided ∈x A, and 
µA(x) = 0 if x ∉ A. Sequel to this, we can thus define and mathematically express dif-
ferent fuzzy logic operators as follows:

 i. Union (“OR”): By obtaining the maximum membership degree at each 
point, two or more fuzzy sets are merged into one fuzzy set using union 
fuzzy operator:

 x x xA B A Bmax ,  µ µ µ[ ]( ) ( ) ( )∪ =  (9.8)

 ii. Intersection (“AND”): This merges two or more fuzzy sets into a single 
fuzzy set by calculating the minimum membership degree at each location:

 x x xA B A Bmin ,  µ µ µ[ ]( ) ( ) ( )∩ =  (9.9)

 iii. Complement (“NOT”): Transforms a fuzzy set’s membership degrees so that a 
membership degree of 0 is now 1 while a membership degree of 1 becomes 0: 

 x xA A1µ µ( ) ( )= −  (9.10)
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A decision-making (inference) system known as a fuzzy inference system (FIS) 
employs fuzzy logic with a sequential sequence of commands whose implementation 
produces fuzzy (approximate) responses to take actions based on uncertain or incom-
plete information [66]. When utilizing the FIS, the system reads in the input variables 
and assigns them to the relevant fuzzy sets. The degree of membership of each rule is 
then calculated by applying the fuzzy rules. Lastly, it combines the fuzzy rule outputs 
to determine the output variable. A typical FIS structure is represented in Figure 9.2. 

9.4.2.3 Swarm Intelligence
The flocking of birds and bee swarms are two examples of how complex systems 
may coexist harmoniously in the natural world. These social animals have developed 
cooperative and problem-solving abilities over several years, resulting in emergent 
behaviors that are more than the sum of their parts [67]. This idea serves as the foun-
dation for swarm intelligence. Swarm intelligence, which uses the power of collective 
intelligence, is setting the bar for creating fresh, ground-breaking answers to some of 
the most difficult problems the world has ever faced [68]. Swarm intelligence is a soft 
computing approach which is a collection of computational methods that let comput-
ers gain knowledge from past data and experience. Problems requiring optimiza-
tion, search, and decision-making are particularly well-suited for swarm intelligence 
[69]. Swarm intelligence presents a promising technique to problem-solving in this 
age of big data and complicated systems. We can design algorithms that can solve 
issues that are outside the purview of conventional computing techniques by taking 
inspiration from the group behavior of social animals. Few of the prominent swarm 
intelligence algorithms are discussed as follows:

9.4.2.3.1 Genetic Algorithm
Genetic Algorithm (GA) is a ubiquitous optimization method which draws its inspi-
ration from genetics and the concept of natural selection [70]. GA belongs to the 
broader category of Evolutionary Algorithms (EA), a group of computational opti-
mization methods that mimic the process of natural selection in order to address 
challenging issues [1]. Due to its ease of use and effectiveness in locating the best 
solutions, GA is one of the EA approaches that is most frequently utilized [71]. With 
the use of a set of parameters or variables, GA creates a population of probable 
answers to a problem. The effectiveness of each solution’s fitness is then assessed 
in relation to how effectively it resolves the issue at hand. An objective function or 

FIGURE 9.2 Fuzzy inference system [1].



217Hard and Soft Computing

fitness function that measures the quality of the solution is often used in the fitness 
evaluation [72]. The subset of the population chosen for the breeding process is then 
chosen using the selection procedure. In order to create a new population of prospec-
tive solutions, the genetic components of the chosen solutions are combined in this 
procedure. After evaluating this new population, the procedure is repeated until a 
workable solution is identified. GA uses three operators: crossover, mutation, and 
reproduction. The GA starts a certain population of the chromosomes at random. 
Figure 9.3 presents the process flowchart for the GA process. The sequential steps 
carried out for each iteration in GA based on the three operators are as follows:

 I. Selection: The best chromosomes in the population that represent the best 
solutions are identified through an evaluation of the fitness function for each 
chromosome. These chromosomes serve as parents for the new generation 
of offspring.

 II. Crossover: By using this method, offspring arising from the hybridization 
of two parents are created. As a result, the offspring are more physically 
fit than their parents. Many methods, including diagonal crossover, cycle 
order, partially mapped, uniform, tournament, ranking selection, amongst 
others, are used to carry out the crossover technique, which establishes the 
structure and child-to-parent chromosome [73].

 III. Mutation: This strategy avoids taking the local optimal solutions as the 
global optimum solutions by looking for fresh solutions inside the search 
area that is accessible. To accomplish this, chromosomes’ genes are modi-
fied in a randomized manner [1]. 

FIGURE 9.3 Process flowchart of genetic algorithm.
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9.4.2.3.2 Particle Swarm Optimization
The prominent swarm intelligence technique known as particle swarm optimization 
(PSO) has been successfully applied to a variety of challenging optimization prob-
lems. PSO is a soft computing approach that draws inspiration from animal social 
behavior, particularly the insects, bird, and fishes. To find the best answer to a prob-
lem, PSO imitates these tendencies [74]. Kennedy and Eberhart first proposed PSO 
in 1995 [75], and since then it has developed into a well-known and incredibly effec-
tive optimization method. PSO’s fundamental goal is to imitate a group of particles 
moving through a search space in quest of the best answer [76]. Each particle in the 
search space represents a potential solution, and it moves according to its own expe-
rience as well as the experiences of its neighbors [13]. The PSO method begins by 
initializing a collection of particles in the search space at random. Every particle has 
a position and velocity vector. A particle’s position represents a potential solution, 
and its velocity vector shows the direction and speed with which it is moving across 
the search space. Based on the objective function of the problem being solved, each 
particle’s fitness value is assessed. Based on its own experience and the experience of 
its neighbors, each particle’s position and velocity are updated during each iteration 
of the algorithm. The following equations establish how the algorithm updates:

 v t wv t c r x x t r c x x ti i Pbest i Gbest i1 1 1 2 2( ) ( )( ) ( ) ( ) ( )+ = + − + −  (9.11)

 x t x t v ti i i  1 1( ) ( )( )+ = + +  (9.12)

where v ti ( ) is the particle’s velocity at time t, w denotes the inertia weight, Pbest  
denotes the particle’s best solution so far, Gbest denotes the best solution for all par-
ticles, parameters c  1 and c2 denote acceleration coefficients, while r1 and r2 denote 
random values between 0 and 1. Exploration and exploitation are balanced according 
to the inertia weight w. These control parameters are significant to the performance 
of the algorithm. The effects of the particle’s own experience and the experiences 
of its neighbors on its movement are controlled by the acceleration coefficients c  1

and c2. A stopping criterion, such as a maximum number of iterations or a desirable 
level of fitness, must be satisfied before the algorithm can stop. In addition, the PSO 
technique’s effectiveness is improved by the five swarm intelligence principles of 
proximity, quality, diversified response, stability, and adaptability [77]. The process 
flowchart for the PSO is presented in Figure 9.4.

9.4.2.3.3 Ant Colony Optimization
Picture an active ant colony where many tiny insects collaborate to discover the 
quickest route from their nest to a food supply. They accomplish this by leav-
ing pheromone trails that direct other ants to the source of food. The Ant Colony 
Optimization (ACO) algorithm was developed as a result of this extraordinary behav-
ior. ACO makes a group of artificial ants that travel the problem space while leaving 
pheromones on the solutions they stop at by modeling their behavior after that of 
ants [78]. The pheromones serve as a route of communication that enables the ants to 
inadvertently exchange details about the caliber of the solutions they have discovered 
[19]. The working principle of the ACO is based on the discovery that ants may leave 



219Hard and Soft Computing

and follow pheromone trails to determine the shortest route between their nest and 
a food source [79]. As they migrate toward the food source, ants leave pheromone 
trails, which get stronger while more ants utilize them. Ants can indirectly commu-
nicate with one another by pheromone trails in this manner, and the entire colony 
can work together to determine the quickest route from the nest to the food source.

A set of artificial ants that move through the problem space and leave pheromones 
on the solutions they stop at are created by the ACO algorithm to simulate this behavior. 
Depending on how well the solutions the pheromone trails lead to turn out, they are then 
either strengthened or eliminated. By utilizing the data present in the pheromone trails, 
the ACO algorithm is able to use the information to converge toward the best solution to 
the issue [80]. The performance of ACO has been further improved as a result of the cre-
ation of numerous upgrades such as local search and multiple colony techniques, which 
were inspired by the success of ACO. Being one of the most potent optimization meth-
ods now in use, ACO continues to excite researchers and scientists across the globe with 
its ability to resolve challenging issues. The conventional ACO’s state transition rule is a 
pseudorandom rule, which means that the roulette method is used to calculate the likeli-
hood of a transition from the current node to the next viable node [81]. Both local and 
global search are the foundations of the continuing ACO. Local ants have the ability to 
go toward latent area with best solution in terms of transition probability of location k, 
as Equation 9.13 depicts [80]; Figure 9.5 represents the process flowchart for the ACO:
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FIGURE 9.4 Process flowchart for the particle swarm optimization (PSO).
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If n is the total number of global, t tk  ( ) is the total pheromone in region k. The fol-
lowing equation updates the pheromone:

 t t r t ti i  1 1( ) ( ) ( )+ = −  (9.14) 

9.4.2.3.4 Firefly Algorithm
The firefly algorithms (FAs) imitate the fascinating attributes of the biolumines-
cent fireflies to address optimization problems. A group of fireflies try to attract 
a mate by flickering and flashing their lights in the darkness of the night. The 
FA leverages the flashing behavior of fireflies to solve a variety of optimization 
issues, and this is exactly what it accomplishes [82]. FA is a population-based 
algorithm, and each firefly symbolizes a potential answer to the optimization issue 
while the quality of the answer is shown by the firefly’s flashing activity. The pro-
gram employs firefly attraction to direct the search in the direction of the optimal 
solution [83]. An initial population of fireflies is randomly distributed around the 
problem space at the beginning of the algorithm’s procedures. It then updates each 
firefly’s position and brightness iteratively in accordance with their attraction to 
one another [84].

Three elements—distance, brightness, and a random parameter—are the founda-
tions of firefly attraction to one another. The algorithm’s random parameter, which 

FIGURE 9.5 Process flowchart for ant colony optimization (ACO).
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adds stochasticity, has an impact on the attraction, which increases with brightness 
and diminishes with distance. Based on the attraction between fireflies and each 
firefly’s prior position, the algorithm changes each firefly’s position [83]. The FA is 
a potent optimization method thanks to a number of its advantages. The capability 
of the method to quickly converge on the optimal solution is one of its main advan-
tages. It is an appealing choice for researchers and practitioners because it is also 
reasonably easy to use. Also, in a number of optimization problems, firefly algorithm 
has been found to perform better than other metaheuristic algorithms like GAs and 
Particle Swarm Optimization [83].

9.5 HYBRID SOFT COMPUTING TECHNIQUES

Hybrid model produces a more powerful and reliable system that can overcome 
the shortcomings of the standalone approaches. An upsurge in the applications of 
hybridized soft computing technique has been experienced in recent years owing to 
the substantial advantages it provides over single-method techniques. Due to com-
mon inadequacies in the critical aspect of soft computing such as parameter estima-
tion or data fitting, single-method techniques have been proven to be less effective 
[1]. Compared to single-method approaches, hybrid systems are more easily able to 
adapt to varying conditions and settings. This is due to the system’s ability to transi-
tion between various strategies in response to the scenario, enabling it to manage a 
wider range of circumstances. Many different methods, such as boosting, voting, 
bagging, or stacking, are used to create hybrid models [85]. Few hybrid models in 
soft computing are discussed briefly in this section.

9.5.1 adaPtive neuro-fuzzy inference systeM

Adaptive neuro-fuzzy inference system (ANFIS) is a hybrid machine learning 
algorithm and a soft computing model which incorporates fuzzy logic system and 
ANN to learn from experience and make decisions in a manner that mimics that of 
humans [86]. The antecedent and consequence components of the Takagi-Sugeno 
FIS are coupled by fuzzy rules in the ANFIS modeling approach [87]. ANFIS is 
a suitable hybridized soft computing approach as it integrates two important soft 
computing approach via-a-vis ANN and fuzzy logic in a complimentary manner. 
The least-square approach and the backpropagation gradient-descent of the hybrid 
learning algorithm are combined to create the ANFIS, which optimizes the out-
put’s linear consequent parameters and the nonlinear premise parameter through 
fuzzy membership [88,89]. ANFIS comprises five layers vis-à-vis input, fuzzifica-
tion, normalization, defuzzification, and output layer. The architectural frame-
work of the ANFIS model is presented in Figure 9.6. These layers are described 
as follows.

Input layer: The system gets input variables or features from the outside envi-
ronment at the input layer. To enable uniform processing across various inputs, the 
variables are typically standardized to a range of 0 to 1. This layer contains fuzzy 
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membership functions A xiτ ( ) and B yiτ ( ), while its output function defined by O j  1  at 
each node is presented in Equation 9.15:

 O A x F B yj i j i and 1 1τ τ ( )( )= =  (9.15)

Fuzzification layer: This maps the crisp input variables to fuzzy sets, where each 
fuzzy set is represented by the degree of membership of the input variables. Using 
membership functions, this layer determines the extent to which each input variable 
belongs to the fuzzy sets. Equation 9.16 presents the output of the fuzzy layer which 
are the products of the input signals:

 O A x B yj i i   2 τ τ ( )( )= ×  (9.16)

Normalization layer: The fuzzy logic is applied at the layer. Based on the degree of 
membership of the input parameters to the antecedents of the rules, it employs the 
rules provided by the system designer to calculate the degree of activation of each 
rule. As seen in Equation 9.17, the output function is a fraction of the node’s firing 
strength to the sum of firing strength of the other nodes:

 O w
w

w w w
j i  3
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= =
+ +

 (9.17)

Defuzzification layer: The defuzzification layer changes the inference layer’s fuzzy 
output value into a crisp output value. To do this, the outputs εof each rule are aver-
aged using a weighted formula, where the weights represent the rules’ firing strength 
as shown in Equation 9.18.

 O w f w p x q y rj i i ( )4 1 1 1 1= = + +  (9.18)

Output layer: The ANFIS model’s output layer produces the precise output value 
determined by the defuzzification layer. At this layer, a single node adds all the 
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signals from all the layers using the summing function shown in Equation 9.19 to 
determine the overall output:
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9.5.2 hybrid neuro-fuzzy ModeLs

In earlier applications, ANFIS has remarkably solved a number of nonlinear 
issues. It has the advantage of integrating the linguistic and numerical benefits 
of fuzzy logic and ANN. The exciting attributes of ANFIS such as less memory 
error, rapid learning capability, flexible computational framework, and adap-
tive capacity than the ANN has established the significance of its hybridization 
[90]. However, there are certain restrictions with the classical ANFIS model in 
its standalone form. It has some flaws like overfitting, artificialities, irregulari-
ties, amongst others [91,92]. It could be quite sophisticated, as it requires a lot of 
hyperparameter settings and tuning, consequently making them computationally 
intensive particularly when handling complicated systems or large amounts of 
data. Due to the growth in the research space in neuro-fuzzy model application, 
hybridization of neuro-fuzzy models with optimization algorithms such as evo-
lutionary algorithms as an approach for overcoming some of its limitations in 
standalone form has gained traction [13]. Evolutionary algorithms are stochastic 
multi-objective optimization techniques which are contingent on selection and 
variation principle to replicate the process of natural evolution [93]. The anteced-
ent and consequent parameters of the conventional ANFIS and the ideal training 
loss function are tuned by these evolutionary algorithms to facilitate a better con-
vergence speed. The literature is replete with several evolutionary algorithms for 
tuning the parameters of neuro-fuzzy models for a better performance in several 
applications. Examples of these algorithms are PSO, GAs, and differential evolu-
tion (DE). Some new-generation meta-heuristic algorithms such as FFA, gray wolf 
optimization (GWO), teaching learning-based optimization (TLBO), and ACO, 
amongst others, have also been developed to achieve the same benefit [91,94].

9.6 MERITS AND DEMERITS OF SOFT COMPUTING METHODS

The real-life scenarios have benefitted from the applications of diverse soft comput-
ing approaches. Instead of competing with one another, these tools work in tandem 
[2,4]. Although they have shown considerable success, they have certain innate ben-
efits as well as drawbacks that should guide their selection. Some of the generic and 
model-specific merits and demerits of the soft computing techniques studied in this 
chapter are highlighted as follows:
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9.6.1 Merits

 i. They are particularly tolerant of noise, uncertainty, and inadequate data. 
Even when the data are noisy, imperfect, or inconsistent, they can neverthe-
less produce reasonable results.

 ii. They can learn from experience and develop over time since they are adap-
tive. Their suitability for solving wide range of problems is attributed to 
their incredibly adaptable computing ability.

 iii. When compared to other machine learning techniques, many soft comput-
ing techniques are more transparent and explanatory since they can reveal 
the reasoning behind their decisions.

 iv. They are suited for applications that require real-time processing since they 
are typically less computationally intensive than classic machine learning 
approaches like deep learning.

 v. Soft computing techniques allow for hybridization with other systems such 
that they leverage the strength of each method.

9.6.2 deMerits

Soft computing methods have a number of benefits over conventional methods, but 
they also have certain drawbacks including but not limited to the following:

 i. This technique lacks a rigorous rational or mathematical foundation because 
they are dependent on heuristic or empirical methods. Thus, they face chal-
lenges to assess or comprehend how they operate.

 ii. The models that soft computing approaches develop can occasionally be 
challenging to interpret, despite the fact that they might offer insights into 
their rationale. This may be a challenge when the model’s conclusions must 
be justified to others.

 iii. They might not always yield the greatest outcomes, especially when com-
pared to other methods like deep learning. For instance, deep learning meth-
ods can outperform soft computing methods in picture identification tasks.

 iv. Overfitting, which happens when a model is too complicated and matches 
the training data too closely, can be problematic for soft computing tech-
niques. This leads to poor generalization to new data.

 v. It can take a lot of effort and experience to fine-tune the many factors that soft 
computing approaches need for, such as the quantity and kind of fuzzy sets.

They lack a defined framework for model creation and assessment, which can make 
it challenging to compare outcomes across research or applications.

Although we have highlighted the holistic and general demerits and limitations of 
soft computing, the drawbacks are more unique to the method than general because 
of their diverse frameworks. Presented in Table 9.1 are some of the disadvantages 
which are peculiar to the soft computing approaches considered in this study.
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TABLE 9.1
Specific Demerits of Soft Computing Techniques [1]

S/N Soft Computing Method Specific Demerits

1 Artificial neural network  1. It is not deterministic to arrive at the ideal number 
of neurons, hidden layers, or topology.

 2. The quantity of the data used for training the ANN 
model affects how well the resultant model 
performs on novel datasets.

 3. ANN is vulnerable to both over- and underfitting.
 4. Training with complicated models and huge 

amounts of data takes more time.
 5. Its design as a black box results in intriguing 

network activity.

2 Fuzzy logic  1. To create a rule base, human expertise is mandatory.
 2. Its capacity for generalization is limited. It is 

frequently peculiar to the problem.
 3. It is limited in application. 

3 Swarm intelligence  1. They many not scale well owing to intricate 
challenges and the number of agents may cause 
swarm intelligence algorithms to not scale 
adequately.

 2. They are also problem-specific and may not be 
suitable for general problems.

4 Adaptive neuro-fuzzy inference 
systems

 1. It could be fairly complicated, requiring numerous 
settings and parameters to be tuned.

 2. It can be computationally expensive, especially 
when working with complex systems or significant 
volumes of data. This may restrict their usefulness, 
especially in real-time or online settings where 
responsiveness is essential.

ANN, artificial neural networks.

9.7 CONCLUSION

This chapter investigated two complementary computing techniques exhibiting great 
strength and weaknesses. While hard computing relies on exactness and accuracy as 
in mathematical equations, soft computing techniques are more adaptive and flexible 
and thus suited for uncertainty and ambiguity. Moreover, this chapter demonstrated the 
deficiency of hard computing techniques in handling some complex real-life problems 
delineated by noise, and uncertainties thus failing in mimicking intelligent human-
like decision makings. However, the integration of these computing approaches could 
transform the thin film deposition space, causing a paradigm shift in the development 
of novel materials and fostering sustainable innovations in the near future.
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Why Machine Learning?

10.1 INTRODUCTION

Thin film technology has long led scientific progress as solar panels, computer 
screens, sensors, and implants use thin sheets [1,2]. The need for more efficient and 
effective manufacturing and characterization processes, however, is growing along 
with the demand for complex and sophisticated thin films [3]. Machine learning can 
optimize thin film characteristics and deposition procedures by utilizing intelligent 
algorithms, which can recognize patterns and relationships in large amounts of data 
[4,5]. Making sense of experimental data can be streamlined by machine learning, 
which enables scientists to make conclusions more quickly and accurately [6]. As 
thin film technology becomes increasingly sophisticated, machine learning offers 
a potent tool for modeling and simulating thin films at a degree of detail that was 
previously unachievable [7]. 

A robust method for depositing thin films with atomic accuracy is atomic layer 
deposition (ALD) [8–10]. ALD has turned into a crucial tool in a variety of indus-
tries, from microelectronics to energy storage, because of its capacity to create 
complex multilayered structures with a high degree of control over thickness, con-
tent, and morphology [11–13]. ALD is not without difficulties, despite its many 
benefits. The inherent complexity of the process is one of the main challenges 
owing to the many variables that can impact the quality and development of films 
during ALD [14]. Because of their frequent interdependence, it is challenging to 
optimize the procedure and obtain the desired deposited film qualities. Machine 
learning has the ability to revolutionize how we tackle ALD problems by utilizing 
the power of artificial intelligence, while assisting us in optimizing ALD proce-
dures in ways that were previously not conceivable because of its capacity to evalu-
ate enormous datasets and find intricate connections between process variables and 
film qualities [7].

Having examined the fundamental techniques of machine learning in previous 
chapters, we want to establish the significance and the need for machine learn-
ing–based modeling in thin film technology and ALD in this current chapter. 
While we are not undermining the uniqueness of other computational simulation 
techniques in thin film technology as examined in one of the preceding chap-
ters, we shall examine the benefits of machine learning over these computational 
models in their standalone or hybridized form. The potentials of integrating 
machine learning algorithms with the computational simulation models will also 
be investigated. 
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10.2  LIMITATIONS OF NUMERICAL SIMULATIONS 
IN ATOMIC LAYER DEPOSITION

A critical challenge of the ALD process lies in comprehending the intricate physical 
and chemical processes involved in depositing atoms, one layer at a time. This has 
necessitated the need to optimize the deposition process for various materials and 
applications by simulating the behavior of atoms and molecules during the process 
using numerical computational simulations [3,14,15]. Several computational simula-
tion approaches were studied in-depth in a previous chapter. More so, these numeri-
cal simulation approaches were described in a previous chapter as “hard computing 
techniques.” If we wish to make the most of this cutting-edge technology, we must 
be aware of numerical simulations’ shortcomings. Machine learning models can fill 
some of these gaps. We shall examine some of these limitations as follows.

10.2.1 fauLty caPture of the PhysicaL PhenoMena by the ModeL

The performance of the numerical simulations significantly depends on how accu-
rately the physical models that explain the actions of thin film materials and the 
deposition process are established [16,17]. Despite tremendous advancements in 
our knowledge of the mechanisms underpinning the process of ALD, many funda-
mental physical and chemical processes remain mostly unexplained [14]. Creating 
precise ALD simulations may be limited due to these difficulties. The models are 
built around multiple assumptions, simplifications, and approximations that might 
not always actually apply in real-life situations. The quality and dependability of the 
simulation results can therefore be severely influenced by any mistakes or faults in 
these models. The use of empirical models, which are predicated on observed mea-
surements and can sometimes not precisely capture the basic concepts of the physical 
processes, is a prominent reason for inadequacy and poor performance in modeling 
physical events [18,19]. For instance, empirical equations drawn from experimen-
tal data may be used to simulate the thin film deposition rate, but these equations 
might not take into account the intricate interactions that occur between precursor 
molecules, the substrate, and the reactant gases throughout the deposition process. 
By using empirical models, it’s possible that simulations will be overly simplified or 
imprecise and won’t accurately reflect how the deposition process actually works. A 
number of numerical simulations depend on abstracted representations of the pro-
cess, which presuppose homogeneous deposition throughout the substrate layer and 
uniform distribution of the precursor molecule [3]. Several variables directly impact 
the deposition process ranging from the forms and position of the substrate surface, 
the existence of defects or contaminants, and the diffusion of precursor molecules 
across the surface [10,14]. Inaccurate simulations that default in accurately represent-
ing the ALD process can be attributed to ignoring these elements [20,21].

10.2.2 handLing the atoMic-scaLe Processes of aLd is chaLLenging

The scale of the deposition process impacts the performance of the computational 
simulation process significantly [17]. The process involved in ALD is carried out at 
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atomic-scale, thus necessitating a high degree of temporal and spatial accuracy. This 
operation scale poses a challenge to the simulation of the process. This challenge 
could be attributed to the complicated nature of the atoms and molecular relation-
ships [16,17]. It is computationally costly, laborious, and not time-effective for the 
simulations to follow the motions of individual atoms and molecules. A further factor 
driving up the cost of computation is the magnitude of the deposition process, which 
necessitates broad simulation domains to accurately model substrate and environ-
ment impacts. Quantum mechanics, a sophisticated system of physical principles 
that describes how matter interacts at the atomic and subatomic scales, determines 
the interactions between atoms [22]. Modeling these interactions can be challenging 
since they depend on a number of variables, including the atoms’ size, shape, and 
electrical configuration [23]. Inadequate experimental data may also be a contribut-
ing factor to the numerical computational simulation’s shortcomings. Simulations 
can predict material behavior, but data quality affects accuracy. Without enough 
experimental data on a material’s properties, simulations may not be accurate, limit-
ing their application.

10.2.3 LiMited coMPutationaL resources

A high computational power and resources involving lots of memory and comput-
ing capacity are needed for accurate modeling of ALD processes. These resources 
might not be easily accessible, especially for complicated deposition procedures 
with numerous chemical and surface reactions. As a result, experts frequently 
adopt simplified models that might not fully reflect the process’s genuine nature. 
Using coarse-grained models is one method for minimizing the amount of comput-
ing power needed for ALD simulations [24]. By lowering the quantity of particles 
that must be simulated, coarse-grained models make the system simpler while also 
using much less computer power. Yet, as they might not accurately represent the 
process’s finer intricacies, coarse-grained models might sometimes result in inac-
curate simulation results. To further overcome the challenge of limited resource 
in ALD simulation with numerical methods, machine learning–based modeling 
which would be extensively discussed in subsequent subsection and chapter would 
be viable. In order to create prediction models that can precisely forecast the 
behavior of the process, machine learning algorithms can be trained on massive 
datasets of ALD simulations [7]. By maintaining the ability to capture the crucial 
aspects of the process, these models can drastically cut the processing needs for 
ALD simulations.

10.2.4 reLiabiLity of eXPeriMentaL data for vaLidation

The quantity and quality of experimental data for validation play a critical role in 
determining the effectiveness and reliability of numerical simulations in ALD pro-
cedures [14,23]. Experimental data provide crucial details on the operation and per-
formance of ALD processes, which may be used to evaluate the simulation models 
and modify the input parameters to improve their performance [25]. In complex 
ALD processes such as those involving intricate chemical and surface reactions 
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and interactions, getting experimental data for them might be a bit challenging [26]. 
Further to this, it might be difficult to collect precise data because the experiments 
may be constrained by the sensitivity and precision of the instruments utilized while 
the risky nature and complicated synthesis of certain materials might impede the 
practicality of an experimental research on them [25]. In cases where experimental 
data are absent, the simulation process is often predicated on assumptions which 
might not perfectly capture the real-life scenario of the deposition process, ultimately 
a flawed process design results. To abate this challenge, the simulation process can 
be validated using in situ characterization techniques like X-ray photoelectron spec-
troscopy and ellipsometry which can accurately present an insightful knowledge of 
the deposition process [27,28].

10.3  BENEFITS OF MACHINE LEARNING OVER 
COMPUTATIONAL SIMULATION APPROACH

The optimization of the ALD process and creation of novel materials has been built 
on the conventional computational simulations, which are predicated on mathemati-
cal models. These simulations can, however, be time-consuming, costly in terms of 
processing, and have accuracy limitations as noted earlier. Machine learning mod-
els have been a potentially viable strategy and a suitable alternative for examining 
and improving deposition processes in contemporary times. Although, the potential 
benefit of machine learning application in ALD has not been fully explored yet, 
but it is growing. A better comprehension of the behavior of ALD processes and 
improved prediction performance can be realized with less computational power and 
scalability by training machine learning models using experimental results. While 
both machine learning and numerical simulations have merits and demerits, machine 
learning models could be preferred over the computational approach due to the fol-
lowing reasons.

10.3.1 better PerforMance and a More reLiabLe and accurate outcoMe

The dependence of the classical numerical simulations on assumptions and approx-
imations is a key factor limiting its performance in the ALD applications [3,29]. 
Another complementary approach that can enhance forecast accuracy and provide 
useful insights into the dynamics of the deposition processes is machine learning 
modeling [7]. In ALD, where the deposition process is contingent on multiple inter-
connected variables, machine learning models are built to capture complex interac-
tions between input parameters and output variables. They can as well find patterns 
and hidden trends by learning from historical experimental data such that they are 
able to comprehend the subtleties and intricacies of ALD processes that the sim-
ulation models can’t fathom [7]. Furthermore, the existence of complex nonlinear 
relationship between several variables of ALD process such as precursor chemistry, 
temperature, and pressure has made the classical numerical simulation difficult. The 
viability of the intelligent machine learning algorithms to capture these nonlinear 
relationships and their capability in detecting complex relationships within process 
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parameters which might not be readily apparent makes them a suitable alternative 
to numerical simulation [30]. By identifying the crucial input variables that influ-
ence the process outputs, machine learning models may also be used to optimize 
deposition processes [7]. This assists in determining which processing parameters 
have the biggest effects on the deposition process by examining the learned weights 
of the model. With the help of this knowledge, ALD processes can be designed and 
optimized to produce higher-quality final products by altering deposition conditions 
or precursor flow rates.

10.3.2 cost-effective coMPuting

The cost of computing has significantly increased with the upsurge in the demand 
for computational resources and power [31]. Consequently, there is a greater desire 
for more cost-effective computing [32]. The need for affordable computing solutions 
is greater than ever in this contemporary age of big data and increasing computa-
tional needs [31]. Numerical simulations might need a lot of computing power to 
operate, which would take both resources and time [18,19]. Machine learning can 
help in this situation. Machine learning can build reliable predictive models without 
using as much computational power as numerical models [33]. Machine learning can 
simply be trained on historical data to recognize patterns and trends in the dataset, 
unlike numerical computations which are based on complex systems, variables, and 
mathematical equations [34,35]. This accounts for the significant difference in their 
computational cost.

10.3.3 adaPtation and fLeXibiLity to a new dataset

It can be hard to forecast and control the features of the deposited material due to 
the high ambiguity and multidimensionality of variables involved in the processes 
[33]. The adaptability of machine learning algorithm models to an unseen and novel 
dataset is a crucial benefit it can offer in ALD process by learning from new data 
and modifying their predictions to better comprehend the process and its final out-
comes [7,33]. They have the ability to modify their models real-time as new infor-
mation emerges. This means that the algorithm can update its model as more data 
from the deposition process is gathered and make better predictions based on the 
updated data.

10.3.4 a deePer understanding and anaLysis of the coMPLeX aLd data

The atomic layer deposition processes involve a complex inter-relationship between 
diverse complicated and high-dimensional variables which have a significant impact 
on the physical, chemical, and electrical properties of the deposited materials [14,25]. 
These massive and intricate datasets and parameters may be difficult for the conven-
tional computational simulations approaches to handle, thus providing only limited 
insights into the process. This impedes an intelligent decision-making on the final 
deposited materials. However, machine learning algorithms are capable of swiftly 
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analyzing huge, complex datasets and parameters while finding undiscovered pat-
terns and connections between the independent parameters [36]. This may give a 
holistic comprehension of the deposition procedure, thus facilitating more correct 
estimates and more control over the properties of the deposited material. The robust-
ness of machine learning algorithms in handling nonlinearity in the complex ALD 
variables fills up the gap opened by the limitation of the computational approaches to 
linearity. A useful technique in machine learning, called the feature selection, can be 
deployed in ALD process to choose the most crucial input factors that have an impact 
on the final properties of the deposited material. Owing to the influence of several 
input parameters on the behavior of the deposited material. Other machine learning 
algorithms such as classification and clustering can also be beneficial in providing a 
deeper insight into the complex deposition data by grouping and classifying materi-
als toward finding new materials with attractive characteristics.

10.4  CHALLENGES AND LIMITATIONS OF MACHINE 
LEARNING APPLICATIONS IN ALD PROCESSES

Even though machine learning has demonstrated a great deal of potential in improv-
ing ALD procedures, its application is still at the infancy stage due to a number of 
challenges and shortfalls that must be overcome before it can be effectively used. The 
slow pace in the growth, applications, and full exploitation of the potential benefits of 
machine learning techniques in ALD is attributed to some limitations and challenges. 
The opportunities of machine learning applications in ALD are enormous, ranging 
from selecting the best precursors and fine-tuning process variables to forecasting 
deposition rates and film characteristics. We will delve deeper into these potential 
applications in subsequent chapters. However, in order to realize these potentials, it 
is critical to recognize its constraints and work to overcome them. We will examine 
some of the drawbacks to machine learning applications in ALD processes.

10.4.1 accessibiLity and QuaLity of aLd data

This is a prominent challenge for all machine learning applications. The success 
of machine learning models depends heavily on the quantity, integrity, and quality 
of available data [37]. For learning and making precise predictions, the algorithms 
primarily rely on reasonable amounts of high-quality data. Data integrity is crucial 
because the model’s accuracy and efficiency depend on its training data. Noisy or 
inadequate data may lead to inaccurate predictions and poor model performance. 
The paucity of data in ALD process is due to the high cost of instrumentation and 
experimental procedures [7]. In addition, since there are fewer materials, precursors, 
and process conditions available due to the high cost of experimentation, the resulting 
data sets may be biased, resulting in models that do not accurately reflect the entire 
process space. This is also accountable for the lack of sufficient data in the literature. 
Despite the fact that there is a growing number of researches on ALD processes 
in the literature, a great deal of it is devoted to particular uses or types of materi-
als, and the data collection and publishing are frequently incongruent. Due to this, 
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combining datasets from various sources may be challenging, which would decrease 
the quantity of training data that machine learning algorithms could use.

10.4.2 interPretabiLity of ModeLs’ outcoMe

It can be difficult to understand how a given conclusion was reached because many 
machine learning models are referred to as “black boxes” [31]. In the context of ALD, 
interpretability of the outcome of machine learning’s outcome is critical in order to 
fully comprehend the behavior of the deposited materials resulting from complex 
physical and chemical reactions. The ALD process which produces the thin film 
comprises complex chemical processes, surface adsorption, and diffusion mechanism 
[17]. These inter-relationships are influenced by a number of variables, including but 
not limited to the concentration of the precursor, temperature, the characteristics of 
the substrate’s wall, and pressure [25]. Machine learning may be unable to describe 
and interpret these underlying complex processes and causal relationship in its result. 
In order to improve the performance and generalization ability of the machine learn-
ing model in ALD, its interpretability and explainability must be established. One of 
such intervention is the use of explainable machine learning. Explainable machine 
learning research is emerging. It seeks to make machine learning models more trans-
parent and interpretable to develop trust in them [38,39]. Decision trees and rule-
based models may reveal deposition factors and film characteristics [40,41]. 

10.4.3 MiniMaL knowLedge of the doMain

The intrinsic physical and chemical reactions that control the deposition must be 
understood in order to develop machine learning for optimizing ALD processes 
[33]. To achieve accurate product design and optimal deposition process, the proper 
knowledge of the domain is required. However, machine learning models are sto-
chastic and not deterministic; they have a limited knowledge of the physical domain 
of the process [42]. While this may not be a long-term limitation, machine learn-
ing can be incorporated with the physical and chemical processes that produce the 
thin film, otherwise an inaccurate model may result. It is crucial to know which 
physical and chemical variables significantly influence the deposition process and 
to decide on the best experimental setups to quantify those variables because find-
ing the pertinent input features is one of the major hurdles in embedding domain 
knowledge into the ALD-based machine learning applications. Further to this, the 
proper choice of machine learning algorithm is contingent on the adequate knowl-
edge of the domain and underlying processes. Sequel to this, neural networks may 
be better suited to forecast dynamic interplay between constituents and substrates 
than linear regression when it comes to predicting film thickness. Similarly, correct 
interpretation of the models’ outcome relies largely on the succinct knowledge of the 
domain and underpinning processes. A sustainable approach to this challenge is the 
recommendation for team work and collective participation between machine learn-
ing programmer, ALD, and/or material science expert toward a common task while 
integrating the required statistical and computational simulation approaches.
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10.4.4 overfitting and underfitting

When a machine learning model is overly complicated and learns the noise in the 
training data rather of the underlying patterns, this is known as overfitting while 
underfitting happens when a model is overly simplistic and unable to discern the fun-
damental trends in the data [43]. Because of this, the model does well with training 
data but poorly with novel, untried data. This is often experienced with most machine 
learning applications including ALD space. The use of a model that is too complex 
for the amount of the training dataset is the most frequent reason for overfitting. 
This may pose a significant setback to the performance and reliability of machine 
learning application in ALD owing to the complexity of the deposition process. The 
model must be complex enough to capture the inherent complex reaction in ALD to 
avoid underfittings, otherwise, there would be a need to increase the complexity of 
the model such as adding more features to the input data or adding more layers to 
the neural networks model. Optimal hyper-parameter tuning of models’ parameters 
such as the learning rate, layer count, and regularization parameters is critical in this 
regard to enhance the model’s performance on the test data [34,44]. Furthermore, 
it is crucial to have enough high-quality training data that reflect the fundamental 
behaviors of the deposition process in order to abate the drawbacks of overfitting and 
underfitting in ALD.

10.4.5 fLeXibiLity with changing Process variabLes

Machine learning–based applications for analytical laboratory-based data such as 
ALD are created to predict outcomes based on a predetermined set of input and 
output parameters. But when it comes to adjusting to changes in input or output 
parameters, these models frequently lack flexibility. The inability of machine learn-
ing models to adjust to variations in input or output variables limits their ability to 
make accurate predictions from analytical laboratory data of ALD. New data, rela-
beling, and rigorous testing and validation make updating these models costly and 
time-consuming. Adding these changes to the model can require time and money. 
Retraining the model entails gathering fresh data reflecting adjustments to the input 
or output parameters, labeling the data, and then applying the labeled data to train a 
fresh model. The only way to confirm the accuracy of the updated model is through 
rigorous testing and validation. Noteworthily, if the changes are substantial, the 
updated model might not generalize well to other datasets. It might be necessary to 
create completely new models in some circumstances to account for adjustments to 
input or output parameters.

10.5  OPTIMAL SELECTION OF MACHINE LEARNING 
ALGORITHM FOR ALD MODELING

A proper understanding of machine learning algorithms and the deposition process 
is essential for choosing the best algorithm for a better model performance in ALD 
applications. It is crucial to take into account the type of data, the nature of the prob-
lem to be solved, the desired level of accuracy, and the algorithm’s performance on 
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the particular dataset being used when choosing the best algorithm for ALD model-
ing. It is possible to select an algorithm that can deliver precise predictions and ideal 
performance for the particular ALD problem at hand by taking these factors into 
account. Some of these important steps are explained as follows.

10.5.1 ProbLeM definition

Problem definition involves identifying and defining the precise task or problem that 
the machine learning model will attempt to solve. Creating a successful machine 
learning model depends on a definitive problem identification as the first step in 
optimal model selection for establishing the foundation for the subsequent steps in 
the development process [45]. Understanding the problem’s specifics, the data at 
hand, and the ultimate goal are all part of the problem definition stage [46]. In the 
context of ALD modeling, predicting the growth rate, thickness, or composition of 
the deposited material as a function of different process parameters like precursor 
gas flow rate, temperature, pressure, and exposure time may be the goal. Figuring 
out the exact process parameters that will be applied to produce the data needed to 
train and validate the model’s accuracy is a crucial step. The anticipated outcome of 
the model must then be specified. This could be a continuous or categorical output 
when a regression or classification model is used, respectively. In an ALD context, 
possible model outputs could be the rate of deposition or the kind of material depos-
ited [7,33]. This type of output desired determines the type of algorithm selected. 
Another important consideration while defining the problem is the data availability 
and their quality. This could include data from experiments or data produced by 
simulations. The effectiveness of the predictive algorithm will be significantly influ-
enced by the data’s quality.

10.5.2 data coLLection and Pre-Processing

Machine learning techniques aim to identify and mathematically represent the pat-
terns found in data. As a result, both the quantity and quality of the data used are 
essential for developing machine learning algorithms that are both effective and 
practical [47]. Data collection belongs to the difficult lifecycle of machine learning 
data processing phases. The robustness, accuracy, and performance of the model is 
contingent on the quality of the data. Another crucial and significant factor affecting 
the generalization capabilities of a supervised machine learning algorithm is data 
pre-processing. Most of the times, real-life data not excluding thin film deposition are 
unreliable and devoid of particular trends or patterns. They are also probably full of 
mistakes, such that they might require being pre-processed into an acceptable format 
for the algorithm [48,49]. Data pre-processing involves data cleaning, integration, 
and transformation. Data cleaning entails finding and fixing errors, discrepancies, 
and incomplete data which might entail applying methods like imputation, interpola-
tion, or removing outliers. Data integration is the process of combining information 
from various sources to produce a single dataset that can be incorporated into the 
model while transforming the data into a format that the machine learning model 
can use is important.
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10.5.3 desired LeveL of accuracy

The optimal machine learning approach to model ALD depends on precision. The 
model’s forecast accuracy depends on the assignment. Accuracy can be achieved by 
considering the consequences of faulty forecasts. In ALD, inaccurate predictions 
can lead to film defects that affect device functioning. This circumstance requires 
great accuracy to reduce error risk. Data accessibility and computational power can 
affect accuracy. Sometimes data or computational resources limit accuracy. These 
conditions may require a less accurate, simpler model, more data, or more powerful 
computational resources.

10.5.4 seLection of features

A crucial step in choosing the best machine learning model for ALD is feature selec-
tion. It is possible to increase the model’s accuracy and performance while lowering 
its complexity and computational requirements by carefully choosing the most cru-
cial features [50]. It aims to figure out which attributes or features are most signifi-
cant and have the biggest effects on how the deposition process turns out [51]. The 
model becomes more precise, effective, and understandable by choosing only the 
most significant aspects. Feature selection techniques range from determining the 
characteristics that have the strongest correlation with the results of the deposition 
process to selecting the algorithm that repeatedly chooses subsets of features and 
assesses how well they affect the results of the deposition process before choosing 
the best subset. Feature selection becomes necessary as it purges redundant, irrel-
evant, and noisy features from the original feature space [51].

10.5.5 data scaLabiLity

Scalability is crucial when selecting a machine learning method for big datasets or 
real-time forecasting. “Scalability” is an algorithm’s ability to handle more data or 
processing power without losing efficiency or performance [52]. The complexity of 
the machine learning algorithm increases with dataset size, which can result in longer 
training times and higher memory requirements [42]. By splitting up the processing 
workload among several nodes or employing algorithms made for distributed data, 
scalable algorithms are better able to handle large datasets. Scalability of an algo-
rithm is a critical consideration especially when a real-time application is desired. In 
such applications, machine learning algorithm which can process data quickly and 
effectively is needed. Real-time predictions can be handled by scalable algorithms by 
utilizing speed-optimized algorithms like decision trees or linear regression.

10.6  INTEGRATION OF NUMERICAL SIMULATION 
AND MACHINE LEARNING MODELS IN ALD

The design and improvement of ALD processes must be guided by numerical simu-
lations; however, machine learning integrations into these simulations is a promis-
ing strategy that might precipitate the discovery of novel materials and equipment. 
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In this section, we shall explore the contemporary developments in the integrations of 
machine learning and numerical simulations in ALD applications. The complemen-
tary approaches of the machine learning techniques and other numerical computa-
tional approaches in ALD can be utilized for exploring their combined strengths and 
benefits and overcoming their individual weaknesses in the modeling of significant 
properties of deposited film toward improved thin film deposition and emergence of 
novel materials. Machine learning can extract features, trends, patterns, and continu-
ous data from the result of numerical simulation for developing an intelligence to 
predict models using several available algorithms to achieve beneficial outcomes for 
the deposited thin films.

10.6.1  Motivations for the integration of Machine 
Learning and nuMericaL siMuLations

Synthesis of thin films with specific properties for a range of applications in ALD 
process involves a complex inter-relationship between several nonlinear variables 
[18]. This complexity of the physical and chemical process involved in the deposition 
process has made the optimization of the process toward an improved performance 
of the deposited films a challenging task. As earlier examined, different simula-
tions approaches are available for modeling the physical, electrical, morphological, 
and kinetic properties of the deposited films such as MD, density theory function, 
amongst others [19]. Although these simulations have offered insightful knowledge 
into the ALD process, they are frequently computationally intensive and demand a 
lot of computing power. Machine learning techniques, on the other hand, has offered 
remarkable solution to this challenge by improving the precision and effectiveness 
of numerical simulations in ALD without requiring the same level of computational 
resources and intensities. However, we have examined the limitations and challenges 
of both techniques in their standalone form. To maximize the potential of machine 
learning applications in ALD, we have identified some of their challenges such as 
interpretability of their outcome, minimal knowledge of the domain, overfitting and 
underfittings, and their non-flexibility with changing process variables, while some 
of the limitations with the numerical simulations are incorrect capture of the physi-
cal phenomena on which the model is built, restriction on simulation size, handling 
atomic-scale process, limited computing resources, amongst others. Despite the 
shortcomings of these approaches, they have been proven as viable and helpful mod-
eling tools in the analysis and optimization of the ALD process.

To harness the benefits and strengths of these modeling and simulation tech-
niques, and overcome their challenges, their integration would play a critical role. 
We can speed up the search for new materials, improve the deposition procedure, and 
lower the computational expense of simulations by combining machine learning with 
numerical simulations. We can extract useful attributes from the outcome of numeri-
cal models and accurately predict the attributes of thin films by using a machine-
learning-enhanced computational simulation. Further to this, machine learning 
models can be used to identify the ideal deposition requirements and minimize the 
number of necessary experimental trials by training them on a sizable dataset of 
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simulated or real-world data. This is achieved by optimizing the deposition process 
to identify the optimal set of input which produces the desired thin film properties. 
This concept of machine-learning-enhanced simulations has become a significant 
focus in ALD research with the potential to cause a paradigm shift in this space as 
motivated by the advances in computing technology.

10.6.2 a Quick recaP of nuMericaL siMuLations in aLd

The cost of running experiments is high due to the increased cost of ALD instrumen-
tations and equipment and other raw materials. They can also be dangerous because 
the gases used or released during chemical reactions can occasionally be highly 
flammable or harmful. Modeling and simulation of ALD processes with numeri-
cal simulation approaches such as density function theory (DFT), MD, Lattice 
Boltzmann simulations, Monte Carlo simulations, Knudsen number, and computa-
tional fluid dynamics (CFD), amongst others, are viable alternatives which are potent 
in reducing the cost of experimentation. These computational simulation techniques 
have been studied extensively in the previous chapters. We provide a quick recap 
here to enhance the understanding of its distinctions and integration with machine 
learning models in ALD applications. While the DFT simulates the interaction of 
molecules and atoms using the principles of quantum mechanics, MD uses Newton’s 
laws of motion to model forces of attraction and the positions of molecules [3]. MD 
is also a computational method for calculating the transport characteristics and equi-
librium of a classical many-body system [15,53]. In the condensed and liquid states, 
MD focuses on the dynamics of atoms, molecules, and clusters. ALD reactor gas 
flow and mixing are examined using CFD simulations. The concentration and dis-
tribution of precursor molecules inside the reactor can be predicted by the CFD 
simulations, and this can have an impact on the rate of deposition and the quality of 
the film [54]. Simulations using the finite element method (FEM) are used to exam-
ine the temperature distribution and heat transfer within the ALD reactor. These 
simulations can forecast the reactor’s temperature profile and temperature gradients, 
which can have an impact on reaction rates and picture quality [55]. Table 10.1 sum-
marizes some of these computational simulations with the film’s properties which 
they attempt to model.

10.6.3 PotentiaL integration techniQues

The optimization of the ALD process can benefit significantly from the integration 
of machine learning and simulation data. It is possible to speed up the optimiza-
tion process, lower the number of experimental trials, and lower the overall cost 
of the process by using machine learning models trained on simulation data. In 
addition, the machine learning models can offer perceptions into the physical and 
chemical mechanisms that control the ALD process, which can direct future study 
and development. The machine learning model can be utilized to draw knowledge 
from simulations and produce precise predictions of film characteristics. Figure 10.1 
illustrates some of these integration approaches and the flow diagram for machine 
learning-based simulation. These approaches are discussed as follows.
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FIGURE 10.1 Integration of machine learning and computational simulation in atomic 
layer deposition (ALD) research.

TABLE 10.1
Summary of the Computation Simulation Methods in ALD

S/N Simulation Technique Summary Target Film and/or Deposition 
Properties

1 Density function theory A computational quantum 
mechanical modeling technique 
used in chemistry, physics, and 
materials science based on 
atomic interactions

Electronic structure and 
mechanical properties, energies 
and forces, reaction mechanism, 
deposition characteristics, 
overall film growth

2 Molecular dynamic 
simulation 

Analyzing the physical 
movements of atoms and 
molecules based on particles’ 
interactions

Thermodynamic, mechanical 
properties, animating process 
mechanism

3 Monte Carlo simulation Stochastic computational method 
for estimating the probability of 
a process under different 
conditions and producing 
numerical results 

Morphology, growth rate, 
kinetics of reactions, material 
processing

4 Lattice Boltzmann 
method

Mesoscopic modeling method 
used in Computational Fluid 
Dynamics (CFD) for complex 
fluid systems 

Simulate flow of atomic layer 
deposition (ALD) gases, 
predicting optimal condition 
and ideal reactor design for 
ALD reactions

5 Computational fluid 
dynamics 

CFD simulations are deployed in 
ALD processes to model and 
predict the reactant’s behavior 
and the fluid flow within the 
ALD reactor

Pressure and temperature 
distribution, flow velocity, film 
thickness and uniformity
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10.6.3.1 Feature Extraction from Computational Simulations
A very important technique that can be deployed in machine-learning-enhanced 
computational simulation in ALD is the extraction of features from the outcome of 
the computational simulations such as DFT, MD, CFD, and Monte Carlo simula-
tions. This method allows machine learning models to extract features which rep-
resent the physical and chemical scenario in the deposition process from simulation 
data in a technique called “feature engineering” for an accurate generalization of 
the film properties. Both supervised and unsupervised machine learning algorithms 
can be carefully selected for this task. This approach is based on the type of simu-
lation from which features are being extracted from. In the context of dynamic 
simulations, attributes such as bond lengths, angles, and torsion angles and other 
mechanical properties which can reveal details about the process stages and the 
emergence of surface species can be drawn from the dynamics of the atoms and 
molecules engaged in the deposition process while features like electronic densities, 
energy, and forces, which speak about the reaction mechanism and the overall film 
growth can be extracted from DFT simulation and utilized by machine learning 
algorithms for optimal thin film deposition process. Details regarding the kinetics 
of the deposition process such as the rate of reactions and transition probability 
can be extracted from the Monte Carlo simulation process. Sequel to the feature 
extracted from the simulations, machine learning algorithms utilize these features 
as input and deploy a regression, classification, or clustering algorithm as the case 
may be to predict the film properties. To establish the performance and reliability 
of the machine learning model trained on simulation results, it must be validated 
against experimental data.

10.6.3.2  Feature Selection and Dimensionality Reduction  
from Simulated Data

The features and attributes of simulated datasets in ALD could be numerous, thus 
making it difficult to comprehend that such datasets’ observations are located in 
high-dimensional space [56]. In order to select important features and minimize the 
computational complexity of the numerically simulated data in ALD, feature selec-
tion and dimensionality reduction are two machine learning techniques that can play 
a key role in this task. By doing so, we may be able to increase the precision of the 
simulation predictions, shorten the amount of time and resources needed to run the 
simulation analysis, and make it possible to explore the simulation parameter space 
more effectively. Dimensionality reduction is the technique of decreasing the number 
of features in data while retaining the same or more variance as is feasible in the 
original data [57]. These machine learning techniques could be particularly benefi-
cial in computational simulations of ALD to locate the key attributes such as atomic 
species, surface locations, and other pertinent variables that influence the deposition 
process. As revealed in an earlier chapter, principal component analysis (PCA) is 
a prominent algorithm which can be used to achieve this task [58]. Dimensionality 
reduction helps to make the ALD simulated dataset less computationally complex 
and increases the effectiveness of the simulation analysis while preserving the rel-
evant ALD details.
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10.6.3.3 Active and Transfer Learning
While active learning is the process of actively prioritizing the high-impact data 
points that must be labeled in order to facilitate faster training and reduce computa-
tional time and intensity, transfer learning is aimed at applying the knowledge from 
an existing model that has already been trained to a new model [59,60]. This mini-
mizes the quantity of data needed to train the new model and enhancing its accu-
racy and performance. Practical implication and benefits of active learning is that it 
reasonably minimizes the computational expenses associated with building machine 
learning models in the context of ALD. This is because fewer data points are needed 
to achieve a given level of accuracy because the most useful data points are chosen 
iteratively. This is especially helpful when working with simulation data, which can 
be expensive to generate by numerical computational simulations. Transfer learning 
can be applied to ALD to help machine learning models predict the characteristics of 
deposited films more accurately by transferring insights and information from MD, 
DFT, or other simulations. This strategy is especially helpful when obtaining train-
ing data for machine learning model is difficult or expensive.

10.6.3.4 Ensemble Learning
Ensemble learning is a machine learning approach which aims to improve predic-
tive accuracy by integrating predictions from various models [61]. To build a more 
accurate prediction of the thin film characteristics in the deposition process, ensem-
ble modeling is a technique which can integrate the outcomes of different machine 
learning algorithms which are separately trained on the results of various compu-
tational simulation methods or an experimental dataset. When the different models 
each do well on different aspects of the problem, or when the data used to train each 
model is different, this approach is especially helpful. The ability of ensemble learn-
ing to substantially enhance prediction performance over the use of a single model 
is one benefit of ensemble modeling. We can alleviate the impact of single model 
uncertainty and boost the prediction’s overall robustness by incorporating the predic-
tions of various models. The uncertainty associated with the prediction can also be 
estimated using ensemble modeling, which is crucial in ALD because the deposition 
conditions have a significant impact on the properties of deposited films. A weighted 
average or a more complex aggregation method can be used to combine the predic-
tions of the individual models after they have been trained.

10.7  OUTCOME OF MACHINE LEARNING-ENHANCED 
COMPUTATIONAL SIMULATIONS IN ALD

We shall examine the fascinating results of combining computational simulations 
and machine learning in ALD and consider how this convergence might affect the 
field of thin film technology and materials science. These techniques have explored 
the benefits and strength of the standalone and individual approaches or a hybridized 
application to overcome their shortfalls and improve the properties of deposited thin 
film and the efficiency of the deposition process. While most of these techniques 
have potential benefits in ALD process, its application is still in the infancy stage. 
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However, some of the anticipated outcomes of the integration of machine learning 
and computational simulations approach are discussed as follows. Most of these 
results are intertwined.

10.7.1 iMProved dePosited fiLM ProPerties

The machine-learning-integrated computational simulation applications in the depo-
sition process produces improved film properties compared to the single-method 
modeled deposition process. This feat is achieved by forecasting the ideal process 
conditions for depositing films with particular properties, using machine learn-
ing training fed with a large experimental and numerically simulated dataset. This 
enables the deposition processes to be optimized to produce expected film properties 
like thickness, uniformity, density, and crystallinity. Further to this, the incorpo-
ration of computational simulations and machine learning into ALD has made it 
possible to create new materials with enhanced properties. This is a paradigm in 
the research space as promising candidates for synthesis by using machine-learning-
integrated computational simulations for the prediction of the properties of hypothet-
ical material can be discovered toward optimizing the deposition of these materials. 
New materials with outstanding qualities like high thermal stability, high mechani-
cal strength, and low electrical resistivity have resulted from this.

10.7.2 MiniMized deveLoPMent tiMe

One of the important results of this integration has been a reduction in development 
time for ALD process which is known to be a complex interconnection of diverse 
variables. Extensive experimental investigation was previously required to optimize 
ALD processes and create new materials. However, this process has significantly 
improved in efficiency with the incorporation of machine learning and computa-
tional simulations. While computational simulations can be deployed to compre-
hend the mechanism of the growth of deposition film during the deposition process, 
machine learning algorithm determines the ideal process variables for depositing 
films with a particular set of properties. Further to this, the incorporation of machine 
learning and computational simulations in thin film deposition can also cut down 
on wasteful materials and experimentation expenses. We can minimize the number 
of requisite experimental procedures and optimize the process conditions by using 
simulations and predictive modeling, which leads to less waste production and a 
more economical process. This is also an extra benefit to the single method compu-
tational simulations

10.7.3 autoMated and iMProved dePosition Process controL

The ability to optimize the deposition process by learning from sizable datasets 
produced by historical deposition experimental data is the key strength of utiliz-
ing machine learning algorithms in ALD. These datasets can then be used to train 
machine learning algorithms to find correlations and patterns between the process 
parameters and the final film properties. The evolution of a closed-loop control 
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system that can modify the process parameters in real-time based on information 
from sensors measuring the film properties during deposition is another strategy 
that makes use of machine-learning-enhanced simulation approach. To achieve this, 
a control algorithm must be created that can modify the process variables in a way 
that reduces departures from the desired film properties. This closed-loop control 
system can lessen the need for manual adjustments by the operator while improving 
the uniformity and thickness control of deposited films. The application of machine-
learning-enhanced simulation approach in ALD builds a closed-loop control system 
that can modify the process parameters in real-time using the input information of 
the film properties during deposition. This necessitates the creation of a control algo-
rithm capable of modifying the process variables in a way that minimizes depar-
tures from the desired film properties. By lowering the need for manual tweaking 
by the operator, this closed-loop control system can increase the consistency and 
particle size control of deposited films. Machine learning can be used to anticipate 
when maintenance or calibration is required, minimizing risk, waste, and downtime, 
while boosting the deposition system’s overall throughput. In addition, real-time 
process fault and deviation detection made possible by machine learning-enhanced 
simulations can eliminate the need for post-process evaluation and quality control 
assessments.

10.7.4 Predictive Maintenance

By utilizing the information gathered from deposition monitoring devices in thin film 
reactors, predictive maintenance is forecast when maintenance or service is required 
for a system. Machine learning-enhanced computational simulation in the context of 
ALD could create predictive maintenance strategies that can raise the efficiency and 
dependability of ALD systems. Monitoring device installed in the film deposition 
reactor can control and regulate various film parameters for implementing predic-
tive maintenance in ALD. The devices collect data that can be used to train machine 
learning algorithms to find patterns and anomalies in the data that inform when 
upkeep or repair is required. Subsequently, the machine learning algorithm can be 
trained to predict the anticipated outcome of the real-time process for each condition 
by using computational simulation to model the behavior of the ALD system under 
various operating conditions. As a result, the algorithm is able to recognize unusual 
sensor readings that may be a sign of system or component failures. The simula-
tion can also be used to pinpoint the fault’s primary cause and offer suggestions for 
replacement or repair. System interruptions and failure can be reduced by foreseeing 
when maintenance or repairs are necessary, which boosts output and lowers costs.

10.8 CONCLUSION

This chapter has established the need and the motivations for the adoption of machine 
learning methods in ALD processes as a complementary technique to computational 
simulation approaches. Machine learning and computational simulations approaches 
have been explicitly applied in thin film deposition with viable outcomes. However, 
the combined benefits of the nexus of these two approaches have not been studied. 
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This chapter demonstrated exciting possibilities of these realms in thin films and 
ALD. Machine learning algorithms can discover intricate connections between depo-
sition parameters and the properties of the deposited films by utilizing the massive 
volumes of data collected from ALD trials, leading to improved and more effective 
ALD processes. While machine learning models have drawbacks in ALD applica-
tions as examined in this chapter, its integration into the computational approaches 
can offer combined benefit for accurate and dependable forecasts. Moreover,  appli-
cation of machine learning in standalone form or integrated with other techniques 
in ALD research has the potential to revolutionize the entire spectrum of thin film 
materials towards a sustainable future with a higher level of desired success.
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11 Machine-Learning-
Based Predictive 
Analysis in ALD

11.1 INTRODUCTION

Thin films that are uniform and conformal can be deposited using the very accu-
rate and reproducible atomic layer deposition (ALD) technology with a high-level 
and sub-nanometer-level precision [1–4]. While the optimization of the deposition 
procedure and forecast of the characteristics of the deposited thin films remain dif-
ficult tasks, machine learning can provide some directions in this regard. By utiliz-
ing the power of data and algorithms in machine learning-based predictive analysis, 
we gain new insights into the intricate behavior of ALD and create novel materials 
and devices with unparalleled accuracy and speed [5–7]. Experts in this dynamic 
space are pushing the frontiers of what is conceivable, and the prospect for game-
changing discoveries is limitless. In the field of ALD, predictive analysis is becoming 
more and more critical since it allows precise forecast of the properties of thin films 
and enhances the optimization of the deposition process [8]. The characteristics of 
the consequent deposited thin film can be influenced by a variety of factors during 
the deposition, including the precursor chemistry, temperature, pressure, and expo-
sure duration, while the substrate’s characteristics, namely, crystal shape, make-up, 
and structure can greatly influence the qualities of the final thin film [9]. Predictive 
analysis is important for ALD because it can facilitate the deposition process and cut 
down on the number of experimental trials needed to attain the desired qualities by 
anticipating the properties of thin films before they are deposited [5,10]. In addition 
to saving time and resources, this also makes it possible to find new materials that 
weren’t previously available through conventional trial-and-error approaches.

11.2 DATA SOURCES FOR PREDICTIVE ANALYSIS IN ALD

Machine learning algorithms use data and statistical models to make accurate 
 predictions. However, each machine learning algorithm’s success depends on its 
data [11]. Poor gathering of data inhibits machine learning models. In other words, 
feeding a model with bad and unreliable data won’t produce any reasonable results, 
regardless of how brilliant your model is, how talented a data scientist is, or how 
much effort has been put into a task. High-quality data are critical for machine 
learning algorithms to be successful in the context of ALD process. The first step 
in the data collection process is identifying the data’s sources. This has therefore 
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necessitated the need to evaluate the data sources that can be employed in ALD 
machine learning-based applications. We will briefly study the different data types 
that can be used to enhance the ALD process, ranging from experimental and sensor 
data, process monitoring systems data, material characterization and computational 
simulations data. We categorize these sources into two broad groups, namely, ALD 
experimental data source and ALD simulation data source.

11.2.1 data froM aLd eXPeriMent

An important data source for building a machine learning-based prediction model 
in ALD is experimental data. A machine learning system can discover patterns and 
correlations between input and output variables using these data. The model can pre-
dict the outcomes of new input variables after training. The chemical reaction that 
takes place to allow materials to be deposited on the substrate’s surface layer by layer 
is described experimentally by the following steps [2]:

 i. All pollutants that can hinder the deposition process must be properly 
removed off the substrate surface. Often, this is accomplished by either 
plasma cleaning or solvents. The ALD reactor receives the cleaned substrate 
for amplification.

 ii. The first precursor is initially exposed in the reactor chamber. The chamber 
is filled with the initial precursor gas, and the substrate is given a set amount 
of time to breathe it in. In order to ensure that a layer is deposited, the time 
and temperature are carefully regulated.

 iii. Purge the chamber of any excess precursor gas and reaction by-product 
using an inert gas, such as nitrogen or argon.

 iv. The chamber is filled with the second precursor gas, which is then released 
onto the substrate for a predetermined amount of time. This reaction with 
the first precursor layer produces the required material.

 v. In order to get rid of any extra precursor gas and reaction by-products, the 
chamber is once more purged with an inert gas.

 vi. Steps i–v is repeated until the material reaches the desired thickness.

A sample experimental set up for ALD process is shown in Figure 11.1. Prominent 
tools needed for ALD experiments are ALD reactors incorporated with precise con-
trols for gas flow, temperature, and pressure controllers. Mass flow, temperature, 
and gas flow controllers are further instruments. Figure 11.2 shows some other tools 
required for ALD experimental procedures.

To obtain the desired film properties in ALD studies, precise optimization of these 
process parameters is essential. More insights from the growth mechanisms, struc-
ture–property correlations, and functionality of thin films produced can be gained 
by deploying a machine learning-based predictive analysis using the data extracted 
from the ALD experiments [5–8,10]. Table 11.1 summarizes the independent and 
dependent variables obtained from the ALD experimental procedures. Some of the 
measurement techniques used in measuring the deposited film properties listed in 
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Table 11.1 (process parameters and deposited thin film properties) are but not limited 
to the following:

 i. Ellipsometry
 ii. Transmission electron microscopy (TEM)
 iii. X-ray photoelectron spectroscopy (XPS)
 iv. Energy-dispersive X-ray spectroscopy (EDS)
 v. Scanning electron microscopy (SEM)
 vi. Atomic force microscopy (AFM).
 vii. Spectroscopy
 viii. Profilometry
 ix. Mechanical testing

11.2.2 data froM aLd siMuLations

ALD experiments might be very expensive due to the high cost of instrumentations, 
materials, substrates, and other equipment required [2,4,14]. When experimental 

FIGURE 11.2 ALD experimental tools: (a) cross-flow thermal ALD and (b) capacitively 
linked plasma reactor used in remote plasma mode for plasma-enhanced atomic layer 
 deposition (PEALD) operations [13].

FIGURE 11.1 A sample schematic diagram of the atomic layer deposition (ALD) experi-
mental set up [12].
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data are not available, feature extraction from the outcome of computational simu-
lations is a viable source of data for machine-learning-based predictive analysis in 
ALD. Several studies in literature have demonstrated the feasibility of feature and 
data extraction from computational simulations for machine learning-based applica-
tions. The study by Kimaev et al. [15] trained an artificial neural network model for 
a nonlinear multiscale predictive control of thin film deposition using full multi-scale 
numerical model to generate 400,000 data points with a lattice size of 50 comprising 
substrate temperature and inlet precursor mole fraction as input variable while growth 
rate and roughness of the deposited film were extracted as the output variable. Ding et 
al. [16] deployed the data generated from a multiphase computational fluid dynamics 
(CFD) simulation of plasma-enhanced atomic layer deposition (PEALD) process to 
develop a recurrent neural network (RNN) and long- and short-term memory (LSTM) 
model for predictive analysis of transient gas phase profile and dynamic surface 
profile. A data-driven model based on artificial neuron network (ANN) for predict-
ing the transient deposition rate and surface configuration of the deposition of SiO2 
thin film using data extract from DFT and CFD multiphase simulation was recently 
applied [17]. Sitapure and Kwon [18] aimed at developing a model predictive control-
ler (MPC) for the chemical deposition of thin film by incorporating a neural network-
based model which utilizes data generated from multiphase simulation approaches 
such as microscopic discrete-element method at the surface level. Bokinala et al. [19] 
integrate the DFT models and the machine learning models, to extract features from 
the DFT computational simulation models for machine-learning-based applications. 
Table 11.2 summarizes some of the important characteristics of the thin film and 
deposition process which can be made available by different simulation techniques.

11.3 ALD DATA CLEANING AND PRE-PROCESSING

ALD experiments and simulations generate massive amounts of data that must be 
pre-processed and cleaned before being used for machine-learning-based predictive 

TABLE 11.1
Typical Input (Independent) and Output (Dependent) Variable in Atomic Layer 
Deposition (ALD) Experiments

Independent Variable (Process Parameters)
Dependent Variable from Experiments  

(Deposited Film Properties)

Precursor flow rate Deposition rate

Exposure time Thickness of deposited film

Temperature Composition of deposited film

Pressure Structure of deposited film (e.g. grain size, texture, and 
crystallinity)

Volume and type of precursor gases Morphology of deposited film (e.g. roughness and 
porosity)

Purging time Properties of deposited film (e.g. electrical, optical, and 
mechanical)

Properties of substrate surface
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modeling. Pre-processing converts raw data into an analysis-ready format, while 
cleaning removes errors, inconsistencies, and outliers. ALD data must be pre-pro-
cessed and cleaned for machine-learning-based predictive models. Data quality 
substantially affects model predictions. Pre-processing and cleaning should be done 
carefully to ensure the dataset is suitable for machine learning predictive analysis.

11.3.1 forMatting

Collecting and properly formatting the data is the first stage in every data-driven 
endeavor. The information used in ALD experiments and simulations might origi-
nate from a variety of places, including experimental measurements, computer simu-
lations, and published sources [26–29]. It is crucial to prepare the ALD data from 
different sources in a structured way in order to make sure that they are easily acces-
sible for predictive modeling based on machine learning. The processing, cleansing, 
and analysis of data are made easier by a structured format. Using a spreadsheet 
or database to format the data is one popular method, with each row designating 
a distinct sample or deposition experiment. The columns should include pertinent 
data, such as deposition parameters (such as precursor type, deposition temperature, 
deposition duration, and number of cycles) and the qualities of the produced material 
(such as layer thickness, surface roughness, and refractive index).

TABLE 11.2
Description of Target Variable of the Simulation Approaches [1–4,14,20–25]

Simulation Approaches Target Film/Deposition Properties 

Density function theory (DFT)   i. Atomic structure of the deposited film
  ii. Surface energy of the deposited film
 iii. Bonding characteristics of the deposited film
  iv. Electronic property of the deposited film
   v. Optical property of the deposited films

Molecular dynamics   i. Growth mechanism of the deposited film
  ii. Surface chemistry of the deposition process
 iii. Precursor molecule’s behavior

Monte Carlo   i. Gas-phase reactions of the deposition process
  ii. Reaction rates of the deposition process
 iii.  The number of collisions between the precursors and 

the substrate
  iv. Precursor’s distribution

Kinetic Monte Carlo   i. Deposition rates
  ii. Thin film growth
 iii. Interface roughness of the deposited film

Finite element method   i. Substrate thermal behavior
  ii. Substrate’s thermal stress
 iii.  Substrate’s temperature distribution and heat transfer 

Computational fluid dynamics (CFD)   i. Thickness of the deposited film
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11.3.2 Missing data ManageMent

Data analysis frequently encounters the issue of missing data, which can occur for 
a number of reasons, including measurement flaws and mistakes in entry [30,31]. 
If handled improperly, it might produce estimates that are skewed and ineffective. 
Consequently, addressing missing data is a crucial component of data analysis, par-
ticularly in scientific research, especially in ALD research. Imputation, which substi-
tutes missing values with conceivable values according to the information available, 
is a popular method for addressing missing data [31,32]. Mean imputation is the 
simplest type of imputation, replacing missing values with the mean of the variable’s 
observed values [32]. It is critical to evaluate the accuracy of the imputed data and 
the likelihood of bias before adopting any imputation technique. Comparing the out-
comes of the imputed data to the outcomes of the complete dataset is one strategy. 
Another strategy is to do sensitivity analysis to evaluate how well the findings hold 
up to various hypotheses on the missing data.

11.3.3 deaLing with outLiers

ALD predictive analysis data pre-processing requires outlier detection. Outliers are 
data points that deviate from the rest. Measurement errors, data entry errors, and 
rare events can cause outliers [33,34]. Outliers can skew model parameter estima-
tions and affect model accuracy, which can greatly affect statistical model results. 
Before fitting any statistical models to the data, outliers must be found and dealt 
with [33]. The link between two variables is visualized using scatter plots. This 
aids tracing out observations that stand out from the rest of the dataset’s observa-
tions. In addition, the interquartile range (IQR) indicates data distribution. IQR is 
calculated by subtracting Q3 from Q1. Observations beyond the range (Q1 – 1.5IQR, 
Q3 + 1.5IQR) may be outliers [35]. There are numerous approaches for handling 
outliers once they have been discovered. To remove the outliers from the dataset 
is one option. This strategy, meanwhile, has the potential to cause information loss 
and has an impact on how the data are distributed. The mean or median of the 
dataset, for example, might be used to replace the values of the outliers. This is an 
additional option. This strategy can help to preserve the data’s distribution while 
lessening the impact of outliers.

11.3.4 feature seLection

The process of creating an accurate predictive analysis in ALD applications begins 
with feature selection. In order to predict the desired result variable, the most sig-
nificant features from the existing evidence must be identified and chosen. Feature 
selection reduces overfitting and improves model generalizability by limiting model 
variables [36]. Data type and research goal determine the approach. There are sev-
eral ways to execute feature selection in ALD data analysis vis-a-vis principal com-
ponent analysis (PCA) [37], and recursive feature elimination (RFE) [38]. In ALD 
data analysis, feature selection is a crucial phase that reduces the dimensionality of 
the data, reduces overfitting, and increases model accuracy.
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11.3.5 norMaLization

Normalization is another pre-processing step which is vital to the predictive analysis 
of ALD data using machine learning. It entails rescaling the data to provide each 
characteristic a common scale and an equal range of values. When developing the 
model, normalization makes it possible to guarantee that every component is given 
the same weight and that no one feature reigns supreme over the others [39]. With 
the min-max scaling approach, the data are scaled to a predetermined range, usu-
ally between 0 and 1. It is done by dividing the range after removing the feature’s 
minimum value. This is achieved using Equation 11.1. With the Z-zero normalization 
technique, the data are scaled to have a mean of 0 and a standard deviation of 1. It is 
done by using Equation 11.2. The particular qualities of the dataset and the algorithm 
for machine learning being employed determine the normalization approach to be 
utilized. In general, normalizing the data before training a model is a recommended 
approach. By doing this, the model is prevented from favoring particular traits and is 
better able to capture the underlying patterns in the data:

 y
x x

x x
norm

min

max min

 
 

 
= −

−
 (11.1)

where ynorm = the normalized data, x = the mean of the variable, xmin = minimum vari-
able, and xmax= maximum variable.

 z
x µ

σ
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−
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where z = z-score, x is the score, µ is the mean, while σ  is the standard deviation.

11.4  PREDICTIVE MODEL DEVELOPMENT 
AND APPLICATIONS IN ALD

Having examined the different sources of data used for machine learning predic-
tive analysis in ALD, which could be experimental or simulation data, we shall now 
examine some machine learning techniques and algorithms which have been promi-
nently utilized for predictive analysis for process and thin film control and monitor-
ing. After you have your processed data for ALD, the real challenge of how to create a 
model that can precisely represent the intricate nonlinear interactions between many 
variables in ALD arises. Model development, a critical stage in the machine learn-
ing pipeline that include choosing the best algorithm, refining its parameters, and 
verifying the model’s performance, is where this comes into play. We will delve into 
the complexities of model construction and applications of machine learning-based 
predictive analysis in ALD and study a number of the most potential approaches and 
techniques utilized by researchers in this space.

Regression analysis seeks to establish a connection between the input and output 
variables, where the target variable is a continuous value. Regression analysis is an 
effective statistical method that enables us to model the relationship between input 
factors (ALD process parameters) and output variables (thin film properties), allowing 
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us to forecast how changes in the former will impact the latter. Using  supervised 
learning techniques on input–output data from ALD experiments or simulations, 
precise predictive models that may be utilized to enhance ALD procedures and mod-
ify thin film properties to meet particular demands have been created. Several previ-
ous attempts to optimize the parameters of the deposition process have developed 
conventional statistical approaches. Response surface methodology (RSM) was used 
by Ebrahimi et al. [40] to determine the ideal deposition temperature and hydrogen 
flow to create diamond-like carbon coatings (DLC) with a minimal friction coef-
ficient and great wear resistance. Using Taguchi statistical approaches, Segu et al. 
[41] presented research on the wear and friction characteristics of MoS2 coatings on 
laser-textured surfaces.

While these classical statistical approaches are quite effective at simulating the 
deposition process, they have certain limitations when it comes to handling a large 
number of process parameters and creating a reasonable correlation between input 
and output data [42]. Such challenges were noted primarily as a result of the non-
linear and complex deposition process and parameterization [10]. Sequel to this, 
a paradigm shift from classical model to intelligent models for handling complex 
nonlinear ALD data have been noted in contemporary times. Prominent machine 
learning algorithms which have been used for regression analysis in ALD processes 
are ANN [15–17,29], support vector machine (SVM) [43], extreme gradient boosting 
(XGBoost) [44], random forest (RF) [43,45], decision tree (DT) [45], and Gaussian 
process algorithm (GPR) [46], amongst others.

The ANN has found a wide application in the predictive modeling of ALD pro-
cess. It is the most preferable machine learning technology in the deposition pro-
cess owing to its ability to learn from the historic data and use it to more correctly 
anticipate the response variable [10]. The ability of ANNs to accurately simulate 
complex correlations between process variables and film properties has made them 
prominent in ALD applications. In ALD applications, ANNs can achieve high pre-
diction accuracy, which is essential for the creation of trustworthy process models. 
In surface coating and ALD researches, ANN has demonstrated excellent efficiency 
in improving the parameters and process modeling. We shall therefore attempt to 
examine the ANN algorithms, their framework, hyperparameters, and model build-
ing approaches for ALD applications. Presented in Figure 11.3 is the methodological 
framework for predictive analysis in ALD from the data collection to model develop-
ment and the final output of thin film. 

FIGURE 11.3 Methodological framework of machine learning predictive analysis in atomic 
layer deposition (ALD) variables.
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11.4.1 artificiaL neuraL network

ANNs are mathematical models of biological brain architecture made up of sev-
eral processing units (or neurons) connected by weighted synaptic connections, with 
a self-learning, self-adaptive, and self-organizing approximation function [47]. In 
order to obtain a precise function mapping between inputs and outputs and to pre-
dict future values, ANNs learn from past data. Without understanding the physical 
connections, ANNs may recognize complex nonlinear interactions between input 
and output time series data [48]. The initial models had constrained capabilities 
and needed a lot of training data. The 1980s saw a breakthrough in neural network 
research as new structures and algorithms were created that made neural network 
training more effective [49].

The backpropagation neural network, a feed-forward neural network (FFNN) 
structure that employs an error back propagation algorithm, is now the most promi-
nent neural network design [50]. The two major phases of the backpropagation 
method are information forward pass and error backpropagation. The output and 
error are determined after the data are first delivered to the input layer and then for-
warded via the network in order to get the hidden and output layer in that sequence. 
Second, the initial connection weights and thresholds are dynamically changed as 
the average error is back transmitted via the network to the hidden layer and the input 
layer in turn. Until the requisite accuracy based on a minimum error is attained, this 
iterative procedure is repeated [47].

As shown in Figure 11.4, a typical backpropagation neural network comprises 
three layers, namely, input, hidden, and output layers. Each layer communicates to 
the layer preceding it, and information transmits through the network in a forward 
direction via links by the neurons within each layer; however, there isn’t a direct link 
made by the neurons within the same layer [51]. The input data must be changed by 
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FIGURE 11.4 Artificial neuron network (ANN) architecture for predictive analysis in 
atomic layer deposition (ALD) process.
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the hidden layers into a format that is better suited for the output layer. The network’s 
ultimate output is produced by the output layer. While serving as the network’s input 
interface, an input neuron has no predecessor, likewise output neuron has no succes-
sor and as a result acts as the network’s output interface. Figure 11.4 illustrates the 
architectural framework of neural network applied in ALD predictive analysis, with 
samples variables of the ALD operations at the input layer and samples of output 
variables vis-à-vis thin film properties at the output layer.

ANN working principle is based on a collection of weights and biases that con-
trol how the neurons behave. The biases modify the activation of the neurons, while 
the weights regulate the strength of the link between neurons. The weights between 
neurons are adjusted during the training process using the backpropagation method 
by computing the error between the network’s output and the desired output. In order 
to reduce error and boost network performance, this process is repeated over a num-
ber of iterations. For each training set, the biases and weights are updated using 
Equation 11.3.

 E x yt t t t
i i  . ; ;1θ θ η θ( )= − ∇θ

( ) ( )
+  (11.3)

where θ  represents the weights and biases, x i  ( ) is the input of the training sample, y i( ) 
is the target label, η  is the learning rate, and E  is the loss function.

Training is a significant step in building an optimal neural network for several 
applications. A learning algorithm discovers a decision function that modifies the 
network’s weights [52]. Trying to predict which training algorithm will yield the 
greatest outcomes is challenging. There are various available training algorithms as 
presented in Table 11.3. These algorithms are categorized into five groups, namely, 
Quasi-Newton, Resilient Back propagation, gradient descent, conjugate gradient, and 
Levenberg–Marquardt. The following training algorithms are commonly used.

Figure 11.5 illustrates the basic working principle of all the training algorithms in 
neural networks. These groups of training algorithms are briefly described as follows:

 i. Gradient Descent: Gradient descent operates by figuring out the gradient 
of the error or loss function with regard to the network’s weights and biases. 
The gradient points in the direction where the function advances the most 
and represents the steepest ascent of the function. Yet, if we wish to reduce 
the error or loss function, we must move against the gradient. We then go in 
the direction indicated by the gradient’s negative [52–55]. It is a first-order 
approach because it needs information from the gradient vector. Assume 

that f fi i( ) =( ) ( )w  and f gi i( )∇ =( ) ( )w  are both true. The process starts at 

a position called w 0( ) and proceeds from there until a stopping criterion is 
fulfilled by moving from w i( ) to w i  1( )+ in the training direction of d i( ) = g i− ( ). 
As a result, the gradient descent algorithm iterates as follows [56]:

 w w g ii i i i , for  0,1, .. 1 η= − = …( ) ( ) ( ) ( )+  (11.4)

where η  is the learning rate. Selecting an appropriate learning rate is essen-
tial to comprehending algorithm stability. By picking the right learning rate, 
you may avoid instability and slow convergence [54].
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Improve Neural network parameters

Calculate training direc�on using GD, CG, QN, RP and LM
Calculate training rate

 

FIGURE 11.5 Basic working principle of training algorithms [56].

TABLE 11.3
Different Category of Training Algorithm [52]

S/N Category Algorithms Remark

1 Resilient backpropagation RP Resilient backpropagation

2 Conjugate gradient CGF Conjugate gradient backpropagation with 
Fletcher-Reeve starts

CGB Conjugate gradient backpropagation with Powel/
Beale restarts

CGP Conjugate gradient backpropagation with Polak/
Ribiere restarts

SCG Scale conjugate gradient backpropagation

3 Gradient descent GDA Gradient descent with adaptive learning rate 
backpropagation 

GD Gradient descent backpropagation

GDM Gradient descent with momentum backpropagation

GDX Gradient descent with momentum and adaptive 
learning rate backpropagation 

4 Quasi-newton BFGS BFGS Quasi-Newton backpropagation

OSS One-step secant backpropagation

5 Levenberg–Marquardt LM Levenberg–Marquardt backpropagation

 ii. Resilient Backpropagation: Resilient backpropagation does not employ 
a learning rate parameter, in contrast to conventional backpropagation 
algorithms. Instead, it individually modifies the step size for each weight 
parameter based on the sign of the error’s weight-dependent derivative [57]. 
This makes it converge faster and more effectively than other techniques, 
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especially when the error function’s landscape contains a lot of local min-
ima [52]. As illustrated in Equation 11.5, resilient backpropagation is a heu-
ristic learning approach that increased convergence speed by considering 
only the sign of the derivative rather than the amount of the error function’s 
derivative for the weight update. It decreases the number of adaptive param-
eters and learning steps, and it easily computes local learning schemes [58]:
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where xk∆ , Ek∆ , and k∆  are used to represent the current weights vector 
updates, error function E  at k, and bias increase, respectively.

 iii. Conjugate Gradient: Conjugate gradient algorithm, which is a type of opti-
mization technique, is significantly more effective than gradient descent due 
to its minimal memory requirements and quick convergence [52]. However, 
it often exhibits instability in large-scale problems [59]. With an initial intu-
ition for a solution, the conjugate gradient algorithm begins by iteratively 
minimizing a quadratic function. The technique calculates a search direc-
tion p that is conjugate to the previous search directions at each iteration 
and updates the solution by moving in the direction that minimizes the qua-
dratic function along this direction [59,60]. The entire conjugate gradient 
algorithms operate by looking in the steepest descending direction, which 
is the opposite of the gradient as described in Equation 11.6 [61].

 p go 0= −  (11.6)

The following step involves a series of estimates for a line search as 
described in Equation 11.7:

 x x a pk k k k  1 = ++  (11.7)

The search direction is denoted with pk in this instance. According to 
Equation 11.8, the prior search direction determines the choice of the sub-
sequent search direction.

 p g pk k k k  1β= − + −  (11.8)

 iv. Quasi Newton: Quasi Newton algorithm is comparable to conjugate gra-
dient algorithms in terms of quick optimization, and it can be viewed as 
the fundamental local approach utilizing second-order information [62]. In 
comparison to conjugate gradient algorithms, the algorithms’ computation 
costs are higher, denser, and more sophisticated. The quasi-Newton algo-
rithm is a second-order optimization technique that updates the weights 
by approximating the Hessian matrix. The Newton approach described in 
equation is used to update the weights [52]. Although it is based on the 
Newton method, the quasi-Newton (or secant) method does not involve the 
calculation of second derivatives:

 x x H Gk k k k  1
1= −+

−  (11.9)
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At the present weights and biases, Hk is the Hessian matrix (second deriva-
tives) of the performance index. In Newton algorithms, the new weights 
xk  1+ are calculated based on the value of the gradient and the present weight 
xk. The matrix of the cost function’s second-order partial derivatives with 
regard to the weights is known as the Hessian matrix. Unfortunately, it is 
computationally difficult, particularly for large neural networks, to compute 
the correct Hessian matrix. The quasi-Newton approach, on the other hand, 
approximates the Hessian matrix by computing it from the gradient of the 
cost function and the change in the weights.

 v. Levenberg-Marquardt: Levenberg–Marquardt is acknowledged as a 
common methodology for resolving nonlinear least squares issues by inte-
grating the Gauss–Newton method and gradient descent. When Levenberg–
Marquardt displays adaptive behavior in response to the distance to the 
solution, it can frequently be certain of the answer [63]. The algorithm is 
sluggish and far from the solution when backpropagation is gradient descent 
[64]. On the other hand, if backpropagation is Gauss–Newton, the algorithm 
is very close to being accurate. For computing the gradient in Levenberg–
Marquardt, the Hessian is estimated as in Equation 11.10, while gradient is 
computed using Equation 11.11 [52].

 H J JT  =  (11.10)

 g J eT=  (11.11)

where J and e stand for, respectively, the Jacobian matrix and a vector of 
network errors. This approach is used by the Levenberg–Marquardt method 
in the same way as the Newton method as illustrated in Equation 11.12:

 x x J J I J ek k
T T  1

1
µ= − + +

−
 (11.12)

11.4.2  buiLding an oPtiMaL neuraL network ModeL 
for Predictive anaLysis in aLd

Neural networks are robust predictive analysis tools owing to their ability to effec-
tively model complex and abstract connections within datasets, hence resulting in 
superior prediction precision compared to alternative methodologies. However, to 
build an optimal neural network model for optimal prediction performance, the care-
ful choice of right hyper-parameters, control parameters, topology and general archi-
tecture is a vital requisite. Hyper-parameters are parameters that are defined by the 
user rather than parameters that are learned from the data. Noteworthy is the fact that 
there are no one-size-fit-all rules or approach in deciding the optimal combination of 
network architecture and hyperparameter for optimal ANN model building. While it 
is often based on trial-and-error technique, cross validation and performance metrics 
may help assist in optimal parameter settings. Some important hyperparameters to 
think about are listed below:



269Machine-Learning-Based Predictive Analysis in ALD

 i. Number of hidden layers: This is a critical architectural hyper-parameter 
of the neural network model which significantly influences the model’s com-
plexity and performance. Simple neural network architecture has a single 
hidden layer while a more complex deep neural network has multiple hidden 
layers [65].

 ii. Neurons in each layer: Depending on the designed network architecture 
and the task at hand, the numbers of neurons in each layer vis-à-vis input, 
hidden and output varies. Neurons in the input layer signifies the dimen-
sions of the input datasets while neurons in the output layer relates to the 
output dimensions and the task at hand [65].

 iii. Learning rate: This is significant to the training dynamics of the neural 
network as it decides the rate of learning at training phase, hence the weight 
adjustment. A lower training rate implies a slower training while a higher 
training rate is determined by a higher learning rate [66]. 

 iv. Activation function: The mathematical expression and information flows 
within neurons of neural network is controlled by the activation function. 
Its choice is influenced by the problem the neural network is employed for 
and the type of data set [67]. Typical examples of activation functions used 
in neural network are sigmoid, tanh, ReLU, and softmax.

 v. Training algorithm: This is also a vital part of the training process of neural 
networks which are responsible for the adjustment of key network parameters 
such as weights and bias. It is an optimization algorithm which minimizes 
error between the actual and target output called cost function [65,68].

 vi. Batch size: The batch size decides the quantity of training instances or data 
points in a single forward or backward pass of training iteration. While a 
higher batch size could speed up training, it might also call for more mem-
ory. Moreso, slower training could be attributed to a smaller batch size [69].

 vii. Epoch number: The epoch number is another significant neural network 
parameter whose choice considers the training convergence and model’s 
performance on a validation dataset. It determines how many times the 
training algorithm will run over the full training dataset [70]. If the epoch 
number is too high, the model may begin to overfit, which means it starts to 
memorize the training data and performs poorly on novel data set [71,72].

Neural network model architecture affects learning and prediction. The number of 
layers, number of neurons in each layer, and kind of activation function affect the 
model’s complexity and ability to identify data patterns [65]. The number of neural 
network layers determines how many times input data are adjusted before reaching 
the output layer. Simple neural networks have one hidden layer. Layers depend on 
issue complexity and data amount [73]. Deeper neural networks can capture more 
intricate data patterns, but if the dataset is too short, they may overfit [73,74]. ANN 
captures nonlinearity based on layer neuron count. A neural network with more neu-
rons may be more expressive, but if the number of parameters exceeds the data, it 
may overfit [75]. Activation functions determine how the neural network’s neurons 
respond to input data. Sigmoid, ReLU, softmax, and hyperbolic tangent activation 
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functions are common. The model data and problem determine the activation func-
tion [65]. For a large dataset with complex patterns, a more complex ANN with 
several hidden layers and many more neurons may be needed [76]. Balance model 
complexity and data quantity to avoid overfitting and provide accurate predictions. 
Table 11.4 shows a typical control parameter optimization and hyper-parameter set-
ting for ALD predictive analytic ANN design. Figure 11.6 shows the approach for 
developing an appropriate neural network for predictive analysis in ALD.

11.4.3 suPPort vector Machine

Another versatile and relevant but less prominent algorithm for predictive analy-
sis, classification task, and optimization in ALD applications is the SVM. In ALD, 
SVM has been deployed mainly for regression analysis. The classification potential 

TABLE 11.4
A Typical Hyperparameter Setting in an ANN Model

Hyper-Parameters Values/Range Description

Number of hidden 
layers

1–2 An optimal performance can be obtained in one or 
two hidden layers. A satisfactory model result can 
be achieved in a single hidden layer architecture 
while in some applications, two or more hidden 
layers might be needed

Neurons in hidden 
layers

1–50 A range of 1–50 neurons can be tested in a single or 
all hidden layers selected

Activation function in 
the hidden layer

Tansig, softmax, logsig, 
and purelin

In each topology, the four available activation 
functions’ optimal combinations in the hidden layers 
can be examined while the optimization allows to 
select the most performing function for a particular 
dataset or a particular task

Activation function in 
the output layer

Tansig, softmax, logsig, 
and purelin

In each topology, the four available activation 
functions’ optimal combinations in the output layer 
can be examined, while the optimization allows to 
select the most performing function for a particular 
dataset or a particular task

Training Algorithm RP, CGF, CGB, CGP. 
SCG, GDA, GD, 
GDM, GDX, BFGS, 
OSS, and LM

Testing each of the 12 will allow the user to 
determine which algorithm performs best, and use 
the algorithm to train the final model. In this 
approach, I obtained the optimal result for my work.

Epoch number 1,000 A higher or lower epoch number depends on the type 
of problem and the quality of training

Minimum gradient 1e-100 This is the stopping criterion for the training. A 
minimum error is always selected as the stopping 
criterion for the training

Training:validation: 
testing ratio

0.7 : 0.3 : 0.3 This describes how the dataset is divided for training, 
validation, and testing purposes
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of SVM is a promising technique which has not been fully explored in ALD and thin 
film deposition process and applications. Based on their characteristics, such as their 
growth rate, thickness, and film composition, SVM can be used to categorize and 
classify various types of ALD processes. For instance, it can be used to categorize 
various ALD processes, such as thermal ALD and plasma-enhanced ALD, based 
on the process variables temperature, precursor flow rate, and plasma power. The 
composition of deposited films, such as metal oxides, nitrides, and carbides, can 
likewise be categorized using SVM. The classification task of SVM was utilized in 

Start
Load training data

Select the input and output parameter

Extract and split dataset into training,
valida�on and tes�ng set

Select training algorithm

Train and op�mize the network

Randomly select the weights and bias

Is error
sa�sfactory?

Hyper-parameter tuning for the network
Number of hidden layer
Number of neurons in hidden layer
Ac�va�on func�on
Batch size
Learning rate
Epoch number

End

Yes

NO
Increase itera�on

Update parameters
Wij, wjk, bj, bk

Validate the netwrok

Select the best architecture
and training parameters

Select the best model for
predic�on

FIGURE 11.6 Process flow diagram for optimal ANN training.
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the study by Arunachalam et al. [45] as a monitoring technique for assessing and 
controlling thin film thickness in the deposition process of TiO2 with integration with 
spectroscopic ellipsometry. The properties of deposited films can also be predicted 
using SVMs based on the precursor and ALD process variables. The technique can 
forecast the properties of future films based on the selected precursor and process 
circumstances by training an SVM on a collection of precursor and process param-
eters and their corresponding film properties. This can aid in the development of new 
ALD procedures and the choice of suitable precursors.

11.5  AREA OF APPLICATIONS OF PREDICTIVE 
CAPABILITY OF MACHINE LEARNING IN ALD

11.5.1 fiLM thickness

To ensure the quality of surface modification, thin film thickness evaluation is criti-
cal. The successful application of diverse surface engineering is contingent on the 
thickness of the thin film deposited [77]. As it directly affects permeability, tensile 
strength, impact resistance, and other properties, film thickness is a crucial com-
ponent of product packaging as well as other products. The manufacturing needs a 
dependable system in place for high-value items that will enable them to precisely 
assess film thickness through every phase of manufacturing. As a result, a number 
of manufacturing industries have necessitated swift and accurate thin film thickness 
measurement [77]. Nanomaterials depend on thin layer thickness for electrical, opti-
cal, mechanical, and thermal properties. Thus, its thickness must be measured and 
controlled in various applications [78]. Several methods can measure the thin film’s 
thickness. Factors that play a role in the choice of suitable methods are the transpar-
ency of the deposited film in the optical region, and the cost [78]. As a viable alter-
native technique to overcome some of the limitations of the physical and mechanical 
techniques of thin film thickness measurement, machine learning models such as 
ANN and SVM are practicable owing to their ability to handle the hyper nonlinear-
ity in the complex reaction of thin film parameters. ANNs can be used to estimate 
the thickness of thin films in ALD, which has a number of important consequences 
for efficiency, product quality, and the discovery of new materials.

Using data extracted from spectroscopic reflectometry in the study by Tabet and 
Mcgahan [79], an ANN architecture was constructed to predict the thickness and 
optical parameters of thin films. An attractive ability of the wavelet neural network in 
extracting features from an experimental data was utilized in the study by Cui et al. 
[80] to predict the thickness of thin film toward analyzing its field emission proper-
ties. The model had a laudable performance with a relative error of 2.98%. Bora [81] 
demonstrated the measurement of the deposited film thickness measurement using 
machine learning algorithm vis-à-vis ANN. The study predicted the growth profile 
of thin film thickness and refractive index based on the data extracted from spectro-
scopic reflectometry. A study by Wang et al. [77] developed a SVM and ANN model 
for predicting coating thickness with a time-resolved thermography. The machine 
learning-assisted thickness estimations were based on surface temperature increment 
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data extracted from the time resolved thermography experiment. This study further 
compared the predictive performance of both SVM and ANN using a cross-valida-
tion approach.

Mariam et al. [82] established the superiority of machine learning models over 
computational simulations based on accuracy of prediction in the estimation of prop-
erty of thin film particularly, film thickness. Using data extracted from electrody-
namically lubricated (EHL) simulation and full-scale finite element methods, three 
machine learning algorithms, namely, Gaussian process regression (GPR), ANN, and 
SVM, were developed for a regression-based task of thin film thickness prediction. 
The ANN model outperformed other models with a R2-value of 0.999. By consid-
ering a comparison of the machine learning model’s result based on international 
standards instead of the existing analysis method, Lee and Jin [83] developed a novel 
technique which evaluates the thickness of thin film against an international length 
standard. The ANN model construction proceeded with data extracted from experi-
mental spectra of certified reference material. Given how well ANN performed in 
the aforementioned studies, it is clear that ANN has been the primary method used 
by researchers to accurately forecast thin film thickness. Some other machine learn-
ing regression models such as SVM, DT, RF, and k-nearest neighbor are ocassion-
ally used in ALD modeling but are not as quite popular as ANN. The study by 
Arunachalam [45] developed an integrated framework of spectroscopic ellipsometry 
and machine learning for an optimal control and monitoring of deposited thin film 
thickness. Four algorithms developed are SVM, kNN, RF, and DT. The four mod-
els gave a laudable outcome in prediction of thin film thickness with accuracy of 
83.84%, 88.76%, 84.1%, and 81.32%, respectively.

11.5.2 dePosition rate

Beyond using computational approaches such as transport model and surface reac-
tion model [84], machine learning models offer a better insight into the modeling and 
prediction of the deposition rates of different materials in ALD. A regression-based 
machine learning model can be applied to predict the deposition rate of thin film 
in ALD based on various process parameters such as temperature, pulse duration, 
reactor pressure, precursor concentration, and surface morphology, amongst others. 
To enhance the development process of the ALD, Cognazzo [85] developed a deep 
learning model to predict the saturation times based on growth rate and dosage time 
of reagent. The saturation times from the growth rate profile of an ALD reactor was 
modeled using an ANN model with a stochastic gradient descent (SCG) training 
algorithm [86]. This was achieved without any prior or additional knowledge of the 
surface kinetics of the reactor. Ding et al. [17] proposed a multi-scale data-driven 
model comprising a Bayesian regularized artificial neural network (BRANN) model 
integrated with computational simulation approaches, namely, kinetic Monte Carlo 
(KMC), computational fluid dynamics (CFD), and density functional theory (DFT) 
to predict the transient rate of deposition of SiO2 based on process parameters such 
as film coverage, surface heating, and precursor flow rate. The BRANN model was 
trained using data generated from the KMC, CFD, and DFT models.



274 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

11.5.3 Microstructure anaLysis

The accuracy of the deposition process is directly correlated with microstructure prop-
erties. The most significant characteristics that need to be managed in order to preserve 
the greater performance of the deposition process are phase content, unmolten par-
ticle content, and porosity levels. To improve the efficiency of the deposition process, 
accurate microstructure feature prediction is required [10]. Machine learning has the 
capability to bridge the gap between thin film deposition processing parameters and its 
microstructure either for identification of microstructure [87], cluster analysis of micro-
structure [88], or defect analysis [89]. Thin film microstructure must be monitored in 
a multi-parameter space to achieve the best extrinsic qualities, which are typically too 
difficult to map with a reasonable number of tests. Sequel to this, Banko et al. [90] 
suggested combining combinatorial experimentation with generative deep learning 
models to extract synthesis to lower the cost of microstructure design and to compre-
hend thin film development microstructure complexity. The generative deep learning 
models developed in their study are able to generate novel data based on a hidden trend 
in the dataset through techniques such as variation autoencoder (VAE) and genera-
tive adversarial network (GAN) [91,92]. It is enticing to create microstructures using 
GANs. In comparison to experimental methods and physical-based models, GANs can 
quickly build microstructures of the same quality in considerably larger quantities [93]. 
In order to determine the relationships between processing-structure and property and 
to forecast microstructures, Noraas et al. [94] proposed using generative deep learning 
models for material design. Griffiths and Harris [95] established that the morphologi-
cal and consequent property changes in the deposited film are caused by alterations in 
processing parameters during solidification. Thus, their study developed a PCA algo-
rithm for slot die coatings to analyze the microstructures of microparticle distribu-
tions. A machine-learning-based model was created by Hashemi et al. [96] to forecast 
microstructure evolution. Firstly, two-point spatial correlations were used to extracted 
low-dimensional microstructural elements from the film’s microstructures. Afterward, 
they deployed a Gaussian process vector autoregressive model to forecast how these 
low-dimensional traits would evolve. Brough et al. [97] have conducted comparable 
research on the microstructure evolution of polyethylene films. By formalizing the 
method, they showed that it was three times quicker than numerical simulations [98]. 
Figure 11.7 represents a deep neural network–integrated framework for analyzing and 
characterizing the microstructure of materials.

11.5.4 thin fiLM ProPerties

Machine learning models could be beneficial in predicting critical properties of 
deposited thin film such as refractive index, and physical, optical, chemical, and 
electrical properties based on a number of variables, including the deposition tem-
perature, the number of cycles per cycle, the precursor employed, and the type of sub-
strate during the deposition process. A large dataset of thin films that were created 
via ALD and for which the deposition parameters and associated thin film properties 
are known can be used to train ANN and other machine learning models. The ANN 
may be used to anticipate the properties of new thin films based on their deposition 
parameters since it can discover the correlation between the input deposition param-
eters and the properties of deposed thin films. Finding the mechanical properties 
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FIGURE 11.7 Machine-learning-integrated framework for microstructural analysis: (a) 
using VQVAE for finite microstructure extraction and (b) using spatial correlation between 
extracted microstructural features using Convolutional Neural Network (CNN) [99].

of thin films using conventional physics-based, empirical, or statistical models is 
challenging. Thus, Long et al. [100] deployed a machine learning algorithm for pre-
dicting the mechanical properties of thin films using data from the load-penetration 
depth curve. Ali et al. [101] proposed an ANN model for predicting the electrical 
properties of phenol red thin film deposited on silicon. The properties of ZnO thin 
film via-a-vis its resistivity was predicted using ANN by Sabri et al. [102] based on 
input parameters, namely, the deposition rate and substrate temperature. Using data 
generated by molecular dynamics simulations for training and testing a machine 
learning model, namely, RF algorithms, Wang et al. [103] predicted the mechani-
cal properties of tungsten disulfide (WS2) based on several input parameters such 
as temperature, strain rate, chirality, and defect ratio. A regression-based machine 
learning model was utilized in the study by Vajire et al. [104] to predict the nanoin-
dentation load-deformation profile of Gallium nitride (GaN) thin film deposited on 
thick substrate used in the manufacturing of sensitive electronic devices. Yang et 
al. [105] developed an ANN-based prediction for the stress property of deposited 
Aluminum nitride (AlN) thin film using dataset generated from optical emission 
spectroscopy after using a PCA algorithm to classify the XRD results into com-
pressive and tensile stress of the thin film. Asafa et al. [106] developed an ANN-
integrated model for predicting the intrinsic stress in deposited silicon thin film using 
deposition parameters such as temperature of substance, pressure of chambers, and 



276 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

dilution ration. The optical properties of thin film have also been modeled using the 
machine  learning model. For instance, an ANN was trained on resilient backpropa-
gation algorithm to model the optical constant of AS30Se70-xSnx thin film based on 
an experimentally generated dataset [107]. A similar study by Kim et al. [108] also 
applied an ANN model for optical characteristics of perovskite materials.

11.5.5 Process controL and Monitoring

A comprehensive investigation on the improvement of the protective characteris-
tics of ALD films is difficult due to the large dimensionality of the parameter space. 
Determining the ideal deposition settings is essential for producing layers free of 
defects [109]. By successfully overcoming these obstacles and outperforming tradi-
tional methods, machine learning approaches are gaining respect in applications in 
process control and monitoring. There is therefore a demand for effective optimiza-
tion techniques that can unilaterally choose the processing parameters that would 
promote the best ALD film growth [110]. To create models that can forecast the ideal 
process parameters for a given set of film qualities, machine learning algorithms can 
be trained on past process data. These models can be used to continually monitor the 
ALD process in real-time and modify the process parameters to obtain the desired thin 
film properties. This could aid in process optimization and boost the effectiveness and 
consistency of thin film deposition. They can further aid in uncovering irregularities 
in the ALD procedure. These models can spot trends that point to anomalous process 
behavior, like fluctuations in gas flow rates or temperature variations, by continu-
ously monitoring the process data. Further to this, these models can be trained using 
process data from the past to spot trends indicating the presence of high-quality or 
low-quality thin films. The study by Dogan et al. [109] used the Bayesian optimization 
algorithm to find the best deposition parameters which minimize the layer defect den-
sity in an ALD-Al2O3 passivation layer. Paulson et al. [110] developed three intelligent 
optimization algorithms, namely, random optimization, expert systems optimization, 
and Bayesian optimization toward process control and monitoring of the ALD pro-
cess. Each algorithm discovered optimal timings in 800 ALD cycles or less. Several 
amounts of measurement noise were used for these optimizations, which have been 
demonstrated to have a significant impact on the effectiveness of the optimization and 
the final optimized timings. The random optimization technique is a good starting 
point and frequently succeeds in the most challenging situations, particularly when 
the gap between the shortest and longest times is wide. Otsuka et al. [111] also devel-
oped a Bayesian optimization algorithm to optimize the ALD process for monitoring 
the growth of SrRuO3 thin film while the same approach was developed on TiO2 by 
Ohkubo et al. [112]. The optimal process condition control and monitoring using intel-
ligent optimization algorithms in ALD is represented in Figure 11.8.

11.5.6 grain size Prediction

The thin film’s grain size has a significant impact on the way it behaves in terms 
of its mechanical stability, electrical conductivity, and optical qualities [113]. 
Understanding the basic mechanics of thin film growth during ALD can also be 
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done with the aid of grain size prediction [114]. This can give an insight into how 
the deposition circumstances affect the film properties, which can be helpful for 
improving the ALD process and creating novel materials. Predicting the grain size 
of the thin film that is deposited on the surfaces is crucial for improving the gloss 
of the surface [10]. ALD-synthesized microelectronic devices can be made more 
dependable and long lasting by a machine-learning-based predictive analysis of the 
grain size. Further to this, comprehending how to optimize the grain size can help 
to increase the efficiency and dependability of the devices because it can have an 
impact on the mechanical and electrical properties of the thin film. Machine learn-
ing techniques have been a viable technique for determining the impact of various 
parameters on the grain size of the ALD. The grain sizes of titanium nitride (TiN) 
were predicted by Jaya et al. [115] using the ANN approach. Several neural network 
models’ architecture were created, taking into account the following nodes in the 
input layer, namely, argon gas pressure (N2) and turntable speed (TT), while grain 
size was set as the node in the output layer. In a similar study by Jarrah et al. [116], 
which examined the deposition of TiN, optimization of the process parameters of 
the deposition process was carried out using genetic algorithms to control the film 
grain size. Furthermore, intelligent optimization algorithm, namely, particle swarm 
optimization was deployed to monitor the grain size of TiN deposition based on 
 optimization of the process parameters [117].

Table 11.5 presents a summary of the application of predictive capabilities of 
machine learning models in ALD applications, the source of data for the models, 
materials, and performance metrics.

FIGURE 11.8 Machine learning based intelligent optimization for atomic layer deposition 
(ALD) process control and monitoring [112].
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TABLE 11.5
Summary of Machine Learning-Based Predictive Analysis in Atomic Layer Deposition (ALD) Applications

S/N Data Source Algorithm Summary of Application
Materials/
Substrate Performance Metrics Ref.

1 3D multiphase CFD model LSTM
RNN

Integrated data-driven machine learning model for 
prediction of three outputs, namely, (i) surface 
precursor partial pressure, (ii) number of Hf 
physisorption sites, and (iii) number of O 
physisorption sites using the inlet flow rate 
as input 

Hafnium oxide 
(HfO2)

Standard error of 2.54%, 
1.19%, and 2.85% for 
pressure prediction at inner, 
middle, and outer regions, 
respectively.

[6]

2 Full-scale stochastic multiscale 
system to generate 400,000 data 
points with a lattice size of 
N = 50

ANN Data-driven model using ANN was developed to 
assist the shrinking horizon nonlinear predictive 
control of chemical vapor deposition with target 
outputs such as roughness (R) and actual growth 
rates (Gr), while temperature and inlet precursor, 
mole fraction were considered as input factors

N/A Mean error of 0.04% and 
0.06% for both outputs R 
and Gr, respectively.

[15]

3 Multiscale CFD and kinetic 
Monte Carlo (KMC) model 

ANN Prediction of deposition rate of the atomic layer 
deposition of SiO2 based on surface temperature, 
precursor partial temperature, and transient film 
coverage 

SiO2 Average error of 3.07% [118]

4 Kinetic Monte Carlo model ANN Surface deposition mechanism was predicted using 
a machine-learning-integrated KMC model

HfO2 6.3% prediction error [7]

5 Multiscale simulation (discrete-
element method (DEM)-based 
particle aggregation)

ANN Prediction of film thickness and film roughness in 
the deposition 

Quantum dots 
(QDs)

R2 = 0.99 [18]

(Continued)
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TABLE 11.5 (Continued)
Summary of Machine Learning-Based Predictive Analysis in Atomic Layer Deposition (ALD) Applications

S/N Data Source Algorithm Summary of Application
Materials/
Substrate Performance Metrics Ref.

6 ALD experiment PCA Feature selection and extraction as a method for 
identifying the contribution of physio-chemical 
property of material process features on the 
property of deposited materials

SiO2 N/A [119]

7 1D first-order Langmuir kinetics ANN Optimization of the ALD process and prediction of 
optimal saturation time which gives saturation at 
every reactor location based on input on ALD 
reactor without prior knowledge of the surface 
kinetics

N/A Average error of 3% [86]

8 Experiment KNN
RF
DT
SVM

Machine learning ALD monitoring techniques for 
assessing thin film thickness in the deposition 
process. Particularly, the spectroscopic 
ellipsometry was integrated with machine 
learning to control the thickness of thin films. 
Machine learning techniques like classification 
and sample downsizing were deployed with the 
selected classification models

TiO2 88.76% (KNN),
81.32% (DT),
83.84% (SVM), and 
84.1% (RF)

[45]

9 Experiments with in situ 
XANES measurement 

RF
ANN

A screening strategy was developed using 
supervised machine learning to elucidate the 
atomic structure of reaction of deposition using 
simulated X-ray absorption near edge structure 
(XANES) spectra

ZnS N/A [43]

(Continued)
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TABLE 11.5 (Continued)
Summary of Machine Learning-Based Predictive Analysis in Atomic Layer Deposition (ALD) Applications

S/N Data Source Algorithm Summary of Application
Materials/
Substrate Performance Metrics Ref.

10 Simulated data from a stochastic 
multiphase model (kinetic 
Monte Carlo)

ANN Real-time optimization and prediction of the 
dynamic responses vis-à-vis roughness and 
growth rate of deposited film with chemical vapor 
deposition under uncertainty

N/A −2% relative error estimate 
of E under uncertainty

[29]

11 Experiment PCA
k-means

Feature extraction and selection from unstructured 
and unlabeled video data of high-energy electron 
diffraction from pulsed laser deposition to assist 
in extracting hidden pattern in the epitaxial film 
growth

ReSe2 (Metal 
dichalcogenides)

98.95% variance [120]

12 TDUS (Two-dimensional 
Umbrella sampling)

Deep neural 
network

A machine learning-assisted ab initio modeling of 
surface reaction using data generated from a 
TDUS for optimization of the deposition process

Al(Me)3 RMSE of 0.82 [28]

13 Experiment Bayesian 
optimization

Optimization of process parameters in ALD toward 
the effective reduction of defects in the passive 
layers of deposition

Al2O3 N/A [27]

14 Experiment Extreme 
gradient 
boosting 
(XGBoost)

The machine learning algorithm was developed to 
predict the component ratio of Pt/Al deposited on 
∝-Al2O3 based on temperature, stop valve time, 
precursor pulse time, and reactant pulse time

Nano-film 
platinum

99.9% accuracy
R2 = 0.99

[44]

15 Experiment PCA To understand the chemical dimension of ALD, an 
unsupervised machine learning algorithm, 
namely, principal component analysis (PCA) was 
deployed to extract hidden features. The impact 
of these features and parameters on the film 
thickness was further identified and analyzed

SiO2 N/A [26]

(Continued)
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TABLE 11.5 (Continued)
Summary of Machine Learning-Based Predictive Analysis in Atomic Layer Deposition (ALD) Applications

S/N Data Source Algorithm Summary of Application
Materials/
Substrate Performance Metrics Ref.

16 Experiment ANN Prediction of sheet resistance of indium-doped zinc 
oxide thin film 

Indium-doped 
zinc oxide (IZO)

R2 = 0.795 [121]

17 Experiment and molecular 
dynamic simulations

ANN A feedforward backpropagation neural network 
with a Bayesian training algorithm based on 
experimental and simulation data to model film 
thickness of deposited TiO2

TiO2 RMSE = 0.47, SSE = 0.46 [122]

18 Experiment GA Optimization of the grain size of the film, based on 
process parameters, namely, nitrogen gas 
pressure, argon gas pressure, and turntable speed

TiN Prediction accuracy of 
96.09%

[116]

LSTM, long- and short-term memory; RNN, recurrent neural network; ANN, artificial neuron network; RF, random forest; DT, decision tree; SVM, support vector machine; 
GA, Genetic Algorithm; KNN, k-Nearest neighbor.
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11.6 CONCLUSION

ALD is seen as a technological revolution thanks to machine-learning-based predic-
tive analysis. The ANN is a type of the most prominent machine-learning-based 
predictive model that offers an accurate and effective method for forecasting key 
outcomes in ALD. Machine learning algorithms can assess huge and complicated 
datasets to provide precise predictions on critical factors, such as film thickness, 
composition, and quality, by utilizing data from many sources, including actual mea-
surement experiments and simulation models. The performance and efficiency of 
ALD procedures could be greatly enhanced by this technique, which has already 
shown outstanding results in niche applications like catalyst development and thin-
film deposition. We may anticipate seeing many more fascinating uses for machine 
learning as this technology develops.
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12 Machine Learning-
Based Classification 
Techniques in ALD

12.1 INTRODUCTION

In the previous chapter, we established that machine learning-based regression 
analysis has received a lot of attention in atomic layer deposition (ALD) research 
for a precise prediction of significant properties of the thin film materials such 
as film thickness, composition, and quality toward the design of a novel material 
with specific properties. There is also a rising interest in applying machine learn-
ing for classification tasks. Machine learning-based classification techniques in 
ALD have a wide range of potential applications. Researchers can better under-
stand the underlying mechanics and tailor the deposition process for particu-
lar applications by correctly identifying ALD samples. Classification can also 
be used for quality control, allowing automated sample sorting and screening 
based on predetermined criteria. A classification algorithm’s objective is to cre-
ate a model using labeled data that can correctly predict the class for brand-new, 
unforeseen data points. When data are classified, they are labeled, which means 
that each incoming data point has already been categorized into one of a number 
of predetermined classes. In this chapter, we shall examine the various classifica-
tion tasks and techniques along with various potential applications of machine 
learning-based classification techniques in ALD and thin film deposition. In 
our final section, we’ll examine a number of case studies from the literature 
where the classification techniques of supervised machine learning methods have 
been successfully used to improve ALD process and thin film deposition and 
materials. We will illustrate how these strategies have the potential to transform 
the thin film deposition space and expand our knowledge of ALD procedures 
through these instances.

12.2 CLASSIFICATION TECHNIQUES AND ALGORITHMS

Classification techniques are used to assign each item in the data collected to one 
of the predefined sets of classes or groups [1]. Classification technique in machine 
learning is used to predict a categorical output variable [2]. This suggests that 
there are two or more classifications or categories, such as black or white, male or 
female, yes or no, men or women (binary classification). The binary classification 
is used to predict one of two possible outputs from a given input. The two outcomes 
are called good and negative. Multi-class classification can occur. Multi-class 
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categorization divides input into more than two classes. This indicates that there 
are numerous classifications to which the input may be categorized. Another type 
of classification technique is the multi-label classification, where each input can 
be classified under more than one class or label. This implies that different labels 
may be simultaneously applied to one input [3–5].The goal of classification is to 
identify a relationship between the input variables and the output variable, which 
is frequently represented as a decision boundary on a graph. To predict the class 
label features (categorical in nature), a model or classifier is built in the classifi-
cation technique. To accurately forecast the target class for each example in the 
dataset is the primary goal of the classification technique. We can begin using the 
classification technique after the dataset’s class assignments are determined [2]. 
Common classifier’s algorithms used for classification task in machine learning are 
multilayer perceptron (MLP) or extreme learning machine (ELM), support vector 
machine (SVM), Naive Bayes (NB), random forest (RF), decision tree (DT), and 
logistic regression (LRs). An overview of these classification algorithms is pre-
sented in Figure 12.1. This figure depicts the decision boundary of the classifica-
tion algorithms.

These algorithms were discussed extensively in a previous chapter. For a quick 
recap of the classifier’s algorithms, they are briefly discussed as follows.

12.2.1 MuLtiLayer PercePtron

The previous chapters have extensively studied the neural network and the multilayer 
perceptron (MLP). A chapter investigated the predictive analysis part of the neural 
network, while its classification task is the focus of this chapter. The classification 
system of neural network can be deployed in s standalone forma or in hybrid with the 
predictive analysis task. The output of the MLP is estimated as follows [1]:

FIGURE 12.1 Decision boundaries of different classifier algorithms [1].
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where ω  denotes the synaptic weights and neto is the input potential.
The ELM is a feed-forward neural network with a single hidden layer [6]. The 

output of the ELM can be represented as follows [7]:
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where G(.) denotes the ith neuron’s activation function in the hidden layer.

12.2.2 k-nearest neighbor

kNN is  a simple, proximity-based and voting-based classification and regression 
analysis approach [8]. Particularly for classification task, kNN chooses the new data 
point’s class based on a vote between its k nearest neighbors [9, 10]. This algorithm 
has been extensively studied in previous chapters. To determine the closest neigh-
bors, the euclidean distance between instances X1 an X2 is commonly utilized as 
in equation 12.4 [11]. Our objective is to minimize the Euclidean distance, and our 
computation is based on the count of smaller distances. A major demerit of the kNN 
classification approach is that it exhibits a notable decrease in speed as the number of 
cases and/or predictors/independent variables increases.
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The KNN approach was used by Trejo et al. [12] to analyze how the atomic structure 
changes during ALD reactions. ALD reactions generated in situ X-ray absorption 
near-edge structure (XANES) spectra were then classified using the KNN algorithm 
to forecast the ALD process’ development cycle.

12.2.3 naive bayes

NB is a classification algorithm which employs the probabilistic classification tech-
nique known based on the Bayes theorem which estimates the likelihood of an event 
based on prior knowledge of potential confounding factors [13]. NB has the benefit 
of being computationally effective and having a short learning curve, even for big 
datasets [14,15]. Even with the oversimplifying premise of feature independence, it 
works well in practice. This presumption might, however, not always be true, which 
could result in projections that are off. When the number of features is high com-
pared to the size of the dataset, NB is frequently employed as a baseline model for 
text classification tasks. As a probabilistic classifier that relies on the Bayes theorem 
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and assumes that each input attribute is independent (predictors), it is determined by 
the probability of classes Ci given input qualities X as shown in Equation 12.5 [1]:

 P C X
P X C P C

P X
i

i i|
( | )( ) ( )

( )
=  (12.5)

12.2.4 suPPort vector Machines

The SVM is a class of classifier algorithms in machine learning used to determine 
the best boundary between two classes. SVMs, which are based on statistical learn-
ing frameworks, are one of the most reliable prediction techniques [16]. Discovering 
the hyperplane that maximizes the margin between the two classes, or the distance 
between the closest data points of each class and the hyperplane, is the main goal of 
the SVM [17]. The distance between the hyperplane and the nearest data points for 
each class is referred to as the margin. The data points nearest to this hyperplane are 
referred to as support vectors, and it is known as the optimal boundary. SVM performs 
well with high-dimensional data and avoids the dimensionality curse by simultane-
ously maximizing the margin hyperplane and minimizing residuals as follows [18,19]:
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where K  represents the kernel function between the xii and x j input vectors.

12.2.5 decision tree

Classification and regression task in supervised machine learning has found a wide 
use for the DT algorithm. DT predicts the value of a target variable using a variety 
of input features by segmenting a dataset into successively smaller groups in order to 
determine the ultimate categorization of a certain observation [20]. The DT method 
creates a tree-like model of decisions and potential outcomes, with each node in the 
tree reflecting a decision based on a specific aspect or attribute of the data. Each leaf 
node represents a class label, and each decision node represents a test on an attribute. 
With regard to the target variable, a DT aims to divide the data into subsets that are 
as homogeneous as possible [21]. The DT algorithm’s fundamental premise is to 
divide the data into subsets depending on the values of the attributes, with the goal of 
having each subset contain data that have the same value for each individual attribute 
[22]. The process is then repeatedly repeated by the algorithm for each subset up until 
a halting requirement is satisfied.

12.2.6 Logistic regression

Logistic regression (LR) is a statistical approach for analyzing the relationship 
between a dependent class attribute and a number of independent attributes. Logistic 
regression’s key benefit is its capacity to model the relationship between dependent 
and independent variables, even in the face of intricate and nonlinear correlations. In 
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addition, logistic regression is reasonably simple to comprehend because each inde-
pendent variable’s influence on the projected probability of the positive class can be 
determined using the independent variable’s coefficients. The following relationship 
is modeled using a logistic function as follows:
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12.2.7 randoM forest

A RF is another machine learning classifier which integrates multiple DT algorithms 
through an ensemble learning technique to increase the model’s overall robustness 
and accuracy. It belongs to the DT class and is a powerful technique for handling 
binary and multi-class classification and regression issues [13,23]. A random vector 
of features with a defined probability distribution is used in each DT. By employing 
the bootstrap aggregating (bagging) technique, it is ensured that base learners are 
trained on a variety of training data [1].

12.3  POTENTIAL APPLICATIONS OF MACHINE LEARNING-
BASED CLASSIFICATION TECHNIQUES IN ALD

12.3.1 MateriaL cLassification

The capability of the machine learning algorithms to analyze huge datasets and draw 
insightful conclusions from complex data have become an useful approach for mate-
rials classification. In order to find materials with particular features that are critical 
for a variety of applications, machine learning is particularly helpful in the clas-
sification of materials. Finding the primary qualities or properties of the materials 
under study is the first stage in the classification of materials. These characteristics 
may be structural, like grain size or crystal structure, or functional, like electrical or 
optical characteristics. The patterns that point to particular material properties and 
can be detected using a classification algorithm after the pertinent properties have 
been established. Further to this, the hidden connections between several materials 
properties can be unveiled to classify the materials. This ability can be particularly 
demonstrated as a viable alternative to the conventional analytical methods which 
could be challenging in establishing the connection between crystal structure and 
electrical conductivity of materials. 

The machine learning-based classification technique offers an extra benefit of 
quality control by categorizing materials according to predetermined criteria, which 
lowers the need for manual inspection and boosts process efficiency. 

12.3.2 oPtiMaL Process ParaMeter seLection

The choice of process parameters is a crucial component in the optimization of ALD 
process optimization. The objective is to get the necessary thin film qualities with 
the least amount of effort and expense. By categorizing the impact of various process 



296 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

parameters on thin film qualities, machine learning algorithms can aid in this pro-
cess. Machine learning can help in the selection of the best process conditions for a 
certain application by highlighting the crucial elements. When trained on a dataset 
comprising details on the various deposition process parameters and the properties 
of the produced thin films, the algorithms can be used to forecast the ideal circum-
stances for a specific set of process parameters. This reduces process optimization 
trial-and-error time and cost. Machine learning classification approaches can clas-
sify how temperature, pulse time, and precursor exposure time affect film thickness, 
refractive index, and crystallinity. This approach is capable of properly predicting 
the characteristics of TiO2 thin films under a variety of processing settings, offering 
knowledge of the most advantageous processing scenarios for obtaining the desired 
qualities. 

12.3.3 defects cLassification and detection

While thin films have found wide applications and demonstrated excellent perfor-
mance in several fields such as electronics, optics, and coatings, defects in thin films 
can drastically lower their quality and performance, resulting in product failure and 
wastage. Manual inspection and characterization, which can be time-consuming and 
arbitrary, are the traditional methods for identifying and defining defects in thin 
films. An effective alternative is provided by machine learning techniques, which 
enable automated and data-driven fault detection based on classification techniques 
with ALD databases. For instance, thin film cracks, pinholes, and delamination can 
be detected and classified using machine learning algorithms, enabling producers to 
enhance the caliber and dependability of their goods. Defect identification can also 
lessen the number of flaws that need to be fixed or thrown away, which reduces waste 
and boosts productivity. Classifier algorithm can be trained on a dataset of labeled 
samples of thin film with or without flaws. The algorithm can be used to categorize 
new samples as either faulty or nondefective when it learns to recognize the aspects 
or traits of the films that are connected to flaws.

The ability to detect defects in thin films using machine learning may be extremely 
accurate and dependable. Machine learning algorithms can learn to recognize even 
tiny flaws that may be challenging for human inspectors to find by employing vast 
datasets of labeled samples. Defect identification based on machine learning can also 
be highly automated, which decreases the need for manual inspection and boosts 
process effectiveness. The ability to identify the causative factors of faults is a sig-
nificant benefit of machine learning-based defect identification. 

12.3.4 discovery of MateriaLs

The ability to create novel materials with customized qualities is crucial for the 
development of these nanotechnologies, yet the conventional method of materials 
discovery, trial and error, can be time-consuming, expensive, and ineffective. A 
potent alternative is provided by machine learning techniques, which enable data-
driven materials discovery. Machine learning algorithms can be used in ALD to 
categorize the characteristics of novel materials created by ALD and pinpoint the 
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materials that stand the best chance of being utilized in particular applications. The 
search space for novel materials synthesized by ALD is enormous, however, and 
conventional approaches to materials discovery can be prohibitively expensive and 
time-consuming. In order to find patterns and correlations between the properties of 
materials and their synthesis circumstances, machine learning-based classification 
algorithms analyze vast databases of experimental and simulation data. Machine 
learning algorithms can find the most promising materials for particular applications 
by learning from these data and help to expedite the discovery of novel materials 
with desired qualities.

These algorithms can be used to forecast the properties of new materials based on 
their synthesis circumstances after learning to recognize the traits or characteristics 
of the materials that are connected with their properties. Further to this, the machine 
learning-enhanced materials discovery offers the benefit of optimizing the synthesis 
conditions for novel materials..

12.3.5 aLd QuaLity controL and Monitoring

To guarantee that the deposited films fulfill the required criteria, thin film production 
procedures need to tightly manage a number of aspects. This is crucial in fields like 
semiconductor fabrication, where even minute changes in thin film characteristics 
can have a big effect on how well a device works. Hence, quality control is a crucial 
step in the production of thin films, and machine learning can offer a potent tool for 
identifying departures from predicted behavior. These techniques offer insightful 
information about the process. A classifier algorithm can be trained on a set of thin 
films with known attributes as one method of applying machine learning for thin 
film quality control. The algorithm can then be used to categorize new thin films 
according to the measured qualities of their composition, thickness, and roughness. 
The categorization results can then be compared to a list of established parameters 
to identify deviations from expected behavior. The creation and production of high-
quality thin films require real-time quality monitoring and control. Machine learning 
classifier algorithms can offer insightful information about the process and enable 
quick response in the event of process deviations or equipment failures. The use 
of machine learning classifier’s algorithms for real-time monitoring and control is 
anticipated to become more crucial as the field of ALD develops for the creation of 
new materials and the improvement of the deposition process.

12.4 CASE STUDIES EVALUATION

While there are several potentials and opportunities to enhance an excellent ALD pro-
cess and achieve a high-quality thin film using the classification techniques of machine 
learning, the number of researches that particularly use classification algorithms for 
ALD process analysis and optimization is still limited, despite the growing interest in 
this area. However, recent studies have indicated that classifiers like kNN and SVM can 
be used to predict film qualities and optimize ALD process settings. As a result, even 
while progress is being made, there is still much to discover in this area of machine 
learning application. Few case studies in literature are discussed as follows.



298 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

12.4.1  a case study of Machine Learning-based 
cLassification techniQues for an enhanced efficient 
sPectroscoPic eLLiPsoMetry ModeLing

The application of machine learning-based classification algorithms in ALD to 
improve the effectiveness and accuracy of spectroscopic ellipsometry (SE) mod-
eling was explored in the article titled “Machine Learning-enhanced Efficient 
Spectroscopic Ellipsometry Modeling” by Arunachalam et al. [25]. The goal of the 
authors is to create a machine learning-based method to facilitate efficient thin film 
generation by properly predicting the refractive index of ALD thin films, a crucial 
factor in the production of microelectronic devices. After giving a general intro-
duction of SE modeling and discussing the difficulties in precisely forecasting the 
refractive index of ALD thin films, the authors utilized a dataset of SE spectra and 
associated refractive index values to train a classification algorithm as part of their 
method for creating a machine learning-based SE model. The authors selected some 
classification algorithms because they are adept and effective at multi-class clas-
sification jobs. The approaches also require little to no prior knowledge of the dis-
tribution of input data, are resistant to overfitting during training, and are resilient. 
The algorithms selected are: support vector machine, k-nearest neighbors, DT, RF, 
and logistic regression. The ALD process was then optimized for the SE of TiO2 
substrates as a way for the authors to show how their machine learning-based SE 
model may be used in practice. In order to produce a thin film with refractive index 
that accurately reflected the desired value, they were capable of identifying the ideal 
ALD process settings.

This research shows how machine learning-based classification methods have 
the potential to increase the effectiveness and precision of SE modeling in ALD. 
The authors were able to create a model that offered more precise predictions 
than conventional SE modeling approaches by training a classification algorithm 
on a huge dataset of SE spectra and associated refractive index values. The ALD 
process may be optimized for the creation of microelectronic devices using this 
machine learning-based SE model. This study’s focus is on a particular variable, 
the refractive index, which is essential for the creation of microelectronic devices. 
The authors have significantly advanced the field of ALD by creating a machine 
learning-based SE model that can correctly forecast this parameter. Also, the 
authors offer a thorough justification of their methodology, making it under-
standable to researchers of various levels of experience. The authors were more 
focused on a particular classification algorithm, namely, the k-nearest neighbor 
out of all algorithms selected, while its performance was not sufficiently evalu-
ated against that of other algorithms. Some of the significant results of the study 
are as follows: Figure 12.2 shows the accuracy of all the classification algorithms 
selected, while changes in the performance accuracy of the kNN classifier for 
random down sampling with the classes and thickness is shown in Figure 12.3 
revealing how level-1 accuracy and level-2 accuracy varied with thickness for the 
first 300 samples. Figure 12.4 shows the performance accuracy of classification 
for TiO2 data for levels 1 and 2.
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12.4.2  a case study of cLassifier aLgorithM for understanding the 
evoLving atoMic structure during the dePosition Process

This research deployed the classification and prediction capabilities of the artifi-
cial neural network and RF to understand the evolving atomic structure in ALD 
reactions with in Situ simulated X-ray absorption near edge structure (XANES) 
and machine learning. The research was carried out by Trejo et al. [12]. The objec-
tive of the study is to improve our knowledge of the ALD reaction processes and 
the dynamism of atomic structure during the deposition process. The ALD reac-
tions of ZnS thin film and TiO2 were seen in situ using X-ray absorption near-edge 

FIGURE 12.3 Changes in the performance accuracy of the kNN classifier for random down 
sampling with the (b) classes and (b) thickness [25].

FIGURE 12.2 Performance accuracy of all classifiers selected [25].
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spectroscopy (XANES). The atomic species and their oxidation state can be deter-
mined using the spectroscopic fingerprint that XANES offers. Artificial neural 
network and RF are two machine learning classification techniques that were used 
to examine the obtained data. The findings demonstrated that the titanium atoms 
in the formed thin films could be correctly classified into their various oxidation 
states using the ANN and RF algorithms. In addition, the algorithms were able 
to spot minor atomic structure changes that occurred throughout the ALD pro-
cess that were difficult to see with existing analytical methods. The authors also 
explained how their method may be used to enhance the quality of deposited thin 
films and to optimize the ALD process parameters. Using in situ XANES and 
machine learning classifier algorithm, it may be possible to manage the deposi-
tion process precisely while also enhancing the reproducibility and homogeneity 
of the deposited films. The viability, efficiency, and feasibility of machine learning 
classifier algorithms in ALD research has been established in this research. In situ 
XANES and machine learning algorithms could work together to create a potent 
tool for analyzing how the atomic structure changes during ALD reactions and for 
streamlining the deposition procedure. The strategy outlined in this paper could 
also be applied to materials and methods other than ALD, offering a promising 
direction for further study. The study examined two materials, so its findings may 
not apply to other materials or systems. Algorithms and data quality can also affect 
the method’s success. Yet, the study emphasizes how machine learning algorithms 
could advance our knowledge of and ability to optimize ALD and other thin film 
deposition techniques. Figure 12.5 represents the result of atomic schematics, the 
S k-edge spectra of the structural parameter using the RF.

FIGURE 12.4 Performance accuracy of classification for TiO2 data for levels 1 and 2 [25].
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12.4.3  Machine Learning-assisted eLectronic cLassification of  
barcoded ParticLes for MuLtiPLeXed detection using  
aLd Processes

In this research carried out by Sui et al. [26], nine barcoded particles were created 
using ALD to create oxide layers of varying thicknesses and different dielectric mate-
rials, and then, the precision of particle barcode classification using multi-frequency 
impedance cytometry in conjunction with supervised machine learning were evalu-
ated. The research proposed a unique machine learning-based approach for multi-
plexed analysis for barcoded particle identification. The idea of barcoded particles 
and their potential uses in a variety of industries, including drug development, diag-
nostics, and environmental monitoring, were initially introduced in the article. The 
relevance of the ALD technique in creating homogeneous, conformal thin films with 
exact thickness control is next discussed by the authors. The ALD technique, how-
ever, has a low throughput problem that restricts its use in high-throughput screening 
and analysis. The authors proposed a technique for multiplexed barcoded particle 
detection utilizing the classification task of supervised machine learning analysis 
to tackle this problem. The process uses a microfluidic device to produce a stream 
of barcoded particles that are subsequently identified by an electronic circuit that 
assesses their electrical characteristics. A machine learning model, namely, SVM 
which uses the measured data was trained on a Gaussian kernel algorithm to classify 
the particles based on their barcode and other properties. The accuracy of the SVM 
classifier, which also shows the impedance difference between various barcoded par-
ticles, is assessed by comparing the predicted class with the true class. The authors 
present interesting experimental findings that show the viability of their method for 
multiplexed detection of barcoded particles. They demonstrate the outcome of their 
approach for high-throughput screening and analysis by demonstrating that their 
machine learning model can obtain a high classification accuracy of up to 91% on a 

FIGURE 12.5 Result of atomic schematics, the S k-edge spectra of the structural parameter 
using the random forest [12].
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test dataset. The result of the SVM classifier accuracy for identifying the thin film 
with various thicknesses is shown in Figure 12.6.

12.4.4  cLassification of aLuMinuM nitride thin fiLM stress 
using Machine Learning cLassification techniQues 
using oPticaL eMission sPectroscoPy data

Large residual stresses are often produced during the formation of the film, which 
will have a big impact on how well it works. An essential aspect of film strain engi-
neering is the film stress which has an impact on the performance of semiconductor 
devices and must be controlled and reassessed in connection to process parameters to 
improve electron mobility in devices [27–29]. This has thus motivated Yang et al. [30] 
to build a novel approach comprising an unsupervised learning algorithm, namely, 
principal component analysis (PCA) for data pre-processing and feature extraction 

FIGURE 12.6 (A) The accuracy of the support vector machine (SVM) model for identify-
ing particles with various alumina thicknesses. (b) The accuracy of the SVM model in distin-
guishing particles with various hafnia thicknesses [26].
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and MLP neural network for binary-class classification and prediction of film resid-
ual using Optical Emission Spectroscopy (OES) data during the deposition of alumi-
num nitride (AlN) on Silicon (Si). In situ optical emission spectroscopy (OES) data 
are used by the authors to determine the stress level in the AlN thin films, a crucial 
factor in the manufacture of microelectronic devices. The paper starts off by giving 
a general overview of the significance of identifying, assessing, and controlling the 
stress level in thin film deposition. The experimental set-up, which consists of an 
OES system for real-time monitoring of the AlN thin film growth procedure and a 
specially constructed ALD reactor, is then described by the authors. Figure 12.7 is 
schematic illustration of the data collection approach from the experimental set-up 
vis-à-vis the OES data acquisition

After the data are extracted, the PCA algorithm, an unsupervised machine learn-
ing algorithm was used for pre-processing the data and feature extraction from 
the data. Although the data dimension is theoretically lowered, the overall perfor-
mance of the data is either good or barely different. PCA was deployed to distin-
guish between data from various principal components (PCs). PC1 and PC2, which 
are retrieved using PCA, are the directions with the highest and second-largest data 
disparities, respectively. The PC 1 and PC 2 were then chosen by the authors and 
entered into the MLP for prediction and classification tasks. The methodological 
approach for PCA processing, MLP prediction, and classification is illustrated in 
Figure 12.8. Optimization and hyperparameter settings were carried out to deter-
mine the optimal number of PCs that completely represent the data and must be fed 
into the MLP, while the optimal combination of neurons and hidden layers in the 
MLP were assessed. After these, the performance of the algorithms was evaluated 
using metrics such as accuracy and root mean square error (RMSE).

The outcome of the optimal PCA and MLP is shown in Figure 12.9. This final 
outcome was further validated using a cross-validation method called the confu-
sion matrix. The authors demonstrated that machine learning using PCA and ANNs 
can more effectively address issues with semiconductor processes. When combined 
with PCA, the prediction time is substantially preserved with minimal accuracy 
loss. Also, they showed how well the machine learning algorithms classify the stress 

FIGURE 12.7 Schematic flowchart of data acquisition from the spectrometer [30].
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levels of the AlN thin films. The OES spectra and their relationship to the stress 
levels in the AlN thin films are also thoroughly examined by the authors. According 
to the authors, their method can increase the effectiveness and precision of stress 
control during thin film fabrication, resulting in more dependable microelectronic 
devices. Finally, the study demonstrated the potential of machine learning classifica-
tion algorithms to enhance stress control in thin film fabrication, making a signifi-
cant contribution to the field of ALD. The results show the efficacy of the ANN and 
PCA algorithms in precisely categorizing stress levels.

12.5 CONCLUSION

Supervised machine learning techniques have demonstrated considerable progress in 
recent years when used for classification purposes in ALD and thin film deposition. 
These algorithms have greatly aided in the creation of new materials and procedures 
because of their capacity to precisely forecast material properties and optimize depo-
sition parameters. Support vector machines and neural network algorithms found 
wider applications in ALD process and thin film depositions compared to other 
classifier algorithms in this chapter. Depending on the application, each method 

FIGURE 12.9 Outcome of feature extraction and classification task of principal component 
analysis (PCA) and multilayer perceptron (MLP) using PC1 and PC2 inputs [30].

FIGURE 12.8 Methodological framework of the research [30].
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has distinct benefits and drawbacks. Aside from that, the case studies examined in 
this chapter demonstrate how well machine learning-based classification algorithms 
work in a variety of settings, including thin film stress classification and prediction, 
machine learning-assisted electronic classification of barcoded particles, understand-
ing atomic structures during deposition, and machine learning-assisted surface char-
acterization, amongst others. These algorithms provide a potent tool for expediting 
the development and improvement of ALD processes, while more study is required 
to fully comprehend their limitations and improve their effectiveness.
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13 Deep Learning in Atomic 
Layer Deposition

13.1 INTRODUCTION

As previously said, deep learning entails teaching neural networks to under-
stand complex data. By gradually abstracting the input data, the network may 
learn and discover patterns and relationships that conventional machine learning 
approaches would miss [1]. It is modeled after the composition and operation of 
the human brain and excels at processing natural language, understanding sounds 
and images, and making intelligent decisions [2]. To automatically extract and 
learn features from the input data, deep learning algorithms employ numerous 
layers of artificial neurons. The deeper the neural network, the more layers it has, 
therefore the name “deep learning” [3]. Deep learning offers the main benefit of 
automatically learning features from unprocessed data without the requirement 
for manually created features. Deep learning is an unprecedented innovation that 
has transformed artificial intelligence and is propelling significant developments 
in a wide range of sectors [4].

In the context of atomic layer deposition (ALD), it has the ability to significantly 
increase the efficiency and accuracy of the process because of its special ability in 
proffering solutions to complex ALD reactions. With only a few studies proving its 
efficacy, its current use in ALD is, however, somewhat limited. Deep learning is pro-
gressively gaining traction in this space despite the difficulties presented by ALD’s 
complexity. Deep learning has a wide range of possible uses in ALD, including the 
creation of novel materials, increased process effectiveness, and improved device 
performance. Deep learning can also help identify and reduce process variations, 
providing consistent and high-quality deposition. To fully realize the benefits of deep 
learning integration in ALD, further research and development are necessary. In this 
chapter, we shall examine an overview of the potential of deep learning for its wider 
adoption and state-of-the-art in the application of ALD, while emphasizing the chal-
lenges associated with its integration.

13.2  COMMON DEEP LEARNING ALGORITHMS 
AND APPLICATIONS IN ALD

This section explores types, algorithms and applications of the deep learning 
approach with more emphasis on their distinctive features particularly in the context 
of ALD.
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13.2.1 generative adversariaL network

Generative models are in two broad categories. The first is the generational algo-
rithms which is based on the conventional machine learning techniques like genera-
tive adversarial network (GAN) and variational auto-encoder (VAN) [5–10]. GAN is 
an intelligent approach to train generative model involving two sub-model vis-a-vis 
the generator model and the discriminator model as depicted in figure 13.1 [11].

While the training phase encompasses various examples from the training data, 
the discriminator receives well-established dataset as the first training data while the 
generator undergoes training based on its fooling capacity to the discriminator. The 
optimization of key parameters of the ALD process such as exposure time, tempera-
ture and precursor flow rates can be achieved using the GAN towards to generate 
virtual samples of ALD-grown films enhancing the efficiency and quality of the 
process [12,13]. The ALD process settings and the quality of the produced thin film 
can be used to train GAN for optimization tasks. Then, GANs can produce novel 
ALD process parameters that could improve the quality of thin films. Based on the 
precursor molecules and the ALD process parameters, GANs can also be utilized to 
forecast the thin film attributes.

13.2.2 convoLutionaL neuraL network

Previous chapters have established the superior characteristics of deep learning tech-
niques such as Convolutional neural networks (CNNs) in handling unstructured data 
such as visual and image data for task such as image and signal processing, clas-
sification, and feature extraction [14–17]. In Figure 13.2, a CNN has an input layer, 
convolution layers, pooling layers, a fully linked layer, and an output layer, with the 
convolution and pooling layers connected alternately [18]. 

 The morphology and microstructure of films can be examined using CNNs in 
ALD. The ALD process parameters, which can be subtly modified to create diverse 
outcomes, are heavily dependent on the morphology and microstructure of thin films 
[19,21]. CNNs can be used to examine the characteristics of the thin films, including 
their thickness, homogeneity, and crystal structure, in order to optimize the ALD 
process parameters. More detailed applications of CNN in ALD processes are pre-
sented in the case studies in subsequent sections. 

FIGURE 13.1 A typical GAN architecture for molecular discovery [11].
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13.2.3 recurrent neuraL network

Recurrent Neural networks (RNNs) are able to process sequences of inputs and keep 
a “memory” of previous inputs, in contrast to typical feedforward neural networks, 
which only analyze data in a single pass [23]. They are hence highly suited for tasks 
like speech recognition and time series prediction [24, 25]. RNNs have a “hidden 
state” that updates with each input. This concealed state represents the network’s 
“memory” of prior inputs. Training-learned weights and biases update the hidden 
state. Common RNN architectures are long short-term memory (LSTM) and gated 
recurrent units (GRUs). Due to their capacity for handling time-series input, they 
have attracted a lot of interest in the fields of machine learning. Readers can refer to 
Chapter 8 for more details on RNN.

RNNs can learn the temporal dependencies and forecast the precursor coverage. 
With greater film quality and deposition rates as a result, this can aid in improving 
the ALD process parameters. RNNs can also be utilized to simulate the ALD pro-
cess’ growth rate [26]. The reaction kinetics and surface coverage affect how quickly 
a thin film grows. With a dataset of growth rate under various process parameters, 
RNNs can be trained. RNNs are able to pick up on temporal dependencies and fore-
cast how quickly the thin film will grow throughout the ALD process. With greater 
film quality and deposition rates as a result, this can aid in improving the ALD 
process parameters [27]. RNNs can also be used to simulate the dynamics of the 
deposition process in real time [28, 29]. The case studies in subsequent sections deals 
further on the applications of RNN in ALD and thin film deposition process. 

13.2.4  iMage Processing caPabiLity of deeP Learning techniQues 
for MicrostructuraL anaLysis in thin fiLM MateriaLs

Achieving the preciseness and accuracy in the thickness and properties of thin film 
deposited using ALD process is a critical goal in semiconductor industries. To obtain 
the necessary thin film properties, ALD requires exact control and monitoring of the 
deposition process. The ability to manage and monitor processes in real time makes 

FIGURE 13.2 Fundamental framework of the convolutional neural network (CNN) [18].
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image processing for microstructural analysis of materials a crucial tool for deposi-
tion analysis [13,29]. With regard to image processing and computer vision tasks, 
namely, image segmentation, object detection, and classification, deep learning has 
demonstrated promising outcomes particularly in the microstructural analysis of thin 
films [13]. Deep learning can be applied to the ALD process to evaluate images of the 
deposition process and extract pertinent data, such as the thickness of the deposited 
layer, the regularity of the deposition, and the existence of defects [19,29]. There are 
various steps involved in the processing of ALD images using deep learning. The 
system must first take detailed and high-resolution pictures of the deposition proce-
dure, which are afterward pre-processed to get rid of noise and boost contrast. Then, 
a deep learning algorithm, such as a CNN or GAN, is trained on a dataset of images 
labeled with the desired output using the pre-processed images [30,31]. The deep 
learning algorithm gains the ability to recognize patterns and features in the photos 
that correlate to particular traits of the deposition process during the training phase. 
After being taught, the algorithm can evaluate fresh images in real time and give the 
ALD system feedback [32,33].

The capacity of deep learning to adjust to new or changing settings is one of the 
main benefits of employing it in ALD image processing. Deep learning algorithms 
can generalize and perform well even when confronted with brand-new, untried 
images since they can learn from a sizable dataset of images. This adaptability is 
crucial in ALD since the deposition conditions might vary widely and the system 
needs to be able to respond quickly to these changes. Deep learning for ALD image 
processing has the added benefit of processing vast amounts of data quickly. High-
speed image analysis by deep learning algorithms can give the ALD system feedback 
in real time. In the semiconductor sector, where high throughput and efficiency are 
essential, this capacity is crucial. The precision and effectiveness of the deposition 
process can be significantly increased by utilizing deep learning in ALD image pro-
cessing. Deep learning algorithms can rapidly analyze images, detect thickness and 
homogeneity deviations, and notify the ALD system of corrections. Deep learning 
algorithms can swiftly process large amounts of data and adapt to changing condi-
tions, making them ideal for the semiconductor industry.

TEM and SEM are used to study thin film microstructure. However, these tech-
nologies generate a lot of data that are time-consuming to interpret. Data analysis 
sometimes involves manual inspection, which is time-consuming and unreliable. 
A useful technique for the automated investigation of microstructural information 
of deposited materials is the image processing potential of deep learning [29]. Deep 
learning algorithms have so far demonstrated tremendous promise in automating the 
analysis of intricate and high-dimensional datasets, such as those produced by elec-
tron microscopy methods. Deep learning–assisted microstructural analysis involves 
training a deep learning algorithm on a large collection of microstructural data to 
discover traits and patterns. Once taught, the system can automatically extract signif-
icant characteristics from new microstructural data, such as TEM or SEM pictures, 
and analyze them [34]. By training a deep learning model, we can find and examine 
anomalies in the microstructure, such as grain boundaries, dislocations, and stacking 
defects, in thin film materials. In addition, the model may be trained to categorize 
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various grain varieties and determine their gradation. After that, the model may be 
used to automatically extract data on the texture, distribution, and grain size of the 
thin film material. The analysis of how microstructures change over time can also 
be done using deep learning. To monitor the development of thin film materials, and 
forecast their eventual microstructures based on the original conditions, deep learn-
ing models could be helpful. This may aid in enhancing the growing process and 
enhancing thin film quality [26,35].

13.3  CASE STUDIES EVALUATION OF DEEP LEARNING 
APPLICATION IN THIN FILM DEPOSITION

Deep learning is becoming more and more popular, and researchers are looking into 
how this technology might be used to increase the effectiveness and precision of 
ALD procedures. Researchers can reliably predict the behavior of ALD processes 
and adjust deposition settings to produce high-quality thin films with an unheard-of 
level of precision by training deep learning algorithms on vast volumes of data. Thin 
film deposition researchers now have more options to deep learning. Researchers 
have used deep learning algorithms to predict critical features of the deposition pro-
cess and final deposited materials and best deposition conditions through a variety 
of case studies. The creation of new materials for electronic devices, increasing the 
effectiveness of solar cells, and other uses in materials science are all significantly 
impacted by this. This subsection presents an overview of the limitless potential 
deep learning applications in ALD through some case studies. Although, there is a 
meager amount of research on deep learning applications in thin film research using 
ALD and other deposition techniques, the list of case studies presented here is not 
exhaustive.

13.3.1  deeP Learning–based ModeLing of PLasMa-
enhanced atoMic Layer dePosition 

In this research carried out by Ding et al. [25], the use of deep learning techniques to 
enhance the operation of the plasma-enhanced atomic layer deposition (PEALD) of 
hafnium oxide thin films was explored. The authors initially addressed the difficulty 
of precisely forecasting the film characteristics and the limitations of managing the 
PEALD process as well as the hurdles of establishing optimal operating procedures 
for PEALD with the computational simulation techniques and the shortfalls of the 
traditional machine learning techniques in capturing the nonlinearity of the complex 
PEALD process. They then offer a deep learning approach vis-à-vis long-short term 
memory (LSTM)-based RNN and integrated with a full multi-scale 3D CFD model 
to enhance the PEALD procedure. DNN is trained on a dataset extracted from a 
multi-scale CFD model initially carried out to analyze both the transient gas-phase 
profile development and the dynamic surface profile progression. The RNN and vari-
ants were designed for the prediction of the dynamic time sequences of the PEALD 
process and to capture the complex input–output relationship between operational 
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circumstances. The architecture of the LSTM-RNN model built in the research is 
shown in Figure 13.3. The figure displays a general RNN framework with an LSTM 
cell as well as the LSTM cell’s intricate manifestation, where Ni represents input neu-
rons, No represents an output neuron, Ct and Ct 1−  represent the cell memory’s state at t 
and t 1−  trainings, while ht  and ht 1−  represent the hidden state at t and t 1−  trainings.

The first step in ascertaining the performance of the models is to compare their 
predictions to the output of the original 2D multiscale CFD model. The 3D multi-
scale CFD model was then contrasted with it using the identical operating conditions 
and reactor layout. The models that are produced after the training are validated 
using a set of test conditions. Although there is a strong agreement between the find-
ings of the 2D multiscale CFD model and the RNN-based integrated data-driven 
model, the authors reported that it would be beneficial to further validate the data-
driven model using computations from a full 3D multiscale CFD model. The RNN 
estimates and CFD results, particularly for O-Cycle, closely resemble one another, 
as shown in Figure 13.4. The Hf-cycle RNN model’s deviation is a little bit larger 
since Hf-reaction cycle’s paths are more intricate. To determine the best operating 
strategy, the authors deployed the data-driven model’s prediction capacity. In order 
to maximize the production capacity of PEALD processes, cycle times were reduced 
while maintaining the desired film quality at preferably the most attainable cover-
age. Sequel to this, the built model is utilized to forecast the system dynamics for 
a broad range of input flow rates from 2.5 10  kg/s6×  to 9.75 10  kg/s4× , being the 
typical range of operating flow rates, in order to meet both needs. Figure 13.5a–c 
represents the dynamic profiles for 0-cycles specified range at inner, middle and 
outer water space, respectively.

Generally, the research offers a thorough analysis of the use of deep learning algo-
rithms to enhance the PEALD method for producing thin films of hafnium oxide. 
The outcomes show how the suggested method can effectively forecast film qualities 
and optimize process variables, which have the potential to considerably increase 
PEALD’s efficiency and dependability.

FIGURE 13.3 Methodological framework of the built (long short-term memory) LSTM-
ANN [25].
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13.3.2  structuraL zone diagraM anaLysis for  
the synthesis of thin fiLMs

Another dimension of deep learning applications is revealed in the research by Banko 
et al. [36]. In this research, the authors investigated the use of generative deep learn-
ing techniques, namely, variational encoder (VAE) and generative adversarial neural 
network (GAN) to forecast structure zone diagrams (SZDs) in thin film synthesis, 
particularly in ALD. This research was motivated by the necessity of microstruc-
ture analysis in a multi-parameter zone toward optimal extrinsic attributes which 
typically requires an excessive number of experiments to test. The authors therefore 
suggested the integration of combinatorial experimental procedures with generative 
deep learning models to discover synthesis–composition–microstructure relations in 
order to master the complexity of thin film processing microstructures and to lower 
the cost of microstructure design. The research established that generative models 

FIGURE 13.5 Dynamic profiles for O-Cycle for flow rates (kg/s) for (a) inner, (b) middle, 
and (c) outer wafer regions.

FIGURE 13.4 Comparison of recurrent neural network (RNN) for two half-cycles in the 
reactor without the showerhead. (a) Hf-Cycle. (b) O-Cycle.
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offer hitherto novel levels of quality in generated SZDs that can be used to opti-
mize chemical composition and processing conditions in order to achieve the ideal 
microstructure.

SZDs are an effective instrument for comprehending the connection between a 
material’s composition and its qualities, and they can aid in forecasting the ideal 
synthesis conditions to achieve desired material characteristics. Given that genera-
tive adversarial networks (GANs) are able to learn the underlying distribution of 
data and produce new data samples that match the distribution, the authors suggest 
using GANs to predict SZDs in thin films. The study trained a generative model 
exclusively on experimental data and predicted accurate process–microstructure 
interactions. Further to this, the developed technique minimized complexity in the 
following ways: (i) conducting a small number of experiments and effectively creat-
ing large training datasets using “processing libraries,” (II) processing images of 
SEM microstructure using the trained deep learning models, (III) visualizing com-
mon characteristics between various synthesis routes, and (IV) forecasting micro-
structures for parameter settings using connections revealed in the training data. 
Material from metal transition nitrides was considered in this research.

Using the conditional variables, the authors use the GAN model to predict micro-
structures. Moreover, they needed to define what the model is capable of learning 
from the experimental data before they could classify the level of prediction. The 
baseline is created by rebuilding a microstructure from the training set. The figura-
tive comparison of the particle size distribution of experimental and predicted images 
is as shown in Figure 13.6. By considering two input factors, namely, conditional 
parameters and a latent sub-space with random noise, the GAN was able to pro-
duce these microstructure images. The histograms in Figure 13.6 display the particle 
counts from 100 patches of both experimental and predicted images. More results 
from the study are presented in Figure 13.7 which is a further representation of the 
predicted and experimental microstructural images. The generated SZDs had good 
agreement with the experimental findings, demonstrating the potential of GANs to 

FIGURE 13.6 Comparison of experimental and predicted microstructural images of scan-
ning electron microscopy (SEM) and GAN model, respectively [36].
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forecast the ideal circumstances for thin film synthesis. The ability to construct SZDs 
for a variety of materials without prior knowledge of the material’s properties or 
synthesis circumstances is a noteworthy benefit of the suggested approach. This is 
especially helpful for materials that have not been thoroughly explored because it 
enables a quick study of the synthesis conditions and material property prediction. 
The research shows a promising use of deep learning algorithms in thin film syn-
thesis and ALD, particularly in the area of SZD prediction. The development and 
improvement of novel materials with desired qualities could be greatly accelerated 
by the suggested method.

13.3.3  acceLerated deeP Learning dynaMics for  
atoMic Layer dePosition

A case study of the use of deep learning algorithms for speeding up the simula-
tion of ALD processes is presented in the article “Accelerated Deep Learning 
Dynamics for Atomic Layer Deposition of Al(Me)3 and Water on OH/Si(111)” 
by Nakata et al. [37]. Having identified some of the current limitations of accu-
rate ab initio computational approaches, the study established that compu-
tational modeling cannot yet be used to simulate surface processes that occur 
over a lengthy period of time, such as ALD. Furthermore, the large dataset pre-
requisite of machine learning models has motivated the authors to develop an 
iterative approach for optimizing training of the datasets and utilize the machine 

FIGURE 13.7 Comparison of the experimental and predicted microstructure (modified 
parameters for both experimental and predicted images) [36].
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learning-assisted ab initio calculations for modeling of surface reactions that take 
place during the Al(Me)3/H2O ALD process on the OH-terminated Si (111) sur-
face. The approach developed in the research takes advantage of a newly estab-
lished low-dimensional projection technique (two-dimensional umbrella sampling 
method, TDUS), which significantly reduces the quantity of data needed to pro-
duce developed deep learning models with high accuracy. The adsorption and 
reaction kinetics of Al(Me)3 and water on an OH-terminated Si(111) surface, a 
typical substrate used in ALD procedures, are predicted by the authors using a 
deep learning model. The DeePMD kit package31, which was interfaced with 
the TDUS included in LAMMPS software, was used to train the neural network 
enhanced molecular dynamics simulations. In the architecture, five hidden layers 
were employed for the deep neural network, with 240, 240, 120, 60, and 30 neu-
rons per hidden layer. Figure 13.8 represents the deep neural network potential at 
300 K results in a two-dimensional free energy surface (FES) along reaction r06. 
The suggested ML-TDUS technique reduces deep learning training time by more 
than 100. ML-TDUS applied to the ALD of Al (Me)3 and water on the OH/Si (111) 
surface converges the target free energy RMSE below 1.0 kcal/mol in eight itera-
tions. ML-TDUS free-energy landscapes showed new surface states and reaction 
paths that static quantum-mechanical computation could not identify. The work 
reveals how deep learning algorithms may speed up ALD process simulation, 
which is promising for ALD. The suggested method may greatly speed up the 
search for and development of new materials with desired qualities, which could 
have substantial effects on a range of technological applications.

FIGURE 13.8 Free energy surface (FES) in two dimensions along reaction r06 as deter-
mined by neural net potential at 300 K [37].
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13.3.4  3d characterization of uLtra-thin ePitaXiaL 
Layers dePosited on nanoMateriaLs

A cutting-edge technique was developed by Grzonka et al. [34] for the 3D charac-
terization of the nano-system compositions by integrating energy dispersive X-ray 
spectroscopy-scanning transmission electron tomography (STEM-EDX ET) and the 
denoising approach of the deep learning techniques. This research demonstrates a 
case study of how deep learning techniques were used to characterize ultra-thin epi-
taxial layers deposited on controlled-shape nano-oxides in three dimensions. For the 
3D characterization of epitaxial layers, the authors suggest a unique method that 
combines deep learning and compressed sensing approaches. The suggested method 
entails collecting a number of 2D photographs of the epitaxial layer using SEM 
and reconstructing the 3D structure of the layer using a deep learning algorithm. 
To reduce the number of images needed to precisely recreate the 3D structure, the 
scientists additionally use compressed sensing approaches. The characterization of 
epitaxial layers formed on nano-oxides is used by the researchers to show the viabil-
ity of their suggested methodology. The findings demonstrated that the suggested 
method can more precisely reconstruct the 3D structure of the epitaxial layer utiliz-
ing a great deal lesser SEM image compared with the conventional techniques. The 
concept put forward in this case study has significant implications for the epitaxial 
development research space, especially in the context of optimizing cell growth to 
yield satisfactory material qualities. The suggested method enables fine control of the 
growth conditions, which can result in the synthesis of novel materials with desired 
properties by correctly describing the 3D structure of the epitaxial layer. A promis-
ing use of deep learning methods is shown, specifically in the 3D characterization 
of extremely thin epitaxial layers revealed in this research. The suggested method 
may greatly speed up the search for and development of new materials with desired 
qualities, which could have substantial effects on a range of technological applica-
tions. A comparison of the raw experimental EDX maps with the ones that were 
denoised using a deep learning algorithm for the projections obtained at 40° and 
40° tilts is presented in Figure 13.9. With this procedure, it can be seen that the 
signal quality is significantly improved compared to the original data. Hence, the 
structure of the signals is smooth and crisp, while the clouds of scattered points that 
surrounded the nano-cube were eliminated in the denoised elemental map recorded 
at 0° tilt. For more details about the result of the integrated deep learning and SEM 
framework, readers can visit the article “Combining Deep Learning and Compressed 
Sensing Methods for the 3D Characterization of Ultra‐Thin Epitaxial Layers Grown 
on Controlled‐Shape Nano‐Oxides” by Grzonka et al. [34].

13.3.5 MicroscoPic iMage debLurring for a nanoMateriaL

Further in the application of deep learning techniques in thin film generation, opti-
mization, processing, and characterization is the case study of a research by Dong 
et al. [13] which is focused on a deep learning–based approach for improving the 
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quality of microscopic images of 2D nanomaterials used in semiconductor produc-
tion. The authors proposed a generative adversarial network (GAN) to eliminate 
blurs in the images produced from microscopic observation and concentrate on the 
use of ALD in the creation of 2D materials. The result of the research was intended 
to enhance a microscopic 2D characterization of atomic layer of wafer-scale semi-
conductors. Having firstly established the difficulties of imaging 2D materials with 
conventional microscopy methods including low contrast and resolution as well as 
blurring because of the materials’ structural thickness, the authors proceeded by 
demonstrating how they plan to deblur the image using a GAN, which is made up of 
a generator and a discriminator network. The discriminator network is taught to dis-
tinguish between the real and created images, while the generator network is trained 
on a set of high-quality images to learn the underlying structure of the samples. In 
this research, a deep learning algorithm, namely, GAN was created to deblur out-of-
focus microscopic images of 2D semiconductors using the Pix2Pix architecture and 
a modified loss function. A sample of MoS2 with a 270 nm oxidation thickness was 
measured on a SiO2/Si surface. Images with varied degrees of defocus were chosen 
for testing that included both in-focus and out-of-focus photos.

The performance and effectiveness of the GAN-enhanced microscopic imagery 
deblurring (MID)-generated images were evaluated using structural similarity (SSIM) 
and peak signal-to-noise ratio (PSNR) assessment metrics. In order to forecast the 
number distribution maps, the in-focus photos, out-of-focus images, and refocused 
images produced by MID were sent into a pre-trained segmentation model51 (U-Net). 
Also, various GAN model loss functions were contrasted in order to evaluate the seg-
mentation and deblurring capabilities. The researchers observed that their GAN-based 
method was able to greatly improve the quality of the images, producing clearer and 
more distinct features in the samples when compared to results acquired using a con-
ventional deconvolution algorithm. The authors went ahead to explain the significance 

FIGURE 13.9 HAADF-STEM (scanning transmission electron tomography) images of 
the nanocubes compared with the raw EDX data and deep learning-assisted denoised EDX 
maps [34].
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of their research for wafer-scale semiconductor characterization, emphasizing how 
their technique may enhance the effectiveness and precision of quality control in semi-
conductor manufacturing. In order to provide real-time image processing and analysis, 
they also examine the feasibility of merging their approach with already-in-use imag-
ing techniques. Figure 13.10 shows the process of deblurring microscopic images by 
MID and reconstructing distribution maps of species with various atomic layer counts 
by the U-Net model for 2D nanosheets. Figure 13.10a represents the typical micro-
scope image, while Figure 13.10b shows a new microscopic image. In Figure 13.10c, 
a microscopic image that has been fixed using the linear preprocessing technique is 
presented, while in Figure 13.10d–f, the red and green channel values of the mono-
layer region in Figure 13.10a–c, substrate region, and full FOV image are revealed. 
Figure 13.10g,h predicts segmentation outcomes for the experimental images’ origi-
nal and corrected versions, and Figure 13.10i presents the reference and experimental 
microscopic images’ sampled pixels’ CIE color space. Conclusively, in this research, 
a novel and promising method for improving the quality of microscopic photographs 
of 2D nanomaterials utilized in semiconductor production is presented. A GAN-based 

FIGURE 13.10 Deblurring process of the GAN-MID (microscopic imagery deblurring) [13].
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technique is used to deblur the images, which is a substantial advancement over con-
ventional deconvolution algorithms and has the potential to increase the effectiveness 
and precision of semiconductor production operations.

13.3.6  MicroscoPic iMage Processing for a 2d 
identification of dePosited MateriaLs

Recent years have seen the development and implementation of deep learning–based 
algorithms in a variety of image processing tasks, from simple 2D handwritten digit 
recognition to object detection in videos by learning from annotated data [1,30]. The 
three key image processing tasks, namely, classification, segmentation, and detec-
tion which are required for the identification of atomic layer numbers based on opti-
cal contrast information from the standpoint of computer vision were explored in the 
research by Dong et al. [29] focused on the development of deep learning algorithms 
for the identification of 2D semiconductors. The robustness of three deep learning 
architectures—DenseNet, U-Net, and Mask-region convolutional neural network 
(RCNN)—were assigned to these tasks while their performance was then assessed 
based on enhanced 2D microscopic images with various variations in optical contrast. 
Generally, a deep learning–based classification (single or multilabel) assignment can 
be used for flakes class prediction [31], while a detection model can classify and local-
ize various 2D flakes using bounding boxes around the objects of interest [33], and a 
detection model can generate a segmentation map for the presented categories [32]. 
To identify, categorize, and separate these materials in the images, the authors built a 
deep learning model using a dataset of microscopic images of 2D semiconductors. To 
increase the precision of the predictions, they trained the model using a combination 
of CNN and RNN. Figure 13.11 represents the dataset construction methodology with 

FIGURE 13.11 Methodological framework of the building of the threefold computer vision 
task in the case study [29].
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the three network designs for multilabel segmentation, classification, and detection, 
respectively. Figure 13.11 also shows the computer vision tasks for processing images 
of 2D materials, comprising multilabel classification using DenseNet, segmentation 
using U-Net, and detection using Mask-RCNN while revealing the outputs from three 
neural network designs that were fed the same. The control parameters of the training 
and each architecture’s dataset are also revealed in Figure 13.11.

The statistics of the training and testing datasets based on RGB optical contrast dif-
ferences and CIE 1931 color space analyses were used to analyze the neural network 
models’ performances. In the original dataset, lateral categories differ statistically 
in terms of CIE1931 color-spaced distribution and RGB optical contrast disparities. 
The distinction between different categories shrank and overlapping regions showed 
up in the point distribution from the CIE 1931color space study when optical contrast 
variations were used to enhance the original datasets, which decreased prediction 
accuracy. Figure 13.12a represents the original and enhanced RGB images that have 
diverse sampling numbers in the gamma contrast function and the current flake-type 

FIGURE 13.12 The raw data and the performance of the classification task of the denseNet 
model at different test sets [29].
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prediction, while Figure 13.12b represents a RGB image with several flake types and 
a prediction of the ones that will appear. Figure 13.12c–e shows the performance of 
the denseNet model at different test sets, while Figure 13.12f–h presents the statisti-
cal metrics value of the accuracy of the classification with DenseNet models. The 
identification of 2D semiconductors using deep learning algorithms is demonstrated 
in the study. This application could have significant ramifications for the creation of 
cutting-edge electronic gadgets. The suggested method can considerably cut down on 
the time and work needed to identify these materials, and it may also help find new 
materials with desirable electrical properties.

13.4  SOME REAL-LIFE CHALLENGES IN THIN FILM DEPOSITION 
AND MACHINE LEARNING-BASED SOLUTIONS

Electronics, optics, coatings, and the energy sector all heavily rely on the vital and intri-
cate thin film deposition process. However, mass-production of uniform, high-quality 
films is difficult, and operational errors and failures can make it worse. Process charac-
teristics like temperature, pressure, and gas flow rates, as well as equipment and mainte-
nance concerns, cause these deficits. Machine learning-based solutions that can optimize 
the thin film deposition process and address these problems can be developed in response 
to these operational difficulties and pitfalls. The ability of machine learning techniques 
in proffering solutions to several problems in ALD and thin film synthesis has been stud-
ied in some previous chapters. Machine learning algorithms are capable of analyzing 
data from numerous sensors throughout the deposition process in the context of thin film 
deposition and making instantaneous modifications to the process parameters. Better and 
more reliable thin films can be produced over time thanks to these algorithms’ capacity to 
learn from the data. This section discusses a few case studies of real-life operational diffi-
culties and pitfalls encountered during industrial-scale thin film deposition, as well as the 
machine learning-based solutions created to overcome them. These case studies highlight 
how crucial it is to comprehend the operational difficulties and traps that thin film deposi-
tion presents, as well as the vital role that machine learning can play in minimizing these 
problems. Researchers and engineers can create more effective and efficient thin film 
deposition techniques that can satisfy the needs of diverse sectors by understanding these 
problems and their solutions. The information provided in this chapter was acquired from 
a number of resources, including websites, reports, bulletins, interviews, and literature 
on thin film deposition and ALD procedures. The specific identities and origins of this 
information, however, cannot be revealed due to privacy, confidentiality, and information 
security restrictions. Privacy, confidentiality, and information security laws prevent the 
disclosure of this material’s origins.

13.4.1  achieving uniforM dePosition or coatings in  
seMi-conductor, coating, and aerosPace industry

13.4.1.1 Challenge
A critical challenge was identified in a semiconductor coating and aerospace 
industry, which uses deposition of thin films. A crucial part of the semiconductor 
business is obtaining homogeneous thin film materials across enormous silicon 
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wafers. The coatings business as well encounters a variety of difficulties when 
trying to apply uniform coatings on surfaces with diverse geometries. Variations 
in surface morphology or the surface texture and characteristics of a material 
represent a critical challenge of the coating industry. The final coating quality 
and adhesion of a coating to a surface are both influenced by its shape. Coatings 
applied to surfaces with complicated geometries or uneven surfaces may not 
adhere uniformly, leading to uneven thickness, a rough texture, or even coating 
failure. Moreso, these varying conditions may lead to irregularities in the deposi-
tion process, resulting in nonuniform film thickness and flaws in the electrical 
devices produced in the semiconductor industry. The industries frequently use 
time-consuming and expensive trial-and-error techniques to determine the ideal 
deposition conditions. This identified challenge is typical of all semiconductor 
industries. The wafer’s deposition rate varies, causing nonuniformity. Wafer sur-
face variations, temperature gradients, and other factors may cause this. When 
these differences take place, the deposition of the material may build up more 
quickly in some regions of the wafer than in others, resulting in an uneven film 
thickness.

13.4.1.2 Machine Learning Solution
The literature is replete with machine learning-based approaches for addressing this 
particular optimization challenge [38,39]. Moreso, we have examined in previous 
chapters potential applications of machine learning for optimal process optimiza-
tion and condition monitoring. Recently, experts have also created machine learning 
algorithms that can forecast the ideal deposition circumstances for producing homog-
enous films in overcoming this challenge in semi-conductor and coating industries. 
Throughout the deposition process, the machine learning multi-dimensional optimi-
zation algorithms which use data from numerous sensors to optimize the process can 
make real-time modifications in these particular scenarios. In the coating industry 
as well, the algorithm can modify in real time to maintain consistent coating thick-
ness and quality across a variety of surfaces with different geometries by taking into 
account the surface shape and other elements that can influence the coating process. 
The approach is based on a neural network that can gain knowledge from the infor-
mation gathered by the sensors and utilize it to forecast the ideal circumstances for 
deposition. The neural network can recognize patterns and correlations between the 
input variables and the produced film uniformity since it has been trained on a siz-
able dataset of deposition conditions and associated film thicknesses. Using the sen-
sor data gathered throughout the procedure, the model may be used to anticipate the 
ideal conditions for deposition in real time once it has been trained. This technique’s 
capability to manage the intricate relationships between various variables that can 
affect the deposition process is explored to address this challenge. As opposed to the 
traditional trial and error method, the machine learning algorithm can swiftly assess 
massive volumes of data and pinpoint the ideal circumstances for deposition, result-
ing in a swifter and more reliable production. The difficulty of producing consistent 
thin films in the semiconductor industry has an optimal solution to this. This deposi-
tion approach increases electrical device reliability and performance in numerous 
applications. Neural networks and real-time sensor data enable this. The operators 
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running the process can use this machine learning-based optimization algorithm as 
a support tool to assist them make smarter choices in order to increase production. 
These machine learning-based optimization algorithms create a “production-rate” 
environment that features upward and downward slopes reflecting high and low 
production scenarios. Further to this, the algorithm searches this environment for 
the highest peak that corresponds to the highest achievable production rate. Figure 
13.13 represents a typical working principle of machine learning-based optimization 
algorithms that search for optimal production rates based on some variables. The 
algorithm can provide advice on how to best reach this optimization milestone by 
navigating this production rate environment.

13.4.2  defects detection and controL in soLar 
ceLL Manufacturing industry

13.4.2.1 Challenge
A solar panel producer which creates a sizable batch of solar cells that will be applied 
to a solar power facility was identified. Each solar cell is made of thin layers of semi-
conductor material like silicon and produces a certain quantity of electrical energy 
when exposed to sunlight. After being formed, the cells have quality issues and don’t 
perform well. On closer inspection, it was found that some of the cells’ thin lay-
ers have flaws such as pinholes and cracks. These flaws reduce the cells’ efficiency, 
which lowers their capacity to produce energy.

13.4.2.2 Machine Learning Solution
Borrowing from our previous discussion of machine learning applications in thin 
film deposition, we can proffer a solution to this challenge by using a deep machine 
learning-based defect detection technique. This approach can be initiated by gather-
ing an extensive archive of thin film images using optical, X-ray, and SEM micros-
copy. Machine learning algorithms can precisely identify and categorize thin film 

FIGURE 13.13 Multi-dimensional optimization principle of machine learning.
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flaws by being trained on labeled datasets of these images, allowing producers to 
optimize their manufacturing processes and raise the caliber and dependability of 
their goods. The CNNs are an ideal algorithm for this particular problem owing to 
their excellent ability for spotting flaws in thin films because they can automatically 
learn to recognize patterns in images. A labeled dataset of visual data is needed to 
train a CNN for defect detection. A range of images with and without faults, repre-
senting various defect types and severity levels, would be included in the collection. 
The CNN is subsequently trained using the labeled dataset, which entails modifying 
the network’s weights to reduce the discrepancy between each image’s true label and 
the predicted label. Once the CNN has been trained, it may be used to analyze new 
images of thin films and accurately identify flaws. In addition, CNN may be used to 
categorize defects according to their nature and severity, assisting manufacturers in 
finding the source of the faults and streamlining their production methods to lower 
defect density. For the purpose of defect detection in thin films used in solar cells, 
in addition to CNNs, various other machine learning techniques can be applied. 
For this reason, decision trees and support vector machines (SVM) have both been 
employed. The particular application and the type of imaging data being examined 
will determine which algorithm is used. Solar cell manufacturers may optimize 
their manufacturing processes and lower production losses by detecting flaws in real 
time. Furthermore, machine learning-based defect detection may enhance the qual-
ity and dependability of products, lowering the possibility of product recalls and 
boosting the overall satisfaction of customers. Deep learning approaches have been 
used in a number of studies and research projects to identify cracks and other thin 
film problems. These researches have demonstrated the ability of machine learning 
techniques, to precisely identify and categorize thin film flaws, thereby enhancing 
product quality and minimizing production losses. Manufacturers can enhance depo-
sition conditions and boost the overall performance of thin-film-based technologies 
by being able to recognize and quantify flaws. Solar cell production is one practical 
setting in which these results can be put to use. For the conversion of solar energy 
into electrical energy, solar cells use thin sheets of semiconductor materials. The 
solar cell’s overall performance and efficiency can be negatively impacted by flaws in 
these thin sheets. Manufacturers can precisely identify and categorize faults in thin 
films using machine learning-based defect detection approaches, allowing them to 
improve the deposition conditions and lower the defect density. As a result, the solar 
cells will operate more effectively and cost-effectively, which is crucial for tackling 
the global climate crisis. They will also perform better overall.

13.5 CONCLUSION

Deep learning has evolved as a critical tool that has proffered solutions to a wide 
range of complex problems in different areas of research, including thin film deposi-
tion using ALD. Deep learning algorithms’ capacity to evaluate huge, complicated 
datasets has enabled new understandings of thin film technology and ALD. The case 
studies presented and reviewed in this chapter show how deep learning has the abil-
ity to enhance thin film quality, optimize the deposition process, decrease defects, 
and improve ALD process performance and efficiency. However, deep learning’s 



326 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

application in ALD still has a number of drawbacks and difficulties. Lack of adequate 
data for model training, which can result in overfitting or subpar generalization, is 
one of the main issues. The requirement for interpretability and transparency pres-
ents another difficulty, particularly when deep learning models are applied to crucial 
applications. To overcome these hurdles, novel strategies for data augmentation and 
construction of hybrid models that mix deep learning with other techniques such as 
physics-based modeling must be explored. Moreover, initiatives must be taken to 
create comprehensible and explainable deep learning models’ outcome that can offer 
perceptions into the algorithmic decision-making process. It is very promising that 
the use of deep learning in ALD would advance thin film technology and lead to 
novel insights. Deep learning’s difficulties and restrictions can be resolved with new 
strategies and extensive research. Deep learning has the potential to transform the 
ALD research space and result in significant discoveries in materials science with 
further growth and improvement.
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14 Feature Engineering in 
Atomic Layer Deposition

14.1 INTRODUCTION

This chapter examines another significant machine learning application in atomic 
layer deposition (ALD) namely the feature engineering technique for selecting and 
modifying raw data in order to create suitable features that may be used effectively 
by machine learning algorithms [1]. Further to this, the entire spectrum of the impact 
of feature engineering methodology of extracting significant features from the enor-
mous amounts of data collected during the deposition process in enhancing its preci-
sion and efficiency is investigated. Readers are encouraged to visit previous chapters 
to recall fundamental ideas and theory of feature engineering techniques in machine 
learning. Feature engineering plays a crucial role in the modification of material 
characteristics and the optimization of film quality. While deep learning, classifica-
tion techniques, and predictive analysis studied in previous chapters have demon-
strated exciting potentials and functionalities in ALD, their performance is strongly 
contingent on careful choice and transformations of the pertinent features in ALD 
data, which is where feature engineering hold significance. In addition, feature engi-
neering is essential to the success of the deposition process, optimizing everything 
from the film’s adherence to the substrate to its mechanical and electrical properties.

14.2 TRADITIONAL TECHNIQUES OF FEATURE ENGINEERING

Despite the growth in the realms of machine learning applications, the traditional 
approach of feature engineering is still relevant. These techniques involve choos-
ing features based on their individual predictive strength and relevance to the target 
variable. In these approaches, the significance of features is assessed using statistical 
tests or heuristics, and a subset of the most instructive characteristics is then chosen 
for model training. According to Li et al. [2], these techniques could be based on 
statistics or theoretical information. In the statistics-based method, statistical tests 
are used to identify the variables that significantly affect the outcome variable [2,3]. 
These techniques seek to decrease the dataset’s dimensionality while keeping the 
most useful variables, leading to more effective and precise models. 

14.2.1 Low variance techniQue

A simple statistics-based classical feature elimination procedure called “Low 
Variance” is used in feature selection to find variables with low variability or values 
that are evenly distributed across a dataset. This approach is based on the theory that 
features with low variance are not informative and hence have little to no influence 
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on a model’s output [2]. This approach eliminates features whose variance falls 
below a predetermined level. We first determine the variance of each feature in the 
dataset before using this approach. A feature is deemed to be a low variance feature 
and is eliminated from the dataset if its variance falls below a predetermined thresh-
old. Either empirical research or domain knowledge can be used to set the threshold 
value. Because it is impossible to distinguish between instances belonging to vari-
ous classes when a feature’s variance is 0, it should be eliminated for features like 
these that have the same value for all instances [4]. Given that Boolean features are 
Bernoulli random variables, and that the dataset solely contains Boolean features, 
where feature values are either 0 or 1, it is possible to calculate the variance of the 
dataset as follows [4]:

 iance f p pscore ivar 1( ) ( )= −  (14.1)

where p is the ratio of instances that have a feature value of 1. The feature with a 
variance score below a set threshold can be immediately trimmed after the variance 
of the features has been determined. This approach has the benefit of simplicity and 
computational efficiency, while it might be helpful when working with high-dimen-
sional datasets where the ratio of features to observations is great [2]. This approach 
ignores feature correlation and just considers feature variance, which is a big down-
side. Strongly correlated features may have minimal variation but still provide useful 
information when coupled with other features.

14.2.2 t-score techniQue

The t-score is the ratio of group variation to mean difference. For feature selec-
tion, the t-score evaluates the difference in means between two groups for each 
attribute. The t-score method is used to solve binary classification problems since 
most samples have two values for the target variable [2]. Assume that for each fea-
ture fi, the associated standard deviation values are σ1 and σ 2, while µ1 and µ2 are 
the mean feature values for the instances from the first class and the second class, 
and n1 and n2 are the total number of instances from these two classes. Equation 
14.2 can be used to get the t-score for the feature fi [5]:
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The t-score gives an indication of how important each feature is in separating the two 
groups. Higher t-score attributes are more significant in separating the two groups and 
are therefore more likely to be chosen as relevant features. The fundamental goal of 
the t-score is to determine if a feature can statistically cause the means of two classes 
to differ from one another. To do this, it compares the variance of two classes to their 
mean differences. The more significant a trait is, typically, the higher the t-score.



331Feature Engineering in Atomic Layer Deposition 

14.2.3 f-score techniQue

The F-score is a statistical indicator that rates a feature’s significance according 
to how well it can distinguish between two or more classes in a given dataset [6]. 
Recall is the ratio of real positives to all actual positives in the dataset, whereas 
precision is the ratio of genuine positives to all projected positives. The F-score 
gives a single score that may be used to rate the significance of various elements 
in the dataset by striking a balance between precision and recall. The F-score is 
used in feature selection to determine which features are most pertinent to a given 
problem. In contrast to the t-score technique which can only handle a binary clas-
sification, the f-score can be utilized for a multi-class classification by determining 
if a feature can effectively separate samples from several classes. The f-score can 
be calculated using both the within-class variance and the between-class variance 
as in Equation 14.3 [2]:
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where nj  represents the number of instances from class j, µ denotes the mean feature 
value, while jµ  is the mean feature value on class j, and the standard deviation of 
feature value on class j is denoted as jσ , respectively. The more significant a feature 
is, according to the t-score, the higher the f-score.

14.2.4 chi-sQuare score techniQue

The chi-square score technique can be utilized to select the features that are 
most pertinent or informative for a certain classification or regression task. The 
chi-square statistic for each feature is first computed, which is a measurement 
of how much the distribution of that feature’s values deviates from what would 
be anticipated if it were independent of the target variable, in order to execute 
feature selection using chi-square. To do this, a contingency table that displays 
the frequency distribution of the feature values and the target variable together 
is constructed [7]. To determine if a feature is independent of a class label, the 
chi-square score applies the test of independence. The chi-square score of a 
given feature can be calculated as follows when the feature has r different feature  
values [7]:

 Chi square score f
n

i

j

r

s

c
js js

js

_ _  
1 1

2

∑∑ µ
µ

( )( ) =
−

= =

 (14.4)

where njs is the quantity of cases that has feature jth   feature value for feature fi. The 
relative importance of the feature is indicated by a greater chi-square score.



332 Machine Learning-Based Modelling in Atomic Layer Deposition Processes

14.2.5 MutuaL inforMation MaXiMization 

The conventional feature selection method known as Mutual Information 
Maximization (MIM) tries to choose the most informative subset of features that 
are pertinent to a particular prediction job [8]. It is founded on the idea of recipro-
cal information, which quantifies how dependent two random variables are on one 
another. The importance of each feature in relation to the target variable is assessed 
in the context of feature selection using mutual information. MIM gauges a feature’s 
significance by examining its relationship to the class label. It is predicated that a fea-
ture can aid in achieving good classification performance when there is a substantial 
association between it and the class label [9]. For a fresh, unselected feature named 
xk, the mutual information score is:

 J X I X YMIM k k  :( ) ( )=  (14.5)

It is clear that in MIM, each feature’s score is evaluated independently from all 
other features. As a result, only the feature correlation is taken into account in 
MIM, and the feature redundancy property is completely disregarded. The feature 
with the highest feature score is picked and added to the group of features that have 
been selected after it calculates the MIM feature scores for all unselected features 
[10]. Until the desired number of selected characteristics is obtained, the process 
is repeated.

14.2.6 MutuaL inforMation feature seLection 

The assumption that features are independent of one another is a drawback of the 
MIM feature selection criterion [2]. In practice, however, desirable characteristics 
shouldn’t just be substantially connected with class labels but also shouldn’t be sig-
nificantly correlated with one another [11]. In other words, it is best to reduce the 
correlation between attributes. The feature score for a new unselected feature Xk  
can be calculated using the Mutual Information Feature Selection (MIFS) criterion, 
which takes into account both feature relevance and feature redundancy in the fea-
ture selection phase. The following formula can be used to calculate the feature score 
for a new, unselected feature, Xk [11]:
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The mutual information between each feature and the target variable is computed by 
MIFS. The most pertinent qualities are those that have the most mutual information. 
By repeatedly adding features with the highest mutual information until the neces-
sary number of features is reached, the method can be expanded to choose a subset 
of features.
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14.2.7 MiniMuM redundancy MaXiMuM reLevance 

The Minimum Redundancy Maximum Relevance (MRMR) is used frequently to 
choose pertinent features from large, dimensional datasets. By decreasing redun-
dancy among them, MRMR seeks to isolate a group of features that are extremely 
pertinent to the target variable. The MRMR criterion was introduced by Peng et al. 
[12], in contrast to MIFS, which experimentally sets  β to be one:
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Two criteria are used in the MRMR approach: relevance and redundancy. Relevance 
is the level of information a characteristic provides about the target variable. When 
two or more features provide substantially similar information about the target vari-
able, this is referred to as redundancy. The MRMR technique aims to reduce feature 
redundancy while maximizing the relevance of chosen features.

14.3  OVERVIEW OF MACHINE LEARNING-BASED 
FEATURE ENGINEERING TECHNIQUES

By creating a desirable feature space that accurately depicts the underlying problem 
to the prediction models, feature engineering tries to maximize machine learning 
models [1,13]. Because the raw data are not in a format that allows for learning, 
feature engineering is required [35]. Therefore, every effort to correct flaws, whether 
through the generation of new features, the filtering of existing features, or the map-
ping of existing features, should be covered by feature engineering. In general, fea-
ture engineering is the process of turning raw data into features that are relevant or 
useful for solving prediction challenges by using particular techniques of feature 
processing, such as feature building, selection, and extraction [1]. Although the idea 
of feature engineering has been known for a while, researchers still have divergent 
interpretations of what it means and how it might be used [1]. According to some 
scholars, the primary goal of feature engineering is to ease the curse of dimension-
ality brought on by the data’s rapid evolution [14]. To decrease data dimensional-
ity, remove redundancy, and reduce noise, feature engineering should incorporate 
feature selection and extraction. Other researchers opined that the primary goal of 
feature engineering is to improve machine learning by optimizing the feature space 
representation [15]. Therefore, feature engineering should also involve feature con-
struction, which tries to give the prediction model useful features alongside feature 
selection and extraction. It is the last phase of data preparation in the process flow 
chart of the machine learning task, as illustrated in Figure 14.1. Feature engineering 
is the in-depth processing of raw data that concentrates on addressing data irrel-
evance, redundancy, and incompatibility as opposed to data preprocessing, which 
addresses issues such as missing data, errors, and inconsistencies. It provides a solu-
tion to a query of which characteristics have the biggest impact on the reliability and 
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accuracy of data-driven forecasts [16]. Feature engineering strengthens the impor-
tance of the input information to the forecast parameters (the output data) while 
decreasing their redundancy and noise to enhance the effectiveness, accuracy, and 
robustness of machine learning algorithms [17]. This is done by the filtering and 
reconstruction of the raw data.

Whilst this chapter gives a brief overview of the basic ideas and ALD uses of 
feature engineering in machine learning-based learning, it is crucial to recognize 
that the subject is wide and constantly evolving. As such, it is very important to 
understand that this chapter does not attempt to provide exhaustive coverage of the 
subject. For more intensive and comprehensive information and understanding of the 
theory, practices, and most recent developments in feature engineering, readers are 
recommended to explore additional and specialized textbooks. Once raw data have 
been collected, cleaned, and pre-processed, future engineering involves the follow-
ing three important processes:

 i. Future selection
 ii. Feature transformation
 iii. Feature extraction

14.3.1 feature seLection

High-dimensional data can be effectively and efficiently prepared for data mining and 
machine learning challenges using feature selection as a data preparation approach. 
Building easier-to-understand models, enhancing data mining performance, and 
creating clear, understandable data are all goals of feature selection [2]. Big data’s 
recent explosion has created both significant obstacles and opportunities for feature 
selection algorithms. Larger processing and storage requirements are associated 
with high-dimensional data. Furthermore, noisy, redundant, and irrelevant features 
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FIGURE 14.1 Workflow diagram of basic machine learning task [1].
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in these data contribute to the classification and regression algorithm’s poor perfor-
mance. The removal of redundant, irrelevant, and noisy attributes from the initial 
feature space makes feature selection necessary in order to pick an effective feature 
subset, reduce the dimensionality of the data, shorten training time, and simplify 
model interpretation [18]. Two broad categories of feature selection are the super-
vised and unsupervised approach as Figure 14.2 reveals.

The unsupervised feature selection approach does not involve the target vari-
able while the supervised feature selection uses the target variable [19]. For clas-
sification or regression assignment, supervised feature selection is typically used 
as it seeks to identify a subset of features that may distinguish samples from 
various classes, while for clustering assignment, unsupervised feature selection 
is typically used [2]. Unsupervised feature selection methods look for alternate 
criteria to determine the significance of features, such as data similarity and local 
discriminative information, since label information is lacking to do so [2]. The 
filter-based supervised feature selection techniques utilize statistical metrics to 
evaluate the correlation and reliance of input factors to be filtered in order to select 
the most pertinent features [19]. The feature selection process requires domain 
knowledge and an understanding of the problem being solved, as well as careful 
consideration of factors such as the data distribution and the interactions between 
features. The categories of feature selection methods in supervised learning are 
summarized as follows.

14.3.1.1 Wrapper Technique
This approach employs a model to evaluate numerous feature subsets and select 
the most significant one. Each fresh subset is used to train a model, and a hold-
out set is used to evaluate the model’s performance. The features subset with the 
best model performance is selected [20]. To assess the quality of chosen features, 
wrapper approaches depend on the accuracy of predictions of a predetermined 
learning algorithm [2]. Wrapper approaches typically offer the best feature set 
for the particular model type selected, which is a significant advantage. Common 
feature selection approaches in this category are forward and backward selection 
and recursive feature elimination. Figure 14.3 shows the process flow diagram for 
wrapper methods.
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Forward selec�on
Backward selec�on
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FIGURE 14.2 Categories of feature selection techniques.
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14.3.1.2 Filter Technique
The filter method is a less complex and more direct replacement for the wrapper 
method. There are no learning algorithms involved with filter approaches. They rely 
on specific data properties to determine the significance of features [2]. The cho-
sen features, however, might not be the best ones for the target learning algorithms 
because there wasn’t a predefined learning algorithm to direct the feature selection 
phase. They use statistical metrics like correlation or mutual information to rank 
each feature in accordance with its statistical significance relative to the model’s 
aim [21,22]. Filter approaches are not only faster than wrappers, but they are also 
more general because they are model-agnostic and do not overfit to any particular 
algorithm. They are also quite easy to comprehend: a feature is deleted if it has no 
statistical significance to the purpose [20]. The chi-square score, t-score, f-score, 
Gini index, Pearson’s correlation, Spearman’s rank correlation, and Kendall rank 
correlation are popular feature selection techniques in this category.

14.3.1.3 Embedded Technique
Filter approaches are highly computationally effective since they choose features 
without using any learning algorithms. Since, they do not account for the bias of the 
learning algorithms, the chosen features might not be the best choice for the learn-
ing tasks. Wrapper approaches, on the contrary, might produce improved predicted 
accuracy for that particular learning algorithm by iteratively evaluating the signifi-
cance of features for the specified learning algorithms. However, when the feature 
dimension is high, it is computationally difficult in many applications due to the 
exponential search space [2]. Embedded methods offer a compromise between filter 
and wrapper techniques that integrate feature selection with model learning, and thus 
inherit the advantages of both types of methods. The feature selection method is inte-
grated into the model building process using the embedded technique. By combining 
filter speed with the capacity to find the perfect subset for a specific model, much as 
from a wrapper, the objective is to attain the best of both ways.

14.3.1.4 Feature Transformation
The technique of modifying data while retaining the information that the data give 
is known as feature transformation. This kind of data alteration will make it sim-
pler to comprehend machine learning algorithms and produce better outcomes [23]. 
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FIGURE 14.3 Process flow diagram of the wrapper feature section technique.
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The  objective of feature transformation, which is a mathematical modification, is 
to apply an equation and then transform the results for additional investigation, and 
produce a dataset where each format enhances the performance of your models. The 
ability of machine learning algorithms to comprehend the data they are working with 
is made possible through feature transformation. Because it frequently contains noise 
and unimportant details, raw data can be challenging for algorithms to analyze. Most 
data-driven models assume a normal distribution pattern of variables. However, in 
practical scenario, it is more probable that variables in actual datasets will have a 
skewed distribution. Feature transformation is a viable method for implementing the 
transformation of the skewed variables into normal distribution [24, 25]. The features 
in the dataset can be transformed to their fullest potential, which will ultimately 
assist the model’s application over time [26]. Since scaling reduces variability, the 
feature transformation technique lessens the impact of outliers. The nonlinear rela-
tionship between the independent feature and the target feature performs better in the 
model [27]. Feature transformation techniques are but not limited to the following.

14.3.1.4.1 Scaling
Scalability is a critical component of machine learning which informs the decision 
between local and global feature expansion. Scaling is a method used to normalize 
the independent variables within a dataset to a consistent range. Data pre-processing 
includes a procedure to address the presence of significantly disparate magnitudes, 
values, or units [28]. Furthermore, scaling establishes the standardization of features 
to a comparable dimension with identical ranges in a process called feature normal-
ization. This holds significance in the impact that of feature size on spectrum of 
machine learning performance. Examples of algorithms that can be affected by the 
scale of the features include those that use Euclidean distance metrics, like k-nearest 
neighbors or linear regression. Scaling is frequently advised in these situations. 

14.3.1.4.2 Normalization
A prominent feature transformation method in data preprocessing is normalization, 
which scales feature values to fall inside a given range or distribution. It is another 
critical component of feature engineering which ensures the suitability of the data for 
modelling. It lowers the influence of variations in the magnitude of the input char-
acteristics by normalization to increase the effectiveness and reliability of machine 
learning algorithms [29]. The data are scaled to a preset range using the min-max 
scaling approach, which is typically between 0 and 1. After removing the minimum 
value of the feature, it is accomplished by dividing by the range as in Equation 14.8. 
The data are scaled to have a mean of 0 and a standard deviation of 1 using the Z-zero 
normalization method as Equation 14.9 depicts. 

 y
x x

x x
norm
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max min

 
 

 
= −

−
 (14.8)

where ynorm = the normalized data, x = the mean of the variable, xmin = minimum vari-
able, and xmax= maximum variable:
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where z = z -sore, x is the score, µ is the mean, while σ  is the standard deviation.

14.3.1.4.3 Binning
Data from real-life scenarios are ambiguous and delineated with significant level of 
noise, outliers and extraneous redundant information and a high level of variability. 
Data binning, is a pre-processing and transformation method for data that help to 
lessen the impact of small observational mistakes and noise. It converts numerical 
data into category representations. The original data values are split up into discrete 
bins, and then they are substituted with a generic value computed with respect to the 
bin, thus giving a categorical variable features [30, 31]. When there is a nonlinear 
relationship between a variable and the target variable, binning is helpful because it 
can help to reveal relationships that might not be obvious when looking at the contin-
uous variable alone. Furthermore, the number of bins and the method of binning that 
is selected might have a big impact on the analysis’s outcomes. Because of this, it’s 
crucial to carefully assess the best binning approach based on the particulars of the 
problem. Beyond this realm of applications, binning can also serve as a discretization 
technique for transforming continuous characteristics, features, or variables into dis-
crete or nominal qualities, features, or intervals. Binning techniques are as follows:

 i. Equal-width (or distance) Binning: This approach divides the continuous 
variable’s range into bins of equal width. The algorithm splits the continu-
ous variable into a number of groups with bins or ranges that are all the 
same width. Let x represent the number of groups, and let max and min 
represent the highest and lowest values in the relevant column, the width is 
computed as follows:

 = −





w
max min

x
 (14.10)

While the categories are computed as follows:
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 ii. Equal depth (or frequency) Binning: The observations in this method are 
split into bins with equal frequencies. Assume n to be the number of data 
points while the anticipated groups be x, then the frequency would be com-
puted as in Equation 14.12. For instance, if we wanted to partition a continu-
ous variable with 100 observations into 4 bins, each bin would have 25 data:

 =freq
n

x
 (14.12)
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 iii. Optimal Binning: The objective of this approach is to identify the ideal 
binning approach that maximizes the variable’s predictive value. The best 
bin boundaries are often determined using statistical evaluations or machine 
learning algorithms.

14.3.2 feature eXtraction

Working with datasets containing hundreds (or even thousands) of features is getting 
more and more common in contemporary times. A machine learning model may 
get overfitted if the number of features matches or exceeds (or even exceeds!) the 
number of observations contained in a dataset [32]. Feature extraction techniques are 
deployed to overcome this challenge. A dataset’s dimensionality in machine learning 
is determined by the number of variables that were utilized to represent it. Feature 
extraction attempts to decrease the number of features, and the dimensionality of the 
data by generating novel features from the ones that already exist (and then removing 
the original features) while retaining as much useful information as possible. The 
majority of the information in the original collection of characteristics should then be 
able to be summarized by the new, smaller set of features. Through the combination 
of the original set, a condensed version of the original features can be produced [32]. 
Common techniques for feature extraction are as follows.

14.3.2.1 Principal Component Analysis 
Principal component analysis (PCA) is a statistical technique that may be used to dis-
cover the key features in data and minimize their dimensionality. In order for PCA to 
function, the data must be transformed into a new collection of orthogonal variables 
that best captures the original data’s variance. The basic goal of PCA is to maintain the 
maximum variance data set in high-dimensional data while simultaneously providing 
dimension reduction [33]. It decreases the number of dimensions and compresses the 
data by identifying the general features in the two-dimensional data. It is a given that 
some characteristics will be lost with dimension reduction, but the idea is that these 
attributes that go will reveal nothing about the population. Essentially, PCA combines 
highly linked variables to create a smaller group of artificial variables, known as 
“principal components,” that account for the majority of variation in the data [34].

14.3.2.2 Linear Discriminant Analysis 
A supervised learning algorithm called Linear Discriminant Analysis (LDA) is 
employed for classifying and reducing dimensionality. LDA seeks to maximize class 
separability while projecting a high-dimensional dataset onto a lower-dimensional 
space [35]. LDA also seeks to reduce spreading inside the class while maximizing the 
distance between the means of each class. LDA consequently employs within-class 
and between-class measurements [32]. This is a wise decision because, when data are 
projected in a lower-dimensional space, maximizing the distance between the means 
of each class can produce better classification outcomes (due to the decreased overlap 
between the several classes). These linear combinations are referred to as compo-
nents or discriminants. There are fewer discriminants than or equal to the number of 
classes divided by one [36].
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14.3.2.3 t-Distributed Stochastic Neighbor Embedding 
A machine learning approach called t-Distributed Stochastic Neighbor Embedding 
(t-SNE) is used to visualize high-dimensional datasets [37]. The technique attempts 
to preserve the pairwise distances between the data points while mapping high-
dimensional data points to a low-dimensional environment, usually 2D or 3D [38]. 
By reducing the divergence between a distribution made up of the pairwise prob-
ability similarities of the input characteristics in the original high-dimensional space 
and its equivalent in the reduced low-dimensional space, t-SNE reduces the variance 
between the distributions [32]. The t-SNE technique has gained popularity in the 
area of data visualization and has been used in a variety of tasks, including bioin-
formatics, image processing, and natural language processing. When used to visual-
ize complicated, high-dimensional datasets like word embedding or gene expression 
data, it has proven to be extremely beneficial.

14.3.2.4 Autoencoders
A specific kind of neural network known as an autoencoder is trained to compress 
input into a lower-dimensional form and then reconstruct the original data from this 
compressed representation. An autoencoder attempts to learn a representation of the 
input data that captures the most crucial information while ignoring noise and redun-
dancy [39]. Autoencoders have encoders and decoders. Encoders compress input data 
into a lower-dimensional vector. The decoder reconstructs the input data from this 
compressed representation [40]. Autoencoders project data from high dimensions to 
low dimensions through nonlinear transformations [32]. During training, the autoen-
coder reduces reconstruction error, the difference between input and reconstructed 
data. This usually involves gradient descent optimization. Denoising, convolutional, 
sparse, and variational autoencoders exist [32].

14.4  SIGNIFICANCE OF FEATURE ENGINEERING IN MACHINE 
LEARNING-BASED MODELING OF ALD PROCESSES

Choosing and manipulating ALD raw data into relevant features that machine learn-
ing algorithms can utilize to produce precise predictions or classifications is a critical 
role played by the process of feature engineering. Since it directly affects the model’s 
functionality and accuracy, it is a crucial component in machine learning. Due to the 
special qualities of ALD thin films, feature engineering is particularly crucial in the 
machine learning modeling of ALD. A self-limiting chemical reaction between con-
secutive precursors creates ALD films, producing a highly controlled and exact depo-
sition process. The precursor concentration, substrate temperature, exposure period, 
and other variables all affect how an ALD film behaves. These elements, however, 
do not instantly evolve into useful attributes that may be used in machine learning 
modeling. As a result, feature engineering is required to convert unstructured data 
into meaningful features that can be utilized to precisely forecast the characteristics 
of ALD thin films. The development of features based on precursor chemistries is one 
instance of feature engineering in ALD. This entails taking data from the precursor 
molecules, including, for example, molecular weight, boiling temperature, and vapor 
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pressure. Because the chemical characteristics of precursors have a direct impact on 
the chemical reactions that occur during the deposition process, these characteristics 
can be used to precisely predict the properties of ALD thin films.

The development of features dependent on the deposition circumstances is another 
instance of feature engineering in ALD. This entails converting unstructured data 
from deposition experiments, such as temperature, duration, and pressure, into perti-
nent features that represent the impacts of these circumstances on the characteristics 
of ALD thin films. Since the deposition circumstances directly affect the structure 
and morphology of the thin films, these traits can be used to predict the properties of 
ALD thin films with accuracy. The problem of limited data must also be addressed 
by feature engineering in ALD. Because ALD thin films are intricate systems, it 
takes a lot of information to fully describe their characteristics. ALD thin film exper-
imental data collection, however, can be time-consuming and expensive, leading to 
sparse datasets that might not be appropriate for machine learning modeling. By 
developing synthetic features that capture the underlying physics and chemistry of 
the ALD thin films, feature engineering can assist in resolving this problem. For 
instance, the electronegativity equalization principle, which stipulates that atoms in 
a molecule will exchange electrons equally if they have identical electronegativities, 
can be used to produce characteristics. Even with small datasets, these attributes can 
be utilized to precisely forecast the characteristics of ALD thin films.

ALD machine learning models must be optimized through feature engineering 
in addition to being crucial for accurately predicting the characteristics of ALD 
thin films. Feature engineering can enhance the performance and effectiveness of 
machine learning models by choosing and modifying relevant characteristics, which 
decreases the computational cost and time needed for predictions. In order to solve 
difficulties of fairness and bias in machine learning models of ALD, feature engi-
neering can also be applied. The resulting machine learning model might not be 
able to generalize to different precursors or deposition conditions, for instance, if 
the dataset utilized for modeling is skewed toward a specific precursor or deposition 
condition. By designing features that capture the underlying physics and chemistry of 
the ALD thin films and are not biased toward certain precursors or deposition condi-
tions, feature engineering can be employed to overcome this problem.

14.5  POTENTIAL APPLICATIONS OF FEATURE 
ENGINEERING IN MACHINE LEARNING-BASED 
MODELING OF THIN FILM AND ALD PROCESS

14.5.1 identifying Pertinent aLd features

There exists a significant variability in the impact of different variables of the depo-
sition process on thin film properties. The process of selecting the most pertinent 
features that have a significant impact on machine learning models’ predictive accu-
racy is known as feature selection. Some process parameters of the ALD process 
are contingent on some key input parameters. Process variables including precur-
sor concentrations, deposition time, temperature, and pressure that affect the growth 
rate, thickness, and other properties of thin films are examples of relevant aspects in 
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ALD. The optimization of the deposition process and the forecasting of the qualities 
and attributes of deposited films depend on the ability to recognize pertinent fea-
tures in ALD. An important parameter that influences the thickness and uniformity 
of formed films is deposition time. Although longer deposition times can result in 
thicker films, surface reactions and surface saturation may cause the homogeneity of 
the film to suffer. While some of these parameters play a critical role in the properties 
of the deposited materials, others might have negligible impacts.

14.5.2 fiLtering irreLevant features

After identifying the pertinent characteristics, it’s critical to eliminate the irrelevant 
features that don’t significantly improve the predictive power of machine learning 
models. Noise, redundant features, and features that aren’t connected with the target 
variable are examples of irrelevant features and can introduce noise into the data 
while making them more dimensional. Hence the filtering of these irrelevant features 
is critical to machine learning models. Statistical techniques like smoothing, filter-
ing, and averaging can be used in this regard. When several features offer the same 
information, it results in redundant features which provide another source of irrel-
evant features. Furthermore, techniques like mutual information and Fisher score 
can be used to identify the features which are not associated with the target variable. 
While mutual information evaluates the amount of information shared between the 
features and the target variable, feature importance ranks the features according to 
how important they are in predicting the target variable. The Fisher score evaluates 
the features’ ability to discriminate and determines the most discriminatory features. 

14.5.3 reduction of diMensions of aLd data

Dimensionality reduction is a critical step in the feature engineering procedures 
for machine learning-based modeling of ALD. ALD process is a complex process 
owing to the several interconnected variables. It thus generates a high dimensional 
data. The basic concept of dimensionality reduction has been examined in previous 
chapters. It entails minimizing information loss while reducing the number of char-
acteristics in a dataset. A model that has fewer features is less likely to overfit. This 
can be addressed using feature extraction and feature selection to lessen the model’s 
computational complexity, making its training simpler and quicker. The model can 
be trained more quickly and effectively because it uses less memory and processing 
power because it has fewer features. In the context of ALD machine learning-based 
modeling, attempts to make the data less dimensional allow the model to concentrate 
on the key characteristics that improve prediction accuracy.

14.5.4 enhancing the interPretabiLity of aLd Predictive ModeLs

To gain useful insights into the interconnections between ALD’s critical process 
parameters and thin film properties, interpretability of machine learning modeling 
is a crucial part. This understanding can help the process to be optimized and the 
thin films’ quality increased. Feature selection techniques offer a number of benefits 
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to the interpretability of machine learning’s model. By focusing on the most crucial 
elements that influence the model’s forecast accuracy, we may narrow our attention. 
Furthermore, we can learn more about the underlying physical processes by compre-
hending the connection between these process variables and the characteristics of the 
thin films. This gives a model that is simpler and easier to understand by lowering 
the number of features. By choosing the most crucial attributes, we can, for instance, 
reduce the dimensionality of the data in ALD, making it simpler to comprehend how 
the process parameters relate to the thin film properties.

14.6  FEATURE ENGINEERING ON IMAGE DATA 
FOR MICROSTRUCTURAL ANALYSIS OF 
THIN FILM AND ALD PROCESSES

Understanding the thin films’ performance and making the most of their qualities 
require microstructural investigation. A crucial process has been necessitated in this 
microstructural analysis of thin film, which is feature engineering. It involves choos-
ing and extracting pertinent features from the image data using domain expertise. 
Features can be taken from high-resolution scanning electron microscopy (SEM) 
images in the case of microstructural study of thin films created using ALD. The 
potential features that could be retrieved from the SEM images include the following:

 i. Grain size: This a significant structural feature of thin film which can be 
determined using the image segmentation techniques. The grain size can 
reveal information about the characteristics of the film, such as its electrical 
conductivity and mechanical strength.

 ii. Porosity: Porosity of the thin films can be established by a critical examina-
tion and location of pores in the microstructural images. The performance 
of the film, including its capacity to store energy, is significantly influenced 
by its porosity.

 iii. Surface roughness: Texture analysis techniques can be used to determine 
how rough the thin film’s surface is. The optical characteristics of the film, 
such as its reflectance and transmission, can be impacted by how rough the 
surface is.

 iv. Grain orientation: Using crystallographic texture analysis, the orientation 
of the grains in the thin film can be examined. The mechanical and electri-
cal properties of the film may change depending on the grain orientation.

 v. Defects: Image processing methods can be used to examine defects includ-
ing voids, cracks, and contaminants. Defects can alter the film’s character-
istics, including its mechanical and electrical conductivity.

Machine learning models can be trained using these potential features to forecast 
end-point performance of the thin film. To comprehend the relationships between 
various features and the characteristics of the thin film, statistical analysis and cluster-
ing can also be done using the extracted features. Feature engineering of image data 
for microstructural study of thin films created using ALD has a significant potential 
to offer insightful knowledge into the properties of the films. These methods entail 
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locating and extracting pertinent information and filtering redundant features from 
the visual data that may be used to comprehend the characteristics and performance of 
the thin film. Image segmentation, which entails dividing the microstructural image 
into various sections according to those regions’ attributes, such as brightness or tex-
ture, can be used in thin film analysis to distinguish between several components, 
including the substrate, film, and flaws. The characteristics and performance of the 
film can be deduced from the size, shape, and distribution of these phases. Analyzing 
a texture entail looking at the spatial relationships between the pixels in the image. In 
thin film analysis, the surface abrasiveness and porosity of the film can be examined 
using texture analysis. These characteristics, such as the capacity to store energy, are 
essential for determining the performance of the film. Data dimensionality can be 
decreased using the statistical method known as PCA. The most important micro-
structural features that capture the most important variance in the image data can 
be found using PCA in thin film analysis. Important traits that might be overlooked 
by other techniques can be found utilizing this methodology. Wavelet transformation 
which is a signal processing method can be used to examine the frequency content of 
image data. This approach can be employed in thin film analysis to examine the sur-
face abrasiveness and porosity of the film at various scales. Different levels of detail 
can be gleaned from the performance of the movie using this method.

14.7 CONCLUSION

Feature engineering is a crucial component in the ongoing advancement of thin film 
deposition and ALD process as it enhances and regulates the formation of thin films 
with the desired level of precision and efficiency. The accuracy and dependability 
of ALD models can be significantly increased by having the capacity to extract 
significant features from unprocessed data and translate them into helpful inputs 
for machine learning algorithms. This chapter examined the diverse techniques of 
machine-learning based feature engineering and its significance in reducing the 
dimensions of data, identify and extract irrelevant information and select the most 
appropriate variables which influences thin film qualities. This strategic manipula-
tion of key process variables via the feature engineering enables the development of 
novel techniques capable of producing materials with improved characteristics and 
functions. As feature engineering methods continue to progress and are integrated 
with machine learning-based modeling, the field of ALD stands to gain significantly. 
Within the dynamic realm of materials science and nanotechnology, the practice of 
feature engineering will persist as an indispensable element in propelling innovation 
and unleashing the complete capabilities of thin film deposition and ALD processes. 
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15 Limitations, 
Opportunities, and 
Future Directions

15.1 INTRODUCTION

In this book, we have explored the fast-growing applications of machine learning 
algorithms in thin film development, optimization, and modelling. The wide spec-
trum of machine learning applications ranging from predictive analysis to classifica-
tion techniques, feature engineering and deep learning analysis in transforming the 
synthesis and development of materials for enhancing thin film deposition process 
have been investigated. Furthermore, previous chapters have provided useful insights 
into the strength and weaknesses of these machine learning techniques in the spe-
cific domain of ALD. Critical challenges in providing machine learning-based solu-
tions to ALD problems were discussed under several chapters in the second and 
last section of the book. The difficulties associated with machine learning, such 
as data accessibility, overfittings and underfittings, and interpretability, have also 
been examined. The scope and limitation of the book, possibilities, future prospects 
of machine learning-based applications in ALD, and recommendations for future 
researches will be discussed in this chapter. We hope to motivate for more intensive 
research in this fascinating and quickly developing area while also advancing ALD 
and machine learning concepts.

15.2 SCOPE AND LIMITATION OF THIS BOOK

The studies described in this book have drawbacks, mostly because of its limited 
scope. Despite extensive coverage, machine learning has many unexplored aspects 
in this book. While this book has initiated a solid background for comprehending 
machine learning and ALD process, it has also opened the vast space for more inten-
sive investigations. In this book, we are unable to provide a complete and exhaus-
tive coverage of all feasible applications of machine learning in ALD. While the 
chapters present most important machine learning applications in ALD, there are 
many more unexplored applications. For further research, machine learning could 
be employed to govern the ALD process. There are many additional machine learn-
ing methods and algorithms that might be employed to solve ALD problems, even 
though the algorithms covered in this book represent some of the most prominent 
strategies in this research space. This book also examined only a few materials and 
procedures. Although this is significant to establishing a cohesive narrative, how-
ever, machine learning may examine many more materials. For more investigation, 
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it could be interesting to model the formation of complicated oxide materials using 
ALD and machine learning, for instance. Despite this book’s strong foundation in 
ALD machine learning, its limitations are significant and noteworthy. Thus, there is 
much room for further research in this field, and future research may expand on this 
book’s framework to produce more complicated and exact ALD models.

15.3  LIMITATIONS OF MACHINE LEARNING-BASED ALD 
MODELING AT INDUSTRIAL-SCALE APPLICATION

Industrial scale thin film deposition process could benefit greatly from machine 
learning modelling methods. However, there are several hurdles that must be over-
come to expand its reach and satisfy the needs of industrial applications. While there 
are extensive research being carried out in this space at a small-scale ALD and thin 
film deposition processes, there is still so much work to be done in scaling up its 
impact at large, commercialized, and industrial-scale applications. The necessity 
to adjust the process parameters to achieve high throughput and reproducibility at 
industrial scale while keeping high-quality films is one of the fundamental issues. 
Since industrial-scale applications involves more sophisticated processes, bigger 
materials and substrates in a single process, substantial scaling up of machine learn-
ing-based ALD research to an industrial scale has been necessitated. As a result, 
numerous process parameters need to be optimized. Machine learning for process 
improvement in large-scale manufacturing can speed up commercialization by cut-
ting down on the time and expense associated with creating new procedures while 
raising yields as well as minimizing rejection rates by improving the films’ repeat-
ability and quality. Notably, simultaneous optimization of a number of process vari-
ables, which will improve process control effectiveness and efficiency, can be made 
possible. This book therefore calls for an intensive and in-depth study on scaling up 
the applications of machine learning-based-solutions to industrial-scale ALD and 
thin film processes.

15.4  FUTURE PROSPECTS IN MACHINE 
LEARNING-BASED ALD MODELING

Having established the limited scope of this study, and the wide unexplored domain 
of machine-learning utilization, we seek to highlights some areas of potential future 
engagement in advancing thin film trajectories. The precision and effectiveness of 
ALD procedures could be greatly increased by these future prospects, and they could 
also help us learn more about the underlying physical and chemical processes detail-
ing the deposition process. Some of these future prospects in machine learning-based 
ALD modeling research space are briefly discussed as follows.

15.4.1  the introduction of QuantuM Machine Learning

An emerging area that could have significant uses in the realm of ALD research 
is the use of quantum computing in machine learning. There are potential benefits 
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of incorporating quantum machine learning algorithms in future research in this 
space to accelerate the development of thin films with enhanced characteristics. By 
offering novel techniques for data analysis and prediction, this emerging research 
space has the capacity to transform the field of machine learning-based ALD model-
ing. Quantum computing proffers a lot of computing benefits over the conventional 
machine learning techniques. It has the capability to address some issues with opti-
mization substantially more quickly, giving more precise projections of the charac-
teristics of thin films produced by ALD, while interpreting data considerably more 
effectively, thus minimizing the high processing resources prerequisite for machine 
learning applications.

15.4.2  enhanced MuLtiscaLe ModeLing and siMuLations

A prominent approach in materials science for integrating several scales, from the 
atomic scale to the macroscopic scale, is multiscale modeling. This approach finds 
significance in ALD process in achieving materials forecast at different length scale, 
ranging from the atomic configuration to the macroscopic features that define the 
entire film. This provides some steps ahead in performance, time and cost compared 
to the conventional multiscale simulation approach which combines atomic-scale 
simulations and continuum modeling. Machine learning approach has proffered 
viable solutions to address this shortcoming with the conventional multiscale model-
ing methods. For the purpose of determining the properties of thin films at various 
scales, machine learning models can be trained on data produced by atomic-scale 
simulations and continuum modeling,

15.4.3 interdisciPLinary coLLaboration of reLevant ProfessionaL

A proper comprehension of the complex physical and chemical reactions and pro-
cesses which makes up thin film deposition and ALD is critical to deploying machine 
learning-based solutions to ALD problems. ALD research cuts across several inter-
related disciplines. Scientists and researchers in computational modeling, machine 
learning, physics, chemistry, materials science, engineering, and several others must 
work together and share knowledge in order for this discipline to advance signifi-
cantly. While experts in machine learning may be able to create models that can 
precisely anticipate the features of these films, materials scientists, chemistry, and 
physics experts may have an in-depth comprehension of both the chemical and physi-
cal properties of thin films produced by ALD. Collaboratively, these professionals 
can create fresh strategies for streamlining the ALD procedure and creating thin 
films with enhanced qualities.

15.4.4  enhancing the interPretabiLity of Machine 
Learning outcoMe through eXPLainabLe ai

As discussed earlier, an important experience which limits the general application of 
machine learning models in the context of ALD is the interpretability of the model’s 
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outcome. Techniques that help researchers to better comprehend how machine 
learning models are producing predictions, namely, explainable AI can help in this 
regard. Approaches for developing an explainable AI include model interpretation 
techniques which function based on the underlying workings of machine learning 
to acquire knowledge of how it generates predictions, visualization technique which 
assists researchers to visualize and observe connections between various dataset 
properties and prediction provided by the models. Furthermore, feature engineering 
approaches such as feature selection and extraction is significant to understanding 
the outcome of machine learning. More insights regarding the fundamental causes 
influencing the ALD process and the characteristics of thin films produced by ALD 
can get gained by recognizing these selected features.

15.4.5  Machine Learning-based reaL-tiMe characterization of MateriaLs

Characterization methods namely, Transmission electron microscopy (TEM) and 
X-ray photoelectron spectroscopy (XPS) are critical to the understanding of the intri-
cate nature of materials and thin film deposition process. However, data processing, 
which is a vital pre-requisite could be laborious, and less cost-effective, and demand 
trained professionals. Several dimensions of deep neural network applications could 
be deployed to overcome this challenge. Real-time data analysis using machine 
learning is possible for in situ characterization approaches, which could increase the 
precision of process control and result in the creation of thin films with better prop-
erties. Further to this, real-time information that can be generated via this approach 
and nondetectable in the conventional analytical techniques would be beneficial to 
experts in enhancing the entire deposition process to generate better quality films.

15.5 RECOMMENDATIONS FOR FUTURE RESEARCHES

The domain of machine-learning-based applications in thin film and ALD modeling 
will be tremendously transformed by adopting some of these suggestions for future 
research. This book gives the following recommendations:

 i. To enhance the adaptability of machine learning applications in thin film 
deposition process and its attendant data complexities, this study recom-
mends the development of ALD-specific algorithms. 

 ii. The robustness, accuracy and practicability of ALD-based machine learn-
ing applications can be enhanced by Integrating data from several scales 
vis-à-vis atomic and macroscopic scales.

 iii. The capabilities and competence of ALD procedures can be improved on 
by investigating novel materials to establish an innovative paradigm in the 
deposition process. The behavior of new materials can be predicted using 
machine learning, which could hasten the development process.

 iv. Beyond thin film deposition, ALD offers a wide range of possible uses, 
including energy storage, catalysis, and sensing. These revolutionary ALD 
applications could also benefit from machine learning while new materials 
and procedures can be created to satisfy their requirements.
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 v. A hybrid modelling applications of machine learning with other state-of-the 
art modelling techniques will enhance the accuracy and effectiveness of 
ALD models. This innovative approach was introduced in this book.

 vi. Due to the multi-faceted dimensions of ALD process and applications, it is a 
highly interdisciplinary field. Thus, collaborative research between experts 
in other disciplines, like chemistry, materials science, and computer sci-
ence, can assist to advance research, explore machine learning benefits, and 
create novel approaches to pressing problems.

 vii. The challenge of precisely characterizing ALD-developed materials can be 
addressed while its modelling performance is improved by creating novel 
characterization techniques that can offer thorough details about the struc-
ture and properties of these materials.

 viii. The deep neural network techniques used in deep learning could offer 
insightful understanding of microstructural analysis. It hereby recom-
mended because of their significant contributions to quality films produc-
tions. Considering the nanometric scale of thin films, monitoring their 
microstructure plays a critical role in ensuring its quality and performance.
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