

OData Programming
Cookbook for .NET
Developers

70 fast-track, example-driven recipes with clear
instructions and details for OData programming
with .NET Framework

Steven Cheng

BIRMINGHAM - MUMBAI

OData Programming Cookbook for .NET
Developers

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2012

Production Reference: 1180712

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-849685-92-4

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

Credits

Author
Steven Cheng

Reviewers
Shayne Burgess

Ibrahim Sukru

Acquisition Editor
Dhwani Devater

Lead Technical Editor
Kedar Bhat

Technical Editors
Veronica Fernandes

Manasi Poonthottam

Zinal Shah

Copy Editors
Brandt D'Mello

Laxmi Subramanian

Project Coordinator
Joel Goveya

Proofreader
Ting Baker

Indexer
Tejal R. Soni

Graphics
Valentina D'silva

Manu Joseph

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Steven Cheng is a Senior Support Engineer at Microsoft CSS, China. He has been
supporting Microsoft development products and technologies for more than seven years. He
is also working actively in the Microsoft MSDN forum community.

His technical specialties have covered many popular Microsoft development technologies
including .NET Framework, ASP.NET, XML WebService, Windows Communication Foundation,
Silverlight, Windows Azure, and Windows Phone. His technical blog can be found at
http://blogs.msdn.com/stcheng.

In 2010, he wrote the book Microsoft Windows Communication Foundation 4.0 Cookbook for
Developing SOA Applications, Packt Publishing.

The publication of this book could not have been possible without the
efforts put in by a large number of individuals. I would like to thank my
colleagues Shayne Burgess, Yi-lun Luo, and Mog Liang who have given me
lots of ideas and suggestions on the book recipes. And thanks goes to my
friends Jasmine Gong and Le Fei who have helped me a lot during the entire
book authoring lifecycle.

Most importantly, none of this would have been possible without the love
and patience of my family. I would like to express my heartfelt gratitude to
my family.

Lastly, I offer my regards and blessings to all of those who supported me in
any respect during the completion of this book.

http://blogs.msdn.com/stcheng

About the Reviewers

Shayne Burgess is a Program Manager on the SQL Server engineering team at Microsoft.
He has worked on the OData team at Microsoft for the past four years, contributing to the
definition of the OData protocol and building Microsoft implementations of OData.

Ibrahim Sukru is a Software Engineer from Istanbul. He is the founder of xomila.com. He
developed several RESTful web services with ASP.NET MVC, OData, and WCF. He loves web
standards and technologies, HTML, CSS, and Microformats and enjoys contributing to open
source software and coffee.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Building OData Services 7

Introduction 7
Building an OData service via WCF Data Service and
ADO.NET Entity Framework 8
Building an OData service with WCF Data Service and LINQ to SQL 13
Exposing OData endpoints from WCF RIA Service 16
Adding custom operations on OData service 20
Exposing database stored procedures in WCF Data Service 23
Using custom data objects as the data source of WCF Data Service 28
Using Interceptors to customize a WCF Data Service 32
Accessing ASP.NET context data in WCF Data Service 36
Creating a custom WCF Data Service provider 40

Chapter 2: Working with OData at Client Side 51
Introduction 52
Exploring an OData service through web browser 52
Using Visual Studio to generate strong-typed OData client proxy 57
Generating OData client proxy via DataSvcUtil.exe tool 63
Editing and deleting data through WCF Data Service client library 66
Accessing OData service via WebRequest class 70
Executing OData queries in an asynchronous manner 75
Filtering OData query results by using query options 80
Dealing with server-side paged entity sets from WCF Data Service 86
Performing WPF data binding with OData service data 89
Injecting custom HTTP headers in OData requests 94
Consuming HTTP compression enabled OData service 97
Using MSXML to consume OData service in unmanaged applications 99

ii

Table of Contents

Chapter 3: OData Service Hosting and Configuration 107
Introduction 107
Hosting a WCF Data Service in IIS server 108
Hosting a WCF Data Service in Console application 114
Deploying a WCF Data Service on Windows Azure host 117
Configuring WCF Data Service to return error details 124
Configuring WCF Data Service to return JSON-format response 127
Applying basic access rules on WCF Data Service 131
Getting rid of .svc extension by using ASP.NET URL Routing 134
Enabling dynamic compression for OData service hosted in IIS 7 137

Chapter 4: Using OData in Web Application 143
Introduction 143
Building data-driven ASP.NET Web Form pages with OData 144
Adopting OData in ASP.NET MVC web applications 148
Building ASP.NET Page UI with OData and XSLT 156
Building AJAX style data-driven web pages with jQuery 161
Consuming OData service with datajs script library 167
Using OData service in Silverlight data access application 171
Consuming WCF Data Service in PHP pages 179

Chapter 5: OData on Mobile Devices 187
Introduction 187
Accessing OData service with OData WP7 client library 188
Consuming JSON-format OData service without OData WP7 client library 196
Creating Panorama-style, data-driven Windows Phone applications
with OData 201
Using HTML5 and OData to build native Windows Phone application 205
Accessing WCF Data Service in Android mobile application 213
Accessing WCF Data Service in iOS application 220

Chapter 6: Working with Public OData Producers 227
Introduction 227
Getting started with Netflix OData online catalog 228
Manipulating Sharepoint 2010 documents through OData endpoint 231
Using OData protocol for Windows Azure Table storage access 235
Query StackOverflow forums data with OData endpoint 240
Tracking information of NuGet packages through OData feeds 244
Exploring eBay online products catalog through OData service 248
Consuming SSRS 2008 R2 report through OData feed 252

iii

Table of Contents

Chapter 7: Working with Security 257
Introduction 257
Applying Windows authentication for OData service 258
Using ASP.NET Forms authentication to secure OData service 261
Securing OData service with HTTPS transport 266
Implementing OData service authentication with custom HTTP Module 271
Adding custom authorization with server-side processing pipeline 275
Using Interceptors to control access for individual entity set 277
Implementing role-based security for OData service 280

Chapter 8: Other OData Programming Tips 285
Introduction 285
Using LINQPad to compose OData query code 286
Exploring OData service with ODataExplorer 289
Using OData service in Windows PowerShell script 293
Exploring OData service with Microsoft Excel PowerPivot component 296
Inspecting OData HTTP traffic through Fiddler web debugger 299
Using Open Data Protocol Visualizer to inspect the object model of
OData service 303
Consuming OData service in Windows 8 Metro style application 308

Chapter 9: New Features of WCF Data Service 5.0 (OData V3) 315
Introduction 315
Upgrading existing OData service to WCF Data Service 5.0 316
Using geospatial types in OData service 319
Using Any and All operators to filter OData entities 325
Updating OData entities through HTTP PATCH requests 328
Resolving base URI of OData entity sets dynamically 331
Exposing binary data on OData entity with Named Resource Stream 334
Extending OData service functionalities with Service Actions 342

Index 355

Preface
OData (Open Data Protocol) is a web protocol for querying and updating data, which can be
freely incorporated in various kind of data access applications. OData makes it quite simple
and flexible to use by applying and building upon existing well-defined technologies such as
HTTP, XML, AtomPub, and JSON.

WCF Data Services (formerly known as ADO.NET Data Services) is a well-encapsulated
component for creating OData services based on the Microsoft .NET Framework platform. It
also provides a client library with which you can easily build client applications that consume
OData services. In addition to WCF Data Services, there are many other components or
libraries, which make OData completely available to the non-.NET or even non-Microsoft world.

This book provides a collection of recipes that help .NET developers to become familiar with
OData programming in a quick and efficient way. The recipes have covered most OData
features from the former ADO.NET Data Services to the current WCF Data Services platform.
In addition, all the sample cases here are based on real-world scenarios and issues that .NET
developers might come across when programming with OData in application development.

What this book covers
Chapter 1, Building OData Services, introduces how we can use WCF Data Services to create
OData services based on various kind of data sources such as ADO.NET Entity Framework,
LINQ to SQL, and custom data objects.

Chapter 2, Working with OData at Client Side, shows how to consume OData services in client
applications. This will cover how we can use strong-typed client proxy, WebRequest class,
and unmanaged code to access OData services. You will also learn how to use OData query
options, asynchronous query methods, and other client-side OData programming features.

Chapter 3, OData Service Hosting and Configuration, discusses some typical OData service
hosting scenarios including IIS hosting, custom .NET application hosting, and Windows Azure
cloud hosting. This chapter also covers some service configuration scenarios such as applying
basic access rules, exposing error details, and enabling HTTP compression.

Preface

2

Chapter 4, Using OData in Web Application, talks about how to take advantage of OData
services for developing various data-driven web applications including ASP.NET Web Form
application, ASP.NET MVC application, Silverlight web application, AJAX style web application,
and PHP web application.

Chapter 5, OData on Mobile Devices, demonstrates how to use OData services in mobile
application development. Recipes in this chapter will cover the most popular mobile device
platforms including iOS, Android, and Windows Phone 7.

Chapter 6, Working with Public OData Producers, introduces some existing public products
and services, which have adopted OData for exposing application data. The recipes in this
chapter will demonstrate how to create client applications to consume data from these public
OData producers.

Chapter 7, Working with Security, discusses some common and easy-to-use means
for securing OData services. Topics covered in this chapter include applying Windows
authentication, applying ASP.NET Forms authentication, using HTTPS transport, and
implementing custom authentication/authorization code logic.

Chapter 8, Other OData Programming Tips, explores some trivial but useful OData
programming topics. You will learn how to use some existing tools for testing and debugging
OData services. This chapter also demonstrates how to consume OData services in Windows
PowerShell scripts and Windows 8 Metro style applications.

Chapter 9, New Features of WCF Data Service 5.0 (OData V3), demonstrates some of the
new features introduced in WCF Data Service 5.0 (OData V3). The new features covered in
this chapter include geospatial types, "Any" and "All" query operators, Dynamic entity set URI
resolving, Named Resource Stream, and custom Service Actions.

What you need for this book
All the recipes in this book are based on the .NET C# programming language. However, you
don't have to be a very experienced C# Developer. In order to follow the recipes and run the
corresponding sample code, you need a test environment with the following items:

 f A development machine with Windows 7 or Windows Server 2008 OS

 f Visual Studio 2010 Professional or Ultimate edition (with SP1)

 f SQL Server 2005 (or 2008) Developer (or Expression) edition with Northwind sample
database installed

 f IIS 7.x (for Windows 7 or Windows 2008)

 f IE 9 web browser

 f Fiddler web debugger

For other software or components required by some specific recipes, they will be listed as
prerequisites in the Getting ready section of the relevant recipe.

Preface

3

Who this book is for
If you are a .NET Developer and you want to learn how to use OData in real-world data access
application development using a quick and efficient approach, then this book is for you.
With this book you will be able to find quick and handy solutions for various kind of OData
programming scenarios using Microsoft .NET Framework. To follow the recipes, you will need
to be comfortable with .NET Framework, Visual Studio IDE, C# programming language, and the
basics of web programming such as HTTP, XML, and JSON.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Finally, it comes to the FileEntity class."

A block of code is set as follows:

public partial class InitSession : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (Session.Count == 0)
 {
 Session.Add("string item", "some text");
 Session.Add("int item", 120);
 Session.Add("boolean item", true);
 Session.Add("date item", DateTime.Now);
 Session.Add("array item", new int[]{1,2,3});
 }
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

namespace ODataEFService
{
 public class NWDataService : DataService<
 ODataEFService.NorthwindEntities >
 {
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;

Preface

4

 config.SetEntitySetAccessRule
 ("*", EntitySetRights.All);
 }
 }
}

Any command-line input or output is written as follows:

DataSvcUtil.exe /in:Northwind.edmx /out:NWDataServiceProxy.cs

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Specify the necessary publish
options in the Publish Web dialog."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Building OData

Services

In this chapter we will cover:

 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

 f Building an OData service with WCF Data Service and LINQ to SQL

 f Exposing OData endpoints from WCF RIA Service

 f Adding custom operations on OData service

 f Exposing database stored procedures in WCF Data Service

 f Using custom data objects as the data source of WCF Data Service

 f Using Interceptors to customize a WCF Data Service

 f Accessing ASP.NET context data in WCF Data Service

 f Creating a custom WCF Data Service provider

Introduction
Open Data Protocol (OData) is a web protocol for querying and updating data, which can
be freely incorporated in various kinds of data access applications. OData makes itself quite
simple and flexible to use by applying and building upon existing well-defined technologies,
such as HTTP, XML, AtomPub, and JSON.

Building OData Services

8

WCF Data Service is the main component for building OData service on .NET Framework
platform. WCF Data Service supports exposing various data source models such as ADO.NET
Entity Framework, LINQ to SQL, and CLR Objects through OData service endpoints. Also, we're
not limited to these existing data models, we can build our own custom Data Service Provider
or convert other services (such as WCF RIA service) to OData service. In this chapter, we will
demonstrate several cases of using WCF Data Service to build OData services that can deal
with different kinds of data source models.

Building an OData service via WCF Data
Service and ADO.NET Entity Framework

There are various means to create an OData service on the .NET Framework platform. And
by using different means, we might need to choose different kind of data sources to provide
the actual data that will be published and exposed in the OData service. In this recipe, we will
start from one of the most typical approaches—creating an OData service through WCF Data
Service and ADO.NET Entity Framework data model.

Getting ready
As we will use ADO.NET Entity Framework as the data source of our OData service, make sure
you have a sample database, such as Northwind, installed in a local SQL Server instance. You
can use SQL Express instance (the free version of SQL Server) for convenience.

The source code for this recipe can be found in the \ch01\ODataEFServiceSln\ directory.

How to do it...
To concentrate on the OData service generation and make the progress simple and clear, we
will use an empty ASP.NET web application with a single OData service for demonstration. The
detailed steps are as follows:

1. Launch Visual Studio 2010 IDE.

2. Fire the New Project menu and create an ASP.NET Empty Web Application through
the Add New Project wizard (see the following screenshot).

Chapter 1

9

3. Use the Project | Add New Item context menu to add a new ADO.NET Entity Data
Model (see the following screenshot).

Building OData Services

10

The wizard will guide you on selecting a source database (such as the Northwind
database used in this case) .The following screenshot shows the entity classes
generated through the Northwind sample database:

4. Create a new OData service via the WCF Data Service item template.

The WCF Data Service item template can be found in the Visual Studio 2010 built-in
template list (see the following screenshot).

Chapter 1

11

By clicking on the Add button, Visual Studio will automatically generate the .svc file
and its associated code files for the WCF Data Service item.

5. Use View Code context menu to open the source file of the generated WCF Data
Service and replace the default service type (the generic parameter) with the Entity
Framework model class (generated in the previous step).

The following code snippet shows the WCF Data Service, which uses the Northwind
data model class in this sample:

namespace ODataEFService
{
 public class NWDataService : DataService< ODataEFService.
 NorthwindEntities >
 {
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 config.SetEntitySetAccessRule
 ("*", EntitySetRights.All);
 }
 }
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Building OData Services

12

6. Now, we can start running the service by selecting the .svc file in Solution Explorer
and choose the View in browser context menu.

The default page of the WCF Data service will display all the OData entities that have
been exposed in the service (see the following screenshot).

How it works...
In our sample web project, there are only two items. One is the ADO.NET Entity Framework
data model and the other is the WCF Data Service item (as shown in the following project
structure screenshot).

Chapter 1

13

WCF Data Service has helped encapsulate all the underlying details of implementing an
OData service. When using WCF Data Service to generate OData service, what we need
to do is:

 f Prepare the data source provider type (in our case, the ADO.NET Entity
Framework model)

 f Associate the data source provider with the WCF Data Service

Also, as the name indicates, WCF Data Service is a special implementation of WCF service.
And more specifically, WCF Data Service is a specially implemented WCF service over the
REST HTTP endpoint (by using the WebHttpBinding binding type). In most cases, we do not
need to take care of those WCF service-specific configuration details (in web.config file). If
we open the web.config file of our sample service, we can find that there is almost nothing
defined within the <system.serviceModel> element for the WCF configuration (see the
following screenshot).

See also
 f Exploring an OData service through web browser recipe in Chapter 2, Working with

OData at Client Side

 f Applying basic access rules on WCF Data Service recipe in Chapter 3, OData Service
Hosting and Configuration

Building an OData service with WCF Data
Service and LINQ to SQL

In addition to ADO.NET Entity Framework, LINQ to SQL is another popular and powerful
component we can use for mapping relational database objects to .NET CLR class objects.
Many popular RDBMS (such as SQL Server and Oracle) have provided LINQ to SQL providers.
And for WCF Data Service, it is quite reasonable to add support for exposing a LINQ to SQL
based data source via OData service endpoints. In this recipe, we will introduce you to
creating an OData service from a LINQ to SQL based data source model.

Building OData Services

14

Getting ready
Make sure you have a sample database, such as Northwind, installed in a local SQL Server
instance. You can use an SQL Express instance (the free version of SQL Server) for convenience.

The source code for this recipe can be found in the \ch01\ODataLINQ2SQLServiceSln\
directory.

How to do it...
You can follow the steps given for creating an OData service from LINQ to SQL data entities:

1. Create a new ASP.NET Empty Web Application in Visual Studio 2010.

2. Create the LINQ to SQL data model types by using the LINQ to SQL Classes item
template (see the following screenshot).

After the data model is created, we can use Visual Studio Server Explorer to drag
certain tables (from the sample database) into the data model designer. This will
make the Visual Studio IDE create the corresponding data entity types.

Save all items in the project so as to make sure
Visual Studio IDE has compiled the generated LINQ
to SQL data model types.

Chapter 1

15

3. Create a new WCF Data Service based on the generated LINQ to SQL data model.

This time, we use the LINQ to SQL data model class as the generic parameter of the
service class (see the following code snippet).

public class NWODataService : DataService< ODataLINQ2SQLService.
NorthwindDataContext >
{
 // This method is called only once to initialize service-wide
 // policies.
 public static void InitializeService(DataServiceConfiguration
 config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 }
}

4. Select the .svc service file in Visual Studio and launch it through the View in
browser context menu.

How it works...
Although we directly use the LINQ to SQL data model class as the data source, the WCF
Data Service runtime actually treats the LINQ to SQL data model class like a custom data
source type. Therefore, any public member (of the data model class) who implements the
IQueryable interface will be exposed as an entity set in the generated service. We will talk
more about using custom data source type for WCF Data Service within the Using custom data
objects as the data source of WCF Data Service recipe of this chapter.

There's more...
By default, the WCF Data Service, which uses the LINQ to SQL data model class, does not
support editing/updating operations. In order to make the LINQ to SQL based WCF Data
Service support editing/updating, we need to implement the IUpdatable interface (under
System.Data.Services namespace) on the LINQ to SQL data model class (see the
following code snippet).

partial class NorthwindDataContext: IUpdatable
{

}

Building OData Services

16

For detailed information about implementing IUpdatable interface for LINQ to SQL data
model class, you can refer to the following MSDN reference:

How to: Create a Data Service Using a LINQ to SQL Data Source (WCF Data Services)
available at http://msdn.microsoft.com/en-us/library/ee373841.aspx

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity

Framework recipe

 f Using custom data objects as the data source of WCF Data Service recipe

Exposing OData endpoints from WCF RIA
Service

WCF RIA Service is one of the great extension components based on the standard WCF service.
WCF RIA Service is designed for building data access services (for n-tier solutions), which will not
only expose data sets to clients but also encapsulate most of the business/application logics at
service layer. With the latest WCF RIA Service version, we can make a WCF RIA Service expose
data through various kinds of endpoints such as SOAP, OData, and JSON.

In this recipe, we will show you how to open an OData endpoint from an existing
WCF RIA Service.

Getting ready
To play with WCF RIA Service, we need to install Visual Studio 2010 Service Pack 1, which
includes the runtime and development tools for WCF RIA Service V1 SP1.

Visual Studio 2010 Service Pack 1 is available at http://support.microsoft.com/
kb/983509.

The source code for this recipe can be found in the \ch01\ODataRIAServiceSln\
directory.

How to do it...
1. Create a new ASP.NET Empty Web Application.

2. Create the ADO.NET Entity Framework data model from the sample database.

http://msdn.microsoft.com/en-us/library/ee373841.aspx
http://msdn.microsoft.com/en-us/library/ee373841.aspx

Chapter 1

17

The following screenshot shows the class diagram of the data model created from the
Northwind sample database (four tables are included):

3. Create a new WCF RIA Service by using the Domain Service Class item template in
Visual Studio (see the following screenshot).

Building OData Services

18

4. Specify the service options (especially the one for enabling an OData endpoint) in the
Add New Domain Service Class dialog (see the following screenshot).

The following are all the options we need to set for a new WCF RIA Service:

 � Domain Service Class name: This is the type name of our RIA service class.

 � Available DataContext/ObjectContext classes: This is the data model class
we will use for providing the underlying data objects. Make sure we have
saved all items in the project so that the ADO.NET Entity Framework data
model class will appear in the drop-down list.

 � Enable client access and Expose OData endpoint options: As the name
explains, these two options will enable the RIA service to be accessed from
client applications and also add an additional endpoint on it so as to expose
data entities in an OData compatible format.

5. Create a .svc file as the service access endpoint for the WCF RIA Service.

Chapter 1

19

In the .svc file, we need to specify the ServiceHostFactory and Service types
through the @ServiceHost directive (see the following code snippet).
<%@ ServiceHost Language="C#" Debug="true"
Service="ODataRIAService.NWDomainService" Factory="System.
ServiceModel.DomainServices.Hosting.DomainServiceHostFactory,
System.ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" %>

As shown in the previous @ServiceHost directive, we need to supply the full name
(including namespace and assembly name) of the ServiceHostFactory type in
the Factory attribute.

If you use the WCF service item template to create a new .svc file,
Visual Studio will generate the ServiceContract and Service
implementation code files automatically. To prevent this, you can create
a Text or XML file instead and manually change the file extension to
.svc (and adjust the file content correspondingly).

6. Launch the WCF RIA Service and access its OData endpoint by adding the
odata/ suffix to the URL.

By adding the odata/ suffix to the URL over the base service address, we can
reach the OData endpoint exposed by the WCF RIA Service. The default output
of the OData endpoint is just the same as a standard WCF Data Service (see the
following screenshot).

Building OData Services

20

How it works...
When creating the sample WCF RIA Service, we enable the OData endpoint on it by selecting
the Expose OData endpoint option in the Add New Domain Service Class dialog. Actually,
we can find the magic behind the dialog within the web.config file (see the following
configuration fragment).

The dialog adds a domainServices/endpoints/add element in the <system.
serviceModel> section. This element tells the runtime to add a new endpoint for each WCF
RIA Service and this endpoint will generate an OData format response (by using the System.
ServiceModel.DomainServices.Hosting.ODataEndpointFactory type).

Likewise, if you have some existing WCF RIA Services, which were created without the
OData endpoints enabled, we can simply make them OData enabled by adding the previous
configuration settings manually in the web.config file.

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity

Framework recipe

Adding custom operations on OData service
By default, WCF Data Service will expose all data object collections provided by the data
source in the format of OData entity sets. In addition to this, we can also add custom
methods/operations on a given WCF Data Service. By using such custom operations, we can
further extend our OData services so as to expose additional data in arbitrary formats, such
as XML, JSON, and Binary.

In this recipe, we will demonstrate how to add custom operations to a WCF Data Service.

Chapter 1

21

Getting ready
This sample case still uses the same ADO.NET Entity Framework based WCF Data Service like
what we've discussed in the previous recipes. We will add some custom operations to it so as
to expose additional data to client.

The source code for this recipe can be found in the \ch01\CustomOperationServiceSln\
directory.

How to do it...
1. Create a new ASP.NET Empty Web Application.

2. Create an ADO.NET Entity Framework based WCF Data Service through the Northwind
sample database.

3. Add custom operations into the WCF Data Service class.

We will add two operations here, one for retrieving the current time on service server
(return DateTime value) and another for retrieving some test data entities of the
Category entity type (see the following code snippet).
public class NWDataService : DataService<CustomOperationService.
NorthwindEntities>
{

 [WebGet]
 public DateTime GetServerTime()
 {
 return DateTime.Now;
 }

 [WebGet]
 public IQueryable<Category> GetDummyCategories()
 {
 var cates = new List<Category>();
 cates.Add(new Category() { CategoryID = 1, CategoryName =
 "Category 1", Description = "Desc of Category 1" });
 cates.Add(new Category() { CategoryID = 2, CategoryName =
 "Category 2", Description = "Desc of Category 2" });
 cates.Add(new Category() { CategoryID = 3, CategoryName =
 "Category 3", Description = "Desc of Category 3" });

 return cates.AsQueryable();
 }

}

Building OData Services

22

As the shown in the previous code, both operation functions need to be public and
non-static member methods of the service class.

Don't forget the WebGetAttribute attribute on the
declaration of each operation.

4. Enable the operation access rules in the service initialization code (see the following
code snippet).
public static void InitializeService(DataServiceConfiguration
config)
{
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 config.SetServiceOperationAccessRule("*",
 ServiceOperationRights.All);

}

5. Select the .svc file to launch the service and directly invoke the custom operations
(by typing the operation address) in the web browser.

The following screenshot shows the web browser window after invoking the
GetServerTime operation:

Chapter 1

23

The following is the output obtained by invoking the GetDummyCategories operation:

How it works...
As shown in the previous sample code, we can add custom operations to WCF Data Service
in the same way as we add service operations to a standard WCF REST service. Also, the
WebGetAttribute attribute over each sample operation indicates that the operation can
be accessed through the HTTP GET method (the expected method for operations that return
data). We can also apply the WebInvokeAttribute attribute so as to make the operation
support other HTTP methods.

Also, in order to allow clients to invoke custom operations, we need to grant the access
rules in the InitializeService function just like we do for entity sets exposed in
WCF Data Service.

For more information about access rules and permission configuration on WCF Data Service,
see Chapter 7, Working with Security.

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity

Framework recipe

Exposing database stored procedures in
WCF Data Service

When developing data access applications with relational databases, we will often use stored
procedures to encapsulate some frequently used queries. We can also gain performance
improvements by using stored procedures (compared to using raw SQL queries).

Building OData Services

24

Then, can we also take advantages of database stored procedures in our WCF Data Services
which expose data from relational database? Absolutely yes! In this recipe, we will discuss
how to expose data entities from relational database via stored procedures.

Getting ready
The service here will expose two stored procedures from the Northwind database. They
are the CustOrdersOrders procedure (return Order list of a given customer) and the
Ten Most Expensive Products procedure. The following are the raw signatures of
these two stored procedures:

ALTER PROCEDURE [dbo].[Ten Most Expensive Products] AS ...
ALTER PROCEDURE [dbo].[CustOrdersOrders] @CustomerID nchar(5)
AS ...

The source code for this recipe can be found in the \ch01\ODataSPServiceSln\ directory.

How to do it...
1. Create a new ASP.NET Empty Web Application.

2. Create the ADO.NET Entity Framework data model and include the stored procedures
together with the tables.

We can select the database tables, views, and stored procedures we want in the
Choose Your Database Objects dialog (see the following screenshot). In this case, we
need to select all tables and two stored procedures.

3. Add Function Import for the stored procedures in the Data Model class.

Chapter 1

25

4. Open the EF designer by double-clicking on the generated data model (.edmx file in
Visual Studio Solution Explorer).

5. Right-click on the designer surface and fire the Function Import… context menu (see
the following screenshot).

6. In the Add Function Import dialog, specify the detailed information of the target
stored procedure we want to import.

The following screenshot shows the import settings for the CustOrdersOrders procedure:

Building OData Services

26

The return value of the previous stored procedure mapping function is a custom
complex object. You can create this complex data type (based on the columns
returned in the stored procedure) by using the Create New Complex Type button
at the bottom of Add Function Import dialog (see the following screenshot).

7. Add custom operations in the WCF Data Service class, which directly invokes the
stored procedure mapping functions imported in the previous step.

The following code snippet shows the custom operations definition in the sample
WCF Data Service:

[WebGet]
public IQueryable<ExpProductObj> GetTop10ExpensiveProducts()
{
 return this.CurrentDataSource.
 GetTop10ExpensiveProducts().AsQueryable();
}

[WebGet]
public IQueryable<CustomerOrderObj> GetOrdersByCustomer(string
custID)
{
 return this.CurrentDataSource.
 GetOrdersByCustomer(custID).AsQueryable();
}

8. Launch the service and invoke the stored procedure based operations in the
web browser.

Chapter 1

27

The following screenshot shows the web browser output by invoking the
GetOrdersByCustomer operation in the sample service:

How it works...
To use stored procedures in WCF Data Service (using the ADO.NET Entity Framework data
model as data source), we need to import stored procedures as functions in the generated
EF data model class. In this sample, we create some custom data types for the return value
of each stored procedure mapping function. This is because in most cases, the returned
data columns from a given stored procedure don't exactly match a complete data entity type
(corresponding to the target database table).

In addition to the imported functions on EF data model class, we also need to add custom
operations within the WCF Data Service class. These operations simply delegate the operation
call to the corresponding stored procedure mapping functions.

When calling a service operation mapping to a void stored procedure (which does not
return any value), we can simply use the URL address of the operation (relative from the
service base address). For stored procedures that take some input parameters, we can
supply the parameters by using query strings in the operation URL (as shown in the previous
GetOrdersByCustomer operation sample).

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity

Framework recipe

 f Adding custom operations on OData service recipe

Building OData Services

28

Using custom data objects as the data
source of WCF Data Service

So far we've explored several examples, which use relational database objects as the data
provider (through Entity Framework, LINQ to SQL, or custom operations). However, we're
definitely not limited to these data sources; WCF Data Service provides the flexibility for
developers to use custom CLR objects as data sources.

In this recipe, we will see how to use custom data objects as a WCF Data Service data source
and expose OData entitiy sets based on the data members of the custom data objects.

Getting ready
In this recipe, we will create a WCF Data Service for exposing some books and book
categories information to clients. Instead of using ADO.NET Entity Framework or LINQ to SQL,
we will define some custom CLR types to represent the data model of the sample service.

The source code for this recipe can be found in the \ch01\CLRObjDataServiceSln\
directory.

How to do it...
1. Create a new ASP.NET Empty Web Application.

2. Create custom CLR types to represent the book and book category items.

The following code snippet shows the definition of the sample CLR types:
namespace CLRObjDataService
{
 [DataServiceKey("ISBN")]
 [DataServiceEntity]
 public class BookInfo
 {
 public string ISBN { get; set; }
 public string Title { get; set; }
 public string Author { get; set; }
 public DateTime PubDate { get; set; }
 public BookCategory Category { get; set; }
 }

 [DataServiceKey("Name")]
 [DataServiceEntity]
 public class BookCategory
 {

Chapter 1

29

 public string Name { get; set; }
 public List<BookInfo> Books { get; set; }
 }
}

3. Create a data context type that acts as a container for entity sets based on the
custom CLR types (defined in the previous step).

The following is the code of the sample data context type (see the following
BookServiceContext class), which exposes two entity sets based on the
BookInfo and BookCategory classes:
public class BookServiceContext
 {
 static IList<BookCategory> _categories = null;
 static IList<BookInfo> _books = null;

 public IQueryable<BookCategory> BookCategories
 {
 get
 {
 return _categories.AsQueryable();
 }
 }

 public IQueryable<BookInfo> Books
 {
 get
 {
 return _books.AsQueryable();
 }
 }

 }

For demonstration, we have also defined a static constructor for generating some test
data (see the following code snippet).
 static BookServiceContext()
 {
 _books = new List<BookInfo>();
 _categories = new List<BookCategory>();

 for(int i=1;i<=3;++ i)
 {
 var cate = new BookCategory() { Name = "Category_" +
 i.ToString() };

Building OData Services

30

 cate.Books = new List<BookInfo>();

 for (int j = 1; j <= 3; ++j)
 {
 int bid = (i*10+j);
 var book = new BookInfo()
 {
 ISBN = "ISBN" + bid.ToString(),
 Title = "Book Title " + bid.ToString(),
 Author = "Author",
 PubDate = DateTime.Now,
 Category = cate
 };
 _books.Add(book);
 cate.Books.Add(book);
 }
 _categories.Add(cate);
 }
 }

4. Create a new WCF Data Service and use the custom data context type as its
data source.

The following code snippet shows the sample BookDataService class, which uses
the BookServiceContext class (created in previous step) as the data source
parameter:
public class BookDataService : DataService< BookServiceContext >
{
 public static void InitializeService
 (DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 }
}

Like the ADO.NET Entity Framework-based WCF Data Service, we also need to set the
proper entity set access rules in the initialization function.

5. Launch the service and view the custom data entity sets in the web browser.

Chapter 1

31

For the sample service, we can access the exposed entity sets at the following locations:

 � Book category entity set (http://[server]:[port]/
BookDataService.svc/BookCategories)

 � Book entity set (http://[server]:[port]/BookDataService.svc/
Books)

We can also use the following URL to retrieve book entities that belong to a certain
category entity:
http://[server]:[port]/BookDataService.svc/
BookCategories('Category_1')/Books

The following screenshot shows the book entities that belong to the first
category entity:

How it works...
Now, let's take a look at what makes these things work. As we can see, each entity set we
expose in the sample service is coming from its corresponding member property defined in
the data context type. Such member properties should be declared as IQueryable<Entity
Type> type so that the WCF Data Service runtime can correctly locate them and expose them
as entity sets in the service.

For a given entity type T, we can only define one member
property (on the data context class), which returns
IQueryable<T>. In other words, we cannot expose
multiple entity sets using the same entity type.

For each custom entity type, we must specify a key property by using the
DataServiceKeyAttribute attribute. This key property is used for identifying entity
instances in a given entity set (just like the primary key for the relational table).

http://[server]:[port]/BookDataService.svc/BookCategories
http://[server]:[port]/BookDataService.svc/Books
http://[server]:[port]/BookDataService.svc/Books
http://[server]:[port]/BookDataService.svc/BookCategories('Category_1')/Books
http://[server]:[port]/BookDataService.svc/BookCategories('Category_1')/Books

Building OData Services

32

The BookCategory entity type has a Books property of the List<BookInfo> type. Such
kind of entity collection properties will be automatically treated as Navigation properties on
the target entity type. For OData clients, they can use these Navigation properties (by using
relative URI address) to retrieve the associated subentities from the primary entity instance
(see the previous sample code).

There's more...
We have discussed LINQ to SQL based data sources in the previous recipe. Actually, LINQ to
SQL is a special case of a custom data object based data source, since the LINQ to SQL data
model has already done most of the work for us. If you are interested in finding out more
about building WCF Data Service data source with a custom CLR type, you can refer to the
following MSDN reference:

Reflection Provider (WCF Data Services) available at http://msdn.microsoft.com/en-
us/library/dd723653.aspx

See also
 f Adding custom operations on OData service recipe

 f Building an OData service with WCF Data Service and LINQ to SQL recipe

Using Interceptors to customize a WCF Data
Service

If you've been familiar with standard WCF service programming, you probably have been
playing with the Message Inspectors, which are one of the WCF extension components for
intercepting the request and response messages of service operation calls.

Well, for WCF Data Service, we also have the similar extension component called
Interceptors, which can help intercepting the service requests issued from client callers.

By using WCF Data Service Interceptors, we can customize the code logic of certain
operations against a given entity set. In this recipe, we will see how to do some customization
on the data processing code logic in WCF Data Service by using custom Interceptors.

http://msdn.microsoft.com/en-us/library/dd723653.aspx
http://msdn.microsoft.com/en-us/library/dd723653.aspx
http://msdn.microsoft.com/en-us/library/dd723653.aspx

Chapter 1

33

Getting ready
In this recipe we will build a WCF Data Service based on the Northwind EF data model. The
service will expose two data entity sets, one is from the Categories table, and the other is
from the Products table. For demonstration, we will add two custom Interceptors against
these two entity sets so as to change their query and delete behavior.

The source code for this recipe can be found in the \ch01\QIDataServiceSln\ directory.

How to do it...
1. Create a new ASP.NET Empty Web Application.

2. Create a WCF Data Service with ADO.NET Entity Framework data model (using the
Northwind database).

The service will only expose the Categories and Products entity sets from the
data source (see the following screenshot).

3. Add custom Interceptors in the WCF Data Service class and bind them with the target
entity sets.

There are two Interceptors to define here. The first one is a QueryInterceptor against
the Products entity set. It will restrict the query result so as to expose Product
entities that have UnitsInStock > 0. The second one is a ChangeInterceptor
against the Categories entity set. By using it, no delete operation is allowed on
the Categories entity set. The following code snippet shows the WCF Data Service
class, which includes both Interceptors:
public class NWDataService : DataService< NorthwindEntities >
 {
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;

Building OData Services

34

 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 }

 // Query Interceptor for Products entity set
 [QueryInterceptor("Products")]
 public Expression<Func<Product, bool>> onQueryProducts()
 {
 // Only return products that have units in stock
 return p => p.UnitsInStock > 0;
 }

 // Change Interceptor for Categories entity set
 [ChangeInterceptor("Categories")]
 public void onChangeCategories
 (Category cate, UpdateOperations operations)
 {
 if (operations == UpdateOperations.Delete)
 {
 throw new DataServiceException(400, "Delete
 operation is not supported on Categories
 entity set.");
 }
 }
 }

4. Launch the service and try accessing the entity sets, which have Interceptors applied.

By accessing the Products entity set, we can find that all the entities returned by it
have the UnitsInStock field greater than zero. Also, if we explicitly use query filter
to look for Product entities that have UnitsInStock equal to zero, we will get
empty results (see the following screenshot).

Chapter 1

35

How it works...
In the sample service, we have applied a QueryInterceptor on the Products entity set.
Actually, a QueryInterceptor is just a function, which returns a Lambda expression with
the following signature:

Func<[Entity Type], bool>

Then, why does it use an expression instead of a delegate function directly? The reason is that
by using an expression, it is more convenient for the underlying WCF Data Service runtime to
forward such QueryInterceptor injected code logic to the actual query provider (such as
the ADO.NET Entity Framework provider, which will generate T-SQL based on the query) that
will fetch the data from the backend data source.

QueryInterceptor will be invoked when HTTP GET based query requests are received against
the target entity set; while ChangeInterceptor will be invoked when update/modify operations
are called. In this sample, our onChangeCategories Interceptor will check the incoming
request to see if it is a delete operation against the Categories entity set. If the checking
result is true, a DataServiceException will be thrown out. In a real-world case, we can
apply more complicated code logic to change the default update/modify behavior against the
target entity sets.

There's more...
For more information about using Interceptors in WCF Data Service, you can read the following
MSDN reference:

Interceptors (WCF Data Services) available at http://msdn.microsoft.com/en-us/
library/dd744842.aspx

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity

Framework recipe

http://msdn.microsoft.com/en-us/library/dd744842.aspx
http://msdn.microsoft.com/en-us/library/dd744842.aspx

Building OData Services

36

Accessing ASP.NET context data in WCF
Data Service

OData protocol is naturally based on HTTP and other web standards. OData services built
with WCF Data Service are often hosted in an ASP.NET web application. Therefore, it is quite
possible that a WCF Data Service is deployed side-by-side with many other web resources,
such as ASP.NET web pages, ASMX web services, and HTTP handlers. ASP.NET web pages
can access many ASP.NET runtime specific context data such as session states, client user
info, application states, cache, and HTTP request headers. Is this also possible for WCF Data
Services (hosted in ASP.NET web applications)?

Well, this can be easily achieved with the current WCF Data Service programming model. In
this recipe, we will introduce how to access ASP.NET context data in WCF Data Service code.

Getting ready
In this recipe, we will create a WCF Data Service, which will expose the session states and
HTTP client user headers (of the ASP.NET host web application) as entity sets to the service
callers. Also, to make the service code simple and clear, we will use custom CLR types instead
of a ADO.NET Entity Framework data model as the service data source.

The source code for this recipe can be found in the \ch01\WebContextDataServiceSln\
directory.

How to do it...
1. Create a new ASP.NET Empty Web Application.

2. Define the custom classes, which will be used as entity types and data context type of
the sample WCF Data Service.

The following is the complete definition of the ClientInfoEntity and
SessionItemEntity entity types in this sample:
[DataServiceEntity]
 [DataServiceKey("ID")]
 public class ClientInfoEntity
 {
 public int ID { get; set; }
 public string IPAddress { get; set; }
 public string UserAgent { get; set; }
 public bool Authenticated { get; set; }
 }

 [DataServiceEntity]

Chapter 1

37

 [DataServiceKey("KeyName")]
 public class SessionItemEntity
 {
 public string KeyName { get; set; }
 public string TypeName { get; set; }
 }

The following WebContextEntityContainer class is used as the service data
context (the container of the two sample entity sets):
public class WebContextEntityContainer
 {
 public IQueryable<SessionItemEntity> SessionItems
 {
 get
 {
 var items = new List<SessionItemEntity>();
 foreach (string key in
 HttpContext.Current.Session.Keys)
 {
 var item = new SessionItemEntity()
 {
 KeyName = key,
 TypeName =
 HttpContext.Current.Session[key].
 GetType().FullName
 };
 items.Add(item);
 }
 return items.AsQueryable();
 }
 }

 public IQueryable<ClientInfoEntity> ClientInfos
 {
 get
 {
 var req = HttpContext.Current.Request;
 var clientInfo = new ClientInfoEntity()
 {
 ID = 1,
 Authenticated = req.IsAuthenticated,
 IPAddress = req.UserHostAddress,
 UserAgent = req.UserAgent
 };

Building OData Services

38

 return new
 ClientInfoEntity[]{clientInfo}.AsQueryable();
 }
 }
 }

3. Create a new WCF Data Service and use the WebContextEntityContainer class
as a data source (see the following code snippet).
public class ContextInfoDataService : DataService<
 WebContextEntityContainer >
{
..
}

4. Launch the service in the web browser and query the two entity sets, which return
data specific to the current ASP.NET context.

We can access the SessionItems and ClientInfos entity sets through the
following URI addresses:

 � http://[server]:[port]/ContextInfoDataService.svc/
SessionItems

 � http://[server]:[port]/ContextInfoDataService.svc/
ClientInfos

The following screenshot shows the query output of the first (also the only) entity
instance from the ClientInfos entity set:

http://[server]:[port]/ContextInfoDataService.svc/SessionItems
http://[server]:[port]/ContextInfoDataService.svc/SessionItems
http://[server]:[port]/ContextInfoDataService.svc/ClientInfos
http://[server]:[port]/ContextInfoDataService.svc/ClientInfos
http://[server]:[port]/ContextInfoDataService.svc/ClientInfos

Chapter 1

39

How it works...
The WCF Service programming model provides built-in support for service code to access ASP.
NET context data in case the service is hosted in an ASP.NET web application. Since WCF Data
Service is a special implementation of WCF Service, accessing ASP.NET context data in WCF
Data Service code is naturally supported too. Actually, whenever a new WCF Data Service is
created in Visual Studio (within an ASP.NET web project), the IDE will automatically enable the
ASP.NET Compatibility mode (see the following screenshot) in the web.config file, which
is necessary for WCF Service (also WCF Data Service) to access ASP.NET context data of the
hosting web application.

For demonstration purposes, our sample ASP.NET web application also contains a
simple ASP.NET web page, which will help in generating some test session states data
(see the following InitSession page class).

public partial class InitSession : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (Session.Count == 0)
 {
 Session.Add("string item", "some text");
 Session.Add("int item", 120);
 Session.Add("boolean item", true);
 Session.Add("date item", DateTime.Now);
 Session.Add("array item", new int[]{1,2,3});
 }
 }
}

See also
 f Using custom data objects as the data source of WCF Data Service recipe

Building OData Services

40

Creating a custom WCF Data Service
provider

So far we've explored various ways to build an OData service with .NET Framework platform
including WCF Data Service with ADO.NET Entity Framework, LINQ to SQL, custom CLR
objects, and WCF RIA service.

However, what if we want to expose some custom data through OData endpoints but none of
the above means can help? Such conditions do exist, for example, we might have some data
that is not of relational database structure, or the data object types are previously defined,
which haven't applied those WCF Data Service specific attributes (necessary for using custom
CLR objects based data source).

Don't worry, the WCF Data Service framework has already provided a powerful extension
model, which can let you create a custom provider in order to expose arbitrary format custom
data in a WCF Data Service. In this recipe, we will see how to create a custom WCF Data
Service provider and use it to expose some custom data.

Getting ready
In this recipe, we will choose filesystem as an example and build a WCF Data Service, which
exposes the information of all files within a given directory. Also, we will create several
custom classes in order to implement the custom WCF Data Service provider. The following
class diagram (generated via Visual Studio Architecture Modeling tools) can help you get an
overview of these custom types and their dependency relationships:

{} DataServiceProviderLib

DirectoryFileDataServiceMetadata
137

DirectoryFileDataContext

11
DirectoryFileDataServiceQueryProvider

3
DirectoryFileDataService<T>

11
FileEntity

Chapter 1

41

The source code for this recipe can be found in the \ch01\FileDataServiceSln\
directory.

How to do it...
1. Create a new ASP.NET Empty Web Application.

2. Create the custom class that represents individual file objects (see the following
FileEntity class definition).
public class FileEntity
 {
 public int ID { get; set; }
 public string FileName { get; set; }
 public string Extension { get; set; }
 public DateTime Created { get; set; }
 public long Length { get; set; }
 }

3. Create the data context class that represents the data source and entity sets
container of the sample service.

The following code snippet shows the DirectoryFileDataContext class of the
sample service:
public class DirectoryFileDataContext
 {
 public DirectoryInfo DirInfo { get; set; }
 public List<FileEntity> Files { get; set; }

 public DirectoryFileDataContext():
 this(Environment.CurrentDirectory)
 { }
 public DirectoryFileDataContext(string dirPath)
 {
 DirInfo = new DirectoryInfo(dirPath);

 int i=0;
 Files = (from fi in DirInfo.GetFiles()
 select new FileEntity
 {
 ID = ++i,
 FileName = fi.Name,
 Extension = fi.Extension,
 Created = fi.CreationTime,
 Length = fi.Length
 }).ToList();
 }
 }

Building OData Services

42

4. Create a metadata provider class implementing the
IDataServiceMetadataProvider interface under System.Data.Services.
Providers namespace.

The following code snippet shows the overall definition of our metadata provider class
in this sample:
public class DirectoryFileDataServiceMetadata:
IDataServiceMetadataProvider
{
 private string _containerName = "";
 private string _namespace = "";
 private Dictionary<string, ResourceSet> _resSets = null;
 private Dictionary<string, ResourceType> _resTypes = null;

 #region IDataServiceMetadataProvider Members

 public string ContainerName
 {
 get { return _containerName; }
 }

 public string ContainerNamespace
 {
 get { return _namespace; }
 }

 public IEnumerable<ResourceSet> ResourceSets
 {
 get
 {
 return _resSets.Values;
 }
 }

 #endregion
}

Chapter 1

43

In the constructor of the metadata provider, we need to add code to register the
resource types and resource sets mapping to the data entities we want to expose in
the WCF Data Service.

public DirectoryFileDataServiceMetadata(DirectoryFileDataContext
ctx)
{
 _containerName = "DirectoryFiles";
 _namespace = "http://odata.test.org/directoryfiles";
 _resSets = new Dictionary<string, ResourceSet>();
 _resTypes = new Dictionary<string, ResourceType>();

 // Init ResourceType set
 var fileEntityType = typeof(FileEntity);
 var fileResourceType = new ResourceType(
 fileEntityType,
 ResourceTypeKind.EntityType,
 null,
 fileEntityType.Namespace,
 fileEntityType.Name,
 false
);

 AddPropertyToResourceType(fileResourceType, "ID", true);
 AddPropertyToResourceType(fileResourceType, "FileName",
 false);
 AddPropertyToResourceType(fileResourceType, "Extension",
 false);
 AddPropertyToResourceType(fileResourceType, "Created", false);
 AddPropertyToResourceType(fileResourceType, "Length", false);

 _resTypes.Add(fileResourceType.FullName, fileResourceType);

 // Init ResourceSet set
 var fileResourceSet = new ResourceSet
 ("Files", fileResourceType);
 _resSets.Add("Files", fileResourceSet);
}

Building OData Services

44

5. Create a query provider class, which implements the
IDataServiceQueryProvider interface under System.Data.Services.
Providers namespace.

The following code snippet shows the main part of our sample
DirectoryFileDataServiceQueryProvider class:
public class DirectoryFileDataServiceQueryProvider:
IDataServiceQueryProvider
 {
 private DirectoryFileDataContext _ctx = null;
 private DirectoryFileDataServiceMetadata _metadata = null;

 public DirectoryFileDataServiceQueryProvider
 (DirectoryFileDataContext ctx,
 DirectoryFileDataServiceMetadata metadata)
 {
 _ctx = ctx;
 _metadata = metadata;
 }

 #region IDataServiceQueryProvider Members

 public IQueryable GetQueryRootForResourceSet
 (ResourceSet resourceSet)
 {
 // Our service provider only provides Files entity set
 return _ctx.Files.AsQueryable();
 }

 public ResourceType GetResourceType(object target)
 {
 return this._metadata.Types.Single
 (rt => rt.InstanceType == target.GetType());
 }

 #endregion
 }

In the previous code snippet, the GetQueryRootForResourceSet method is
the one in which we return the entity set data based on the requested entity set
type parameter.

Chapter 1

45

6. Create the main service provider class, which derives from the DataService<T>
base class (under System.Data.Services namespace) and implements the
IServiceProvider interface.

The following is the definition of the main provider class (see the following
DirectoryFileDataService class) in this sample. It takes a generic parameter
which is derived from the data context class we defined earlier.
public abstract class DirectoryFileDataService<T> :
 DataService<T>, IServiceProvider where T :
 DirectoryFileDataContext
{
 private DirectoryFileDataServiceMetadata _metaProvider = null;
 private DirectoryFileDataServiceQueryProvider _queryProvider =
 null;

 #region IServiceProvider Members

 public object GetService(Type serviceType)
 {
 if (serviceType == typeof(IDataServiceMetadataProvider))
 {
 if (_metaProvider == null)
 {
 InitServiceProviders();
 }
 return _metaProvider;
 }
 else if (serviceType == typeof(IDataServiceQueryProvider))
 {
 if (_queryProvider == null)
 {
 InitServiceProviders();
 }
 return _queryProvider;
 }
 else
 {
 return null;
 }
 }

 #endregion
}

Building OData Services

46

To simplify the code logic, we will define a helper function to encapsulate the
initialization code (see the following InitServiceProviders function).
private void InitServiceProviders()
{
 var dsObj = this.CreateDataSource();

 // Create metadata provider
 _metaProvider = new DirectoryFileDataServiceMetadata(dsObj);
 // Set the resource types and resource sets as readonly
 foreach (var type in _metaProvider.Types)
 {
 type.SetReadOnly();
 }
 foreach (var set in _metaProvider.ResourceSets)
 {
 set.SetReadOnly();
 }

 // Create query provider
 _queryProvider = new DirectoryFileDataServiceQueryProvider
 (dsObj, _metaProvider);
 _queryProvider.CurrentDataSource = dsObj;
}

7. Create a new WCF Data Service based on the main service provider and the data
context classes created in the previous steps.

The WCF Data Service class is derived from the DirectoryFileDataService
class, which takes the DirectoryFileDataContext class as the generic
parameter (see the following code snippet).
public class FileDataService :
 DirectoryFileDataService<DirectoryFileDataContext>
 {
 public static void InitializeService
 (DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 config.DataServiceBehavior.AcceptProjectionRequests =
 true;
 config.SetEntitySetAccessRule
 ("*", EntitySetRights.AllRead);
 }

 protected override DirectoryFileDataContext
 CreateDataSource()
 {

Chapter 1

47

 var dc = new DirectoryFileDataContext
 (@"C:\Users\Public\Pictures\Sample Pictures");
 return dc;
 }

In addition, we need to override the CreateDataSource function of the service
class and put the file directory initialization code there. You can specify any directory
(avoid using Windows system directories for potential permission issues) on the local
machine for testing purpose.

8. Launch the sample service in the web browser and query the Files entity set
exposed in it.

The following screenshot shows the default query result against the Files entity set:

We can also add additional query options to filter the query result based on the public
properties defined in the FileEntity class (see the following screenshot).

Building OData Services

48

How it works...
In the previous steps, we created all the custom provider classes from bottom to top according
to the class structure diagram shown earlier. Now, let's have a look at how they work together
in a top-to-bottom approach.

The DirectoryFileDataService<T> class is the top most type among all the custom
provider classes. This class is derived from the DataService<T> base class so that it can be
directly used by WCF Data Service as service class. The DirectoryFileDataService<T>
class also implements the IServiceProvider interface because it will be asked to provide
certain implementations of various kind of custom service providers. In this case, we have
implemented the metadata provider (IDataServiceMetadataProvider interface) and the
query provider (IDataServiceMetadataProvider interface), which are used for publishing
service metadata and exposing entity sets. In addition, there are other providers used for
implementing more advanced features, for example, the IDataServiceUpdateProvider
interface for implementing update functions, the IDataServicePagingProvider interface
for implementing paging functions, and the IDataServiceStreamsProvider interface for
implementing data streaming functions. The following diagram shows the calling pipeline from
WCF Data Service class to custom service providers and the backend data source objects:

Provider

IServiceProvider

IDataServiceQueryProvider

IDataServiceMetadataProvider

IDataServiceUpdateProvider(opt)

IDataServicePagingProvider(opt)

IDataServiceStreamProvider(opt)
Data Source

IQueryable

IQueryable

List,
Table,

and so on

List,
Table,

and so on

WCF Data Services
FrameWork

The DirectoryFileDataService type uses instances of the
DirectoryFileDataServiceQueryProvider and DirectoryFileDataServiceMetadata
types to serve the metadata and query service requests. These two provider instances also
use the DirectoryFileDataContext type instance for retrieving the underlying data entity
sets' type information and query root object.

Chapter 1

49

Both the DirectoryFileDataServiceQueryProvider and
DirectoryFileDataServiceMetadata classes have defined
a parameter of the DirectoryFileDataContext class in their
constructors. This is a common pattern when implementing custom
service providers. Because most of the providers will need to get type
information (for the entity or entity sets they will handle) from the
data context object, the class constructor is a good place for them to
hold such an object reference.

Finally, we come to the FileEntity class. You might think it is quite similar to the custom
entity types we defined in the Using custom data objects as the data source of WCF Data
Service recipe. The important difference is that we do not have to apply any additional
attributes (such as the DataServiceKey and DataServiceEntity attributes) on the
FileEntity class (compared to those entity types used by a custom CLR objects based
data source). In other words, by using a custom WCF Data Service provider, we can make use
of existing predefined custom data types (whether they have applied those special attributes
under System.Data.Services namespace or not) as OData service entities.

There's more...
WCF Data Service providers have opened the door for developers to extend an OData service
to their own data sources in a very flexible way. By using the provider-based model, we can
control almost every aspect of WCF Data Service customization (such as the querying and
updating processes). Whenever you want to customize a certain part of a WCF Data Service,
just find the corresponding provider interface and implement it.

For more information about building custom WCF Data Service providers, you can refer to the
following MSDN reference:

Custom Data Service Providers available at http://msdn.microsoft.com/en-us/data/
gg191846

See also
 f Using custom data objects as the data source of WCF Data Service recipe

http://msdn.microsoft.com/en-us/data/gg191846

2
Working with OData

at Client Side

In this chapter we will cover:

 f Exploring an OData service through web browser

 f Using Visual Studio to generate strong-typed OData client proxy

 f Generating OData client proxy via DataSvcUtil.exe tool

 f Editing and deleting data through WCF Data Service client library

 f Accessing OData service via WebRequest class

 f Executing OData queries in an asynchronous manner

 f Filtering OData query results by using query options

 f Dealing with server-side paged entity sets from WCF Data Service

 f Performing WPF data binding with OData service data

 f Injecting custom HTTP headers in OData requests

 f Consuming HTTP compression enabled OData service

 f Using MSXML to consume OData service in unmanaged applications

Working with OData at Client Side

52

Introduction
With OData services established, it is also quite important to find a simple and efficient means
to consume the data from services. Since OData protocol is based on web standards such as
HTTP, XML, and JSON, it is quite convenient for various programming platforms to build client
applications that can consume OData services. For example, you can simply launch a web
browser to explore an OData service, which will return data in the AtomPub format; you can
also use the .NET WebRequest class to communicate with an OData service via a raw HTTP
request/response. In more complicated situations, we can use the OData client SDK or GUI
tools (such as the WCF Data Service client library and Visual Studio IDE) to generate a
strong-typed client proxy to access OData service.

In this chapter, we will cover several cases of accessing OData services in client applications.
We will start with some very basic OData client access approaches such as using a web
browser, strong-typed client proxy classes, and raw WebRequest class. Then, we will dig into
some more detailed OData client access scenarios such as editing and updating OData entity
sets, asynchronous OData programming pattern, using built-in OData query options and
server-side paged entity sets manipulation. In addition, some more complicated OData access
cases such as consuming OData in Gzip compressed format, accessing an OData service in
unmanaged clients are also covered at the end of this chapter.

Exploring an OData service through web
browser

What is the simplest and most convenient means to access data entities exposed from an
OData service or shall we always build a dedicated client proxy or use some OData client APIs
to consume OData service? Of course not! Actually, what we need is just a web browser. By
using a web browser, we can explore the metadata of an OData service and query any entity
set exposed in the service in a quick and straightforward way. In this recipe, we will show you
how to use a web browser to quickly explore the data exposed from an OData service.

Getting ready
The sample OData service we will use here is still based on WCF Data Service and ADO.NET
Entity Framework. The Northwind database will be used as the backend data source.

The source code for this recipe can be found in the \ch02\ NWDataServiceSln\ directory.

Chapter 2

53

How to do it...
1. Create a new ASP.NET Empty Web Application.

2. Create a new WCF Data Service with the ADO.NET Entity Framework data model
(using the Northwind database).

The sample service needs to expose the following entity sets (from the corresponding
Northwind database tables):

 � Categories

 � Products

 � Orders

3. Select the .svc service file in the web application and launch it using the View in
Browser context menu (see the following screenshot).

4. View the metadata of the sample service by using the $metadata URL suffix.

We can directly append the $metadata suffix after the base URL of the sample
service. The following screenshot shows the entity type definitions contained in the
service metadata:

We can expand and collapse the elements in the metadata document to view data
types and relations defined in the service.

Working with OData at Client Side

54

The $metadata URL suffix is a WCF Data Service specific convention.
Other OData service implementations might use different URL
conventions for exposing service metadata.

Under the entity type definitions, we can also find the definitions of entity sets
exposed in the service (see the following screenshot).

5. View all entities within a given entity set by appending the entity set name after the
base URL.

The following screenshot shows the web browser output by accessing the
Categories entity set:

6. Access a specific entity instance by supplying the entity key value in the URL.

For example, we can use the following URL address to access the Category entity
object whose key is 2 (see the following screenshot).

Chapter 2

55

7. Navigate between entities or entity sets through reference or navigation properties.

When exploring the OData service metadata, we can find that there are some
Association and AssociationSet elements defined together with the entity and
entity sets. By using such association information, we can navigate from one entity
object to its associated entity or entity collection. We can use the following URL to
access the Product entities associated with the given Category entity:
http://[server]:[port]/NWDataService.svc/Categories(2)/Products

The following screenshot shows the web browser output by executing the previous
URL query:

8. Apply some OData query options in the URL.

The following are two sample URLs, which have used the $filter and $top
query options:

 � retrieve all order entities that have 'Brazil' as
ShipCountry

http://[server]:[port]/NWDataService.svc/
Orders?$filter=ShipCountry eq 'Brazil'

 � retrieve the top 3 Order entities from service

http://[server]:[port]/NWDataService.svc/Orders?$top=3

The following is the web browser output by executing the second query
given previously:

http://[server]:[port]/NWDataService.svc/Categories(2)/Products
http://[server]:[port]/NWDataService.svc/Categories(2)/Products

Working with OData at Client Side

56

How it works...
Now, we know that we can use a web browser to view the entity sets exposed in OData
services (with the corresponding URL addresses). It is because OData is based on HTTP
protocol and enables data access via standard HTTP methods (such as GET, POST, and PUT).
This also makes it quite convenient for any HTTP web-request-enabled client to access the
data exposed by OData services.

Metadata is also very important to OData clients. By using the metadata document, we can
get all the entity set and entity types' information of an OData service. And by using standard
HTTP URL format addresses, we can access any kind of the following data resources exposed
in OData services:

 f An entity set

 f An entity object

 f Associated entity collection on a specific entity object

 f Custom service operations

 f An entity collection based on query filters

Even if you haven't got an overview of the entire service data structure (by using metadata), it
is still quite straight and intuitive for you to discover the data exposed in an OData service. We
can do it by accessing the default service document at the base service address. For example,
we can view the default document of the sample Northwind OData service by typing the
following URL in the web browser:

http://[server]:[port]/NWDataService.svc/

The default service document will show you all the exposed entity sets and their relative
locations (through the href attribute). By appending the href relative address after the
base service URL, we can drill into the specific entity set (such as the following Categories
entity set URL).

http://[server]:[port]/NWDataService.svc/Categories

And if you add an entity key value in the entity set URL, you can view the data of a specific
entity object only (see the following sample URL of a specific Category entity object).

http://[server]:[port]/NWDataService.svc/Categories(2)

Since each Category entity is associated with a collection of Product entities, you can
further extend the query URL (by appending the Navigation property name) so as to view all
the associated entity objects. The following URL is used to get all Product entities associated
with a specific Category entity:

http://[server]:[port]/NWDataService.svc/Categories(2)/Products

http://[server]:[port]/NWDataService.svc/
http://[server]:[port]/NWDataService.svc/
http://[server]:[port]/NWDataService.svc/Categories
http://[server]:[port]/NWDataService.svc/Categories
http://[server]:[port]/NWDataService.svc/Categories
http://[server]:[port]/NWDataService.svc/Categories
http://[server]:[port]/NWDataService.svc/Categories
http://localhost:3822/NWDataService.svc/Categories(2)
http://[server]:[port]/NWDataService.svc/Categories
http://[server]:[port]/NWDataService.svc/Categories
http://localhost:3822/NWDataService.svc/Categories(2)/Products

Chapter 2

57

By using this intuitive and self-explained data presentation style, it is quite handy for us to
explore an OData service in a standard web browser and you will find it quite useful when you
develop and test an OData service.

We have also shown some sample URLs, which use query options. We will discuss query
options further within a dedicated recipe in this chapter.

There's more...
In case you want to know more about the OData metadata format and how we can query it,
the following article is worth reading:

Queryable OData Metadata available at http://www.odata.org/blog/2010/4/22/
queryable-odata-metadata

See also
 f Filtering OData query results by using query options recipe

Using Visual Studio to generate strong-
typed OData client proxy

When we need to incorporate data from OData services in .NET Framework based
applications, what would be the most straightforward and efficient means for consuming
the services? The answer is using the strong-typed client proxy generated upon the WCF
Data Service client library. And Visual Studio 2010 has provided GUI support on this
through the Add Service Reference wizard.

Recipes in this book are using Visual Studio 2010 as the main
development tool. However, generating OData client proxy via the
Add Service Reference wizard has already been supported since
Visual Studio 2008 SP1.

In this recipe, we will demonstrate how to generate a strong-typed OData client proxy in Visual
Studio 2010 and use the generated proxy to consume the target OData service.

Working with OData at Client Side

58

Getting ready
The sample OData service here is still built with WCF Data Service and uses the ADO.NET
Entity Framework data model (Northwind database). And we will create a strong-typed client
proxy in Visual Studio to consume the service. This proxy generation approach will be used
many times over the entire book.

The source code for this recipe can be found in the \ch02\VSODataClientSln\ directory.

How to do it...
1. Create a new ASP.NET web application, which contains the WCF Data Service based

on the Northwind database (using ADO.NET Entity Framework data model).

2. Create a new Console application as an OData client.

3. Right-click on the project node in Visual Studio Solution Explorer and launch the
proxy generation wizard by selecting the Add Service Reference... context menu (see
the following screenshot).

4. Type the base address of the target OData service in the address bar of Add Service
Reference dialog.

In this sample, we will type the address of the local Northwind OData service (within
the same solution) as follows:
http://localhost:14944/NWDataService.svc/

Optionally, you can click on the Go button to preview the entity sets exposed by the
target OData service (see the following screenshot).

http://localhost:14944/NWDataService.svc/
http://localhost:14944/NWDataService.svc/

Chapter 2

59

5. Click on the OK button (at the bottom of the dialog) to finish the proxy generation.

6. Inspect the auto-generated proxy code by double-clicking on the service reference
item in Visual Studio Class View or Object Browser.

The following is the declaration of the classes within the auto-generated proxy code:
public partial class NorthwindEntities : global::System.Data.
Services.Client.DataServiceContext
{

}

[global::System.Data.Services.Common.EntitySetAttribute("Categori
es")] [global::System.Data.Services.Common.DataServiceKeyAttribute
("CategoryID")]
public partial class Category : global::System.ComponentModel.
INotifyPropertyChanged
{

}

[global::System.Data.Services.Common.
EntitySetAttribute("Products")] [global::System.Data.Services.
Common.DataServiceKeyAttribute("ProductID")]
public partial class Product : global::System.ComponentModel.
INotifyPropertyChanged
{
......
}

7. Use the generated proxy to query entity sets from the target service.

The ListCategories function (see the following code snippet) creates an instance
of the NorthwindEntities class and uses the Categories property to query all
the Category entities.
static void ListCategories()
{
 var svcUri = new Uri("http://localhost:14944/NWDataService.
 svc/");
 var svc = new NWDataSvc.NorthwindEntities(svcUri);
 foreach (var cate in svc.Categories)
 {
 Console.WriteLine(
 "CategoryID:{0}, CategoryName:{1}",
 cate.CategoryID,
 cate.CategoryName
);
 }
}

Working with OData at Client Side

60

And we can use a similar method to retrieve all the Product entities (see the
following ListProducts function).
static void ListProducts()
{
 var svcUri = new Uri("http://localhost:14944/NWDataService.
 svc/");
 var svc = new NWDataSvc.NorthwindEntities(svcUri);

 foreach (var prod in svc.Products)
 {
 // Load deferred property
 svc.LoadProperty(prod, "Category");
 Console.WriteLine(
 "ID:{0}, Name:{1},Category:{2}, UnitPrice:{3},
 UnitsInStock:{4}",
 prod.ProductID,
 prod.ProductName,
 prod.Category.CategoryName,
 prod.UnitPrice,
 prod.UnitsInStock
);
 }
}

8. Use the generated proxy to invoke service operations against the target OData
service (see the following code snippet).
static void ExecuteOperations()
{
 var svcUri = new Uri("http://localhost:14944/NWDataService.
 svc/");
 var svc = new NWDataSvc.NorthwindEntities(svcUri);

 var operationUri =
 new Uri("GetProductCountByCategoryName?cateName=
 'Beverages'", UriKind.Relative);

 var result = svc.Execute<int>(operationUri).First();

 Console.WriteLine("Result of 'GetProductCountByCategoryName'
 operation: {0}", result);
}

Chapter 2

61

How it works...
In this sample, the Visual Studio generated client proxy contains the following classes:

 f The NorthwindEntities class

 f The Category class

 f The Product class

The NorthwindEntities class derives from the DataServiceContext class under the
System.Data.Services.Client namespace. This class represents the service data
context at the client side and holds one or more entity collection properties (such as the
Categories and Products properties in this case) corresponding to the entity sets exposed
in the target OData service.

At runtime, we first construct an instance of the data context class (by supplying the URL
address of the target OData service) and then use LINQ to Entity methods to query or change
the required entity objects. The data context type instance will track all the changes that have
been made against the entity objects held by it until the client submits the changes to the
server side. This is quite similar to how we use the ADO.NET Entity Framework data model to
access a database directly.

One thing worth noticing is that for those entity types which have navigation properties
(such as the Products property on Category entity type), we need to load the navigation
properties before using them. This is because the WCF Data Service client library uses the
lazy loading pattern for entity collections associated through navigation properties. To load
such properties, we need to call the LoadProperty method of the data context class (the
NorthwindEntities class in this case) so as to make sure the data in the navigation
properties is ready for using.

As we've discussed in Chapter 1, Building OData Services, an OData service can expose
not only data entities, but also service operations, which can return either entities or
custom data objects. With a Visual Studio generated client proxy, we can also easily invoke
service operations against the target OData service. In this recipe, we've demonstrated how
we can use the ExecuteOperations function (of the OData proxy class) to invoke the
GetProductCountByCategoryName operation against the sample Northwind OData service.

Working with OData at Client Side

62

When constructing the data context object, we have to pass in the base address of the OData
service. The WCF Data Service client library uses this address to locate the target OData
service and perform all the network communication with the target service under the hood. By
using Fiddler or other HTTP sniffer tools, we can find out the underlying HTTP requests (send by
the WCF Data Service client library) for querying the entity sets (see the following screenshot).

And after the service sends the response back in either XML or JSON format (see the following
screenshot), the client library will also help deserialize the response content into the proper
entity objects or custom data objects.

See also
 f Exploring an OData service through web browser recipe

Chapter 2

63

Generating OData client proxy via
DataSvcUtil.exe tool

Although the Visual Studio Add Service Reference wizard is quite simple and convenient for
generating a strong-typed OData client proxy, sometimes we still need to use command-line
approaches for creating an OData client proxy. For example, when we need to integrate the
OData proxy generation task into some automation jobs (such as the traditional batch
execution files), using Visual Studio or other GUI-based tools will not work.

No problem! WCF Data Service has provided a built-in command-line tool (called
DataSvcUtil.exe) for creating a OData client proxy. In this recipe, we will show
you how to use the DataSvcUtil.exe tool to create a strong-typed client proxy for
consuming OData services.

Getting ready
Make sure we have Microsoft .NET Framework 4.0 (or Visual Studio 2010) installed since
the DataSvcUtil.exe tool is provided in Microsoft .NET framework 4.0 (which includes
the WCF Data Service 4.0 runtime and tools). For an OData service, we will use the same
Northwind sample service as we've used in the previous recipe (Using Visual Studio to
generate strong-typed OData client proxy).

The source code for this recipe can be found in the \ch02\ODataCmdClientSln\ directory.

How to do it...
1. Create a new ASP.NET web application which contains the WCF Data Service based

on the Northwind database (using ADO.NET Entity Framework data model).

2. Create a new Console application as an OData client.

3. Locate the DataSvcUtil.exe tool and launch it in command-line prompt.

The DataSvcUtil.exe tool can be found in the .NET Framework directory. For this
sample case, it is located in C:\Windows\Microsoft.NET\Framework\v4.0
(C:\Windows\Microsoft.NET\Framework64\v4.0 for 64-bit version).

Working with OData at Client Side

64

If you have Visual Studio 2010 installed, just start the Visual Studio Command
Prompt through Start | All Programs | Microsoft Visual Studio 2010 | Visual
Studio Tools menu and the DataSvcUtil.exe tool is available in the launched
command-prompt (see the following screenshot).

4. Use the /? option to view the command syntax and available options of the
DataSvcUtil.exe tool (see the previous screenshot).

5. Execute DataSvcUtil.exe in the command prompt and supply the target service
URL and output file path as arguments (see the following sample command).
DataSvcUtil.exe /out:"NWODataClient.cs" /uri:"http://
localhost:15035/NWDataService.svc/"

The following code snippet shows the main classes contained in the generated proxy
code file:
namespace NorthwindModel
{
 public partial class NorthwindEntities : global::System.Data.
 Services.Client.DataServiceContext
 {......}

 [global::System.Data.Services.Common.DataServiceKeyAttribute
 ("CategoryID")]
 public partial class Category
 {......}

 [global::System.Data.Services.Common.DataServiceKeyAttribute
 ("ProductID")]
 public partial class Product
 {......}

6. Import the generated proxy code file into the client application.

Chapter 2

65

7. Access the target OData service via the imported client proxy classes.

The following code snippet shows the sample function which queries the
Categories entity set via the DataSvcUtil.exe generated client proxy classes:
static void QueryCategoriesEntitySet()
{
 var svcUri = new Uri("http://localhost:15035/NWDataService.
 svc/");
 var ctx = new NorthwindModel.NorthwindEntities(svcUri);

 foreach (var category in ctx.Categories)
 {
 ctx.LoadProperty(category, "Products");
 Console.WriteLine("ID:{0}, Name:{1}, ProductCount:{2}",
 category.CategoryID,
 category.CategoryName,
 category.Products.Count
);
 }
}

How it works...
When creating the OData client proxy in the command prompt, we supply the service base
address and output code file path to the DataSvcUtil.exe command via the /uri and /
out options. In fact, DataSvcUtil.exe also supports several other command line options.
The following is the complete option list referenced from the MSDN document of the
DataSvcUtil.exe tool.

Option Description

/dataservicecollection Specifies that the code required to bind objects to controls is
also generated.

/help or /? Displays command syntax and options for the tool.
/in:<file> Specifies the .csdl or .edmx file or a directory where the file is

located.
/language:[VB|CSharp] Specifies the language for the generated source code files.

The language defaults to C#.
/nologo Suppresses the copyright message from displaying.

/out:<file> Specifies the name of the source code file that contains the
generated client data service classes.

/uri:<string> The URI of the OData feed.
/version:[1.0|2.0] Specifies the highest accepted version of OData. The version is

determined based on the DataServiceVersion attribute of the
DataService element in the returned data service metadata.

Working with OData at Client Side

66

If we open the proxy code file generated by the DataSvcUtil.exe tool, we can find that it
contains almost the same classes (the data context class and other related entity classes)
such as those generated by the Visual Studio Add Service Reference wizard. Similarly, the
code logic for accessing an OData service with the DataSvcUtil.exe generated proxy is
equivalent to how we use the Visual Studio generated proxy.

There's more...
In addition to using OData service metadata (by supplying the service base address),
DataSvcUtil.exe can also generate an OData client proxy via a given conceptual schema
definition language (CSDL) or .edmx file. The latter is just the definition file used by the ADO.
NET Entity Framework data model. The following command uses an .edmx file as input for
generating an OData client proxy:

DataSvcUtil.exe /in:Northwind.edmx /out:NWDataServiceProxy.cs

This is very useful if the OData service uses ADO.NET Entity Framework as the data source
and already has the .edmx data model file defined.

For more information about the DataSvcUtil.exe tool, you can refer to the following
MSDN document:

WCF Data Service Client Utility (DataSvcUtil.exe) available at http://msdn.microsoft.
com/en-us/library/ee383989.aspx

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe

Editing and deleting data through WCF Data
Service client library

We have learned how to query data and execute operations over an OData service via
a strong-typed client proxy. But this is far from enough because in most data access
applications, we need to deal with data editing and updating. With the help of the WCF Data
Service client library (by using Visual Studio or DataSvcUtil.exe generated client proxy), it
is quite convenient for us to manipulate (such as Create, Edit, Delete) OData service entities.

In this recipe, we will demonstrate how to perform common CRUD operations against OData
service entities.

Chapter 2

67

Getting ready
In this recipe, we will create an OData client, which uses a Visual Studio generated client proxy
to access and update the Northwind OData service. The client application first creates a new
Product entity and adds it into the Products entity set, then it makes some changes on the
created entity, and finally it deletes the entity from the entity set.

The source code for this recipe can be found in the \ch02\ODataEditUpdateSln\
directory.

How to do it...
1. Create a new ASP.NET web application which contains the WCF Data Service based

on the Northwind database (using ADO.NET Entity Framework data model).

Make sure we have enabled all access rights for all entities in the
InitializeService function of the WCF Data Service class (see the following
code snippet).
public static void InitializeService(DataServiceConfiguration
config)
{

 config.SetEntitySetAccessRule("*", EntitySetRights.All);
}

2. Create a new Console application as OData client.

3. Create the OData client proxy by using the Visual Studio Add Service Reference wizard
in the Console application.

4. Add the function for creating a new entity object against the target OData entity set.

The following CreateNewProductEntity function uses the strong-typed proxy to
create a new Product entity object and add it into the Products entity set:
static void CreateNewProductEntity()
{
 var svcUri = new Uri("http://localhost:52150/NWDataService.
 svc/");
 var ctx = new NWDataSvc.NorthwindEntities(svcUri);

 var id = DateTime.Now.Ticks;

 // Call factory method to create new entity instance
 var newProduct = NWDataSvc.Product.CreateProduct
 (0, "NewProduct_" + id, false);
 newProduct.CategoryID = 1;
 newProduct.QuantityPerUnit = "5 x 5";

Working with OData at Client Side

68

 newProduct.ReorderLevel = 3;
 newProduct.SupplierID = 1;
 newProduct.UnitPrice = 33;
 newProduct.UnitsInStock = 22;
 newProduct.UnitsOnOrder = 11;

 // Insert the new entity and submit the changes
 ctx.AddObject("Products", newProduct);
 ctx.SaveChanges();
}

5. Add the function for modifying the entity object we have created in the previous step.

The following EditProductEntity function first finds the Product entity we
created earlier and updates the UnitPrice property of the obtained entity object:
static void EditProductEntity()
{
 var svcUri = new Uri("http://localhost:52150/NWDataService.
 svc/");
 var ctx = new NWDataSvc.NorthwindEntities(svcUri);

 var product = ctx.Products.Where(p => p.ProductName.
 StartsWith("NewProduct")).FirstOrDefault();

 if (product != null)
 {
 product.UnitPrice = product.UnitPrice + 10;

 ctx.UpdateObject(product);
 ctx.SaveChanges();
 }
}

6. Add the function for deleting the entity object we have manipulated in the
previous step.

The following DeleteProductEntity function uses the DeleteObject method of
the data context class to remove the Product entity object we have manipulated in
previous steps:
static void DeleteProductEntity()
{
 var svcUri = new Uri("http://localhost:52150/NWDataService.
 svc/");
 var ctx = new NWDataSvc.NorthwindEntities(svcUri);

Chapter 2

69

 var product = ctx.Products.Where(p => p.ProductName.
 StartsWith("NewProduct")).FirstOrDefault();

 if (product != null)
 {
 ctx.DeleteObject(product);
 ctx.SaveChanges();
 }
}

How it works...
As the previous sample code demonstrates, when using the WCF Data Service client library
based OData proxy to manipulate entity objects, we will use the following general process:

1. Create the data context object against the target service.

2. Locate the entity objects we want to manipulate.

3. Call the AddObject, UpdateObject, and DeleteObject methods (against the
data context object) to perform CUD operations for the target entity objects.

4. Call the SaveChanges method against the data context object to submit all the
changes we have made.

When we make changes to entity objects through the data context object, it will help track
and record all the changes that have been made. When we call the SaveChanges method,
the data context object will send all changes it has recorded (by translating the changes
to the underlying HTTP requests) to the target OData service. By default, the data context
object will send the request for each change one by one. However, if you want to submit
all recorded changes in a single HTTP request (such as a batch update), you can call the
override version of the SaveChanges method, which takes an additional parameter of
SaveChangesOptions enum type. For example:

ctx.SaveChanges(SaveChangesOptions.Batch)

With this batch style change submission, we can save the HTTP communication round-trips
between the service and client.

Even if you submit changes in batch manner, the WCF Data Service
client library will make sure the batch request keeps all the contained
change operations in order that the server side will update the entity
objects in the same order as the client side.

Working with OData at Client Side

70

In the sample functions, we always obtain the entity object by querying the container entity
collection on the data context object. Actually, this is not necessary. We can directly construct
an entity instance (which does exist in the target OData service) and then use the AttachTo
method to bind it with the data context object (see the following code snippet).

var svcUri = new Uri("http://localhost:52150/NWDataService.svc/");
var ctx = new NWDataSvc.NorthwindEntities(svcUri);

// Attach an existing entity object
var prod = NWDataSvc.Product.CreateProduct(78,
"NewProduct_634726951783606513", false);

ctx.AttachTo("Products", prod);
// data context will start tracking the prod object now

Likewise, if we want to prevent an entity object from being tracked by the data context object,
we can use the Detach method to dismiss the relationship between them (see the following
code snippet).

// Detach an entity object from the data context object
ctx.Detach(prod);

// data context will no longer strack the prod object now

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe

Accessing OData service via WebRequest
class

So far we have tried consuming an OData service through strong-typed proxy and web
browser; the former is a pure programmatic approach relying on the WCF Data Service client
library while the latter relies on the web browser to handle the underlying raw HTTP request/
response. However, sometimes we might need to combine the two approaches. For example,
what if we want to consume an OData service in the .NET application but also want to directly
handle the raw HTTP request/response messages (without using the strong-typed client
proxy)? This would also give us maximum control over the underlying HTTP message
exchange of the OData service communication.

In this recipe, we will take the .NET WebRequest class as an example and
demonstrate how we can consume an OData service by manually handling the
raw HTTP request/response messages.

Chapter 2

71

Getting ready
In this sample, we will build a .NET Console application, which uses the WebRequest class to
communicate with the Northwind OData service. demonstration purposes, the following two
data access cases will be covered:

 f Query all the entities in the Products entity set and display them

 f Create a new Product entity and insert it into the Products entity set

The source code for this recipe can be found in the \ch02\WebRequestClientSln\
directory.

How to do it...
1. Create a new ASP.NET web application which contains the WCF Data Service based

on the Northwind database (using ADO.NET Entity Framework data model).

2. Create a new Console application as an OData client.

Make sure the System.Xml.Linq assembly (which contains the necessary LINQ to
XML classes) is referenced in the project.

3. Create a new function that queries all the Product entities from the Products
entity set (see the following code snippet).
static void QueryProductsByWebRequest()
{
 // Generate the OData request Uri
 var svcUri = new Uri("http://localhost:47568/NWDataService.
 svc/");
 var productsUri = new Uri(svcUri, "Products");

 // Create WebRequest object
 var req = WebRequest.Create(productsUri) as HttpWebRequest;
 req.Method = "GET";

 // Retrieve the query response and load it as Xml
 var rep = req.GetResponse() as HttpWebResponse;
 var doc = XDocument.Load(rep.GetResponseStream());
 rep.Close();

 // Parse the response XML with LINQ to XML
 var nsDefault = XNamespace.Get("http://www.w3.org/2005/Atom");
 var nsMetadata = XNamespace.Get("http://schemas.microsoft.com/
 ado/2007/08/dataservices/
 metadata");

Working with OData at Client Side

72

 var nsData = XNamespace.Get("http://schemas.microsoft.com/
 ado/2007/08/dataservices");

 var elmsProducts = from p in doc.Descendants(nsDefault +
 "entry")
 select p.Descendants(nsMetadata +
 "properties").First();

 Console.WriteLine("There are {0} products.", elmsProducts.
 Count());
 foreach (var elmProduct in elmsProducts)
 {
 var pID = elmProduct.Descendants(nsData + "ProductID").
 First().Value;
 var pName = elmProduct.Descendants(nsData +
 "ProductName").First().Value;
 var cateID = elmsProducts.Descendants(nsData +
 "CategoryID").First().Value;

 Console.WriteLine("ID:{0}, Name:{1}, CategoryID:{2}",
 pID,
 pName,
 cateID
);
 }
}

4. Create a new function that adds a new Product entity into the Products entity set
(see the following code snippet).
static void CreateProductByWebRequest()
{
 // Compose OData request Uri(for creating entity)
 var svcUri = new Uri("http://localhost:47568/NWDataService.
 svc/");
 var productsUri = new Uri(svcUri, "Products");

 // Create WebRequest object(and initialize the proper headers)
 var req = WebRequest.Create(productsUri) as HttpWebRequest;
 req.Method = "POST";
 req.Headers.Add("DataServiceVersion", "1.0;NetFx");
 req.Headers.Add("MaxDataServiceVersion", "2.0;NetFx");
 req.Accept = "application/atom+xml,application/xml";
 req.ContentType = "application/atom+xml";

 // Construct the Xml element for the new entity

Chapter 2

73

 var elmNewProduct = CreateXElementForNewProduct();

 // Write the Xml content into request stream of WebRequest
 using (var reqWriter = XmlWriter.Create(req.
 GetRequestStream()))
 {
 elmNewProduct.WriteTo(reqWriter);
 }

 // Retrieve and process the HTTP response
 var rep = req.GetResponse() as HttpWebResponse;
 if (rep.StatusCode == HttpStatusCode.Created)
 {
 Console.WriteLine("New Product created at {0}", rep.
 Headers["Location"]);
 }
 else
 {
 Console.WriteLine("New Product creation failed");
 }
}

To make the code more readable, we have encapsulated the code for generating
the new entity's XML fragment in a separate helper function (see the following
code snippet).
static XElement CreateXElementForNewProduct()
{
 // Compose the HTTP request body via LINQ to XML
 var nsDefault = XNamespace.Get("http://www.w3.org/2005/Atom");
 var nsMetadata = XNamespace.Get("http://schemas.microsoft.com/
 ado/2007/08/dataservices/metadata");
 var nsData = XNamespace.Get("http://schemas.microsoft.com/
 ado/2007/08/dataservices");

 var id = DateTime.Now.Ticks;
 var elmProperties = new XElement(nsMetadata + "properties",
 new XElement(nsData + "ProductName", "NewProduct_" + id),
 new XElement(nsData + "CategoryID", "1"),
 new XElement(nsData + "Discontinued", "false"),
 new XElement(nsData + "QuantityPerUnit", "5 x 5"),
 new XElement(nsData + "ReorderLevel", "3"),
 new XElement(nsData + "SupplierID", "1"),
 new XElement(nsData + "UnitPrice", "33"),
 new XElement(nsData + "UnitsInStock", "22"),
 new XElement(nsData + "UnitsOnOrder", "11")

Working with OData at Client Side

74

);

 var elmCreateProduct = new XElement(nsDefault + "entry",
 new XElement(nsDefault + "title", "New Product Entity"),
 new XElement(nsDefault + "id"),
 new XElement(nsDefault + "updated", DateTime.Now),
 new XElement(nsDefault + "author"),
 new XElement(nsDefault + "content",
 new XAttribute("type", "application/xml"),
 elmProperties
)
);

 return elmCreateProduct;
}

How it works...
As shown in the previous sample functions, when using the WebRequest class to query an
OData service, we can simply send an HTTP GET request to the target service by supplying
the proper query URI address. By default, WCF Data Service will return response data in Atom
XML format, and then we can choose our preferred XML processing components to parse it.
Here we use the .NET LINQ to XML classes to parse the query response since it is quite simple
and efficient for in-memory XML data manipulation.

When creating a new entity object (in the CreateProductByWebRequest function) via
the WebRequest class, we need to send an HTTP POST request. And things get a bit more
complicated here because we need to not only specify the request URI, but also supply the
XML content which represents the entity object we want to create (in the HTTP request body).
Like the query case, we use LINQ to XML to construct the XML content of the new Product
entity instance.

Although LINQ to XML API is quite convenient for XML manipulation, it is still quite complex
for us to construct an entire OData request message from scratch (especially for some more
complicated data manipulation cases). In real-word scenarios that we need to manually
construct OData request messages, we can first use Fiddler or other HTTP sniffer tools
to capture the request/response messages generated by strong-typed OData client proxy
(based on WCF Data Service client library). Then, we can manually compose the raw request
messages based on the captured sample messages.

There's more...
The sample functions here handle the OData request/response in XML format, then how shall
we handle JSON-format raw OData request/response messages in a .NET application?

Chapter 2

75

Well, one simple way is to handle JSON-format data through the .NET data serialization/
deserialization mechanism. The following are two JSON-specific data serializer classes
we can leverage in .NET Framework 4.0:

 f The System.Runtime.Serialization.Json.DataContractJsonSerializer
class, which is included in the System.Runtime.Serialization assembly

 f The System.Web.Script.Serialization.JavaScriptSerializer class,
which is included in the System.Web.Extensions assembly

Like other .NET serialization engines (such as XML and binary), we need to define some
classes, which can be mapped to the JSON-format response or request messages that we will
handle. For more information about JSON serialization in .NET, you can refer to the following
MSDN reference:

Stand-Alone JSON Serialization available at http://msdn.microsoft.com/en-us/
library/bb412170.aspx

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe

Executing OData queries in an asynchronous
manner

After discussing several cases on consuming an OData service in client applications, we can
find that the WCF Data Service client library based client proxy makes an OData service quite
easy and straightforward to use. We simply construct the data context object and perform
LINQ to Entity queries (or call the Execute<T> or other methods) against it so as to retrieve
the entities from the target service. However, such kind of queries are executed by the WCF
Data Service client library in a synchronous manner, which means the client application
needs to wait for the current query request/response to complete before continuing with the
execution of the next query (or other application code).

A synchronous service call might cause some performance and user experience issue
(especially in GUI applications) since there will be response latency for data exchanged
between the client and the server. Then, how can we improve the user interaction experience
when presenting data from an OData service which might have a potential response latency
issue? The answer is to use asynchronous operations for service queries.

In this recipe, we will show you how to make OData service queries in an asynchronous
manner so as to keep the front application UI fully responsive.

Working with OData at Client Side

76

Getting ready
In this recipe, we will build a .NET Windows Form application, which loads some Product
entities from the Northwind OData service and uses a DataGridView control to present the
entity objects. The following screenshot shows the main user interface of the sample application:

As the previous screenshot shows, there are three buttons on the main window, they are:

 f Load Products Sync button: Load all Product entities synchronously and
display them

 f Load Products Async button: Load all Product entities asynchronously and
display them

 f Load Specific Products Async button: Load some specific Product entities
asynchronously and display them

The source code for this recipe can be found in the \ch02\AsyncODataClientSln\
directory.

How to do it...
1. Create a new ASP.NET web application which contains the WCF Data Service based

on the Northwind database (using ADO.NET Entity Framework data model).

2. Create a new .NET Windows Forms Application (see the following screenshot) as the
OData client.

3. Add three Button controls and one DataGridView control on the main
window surface and adjust the layout according to the screenshot in the
Getting ready section.

Chapter 2

77

4. Create the OData client proxy by using the Visual Studio Add Service Reference wizard
in the Console application.

5. Add the Click event handler for the Load Products Sync button (see the following
btnLoadSync_Click function).
private void btnLoadSync_Click(object sender, EventArgs e)
{
 var svcUri = new Uri("http://localhost:5558/NWDataService.
 svc/");
 var ctx = new NWDataSvc.NorthwindEntities(svcUri);

 gridProducts.DataSource = ctx.Products.ToList();
 gridProducts.Refresh();
}

6. Add the Click event handler for the Load Products Async button (see the following
btnLoadAsync_Click function).
private void btnLoadAsync_Click(object sender, EventArgs e)
{
 gridProducts.DataSource = null;

 var svcUri = new Uri("http://localhost:5558/NWDataService.
 svc/");
 var ctx = new NWDataSvc.NorthwindEntities(svcUri);

 // Build the query against the entire Products entity set
 var query = ctx.Products;

 // Start async query execution (supply the query and callback
 // parameters)
 query.BeginExecute(
 LoadProductsAsyncComplete,
 query);
}

The BeginExecute<T> function used here requires a callback function parameter,
which will be invoked when the asynchronous operation call finishes. The following
code snippet shows the callback function (and its dependency functions):
private void LoadProductsAsyncComplete(IAsyncResult ar)
{
 var query = ar.AsyncState as DataServiceQuery<NWDataSvc.
 Product>;

 // Retrieve the query result

Working with OData at Client Side

78

 var result = query.EndExecute(ar).ToList();

 // Update the DataGridView in main UI thread
 this.Invoke(
 new EventHandler(OnDataSourceLoaded),
 result,
 EventArgs.Empty
);
}

private void OnDataSourceLoaded(object obj, EventArgs e)
{
 gridProducts.DataSource = obj;
}

7. Add the Click event handler for the Load Specific Products Async button
(see the following btnLoadSpecificAsync_Click function).
private void btnLoadSpecificAsync_Click(object sender, EventArgs
e)
{
 gridProducts.DataSource = null;

 var svcUri = new Uri("http://localhost:5558/NWDataService.
 svc/");
 var ctx = new NWDataSvc.NorthwindEntities(svcUri);

 // Compose the query via LINQ to Entity code
 var query = (from p in ctx.Products
 where p.UnitPrice> 50
 select p) as DataServiceQuery<NWDataSvc.
 Product>;

 // Start async query execution
 query.BeginExecute(
 LoadProductsAsyncComplete,
 query);
}

The btnLoadSpecificAsync_Click function uses the same callback function
(LoadProductsAsyncComplete) used by the btnLoadAsync_Click function.

Chapter 2

79

How it works...
In the sample OData client, we use three buttons to demonstrate different data loading
approaches. By clicking on the Load Products Sync button, the application UI will get frozen
since the OData service query call blocks the main UI thread. This behavior will not occur
when we click on the other two buttons since both of them use asynchronous operations to
query the OData service.

The WCF Data Service client library uses the DataServiceQuery<T> class for executing
asynchronous OData query operations. The DataServiceQuery<T> class takes a generic
parameter, which tells the runtime the kind of data we want to query (used in return
value). In order to start and end the asynchronous operation call, we need to invoke the
BeginExecute and EndExecute methods of the DataServiceQuery<T> class and this
Begin/End method signature is aligned to the standard .NET Asynchronous Programming
Model. Refer to the following MSDN reference for more information:

Asynchronous Programming Overview available at http://msdn.microsoft.com/en-us/
library/ms228963.aspx

In the LoadProductsAsyncComplete function (the asynchronous callback function), we
use the Invoke method of the Form class to populate the retrieved OData entities on the
DataGridView control. This is necessary because the asynchronous callback function is
called in a specific thread (instead of the main UI thread).

Therefore, we need to use the Control.Invoke method to marshal any UI-related code to
the main UI thread.

There's more...
In this recipe, we build the query object (of the DataServiceQuery<T> class) by using
LINQ to Entity code against the entity set properties of the data context object (of the
client proxy). However, we're not limited to this approach. We can also manually construct
a DataServiceQuery<T> object by supplying the query URI and callback function as
parameters. The following code snippet shows how we can use this alternative approach to
query the Product entities associated with a Category entity.

var svcUri = new Uri("http://localhost:5558/NWDataService.svc/");
var ctx = new NWDataSvc.NorthwindEntities(svcUri);

var productsUri = new Uri("http://localhost:5558/NWDataService.svc/
 Categories(1)/Products");

ctx.BeginExecute<NWDataSvc.Product>(
 productsUri,
 new AsyncCallback(LoadDataViaUriComplete),
 ctx);

Working with OData at Client Side

80

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe

Filtering OData query results by using query
options

The OData protocol has defined many system query options, which can be used to control the
format, number, order, and other characteristics of OData query responses. WCF Data Service
has implemented most of the query options defined in the OData protocol. Applications which
use a strong-typed OData proxy (based on the WCF Data Service client library) can use the
built-in extension methods or LINQ operators to apply query options on OData service queries.

In this recipe, we will go through some commonly used OData query options and demonstrate
how to use them in WCF Data Service client library based OData clients.

Getting ready
In this recipe, we will use the Northwind OData service as an example and demonstrate
the following OData query options by performing some queries against the Categories,
Products, and Customers entity sets:

 f Orderby query option

 f Top query option

 f Skip query option

 f Filter query option

 f Expand query option

 f Select query option

Also, in each step which demonstrates a query option, we will provide both the raw
query URI syntax and the .NET code (based on the WCF Data Service client library) for
using the query option.

The source code for this recipe can be found in the \ch02\ODataQueryOptionsSln\
directory.

How to do it...
1. Create a new ASP.NET web application which contains the WCF Data Service based

on the Northwind database (using ADO.NET Entity Framework data model).

2. Create a new Console application as an OData client.

Chapter 2

81

3. Create the OData client proxy by using the Visual Studio Add Service Reference wizard
in the Console application.

4. Use the OrderBy option to query all the Category entities and sort them by the
CategoryName property.

The following is the raw URI string for querying all the Category entities
(sorted by the CategoryName property):
NWDataService.svc/Categories()?$orderby=CategoryName desc

The following code snippet shows the corresponding .NET code based on the WCF
Data Service client library:
static void QueryCategoriesViaOrderbyOption()
{
 var ctx = GetDataContextInstance();

 var categories = from c in ctx.Categories
 orderby c.CategoryName descending
 select c;

 foreach (var c in categories)
 {

 }
}

5. Use the Top option to query the first three entities from the Categories entity set.

The following is the raw URI string of this query:
NWDataService.svc/Categories()?$orderby=CategoryName desc&$top=3

The following code snippet shows the corresponding .NET code based on the WCF
Data Service client library:
static void QueryCategoriesViaTopOption()
{
 var ctx = GetDataContextInstance();

 var categories = (from c in ctx.Categories
 orderby c.CategoryName descending
 select c).Take(3);

 foreach (var c in categories)
 {

 }
}

Working with OData at Client Side

82

6. Use the Skip option to query all the Category entities and bypass the first
three entities.

The following is the raw URI string of this query:
NWDataService.svc/Categories()?$orderby=CategoryName desc&$skip=3

The following code snippet shows the corresponding .NET code based on the WCF
Data Service client library:
static void QueryCategoriesViaSkipOption()
{
 var ctx = GetDataContextInstance();

 var categories = (from c in ctx.Categories
 orderby c.CategoryName descending
 select c).Skip(3);

 foreach (var c in categories)
 {

 }
}

7. Use the Filter option to restrict the entities queried from the Categories entity
set (by applying filter rules against the CategoryName and CategoryID properties).

The following is the raw URI string of this query:
NWDataService.svc/Categories()?$filter=startswith(CategoryName,
 'Con') and ((CategoryID mod 2) eq 0)

The following code snippet shows the corresponding .NET code based on the WCF
Data Service client library:

static void QueryCategoriesViaFilterOption()
{
 var ctx = GetDataContextInstance();

 var categories = (from c in ctx.Categories
 where c.CategoryName.StartsWith("Con") &&
 c.CategoryID %2 == 0
 select c);

 foreach (var c in categories)
 {

 }
}

Chapter 2

83

8. Use the Expand option to preload the associated Product entities (via the
Products navigation property) when querying the first two Category entities.

The following is the raw URI string of this query:
NWDataService.svc/Categories()?$top=2&$expand=Products

The following code snippet shows the corresponding .NET code based on the WCF
Data Service client library:
static void QueryProductsFromCategoryViaExpandOption()
{
 var ctx = GetDataContextInstance();

 var query = ctx.Categories.Take(2) as
 DataServiceQuery<NWDataSvc.Category>;
 var categories = query.Expand("Products");

 foreach (var c in categories)
 {
 Console.WriteLine("Category ID:{0}, Name:{1}",
 c.CategoryID,
 c.CategoryName
);
 foreach (var p in c.Products)
 Console.WriteLine("\tProduct Name:{0}",
 p.ProductName);
 }
}

9. Use the Select option to only return a subset of the Customer entity properties
(include the CustomerID, CompanyName, Country, and Phone properties) when
querying the Customers entity set.

The following is the raw URI string of this query:
NWDataService.svc/Customers()?$select=CustomerID,CompanyName,Count
ry,Phone

The following code snippet shows the corresponding .NET code based on the WCF
Data Service client library:
static void QueryCustomersViaSelectOption()
{
 var ctx = GetDataContextInstance();

 var customers = from c in ctx.Customers
 select new
 {
 Name = c.CustomerID,

Working with OData at Client Side

84

 Company = c.CompanyName,
 Country = c.Country,
 Phone = c.Phone
 };

 foreach (var c in customers)
 {

 }
}

How it works...
Now, let's have a look at the query options (demonstrated in the previous sample functions)
one by one.

The OrderBy query option helps sort the entity objects (based on the specified properties)
from the target entity set. The OData protocol uses the $orderby query string parameter to
represent this option in the raw URI string. When using the WCF Data Service client library
based proxy, we can use the orderby LINQ operator to apply this query option.

The Top query options help take the first N entity objects from the target entity set being
queried. The OData protocol uses the $top query string parameter to represent this option in
the raw URI string. When using the WCF Data Service client library based proxy, we can use
the Take extension method in LINQ query to apply this query option.

The Skip query option helps bypass the first N entity objects and take the remaining ones
from the target entity set being queried. The OData protocol uses the $skip query string
parameter to represent this option in the raw URI string. When using the WCF Data Service
client library based proxy, we can use the Skip extension method in LINQ query to apply this
query option.

The Filter query option helps take the entity objects (from the target entity set), which
satisfy the predicate expression (specified in the option value). The OData protocol uses the
$filter query string parameter to represent this option in the raw URI string. The predicate
expression supports logical or arithmetic operators in its own syntax. Refer to the following
link for more information:

http://www.odata.org/documentation/uri-conventions#FilterSystemQueryO
ption

When using the WCF Data Service client library based proxy, we can use the where clause in
the LINQ query to apply this query option.

Chapter 2

85

The Expand query option helps indicate that the associated entity collection (via the
navigation property) should be preloaded in the same query request against the main entity
set being queried. The OData protocol uses the $expand query string parameter to represent
this option in the raw URI string. When using the WCF Data Service client library based proxy, we
can use the Expand extension method in LINQ query to apply this query option.

The Select query option helps project the properties of the entity objects from the target
entity set being queried (so that only a subset of all entity properties will be returned in query
response). The OData protocol uses the $select query string parameter to represent this
option in the raw URI string, and all required properties are specified as the parameter value
(separated by comma). When using the WCF Data Service client library based proxy, we can
use the select clause in the LINQ query to apply this query option.

As we can see, when querying an OData service with the WCF Data Service client library
based proxy, all the previous OData query options can be applied with their corresponding
LINQ query operator/clause or extension methods. However, if you prefer specifying query
options via their raw query string formats, you can use the AddQueryOptions method of the
data context class instead (see the following code snippet).

var ctx = GetDataContextInstance();

var categories = from c in ctx.Categories
 .AddQueryOption("$top", 6)
 .AddQueryOption("$filter", "CategoryID gt 5")
 .AddQueryOption("$orderby", "CategoryID desc")
 select c;

There's more...
In addition to the six query options we mentioned here, the OData protocol has defined many
other options. You can get the complete list from the following link:

System Query Options available at http://www.odata.org/documentation/uri-
conventions#SystemQueryOptions

As for the WCF Data Service client library, although it can translate most LINQ query operators
and extension methods to their corresponding format in the raw OData query URI, there are
still quite a few LINQ specific query syntaxes that are not supported. For more information
about how WCF Data Service runtime deals with LINQ query code, you can refer to the
following MSDN article:

LINQ Considerations (WCF Data Services) available at http://msdn.microsoft.com/en-
us/library/ee622463

Working with OData at Client Side

86

See also
 f Exploring an OData service through web browser recipe

 f Using Visual Studio to generate strong-typed OData client proxy recipe

Dealing with server-side paged entity sets
from WCF Data Service

In the previous recipe, we've gone through the built-in query options supported by OData
for controlling the entity collection returned from OData service queries. By using the Skip
and Top query options, we can easily implement data paging functionality in OData client
applications and such kind of paging is completely controlled by the client-side query code.
However, WCF Data Service also introduces a server-side paging feature, which can help
control the maximum number of entity objects a single OData query can return.

In this recipe, we will introduce how to deal with entity sets, which have enabled server-side
paging (exposed from WCF Data Service) in an OData client.

Getting ready
The sample case here will still use the Northwind OData service. For the service, it should
at least expose the Orders entity set and enable the server-side paging restriction
on it. This can be done by calling the SetEntitySetPageSize method (of the
DataServiceConfiguration class) in the WCF Data Service's InitializeService
function (see the following code snippet).

public static void InitializeService(DataServiceConfiguration config)
{

 config.SetEntitySetAccessRule("*", EntitySetRights.All);

 config.SetEntitySetPageSize("Orders", 3);
}

For demonstration purposes, we will first query the Orders entity set in the normal
way (without considering the server-side paging restriction). Then, we will use both the
DataServiceQuery<T> and DataServiceCollection<T> classes to perform the
same query, but will retrieve all the entity objects page by page (according to the server-side
paging restriction).

The source code for this recipe can be found in the \ch02\ODataPagingSln\ directory.

Chapter 2

87

How to do it...
1. Create a new ASP.NET web application which contains the WCF Data Service based

on the Northwind database (using ADO.NET Entity Framework data model).

2. Create a new Console application as the OData client.

3. Create the OData client proxy by using the Visual Studio Add Service Reference wizard
in the Console application.

4. Add a function to query all Order entities belonging to a specific Customer entity
without caring about server-side paging restriction (see the following code snippet).
static void LoadOrdersNormally()
{
 var ctx = GetDataServiceContext();

 var orders = from o in ctx.Orders
 where o.CustomerID == "ANTON"
 select o;

 foreach (var order in orders) PrintOrderObject(order);
}

5. Add a function that uses the DataServiceQuery<T> class to query all the Order
entities that belong to a specific Customer entity and loads all paged results (see
the following code snippet).
static void LoadOrdersPageByPage()
{
 var ctx = GetDataServiceContext();

 var query = (from o in ctx.Orders
 where o.CustomerID == "ANTON"
 select o
) as DataServiceQuery<NWDataSvc.Order>;

 var response = query.Execute() as QueryOperationResponse<NWDat
 aSvc.Order>;

 DataServiceQueryContinuation<NWDataSvc.Order> pageCursor =
 null;
 do
 {
 if(pageCursor != null)
 {
 response = ctx.Execute<NWDataSvc.Order>(pageCursor);
 }

 // Print orders in current page
 foreach (var order in response) PrintOrderObject(order);

Working with OData at Client Side

88

 pageCursor = response.GetContinuation();

 } while (pageCursor != null);
}

6. Add a function that uses the DataServiceCollection<T> class to load all
paged results of the same OData query used in the previous step (see the following
code snippet).
static void LoadOrdersViaDataServiceCollection()
{
 var orders = new DataServiceCollection<NWDataSvc.Order>(
 _ctx.Orders.Where(o=>o.CustomerID == "ANTON")
);

 while (true)
 {
 if(orders.Continuation == null) break;

 orders.Load(_ctx.Execute<NWDataSvc.Order>(orders.
 Continuation));
 }

 // Print all orders loaded in the collection
 foreach (var order in orders) PrintOrderObject(order);
}

How it works...
In the previous sample, the LoadOrdersNormally function doesn't contain any
server-side paging related code logic. By using this function, we can only get at the
most one page of Order entities (according to the page size configured at server
side) from the entire query result. The LoadOrdersPageByPage function uses the
DataServiceQuery<T> class to perform the query and it has included the code logic
for handling entity collection (returned as query result), which has been paged at server
side. The LoadOrdersViaDataServiceCollection function instead uses the
DataServiceCollection<T> class for loading the server-side paged query result.
Both the functions use a while loop to check for remaining pages (represented by the
DataServiceQueryContinuation<T> class) of entity objects and load them one by one.

Actually, we can treat the DataServiceQueryContinuation<T> object like a cursor
returned by the OData service. The OData client can use this cursor to retrieve all the entity
objects in the query result page by page. If we use the web browser to execute the OData query
used in the previous code, we can find that the DataServiceQueryContinuation<T> object
is represented as an Atom link entry in the query response (see the following screenshot); and
the link entry provides the complete URI address for fetching the next page of entities.

Chapter 2

89

See also
 f Filtering OData query results by using query options recipe

Performing WPF data binding with OData
service data

We have discussed several cases of how to consume an OData service by using various kind
of client components and how to use built-in options to perform customized OData service
queries. In this recipe, we will take the opportunity to introduce how we can use an OData
service as a data source to perform data binding in WPF applications.

Getting ready
The sample WPF application here will present Categories and Products information retrieved
from the Northwind OData service. Users can select a Category to view and edit the
corresponding Products. The following screenshot shows the main UI of the WPF application:

The source code for this recipe can be found in the \ch02\WPFDataBindingSln\ directory.

Working with OData at Client Side

90

How to do it...
1. Create a new ASP.NET web application which contains the WCF Data Service based

on the Northwind database (using ADO.NET Entity Framework data model).

The service should at least expose the Categories and Products entity sets.

2. Create a new WPF Application (see the following screenshot) as the OData client.

3. Create the OData client proxy by using the Visual Studio Add Service Reference wizard.

4. Compose the application UI by editing the XAML file of the main window.

The main window contains the following WPF control elements:

 � A Combobox element for selecting the Category item

 � A DataGrid element for presenting Products that belong to the
selected Category

 � A Button element for saving the changes

The following is the complete XAML template of the main window:
<Window x:Class="WPFClientApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Northwind Products" Height="350" Width="525"
 Loaded="Window_Loaded">
 <Grid>
 <StackPanel Name="RootPanel" >
 <StackPanel Orientation="Horizontal" >
 <TextBlock Name="lblCategory"
 Height="21" Margin="5,8,0,0"
 Width="104" FontWeight="Bold"
 Text="Product Category:" />
 <ComboBox Name="lstCategories"
 Height="23" Margin="5,5,5,0" Width="209"

Chapter 2

91

 ItemsSource="{Binding}" DisplayMemberPath
 ="CategoryName"
 SelectionChanged="lstCategories_
 SelectionChanged" />
 <Button Name="btnSave" Margin="5,5,103,0"
 Content="Save Changes"
 Click="btnSave_Click" />
 </StackPanel>
 <DataGrid Name="gridProducts"
 AutoGenerateColumns="False"
 Margin="5,10,5,5">
 <DataGrid.Columns>
 <DataGridTextColumn Header="Name"
 Binding="{Binding
 Path=ProductName}" />
 <DataGridTextColumn Header="Unit Price"
 Binding="{Binding
 Path=UnitPrice}" />
 <DataGridTextColumn Header="Units In Stock"
 Binding="{Binding
 Path=UnitsInStock}" />
 <DataGridCheckBoxColumn Header="Discontinued"
 Binding="{Binding
 Path=Discontinued}" />
 </DataGrid.Columns>
 </DataGrid>
 </StackPanel>
 </Grid>
</Window>

5. Define global variables to hold the data context object and Category entity
collection (in the MainWindow class).

The following code snippet shows the declared member variables of the
MainWindow class:
public partial class MainWindow : Window
{
 private Uri _svcUri = new Uri
 ("http://localhost:36512/NWDataService.svc/");

 // Reference to the data context object
 private NWDataSvc.NorthwindEntities _ctx = null;
 // Reference to the Category entity collection
 private DataServiceCollection<NWDataSvc.Category> _categories
 = null;

Working with OData at Client Side

92

6. Use the Load event of the main window to initialize the Category items in the
Combobox control.

We will create a separate function that loads all Category entities from the OData
service. This function is called in the main window's Load event handler (see the
following code snippet).
private void Window_Loaded(object sender, RoutedEventArgs e)
{
 LoadCategories();
}

private void LoadCategories()
{
 _ctx = new NWDataSvc.NorthwindEntities(_svcUri);
 _categories = new
 DataServiceCollection<NWDataSvc.Category>
 (_ctx.Categories.Execute());

 RootPanel.DataContext = _categories;
 lstCategories.SelectedIndex = 0;
}

7. Hook the SelectionChanged event of Combobox and use the event handler to
update the DataGrid with the Product entities associated to the newly selected
Category item (see the following code snippet).
private void lstCategories_SelectionChanged
 (object sender, SelectionChangedEventArgs e)
{
 // Get the selected Category object
 var category = lstCategories.SelectedItem as
 NWDataSvc.Category;

 if (category != null)
 {
 // Load the associated Products (via navigation property)
 _ctx.LoadProperty(category, "Products");
 // Bind Products to the DataGrid
 // Products collection is of
 // DataServiceCollection<Product> type
 gridProducts.ItemsSource = category.Products;
 }
}

Chapter 2

93

8. Add code to submit all changes against the Product entities (made in DataGrid)
within the Click event of the Save Changes button (see the following ode snippet).
private void btnSave_Click(object sender, RoutedEventArgs e)
{
 _ctx.SaveChanges(SaveChangesOptions.Batch);
}

How it works...
In this sample, we use the DataServiceCollection<T> class to load both
Category and Product entities (queried from the Northwind OData service). The
DataServiceCollection<T> class derives from the ObservableCollection<T> class;
therefore, we can directly use an instance of this class to perform data binding with WPF
controls (such as the Combobox and DataGrid controls used in this sample).

The WPF data binding system supports two-way data binding, which automatically helps
synchronize the data between the data source and WPF UI elements. Because the
DataServiceCollection<T> class has implemented the INotifyCollectionChanged
and INotifyPropertyChanged interfaces (necessary for two-way data binding), any changes
(such as add, remove, and modify) on the data entity objects (through the WPF controls) will be
synchronized to the DataServiceCollection<T> based data source object.

In addition, since the OData entities (contained in the DataServiceCollection<T> object)
are retrieved by using the data context object (of WCF Data Service client library based proxy),
all changes we have made against the entities are also tracked by the data context object.
Thus, whenever we call the SaveChanges method on the data context object (in the Click
event of the Save Changes button), all the changes made in the WPF client application are
updated to the target OData service. For more information on WPF data binding, you can refer
to the following MSDN reference:

Data Binding Overview available at http://msdn.microsoft.com/en-us/library/
ms752347.aspx

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe

 f Filtering OData query results by using query options recipe

Working with OData at Client Side

94

Injecting custom HTTP headers in OData
requests

When invoking operations of standard WCF services or XML web services over HTTP, we can
inject some custom HTTP headers into the underlying HTTP message of the corresponding
operation call. By using such custom headers, we allow the service clients to supply additional
context information without changing the original operation signature/contract. Then, how
can we attach custom HTTP headers for OData service requests? Fortunately, the WCF Data
Service client library has provided the built-in means for OData clients to inject custom HTTP
headers. In this recipe, we will demonstrate how we can inject custom HTTP headers when
using WCF Data Service client library based OData proxy to invoke custom service operations.

Getting ready
In this sample, we will use the Northwind OData service and add a custom service operation
in it. The service operation demands a custom HTTP header (which should contain the MAC
address of the client machine) from the client callers. The following code snippet shows how
we implement the service operation in the sample OData service:

[WebGet]
public DateTime GetServerTime()
{
 var webCtx = WebOperationContext.Current;

 // Extract the HTTP header from the incoming request
 var clientMAC = webCtx.IncomingRequest.Headers["ODATA_CLIENT_
 MAC"];

 Trace.WriteLine(
 string.Format("GetServerTime executed by client:{0}",
 clientMAC)
);

 return DateTime.Now;
}

Chapter 2

95

Also, don't forget to add a text trace listener in the web.conifg file so that we can log the
custom HTTP header and check it later (see the following screenshot).

In the next section, we will focus on the steps about how to create the OData client
application, which will invoke the service operation exposed in the sample OData service and
attach the custom HTTP header.

The source code for this recipe can be found in the \ch02\CustomHeaderSln\ directory.

How to do it...
1. Create a new Console application as an OData client.

2. Create the OData client proxy by using the Visual Studio Add Service Reference
wizard.

3. Add a function to invoke the GetServerTime service operation and
supply the MAC address in a custom HTTP header (see the following
InvokeODataServiceOperation function).
static void InvokeODataServiceOperation()
{
 var svcUri = new Uri("http://localhost:61881/NWDataService.
 svc");
 var ctx = new NWDataSvc.NorthwindEntities(svcUri);

 ctx.SendingRequest += (sender, args) =>
 {
 var defaultNI = NetworkInterface.GetAllNetworkInterfaces()
 [0];
 var macAddress = defaultNI.GetPhysicalAddress().
 ToString();
 args.RequestHeaders.Add("ODATA_CLIENT_MAC", macAddress);
 };

 var operationUri = new Uri("GetServerTime", UriKind.Relative);
 var result = ctx.Execute<DateTime>(operationUri).First();

 Console.WriteLine("Server Time: {0}", result);
}

Working with OData at Client Side

96

4. Run the OData client application and check the logged HTTP header in the service
trace file.

The following screenshot shows the text trace file generated by the sample OData
service (which contains the client MAC addresses recorded by the service code):

How it works...
As the previous InvokeODataServiceOperation function indicates, when using the WCF
Data Service client library based proxy to invoke an OData service operation, we can use the
SendRequest event (of the data context object) to inject custom headers into the underlying
HTTP request. Actually, this works not only for service operation calls, but also for normal
OData entity set specific queries.

By using Fiddler, we can capture the OData HTTP request sent by the sample client and verify
the custom HTTP header injected in it (see the following screenshot).

See also
 f Adding custom operations on OData Service recipe in Chapter 1, Building

OData Services

 f Using Visual Studio to generate strong-typed OData client proxy recipe

Chapter 2

97

Consuming HTTP compression enabled
OData service

Nowadays, most web servers have supported data compression for the content or resource
published by them. Such a data compression function is based on the standard HTTP protocol,
which has included the compression scheme and negotiation methods. This is very useful for
decreasing the network payload, which will then reduce transmission time between the client
and the server. Since OData protocol relies on HTTP and uses text formats (such as XML and
JSON) for data transmission, it is quite reasonable that web servers will prefer compressing the
OData service responses if the client consumers are HTTP compression enabled.

By default, the WCF Data Service client library based OData proxy will not be able to handle
HTTP compressed OData service responses. In this recipe, we will show you how to consume
an OData service, which has enabled HTTP compression by using the WCF Data Service client
library based proxy.

Getting ready
In the next section, we will provide the steps for creating an OData client application, which
performs queries against the Northwind OData service. This time, the Northwind OData
service needs to be HTTP compression enabled (by being hosted in an IIS server). For how to
enable HTTP compression for an OData service hosted in an IIS server, you can refer to the
Enabling dynamic compression for OData service hosted in IIS 7 recipe in Chapter 3, OData
service Hosting and Configuration.

The source code for this recipe can be found in the \ch02\GZipCompressionSln\
directory.

How to do it...
1. Create a new Console application as an OData client.

2. Create the OData client proxy by using the Visual Studio Add Service Reference
wizard.

3. Use the OData proxy to query the Northwind sample service and apply the HTTP
compression and decompression settings in the SendingRequest event (of the
data context object).

In the SendingRequest event handler, we need to accomplish the following
two things:

 � Specify the supported compression methods via the AcceptEncoding
HTTP header

 � Enable automatic decompression (of the client proxy) via the
AutomaticDecompression property

Working with OData at Client Side

98

The following is the complete code of the sample OData client:
static void ConsumeGZipODataService()
{
 var svcUri = new Uri("http://localhost:8080/ODataServiceSite/
 NWDataService.svc");
 var ctx = new GZipDataSvc.NorthwindEntities(svcUri);

 ctx.SendingRequest += (sender, args) =>
 {
 var req = args.Request as HttpWebRequest;
 // Add header for supported compression types
 req.Headers.Add(HttpRequestHeader.AcceptEncoding,
 "gzip, deflate");
 // Enable auto decompression option
 req.AutomaticDecompression = DecompressionMethods.GZip |
 DecompressionMethods.Deflate;
 };

 foreach (var category in ctx.Categories)
 {
 Console.WriteLine("Name:{0}", category.CategoryName);
 }

}

How it works...
As shown in the previous sample code, for an OData client (based on the WCF Data Service
client library) to consume HTTP compressed OData query responses, there are two important
things to do. The first is to specify the Accept-Encoding HTTP header in the OData requests
(by using the SendingRequest event of the data context object). This header tells the
service (web server) which kind of compression methods the client supports. The following
screenshot shows the Accept-Encoding header in the raw OData request sent by the
sample client application (captured by Fiddler):

Chapter 2

99

The second thing is to set the AutoDecompression property on the WebRequest instance
used by the client proxy. This is also done in the SendingRequest event of the data
context object. Thus, whenever a compressed OData response arrives at client, it will be
decompressed by the underlying WebRequest object before the WCF Data Service client
library handles it (such as performing data deserialization). The following screenshot shows
the raw OData response (received by the sample client) before being decompressed:

Because we apply the HTTP compression/decompression settings through the underlying
WebRequest class instance (used by the WCF Data Service client library), the same method
will also work if you consume OData services via the .NET WebRequest class directly.

See also
 f Injecting custom HTTP headers in OData requests recipe

 f Enabling dynamic compression for OData service hosted in IIS 7 recipe in Chapter 3,
OData Service Hosting and Configuration

Using MSXML to consume OData service in
unmanaged applications

We have discussed quite a few examples of consuming an OData service in .NET managed
applications (including Console, Windows Form, and WPF). Though this book is targeting
.NET developers, I would still like to take a chance to introduce OData service accessing in
unmanaged client applications (at least, the server side is still implemented through .NET
WCF Data Service).

In this recipe, we will show you how to play with an OData service in an Microsoft Excel client
through VBA code.

Working with OData at Client Side

100

Getting ready
For demonstration purposes, we will create an Excel 2010 workbook, which uses VBA code
to retrieve and display the entity objects from the Categories and Products entity sets
(of the Northwind OData service). The following is how the main UI of the sample Excel
workbook appears:

The source code for this recipe can be found in the \ch02\ODataNativeClientSln\
directory.

How to do it...
The following are the steps for creating the sample Excel workbook:

1. Create a new empty Excel 2010 workbook.

2. Save the workbook as Excel Macro-Enabled Workbook (see the following screenshot).

Chapter 2

101

3. On the File tab, select the Options menu and enable the Developer ribbon option
within the launched Excel Options dialog (see the following screenshot).

4. Add a Button control onto the workbook and adjust the document surface to look
like the one shown in the Getting ready section.

The following screenshot shows the drop-down menu for picking up the Button control:

5. Use the Visual Basic tool button (on the Developer ribbon) or press Alt + F11 to
launch the VBA editor (see the following screenshot).

Working with OData at Client Side

102

6. Add code for populating the Category drop-down list in the button's Click event
handler (see the following btnLoadCategories_Click function).
Sub btnLoadCategories_Click()

 ' Declare variables
 Dim doc As MSXML2.DOMDocument
 Dim nodeList As MSXML2.IXMLDOMNodeList
 Dim bResult As Boolean
 Dim i As Integer
 Dim strName As String ' CategoryName
 Dim strID As String ' CategoryID
 Dim strCategoryList() As String ' Category list

 ' Create the XML document object
 Set doc = New MSXML2.DOMDocument
 doc.async = False

 ' Load the OData query result into XML document object
 bResult = doc.Load("http://localhost:30945/NWDataService.svc/
 Categories?$select=CategoryID,CategoryName")

 If bResult = True Then
 ' Select all the entity elements in the response document
 Set nodeList = doc.SelectNodes("//entry/content/
 m:properties")

 ' Construct the Category list (as a char separated string)
 ReDim strCategoryList(nodeList.Length)
 For i = 0 To nodeList.Length - 1
 strID = nodeList(i).SelectSingleNode("d:CategoryID").
 Text
 strName = nodeList(i).SelectSingleNode("d:CategoryName
 ").Text

 strCategoryList(i) = strID & "--" & strName
 Next i

 ' Assign the Category list to a cell as dropdown source
 With Range("C4").Validation
 .Delete
 .Add Type:=xlValidateList, _
 AlertStyle:=xlValidAlertStop, _
 Operator:=xlBetween, _

Chapter 2

103

 Formula1:=Join(strCategoryList, ",")
 End With

 Range("C4").Value = strCategoryList(0)
 Else
 MsgBox ("Failed to load Category list.")
 End If

At the bottom of the btnLoadCategories_Click function,
we have assigned an initial value for the Category list drop-down
cell so that the Product items associated with the default Category
item will be loaded first.

7. Add the code for populating the Product list whenever a new Category item
is selected.

The following LoadProductsByCategory function contains code for
loading all Product entities of a specific Category item (by supplying
the CategoryID property):
Sub LoadProductsByCategory()

 Dim doc As MSXML2.DOMDocument
 Dim nodeList As MSXML2.IXMLDOMNodeList
 Dim bResult As Boolean
 Dim i As Integer
 Dim strUrl As String
 Dim strCategoryID As String

 ' Get selected CategoryID
 strCategoryID = Split(Range("C4").Value, "--")(0)

 Set doc = New MSXML2.DOMDocument
 doc.async = False

 ' Build the URL for querying Products
 strUrl = "http://localhost:30945/NWDataService.svc/Products?"
 & _
 "$select=ProductID,ProductName, UnitPrice&" & _
 "$filter=CategoryID eq " & strCategoryID

 bResult = doc.Load(strUrl)

Working with OData at Client Side

104

 If bResult = True Then

 ' Load the product elements from the response document
 Set nodeList = doc.SelectNodes("//entry/content/
 m:properties")

 Dim strProductID As String
 Dim strProductName As String
 Dim strUnitPrice As String

 ' Populate each product's properties into the proper cell
 For i = 0 To nodeList.Length - 1
 strProductID = nodeList(i).
 SelectSingleNode("d:ProductID").Text
 strProductName = nodeList(i).SelectSingleNode
 ("d:ProductName").Text
 strUnitPrice = nodeList(i).
 SelectSingleNode("d:UnitPrice").Text

 Cells(9 + i, 2) = strProductID
 Cells(9 + i, 3) = strProductName
 Cells(9 + i, 4) = strUnitPrice
 Next i
 Else
 MsgBox ("Failed to load Product list.")
 End If
End Sub

Also, we need to add a function for handling the change event (of the drop-down cell
containing the Category list), which is triggered whenever a new Category is selected.
This could be done by defining a Worksheet_Change function (see the following
code snippet) within the main worksheet's code.
Private Sub Worksheet_Change(ByVal Target As Range)
 If Target.Cells.Count > 1 Or IsEmpty(Target) Then Exit Sub

 If Target.Address = "C4" Then
 ' Load the products based selected category
 ODataModule.LoadProductsByCategory
 End If
End Sub

Chapter 2

105

8. Save the workbook and run the VBA code we've defined in the previous steps.

By clicking on the Load Categories button, all the Category entities will be loaded
and used as a drop-down source for the Category: cell. If we select a new Category
item from the drop-down list, the Product list under the Products under category: cell
will be updated correspondingly (see the following screenshot).

How it works...
As shown in the btnLoadCategories_Click and LoadProductsByCategory VBA functions, the
main code logic of the sample Excel workbook relies on the DOMDocument component of
the MSXML library. This component can help in sending HTTP requests to the target OData
service (by using the raw query URI string) and loading the response XML data into memory.
After the response data is loaded into memory, we can then use XPath to extract the OData
entity objects (and their properties) from the in-memory DOMDocument object.

Actually, this is quite similar to how we use the WebRequest class to access OData services
in .NET clients. However, since MSXML is a COM based library, we can use it for OData
consumption in unmanaged applications such as native C++, Delphi, and Visual Basic (used
in this recipe).

One thing worth noticing is that we need to save the Excel workbook as an Excel Macro
Enabled Workbook, which uses .xlsm as its file extension. This is because the default Excel
document format (with .xlsx or .xls file extension) cannot contain any Macro code.

For more information about VBA programming with Microsoft Office Excel 2010, the following
MSDN article is a good reference:

Getting Started with VBA in Excel 2010 available at http://msdn.microsoft.com/en-
us/library/ee814737.aspx

See also
 f Accessing OData service via WebRequest class recipe

 f Filtering OData query results by using query options recipe

3
OData Service

Hosting and
Configuration

In this chapter we will cover:

 f Hosting a WCF Data Service in IIS server

 f Hosting a WCF Data Service in Console application

 f Deploying a WCF Data Service on Windows Azure host

 f Configuring WCF Data Service to return error details

 f Configuring WCF Data Service to return JSON-format response

 f Applying basic access rules on WCF Data Service

 f Getting rid of .svc extension by using ASP.NET URL Routing

 f Enabling dynamic compression for OData service hosted in IIS 7

Introduction
For server-side service applications, during the development or deployment stage, we need
to find a proper environment to host them. When deploying a service in the production
environment, we not only make the service officially accessible to client consumers, but also
allow the service to fully leverage various hosting features (such as logging, performance,
security, and reliability) of the target environment. In addition, developers or administrators
might need to apply various kind of configuration settings to OData services (at development
or deployment stage) so as to enable some particular behavior or functionalities.

OData Service Hosting and Configuration

108

When developing OData services through WCF Data Service, it is possible for us to take
advantage of the existing hosting and configuration support of a standard WCF service.
Currently, we can use almost all kinds of .NET managed applications to host WCF Data Service
including, ASP.NET web application (via IIS server), Windows service application, Windows
Forms application, WPF application, Console application, or even Windows Azure based cloud
applications. And when the WCF Data Service is hosted in IIS or Windows Azure hosts, it
can leverage the built-in hosting and configuration options provided by the underlying IIS or
Windows Azure server infrastructure.

In this chapter, we will discuss some typical OData service (built via WCF Data Service)
hosting scenarios including using an IIS server host, using a .NET managed Console host and
Windows Azure cloud host. In addition, we will introduce some OData service configuration
scenarios supported by WCF Data Service and certain hosting environments such as applying
basic access rules to OData entity sets, using dynamic HTTP compression for IIS hosted OData
services, and configuring WCF Data Service to return a JSON-format response.

Hosting a WCF Data Service in IIS server
There is no doubt that IIS will always be the first choice for hosting web applications on a
Windows server platform. You might already be familiar with the IIS server if you've originally
developed applications based on the CGI/ISAPI extensions, classic ASP, ASP.NET WebForms,
ASP.NET Web Services, or WCF Services.

Well, we will start the first recipe in this chapter by exploring how to host a WCF Data Service
in IIS 7.

Getting ready
Since we are going to use IIS 7 as the service host, we need to make sure the operating
system (either the Windows client or server version) of our development machine has IIS 7
installed. For IIS 7 installation and configuration, you can refer to the following website:

http://go.microsoft.com/fwlink/?LinkID=132128

The source code for this recipe can be found in the \ch03\ODataIISHostSln\ directory.

http://go.microsoft.com/fwlink/?LinkID=132128
http://go.microsoft.com/fwlink/?LinkID=132128

Chapter 3

109

How to do it...
1. Create a new ASP.NET web application that contains the sample OData service.

The sample service here is built through WCF Data Service and ADO.NET Entity
Framework (with Northwind database).

For detailed information on creating the sample Northwind OData
service, you can refer to the Building an OData service via WCF
Data Service and ADO.NET Entity Framework recipe in Chapter 1,
Building OData Services.

The following screenshot shows the web application project structure in Visual Studio:

2. Right-click on the web application project in Visual Studio and select the Publish…
context menu to launch the Publish Web wizard (see the following screenshot).

OData Service Hosting and Configuration

110

3. Specify the necessary publish options in the Publish Web dialog.

The following screenshot shows the publish options, which are used to deploy the
sample web application to the local IIS server:

Here we have chosen Web Deploy as the Publish method and specified localhost
as the Service URL. The Site/application: field contains the target website and web
application names in the local IIS server.

Whenever you've specified a new set of publish options, you can use the Save button
(at the top right of the Publish Web dialog) to save the settings as a profile which
can be reused the next time you use the wizard to publish web applications in Visual
Studio.

Chapter 3

111

4. Click on the Publish button to start the publishing process.

The following screenshot shows the output in Visual Studio after the web application
has been successfully published:

5. Launch the Internet Information Services (IIS) Manager.

You can find the IIS Manager within Control Panel | System and Security |
Administrative Tools (see the following screenshot) or you can directly launch it by
executing inetmgr.exe in the command-line prompt.

6. Locate the published web application and adjust the configuration settings based on
deployment requirements.

OData Service Hosting and Configuration

112

When selecting an application node in the left panel of IIS manager, you can find all
the configuration settings available (including both ASP.NET and IIS specific ones) in
the right panel (see the following screenshot).

7. Switch to the Content View and right-click on the .svc service file to launch the
OData service (see the following screenshot).

Chapter 3

113

How it works...
As shown in the previous steps, the Visual Studio Publish Web wizard provides a simple and
straightforward means for deploying WCF Data Service (contained in ASP.NET web application)
into an IIS server. In this case, we choose the Web Deploy method in the publishing settings.
If we use this method for a remote IIS server, it requires that the target IIS server should have
a Web Deploy component installed (see http://www.iis.net/download/webdeploy for
more information).

In addition to the Web Deploy method, we can also use File System as the publishing
method, which will deploy the web application to the target IIS server through the filesystem
path (see the following screenshot).

As shown in the previous screenshot, since Windows OS by default creates hidden
administrative shares for Root drives by using the drive letter name appended with the $ sign
(such as C$ for C drive and D$ for D drive), we can use this means to get the filesystem path of
the remote IIS website or web application.

If you want to manually create the application virtual directory in the IIS server, you can follow
the instructions in the following MSDN reference:

How to: Create and Configure Virtual Directories in IIS 7.0 available at
http://msdn.microsoft.com/en-us/library/bb763173(v=vs.100).aspx

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

http://www.iis.net/download/webdeploy
http://msdn.microsoft.com/en-us/library/bb763173(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/bb763173(v=vs.100).aspx

OData Service Hosting and Configuration

114

Hosting a WCF Data Service in Console
application

In most cases, we will host WCF Data Service in an IIS server, which is also the common host
for other web applications and services on the Windows platform. Though the IIS server is
quite powerful for hosting web applications, sometimes we might still need to host WCF Data
Service in some other applications such as Console, Windows Service, or WPF applications.
No problem! Like a standard WCF service, WCF Data Service also supports a Self-hosting
scenario. In this recipe, we will introduce how to create a WCF Data Service and host it in a
.NET Console application.

Getting ready
The source code for this recipe can be found in the \ch03\ODataSelfHostSln\ directory.

How to do it...
1. Create a new Console Application (see the following screenshot) as the OData

service application.

2. Add the following assembly references in the Console project:
 � System.ServiceModel.dll

 � System.ServiceModel.Web.dll

 � System.Data.Services.dll

Chapter 3

115

3. Create the ADO.NET Entity Framework data model from the Northwind database.

The data model should at least include the Category and Product entity types (see
the following screenshot).

4. Create the WCF Data Service class, which derives from the DataService<T> class
and uses the Entity Framework data model as the data source (see the following
code snippet).
class NorthwindDataService: DataService<NorthwindEntities>
{
 public static void InitializeService
 (IDataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule("*", EntitySetRights.All);
 }

}

5. Add the service hosting function by using the DataServiceHost class (see the
following code snippet).
static void Main(string[] args)
{
 RunDataService();
}

static void RunDataService()
{
 var svcUri = new Uri("http://localhost:8177/NorthwindData/");

 DataServiceHost host = new DataServiceHost(
 typeof(NorthwindDataService),
 new Uri[]{svcUri}
);

OData Service Hosting and Configuration

116

 host.Open();
 Console.WriteLine("Service started at: {0}",
 host.BaseAddresses[0]);
 Console.WriteLine("Press any key to exit...");
 Console.ReadLine();

 host.Close();
}

6. Start up the Console application by pressing Ctrl + F5 in Visual Studio.

The following is the Console screen of the sample service application:

7. Use the web browser to access the service via its base URI address (see the
following screenshot).

How it works...
When developing WCF Data Service hosted in the Console application (or other non-
web applications), we need to manually create the service class, which derives from the
DataService<T> class. The data source is still specified through the generic class
parameter of the service class.

The service hosting code relies on the DataServiceHost class. We first create a new
instance of a DataServiceHost class by supplying the service type and service address.
Then, we simply call the Open method to bring the service to life.

Chapter 3

117

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

Deploying a WCF Data Service on Windows
Azure host

Windows Azure is the official Microsoft cloud computing platform that enables you to
quickly build, deploy, and manage various kind of applications either based on Microsoft or
non-Microsoft technologies. As .NET web developers, it is quite convenient for us to deploy
an ASP.NET web application or WCF service application to the Windows Azure based hosting
environment. In this recipe, we will demonstrate how to deploy a WCF Data Service web
application to the Windows Azure host.

Getting ready
This recipe uses Windows Azure Web Role for OData service hosting and uses SQL Azure for
hosting the Northwind database. Before you go ahead, make sure you have a Windows Azure
and SQL Azure account ready.

For Windows Azure development in Visual Studio 2010, you need to have the proper Windows
Azure Tools for Visual Studio installed. It is available at http://go.microsoft.com/
fwlink/?LinkID=129513.

The SQL Azure Migration Wizard tool can help in migrating the local SQL Server database
to SQL Azure instance and we can use it for setting up the Northwind database. For more
information, refer to the following article:

SQL Azure Migration Wizard available at http://sqlazuremw.codeplex.com/

Alternatively, we can also use the Adventure Works for SQL Azure sample database, which is
available at the following CodePlex workspace:

http://msftdbprodsamples.codeplex.com/

The source code for this recipe can be found in the \ch03\WindowsAzureODataSln\
directory.

http://sqlazuremw.codeplex.com/
http://msftdbprodsamples.codeplex.com/
http://msftdbprodsamples.codeplex.com/

OData Service Hosting and Configuration

118

How to do it...
1. Create a new ASP.NET web application, which contains the Northwind OData service.

The following is the web application project structure in Visual Studio
Solution Explorer:

Also, the Entity Framework data model should connect to the Northwind database on
an SQL Azure instance (see the following connection string).

2. Create a new Windows Azure Project in the sample solution (see the
following screenshot).

Chapter 3

119

When creating the Windows Azure Project, do not add any new Web Role or
Worker Role since we will use the existing ASP.NET web application created in
the previous steps.

3. Add the ASP.NET web application (created earlier) as a Web Role of the Windows
Azure Project (see the following screenshot).

Now, the sample solution structure should look like the following screenshot:

4. Select the Windows Azure Project and launch the package deployment wizard
through the Package… context menu (see the following screenshot).

OData Service Hosting and Configuration

120

5. Select the proper deployment configurations in the Package Windows Azure
Application dialog (see the following screenshot).

6. Click on the Package button to finish the package generation process.

A new explorer window will be prompted to show you the generated deployment
package files (see the following screenshot).

7. Launch a web browser and navigate to the Windows Azure Management Portal at
http://windows.azure.com.

8. Sign in the portal application with the Windows Live ID of your Windows Azure
account (see the following screenshot).

Chapter 3

121

9. Open the Hosted Services, Storage Accounts & CDN view (by selecting the node in
left panel) and select an existing Hosted Services instance or create a New Hosted
Service (see the following screenshot).

10. Launch the new deployment wizard by clicking on the New Staging Deployment
button (see the following screenshot).

In addition to the New Staging Deployment button, there is another New Production
Deployment button, which is also used for deploying application packages.

Normally, we will use Staging Deployment for testing
purposes and use Production Deployment for final
release and publishing.

OData Service Hosting and Configuration

122

11. Supply the deployment information within the Create a new Deployment dialog.

In the dialog, we can specify a display name for the deployment instance and select the
deployment package files created in previous steps (see the following screenshot).

12. Click on the OK button to submit the deployment package.

It will take a while for the portal to upload the package files and finish the deployment
on the target Hosted Service instance.

13. Verify the deployment status under the Hosted Service instance node within the right
panel of the portal application.

The following screenshot shows the NWDataService Web Role instance deployed in
the sample Hosted Service instance:

Chapter 3

123

14. Access the cloud hosted WCF Data Service in the web browser (see the
following screenshot).

The base address of the deployed Web Role uses the cloudapp.net domain name.
We can find the base address in the Properties panel (see the following screenshot).

How it works...
After installing the Windows Azure Tools for Visual Studio, we will get the Windows
Azure Project template, which simplifies the development and deployment of .NET
Framework based Windows Azure applications. Each application hosted in Windows
Azure is represented as a Role in the Windows Azure Project. The project template will
autogenerate some configuration files, such as the .cscfg and .csdef files. We can use
these files to configure some hosting features, such as an OS version, load-balance instance
count, and data connection string. You can get more information about configuring Windows
Azure application from the following article:

Configuring a Windows Azure Project available at http://msdn.microsoft.com/en-us/
library/windowsazure/ee405486.aspx

OData Service Hosting and Configuration

124

When creating a new deployment task on the Windows Azure Management Portal, we can
choose either Production Deployment or Staging Deployment type. For debugging and testing,
we recommend the Staging Deployment; while the Production Deployment is preferred for
release deployment. But, for a given Hosted Service instance, we can create at the most one
Production Deployment and one Staging Deployment. For more information about the lifecycle
management of Windows Azure application, you can refer to the following document:

Application Life Cycle Management for Windows Azure Applications available at
http://msdn.microsoft.com/en-us/library/ff803362.aspx

There's more...
In this example, we deploy the Windows Azure Project (containing the sample WCF Data
Service) by creating a deployment package and submitting it through the management portal.
In addition to this, we can also use the Publish Windows Azure Application wizard to deploy
Windows Azure Project in Visual Studio IDE. By using this wizard, we can deploy a Windows
Azure application just like how we publish an ASP.NET web application into IIS server. For
more information, refer to the following MSDN reference:

Publish Windows Azure Application Wizard available at http://msdn.microsoft.com/
en-us/library/windowsazure/hh535756.aspx

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

Configuring WCF Data Service to return
error details

When developing WCF Data Service, we will probably encounter some unexpected errors; some
might be caused by our service's code logic and some others might be caused by some issues
from the WCF Data Service or .NET Framework infrastructure. By default, WCF Data Service will
only return a general error message when any unhandled exception occurs in service. This is not
quite convenient for us to troubleshoot the root cause of the problem. In this recipe, we will show
you how to configure WCF Data Service to expose detailed error information.

Getting ready
The source code for this recipe can be found in the \ch03\ODataErrorInfoSln\ directory.

Chapter 3

125

How to do it...
1. Open the ASP.NET web application, which contains the WCF Data Service we want

to configure.

2. Use the web.config file to enable the includeExceptionDetailInFaults
option for the WCF Data Service.

You can find the includeExceptionDetailInFaults option through the
<serviceDebug> element, which is nested in the <serviceBehaviors>
configuration section (see the following screenshot).

3. Turn on the UseVerboseErrors setting in the WCF Data Service initialization code
(see the following code snippet).
public class NWDataService : DataService<NorthwindEntities>
{
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;

 config.UseVerboseErrors = true;
 }

How it works...
The first includeExceptionDetailInFaults option is a standard WCF setting. By
enabling this option, the WCF Service runtime will propagate information about the server-side
unhandled exception to the client. Since WCF Data Service is a special implementation of
WCF, it is necessary to enable this option for debugging purposes.

OData Service Hosting and Configuration

126

The second UseVerboseErrors option is a WCF Data Service specific setting. By turning
this option on, WCF Data Service will return more detailed error information in case any error
occurs in the service code.

The following is the custom service operation (defined in our sample service) as an example:

[WebGet]
public int Divide(int lv, int rv)
{
 return lv / rv;
}

If we provide 0 as the rv parameter, the runtime will throw a DivideByZero exception.
However, by default, a very general error message is returned, which doesn't help much for
troubleshooting (see the following screenshot).

With the previous two options turned on, the service will instead return detailed exception
information including exception type and call stacktrace (see the following screenshot).

Chapter 3

127

It is strongly recommended that we turn on the includeExceptionDetailInFaults
and UseVerboseErrors options only at development or testing time. Using them for
production deployment will raise security risks as we're exposing the vulnerability of our
service to the client.

See also
 f Adding custom operations on OData Service recipe in Chapter 1, Building

OData Services

Configuring WCF Data Service to return
JSON-format response

OData service supports both Atom XML format and JSON format for service data transfer. WCF
Data Service by default returns the response data of OData queries and service operations in
Atom XML format. If you need to get JSON-format response, you can explicitly set the Accept
HTTP header to application/json so that the service will return response data in JSON
format (see the following screenshot).

Then, is there any setting to control the WCF Data Service response format at the server side
(without changing the client)? Unfortunately, so far WCF Data Service hasn't provided such a
built-in configuration setting. However, there is always a way to work around it. In this recipe,
we will demonstrate how we can force the WCF Data Service hosted in IIS 7 to return a JSON
format response.

OData Service Hosting and Configuration

128

Getting ready
This recipe will require some ASP.NET HTTP Module development knowledge. In case you're
not familiar with this, the following MSDN reference is a good one to get started:

HTTP Handlers and HTTP Modules Overview available at http://msdn.microsoft.com/
en-us/library/bb398986.aspx

The source code for this recipe can be found in the \ch03\ODataServiceWithJSONSln\
directory.

How to do it...
1. Create a new ASP.NET web application, which contains the sample WCF Data Service

(based on the Northwind database).

2. Create a custom HTTP Module to intercept the OData requests and manipulate the
Accept HTTP header (see the following ODataHttpModule type).
public class ODataHttpModule : IHttpModule
{
 public void Init(HttpApplication context)
 {
 context.BeginRequest += new
 EventHandler(context_BeginRequest);
 }

 void context_BeginRequest(object sender, EventArgs e)
 {
 HttpApplication app = sender as HttpApplication;
 HttpContext ctx = app.Context;

 string strUrl = ctx.Request.RawUrl;
 if (strUrl.Contains("NWDataService.svc") &&
 !ctx.Request.RawUrl.Contains("$metadata"))
 {

 ctx.Request.Headers.Add("Accept", "application/json");
 }
 }
}

Chapter 3

129

3. Register the custom HTTP Module in the web.config file of the sample
web application.

We will use the <system.webServer> configuration section to register the HTTP
Module (see the following screenshot).

4. Deploy the sample ASP.NET web application to IIS 7.

You can refer to the Hosting a WCF Data Service in IIS server recipe for more
information on this.

5. Select the application pool (of the deployed web application) in IIS manager and
make sure it is using the Integrated pipeline mode within the Basic Settings... dialog
(see the following screenshot).

OData Service Hosting and Configuration

130

6. Access the WCF Data Service and verify that it is always returning a JSON-format
response as expected.

The following screenshot shows the HTTP request headers and response data of the
sample service (captured by Fiddler):

How it works...
The basic idea here is to use ASP.NET HTTP Module to intercept and modify the Accept
HTTP header of each OData request (before the WCF Data Service runtime handles it).
Thus, by specifying the Accept header value, we can control the data format of the WCF
Data Service responses.

Also, when deploying the host web application to IIS 7, we have chosen the Integrated
pipeline mode for the IIS application pool. This is a new feature of IIS 7, which helps to
make sure that all requests coming to the web application (which use an Integrated mode
application pool) will be handled by the registered HTTP Modules. For more information about
the Integrated pipeline mode of IIS 7, you can refer to the following article:

How to Take Advantage of the IIS 7.0 Integrated Pipeline available at http://learn.
iis.net/page.aspx/244/how-to-take-advantage-of-the-iis-integrated-
pipeline/

See also
 f Injecting custom HTTP headers in OData requests recipe in Chapter 2, Working with

OData at Client Side

 f Hosting a WCF Data Service in IIS server recipe

Chapter 3

131

Applying basic access rules on WCF Data
Service

When talking about rule-based access control in service development, we will often think
about the security authentication and authorization concepts. WCF Data Service has provided
a built-in setting for controlling the access rules over the entity sets and operations exposed in
the service. In this recipe, we will demonstrate how we can use this feature to perform basic
access control against entity sets exposed by WCF Data Service.

Getting ready
We will use the Northwind OData service (built with WCF Data Service and ADO.NET Entity
Framework) as an example and apply some access rules to the entity sets exposed from it.

The source code for this recipe can be found in the \ch03\ODataBasicRulesSln\
directory.

How to do it...
1. Create a new ASP.NET web application, which contains the Northwind OData service.

For demonstration, we will expose four entity sets in the service, which contain
the Category, Order, Order_Detail, and Product entity types (see the
following screenshot).

2. Apply access rules for entity sets in the WCF Data Service initialization function.

The following is the list of access rules we will apply on the sample service's
entity sets:

 � Client can perform all read access on Categories entity set

 � Client can perform read access to single entity only on Products entity set

OData Service Hosting and Configuration

132

 � Client can perform read access to entity list only on Orders entity set

 � Client cannot perform any access on Order_Details entity set

The following code snippet shows the complete initialization function:
public class NWDataService : DataService<NorthwindEntities>
{
 public static void InitializeService(DataServiceConfiguration
 config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;

 // Grant read access on Categories entity set and single
 //Category entity
 config.SetEntitySetAccessRule("Categories",
 EntitySetRights.AllRead);
 // Grant read access on a single Category entity
 config.SetEntitySetAccessRule("Products",
 EntitySetRights.ReadSingle);
 // Grant read access on Orders entity set
 config.SetEntitySetAccessRule("Orders",
 EntitySetRights.ReadMultiple);
 // Do not allow any access on Order_Details entity set
 config.SetEntitySetAccessRule("Order_Details",
 EntitySetRights.None);

 }
}

How it works...
As shown in the previous code, by using the SetEntitySetAccessRule method of
DataServiceConfiguration class, we can apply access rules against every entity set
exposed in a WCF Data Service. In the sample service, we have applied some rules through
the AllRead, ReadSingle, ReadMultiple, and None flags (of EntitySetRights
enumeration type).

None is the default access rule setting for every entity set
in a WCF Data Service.

Chapter 3

133

There are many other access rule flags such as AllWrite, WriteAppend, WriteDelete,
All, and so on. We can use the Bit Or operator to apply a combination of such flags on a
given entity set. For example, the following code snippet applies both WriteAppend and
WriteDelete rules on the Orders entity set, so that service consumers can perform both
create and delete operations:

config.SetEntitySetAccessRule("Orders", EntitySetRights.AllRead
 | EntitySetRights.WriteAppend
 | EntitySetRights.WriteDelete);

In addition to entity sets, we can also apply the same basic access rules on service operations
defined in a WCF Data Service by using the SetServiceOperationAccessRule method of
the DataServiceConfiguration class (see the following code snippet).

config.SetServiceOperationAccessRule("operation1",
ServiceOperationRights.All);
config.SetServiceOperationAccessRule("operation2",
ServiceOperationRights.ReadSingle);

For more information on the built-in access rules, please refer to the Minimum Resource
Access Requirements section in the following MSDN document:

Configuring the Data Service (WCF Data Services) available at http://msdn.microsoft.
com/en-us/library/ee358710.aspx

There's more...
Although the built-in access rules setting can help in controlling the CRUD permissions on
entity sets exposed in WCF Data Service, it is just an ad-hoc like setting which is suitable for
basic access control scenarios. For example, if we want to completely restrict the read or
write access for a given entity set, then the built-in access rules will be quite sufficient for us.
If what you need to do is implementing more complicated access control such as role-based
service authorization (based on client user identity or other claims), then the built-in access
rules setting is far from enough. We will discuss more on implementing custom authorization
rules in Chapter 7, Working with Security.

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

OData Service Hosting and Configuration

134

Getting rid of .svc extension by using
ASP.NET URL Routing

When we create a WCF Data Service in a web application or website project, Visual Studio
2010 will add a .svc file and its associated code-behind file (see the following screenshot) in
the project. This is the standard file extension for a WCF service item in Visual Studio.

When we access the WCF Data Service, the service address also includes the .svc file
extension as shown in http://localhost:8188/NWDataService.svc/$metadata.

Then, the question comes of whether we can get rid of the .svc extension in the service
address of the WCF Data Service hosted in a web application (just like what we can do for
WCF Data Service hosted in a Console application). In this recipe, we will show you how to
achieve this by using the ASP.NET URL Routing feature.

Getting ready
This sample case will use ASP.NET URL Routing to provide a customized base address for the
Northwind OData service.

The source code for this recipe can be found in the \ch03\UrlRoutingSln\ directory.

How to do it...
1. Create a new ASP.NET web application, which contains the Northwind OData service.

2. Add an assembly reference to System.ServiceModel.Activation.dll in the
web application.

http://localhost:8188/NWDataService.svc/$metadata

Chapter 3

135

3. Create a Global Application Class (Global.asax) in the ASP.NET web application
(see the following screenshot).

4. Register the routing rule (for the customized WCF Data Service address) in the
Application_Start event of Global.asax class (see the following code snippet).
public class Global : System.Web.HttpApplication
{

 protected void Application_Start(object sender, EventArgs e)
 {
 // Register URL Routing rules
 RouteTable.Routes.Add(
 new ServiceRoute(
 "NorthwindOData",
 new DataServiceHostFactory(),
 typeof(NWDataService)
)
);
}

5. Make sure AspNetCompatibilityMode is enabled (under the <system.
serviceMode> section) in the web.config file (see the following screenshot).

OData Service Hosting and Configuration

136

6. Register the UrlRoutingModule and turn on the runAllManagedModulesForAllRequests
option (under the <system.webServer> section) in the web.config file (see the
following screenshot).

7. Launch the web application and access the WCF Data Service through the .svc less
address (see the following screenshot).

How it works...
The service address customization here is totally relying on the ASP.NET URL Routing feature.
This feature is introduced in ASP.NET 4.0 and it can be used for various .NET web applications
(such as WebForm, MVC, and WCF) hosted in an IIS server. Also, .NET Framework 4.0 provides
the ServiceRoute class, which can help enable the URL Routing feature for WCF REST
services (including WCF Data Service). What we need to do is simply add a route rule within
the Application_Start event of Global.asax class.

In addition, to make URL Routing work in an IIS server, we need to make sure the
UrlRoutingModule is registered in the web.config file so that the incoming requests
(target the web application) can be routed based on the registered routing rules.

If you want to know more about ASP.NET URL Routing, the following blog entry is a good one to
get started:

URL Routing with ASP.NET 4 Web Forms available at http://weblogs.asp.net/
scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-
2010-and-net-4-0-series.aspx

http://weblogs.asp.net/scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-2010-and-net-4-0-series.aspx
http://weblogs.asp.net/scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-2010-and-net-4-0-series.aspx
http://weblogs.asp.net/scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-2010-and-net-4-0-series.aspx
http://weblogs.asp.net/scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-2010-and-net-4-0-series.aspx

Chapter 3

137

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

 f Hosting a WCF Data Service in Console application recipe

Enabling dynamic compression for OData
service hosted in IIS 7

OData protocol relies on Atom XML and JSON formats for transferring data entities over HTTP
between services and clients. Since both Atom XML and JSON are text-based data formats, it
would cause potential performance issues (due to large data size or network latency) when we
transfer large number of data entities in OData service queries. Surely, there are many methods
we can use to prevent such kind of performance issues. For example, we can use query
projection to restrict the entity properties returned in responses, we can use server-side paging
to restrict the number of entities returned in responses, or we can better design our service data
types. However, the HTTP transport protocol has already provided us a good solution on this,
which is to apply standard HTTP compression for OData service responses. In this recipe, we will
show you how to apply HTTP compression for OData services hosted in IIS 7.

Getting ready
The topics discussed in this recipe require the usage of the IIS 7 Dynamic Content
Compression feature. So we need to make sure the Dynamic Content Compression component
has been installed correctly on the server machine. You can use the ServerManager | Roles
| Web Server Role (for Windows Server OS) or Control Panel | Program Features | Windows
Features | Internet Information Services (for Windows Client OS) path to install the Dynamic
Content Compression component (see the following screenshot).

OData Service Hosting and Configuration

138

How to do it...
1. Deploy the OData service web application to IIS 7 on the target server.

2. Open the IIS Manager on the target server.

3. Select the root server machine node in IIS Manager and launch the Configuration
Editor (see the following screenshot).

4. Select the system.webServer/httpCompression section in Configuration Editor and
edit the dynamicTypes property (see the following screenshot).

Chapter 3

139

5. Add the following mimeType entries in the prompted Collection Editor dialog (see the
following screenshot):

 � application/atom+xml;charset=utf-8

 � application/atom+xml

 � application/json;charset=utf-8

 � application/json

6. Select the deployed OData service web application in IIS Manager and open the
Compression setting (see the following screenshot).

OData Service Hosting and Configuration

140

7. Make sure the Enable dynamic content compression and Enable static content
compression options are checked in the Compression setting panel (see the
following screenshot).

8. Restart the IIS server to ensure the changes have been applied.

9. Access the OData service and use Fiddler to verify that the service responses are
compressed at the HTTP layer.

The following screenshot shows a sample OData response (captured in Fiddler),
which has been compressed with the gzip method:

Chapter 3

141

How it works...
The IIS 7 Dynamic Content Compression feature uses the compression methods of HTTP
protocol to compress the response data generated by the dynamic server documents (such
as ASP.NET web pages, and WCF services). Also, the IIS server uses the MIME type (content
type) of the response data to determine if compression should be applied. For OData services,
we only need to take care of the application/atom+xml (for Atom XML format) and
application/json (for JSON format) MIME types.

Enabling Dynamic Content Compression will cause the server
machine to use significant CPU time and memory resources.
Therefore, we should use it only if it is necessary and the server
machine has sufficient spare CPU time.

In addition, the configuration steps we mentioned here are using the IIS Manager; but we can
also use the AppCmd.exe tool to apply the same settings from the command-line prompt.
Refer to the following Knowledge Base article for more information:

How to use the Appcmd.exe command-line tool to enable and configure HTTP logging
and other features in Internet Information Services 7.0 available at http://support.
microsoft.com/kb/930909

There's more...
By default, the WCF Data Service client library based OData proxy will not be able to handle
HTTP compressed responses. For how to enable strong-typed OData proxy to support HTTP
compressed responses, please refer to the Consuming HTTP compression enabled OData
service recipe in Chapter 2, Working with OData at Client Side.

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

 f Consuming HTTP compression enabled OData service recipe in Chapter 2, Working
with OData at Client Side

 f Hosting a WCF Data Service in IIS server recipe

http://support.microsoft.com/kb/930909
http://support.microsoft.com/kb/930909

4
Using OData in Web

Application

In this chapter we will cover:

 f Building data-driven ASP.NET Web Form pages with OData

 f Adopting OData in ASP.NET MVC web applications

 f Building ASP.NET Page UI with OData and XSLT

 f Building AJAX style data-driven web pages with jQuery

 f Consuming OData service with datajs script library

 f Using OData service in Silverlight data access application

 f Consuming WCF Data Service in PHP pages

Introduction
Nowadays, web applications have become more and more popular as the choice for
developing various kinds of applications; not only for traditional HTML web page based
Internet websites, but also for intranet or business-specific applications. This is because web
applications use HTML and script-based web pages as the main user interfaces, which can
be adapted by different web browsers and require little or zero installation on the client side.
In addition, the HTTP-based transport makes web applications quite easy to work across a
complicated network environment.

Using OData in Web Application

144

With the support of new, rich client features in web browsers, it is quite convenient for us to
develop rich and powerful web applications by using JavaScript or other technologies such
as Flash, Silverlight, or HTML 5. Also, such kinds of applications often use asynchronous or
background channels to exchange data with a server so as to avoid frequent refreshing on the
web browser. The most common data exchanging approaches used are XML- or JSON-based
web services, which can be implemented by many existing service development technologies,
such as ASP.NET Web Service, and WCF service. Since OData is naturally HTTP + XML/JSON
based, it is quite a good choice for implementing the services for data exchanging in rich
interactive web applications. In this chapter, we will demonstrate how to take advantage of
OData service (especially, the WCF Data Service implementation) in various kinds of web
application development scenarios including ASP.NET Web Form application, ASP.NET MVC
application, Plain HTML+ jQuery-based AJAX web application, Silverlight web application, and
PHP web application.

Building data-driven ASP.NET Web Form
pages with OData

Back to the earlier stage of Microsoft .NET Framework, ASP.NET has already been provided
as the main web application development platform. And the Web Form programming model
(which uses Web Server Controls and PostBack events to simulate desktop windows
application like UI interactions) really simplifies the development of a rich, functional, and
dynamic web page. And with the help of ASP.NET data binding and rich DataBound Controls,
we can build various kinds of powerful data-driven web pages. In this recipe, we will introduce
how to incorporate OData service as a data source for building data-driven web pages through
the ASP.NET Web Form page framework.

Getting ready
In this sample, we will create an ASP.NET Web Form page, which uses some built-in controls to
display the Categories and Products information from the Northwind OData service.

The source code for this recipe can be found in the \ch04\ODataDrivenWebAppSln
directory.

How to do it...
1. Create a new ASP.NET web application as the Web Form page container.

2. Create the OData client proxy against the Northwind OData service
(see the following screenshot).

Chapter 4

145

3. Create a new Web Form page in the web application (see the following screenshot).

Now, the web application should look like the following structure in Visual Studio
Solution Explorer:

4. Open the .aspx page file and add the DropDownList and GridView controls (for
displaying the Categories and Products entities) in the HTML markup (see the
following code snippet).
<body>
 <form id="form1" runat="server">
 <div>
 <div>
 Categories: <asp:DropDownList ID="lstCategories"
runat="server"
 AutoPostBack="true" DataTextField="CategoryName"
DataValueField="CategoryID"
 onselectedindexchanged="lstCategories_
SelectedIndexChanged">
 </asp:DropDownList>

Using OData in Web Application

146

 </div>
 <div>
 Products under selected Category:
 <asp:GridView ID="gridProducts" runat="server"
AutoGenerateColumns="true">

 </asp:GridView>
 </div>
 </div>
 </form>
</body>

By switching to the Design view in the Visual Studio page
editor, we can have a rough outlook of the Web Form page
under editing (see the following screenshot).

5. Add the code for populating the Categories and Products data in the Web Form
page's code-behind file (see the following code snippet).
public partial class ProductsByCategoryPage : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 var ctx = CreateODataProxy();
 lstCategories.DataSource = ctx.Categories;
 lstCategories.DataBind();

 int id = int.Parse(lstCategories.SelectedValue);
 BindProductsByCategory(id);
 }
 }

 protected void lstCategories_SelectedIndexChanged(object
sender, EventArgs e)

Chapter 4

147

 {
 int id = int.Parse(lstCategories.SelectedValue);
 BindProductsByCategory(id);
 }

 void BindProductsByCategory(int categoryID)
 {
 var ctx = CreateODataProxy();
 var products = ctx.Products.Where(p => p.CategoryID ==
categoryID);
 gridProducts.DataSource = products;
 gridProducts.DataBind();
 }

}

6. Launch the Web Form page and use the DropDownList control to filter the
Product items based on selected Category (see the following screenshot).

How it works...
The sample Web Form page uses the Visual Studio generated OData proxy for retrieving
the Categories and Products data from the Northwind OData service. Since the OData
query results generated by the strong-typed proxy are of IQueryable type, we can directly
bind them to those ASP.NET built-in WebForm DataBound controls, such as DropDownList,
GridView, DataList, ListView, and so on. What we need to do is simply assign the OData
entity collection (returned by the query) to the DataSource property of the target DataBound
Controls and call the DataBind method. In the sample page, we bind all the Category
entity objects to the DropDownList control, when the page is loaded at the first time. Then,
whenever a new Category item is selected, the code within the SelectedIndexChanged
event (of the DropDownList control) will retrieve the new Product entity objects from the
service and bind them to the GridView control.

Using OData in Web Application

148

See also
 f Building an OData service via WCF Data Service recipe and ADO.NET Entity

Framework in Chapter 1, Building OData Services

 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,
Working with OData at Client Side

Adopting OData in ASP.NET MVC web
applications

Ever since ASP.NET 3.5, there has been a new ASP.NET web application programming model
called ASP.NET MVC, which provides an alternative to the ASP.NET Web Form pattern for
developing web applications. ASP.NET MVC is a lightweight, highly testable presentation
framework, which follows the famous Model-View-Controller design pattern. By using ASP.
NET MVC, it is quite convenient for us to separate the page UI presentation from the data
processing code logic.

Since OData service provides a simple and straight means for data accessing and
manipulation, it is quite reasonable to incorporate OData service into an ASP.NET MVC web
application as part of the Model layer. In this recipe, we will demonstrate a sample case which
uses ASP.NET MVC + OData service to build typical data-driven web pages.

Getting ready
We will create an ASP.NET MVC web application, which allows users to view and edit
the Category entities exposed in the sample Northwind OData service. Make sure
you have installed ASP.NET MVC 3.0 (or higher) and its related developer tools.
For more information on ASP.NET MVC 3.0 have a look at Getting Started with
ASP.NET MVC 3 at http://www.asp.net/mvc.

The source code for this recipe can be found in the \ch04\ODataMVCWebSln directory.

How to do it...
1. Create a new ASP.NET web application which contains the Northwind OData service.

For demonstration, we need to enable both AllRead and AllWrite access rules on
the Categories entity set (see the following code snippet).
public class NWDataService : DataService<NorthwindEntities>
{
 public static void InitializeService(DataServiceConfiguration
config)
 {

http://www.asp.net/mvc

Chapter 4

149

 config.SetEntitySetAccessRule("Categories",
EntitySetRights.AllRead | EntitySetRights.AllWrite);
 }
}

2. Create new ASP.NET MVC 3 Web Application (see the following screenshot).

After creating ASP.NET MVC 3 Web Application, we can find the predefined project
structure (in Visual Studio) as shown in the following screenshot:

3. Create the OData client proxy (against the Northwind OData service) by using the
Visual Studio Add Service Reference wizard (see the following screenshot).

Using OData in Web Application

150

4. Create a helper class to encapsulate the entire code logic for performing an OData
service query and update (see the following ODataHelper class).
public class ODataHelper
{
 static Uri _svcUri = new Uri("http://localhost:2766/
NWDataService.svc/");
 static NorthwindEntities _ctx = null;

 public static NorthwindEntities GetServiceContext(){
 if(_ctx == null) {
 _ctx = new NorthwindEntities(_svcUri);
 }
 return _ctx;
 }

 public static List<Category> GetCategoryList(){
 var ctx = GetServiceContext();
 var categories = ctx.Categories.ToList();
 return categories;
 }

 public static Category GetSingleCategory(int id)
 {
 var ctx = GetServiceContext();
 var category = ctx.Categories.Where(c => c.CategoryID ==
id).First();
 return category;
 }

 public static void UpdateCategory(Category category)
 {
 var ctx = GetServiceContext();

 var dataObj = ctx.Categories.Where(c => c.CategoryID ==
category.CategoryID).First();
 dataObj.CategoryName = category.CategoryName;
 dataObj.Description = category.Description;

 ctx.UpdateObject(dataObj);
 ctx.SaveChanges();
 }
}

Chapter 4

151

5. Create a new MVC 3 Controller Class (see the following screenshot) and name it as
NorthwindCategoryController.

6. Add the Action methods (within the NorthwindCategoryController class) for
displaying and editing Category data.

The following code snippet shows all the three Action methods defined in the sample
controller class:
public class NorthwindCategoryController : Controller
{
 public ActionResult Index()
 {
 var categories = ODataHelper.GetCategoryList();

 return View(categories);
 }

 public ActionResult Edit(int id)
 {
 var category = ODataHelper.GetSingleCategory(id);
 return View(category);
 }

 [HttpPost]
 public ActionResult Edit(Category category)
 {
 try
 {
 ODataHelper.UpdateCategory(category);

 return RedirectToAction("Index");
 }
 catch(Exception ex)
 {
 return Content(ex.ToString());
 }
 }
}

Using OData in Web Application

152

7. Select the Index Action method (in the NorthwindCategoryController class)
and right-click to launch the Add View… wizard (see the following screenshot).

8. In the prompted Add View dialog, specify View name and select Razor (CSHTML) as
the View engine (see the following screenshot).

9. Repeat steps 7 and 8 to create the View for the Edit Action method.

Now, the ASP.NET MVC web application should look like the following structure in
Visual Studio:

Chapter 4

153

10. Define the HTML template (for each View) within the .cshtml file.

The following is the main HTML fragment of the Index.cshtml file
(for the Index View):
<body>
 <div>
 <h1>Category List</h1>
 <table>
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Description</th>
 <th>Edit</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var c in Model)
 {
 <tr>
 <td>@c.CategoryID</td>
 <td>@c.CategoryName</td>
 <td>@c.Description</td>
 <td>@Html.ActionLink("Edit", "Edit", new
RouteValueDictionary {{"id", c.CategoryID} })</td>
 </tr>
 }
 </tbody>
 </table>
 </div>
</body>

And the main HTML fragment of the Edit.cshtml file (for the Edit View) is shown
as follows:
<body>
 @using (Html.BeginForm()) {
 @Html.ValidationSummary(true)
 <fieldset>
 <legend><h1>Edit Category Fields</h1></legend>

 @Html.HiddenFor(model => model.CategoryID)

 <div class="editor-label">
 @Html.LabelFor(model => model.CategoryName)
 </div>

Using OData in Web Application

154

 <div class="editor-field">
 @Html.EditorFor(model => model.CategoryName)
 @Html.ValidationMessageFor(model => model.
CategoryName)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Description)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Description)
 @Html.ValidationMessageFor(model => model.
Description)
 </div>

 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>
 }
 <div>
 <h2>@Html.ActionLink("Back to List", "Index")</h2>
 </div>
</body>

11. Launch the ASP.NET MVC web application and access
NorthwindCategoryController in web browser.

The following screenshot shows the output in the web browser by invoking the Index
Action method:

Chapter 4

155

And the following is the web browser output by invoking the Edit Action method,
which can be triggered through the Edit hyperlink on each category row:

How it works...
The ASP.NET MVC framework relies on three key components. They are Model, View,
and Controller. Model takes care of the application data logic. View takes care of the UI
presentation. Controller handles client requests, cooperates with Model to process data, and
finally selects proper View to render output.

In this sample, the NorthwindCategoryController class acts as Controller, which contains
two Action methods. The Action methods use the ODataHelper class to query and update the
Category entities. The Category entity objects returned by helper class then act as Model.
As for the .cshtml file based Views, they simply accept the Category entities passed from
the Model and render the HTML content to the client. Such a loose-coupled programming model
really makes the underlying code logic (such as data query and manipulation) clearly separated
from the front-web UI.

The .cshtml View used in this sample is based on a new View engine
called Razor introduced in ASP.NET MVC 3.0. The Razor engine uses
simpler and cleaner syntax compared to the Web Form (.aspx) View
engine, which makes it quite convenient to edit both in Visual Studio IDE
and plain text editors. The following blog entry is a good one for you to
get started on the Razor View engine.
http://weblogs.asp.net/scottgu/archive/2010/07/02/
introducing-razor.aspx

Using OData in Web Application

156

Another thing worth noticing is that ASP.NET MVC framework relies on the ASP.NET URL
Routing feature. To make sure the Controller and Action name-based URL address patterns
work, we need to register the proper URL Routing rules (modify the default values generated
by the ASP.NET MVC project template) in the Application_Start event of the Global.
asax class (see the following code snippet below).

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "NorthwindCategory", action = "Index", id =
UrlParameter.Optional } // Parameter defaults
);
}

protected void Application_Start()
{
......
 RegisterRoutes(RouteTable.Routes);
}

For more information about ASP.NET MVC development, you can visit the ASP.NET MVC official
site at http://www.asp.net/mvc.

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

 f Editing and deleting data through WCF Data Service client library recipe in Chapter 2,
Working with OData at Client Side

Building ASP.NET Page UI with OData and
XSLT

Now, we have gone through two cases about building data-driven ASP.NET web applications
with OData service. And both cases use a strong-typed OData client proxy for accessing the
target OData service. Then, what if we do not want to use a strong-typed client proxy? There
are surely other alternatives for us to build a web page UI without using the strong-typed client
proxy. In this recipe, we will demonstrate a special case which uses raw OData response (of
Atom XML format) and XSLT (Extensible Stylesheet Language Transformation) to construct
the UI for ASP.NET data-driven web pages.

http://www.asp.net/mvc
http://www.asp.net/mvc

Chapter 4

157

Getting ready
The source code for this recipe can be found in the \ch04\ODataXSLTWebSln directory.

How to do it...
1. Get the Northwind OData service ready and make sure the Categories and

Products entity sets are exposed.

2. Create a new ASP.NET empty web application.

3. Add a new Web Form page in the web application.

4. Open the Web Form page (.aspx file) and add the following four controls into it:

 � An XmlDataSource control for supplying the Category list

 � An XmlDataSource control for supplying Products associated with the
selected Category

 � A DropDownList control for displaying the Category list

 � A GridView control for displaying Products associated with the selected
Category

After adding the preceding Controls, the HTML markup of the page should look
as follows:
<div>
 <asp:XmlDataSource ID="dsXmlCategories" runat="server"
 TransformFile="~/TransformCategory.xslt"
 XPath="//category" />
 <asp:XmlDataSource ID="dsXmlProducts" runat="server"
 TransformFile="~/TransformProduct.xslt"
 XPath="//product" />

 Categories: <asp:DropDownList ID="lstCategories"
runat="server"
 DataSourceID="dsXmlCategories"
 DataTextField="name" DataValueField="id"
AutoPostBack="True"
 onselectedindexchanged="lstCategories_
SelectedIndexChanged" >
 </asp:DropDownList>

 Products under selected Category:

 <asp:GridView ID="gridProducts" runat="server"
 AutoGenerateColumns="false"
 DataSourceID="dsXmlProducts" >

Using OData in Web Application

158

 <Columns>
 <asp:BoundField DataField="ID"
HeaderText="ID" />
 <asp:BoundField DataField="Name"
HeaderText="Product Name" />
 <asp:BoundField DataField="SupplierID"
HeaderText="Supplier ID" />
 <asp:BoundField DataField="UnitPrice"
HeaderText="Unit Price" />
 <asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" />
 </Columns>
 </asp:GridView>
 </div>

5. Open the page's code-behind file and add code for populating the Categories and
Products data from the OData service (see the following code snippet).
public partial class ProductsByCategoryWithXSLT : System.Web.
UI.Page
{
 const string SVC_BASE = "http://localhost:4297/NWDataService.
svc/";

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 // Init the two XmlDataSource controls
 dsXmlCategories.DataFile = SVC_BASE + "Categories?$sel
ect=CategoryID,CategoryName";
 dsXmlProducts.DataFile = SVC_BASE + "Categories(1)/
Products";
 }
 }

 protected void lstCategories_SelectedIndexChanged(object
sender, EventArgs e)
 {
 var categoryID = lstCategories.SelectedValue;
 dsXmlProducts.DataFile =
 string.Format(
 SVC_BASE + "Categories({0})/Products",
 categoryID
);

 gridProducts.DataBind();
 }
}

Chapter 4

159

6. Create the XSLT files for transforming the Atom XML format OData query responses.

The following is the content of the TransformCategory.xslt file, which helps
transform the Category list query response:
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/
dataservices/metadata"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/
dataservices"
 >
<!-- root template -->
 <xsl:template match="/">
 <categories>
 <xsl:apply-templates/>
 </categories>
 </xsl:template>

<!-- individual category template -->
 <xsl:template match="m:properties">
 <category>
 <xsl:attribute name="id">
 <xsl:value-of select="./d:CategoryID" />
 </xsl:attribute>
 <xsl:attribute name="name">
 <xsl:value-of select="./d:CategoryName" />
 </xsl:attribute>
 </category>
 </xsl:template>
</xsl:stylesheet>

And the TransformProduct.xslt file (used for transforming the Product list
query response) looks quite similar (see the following XSLT fragment).
<!-- root template -->
 <xsl:template match="/">
 <products>
 <xsl:apply-templates/>
 </products>
 </xsl:template>

<!-- individual product template -->
 <xsl:template match="m:properties">
 <product>
 <xsl:attribute name="ID">
 <xsl:value-of select="./d:ProductID" />

Using OData in Web Application

160

 </xsl:attribute>
 <xsl:attribute name="Name">
 <xsl:value-of select="./d:ProductName" />
 </xsl:attribute>
 <xsl:attribute name="SupplierID">
 <xsl:value-of select="./d:SupplierID" />
 </xsl:attribute>
 <xsl:attribute name="UnitPrice">
 <xsl:value-of select="./d:UnitPrice" />
 </xsl:attribute>
 <xsl:attribute name="Discontinued">
 <xsl:value-of select="./d:Discontinued " />
 </xsl:attribute>
 </product>
 </xsl:template>

7. Launch the Web Form page in the web browser. The following screenshot shows the
web browser output when browsing the ProductsByCategoryWithXSLT.aspx
page in the sample web application:

How it works...
In the preceding sample page, we directly use the raw Uri string (with query options) to fetch
the entities from the Northwind OData service. Whenever a new Category item is selected,
we rebuild the query Uri string in the SelectedIndexChanged event of the DropDownList
control and also repopulate the XmlDataSource control so that the new Product list will be
presented on the page UI.

For each XmlDataSource control, we have specified a XSLT file, which helps transform
the Atom XML format OData query response into the target XML format (expected by the
DropDownList and GridView Controls). Both files use the similar XSLT code logic, which
first locates the entity elements (via XPath) within the Atom XML response document, and
then converts them into a simplified XML element list.

As we can see, with such a raw OData query Uri + XSLT approach, we can generate an OData-
driven ASP.NET page without using any strong-typed client proxy.

Chapter 4

161

There's more...
The preceding sample page (ProductsByCategoryWithXSLT.aspx) still uses ASP.NET
DataBound Controls (such as the DropDownList and GridView Controls) to render the
HTML page UI. If you want to generate the HTML content completely through XSLT, you can
try using the ASP.NET Xml control instead. For more information on this, you can refer to the
ODataXSLT2HTMLPage.aspx page in the sample code of this recipe.

See also
 f Filtering OData query results by using query options recipe in Chapter 2, Working with

OData at Client Side

 f Building data-driven ASP.NET Web Form pages with OData recipe in Chapter 4, Using
OData in Web Application

Building AJAX style data-driven web pages
with jQuery

Nowadays, with the support of AJAX (Asynchronous JavaScript and XML)-based web script
technologies, more and more web applications are developed with rich interactive and high
responding web pages, which do not require lots of post-backs for data refreshing or user
interactions. jQuery is one of the most popular AJAX script libraries which greatly simplify the rich
client-side script programming in HTML-based web pages. In this recipe, we will introduce how to
take advantage of the jQuery script library for building OData-enabled AJAX style web pages.

Getting ready
The sample page here still uses the Northwind OData service as data source and
provides an AJAX-style UI for exploring the Categories and Products information
(see the following screenshot).

Using OData in Web Application

162

You can download the jQuery script library from its official site or directly import it through
Microsoft AJAX CDN (refer to the following links).

Downloading jQuery at http://docs.jquery.com/Downloading_jQuery

Microsoft Ajax Content Delivery Network at http://www.asp.net/ajaxlibrary/cdn.
ashx

The source code for this recipe can be found in the \ch04\ODataWithJQuerySln directory.

How to do it...
1. Create a new ASP.NET web application which contains the Northwind OData service

(with the Categories and Products entity sets exposed).

2. Import the jQuery script library (downloaded to local disk) into the web application.

The jQuery library used here is of version 1.4.4 and is put in the scripts subfolder in
the sample web application (see the following screenshot).

3. Create a new HTML Page in the web application (see the following screenshot)

4. Open the .htm page file and add the following HTML content:
<html>
<head>
 <title></title>
 <script src="scripts/jquery-1.4.4.min.js"></script>

http://docs.jquery.com/Downloading_jQuery
http://docs.jquery.com/Downloading_jQuery

Chapter 4

163

 <script src="scripts/ProductsByCategory.js"></script>
</head>
<body>
 <div>
 Categories: <select id='lstCategories'></select>
 </div>
 <hr />
 <div>
 <table>
 <thead>
 <tr>
 <th>ID</th>
 <th>Product Name</th>
 <th>Supplier ID</th>
 <th>Unit Price</th>
 <th>Discontinued</th>
 </tr>
 </thead>
 <tbody id='tbbProducts'>
 </tbody>
 </table>
 </div>
</body>
</html>

5. Create the main application script file (named ProductsByCategory.js) and put it
in the same folder as the jQuery script file.

6. Add the function for loading the Category list in the ProductsByCategory.js file
(see the following loadCategories function).
function loadCategories() {
 var svc_url = "../NWDataService.svc/Categories?$select=Categor
yID,CategoryName";
 $.ajax({
 type: "GET",
 url: svc_url,
 dataType: "json",
 success: function (resp) {
 var categories = resp.d;
 $.each(categories, function (i, category) {
 // Construct dropdown item
 var item = $("<option>");
 item.attr("value", category.CategoryID);
 item.text(category.CategoryName);
 // Add Item into dropdownlist

Using OData in Web Application

164

 $("#lstCategories").append(item);
 });
 // Load the Products for default Category
 $("#lstCategories").attr("selectedIndex", 0);
 loadProductsByCategory($("#lstCategories").val());
 },
 error: function () {
 alert("Failed to retrieve Category items!");
 }
 });
}

7. Add the function for loading the Product list based on the selected Category item
(see the following loadProductsByCategory function).
function loadProductsByCategory(_categoryID) {
 //alert("load products of category == " + _categoryID);

 var svc_url = "../NWDataService.svc/Categories(" + _categoryID
+ ")/Products";
 $.ajax({
 type: "GET",
 url: svc_url,
 dataType: "json",
 success: function (resp) {
 var products = resp.d;
 // Clear the table
 var tBody = $("#tbbProducts");
 tBody.html("");

 // Add table row for each Product
 $.each(products, function (i, product) {
 var tRow = $("<tr>");
 var tColID = $("<td>" + product.ProductID + "</
td>");
 var tColName = $("<td>" + product.ProductName +
"</td>");
 var tColSupID = $("<td>" + product.SupplierID +
"</td>");
 var tColUnitPrice = $("<td>" + product.UnitPrice +
"</td>");
 var tColDiscontinued = $("<td>" + product.
Discontinued + "</td>");
 tRow.append(tColID);
 tRow.append(tColName);
 tRow.append(tColSupID);

Chapter 4

165

 tRow.append(tColUnitPrice);
 tRow.append(tColDiscontinued);
 tBody.append(tRow);
 });

 },
 error: function () {
 alert("Failed to retrieve Category items!");
 }
 });
}

8. Add the page initialization script at the bottom of the ProductsByCategory.js file
(see the following code snippet).

$(document).ready(function () {

 $("#lstCategories").bind("change", function () {
 var categoryID = $(this).val();
 loadProductsByCategory(categoryID);
 });

 loadCategories();
});

How it works...
In the sample page, all application-specific code is defined in the ProductsByCategory.
js file while the .htm page only contains the HTML content. Whenever the sample
page is rendered in web browser, the initializing script code is executed, which calls the
loadCategories function to populate the Category list. Then, if a certain Category
item is selected, the loadProductsByCategory function is called so as to display the
associated Product list.

Both loadCategories and loadProductsByCategory functions use the $.ajax
function (provided by the jQuery library) to perform OData queries against the Northwind
OData service. When invoking the $.ajax function, we supply the Uri string of the OData
query, the data type we expect (XML or JSON), and a callback function for processing the
response data (in case, the request succeeds). For detailed information on using the $.ajax
function, you can refer to the following document:

jQuery.ajax() at http://api.jquery.com/jQuery.ajax/

Using OData in Web Application

166

By using some HTTP sniffer tools or web browsers' debug extensions, we can check the
underlying HTTP requests issued by the jQuery library (see the following screenshot).

There's more...
In this sample, we put the AJAX web page in the same web application with the Northwind
OData service. This is because web page script function (such as $.ajax in jQuery library)
cannot directly access a remote service due to the XSS (Cross-site scripting) restriction (see
the following reference).

http://en.wikipedia.org/wiki/Cross-site_scripting

In case you want to access a remote service via AJAX script code, you can build a proxy service
in the local web application, which acts as the connector between the AJAX web page and the
remote service.

See also
 f Building data-driven ASP.NET Web Form pages with OData recipe in Chapter 4, Using

OData in Web Application

 f Consuming OData service with datajs script library recipe in Chapter 4, Using OData
in Web Application

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

Chapter 4

167

Consuming OData service with datajs script
library

From the previous recipe, we can find that it is quite simple and straight for us to query OData
service through existing AJAX script libraries (like jQuery). However, if we want to perform edit
and update operations against OData service, it would be a bit complicated for us to construct
the raw OData requests (of Atom XML or JSON format) via normal AJAX script code. Then, is
there a more convenient means for us to perform all CRUD operations against the OData
service within AJAX script code? Fortunately, there is already a full-fledged cross-browser script
library called datajs which can help achieving this goal. In this recipe, we will use some typical
OData CRUD cases to demonstrate the usage of datajs script library in AJAX web pages.

Getting ready
Here we will create an AJAX web page which allows user to view, create, and delete Category
items (against the Northwind OData service) by using the datajs script library. To simplify
the HTML UI generation code, we will also use the jQuery script library here. The following
screenshot shows the main UI of the sample web page:

You can get the datajs script library from the following CodePlex workspace:

datajs - JavaScript Library for data-centric web applications at
http://datajs.codeplex.com/

The source code for this recipe can be found in the \ch04\DatajsODataSln directory.

http://datajs.codeplex.com/

Using OData in Web Application

168

How to do it...
1. Create a new ASP.NET web application, which contains the Northwind OData service.

2. Add the datajs and jQuery script libraries into the web application. The datajs library
used here is of 1.0.2 version (see the following screenshot).

3. Create the main HTML page (Categories.htm) in the web application.

4. Fill the following HTML content into the Categories.htm page:
<head>
 <title></title>
 <script src="scripts/jquery-1.4.4.min.js"></script>
 <script src="scripts/datajs-1.0.2.min.js"></script>
 <script src="scripts/Categories.js"></script>
</head>
<body>
 <h1>All Categories</h1>
 <table>
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Description</th>
 <th>Product Count</th>
 <th>Delete</th>
 </tr>
 </thead>
 <tbody id="tbbCategories">
 </tbody>
 </table>
 <h1>Add New Category</h1>
 <fieldset>
 Name: <input id="txtName" type="text"
value="NewCategory" />

 Description: <textarea id="txtDescription">Description
of New Category</textarea>

Chapter 4

169

 <input type="button" value="Create"
onclick="addNewCategory();" />
 </fieldset>
</body>

5. Create the main script file (Categories.js) and put it in the same folder as the
datajs script library.

6. Add the script code for querying all the Category items in the Categories.js file
(see the following showAllCategories function).
function showAllCategories() {
 OData.read("../NorthwindOData.svc/
Categories?$expand=Products",
 function (data, request) {

 var tbb = $("#tbbCategories");
 tbb.html("");
 for (var i = 0; i < data.results.length; ++i) {
 var tRow = $("<tr>");
 tRow.append("<td>" + data.results[i].
CategoryID + "</td>");
 tRow.append("<td>" + data.results[i].
CategoryName + "</td>");
 tRow.append("<td>" + data.results[i].
Description + "</td>");
 tRow.append("<td>" + data.results[i].Products.
length + "</td>");
 tRow.append("<td><input type='button'
value='Delete' onclick='deleteCategory(" + data.results[i].
CategoryID + ");' /></td>");
 tbb.append(tRow);
 }
 });
}

7. Add the script code for creating a new Category item in the Categories.js file
(see the following addNewCategory function).
function addNewCategory() {
 if (!confirm("Are you sure to create the new Category item?"))
return false;

 var name = $("#txtName").val();
 var desc = $("#txtDescription").val();

 var req = {
 requestUri: "../NorthwindOData.svc/Categories",

Using OData in Web Application

170

 method: "POST",
 data: { CategoryName: name, Description: desc, Picture:
null }
 };

 OData.request(
 req,
 function (data) {
 alert("Creation completed.");
 window.location.reload();
 },
 function (err) {
 alert("Error: " + err.message + " - " + JSON.
stringify(err));
 }
);
}

8. Add the script code for deleting the Category item in the Categories.js file (see
the following deleteCategory function).

function deleteCategory(categoryID) {
 if (!confirm("Are you sure to delete this Category item?"))
return false;

 var req = {
 requestUri: "../NorthwindOData.svc/Categories(" +
categoryID + ")",
 method: "DELETE"
 };

 OData.request(
 req,
 function (data) {
 alert("Deleting completed.");
 window.location.reload();
 },
 function (err) {
 alert("Error: " + err.message + " - " + JSON.
stringify(err));
 }
);
}

Chapter 4

171

In addition, the script file will add the following code to call the showAllCategories
function when the sample page is loaded in web browser.

$(document).ready(function () {
 showAllCategories();
});

How it works...
Although the sample page still uses the jQuery library for presenting the HTML page UI, all
OData service accessing related code relies on the datajs library. As shown in the preceding
functions, the datajs library has provided a well-defined object model for performing various
kinds of OData operations. By using the OData.read function, we can query the OData
service with the Uri string supplied in the first parameter. And the OData.request function
provides more advanced options for sending OData requests (such as Create, Update,
Delete, and so on) against the target service. Before invoking the OData.request function,
we need to construct a JSON object which contains all necessary request properties including
query Uri, request method (such as GET, POST), and data entity objects (like the Category
entity object supplied in the addNewCategory function).

For more information about using the datajs library, you can refer to the following
web documentation:

datajs documentation at http://datajs.codeplex.com/documentation

See also
 f Building data-driven ASP.NET Web Form pages with OData recipe in Chapter 4, Using

OData in Web Application

 f Building AJAX style data-driven web pages with jQuery recipe in Chapter 4, Using
OData in Web Application

Using OData service in Silverlight data
access application

So far we have discussed several cases of developing a data-driven web application with
OData. All of them use HTML pages as the main web UI and most of them are driven by
JavaScript code. However, for .NET web developers, we have another nice choice for building
rich, interactive web applications—Silverlight. The fact that Silverlight adopts both XAML-based
UI framework (like what WPF uses) and strong-typed .NET programming languages makes it
the preferred choice especially when you're already familiar with XAML syntax and general
.NET Framework based programming.

Using OData in Web Application

172

In this recipe, we will demonstrate how to use the OData service for developing a Silverlight
data access application.

Getting ready
The sample Silverlight application we will build here allows users to explore the Customers,
Orders, and Order_Details data by using the Northwind OData service. The application
consists of two Silverlight pages, and users can navigate between them so as to switch
between different data views (see the following screenshot).

Make sure you have the latest version of Silverlight Developer Runtime and Silverlight Tools
for Visual Studio installed. You can get them from the Silverlight official site at http://www.
silverlight.net/downloads.

The source code for this recipe can be found in the \ch04\ODataSilverlightSln directory.

How to do it...
1. Launch the New Project wizard and select the Silverlight Application template (see

the following screenshot).

http://www.silverlight.net/downloads

Chapter 4

173

2. In the New Silverlight Application dialog, choose to create a new ASP.NET
Web Application Project for hosting the Silverlight application (see the
following screenshot).

3. Click on the OK button to create the Silverlight Application project.

4. Add the Northwind OData service into the Silverlight host web application (see the
ODataSilverlightApp.Web project shown in the following screenshot).

Using OData in Web Application

174

5. Add the OData client proxy in the ODataSilverlightApp project (see the
following screenshot).

6. Define a helper class for creating data context object of OData client proxy (see the
following code snippet).
public class ODataHelper
{
 static Uri _svcUri = new Uri("NWDataService.svc", UriKind.
Relative);
 static NWDataSvc.NorthwindEntities _ctx = null;

 public static NWDataSvc.NorthwindEntities GetServiceContext()
 {
 if (_ctx == null)
 {
 _ctx = new NWDataSvc.NorthwindEntities(_svcUri);
 }
 return _ctx;
 }
}

7. Create the following Silverlight pages in the ODataSilverlightApp project:

 � MainPage.xaml—the navigation container page

 � CustomerList.xaml—the page for displaying Customer list

 � CustomerOrders.xaml—the page for displaying Order list of a
selected customer

The MainPage.xaml page is pre-generated by Visual Studio
when you create the Silverlight application.

Chapter 4

175

The following screenshot shows the ODataSilverlightApp project structure after
creating the preceding three pages:

8. Define the XAML content for the MainPage.xaml page (see the following
XAML fragment).
<Grid x:Name="LayoutRoot" Background="LightGray">
 <StackPanel>
 <TextBlock FontSize="20" FontWeight="Bold">
 OData Silverlight Application
 </TextBlock>
 <sdk:Frame x:Name="NavFrame"
 Source="/CustomerList.xaml" >
 </sdk:Frame>
 </StackPanel>
 </Grid>

9. Define the XAML content for the CustomerList.xaml page (see the following
XAML fragment).
<navigation:Page x:Class="ODataSilverlightApp.CustomerList"
......
 Loaded="Page_Loaded">
 <Grid x:Name="LayoutRoot">
 <StackPanel>
 <TextBlock FontSize="20" FontWeight="Bold">Customer
List</TextBlock>
 <sdk:DataGrid Name="dgCustomers"
 AutoGenerateColumns="false"
IsReadOnly="True" Height="200" >
 <sdk:DataGrid.Columns>
 <sdk:DataGridTemplateColumn>
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <HyperlinkButton
NavigateUri="{Binding CustomerID, StringFormat='/CustomerOrders.
xaml?customerID=\{0\}'}"

Using OData in Web Application

176

 Content="View
Orders" TargetName="NavFrame" />
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridTextColumn Binding="{Binding
CustomerID}" Header="ID"></sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn Binding="{Binding
CompanyName}" Header="Company"></sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn Binding="{Binding
ContactName}" Header="Contact"></sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn Binding="{Binding
Address}" Header="Address"></sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn Binding="{Binding
Phone}" Header="Phone"></sdk:DataGridTextColumn>
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
 </StackPanel>
 </Grid>
</navigation:Page>

10. Add the code for loading the Customer list in the code-behind file of the
CustomerList.xaml page (see the following Page_Loaded function).
private void Page_Loaded(object sender, RoutedEventArgs e)
{
 var ctx = ODataHelper.GetServiceContext();

 var customers = new DataServiceCollection<NWDataSvc.
Customer>(ctx);
 customers.LoadCompleted += (obj, args) =>
 {
 if (customers.Continuation != null)
 {
 customers.LoadNextPartialSetAsync();
 }
 else
 {
 dgCustomers.ItemsSource = customers;
 dgCustomers.UpdateLayout();
 }
 };

 customers.LoadAsync(ctx.Customers.AsQueryable());
}

Chapter 4

177

11. Define the XAML content of the CustomerOrders.xaml page (see the following
XAML fragment).
<navigation:Page
......
Loaded="Page_Loaded">
 <Grid x:Name="LayoutRoot">
 <StackPanel>
 <HyperlinkButton NavigateUri="/CustomerList.xaml"
TargetName="NavFrame">Back to Customer List</HyperlinkButton>
 <TextBlock Name="lblTitle" FontSize="16"
FontWeight="Bold" />
 <sdk:DataGrid Name="dgOrders" ItemsSource="{Binding}"
 AutoGenerateColumns="false"
IsReadOnly="True"
 Height="150" SelectionChanged="dgOrders_
SelectionChanged">
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn Binding="{Binding
OrderID}" Header="ID"></sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn Binding="{Binding
EmployeeID}" Header="Employee"></sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn Binding="{Binding
OrderDate}" Header="Order Date"></sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn Binding="{Binding
RequiredDate}" Header="Required Date"></sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn Binding="{Binding
ShippedDate }" Header="Shipped Date"></sdk:DataGridTextColumn>
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
 <TextBlock Name="lblSubTitle" FontSize="14"
FontWeight="Bold">
 Detailed Items of selected Order:
 </TextBlock>
 <sdk:DataGrid Name="dgOrderDetails"
ItemsSource="{Binding Path=Order_Details}"
 AutoGenerateColumns="true"
IsReadOnly="True"
 Height="150" >
 </sdk:DataGrid>
 </StackPanel>
 </Grid>
</navigation:Page>

Using OData in Web Application

178

12. Add the code for refreshing the Order list (based on selected Customer)
in the code-behind file of the CustomerOrders.xaml page (see the following
code snippet).
private void Page_Loaded(object sender, RoutedEventArgs e)
{
 var id = NavigationContext.QueryString["customerID"];
 if (string.IsNullOrEmpty(id)) NavigationService.Navigate(new
Uri("/CustomerList.xaml"));

 lblTitle.Text = id + "'s orders";

 var ctx = ODataHelper.GetServiceContext();
 var orders = new DataServiceCollection<NWDataSvc.Order>(ctx);
 orders.LoadCompleted += (obj, args) =>
 {
 if (orders.Continuation != null)
 {
 orders.LoadNextPartialSetAsync();
 }
 else
 {
 LayoutRoot.DataContext = orders;
 dgOrders.UpdateLayout();
 }
 };

 var query = ctx.Orders.Expand("Order_Details").Where(o =>
o.CustomerID == id).AsQueryable();

 orders.LoadAsync(query);
}

private void dgOrders_SelectionChanged(object sender,
SelectionChangedEventArgs e)
{
 dgOrderDetails.DataContext = dgOrders.SelectedItem;
}

13. Build the solution and launch the Silverlight test page (within the
ODataSilverlightApp.Web project) in the web browser.

Chapter 4

179

How it works...
There are three Silverlight pages in the sample application. The MainPage.xaml page acts
as a navigation container, which uses the Frame control to host other pages (so that users
can switch between the CustomerList.xaml and CustomerOrders.xaml pages within
the same container page).

Both CustomerList.xaml and CustomerOrders.xaml pages use the Visual Studio
generated OData proxy to fetch entity objects from the Northwind OData service. And for
data binding consideration, we use instances of the DataServiceCollection<T> class
to hold the returned entity objects so that they can be directly bound to the Silverlight
DataGrid Controls.

In addition, all the OData queries are executed in an asynchronous manner here. This is
because all network access APIs (such as WebRequest class, Web Service, or WCF client
proxies) are by design asynchronous only. This can help preventing the Silverlight (web
browser host) UI from being frozen by long-running network access code.

There's more...
In this sample, the OData service is hosted in the same web application as the Silverlight
web page. This is because Silverlight also has cross-domain network access restriction (like
JavaScript) in the web browser. In order to allow cross-domain network access from Silverlight
clients, the service (resource) host needs to provide a cross-domain policy file (see the
following reference for more information).

Network Security Access Restrictions in Silverlight at http://msdn.microsoft.com/en-
us/library/cc645032%28v=VS.95%29.aspx

See also
 f Performing WPF data binding with OData service data recipe in Chapter 2, Working

with OData at Client Side

 f Building data-driven ASP.NET Web Form pages with OData recipe in Chapter 4, Using
OData in Web Application

Consuming WCF Data Service in PHP pages
As one of the most popular web development technologies, PHP is widely used for building
various intranet and Internet web applications. It is no doubt that PHP has built-in APIs for
consuming XML Web Services and processing XML or JSON-based response content. Though
this book is .NET oriented, since IIS 7 has provided built-in extensions for hosting PHP web
applications, we will also take the opportunity to introduce how to consume WCF Data Service
in PHP web pages.

Using OData in Web Application

180

Getting ready
Here we will build two PHP web pages, which present the Categories and Products
information from the Northwind OData service.

Since we will use IIS 7 for hosting the sample PHP web pages, make sure the local IIS 7
server has the FastCGI extensions for PHP installed (refer to the following article for detailed
configuration steps).

Enable FastCGI Support in IIS 7 at http://learn.iis.net/page.aspx/246/using-
fastcgi-to-host-php-applications-on-iis

Alternatively, you can also use the Web Platform Installer to help you do all the trivial
installation and configuration tasks (refer to the following link).

Install PHP for Windows Here! at http://www.microsoft.com/web/platform/
phponwindows.aspx

The source code for this recipe can be found in the \ch04\ODataInPHPWebSln directory.

How to do it...
1. Create a new ASP.NET web application, which contains the Northwind OData service.

2. Fire the File | Add | New Web Site menu to launch the Add New Web Site wizard
(see the following screenshot).

3. Create new ASP.NET Empty Web Site as the container of PHP pages (see the
following screenshot).

http://learn.iis.net/page.aspx/246/using-fastcgi-to-host-php-applications-on-iis
http://learn.iis.net/page.aspx/246/using-fastcgi-to-host-php-applications-on-iis
http://learn.iis.net/page.aspx/246/using-fastcgi-to-host-php-applications-on-iis

Chapter 4

181

4. Create the following two PHP pages in the PHP container website:

 � CategoryList.php—used for displaying the Category list

 � ProductsByCategory.php—used for displaying the Product list of a
given category

Since Visual Studio doesn't have a built-in item template
for PHP web pages, you can create two .txt files first, and
then change their extensions to .php.

5. Add the HTML content and PHP code for the CategoryList.php page (see the
following code fragment).
<?php
$svc_url = 'http://localhost:18165/NWDataService.svc/Categories?$s
elect=CategoryID,CategoryName';
$xml = simplexml_load_file($svc_url);
$xml->registerXPathNamespace('m', 'http://schemas.microsoft.com/
ado/2007/08/dataservices/metadata');
$xml->registerXPathNamespace('d', 'http://schemas.microsoft.com/
ado/2007/08/dataservices');
?>

<html>
<body>

<h1>Category List</h1>
<form id='formCategories' name='formCategories' method='post'
action='ProductsByCategory.php' >
Categories:

<select id='lstCategories' name='categoryID'
onchange='sync_selected_item();'>
<?php

$elms = $xml->xpath('//m:properties');
foreach ($elms as $elm)
{
 $id = $elm->xpath('d:CategoryID');
 $name = $elm->xpath('d:CategoryName');

 echo "<option value='" . $id[0] . "'>" . $name[0] ."</option>";
}
?>
</select>

Using OData in Web Application

182

<input id='hdCategoryName' type='hidden' name='categoryName' />
<input type='submit' value='Show Products' />
</form>

<script type='text/javascript'>
function sync_selected_item(){
 var list = document.getElementById('lstCategories');
 var hd = document.getElementById('hdCategoryName');

 var idx = list.selectedIndex;
 var txt = list.options[idx].text;
 hd.value = txt;
}
sync_selected_item();
</script>
</body>
</html>

6. Add the HTML content and PHP code for the ProductsByCategory.php page (see
the following code fragment).
<?php
$categoryID = $_POST["categoryID"];
$categoryName = $_POST["categoryName"];

$svc_url = 'http://localhost:18165/NWDataService.svc/
Products?$filter=CategoryID eq ' . $categoryID;

$xml = simplexml_load_file($svc_url);
$xml->registerXPathNamespace('m', 'http://schemas.microsoft.com/
ado/2007/08/dataservices/metadata');
$xml->registerXPathNamespace('d', 'http://schemas.microsoft.com/
ado/2007/08/dataservices');
?>

<html>
<body>
Back to Category List
<h1>Products under " <?php echo $categoryName ?> "
category</h1>

<table>
<thead>
 <td>ID</td>
 <td>Name</td>
 <td>Unit Price</td>

Chapter 4

183

 <td>Discontinued</td>
</thead>
<?php
$elms = $xml->xpath('//m:properties');

foreach ($elms as $elm)
{
 $id = $elm->xpath('d:ProductID');
 $name = $elm->xpath('d:ProductName');
 $uprice = $elm->xpath('d:UnitPrice');
 $discontinued = $elm->xpath('d:Discontinued');

 echo "<tr>";
 echo "<td>" . $id[0] ."</td>";
 echo "<td>" . $name[0] ."</td>";
 echo "<td>" . $uprice[0] ."</td>";
 echo "<td>" . $discontinued[0] ."</td>";
 echo "</tr>";
}
?>

</body>
</html>

7. Deploy the PHP website into IIS 7. Make sure the target IIS 7 server has installed the
FastCGI extension for PHP (refer to the Getting ready section). And you can use the
Publish Web Site wizard as we've discussed in the Hosting a WCF Data Service in IIS
server recipe in Chaper 3, OData Service Hosting and Configuration.

8. Launch the PHP pages (from the IIS 7 website) in the web browser. The following
screenshot shows the web browser output by browsing the CategoryList.php page:

Using OData in Web Application

184

By clicking on the Show Products button, we're redirected to ProductsByCategory.
php which will display the Product list based on the selected Category item (see the
following screenshot).

How it works...
Like classic ASP (Active Server Page) pages, PHP web pages combine the server-side code
and HTML markup together in the page content. At the beginning of each of the preceding
sample PHP pages, we add declare and initialize some global variables, and objects used
within the entire page. Some other code blocks are embedded within the HTML markup so as
to dynamically generate certain HTML UI elements.

For the OData service consumption part, we have utilized the SimpleXML library, which is a
built-in PHP extension for processing XML data. Unlike those well-known DOM or SAX-based
XML processing APIs, the SimpleXML library provides some special but simple functions for
converting XML text into strong-typed PHP objects which can be further queried by application
code. In the sample pages, we first load the OData query result (in Atom XML format) by
supplying the raw query Uri. Then, we use XPATH to extract all entity elements and present
each of them inside the HTML output. For more information about the SimpleXML library, you
can refer to the following reference manual:

PHP-->SimpleXML at http://cn2.php.net/simplexml

There's more...
At the time of writing this recipe, the OData SDK for PHP has been announced on the
OData official site. Therefore, for advanced OData service accessing scenarios in PHP web
development, it is recommended to use this full-fledged library. You can get more information
about the OData SDK for PHP from the following site:

http://odataphp.codeplex.com/

http://cn2.php.net/simplexml
http://odataphp.codeplex.com/

Chapter 4

185

See also
 f Hosting a WCF Data Service in IIS server recipe in Chapter 3, OData Service Hosting

and Configuration

 f Building data-driven ASP.NET Web Form pages with OData recipe in Chapter 4, Using
OData in Web Application

5
OData on Mobile

Devices

In this chapter, we will cover:

 f Accessing OData service with OData WP7 client library

 f Consuming JSON-format OData service without OData WP7 client library

 f Creating Panorama-style, data-driven Windows Phone applications with OData

 f Using HTML5 and OData to build native Windows Phone application

 f Accessing WCF Data Service in Android mobile application

 f Accessing WCF Data Service in iOS application

Introduction
With the continuous evolution of mobile operating systems, smart mobile devices (such as
smartphones or tablets) play increasingly important roles in everyone's daily work and life. The
iOS (from Apple Inc., for iPhone, iPad, and iPod Touch devices), Android (from Google) and
Windows Phone 7 (from Microsoft) operating systems have shown us the great power and
potential of modern mobile systems.

OData on Mobile Devices

188

In the early days of the Internet, web access was mostly limited to fixed-line devices. However,
with the rapid development of wireless network technology (such as 3G), Internet access has
become a common feature for mobile or portable devices. Modern mobile OSes, such as
iOS, Android, and Windows Phone have all provided rich APIs for network access (especially
Internet-based web access). For example, it is quite convenient for mobile developers to create
a native iPhone program that uses a network API to access remote RSS feeds from the Internet
and present the retrieved data items on the phone screen. And to make Internet-based data
access and communication more convenient and standardized, we often leverage some existing
protocols, such as XML or JSON, to help us. Thus, it is also a good idea if we can incorporate
OData services in mobile application development so as to concentrate our effort on the main
application logic instead of the details about underlying data exchange and manipulation.

In this chapter, we will discuss several cases of building OData client applications for various
kinds of mobile device platforms. The first four recipes will focus on how to deal with OData in
applications running on Microsoft Windows Phone 7. And they will be followed by two recipes
that discuss consuming an OData service in mobile applications running on the iOS and
Android platforms. Although this book is .NET developer-oriented, since iOS and Android are
the most popular and dominating mobile OSes in the market, I think the last two recipes here
would still be helpful (especially when the OData service is built upon WCF Data Service on
the server side).

Accessing OData service with OData WP7
client library

What is the best way to consume an OData service in a Windows Phone 7 application?
The answer is, by using the OData client library for Windows Phone 7 (OData WP7 client
library). Just like the WCF Data Service client library for standard .NET Framework based
applications, the OData WP7 client library allows developers to communicate with OData
services via strong-typed proxy and entity classes in Windows Phone 7 applications. Also, the
latest Windows Phone SDK 7.1 has included the OData WP7 client library and the associated
developer tools in it.

In this recipe, we will demonstrate how to use the OData WP7 client library in a standard
Windows Phone 7 application.

Getting ready
The sample WP7 application we will build here provides a simple UI for users to view and edit
the Categories data by using the Northwind OData service. The application consists of two
phone screens, shown in the following screenshot:

Chapter 5

189

Make sure you have installed Windows Phone SDK 7.1 (which contains the OData WP7 client
library and tools) on the development machine. You can get the SDK from the following
website:

http://create.msdn.com/en-us/home/getting_started

The source code for this recipe can be found in the \ch05\ODataWP7ClientLibrarySln
directory.

How to do it...
1. Create a new ASP.NET web application that contains the Northwind OData service.

2. Add a new Windows Phone Application project in the same solution (see the
following screenshot).

OData on Mobile Devices

190

3. Select Windows Phone OS 7.1 as the Target Windows Phone OS Version in the New
Windows Phone Application dialog (see the following screenshot).

4. Click on the OK button, to finish the WP7 project creation.

The following screenshot shows the default WP7 project structure created by
Visual Studio:

5. Create a new Windows Phone Portrait Page (see the following screenshot) and
name it EditCategory.xaml.

Chapter 5

191

6. Create the OData client proxy (against the Northwind OData service) by using the
Visual Studio Add Service Reference wizard.

7. Add the XAML content for the MainPage.xaml page (see the following
XAML fragment).
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <ListBox x:Name="lstCategories" ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="60" />
 <ColumnDefinition Width="260" />
 <ColumnDefinition Width="140" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Column="0"
 Text="{Binding Path=CategoryID}"
 FontSize="36" Margin="5"/>
 <TextBlock Grid.Column="1"
 Text="{Binding Path=CategoryName}"
 FontSize="36" Margin="5"
 TextWrapping="Wrap"/>
 <HyperlinkButton Grid.Column="2"
 Content="Edit"
 HorizontalAlignment="Right"
 NavigateUri="{Binding Path=CategoryID,
 StringFormat='/EditCategory.xaml?
 ID={0}'}"
 FontSize="36" Margin="5"/>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

8. Add the code for loading the Category list in the code-behind file of the MainPage.
xaml page (see the following code snippet).
public partial class MainPage : PhoneApplicationPage
{
 ODataSvc.NorthwindEntities _ctx = null;
 DataServiceCollection<ODataSvc.Category> _categories = null;

 private void PhoneApplicationPage_Loaded(object sender,
 RoutedEventArgs e)

OData on Mobile Devices

192

 {
 Uri svcUri = new
 Uri("http://localhost:9188/NorthwindOData.svc");
 _ctx = new ODataSvc.NorthwindEntities(svcUri);
 _categories = new
 DataServiceCollection<ODataSvc.Category>(_ctx);

 _categories.LoadCompleted += (o, args) =>
 {
 if (_categories.Continuation != null)
 _categories.LoadNextPartialSetAsync();
 else
 {
 this.Dispatcher.BeginInvoke(
 () =>
 {
 ContentPanel.DataContext = _categories;
 ContentPanel.UpdateLayout();
 }
);
 }
 };

 var query = from c in _ctx.Categories
 select c;

 _categories.LoadAsync(query);
 }
}

9. Add the XAML content for the EditCategory.xaml page (see the following
XAML fragment).
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <StackPanel>
 <TextBlock Text="{Binding Path=CategoryID,
 StringFormat='Fields of Categories({0})'}"
 FontSize="40" Margin="5" />
 <Border>
 <StackPanel>
 <TextBlock Text="Category Name:" FontSize="24"
 Margin="10" />
 <TextBox x:Name="txtCategoryName"
 Text="{Binding Path=CategoryName,
 Mode=TwoWay}" />

Chapter 5

193

 <TextBlock Text="Description:"
 FontSize="24" Margin="10" />
 <TextBox x:Name="txtDescription"
 Text="{Binding Path=Description,
 Mode=TwoWay}" />
 </StackPanel>
 </Border>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center">
 <Button x:Name="btnUpdate" Content="Update"
 HorizontalAlignment="Center"
 Click="btnUpdate_Click" />
 <Button x:Name="btnCancel" Content="Cancel"
 HorizontalAlignment="Center"
 Click="btnCancel_Click" />
 </StackPanel>
 </StackPanel>
</Grid>

10. Add the code for editing the selected Category item in the code-behind file of the
EditCategory.xaml page.

In the PhoneApplicationPage_Loaded event, we will load the properties of the
selected Category item and display them on the screen (see the following code
snippet).
private void PhoneApplicationPage_Loaded(object sender,
RoutedEventArgs e)
{
 EnableControls(false);

 Uri svcUri = new Uri("http://localhost:9188/NorthwindOData.
svc");
 _ctx = new ODataSvc.NorthwindEntities(svcUri);

 var id = int.Parse(NavigationContext.QueryString["ID"]);
 var query = _ctx.Categories.Where(c => c.CategoryID == id);

 _categories = new
 DataServiceCollection<ODataSvc.Category>(_ctx);
 _categories.LoadCompleted += (o, args) =>
 {
 if (_categories.Count <= 0)
 {
 MessageBox.Show("Failed to retrieve Category item.");
 NavigationService.GoBack();
 }

OData on Mobile Devices

194

 else
 {
 EnableControls(true);
 ContentPanel.DataContext = _categories[0];
 ContentPanel.UpdateLayout();
 }
 };

 _categories.LoadAsync(query);
}

The code for updating changes (against the Category item) is put in the Click
event of the Update button (see the following code snippet).
private void btnUpdate_Click(object sender, RoutedEventArgs e)
{
 EnableControls(false);

 _ctx.UpdateObject(_categories[0]);
 _ctx.BeginSaveChanges(
 (ar) =>
 {
 this.Dispatcher.BeginInvoke(
 () =>
 {
 try
 {
 var response = _ctx.EndSaveChanges(ar);
 NavigationService.Navigate(new
 Uri("/MainPage.xaml", UriKind.Relative));
 }
 catch (Exception ex)
 {
 MessageBox.Show("Failed to save
 changes.");
 EnableControls(true);
 }
 }
);
 },
 null
);
}

Chapter 5

195

11. Select the WP7 project and launch it in Windows Phone Emulator (see the
following screenshot).

Depending on the performance of the development machine, it might take a while to
start the emulator.

Running a WP7 application in Windows Phone Emulator is very
helpful especially when the phone application needs to access
some web services (such as WCF Data Service) hosted on the
local machine (via the Visual Studio test web server).

How it works...
Since the OData WP7 client library (and tools) has been installed together with Windows
Phone SDK 7.1, we can directly use the Visual Studio Add Service Reference wizard to
generate the OData client proxy in Windows Phone applications. And the generated OData
proxy is the same as what we used in standard .NET applications. Since Windows Phone
applications also use XAML-based pages (similar to Silverlight) for UI presentation, the data
querying and binding code logic of the WP7 sample application (in this recipe) looks quite
similar to the Using OData service in Silverlight data access application recipe in Chapter 4,
Using OData in Web Application. Similarly, all network access code (such as the OData service
consumption code in this recipe) has to follow the asynchronous programming pattern in
Windows Phone applications.

There's more...
In this recipe, we use the Windows Phone Emulator for testing. If you want to deploy
and test your Windows Phone application on a real device, you need to obtain a
Windows Phone developer account so as to unlock your Windows Phone device.
Refer to the following walkthrough:

App Hub - windows phone developer registration walkthrough available at
http://go.microsoft.com/fwlink/?LinkID=202697

OData on Mobile Devices

196

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

 f Editing and deleting data through WCF Data Service client library proxy recipe in
Chapter 2, Working with OData at Client Side

 f Using OData service in Silverlight data access application recipe in Chapter 4, Using
OData in Web Application

Consuming JSON-format OData service
without OData WP7 client library

By using the OData WP7 client library, it is quite simple and straightforward to consume an
OData service in Windows Phone applications. But, what if we do not want to use the OData
WP7 client library and still want to query data entities from OData services? This might be the
case if we want to avoid involving additional components/libraries (such as the OData client
library) in our WP7 application. Well, we can use the WebClient class to issue raw OData
query requests and manually parse the Atom XML format responses via LINQ to XML APIs.
Then, what about JSON-format responses?

In this recipe, we will demonstrate how to build a WP7 OData client which consumes JSON
format query responses without using the OData WP7 client library.

Getting ready
In this recipe, we will build a simple WP7 application that retrieves the Category list (in JSON
format) from the Northwind OData service and displays it on the phone screen.

Make sure you have installed the Windows Phone SDK 7.1 (which contains the OData
WP7 client library and tools) on the development machine. You can get the SDK from
the following website: http://create.msdn.com/en-us/home/getting_started

The source code for this recipe can be found in the \ch05\SimpleODataWP7Sln directory.

How to do it...
1. Create a new ASP.NET web application that contains the Northwind OData service.

Chapter 5

197

2. Create a new Windows Phone application (use Windows Phone OS 7.1).

You can refer to the Accessing OData service with OData
WP7 client library recipe in this chapter for detailed
information.

3. Add the following assembly references in the Windows Phone application:
 � System.Runtime.Serialization.dll

 � System.Servicemodel.Web.dll

4. Create some helper classes for deserializing the JSON-format OData response (see
the following code snippet).
// For deserialize the response body
public class CategoriesResponse
{
 public List<CategoryObj> d { get; set; }
}

// For deserialize each Category entity
public class CategoryObj
{
 public string __metadata { get; set; }
 public int CategoryID { get; set; }
 public string CategoryName { get; set; }
 public string Description { get; set; }

}

5. Add the XAML content for the MainPage.xaml page (auto-generated in the project).

The following is the main XAML fragment of the MainPage.xaml page in the
sample application:
 <StackPanel x:Name="TitlePanel" Grid.Row="0"
 Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle"
 Text="Northwind Data Client"
 Style="{StaticResource PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="Categories"
 Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

 <Grid x:Name="ContentPanel" Grid.Row="1"
 Margin="12,0,12,0">

OData on Mobile Devices

198

 <ListBox x:Name="lstCategories"
 ItemsSource="{Binding }">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal"
 Margin="5">
 <TextBlock Text="{Binding
 Path=CategoryID}"
 FontSize="54" Width="80"
 Height="80" />
 <StackPanel Orientation="Vertical">
 <TextBlock Text="{Binding
 Path=CategoryName}"
 FontSize="36" Margin="3" />
 <TextBlock Text="{Binding
 Path=Description}"
 FontSize="14" />
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </Grid>
 </Grid>

6. Add the code for loading the Category list (from the Northwind OData service) in the
code-behind file of the MainPage.xaml page.

All the OData query and response processing code will be put in the
PhoneApplicationPage_Loaded event (see the following code snippet).
private void PhoneApplicationPage_Loaded(object sender,
RoutedEventArgs e)
{
 WebClient wc = new WebClient();
 wc.Headers[HttpRequestHeader.Accept] = "application/json";
 Uri queryUri = new
 Uri("http://localhost:12040/NWDataService.svc/Categories?
 $select=CategoryID,CategoryName,Description");

 wc.OpenReadCompleted +=
 (src, args) =>
 {
 using (var responseStream = args.Result)
 {

Chapter 5

199

 DataContractJsonSerializer ser = new
 DataContractJsonSerializer
 (typeof(CategoriesResponse));
 var responseObj = ser.ReadObject(responseStream) as
 CategoriesResponse;

 if (responseObj != null)
 {
 LayoutRoot.DataContext = responseObj.d;
 lstCategories.UpdateLayout();
 }
 else
 {
 MessageBox.Show("Failed to retrieve Category
 list.");
 }
 }
 };

 wc.OpenReadAsync(queryUri);
}

7. Launch Windows Phone Application in Windows Phone Emulator (use the Ctrl + F5
or F5 shortcuts).

The following screenshot shows the main screen of the sample phone application:

OData on Mobile Devices

200

How it works...
The previous sample page uses the OpenReadAsync method of the WebClient class
to send the raw OData query (which ensures the asynchronous network access). Also,
we have specified the Accept HTTP header, so that the service will return a JSON-format
response. After the response data arrives, we use the DataContractJsonSerializer
class to deserialize the JSON-format response into strong-typed objects (based on the
CategoriesResponse and CategoryObj helper classes we have defined).

By using Fiddler to capture the underlying HTTP response content (see the following
screenshot), we find that the JSON object graph of the OData response exactly matches the
helper classes we defined here.

And it is recommended that we use Fiddler to inspect the JSON response data of an OData
service before we define the helper classes for data serialization/deserialization between
OData response and .NET objects.

Although we can use the WebClient + DataContractJsonSerializer approach to
access an OData service, it is still quite cumbersome. In most cases, the OData WP7 client
library is the preferred choice for consuming an OData service in Windows Phone applications.

See also
 f Accessing OData service with OData WP7 client library recipe

Chapter 5

201

Creating Panorama-style, data-driven
Windows Phone applications with OData

Windows Phone 7 brings out the new Panorama UI style to improve the user navigation
experience on the phone screen. Unlike standard applications that are designed to fit within
the confines of the phone screen, WP7 applications with Panorama UI style offer a unique way
to view data and resources by using a long horizontal canvas that extends beyond the confines
of the screen. For WP7 data-driven applications, Panorama-style UI is extremely useful for
presenting data that can be divided into multiple groups or partitions. In this recipe, we will
show you how to use an OData service as the data source for building a WP7 Panorama-style,
data-driven application.

Getting ready
Here, we will build a Panorama-style WP7 application to present the Northwind Categories
and Products data (by using the Northwind OData service). In the application, each Category
and its associated Product list will be displayed in a separate Panorama page, so that the user
can swipe the phone screen, to navigate between them (see the following screenshot).

OData on Mobile Devices

202

Make sure you have installed Windows Phone SDK 7.1 (which contains the OData WP7
client library and tools) on the development machine. You can get the SDK from the website
http://create.msdn.com/en-us/home/getting_started.

The source code for this recipe can be found in the \ch05\ ODataWP7PanoramaSln
directory.

How to do it...
1. Create a new ASP.NET web application that contains the Northwind OData service.

2. Create a new Windows Phone application (use Windows Phone OS 7.1).

You can refer to the Accessing OData service with
OData WP7 client library recipe in this chapter for
detailed information.

3. Add the assembly reference, Microsoft.Phone.Controls.dll, in the Windows
Phone Application.

4. Create the OData client proxy (against the Northwind OData service) by using the
Visual Studio Add Service Reference wizard.

5. Add the XML namespaces for the Panorama Control in the XAML file of the
MainPage.xaml page (see the following XAML fragment).
<phone:PhoneApplicationPage
 x:Class="ODataWP7PanoramaApp.MainPage"
 ...
 xmlns:controls="clr-namespace:Microsoft.Phone.
 Controls;assembly=Microsoft.Phone.Controls"
 xmlns:shell="clr-namespace:Microsoft.Phone.
 Shell;assembly=Microsoft.Phone"
...
>

6. Add the Panorama Control under the default Grid container Control in the XAML file
of the MainPage.xml page (see the following XAML fragment).
<Grid x:Name="LayoutRoot" Background="Transparent">
 <controls:Panorama x:Name="MainPanel" Background="Purple"
 Title="OData Panorama Demo"
 ItemsSource="{Binding}" >
 <controls:Panorama.HeaderTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=CategoryName}"
 FontSize="54" FontWeight="Bold" />
 </DataTemplate>

Chapter 5

203

 </controls:Panorama.HeaderTemplate>
 <controls:Panorama.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="{Binding Path=CategoryName,
 StringFormat='Products under {0}:'}"
 FontSize="32" Margin="10" />
 <ListBox ItemsSource="{Binding
 Path=Products}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel
 Orientation="Horizontal">
 <TextBlock Text="{Binding
 Path=ProductID}"
 Margin="10,5,15,5"
 Width="50" />
 <TextBlock Text="{Binding
 Path=ProductName}"
 Margin="5" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </StackPanel>
 </DataTemplate>
 </controls:Panorama.ItemTemplate>

 <controls:PanoramaItem>
 <ProgressBar IsIndeterminate="True" />
 </controls:PanoramaItem>
 </controls:Panorama>
</Grid>

7. Add the code for loading the Category and Product entities in the code-behind file
of the MainPage.xaml page (see the following code snippet).
public partial class MainPage : PhoneApplicationPage
{

 private void PhoneApplicationPage_Loaded(object sender,
 RoutedEventArgs e)
 {
 var svcUri = new
 Uri("http://localhost:11904/NWDataService.svc");

OData on Mobile Devices

204

 var ctx = new NorthwindEntities(svcUri);

 var Categories = new DataServiceCollection<Category>(ctx);
 Categories.LoadCompleted += (o, args) =>
 {
 if (args.Error != null)
 {
 MessageBox.Show("Failed to retrieve data.");
 return;
 }

 if (Categories.Continuation != null)
 Categories.LoadNextPartialSetAsync();
 else
 {
 this.Dispatcher.BeginInvoke(() =>
 {
 MainPanel.Items.Clear();
 MainPanel.DataContext = Categories;
 });
 }
 };

 var query = ctx.Categories.Expand("Products");
 Categories.LoadAsync(
 query
);
 }

How it works...
There is only one page (MainPage.xaml) in the same WP7 project. This page uses
the Panorama Control (in the Microsoft.Phone.Controls assembly) provided by
Windows Phone SDK to present the OData entities. When the application starts and
displays the MainPage.xaml page, the PhoneApplicationPage_Loaded event
is fired so as to retrieve the Category and Product lists from the Northwind OData
service. After the data entities get loaded, we directly assign the data container (of the
DataServiceCollection<T> class) to the Panorama Control's DataContext property
(so as to trigger data binding). According to the data binding template in the XAML file,
each Category entity (and its associated Product entities) will be bound to a separate
PanoramaItem Control (inside the Panorama Control). Thus, users can flick the phone
screen to explore each Category (and Products under the Category), one by one.

Chapter 5

205

If you prefer using code instead of data binding, you can also programmatically create the
PanoramaItem Controls based on the Category entity collection (see the following code
snippet).

void PopulatePanoramaItemsWithCode
 (DataServiceCollection<NorthwindModel.Category> categories)
{
 foreach (var category in categories)
 {
 var panelItem = new PanoramaItem();

 panelItem.Content = new CustomUserControl();
 panelItem.DataContext = category;

 MainPanel.Items.Add(panelItem);
 }
}

For more information about the WP7 Panorama Control, you can refer to the following
MSDN reference:

Panorama Control Overview for Windows Phone available at http://msdn.microsoft.
com/en-us/library/ff941104(v=vs.92)

See also
 f Accessing OData service with OData WP7 client library recipe

Using HTML5 and OData to build native
Windows Phone application

When we say HTML5 and OData, you might think that we're probably going to create a
data-driven web application (which uses HTML5 for UI presentation and uses JavaScript for
accessing a backend OData service). This is partially true, since we do create some HTML5
web pages and use JavaScript for OData query and data population. However, this time we will
use HTML and JavaScript to build a native Windows Phone application. How come? The latest
Windows Phone 7.5 system has provided the IE 9 mobile web browser (also the corresponding
WebBrowser Control for development usage), which is fully HTML 5-enabled. Thus, it is
possible for us to develop a native WP7 application by using HTML 5. In this recipe, we will
demonstrate how to create a native WP7 data-driven application by using HTML 5 and OData.

OData on Mobile Devices

206

Getting ready
The sample WP7 application here will still display the Category and Product data by using the
Northwind OData service. The following is the main app screen of the sample application in
Windows Phone Emulator:

Make sure you have installed Windows Phone SDK 7.1 (which contains the OData WP7
client library and tools) on the development machine. You can get the SDK from the website
http://create.msdn.com/en-us/home/getting_started.

The source code for this recipe can be found in the \ch05\WP7ODataHTML5Sln directory.

How to do it...
1. Create a new ASP.NET web application that contains the Northwind OData service.

2. Add the jquery and datajs script libraries into the web application (see the
following screenshot).

Chapter 5

207

3. Create the HTML 5 page (ODataHTML5.htm) in the web application and put the
following HTML content in it:
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=0;">
 <link rel="Stylesheet" href="styles/defaultstyles.css" />
 <script type="text/javascript"
 src="scripts/jquery-1.4.4.min.js" ></script>
 <script type="text/javascript"
 src="scripts/datajs-1.0.2.min.js" ></script>
 <script type="text/javascript"
 src="scripts/app_code.js" ></script>
</head>
<body>
<div id="categoryPanel">
</div>
<div id="productPanel">
</div>
</body>
</html>

4. Create the CSS file (defaultstyles.css) and put the following styles in it (see the
following style definition):
body
{
 background-color:#000000; color:#ffffff;
}
#categoryPanel
{
 float:left; width:100%; margin:0px;
}
#productPanel
{
 width:100%; margin:0px;
}
.category_item
{
 float:left; width:90%; margin:5px; padding:5px;
 font-size:18pt; text-decoration:underline;
 background-color:#aa00ff;
}

OData on Mobile Devices

208

5. Create the application script file (app_code.js) and put it in the same folder as the
jQuery and datajs libraries.

6. Add the code for querying and populating OData entities in the app_code.js file.

The following is the function for populating the Category list:
function showCategories() {
 var cp = $("#categoryPanel");
 var pp = $("#productPanel");

 cp.html("");
 cp.append("<h2>Categories</h2>");

 OData.read("http://localhost:49409/NorthwindOData.svc/
 Categories?$expand=Products",
 function (data, request) {

 $.each(data.results, function (i, category) {
 var divCategory = $("<div
 class='category_item'>");
 divCategory.append(category.CategoryName);
 divCategory.append("(" +
 category.Products.length + " Products)");

 cp.append(divCategory);

 divCategory.bind("click", function () {
 showProductsOfCategory(category);
 });

 });

 });

 cp.show();
 pp.hide();
}

The following showProductsOfCategory function is used to populate the
Product list of the selected Category item:
function showProductsOfCategory(_category) {

Chapter 5

209

 var canvas = document.createElement("canvas");
 canvas.width = 480;
 canvas.height = Math.max(800, 70 *
 _category.Products.length);

 var context = canvas.getContext("2d");

 $.each(_category.Products, function (i, product) {
 var x = 10;
 var y = i * 50 + 5;
 var gradient = context.createLinearGradient(x, y, 310,
 y + 40);
 gradient.addColorStop(0, '#0099AA');
 gradient.addColorStop(1, '#00FFFF');
 context.fillStyle = gradient;
 context.fillRect(x, y, 300, 40);

 context.font = "16pt Arial";
 context.fillStyle = "#333333";
 context.fillText(product.ProductName, 20, y + 25);

 });

}

The following initialization code is put at the end of the app_code.js file:
$(document).ready(function () {
 showCategories();
});

7. Launch the ODataHTML5.htm page in IE 9 (or any other HTML 5-enabled web
browser) and make sure it works.

8. Create a new Windows Phone application (use Windows Phone OS 7.1).

You can refer to the Accessing OData service with OData WP7
client library recipe in this chapter for detailed information.

OData on Mobile Devices

210

9. Copy the ODataHTML5.htm page and its referenced .js and .css files (reserve the
folder structure) from the web application into the Windows Phone application.

The following screenshot shows the WP7 project structure after copying the files:

10. Make sure the .htm, .js, and .css files have their Build Action property set to
Content in Visual Studio Solution Explorer (see the following screenshot).

11. Create a helper class to copy the ODataHTML5.htm file and its referenced
resource files into the Local Data Storage of the WP7 application (see the following
FileStorageHelper class).
public class FileStorageHelper
{
 static string[] FOLDER_LIST = { "scripts", "styles" };
 static string[] FILE_LIST =
 {
 "ODataHTML5.htm",
 @"scripts\jquery-1.4.4.min.js",

Chapter 5

211

 @"scripts\datajs-1.0.2.min.js",
 @"scripts\app_code.js",
 @"styles\defaultstyles.css"
 };

 public static void EnsureLocalFiles()
 {
 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 foreach (var dir in FOLDER_LIST)
 {
 if (!store.DirectoryExists(dir))
 {
 store.CreateDirectory(dir);
 }
 }

 foreach (var file in FILE_LIST)
 {
 if (!store.FileExists(file))
 {
 var sr = Application.GetResourceStream(new
 Uri(file, UriKind.Relative));
 using (BinaryReader br = new
 BinaryReader(sr.Stream))
 {
 byte[] data =
 br.ReadBytes((int)sr.Stream.Length);

 using (var ifs = store.CreateFile(file))
 {
 ifs.Write(data, 0, data.Length);
 }
 }
 }
 }
 }
 }
}

OData on Mobile Devices

212

12. Add a WebBrowser Control (set the IsScriptEnabled property to True) within the
XAML content of the MainPage.xaml page (see the following XAML fragment).
<phone:PhoneApplicationPage
......
Loaded="PhoneApplicationPage_Loaded">

 <Grid x:Name="LayoutRoot" Background="Transparent">
 <phone:WebBrowser x:Name="wbMain" IsScriptEnabled="True"
/>
 </Grid>
</phone:PhoneApplicationPage>

13. Add the file initialization and page loading code in the code-behind file of the
MainPage.xaml page (see the following PhoneApplicationPage_Loaded
function).
private void PhoneApplicationPage_Loaded(object sender,
RoutedEventArgs e)
{
 // Ensure HTML5 page files are copied to Local Data Storage
 FileStorageHelper.EnsureLocalFiles();

 // Load the HTML5 page in WebBrowser Control
 wbMain.Navigate(new Uri("ODataHTML5.htm", UriKind.Relative));
}

How it works...
Currently, the HTML5 support on the Windows Phone 7.5 system relies on the IE 9 mobile
web browser and its corresponding WebBrowser Control. In this sample, we first create
the HTML5 web page (which presents the data from the Northwind OData service) within
an ASP.NET web application, and then copy the web page files (from the web application)
into the WP7 application. The WP7 application only has one page (the default MainPage.
xaml page), which uses the WebBrowser Control to load the HTML5 page (ODataHTML5.
htm). We need to turn on the IsScriptEnabled property of the WebBrowser Control,
so that the JavaScript code in the HTML page can correctly function. In addition, because
the WP7 WebBrowser Control can only load local files from Local Data Storage, we have
created a helper class (the FileStorageHelper class) to help copy the HTML5 page and its
associated resource files into the Local Data Storage.

Chapter 5

213

In case you do not want to put the web page files into the WP7 application (and copy them to
Local Data Storage), you can also directly let the WebBrowser Control load the web page from
a remote web application (see the following code snippet).

private void PhoneApplicationPage_Loaded(object sender,
RoutedEventArgs e)
{
 // We can also directly load the remote page into
 //WebBrowser Control
 // In this case, we do not need to copy HTML page resources
 //locally
 wbMain.Navigate(new
 Uri("http://localhost:49409/ODataHTML5.htm"));
}

There's more...
For more information about programming WP7 applications with WebBrowser Control and
Local Data Storage, you can refer to the following MSDN references:

 f WebBrowser Control for Windows Phone available at http://msdn.microsoft.
com/en-us/library/ff431812(v=VS.92).aspx

 f Local Data Storage for Windows Phone available at http://msdn.microsoft.
com/en-us/library/ff626522(v=VS.92).aspx

See also
 f Consuming OData service with datajs script library recipe in Chapter 4, Using OData

in Web Application

 f Accessing OData service with OData WP7 client library recipe

Accessing WCF Data Service in Android
mobile application

Ever since 2009, the Android OS has become increasingly popular in the smartphone device
market. As the Android OS is based on the open source Linux operating system and uses
Java as its primary programming language, it is quite normal for many smart devices, such as
mobile phones or tablets, to tend to use Android as their operating system.

http://msdn.microsoft.com/en-us/library/ff431812(v=VS.92).aspx
http://msdn.microsoft.com/en-us/library/ff431812(v=VS.92).aspx
http://msdn.microsoft.com/en-us/library/ff626522(v=VS.92).aspx
http://msdn.microsoft.com/en-us/library/ff626522(v=VS.92).aspx

OData on Mobile Devices

214

Also, the number of applications available to Android clients grows extremely quickly. As of
October 2011, there were more than 300,000 apps available for Android, and the estimated
number of applications downloaded from the Android Market as of December 2011 exceeded
10 billion. Therefore, it would be quite interesting and useful if we can easily incorporate
OData (especially the WCF Data Service-based implementation) to build data access
application for Android devices.

In this recipe, we will show you how to build a simple OData client application through the
OData4j library for Android devices.

Getting ready
We will build an Android application that displays the Category and Product information
from the Northwind OData service. The application consists of two screens (see the following
screenshot), one for displaying the Category list and another for displaying the Product list
belonging to a certain Category. The following is a screenshot of the sample Android application:

Before we start, it is necessary to set up a proper development environment with the following
tools and components installed:

 f Java SE (JRE and SDK), Version J2SE v1.6, available at http://www.oracle.com/
technetwork/java/javase/downloads/index.html

 f Eclipse IDE for Java Developers, Version Eclipse v3.7.1, available at http://www.
eclipse.org/downloads/

Chapter 5

215

 f Android SDK and add-on tools for Eclipse, Version Android SDK v2.3.3, available at
http://developer.android.com/sdk/installing.html

 f OData4j library, Version OData4j v0.5, available at http://code.google.com/p/
odata4j/

In addition, the following is a good article online (posted by Allen Noren) that introduces
setting up an Android development environment:

http://fyi.oreilly.com/2009/02/setting-up-your-android-develo.html

The source code for this recipe can be found in the \ch05\ODataAndroidClient directory.

How to do it...
1. Start the Eclipse IDE (eclipse.exe).

2. Fire File | New | Project ….

3. Select the Android Project type in the New Project dialog (see the following screenshot).

4. In the New Android Project dialog, select Android 2.3.3 (only) as the Build Target
(see the following screenshot).

http://fyi.oreilly.com/2009/02/setting-up-your-android-develo.html

OData on Mobile Devices

216

5. Specify the Application Info properties (see the following screenshot) and click on
the Finish button to create the project.

6. Fire Project | Properties.

7. Select the Java Build Path node and use the Add External JARs… button (on
Libraries tab) to import the OData4j client library (see the following screenshot).

Here we use the OData4j client library version 0.5 (odata4j-0.5-clientbundle.
jar file).

8. Define some helper class for data access and UI interaction (refer to the source code
for complete class definition).

The following CategoryObj and ProductObj classes (which contains some data
properties) are used to map the OData entity objects:
public class CategoryObj implements Serializable {

}
public class ProductObj implements Serializable{

}

Chapter 5

217

The CategoriesAdapter class is used as a data source for UI data binding.
public class CategoriesAdapter extends
 ArrayAdapter<CategoryObj> {
....
}

The following is the CategoryListItemClickListener class, which helps helps
handle click events on a certain Category item:
public class CategoryListItemClickListener implements
 OnItemClickListener {

}

9. Add a function for retrieving the Category and Product entities in the
MainActivity class (see the following GetCategoryItems function).
// Query Category list from Northwind based WCF DataService
 ArrayList<CategoryObj> GetCategoryItems(){
 String svcUri =
 "http://services.odata.org/Northwind/Northwind.svc/";
 ODataConsumer c = ODataConsumer.create(svcUri);

 ArrayList<CategoryObj> categoryList = new
 ArrayList<CategoryObj>();

 Enumerable<OEntity> cursor =
 c.getEntities("Categories").expand("Products").execute();
 for (OEntity entityObj : cursor)
 {
 CategoryObj cObj = new CategoryObj();
 cObj.CategoryID = entityObj.getProperty
 ("CategoryID", Integer.class).getValue();
 cObj.CategoryName = entityObj.getProperty
 ("CategoryName", String.class).getValue();
 cObj.Description = entityObj.getProperty
 ("Description", String.class).getValue();

 List<OEntity> entityList = entityObj.getLink
 ("Products", OLink.class).getRelatedEntities();
 cObj.Products = new ArrayList<ProductObj>();

 for(OEntity pEntity: entityList){

 ProductObj pObj = new ProductObj();
 pObj.ProductID = pEntity.getProperty
 ("ProductID", Integer.class).getValue();

OData on Mobile Devices

218

 pObj.ProductName = pEntity.getProperty
 ("ProductName", String.class).getValue();
 pObj.SupplierID = pEntity.getProperty
 ("SupplierID", Integer.class).getValue();
 pObj.UnitPrice = pEntity.getProperty
 ("UnitPrice", BigDecimal.class).getValue();

 cObj.Products.add(pObj);

 }

 categoryList.add(cObj);
 }

 return categoryList;
}

Instead of using an OData service hosted in a local web application,
here we use the sample Northwind OData service (read-only) over
the Internet which is available at http://services.odata.
org/Northwind/Northwind.svc/.

10. Add the code for data loading and presenting in the onCreate function of the
MainActivity class (see the following code snippet).
public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ListView lvCategories =
 (ListView)findViewById(R.id.lvCategories);

 // Add item click action listener
 lvCategories.setOnItemClickListener(
 new CategoryListItemClickListener(this)
);

 // Populate category items on lstCategory
 ArrayList<CategoryObj> categoryList =
 GetCategoryItems();
 CategoriesAdapter adapter = new CategoriesAdapter
 (this, R.layout.list_item, categoryList);
 lvCategories.setAdapter(adapter);

}

Chapter 5

219

For the Category details screen, we will use code logic similar to the
MainActivity class, to implement it. You can refer to the SubActivity class in
the source code.

11. Open the AndroidManifest.xml file with Android Manifest Editor.

12. In the manifest editor, click on the Add… button and add a new User Permission of
the android.permission.INTERNET type (see the following screenshot).

13. Save the changes and use Run | Debug or the F11 key to start the application.

How it works...
The OData4j library uses a common OEntity class for representing various kinds of OData
entity objects. We can use the getProperty method of the OEntity class to access each
individual entity property (by specifying the property data type). If we want to access the child
entity sets associated with a given entity object, we can use the getLink method to obtain
an OLink instance (representing the association) and invoke the getRelatedEntities
method to get the associated entity objects.

The Android application framework uses the Activity class to represent the phone screen
UI element, and each Activity instance can contain child controls/elements called
Widgets. In the sample application, the MainActivity class uses a ListView Widget
for displaying the Category list. Although we use code to programmatically populate the
ListView Widget (in the MainActivity.onCreate function), all the UI elements within
the MainActivity have already been defined in an XML file (main.xml) under the /res/
layout directory in the project (see the following screenshot).

OData on Mobile Devices

220

You can double-click on a .xml file (or right-click on the .xml file and choose a particular
editor in the context menu) to edit the UI layout of each Widget.

For more information about Android development, you can refer to the tutorials on the Android
Developer website (http://developer.android.com/training/index.html).

There's more...
Here, we use the OData4j library to build an OData client application for the Android platform.
However, we can also use it for building a standard OData service, just like we do with WCF
Data Service. You can get more information about the OData4j library from its Google Code
workspace, available at http://code.google.com/p/odata4j/.

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

Accessing WCF Data Service in iOS
application

iOS (formerly iPhone OS) is Apple Inc.'s mobile operating system. iOS has now been used
in various Apple Inc. smart devices, such as the iPod Touch, iPad, and Apple TV. Also, as of
October 4, 2011, Apple, Inc.'s App Store contained more than 500,000 iOS applications,
resulting in more than 18 billion download times.

As iOS has become the core platform of Apple Inc.'s smart devices, it would be great if we
can conveniently incorporate OData-compatible data services so as to build rich, Internet-
based, data-driven applications for iPhone, iPod Touch, or iPad clients. Fortunately, we do not
need to build everything from scratch. The OData4ObjC (OData for Objective-C) library has
been developed by the open source community for facilitating the OData service access in
applications for iOS or Mac OS X platforms.

In this recipe, we will show you how to create a simple iPhone application for displaying data
entities retrieved from a WCF Data Service, by using the OData4ObjC library.

Getting ready
The iPhone application we will build here consists of a single screen, which displays Category
information from the Northwind OData service. The following is what the main screen of the
sample application looks like:

http://developer.android.com/training/index.html
http://developer.android.com/training/index.html
http://code.google.com/p/odata4j/
http://code.google.com/p/odata4j/
http://developer.apple.com/xcode/
http://developer.apple.com/xcode/

Chapter 5

221

To develop iOS applications, we need to have the XCode IDE, available at
http://developer.apple.com/xcode/, installed on a Mac OS X-equipped machine.

We also need the OData4ObjC library, which can be downloaded from http://odata.
github.com/OData4ObjC/.

For this sample, we will use XCode 4.2 (on Mac OSX 10.7) and the OData4ObjC library
for iOS v4.3.

The source code for this recipe can be found in the \ch05\iOSODataClient directory.

How to do it...
1. Set up the Northwind OData service (created via the WCF Data Service) in a local

IIS server.

Make sure the service is accessible from the
Mac OS X machine.

OData on Mobile Devices

222

2. Launch the XCode IDE on the Mac OS X machine.

3. Start the new project wizard and choose the Single View Application template under
iOS | Application (see the following screenshot).

4. Specify the basic project settings (such as Product Name, Class Prefix, and Device
Family) in the project options dialog (see the following screenshot).

We choose iPhone as the Device Family value because we will create an iOS-based
application for iPhone devices.

Make sure the Use Automatic Reference Counting option is
not checked here (because it is not compatible with the code
generated by the OData4ObjC library).

5. Choose a project location (on the local Mac disk) and click on the Create button to
finish project creation.

6. Use the odatagen utility (in the OData4ObjC library) to create the OData client proxy
against the Northwind OData service.

The following is the command syntax used to generate the sample OData client proxy:
odatagen /uri=http://[servername]:[port]/NWDataService.svc /out=/
Users/macuser/Desktop/ODataProxy

Chapter 5

223

7. Add the generated OData proxy code (the .h and .m files) into the iOS project.

The following screenshot shows the sample iOS project, which has included the OData
client proxy code files (NorthwindEntities.h and NorthwindEntities.m).

8. Add the code for querying Category entities in the viewDidLoad function of the
scViewController class.

The following is the complete code for the viewDidLoad function
(in the scViewController.m file):
 (void)viewDidLoad
{
 [super viewDidLoad];

 // Load Category list from OData service
 NorthwindEntities *proxy = [[NorthwindEntities alloc]
 initWithUri:@"http://192.168.1.4:9999/odataweb/
 nwdataservice.svc" credential:nil];

 QueryOperationResponse *response = [proxy
 execute:@"Categories"];

 NSMutableArray *categoryArray = [response getResult];

 self.categoryList = categoryArray;

 [proxy release];
}

For those member variables (such as the categoryList property) of the
scViewController class, we should define them in the scViewController.h
file (see the following code snippet).
@interface scViewController : UIViewController
<UITableViewDelegate, UITableViewDataSource>{
 NSMutableArray* categoryList;
}
@property (nonatomic,retain) NSMutableArray* categoryList;

Here, we only need to define the categoryList variable (of the NSMutableArray*
type) in the scViewController.h file.

OData on Mobile Devices

224

In this recipe, the scViewController class also implements
the UITableViewDelegate and UITableViewDataSource
interfaces (protocols), which are necessary for the TableView
Control used later.

9. Double-click on the scViewController.xib file to launch the Interface Builder
tool in XCode.

10. Use View | Utilities | Object Library to display the Object Library panel.

11. Drag a TableView Control from the Object Library panel onto the View panel (see
the following screenshot).

You can use the search field on the Object Library panel to
quickly find the TableView Control.

12. Select the Table View Control in the Interface Builder panel and open the
Connections Inspector (by using View | Utilities | Connections Inspector).

13. Connect the dataSource and delegate outlets of the TableView Control to the
scViewController class (which has implemented the required interfaces).

This can be done by clicking the small circle to the right of the dataSource outlet (the
same for the delegate outlet) and dragging the blue line to the file's owner icon (see
the following screenshot).

Chapter 5

225

14. Implement the numberOfRowsInSection and cellForRowAtIndexPath
functions of the UITableViewDataSource interface for the scViewController
class (in the scViewController.m file).

The following is the implementation of these two functions in the sample:
// Customize the number of rows in the table view.
(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSectio
n:(NSInteger)section {
 return [self.categoryList count];
}

// Customize the appearance of table view cells.
(UITableViewCell *)tableView:(UITableView *)tableView cellForRowAt
IndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];
 }

 // Extract the category object at the specific index
 NorthwindModel_Category* category = [self.categoryList
 objectAtIndex: [indexPath row]];

 // Configure the cell.
 UIImage *cellImage =
 [UIImage imageNamed:@"category_icon.jpg"];
 cell.imageView.image = cellImage;

 cell.textLabel.text = category.getCategoryName;
 cell.detailTextLabel.text = category.getDescription;

 return cell;
}

15. Build the entire project (by using the Command + B keys) and run it in the iPhone
simulator (by using the Command + R keys).

OData on Mobile Devices

226

How it works...
As we can see in the previous steps, the OData4ObjC library provides not only classes for
accessing an OData service but also tools for generating strong-typed OData client proxy
classes (by using the odatagen command-line tool).

Just like the DataSvcUtil.exe tool provided in the WCF Data Service client library, the
odatagen utility accepts the service URI (through which it can get the metadata document)
as a parameter and saves the generated OData proxy code to the specified output location. In
the generated proxy code, there are one or more strong-typed classes representing the OData
entity types (such as the Category entity of the Northwind OData service) exposed in the
target OData service.

The code logic for performing OData queries is quite simple and straight. Just create an
instance of the generated client context class (the NorthwindEntities class in this
sample) and invoke the execute method (of the instance) to send the query.

In the sample application, we store the Category entities (returned by the OData query)
in an NSMutableArray object (a member variable of the scViewController class).
This object is then used as the data source for the TableView Control through the
UITableViewDataSource interface implemented by the scViewController class. The
TableView Control is a common UI element for presenting list- or collection-type data in iOS
applications. Here, we just apply the default style on the TableView Control. You can also further
customize the style to implement more complicated data collection presentation scenarios.

For more information about the OData4ObjC library and the TableView Control, you can
look up the following references:

 f OData Client for Objective-C User Guide available at http://odata.github.com/
OData4ObjC/OData SDK for Objective-C User Guide.htm

 f UITableView Tutorial available at http://www.iosdevnotes.com/2011/10/
uitableview-tutorial/

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

 f Hosting a WCF Data Service in IIS server recipe in Chapter 3, OData Service Hosting
and Configuration

6
Working with Public

OData Producers

In this chapter, we will cover:

 f Getting started with Netflix OData online catalog

 f Manipulating Sharepoint 2010 documents through OData endpoint

 f Using OData protocol for Windows Azure Table storage access

 f Querying StackOverflow forums data with OData endpoint

 f Tracking information of NuGet packages through OData feeds

 f Exploring eBay online products catalog through OData service

 f Consuming SSRS 2008 R2 report through OData feed

Introduction
So far we have gone through many cases of how to build OData services, or how to consume
OData services in different kinds of client applications. However, some of you might be
curious about whether there are any (or how many) public products or services which have
already adopted OData in their data publishing and integration-related functionalities. Well,
the answer is absolutely yes. And there are quite a few existing products or online services
which have provided OData compatible interfaces for the clients to consume application data.

Among products or services owned by Microsoft, there are Sharepoint 2010, Windows Azure
Storage service, SQL Server 2008 R2 Reporting Service, Dynamics CRM 2011, and so on,
that have started to support OData. On the other hand, many online services such as Netflix.
com, eBay.com, StackOverflow.com, Facebook, and so on, have also opened a part of their
business data to consumers through OData-based service endpoints.

Working with Public OData Producers

228

In this chapter, we will choose some of the previously mentioned applications or services as
examples, and demonstrate how convenient it could be to build OData-based data access
client applications for these existing applications and services.

Getting started with Netflix OData online
catalog

When talking about any existing OData services available over the Internet, the Netflix online
catalog service will often be mentioned and be used as the test service for dealing with OData
related programming. Netflix is a well-known American Internet streaming media provider
that opens public digital subscription and distribution services over the world. In order to
take advantage of the OData ecosystem for increasing business data accessibility, Netflix has
exposed the complete media/movie catalog data through OData endpoint over the Internet.
In this recipe, we will show you how to query the OData-based Netflix catalog service in a .NET
client application.

Getting ready
To make the complete service consuming process simple and clear, we will create a typical
.NET console application for demonstration.

The source code for this recipe can be found in the \ch06\NetflixODataSln directory.

How to do it...
The following are the steps to create a sample application:

1. Create a new .NET console application as the OData client.

2. Launch Visual Studio Add Service Reference wizard and navigate to the following
service address:

http://odata.netflix.com/v2/Catalog/

Chapter 6

229

3. By expanding the service node in the wizard dialog, we can have a quick look
at all the available entity sets exposed in the Netflix OData service (see the
following screenshot).

4. Define a helper function in the Program.cs file for creating the data context
instance of the OData client proxy (see the following GetODataContext method).
static NetflixODataSvc.NetflixCatalog GetODataContext()
{
 var svcUri = new
 Uri("http://odata.netflix.com/v2/Catalog/",
 UriKind.Absolute);

 var ctx = new NetflixODataSvc.NetflixCatalog(svcUri);

 return ctx;
}

5. Add a function (in the Program.cs file) that uses LINQ expressions to perform the
OData queries.

The following QueryNetflixGenres function queries out the first 10 Genre entities
from the Netflix catalog service:
static void QueryNetflixGenres()
{
 var ctx = GetODataContext();

 var first10genres = ctx.Genres.Take(10).ToList();

 foreach (var genre in first10genres)
 {
 Console.WriteLine("Genre Name:{0}", genre.Name);
 }
}

Working with Public OData Producers

230

6. Add a function (in the Program.cs file) that uses raw a Uri string to perform the
OData queries.

The following QueryNetflixTitlesByGenre function performs the same query as
the QueryNetflixGenres function by using a raw query Uri string:
static void QueryNetflixTitlesByGenre(string genre)
{
 var ctx = GetODataContext();

 var queryUri = new Uri("Genres('" + genre +
 "')/Titles?$top=10", UriKind.Relative);

 var titles = ctx.Execute<NetflixODataSvc.Title>(queryUri);

 Console.WriteLine("First 10 titles under \"{0}\" genre",
 genre);
 foreach (var title in titles)
 {
 Console.WriteLine("=================================");
 Console.WriteLine("\tId:{0}",title.Id);
 Console.WriteLine("\tName:{0}", title.Name);
 Console.WriteLine("\tReleaseYear:{0}",
 title.ReleaseYear);
 Console.WriteLine("\tAverageRating:{0}",
 title.AverageRating);
 }
}

How it works...
As shown in the previous steps, the Netflix online catalog is a publicly opened OData endpoint
that does not demand client authentication. After generating the strong-typed OData proxy
through Visual Studio Add Service Reference wizard, we can use LINQ expression or raw query
Uri string to perform OData queries against the service.

Alternatively, you can also use .NET WebRequest class or other HTTP network component to
access the service by sending raw OData HTTP requests.

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

 f Accessing OData service via WebRequest class recipe in Chapter 2, Working with
OData at Client Side

Chapter 6

231

Manipulating Sharepoint 2010 documents
through OData endpoint

Microsoft Sharepoint is a web application platform designed for enterprises using Microsoft
products (such as Windows Office, Active Directory, and so on) as the IT infrastructure. People
can easily use Sharepoint Server to set up individual or team-wide internal portal website for
team collaboration, project management, document repository, and so on.

In Sharepoint-based websites, almost all data are stored in the format of Sharepoint Lists and
each List can contain one or more List Items. For example, an Announcement List can contain
all the announcements published in the site; a Contact List can contain the contacts of all
team members; a Document Library List can contain various kinds of documents and files.

For OData developers, there is a cool feature added in Sharepoint 2010, that is, all the Lists in
a Sharepoint site can be accessed and manipulated through OData service endpoint. In this
recipe, we will show you how to manipulate the documents in a Sharepoint 2010 Document
Library by using OData service endpoint.

Here we will create a .NET console application, which uses a strong-typed OData proxy
to perform Query, Add and Delete operations against a Document Library (within a
Sharepoint 2010 Team Site).

Getting ready
Make sure you have a Sharepoint 2010 site available (and have sufficient access permissions
on it) in your local environment.

The source code for this recipe can be found in the \ch06\SharepointWithODataSln
directory.

How to do it...
Let's have a look at the following detailed steps:

1. Create a new .NET console application as the OData client.

2. Use the Visual Studio Add Service Reference wizard to create the OData proxy against
the OData endpoint of the target Sharepoint 2010 site.

For a given Sharepoint 2010 site, we can find the OData endpoint address (for the list
data service) by using the following format Uri:
http://[server name]:[port]/[site name]/_vti_bin/listdata.svc

Working with Public OData Producers

232

By navigating to the endpoint address in the wizard dialog, we can preview all entity
sets (representing the certain Sharepoint Lists) exposed by the service (see the
following screenshot).

3. Define a helper function in the Program.cs file for creating the data context
instance of the OData client proxy (see the following GetODataContext method).
static SPODataProxy.SCTestTeamSiteDataContext GetODataContext()
{
 var svcUri = new Uri("http://[sharepoint host
 name]/sctestts/_vti_bin/listdata.svc");
 var ctx = new
 SPODataProxy.SCTestTeamSiteDataContext(svcUri);
 ctx.Credentials =
 CredentialCache.DefaultNetworkCredentials;

 return ctx;
}

As the sample Sharepoint server uses Windows authentication,
we have specified the authentication credentials through the
Credentials property on the data context object (in the
GetODataContext method).

4. Add a function for querying all documents in a Document Library (see the following
ListSharedDocuments function).
static void ListSharedDocuments()
{
 var ctx = GetODataContext();

Chapter 6

233

 var query = from item in ctx.SharedDocuments
 where item.ContentType == "Document"
 select item;

 foreach (var docItem in query)
 {
 Console.WriteLine("=========={0}============",
 docItem.Name);
 Console.WriteLine("\tName: {0}", docItem.Name);
 Console.WriteLine("\tTitle: {0}", docItem.Title);
 Console.WriteLine("\tContentType: {0}",
 docItem.ContentType);
 Console.WriteLine("\tCreated: {0}", docItem.Created);
 Console.WriteLine("\tPath: {0}", docItem.Path);

 }
}

5. Add a function for inserting an Office Word document into the same Document
Library (see the following AddNewSharedDocumentsItem function).
static void AddNewSharedDocumentsItem()
{
 var ctx = GetODataContext();
 var strName = string.Format("NewDocument{0}",
 DateTime.Now.Ticks);
 var strPath = string.Format(
 "/sites/sctestts/Shared Documents/NewDocument{0}.docx",
 DateTime.Now.Ticks
);

 var newDocItem = new SPODataProxy.SharedDocumentsItem()
 {
 Name= strName,
 Path= strPath,
 };

 ctx.AddToSharedDocuments(newDocItem);

 ctx.SetSaveStream(
 newDocItem,
 File.OpenRead(@"e:\temp\blankdoc.docx"),
 true,
 new DataServiceRequestArgs()
 {
 Slug = strPath
 }
);

 ctx.SaveChanges();
}

Working with Public OData Producers

234

6. Add a function for deleting some existing documents in the Document Library (see
the following DeleteSharedDocumentsItem function).
static void DeleteSharedDocumentsItems()
{
 var ctx = GetODataContext();

 var items = (from item in ctx.SharedDocuments
 where item.Name.StartsWith("NewDocument")
 select item).ToArray();

 foreach (var item in items) ctx.DeleteObject(item);

 ctx.SaveChanges();
}

How it works...
The OData endpoint of Sharepoint 2010 sites is implemented with WCF Data Service. As
shown in the previous code, the query and delete code logic is quite straightforward. We
simply use the same code logic as we do when editing normal OData service entity sets.
However, the code for adding a new document item is a bit more complicated since we need
to supply the binary content of the new document item. To achieve this task, we need to
leverage the Binary Resource Stream feature of WCF Data Service. This is done by using
the DataServiceContext.SetSaveStream method which helps to associate a binary
stream with the target OData entity object. We will talk more about the Binary Resource
Stream feature of WCF Data Service in the Exposing binary data on OData entity with Named
Resource Stream recipe in Chapter 9, New Features of WCF Data Service 5.0 (OData V3).

There's more...
Including the OData endpoint feature, there are three main approaches available for .NET
developers to access and manipulate data in Sharepoint 2010 sites. The other two are
Server-side Object Model and Client-side Object Model.

Although the Server-side Object Model and Client-side Object Model provide much more
advanced options for Sharepoint development, they also demand more requirements on the
calling applications (compared to the OData endpoint approach). For example, you can only
use Server-side Object Model on the server machines of the Sharepoint sites and both the
Server-side Object Model and Client-side Object Model require us to add references against
their corresponding assemblies before using them. For more information about Sharepoint
programming with Server-side and Client-side Object Model, you can refer to the following
MSDN references:

Chapter 6

235

Using the SharePoint Foundation Server-side Object Model available at http://msdn.
microsoft.com/en-us/library/ee538251.aspx

SharePoint 2010 Client Object Model available at http://msdn.microsoft.com/en-us/
library/ee537247.aspx

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

 f Editing and deleting data through WCF Data Service client library recipe in Chapter 2,
Working with OData at Client Side

Using OData protocol for Windows Azure
Table storage access

Microsoft has provided Windows Azure as the core Cloud computing platform for building
and hosting applications in the Cloud. For applications developed for the Windows Azure
platform, there are many different options for storing and managing application data. You
can store your data as the common relational database through the SQL Azure service; or
you can use Windows Azure storage (such as Blob, Table or Queue storage) to store your
custom structured data. The Windows Azure Table storage provides a convenient means
for developers to store collections of custom data entities. In Table storage, each collection
is stored as a table and each entity object in collection is stored as a table row (with their
properties stored as row fields/columns).

The Windows Azure SDK has already provided encapsulated class library and APIs for
accessing Table storage data. However, what's amazing here is that the underlying
communication of the Table storage access is based on OData protocol. In this recipe, we
will demonstrate how we can manually make OData HTTP requests to access Windows Azure
Table storage without using the Windows Azure SDK library.

Getting ready
Make sure you have a Windows Azure storage account available to test or you can use the
local storage emulator provided by Windows Azure SDK (see the following reference).

Overview of Running a Windows Azure Application with the Storage Emulator available at
http://msdn.microsoft.com/en-us/library/windowsazure/gg432983.aspx

The source code for this recipe can be found in the \ch06\AzureStorageWithODataSln
directory.

Working with Public OData Producers

236

How to do it...
The following are the steps for creating the sample application:

1. Create a new .NET console application.

2. Locate the OData endpoint address of the target Windows Azure Table
storage account.

The OData endpoint address of a given Windows Azure Table storage account is of
the following format in which [account] is the actual name of the storage account:
http://[account].table.core.windows.net/

3. Store the name and access key of the Windows Azure storage account through the
appSettings section in the app.config file (see the following screenshot).

For how to get the access key of a given Windows Azure storage account,
you can refer to the following MSDN reference article:
http://msdn.microsoft.com/en-us/library/
windowsazure/hh531566.aspx

4. Define a helper function (in Program.cs file) for creating the WebRequest object
and populating the HTTP headers for authentication (see the following code snippet).
static HttpWebRequest
 GenerateODataWebRequestForAzureStorage(string url,
 string accountName, string accountKey)
{
 var request = (HttpWebRequest)WebRequest.Create(url);

 request.Method = "GET";
 request.Headers.Add("x-ms-date",
 DateTime.UtcNow.ToString("R",
 CultureInfo.InvariantCulture));

 var resource = request.RequestUri.AbsolutePath;

 string stringToSign = string.Format("{0}\n/{1}{2}",
 request.Headers["x-ms-date"],
 accountName,

http://msdn.microsoft.com/en-us/library/windowsazure/hh531566.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh531566.aspx

Chapter 6

237

 resource
);

 var hasher = new
 HMACSHA256(Convert.FromBase64String(accountKey));

 string signedSignature =
 Convert.ToBase64String(hasher.ComputeHash
 (Encoding.UTF8.GetBytes(stringToSign)));
 string authorizationHeader = string.Format("{0} {1}:{2}",
 "SharedKeyLite", accountName, signedSignature);

 request.Headers.Add("Authorization", authorizationHeader);

 return request;
}

5. Add a function (in Program.cs file) for querying the Table storage by using the
WebRequest instance created by the helper function (see the following code snippet).
static void QueryTableItemsWithRawODataHttp()
{
 var accountName = ConfigurationManager.AppSettings["account"];
 var accountKey = ConfigurationManager.AppSettings["key"];

 var queryUrl = string.Format("http://{0}.table.core.windows.
 net/TestTable?$top=5", accountName);

 var request =
 GenerateODataWebRequestForAzureStorage(queryUrl,
 accountName, accountKey);

 var response = request.GetResponse();
 using (var sr = new
 StreamReader(response.GetResponseStream()))
 {
 var doc = XElement.Load(sr);

 var nsMetadata =
 "http://schemas.microsoft.com/ado/2007/
 08/dataservices/metadata";
 var nsSchema =
 "http://schemas.microsoft.com/ado/2007/08/dataservices";

 foreach (var elmItem in
 doc.Descendants(XName.Get("properties", nsMetadata)))
 {

Working with Public OData Producers

238

 var name = elmItem.Descendants(XName.Get("Name",
 nsSchema)).First().Value;
 var partitionKey =
 elmItem.Descendants(XName.Get("PartitionKey",
 nsSchema)).First().Value;

 Console.WriteLine("Name:{0}, RowKey:{1}", name,
 partitionKey);
 }

 }
}

How it works...
In the sample code, we directly use raw OData HTTP requests (via WebRequest class) to
query the TestTable table in the target Windows Azure Table storage. Each table stored in
Windows Azure Table storage is like an OData entity set so that we can construct the query Uri
for a certain table in the following format:

http://[account].table.core.windows.net/[table name]?[query options]

One thing worth noticing is that the OData endpoint of Windows Azure Table storage demands
some HTTP headers from the client for authentication (for non-public tables). In the sample
code of step 4 mentioned previously, we have supplied two HTTP headers (the x-ms-date
header and the Authorization header) through the WebRequest object. The former
contains the current UTC time and the latter is generated based on the account name and
account key (hashed value) of the given storage account. The detailed information about the
authentication header format can be found in the following MSDN document for Windows
Azure storage service REST API.

Authentication Schemes available at http://msdn.microsoft.com/en-us/library/
windowsazure/dd179428.aspx

There's more...
Although we can manually construct the OData HTTP requests for accessing Windows Azure
Table storage, the encapsulated storage API provided in the Windows Azure SDK is still the
preferred way to go in most cases. For example, the following code uses the storage API to
query the same TestTable table (shown in the previous sample code's step 5) in a strong-
typed manner.

static void QueryTableItemsWithStorageClientAPIs()
{

Chapter 6

239

 var account = GetStorageAccount();

 var tableClient = account.CreateCloudTableClient();

 TableServiceContext ctx =
 tableClient.GetDataServiceContext();

 var allItems = ctx.CreateQuery<TestTableItem>(TABLE_NAME);

 foreach (TestTableItem item in allItems)
 {
 Console.WriteLine("Name:{0}, RowKey:{1}",item.Name,
 item.RowKey);
 }
}

By using Fiddler, we can find that the storage API actually sends out the same OData HTTP
requests as we've manually generated in this sample (see the following screenshot).

See also
 f Accessing OData service via WebRequest class recipe in Chapter 2, Working with

OData at Client Side

 f Deploying a WCF Data Service on Windows Azure host recipe in Chapter 3, OData
Service Hosting and Configuration

Working with Public OData Producers

240

Query StackOverflow forums data with
OData endpoint

StackOverflow (http://stackoverflow.com/) has become one of the biggest online
communities which feature questions and answers on a wide range of topics in computer
programming. As of January 2012, StackOverflow has about 967,000 registered users, and
more than 2,000,000 questions. Users can easily use tags (such as C#, Java, PHP, JavaScript,
jQuery, and so on) or custom search keywords to find their interested questions and topics in
StackOverflow forums.

As a fully opened technical website, StackOverflow has opened its entire achieved knowledge
database to the public. Users can freely get the information they need by downloading the
data dumps from the Stack Exchange Data Explorer and then analyze them using whatever
means they want.

Introducing Stack Exchange Data Explorer available at
http://blog.stackoverflow.com/2010/06/introducing-
stack-exchange-data-explorer/

And if you're an OData developer, you definitely have more choices because you can use the
OData endpoint exposed by the Stack Exchange Network to retrieve the same data. In this
recipe, we will demonstrate how to use the OData endpoint to build a simple data analysis
web page for the StackOverflow community.

Getting ready
Here, we will build a simple ASP.NET Web Form page, which uses two Chart controls to display
the tag and post distribution information by using the Stack Overflow OData endpoint.

The source code for this recipe can be found in the \ch06\StackOverFlowODataSln
directory.

How to do it...
Now, let's start building the sample web page using the following steps:

1. Create a new ASP.NET empty web application.

2. Generate a client proxy (via the Visual Studio Add Service Reference wizard) against
the target OData endpoint.

The OData endpoint for StackOverflow site is opened at the following location:
http://data.stackexchange.com/stackoverflow/atom

http://blog.stackoverflow.com/2010/06/introducing-stack-exchange-data-explorer/
http://blog.stackoverflow.com/2010/06/introducing-stack-exchange-data-explorer/
http://data.stackexchange.com/stackoverflow/atom
http://data.stackexchange.com/stackoverflow/atom

Chapter 6

241

By navigating to the endpoint address in the wizard dialog, we can preview the entity
sets exposed in the OData endpoint (see the following screenshot).

3. Create a new Web Form page (named TagsReport.aspx) in the web application.

4. Add the HTML content for the Web Form page (in the TagsReport.aspx file).

Here shows the main HTML content of the page which consists of two ASP.NET Chart
controls (one for displaying Bar chart and another for displaying Pie chart).
<form id="form1" runat="server">
 <div>
 <asp:Chart ID="tagsPie"
 runat="server" Height="400px"
 Width="530px" >
 <Series>
 <asp:Series Name="TagsSeries" ChartType="Pie"
 XValueMember="Key" YValueMembers="Value"
 Label="#VALX (#PERCENT)" ToolTip="Percent of
 #VALX: #PERCENT"
 >
 </asp:Series>
 </Series>
 <ChartAreas>
 <asp:ChartArea Name="ChartArea1"
 AlignmentStyle="All" >
 <AxisY Title="Post Count">
 </AxisY>
 <AxisX Interval="1" Title="TagName" >
 <LabelStyle Interval="1" Angle="20" />
 </AxisX>
 <Area3DStyle Enable3D="True"></Area3DStyle>
 </asp:ChartArea>
 </ChartAreas>
 <Titles>
 <asp:Title Text="Tags Distribution By Pie Chart: "
 Font="Times New Roman, 22pt, style=Bold" />
 </Titles>
 </asp:Chart>

Working with Public OData Producers

242

 <asp:Chart ID="tagsBar" runat="server"
 Height="400px" Width="530px" >
 <Series>
 <asp:Series Name="TagsSeries" ChartType="Bar"
 XValueMember="Key"
 YValueMembers="Value" ChartArea="ChartArea1" >
 </asp:Series>
 </Series>
 <ChartAreas>
 <asp:ChartArea Name="ChartArea1"
 AlignmentStyle="All">
 <AxisY Title="Post Count">
 </AxisY>
 <AxisX Interval="1" Title="TagName">
 <LabelStyle Interval="1" />
 </AxisX>
 <Area3DStyle Enable3D="True" />
 </asp:ChartArea>
 </ChartAreas>
 <Titles>
 <asp:Title Text="Tags Distribution By Bar Chart:"
 Font="Times New Roman, 22pt, style=Bold" />
 </Titles>
 </asp:Chart>
 </div>
 </form>

5. Add a function for querying the StackOverflow Tags and Posts data in the page's
code-behind file (see the following GetStackOverflowTags function).
 Dictionary<string, int> GetStackOverflowTags()
{
 if (Cache["TAGS"] == null)
 {
 Uri svcUri = new
 Uri("http://data.stackexchange.com/stackoverflow/atom");
 StackOData.Entities ctx = new
 StackOData.Entities(svcUri);

 var tags = ctx.Tags.Take(10).ToArray();

 Dictionary<string, int> dictTags = new
 Dictionary<string, int>();
 foreach (var tag in tags)
 {
 var postCount = ctx.Posts.Where(p =>
 p.Tags.Contains(tag.TagName)).Count();
 dictTags.Add(tag.TagName, postCount);
 }

Chapter 6

243

 Cache["TAGS"] = dictTags;
 }

 return Cache["TAGS"] as Dictionary<string, int>;
}

6. Add the code for binding the Tags and Posts data to the Chart controls within the
Page_Load event of the page (see the following code snippet).
protected void Page_Load(object sender, EventArgs e)
{

 var dictTags = GetStackOverflowTags();

 tagsPie.Series[0].CustomProperties = "PieLabelStyle=
 Outside";
 tagsPie.DataSource = dictTags;
 tagsPie.DataBind();

 tagsBar.DataSource = dictTags;
 tagsBar.DataBind();
}

7. Build the web application and launch the TagsReport.aspx page in web browser.

The following screenshot shows the page output after the Tags and Posts data (from
the StackOverflow OData endpoint) get populated:

c (55.99 %)

php (6.79 %)

css (2.14 %)

c# (9.22 %)

c++ (3.92 %)

ruby (3.21 %)

lisp (0.10 %)

.net (9.38 %)

html (3.28 %)

javascript (5.96 %)

T
a
g
N

a
m

e

lisp

ruby

c++

c#

c

php

css

javascript

html

.net

0 500000 1000000 1500000 2000000

Tags Distribution By Pie Chart: Tags Distribution By Bar Chart:

Working with Public OData Producers

244

How it works...
In the sample page, we use the Page_Load event to query the Tags and Posts data from the
StackOverflow OData endpoint. After retrieving the query result, we store them into the ASP.NET
Cache storage (to avoid sequential service access) and bind the result data to the Chart controls.
For simplicity, the sample code hasn't used an asynchronous pattern for data loading. Thus, it
might take a while to load all the Posts data when the page is loaded at the first time.

There's more...
Compared to the StackOverflow online data explorer (at the location, http://data.
stackexchange.com/stackoverflow/query/new), the OData endpoint gives
developers much more flexibility and control for building custom data querying and analysis
tools (by using the StackOverflow community data).

The sample page here has only utilized two entity sets (Posts and Tags) from the OData
endpoint. If you want, you can use similar means to retrieve more complicated data output
from all the entity sets exposed from the service. For example, in case you're interested in the
trend of a certain new technology/topic discussed in the StackOverflow community, you can
build an application to incrementally query on the new Posts created under that technology
and perform your custom analysis over them.

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

Tracking information of NuGet packages
through OData feeds

NuGet is a free, open source developer focused package management system for the .NET
platform. With NuGet, .NET developers can easily find useful open source component libraries
and integrate them into their .NET projects. Currently, you can use the Visual Studio NuGet
package manager or directly go to http://nuget.org/packages/ to look for any useful
NuGet packages.

Well, what if we're only interested in some particular NuGet packages, or want to regularly
monitor and track the update and status of those packages? This is useful not only if you
just consume shared NuGet packages, but also if you publish your own components into the
NuGet package collection.

http://data.stackexchange.com/stackoverflow/query/new

Chapter 6

245

No problem, NuGet provides a public data feed so that users can query information and track
status of any NuGet package through the feed. And the more exciting point is that the NuGet
data feed is fully OData compatible. In this recipe, we will demonstrate how we can use the
OData feed to track the information of NuGet packages.

Getting ready
Here we will create a WPF (Windows Presentation Foundation) application that allows users
to search for NuGet packages by using some keywords. The following screenshot shows the UI
of the sample application:

The source code for this recipe can be found in the \ch06\NugetQueryWithODataSln
directory.

How to do it...
The following are the steps for building the sample WPF application:

1. Create a new WPF application as the OData client.

2. Generate the OData proxy (via the Visual Studio Add Service Reference wizard)
against the NuGet data feed endpoint.

The NuGet data feed endpoint can be found at:
http://packages.nuget.org/v1/FeedService.svc/

http://packages.nuget.org/v1/FeedService.svc/
http://packages.nuget.org/v1/FeedService.svc/

Working with Public OData Producers

246

By navigating to the endpoint address in the wizard dialog, we can find that the NuGet
data feed only provides a single entity set–Packages (see the following screenshot).

3. Compose the XAML content for the main WPF window (in MainWindow.xaml file).

The main window contains three key controls, one TextBox control for accepting
search keywords, one Button control for submitting query requests and one
DataGrid control for displaying query results (see the following XAML fragment).
<StackPanel>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="80" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Column="0" Text="Keywords:"
 HorizontalAlignment="Stretch"
 FontSize="16" Margin="5" />
 <TextBox Name="txtKeyword" Grid.Column="1"
 HorizontalAlignment="Stretch" FontSize="16"
 Margin="5" />
 <Button Name="btnQuery" Grid.Column="2"
 Content="Query"
 Height="37" HorizontalAlignment="Stretch"
 Margin="5"
 Click="btnQuery_Click" />
 </Grid>
 <Separator Margin="5" />
 <DataGrid Name="gridPackages"
 AutoGenerateColumns="False"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Margin="5"
 MinHeight="400">
 <DataGrid.Columns>

Chapter 6

247

 <DataGridTextColumn Header="Package Id"
 Binding="{Binding Path=Id}" Width="3*" />
 <DataGridTextColumn Header="Version"
 Binding="{Binding Path=Version}" Width="0.5*" />
 <DataGridTextColumn Header="Authors"
 Binding="{Binding Path=Authors}" Width="1.5*" />
 <DataGridTextColumn Header="Dependencies"
 Binding="{Binding Path=Dependencies}" Width="2*"
 />
 <DataGridTextColumn Header="Created"
 Binding="{Binding Path=Created}" Width="1*" />
 </DataGrid.Columns>
 </DataGrid>
</StackPanel>

4. Add a function for retrieving NuGet packages information (based on search keywords)
from the data feed (see the following QueryPackagesWithKeyword function).
void QueryPackagesWithKeyword(string kw)
{
 var ctx = new NugetOData.FeedContext_x0060_1(new
 Uri("http://packages.nuget.org/v1/FeedService.svc/"));

 var packages = from p in ctx.Packages
 where p.Title.ToUpper().Contains(kw.
 ToUpper())
 select p;

 gridPackages.ItemsSource = packages.ToArray();
 gridPackages.UpdateLayout();
}

5. Add the code for invoking the QueryPackagesWithKeyword function in the Click
event of the Query button (see the following code snippet).
private void btnQuery_Click(object sender, RoutedEventArgs e)
{
 if (string.IsNullOrEmpty(txtKeyword.Text) ||
 txtKeyword.Text.Length < 3) return;

 QueryPackagesWithKeyword(txtKeyword.Text.Trim());
}

Working with Public OData Producers

248

How it works...
As the NuGet data feed exposes all package-related information through the single Packages
entity set, we just need to use some proper query options to filter out the certain packages
we're interested in. In this sample, we filter the packages by using some keywords in the
package name. Although we use LINQ style code to query the entity set, the underlying LINQ
provider (provided by the WCF Data Service client library) automatically converts the LINQ
query into the proper OData query Uri. By using Fiddler, we can find the raw OData query
request sent to the target data feed endpoint (see the following screenshot).

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

 f Performing WPF data binding with OData service data recipe in Chapter 2, Working
with OData at Client Side

Exploring eBay online products catalog
through OData service

eBay.com (managed by eBay Inc.) is an online auction and shopping website in which people
and businesses buy and sell a broad variety of goods and services worldwide. When browsing
over eBay.com, people can use the hierarchical product categories to search and find the
certain product items they want. Now, eBay.com has also opened its complete products
catalog through a Windows Azure hosted OData service. In this recipe, we will utilize this
catalog service to build a simple application for exploring the product items on eBay.com.

Chapter 6

249

Getting ready
Here, we will create an ASP.NET Web Form page to display available product items (from eBay.
com) based on the selected category. The overall page UI looks like the following screenshot:

The source code for this recipe can be found in the \ch06\EBayODataSln directory.

How to do it...
Let's have a look at the following detailed steps:

1. Create a new ASP.NET empty web application.

2. Generate the OData proxy (via the Visual Studio Add Service Reference wizard)
against the eBay products catalog service.

The products catalog service is opened at the following base address:
http://ebayodata.cloudapp.net/

3. Create a new Web Form page named EBayItemsByCategory.aspx.

4. Compose the HTML content of the EBayItemsByCategory.aspx page (see the
following HTML fragment).
<form id="form1" runat="server">
 <div>
 Categories:
 <asp:DropDownList ID="lstCategories" runat="server"
 AutoPostBack="true"

http://ebayodata.cloudapp.net/

Working with Public OData Producers

250

 onselectedindexchanged=
 "lstCategories_SelectedIndexChanged" >
 </asp:DropDownList>
 <hr />
 <asp:GridView ID="gvItems" runat="server"
 AutoGenerateColumns="False" >
 <Columns>
 <asp:ImageField DataImageUrlField="GalleryUrl" >
 </asp:ImageField>
 <asp:BoundField DataField="Title"
 HeaderText="Title" />
 <asp:BoundField DataField="SellingState"
 HeaderText="State" />
 <asp:BoundField DataField="CurrentPrice"
 HeaderText="Current Price(USD)" />
 <asp:HyperLinkField Text="View Details"
 HeaderText="View Details"
 DataNavigateUrlFields="ViewItemUrl"
 Target="_blank" />

 </Columns>
 </asp:GridView>

 </div>
</form>

5. Open the page's code-behind file (EBayItemsByCategory.aspx.cs) and add
the code for populating the category list (in the DropDownList control) through the
Page_Load event (see the following code snippet).
Uri _serviceUri = new Uri("http://ebayodata.cloudapp.net/");

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 var ctx = new EBayOData.EBayData(_serviceUri);
 var categories =
 ctx.Categories
 .Where(c => c.Level == 1)
 .Select(c => new { Name = c.Name, Id = c.Id })
 .ToList();

 lstCategories.DataTextField = "Name";
 lstCategories.DataValueField = "Id";
 lstCategories.DataSource = categories;

Chapter 6

251

 lstCategories.DataBind();
 }
}

6. Add the code for populating product items (in the GridView control) based
on the selected category through the SelectedIndexChanged event of the
DropDownList control (see the following code snippet).
protected void lstCategories_SelectedIndexChanged(object sender,
EventArgs e)
{
 var ctx = new EBayOData.EBayData(_serviceUri);
 var items =
 ctx.Items
 .Where(i => i.PrimaryCategoryId ==
 lstCategories.SelectedValue)
 .Take(20)
 .ToList();

 gvItems.DataSource = items;
 gvItems.DataBind();
}

How it works...
The sample page consists of two ASP.NET server controls; one is the DropDownList control
for displaying the category list for selection; the other is the GridView control for presenting
the products belong to the selected category. For simplicity, we have only retrieved the first
level categories from the eBay catalog service while the actual Categories entity set
contains much more records (organized in multiple levels). Also, since the sample page hasn't
implemented paging for displaying all product items, we only retrieve the first 20 items under
each category so as not to overwhelm the page.

The eBay catalog service provides much more than the Categories and items entity sets,
which we have used here. They are as follows:

 f Bidders

 f Cross promotions

 f Deals

 f Feedback

 f Items

 f Shippings

 f Transactions

 f Users

Working with Public OData Producers

252

This really opens the door for developers to easily build either online data tracking and query
applications (such as for searching interested products or biddings) or offline data analysis
applications (such as for discovering hot and popular products and trends) in an open and a
standard way.

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

 f Building data-driven ASP.NET Web Form pages with OData recipe in Chapter 4, Using
OData in Web Application

Consuming SSRS 2008 R2 report through
OData feed

So far we have explored several OData programming cases against some existing OData
enabled products and online services. Now, let's have a look at another OData use case which
does not require much programming skills. This time, the focus is on Microsoft SQL Server
Reporting Services (SSRS).

SQL Server Reporting Services(SSRS) is a server-based reporting platform that provides
comprehensive reporting functionality for a variety of data sources. With the services and
tools of SSRS, IT professionals can easily create, deploy, and manage reports for their
organizations. With the release of SQL Server 2008 R2, there comes a new feature through
which we can export an existing SSRS report as a data feed, or you can even create a report
whose primary purpose is to provide data in the form of data feed.

Yes, as you might have guessed, the data feed is fully OData compatible so that it can be
consumed by various kinds of OData client application or tools. In this recipe, we will show you
how we can use Microsoft Excel PowerPivot component to consume the OData feed exposed
from SSRS reports.

Getting ready
Make sure the client machine has Excel 2010 and PowerPivot component installed. The
PowerPivot component is available at the following site:

Microsoft PowerPivot available at http://www.microsoft.com/en-us/bi/
powerpivot.aspx

For demonstration purpose, we will also need a sample report (accessible from client machine)
published from a SQL Server Reporting Service (SSRS) instance of the 2008 R2 version.

http://www.microsoft.com/en-us/bi/powerpivot.aspx
http://www.microsoft.com/en-us/bi/powerpivot.aspx

Chapter 6

253

How to do it...
The following are the steps for consuming the sample SSRS report:

1. Open the web browser and navigate to the sample SSRS report.

2. Click on the OData feed button on the right-hand side of the report page's toolbar to
export the data feed (see the following screenshot).

3. Save the data feed file (with the .atomsvc extension) prompted by the web browser
into local disk (see the following screenshot).

4. Launch Microsoft Excel 2010.

5. Select the PowerPivot tab and click on the PowerPivot Window ribbon to open a new
PowerPivot specific window (see the following screenshot).

Working with Public OData Producers

254

6. In the opened PowerPivot Window, select the Home tab and click the data feed
button (looks similar to the SSRS report's data feed button) to launch the Table
Import Wizard (see the following screenshot).

7. In the Connect to a Data Feed screen of the Table Import Wizard, supply the
.atomsvc data feed file we have saved locally and give a Friendly connection name
for this data feed (see the following screenshot).

You can use the Test Connection button to verify if the
target data source (data feed endpoint) is working correctly.

8. In the Selected Tables and Views screen of the Table Import Wizard, select the
certain tables and views we want to import (from the target SSRS report feed) within
the Tables and Views list view (see the following screenshot).

Chapter 6

255

9. In the Importing screen of the Table Import Wizard, click on the Finish button to
start the actual data importing progress.

Depending on the amount of data to be loaded, it might take a while for the importing
task to finish.

10. After the importing task finishes, check the importing result in the Details list view of
the Importing screen (see the following screenshot).

11. Close the Table Import Wizard and explore the imported tables and views (in the
corresponding data sheets) in the PowerPivot Window (see the following screenshot).

Working with Public OData Producers

256

How it works...
As shown in the previous steps, the data feed of SSRS report is exposed as an .atomsvc file.
If you open this file with a text or XML editor, you can find that the content of this file is just like
the service document of a standard OData service. The sample data feed file here includes a
single feed collection which points to the resource location of the target report data (see the
following XML fragment).

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<service xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:app="http://www.w3.org/2007/app" xmlns=
"http://www.w3.org/2007/app">
 <workspace>
 <atom:title>DrillDown Report</atom:title>
 <collection
 href="http://[server-
 name]/ReportServer?%2FReportProject%2FDrillDown%20
 Report&
 rs%3ACommand=Render&rs%3AFormat=ATOM&
 rc%3ADataFeed=xAx0x0">
 <atom:title>Tablix1</atom:title>
 </collection>
 </workspace>
</service>

By using the resource location in the service document, the PowerPivot client can retrieve the
detailed tables and rows of the target SSRS report and present them in the Excel worksheets.

There's more...
Although, we use Microsoft Excel PowerPivot component for the SSRS report feed consuming,
you can surely use any other OData enabled tools or even build your own client applications in
case you want to incorporate SSRS report through the OData based channel.

See also
 f Exploring an OData service through web browser recipe in Chapter 2, Working with

OData at Client Side

7
Working with Security

In this chapter, we will cover:

 f Applying Windows authentication for OData service

 f Using ASP.NET Forms authentication to secure OData service

 f Securing OData service with HTTPS transport

 f Implementing OData service authentication with custom HTTP Module

 f Adding custom authorization with server-side processing pipeline

 f Using Interceptors to control access for individual entity set

 f Implementing role-based security for OData service

Introduction
Security is always a hot topic for any kind of distributed programming platform. For services
that exchange important application data or expose functions for performing critical system
operations, it is quite important to secure the communication between clients and services.

When dealing with security for a distributed service, we often encounter some common topics
such as authentication, authorization, data protection, and so on. The OData protocol or
WCF Data Service framework hasn't defined any kind of security protocol or infrastructure of
its own, but rather relies on the security provisions of the data service host or the underlying
transport layer. For example, for WCF Data Services hosted with the ASP.NET/IIS web
application, we can leverage the built-in security support of ASP.NET and IIS host to secure the
containing OData services. Also, as OData is naturally based on HTTP protocol, we can also
take advantage of those existing HTTP enabled authentication and data securing mechanisms
such as HTTPS/SSL secure transport.

Working with Security

258

In this chapter, we will discuss some common and easy to use means of implementing
security protection for an OData service. We will start by demonstrating how to leverage
built-in authentication methods (such as Windows Authentication, Forms Authentication,
HTTPS/SSL protection) provided by the ASP.NET web application or IIS web server host,
and then follow with some examples on how to implement custom authentication and
authorization. At the end, we will provide a sample case of how to implement Role-based
security by combining some of the features.

Applying Windows authentication for OData
service

Windows authentication is one of the most common and popular authentication schemes
used by client-server applications and services (such as IIS, SQL Server, Sharepoint Server,
and so on) on the Microsoft Windows platform. When using Windows authentication,
the client-side can explicitly supply the windows credentials or use the windows identity
associated with the current security context to the server; while the server-side can use local
Windows accounts or Active Directory accounts (Windows domain environment) to validate the
authentication credentials sent from the client.

In this recipe, we will demonstrate how to apply Windows authentication for OData services
hosted in an IIS server.

Getting ready
Here, we will use the Northwind sample OData service and configure it to use Windows
authentication in an IIS 7 host. For deploying an OData service in IIS 7, you can refer to
the Hosting a WCF Data Service in IIS server recipe in Chapter 3, OData Service Hosting
and Configuration.

The source code for this recipe can be found in the \ch07\ODataWindowsAuthWebSln
directory.

How to do it...
Now, let's have a look at the following steps to set up the Windows authentication:

1. Create a new ASP.NET web application which contains the Northwind OData service.

Chapter 7

259

2. Add the Windows Authentication settings in the web.config file of the web
application (see the following screenshot).

3. Deploy the web application into the IIS server (IIS 7).

4. Open IIS Manager and select the deployed web application (seen on the
left-hand side).

5. In the Feature view, double click on the Authentication tab (see the
following screenshot).

6. In the opened Authentication panel, disable the Anonymous Authentication option
and enable the Windows Authentication option (see the following screenshot).

Working with Security

260

7. Create a new console application as the OData client.

8. Create the strong-typed OData proxy against the sample service.

9. Access the service by using a specific Windows account as the authentication
credentials (see the following code snippet).
static void AccessWithNormalWindowsUserAccount()
{
 var svcUri = new Uri(SVC_URL);
 var ctx = new NWOData.NorthwindEntities(svcUri);

 ctx.Credentials = new System.Net.NetworkCredential(
 "WCFUser",
 "Password",
 "[domain or machine name]"
);

 var categories = ctx.Categories.ToList();
 Console.WriteLine("There are {0} categories.",
 categories.Count);
}

10. Access the service by using the current security account as the authentication
credentials (see the following code snippet).
 static void AccessWithCurrentWindowsUserAccount()
{
 var svcUri = new Uri(SVC_URL);
 var ctx = new NWOData.NorthwindEntities(svcUri);

 ctx.Credentials =
 System.Net.CredentialCache.DefaultNetworkCredentials;

 var categories = ctx.Categories.ToList();
 Console.WriteLine("There are {0} categories.",
 categories.Count);
}

How it works...
In this sample, we apply Windows authentication on the OData service by enabling the built-
in Windows Authentication module of the IIS server and setting the ASP.NET authentication
mode as Windows (in the web.config file). Also, the <location> configuration element
here (see the web.config fragment mentioned previously) helps restrict the access rules so
that only those specified users (or roles) can access the sample OData service.

Chapter 7

261

In case no authentication credentials are supplied or the authenticated client identity is not
allowed to access the service, an Access is denied error will occur and the client side will get
the corresponding error message (see the following screenshot) through exception details.

There's more...
In addition to IIS Manager, we can also use the appcmd.exe utility to configure the IIS
authentication setting in the command-line prompt. For information about appcmd.exe,
you can refer to the following document:

http://technet.microsoft.com/en-us/library/cc772200(v=ws.10).aspx

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

 f Hosting a WCF Data Service in IIS server recipe in Chapter 3, OData Service Hosting
and Configuration

Using ASP.NET Forms authentication to
secure OData service

Forms authentication is often used in Internet web applications for authenticating client
users. ASP.NET web application also has built-in support on Forms authentication so that
developers can easily use their own account database (such as SQL Server database, Active
Directory or event custom file) for client authentication.

In this recipe, we will show you how we can take advantage of ASP.NET Forms authentication
for securing an OData service.

Working with Security

262

Getting ready
We will still use the Northwind-based WCF Data Service as an example here and apply ASP.
NET Forms authentication to it. The following screenshot shows the overall project structure of
the sample web application in Visual Studio Solution Explorer:

The source code for this recipe can be found in the \ch07\ODataFormsAuthSln directory.

How to do it...
Let's start building the sample application now using the following steps:

1. Create a new ASP.NET web application that contains the Northwind OData service.

2. Open the web.config file, and add the configuration elements for enabling the
Forms authentication (see the following configuration fragment):

For simplicity, we directly define some hardcoded user accounts in
the web.config file instead of using additional account storage
such as the ASP.NET membership provider database.

Chapter 7

263

3. Add the authorization settings for the OData service (in the web.config file) by
using the <location> configuration element (see the following screenshot).

4. Create a Generic Handler (named ODataFormsAuthHandler.ashx) in the web
application (see the following screenshot).

5. Add the code for performing Forms authentication programmatically in the
code-behind file of the ODataFormsAuthHandler.ashx handler (see the following
code snippet).
public class ODataFormsAuthHandler : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 if (context.Request.HttpMethod == "POST")
 {
 var username = context.Request.Form["username"];
 var password = context.Request.Form["password"];

 if (FormsAuthentication.Authenticate(username,
 password))
 {
 FormsAuthentication.SetAuthCookie(username, true);
 context.Response.Write("<h1>Authentication
 succeed.</h1>");
 }

Working with Security

264

 else
 {
 context.Response.Write("<h1>Authentication
 failed.</h1>");
 }

 context.Response.Write("<h2>name: " + username + ",
 pwd: " + password + "</h2>");
 context.Response.Flush();
 }

 else
 {
 context.Response.Write("<h1>Only accept POST
 request for authentication.</h1>");
 context.Response.Flush();
 }
 }
......
}

6. Create a new console application as the OData client.

7. Create the strong-typed OData proxy against the sample service.

8. Add a helper function for performing Forms authentication against the
ODataFormsAuthHandler.ashx handler in the service web application
(see the following GetAuthenticationCookie function).
static string GetAuthenticationCookie(string username, string
 password)
{
 var request = (HttpWebRequest)WebRequest.
 Create("http://localhost:20162/ODataFormsAuthHandler.ashx");
 request.Method = "POST";
 request.ContentType = "application/x-www-form-urlencoded";

 using(var sw = new
 StreamWriter(request.GetRequestStream()))
 {
 sw.Write("username=" + username + "&password=" +
 password);
 }

 var response = (HttpWebResponse)request.GetResponse();

 return response.Headers[HttpResponseHeader.SetCookie];
}

Chapter 7

265

9. Add the code for performing OData queries against the sample service (see the
following AccessODataService function).
static void AccessODataService()
{
 var svcUri = new
 Uri("http://localhost:20162/NWDataService.svc");
 var ctx = new NWOData.NorthwindEntities(svcUri);

 // Injecting the cookie for forms authentication token
 ctx.SendingRequest +=
 (o, e) =>
 {
 var cookie = GetAuthenticationCookie("user1",
 "pwd4user1");
 e.RequestHeaders.Add(HttpRequestHeader.Cookie,
 cookie);
 };

 var categories = ctx.Categories.ToList();
 Console.WriteLine("There are {0} categories.",
 categories.Count);
}

How it works...
In the sample web application, we have enabled Forms authentication and used the
<authorization> configuration section to restrict the access of the Northwind OData
service (only authenticated users can access it). When you deploy the web application into
the IIS server, make sure you have enabled the Anonymous Authentication (see the following
reference) for the IIS application which is necessary for ASP.NET Forms authentication to
work correctly.

Enable Anonymous Authentication (IIS 7) available at http://technet.microsoft.com/
en-us/library/cc731244(v=WS.10).aspx

By default, web applications which use Forms authentication need a login page for client
users to log on with their username/password credentials. However, such a user interactive
approach does not work for a service applications such as Web Service or WCF Data Service.
Therefore, we need to build an additional endpoint so that the service client (such as the
OData client proxy) can use the endpoint to perform authentication programmatically.

Working with Security

266

In this sample, we create the ODataFormsAuthHandler.ashx handler which accepts the
username/password credentials from the client and returns the generated authentication
token (in HTTP response cookies). Thus, the OData client can programmatically access the
handler to obtain the authentication token and hold it (in memory) for sequential OData
service query requests. Also, when using the Visual Studio generated OData proxy to query the
secured OData service, we can use the SendingRequest event of the data context class to
supply the Forms authentication token (as the HTTP request cookie).

By the way, when the Forms authentication access rules are enabled, we will not be able
to generate an OData client proxy through the Visual Studio Add Service Reference or
DataSvcUtil.exe tool. In order to resolve this problem, we can either temporarily turn off
the authorization rules when creating service proxy or manually download the metadata of the
OData service and generate a service proxy against the local downloaded metadata.

There's more...
All the Forms authentication negotiation (based on the ODataFormsAuthHandler.ashx
handler) between OData service and client are over plain HTTP transport. In a real production
case, it is recommended that you use HTTPS/SSL transport so as to ensure the secure
transfer of client user credentials and authentication tokens between the client and server.

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

 f Securing OData service with HTTPS transport recipe

Securing OData service with HTTPS
transport

While trying to find a simple and quick means for securing an Internet faced web application,
we will often consider HTTPS based transport as a good option. HTTPS is a combination
of Hypertext Transfer Protocol (HTTP) with SSL/TLS protocol. It provides encrypted
communication and secure identification of a network web server. As OData is naturally based
on HTTP protocol, it is apparent that we can leverage HTTPS to implement transport layer
security for our OData services. In this recipe, we will show you how to apply HTTPS transport
security for OData services hosted in the IIS 7 server.

Chapter 7

267

Getting ready
The next section will focus on the HTTPS/SSL configuration for the Northwind OData service
deployed in IIS 7. You can refer to the Hosting a WCF Data Service in IIS server recipe in
Chapter 3, OData Service Hosting and Configuration for details about deploying OData service
into IIS 7.

The source code for this recipe can be found in the \ch07\ODataHTTPsSln directory.

How to do it...
The following are the detailed steps for securing an OData service:

1. Open IIS Manager.

2. Locate the website under which the OData service web application is deployed (see
the following screenshot).

3. Right-click on the DevWebSite node and click on the Edit Bindings… context menu
(see the following screenshot).

Working with Security

268

4. Click on the Add… button on the opened Site Bindings dialog (see the
following screenshot).

5. In the Add Site Binding dialog, specify the Type, IP address, Port and SSL certificate
values for the HTTPS binding we want to add (see the following screenshot).

6. Click on the OK button and close all the opened dialogs.

7. Select the OData service web application and double click on the SSL Settings tab in
the Feature panel (see the following screenshot).

Chapter 7

269

8. In the opened SSL Settings panel, turn on the Require SSL option so that the
OData service web application can only be accessed via HTTPS transport (see the
following screenshot).

9. Create a new console application as an OData client.

10. Generate the strong-typed OData proxy against the sample service.

We can temporarily turn off the HTTPS/SSL option
when generating the OData proxy in Visual Studio
or command-line prompt.

11. Access the HTTPS secured service with the strong-typed OData proxy (see the
following AccessHTTPsSecuredODataService function).
private static void AccessHTTPsSecuredODataService()
{
 // Register SSL certificate validation handler
 System.Net.ServicePointManager.
 ServerCertificateValidationCallback =
 (obj, cert, chain, errs) =>
 {
 // Ignore validation errors for testing certficate
 return true;
 };

 var svcUri = new
 Uri("https://localhost/ODataHTTPsWeb/NWDataService.svc");
 var ctx = new NWOData.NorthwindEntities(svcUri);

 var categories = ctx.Categories.ToList();
 Console.WriteLine("There are {0} categories.",
 categories.Count);
}

Working with Security

270

How it works...
In this sample, we use IIS Manager to configure the HTTPS transport for the OData service
web application. The IIS server manages all HTTP and HTTPS transport channels at website
level (as Site Bindings). When adding a new HTTPS Site Binding in IIS, we need to select a
SSL Certificate. This certificate is used for the data security and server authentication over
the HTTPS transport. For development/test purposes, we can use makecert.exe tool to
generate a test certificate. The following is the command we have used for generating the
sample SSL Certificate:

makecert -r -pe -n CN="SecureODataSite" -eku 1.3.6.1.5.5.7.3.1 -ss my
-sr localmachine -sky exchange -sp "Microsoft RSA SChannel Cryptographic
Provider" -sy 12

At web application level, we can use the Require SSL option to further control whether the
web application can only be accessed via HTTPS transport or not.

At the client side, we create a console application which uses the strong-typed OData proxy
to access the HTTPS secured service. One thing worth noticing is that the test certificate
(created by makecert.exe) cannot pass the default SSL certificate validation on .NET
based web clients (including WebRequest class, ASMX WebService client proxy, WCF
client proxy, and so on). Therefore, we need to intercept the SSL certificate validation
process (by using the ServerCertificateValidationCallback callback event of the
ServicePointManager class) so as to suppress the default validation error.

By using Fiddler (or any other HTTP sniffer tools), we can capture the underlying transport
communications and verify that the OData requests and responses are secured via the HTTPS
channel (see the following screenshot).

See also
 f Hosting a WCF Data Service in IIS server recipe in Chapter 3, OData Service Hosting

and Configuration

Chapter 7

271

Implementing OData service authentication
with custom HTTP Module

HTTP Module is an ASP.NET component that can intercept the HTTP requests (against ASP.
NET web application resources) during the server-side processing pipeline. The IIS and ASP.
NET infrastructure have provided many built-in HTTP modules, some of which are used for
security authentication and authorization against incoming HTTP requests. Also, developers
can also create their own HTTP modules to extend the default processing pipeline.

In most cases, we will use a ASP.NET/IIS based web application for hosting an OData service
created via WCF Data Service. Therefore, it is certainly a good idea to leverage custom HTTP
modules for extending the processing pipeline of OData services hosted in ASP.NET web
applications. In this recipe, we will demonstrate how to apply custom authentication for a WCF
Data Service through a custom HTTP Module.

Getting ready
The sample OData service used here is still based on the Building an OData service via WCF
Data Service and ADO.NET Entity Framework recipe in Chapter 1, Building OData Services.
We will create a custom HTTP Module that demands a custom HTTP header from the OData
client for authentication.

The source code for this recipe can be found in the \ch07\CustomAuthODataSln directory.

How to do it...
The following are the detailed steps for creating the sample applications:

1. Create a new ASP.NET web application that contains the Northwind OData service.

2. Add a new ASP.NET Module (see the following screenshot) named
CustomODataAuthModule in the web application.

Working with Security

272

3. Open the .cs file of the CustomODataAuthModule class and add the
authentication code in it (see the following code snippet).
public class CustomODataAuthModule : IHttpModule
{
......

 public void Init(HttpApplication context)
 {
 context.AuthenticateRequest += new
 EventHandler(context_AuthenticateRequest);
 }

 void context_AuthenticateRequest(object sender,
 EventArgs e)
 {
 var request = HttpContext.Current.Request;

 if (request.Path.Contains(".svc"))
 {
 var clientID = request.Headers["x-client-id"];

 if (string.IsNullOrEmpty(clientID) ||
 clientID.Length < 5)
 {
 throw new DataServiceException(401, "Invalid
 Client Authentication ID.");
 }
 }
 }
}

4. Open the web.config file of the web application and add the configuration
elements for registering the CustomODataAuthModule HTTP Module.

The configuration elements used for registering the HTTP Module vary depending
on whether we use the Classic or Integrated pipeline mode for the IIS 7 application
pool. For Classic mode, we need to register the HTTP Module in the <system.web>
section (see the following configuration fragment).

Chapter 7

273

For the Integrated mode, we need to register the HTTP Module in the <system.
webServer> section (see the following configuration fragment).

5. Deploy the web application into IIS 7.

For custom HTTP.modules or HTTP handlers, we can also
use Visual Studio test web server (without the IIS server)
for debugging and testing.

6. Create a new console application as OData client.

7. Generate the strong-typed OData proxy against the sample service.

8. Access the sample service by supplying the custom HTTP header for authentication
(see the following code snippet).
static void AccessODataWithCustomAuthentication()
{
 var svcUri = new
 Uri("http://localhost:7908/NWDataService.svc/");
 var ctx = new ODataSvc.NorthwindEntities(svcUri);

 ctx.SendingRequest += (o, e) =>
 {
 e.RequestHeaders.Add("x-client-id",
 Environment.MachineName);
 };

 var categories = ctx.Categories.ToList();
 Console.WriteLine("There are {0} categories.",
 categories.Count);
}

Working with Security

274

How it works...
In the sample OData service, we create a custom HTTP Module which hooks up the
AuthenticateRequest event (exposed on the HTTP Module class) of ASP.NET/IIS
processing pipeline. The event handler simply looks for a custom HTTP header from the
incoming request (against the .svc service document) and denies the request if the header
is not supplied.

When dealing with HTTP Module registration, we need to use different configuration
approaches based on the application pool pipeline mode used in the IIS 7 website or web
application. The Integrated mode is newly provided in IIS 7. By using the Integrated mode,
we can extend the .NET based HTTP Module to all requests (against ASP.NET or non ASP.NET
specific resources) in IIS hosted web applications. For more information about Integrated and
Classic mode and how they impact ASP.NET web applications hosting in IIS 7, you can refer to
the following website:

Moving an ASP.NET Application from IIS 6.0 to IIS 7.0 available at
http://msdn.microsoft.com/en-us/library/bb515251.aspx

There's more...
The AuthenticateRequest event (of the HTTP Module class) we have used here is quite
useful for implementing server-side request validation and interception. In addition, there are
also many other useful events exposed in the ASP.NET processing pipeline through which we
can implement various kinds of request interception functions based on our requirements. For
more information on this, you can refer to the following article:

INFO: ASP.NET HTTP Modules and HTTP Handlers Overview
available at http://support.microsoft.com/kb/307985

See also
 f Injecting custom HTTP headers in OData requests recipe in Chapter 2, Working with

OData at Client Side

 f Hosting a WCF Data Service in IIS server recipe in Chapter 3, OData Service Hosting
and Configuration

Chapter 7

275

Adding custom authorization with
server-side processing pipeline

As shown in the Implementing OData service authentication with custom HTTP Module
recipe mentioned earlier, we can use ASP.NET HTTP Module to apply custom authentication
or authorization code logic for OData services hosted in an IIS server. Such customization is
based on the ASP.NET server-side processing pipeline, similar server-side extension interfaces
can also be found in standard WCF service programming model. Then, is there any WCF
Data Service specific server-side pipeline we can use for implementing custom security? The
answer is of course, yes!

In this recipe, we will show you how to use the built-in extension object model of WCF Data
Service to apply custom service authorization.

Getting ready
Here, we will use the Northwind OData service as an example and apply some custom
authorization code logic to it. Although the authorization validation is still based on a custom
HTTP header sent from client, this time we will use the WCF Data Service server-side pipeline
(instead of HTTP Module) to implement the validation function.

The source code for this recipe can be found in the \ch07\ODataPipelineAuthSln
directory.

How to do it...
The following are the detailed steps to implement the sample application:

1. Create a new ASP.NET web application that contains the Northwind OData service
(named NorthwindOData.svc in this sample).

2. Open the code-behind file of the NorthwindOData.svc service.

3. Register an event handler for the ProcessingRequest event (against the
ProcessingPipeline property) in the constructor of the service class (see the
following code snippet).
public class NorthwindOData : DataService< NorthwindEntities >
{
 public NorthwindOData()
 {
 this.ProcessingPipeline.ProcessingRequest +=
 new
 EventHandler<DataServiceProcessingPipelineEventArgs>
 (ProcessingRequestHandler);
 }

Working with Security

276

4. In the ProcessingRequest event handler, add the code for validating the security
token (custom HTTP header) from the incoming OData query request (see the
following ProcessingRequestHandler function).

 void ProcessingRequestHandler(object sender,
 DataServiceProcessingPipelineEventArgs e)
 {
 // Allow service root and metadata access for all users
 var svcUri = e.OperationContext.AbsoluteServiceUri;
 var opUri = e.OperationContext.AbsoluteRequestUri;
 if (opUri == svcUri ||
 opUri.PathAndQuery.Contains("$metadata")) return;

 // Check auth token
 var webContext = HttpContext.Current;
 var token = webContext.Request.Headers["auth-token"];

 if(string.IsNullOrEmpty(token) ||
 token.IndexOf("admin") == -1)
 {
 throw new DataServiceException(401, "Unauthorized
 OData Request!");
 }
 }
......

}

5. Create a client application to consume the sample service.

For the OData client, we will use the similar code logic (supplying a custom HTTP header for
authentication) as what we did in the Implementing OData service authentication with custom
HTTP Module recipe mentioned earlier.

How it works...
In this sample, we use the ProcessingPipeline property of the WCF Data Service class
to hook up the service processing pipeline. The ProcessingRequest event used here is raised
before a certain WCF Data Service request gets processed at the server side. Therefore, it's a
great point for us to perform custom authorization or other custom validation code logic. The
event handler function takes a parameter of DataServiceProcessingPipelineEventArgs
type, which allows us to access some context data of the incoming OData request. In the
sample code, we use it to determine whether the incoming request is targeting the service root
or metadata document. If so, we will pass the request, otherwise, we will perform validation
against the request.

Chapter 7

277

As the WCF Data Service is running within the ASP.NET runtime,
we can also use HttpContext.Current property to access
additional context information from the underlying HTTP request.

In addition, here we have only used the ProcessingRequest event of WCF Data Service
server-side processing pipeline. Actually, there are some other events exposed by the pipeline
through which we can implement other customization and extension code logic. For more
information about these extension events, you can refer to the following MSDN website:

DataServiceProcessingPipeline class available at http://msdn.microsoft.com/en-us/
library/system.data.services.dataserviceprocessingpipeline.aspx

See also
 f Implementing OData service authentication with custom HTTP Module recipe

Using Interceptors to control access for
individual entity set

OData services expose their primary data through entity sets so that client users can access
the certain entity sets based their requirements. And from the other perspective, the OData
service might want to expose different collections of entity set to different kinds of client
users. Then, how can we implement such entity-set-specific access control?

Well, WCF Data Services has introduced another extension point called Interceptor which can
help intercepting the service requests against an individual entity set exposed in the service.
In this recipe, we will demonstrate how we can use Interceptors to apply access control for an
individual entity set exposed in WCF Data Service.

Getting ready
In this sample, we will use some Interceptors to restrict the query and update access against
the Categories entity set exposed in the Northwind OData service. Also, we assume that
the service has enabled Windows Authentication so that we can perform the access control
validation based on the Windows identity supplied from client. For how to apply Windows
authentication, you can refer to the Applying Windows authentication for OData service recipe
mentioned earlier.

The source code for this recipe can be found in the \ch07\ODataQueryInterceptorAuthSln
directory.

Working with Security

278

How to do it...
The following are the detailed steps for creating the sample applications:

1. Create a new ASP.NET web application that contains the Northwind OData service.

We need to expose at least the Categories entity set in the sample service and
enable all built-in WCF Data Service access rules on it (see the following code snippet
).
public class NorthwindOData : DataService< NorthwindEntities >
{
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 config.SetEntitySetAccessRule("Categories",
 EntitySetRights.All);
}
......

2. Define a QueryInterceptor function (for validating query requests against the
Categories entity set) within the WCF Data Service class (see the following
onQueryCategories function).
public class NorthwindOData : DataService< NorthwindEntities >
{
......

 [QueryInterceptor("Categories")]
 public Expression<Func<Category, bool>> OnQueryCategories()
 {
 var userId = HttpContext.Current.User.Identity.Name;

 if (ValidateUser(userId))
 {
 return c => true;
 }
 else
 {
 throw new DataServiceException(401, "Unauthorized
 User!");
 }
 }

}

Chapter 7

279

3. Define a ChangeInterceptor function (for validating update requests against the
Categories entity set) within the WCF Data Service class (see the following
onChangeCategories function).
 [ChangeInterceptor("Categories")]
 public void OnChangeCategories(Category product,
 UpdateOperations operations)
{
 var userId = HttpContext.Current.User.Identity.Name;

 if (!ValidateUser(userId))
 {
 throw new DataServiceException(401, "Unauthorized
 User!");
 }
}

How it works...
In the sample service, we have applied two Interceptors for the Categories entity set. One
is the QueryInterceptor function (defined by the QueryInterceptorAttribute) for
validating the query requests, and another is the ChangeInterceptor function (defined by
the ChangeInterceptorAttribute) for validating the update requests.

The QueryInterceptor function must return a lambda expression in the form of
Expression<Func<T,bool>> where T represents the entity type of the target entity
set. This lambda expression helps determine whether the entity object from target entity
set should be returned to client or not. In this case, we simply throw out an instance of
DataServiceException in case the client identity validation fails.

As for the ChangeInterceptor function, it must be a void function and accepts
two parameters (one is an instance of the target entity type; another is an instance of
UpdateOperations class). By using these two input parameters, we can determine what
kind update operation is being made against which entity object. In the sample function, we
also throw out a DataServiceException instance in case the validation fails.

At runtime, the Interceptor functions are called by WCF Data Service at the appropriate point
during an OData request's processing lifecycle. Also, as Interceptor is per entity set based,
when we want to customize the request processing logic against a specific entity set, it is
more efficient to use an Interceptor rather than hook up the entire server-side processing
pipeline of the target service.

Working with Security

280

See also
 f Applying basic access rules on WCF Data Service recipe in Chapter 3, OData Service

Hosting and Configuration

 f Applying Windows authentication for OData service recipe

Implementing role-based security for OData
service

So far we have discussed several different options to apply custom authentication or
authorization code logic for an OData service including using HTTP Module, using WCF
Data Service Interceptors, using a WCF Data Service server-side processing pipeline,
and so on. Now, let's go one step further and try securing an OData service by using the
combination of these options.

In this recipe, we will demonstrate how to implement the role-based security for an OData
service (built via WCF Data Service) by using both HTTP Module and Interceptors.

Getting ready
A role-based security model is commonly used for implementing authorization logic in service
applications. Role-based security has been supported since the earlier version of .NET
Framework, and has been applied in many .NET development features such as ASP.NET, WCF,
code access security, and so on. If you're not familiar with role-based security yet, you can
have a look at the following website:

Role-based Security available at http://msdn.microsoft.com/en-us/library/
shz8h065.aspx

The source code for this recipe can be found in the \ch07\ODataRoleBasedSecuritySln
directory.

How to do it...
In this sample, we will apply role-based authorization control (based on our custom client
authentication method) for the Categories and Products entity sets in the Northwind
OData service. Now, let's have a look at the following steps to do it:

1. Create a new ASP.NET web application which contains the Northwind OData service.

We need to at least expose the Categories and Products entity sets in
the service.

Chapter 7

281

2. Create an ASP.NET HTTP Module for populating the custom security context of each
incoming OData request (see the following RoleBasedAuthModule class code).
public class RoleBasedAuthModule : IHttpModule
{

 public void Init(HttpApplication context)
 {
 context.AuthenticateRequest+=new
 EventHandler(OnAuthenticateRequest);
 }

 void OnAuthenticateRequest(object sender, EventArgs e)
 {
 var app = sender as HttpApplication;
 var request = app.Context.Request;
 var userId = request.Headers["odata-user-id"];

 if(string.IsNullOrEmpty(userId))
 {
 userId = "Anonymous";
 }

 var roles = GetRolesForUser(userId);

 var gPrincipal = new GenericPrincipal(
 new GenericIdentity(userId),
 GetRolesForUser(userId)
);

 app.Context.User = gPrincipal;
 }

 #region -- Helper Methods --

 string[] GetRolesForUser(string userId)
 {
 if(userId == "Admin"){
 return new string[]{"Administrator", "User"};
 }
 else if (userId == "User")
 {
 return new string[] { "User" };
 }

Working with Security

282

 else
 {
 return new string[] { "" };
 }
 }
 #endregion
}

3. Register the HTTP Module (RoleBasedAuthModule) in the web.config file (see
the following screenshot).

4. Turn off the built-in ASP.NET authentication in the web.config file (see the
following screenshot).

5. Define the Interceptors for performing role-based access check in the WCF Data
Service class

Here are two sample QueryInterceptor functions, one for the Categories entity
set; another for the Products entity set.
 [QueryInterceptor("Categories")]
 public Expression<Func<Category, bool>> OnQueryCategories()
{
 var user = HttpContext.Current.User;
 if (user.IsInRole("Administrator"))
 return (c) => true;
 else
 throw new DataServiceException(401, "Unauthorized
 User!");
}

 [QueryInterceptor("Products")]
 public Expression<Func<Product, bool>> OnQueryProducts()
{

Chapter 7

283

 var user = HttpContext.Current.User;
 if (user.IsInRole("User"))
 return (p) => true;
 else
 throw new DataServiceException(401, "Unauthorized
 User!");
}

6. Deploy the service web application into IIS server.

We need to enable the Anonymous Authentication setting (see the following
screenshot) for the IIS web application so as to suppress other built-in authentications.

How it works...
In this sample, we use role-based authorization to grant different access control permissions
(based on the custom authentication identity) for different entity sets in the Northwind OData
service. The entire role-based security implementation consists of the following three parts:

 f Validating the authentication token from each incoming service request

 f Populating the security context for each service request

 f Performing authorization check based on the roles associated in the security context
data (for each service request)

The RoleBasedAuthModule HTTP Module is responsible for the former two parts. It first
validates the client identity by checking a custom HTTP header in the incoming request,
and then it creates a GenericPrincipal object (based on the client identity), which
encapsulates the security roles associated with the identity. When the processing flow
comes to the Interceptor functions, we simply extract the GenericPrincipal object from
HttpContext.Current.User property and perform the authorization check through the
IPrincipal.IsInRole method.

Working with Security

284

It is worth noticing that we have turned off the ASP.NET built-in authentication
(in the web.config file) and enabled Anonymous Authentication in IIS authentication
settings for the sample web application. This is necessary because we do not want to use
any built-in authentication methods of ASP.NET or IIS server, but use our custom HTTP
Module-based authentication.

There's more...
In this sample, we directly use the GenericPrincipal and GenericIdentity classes
(under System.Security.Principal namespace) for populating the security context of
each service request. If you want to store more complicated security context information, you
can also implement your own principal and identity types based on the IPrincipal and
IIdentity interfaces under the System.Security.Principal namespace.

See also
 f Implementing OData service authentication with custom HTTP Module recipe

 f Using Interceptors to control access for individual entity set recipe

8
Other OData

Programming Tips

In this chapter we will cover:

 f Using LINQPad to compose OData query code

 f Exploring OData service with ODataExplorer

 f Using OData service in Windows PowerShell script

 f Exploring OData service with Microsoft Excel PowerPivot component

 f Inspecting OData HTTP traffic through Fiddler web debugger

 f Using Open Data Protocol Visualizer to inspect the object model of OData service

 f Consuming OData service in Windows 8 Metro style application

Introduction
So far we've talked about many different aspects of OData programming with the .NET
Framework platform, in the previous chapters. We have covered service-side development,
client-side development, hosting and configuration, OData integration in web applications,
OData integration in mobile apps, OData service security, and so on.

However, there are still many interesting and useful OData programming topics (which do not
belong to any of the aspects discussed earlier) that haven't been covered yet.

In this chapter, we will take the opportunity to explore some special OData programming tips,
which are also helpful to OData developers when developing or testing OData services.

Other OData Programming Tips

286

Using LINQPad to compose OData query
code

LINQPad is a free tool for querying data against various kinds of data sources which support
.NET LINQ style query syntax. For example, we can use LINQPad to query a relational database
through LINQ to SQL, we can use LINQPad to query a ADO.NET Entity Framework data model
via LINQ to Entity, or we can also perform an XML document query via LINQ to XML. And with
the query editor of LINQPad, we can easily compose and test our .NET or SQL-based query
code interactively.

Currently, the latest version of LINQPad has started supporting .NET Framework 4.0 and
OData-compatible data sources. In this recipe, we will discuss how to use LINQPad for
composing and testing OData query code.

Getting ready
Before getting started, we need to download the latest version of LINQPad from the following
official site:

http://www.linqpad.net/

The source code for this recipe can be found in the \ch08\ODataLINQPadSln directory.

How to do it...
Here we will use LINQPad 4 to compose some OData queries against the Northwind OData
service. Let's take a look at the steps to do it.

1. Launch the LINQPad application. LINQPad is an XCOPY application so that we
can directly launch the LINQPad.exe program downloaded to our local disk. The
following screenshot shows the main UI of LINQPad:

2. Click on the Add connection link button at the top of the left view.

http://www.linqpad.net/
http://www.linqpad.net/

Chapter 8

287

3. In the Choose Data Context dialog, select WCF Data Services (OData) item from the
LINQPad Driver list (see the following screenshot).

4. In the WCF Data Services (OData) Connection dialog, supply the OData service
address in the URI field (see the following screenshot).

You can specify authentication credentials in the Log on details
panel in case the target service requires authentication.

5. Click on the OK button to save the service connection.

6. Use File | New Query to open a new query editor in the right panel of LINQPad.

7. Select C# Expression in the Language field (at the top of the query editor) and write
the LINQ query expressions in the content area (see the following screenshot).

Other OData Programming Tips

288

Make sure the correct service connection is selected in
the Database field (at the top of the query editor).

8. Click on the green triangle button (at the top-left corner of the query editor) to execute
the query. The query result will be displayed in the bottom view of the query editor
panel (see the previous screenshot).

9. Alternatively, select C# Program in the Language field and write the LINQ query code
as a complete .NET code block or function (see the following screenshot).

How it works...
LINQPad programmatically parses the query code in query editor panels and compiles them into
the underlying execution code according to the target data source types. By selecting the SQL
tab in the result view, we can get the data source specific query code generated by the tool. For
a relational database, the raw SQL statements will be displayed while for an OData (WCF Data
Services) source, the raw query Uri string will be displayed (see the following screenshot).

Chapter 8

289

In addition, LINQPad will use separate .NET AppDomain to run each of the queries opened
in the tool so that the processing and execution of all the queries will not interfere with each
other. For more information about how LINQPad works, you can refer to the following page:

http://www.linqpad.net/HowLINQPadWorks.aspx

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

 f Filtering OData query results by using query options recipe in Chapter 2, Working with
OData at Client Side

Exploring OData service with ODataExplorer
Sometimes we might just want to quickly browse the data entities exposed in an OData
service without using complicated and advanced queries. In such a case, a simple and easy-
to-use GUI tool will be quite helpful.

ODataExplorer is a Silverlight-based utility which allows users to perform ad-hoc queries
against OData services and view the data entities in a visualized manner. In this recipe, we
will show you how to explore data entities from an OData service by using ODataExplorer.

Getting ready
Since ODataExplorer is a Silverlight-based application, make sure you have the Silverlight
runtime installed on your local machine.

Refer to Get Silverlight | Microsoft Silverlight at http://www.microsoft.com/
getsilverlight/get-started/install/default.aspx.

How to do it...
Now, let's go through the detailed steps to use ODataExplorer.

1. Launch the web browser and navigate to the following URL address of the
ODataExplorer tool:
http://www.silverlight.net/ODataExplorer

http://www.linqpad.net/HowLINQPadWorks.aspx
http://www.linqpad.net/HowLINQPadWorks.aspx
http://www.silverlight.net/ODataExplorer
http://www.silverlight.net/ODataExplorer

Other OData Programming Tips

290

2. Alternatively, we can choose to install ODataExplorer locally (after it is loaded in the
web browser) so as to directly launch it from the desktop or the Start menu the next
time (see the following screenshot).

3. On the OData Services panel (on the left), click on the Add New button to add a new
service reference (see the following screenshot).

4. In the Add New OData Service dialog, specify the Workspace Name and Data
Service Uri fields for the target OData service (see the following screenshot).

5. Click on the OK button to save the service reference.

6. Select the target service reference (we have added) in the OData Services panel.

Chapter 8

291

7. Select an entity set in the Collections panel and use the GUI filters to apply OData
query options (see the following screenshot). By default, the query result will be
displayed in a visualized data grid view.

8. Click on the Raw button (beside the Grid button) to show raw data of the query result.

9. Select the data format (XML or JSON) and click on the Go button to view the raw
HTTP headers and content (see the following screenshot).

Other OData Programming Tips

292

How it works...
Since ODataExplorer is a Silverlight-based application, it can only access remote OData
services, which have a cross-domain policy file exposed for clients. If the target service does
not have a cross-domain policy file, we will probably see the following error screen when
accessing it from ODataExplorer (in the web browser):

To work around this problem, we need to launch ODataExplorer through the Out-of-Browser
mode (as shown in the second step previously).

There's more...
If you're interested in how ODataExplorer is implemented, you can get the complete source
code of ODataExplorer from the following OData official site:

http://www.odata.org/developers/odata-sdk

See also
 f Using OData service in Silverlight data access application recipe in Chapter 4, Using

OData in Web Application

 f Querying StackOverflow forums data with OData endpoint recipe in Chapter 6,
Working with Public OData Producers

http://www.odata.org/developers/odata-sdk
http://www.odata.org/developers/odata-sdk

Chapter 8

293

Using OData service in Windows PowerShell
script

Windows PowerShell is a new task automation framework of the Microsoft Windows
operating system. Windows PowerShell consists of a command-line shell and its associated
scripting language built on top of it, and integrated with .NET Framework. With Windows
PowerShell, IT professionals can automate administrative tasks just like they do with
traditional bat or script files. And developers can use Windows PowerShell to perform many
common management and testing tasks without creating dedicated utility programs.

Since Windows PowerShell is naturally coupled with .NET Framework, users can fully leverage
the rich class library of .NET Framework in Windows PowerShell scripts. In this recipe, we will
show you how to incorporate OData service in Windows PowerShell script code.

Getting ready
Make sure you have Windows PowerShell installed on your local machine. For Windows 2008
R2 and Windows 7, Windows PowerShell is already installed with the operating system.
For Windows Server 2008 and Windows Vista, you can manually install it by following
the Windows Management Framework reference at http://go.microsoft.com/
fwlink/?LinkId=177670.

How to do it...
We will create a sample PowerShell script file to consume a local Northwind OData service.
The following are the detailed steps to do it:

1. Create a new text file by using any text editor such as Notepad or Visual Studio
text editor.

2. Add the following script code into the text file:
#Construct the WebClient object
$wc = New-Object System.Net.WebClient
$wc.UseDefaultCredentials = $true

#Query OData service with url
$queryUri = "http://localhost:42203/NorthwindOData.svc/
Categories(1)/Products?$top=5"
[xml]$responseXML = $wc.DownloadString($queryUri)

#Parse query result in XML format
$entities = $responseXML.SelectNodes("//*[local-name() =
'properties']")

Other OData Programming Tips

294

ForEach($entity in $entities)
{
 $prodID = $entity.SelectSingleNode("./*[local-name() =
'ProductID']").InnerText;
 $prodName = $entity.SelectSingleNode("./*[local-name() =
'ProductName']").InnerText;
 $prodUnitPrice = $entity.SelectSingleNode("./*[local-name() =
'UnitPrice']").InnerText;

 $prodLine = [string]::Format("ID:{0}, Name:{1},
UnitPrice:{2}", $prodID, $prodName,$prodUnitPrice)

 Write-Host $prodLine -foregroundcolor Green
}

3. Save the file with .ps1 extension (such as QueryOData.ps1) into the local disk.

4. Launch the Windows PowerShell console (see the following screenshot) by
using Start | All Programs | Accessories | Windows PowerShell | Windows
PowerShell menu.

5. Navigate to the local directory which contains the saved sample script file.

6. Execute the sample script file (QueryOData.ps1) by typing the filename in the
console (see the following screenshot).

To execute the local Windows PowerShell script file, we
have to prepend the .\ path prefix before the filename
due to security protection.

Chapter 8

295

7. Check the execution output in the Windows PowerShell console window. The following
screenshot shows the execution output of the sample QueryOData.ps1 script file:

8. Alternatively, execute the script file from Windows Explorer by using the Run with
PowerShell context menu (see the following screenshot).

How it works...
In the sample Windows PowerShell script file, we create an instance of the System.Net.
WebClient class for communicating with the Northwind OData service. Since WCF Data
Service returns response data in Atom XML format by default, we use an XmlDocument
variable (declared with the [xml] keyword) to hold the response data (of the OData query).
After the data is loaded into the XmlDocument object, we can simply use XPath to extract all
entity elements from the XML DOM structure and inspect the properties of each entity object
through the corresponding children elements.

Other OData Programming Tips

296

Although it might be a bit cumbersome to parse an OData query response via XML API in
Windows PowerShell script, the advantage is that we do not need to load any additional
assembly references (for strong-typed OData client proxy).

See also
 f Accessing OData service via WebRequest class recipe in Chapter 2, Working with

OData at Client Side

Exploring OData service with Microsoft
Excel PowerPivot component

In Chapter 6, Working with Public OData Producers, we have discussed how to use a
Microsoft Excel PowerPivot component to consume the data feed generated by the SQL Server
Reporting Service. Actually, the PowerPivot component can be used for exploring any services
which have exposed their data through OData endpoints. In this recipe, we will take the Netflix
online catalog service as example and demonstrate how to explore a standard an OData
service with a Microsoft Excel PowerPivot component.

Getting ready
Make sure you have Microsoft Excel 2010 and PowerPivot component installed. You can
download the PowerPivot installation package from the following site:

Microsoft Power Pivot at http://www.microsoft.com/en-us/bi/powerpivot.aspx

How to do it...
Now, let's have a look at the detailed steps to use the PowerPivot component.

1. Launch Microsoft Excel 2010 program.

2. Select the PowerPivot menu and click on the PowerPivot Window ribbon button (see
the following screenshot).

http://www.microsoft.com/en-us/bi/powerpivot.aspx
http://www.microsoft.com/en-us/bi/powerpivot.aspx

Chapter 8

297

3. In the opened PowerPivot for Excel window, click on the button with the data feed
icon (see the following screenshot) to start the import data wizard.

4. In the Connect to a Data Feed view of the Table Import Wizard dialog, specify Data
Feed Url of the target OData service (see the following screenshot).

5. In Select Tables and Views of the Table Import Wizard dialog, select
the entity sets we want to import in the Tables and Views list view (see the
following screenshot).

Other OData Programming Tips

298

6. Click on the Finish button to start the actual data importing process.

7. Close the Table Import Wizard dialog after the data importing has finished.

8. View the imported entity sets through the corresponding worksheets in the
PowerPivot for Excel window (see the following screenshot).

How it works...
In the Table Import Wizard dialog, when we supply Data Feed Url of the target OData
service, the tool will access the URL (service base address) so as to get all exposed entity
sets for users to select. After the actual data importing process starts, the PowerPivot tool
sends HTTP-based OData query requests to the target service and loads the data from the
selected entity sets one by one. By using Fiddler, we can inspect the underlying OData HTTP
communications between the PowerPivot tool and the target service. The following screenshot
shows the raw OData requests sent by the PowerPivot tool (captured in Fiddler), when we
import entity sets from the Netflix online catalog service:

Chapter 8

299

There's more...
Entity sets in an OData service might have relationships between each other. When we import
entity sets from an OData service into a Microsoft Excel PowerPivot client, the relationships
(between the imported entity sets) will get lost. To work around this problem, we can manually
establish the relationships between the imported tables (corresponding to the OData entity
sets) in a PowerPivot client. You can get more information about creating relationships
between PowerPivot tables through the following tutorial:

Create Relationships Between Tables (Tutorial) at http://technet.microsoft.com/en-
us/library/gg413437.aspx

See also
 f Consuming SSRS 2008 R2 report through OData feed recipe in Chapter 6, Working

with Public OData Producers

 f Inspecting OData HTTP traffic through Fiddler web debugger recipe in Chapter 8,
Other OData Programming Tips

Inspecting OData HTTP traffic through
Fiddler web debugger

When developing OData services, we often need to inspect the underlying HTTP traffic between
the client application and the target OData service for troubleshooting purposes. For example,
we might want to check if the Atom XML or JSON-format data sent from the service is correct
and expected, or we might want to check if the underlying HTTP response from the server
includes some detailed error info when the client consuming code throws out some exceptions.

On the Microsoft Windows platform, Fiddler is a very popular tool for debugging and
monitoring the HTTP traffic between web clients and servers. In this recipe, we will introduce
how we can use Fiddler to inspect the underlying HTTP communication between OData
services and client applications.

Getting ready
If you haven't installed Fiddler on your local machine yet, you can get it from the official site of
Fiddler at http://www.fiddler2.com/Fiddler2/version.asp.

Also, you can quickly get started with Fiddler through the following help page at
http://www.fiddler2.com/Fiddler/help/.

The source code for this recipe can be found in the \ch08\ODataFiddlerSln directory.

http://www.fiddler2.com/Fiddler2/version.asp
http://www.fiddler2.com/Fiddler2/version.asp

Other OData Programming Tips

300

How to do it...
Now, let's go through the steps to use Fiddler for inspecting OData requests against the
Northwind OData service.

1. Launch Fiddler by using Start | All Programs | Fiddler. Here we use version 2.3
of Fiddler for demonstration purposes. The following screenshot shows the Fiddler
window which consists of a session list view on the left and a detailed inspection view
on the right:

2. Run the OData client application, which accesses the Northwind OData service. The
following is the main code logic of the sample OData client application:
var svcUri = new Uri("http://localhost:6909/NorthwindOData.svc/");
var ctx = new ODataSvc.NorthwindEntities(svcUri);

var categories = ctx.Categories.Take(6).ToList();

foreach (var c in categories)
{
 Console.WriteLine("Products for Category '{0}':",
c.CategoryName);
 var products = ctx.Products.Where(p => p.CategoryID ==
c.CategoryID).ToList();

 foreach (var p in products)
 {
 Console.WriteLine("ID:{0}, Name:{1}", p.ProductID,
p.ProductName);
 }
}

Chapter 8

301

3. Watch the captured HTTP traffic (for the OData client-server communication) in the
Web Sessions view of Fiddler (see the following screenshot).

4. Double-click on a specific item in the Web Sessions view and inspect the detailed
request/response payloads (of the selected item) through the Inspectors panel. The
Inspectors panel consists of several tabs (such as Headers, TextView, Raw, JSON,
XML, and so on), which can help inspecting the HTTP request/response data from
different perspectives (see the following screenshot).

5. Click on the Headers tab in the Inspectors panel to look over the HTTP headers of
the selected OData request/response session (see the following screenshot).

Other OData Programming Tips

302

6. For an Atom XML format OData response, click on the XML tab in the Inspectors
panel to look over the response content in the visualized structure (see the
following screenshot).

7. Alternatively, click on the Raw tab in the Inspectors panel to look over the
entire request/response message (including both headers and content) in its
raw text format.

How it works...
The Fiddler web debugger acts as an HTTP web proxy on the local machine (at localhost
and port: 8888) so that it can capture all HTTP traffic issued from WinINET-based applications.
Other applications which support HTTP-based proxy can also leverage Fiddler for HTTP
debugging by explicitly specifying Fiddler as the default HTTP proxy.

One special aspect is that when using IE web browser or .NET Framework-based client
applications to access local services (hosted on local machine), we might find that Fiddler
does not show the corresponding HTTP traffic sessions. This is because IE and .NET
Framework are hardcoded to bypass all web proxies for HTTP requests targeting localhost.
Don't worry, the following are some methods which can help work around this issue:

 f Use the machine name or the DNS name of the local machine instead of localhost
or 127.0.0.1. For example, rather than entering http://localhost:56789/
odata.svc, use http://machinename:56789/odata.svc instead.

 f Use ipv4.fiddler or ipv6.fiddler to replace localhost. For example,
rather than hitting http://localhost:56789/odata.svc, use http://ipv4.
fiddler:56789/odta.svc instead.

 f Add an alias for 127.0.0.1 to the Windows Hosts file and send requests to that
alias. For example, rather than hitting http://127.0.0.1/odata.svc, use
http://[alias name]/odata.svc instead. You can get more information about
using Windows Hosts file in the Knowledge Base article at http://support.
microsoft.com/kb/228760.

http://machinename:56789/odata.svc
http://localhost:56789/odata.svc
http://ipv4.fiddler:56789/odta.svc

Chapter 8

303

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

Using Open Data Protocol Visualizer to
inspect the object model of OData service

When using the Visual Studio Add Service Reference wizard to generate an OData proxy, the
Visual Studio IDE will help us create some entity types based on the object model exposed by
the target OData service.

In order to help developers easily inspect the object model of an OData service, Microsoft
Data Modeling Group provides a Visual Studio extension component called Open Data
Protocol Visualizer (OData Visualizer), which can help displaying the object model of OData
services in a visualized approach.

In this recipe, we will demonstrate how we can use Open Data Protocol Visualizer to explore
the data object model of an OData service in Visual Studio IDE.

Getting ready
Before getting started, we need to download and install the OData Visualizer
extension. The extension package is available in Visual Studio Gallery at
http://visualstudiogallery.msdn.microsoft.com/f4ac856a-796e-4d78-
9a3d-0120d8137722/.

After the extension package is downloaded, we can simply double-click on the
OpenDataVisualizer.vsix file (see the following screenshot) to install the extension into
Visual Studio 2010.

The source code for this recipe can be found in the
\ch08\ODataVisualStudioVisualizerSln directory.

Other OData Programming Tips

304

How to do it...
Now, let's go through the steps for inspecting the object mode of the Netflix online catalog
service through OData Visualizer.

1. Create a new Console Application as the OData client.

2. Create the OData client proxy (via the Visual Studio Add Service Reference wizard)
against the Netflix online catalog service at the location http://odata.netflix.
com/v2/Catalog/.

3. Right-click on the generated OData proxy (under the Service References node in
Visual Studio Solution Explorer) and select the View in Diagram context menu to
launch OData Visualizer (see the following screenshot).

4. Switch to the opened designer surface of OData Visualizer. The OData Visualizer will
show an empty designer surface with the following two sections:

 � A hyperlink for activating Open Data Protocol Model Browser

 � Some quick action links for displaying certain data model items (such as
Entity Types, Complex Types, Associations, and so on) in the diagram

The following is how the initial designer surface looks like:

Chapter 8

305

5. Click on the add all hyperlink beside the Namespaces item to add all Entity Types
and Complex Types (including their Associations) into the designer surface. The
following screenshot shows the designer surface after we click on the hyperlink.
For demonstration purposes, we have collapsed all data type shapes in it.

6. Right-click on the designer surface and select the Expanded Shapes context menu to
show the details view of all data type shapes (see the following screenshot).

7. Alternatively, right-click on the designer surface and select the Show In Model
Browser context menu (see the preceding screenshot) to show Open Data Protocol
Model Browser.

Other OData Programming Tips

306

8. In the Open Data Protocol Model Browser, navigate through all data types
(included in the OData service object model) in a hierarchical structure (see the
following screenshot).

How it works...
As shown in the preceding steps, in order to use Open Data Protocol Visualizer in Visual
Studio IDE, we need to create the OData client proxy through the Visual Studio Add Service
Reference wizard first. This is because the Visual Studio generated OData proxy contains the
entity data model information retrieved from the target service's metadata. If we click on the
Show All Files button (with a red circle in the following screenshot) in Solution Explorer of
Visual Studio, we can find the .edmx file (see the following screenshot), which contains the
data entity model definition of the target OData service.

Chapter 8

307

By opening the .edmx file with any XML or text editor, we can see the entity data model
definition (in XML format) of the target OData service (see the following screenshot).

For more information about the .edmx definition file, you can refer to the following
MSDN reference:

.edmx File Overview (Entity Framework) at http://msdn.microsoft.com/en-us/
library/cc982042.aspx

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

Other OData Programming Tips

308

Consuming OData service in Windows 8
Metro style application

With the announcement of Windows 8 Developer Preview and Consumer Preview versions,
more and more people have got in touch with the new Metro-style application design introduced
by Microsoft. The Metro-style UI design is going to help developers build attractive, easy-to-use
applications that will delight customers with their intuitive and common interaction model.
Moreover, for Windows 8 Metro style application development, it now supports JavaScript +
HTML5 as the first-class programming languages.

In this recipe, we will use the Windows 8 preview version as an example, and demonstrate
how we can build a JavaScript + HTML5 based Metro style application, which shows the Movie
collections from the Netflix online catalog service.

Getting ready
In order to build and run the sample application in this recipe, you must have a computer (or
virtual machine) running Windows 8 and Visual Studio 2012 for Windows 8. Currently, you can
get the preview version of both of them from the following site:

Windows Metro Style Apps Developer Downloads at http://msdn.microsoft.com/en-
us/windows/apps/br229516

The sample application here is built with Windows 8 Consumer Preview and Visual Studio
2012 Express beta for Windows 8.

The source code for this recipe can be found in the \ch08\ODataWin8MetroSln directory.

How to do it...
The following are the steps to create the sample application:

1. Launch Visual Studio 2012 for Windows 8.

2. Click File | New | Project menu to open the New Project dialog.

Chapter 8

309

3. In the New Project dialog, select the Blank Application project template under the
JavaScript | Windows Metro style category (see the following screenshot).

4. Click on the OK button to create the project. Visual Studio will help create all
necessary project items with the structure shown in the following screenshot:

5. Define the HTML content for the default.html page. The following is the
main HTML fragment (including script references and UI elements) of the
default.html page:
<head>
......

 <link href="/css/default.css" rel="stylesheet">
 <script src="/js/default.js"></script>
 <script src="/js/dataAccess.js" ></script>
</head>
<body onload="loadGenres();">
 <div class="pageRoot">
 <h1>Netflix Movie Explorer(Win8 Metro + OData)</h1>
 <hr />

Other OData Programming Tips

310

 <h2>Genres: <select id="lstGenres"
onchange="loadTitlesByGenre();" ></select></h2>
 <hr />
 <div id="lvMovies" data-win-control="WinJS.UI.ListView"
></div>
 </div>

 <!-- ListView Item Template -->
 <div id="movieListItemTemplate" data-win-control="WinJS.
Binding.Template">
 <div class="listItemContainer">
 <img src="#"
 data-win-bind="alt:Description;src:Picture" />
 <div>
 <h4 data-win-bind="innerText:Title"></h4>
 <h6 data-win-bind="innerText:Summary"></h6>
 </div>
 </div>
 </div>
</body>

6. Create a new JavaScript file (named dataAccess.js) and put it into the /js
subdirectory, which contains all other built-in JavaScript files.

7. Add the code for populating the Genre list (from the Netflix online catalog service) in
the dataAccess.js file (see the following loadGenres function).
function loadGenres() {
 var serviceUrl = "http://odata.netflix.com/v2/Catalog/
Genres?$top=50&$format=json";

 var headers = {
 "Accept": "application/json"
 };

 new WinJS.xhr({
 type: "GET",
 url: serviceUrl,
 headers: headers
 }).then(
 function (response) {
 var data = JSON.parse(response.responseText);
 var genres = data.d;
 var lst = document.getElementById('lstGenres');

Chapter 8

311

 lst.options.add(new Option("---- Please Select a
Genre ----"));
 var i = 0;
 for (i = 0; i < genres.length; ++i) {
 lst.options.add(new Option(genres[i].Name));
 }

 },
 function (error) {
 Debug.writeln(error);
 }
);
}

8. Add the code for populating the Movie list (based on the selected Genre item) in the
dataAccess.js file (see the following loadTitlesByGenre function).
function loadTitlesByGenre() {
 var lst = document.getElementById('lstGenres');
 if (lst.selectedIndex == 0) return;

 var currentGenre = lst.options[lst.selectedIndex].value;
 var queryOptions = "$filter=Type eq 'Movie'&$select=Id,Name,Sy
nopsis,ShortSynopsis,BoxArt&$top=40&$format=json";
 var serviceUrl = "http://odata.netflix.com/v2/Catalog/
Genres('" + currentGenre + "')/Titles?"+ queryOptions;
 var headers = {
 "Accept": "application/json"
 };

 new WinJS.xhr({
 type: "GET",
 url: serviceUrl,
 headers: headers
 }).then(
 function (response) {
 var entities = JSON.parse(response.responseText).d;
 var movies = new Array();

 var i = 0;
 for (i = 0; i < entities.length; ++i) {
 movies.push({
 "Title": entities[i].Name,
 "Summary": entities[i].ShortSynopsis,
 "Description": entities[i].Synopsis,
 "Picture": entities[i].BoxArt.MediumUrl

Other OData Programming Tips

312

 });

 }

 var lv = document.getElementById('lvMovies').
winControl;
 var movieList = new WinJS.Binding.List(movies);

 lv.itemDataSource = movieList.dataSource;
 lv.itemTemplate = document.getElementById('movieListIt
emTemplate');

 },
 function (error) {
 Debug.writeln(error);
 }
);
}

9. Double-click on the package.appxmanifest file and select the Capabilities tab in
the opened editor.

10. In the Capabilities tab, make sure the Internet (Client) option (within the
Capabilities list) is checked (see the following screenshot).

Chapter 8

313

11. Save all changes and launch the project (via the F5 or Ctrl + F5 key) in Visual Studio.
The following screenshot shows the launched sample application, which displays the
Movie list based on the selected Genre item:

How it works...
With the support of HTML5 + JavaScript based programming model, traditional web developers
can also easily create Windows 8 Metro style applications just like they do for constructing web
pages. In this sample, we have created a data-driven and rich interactive Netflix Movie Explorer
application with only one HTML page and two custom script functions. Like normal HTML pages,
we use the onload event of the <body> element to initialize the drop-down list for selecting the
Genre item. And whenever the selected Genre item changes, we will retrieve the corresponding
Movie items from the target service and display them in the ListView element (a built-in UI
element of JavaScript-based Windows Metro style application).

In addition, when developing Windows 8 Metro style application, developers need to explicitly
specify what kind of Capabilities the application needs. In this sample, since our Netflix
Movie Explorer application needs to communicate with the Netflix online catalog service,
the Internet (Client) capability is necessary for the application to work correctly.

For more information about Windows 8 Metro style design and development, you can go to the
following site:

http://msdn.microsoft.com/en-us/windows/apps/br229512

Other OData Programming Tips

314

There's more...
In this sample Metro-style application, we use plain JavaScript code for parsing the JSON-
format OData query result. For a more complicated data access scenario, we can consider
using the datajs script library to consume the OData service. You can refer to the recipe
listed in the See also section for more information on this.

See also
 f Building AJAX style data-driven web pages with jQuery recipe in Chapter 4, Using

OData in Web Application

 f Consuming OData service with datajs script library recipe in Chapter 4, Using OData
in Web Application

9
New Features of WCF

Data Service 5.0
(OData V3)

In this chapter we will cover:

 f Upgrading existing OData service to WCF Data Service 5.0

 f Using geospatial types in OData service

 f Using Any and All operators to filter OData entities

 f Updating OData entities through HTTP PATCH requests

 f Resolving base URI of OData entity sets dynamically

 f Exposing binary data on OData entity with Named Resource Stream

 f Extending OData service functionalities with Service Actions

Introduction
In April 2012, Microsoft released WCF Data Service 5.0 for OData V3. As the name indicates,
this new version of WCF Data Service enables creation and consumption of data services
for the Web according to Version 3 of the Open Data Protocol (OData), which facilitates data
access and change via standard HTTP verbs. This release of WCF Data Services 5.0 includes
.NET Framework server and client libraries as well as Silverlight client libraries.

New Features of WCF Data Service 5.0 (OData V3)

316

Compared to ADO.NET Data Service and WCF Data Service 4.0, WCF Data Services 5.0
adds support for many new features such as Any/All query operator, Collection properties,
Named Resource Streams, new primitive data types, and so on.

In this chapter, we will go through some of the new features provided in WCF Data Service 5.0
and demonstrate how we can apply them in OData service and client development.

Upgrading existing OData service to WCF
Data Service 5.0

With the release of WCF Data Service 5.0, which supports OData V3, we might want to start
upgrading some of our existing OData services (built upon the WCF Data Service) to the new
version so as to make both the service side and client side benefit from those new features,
which have been added. In this recipe, we will take a tour of what we should do to upgrade an
existing OData service application (built with WCF Data Service 4.0) to the new 5.0 version.

Getting ready
Before we start, we need to download and execute the WCF Data Service 5.0 for OData V3
setup package, which will help install all the necessary assemblies and tools (for Visual Studio
IDE and command line). You can get the setup package at the following location:

WCF Data Services 5.0 for OData V3 available at http://go.microsoft.com/fwlink/
p/?LinkId=248279

The source code for this recipe can be found in the \ch09\WCFDataServiceV5Sln
directory.

How to do it...
Now, let's have a look at the detailed upgrading steps:

1. Open the web application (which contains the WCF Data Service 4.0 based OData
service) in Visual Studio 2010.

2. In the web application, update all WCF Data Service 4.0 specific assemblies
(System.Data.Services.dll and System.Data.Services.Client.dll) to
their WCF Data Service 5.0 counterparts (Microsoft.Data.Services.dll and
Microsoft.Data.Services.Client.dll) in the assembly reference list (see the
following screenshot).

Chapter 9

317

As shown in the previous screenshot, WCF Data Service 5.0 uses a different
assembly file naming prefix from WCF Data Service 4.0.

The new assemblies can be found in the WCF Data Service 5.0
installation path on the local machine. For example, C:\Program
Files\Microsoft WCF Data Services\5.0\bin\.
NETFramework.

3. Open the .svc file of the OData service and replace the Factory class (in the
<%@ ServiceHost %> directive) to the WCF Data Service 5.0 specific one (see the
following code fragment).
<%@ ServiceHost Language="C#"
 Factory="System.Data.Services.DataServiceHostFactory,
 Microsoft.Data.Services, Version=5.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 %>

4. Open the code-behind file of the OData service and set the MaxProtocolVersion
property to DataServiceProtocolVersion.V3 in the InitializeService
function (see the following code snippet).
public class NorthwindOData : DataService< NorthwindEntities >
{
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;

 }
}

New Features of WCF Data Service 5.0 (OData V3)

318

How it works...
WCF Data Service 5.0 uses Microsoft.Data.Services as the assembly file naming
prefix, which is different from the System.Data.Services prefix used by the WCF Data
Service 4.0 assemblies provided in .NET Framework 4.0. The reason for this is to simplify
the side-by-side installation and make developers switch between different versions of
WCF Data Service more conveniently.

WCF Data Service uses the System.Data.Services.DataServiceHostFactory class
for activating the service instance at runtime (when the first request against the .svc file
arrives). Therefore, we also need to update this class to the latest version (provided by WCF
Data Service 5.0), so that the new service activation process can be applied.

In addition, by specifying the MaxProtocolVersion property to
DataServiceProtocolVersion.V3, we have enabled the service to handle OData V3
(WCF Data Service 5.0) specific requests from the client. Also, even after we have upgraded
the service to WCF Data Service 5.0, we can still use this property to restrict the service so
that it only exposes OData V2 (or earlier) features. You can get more information about WCF
Data Service versioning at the following MSDN reference:

Data Service Versioning (WCF Data Services) available at http://msdn.microsoft.com/
en-us/library/ee473427(v=vs.103).aspx

There's more...
The previous steps demonstrate how to upgrade a service application based on WCF Data
Service. For client applications built upon the WCF Data Service Client library, the upgrade
process is quite similar. The following are the basic steps:

1. Remove the existing OData proxy types and related assembly references (such as the
System.Data.Service.Client.dll).

2. Regenerate the OData proxy through the Visual Studio Add Service Reference wizard.

Because the WCF Data Services 5.0 setup package will update the Add Service Reference tool
in Visual Studio 2010, the regenerated OData proxy is automatically targeting the WCF Data
Service 5.0 specific client library.

Chapter 9

319

If you create the OData proxy through the DataSvcUtil.exe command-line tool, you should
switch to the new version of this tool within the installation folder of WCF Data Service 5.0
(see the following screenshot).

See also
 f Building an OData service via WCF Data Service and ADO.NET Entity Framework

recipe in Chapter 1, Building OData Services

Using geospatial types in OData service
WCF Data Service 5.0 (OData V3) has added support for some new primitive data types and
the geospatial types are in this new type list. Geospatial data types have already been used
in SQL Server 2008 R2 and will probably be included as built-in types of the next version
of the .NET Framework. And in this release, a dedicated spatial class library is provided so
that OData services built upon WCF Data Service 5.0 can leverage geospatial primitive types
(including Geography and Geometry types) to define their data object model.

In this recipe, we will show you how to build an OData service using the new geospatial types
and apply the geospatial-specific query extensions at client side.

Getting ready
The sample OData service here will use a custom class instead of an ADO.NET Entity
Framework data model as the data source. In the data source class, we will only expose a
single entity set, which contains some Address records (which use the GeographyPoint
spatial type).

Make sure you have installed WCF Data Service 5.0 components and updated your OData
service and client projects correspondingly (refer to the Upgrading existing OData service to
WCF Data Service 5.0 recipe).

The source code for this recipe can be found in the \ch09\ODataSpatialTypesSln
directory.

New Features of WCF Data Service 5.0 (OData V3)

320

How to do it...
Now, let's go through the steps to create the sample application:

1. Create a new Class Library project (named SharedLib).

2. Add reference to the System.Spatial.dll assembly (from the installation folder
of WCF Data Service 5.0) in the Class Library project.

3. Create a custom class (named TestSpatialOperations), which derives from the
SpatialOperations class (under System.Spatial namespace) and override the
spatial operations in the custom class.

The following is the main code of the TestSpatialOperations class in
this sample:
public class TestSpatialOperations: SpatialOperations
{
 public override double Distance(Geography operand1, Geography
 operand2)
 {
 var p1 = (GeographyPoint)operand1;
 var p2 = (GeographyPoint)operand2;

 // Call helper functions to calculate distance
 return GetDistanceByPoints(p1.Latitude, p1.Longitude,
 p2.Latitude, p2.Longitude);
 }

 public override double Distance(Geometry operand1, Geometry
 operand2)
 {
 throw new NotImplementedException();
 }
}

4. Create a new ASP.NET Empty Web Application project (in the same solution as the
SharedLib Class Library project).

5. In the Web project, add reference to the SharedLib Class Library project.

It is recommended that we use project based reference
(if possible) instead of file based reference when
referencing assemblies in Visual Studio projects.

Chapter 9

321

6. Create a custom class (used as data source of the sample OData service), which
exposes some spatial type objects via the IQueryable<T> interface.

The following SimpleSpatialDataSource class exposes a public property of the
IQueryable<AddressItem> type:
public class SimpleSpatialDataSource
{
 static IList<AddressItem> _addresses;

 static SimpleSpatialDataSource()
 {
 _addresses = new List<AddressItem>();

 // Add some test records
 _addresses.Add(
 new AddressItem() {
 Name = "addr1",
 AddressLine = "Line of Address1",
 Location = GeographyPoint.Create(
 47.7869921906598, -122.164644615406)
 }
);
 _addresses.Add(
 new AddressItem() {
 Name = "addr2",
 AddressLine = "Line of Address2",
 Location =
 GeographyPoint.Create(47.6867097047995,
 -122.250185528911)
 }
);

 }

 public IQueryable<AddressItem> Addresses
 {
 get { return _addresses.AsQueryable<AddressItem>(); }
 }
}

And the following is the definition of the AddressItem class:

[DataServiceKey("Name")]
public class AddressItem
{

New Features of WCF Data Service 5.0 (OData V3)

322

 public string Name { get; set; }
 public string AddressLine { get; set; }
 public GeographyPoint Location { get; set; }
}

7. Create a new WCF Data Service (named SpatialDataService.svc) and make
sure it is updated to WCF Data Service 5.0.

8. In the code-behind file of the SpatialDataService.svc service, change the data
source type (of the service class) to the SimpleSpatialDataSource class (see the
following code snippet).
public class SpatialDataService : DataService<
 SimpleSpatialDataSource >
{

}

9. In the InitializeService function of the service class, register the custom
implementation of the spatial operations to the WCF Data Service runtime.

This can be done by assigning a new instance of the TestSpatialOperations
class to the SpatialImplementation.CurrentImplementation.Operations
property (see the following code snippet).
public static void InitializeService(DataServiceConfiguration
config)
{
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;
 config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);

 // Register Spatial operations
 SpatialImplementation.CurrentImplementation.Operations =
 new TestSpatialOperations();
}

10. Create a new Console Application as the OData client.

11. Generate the OData proxy (via the Visual Studio Add Service Reference wizard)
against the sample service.

12. Add a function for performing spatial type specific OData queries against the sample
service (see the following QuerySpatialDataService function).
static void QuerySpatialDataService()
{
 var svcUri = new
 Uri("http://localhost:19749/SpatialDataService.svc/");
 var ctx = new ODataSvc.SimpleSpatialDataSource(svcUri);

Chapter 9

323

 // Define a reference location for test
 var myLocation = GeographyPoint.Create(47.7201372000862,
 -121.189084876407);

 // Get all addresses order by distance to reference
 //location
 var allAddresses = ctx.Addresses.OrderBy(a =>
 a.Location.Distance(myLocation)).ToList();

 // Get nearby addresses from reference location
 var nearbyAddresses = ctx.Addresses.Where(a =>
 a.Location.Distance(myLocation) < 70).ToList();
}

How it works...
In order to use the new spatial types provided in WCF Data Service 5.0, we need to add
a reference to the System.Spatial.dll assembly. The current spatial class library
of WCF Data Service 5.0 has not provided a default implementation of some common
spatial calculation operations. That's why we need to create a custom implementation of
the spatial operations and register them in the sample service's initialization code here.
For reuse purpose, we define our custom implementation of the spatial operations (in the
TestSpatialOperations class) in a separate Class Library project.

At the client side, we can directly use a Visual Studio generated OData proxy to perform
spatial type specific queries. In this recipe we have performed two OData queries in the
QuerySpatialDataService function. The first query retrieves all AddressItem entities
and sorts them based on the distance to a fixed geographic location; the second query
just retrieves all AddressItem entities that are nearby the fixed location (within a certain
distance range). Both queries have used the Distance extension method for the System.
Spatial.Geography class.

By using Fiddler, we can capture the raw OData query URI (translated from the LINQ queries)
sent by the WCF Data Service client library (see the following screenshot).

New Features of WCF Data Service 5.0 (OData V3)

324

After formatting (use UrlDecode method) the URI captured in Fiddler, we can get the clear
syntax of the two queries in the sample (see the following URI strings).

 f /SpatialDataService.svc/Addresses()?$orderby=geo.distanc
e(Location,geography'SRID=4326;POINT (-121.189084876407
47.7201372000862)')

 f /SpatialDataService.svc/Addresses()?$filter=geo.distanc
e(Location,geography'SRID=4326;POINT (-121.189084876407
47.7201372000862)') lt 70.0

When using the spatial operations (via LINQ query) against the Visual Studio generated OData
proxy at the client side, we don't need to implement and register the spatial operations. This
is because the WCF Data Service client library will handle the spatial operations and translate
them into the OData query URI (which is then sent to and evaluated at server side).

Note that if you call those operations in any other code (outside
the LINQ queries against the OData proxy) at the client side, you
still have to implement and register the spatial operations.

There's more...
At the time of this writing, the current ADO.NET Entity Framework (included in .NET Framework
4.0) does not support geospatial types as built-in primitive data properties. That's why we
choose to build a custom data source class for the sample OData service here. However, the
future release of ADO.NET Entity Framework will add built-in support for geospatial types.
Then, it will be quite convenient for us to build geospatial-enabled OData service with the
following structure:

 f Using SQL Server 2008 R2 or 2012 as the raw data repository

 f Using ADO.NET Entity Framework data model as the data connector

 f Using WCF Data Service as the data publishing interface

See also
 f Using custom data objects as the data source of WCF Data Service recipe in

Chapter 1, Building OData Services

 f Upgrading existing OData service to WCF Data Service 5.0 recipe

Chapter 9

325

Using Any and All operators to filter OData
entities

When developing .NET-based OData client applications, we often use LINQ to query the entity
sets exposed in OData services. At runtime, the WCF Data Service client library will translate
the LINQ query into the corresponding OData query URI and send it to the service. WCF Data
Service 5.0 comes with two new LINQ query operators supported by the client library; they
are Any and All operators. These two operators are very useful when we want to filter entity
objects based on some Collection type properties.

In this recipe, we will demonstrate how to use Any and All operators to filter entity objects
returned in OData queries.

Getting ready
Make sure you have installed WCF Data Service 5.0 components and updated your OData
service and client projects correspondingly (refer to Upgrading existing OData service to WCF
Data Service 5.0 recipe).

The source code for this recipe can be found in the \ch09\ODataNewLINQOperatorsSln
directory.

How to do it...
In this recipe, we will use Any and All operators to filter the OData query against the
Categories entity set exposed by Northwind OData service. Let's have a look at the
detailed steps:

1. Create an ASP.NET web application which contains the Northwind OData service
(based on WCF Data Service 5.0).

2. Create a new Console Application as the OData client.

3. Create the OData proxy (via Visual Studio Add Service Reference wizard) against the
Northwind OData service.

4. Add a function which uses the Any operator to query the Categories entity set (see
the following QueryODataServiceWithAnyOperator function).
static void QueryODataServiceWithAnyOperator()
{
 var svcUri = new
 Uri("http://localhost:20457/NorthwindOData.svc/");
 var ctx = new ODataSvc.NorthwindEntities(svcUri);

 var categories = from c in ctx.Categories

New Features of WCF Data Service 5.0 (OData V3)

326

 where c.Products.Any(p =>
 p.ProductName.StartsWith("Ca"))
 select c;

 foreach (var c in categories)
 {
 Console.WriteLine("Category: {0}", c.CategoryName);
 ctx.LoadProperty(c, "Products");
 foreach (var p in c.Products)
 {
 Console.WriteLine("\tProduct: {0}", p.ProductName);
 }
 }
}

5. Add a function that uses the All operator to query the Categories entity set (see
the following QueryODataServiceWithAllOperator function).
static void QueryODataServiceWithAllOperator()
{
 var svcUri = new Uri("http://localhost:20457/NorthwindOData.
 svc/");
 var ctx = new ODataSvc.NorthwindEntities(svcUri);

 var categories = ctx.Categories.Where(
 c => c.Products.All(
 p => p.ProductName.Length > 8
)
);

 foreach (var c in categories)
 {
 Console.WriteLine("Category: {0}", c.CategoryName);
 ctx.LoadProperty(c, "Products");
 foreach (var p in c.Products)
 {
 Console.WriteLine("\tProduct: {0}", p.ProductName);
 }
 }
}

Chapter 9

327

How it works...
Both Any and All operators are used for applying filters against Collection type properties. In
this recipe, we use these two operators to filter the Categories entity set (from the Northwind
OData service) based on the Products property (of Collection type) of each Category
entity. The QueryODataServiceWithAnyOperator function queries all Category entities
each of which has some associated Product entities whose names start with some particular
characters. And the QueryODataServiceWithAllOperator function queries all Category
entities, which have all their associated Product entities with lengthy names.

When processing the Any operator, the WCF Data Service client library converts it to the
proper OData extension syntax in the generated query URI. The following screenshot shows
the raw query URI sent to the service (captured via Fiddler):

And the same process also applies to the query that uses the All operator (see the
following screenshot).

There's more...
Although WCF Data Service 5.0 (OData V3) has added support for Any and All operators,
there are some LINQ query operators or methods that are not supported yet. For detailed
information about how the WCF Data Service client library processes and executes
LINQ-based queries, you can refer to the following MSDN reference:

LINQ Considerations (WCF Data Services) available at http://msdn.microsoft.com/en-
us/library/ee622463(v=vs.103).aspx

http://msdn.microsoft.com/en-us/library/ee622463(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/ee622463(v=vs.103).aspx

New Features of WCF Data Service 5.0 (OData V3)

328

See also
 f Filtering OData query results by using query options recipe in Chapter 2, Working with

OData at Client Side

 f Upgrading existing OData service to WCF Data Service 5.0 recipe

Updating OData entities through HTTP
PATCH requests

The OData protocol supports two types of HTTP requests for updating service entities. They
are as follows:

 f HTTP PUT request

 f HTTP MERGE request

By using HTTP PUT request, the server-side entity will be completely replaced by the entity
sent by the client; while the HTTP MERGE request will only update the changed properties of
the target entity on the server. In most cases, we will use the MERGE requests (the default
option used by the WCF Data Service client library). However, MERGE is not a standard verb
of the HTTP protocol. In order to adopt existing standards of HTTP as much as possible, OData
V3 (WCF Data Service 5.0) has added a new type of update request based on the HTTP PATCH
verb, which is newly added in HTTP standards.

In this recipe, we will introduce how to use HTTP PATCH request for updating OData entities.

Getting ready
In this recipe, we will use HTTP PATCH request (via the Visual Studio generated OData proxy) to
update some Category entities in the Northwind OData service.

Make sure you have installed WCF Data Service 5.0 components and updated your OData
service and client projects correspondingly (refer to Upgrading existing OData service to WCF
Data Service 5.0 recipe).

The source code for this recipe can be found in the \ch09\ODataUpdateWithPatchSln
directory.

Chapter 9

329

How to do it...
The following are the steps to create the sample application:

1. Create the ASP.NET web application which contains the Northwind OData service
(updated to WCF Data Service 5.0).

For demonstration, we need to at least expose the Categories entity set and
enable all access rules on it (see the following InitializeService function).

public static void InitializeService
 (DataServiceConfiguration config)
{
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;
 config.SetEntitySetAccessRule("Categories",
 EntitySetRights.All);
}

2. Create a new Console Application as the OData client.

3. Use the Visual Studio Add Service Reference wizard to generate the OData proxy
(against the Northwind OData service) in the OData client.

4. Add the code for updating Category entities through HTTP PATCH requests in the
OData client (see the following UpdateEntityWithPatchOption function).
static void UpdateEntityWithPatchOption()
{
 var svcUri = new Uri(SVC_URL);
 var ctx = new ODataSvc.NorthwindEntities(svcUri);

 var testCategory = ctx.Categories.FirstOrDefault();

 testCategory.Description = testCategory.Description + "2";

 ctx.UpdateObject(testCategory);

 ctx.SaveChanges(SaveChangesOptions.PatchOnUpdate);
}

New Features of WCF Data Service 5.0 (OData V3)

330

How it works...
In the sample OData client, we specify the SaveChangesOptions.PatchOnUpdate value
when invoking the SaveChanges method of the DataServiceContext class generated
in the OData proxy. The SaveChangesOptions.PatchOnUpdate is a new option added in
WCF Data Service 5.0. By specifying this option, the WCF Data Service runtime will generate
the underlying request (for updating OData entities) with HTTP PATCH verb. The following
screenshot shows the raw HTTP request URI and headers (captured via Fiddler) of the update
request sent in the sample OData client:

What if we change the OData client code and use the default option for the SaveChanges
method call (see the following code snippet)?

static void UpdateEntityWithDefaultMergeOption()
{

 ctx.UpdateObject(testCategory);

 ctx.SaveChanges();
}

Then, the underlying update request will be changed to use HTTP MERGE verb. The
following screenshot shows the HTTP MERGE request (captured via Fiddler) generated
from the previous code:

Chapter 9

331

Actually, HTTP PATCH based update requests are handled in the same manner as HTTP
MERGE based requests. Therefore, it doesn't matter which one we use in most cases.
However, in case the OData hosting environment only allows standard HTTP verbs, the
HTTP PATCH based approach will show its advantage. In addition, since HTTP PATCH is a
new verb introduced in the HTTP protocol, it is also possible that some web servers or client
components might not have added support for it yet.

See also
 f Editing and deleting data through WCF Data Service client library recipe in Chapter 2,

Working with OData at Client Side

 f Upgrading existing OData service to WCF Data Service 5.0 recipe

Resolving base URI of OData entity sets
dynamically

When using the WCF Data Service client library based client proxy to access an OData
service, we need to supply the base URI of the target service (in the constructor of the
DataServiceContext derived class). Then, the client library will use this base URI to
resolve the absolute address of each entity set exposed in the target service. For example,
given the base URI of an OData service, http://localhost:8888/MyODataService.
svc/, the client library will locate each entity set by following the address pattern,
http://localhost:8888/MyODataService.svc/[Entity Set Name]/.

Now, with WCF Data Service 5.0, we can customize how the client library (OData proxy) resolves
the entity set URI so as to implement some features such as dynamic address resolving. In this
recipe, we will demonstrate how to use this feature in OData client application.

Getting ready
Make sure you have installed WCF Data Service 5.0 components and updated your OData
service and client projects correspondingly (refer to the Upgrading existing OData service to
WCF Data Service 5.0 recipe).

The source code for this recipe can be found in the \ch09\ODataEntitySetResolverSln
directory.

http://localhost:8888/MyODataService.svc/%5BEntity

New Features of WCF Data Service 5.0 (OData V3)

332

How to do it...
In this recipe, we will use Visual Studio generated OData proxy to query two entity sets from
the Northwind OData service. And each entity set will be accessed from different locations
through the dynamic URI resolving feature. The following are the detailed steps:

1. Create the ASP.NET web application which contains the Northwind OData service
(updated to WCF Data Service 5.0).

The service needs to expose two entity sets, they are Categories and Products
(see the following screenshot).

2. Create a new Console Application as the OData client.

3. Use the Visual Studio Add Service Reference wizard to generate the OData proxy
against the sample service.

4. Define a function (in the Program.cs file), which dynamically resolves the URI address
of a given entity set (see the following ResolveEntitySetUriByName function).
static Uri ResolveEntitySetUriByName(string name)
{
 switch(name)
 {
 case "Categories":
 // Use local service for Categories entity set
 return new Uri
 ("http://localhost:36341/
 LocalNorthwindOData.svc/Categories");
 case "Products":
 // Use Remote service for Products entity set
 return new Uri
 ("http://services.odata.org/
 Northwind/Northwind.svc/Products");
 default:
 throw new ArgumentException
 ("Invalid EntitySet Name!");
 }
}

Chapter 9

333

5. Define a function (in the Program.cs file) to query the Categories and
Products entity sets by using the dynamic URI resolving function (see the following
QueryODataWithDynamicUris function).
static void QueryODataWithDynamicUris()
{
 var svcUri = new
 Uri("http://localhost:36341/LocalNorthwindOData.svc/");
 var ctx = new ODataSvc.NorthwindEntities(svcUri);

 // Register the Entity Set Uri Resolver
 ctx.ResolveEntitySet = ResolveEntitySetUriByName;

 var categories = ctx.Categories.ToList();
 foreach (var c in categories)
 {
 Console.WriteLine("Products of '{0}' Category:",
 c.CategoryName);
 var products = ctx.Products.Where(p => p.CategoryID ==
 c.CategoryID).ToList();
 foreach (var p in products)
 {
 Console.WriteLine("\t{0}", p.ProductName);
 }
 }
}

How it works...
As we have seen in the previous sample code, the URI resolving function
(ResolveEntitySetUriByName) is the key point for driving the dynamic entity set address
resolving functionality. We register this function through the DataServiceContext.
ResolveEntitySet property right after the OData proxy is created. Whenever an OData
query is executed, the client runtime will call the resolving function (if registered) to obtain
the absolute URI address of the target entity set. In the ResolveEntitySetUriByName
function here, we map the Categories entity set to the local Northwind OData service; while
the Products entity set is mapped to the remote Northwind OData service on the Internet.

New Features of WCF Data Service 5.0 (OData V3)

334

By using Fiddler to monitor the underlying OData HTTP requests, we can confirm that the
Categories entity set is accessed from the local service while the Products entity set is
accessed from the remote service (see the following screenshot).

One thing worth noticing is that there are some cases in which the dynamic URI resolving
function will be bypassed. For example, when we use the Expand query option to load some
Category entities and their associated Product entities together (see the following code
snippet), only a single OData request is sent so that the base URI address of the Categories
entity set is used for loading both Category and Product entities.

var categories = ctx.Categories.Expand("Products").ToList();

See also
 f Using Visual Studio to generate strong-typed OData client proxy recipe in Chapter 2,

Working with OData at Client Side

 f Upgrading existing OData service to WCF Data Service 5.0 recipe

Exposing binary data on OData entity with
Named Resource Stream

For OData entities which contain binary properties, WCF Data Service runtime will transfer the
binary data in base64 encoded format. This works well for small binary data, however, it is not
quite good for large binary data such as file content and picture data. To resolve this problem,
WCF Data Service 4.0 (OData V2) has already utilized the media link entry (of the AtomPub
protocol) to support raw stream-based binary resource associated with a certain OData entity.
However, one entity can only have a single binary resource associated due to the AtomPub
protocol limitation.

Chapter 9

335

Fortunately, in WCF Data Service 5.0 (OData V3), an enhanced Named Resource Stream
feature is introduced so that we can attach multiple raw binary resource streams to an OData
entity. In this recipe, we will demonstrate how we can use a Named Resource Stream to
expose raw binary data in OData service and consume them from the client.

Getting ready
Make sure you have installed WCF Data Service 5.0 components and updated your OData
service and client projects correspondingly (refer to the Upgrading existing OData service to
WCF Data Service 5.0 recipe).

The source code for this recipe can be found in the \ch09\ODataNamedStreamSln
directory.

How to do it...
For demonstration purposes, we will use the Categories entity set (in the Northwind OData
service) as example, and attach two binary resource streams (for storing the Logo and
SmallLogo image data) on each Category entity. The following are the detailed steps:

1. Create a new ASP.NET web application which contains the Northwind OData service
(updated to WCF Data Service 5.0).

We will only expose the Categories entity set in the sample service (see the
following code snippet).
public class NorthwindOData : DataService< NorthwindEntities >
{
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;
 config.SetEntitySetAccessRule("Categories",
 EntitySetRights.All);
 }
}

2. Create a new C# code file (named Northwind.Extensions.cs) to define a partial
class for the Category entity type generated by the ADO.NET Entity Framework data
model (see the following code snippet).
using System.Data.Services.Common;

namespace ODataWebApp
{
 [NamedStream("Logo")]

New Features of WCF Data Service 5.0 (OData V3)

336

 [NamedStream("SmallLogo")]
 public partial class Category
 {}
}

The partial class (for the Category entity type) just defines two
NamedStreamAttribute attributes (under System.Data.Services.Common
namespace), which specify the names of the binary resource streams.

By using partial class in a separate code file, we can prevent our
custom code from being overwritten by the Visual Studio IDE when
updating the ADO.NET Entity Framework data model.

3. Create a new class (named SimpleNamedStreamProvider) that implements
the IDataServiceStreamProvider2 interface (under the System.Data.
Services.Providers namespace).

The following is the declaration of the sample provider class:

public class SimpleNamedStreamProvider:
 IDataServiceStreamProvider2
{

}

4. Implement the Named Resource Stream specific functions within the
SimpleNamedStreamProvider class (see the following code snippet).
public System.IO.Stream GetReadStream(object entity,
 ResourceProperty streamProperty, string etag, bool?
 checkETagForEquality,
 System.Data.Services.DataServiceOperationContext
 operationContext)
{
 Category c = entity as Category;
 if (c == null) throw new DataServiceException("Only support
 stream resource on Category entity.");

 var logoFilePath = string.Format("~/Images/{0}.{1}.png",
 c.CategoryID, streamProperty.Name);

 var stream = File.Open(
 System.Web.Hosting.HostingEnvironment.MapPath
 (logoFilePath),

Chapter 9

337

 FileMode.Open
);
 return stream;
}

public Uri GetReadStreamUri(object entity, ResourceProperty
 streamProperty,
 System.Data.Services.DataServiceOperationContext
 operationContext)
{ return null; }

public string GetStreamContentType
 (object entity, ResourceProperty streamProperty,
 System.Data.Services.DataServiceOperationContext
 operationContext)
{
 if (entity is Category)
 {
 return "image/png";
 }
 throw new DataServiceException("Only support stream
 resource on Category entity.");
}

public string GetStreamETag
 (object entity, ResourceProperty streamProperty,
 System.Data.Services.DataServiceOperationContext
 operationContext)
{ return null; }

public System.IO.Stream GetWriteStream(object entity,
 ResourceProperty streamProperty,
 string etag, bool? checkETagForEquality,
 System.Data.Services.DataServiceOperationContext
 operationContext)
{
 throw new DataServiceException("The stream resource is
 read-only!");
}

For other functions of the IDataServiceStreamProvider2 interface,
we can simply leave them as unimplemented (or we can just throw out a
NotImplementedException exception in each unimplemented function).

New Features of WCF Data Service 5.0 (OData V3)

338

5. Implement the IServiceProvider interface on the service class of the sample
Northwind OData service (see the following code snippet).
public class NorthwindOData :
DataService< NorthwindEntities >, IServiceProvider
{

 public object GetService(Type serviceType)
 {
 if (serviceType == typeof(IDataServiceStreamProvider2))
 {
 return new SimpleNamedStreamProvider();
 }
 return null;
 }
}

6. Open the web.config file of the web application and enlarge the default message
size limit (through the <system.serviceModel> section) for the sample OData
service (see the following configuration fragment).
<system.serviceModel>
 <serviceHostingEnvironment
 aspNetCompatibilityEnabled="true"/>
 <services>
 <!-- For the sample Northwind OData service -->
 <service name="ODataWebApp.NorthwindOData">
<endpoint binding="webHttpBinding"
 bindingConfiguration="largeMessageBinding"
 contract="System.Data.Services.IRequestHandler"></endpoint>
 </service>
 </services>
 <bindings>
 <webHttpBinding>
 <!-- configure the maxReceivedMessageSize to the max
 value
 you want the service to receive-->
 <binding name="largeMessageBinding" transferMode="Streamed"
 maxReceivedMessageSize="2147483647"/>
 </webHttpBinding>
 </bindings>
</system.serviceModel>

Chapter 9

339

7. Launch the sample web application and use the web browser to explore the Named
Resource Streams exposed on the Category entities.

The following screenshot shows the Logo and SmallLogo resource stream
references contained in a certain Category entity:

If we navigate to the resource location indicated by the href attribute (see the
previous screenshot), the web browser will download the image resource stream and
display it in the browser window (see the following screenshot).

8. Alternatively, use a Visual Studio generated OData proxy to access the Named
Resource Streams (Logo and SmallLogo) exposed on each Category entity.

We can use the GetReadStreamUri and GetReadStream methods (of the
DataServiceContext class) to retrieve the URI string and the actual binary data of
the target binary resource (see the following code snippet).
var svcUri = new
 Uri("http://localhost:15787/NorthwindOData.svc/");
var ctx = new ODataSvc.NorthwindEntities(svcUri);

foreach (var category in ctx.Categories)
{
 var name = category.CategoryName;

 // Get Stream Resource Uri
 var logoUri = ctx.GetReadStreamUri(category, "Logo");

New Features of WCF Data Service 5.0 (OData V3)

340

 var smallLogoUri = ctx.GetReadStreamUri(category,
 "SmallLogo");

 // Get Stream Resource data directly
 var response = ctx.GetReadStream(category, "Logo",
 new DataServiceRequestArgs() { });
 var imgLogo = Image.FromStream(response.Stream);

 var filePath = string.Format("{0}.Logo.png",
 category.CategoryID);
 imgLogo.Save(filePath);
}

How it works...
In the sample service, we use the NamedStreamAttribute attribute to declare the resource
streams on the Category entity class (generated by the ADO.NET Entity Framework). This
approach works for a .NET Reflection provider based OData service too. By inspecting the
OData service metadata, we can find the definition of those properties (of Edm.Stream type)
generated for the corresponding Named Resource Streams (see the following screenshot).

As we can see from the previous screenshot, a resource stream property has the same
definition syntax as other primitive type properties in the metadata of an OData service.

Starting with Entity Data Model (EDM) 2.2 (probably
supported by the next version of .NET Framework), binary
stream data type will be naturally supported by the ADO.NET
Entity Framework data model.

Chapter 9

341

The IDataServiceStreamProvider2 interface (implemented by the
SimpleNamedStreamProvider class) is specific to the Named Resource Stream
feature of WCF Data Service 5.0 (OData V3). This interface derives from the
IDataServiceStreamProvider interface, which is necessary for implementing the
old binary stream provider of WCF Data Service 4.0. The code logic for implementing
both of these interfaces is quite similar except that the IDataServiceStreamProvider2
specific methods take an additional parameter (of ResourceProperty type) for identifying
the target resource stream. The following table shows the methods we have implemented in
the sample provider class so as to use the Named Resource Stream feature:

Member name Description

GetReadStream This method is invoked by the data service to return a named
stream. We will return a FileStream based on the logo image of
the requested Category entity.

GetReadStreamUri This method is invoked by the data service to return the URI that
is used to request a specific named stream for the media link
entry. We will return null so as to let the runtime autogenerate
the URI string.

GetStreamContentType This method is invoked by the data service to return the
Content-Type value of a specific named stream. We will simply
return image/png for the logo image streams in this sample.

GetStreamETag This method is used when you manage concurrency for the
binary data. In this sample, we will simply return null so that the
runtime will not track concurrency.

GetWriteStream This method is invoked by the data service to obtain the stream
that is used when receiving a named stream sent from the
client. We will not implement it since the sample resource
streams are read-only.

For more information about how to implement the IDataServiceStreamProvider
interface (specific to the WCF Data Service 4.0 binary stream provider), you can refer to the
following MSDN code sample:

Streaming Photo OData Service Sample available at http://code.msdn.microsoft.
com/Streaming-Photo-OData-7feb9239/sourcecode?fileId=22215&path
Id=511955853

In addition to creating the stream provider class, we also need to implement the
IServiceProvider interface on the service class (of the OData service). As shown in the
sample service class (NorthwindOData class), we simply return a new instance of the
stream provider class in case the IDataServiceStreamProvider2 interface is requested
at the runtime.

http://msdn.microsoft.com/en-us/library/hh540906(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/hh540243(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/hh497726(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/hh540692(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/hh541249(v=vs.103).aspx
http://code.msdn.microsoft.com/Streaming-Photo-OData-7feb9239/sourcecode?fileId=22215&pathId=511955853
http://code.msdn.microsoft.com/Streaming-Photo-OData-7feb9239/sourcecode?fileId=22215&pathId=511955853
http://code.msdn.microsoft.com/Streaming-Photo-OData-7feb9239/sourcecode?fileId=22215&pathId=511955853

New Features of WCF Data Service 5.0 (OData V3)

342

It is worth noticing that we have specified some additional configuration elements within the
web.config file of the sample web application. This is because WCF Data Service runtime
uses the WebHttpBinding binding type (for WCF REST service), which has a default limit on
the maximum message size allowed in data transfer. Since binary resource streams are often
used for transferring large size data, we should also take care of this setting.

Once Named Resource Streams have been exposed from an OData service, we can consume
them through the following two means:

 f Using the stream URI pointing to the target resource stream: This works well in case
we want to consume the resource stream by using some other components or tools,
which accepts an URI string as input (such as the HTML element in web page).

 f Directly fetching the binary data of the target resource stream: This would be
preferred if we want to directly handle the raw binary content of the target resource
and perform some further manipulation on it. For example, we can programmatically
get the image resource stream (of raw bytes) and then perform some graphical
transformations over the image data.

See also
 f Creating a custom WCF Data Service provider recipe in Chapter 1, Building

OData Services

 f Exploring an OData service through web browser recipe in Chapter 2, Working with
OData at Client Side

 f Upgrading existing OData service to WCF Data Service 5.0 recipe

Extending OData service functionalities with
Service Actions

As we've discussed in Chapter 1, Building OData Services, we can create custom service
operations to extend an OData service. However, service operations are always defined within
a particular service. Therefore, it is not quite convenient to reuse service operations for
multiple services. WCF Data Service 5.0 (OData V3) comes with a new feature called Service
Actions. A Service Action is a special operation, which can be applied through a provider-
based model. Thus, we can separate the Service Actions from the OData service and inject
them whenever necessary. Also, Service Actions can be applied not only at service level but
also at entity set (or even individual entity objects) level. This makes it quite convenient for
developers to create business data specific extension functions.

In this recipe, we will demonstrate how we can use Service Actions to define custom extension
functions and apply them to an OData service (built with WCF Data Service 5.0).

Chapter 9

343

Getting ready
Make sure you have installed WCF Data Service 5.0 components and updated your OData
service and client projects correspondingly (refer to the Upgrade existing OData service to
WCF Data Service 5.0 recipe).

The source code for this recipe can be found in the \ch09\ODataServiceActionsSln
directory.

How to do it...
We will still use the Northwind OData service as example and apply two Service Actions
(SayHello and GetMoreInfo) to it. The following are the detailed steps:

1. Create the ASP.NET web application which contains the Northwind OData service
(updated to WCF Data Service 5.0).

2. In the InitializeService function of the Northwind OData service, enable All
access rules on the Categories entity set and turn on the Invoke permission for
all Service Actions (see the following code snippet).
public class NorthwindOData : DataService<NorthwindEntities>
{
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;
 config.SetEntitySetAccessRule("Categories",
 EntitySetRights.All);
 config.SetServiceActionAccessRule("*",
 ServiceActionRights.Invoke);
 }
......

3. Create a new class (named SimpleActionProvider) that implements the
IDataServiceActionProvider interface (under the System.Data.Services.
Providers namespace).

The following is the declaration of the sample provider class:

public class SimpleActionProvider : IDataServiceActionProvider
{

}

New Features of WCF Data Service 5.0 (OData V3)

344

4. Define a helper function (in the SimpleActionProvider class) that creates two
sample Service Action instances (see the following GetActionList function).
IEnumerable<ServiceAction> GetActionList(IDataServiceMetadataProvi
der metadata)
{
 // The global SayHello action
 var actionSayHello = new ServiceAction(
 "SayHello",
 ResourceType.GetPrimitiveResourceType(typeof(string)),
 null,
 OperationParameterBindingKind.Never,
 new[]
 {
 new ServiceActionParameter("name",
 ResourceType.GetPrimitiveResourceType
 (typeof(string)))
 }
);
 actionSayHello.SetReadOnly();

 // The action bound to the Category entity
 var resType = metadata.Types.Where(t=> t.Name ==
 "Category").FirstOrDefault();
 var actionGetMoreInfo = new ServiceAction(
 "GetMoreInfo",
 ResourceType.GetPrimitiveResourceType(typeof(string)),
 null,
 OperationParameterBindingKind.Always,
 new []
 {
 new ServiceActionParameter("Category", resType)
 }
);
 actionGetMoreInfo.SetReadOnly();

 return new []{actionSayHello, actionGetMoreInfo};
}

Chapter 9

345

5. Define all functions required by the IDataServiceActionProvider interface in
the SimpleActionProvider class.

The following is the definition of the AdvertiseServiceAction function:
public bool AdvertiseServiceAction
 (System.Data.Services.DataServiceOperationContext
 operationContext, ServiceAction serviceAction,
 object resourceInstance, bool resourceInstanceInFeed,
 ref Microsoft.Data.OData.ODataAction actionToSerialize)
{
 throw new NotImplementedException();
}

The CreateInvokable function will return some instances of custom classes
(which we will define in the next step) for executing the Service Actions (see the
following code snippet).
public IDataServiceInvokable CreateInvokable
 (System.Data.Services.DataServiceOperationContext
 operationContext, ServiceAction serviceAction, object[]
 parameterTokens)
{
 if (serviceAction.Name == "SayHello")
 {
 var name = parameterTokens[0] as string;
 return new SayHelloInvokable() { Data = name };
 }
 else if (serviceAction.Name == "GetMoreInfo")
 {
 var objQuery = parameterTokens[0] as
 ObjectQuery<Category>;
 var category = objQuery.FirstOrDefault();

 return new GetMoreInfoInvokable() { Data =
 category.CategoryName };
 }
 else
 {
 return null;
 }
}

New Features of WCF Data Service 5.0 (OData V3)

346

The remaining three functions (GetServiceActions,
GetServiceActionsByBindingParameterType, and
TryResolveServiceAction) simply find and return the requested Service Actions
based on the GetActionList helper function (see the following code snippet).
public IEnumerable<ServiceAction> GetServiceActions
 (System.Data.Services.DataServiceOperationContext
 operationContext)
{
 var metadata = operationContext.GetService
 (typeof(IDataServiceMetadataProvider)) as
 IDataServiceMetadataProvider;

 return GetActionList(metadata);
}

public IEnumerable<ServiceAction>
 GetServiceActionsByBindingParameterType
 (System.Data.Services.DataServiceOperationContext
 operationContext, ResourceType bindingParameterType)
{
 var metadata = operationContext.GetService
 (typeof(IDataServiceMetadataProvider)) as
 IDataServiceMetadataProvider;

 var actionList = from a in GetActionList(metadata)
 where a.Parameters.Count > 0 &&
 a.Parameters[0].ParameterType == bindingParameterType
 select a;

 return actionList;
}

public bool TryResolveServiceAction
 (System.Data.Services.DataServiceOperationContext
 operationContext, string serviceActionName,
 out ServiceAction serviceAction)
{
 var metadata = operationContext.GetService
 (typeof(IDataServiceMetadataProvider)) as
 IDataServiceMetadataProvider;

 var action = (from a in GetActionList(metadata)
 where a.Name == serviceActionName
 select a).First();

 if (action != null)

Chapter 9

347

 {
 serviceAction = action;
 return true;
 }
 else
 {
 serviceAction = null;
 return false;
 }
}

6. Create two classes (for the SayHello and GetMoreInfo Service Actions),
which implement the IDataServiceInvokable interface (see the following
SayHelloInvokable and GetMoreInfoInvokable classes).
 // Class for invoking the SayHello service action
public class SayHelloInvokable : IDataServiceInvokable
{
 public string Data { get; set; }

 public object GetResult()
 {
 return Data;
 }

 public void Invoke()
 {
 Data = "Hello " + Data;
 }
}

// Class for invoking the GetMoreInfo service action
public class GetMoreInfoInvokable : IDataServiceInvokable
{
 public string Data { get; set; }

 public object GetResult()
 {
 return Data;
 }

 public void Invoke()
 {
 Data = "Here is the additional information about " +
 Data;
 }
}

New Features of WCF Data Service 5.0 (OData V3)

348

7. Implement the IServiceProvider interface on the service class of the Northwind
OData service.

In the GetService function, we simply return a new instance of the
SimpleActionProvider class whenever the runtime demands the
IDataServiceActionProvider object (see the following code snippet).
public class NorthwindOData : DataService< NorthwindEntities >,
 IServiceProvider
{
......

 public object GetService(Type serviceType)
 {
 if (serviceType == typeof(IDataServiceActionProvider))
 {
 return new SimpleActionProvider();
 }
 return null;
 }
}

8. Create a new Console Application as the OData Client.

9. Use the Visual Studio Add Service Reference wizard to generate the OData proxy
against the sample service.

10. Add a function to invoke the Service Actions exposed in the sample service (use the
strong-typed OData proxy).

We can directly invoke the SayHello Service Action through its URI string (see the
following code snippet).
var svcUri = new
 Uri("http://localhost:28424/NorthwindOData.svc/");
var ctx = new ODataSvc.NorthwindEntities(svcUri);

// Invoke the SayHello action
var actionUri = new
 Uri("http://localhost:28424/NorthwindOData.svc/SayHello");

var sayHelloResult = ctx.Execute<string>(
 actionUri,
 "POST",
 true,
 new BodyOperationParameter("name",
 "Steven")
).First();

Console.WriteLine(sayHelloResult);

Chapter 9

349

We do not need to supply any entity object for invoking the SayHello Service Action
because it is a service level action.

When invoking Service Actions, we must use the HTTP POST method
and supply the non-entity (primitive or custom type) parameters
through instances of the BodyOperationParameter type.

The GetMoreInfo Service Action is bound to the Category entity type. Therefore,
we need to get a Category entity first and then invoke the Service Action against the
obtained entity instance (see the following code snippet).
// Invoke the GetMoreInfo action against the 1st Category
//entity
var category = ctx.Categories.First();

 // Retrieve the action Uri from the specific entity
var entityActionUri = ctx.GetEntityDescriptor(category)
 .OperationDescriptors
 .Where(o => o.Title == "GetMoreInfo")
 .Select(o => o.Target)
 .First();

var getMoreInfoResult = ctx.Execute<string>(
 entityActionUri,
 "POST",
 true
).First();

Console.WriteLine(getMoreInfoResult);

Since the GetMoreInfo Service Action does not take additional parameters, we do
not need to supply any BodyOperationParameter instances when invoking the
service action.

Instead of manually composing the Service Action URI, we can
programmatically extract the URI from the entity descriptor
object (of the target entity instance).

How it works...
In the sample Northwind OData service, we have defined two Service Actions. The SayHello
Service Action is a top-level operation, which is not bound to any entity or entity set. The
GetMoreInfo Service Action is bound to the Category entity type so that it can only be
executed against a certain Category entity instance.

New Features of WCF Data Service 5.0 (OData V3)

350

Most of our work here is focussed on creating the SimpleActionProvider
class, which acts as the Service Action provider. This class implements the
IDataServiceActionProvider interface under the System.Data.Services.
Providers namespace. The following table lists all the member functions of
IDataServiceActionProvider interface and how we implement them in the sample
Service Action provider class:

Name Description

AdvertiseServiceAction Determines whether a given
Service Action should be bound to
a certain entity instance. We do not
implement this function because we
have hardcoded the definitions of
our sample service actions (rather
than determine them at runtime).

CreateInvokable Builds up an instance of
IDataServiceInvokable for
executing the actual Service Action
code. We simply return the two
helper classes, which contain the
action execution code logic.

GetServiceActions Returns all Service Actions in the
provider. Here we use a helper
function to generate a list of all
Service Actions.

GetServiceActionsByBindingParameterType Gets all Service Actions, which are
bound to the certain entity or entity
set.

TryResolveServiceAction Tries to find the service action
based on the supplied action name.

The GetActionList function (in the SimpleActionProvider class) helps create two
instances of ServiceAction class to represent the Service Actions we want to expose
in the sample provider. The constructor of ServiceAction class demands the following
parameters which are necessary for determining the characteristics of a Service Action:

 f name

 f return Type

 f resultSet

 f operationParameterBindingKind

 f parameters

http://msdn.microsoft.com/en-us/library/system.data.services.providers.idataserviceactionprovider.advertiseserviceaction(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/system.data.services.providers.idataserviceactionprovider.createinvokable(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/system.data.services.providers.idataserviceinvokable(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/system.data.services.providers.idataserviceactionprovider.getserviceactions(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/system.data.services.providers.idataserviceactionprovider.getserviceactionsbybindingparametertype(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/system.data.services.providers.idataserviceactionprovider.tryresolveserviceaction(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/system.data.services.providers.serviceaction(v=vs.103).aspx

Chapter 9

351

When a Service Action returns an entity or a collection of entities, the resultSet
parameter should be specified with the ResourceSet object representing the target
entity set (our sample Service Actions specify null for this parameter because they just
return simple string values). The operationParameterBindingKind parameter is of
enumeration type, which indicates whether the Service Action is a top-level (global) action or
an entity-specific action. The SayHello Service Action specifies Never for this parameter
since it is a global action; while the GetMoreInfo action specifies Always here as it is
bound to the Category entity. For all ServiceAction instances we create in the provider,
we need to call the SetReadOnly method on them (see the following code snippet) so that
the WCF Data Service runtime can correctly register them.

var actionSayHello = new ServiceAction(

);
actionSayHello.SetReadOnly();

If we look up the metadata document of the sample OData service, we can find that OData
V3 uses FunctionImport elements for describing all Service Actions exposed in the service
(see the following screenshot). Each FunctionImport element contains the complete
signature definition of the corresponding Service Action including Name, ReturnType,
Binding information and Parameters.

Again, as shown in the previous screenshot, the GetMoreInfo Service Action has its
IsBindable and IsAlwaysBindable properties set to true because it is bound to
the Category entity. Also, the only parameter of GetMoreInfo Service Action is of the
Category entity class, which means it can be invoked only in the context of a certain
Category entity instance.

New Features of WCF Data Service 5.0 (OData V3)

352

At the client side, we can use Visual Studio generated OData proxy to invoke the Service
Actions exposed in the target OData service. Just like custom-service operations, we can use
the Execute<T> generic method (of the DataServiceContext class) to invoke a Service
Action by supplying the URI address and necessary parameters. Currently, it is required that
we use HTTP POST request to invoke Service Actions of WCF Data Service. And non-binding
parameters must be supplied in JSON format in the request body. The following is the raw
HTTP request generated by invoking the SayHello Service Action (captured in Fiddler):

As we can see, the SayHello Service Action request uses HTTP POST verb and it carries the
name parameter within its request body as a JSON object.

For the GetMoreInfo Service Action request (see the following screenshot), the request
body is empty because the request URI has already embedded the target Category entity
instance information.

Chapter 9

353

There's more...
For more information about the Service Actions feature of WCF Data Service 5.0 (OData V3),
you can refer to the following MSDN reference:

Service Actions (WCF Data Services) available at http://msdn.microsoft.com/en-us/
library/hh859851(v=vs.103).aspx

See also
 f Adding custom operations on OData Service recipe in Chapter 1, Building

OData Services

 f Creating a custom WCF Data Service provider recipe in Chapter 1, Building
OData Services

 f Upgrading existing OData service to WCF Data Service 5.0 recipe

Index
Symbols
.NET Framework platform 8, 315
.NET Reflection provider 340
.svc extension

avoiding 134-136

A
AccessODataService function 265
Activity class 219
addNewCategory function 169-171
AddressItem class 321
Add Service Reference tool 318
ADO.NET Data Service 316
ADO.NET Entity Framework 8
AdvertiseServiceAction function 345, 350
AJAX 161
AJAX style data-driven web pages

building, with jQuery 161-165
All operator

about 325
used, for filtering OData entities 325-327

Android mobile application
about 187
WCF Data Service, accessing in 213-219

Any operator
about 325
used, for filtering OData entities 325-327

ASP.NET 144, 257
ASP.NET context data

accessing, in WCF Data Service 36-39
ASP.NET Forms authentication

used, for securing OData service 262-265
ASP.NET MVC web applications

about 148
OData, adopting in 148-156

ASP.NET Page UI, building
with OData 156-160
with XSLT 156-160

ASP.NET URL Routing feature
about 156
used, for avoiding .svc extension 134-136

ASP.NET Web Form pages
building, with OData 144-147

Asynchronous Javascript and XML. See AJAX
asynchronous manner

OData queries, executing in 75-79
AtomPub 7, 52
Atom XML 137
AuthenticateRequest event 274
authentication 257
authorization

about 257
adding, with server-side processing pipeline

275, 276

B
base URI, of OData entity sets

resolving, dynamically 331-334
basic access rules

accessing, on WCF Data Service 131-133
BeginExecute method 79
binary data, on OData entity

exposing, with Named Resource Stream 334-
342

Binary Resource Stream feature 234
Blob storage 235
BodyOperationParameter type 349

C
CategoriesAdapter class 217

356

ChangeInterceptor 33-35
ChangeInterceptor function 279
Client-side Object Model 234
CLR Objects 8
conceptual schema definition language

(CSDL) 66
Console application

WCF Data Service, hosting in 114-116
CreateInvokable function 345, 350
CRUD operations 133, 167
CUD operations 69
custom authorization

adding, with server-side processing pipeline
275, 276

custom data objects
using, as data source of WCF Data Service

28-31
custom HTTP headers

injecting, in OData requests 94-96
custom HTTP Module

OData service authentication, implementing
with 271-274

CustomODataAuthModule class 272
custom operations

adding, on OData service 20-23
custom WCF Data Service provider

creating 40-49

D
data

deleting, through WCF Data Service client
library 66-70

editing, through WCF Data Service client
library 66-70

database stored procedures
exposing, in WCF Data Service 23-27

DataBound Controls 144
DataContractJsonSerializer class 200
datajs script library

about 167
OData service, consuming with 167-171

DataList control 147
DataServiceContext class 330
DataSource property 147
data source, WCF Data Service

custom data objects, using as 28-31

DataSvcUtil.exe tool
about 319
OData client proxy, generating through 63-66

deleteCategory function 170
Document Library 231
DropDownList control 147, 160
dynamic compression

enabling, for OData service hosted in IIS 7
137-141

Dynamics CRM 2011 227

E
eBay.com 248
eBay Inc. 248
eBay online products catalog

exploring, through OData service 248-252
EditProductEntity function 68
EndExecute method 79
Entity Data Model (EDM) 2.2 340
error information

WCF Data service, configuring for 124-127
ExecuteOperations function 61
Expand option 83-85
Extensible Stylesheet Language

Transformation. See XSLT

F
Fiddler web debugger

OData HTTP traffic, inspecting through 299-
302

Filter option 82
Flash 144
Forms authentication 261

G
Geography and Geometry types 319
geospatial types

using, in OData service 319-324
GetActionList function 344, 350
GetAuthenticationCookie function 264
getLink method 219
getProperty method 219
GetReadStream method 341
GetReadStreamUri method 341
getRelatedEntities method 219

357

GetServiceActionsByBindingParameterType
function 350

GetServiceActions function 350
GetService function 348
GetStreamContentType method 341
GetStreamETag method 341
GetWriteStream method 341
GridView control 147

H
HTML5

about 144, 205
used, for building native Windows Phone

application 205-213
HTTP compression enable

OData service, consuming 97-99
HTTP headers

injecting, in OData requests 94-96
HTTP MERGE request 328
HTTP Module

about 271
OData service authentication, implementing

with 271-274
HTTP PATCH requests

OData entities, updating through 328-331
HTTP POST method 349
HTTP PUT request 328
HTTP requests

types 328
HTTPS 266
HTTPS/SSL secure transport 257
HTTPS transport

OData service, securing with 267-270
Hypertext Transfer Protocol (HTTP) 7, 52, 266

I
IDataServiceActionProvider interface 350
IDataServiceActionProvider object 348
IIS server

WCF Data Service, hosting 108-113
IIS web application 257
individual entity set

access, controlling with Interceptors 277-279
InitializeService function 317, 322, 343

Interceptors
about 32
used, for controlling access for individual

entity set 277-279
used, for customizing WCF Data Service 32-

35
Interface Builder tool 224
iOS application

about 187, 220
WCF Data Service, accessing in 220-226

iOS v4.3 221
IsScriptEnabled property 212

J
jQuery

AJAX style data-driven web pages, building
with 161-165

JSON 7, 16, 52
JSON format 137, 352
JSON format, OData service

consuming, without OData WP7 client library
196-200

JSON format response
WCF Data service, configuring for 127-130

L
lazy loading pattern 61
LINQPad

about 286
URL, for downloading 286
URL, for info 289
used, for composing OData query code 286-

288
LINQ to Entity methods 61
LINQ to SQL

about 8, 13
OData service, building 13, 15

ListCategories function 59
ListProducts function 60
ListView control 147
loadCategories function 165
LoadProductsAsyncComplete function 79
loadProductsByCategory function 165
Local Data Storage 210, 212

358

M
Mac OSX 10.7 221
MainActivity class 219
MaxProtocolVersion property 317, 318
Message Inspectors 32
metadata 56
Microsoft Excel PowerPivot component

OData service, exploring with 296-299
Microsoft Sharepoint 231
MSXML

used, for consuming OData service in
unmanaged applications 99-105

N
Named Resource Stream feature

about 335
binary data, on OData entity exposing with

334-342
native Windows Phone application

building, HTML5 used 205-213
building, OData used 205-213

Netflix OData online catalog
about 228
application, creating 228-230

NSMutableArray object 226
NuGet 244
NuGet packages

information, tracking through OData feeds
245-248

O
Object Browser 59
object model, of OData service

inspecting, OData Visualizer used 303-307
OData

about 7, 16, 144, 205
adopting, in ASP.NET MVC web applications

148-156
ASP.NET Web Form pages, building with 144-

147
entities, updating through 328-331
Panorama style data-driven Windows Phone

application, creating with 201-205
queries, executing in asynchronous manner

75-79

used, for building native Windows Phone
application 205-213

using, for Windows Azure Table storage access
235-238

OData4j library 214
OData4ObjC 220, 221
OData client proxy

generating, via DataSvcUtil.exe tool 63-66
OData endpoint

exposing, from WCF RIA Service 16-20
Sharepoint 2010 documents, manipulating

through 231-234
StackOverflow forums data, querying with

240-243
OData entities

updating, through HTTP PATCH requests 328-
331

OData entities, filtering
with All operator 325-327
with Any operator 325-327

ODataExplorer
about 289
OData service, exploring with 289-292
URL 289
URL, for source code 292

OData feed
information, tracking of NuGet packages 245-

248
SSRS 2008 R2 report, consuming through

252-256
OData for Objective-C. See OData4ObjC
odatagen utility 222, 226
OData HTTP traffic

inspecting, through Fiddler web debugger
299-302

OData queries
executing, in asynchronous manner 75-79

OData query code
composing, with LINQPad 286-288

OData query results
filtering, query options used 80-85

OData requests
custom HTTP headers, injecting in 94-96

OData service
about 52
accessing, via WebRequest class 71

359

accessing, with OData WP7 client library 188-
195

building, via ADO.NET Entity Framework 8-13
building, via WCF Data Service 8-13
building, with LINQ to SQL 13-15
building, with WCF Data Service 13-15
consuming, HTTP compression enabled 97-

99
consuming, in Windows 8 Metro style

application 308-314
consuming, MSXML used 99-105
consuming, with datajs script library 167-171
custom operations, adding on 20-23
eBay online products catalog, exploring

through 248-252
exploring, through web browser 52-57
exploring, with Microsoft Excel PowerPivot

component 296-299
exploring, with ODataExplorer 289-292
functionalities, extending with Service Actions

342-352
geospatial types, using in 319-324
role-based security, implementing for 280-

284
securing, ASP.NET Forms authentication used

262-265
securing, with HTTPS transport 267-270
upgrading, to WCF Data Service 5.0 316-318
using, in Silverlight data access application

171-179
using, in Windows PowerShell script 293-296
Windows authentication, applying for 258-

260
OData service authentication

implementing, with custom HTTP Module
271-274

OData service data
WPF data binding, performing with 89-93

OData service hosted, in IIS 7
dynamic compression, enabling for 137-141

OData V2 318, 334
OData V3 315
OData Visualizer

used, for inspecting object model of OData
service 303-307

OData WP7 client library
about 188, 196

OData service, accessing with 188-195
OEntity class 219
onQueryCategories function 278
Open Data Protocol. See OData
Open Data Protocol Visualizer. See OData

Visualizer
OpenReadAsync method 200
OrderBy option 81, 84

P
Panorama style data-driven, Windows Phone

application
creating, with OData 201-205

PhoneApplicationPage_Loaded event 193,
198

PHP pages
WCF Data Service, consuming in 179-184

PostBack events 144
primary key 31
ProcessingRequest event handler 276

Q
QueryInterceptor 33, 35
QueryInterceptor function 278, 279
QueryODataServiceWithAnyOperator function

325, 327
QueryODataWithDynamicUris function 333
query options

OData query results, filtering 80-85
QuerySpatialDataService function 322, 323
Queue storage 235

R
Razor engine 155
ResolveEntitySetUriByName function 332,

333
RoleBasedAuthModule HTTP Module 283
role-based security

implementing, for OData service 280-284

S
SaveChanges method 69, 330
scViewController class 224
security 257

360

SelectedIndexChanged event 147-160
Select option 83
self-hosting scenario 114
Server-side Object Model 234
server-side paged entity sets

dealing with 86-88
server-side paging feature 86
server-side processing pipeline

custom authorization, adding with 275, 276
Service Actions

about 342
OData service functionalities, extending with

342-352
Sharepoint 2010 227
Sharepoint 2010 documents

manipulating, through OData endpoint 231-
234

showAllCategories function 169, 171
showProductsOfCategory function 208
Silverlight 144
Silverlight data access application

OData service, using 171-179
SimpleNamedStreamProvider class 336
SimpleSpatialDataSource class 321
Skip option 82, 84
smartphones 187
SOAP 16
SpatialOperations class 320
SQL Azure Migration Wizard tool 117
SQL Server 2008 R2 319
SQL Server 2008 R2 Reporting Service 227
SQL Server Reporting Services(SSRS) 252
SSL/TLS protocol 266
SSRS 2008 R2 report

consuming, through OData feed 252-256
StackOverflow 240
StackOverflow forums data

querying, with OData endpoint 240-243
stored procedures 23
strong-typed OData client proxy

generating, Visual Studio used 57-62

T
Table storage 235
tablets 187
TableView Control 224

TestSpatialOperations class 320, 323
Top option 81, 84
TryResolveServiceAction function 350

U
UITableViewDataSource interface 226
unmanaged applications

OData service, consuming with MSXML 99-
105

UpdateEntityWithPatchOption function 329
UrlDecode method 324
URL Routing feature 134

V
Visual Studio

used, for generating strong-typed OData client
proxy 57-62

Visual Studio 2008 SP1 57
Visual Studio 2010 57, 318
Visual Studio Class View 59
Visual Studio IDE 52
Visual Studio Solution Explorer 58

W
WCF Data Service

about 8
accessing, in Android mobile application 213-

219
accessing, in iOS application 220-226
ADO.NET Entity Framework, building 8-13
ASP.NET context data, accessing in 36-39
basic access rules, accessing on 131-133
configuring, for error information 124-127
configuring, for JSON format response 127-

130
consuming, in PHP pages 179-184
customizing, Interceptors used 32-35
database stored procedures, exposing in 23-

27
dealing, with server-side paged entity sets

86-88
deploying, on Windows Azure host 117-123
hosting, in Console application 114-116
hosting, in IIS server 108-113
OData service, building 8-15

361

WCF Data Service 4.0 316, 334
WCF Data Service 5.0

about 315, 319
existing OData service, upgrading to 316-318

WCF Data Service client library
about 52
data, deleting through 66-70
data, editing through 66-70

WCF Data Service provider
creating 40-49

WCF Data Services 5.0 316
WCF RIA Service

OData endpoints, exposing from 16-20
web applications 143
web browser

OData service, exploring through 52-57
WebClient class 200
web.config file 262
WebRequest class

about 52
OData service, accessing via 70, 71

Web Server Controls 144
where clause 84
Windows 8 Metro style application

OData service, consuming in 308-314
Windows authentication

about 258
applying, for OData service 258-260

Windows Azure 117
Windows Azure host

WCF Data Service, deploying on 117-123
Windows Azure Management Portal 124
Windows Azure Storage service 227
Windows Azure Table storage access

OData protocol, using for 235-238
Windows Phone 7 187
Windows Phone application

building, HTML5 used 205-213
building, OData used 205-213

Windows Phone Emulator 195, 199
Windows Phone SDK 7.1 188
Windows PowerShell 293
Windows PowerShell script

OData service, using 293-296
WP7 Panorama Control

URL, for info 205
WPF data binding

performing, with OData service data 89-93
WPF (Windows Presentation Foundation) 245

X
XCode 224
XCode 4.2 221
XCode IDE 221
XCOPY application 286
XML 7, 52
XmlDataSource control 160
XSLT 156

Thank you for buying
OData Programming Cookbook for

.NET Developers

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

MVVM Survival Guide for
Enterprise Architectures in
Silverlight and WPF
ISBN: 978-1-849683-42-5 Paperback: 412 pages

Eliminate unnecessary code by taking advantage of the
MVVM pattern—less code means less bugs

1. Build an enterprise application using Silverlight
and WPF, taking advantage of the powerful MVVM
pattern, with this book and e-book

2. Discover the evolution of presentation patterns—
by example—and see the benefits of MVVM in
the context of the larger picture of presentation
patterns

3. Customize the MVVM pattern for your projects’
needs by comparing the various implementation
styles

Microsoft Dynamics AX 2012
Development Cookbook
ISBN: 978-1-849684-64-4 Paperback: 372 pages

Solve real-world Microsoft Dynamics AX development
problems with over 80 practical recipes

1. Develop powerful, successful Dynamics AX
projects with efficient X++ code with this book and
eBook

2. Proven recipes that can be reused in numerous
successful Dynamics AX projects

3. Covers general ledger, accounts payable,
accounts receivable, project modules and general
functionality of Dynamics AX

Please check www.PacktPub.com for information on our titles

Entity Framework 4.1:
Expert’s Cookbook
ISBN: 978-1-849684-46-0 Paperback: 352 pages

More than 40 recipes for successfully mixing Test Driven
Development, Architecture, and Entity Framework Code
First

1. Hands-on solutions with reusable code examples

2. Strategies for enterprise ready usage

3. Examples based on real world experience

4. Detailed and advanced examples of query
management

5. Step-by-step recipes that will guide you to success

Microsoft SharePoint
2010 Development with
Visual Studio 2010 Expert
Cookbook
ISBN: 978-1-849684-58-3 Paperback: 296 pages

Develop, debug, and deploy business solutions for
SharePoint applications using Visual Studio 2010

1. Create applications using the latest client object
model and create custom web services for your
SharePoint environment with this book and ebook.

2. Full of illustrations, diagrams and key points for
debugging and deploying your solutions securely
to the SharePoint environment.

3. Recipes with step-by-step instructions with
detailed explanation on how each recipe works
and working code examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Building OData Services
	Introduction
	Building an OData service via WCF Data Service and ADO.NET Entity Framework
	Building an OData service with WCF Data Service and LINQ to SQL
	Exposing OData endpoints from WCF RIA Service
	Adding custom operations on OData service
	Exposing database stored procedures in WCF Data Service
	Using custom data objects as the data source of WCF Data Service
	Using Interceptors to customize a WCF Data Service
	Accessing ASP.NET context data in WCF Data Service
	Creating a custom WCF Data Service provider

	Chapter 2:Working with OData at Client Side
	Introduction
	Exploring an OData service through web browser
	Using Visual Studio to generate strong-typed OData client proxy
	Generating OData client proxy via DataSvcUtil.exe tool
	Editing and deleting data through WCF Data Service client library
	Accessing OData service via WebRequest class
	Executing OData queries in an
asynchronous manner
	Filtering OData query results by using query options
	Dealing with server-side paged entity sets from WCF Data Service
	Performing WPF data binding with OData service data
	Injecting custom HTTP headers in OData requests
	Consuming HTTP compression enabled OData service
	Using MSXML to consume OData service in unmanaged applications

	Chapter 3:OData Service Hosting and Configuration
	Introduction
	Hosting a WCF Data Service in IIS server
	Hosting a WCF Data Service in Console application
	Deploying a WCF Data Service on Windows Azure host
	Configuring WCF Data Service to return error details
	Configuring WCF Data Service to return JSON format response
	Applying basic access rules on WCF Data Service
	Getting rid of .svc extension by using ASP.NET URL Routing
	Enabling dynamic compression for OData service hosted in IIS 7

	Chapter 4:Using OData in Web Application
	Introduction
	Building data-driven ASP.NET Web Form pages with OData
	Adopting OData in ASP.NET MVC web applications
	Building ASP.NET Page UI with OData and XSLT
	Building AJAX style data-driven web pages with jQuery
	Consuming OData service with datajs script library
	Using OData service in Silverlight data access application
	Consuming WCF Data Service in PHP pages

	Chapter 5:OData on Mobile Devices
	Introduction
	Accessing OData service with OData WP7 client library
	Consuming JSON-format OData service without OData WP7 client library
	Creating Panorama style data-driven Windows Phone application with OData
	Using HTML5 and OData to build native Windows Phone application
	Accessing WCF Data Service in Android mobile application
	Accessing WCF Data Service in iOS application

	Chapter 6:Working with Public OData Producers
	Introduction
	Getting started with Netflix OData online catalog
	Manipulating Sharepoint 2010 documents through OData endpoint
	Using OData protocol for Windows Azure Table storage access
	Query StackOverflow forums data with OData endpoint
	Tracking information of NuGet packages through OData feeds
	Exploring eBay online products catalog through OData service
	Consuming SSRS 2008 R2 report through OData feed

	Chapter 7:Working with Security
	Introduction
	Applying Windows authentication for OData service
	Using ASP.NET Forms authentication to secure OData service
	Securing OData service with HTTPS transport
	Implementing OData service authentication with custom HTTP Module
	Adding custom authorization with server-side processing pipeline
	Using Interceptors to control access for individual entity set
	Implementing role-based security for OData service

	Chapter 8:a Programming Tips
	Introduction
	Using LINQPad to compose OData query code
	Exploring OData service with ODataExplorer
	Using OData service in Windows PowerShell script
	Exploring OData service with Microsoft Excel PowerPivot component
	Inspecting OData HTTP traffic through Fiddler web debugger
	Using Open Data Protocol Visualizer to inspect the object model of OData service
	Consuming OData service in Windows 8 Metro style application

	Chapter 9:New Features of WCF Data Service 5.0 (OData V3)
	Introduction
	Upgrading existing OData service to WCF Data Service 5.0
	Using geospatial types in OData service
	Using Any and All operators to filter OData entities
	Updating OData entities through HTTP PATCH requests
	Resolving base URI of OData entity sets dynamically
	Exposing binary data on OData entity with Named Resource Stream
	Extending OData service functionalities with Service Actions

	Index

