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Chapter 1. Optimization and
Performance Defined

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Optimizing the performance of Java (or any other sort of code) is often seen
as a Dark Art. There’s a mystique about performance analysis—it’s
commonly viewed as a craft practiced by the “lone hacker, who is tortured
and deep thinking” (one of Hollywood’s favorite tropes about computers and
the people who operate them). The image is one of a single individual who
can see deeply into a system and come up with a magic solution that makes
the system work faster.

This image is often coupled with the unfortunate (but all-too-common)
situation where performance is a second-class concern of the software teams.
This sets up a scenario where analysis is only done once the system is already
in trouble, and so needs a performance “hero” to save it. The reality,
however, is a little different.

The truth is that performance analysis is a weird blend of hard empiricism
and squishy human psychology. What matters is, at one and the same time,
the absolute numbers of observable metrics and how the end users and



stakeholders feel about them. The resolution of this apparent paradox is the
subject of the rest of this book.

Since the publication of the First Edition, this situation has only sharpened.
As more and more workloads move into the cloud, and as systems become
ever-more complicated, the strange brew that combines very different factors
has become even more important and prevalent. The “domain of concern”
that an engineer who cares about performance needs to operate in has
continued to broaden.

This is because production systems have become even more complicated.
More of them now have aspects of distributed systems to consider in addition
to the performance of individual application processes. As system
architectures become larger and more complex, the number of engineers who
must concern themselves with performance has also increased.

The new edition of this book responds to these changes in our industry by
providing four things:

A necessary deep-dive on the performance of application code running
within a single-JVM

A discussion of JVM internals

Details of how the modern cloud stack interacts with Java / JVM
applications

A first look at the behavior of Java applications running on a cluster in a
cloud environment

In this chapter, we will get going by setting the stage with some definitions
and establishing a framework for how we talk about performance—starting
with some problems and pitfalls that plague many discussions of Java
performance.

Java Performance—The Wrong Way
For many years, one of the top three hits on Google for “Java performance



tuning” was an article from 1997–8, which had been ingested into the index
very early in Google’s history. The page had presumably stayed close to the
top because its initial ranking served to actively drive traffic to it, creating a
feedback loop.

The page housed advice that was completely out of date, no longer true, and
in many cases detrimental to applications. However, its favored position in
the search engine results caused many, many developers to be exposed to
terrible advice.

For example, very early versions of Java had terrible method dispatch
performance. As a workaround, some Java developers advocated avoiding
small methods and instead writing monolithic methods. Of course, over time,
the performance of virtual dispatch greatly improved.

Not only that, but with modern JVM technologies (especially automatic
managed inlining), virtual dispatch has now been eliminated at a large
number—perhaps even the majority—of call sites. Code that followed the
“lump everything into one method” advice is now at a substantial
disadvantage, as it is very unfriendly to modern Just-in-Time (JIT) compilers.

There’s no way of knowing how much damage was done to the performance
of applications that were subjected to the bad advice, but this case neatly
demonstrates the dangers of not using a quantitative and verifiable approach
to performance. It also provides yet another excellent example of why you
shouldn’t believe everything you read on the internet.

NOTE
The execution speed of Java code is highly dynamic and fundamentally depends on the
underlying Java Virtual Machine. An old piece of Java code may well execute faster on a
more recent JVM, even without recompiling the Java source code.

As you might imagine, for this reason (and others we will discuss later) this
book is not a cookbook of performance tips to apply to your code. Instead,
we focus on a range of aspects that come together to produce good



performance engineering:

Performance methodology within the overall software lifecycle

Theory of testing as applied to performance

Measurement, statistics, and tooling

Analysis skills (both systems and data)

Underlying technology and mechanisms

By bringing these aspects together, the intention is to help you build an
understanding that can be broadly applied to whatever performance
circumstances that you may face.

Later in the book, we will introduce some heuristics and code-level
techniques for optimization, but these all come with caveats and tradeoffs that
the developer should be aware of before using them.

TIP
Please do not skip ahead to those sections and start applying the techniques detailed
without properly understanding the context in which the advice is given. All of these
techniques are capable of doing more harm than good if you lack a proper understanding
of how they should be applied.

In general, there are:

No magic “go faster” switches for the JVM

No “tips and tricks” to make Java run faster

No secret algorithms that have been hidden from you

As we explore our subject, we will discuss these misconceptions in more
detail, along with some other common mistakes that developers often make
when approaching Java performance analysis and related issues.

Our “No Tips and Tricks” approach extends to our coverage of cloud



techniques. You will not find virtually any discussion of the vendor-specific
techniques present on the cloud hyperscalars (AWS, Azure, GCP, OpenShift,
and so on). This is for two main reasons:

It would expand the scope of the book and make it unmanageably long

It is impossible to stay current with such a large topic area

The progress made by teams working on those products would make any
detailed information about them out-of-date by the time the book is
published. So, instead, in the cloud chapters, we focus on fundamentals and
patterns, which remain effective regardless of which hyperscalar your
applications are deployed upon.

Still here? Good. Then let’s talk about performance.

Java Performance Overview
To understand why Java performance is the way that it is, let’s start by
considering a classic quote from James Gosling, the creator of Java:

Java is a blue collar language. It’s not PhD thesis material but a language
for a job.1

—James Gosling

That is, Java has always been an extremely practical language. Its attitude to
performance was initially that as long as the environment was fast enough,
then raw performance could be sacrificed if developer productivity benefited.
It was therefore not until relatively recently, with the increasing maturity and
sophistication of JVMs such as HotSpot, that the Java environment became
suitable for high-performance computing applications.

This practicality manifests itself in many ways in the Java platform, but one
of the most obvious is the use of managed subsystems. The idea is that the
developer gives up some aspects of low-level control in exchange for not
having to worry about some of the details of the capability under
management.



The most obvious example of this is, of course, memory management. The
JVM provides automatic memory management in the form of a pluggable
garbage collection subsystem (usually referred to as GC), so that memory
does not have to be manually tracked by the programmer.

NOTE
Managed subsystems occur throughout the JVM and their existence introduces extra
complexity into the runtime behavior of JVM applications.

As we will discuss in the next section, the complex runtime behavior of JVM
applications requires us to treat our applications as experiments under test.
This leads us to think about the statistics of observed measurements, and here
we make an unfortunate discovery.

The observed performance measurements of JVM applications are very often
not normally distributed. This means that elementary statistical techniques
(especially standard deviation and variance for example) are ill-suited for
handling results from JVM applications. This is because many basic statistics
methods contain an implicit assumption about the normality of results
distributions.

One way to understand this is that for JVM applications outliers can be very
significant—for a low-latency trading application, for example. This means
that sampling of measurements is also problematic, as it can easily miss the
exact events that have the most importance.

Finally, a word of caution. It is very easy to be misled by Java performance
measurements. The complexity of the environment means that it is very hard
to isolate individual aspects of the system.

Measurement also has an overhead, and frequent sampling (or recording
every result) can have an observable impact on the performance numbers
being recorded. The nature of Java performance numbers requires a certain
amount of statistical sophistication, and naive techniques frequently produce
incorrect results when applied to Java/JVM applications.



These concerns also resonate into the domain of cloud native applications.
Automatic management of applications has very much become part of the
cloud native experience—especially with the rise of technologies such as
Kubernetes. The need to balance the cost of collecting data with the need to
collect enough to make conclusions is also an important architectural concern
for cloud native apps—we will have more to say about that in Chapter 10.

Performance as an Experimental Science
Java/JVM software stacks are, like most modern software systems, very
complex. In fact, due to the highly optimizing and adaptive nature of the
JVM, production systems built on top of the JVM can have some subtle and
intricate performance behavior. This complexity has been made possible by
Moore’s Law and the unprecedented growth in hardware capability that it
represents.

The most amazing achievement of the computer software industry is its
continuing cancellation of the steady and staggering gains made by the
computer hardware industry.

—Henry Petroski (attr)

While some software systems have squandered the historical gains of the
industry, the JVM represents something of an engineering triumph. Since its
inception in the late 1990s the JVM has developed into a very high-
performance, general-purpose execution environment that puts those gains to
very good use.

The tradeoff, however, is that like any complex, high-performance system,
the JVM requires a measure of skill and experience to get the absolute best
out of it.

A measurement not clearly defined is worse than useless.2

—Eli Goldratt

JVM performance tuning is therefore a synthesis between technology,
methodology, measurable quantities, and tools. Its aim is to effect measurable



outputs in a manner desired by the owners or users of a system. In other
words, performance is an experimental science—it achieves a desired result
by:

Defining the desired outcome

Measuring the existing system

Determining what is to be done to achieve the requirement

Undertaking an improvement exercise

Retesting

Determining whether the goal has been achieved

The process of defining and determining desired performance outcomes
builds a set of quantitative objectives. It is important to establish what should
be measured and record the objectives, which then form part of the project’s
artifacts and deliverables. From this, we can see that performance analysis is
based upon defining, and then achieving, nonfunctional requirements.

This process is, as has been previewed, not one of reading chicken entrails or
another divination method. Instead, we rely upon statistics and an appropriate
handling (and interpretation) of results.

In this chapter, we discuss these techniques as they apply to a single JVM. In
Chapter 2 we will introduce a primer on the basic statistical techniques that
are required for accurate handling of data generated from a JVM performance
analysis project. Later on, primarily in Chapter 10, we will discuss how these
techniques generalize to a clustered application and give rise to the notion of
Observability.

It is important to recognize that, for many real-world projects, a more
sophisticated understanding of data and statistics will undoubtedly be
required. You are therefore encouraged to view the statistical techniques
found in this book as a starting point, rather than a definitive statement.



A Taxonomy for Performance
In this section, we introduce some basic observable quantities for
performance analysis. These provide a vocabulary for performance analysis
and will allow you to frame the objectives of a tuning project in quantitative
terms. These objectives are the nonfunctional requirements that define
performance goals. Note that these quantities are not necessarily directly
available in all cases, and some may require some work to obtain from the
raw numbers obtained from our system.

One common basic set of performance observables is:

Throughput

Latency

Capacity

Utilization

Efficiency

Scalability

Degradation

We will briefly discuss each in turn. Note that for most performance projects,
not every metric will be optimized simultaneously. The case of only a few
metrics being improved in a single performance iteration is far more
common, and this may be as many as can be tuned at once. In real-world
projects, it may well be the case that optimizing one metric comes at the
detriment of another metric or group of metrics.

Throughput
Throughput is a metric that represents the rate of work a system or subsystem
can perform. This is usually expressed as number of units of work in some
time period. For example, we might be interested in how many transactions
per second a system can execute.



For the throughput number to be meaningful in a real performance exercise, it
should include a description of the reference platform it was obtained on. For
example, the hardware spec, OS, and software stack are all relevant to
throughput, as is whether the system under test is a single server or a cluster.
In addition, transactions (or units of work) should be the same between tests.
Essentially, we should seek to ensure that the workload for throughput tests is
kept consistent between runs.

Performance metrics are sometimes explained via metaphors that evoke
plumbing. If we adopt this view point then, if a water pipe can produce 100
liters per second, then the volume produced in 1 second (100 liters) is the
throughput. Note that this value is a function of the speed of the water and the
cross-sectional area of the pipe.

Latency
To continue the metaphor of the previous section—latency is how long it
takes a given liter to traverse the pipe. This is a function of both the length of
the pipe and how quickly the water is moving through it. It is not, however, a
function of the diameter of the pipe.

In software, latency is normally quoted as an end-to-end time—the time
taken to process a single transaction and see a result. It is dependent on
workload, so a common approach is to produce a graph showing latency as a
function of increasing workload. We will see an example of this type of
graph in “Reading Performance Graphs”.

Capacity
The capacity is the amount of work parallelism a system possesses—that is,
the number of units of work (e.g., transactions) that can be simultaneously
ongoing in the system.

Capacity is obviously related to throughput, and we should expect that as the
concurrent load on a system increases, throughput (and latency) will be
affected. For this reason, capacity is usually quoted as the processing
available at a given value of latency or throughput.



Utilization
One of the most common performance analysis tasks is to achieve efficient
use of a system’s resources. Ideally, CPUs should be used for handling units
of work, rather than being idle (or spending time handling OS or other
housekeeping tasks).

Depending on the workload, there can be a huge difference between the
utilization levels of different resources. For example, a computation-intensive
workload (such as graphics processing or encryption) may be running at close
to 100% CPU but only be using a small percentage of available memory.

As well as CPU, other resources types—such as network, memory, and
(sometimes) the storage I/O subsystem—are becoming important resources to
manage in cloud-native applications. For many applications, more memory
than CPU is “wasted”, and for many microservices network traffic has
become the real bottleneck.

Efficiency
Dividing the throughput of a system by the utilized resources gives a measure
of the overall efficiency of the system. Intuitively, this makes sense, as
requiring more resources to produce the same throughput is one useful
definition of being less efficient.

It is also possible, when one is dealing with larger systems, to use a form of
cost accounting to measure efficiency. If solution A has a total cost of
ownership (TCO) twice that of solution B for the same throughput then it is,
clearly, half as efficient.

Scalability
The throughput or capacity of a system of course depends upon the resources
available for processing. The scalability of a system or application can be
defined in several ways—but one useful one is as the change in throughput as
resources are added. The holy grail of system scalability is to have



throughput change exactly in step with resources.

Consider a system based on a cluster of servers. If the cluster is expanded, for
example, by doubling in size, then what throughput can be achieved? If the
new cluster can handle twice the volume of transactions, then the system is
exhibiting “perfect linear scaling.” This is very difficult to achieve in
practice, especially over a wide range of possible loads.

System scalability is dependent upon a number of factors, and is not normally
a simple linear relationship. It is very common for a system to scale close to
linearly for some range of resources, but then at higher loads to encounter
some limitation that prevents perfect scaling.

Degradation
If we increase the load on a system, either by increasing the rate at which
requests arrive or the size of the individual requests, then we may see a
change in the observed latency and/or throughput.

Note that this change is dependent on utilization. If the system is
underutilized, then there should be some slack before observables change, but
if resources are fully utilized then we would expect to see throughput stop
increasing, or latency increase. These changes are usually called the
degradation of the system under additional load.

Correlations Between the Observables
The behavior of the various performance observables is usually connected in
some manner. The details of this connection will depend upon whether the
system is running at peak utility. For example, in general, the utilization will
change as the load on a system increases. However, if the system is
underutilized, then increasing load may not appreciably increase utilization.
Conversely, if the system is already stressed, then the effect of increasing
load may be felt in another observable.

As another example, scalability and degradation both represent the change in
behavior of a system as more load is added. For scalability, as the load is



increased, so are available resources, and the central question is whether the
system can make use of them. On the other hand, if load is added but
additional resources are not provided, degradation of some performance
observable (e.g., latency) is the expected outcome.

NOTE
In rare cases, additional load can cause counterintuitive results. For example, if the change
in load causes some part of the system to switch to a more resource-intensive but higher-
performance mode, then the overall effect can be to reduce latency, even though more
requests are being received.

To take one example, in Chapter 6 we will discuss HotSpot’s JIT compiler in
detail. To be considered eligible for JIT compilation, a method has to be
executed in interpreted mode “sufficiently frequently.” So it is possible at low
load to have key methods stuck in interpreted mode, but for those to become
eligible for compilation at higher loads due to increased calling frequency on
the methods. This causes later calls to the same method to run much, much
faster than earlier executions.

Different workloads can have very different characteristics. For example, a
trade on the financial markets, viewed end to end, may have an execution
time (i.e., latency) of hours or even days. However, millions of them may be
in progress at a major bank at any given time. Thus, the capacity of the
system is very large, but the latency is also large.

However, let’s consider only a single subsystem within the bank. The
matching of a buyer and a seller (which is essentially the parties agreeing on
a price) is known as order matching. This individual subsystem may have
only hundreds of pending orders at any given time, but the latency from order
acceptance to completed match may be as little as 1 millisecond (or even less
in the case of “low-latency” trading).

In this section we have met the most frequently encountered performance
observables. Occasionally slightly different definitions, or even different
metrics, are used, but in most cases these will be the basic system numbers



that will normally be used to guide performance tuning, and act as a
taxonomy for discussing the performance of systems of interest.

Reading Performance Graphs
To conclude this chapter, let’s look at some common patterns of behavior that
occur in performance tests. We will explore these by looking at graphs of real
observables, and we will encounter many other examples of graphs of our
data as we proceed.

The graph in Figure 1-1 shows sudden, unexpected degradation of
performance (in this case, latency) under increasing load—commonly called
a performance elbow.





Figure 1-1. A performance elbow

By contrast, Figure 1-2 shows the much happier case of throughput scaling
almost linearly as machines are added to a cluster. This is close to ideal
behavior, and is only likely to be achieved in extremely favorable
circumstances—e.g., scaling a stateless protocol with no need for session
affinity with a single server.





Figure 1-2. Near-linear scaling

In Chapter 13 we will meet Amdahl’s Law, named for the famous computer
scientist (and “father of the mainframe”) Gene Amdahl of IBM. Figure 1-3
shows a graphical representation of his fundamental constraint on scalability;
it shows the maximum possible speedup as a function of the number of
processors devoted to the task.





Figure 1-3. Amdahl’s Law

We display three cases: where the underlying task is 75%, 90%, and 95%
parallelizable. This clearly shows that whenever the workload has any piece
at all that must be performed serially, linear scalability is impossible, and
there are strict limits on how much scalability can be achieved. This justifies
the commentary around Figure 1-2—even in the best cases linear scalability
is all but impossible to achieve.

The limits imposed by Amdahl’s Law are surprisingly restrictive. Note in
particular that the x-axis of the graph is logarithmic, and so even with an
algorithm that is 95% parallelizable (and thus only 5% serial), 32 processors
are needed for a factor-of-12 speedup. Even worse, no matter how many
cores are used, the maximum speedup is only a factor of 20 for that
algorithm. In practice, many algorithms are far more than 5% serial, and so
have a more constrained maximum possible speedup.

Another common source of performance graphs in software systems is
memory utilization. As we will see in Chapter 4, the underlying technology
in the JVM’s garbage collection subsystem naturally gives rise to a
“sawtooth” pattern of memory used for healthy applications that aren’t under
stress. We can see an example in Figure 1-4 --which is a close-up of a
screenshot from the Mission Control tool (JMC) provided by Eclipse
Adoptium.

Figure 1-4. Healthy memory usage

One key performance metric for JVM is the allocation rate—effectively how



quickly it can create new objects (in bytes per second). We will have a great
deal to say about this aspect of JVM performance in Chapter 4 and Chapter 5.

In Figure 1-5, we can see a zoomed-in view of allocation rate, also captured
from JMC. This has been generated from a benchmark program that is
deliberately stressing the JVM’s memory subsystem—we have tried to make
the JVM achieve 8GiB/s of allocation, but as we can see, this is beyond the
capability of the hardware, and instead the maximum allocation rate of the
system is between 4 and 5GiB/s.

Figure 1-5. Sample problematic allocation rate

Note that tapped-out allocation is a different problem to the system having a
resource leak. In that case, it is common for it to manifest in a manner like
that shown in Figure 1-6, where an observable (in this case latency) slowly
degrades as the load is ramped up, before hitting an inflection point where the
system rapidly degrades.





Figure 1-6. Degrading latency under higher load

Let’s move on to discuss some extra things to consider when working with
cloud systems.

Performance in Cloud Systems
Modern cloud systems are nearly always distributed systems in that they are
comprised of a cluster of nodes (JVM instances) interoperating via shared
network resources. This means that, in addition to all the complexity of
single-node systems, there is another level of complexity that must be
addressed.

Operators of distributed systems have to think about things such as:

How is work shared out among the nodes in the cluster?

How do we roll out a new version of the software to the cluster (or new
config)?

What happens when a node leaves the cluster?

What happens when a new node joins the cluster?

What happens if the new node is misconfigured in some way?

What happens if the new node behaves differently in some way,
compared to the rest of the cluster?

What happens if there is a problem with the code that controls the
cluster itself?

What happens if there is a catastrophic failure of the entire cluster, or
some infrastructure that it depends upon?

What happens if a component in the infrastructure the cluster depends
upon is a limited resource and becomes a bottleneck to scalability?

These concerns, which we will explore fully later in the book, have a major
impact on how cloud systems behave. They affect the key performance



observables such as throughput, latency, efficiency and utilization.

Not only that, but there are two very important aspects—which differ from
the single-JVM case—that may not be obvious at first sight to newcomers to
cloud systems. First is that many possible impacts are caused by the internal
behavior of a cluster, which may be opaque to the performance engineer.

We will discuss this in detail in Chapter 10 when we tackle the topic of
Observability in modern systems, and how to implement solutions to this
visibility problem.

The second is that the efficiency and utilization of how a service uses cloud
providers has a direct effect on the cost of running that service. Inefficiencies
and misconfigurations can show up in the cost base of a service in a far more
direct way. In fact, this is one way to think about the rise of cloud.

In the old days, teams would often own actual physical servers in dedicated
areas (usually called cages) in datacenters. Purchasing these servers
represented capital expenditure, and the servers were tracked as an asset.
When we use cloud providers, such as AWS or Azure, we are renting time on
machines actually owned by companies such as Amazon or Microsoft. This is
operational expenditure, and it is a cost (or liability). This shift means that
the computational requirements of our systems are now much more open to
scrutiny by the financial folks.

Overall, it is important to recognize that cloud systems fundamentally consist
clusters of processes (in our case, JVMs) that dynamically change over time.
The clusters can grow or shrink in size, but even if they do not, over time the
participating processes will change. This stands in sharp contrast to
traditional host-based systems where the processes forming a cluster are
usually much more long-lived and belong to a known, and stable, collection
of hosts.

Summary
In this chapter we have started to discuss what Java performance is and is not.
We have introduced the fundamental topics of empirical science and



measurement, and the basic vocabulary and observables that a good
performance exercise will use. We have introduced some common cases that
are often seen within the results obtained from performance tests. Finally, we
have introduced the very basics of the sorts of additional issues that can arise
in cloud systems.

Let’s move on and begin discussing some major aspects of performance
testing, as well as how to handle the numbers that are generated by those
tests.

1  J. Gosling, “The feel of Java,” Computer, vol. 30, no. 6 (June 1997): 53-57

2  E. Goldratt and J. Cox, “The Goal,” (Gower Publishing, 1984)



Chapter 2. Performance Testing
Methodology

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Performance testing is undertaken for a variety of reasons. In this chapter we
will introduce the different types of performance test that a team may wish to
execute, and discuss some best practices for each subtype of testing.

Later in the chapter we will discuss statistics, and some very important
human factors that, are often neglected when considering performance
problems.

Types of Performance Test
Performance tests are frequently conducted for the wrong reasons, or
conducted badly. The reasons for this vary widely, but are often rooted in a
failure to understand the nature of performance analysis and a belief that
“doing something is better than doing nothing.” As we will see several times
throughout the book, this belief is often a dangerous half-truth at best.

One of the more common mistakes is to speak generally of “performance



testing” without engaging with the specifics. In fact, there are many different
types of large-scale performance tests that can be conducted on a system.

NOTE
Good performance tests are quantitative. They ask questions that produce a numeric
answer that can be handled as an experimental output and subjected to statistical analysis.

The types of performance tests we will discuss in this book usually have
independent (but somewhat overlapping) goals. It is therefore important to
understand the quantitative questions you are trying to answer before
deciding what type of testing should be carried out.

This doesn’t have to be that complex—simply writing down the questions the
test is intended to answer can be enough. However, it is usual to consider
why these tests are important for the application and confirming the reason
with the application owner (or key customers).

Some of the most common test types, and an example question for each, are
as follows:

Latency test

What is the end-to-end transaction time?

Throughput test

How many concurrent transactions can the current system capacity deal
with?

Load test

Can the system handle a specific load?

Stress test

What is the breaking point of the system?

Endurance test



What performance anomalies are discovered when the system is run for
an extended period?

Capacity planning test

Does the system scale as expected when additional resources are added?

Degradation

What happens when the system is partially failed?

Let’s look in more detail at each of these test types in turn.

Latency Test
Latency is one of the most common types of performance test, because it is
often a system observable of keen interest to management (and users): how
long are our customers waiting for a transaction (or a page load)?

This can a double-edged sword, because the simplicity of the question (that a
latency test seeks to answer) can cause teams to focus too much on latency.
This, in turn, can cause the team to ignore the necessity of identifying
quantitative questions for other types of performance tests.

NOTE
The goal of a latency tuning exercise is usually to directly improve the user experience, or
to meet a service-level agreement.

However, even in the simplest of cases, a latency test has some subtleties that
must be treated carefully. One of the most noticeable is that a simple mean
(average) is not very useful as a measure of how well an application is
reacting to requests. We will discuss this subject more fully in “Statistics for
JVM Performance” and explore additional measures.

Throughput Test



Throughput is probably the second most common quantity to be
performance-tested. It can even be thought of as dual to latency, in some
senses.

For example, when we are conducting a latency test, it is important to state
(and control) the concurrent transactions count when producing a distribution
of latency results. Similarly, when we are conducting a throughput test, we
must make sure to keep an eye on latency and check that it is not blowing up
to unacceptable values as we ramp up.

NOTE
The observed latency of a system should be stated at known and controlled throughput
levels, and vice versa.

We determine the “maximum throughput” by noticing when the latency
distribution suddenly changes—effectively a “breaking point” (also called an
inflection point) of the system. The point of a stress test, as we will see in an
upcoming section, is to locate such points and the load levels at which they
occur.

A throughput test, on the other hand, is about measuring the observed
maximum throughput before the system starts to degrade. Once again, these
test types are discussed separately, but are rarely truly independent in
practice.

Stress Test
One way to think about a stress test is as a way to determine how much spare
headroom the system has. The test typically proceeds by placing the system
into a steady state of transactions—that is, a specified throughput level (often
the current peak). The test then ramps up the concurrent transactions slowly,
until the system observables start to degrade.

The value just before the observables started to degrade determines the
maximum throughput achieved in a stress test.



Load Test
A load test differs from a throughput test (or a stress test) in that it is usually
framed as a binary test: “Can the system handle this projected load or not?”
Load tests are sometimes conducted in advance of expected business events
—for example, the onboarding of a new customer or market that is expected
to drive greatly increased traffic to the application.

Other examples of possible events that could warrant performing this type of
test include advertising campaigns, social media events, and “viral content.”

Endurance Test
Some problems manifest only over much longer periods of time (often
measured in days). These include slow memory leaks, cache pollution, and
memory fragmentation (especially for applications that may eventually suffer
a GC concurrent mode failure; see Chapter 5 for more details).

To detect these types of issues, an endurance test (also known as a soak test)
is the usual approach. These are run at average (or high) utilization, but
within observed realistic loads for the system. During the test, resource levels
are closely monitored to spot any breakdowns or exhaustions of resources.

This type of test is more common in low-latency systems, as it is very
common that those systems will not be able to tolerate the length of a stop-
the-world event caused by a full GC cycle (see Chapter 4 and subsequent
chapters for more on stop-the-world events and related GC concepts).

Endurance tests are not performed as often as they perhaps should be, for the
simple reason that they take a long time to run and can be very expensive—
but there are no shortcuts. There is also the inherent difficulty of testing with
realistic data or usage patterns over a long period. This can be one of the
major reasons why teams end up “testing in production”.

This type of test is also not always applicable to microservice or other
architectures where there may be a lot of code changes deployed in a short
time.



Capacity Planning Test
Capacity planning tests bear many similarities to stress tests, but they are a
distinct type of test. The role of a stress test is to find out what the current
system will cope with, whereas a capacity planning test is more forward-
looking and seeks to find out what load an upgraded system could handle.

For this reason, capacity planning tests are often carried out as part of a
scheduled planning exercise, rather than in response to a specific event or
threat.

Degradation Test
Once upon a time, rigorous failover and recovery testing was really only
practiced in the most highly regulated and scrutinized environments
(including banks and financial institutions). However, as applications have
migrated to the cloud, clustered deployments (e.g. based on Kubernetes) have
become more and more common. One primary consequence of this is that
more and more developers now need to be aware of the possible failure
modes of clustered applications.

NOTE
A full discussion of all aspects of resilience and fail-over testing is outside the scope of
this book. In Chapter 15, we will discuss some of the simpler effects that can be seen in
cloud systems when a cluster partially fails, or needs to recover.

In this section, the only type of resilience test we will discuss is the
degradation test—this type of test is also known as a partial failure test.

The basic approach to this test is to see how the system behaves when a
component or entire subsystem suddenly loses capacity while the system is
running at simulated loads equivalent to usual production volumes. Examples
could be application server clusters that suddenly lose members, or network
bandwidth that suddenly drops.

Key observables during a degradation test include the transaction latency



distribution and throughput.

One particularly interesting subtype of partial failure test is known as the
Chaos Monkey. This is named after a project at Netflix that was undertaken to
verify the robustness of its infrastructure.

The idea behind Chaos Monkey is that in a truly resilient architecture, the
failure of a single component should not be able to cause a cascading failure
or have a meaningful impact on the overall system.

Chaos Monkey forces system operators to confront this possibility by
randomly killing off live processes in the production environment.

In order to successfully implement Chaos Monkey–type systems, an
organization must have very high levels of system hygiene, service design,
and operational excellence. Nevertheless, it is an area of interest and
aspiration for an increasing number of companies and teams.

Best Practices Primer
When deciding where to focus your effort in a performance tuning exercise,
there are three golden rules that can provide useful guidance:

Identify what you care about and figure out how to measure it.

Optimize what matters, not what is easy to optimize.

Play the big points first.

The second point has a converse, which is to remind yourself not to fall into
the trap of attaching too much significance to whatever quantity you can
easily measure. Not every observable is significant to a business, but it is
sometimes tempting to report on an easy measure, rather than the right
measure.

To the third point, it is also easy to fall into the trap of optimizing small
things simply for the sake of optimizing.

https://github.com/Netflix/chaosmonkey


Top-Down Performance
One of the aspects of Java performance that many engineers miss at first sight
is that large-scale benchmarking of Java applications is usually much easier
than trying to get accurate numbers for small sections of code.

This is such a widely misunderstood point, that to deliberately deemphasize
it, we do not discuss microbenchmarking in the main book text at all. Instead,
it is discussed in Appendix A --a placement that more accurately reflects the
utility of the technique for the majority of applications.

NOTE
The approach of starting with the performance behavior of an entire application is usually
called top-down performance.

To make the most of the top-down approach, a testing team needs a test
environment, a clear understanding of what it needs to measure and optimize,
and an understanding of how the performance exercise will fit into the overall
software development lifecycle.

Creating a Test Environment
Setting up a test environment is one of the first tasks most performance
testing teams will need to undertake. Wherever possible, this should be an
exact duplicate of the production environment, in all aspects.

NOTE
Some teams may be in a position where they are forced to forgo testing environments and
simply measure in production using modern deployment and Observability techniques.
This is the subject of Chapter 10, but it is not recommended as an approach unless it’s
necessary.

This includes not only application servers (which servers should have the



same number of CPUs, same version of the OS and Java runtime, etc.), but
web servers, databases, message queues, and so on. Any services (e.g., third-
party network services that are not easy to replicate, or do not have sufficient
QA capacity to handle a production-equivalent load) will need to be mocked
for a representative performance testing environment.

NOTE
Performance testing environments that are significantly different from the production
deployments that they purport to represent are usually ineffective—they fail to produce
results that have any usefulness or predictive power in the live environment.

For traditional (i.e., non-cloud-based) environments, a production-like
performance testing environment is relatively straightforward to achieve in
theory—the team simply buys as many machines as are in use in the
production environment and then configures them in exactly the same way as
production is configured.

Management is sometimes resistant to the additional infrastructure cost that
this represents. This is almost always a false economy, but sadly many
organizations fail to account correctly for the cost of outages. This can lead to
a belief that the savings from not having an accurate performance testing
environment are meaningful, as it fails to properly account for the risks
introduced by having a QA environment that does not mirror production.

The advent of cloud technologies, has changed this picture. More dynamic
approaches to infrastructure management are now widespread. This includes
on-demand and autoscaling infrastructure, as well as approaches such as
immutable infrastructure, also referred to as treating server infrastructure as
“livestock, not pets”.

In theory, these trends make the construction of a performance testing
environment that looks like production easier. However, there are subtleties
here. For example:

Having a process that allows changes to be made in a test environment



first and then migrated to production

Making sure that a test environment does not have some overlooked
dependencies that depend upon production

Ensuring that test environments have realistic authentication and
authorization systems, not dummy components

Despite these concerns, the possibility of setting up a testing environment
that can be turned off when not in use is a key advantage of cloud-based
deployments. This can bring significant cost savings to the project, but it
requires a proper process for starting up and shutting down the environment
as scheduled.

Identifying Performance Requirements
The overall performance of a system is not solely determined by your
application code. As we will discover throughout the rest of this book, the
container, operating system, and hardware all have a role to play.

Therefore, the metrics that we will use to evaluate performance should not be
thought about solely in terms of the code. Instead, we must consider systems
as a whole and the observable quantities that are important to customers and
management. These are usually referred to as performance nonfunctional
requirements (NFRs), and are the key indicators that we want to optimize.

NOTE
In Chapter 7, we will meet a simple system model that describes in more detail how the
interaction between OS, hardware, JVM and code impacts performance.

Some performance goals are obvious:

Reduce 95% percentile transaction time by 100 ms.

Improve system so that 5x throughput on existing hardware is possible.



Improve average response time by 30%.

Others may be less apparent:

Reduce resource cost to serve the average customer by 50%.

Ensure system is still within 25% of response targets, even when
application clusters are degraded by 50%.

Reduce customer “drop-off” rate by 25% by removing 10 ms of latency.

An open discussion with the stakeholders as to exactly what should be
measured and what goals are to be achieved is essential. Ideally, this
discussion should form part of the first kick-off meeting for any performance
exercise.



Performance Testing as Part of the SDLC
Some companies and teams prefer to think of performance testing as an
occasional, one-off activity. However, more sophisticated teams tend to make
ongoing performance tests, and in particular performance regression testing,
an integral part of their software development lifecycle (SDLC).

This requires collaboration between developers and infrastructure teams to
control which versions of code are present in the performance testing
environment at any given time. It is also virtually impossible to implement
without a dedicated testing environment.

Java-Specific Issues
Much of the science of performance analysis is applicable to any modern
software system. However, the nature of the JVM is such that there are
certain additional complications that the performance engineer should be
aware of and consider carefully. These largely stem from the dynamic self-
management capabilities of the JVM, such as the dynamic tuning of memory
areas and JIT compilation.

For example, modern JVMs analyze which methods are being run to identify
candidates for JIT compilation to optimized machine code. This means that if
a method is not being JIT-compiled, then one of two things is true about the
method:

It is not being run frequently enough to warrant being compiled.

The method is too large or complex to be analyzed for compilation.

The second condition is, by the way, much rarer than the first. In Chapter 6
we will discuss JIT compilation in detail, and show some simple techniques
for ensuring that the important methods of applications are targeted for JIT
compilation by the JVM.

Having discussed some of the most common best practices for performance,
let’s now turn our attention to the pitfalls and antipatterns that teams can fall



prey to.

Causes of performance antipatterns
An antipattern is an undesired behavior of a software project or team that is
observed across a large number of projects.1 The frequency of occurrence
leads to the conclusion (or suspicion) that some underlying factor is
responsible for creating the unwanted behavior. Some antipatterns may at
first sight seem to be justified, with their non-ideal aspects not immediately
obvious. Others are the result of negative project practices slowly accreting
over time.

A partial catalogue of antipatterns can be found in Appendix B—where an
example of the first kind would be something like Distracted By Shiny,
whereas Tuning By Folklore is an example of the second kind.

In some cases the behavior may be driven by social or team constraints, or by
common misapplied management techniques, or by simple human (and
developer) nature. By classifying and categorizing these unwanted features,
we develop a pattern language for discussing them, and hopefully
eliminating them from our projects.

Performance tuning should always be treated as a very objective process,
with precise goals set early in the planning phase. This is easier said than
done: when a team is under pressure or not operating under reasonable
circumstances, this can simply fall by the wayside.

Many readers will have seen the situation where a new client is going live or
a new feature is being launched, and an unexpected outage occurs—in user
acceptance testing (UAT) if you are lucky, but often in production. The team
is then left scrambling to find and fix what has caused the bottleneck. This
usually means performance testing has not been carried out, or the team
“ninja” made an assumption and has now disappeared (ninjas are good at
this).

A team that works in this way will likely fall victim to antipatterns more
often than a team that follows good performance testing practices and has



open and reasoned conversations. As with many development issues, it is
often the human elements, such as communication problems, rather than any
technical aspect that leads to an application having problems.

One interesting possibility for classification was provided in a blog post by
Carey Flichel called “Why Developers Keep Making Bad Technology
Choices”. The post specifically calls out five main reasons that cause
developers to make bad choices. Let’s look at each in turn.

Boredom
Most developers have experienced boredom in a role, and for some this
doesn’t have to last very long before they are seeking a new challenge or role
either in the company or elsewhere. However, other opportunities may not be
present in the organization, and moving somewhere else may not be possible.

It is likely many readers have come across a developer who is simply riding it
out, perhaps even actively seeking an easier life. However, bored developers
can harm a project in a number of ways.

For example, they might introduce code complexity that is not required, such
as writing a sorting algorithm directly in code when a simple
Collections.sort() would be sufficient. They might also express their
boredom by looking to build components with technologies that are unknown
or perhaps don’t fit the use case just as an opportunity to use them—which
leads us to the next section.

Résumé Padding
Occasionally the overuse of technology is not tied to boredom, but rather
represents the developer exploiting an opportunity to boost their experience
with a particular technology on their résumé (or CV).

In this scenario, the developer is making an active attempt to increase their
potential salary and marketability as they’re about to re-enter the job market.
It’s unlikely that many people would get away with this inside a well-
functioning team, but it can still be the root of a choice that takes a project

http://www.carfey.com/blog/why-developers-keep-making-bad-technology-choices/


down an unnecessary path.

The consequences of an unnecessary technology being added due to a
developer’s boredom or résumé padding can be far-reaching and very long-
lived, lasting for many years after the original developer has left.

Social Pressure
Technical decisions are often at their worst when concerns are not voiced or
discussed at the time choices are being made. This can manifest in a few
ways; for example, perhaps a junior developer doesn’t want to make a
mistake in front of more senior members of their team, or perhaps a
developer fears appearing to their peers as uninformed on a particular topic.

Another particularly toxic type of social pressure is for competitive teams,
wanting to be seen as having high development velocity, to rush key
decisions without fully exploring all the consequences.

Lack of Understanding
Developers may look to introduce new tools to help solve a problem because
they are not aware of the full capability of their current tools. It is often
tempting to turn to a new and exciting technology component because it is
great at performing one specific task. However, introducing more technical
complexity must be taken on balance with what the current tools can actually
do.

For example, Hibernate is sometimes seen as the answer to simplifying
translation between domain objects and databases. If there is only limited
understanding of Hibernate on the team, developers can make assumptions
about its suitability based on having seen it used in another project.

This lack of understanding can cause overcomplicated usage of Hibernate
and unrecoverable production outages. By contrast, rewriting the entire data
layer using simple JDBC calls allows the developer to stay on familiar
territory.

One of the authors taught a Hibernate course that contained an attendee in



exactly this position; they were trying to learn enough Hibernate to see if the
application could be recovered, but ended up having to rip out Hibernate over
the course of a weekend—definitely not an enviable position.

Misunderstood/Nonexistent Problem
Developers may often use a technology to solve a particular issue where the
problem space itself has not been adequately investigated. Without having
measured performance values, it is almost impossible to understand the
success of a particular solution. Often collating these performance metrics
enables a better understanding of the problem.

To avoid antipatterns it is important to ensure that communication about
technical issues is open to all participants in the team, and actively
encouraged. Where things are unclear, gathering factual evidence and
working on prototypes can help to steer team decisions. A technology may
look attractive; however, if the prototype does not measure up then the team
can make a more informed decision.

To see how these underlying causes can lead to a variety of performance
antipatterns, interested readers should consult Appendix B.

Statistics for JVM Performance
If performance analysis is truly an experimental science, then we will
inevitably find ourselves dealing with distributions of results data.
Statisticians and scientists know that results that stem from the real world are
virtually never represented by clean, stand-out signals. We must deal with the
world as we find it, rather than the overidealized state in which we would like
to find it.

In God we trust; all others must use data.2

—W. Edwards Deming (attr)

All measurements contain some amount of error. In the next section we’ll
describe the two main types of error that a Java developer may expect to



encounter when doing performance analysis.

Types of Error
There are two main sources of error that an engineer may encounter. These
are:

Random error

A measurement error or an unconnected factor affects results in an
uncorrelated manner

Systematic error

An unaccounted factor affects measurement of the observable in a
correlated way

There are specific words associated with each type of error. For example,
accuracy is used to describe the level of systematic error in a measurement;
high accuracy corresponds to low systematic error. Similarly, precision is the
term corresponding to random error; high precision is low random error.

The graphics in Figure 2-1 show the effect of these two types of error on a
measurement. The extreme left image shows a clustering of shots (which
represent our measurements) around the true result (the “center of the
target”). These measurements have both high precision and high accuracy.

The second image has a systematic effect (miscalibrated sights perhaps?) that
is causing all the shots to be off-target, so these measurements have high
precision, but low accuracy. The third image shows shots basically on target
but loosely clustered around the center, so low precision but high accuracy.
The final image shows no clear pattern, as a result of having both low
precision and low accuracy.



Figure 2-1. Different types of error

Let’s move on to explore these types of error in more detail, starting with
random error.

Random error
Random errors are hopefully familiar to most people—they are a very well-
trodden path. However, they still deserve a mention here, as any handling of
observed or experimental data needs to contend with them to some level.

NOTE
The discussion assumes readers are familiar with basic statistical handling of normally
distributed measurements (mean, mode, standard deviation, etc.); readers who aren’t
should consult a basic textbook, such as The Handbook of Biological Statistics.3

Random errors are caused by unknown or unpredictable changes in the
environment. In general scientific usage, these changes may occur in either
the measuring instrument or the environment, but for software we assume
that our measuring harness is reliable, and so the source of random error can

http://biostathandbook.com/


only be the operating environment.

Random error is usually considered to obey a Gaussian (aka normal)
distribution. A couple of typical examples of Gaussian distributions are
shown in Figure 2-2.



Figure 2-2. A Gaussian distribution (aka normal distribution or bell curve)

The distribution is a good model for the case where an error is equally likely
to make a positive or negative contribution to an observable. However, as we
will see in the section on non-normal statistics, the situation for JVM



measurements is a little more complicated.

Systematic error
As an example of systematic error, consider a performance test running
against a group of backend Java web services that send and receive JSON.
This type of test is very common when it is problematic to directly use the
application frontend for load testing.

Figure 2-3 was generated from the Apache JMeter load-generation tool. In it,
there are actually two systematic effects at work. The first is the linear pattern
observed in the topmost line (the outlier service), which represents slow
exhaustion of some limited server resource.



Figure 2-3. Systematic error

This type of pattern is often associated with a memory leak, or some other
resource being used and not released by a thread during request handling, and
represents a candidate for investigation—it looks like it could be a genuine
problem.

NOTE
Further analysis would be needed to confirm the type of resource that was being affected;
we can’t just conclude that it’s a memory leak.



The second effect that should be noticed is the consistency of the majority of
the other services at around the 180 ms level. This is suspicious, as the
services are doing very different amounts of work in response to a request. So
why are the results so consistent?

The answer is that while the services under test are located in London, this
load test was conducted from Mumbai, India. The observed response time
includes the irreducible round-trip network latency from Mumbai to London.
This is in the range 120–150 ms, and so accounts for the vast majority of the
observed time for the services other than the outlier.

This large, systematic effect is drowning out the differences in the actual
response time (as the services are actually responding in much less than 120
ms). This is an example of a systematic error that does not represent a
problem with our application.

Instead, this error stems from a problem in our test setup, and so the good
news is that this artifact completely disappeared (as expected) when the test
was rerun from London.

To finish off this section, let’s take a quick look at a notorious problem that
frequently accompanies systematic error—the spurious correlation.

Spurious correlation
One of the most famous aphorisms about statistics is “correlation does not
imply causation” —-that is, just because two variables appear to behave
similarly does not imply that there is an underlying connection between them.

In the most extreme examples, if a practitioner looks hard enough, then a
correlation can be found between entirely unrelated measurements. For
example, in Figure 2-4 we can see that consumption of chicken in the US is
well correlated with total import of crude oil.4

http://tylervigen.com/spurious-correlations


Figure 2-4. A completely spurious correlation (Vigen)

These numbers are clearly not causally related; there is no factor that drives
both the import of crude oil and the eating of chicken. However, it isn’t the
absurd and ridiculous correlations that the practitioner needs to be wary of.

In Figure 2-5, we see the revenue generated by video arcades correlated to the
number of computer science PhDs awarded. It isn’t too much of a stretch to
imagine a sociological study that claimed a link between these observables,
perhaps arguing that “stressed doctoral students were finding relaxation with
a few hours of video games.” These types of claim are depressingly common,
despite no such common factor actually existing.



Figure 2-5. A less spurious correlation? (Vigen)

In the realm of the JVM and performance analysis, we need to be especially
careful not to attribute a causal relationship between measurements based
solely on correlation and that the connection “seems plausible.”

The first principle is that you must not fool yourself—and you are the
easiest person to fool.5

—Richard Feynman

We’ve met some examples of sources of error and mentioned the notorious
bear traps of spurious correlation and fooling oneself, so let’s move on to
discuss an aspect of JVM performance measurement that requires some



special care and attention to detail.

Non-Normal Statistics
Statistics based on the normal distribution do not require much mathematical
sophistication. For this reason, the standard approach to statistics that is
typically taught at pre-college or undergraduate level focuses heavily on the
analysis of normally distributed data.

Students are taught to calculate the mean and the standard deviation (or
variance), and sometimes higher moments, such as skew and kurtosis.
However, these techniques have a serious drawback, in that the results can
easily become distorted if the distribution has even relatively few far-flung
outlying points.

NOTE
In Java performance, the outliers represent slow transactions and unhappy customers. We
need to pay special attention to these points, and avoid techniques that dilute the
importance of outliers.

To consider it from another viewpoint: unless a large number of customers
are already complaining, it is unlikely that improving the average response
time is a useful performance goal. For sure, doing so will improve the
experience for everyone, but it is far more usual for a few disgruntled
customers to be the cause of a latency tuning exercise. This implies that the
outlier events are likely to be of more interest than the experience of the
majority who are receiving satisfactory service.

In Figure 2-6 we can see a more realistic curve for the likely distribution of
method (or transaction) times. It is clearly not a normal distribution.





Figure 2-6. A more realistic view of the distribution of transaction times

The shape of the distribution in Figure 2-6 shows something that we know
intuitively about the JVM: it has “hot paths” where all the relevant code is
already JIT-compiled, there are no GC cycles, and so on. These represent a
best-case scenario (albeit a common one); there simply are no calls that are “a
bit faster” due to random effects.

This violates a fundamental assumption of Gaussian statistics and forces us to
consider distributions that are non-normal.

NOTE
For distributions that are non-normal, many “basic rules” of normally distributed statistics
are violated. In particular, standard deviation/variance and other higher moments are
basically useless.

One technique that is very useful for handling the non-normal, “long-tail”
distributions that the JVM produces is to use a modified scheme of
percentiles. Remember that a distribution is a whole collection of points—a
shape of data, and is not well-represented by a single number.

Instead of computing just the mean, which tries to express the whole
distribution in a single result, we can use a sampling of the distribution at
intervals. When used for normally distributed data, the samples are usually
taken at regular intervals. However, a small adaptation allows the technique
to be used more effectively for JVM statistics.

The modification is to use a sampling that takes into account the long-tail
distribution by starting from the mean, then the 90th percentile, and then
moving out logarithmically, as shown in the following method timing results.
This means that we’re sampling according to a pattern that better corresponds
to the shape of the data:

50.0% level was 23 ns

90.0% level was 30 ns

99.0% level was 43 ns



99.9% level was 164 ns

99.99% level was 248 ns

99.999% level was 3,458 ns

99.9999% level was 17,463 ns

The samples show us that while the average time was 23 ns to execute a
getter method, for 1 request in 1,000 the time was an order of magnitude
worse, and for 1 request in 100,000 it was two orders of magnitude worse
than average.

Long-tail distributions can also be referred to as high dynamic range
distributions. The dynamic range of an observable is usually defined as the
maximum recorded value divided by the minimum (assuming it’s nonzero).

Logarithmic percentiles are a useful simple tool for understanding the long
tail. However, for more sophisticated analysis, we can use a public domain
library for handling datasets with high dynamic range. The library is called
HdrHistogram and is available from GitHub. It was originally created by Gil
Tene (Azul Systems), with additional work by Mike Barker and other
contributors.

NOTE
A histogram is a way of summarizing data by using a finite set of ranges (called buckets)
and displaying how often data falls into each bucket.

HdrHistogram is also available on Maven Central. At the time of writing, the
current version is 2.1.12, and you can add it to your projects by adding this
dependency stanza to pom.xml:

<dependency>

    <groupId>org.hdrhistogram</groupId>

    <artifactId>HdrHistogram</artifactId>

    <version>2.1.12</version>

</dependency>

Let’s look at a simple example using HdrHistogram. This example takes in a

https://github.com/HdrHistogram/HdrHistogram


file of numbers and computes the HdrHistogram for the difference between
successive results:

public class BenchmarkWithHdrHistogram {

    private static final long NORMALIZER = 1_000_000;

    

    private static final Histogram HISTOGRAM

            = new Histogram(TimeUnit.MINUTES.toMicros(1), 2);

    

    public static void main(String[] args) throws Exception {

        final List<String> values = 

Files.readAllLines(Paths.get(args[0]));

        double last = 0;

        for (final String tVal : values) {

            double parsed = Double.parseDouble(tVal);

            double gcInterval = parsed - last;

            last = parsed;

            HISTOGRAM.recordValue((long)(gcInterval * NORMALIZER));

        }

        HISTOGRAM.outputPercentileDistribution(System.out, 1000.0);

    }

}

The output shows the times between successive garbage collections. As we’ll
see in Chapters 4 and 5, GC does do not occur at regular intervals, and
understanding the distribution of how frequently it occurs could be useful.
Here’s what the histogram plotter produces for a sample GC log:

       Value     Percentile TotalCount 1/(1-Percentile)

       14.02 0.000000000000          1           1.00

     1245.18 0.100000000000         37           1.11

     1949.70 0.200000000000         82           1.25

     1966.08 0.300000000000        126           1.43

     1982.46 0.400000000000        157           1.67

...

    28180.48 0.996484375000        368         284.44

    28180.48 0.996875000000        368         320.00

    28180.48 0.997265625000        368         365.71

    36438.02 0.997656250000        369         426.67

    36438.02 1.000000000000        369

#[Mean    =      2715.12, StdDeviation   =      2875.87]



#[Max     =     36438.02, Total count    =          369]

#[Buckets =           19, SubBuckets     =          256]

The raw output of the formatter is rather hard to analyze, but fortunately, the
HdrHistogram project includes an online formatter that can be used to
generate visual histograms from the raw output.

For this example, it produces output like that shown in Figure 2-7.

Figure 2-7. Example HdrHistogram visualization

For many observables that we wish to measure in Java performance tuning,

http://hdrhistogram.github.io/HdrHistogram/plotFiles.xhtml


the statistics are often highly non-normal, and HdrHistogram can be a very
useful tool in helping to understand and visualize the shape of the data.

Interpretation of Statistics
Empirical data and observed results do not exist in a vacuum, and it is quite
common that one of the hardest jobs lies in interpreting the results that we
obtain from measuring our applications.

No matter what the problem is, it’s always a people problem.
—Gerald Weinberg (attr)

In Figure 2-8 we show an example memory allocation rate for a real Java
application. This example is for a reasonably well-performing application.



Figure 2-8. Example allocation rate

The interpretation of the allocation data is relatively straightforward, as there
is a clear signal present. Over the time period covered (almost a day),



allocation rates were basically stable between 350 and 700 MB per second.
There is a downward trend starting approximately 5 hours after the JVM
started up, and a clear minimum between 9 and 10 hours, after which the
allocation rate starts to rise again.

These types of trends in observables are very common, as the allocation rate
will usually reflect the amount of work an application is actually doing, and
this will vary widely depending on the time of day. However, when we are
interpreting real observables, the picture can rapidly become more
complicated.

This can lead to what is sometimes called the “Hat/Elephant” problem, after a
passage in The Little Prince by Antoine de Saint-Exupéry. In the book, the
narrator describes drawing, at age six, a picture of a boa constrictor that has
eaten an elephant. However, as the view is external, the picture just resembles
(at least to the ignorant eyes of the adults in the story) a slightly shapeless
hat.

The metaphor stands as an admonition to the reader to have some
imagination and to think more deeply about what you are really seeing, rather
than just accepting a shallow explanation at face value.

The problem, as applied to software, is illustrated by Figure 2-9. All we can
initially see is a complex histogram of HTTP request-response times.
However, just like the narrator of the book, if we can imagine or analyze a bit
more, we can see that the complex picture is actually made up of several
fairly simple pieces.





Figure 2-9. Hat, or elephant eaten by a boa?

The key to decoding the response histogram is to realize that “web
application responses” is a very general category, including successful
requests (so-called 2xx responses), client errors (4xx, including the infamous
404 error), and server errors (5xx, especially 500 Internal Server Error).

Each type of response has a different characteristic distribution for response
times. If a client makes a request for a URL that has no mapping (a 404), then
the web server can immediately reply with a response. This means that the
histogram for only client error responses looks more like Figure 2-10.





Figure 2-10. Client errors

By contrast, server errors often occur after a large amount of processing time
has been expended (for example, due to backend resources being under stress
or timing out). So, the histogram for server error responses might look like
Figure 2-11.





Figure 2-11. Server errors

The successful requests will have a long-tail distribution, but in reality we
may expect the response distribution to be “multimodal” and have several
local maxima. An example is shown in Figure 2-12, and represents the
possibility that there could be two common execution paths through the
application with quite different response times.





Figure 2-12. Successful requests

Combining these different types of responses into a single graph results in the
structure shown in Figure 2-13. We have rederived our original “hat” shape
from the separate histograms.





Figure 2-13. Hat or elephant revisited

The concept of breaking down a general observable into more meaningful
sub-populations is a very useful one. It shows that we need to make sure that
we understand our data and domain well enough before trying to infer
conclusions from our results. We may well want to further break down our
data into smaller sets; for example, the successful requests may have very
different distributions for requests that are predominantly read, as opposed to
requests that are updates or uploads.

The engineering team at PayPal have written extensively about their use of
statistics and analysis; they have a blog that contains excellent resources. In
particular, the piece “Statistics for Software” by Mahmoud Hashemi is a great
introduction to their methodologies, and includes a version of the
Hat/Elephant problem discussed earlier.

Also worth mentioning is the “Datasaurus Dozen” --a collection of datasets
that have the same basic statistics but wildly different appearances.6

Cognitive Biases and Performance Testing
Humans can be bad at forming accurate opinions quickly—even when faced
with a problem where they can draw upon past experiences and similar
situations.

A cognitive bias is a psychological effect that causes the human brain to draw
incorrect conclusions. It is especially problematic because the person
exhibiting the bias is usually unaware of it and may believe they are being
rational.

Many of the antipatterns we observe in performance analysis (such as those
in Appendix B, which you might want to read in conjunction with this
section) are caused, in whole or in part, by one or more cognitive biases that
are in turn based on an unconscious assumptions.

For example, with the Blame Donkey antipattern, if a component has caused
several recent outages the team may be biased to expect that same component

https://www.paypal-engineering.com/
https://medium.com/paypal-tech/statistics-for-software-e395ca08005d/


to be the cause of any new performance problem. Any data that’s analyzed
may be more likely to be considered credible if it confirms the idea that the
Blame Donkey component is responsible.

The antipattern combines aspects of the biases known as confirmation bias
and recency bias (a tendency to assume that whatever has been happening
recently will keep happening).

NOTE
A single component in Java can behave differently from application to application
depending on how it is optimized at runtime. In order to remove any pre-existing bias, it is
important to look at the application as a whole.

Biases can be complementary or dual to each other. For example, some
developers may be biased to assume that the problem is not software-related
at all, and the cause must be the infrastructure the software is running on; this
is common in the Works for Me antipattern, characterized by statements like
“This worked fine in UAT, so there must be a problem with the production
kit.” The converse is to assume that every problem must be caused by
software, because that’s the part of the system the developer knows about and
can directly affect.

Let’s meet some of the most common biases that every performance engineer
should look out for.

Knowing where the trap is—that’s the first step in evading it.7

—Duke Leto Atreides I

By recognizing these biases in ourselves, and others, we increase the chance
of being able to do sound performance analysis and solve the problems in our
systems.

Reductionist Thinking
The reductionist thinking cognitive bias is based on an analytical approach



that presupposes that if you break a system into small enough pieces, you can
understand it by understanding its constituent parts. Understanding each part
means reducing the chance of incorrect assumptions being made.

The major problem with this view is simple to explain—in complex systems
it just isn’t true. Nontrivial software (or physical) systems almost always
display emergent behavior, where the whole is greater than a simple
summation of its parts would indicate.

Confirmation Bias
Confirmation bias can lead to significant problems when it comes to
performance testing or attempting to look at an application subjectively. A
confirmation bias is introduced, usually not intentionally, when a poor test set
is selected or results from the test are not analyzed in a statistically sound
way. Confirmation bias is quite hard to counter, because there are often
strong motivational or emotional factors at play (such as someone in the team
trying to prove a point).

Consider an antipattern such as Distracted by Shiny, where a team member is
looking to bring in the latest and greatest NoSQL database. They run some
tests against data that isn’t like production data, because representing the full
schema is too complicated for evaluation purposes.

They quickly prove that on a test set the NoSQL database produces superior
access times on their local machine. The developer has already told everyone
this would be the case, and on seeing the results they proceed with a full
implementation. There are several antipatterns at work here, all leading to
new unproved assumptions in the new library stack.

Fog of War (Action Bias)
The fog of war bias usually manifests itself during outages or situations
where the system is not performing as expected and the team are under
pressure. Some common causes include:

Changes to infrastructure that the system runs on, perhaps without



notification or realizing there would be an impact

Changes to libraries that the system is dependent on

A strange bug or race condition the manifests itself, but only on busy
days

In a well-maintained application with sufficient logging and monitoring,
these should generate clear error messages that will lead the support team to
the cause of the problem.

However, too many applications have not tested failure scenarios and lack
appropriate logging. Under these circumstances even experienced engineers
can fall into the trap of needing to feel that they’re doing something to
resolve the outage and mistaking motion for velocity—the “fog of war”
descends.

At this time, many of the human elements discussed in this chapter can come
into play if participants are not systematic about their approach to the
problem.

For example, an antipattern such as Blame Donkey may shortcut a full
investigation and lead the production team down a particular path of
investigation—often missing the bigger picture. Similarly, the team may be
tempted to break the system down into its constituent parts and look through
the code at a low level without first establishing in which subsystem the
problem truly resides.

Risk Bias
Humans are naturally risk averse and resistant to change. Mostly this is
because people have seen examples of how change can cause things to go
wrong—this leads them to attempt to avoid that risk. This can be incredibly
frustrating when taking small, calculated risks could move the product
forward. Much of this risk aversion arises from teams that are reluctant to
make changes that might modify the performance profile of the application.

We can reduce this risk bias significantly by having a robust set of unit tests



and production regression tests. The performance regression tests are a great
place to link in the system’s non-functional requirements and ensure that the
concerns the NFRs represent are reflected in the regression tests.

However, if either of these is not sufficiently trusted by the team, change
becomes extremely difficult and the risk factor is not controlled. This bias
often manifests in a failure to learn from application problems (including
service outages) and implement appropriate mitigation.

Summary
When you are evaluating performance results, it is essential to handle the data
in an appropriate manner and avoid falling into unscientific and subjective
thinking. This includes avoiding the statistical pitfalls of relying upon
Gaussian models when they are not appropriate.

In this chapter, we have met some different types of performance tests,
testing best practices, and human problems that are native to performance
analysis.

In the next chapter, we’re going to move on to an overview of the JVM,
introducing the basic subsystems, the lifecycle of a “classic” Java application
and a first look at monitoring and tooling.
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Chapter 3. Overview of the JVM

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

There is no doubt that Java is one of the largest technology platforms on the
planet—the best available estimate is of over 10+ million developers working
with Java.

The design of the Java system is fully managed --aspects such as garbage
collection and execution optimization are controlled by the JVM on behalf of
developers. The fact that Java is consciously aimed at mainstream developers,
when combined with the fully-managed platform, leads to a situation in
which many developers do not need to know about the low-level intricacies
of the platform they work with on a daily basis. As a result, developers may
not meet these internal aspects very frequently—but only when an issue such
as a customer complaining about a performance problem arises.

For developers who are interested in performance, however, it is important to
understand the basics of the JVM technology stack. Understanding JVM
technology enables developers to write better software and provides the
theoretical background required for investigating performance-related issues.

This chapter introduces how the JVM executes Java in order to provide a
basis for deeper exploration of these topics later in the book. In particular,



Chapter 6 has an in-depth treatment of bytecode, which is complementary to
the discussion here.

We suggest that you read through this chapter, but come back to it for a
second pass after you have read Chapter 6.

Interpreting and Classloading
According to the specification that defines the Java Virtual Machine (usually
called the VM Spec), the JVM is a stack-based interpreted machine. This
means that rather than having registers (like a physical hardware CPU), it
uses an execution stack of partial results and performs calculations by
operating on the top value (or values) of that stack.

If you’re not familiar with how interpreters work, then you can think of the
basic behavior of the JVM interpreter as essentially “a switch inside a
while loop”. The interpreter processes each opcode of the program
independently of the last, and uses the evaluation stack to hold the results of
computations and as intermediate results.

NOTE
As we will see when we delve into the internals of the Oracle/OpenJDK VM (HotSpot),
the situation for real production-grade Java interpreters is more complex, but switch-
inside-while using a stack interpreter is an acceptable mental model for the moment.

When we launch our application using the java HelloWorld command,
the operating system starts the virtual machine process (the java binary).
This sets up the Java virtual environment and initializes the interpreter that
will actually execute the user code in the HelloWorld.class file.

The entry point into the application will be the main() method of
HelloWorld.class. In order to hand over control to this class, it must be
loaded by the virtual machine before execution can begin.

To achieve this, the Java classloading mechanism is used. When a new Java



process is initializing, a chain of classloaders is used. The initial loader is
known as the Bootstrap classloader (historically also known as the
“primordial classloader”) and it loads classes in the core Java runtime. The
main point of the Bootstrap classloader is to get a minimal set of classes
(which includes essentials such as java.lang.Object, Class, and
Classloader) loaded to allow other classloaders to bring up the rest of the
system.

At this point it is also instructive to discuss a little bit of how the Java
modules system (sometimes referred to as JPMS) has somewhat changed the
picture of application startup. First of all, from Java 9 onwards, all JVMs are
modular—there is no “compatibility” or “classic” mode that restores the Java
8 monolithic JVM runtime.

This means that during startup a module graph is always constructed—even if
the application itself is non-modular. This must be a Directed Acyclic Graph
(DAG), and it is a fatal error if the application’s module metadata attempts to
construct a module graph that contains a cycle.

The module graph has various advantages, including:

Only required modules are loaded

Inter-module metadata can be confirmed to be good at startup time

The module graph has a main module, which is where the entrypoint class
lives. If the application has not yet been fully modularized, then it will have
both a modulepath and a classpath, and the application code may be in the
UNNAMED module.

NOTE
Full details of the modules system are outside the scope of this book. An expanded
treatment can be found in Java in a Nutshell (8th Edition) by Benjamin J. Evans, Jason
Clark and David Flanagan (O’Reilly) or a more in-depth reference, such as Java 9
Modularity by Sander Mak and Paul Bakker (O’Reilly).

https://www.oreilly.com/library/view/java-in-a/9781098130992/
https://www.oreilly.com/library/view/java-9-modularity/9781491954157/


In practice, the work of the Bootstrap classloader involves loading
java.base and some other supporting modules (including some perhaps-
surprising entries—e.g. java.security.sasl and
java.datatransfer)

Java models classloaders as objects within its own runtime and type system,
so there needs to be some way to bring an initial set of classes into existence.
Otherwise, there would be a circularity problem in defining what a
classloader is.

The Bootstrap classloader does not verify the classes it loads (largely to
improve startup performance), and it relies on the boot classpath being
secure. Anything loaded by the bootstrap classloader is granted full security
permissions and so this group of modules is kept as restricted as possible.

NOTE
Legacy versions of Java up to and including 8 used a monolithic runtime, and the
Bootstrap classloader loaded the contents of rt.jar.

The rest of the base system (i.e. the equivalent of the rest of the old rt.jar
used in version 8 and earlier) is loaded by the platform classloader, and is
available via the method
ClassLoader::getPlatformClassLoader. It has the Bootstrap
classloader as its parent, as the old Extension classloader has been removed.

In the new modular implementations of Java, far less code is required to
bootstrap a Java process and accordingly, as much JDK code (now
represented as modules) as possible has been moved out of the scope of the
bootstrap loader and into the platform loader instead.

Finally, the Application classloader is created; it is responsible for loading
user classes from the defined classpath. Some texts unfortunately refer to this
as the “System” classloader. This term should be avoided, for the simple
reason that it doesn’t load the system classes (the Bootstrap and Platform
classloaders do). The Application classloader is encountered extremely



frequently, and it has the Platform loader as its parent.

Java loads in dependencies on new classes when they are first encountered
during the execution of the program. If a classloader fails to find a class, the
behavior is usually to delegate the lookup to the parent. If the chain of
lookups reaches the Bootstrap classloader and it isn’t found, a
ClassNotFoundException will be thrown. It is important that
developers use a build process that effectively compiles with the exact same
classpath that will be used in production, as this helps to mitigate this
potential issue.

Normally, Java only loads a class once and a Class object is created to
represent the class in the runtime environment. However, it is important to
realize that under some circumstances the same class can be loaded twice by
different classloaders. As a result, a class in the system is identified by the
classloader used to load it as well as the fully qualified class name (which
includes the package name).

NOTE
Some execution contexts, such as application servers (e.g. Tomcat or JBoss EAP) display
this behavior when multiple tenant applications are present in the server.

It is also the case that some tools (e.g. Java agents) can potentially reload and
retransform classes as part of bytecode weaving—and such tools are often
used in monitoring and Observability.

Executing Bytecode
It is important to appreciate that Java source code goes through a significant
number of transformations before execution. The first is the compilation step
using the Java compiler javac, often invoked as part of a larger build
process.

The job of javac is to convert Java code into .class files that contain



bytecode. It achieves this by doing a fairly straightforward translation of the
Java source code, as shown in Figure 3-1. Very few optimizations are done
during compilation by javac, and the resulting bytecode is still quite
readable and recognizable as Java code when viewed in a disassembly tool,
such as the standard javap.



Figure 3-1. Java class file compilation



Bytecode is an intermediate representation that is not tied to a specific
machine architecture. Decoupling from the machine architecture provides
portability, meaning already developed (or compiled) software can run on
any platform supported by the JVM and provides an abstraction from the
Java language. This provides our first important insight into the way the JVM
executes code.

NOTE
The Java language and the Java Virtual Machine are now to a degree independent, and so
the J in JVM is potentially a little misleading, as the JVM can execute any JVM language
that can produce a valid class file. In fact, Figure 3-1 could just as easily show the Kotlin
compiler kotlinc generating bytecode for execution on the JVM.

Regardless of the source code compiler used, the resulting class file has a
very well-defined structure specified by the VM spec (Table 3-1). Any class
that is loaded by the JVM will be verified to conform to the expected format
before being allowed to run.

Table 3-1. Anatomy of a class file

Component Description

Magic number 0xCAFEBABE

Version of class file
format

The minor and major versions of the class file

Constant pool The pool of constants for the class

Access flags Whether the class is abstract, static, and so on

This class The name of the current class



Superclass The name of the superclass

Interfaces Any interfaces in the class

Fields Any fields in the class

Methods Any methods in the class

Attributes Any attributes of the class (e.g., name of the
source file, etc.)

Every class file starts with the magic number 0xCAFEBABE, the first 4 bytes
in hexadecimal serving to denote conformance to the class file format. The
following 4 bytes represent the minor and major versions used to compile the
class file, and these are checked to ensure that the version of the JVM is not
of a lower version than the one used to compile the class file. The major and
minor version are checked by the classloader to ensure compatibility; if these
are not compatible an UnsupportedClassVersionError will be
thrown at runtime, indicating the runtime is a lower version than the
compiled class file.

NOTE
Magic numbers provide a way for Unix environments to identify the type of a file
(whereas Windows will typically use the file extension). For this reason, they are difficult
to change once decided upon. Unfortunately, this means that Java is stuck using the rather
embarrassing and sexist 0xCAFEBABE for the foreseeable future, although Java 9
introduced the magic number 0xCAFEDADA for module files.

The constant pool holds constant values in code: for example, names of
classes, interfaces, and fields. When the JVM executes code, the constant
pool table is used to refer to values rather than having to rely on the precise



layout of memory structures at runtime.

Access flags are used to determine the modifiers applied to the class. The first
part of the flag block identifies general properties, such as whether a class is
public, followed by whether it is final and thus cannot be subclassed. The
flags also determine whether the class file represents an interface or an
abstract class. The final part of the flag block indicates whether the class file
represents a synthetic class (not present in source code), an annotation type,
or an enum.

The this class, superclass, and interface entries are indexes into the
constant pool to identify the type hierarchy belonging to the class. Fields and
methods define a signature-like structure, including the modifiers that apply
to the field or method. A set of attributes is then used to represent structured
items for more complicated and non-fixed-size structures. For example,
methods make use of the Code attribute to represent the bytecode associated
with that particular method.

Figure 3-2 provides a mnemonic for remembering the structure.



Figure 3-2. Mnemonic for class file structure

In this very simple code example, it is possible to observe the effect of
running javac:

public class HelloWorld {

    public static void main(String[] args) {



        for (int i = 0; i < 10; i++) {

            System.out.println("Hello World");

        }

    }

}

Java ships with a class file disassembler called javap, allowing inspection
of .class files. Taking the HelloWorld class file and running javap -c
HelloWorld gives the following output:

public class HelloWorld {

  public HelloWorld();

    Code:

       0: aload_0

       1: invokespecial #1    // Method java/lang/Object."<init>":

()V

       4: return

  public static void main(java.lang.String[]);

    Code:

       0: iconst_0

       1: istore_1

       2: iload_1

       3: bipush        10

       5: if_icmpge     22

       8: getstatic     #2    // Field java/lang/System.out ...

      11: ldc           #3    // String Hello World

      13: invokevirtual #4    // Method java/io/PrintStream.println 

...

      16: iinc          1, 1

      19: goto          2

      22: return

}

This layout describes the bytecode for the file HelloWorld.class. For more
detail javap also has a -v option that provides the full class file header
information and constant pool details. The class file contains two methods,
although only the single main() method was supplied in the source file; this
is the result of javac automatically adding a default constructor to the class.

The first instruction executed in the constructor is aload_0, which places
the this reference onto the first position in the stack. The



invokespecial command is then called, which invokes an instance
method that has specific handling for calling superconstructors and creating
objects. In the default constructor, the invoke matches the default constructor
for Object, as an override was not supplied.

NOTE
Opcodes in the JVM are concise and represent the type, the operation, and the interaction
between local variables, the constant pool, and the stack.

Moving on to the main() method, iconst_0 pushes the integer constant
0 onto the evaluation stack. istore_1 stores this constant value into the
local variable at offset 1 (represented as i in the loop). Local variable offsets
start at 0, but for instance methods, the 0th entry is always this. The
variable at offset 1 is then loaded back onto the stack and the constant 10 is
pushed for comparison using if_icmpge (“if integer compare greater or
equal”). The test only succeeds if the current integer is >= 10.

For the first 10 iterations, this comparison test fails and so we continue to
instruction 8. Here the static method from System.out is resolved,
followed by the loading of the “Hello World” string from the constant pool.
The next invoke, invokevirtual, invokes an instance method based on
the class. The integer is then incremented and goto is called to loop back to
instruction 2.

This process continues until the if_icmpge comparison eventually
succeeds (when the loop variable is >= 10); on that iteration of the loop,
control passes to instruction 22 and the method returns.

Introducing HotSpot
In April 1999 Sun introduced one of the biggest-ever changes (in terms of
performance) to the dominant Java implementation. The HotSpot virtual
machine is a key feature that has evolved to enable performance that is

https://en.wikipedia.org/wiki/List_of_Java_bytecode_instructions


comparable to (or better than) languages such as C and C++ (see Figure 3-3).
To explain how this is possible, let’s delve a little deeper into the design of
languages intended for application development.



Figure 3-3. The HotSpot JVM



Language and platform design frequently involves making decisions and
tradeoffs between desired capabilities. In this case, the division is between
languages that stay “close to the metal” and rely on ideas such as “zero-cost
abstractions,” and languages that favor developer productivity and “getting
things done” over strict low-level control.

In general, C++ implementations obey the zero-overhead principle: What
you don’t use, you don’t pay for. And further: What you do use, you
couldn’t hand code any better.1

—Bjarne Stroustrup

The zero-overhead principle sounds great in theory, but it requires all users of
the language to deal with the low-level reality of how operating systems and
computers actually work. This is a significant extra cognitive burden that is
placed upon developers who may not care about raw performance as a
primary goal.

Not only that, but it also requires the source code to be compiled to platform-
specific machine code at build time—usually called Ahead-of-Time (AOT)
compilation. This is because alternative execution models such as
interpreters, virtual machines, and portability layers all are most definitely not
zero-overhead.

The phrase “what you do use, you couldn’t hand code any better” also has a
sting in its tail. It implies a number of things, but most important for our
purposes is that a developer is not able to produce better code than an
automated system (such as a compiler).

Java has never subscribed to the zero-overhead abstraction philosophy.
Instead, the approach taken by the HotSpot virtual machine is to analyze the
runtime behavior of your program and intelligently apply optimizations
where they will benefit performance the most. The goal of the HotSpot VM is
to allow you to write idiomatic Java and follow good design principles rather
then contort your program to fit the VM.

Introducing Just-in-Time Compilation



Java programs begin their execution in the bytecode interpreter, where
instructions are performed on a virtualized stack machine. This abstraction
from the CPU gives the benefit of class file portability, but to get maximum
performance your program must make optimal use of its native features.

HotSpot achieves this by compiling units of your program from interpreted
bytecode into native code, which then executes directly, without requiring the
overhead of the abstractions of the interpreter. The units of compilation in the
HotSpot VM are the method and the loop. This is known as Just-in-Time
(JIT) compilation.

JIT compilation works by monitoring the application while it is running in
interpreted mode and observing the parts of code that are most frequently
executed. During this analysis process, programmatic trace information is
captured that allows for more sophisticated optimization. Once execution of a
particular method passes a threshold, the profiler will look to compile and
optimize that particular section of code.

There are many advantages to the JIT approach to compilation, but one of the
main ones is that it bases compiler optimization decisions on trace
information that is collected while methods are being interpreted. This
information enables HotSpot to make more informed optimizations if the
method is eligible for compilation.

NOTE
Some JIT compilers also have the capability to re-JIT if a better optimization becomes
apparent later on during execution. This includes some of HotSpot’s compilers.

Not only that, but HotSpot has had hundreds of engineering years (or more)
of development attributed to it and new optimizations and benefits are added
with almost every new release. This means that all Java applications benefit
from the latest HotSpot performance optimizations in the VM without even
needing to be recompiled.



TIP
After being translated from Java source to bytecode and now going through another step
of (JIT) compilation, the code actually being executed has changed very significantly from
the source code as written. This is a key insight, and it will drive our approach to dealing
with performance-related investigations. JIT-compiled code executing on the JVM may
well look nothing like the original Java source code.

The general picture is that languages like C++ (and the up-and-coming Rust)
tend to have more predictable performance, but at the cost of forcing a lot of
low-level complexity onto the user.

Note also that “more predictable” does not necessarily mean “better.” AOT
compilers produce code that may have to run across a broad class of
processors, and usually are not able to assume that specific processor features
are available.

Environments that use profile-guided optimization (PGO), such as Java, have
the potential to use runtime information in ways that are simply impossible to
most AOT platforms. This can offer improvements to performance, such as
dynamic inlining and optimizing away virtual calls. HotSpot can even detect
the precise CPU type it is running on at VM startup, and can use this
information to enable optimizations designed for specific processor features
if available.

TIP
The technique of detecting precise processor capabilities is known as JVM intrinsics, and
is not to be confused with the intrinsic locks introduced by the synchronized keyword.

A full discussion of PGO and JIT compilation can be found in Chapters 6 and
10.

The sophisticated approach that HotSpot takes is a great benefit to the
majority of ordinary developers, but this tradeoff (to abandon zero-overhead
abstractions) means that in the specific case of high-performance Java



applications, the developer must be very careful to avoid “common sense”
reasoning and overly simplistic mental models of how Java applications
actually execute.

NOTE
Once again, analyzing the performance of small sections of Java code (microbenchmarks)
is usually much harder than analyzing entire applications, and is a very specialized task
that the majority of developers should not undertake.

HotSpot’s compilation subsystem is one of the two most important
subsystems that the virtual machine provides. The other is automatic memory
management, which has been one of the major selling points of Java since the
early years.

JVM Memory Management
In languages such as C, C++, and Objective-C the programmer is responsible
for managing the allocation and release of memory. The benefits of managing
memory and lifetime of objects yourself are more deterministic performance
and the ability to tie resource lifetime to the creation and deletion of objects.
However, these benefits come at a huge cost—for correctness, developers
must be able to accurately account for memory.

Unfortunately, decades of practical experience showed that many developers
have a poor understanding of idioms and patterns for memory management.
Later versions of C++ and Objective-C have improved this using smart
pointer idioms in the standard library. However, at the time Java was created
poor memory management was a major cause of application errors. This led
to concern among developers and managers about the amount of time spent
dealing with language features rather than delivering value for the business.

Java looked to help resolve the problem by introducing automatically
managed heap memory using a process known as garbage collection (GC).
Simply put, garbage collection is a nondeterministic process that triggers to



recover and reuse no-longer-needed memory when the JVM requires more
memory for allocation.

GC comes at a cost: when it runs, it traditionally stopped the world, which
means while GC is in progress the application pauses. Usually these pause
times are incredibly short, but as an application is put under pressure they can
increase.

Having said that, the JVM’s garbage collection is best-in-class, and is far
more sophisticated than the introductory algorithm that is often taught in
Computer Science undergraduate courses. For example, stopping the world is
much less necessary and intrusive in modern algorithms, as we will see later.

Garbage collection is a major topic within Java performance optimization, so
we will devote Chapters 4 and 5 to the details of Java GC.

Threading and the Java Memory Model
One of the major advances that Java brought in with its first version was
built-in support for multithreaded programming. The Java platform allows
the developer to create new threads of execution. For example, in Java 8
syntax:

Thread t = new Thread(() -> {System.out.println("Hello World!");});

t.start();

Not only that, but basically all production JVMs are multithreaded—and this
means that all Java programs are inherently multithreaded, as they execute as
part of a JVM process.

This fact produces additional, irreducible complexity in the behavior of Java
programs, and makes the work of the performance analyst harder. However,
it allows the JVM to take advantage of all available cores, which provides all
sorts of performance benefits to the Java developer.

The relationship between Java’s conception of a thread (an “application
thread”) and the operating system’s view of a thread (a “platform thread”) has



a slightly interesting history. In the very earliest days of the platform, there
was a sharp distinction made between the two concepts and application
threads were remapped or multiplexed onto a pool of platform threads—e.g.
in the Solaris M:N, or the Linux green threads models.

However, this approach proved not to provide an acceptable performance
profile and added needless complexity. As a result, in most mainstream JVM
implementations, this model was replaced with a simpler one—each Java
application thread corresponding precisely to a dedicated platform thread.

This is not the end of the story, however.

In the 20+ years since the “app thread == platform thread” transition,
applications have grown and scaled massively—and so has the number of
threads (or, more generally, execution contexts) that an application might
want to create. This has led to the “thread bottleneck” problem, and solving it
has been the focus of a major research project within OpenJDK (Project
Loom).

The result is virtual threads, a new form of thread only available in Java 21+,
which can be used efficiently for certain types of task—especially those
performing network I/O.

Programmers must explicitly choose to create a thread as virtual—otherwise
they are platform threads and retain the same behavior as before (so the
semantics of all existing Java programs are preserved when run on a JVM
with virtual thread capability).

NOTE
It is safe to assume that every platform thread (or any thread, before Java 21) is backed by
a unique OS thread that is created when the start() method is called on the
corresponding Thread object.

Virtual threads are Java’s take on an idea that can be found in various other
modern languages—for example, Go programmers may regard a Java virtual
thread as being broadly similar to a goroutine. We will discuss virtual threads



in more detail in Chapter 14.

We should also briefly discuss Java’s approach to handling data in a
multithreaded program. It dates from the late 1990s and has these
fundamental design principles:

All threads in a Java process share a single, common garbage-collected
heap.

Any object created by one thread can be accessed by any other thread
that has a reference to the object.

Objects are mutable by default; that is, the values held in object fields
can be changed unless the programmer explicitly uses the final
keyword to mark them as immutable.

The Java Memory Model (JMM) is a formal model of memory that explains
how different threads of execution see the changing values held in objects.
That is, if threads A and B both have references to object obj, and thread A
alters it, what happens to the value observed in thread B?

This seemingly simple question is actually more complicated than it seems,
because the operating system scheduler (which we will meet in Chapter 7)
can forcibly evict platform threads from CPU cores. This can lead to another
thread starting to execute and accessing an object before the original thread
had finished processing it, and potentially seeing the object in a prior or even
invalid state.

The only defense the core of Java provides against this potential object
damage during concurrent code execution is the mutual exclusion lock, and
this can be very complex to use in real applications. Chapter 13 contains a
detailed look at how the JMM works, and the practicalities of working with
threads and locks.

Lifecycle of a traditional Java application
Earlier in the chapter we introduced Java program execution via classloading



and bytecode interpretation—but let’s dive a little deeper into what actually
happens when you type: java HelloWorld.

At a low level, standard Unix-like process execution occurs in order to set up
the JVM process. The shell locates the JVM binary (e.g. possibly in
$JAVA_HOME/bin/java) and starts a process corresponding to that
binary, passing the arguments (including the entrypoint class name).

The newly started process analyzes the command line flags and prepares for
VM initialization, which will be customized via the flags (for heap size, GC,
etc). At this time the process probes the machine it is running on, and
examines various system parameters, such as how many CPU cores the
machine has; how much memory; what precise set of CPU instructions are
available.

This very detailed information is used to customize and optimize how the
JVM configures itself. For example, the JVM will use the number of cores to
determine how many threads to use when garbage collection runs, and to size
the common pool of threads.

One key early step is to reserve an area of userspace memory (from the C
heap) equal to Xmx (or the default value) for the Java heap. Another vital step
is to initialize a repository to store Java classes and associated metadata in
(known as Metaspace in HotSpot).

Then the VM itself is created, usually via the function
JNI_CreateJavaVM, on a new thread for HotSpot. The VM’s own threads
—such as the GC threads and the threads that perform JIT compilation—also
need to be started up.

As discussed earlier, the bootstrapping classes are prepared and then
initialized. The first bytecodes are run and first objects are created as soon as
classes are loaded—e.g. in the class initializer (static {} blocks aka
clinit methods) for the bootstrapping classes.

The significance of this is that the JVMs basic processes—such as JIT
compilation and GC—are running from very early in the lifecycle of the
application. As the VM starts up, there may be some GC and JIT activity



even before control reaches the entrypoint class. Once it does, then further
classloading will happen as the application begins to execute and needs to run
code from classes that are not present in the class metadata cache.

For most typical production applications, therefore, the startup phase is
characterized by a spike in classloading, JIT and GC activity while the
application reaches a steady state. Once this has occurred, the amount of JIT
and classloading usually drops sharply because:

The entire “world” of classes that the application needs has been loaded

The set of methods that are called often have already been converted to
machine code by the JIT compiler

However, it is important to recognize that “steady state” does not mean “zero
change”. It is perfectly normal for applications to experience further
classloading and JIT activity—such as deoptimization and reoptimization.
This can be caused when a rarely-executed code path is encountered and
causes a new class to be loaded.

One other important special case of the startup-steady-state model is
sometimes referred to as “2-phase classloading”. This occurs in applications
that use Spring, and other similar dependency injection techniques.

In this case, the core framework classes are loaded first. After that, the
framework examines the main application code and config to determine a
graph of objects that need to be instantiated to activate the application. This
triggers a second phase of classloading where the application code and its
other dependencies are loaded.

The case of GC behavior is a little bit different. In an application which is not
suffering any particular performance problem, the pattern of GC is also likely
to change when the steady state is reached—but GC events will still occur.
This is because in any Java application, objects are created, live for some
time and then are automatically collected—this is the entire point of
automatic memory management. However, the pattern of steady state GC
may well look very different to that of the startup phase.



The overall impression that you should be building up from this description is
one of a highly dynamic runtime. Applications that are deployed on it display
the runtime characteristics of a well-defined startup phase, followed by a
steady state where minimal change occurs.

This is the standard mental model for the behavior of Java applications, and
has been for as long as Java has had JIT compilation, etc. However, it does
have certain drawbacks—the major one being that execution time can be
slower while the application transitions into steady state (often called “JVM
warmup”).

This transition time can easily run into the 10s of seconds after application
start. For long-running applications this is not usually a problem—a process
that is running continuously for hours (or days or weeks) receives far more
benefit from the JIT compiled code than the one-off effort expended to create
it at startup.

In the cloud native world, however, processes may be much shorter-lived.
This raises the question: whether the amortized cost of Java startup and JIT is
actually worth it, and if not, what could be done to make Java applications
start up faster?

In turn, this has fueled interest in new operational and deployment modes for
Java—including AOT compilation (but not limited to it, as we will see). The
community has adopted the term dynamic VM mode for the traditional
lifecycle we have just discussed. We will have a good amount to say about
the emerging alternatives to it throughout the rest of the book.

Monitoring and Tooling for the JVM
The JVM is a mature execution platform, and it provides a number of
technology alternatives for instrumentation, monitoring, and Observability of
running applications. The main technologies available for these types of tools
for JVM applications are:

Java Management Extensions (JMX)



Java agents

The JVM Tool Interface (JVMTI)

The Serviceability Agent (SA)

JMX is a general-purpose technology for controlling and monitoring JVMs
and the applications running on them. It provides the ability to change
parameters and call methods in a general way from a client application. A full
treatment of how this is implemented is, unfortunately, outside the scope of
this book. However, JMX (and its associated network transport, remote
method invocation or RMI) is a fundamental aspect of the management
capabilities of the JVM.

A Java agent is a tooling component, written in Java (hence the name), that
makes use of the interfaces in java.lang.instrument to modify the
bytecode of methods as classes are loaded. The modification of bytecode
allows instrumentation logic, such as method timing or distributed tracing
(see Chapter 10 for more details), to be added to any application, even one
that has not been written with any support for those concerns.

This is an extremely powerful technique, and installing an agent changes the
standard application lifecycle that we met in the last section. To install an
agent, it must be packaged as a JAR and provided via a startup flag to the
JVM:

-javaagent:<path-to-agent-jar>=<options>

The agent JAR must contain a manifest file, META-INF/MANIFEST.MF,
and it must include the attribute Premain-Class.

This attribute contains the name of the agent class, which must implement a
public static premain() method that acts as the registration hook for the
Java agent. This method will run on the main application thread before the
main() method of the application (hence the name). Note that the premain
method must exit, or the main application will not start.

Bytecode transformation is the usual intent of an agent, and this is done by



creating and registering bytecode transformers—objects that implement the
ClassFileTransformer interface. However, a Java agent is just Java
code, and so it can do anything that any other Java program can, i.e. it can
contain arbitrary code to execute. This flexibility means that, for example, an
agent can start additional threads that can persist for the entire life of the
application, and collect data for sending out of the application and into an
external monitoring system.

NOTE
We will have a little more to say about JMX and agents in Chapter 11 where we discuss
their use in cloud Observability tools.

If the Java instrumentation API is not sufficient, then the JVMTI may be used
instead. This is a native interface of the JVM, so agents that make use of it
must be written in a native compiled language—essentially, C or C++. It can
be thought of as a communication interface that allows a native agent to
monitor and be informed of events by the JVM. To install a native agent,
provide a slightly different flag:

-agentlib:<agent-lib-name>=<options>

or:

-agentpath:<path-to-agent>=<options>

The requirement that JVMTI agents be written in native code means that
these agents can be more difficult to write and debug. Programming errors in
JVMTI agents can damage running applications and even crash the JVM.

Therefore, where possible, it is usually preferable to write a Java agent over
JVMTI code. Agents are much easier to write, but some information is not
available through the Java API, and to access that data JVMTI may be the
only possibility available.



The final approach is the Serviceability Agent. This is a set of APIs and tools
that can expose both Java objects and HotSpot data structures.

The SA does not require any code to be run in the target VM. Instead, the
HotSpot SA uses primitives like symbol lookup and reading of process
memory to implement debugging capability. The SA has the ability to debug
live Java processes as well as core files (also called crash dump files).

VisualVM
The JDK ships with a number of useful additional tools along with the well-
known binaries such as javac and java.

One tool that is often overlooked is VisualVM, which is a graphical tool
based on the NetBeans platform. VisualVM used to ship as part of the JDK
but has been moved out of the main distribution, so developers will have to
download the binary separately from the VisualVM website. After
downloading, you will have to ensure that the visualvm binary is added to
your path or you may get an obselete version from an old Java version.

TIP
jvisualvm is a replacement for the now obsolete jconsole tool from earlier Java
versions. If you are still using jconsole, you should move to VisualVM (there is a
compatibility plug-in to allow jconsole plug-ins to run inside VisualVM).

When VisualVM is started for the first time it will calibrate the machine it is
running on, so there should be no other applications running that might affect
the performance calibration. After calibration, VisualVM will finish starting
up and show a splash screen. The most familiar view of VisualVM is the
Monitor screen, which is similar to that shown in Figure 3-4.

https://visualvm.github.io/




Figure 3-4. VisualVM Monitor screen

VisualVM is used for live monitoring of a running process, and it uses the
JVM’s attach mechanism. This works slightly differently depending on
whether the process is local or remote.

Local processes are fairly straightforward. VisualVM lists them down the
lefthand side of the screen. Double-clicking on one of them causes it to
appear as a new tab in the righthand pane.

To connect to a remote process, the remote side must accept inbound
connections (over JMX). For standard Java processes, this means jstatd
must be running on the remote host (see the manual page for jstatd for
more details).

NOTE
Many application servers and execution containers provide an equivalent capability to
jstatd directly in the server. Such processes do not need a separate jstatd process so
long as they are capable of port-forwarding JMX and RMI traffic.

To connect to a remote process, enter the hostname and a display name that
will be used on the tab. The default port to connect to is 1099, but this can be
changed easily.

Out of the box, VisualVM presents the user with five tabs:

Overview

Provides a summary of information about your Java process. This
includes the full flags that were passed in and all system properties. It
also displays the exact Java version executing.

Monitor

This is the tab that is the most similar to the legacy jconsole view. It
shows high-level telemetry for the JVM, including CPU and heap usage.
It also shows the number of classes loaded and unloaded, and an



overview of the numbers of threads running.

Threads

Each thread in the running application is displayed with a timeline. This
includes both application threads and VM threads. The state of each
thread can be seen, with a small amount of history. Thread dumps can
also be generated if needed.

Sampler and Profiler

In these views, simplified sampling of CPU and memory utilization can
be accessed. This will be discussed more fully in Chapter 11.

The plug-in architecture of VisualVM allows additional tools to be easily
added to the core platform to augment the core functionality. These include
plug-ins that allow interaction with JMX consoles and bridging to legacy
JConsole, and a very useful garbage collection plug-in, VisualGC.

Java implementations, distributions and
releases
In this section we will briefly discuss the landscape of Java implementations
and distributions, as well as the Java release cycle.

This is an area that changes a lot over time—so this description is correct at
time of writing only. Since then, for example, vendors may have entered (or
exited) the business of making a Java distribution or the release cycle may
have changed. Caveat lector!

Many developers may only be familiar with the Java binaries produced by
Oracle (Oracle JDK). However, as of 2023, we have quite a complex
landscape, and it’s important to understand the basic components of what
makes up “Java”.

First, there’s the source code that will be built into a binary. The source code
required to build a Java implementation comes in two parts:



Virtual machine source code

Class library source code

The OpenJDK project, which can be found at the OpenJDK website is the
project to develop the open source reference implementation of Java—which
is licensed under the GNU Public License version 2, with Classpath
Exemption (GPLv2+CE).2 The project is led and supported by Oracle—who
provide a majority of the engineers who work on the OpenJDK codebase.

The critical point to understand about OpenJDK is that it provides source
code only. This is true both for the VM (HotSpot) and for the class libraries.

The combination of HotSpot and the OpenJDK class libraries forms the basis
of the vast majority of Java distributions used in today’s production
environments (including Oracle’s). However, there are several other Java
VMs that we will meet—and discuss briefly in this book—including Eclipse
OpenJ9 and GraalVM. These VMs can also be combined with the OpenJDK
class libraries to produce a complete Java implementation.

However, source code, by itself, is not all that useful to developers—it needs
to be built into a binary distribution, tested and optionally certified.

This is somewhat similar to the situation with Linux—the source code exists
and is freely available, but in practice virtually no-one except those folks
developing the next version work directly with source. Instead, developers
consume a binary Linux distribution.

In the Java world there are a number of vendors who make distributions
available, just as there are for Linux. Let’s meet the vendors and take a quick
look at their various offerings.

Choosing a distribution
Developers and architects should consider carefully their choice of JVM
vendor. Some large organizations—notably Twitter (as of 2022) and Alibaba
—even choose to maintain their own private (or semi-public) builds of
OpenJDK, although the engineering effort required for this is beyond the

https://openjdk.org/


reach of many companies.

With this in mind, the main factors that organizations typically care about
are:

1. Do I have to pay money to use this in production?

2. How can I get any bugs I discover fixed?

3. How do I get security patches?

To take these in turn:

A binary that has been built from OpenJDK source (which is GPLv2+CE-
licensed) is free to use in production. This includes all binaries from Eclipse
Adoptium, Red Hat, Amazon, and Microsoft; as well as binaries from lesser-
known suppliers such as BellSoft. Some, but not all, of Oracle’s binaries also
fall into this category.

Next up, to get a bug fixed in OpenJDK the discoverer may do one of two
things: either buy a support contract and get the vendor to fix it; or ask an
OpenJDK author to file a bug against the OpenJDK repo and then hope that
(or ask nicely) someone fixes it for you. Or there’s always the inevitable third
option that all open-source software provides—fix it yourself and then submit
a patch.

The final point—about security updates—is slightly more subtle. First off,
note that almost all changes to Java start off as commits to a public OpenJDK
repository on GitHub. The exception to this is certain security fixes that have
not yet been publicly disclosed.

When a fix is released and made public, there is a process by which the patch
flows back into the various OpenJDK repos. The vendors will then be able to
take that source code fix and build and release a binary which contains it.
However, there are some subtleties to this process, which is one reason why
most Java shops prefer to remain on a long-term support (or LTS) version—
we will have more to say about this in the section about Java versions.

Now that we’ve discussed the main criteria for choosing a distribution, let’s



meet some of the main offerings that are available:

Oracle

Oracle’s Java (Oracle JDK) is perhaps the most widely known
implementation. It is essentially the OpenJDK codebase, relicensed under
Oracle’s proprietary licenses with a few extremely minor differences
(such as the inclusion of some additional components that are not
available under an open-source license). Oracle achieves this by having
all contributors to OpenJDK sign a license agreement that permits dual
licensing of their contribution to both the GPLv2+CE of OpenJDK and
Oracle’s proprietary license.3

Eclipse Adoptium

This community-led project started life as AdoptOpenJDK, changing
name when it transitioned into the Eclipse Foundation. The Members of
the Adoptium project (from companies such as Red Hat, Google,
Microsoft, and Azul) consist mostly of build and test engineers, rather
than development engineers (who implement new features and fix bugs).
This is by design—many of Adoptium’s member companies also make
major contributions to upstream OpenJDK development, but do so under
their own company names, rather than Adoptium. The Adoptium project
takes the OpenJDK source and builds fully-tested binaries on multiple
platforms. As a community project, Adoptium does not offer paid
support, although member companies may choose to do so—for example
Red Hat does for some operating systems.

Red Hat

Red Hat is the longest-standing non-Oracle producer of Java binaries—as
well as the second-largest contributor to OpenJDK (behind Oracle). They
produce builds and provide support for their operating systems—RHEL
and Fedora—and Windows (for historical reasons). Red Hat also releases
freely-available container images based on their Universal Base Image
(UBI) Linux system.



Amazon Corretto

Corretto is Amazon’s distribution of OpenJDK, and it is intended to run
primarily on AWS cloud infrastructure. Amazon also provides builds for
Mac, Windows and Linux in order to provide a consistent developer
experience, and to encourage developers to use their builds across all
environments.

Microsoft OpenJDK

Microsoft has been producing binaries since May 2021 (OpenJDK
11.0.11) for Mac, Windows and Linux. Just as for AWS, Microsoft’s
distribution is largely intended to provide an easy on-ramp for developers
who will be deploying on their Azure cloud infrastructure.

Azul Systems

Zulu is a free OpenJDK implementation provided by Azul Systems—who
also offer paid support for their OpenJDK binaries. Azul also offer a
high-performance proprietary JVM called “Azul Platform Prime”
(previously known as Zing). Prime is not an OpenJDK distribution.

GraalVM

GraalVM is a relatively new addition to this list. Originally a research
project at Oracle Labs, it has graduated to a fully productionized Java
implementation (and much more besides). GraalVM can operate in
dynamic VM mode and includes an OpenJDK-based runtime—
augmented with a JIT compiler that is written in Java. However,
GraalVM is also capable of native compilation of Java—essentially AOT
compilation. We will have more to say on this subject later in the book.

OpenJ9

OpenJ9 started life as IBM’s proprietary JVM (when it was just called J9)
but was open-sourced in 2017 partway through its life (just like HotSpot).
It is now built on top of an Eclipse open runtime project (OMR). It is



fully compliant with Java certification. IBM Semeru Runtimes are zero-
cost runtimes built with the OpenJDK class libraries and the Eclipse
OpenJ9 JVM (which is Eclipse-licensed).

Android

Google’s Android project is sometimes thought of as being “based on
Java.” However, the picture is actually a little more complicated. Android
uses a cross compiler to convert class files to a different (.dex) file format.
These .dex files are then executed by the Android Runtime (ART),
which is not a JVM. In fact, Google now recommends the Kotlin
language over Java for developing Android apps. As this technology
stack is so far from the other examples, we won’t consider Android any
further in this book.

Note that this list is not intended to be comprehensive—there are other
distributions available as well.

The vast majority of the rest of this book focuses on the technology found in
HotSpot. This means the material applies equally to Oracle’s Java and the
distributions provided by Adoptium, Red Hat, Amazon, Microsoft, Azul
Zulu, and all other OpenJDK-derived JVMs.

We also include some material related to Eclipse Open J9 . This is intended
to provide an awareness of alternatives rather than a definitive guide. Some
readers may wish to explore these technologies more deeply, and they are
encouraged to proceed by setting performance goals, and then measuring and
comparing, in the usual manner.

Finally, before we discuss the Java release cycle, a word about the
performance characteristics of the various OpenJDK distributions.

Teams occasionally ask questions about performance—sometimes because
they mistakenly believe that certain distributions include different JIT or GC
components that are not available in other OpenJDK-based distributions.

So let’s clear that up right now: All the OpenJDK distributions build from the
same source, and there should be no systematic performance-related



differences between the various HotSpot-based implementations, when
comparing like-for-like versions and build flag configurations.

NOTE
Some vendors choose very specific build flag combinations that are highly specific to their
cloud environments, and some research indicates that these combinations may help for
some subset of workloads, but this is far from clear-cut.

Once in a while, social media excitedly reports that significant performances
differences have been found between some of the distributions. However,
carrying out such tests in a sufficiently controlled environment is notoriously
difficult—so any results should be treated with healthy skepticism unless
they can be independently verified as statistically rigorous.

The Java release cycle
We can now complete the picture by briefly discussing the Java release cycle.

New feature development happens in the open—at a collection of GitHub
repositories. Small to medium features and bug fixes are accepted as pull
requests directly against the main branch in the main OpenJDK repository.4
Larger features and major projects are frequently developed in forked repos
and then migrated into mainline when ready.

Every 6 months, a new release of Java is cut from whatever is in main.
Features that “miss the train” must wait for the next release—the 6-month
cadence and strict timescale has been maintained since September 2017.
These releases are known as “feature releases”, and they are run by Oracle, in
their role as stewards of Java.

Oracle ceases to work on any given feature release as soon as the next feature
release appears. However, an OpenJDK member of suitable standing and
capability can offer to continue running the release after Oracle steps down.
To date, this has only happened for certain releases—in practice Java 8, 11,
17 and 21, which are known as update releases.



The significance of these releases is that they match Oracle’s Long-Term
Support release concept. Technically, this is purely a construct of Oracle’s
sales process—whereby Oracle customers who do not want to upgrade Java
every 6 months have certain stable versions that Oracle will support them on.

In practice, the Java ecosystem has overwhelmingly rejected the official
Oracle dogma of “upgrade your JDK every 6 months"--project teams and
engineering managers simply have no appetite for it. Instead, teams upgrade
from one LTS version to the next, and the update release projects (8u, 11u,
17u and 21u) remain active, delivering security patches and a small number
of bug fixes and backports. Oracle and the community work together to keep
all these maintained code streams secure.

This is the final piece we need to answer the question of how to pick a Java
distribution. If you want a zero-cost Java distribution that receives security
patches and has a non-zero chance of security (and possibly bug) fixes, select
your choice of OpenJDK vendor and stick to the LTS versions. Any of:
Adoptium, Red Hat, Amazon, Microsoft and Azul is a fine choice—and so
are some of the others. Depending on how and where you’re deploying your
software (e.g. applications deployin in AWS may prefer Amazon’s Corretto
distribution) you may have a reason to pick one of those over the others.

For a more in-depth guide to the various options and some of the licensing
complexities, you can consult Java Is Still Free This document was written by
the Java Champions, an independent body of Java experts and leaders.

Summary
In this chapter we have taken a quick tour through the overall anatomy of the
JVM, including: compilation of byte code, interpretation, JIT compilation to
native code, memory management, threading, the lifecycle of a Java process
monitoring, and finally, how Java is built and distributed.

It has only been possible to touch on some of the most important subjects,
and virtually every topic mentioned here has a rich, full story behind it that
will reward further investigation.

https://medium.com/@javachampions/java-is-still-free-3-0-0-ocrt-2021-bca75c88d23b
https://dev.java/community/jcs/


In Chapter 4 we will begin our journey into garbage collection, starting with
the basic concepts of mark-and-sweep and diving into the specifics, including
some of the internal details of how HotSpot implements GC.

1  B. Stroustrup, “Abstraction and the C++ Machine Model,” Lecture Notes in Computer Science,
vol. 3605 (Springer 2005)

2  https://openjdk.org/legal/gplv2+ce.xhtml

3  The latter has changed multiple times, so linking to the currently latest version might not be
helpful—it could be out-of-date by the time you read this.

4  https://github.com/openjdk/jdk

https://openjdk.org/legal/gplv2+ce.xhtml
https://github.com/openjdk/jdk
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