

Ultimate Web

Authentication

Handbook

Strengthen Web Security by

Leveraging

Cryptography and Authentication

Protocols

such as OAuth, SAML and FIDO

Sambit Kumar Dash

www.orangeava.com

http://www.orangeava.com/

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the author

nor Orange Education Pvt Ltd or its dealers and distributors, will be held

liable for any damages caused or alleged to have been caused directly or

indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information

about all of the companies and products mentioned in this book by the

appropriate use of capital. However, Orange Education Pvt Ltd cannot

guarantee the accuracy of this information.

First published: October 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-19416-46-2

www.orangeava.com

http://www.orangeava.com/

Dedicated to

My Beloved Parents

and

My Loving Wife

Foreword

In today's interconnected world, web authentication stands

as a crucial pillar of digital security. As technology continues

to advance at an unprecedented pace, it is paramount that

we equip ourselves with the knowledge and skills to

navigate the intricate landscape of authentication protocols

and standards. It is with great pleasure and anticipation that

I introduce this exceptional book, a comprehensive guide to

advanced web authentication, focused on programming and

hands-on understanding of authentication protocols,

authored by an esteemed industry expert in the field.

I have had the honor of working alongside the author during

our tenure together at Symantec, growing Symantec’s

strong authentication services to have been serving tens of

millions of users worldwide. Sambit, as a brilliant product

management leader, spearheaded our flagship

authentication product line, which provided comprehensive

strong authentication methods and protocols. His

exceptional product guidance and expertise were

instrumental in driving solutions that ensured the utmost

security and reliability for our clients.

Through our work together, I witnessed firsthand Sambit’s

unwavering dedication and unparalleled knowledge in the

realm of authentication. His deep understanding of the

subject matter, combined with his ability to translate

complex concepts into practical implementations,

positioned him as a true authority in the field.

This book strikes a perfect balance between theory and

practice, delving into the fundamental concepts of

authentication protocols and standards while emphasizing

their practical implementation through programming. By

emphasizing the hands-on application of protocols rather

than relying on wrapped third-party libraries, one can truly

gain a solid grasp of the subject matter. The Flutter client

framework and sample server code in the Go Language are

especially well chosen for learning and use in one’s own

application.

This book caters to the critical needs of a broad audience,

ranging from computer programmers, and web application

designers, to architects who are eager to embrace

authentication best practices in their applications. While

network security experts undoubtedly possess invaluable

knowledge in the field, they may find that existing resources

often lack the level of detail required to configure enterprise

authentication tools. Similarly, many Identity Management

Products predominantly focus on server components,

leaving developers of client integrations without

comprehensive guidance.

As someone who has witnessed the author’s extraordinary

expertise in managing and building real-world

authentication products, I wholeheartedly endorse this book

as an invaluable resource for aspiring developers, security

professionals, and anyone seeking to advance their

knowledge of advanced web authentication.

May this excellent book inspire you to push the boundaries

of what is possible in the realm of digital security, and may

it empower you to create robust and reliable authentication

systems that safeguard the digital world.

— MINGLIANG PEI

Distinguished Engineer, Broadcom

Technical Co-chair of Open Authentication (OATH) and

an author of multiple RFCs in the field of authentication

About the Author

Sambit Kumar Dash is passionate about bringing

technology product ideas to reality. He has over 25 years of

experience in product and business management,

architecture, and research and development. His interests in

technology expand to document technologies, computer

security, artificial intelligence, and natural language

processing. Sambit has conceived and developed a PDF

reader library in the Julia language. This library is available

on GitHub (https://github.com/sambitdash/PDFIO.jl). He

is passionate about developing new technologies and has

eight patents in document technologies, computer security,

virtualization, and human-computer interfaces. Additionally,

he provides product management consultancy to start-ups

and early-stage ventures through Lenatics Solutions Private

Limited.

https://github.com/sambitdash/PDFIO.jl

About the Reviewer

Gopal Sharma is a hands-on senior technology leader and

software architect in Enterprise Software, Digital

Technologies, and Data Engineering, with over 25 years of

proven experience in building innovative solutions to

challenging business opportunities and building R&D teams.

He is adept at collaborating with cross-functional teams to

deliver innovative solutions that meet business

requirements. He is also a freelance writer of technical

articles in Big Data, Data Science, and Enterprise Tech.

In the dynamic realm of technology, Gopal's journey is a

testament to the enduring pursuit of knowledge. Starting as

a mechanical engineer, Gopal's life has been marked by a

remarkable transformation, ultimately leading him to his

current role as a book reviewer.

Raised in Kolkata, India, Gopal embarked on his academic

path at the prestigious Indian Institute of Technology,

Kharagpur, graduating in 1995 with a Bachelor of

Technology (Honours) in Mechanical Engineering. His early

career was firmly rooted in the mechanical domain, where

he honed his skills in machinery, design, and manufacturing.

However, Gopal's curiosity and openness to change soon

drew him towards the world of software engineering. With

determination and a deep desire to learn, he transitioned

from mechanical engineering to software development.

Starting as a developer, he progressed to roles such as

senior developer and tech lead, all the while embracing new

challenges with humility.

Gopal's ability to grasp complex software concepts and craft

elegant solutions stood him in good stead. His journey

exemplified his adaptability and unwavering commitment to

self-improvement.

As the years passed, Gopal's career evolved, with him

assuming key roles as an architect and software security

expert. His dedication to safeguarding digital assets and his

deep knowledge of security protocols helped him

immensely.

The vast landscape of data science and big data beckoned

to Gopal, and he eagerly explored these domains,

leveraging data to drive innovation and decision-making.

His passion for data was evident in most works he

undertook, from analyzing extensive datasets to uncovering

valuable insights.

Gopal's reviews offered a unique perspective and a wealth

of knowledge. Beyond mere evaluations, they were heartfelt

explorations of the books he encountered, demonstrating

his authentic passion for learning and his aspiration to

impart wisdom to others.

Acknowledgement

Writing an acknowledgment for a book on technology is

always challenging, primarily because you are building on

top of someone else's work. This book disseminates the

ideas and research of hundreds of technologists. Firstly, I

would like to express my gratitude to all of them for

producing such remarkable pieces of technology. I have

provided reference notes for most of their works, but to err

is human. Hence, I request readers to report any omissions,

as they are purely unintentional.

Secondly, I thank Mingliang Pei for finding confidence in me

and encouraging me to take up this audacious step of

writing a book on a technology he masters. Your

encouraging foreword means a lot to me. Gopal Sharma and

Shashi Bhushan Kumar painstakingly went through every

piece of technology discussed in the book and provided

their invaluable feedback, making the book better in every

respect. Srinath Venkataramani's inputs on digital identity

and Krishnan Rajagopalan's on foundational identity and

MOSIP enriched the contents further. A casual discussion

with Ashutosh Chandra added significant updates to the

Zero Trust Principles. I thank them all for their contributions.

While all these industry leaders have provided well-

intentioned inputs, all omissions and errors should only be

attributed to me.

Thirdly, I thank Subha and Sonali for being the editors of this

book and the entire Orange AVA team for their remarkable

support in making this work see the light of day.

Lastly, I want to express my gratitude to you for choosing

this work for your learning. We hope you enjoy it as much as

we enjoyed putting it all together. Please do not forget to

share your comments and suggestions to help us improve

the book further.

Preface

The COVID-19 pandemic affected not only approximately

640 million people worldwide but also resulted in 6.6 million

casualties1. The disease spared no one, affecting people

from developing nations to the most developed ones.

Despite all lockdowns and travel restrictions, the world has

moved on. Life has not come to a stand still. The pace at

which the world embraced digital technologies added to

overcoming some need for physical interaction. People

could work from home, share personal and private

information, and continue communicating securely.

Industries not used to remote working opened to employees

working from home. The internet was a great enabler in all

these. However, the ability to trust the person accessing the

corporate resources is equally important. Organizations

deployed authentication systems, and they helped in

providing secure access.

India launched a massive vaccination program to inoculate

its 1.3 billion population. To date, 2.2 billion dosages of the

vaccine have been administered2. The vaccination must

reach all the deserving people based on priority with

tracking of dosage. A vaccine management platform COWIN

developed by the Govt of India was used to track patients

and medical practitioners. SMS OTP-based authentication is

used for the COWIN portal.

India has only about 60% smartphone penetration3; a

sophisticated authentication platform could not have

reached the masses. As much as networking and the

internet have become a need for digitization, there is a

growing need to keep information and user identities

secured in this connected world. Computers and user

authentication have always run together. However,

technologies are constantly evolving. Today, almost all our

transactions are carried out using the web as the

communication interface. Only a few books provide a

holistic view of all the user authentication platforms relevant

to web authentication. We endeavor to bring a ready

reckoner for programmers to understand the authentication

protocols and work on them to integrate them into their

application development.The book is composed of the

following chapters:

Chapter 1: Introduction to Web Authentication: The

World Wide Web has evolved organically. It started as a

simple platform for information exchange. However, today it

has become the backbone of Internet commerce, business,

education, governance, etc. If we were to design a system

as complex, keeping so much extendibility in mind, it would

have been almost impossible. The underlying protocol of

Internet HTTP is stateless. It did not have any native

security model in place. The state architecture was

established at the application layer using some constructs

like headers and cookies. Similarly, there are restrictions

placed on the protocol to ensure that browser

communications remain secure. In this chapter, we will

explore some classic security aspects of Web Architecture.

Chapter 2: Fundamentals of Cryptography: HTTP,

although developed for information exchange, did not have

many safeguards for state and user management. The

transport protocols for HTTP did not have any default

protection on information exchange. TCP/IP sends a packet

to all the network devices without restriction. The network

device that is the only intended recipient analyses the

network packet and consumes it, while others ignore it. In

such an open communication world, for any information to

be protected, the data itself should be encrypted such that a

non-intended audience cannot decipher the message. We

will review some of the encryption technologies in this

chapter.

Chapter 3: Authentication with Network Security: In

the earlier chapters, we discussed how we can encrypt

information. We did not show the application in exchanging

information. Fortunately, the network protocol designers

realized this complexity and solved it with two distinct

architectures. One is in the transport layer called Transport

Layer Security (TLS), and the other at the IP layer called

IPSec. While both technologies utilize similar encryption

techniques, the protocols and usage are very different. We

will be focusing on TLS in this chapter. HTTP over TLS as

transport is known as HTTPS and is used in most browser

communication today.

Chapter 4: Federated Authentication-I: So far, we have

only discussed individual services the users are connecting

to, authenticating themselves, and getting access to the

system. However, in an organization, there are several

systems based on functions or roles. An employee connects

to the HR system for leave application, the payroll system

for salary, or an IT incident management system for

reporting the failure of a laptop. An HR team member will

have administrative rights over the HR system, while even

the CEO may have user-level rights. These granular policy

controls are hard to maintain in every individual service. It

started the domain of Identity and Access Management

(IAM). IAM is a complex domain. It caters to applications and

network configurations, one of the significant complexities

seen was with Web Applications in terms of session

management. A user who has logged in once to the

organization servers does not have to reauthenticate for

access to any other server. This concept is called Single

Sign-On (SSO). SAML was one of the most used protocols for

Web SSO.

Chapter 5: Federated Authentication - II (OAuth and

OIDC): While SAML started to solve the SSO problem for

enterprises, there was a need for mutual trust between the

service provider (SP) and identity providers (IdP). In the Web

2.0 world, this was quite limiting. Users wanted to show

their Twitter and Facebook feeds on their web pages as

mashup content. While such content is viewable on web

pages, it should not be editable. A new paradigm of access

control or authorization was needed to address this. In

SAML, some attributes or membership of groups are good

enough to establish access control for a user. OAuth started

as an authorization protocol with restricted access to a

resource by the owner. However, it got extended as an

authentication protocol with the Open Identity Connect

(OIDC) protocol. We will see some aspects of the OAuth and

OIDC protocols and review Java Web Token (JWT) to transmit

authentication and authorization information.

Chapter 6: Multifactor Authentication: Passwords are

open to brute-force or social engineering attacks. Hence,

the industry is trying to move to a password-less model.

However, the investment in passwords is so significant that

moving away may take a few more years. In the past few

decades, other factors of authentication as something you

have (tokens) and something you are (biometric

authentication) have developed. They are used alongside

password-based authentication providing another layer of

authentication. This is known as Multifactor Authentication

(MFA). We saw one such technique with digital certificates.

We will delve deeper into two standards: Open

Authentication (OATH) and Fast ID Online (FIDO) based

WebAuthn.

Chapter 7: Advanced Trends in Authentication: We

have discussed users producing credentials to justify a claim

on their identity. An identity represents a human being, and

the biometric, possessory, or knowledge attributes are mere

credentials. There is a need to justify if the identity is in

existence supported by government records or

documentation. This process is called identity proofing.

Earlier, ID-proofing systems depended on physical

verification by agents and manual approval. With advances

in AI, such systems have moved into automated document

feature extraction, face recognition, and other biometric

data collection mechanisms. Governments have started

developing citizen ID databases containing biometric

information for verification. In industries where Know Your

Customer (KYC) is a policy requirement, faster digital eKYC

systems are in use. The KYC systems provide an

authoritative database for identity. Additionally, network and

device insights and assessment from security practice are

making organizations use a Zero Trust Network Security,

where authentication is becoming the backbone.

About the Questions

The questions provided at the end of the chapters are for

leading you to understand the topic in depth. It is perfectly

alright if you cannot answer them satisfactorily in the first

reading of the book. Some questions may not have answers

within the chapter where they appear. They can create a

lingering doubt to be answered in a later chapter. Some of

them may need resources outside of the book. As with most

practitioner’s quest, some of the questions may not have a

concrete answer, especially when it comes to system

design, making them open to discussions and debates.

1. World Health Organization Statistics as of 1st Dec 2022

https://covid19.who.int/

2. Ministry of Health and Family Welfare, Government of India as of 1st Dec 2022

https://www.mohfw.gov.in/

3 India to have 1 billion smartphone users by 2026: Deloitte report,

https://www.business-standard.com/article/current-affairs/india-to-

https://covid19.who.int/
https://www.mohfw.gov.in/
https://www.business-standard.com/article/current-affairs/india-to-have-1-billion-smartphone-users-by-2026-deloitte-report-122022200996_1.html

have-1-billion-smartphone-users-by-2026-deloitte-report-

122022200996_1.html

https://www.business-standard.com/article/current-affairs/india-to-have-1-billion-smartphone-users-by-2026-deloitte-report-122022200996_1.html

Downloading the code

bundles and colored images

Please follow the link to download the

Code Bundles of the book:

https://github.com/OrangeAVA/

Ultimate-Web-Authentication-

Handbook

The code bundles and images of the book are also hosted

on

https://rebrand.ly/k90i95c

In case there’s an update to the code, it will be updated on

the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education

Pvt Ltd and follow best practices to ensure the accuracy of

our content to provide an indulging reading experience to

our subscribers. Our readers are our mirrors, and we use

their inputs to reflect and improve upon human errors, if

any, that may have occurred during the publishing

processes involved. To let us maintain the quality and help

us reach out to any readers who might be having difficulties

due to any unforeseen errors, please write to us at :

errata@orangeava.com

https://github.com/OrangeAVA/Ultimate-Web-Authentication-Handbook
https://rebrand.ly/k90i95c
mailto:errata@orangeava.com

Your support, suggestions, and feedback are highly

appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook

versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at

www.orangeava.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch

with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection

of free technical articles, sign up for a range of free

newsletters, and receive exclusive discounts and offers on

AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any

form on the internet, we would be grateful if you would

provide us with the location address or website name.

Please contact us at info@orangeava.com with a link to

the material.

ARE YOU INTERESTED IN

AUTHORING WITH US?

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book,

please write to us at business@orangeava.com. We are

on a journey to help developers and tech professionals to

gain insights on the present technological advancements

and innovations happening across the globe and build a

community that believes Knowledge is best acquired by

sharing and learning with others. Please reach out to us

to learn what our audience demands and how you can be

part of this educational reform. We also welcome ideas

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

from tech experts and help them build learning and

development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this

book, why not leave a review on the site that you

purchased it from? Potential readers can then see and use

your unbiased opinion to make purchase decisions. We at

Orange Education would love to know what you think

about our products, and our authors can learn from your

feedback. Thank you!

For more information about Orange Education, please

visit www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Introduction to Web Authentication

Introduction

Structure

Tools and Resources

MDN Web Docs

Google Chrome

CURL

OpenSSL

Go Language

Flutter Framework

HTTP Protocol Basics

Headers

Cookies

Session Management

Minimal Web Server

Counter Cookie

Session Cookie

Protecting the Cookies

Web Architecture

Web Application Architecture

Introduction to Authentication

Credentials and access tokens

Authentication over HTTP

Limitations

Form-based authentication

Conclusion

Questions

2. Fundamentals of Cryptography

Introduction

Security by Obscurity

Structure

Message Consistency

Protection

Symmetric Cryptography

Encryption

Signing

Password Safety

Asymmetric Cryptography

Digital Signing

Digital Certificates

Certificate Profile

Issuance

Examples

Self-Signed Certificate for CA

Generating RSA Keypair and CSR

Signing the CSR with CA

Viewing the Certificate

PKCS#12 Container

Encryption Using Certificates

Signing Using Certificates

Digital Signing for Authentication

Conclusion

Reference Books

Questions

3. Authentication with Network Security

Introduction

Network Protocols

Structure

Transport Layer Security

Server Authentication

Client Authentication

Web Browser Support

Client Certificates

Non-TLS certificate-based authentication

Conclusion

Questions

4. Federated Authentication-I

Introduction

Structure

Federated authentication

Service provider initiated

IDP initiated

Single sign-on

Authentication ticket or token

Claims-based authentication

SAML token

Metadata

Profiles

Binding

Configuring the identity provider

Configuring the HR app service provider

Session management

Protecting the APIs

Single sign-on

IDP-initiated authentication

Protected resources

Identity and access management

Conclusion

Questions

5. Federated Authentication - II (OAuth and OIDC)

Introduction

Structure

Authentication vs authorization

OAuth protocol

3-legged OAuth protocol

Web application displaying GitHub user data

Limited capability device

Command line utility for GitHub

Native applications

Authorization server

Integration and Resource Server

Native client using Flutter

Token issuance

Token expiry

Scopes

OpenID Connect (OIDC)

Using OAuth for Authentication

Identity Token

JSON Web Token

Login with Google

Configuring the Google Cloud Platform

User Experience

Token Security

Token Expiry

Service Endpoints

Web front end

Conclusion

Questions

6. Multifactor Authentication

Introduction

Structure

Factors of authentication

OTP-based authentication

HOTP Sample

Synchronization of the counter

Unattended HOTP devices

Time-based OTP

Synchronization of time

Exchanging shared secret

Other OTP-like authenticators

Fast Identity Online (FIDO)

Registration

Authentication

Sample code and user interface

Selection of FIDO 2 Devices

Front end for registration

REST APIs for registration

Device Attestation

Device Security

Bringing it all together

Authorization policy

Server-rendered authentication forms

User consent

Session Management

Post Registration

Conclusion

Questions

7. Advanced Trends in Authentication

Introduction

Structure

Digital identity

Proliferation of identities

Foundational identity

Digital identity

Indian National Foundational Identity (Aadhaar)

Validation

Ecosystem

Beyond India (MOSIP)

Know your customer

Beyond identity

e-Signing

Identity Wallets

Biometric authentication

Fingerprint

Face biometry

Other biometric technologies

Local vs. server authentication

Liveness and antispoofing mechanisms

Post-quantum cryptography

Current status

Zero trust architecture

Standardization

Conclusion

Questions

Appendix A: The Go Programming Language

Reference

Introduction

Installation

The Go Play Ground

Hello World

Simple function

Closure

HTTP server

Built-in data types

Variables

Pointers

Global vs. local

Control flow

Error handling

User-defined data types

Interface

Exporting methods and variables

Resolving package dependencies

Conclusion

Appendix B: The Flutter Application Framework

Introduction

Installation

DartPad

Hello World

Fibonacci function

Futures

HTTP Requests

User interface

Stateless vs stateful widgets

Providers and change notifications

Conclusion

Appendix C: TLS Certificate Creation

Introduction

Root certificate

Intermediate CA

TLS server certificate

Generating the PKCS-12 file

Client hierarchy

Index

CHAPTER 1

Introduction to Web

Authentication

Introduction

While authentication is the primary focus of our discussion,

we cannot look at it in isolation. There is a need to

understand the fundamentals of computer networking and

its history to appreciate the development of authentication

protocols. It is probably secure to have a point-to-point

network where communication is confined to two systems

only. Such systems are not scalable as you cannot

technically wire every pair of devices. The International

Standard Organization (ISO) Open Standards Interconnection

(OSI) is the backbone of all computer networking. The design

prioritized data redundancy, communication assurance, and

packet transmission over secured communication. Here is a

basic explanation of the communication protocol. The

electrical signals are exchanged across the internetworked

computer in conceptual packets of electrical pulses. The

electrical pulses do not differentiate any device. However,

the pulse packets have a destination network address

encoded in them. When a computer receives the pulse

packet, it matches the address to its own assigned address.

If the match is successful, the pulse packet is accepted.

Figure 1.1: Networked Devices (A) point-to-point (B) A bus network: signal will

reach all devices on the network

In the OSI model, physical and datalink layers are for low-

level signal management. The network layer assigns the

address for the pulse packets. Internet Protocol (IP) is the

protocol of choice today. The computers may have an IPv4

address (32-bit) written as four numbers separated by dots

(198.168.1.1). An IPv6 network uses a 128-bit address

instead. Hexadecimal numbers are separated by a colon (:)

for this representation; for example,

2001:0db8:85a3:0000:0000:8a2e:0370:7334. Due to the

nature of transmission, the pulse packets are not delivered in

a consistent order. The pulse packets are collected at the

network devices and reordered to reconstruct meaningful

messages. The transmission layer of the OSI stack handles

these scenarios. The most common transmission protocols

are the User Datagram Protocol (UDP) and Transmission

Control Protocol (TCP). UDP is acceptable for low-latency

networks where applications are tolerant to intermittent data

loss. TCP is a connection-oriented protocol with guaranteed

data delivery. Packets lost are retransmitted as part of TCP.

Web interactions utilize TCP as the network transmission

protocol. Hence, we will discuss TCP-IP for all network-related

discussions in this book.

Figure 1.2: ISO OSI Layers vs TCP/IP Layers: While authentication belongs to the

session layer in the OSI model or application layer in the TCP/IP model,

authentication can be implemented as part of transport and network layers as

TLS and IPSec VPNs, respectively.

Networking has not always been an open and standards-

based domain. For example, Novell Networking used a

proprietary IPX protocol as its networking protocol. Initially,

Apollo computers provided the Network File System (NFS) for

their networks. As time progressed, organizations realized

the need to collaborate to develop open standards for better

interoperability. Most web development today is based on

open standards. While TCP-IP became the lingua franca of

networking, the other OSI layers, namely, session,

presentation, and application, never got the buy-in from the

organizations to standardize. The applications implemented

these layers as per their convenience. Hence, they are

considered application layers in the TCP/IP stack. For

example, the HTTP protocol is an application layer protocol.

Authentication should have been in the session layer in the

OSI stack.

Structure

In this chapter, we will cover the following topics:

Tools and Resources

HTTP Protocol Basics

Web Architecture

Introduction to Authentication

Authentication over HTTP

Limitations

Conclusion

Tools and Resources

We will work with web applications in this book. We will look

at HTTP and other internet protocols. We will need some

tools to study the network data. Today, most browsers

provide great developer tools to trace HTTP data. They have

excellent tools for the HTML Document Object Models (DOM)

and analyzing embedded JavaScript. We suggest readers use

some of these tools to understand the HTTP traffic.

MDN Web Docs

MDN, earlier known as Mozilla Developer Network1, provides

excellent documents and training material for web

developers. We suggest you review those for a better

understanding of HTTP, HTML, CSS, JavaScript, and so on. We

do not consider the knowledge of these technologies a

prerequisite for this book; a web developer will learn them

with experience. We will introduce the required concepts for

this book as the need arises.

Google Chrome

Google Chrome started as a developer-friendly browser that

tried to use standards-compliant HTML specifications and

had one of the fastest JavaScript engines. Today, it

dominates the browser market with almost 65 percent

market share leaving its distant second competitor at about

11 percent. All browsers ship with excellent developer tools

for easier debugging and analysis of web technologies. We

use Flutter as a frontend technology for our samples; Google

Chrome provides better support for such environments.

Moreover, developers have written large numbers of

extensions that help analysis in the browser. Google Chrome

is available for Windows, Mac OS, and Linux platforms.

CURL

CURL is a set of open-source libraries and command-line

tools for accessing URLs. These tools are available on almost

all well-known operating platforms; you can download them

from https://curl.se. We are interested in the command line

tool here so that we can compose custom HTTP requests to

better our understanding while reading this book.

OpenSSL

In the area of cryptography or transport-level security, there

is hardly any other tool that can boast of such coverage in

the market. OpenSSL has the most elaborate cipher suites,

certificate management, and transport layer security

protocols. It also has an extensive command-line tool that

exposes all the relevant functionality to be tried and tested.

With strict FIPS compliance practices implemented, OpenSSL

is one of the most sought-after tools in the domain. Just as

we suggested CURL for connectivity debugging, we will be

using OpenSSL for debugging the cryptographic and

https://curl.se/

transport layer security issues. You can download the tool

from https://www.openssl.org/source/ 2.

Go Language

Designed by Robert Griesemer, Rob Pike, and Ken Thompson,

working for Google, Go Language is a modern C-like general-

purpose programming language. Yet the language, with just

a decade of existence, has become the language of choice

for web application designs due to its concurrency, ease of

programming, ecosystem, and support by large

organizations. Developed and maintained as an open-source

project, the resources for the language can be accessed from

https://go.dev. People with relatively less experience with

the tool can look at Appendix A: The Go Programming

Language Reference for a simplified introduction and

installation instructions. However, the presentation is only

rudimentary. We expect the readers to learn the Go language

from other language resources.

Flutter Framework

While the Go Language provides the backend of a web

application, you need the client libraries to render the

content on a browser or a mobile application. Developed by

Google as an open-source project, the Flutter application

framework provides easy-to-use mechanisms to build

applications for the web, Windows, Linux, iOS, and Android

platforms. Since authentication requires integration with the

application UI, we shall be developing some of the

applications on Flutter where user interface can be of

paramount importance. You can download the Flutter

framework resources from: https://flutter.dev. Appendix B:

The Flutter Application Framework provides an introductory

understanding of the framework.

https://www.openssl.org/source/
https://go.dev/
https://flutter.dev/

HTTP Protocol Basics

As organizations were developing more and more

applications for desktop computers, the general framework

was to bring a file or resource from the remote machine

locally before using it. There were hardly any applications

that rendered the content while downloading it from a

remote resource; the concept known today as browsing. The

exchange of text as electronic mail was prevalent. File

transfer protocol (FTP) was the most common technique to

download non-text content and view it locally. Tim Berners

Lee, a scientist at the European Council for Nuclear Research

(CERN), developed a telnet-friendly service to download

research data and results. Eventually, this became the

Hypertext Transfer Protocol (HTTP). Initially started with only

the GET as the command, more commands and mnemonics

were added to the protocol.

telnet google.com 80

connecting to… 142.XXX.XXX.XXX

GET /

<<Hypertext Response>>

Connection to host lost

Figure 1.3: An HTTP client requesting a server for a specific resource

Hypertext Markup Language (HTML) was developed to link

text and images in a single view. The National Center for

Supercomputing Applications (NCSA) developed the first

browser Mozaic. Netscape and Microsoft built their

commercial versions of the browsers Navigator and Internet

Explorer (IE) respectively by licensing Mozaic technology. The

protocol was kept very simple. Open a connection to a

server, request the information you require, and close the

connection. There was no concept of a state or resuming the

activity where you had left. The protocol remained simple

and generic, but it did not give the ability to deliver state

management.

Headers

HTTP started as a protocol without any state management

controls. However, the client and server needed additional

directives for communication. Request for a specific URL or

resource was not enough for reliable communication. Let us

try to connect to http://google.com with curl and

understand the data exchange.

In the curl command, the -v option prints the detailed

communication exchange. In the print, the outputs are

classified into four sets. Sentences beginning with:

* Are explanations from actions of CURL

> Information sent from the client to the server

< Information received from the server

Nothing - A dump of the data received.

C:\>curl -v http://google.com

* Trying 2404:6800:4009:82b::200e:80…

* Connected to google.com (2404:6800:4009:82b::200e) port

80 (#0)

Along with the GET request, curl sent a few data values.

These name-value pairs separated by a colon (:) are

headers. Headers help in exchanging control information3

between the client and server.

> GET / HTTP/1.1

> Host: google.com

http://google.com/

> User-Agent: curl/7.83.1

> Accept: */*

>

Header User-Agent tells the name and version of the client

software used to connect the server. The Host header tells

the server and port (optional) that shall receive the request.

The Accept header tells the MIME types the client can

understand. These are only a few that curl sends for this

minimal example. Browsers send a lot more headers as

default. One can review a complete list of standard HTTP

headers from this MDN site:

https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers. These are not all. The

communication across custom clients and servers can use

custom headers as well.

As curl sent a few headers, the site google.com also replied

with a few HTTP headers along with the response. The

response here is a 301 error stating the site contacted has

moved. And, the user agent must connect to the site as per

the value of the Location header. The Location header points

to the site http://www.google.com/.

* Mark bundle as not supporting multiuse

< HTTP/1.1 301 Moved Permanently

< Location: http://www.google.com/

< Content-Type: text/html; charset=UTF-8

< Cross-Origin-Opener-Policy-Report-Only: same-origin-allow-

popups; report-to="gws"

< Report-To: {"group":"gws","max_age":2592000,"endpoints":

[{"url":"https://csp.withgoogle.com/csp/report-to/gws/other"}]}

< Date: Thu, 08 Dec 2022 15:21:46 GMT

< Expires: Sat, 07 Jan 2023 15:21:46 GMT

< Cache-Control: public, max-age=2592000

< Server: gws

< Content-Length: 219

< X-XSS-Protection: 0

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
http://www.google.com/

< X-Frame-Options: SAMEORIGIN

<

Content-Length is a very useful header that tells how many

bytes shall be downloaded as part of the response. Here, 219

bytes of content follow the headers.

<HTML><HEAD><meta http-equiv="content-type"

content="text/HTML;charset=utf-8">

<TITLE>301 Moved</TITLE></HEAD><BODY>

<H1>301 Moved</H1>

The document has moved

here.

</BODY></HTML>

* Connection #0 to host google.com left intact

If you plan to download only the HTTP headers and no

content, you could use the curl command line:

curl --head -v http://google.com

There is a lot of information on HTTP headers one needs to

learn to be a good web developer. However, we will leave

those for the readers to explore for themselves.

Cookies

In HTTP, there is no way to track the continuity of requests.

Every request is an independent exchange of data. The

server can send a client key-value pairs to remember, and

the client can send the same key-value pairs in a subsequent

request. These kinds of exchanges are known as cookies in

HTTP. The information exchanged in cookies is small chunks

of data only.

C:\>curl --cookie-jar cookies.txt -v http://www.google.com

* Trying 2404:6800:4007:81f::2004:80…

* Connected to www.google.com (2404:6800:4007:81f::2004) port

80 (#0)

> GET / HTTP/1.1

> Host: www.google.com

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Date: Thu, 15 Dec 2022 07:55:39 GMT

…

< Set-Cookie: 1P_JAR=2022-12-15-07; expires=Sat, 14-Jan-2023

07:55:39 GMT; path=/; domain=.google.com; Secure

< Set-Cookie: AEC=AakniGMJBryHGiLz0B-

1QnVwN91aqzJeWcfrpw2hO_idwaRhjCMeJ6mNHA; expires=Tue, 13-Jun-

2023 07:55:39 GMT; path=/; domain=.google.com; Secure;

HttpOnly; SameSite=lax

*Added cookie

NID="511=tOdOEL2UXQFjj2IUhgV1wrFmW9Hs_eIacoHSD9lVeUoSgLOGF9gYOb

vKzw5q0h3BR2OnbKnzlcaSDy0QeamKxFJnWXh3gnpPY38lOFyHIvjhxGq_-

eQU5OggdCcTmGOJEFeq0alI-VxhPhhmYunoC949t9abiWu9UK-0_jKVjYs" for

domain google.com, path /, expire 1686902139

< Set-Cookie:

NID=511=tOdOEL2UXQFjj2IUhgV1wrFmW9Hs_eIacoHSD9lVeUoSgLOGF9gYObv

Kzw5q0h3BR2OnbKnzlcaSDy0QeamKxFJnWXh3gnpPY38lOFyHIvjhxGq_-

eQU5OggdCcTmGOJEFeq0alI-VxhPhhmYunoC949t9abiWu9UK-0_jKVjYs;

expires=Fri, 16-Jun-2023 07:55:39 GMT; path=/;

domain=.google.com; HttpOnly

…

Here the curl command contacts the server with the option

(--cookie-jar <filename>) to save the received cookies. The

server sends a response with three headers of Set-Cookie.

Set-Cookie as a directive to the client to cache the cookie

values and send them to the server in the subsequent

request. If you open the cookies.txt file, you will see the

following data:

Netscape HTTP Cookie File

https://curl.se/docs/http-cookies.html

This file was generated by libcurl! Edit at your own risk.

#HttpOnly_.google.com TRUE / FALSE 1686902139 NID

511=tOdOEL2UXQFjj2IUhgV1wrFmW9Hs_eIacoHSD9lVeUoSgLOGF9gYObvKzw5

q0h3BR2OnbKnzlcaSDy0QeamKxFJnWXh3gnpPY38lOFyHIvjhxGq_-

eQU5OggdCcTmGOJEFeq0alI-VxhPhhmYunoC949t9abiWu9UK-0_jKVjYs

Out of the three cookies suggested by the server, only one is

saved by the client. Let's look at the Set-Cookie headers

closely.

Set-Cookie: 1P_JAR=2022-12-15-07; expires=Sat, 14-Jan-2023

07:55:39 GMT; path=/; domain=.google.com; Secure

Along with the key and value pair, we have other directives

like:

expires: The time when the cookie expires. Browsers

need not store a cookie after the expiry

domain: the domain to which the cookie is bound

path: the path where the cookie shall be used. A '/' shall

mean any path after the domain name as in this case.

Secure: This cookie shall be exchanged in a secured

HTTPS exchange channel. On an HTTP channel, such a

cookie shall not be sent.

It is this secure directive that ensures the cookie is not saved

in the cookie jar file4. We shall now use curl with the option –

cookies to send the cookie in the HTTP request.

C:\>curl --cookie cookies.txt -v http://www.google.com

* Trying 2404:6800:4009:823::2004:80…

* Connected to www.google.com (2404:6800:4009:823::2004) port

80 (#0)

> GET / HTTP/1.1

> Host: www.google.com

> User-Agent: curl/7.83.1

> Accept: */*

> Cookie:

NID=511=tOdOEL2UXQFjj2IUhgV1wrFmW9Hs_eIacoHSD9lVeUoSgLOGF9gYObv

Kzw5q0h3BR2OnbKnzlcaSDy0QeamKxFJnWXh3gnpPY38lOFyHIvjhxGq_-

eQU5OggdCcTmGOJEFeq0alI-VxhPhhmYunoC949t9abiWu9UK-0_jKVjYs

>

As expected, curl sent the cookie to the server in the request

headers.

Session Management

Cookies serve three purposes in HTTP:

Session Management – Storing logged-in users, shopping

cart information, a continuation of the previous step,

navigation history, and so on.

Personalization - Storing user preferences, themes, and

so on.

Tracking - analyzing user behavior.

Here we will be focusing on the first aspect only. Suppose we

want to count the number of times a user has visited a

website. The server can send the client a Set-Cookie header

to store a counter. On the subsequent request, the server

can receive the counter from the client, increment the

counter, and send back a Set-Cookie header with the

incremented value of the counter. The following diagram

explains the process.

Figure 1.4: Cookies used to count the number of visits

We shall use Golang5 to develop the series of samples

showing the session management. Each part has a separate

handler function for easier understanding. The server can be

launched by going into the chapter-1 folder and using the

command:

PS C:\work\HOWA\chapter-1> go run .\main.go

Minimal Web Server

We use the go language tools and HTTP package6 to code

our use cases. There are more advanced libraries available in

the framework. However, we prefer the HTTP package due to

its native availability in the Go language framework. The

following code block initializes a web server over port 8080.

func addHelloHandler() {

helloHandler := func(w http.ResponseWriter, req *http.Request)

{

io.WriteString(w, "Hello, World!\n")

}

http.HandleFunc("/hello", helloHandler)

}

func main() {

addHelloHandler()

log.Fatal(http.ListenAndServe(":8080", nil))

}

By connecting to http://localhost:8080/hello you will get a

response of:

Hello, World!

Counter Cookie

As shown in Figure 1.4, the server sets the cookie for the

counter. The user agent (browser) honors the server

directive and sends the cookie to the server. The server looks

for the cookie and increments the counter. It sets the cookie

again and sends it back to the browser. The following code

block shows the above concept in action.

func addCountHandler() {

countHandler := func(w http.ResponseWriter, req *http.Request)

{

count := 0

if c, err := req.Cookie("count"); err == nil {

if count, err = strconv.Atoi(c.Value); err != nil {

log.Default().Print(err)

count = 0

}

}

count += 1

http.SetCookie(w, &http.Cookie{

Name: "count",

Value: strconv.Itoa(count),

})

str := fmt.Sprintf("You have visited: %d times.", count)

log.Default().Print(str)

io.WriteString(w, str)

}

http.HandleFunc("/count", countHandler)

}

By connecting to http://localhost:8080/count, you will be

able to see the number of times the client connected to the

server.

You have visited: 7 times.

The browser sends the state parameter of computation

(count) that the server trusts for subsequent business logic.

While this architecture is reasonable for a trusted client and

server, a rogue client can manipulate the server’s behavior.

We want the control to be maintained on the server. Most

servers will keep the business logic opaque to the client.

They only notify the client to keep a reference to the session.

The continuation of the session can be maintained, while the

actual data needed is maintained on the server.

Session Cookie

The session cookie7 is an opaque reference to the session

data. The actual data is stored on the server in a local

variable such as a map or a database. The server sets the

session cookie on the client. The client can send this cookie

to the server for subsequent computations. The following

code snippet explains this concept.

func addSessionHandler() {

cmap := map[string]int{}

sessionHandle := func(w http.ResponseWriter, req

*http.Request) {

uid := ""

if cookie, err := req.Cookie("session"); err != nil {

uid = uuid.NewString()

log.Default().Printf("No session found. Creating a new

session: %s", uid)

http.SetCookie(w, &http.Cookie{

Name: "session",

Value: uid,

})

cmap[uid] = 0

} else {

uid = cookie.Value

}

cmap[uid] += 1

str := fmt.Sprintf("You have visited: %d times.", cmap[uid])

log.Default().Print(str)

io.WriteString(w, str)

}

http.HandleFunc("/session", sessionHandle)

}

We use the cmap variable to store a mapping from the session

id to the actual counter. The session id is a globally unique

random value. If the session id is not transferred by a rogue

client, it will be hard to guess the session ID. Capturing the

session ID of another client session is called session

hijacking. Web applications use various security

architectures to ensure the application is protected against

session hijacking. The job of authentication is to ensure that

access to the session data is provided to an authorized entity

or user.

Protecting the Cookies

Cookies can be sensitive attributes that a server sends to the

client for safe protection and use. Web servers expect a

trustworthy user agent must securely keep cookies and use

them within the restrictions of use. Cookies can have Secured

and HttpOnly attributes set on them. The Secured attribute

ensures that the cookie is only to be used in an HTTPS

transport. Similarly, HttpOnly means the cookie cannot be

manipulated on the client by JavaScript. The SameSite

attribute controls how the cookie is to be used across sites.

There are also time limits, domain, and path restrictions set

on cookie usage. A trusted client should consider all these

limitations while accessing the server. Security of cookies

and sessions is a researched topic with many industry

practices8. Is it desirable for a session cookie to have the

Secured and HttpOnly attributes set?

Web Architecture

The web architecture we discussed was oversimplified. We

connected a client with a server. The client could assume the

working of the server and respond accordingly. We did not

discuss the presence of hundreds of networking devices

between the client and the server. Multiple physical devices

can provide various functions for the server. Hence, what we

see as a single server in a schematic could be a complex

setup. The flexibility of the web architecture keeps all these

transparent from the users and the clients. Server

developers should not assume any specific functioning of the

client, nor the client developers should be dependent on any

architectural details of the servers. They should interact with

each other using a standard protocol like HTTP or compliant

extensions of the HTTP. For example, HTTP is a proxy-

compliant protocol. An organization can configure a

transparent HTTP proxy that can redirect all the outbound

HTTP connections through the proxy server. The clients do

not need any specific functionality to support proxy servers.

Even if there are some specific activities to be carried out,

they should be within the scope of the HTTP protocol and not

vary depending on the type of proxy server used.

Figure 1.5: A complex network in the web. All clients are redirected through a

proxy. There are many network devices. An application gateway on the server

side can control access to all the connections to the cloud services or the web

server. The clients will not even be aware of the existence of a database server

For a well-designed system for the web, the client does not

need any specific functionality to be implemented if it is

connecting to one server or a collection of servers. Following

the network protocol properly shall automatically address

such needs. Hence, there is a significant focus on using

compliant protocols.

Web Application Architecture

As client-server applications became the norm of the

industry, we started seeing clients that handled most of the

presentation layer while data and business logic (application

logic) were handled by the servers. This is known as the

three-tier application architecture.

Figure 1.6: Three-tier application architecture

Web applications operate out of thin clients or browsers.

Hence, the presentation layer was to be computed at the

server as well. Clients are just meant to render the computed

document object models (DOM) in the server presentation

layer. Before web applications became mainstream, desktop

applications or thick clients used Model-View-Controller UI

models to present the data. View and controllers were

implemented in the client, while the server provided the

necessary model or data.

Figure 1.7: MVC in a Web Application

The adaptation of MVC architecture to the web applications

was a mere extension of the client-server application with

the view and controller residing on the server. The browser

or the user agent renders whatever content is provided by

the presentation layer. Even the controller events are posted

to the presentation layer for subsequent updates. The

computing power of the end-user devices could not be

exploited in this model. The presentation layer became the

front-end entry point for all communication with the browser.

Figure 1.8: Model-View-View Model (MVVM) Web Architecture

The Model-View-View-Model (MVVM) is a new kind of web

application paradigm that is adopted by the most modern

Single Page Architectures (SPA) like Flutter, Angular, React,

and so on. The View is implemented as a SPA and is always

loaded in the client. There is a continuous data exchange

between the view layer and the view model layer. The view

model is the presentation layer of the data that must be

rendered in the view. View models are provided as APIs that

the clients consume. Moreover, view models are

continuously computed and updated from the model. Any

update to the view models leads to the creation of new views

in the client. The view layer and its associated HTML 5

resources are cached in the client. There is a need for such

data to be protected and restricted against unauthorized

access. The API layer of the MVVM is the real server entry

point and should be properly access-controlled.

In our examples, we shall use Flutter for the view layer of the

MVVM architecture. We will use Golang-based services for

the API layer.

Introduction to Authentication

Authentication is an age-old field in technology. From the

time there has been the existence of multi-user computing

systems, we have been careful in protecting the distinction

of work of one person from the other for various reasons. The

technologies used in authentication are interdisciplinary and

can be complex. We present a simplified aspect of

authentication with these two anecdotes. Interestingly, every

society has similar stories related to authentication.

The Sun temple of Konark, Odisha, India, was built in the

13th Century AD. It took 12 years to build the temple with

the help of 1200 artisans. Bishu Maharana, the chief

architect of the temple, left home when his son,

Dharmapada, was still a toddler. In 12 years, the architect

has never visited his home nor met his wife and son. When

Dharmapada decides to meet his father on the construction

site, his mother asks him to carry a piece of her jewelry and

lemons from their backyard as artifacts to prove his identity

to his father. Seeing both, Bishu Maharana recognizes his

son.

The second story comes from Yadon Ki Barat, a movie of the

70s from the Indian movie industry, also known as

Bollywood. The three sons of the family are separated young

due to some unforeseen circumstances. They are in search

of one another without the knowledge of any addresses. One

of the sons is a singer in a hotel who keeps singing the first

stanza of a family song they had been introduced to in their

childhood by their parents, thinking someday one of his

other brothers shall hear and complete the rest of the song.

The same works and the family members are reunited.

In both these stories, the assertion of identities is impossible

as appearances have changed from childhood to adulthood.

Both are looking for some alternate artifacts that can

establish a piece of circumstantial evidence. In short, we are

in search of establishing authentication mechanisms. Digital

authentication techniques are not entirely different from

artifact matching. The category of artifact used for

authentication varies based on who matches the artifacts

and the purpose of artifact matching9.

Credentials and access tokens

Let us look at a typical hiring process for an employee. We

publish high-level requirements for candidates and start the

interview process.

The person should have an engineering degree from an

institute of repute or institutions we have shortlisted.

The person should have 5-10 years of experience from

companies of repute (again, we have a list of reputed

employers).

The person should know some specific technologies.

His interpersonal skills were verified with discussions in

the interview.

Finally, the company sent him an offer letter.

On the day of joining, an HR executive takes the offer letter,

verifies all the necessary documents, and provides the

access badge to the employee. All the information the

candidate provided to the company is about his credentials.

Interviewers and HR executives verified the credentials

against a set of premises they had in mind. Suppose the HR

executive doubted the document the candidate provided had

been forged. The HR executive may escalate the matter to a

document verification expert for authenticity. Depending on

who is doing the verification, the credential may change. The

HR department sent an offer letter. One can think of the offer

letter as a derived credential based on the credential

validation by the interviewers. Similarly, on the date of

joining, the candidate will be given an access pass with a

Photo ID to use organization resources. The automated

access card provides the necessary access to the employee;

the photograph helps the human security guard identify an

authorized employee. The access card is an access token for

the physical world.

Can an access token or card be a credential? In the limited

sense, it is. For example, you show your ticket and passport

at an international airport counter and receive a boarding

pass. You have proven your credentials in terms of:

You are a bonafide citizen trusted by your government.

You have paid the necessary fees for the travel.

Based on this credential, the airline issues a boarding pass

that allows you access to the flight. The boarding pass is an

access token or a ticket and is not a credential.

Suppose you have an onward journey and take a connection

to another mode of transport; the airline may not ask you to

verify the ticket and passport but may allow you access

using the boarding pass. The boarding pass is derived

credential from your verified passport and travel ticket. In

this book, we shall use credentials as proof of identity and

use the term ticket or access token for the output of the

verification process.

Figure 1.9: Credentials and tokens. Access tokens from previous steps can be

used as derived credentials for future authentication steps in a workflow

To summarize, authentication is about provisioning and

verifying artifacts to ascertain the identity of a user or an

entity. At least for most of this book, we will use this

definition of authentication. However, each validation of an

artifact can be complex and a domain of its own. We will

discuss a few well-known types of artifact validation, but on

a limited scale. In the digital world, password has been used

as the most common form of credential. Initiatives like FIDO

2 and WebAuthn are proposed to switch to a password-less

mode. We will discuss them later in this book. For the initial

chapters, we will use passwords in many examples.

Authentication over HTTP

RFC 7235 defines the authentication protocol for HTTP. It

provides a challenge-response architecture for

authentication for client and server communication. The

architecture is proxy-aware and can be additionally used to

authenticate to HTTP proxy servers.

Figure 1.10: HTTP Authentication. RFC 7235 describes this authentication

scheme. While user name and password-based basic authentication are shown as

an example in this workflow, any of the IANA-approved authentication schemes

can be used here

The following code snippet in Go implements the idea

described in Figure 1.10. We use basic authentication as the

authentication mechanism.

func addBasicAuthHandler() {

pmap := map[string]string{"jdoe": "password"}

basicAuthHandler := func(w http.ResponseWriter, req

*http.Request) {

if u, p, ok := req.BasicAuth(); ok {

if pmap[u] == p {

str := fmt.Sprintf("User %s authenticated.", u)

io.WriteString(w, str)

log.Default().Print(str)

} else {

str := fmt.Sprintf("User %s failed to authenticate.", u)

w.WriteHeader(http.StatusUnauthorized)

log.Default().Print(str)

}

} else {

w.Header().Add("WWW-Authenticate", "Basic Realm=\"Access

Server\"")

w.WriteHeader(http.StatusUnauthorized)

log.Default().Print("Basic authentication needed.")

}

}

http.HandleFunc("/basicauth", basicAuthHandler)

}

When ok is false, there is no Authorization header in the

request. The server responds with a WWW-Authenticate header,

recommending the client send an Authorization header. The

two scenarios are shown in the following curl commands.

C:\>curl -v http://localhost:8080/basicauth

* Trying 127.0.0.1:8080…

* Connected to localhost (127.0.0.1) port 8080 (#0)

> GET /basicauth HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 401 Unauthorized

< Www-Authenticate: Basic Realm="Access Server"

< Date: Thu, 29 Dec 2022 18:05:08 GMT

< Content-Length: 0

<

* Connection #0 to host localhost left intact

In the next request, the browser should honor the Www-

Authenticate header and send the base64 encoded user name

and password as part of the Authorization header.

C:\>curl -v http://localhost:8080/basicauth -u "jdoe:password"

* Trying 127.0.0.1:8080…

* Connected to localhost (127.0.0.1) port 8080 (#0)

* Server auth using Basic with user 'jdoe'

> GET /basicauth HTTP/1.1

> Host: localhost:8080

> Authorization: Basic amRvZTpwYXNzd29yZA==

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Date: Thu, 29 Dec 2022 18:08:34 GMT

< Content-Length: 24

< Content-Type: text/plain; charset=utf-8

<

User jdoe authenticated.* Connection #0 to host localhost left

intact

Now, the user jdoe is authenticated. In a browser session,

this username and password will be cached and will be sent

in all sessions to the server. Authentication shall be carried

out with every request. Basic authentication is not the only

authentication method, there are other methods like Bearer,

Digest, HOBA, and so on.10

Limitations

Since HTTP headers are used for authentication here, these

are known as header-based authentication. This

authentication is helpful for network communication devices

like proxies and servers, as most clients and browsers can

understand the protocol.

Figure 1.11: Basic authentication UI in Chrome. The authentication challenge is

shown even before any parts of the page are shown

However, the default behavior of the clients can be lacking.

Firstly, they may not gel well with the application user

interfaces.

Figure 1.12: The default response of authentication failure. The response may

not match the application user interface

Secondly, this type of authentication requires every request

to be validated. If the validation is to be carried out at a

remote federated authentication server, it can slow down the

server response time. However, some authentication

schemes like the Bearer tokens11 can be very fast if the

bearer tokens can be locally validated without contacting the

authentication servers. We shall review some of these in

later chapters. Lastly, the password has to be stored and

presented in clear text. When we discuss encryption, we will

see how to store passwords safely. The examples are

oversimplified to introduce the concepts of authentication.

Using these in actual production environments is

discouraged.

Form-based authentication

Form-based authentication is not a scheme from the HTTP

specification but a crafty technique of utilizing HTTP cookies,

session management, and HTML forms to make

authentication UI work in conjunction with the application UI.

Figure 1.13 outlines the authentication scheme.

Figure 1.13: Form-based authentication

The code block has two parts.

An authentication guard that verifies the existence of a

valid authenticated session and redirects to the /login

page to authenticate the user.

http.HandleFunc("/resource", func(w http.ResponseWriter,

req *http.Request) {

if cookie, err := req.Cookie("session"); err != nil {

w.Header().Add("Location", "/login")

w.WriteHeader(http.StatusFound)

} else {

uid := cookie.Value

user := smap[uid]

if user != "" {

str := fmt.Sprintf("User %s authenticated.", user)

log.Default().Printf("Session %s found. Allowing user

%s to access", uid, user)

io.WriteString(w, str)

} else {

w.Header().Add("Location", "/login")

w.WriteHeader(http.StatusFound)

}

}

})

A /login page that shows the actual authentication form

and sets a valid session cookie on successful

authentication of the user.

func addFormBasedAuthHandler() {

smap := map[string]string{}

pmap := map[string]string{"jdoe": "password"}

http.HandleFunc("/login", func(w http.ResponseWriter, req

*http.Request) {

form := `<form method="GET" enctype="application/x-www-

form-urlencoded">

<label for="user">Username:</label>

<input type="text" id="user" name="user">

<label for="password">Password:</label>

<input type="text" id="password" name="password">

<input type="submit" value="Submit">

</form>`

user := req.FormValue("user")

pass := req.FormValue("password")

if user == "" || pass == "" {

w.Header().Add("Content-Type", "text/html")

w.Write([]byte(form))

} else {

if pmap[user] == pass {

str := fmt.Sprintf("User %s authenticated.", user)

log.Default().Print(str)

uid := uuid.NewString()

log.Default().Printf("No session found. Creating a new

session: %s", uid)

http.SetCookie(w, &http.Cookie{

Name: "session",

Value: uid,

})

smap[uid] = user

w.Header().Add("Location", "/resource")

w.WriteHeader(http.StatusFound)

} else {

str := fmt.Sprintf("User %s failed to authenticate.",

user)

log.Default().Print(str)

w.Header().Add("Content-Type", "text/html")

w.Write([]byte(form))

}

}

})

…

}

The workflow is shown in the Chrome browser in Figure 1.14.

Figure 1.14: The user interface for authentication. Username: jdoe, Password:

password

No elaborate verification of the session cookie is carried out.

If a session cookie is found in the server, we assume the user

is authenticated.

Conclusion

As an introduction to Web Authentication, we covered quite a

bit of ground in the last few pages. We started with

understanding the background context for the book, got an

overview of the chapters and subject coverage, and moved

on to learn a bit about the history of networking and web

development. Toward the end, we introduced the header-

based and form-based authentication schemes used in the

industry today. Most readers have exposure to some form of

web development and may not need that rigorous a

treatment. However, relatively novice programmers should

look at the suggested resources for a detailed

understanding. In the next chapter, we will review some

concepts of cryptography, which act as the technology

foundation for authentication.

Questions

1. What is the difference between the ISO-OSI and the

TCP/IP model in networking?

2. We discussed the GET command in HTTP in some detail

in the book. Are there other HTTP commands supported?

Why are they used?

3. What are credentials in authentication? How are they

different from tokens or tickets?

4. What is header-based authentication in HTTP? What are

some of the advantages and limitations of using header-

based authentication?

5. Implement the example for Basic Authentication using

Digest Authentication.

1 MDN https://developer.mozilla.org/en-US/

2 Due to security regulations around cryptography, the community does not

distribute the OpenSSL in binary form. However, most operating systems like

Linux and Mac distributions have OpenSSL available. On Windows, you can use

the embedded version of OpenSSL already installed in the system with another

tool. The author uses OpenSSL from a Git installation found at C:\Program

Files\Git\usr\bin.

3 Protocols like SMTP and FTP use separate control and data channels for

communication, while Telnet and HTTP use only one channel for data and

control signal exchange.

4 We suggest the readers to review the details of the Set-Cookie header from the

MDN. https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

5 While we provide code snippets of Golang in this chapter, Appendix A: The Go

Programming Language Reference, provides a brief overview of the language.

However, readers are encouraged to learn the Go language for their

professional use.

6 Package http provides HTTP client and server implementations.

https://pkg.go.dev/net/http

7 This is a toy solution to a larger problem. There are quite a few issues

associated with session management. A few of them are: persisting the session

data across load-balanced application servers, securing the session id at the

client and validating the session id at the server, associating the session id to a

specific client identity, storing multiple data structures against a session, and

so on. Go has many advanced libraries for session management. One of them

is SCS: HTTP session management for Go.

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://pkg.go.dev/net/http

https://pkg.go.dev/github.com/alexedwards/scs/v2@v2.5.0 . We will not

be able to delve into all these issues in this book but readers are suggested to

review other relevant texts on these.

8 The readers are suggested to understand the cookie parameters.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies. We will

review this topic in further detail when we discuss transport layer security

(TLS).

9 Our introduction here is rudimentary. If you are looking for industry standard

definitions of identity and authentication, you should refer to Digital Identity

Guidelines, NIST, https://doi.org/10.6028/NIST.SP.800-63-3. We will

introduce some of these concepts in later chapters as the discussions demand.

10 A complete list of all supported authentication types prescribed by IANA can be

found at: https://www.iana.org/assignments/http-authschemes/http-

authschemes.xhtml

11 Bearer tokens are authorization headers with the syntax Authorization: Bearer

<<token>>. Some bearer tokens are signed and can be locally validated without

contacting an authentication server.

https://pkg.go.dev/github.com/alexedwards/scs/v2@v2.5.0
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://doi.org/10.6028/NIST.SP.800-63-3
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

CHAPTER 2

Fundamentals of

Cryptography

Introduction

In the previous chapter, we said web architectures are

essentially unsecured for any practical business application.

Maybe not in those clear terms, but quite close. We learned

that the internet traffic travels to every device in the

network, it does not have any privacy protection, and

anyone can tap the wire and view all the exchange of traffic

in the network. We mentioned that HTTP session

management happens with cookies. Cookies flow over the

wire like other network traffic. Hence, anyone tapping the

wire can see them. The development in cryptography in the

70s to 90s led to finding some principles that can address

these issues while keeping the underlying architecture

simple. Unfortunately, cryptography is a complex subject,

involves higher-level mathematics, and requires a steady

focus to understand the nuances thoroughly. This chapter

will only scratch the surface and highlight the principles of

cryptographic operations. We will leave the details to the

discerning readers to study other works on these subjects.

We will provide a list of Reference Books toward the end of

this chapter.

Security by Obscurity

Think of a lock box where you are hiding your secret

document. You have two options: you hide the lockbox so

that no one can ever find it, or you can keep the box in

public but keep the combination secret code only available

to trusted people. The combination system is foolproof; no

one can open the lockbox unless she has the secret code.

The first system will be a security system by obscurity. The

security by obscurity is not reliable as there is always one

person to whom the system is not obscure, for example the

creator of the system knows the algorithm and can

potentially access the documents. There is no test of

strength of the security system as such systems may not

have been subjected to formal cryptoanalysis. It is not

scaleable to find a full proof secure algorithm for every user

or implementation. We are interested in the second kind of

systems here. The algorithms of cryptography should be

known to everyone. The security of the system only relies on

a key of binary data. Experts have analyzed the algorithms

to ensure they cannot be intruded on in finite time and effort

when keys are not available. Hence, the creator does not get

any advantage with such a system.

Structure

In this chapter, we will cover the following topics:

Message consistency

Symmetric cryptography

Password safety

Asymmetric cryptography

Digital signing

Digital certificates

Digital signing for authentication

Message Consistency

Let us say Alice wants to send some information to Bob1 over

the internet (refer to Figure 2.1). The internet has various

communication devices that break the data into multiple

electronic packets. Finally, the message that Bob gets is an

aggregation of these electronic packets. Bob wants to know

if he received what Alice wanted to send.

Figure 2.1: Alice is sending information to Bob. How can Bob be sure that he

received the message Alice intended to send?

Here is a possible scheme they adopt:

1. Alice creates a web page.

2. She lists the files that she wants Bob to download.

3. Against each of the files, she shows a CRC-322 value of

the file.

4. Bob downloads the file.

5. He computes the CRC-32. If he gets the same value as

Alice has stated on her website, Bob is sure he has

received the correct file. There are no transmission

errors.

A Cyclic Redundancy Check (CRC) is derived from the data to

ensure the received data is transmitted properly. It

determines the consistency of data. It is an electronic

summary of the data, also known as the digest.

Cryptographic digests have the following properties:

From a digest, one should not be able to guess the

message that produced it.

If a message (M1) led to a digest (D1), finding a

message M2 that will have the same digest should be

computationally intractable.

A small change in the message should produce a

different digest.

Using cryptographic hash functions, we can fulfill the

digest properties. Some of the well-known hash

functions are MD5, SHA-1, SHA-256, SHA-3, and so on.

C:\work\HOWA\chapter-2>openssl dgst -md5

The quick brown fox jumps over the lazy dog

(stdin)= 37c4b87edffc5d198ff5a185cee7ee09

C:\work\HOWA\chapter-2>openssl dgst -sha1

The quick brown fox jumps over the lazy dog

(stdin)= be417768b5c3c5c1d9bcb2e7c119196dd76b5570

C:\work\HOWA\chapter-2>openssl dgst -sha256

The quick brown fox jumps over the lazy dog

(stdin)=

c03905fcdab297513a620ec81ed46ca44ddb62d41cbbd83eb4a5a3592be

26a69

MD-5, SHA-1, and SHA-256 generated hash values of 128-bit,

160-bit, and 256-bit respectively. Finding another message

with the same hash value will be harder in the case of a 256-

bit hash than a 128-bit hash function.

C:\work\HOWA\chapter-2>openssl dgst -md5

1234567890

(stdin)= 7c12772809c1c0c3deda6103b10fdfa0

C:\work\HOWA\chapter-2>openssl dgst -md5

1234567891

(stdin)= beac9407dc999ae35ba5e6851e28d7c5

While there is just a one-bit change in the message, the MD5

hash values for both messages are substantially different.

This property is true for other hash functions as well. Ron

Rivest developed MD5 at RSA, while scientists at the

National Security Agency developed Secured Hash Algorithm

(SHA-1). They had fixed bit length outputs, 128 and 160-bit,

respectively. Later incarnations of SHA, like SHA-2 and SHA-

3, can output 224, 256, 384, and 512-bit. After scientists at

Google managed a birthday attack3 (finding another

message with the same digest as SHA-1), an algorithm that

produces a 256-bit or higher strength output is generally

considered safe. If the input message range is small, a

malicious actor can always map the input messages to the

digest values and store them. For example, if the cash

transfer amount is the message, the malicious actor can

precompute the hash from one to a hundred thousand. Using

this kind of mapping, he can find the input message. A

bonafide user can append a fixed length of random bytes to

the input messages and increase the input message range.

Thus, avoid these known plain text attacks.

Protection

Is there any information protection achieved with message

consistency? The internet is full of malicious actors; some

passively eavesdrop on the communication channel and look

at the message. These kinds of actors can affect the privacy

of the message, like Eve. The actor, like Mallory, is in line

with communication and changes the message.

Figure 2.2: Eavesdropping and Man-in-the-middle

Message consistency cannot protect against eavesdropping

by design. However, there is partial protection against a

message tampering attack. In the preceding example, if

Mallory changes the message only, Bob will know someone

has tampered with the text, and the digest is not the same

as he has received from Alice. If Mallory modifies all the

communication between Alice and Bob, he will change the

digest value. Some people will advise sending the digest and

the actual message via independent communication

channels. Let us say the message is sent over the internet,

while the digest communication is over SMS or email. So,

spoofing one of the channels of communication shall not

affect the other.

Symmetric Cryptography

In Figure 2.2, Eavesdropping and Man-in-the-middle, Eve and

Mallory can access the whole communication. This is a

breach of privacy for Alice and Bob. They decide to use the

following scheme to communicate.

Figure 2.3: Symmetric Cryptography Scheme

Let us review each step and find out the limitations they

pose to communication.

1. Alice and Bob have never met. They are some nodes on

the internet. There exists only one scheme that

everyone uses on the internet. But it needs a key that

establishes the trust between Alice and Bob.

2. Alice and Bob can never meet. A shared secret must be

established between them using an out-of-band channel.

Security depends on this step and can become the

weakest link in the chain. The emphasis on out-of-band

communication ensures Eve and Mallory listen to the

main communication channel and cannot get access to

the key.

3. Eve and Mallory see the scrambled message of the

communication, but they cannot understand the

message. This scrambled message is the cipher text,

while the original message is the plaintext.

4. Bob uses the key to extract the information Alice has

sent him. Since Alice has the key, only Alice and no one

else has sent the message.

In the previous discussion, we used the word scramble in the

most generic sense. If you have data that generates an

output of n-bits, every bit pattern is equally likely unless you

have the key with you. In the perfect cryptography world, all

the values are possible. Cryptographic functions have a

randomization property. If you want to reverse the results of

cryptography, like decrypt or verify the cipher, you will need

the key. That is why they are called one-way functions. In

the presence of the key, computations can be carried out

and cipher text can be obtained. In the absence of the key,

the cipher text is all random values with no meaningful data.

The bigger the random cipher data, the harder it is to guess

the plain text from the cipher text. Since cryptography has a

randomization effect, using a random algorithm with random

steps does not necessarily produce the desirable

randomness4. Hence, only use the algorithms that are

cryptographically secured and mathematically established

by experts.

While steps 3 and 4 in Figure 2.3 Symmetric Cryptography

Scheme are part of the same scheme, they offer two distinct

benefits.

Step 3 is about encryption, which ensures the

information is delivered only to the intended audience.

Step 4 is about decryption, which helps Bob confirm

the data came from Alice and has not been tampered

with and that no one else other than he has seen the

message.

Encryption

Here are a few misconceptions about symmetric

cryptography that should be clarified.

An encryption operation generates the same

number of bytes as the input: Encryption scrambles

the data and adds randomness to the information.

Hence, most cipher texts are longer than the plaintext.

Knowing this problem, someone may compress the data

before encrypting to overcome this data bloat.

Encryption and decryption are the same

algorithms: Symmetric cryptography only requires the

encryption and decryption operation to have the same

key (K). The underlying algorithm for encryption and

decryption can be completely different.

Figure 2.4: Encryption and Decryption using symmetric cryptography

We will use Advanced Encryption Standard (AES) as an

example of an encryption method. AES can have 128, 192,

and 256-bit key strengths. The initialization vector (IV)

ensures the encryption output in different iterations does not

generate the same result. In our example, we use the 128-bit

version with the hex value of the text password

(70617373776F7264) as the key.

C:\work\HOWA\chapter-2>openssl.exe

OpenSSL> enc -e -aes128 -K 70617373776F7264 -iv 0 -a -p

hex string is too short, padding with zero bytes to length

hex string is too short, padding with zero bytes to length

salt=C0C7FFFF00000000

key=70617373776F72640000000000000000

iv =00000000000000000000000000000000

The quick brown fox jumps over the lazy dog

zF/d9iGuL0gkG7gO3yQilEJH60X5xqwDmgmFytffJSrFe+ftHxZDyFCXfGLoV1V

E

OpenSSL> enc -d -aes128 -a -K 70617373776F7264 -iv 0

hex string is too short, padding with zero bytes to length

hex string is too short, padding with zero bytes to length

zF/d9iGuL0gkG7gO3yQilEJH60X5xqwDmgmFytffJSrFe+ftHxZDyFCXfGLoV1V

E

The quick brown fox jumps over the lazy dog

Keeping the same key by changing the IV, we get a different

encryption output for the same input.

OpenSSL> enc -e -aes128 -K 70617373776F7264 -iv 1 -a -p

…

iv =10000000000000000000000000000000

The quick brown fox jumps over the lazy dog

4JDT9sLBZg5rKorlVqcZcxM+QT0hLiXpSs+67vkmKU/XSlCrD07wj04fIT5mgPE

m

Using passwords as keys make the keys vulnerable to brute

force attacks and hence seldom used. Keys derivation

functions like Password-Based Key Derivation Function 2

(PBKDF2) are used extensively for these. OpenSSL provides

PBKDF2 support to derive the key and IV from a password

and should be preferred over directly supplying the key and

IV.

OpenSSL> enc -e -aes128 -pbkdf2 -k password -a -p

salt=32FC211FC15C5D9E

key=E526355DF45714AC7586DF8B256533F0

iv =5D75D9AE602B29BC5207961AF8DCC9AD

The quick brown fox jumps over the lazy dog

U2FsdGVkX18y/CEfwVxdniJputAbFI+xBd/SKXq9ZlXF2iiQIA48lHVoLjq8pjv

n

dskCjH6GnTVtviG/hd+bgg==

As seen here, the decryption operation generates the same

key and IV. Thus, the intended decryption results are

achieved.

OpenSSL> enc -d -aes128 -pbkdf2 -k password -a -p

U2FsdGVkX18y/CEfwVxdniJputAbFI+xBd/SKXq9ZlXF2iiQIA48lHVoLjq8pjv

n

dskCjH6GnTVtviG/hd+bgg==

salt=32FC211FC15C5D9E

key=E526355DF45714AC7586DF8B256533F0

iv =5D75D9AE602B29BC5207961AF8DCC9AD

The quick brown fox jumps over the lazy dog

We will discuss more on PBKDF2 in the subsequent sections

when we review passwords.

Signing

A signature to be valid should have the following properties5:

The signature is authentic. The signature convinces

the document's recipient that the signer deliberately

signed the document.

The signature is unforgeable. The signature is proof

that the signer, and no one else, deliberately signed the

document.

The signature is not reusable. The signature is part

of the document; an unscrupulous person cannot move

the signature to a different document.

The signed document is unalterable. Once the

document is signed, it cannot be altered.

The signature cannot be repudiated. The signature

and the document are physical things. The signer cannot

later claim that he or she did not sign it.

These accepted norms are valid for paper-based as well as

electronic signatures. Let us build a document signing

infrastructure that has the properties mentioned above.

Only Alice and Bob know the shared secret. When the

message comes from Alice, Bob can verify it.

A hash algorithm can establish the authenticity of a

message.

A hash is unique to a message and cannot validate a

different message.

Once a hash is generated for a message, it gets tied to

the message content. Any change in the message

content shall fail validation.

If we can use Alice's key in the hashing process, her

providing the key is recorded.

Hashed Message Authentication Code (HMAC)6 incorporates

a user key in the hashing process and is a signing algorithm.

The HMAC of the message is:

HMAC(M) = H(K1 + H(K2 + M)) where K1 = K xor Bout and K2

= K xor Bin

Bin and Bout are predefined byte arrays of fixed byte values.

The symbol (+) is used for text concatenation. H is the hash

function, for example, with HMAC-SHA1 it will be the SHA1

function. Here is an OpenSSL example:

OpenSSL> dgst -sha1 -hmac "password"

The quick brown fox jumps over the lazy dog

(stdin)= ac20b116a2aceeeed7447b8c4c775bfedb4c7d39

The output is a 20-bytes output as expected of an SHA-1

computation.

Figure 2.5: Sign and verify using symmetric cryptography

has the same method for signing and verifying.

1. Alice sends the message (M), HMAC_SHA1(K,M), as a

digest (D) to Bob.

2. Bob receives the message (M) and computes

HMAC_SHA1(K,M'), and gets the digest value of (D').

3. If D = D', Bob knows the message M = M'; It can also

confirm the message is from Alice.

Just like encryption, signing and verification do not have to

be the same algorithm. However, both processes must use

the same key. Is this scheme scalable? Let us add Carol and

Dave to the communication. Figure 2.6 shows this situation.

Figure 2.6: No of keys required is O(n2) when n is the number of people

An alternative is to use a trusted attorney, Trent.

1. Alice will sign the message with her shared secret with

Trent and send it to Trent.

2. Trent will certify that the message is from Alice, attach

his certification information by signing it with Bob's

shared key, and send it to Bob with the actual message.

3. Trent must repeat step 2 for Carol and Dave. So

effectively, there is no broadcast, but the responsibility

is transferred to Trent.

The scheme is shown in Figure 2.7.

Figure 2.7: Communication using a trusted attorney. The number of keys is now

O(n), but the scheme is very complex

Symmetric cryptography has encryption as well as signing

capabilities. However, the following are use cases that need

a more effective solution.

1. In Step 2 of Figure 2.3, Symmetric Cryptography

Scheme, an out-of-band communication channel was

used for symmetric key exchange.

2. There is no easy mechanism to broadcast a message.

Involving a trusted third party in every communication is

a significant overhead.

With these limitations, symmetric cryptography is still

preferred for its speed and for establishing a two-party trust;

some well-known authentication schemes like symmetric

keys-based OTP7 or TOTP8 are used in Google Authenticator.

Password Safety

HMAC_SHA1 is a great pseudo-random function. Some

random number systems utilize truncated bits for

applications like OTP generation9. Can we use it to generate

random numbers of arbitrary lengths? In the section

Encryption in Symmetric Cryptography, we used the ASCII

values of the password to fill in the key. In the AES-128-bit

example, we could have used a 20-byte key, but we padded

the 12 bytes of zeros because password has only eight

characters. Infusing randomness in passwords is hard.

People coin passwords from words or names with some

variability introduced with numbers and ASCII printable

characters. It is hard to create uniform variability and

randomness with them. Key derivation functions take the

password as input and produce an arbitrary-length pseudo-

random key. PBKDF2 is a well-researched algorithm in the

industry. It can utilize some keyed hash algorithms like

HMAC_SHA1 to generate keys of arbitrary length. Readers

interested in the details can find them in the reference text.

We will not delve deeper into the exact algorithm. Here is a

rough outline.

A keyed hash is computed for a random value with the

password as a key.

A hash is further calculated for the output of the

previous step while supplying the password as the key.

The algorithm uses xor to aggregate all the computed

hash values.

Sometimes the number of iterations used for PBKDF2 is kept in

the tens of thousands. Using iterations will slow down the

computation and reduce the possibility of a brute-force

attack. So far, we have just looked at deriving keys from

passwords for better randomness. Ultimately, passwords are

to be stored on the server for later comparison. In Chapter 1,

Introduction to Web Authentication, Basic Authentication

example, we saved the password of jdoe in the code. One

can instead store the derived key. When someone provides

the password, the derived key can be computed and

compared with the stored value.

Figure 2.8: Password scheme used for login

We provide a code snippet for the preceding scheme in the

go language.

C:\work\HOWA\chapter-2>go run ./pbkdf.go password

1e69ed9b36e1a4231bb8d273090790d510f1404e

The relevant code for pbdfk.go is given here:

func main() {

dk := pbkdf2.Key([]byte(os.Args[1]), []byte("12345678"), 4096,

20, sha1.New)

encodedString := hex.EncodeToString(dk)

println(encodedString)

}

The derived key is computed with “12345678” as salt, 4096 as

iterations, HMAC_SHA1 as pseudo-random function, and 20 bytes

key length. We take the hex dump of the derived key and

store it in the password.json file.

{

"jdoe":"1e69ed9b36e1a4231bb8d273090790d510f1404e"

}

We compare the derived keys now in the basic

authentication code. The same can be seen in the server.go

file.

func addBasicAuthHandler() {

var pmap map[string]string

if jsonFile, err := os.Open("password.json"); err == nil {

byteValue, _ := ioutil.ReadAll(jsonFile)

json.Unmarshal([]byte(byteValue), &pmap)

log.Default().Print(pmap)

} else {

log.Fatal(err)

}

http.HandleFunc("/basicauth",func(w http.ResponseWriter,req

*http.Request) {

if u, p, ok := req.BasicAuth(); ok {

dk := hex.EncodeToString(

pbkdf2.Key([]byte(p), []byte("12345678"), 4096, 20, sha1.New))

if pmap[u] == dk {

…

})

}

You can run the code and access the website

http://localhost:8080/basicauth and provide jdoe and

password as username and password at the prompt. The

server log is provided here:

C:\work\HOWA\chapter-2>go run ./server.go

2023/01/22 14:46:02

map[jdoe:1e69ed9b36e1a4231bb8d273090790d510f1404e]

2023/01/22 14:46:40 Basic authentication needed.

2023/01/22 14:46:53 User jdoe authenticated.

Printing the password vault in the sample code is for quick

debugging and learning. Do not print passwords or

derivatives to any output stream like a file, log, or console.

Passwords are inherently unsafe. More so because they are

hard to remember. When the same password is used on

multiple websites, compromising the password on one

website can make all other websites vulnerable. Hence, it is

recommended to use some password policies. Here are some

common ones:

Passwords should have a minimum length (8 is

commonly preferred).

They should contain a combination of uppercase,

lowercase, and numerals.

They should contain non-English or punctuation

characters like (#!~$= and so on).

A user must change the password every X (30 commonly

suggested) day.

The new password should not match any of the Y (5

commonly suggested) previously set passwords.

The password should not be saved on the disk or left in

the memory in cleartext. Since strings are immutable in

many programming languages, use byte arrays or

streams while handling passwords.

Always cover the keypad while typing passwords to

avoid the surveillance cameras picking up the key

sequences.

Passwords should not be shown on the screen while

typing.

In the later chapters, we will look at other means of

authentication. Although passwordless authentication is

becoming the new focus for many authentication providers,

the password remains the most used authentication

mechanism due to its reach and adoption.

Asymmetric Cryptography

Over the last few pages, Alice can send Bob a secret

message. Bob can verify if Alice initiated the communication.

This all happened with the assumption that Alice and Bob

share a secret. However, we have not addressed how Alice

and Bob securely shared the secret. This section can solve

such needs. Asymmetric cryptography is about two keys.

Data encoded with one can be decoded by the other. One of

the keys is kept secret from the world, known as the private

key. The other is part of a directory available to the whole

world as the public key. Let us assume Alice and Bob have

such keys assigned to them. KAV is the private key of Alice

and KAP is the public key.

Figure 2.9: Key exchange using asymmetric cryptography

In Step 2 of Figure 2.3, Symmetric Cryptography Scheme:

1. Bob obtains the public key of Alice (KAP).

2. He generates a symmetric key (K) of sufficient bit

strength that they can use for encrypting messages. He

encrypts the K with the public key of Alice (KAP).

3. Alice uses her private key (KAV) to decrypt the message.

Since Alice has access to the private key, only Alice and

no one else can access the symmetric key.

4. Alice uses the symmetric key (K) to encrypt the message

and send it to Bob.

Step 2 is known as the key exchange protocol. There are

many such protocols established. However, Diffie-Hellman is

one of the oldest and most revered schemes. Diffie and

Hellman are considered the inventors of modern asymmetric

cryptography. We will continue the discussion on the protocol

in the next chapter when we review transport layer security.

With a key exchange protocol, Eve and Mallory cannot

access the symmetric key. Some of the questions are still

unanswered:

Can a public directory be trusted when it is open to

updating by everyone?

Did Alice update her public key in the directory? If

Mallory updates a spurious key as Alice's public key,

Alice cannot be part of any secured transaction. It will be

a denial of service.

Asymmetric encryption is open to known plaintext attacks

because the public key is available to everyone. Assume the

case of encrypting money transfer amounts. Malicious user

Mallory will consider all the numbers from 1 to 100000 and

generate the cipher text using the public key. Since the

plaintext space is limited, he can maintain a lookup for

cipher text to plaintext. Effectively, he can decode the

message without decrypting it. In the case of asymmetric

encryption, adding a random nonce makes the plaintext

unique. The receiving party removes the nonce and uses the

relevant information.

There are many asymmetric cryptography algorithms. Some

notable ones are:

RSA is by far one of the most popular and the oldest. It

draws the mathematical principles from the factorization

of a large number into two prime factors.

Elliptic curve cryptography (ECC) is modern. It needs

fewer bits for the same key strength as RSA. The

infeasibility of finding discrete logarithms on a random

elliptic curve element is the basis of such a scheme.

The mathematics in both cases is complex. There are code

libraries available to compute these algorithms. Hence, we

will not delve into the algorithms but use them qualitatively

to meet our authentication needs.

Digital Signing

In Figure 2.9, Key exchange using asymmetric cryptography,

we used the public key to encode the data. What will happen

if we use the private key to encode the message? Let us look

at the following workflow.

Figure 2.10: Signing using asymmetric cryptography

1. Alice creates a digest of the message.

2. She signs the message using her private key.

3. She sends the message and the signature to Bob.

4. Bob, for that matter, anyone can obtain Alice's public

key from the directory.

5. He computes the message digest.

6. Then, he can verify the signature and the digest using

Alice's public key. Bob ensures Alice generated the

message and no one has tampered with the message in

the exchange.

Let us apply the principles of signing on the message.

1. The signature is authentic. The public key verifies

the message and ensures it came from Alice.

2. The signature is unforgeable. The mathematics

behind cryptography ensures a unique byte pattern of a

message can generate a specific signature.

3. The signature is not reusable. The signature is only

valid for the same digital byte pattern. It cannot match a

message of a different byte pattern.

4. The signed document is unalterable. Once signed,

any changes to the document will mean the byte pattern

is not the same. Hence, the signature is not valid.

5. The signature cannot be repudiated. Only Alice has

a private key. Any digital signature generated using her

private key is with her consent.

In this communication, two people exchange information. If

we extend the communication to more people, Alice does not

need additional activities. She needs to send the same

message and signature to another person. In short, this

addresses the issue of broadcasting which we could not

address in symmetric key signing. Symmetric key

cryptography is fast and preferred for encryption. However,

asymmetric key cryptography has a natural benefit in

signing. Since the digest of the message is signed, there is

no significant performance penalty. Asymmetric

cryptography is ideal for key exchange and signing where

the message is relatively short. If the plaintext space is

small, concatenating a timestamp to the plaintext can make

the message unique. Without a timestamp, a malicious actor

can replay an older signed message, failing the non-

repudiation claims of digital signing.

Just like encryption, signing with asymmetric cryptography

utilizes various algorithms. Some popular ones are RSA,

Digital Signing Algorithm (DSA), and Elliptic Cryptography

Digital Signing Algorithm (ECDSA). RSA signing algorithms

are very similar to the RSA encryption algorithm. You will

need to use the private key instead of the public key. The

verification process is like the signing process. DSA, though

based on prime number factorization, is different from RSA.

The signing and verification steps are also different

algorithms in DSA. ECDSA is a modified version of DSA with

elliptic cryptography. Is there a common understanding of

the security of these algorithms on the basis of their key

strength? This table can give some ideas10.

Security

Strength

Symmetric

Key

Algorithms

FFC (DSA,

DH, MQV)

IFC (RSA) ECC (ECDSA,

EdDSA, DH,

MQV)

112 3TDEA L = 2048

N = 224

k = 2048 f = 224-255

128 AES-128 L = 3072

N = 256

k = 3072 f = 256-383

192 AES-192 L = 7680

N = 384

k = 7680 f = 384-511

256 AES-256 L = 15360

N = 512

k = 15360 f = 512+

Table 2.1: Equivalence of security strength across algorithms for various key

sizes

The directory of public keys has no custodian. Anyone can

read and write into it. While reading is fine, writing and

updating by a malicious actor can cause a denial of services.

We entrust Trent to maintain the public keys directory. Trent

maintains another column in the database having all the

public keys signed with his private key.

Figure 2.11: Trent acting as a certifying authority

Trent is acting as a certifying authority (CA). The CA signs all

public keys of the directory using his private key. When Bob

looks up Alice's public key, he should verify if Alice's public

key is signed using the private key of Trent (CA). The last

entry in the directory is Trent's public key, signed by his

private key; it is called self-signing.

Figure 2.12: The Hierarchy of CAs and the chain of trust

In Figure 2.12, Ron is the root CA. His public key is self-

signed. Ian is an intermediate CA. Ron's private key signs

Ian's public key. In turn, the intermediate CA (Ian) signs

Alice's public key. To trust Alice, you must trust Ron and Ian.

Hence, Ron, Ian, and Alice establish the complete trust chain.

The next logical question is how will the signed public keys

be shared. The digital certificates tried to address some of

those needs.

Digital Certificates

International Telecom Union (ITU) was standardizing the

concept of a directory under a collection of standards called

X.500. One such standard is X.509. X.509 is about linking

identity with a public key. Alternatively, it is also known as

digital certificates. The standard came into existence in the

late 1980s. Hence, X.509 certificates are ASN.1 based. The

final presentation can be in PEM (Base64 ASCII) or binary

DER format. With such a long history of technology, the tools

are well-developed for these formats. We will use OpenSSL to

create and manipulate x509 certificates in this chapter.

Windows users can use certutil, or Java users can use keytool

for certificate management functions. So far, we have

mentioned certificates contain the public key of the

asymmetric cryptographic algorithm. That is just the tip of

the iceberg. Certificates can contain lots of additional

metadata as complex ticket formats. The complete

certificate and certificate extension profiles are available in

RFC 528011.

Certificate Profile

Certificates are a collection of objects. We will mention only a

few here for a conceptual understanding; an elaborate

treatment is beyond the scope of this book.

Algorithm: We have talked about three different

algorithms used for signing. Several hash algorithms and

varying bit strengths used hash generation. The

certificate mentions algorithm details to remove

ambiguities in working with them.

Subject: A distinguished name (DN) in a certificate

uniquely defines the subject of a certificate. The DNs can

have hierarchies like common name (CN), organization

(O), organization unit (OU), country (C), and so on. The

association of certificates with X.500 directories is the

driver for such subject names. SubjectAlternateName can

be used to identify a subject. The format of this object

can be any string, making it a very flexible entity for

subject nomenclature.

Subject Public Key: The certificate has an algorithm-

specific public key associated with the certificate.

Issuer: The subject of the CA that has signed the

certificate.

Validity: CA issues a certificate for a limited validity

period. Time attributes notBefore and notAfter in the

certificate provide the validity period.

Serial Number: A non-negative integer that is unique

to every certificate for a specific CA.

Signature Value: A bit string that has signed the

certificate using the private key of the CA.

Revocation: The CA can revoke the certificate before it

has expired. The CA will need to publish a certificate

revocation list and mention the URL in the certificate

that the client can contact to collect the latest CRL

information. Alternatively, if a CA implements the Online

Certificate Status Protocol (OCSP), a client can query the

OCSP responder if the certificate is valid.

Key Usage and Extended Key Usage: Certificates are

issued for a purpose. Certificates specifically issued for

encryption should not be used for signing. Similarly, a

TLS server certificate should not be used for TLS client

authentication. These kinds of constraints can be

configured through key usage and extended key usage

extensions.

Issuance

For a CA to issue a certificate, the metadata and the public

key should be presented in a specific format. This is called

the certificate signing request (CSR). The following workflow

outlines the process.

Figure 2.13: Certificate requisition process

1. Alice generates a keypair using an asymmetric

algorithm,

2. She creates a certificate signing request (CSR) by

signing the keys and the metadata using the private key.

3. The CSR is sent to Trent (CA) for certificate issuance.

4. Trent uses the public key of the CSR to validate the

signature of the CSR. It also affirms Alice is in possession

of the private key. This process is known as proof of

possession (PoP). PoP is achieved by self-signing.

5. Trent will verify the metadata, for example, the subject

attributes. If the request is for issuing a certificate to a

specific email address, Trent may send a verification

email to that email address. While issuing SSL

certificates, Trent will ask for a response from the DNS

server.

6. Upon successful validation, Trent will create the

certificate, sign it with his private key and dispatch it to

Alice.

The private key never leaves Alice’s computer. It is only the

public key that is in transit. Validation Before using a

certificate for signing or encryption, one must assert its

validity. The validation process is application dependent.

However, here are a few universal steps.

1. The current time must be within the certificate validity

period, that is, the current time must fall within the

notBefore and notAfter time.

2. To trust a CA, the CA certificate should be valid. This

applies to the complete chain of roots and intermediate

CAs.

3. The subject or subject’s alternate name (SAN) should

match the person who claims to own the certificate.

Examples

Here are some examples of certificate generation and

manipulation with OpenSSL.

Self-Signed Certificate for CA

We create a self-signed certificate for Trent, the CA.

OpenSSL> req -newkey rsa:2048 -keyout trent.key -x509 -days 365

-out trent.crt

Generating an RSA private key

………..+++++

………….+++++

writing new private key to 'trent.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be

incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished

Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN

State or Province Name (full name) [Some-State]:KA

Locality Name (e.g., city) []:Bangalore

Organization Name (e.g., company) [Internet Widgits Pty

Ltd]:HOWA

Organizational Unit Name (e.g., section) []:CA

Common Name (e.g. server FQDN or YOUR name) []:Trent

Email Address []:trent@howa.in

Generating RSA Keypair and CSR

For Alice, we generate an RSA keypair as well as CSR to be

signed by Trent.

OpenSSL> req -newkey rsa:2048 -keyout alice.key -out alice.csr

Generating an RSA private key

……………………………………………………………………………………………………….+++++

…………………………………+++++

writing new private key to 'alice.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be

incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished

Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN

State or Province Name (full name) [Some-State]:KA

Locality Name (e.g., city) []:Bangalore

Organization Name (e.g., company) [Internet Widgits Pty

Ltd]:HOWA

Organizational Unit Name (e.g., section) []:Dev

Common Name (e.g. server FQDN or YOUR name) []:Alice

Email Address []:alice@howa.in

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:Password

An optional company name []:

Signing the CSR with CA

We will sign the CSR generated for Alice using Trent’s private

key.

OpenSSL> x509 -req -CA trent.crt -CAkey trent.key -in alice.csr

-out alice.crt -days 365 -CAcreateserial

Signature ok

subject=C = IN, ST = KA, L = Bangalore, O = HOWA, OU = Dev, CN

= Alice, emailAddress = alice@howa.in

Getting CA Private Key

Enter pass phrase for trent.key:

The output will be the certificate alice.crt.

Viewing the Certificate

You can view the certificate with OpenSSL. You can also use

Windows tools by clicking the certificate in explorer.

OpenSSL> x509 -text -noout -in alice.crt

Certificate:

Data:

Version: 1 (0x0)

Serial Number:

34:b9:4d:eb:e6:e2:b0:3b:d8:0d:60:b5:32:7e:2b:1c:b2:d1:70:

b8

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = IN, ST = KA, L = Bangalore, O = HOWA, OU = CA,

CN = Trent, emailAddress = trent@howa.in

Validity

Not Before: Jan 27 05:47:10 2023 GMT

Not After : Jan 27 05:47:10 2024 GMT

Subject: C = IN, ST = KA, L = Bangalore, O = HOWA, OU =

Dev, CN = Alice, emailAddress = alice@howa.in

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:

00:a7:ff:dc:77:85:10:79:60:a2:93:5c:41:84:73:

…

bb:7f

Exponent: 65537 (0x10001)

Signature Algorithm: sha256WithRSAEncryption

4b:28:27:74:54:8b:24:e7:f8:2a:f9:7b:14:40:56:a7:d3:da:

…

1b:c1:e0:38

We only used a subset of commands from OpenSSL in the

examples. OpenSSL certificate management is quite

extensive. We request readers to refer to OpenSSL

documentation for further details.

Figure 2.14: Windows certificate viewer

You can find a copy of the certificates and private keys

generated in these examples in the chapter-2/output folder of

the repository. We have used password for the password in

encrypting the PEM files.

PKCS#12 Container

You can merge the key and certificate PEM files into one

binary PKCS 12 container (.p12 or .pfx file).

OpenSSL> pkcs12 -export -in alice.crt -inkey alice.key -out

alice.p12 -name Alice

Enter pass phrase for alice.key:

Enter Export Password:

Verifying - Enter Export Password:

The output will be alice.p12.

Encryption Using Certificates

We will use Alice’s certificate to encrypt a message.

OpenSSL> rsautl -encrypt -inkey alice.crt -certin -in plain.txt

-out cipher.bin

We now decrypt the cipher.bin using the private key.

OpenSSL> rsautl -decrypt -inkey alice.key -in cipher.bin -out

plain-out.txt

Enter pass phrase for alice.key:

Signing Using Certificates

We will use Alice’s certificate to sign the message.

OpenSSL> rsautl -inkey alice.key -sign -in plain.txt -out

sign.bin

Enter pass phrase for alice.key:

We now decrypt the sign.bin using the public key. Remember

that for RSA, the signing and encryption algorithms are the

same.

OpenSSL> rsautl -inkey alice.crt -certin -verify -in sign.bin

The quick brown fox jumps over the lazy dog

Digital Signing for Authentication

The channel transports the password. Hence once

compromised, a malicious actor can exploit it several times.

Signing a new message every time means the response is

changing. A replay is not as easy to orchestrate in such a

case. Signing for authentication has been implemented in

several strong authentication frameworks. Certificate-based

authentication (CBA), mutual-Transport Layer Security

(mTLS), OTP, CACs, and so on, use some form of signing

mechanisms using symmetric or asymmetric cryptography.

We will review them over several chapters in this book. A

simple authentication protocol with signing is shown in the

following figure.

Figure 2.15: Authentication by Signing

Conclusion

Cryptography is a complex subject with deep mathematical

foundations. Our treatment here has been rudimentary, yet

enough for conceptual appreciation. We expect readers to

build on these foundations and learn further about

cryptography. With enhanced computing power, the

boundary of cryptography expands every few years.

Quantum computing may render a few algorithms irrelevant.

While we discussed a few algorithms, here are some key

strengths that are safe for the next few decades12.

Security Strength Through 2030 2031 and Beyond

< 112 Disallowed Disallowed

112 Allowed Disallowed

128 Allowed Allowed

192 Allowed Allowed

256 Allowed Allowed

Table 2.2: Safe security strengths for the future

In the subsequent chapter, we shall explore transport layer

security and securing the channel of communication.

Reference Books

In the 90s, some cryptographers understood the need to

disseminate the knowledge on cryptography. They wrote

some of the most admired books on this subject. Some are

fundamental textbooks for undergraduate computer science

and mathematics courses.

We can suggest a few in chronological order of publication:

1. Bruce Schneier, Applied Cryptography: Protocols,

Algorithms, and Source Code in C, John Wiley & Sons

(US) © 199613

2. Alfred J. Menezes, Paul C. van Oorschot and Scott A.

Vanstone, Applied Cryptography, CRC Press, 199614

3. S.C.Coutinho, The Mathematics of Ciphers, A.K. Peters

Ltd., 1999

4. J.H. Silverman, Jill Pipher, Jeffrey Hoffstein, An

Introduction to Mathematical Cryptography, Springer,

2008

5. Bruce Schneier, Niels Ferguson, Tadayoshi Kohno,

Cryptography Engineering: Design Principles and

Practical Applications, John Wiley & Sons (US) © 2010

6. Aiden A. Bruen, Mario A. Forcinito, James M. McQuillan,

Cryptography, Information Theory, and Error-Correction:

A Handbook for the 21st Century, 2nd Edition, John Wiley

& Sons (US) © 2021

7. David Wong, Real-World Cryptography, Manning

Publications © 2021

Questions

1. In a communication channel, you will like to transmit

compressed data. Should you do compression followed

by encryption or vice versa, and why?

2. Build your authentication mechanism using HMAC. Is

there a standard that already uses such a scheme?

3. Figure 2.12 establishes a trust chain of certificates.

Using OpenSSL, create a set of digital certificates to

establish the trust chain.

4. What changes are needed if you issue Alice an ECC-

based certificate? Does this require a change in Trent's

certificate?

5. What are intermediate CAs? Why are they needed?

1 Alice, Bob, Carol, and so on, are standard actors in cryptographic protocol

discussions in most texts. Some names have special meanings like Eve is an

eavesdropper, Mallory is a malicious or man-in-the-middle user, Trent is a

trusted advocate, and so on.

2 Lammert Bies provides a website with an explanation of Cyclic Redundancy

Check (CRC) and its application in identifying transmission losses in electronic

communications. https://www.lammertbies.nl/comm/info/crc-calculation

3 https://shattered.io/ the first full attack on a SHA-1 documents in 2017. NIST

has discouraged the use of SHA-1 since 2011.

4 Donald E. Knuth, The art of computer programming, volume 2.

5 Reproduced verbatim from Bruce Schneier, Applied Cryptography: Protocols,

Algorithms, and Source Code in C, John Wiley & Sons (US) © 1996

6 HMAC can be computed with a variety of hash functions. The RFC 6234 US

Secure Hash Algorithms provides a list of hash algorithms that are approved as

per Federal Information Processing Standards (FIPS).

7 RFC 4226, https://www.ietf.org/rfc/rfc4226.txt

8 RFC 6238, https://www.ietf.org/rfc/rfc6238.txt

9 RFC 4226, https://www.ietf.org/rfc/rfc4226.txt

10 Table 2, Recommendation for Key Management: Part 1 – General, NIST Special

Publication 800-57 Part 1 Revision 5.

11 https://www.ietf.org/rfc/rfc5280.txt

12 Table 4, Recommendation for Key Management: Part 1 – General, NIST Special

Publication 800-57 Part 1 Revision 5.

13 The publishers republished a 20th-anniversary edition of this book in 2016.

14 Chapters of this book are available from: https://cacr.uwaterloo.ca/hac/

with copyright restrictions.

https://www.lammertbies.nl/comm/info/crc-calculation
https://shattered.io/
https://www.ietf.org/rfc/rfc4226.txt
https://www.ietf.org/rfc/rfc6238.txt
https://www.ietf.org/rfc/rfc4226.txt
https://www.ietf.org/rfc/rfc5280.txt
https://cacr.uwaterloo.ca/hac/

CHAPTER 3

Authentication with Network

Security

Introduction

In the previous chapter, we discussed cryptography, the

building block on which computer security stands. The

primitives of cryptography depend on algorithms and keys.

Algorithms are standard; the secrecy of keys establishes the

strength of the cryptographic exchange. If a computer

system needs to connect to another, it announces the

cryptographic algorithms it supports. The target end-point

responds with the choice of protocol based on a handshake

mechanism. All these complex exchanges use network

protocols.

Network Protocols

It is time we look at Figure 1.2 OSI OSI Layers vs. TCP/IP

layers again. The layers of two communication devices

interact with each other. Introducing encryption in the IP

layer or the transport layer keeps the application layer

simple and unaffected by the effects of encryption.

Figure 3.1: Encryption carried out in the IP layer leads to the secured IP protocol

known as IPSec. Transport layer security (TLS) introduces security in TCP packets.

IPSec is typically used in VPNs

Effects vary based on the encrypted layer. For example,

IPSec can encrypt the IP addresses of the destination

computer. However, TLS can only encrypt the application

data. The layer-wise data encapsulation controls the

protection achieved.

Figure 3.2: Every layer adds its own header to the transmitted packet. TLS can

encrypt the application data but cannot encrypt the IP address. Such information

can only be restricted with IPSec

IPSec in tunnel mode can be used to encrypt IP headers; it

can maintain the privacy of the IP addresses. However, IPSec

in transport mode cannot accomplish the same1. SSH and

SOCKS5 can establish proxy-based tunnels and hide

destination information, hence are potential candidates to

create privacy tunnels in the transport layer. We will only

discuss the Transport Layer Security (TLS) Protocol. There are

two reasons: it is the most common security protocol used

on the internet today and is the backbone of SSH, HTTPS,

FTPS, etc. It has in-built user authentication support which is

the core of this book.

Structure

In this chapter, we will cover the following topics:

Transport Layer Security

Server Authentication

Client Authentication

Web Browser Support

Transport Layer Security

Transport layer security (TLS) is the backbone of the internet

today. It is considered one of the most complex protocols.

The steps of the protocols are straightforward, yet the

complexity arises due to many flexible cryptographic

parameters in the exchange. The protocol lies in Figure 2.9,

Key exchange using asymmetric cryptography. Conceived by

Ralph Merkle and named after Whitfield Diffie and Martin

Hellman, the Diffie-Hellman key exchange is one of the most

used key exchange protocols. The explanation of the

protocol is as follows.

1. Alice and Bob decide publicly to use g and p to exchange

information.

2. Alice thinks of a private number a to herself and sends A

= ga mod p to Bob.

3. Bob thinks of a private number b to himself, and sends B

= gb mod p to Alice.

4. Alice takes B and computes K1 = Ba mod p;

Bob takes A and computes K2 = Bb mod p;

K1 = K2 = K is the key for encryption.

Alice and Bob compute the Key (K), but no one with the

knowledge of A, B, g, and p can come up with K as they will

not know a or b . Hence, the computation is safe against the

man-in-the-middle attacks of Mallory.

Let us try this with an example:

1. Suppose, g = 2 and p = 29.

2. If Alice keeps the private key a = 3, sends A = 23 mod

29 = 8

3. If Bob keeps the private key b = 5, sends B = 25 mod 29

= 3

4. Alice computes K1 = 33 mod 29 = 27

Bob computes K2 = 85 mod 29 = 32768 mod 29 = 27

Both get 27 which can be used as the encryption key.

In real implementations, g can be a small prime number like

2, 3, etc. However, p is a large number no less than 2048

bits. Instead of using K directly, it will be passed through a

key derivation function like HKDF2. This ensures the derived

key has sufficient entropy or randomness while it is of the

desired length. TLS is a protocol to accomplish this exchange

but with lots of variations and options. There are three

unique DHE algorithms.

1. Finite field Diffie-Hellman Exchange (FFDHE) or Elliptic

Curve Diffie-Hellman Exchange (ECDHE)

2. Pre-shared Key (PSK)

3. PSK with (EC)DHE.

Figure 3.3: A TLS 1.3 full handshake with retry

We overtly simplified the algorithm for explanation and

illustration. The details are complex and we request you to

review RFC 84463. The protocol has gone over several

iterations of addressing vulnerabilities.

1. The client sends a ClientHello message with the key info.

2. If the server does not agree with the key establishment

algorithms, it asks the client to retry with another

ClientHello.

3. The client sends another ClientHello with the shared key

info based on the algorithm suggested by the server.

4. The server sends a ServerHello that contains a server

certificate or a pre-shared key for authentication.

5. The client validates the server certificate and optionally

sends its own certificate to authenticate.

6. In the process, the key is established at the client and

server. It can be used to encrypt and decrypt the

application data.

The authentication is carried out using four algorithms.

1. RSA

2. Elliptic Curve Digital Signature Algorithm (ECDSA)

3. Edward’s Curve Digital Signature Algorithm (EdDSA)

4. Pre-shared Key (PSK)

The pre-shared key need not be established ahead of time.

This can be established during the handshake protocol. PSKs

are used to authenticate subsequent TLS connections after a

full handshake establishes the initial connection. OpenSSL

s_client is a great tool to connect to an SSL server and

observe the handshake protocol with -debug option. You may

use a binary editor to understand the handshake packet

dumps.

Server Authentication

HTTPS is the HTTP protocol transmitted inside a TLS

encrypted tunnel. HTTP clients and servers exchange

information without encryption, hence such communication

is unsecured. Today, finding a non-HTTPS webpage is very

hard. All well-known websites support HTTPS as browsers

mark all HTTP sites unsecured and warn the end-user. All

websites, when connected using HTTP, will redirect to an

HTTPS page. An end-user may not observe this as browsers

silently load the redirected HTTPS page. Here is an under-

the-hood observation using curl as a user agent.

C:\> curl -v http://w3c.org

* Trying 217.70.184.38:80…

* Connected to w3c.org (217.70.184.38) port 80 (#0)

> GET / HTTP/1.1

> Host: w3c.org

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 301 Moved Permanently

< Server: nginx

< Date: Thu, 02 Mar 2023 09:57:43 GMT

< Content-Type: text/html

< Transfer-Encoding: chunked

< Connection: close

< Location: https://www.w3.org

< Cache-Control: max-age=10800

< Vary: Accept-Language

<

…

The connection to http://www.w3c.org is redirected to

https://www.w3c.org.

http://www.w3c.org/
https://www.w3c.org/

Figure 3.4: This CERN page is the first HTTP page created. As you can see,

Chrome version 110.0.5481.178 (Official Build) (64-bit) reports it as unsecured

A domain can have both secured and unsecured sites hosted

on them. The following CERN site has an HTTPS URL and

Chrome does not consider it unsecured.

Figure 3.5: Modern CERN pages from an HTTPS site

How does a client trust the server in the first place? During

the TLS connection, the server presents a certificate to the

client. The client trusts the server based on the details

provided in the certificate. The associated sample code is

available in the Chapter-3 folder. The folder has certificates in

the certs\server directory. mysrv.crt file has the annotated

text of the certificate used for the SSL server. mysrv.p12

contains the PKCS12 certificate with the private key. We will be

using PKCS12 in the code snippets. However, you can use

mysrv.crt to review the contents of the certificate.

As documented in Chapter – 2, Digital Certificate →

Validation section, the current time falls between the

notBefore and notAfter time range of the end entity

certificate and all the root certificates.

The certificate is configured with the subjectAlternateName

(SAN) DNS:mysrv.local.

The client will connect to the server at:

https://mysrv.local if the server is using this

certificate. Hence, the DNS resolution on the client’s

computer should be configured to point to the server IP

address. For the demo set-up, the author has configured

the /etc/hosts4 file to point to the loopback address5. The

entry looks like this:

127.0.0.5 mysrv.local

The mysrv.crt has Server Authentication configured as

extended key usage (EKU). The key usage has the

following extensions: Digital Signature, Non-Repudiation,

Key Encipherment, Data Encipherment (f0)

The Intermediate CA that signs the server certificate has

the basic constraints set as Subject Type=CA, Path Length

Constraint=0. The root CA has the basic constraint Subject

Type=CA, Path Length Constraint=None. While this is

reasonable for some clients, some clients like CURL may

require root certificates to provide certificate revocation

details like CRL or OCSP. We provide the commands to

create these certificates through OpenSSL in Appendix C:

TLS Certificate Creation.

The hierarchy of mysrv.crt certificates are shown.

Figure 3.6: Server certificate hierarchy

Let us set up a simple HTTPS server using the Go language.

func main() {

// Assign false to turnoff client auth

addHelloHandler()

cert, err := getTLSCert()

if err != nil {

log.Default().Fatal(err)

}

tlsConfig := &tls.Config{

ServerName: "mysrv.local",

MinVersion: tls.VersionTLS13,

Certificates: []tls.Certificate{*cert},

}

server := &http.Server{

Addr: ":8443",

TLSConfig: tlsConfig,

}

log.Default().Fatal(server.ListenAndServeTLS("", ""))

}

We have already reviewed addHelloHandler() which adds a

/hello endpoint to the server. There is no change introduced

to that function when the TLS connection was added.

func addHelloHandler() {

http.HandleFunc("/hello", func(w http.ResponseWriter, req

*http.Request) {

log.Default().Print("Sending: Hello, World!\n")

io.WriteString(w, "Hello, World!\n")

})

}

The most important method for discussion here is

getTLSCert(). The method opens the PKCS 12 envelope using

the password, extracts the public certificate chain and the

private key, and creates a tls.Certificate object to be used

for TLS configuration for the HTTP connection.

/*

Server certificate

*/

func getTLSCert() (c *tls.Certificate, err error) {

var (

fdata []byte

blocks []*pem.Block

cert tls.Certificate

)

if fdata, err = os.ReadFile("certs/server/mysrv.p12"); err ==

nil {

if blocks, err = pkcs12.ToPEM(fdata, "password"); err == nil

{

var pemData []byte

for _, b := range blocks {

pemData = append(pemData, pem.EncodeToMemory(b)…)

}

cert, err = tls.X509KeyPair(pemData, pemData)

c = &cert

}

}

return

}

We have configured the server to use TLS 1.3. We connect to

the server using OpenSSL s_client TLS client.

OpenSSL> s_client -connect mysrv.local:8443 -CAfile sroot.crt

CONNECTED(00000004)

…

Certificate chain

0 s:C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = mysrv, CN =

mysrv.local

i:C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = Server

Intermediate, CN = sint

1 s:C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = Server

Intermediate, CN = sint

i:C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = Server

Root, CN = sroot

2 s:C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = Server

Root, CN = sroot

i:C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = Server

Root, CN = sroot

Server certificate

-----BEGIN CERTIFICATE-----

…

-----END CERTIFICATE-----

subject=C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = mysrv,

CN = mysrv.local

issuer=C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = Server

Intermediate, CN = sint

No client certificate CA names sent

Peer signing digest: SHA256

Peer signature type: RSA-PSS

Server Temp Key: X25519, 253 bits

SSL handshake has read 4381 bytes and written 377 bytes

Verification: OK

New, TLSv1.3, Cipher is TLS_AES_128_GCM_SHA256

Server public key is 3072 bit

Secure Renegotiation IS NOT supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

Early data was not sent

Verify return code: 0 (ok)

Post-Handshake New Session Ticket arrived:

SSL-Session:

Protocol : TLSv1.3

Cipher : TLS_AES_128_GCM_SHA256

Session-ID: A27A52743AE7C00A…BE16168E69CB1F513E81FD

Session-ID-ctx:

Resumption PSK: A4E02C7DBBF1F3949161DC88B6…

9E0C245B0B7898189DA63049D5

PSK identity: None

PSK identity hint: None

SRP username: None

TLS session ticket lifetime hint: 604800 (seconds)

TLS session ticket:

…

Start Time: 1677862609

Timeout : 7200 (sec)

Verify return code: 0 (ok)

Extended master secret: no

Max Early Data: 0

read R BLOCK

The connection presents the server certificates, negotiates

the cryptographic algorithms, and completes the TLS

handshake. In the command line, the OpenSSL screen will

wait for HTTP requests to be sent through the TLS tunnel. We

send a normal HTTP request to which the server will respond

as shown.

GET /hello HTTP/1.1

Host: mysrv.local

HTTP/1.1 200 OK

Date: Fri, 03 Mar 2023 16:57:17 GMT

Content-Length: 14

Content-Type: text/plain; charset=utf-8

Hello, World!

This data is encrypted using AES-128. The server certificate

helps in the following two ways:

1. The client can trust the server as it trusts the root

certificate.

2. It establishes the necessary symmetric key to be

exchanged for data encryption.

The client certificate, which is optional, authenticates the

client. It plays no role in data encryption. Can we use

another authentication method to authenticate the client? In

the next step, we add addBasicAuthHandler to authenticate the

client. The code is the same as shown in Chapter-1. When we

use the s_client to request the basic authentication end-

point we get as shown:

GET /basicauth HTTP/1.1

Host: mysrv.local

Authorization: Basic amRvZTpwYXNzd29yZA==

HTTP/1.1 200 OK

Date: Fri, 03 Mar 2023 17:57:27 GMT

Content-Length: 24

Content-Type: text/plain; charset=utf-8

User jdoe authenticated.

The Authorization header that contains the base-64 encoded

username and password is encrypted in transit. Hence,

communication is safe.

If you want to view the handshake messages in transit, use

the s_client command with the -debug flag in OpenSSL.

Client Authentication

Unlike server trust, sending a certificate for client

authentication is optional. We extend the previous example

by adding client certificates to the configurations. At the very

minimum, the server must trust the client CAs and validate

the client certificates. The code snippet for the same is

shown.

func configureClientAuth(tlsConfig *tls.Config) error {

// Add certauth end point and handler

http.HandleFunc("/certauth", func(w http.ResponseWriter, req

*http.Request) {

if req.TLS == nil || req.TLS.PeerCertificates == nil ||

len(req.TLS.PeerCertificates) <= 0 {

str := "No client certificates. User failed to

authenticate."

w.WriteHeader(http.StatusUnauthorized)

log.Default().Print(str)

} else {

str := fmt.Sprintf("User %s authenticated.\n",

req.TLS.PeerCertificates[0].Subject.CommonName)

io.WriteString(w, str)

log.Default().Print(str)

}

})

// Client CAs added to TLSConfig. Now, server can trust

client certs.

if data, err := os.ReadFile("certs/server/cint.crt"); err ==

nil {

var block *pem.Block

certpool := x509.NewCertPool()

for block, data = pem.Decode(data);

block != nil;

block, data = pem.Decode(data) {

if cert, err := x509.ParseCertificate(block.Bytes); err ==

nil {

certpool.AddCert(cert)

}

}

tlsConfig.ClientAuth = tls.VerifyClientCertIfGiven

tlsConfig.ClientCAs = certpool

} else {

return err

}

return nil

}

Here we provide the cint.crt chain as client CAs. The file

contains certificates for intermediate CA as well as the root

CA. The hierarchy of the client certificate chain is as shown.

Figure 3.7: Client certificate hierarchy

Just like server certificates, client certificates have certain

constraints and key usages. Here are some of them.

As documented in Chapter – 2, Digital Certificate →

Validation section, the current time falls between the

notBefore and notAfter time range of the end entity

certificate and all the root certificates.

The certificate is configured with the subjectAlternateName

(SAN) email:alice@mysrv.local. This is not a hard

requirement, unlike the server certificate. However,

some servers may use email as the username.

The alice.crt has Client Authentication configured as

extended key usage (EKU). The key usage has the

following attributes: Digital Signature, Non-Repudiation,

Key Encipherment, Data Encipherment (f0)

The Intermediate CA that signs the client certificate has

the basic constraints set as Subject Type=CA, Path Length

Constraint=0. The root CA has the basic constraint Subject

Type=CA, Path Length Constraint=None.

We also create a /certauth endpoint to verify the TLS user

record. Let us run the services and connect using OpenSSL

s_client.

OpenSSL> s_client -connect mysrv.local:8443 -CAfile sroot.crt -

cert alice.crt -key alice.key

Enter pass phrase for alice.key:

CONNECTED(00000004)

…---

Acceptable client certificate CA names

C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = Client

Intermediate, CN = cint

C = IN, ST = KA, L = BANGALORE, O = HOWA, OU = Client Root, CN

= croot

Requested Signature Algorithms: …

Shared Requested Signature Algorithms: …

Peer signing digest: SHA256

Peer signature type: RSA-PSS

Server Temp Key: X25519, 253 bits

---…---

read R BLOCK

The client certificate information was the only additional

information exchanged in the TLS handshake. The HTTP

request and responses are given as follows:

GET /certauth HTTP/1.1

HOST: mysrv.local

HTTP/1.1 200 OK

Date: Sun, 05 Mar 2023 10:26:35 GMT

Content-Length: 26

Content-Type: text/plain; charset=utf-8

User alice authenticated.

The user data is collected from the TLS object available in

HTTP.Request. While what we have seen here establishes a

custom HTTPS server and a client connecting to it, will it

work with a commercial web browser?

Web Browser Support

We launch the simple TLS server with no client

authentication enabled6. From a browser, we access the URL:

https://mysrv.local:8443/hello. The browser reports that

the website is not trusted and has errors. However, we do

not see such errors on standard official websites. Normal

websites use certificates from trustworthy CAs. The CAs and

the companies developing browsers are part of a CA/Browser

Forum7. The forum members provide best practices for

TLS/SSL configurations and create awareness among all the

browser manufacturers about the CAs that should be trusted

by default. Since we used a custom certificate using

OpenSSL using an untrusted root, we see these errors8.

Figure 3.8: Browser reports a security error when the certificate is from a

trusted CA

To overcome this issue, the browser must be configured to

trust the root CA. We accomplish this by accessing the

certificate import through chrome settings.

https://mysrv.local:8443/hello

Figure 3.9: Using the Chrome privacy and security settings to update the

Windows device certificates

Import the root certificate sroot.crt from the Chapter-

3/certs/client folder. Ensure the certificate is imported into

the Trusted Root Certificate Authorities of Windows.

Figure 3.10: Adding trusted root CAs to the machine

After importing the certificate, let’s use the browser to

access the server.

Figure 3.11: The browser after the certificate is imported

If we access the /basicauth end-point, the browser challenges

basic authentication.

Figure 3.12: Basic authentication through TLS

Client Certificates

Let us activate the client authentication in our demo server

now. Setting const CLIENT_AUTH = true in the main() method

turns on client certificate authentication. When we access

the endpoint https://mysrv.local:8443/certauth, the

authentication fails and the page cannot be accessed.

https://mysrv.local:8443/certauth

Figure 3.13: The user could not be authenticated as the browser does not

present a certificate

The client certificate has to be imported into windows so that

the browser can access the end-user certificates.

Figure 3.14: Adding user certificate to the device

To import a user certificate, follow these steps:

1. In the Run dialog launch the certmgr.msc.

2. Launch the certificate import wizard.

3. Import file Chapter-3/certs/client/alice.p12.

4. Provide a password and enable strong private key

protection.

5. The end entity as well as all the CA certificates are

imported into the personal certificates list.

The server is expected to verify the client certificate only

when presented. It does not mandate the client to provide a

certificate. This is accomplished by setting

tls.VerifyClientCertIfGiven in TLSConfig.ClientAuth. As the

server trusts a client certificate chain, whenever the server is

accessed the client is challenged to provide a client

certificate trusted by the server.

Figure 3.15: Certificate presented when the server is contacted

In the preceding figure:

1. A certificate to select is presented even though /hello

endpoint does not need authentication.

2. When cancelled, the page is shown without any issues.

3. While accessing /certauth endpoint unauthorized error is

displayed.

Figure 3.16: Successful certificate-based authentication

Close all browser sessions and launch the URL in a fresh

browser session. When you access /certauth, the client

certificate dialog is presented. Upon selecting the certificate

of alice, the certificate is sent to the server. Since the chain

is trusted by the server, the authentication is successful.

Since strong private key protection is enabled, the user is

prompted to accept access to the private key.

Non-TLS certificate-based

authentication

In Figure 3.15: Certificate presented when the server is

contacted, the HTTP connection returns an error when the

user does not provide a certificate. The browser manages

the HTTP error; the web application cannot take up any

rendering. Sometimes, you need different authentication

methods for every category of users; one set of users uses

the password to authenticate, while the other set of users

uses a user certificate.

Figure 3.17: Login form using both a password or a certificate to authenticate

Browsers have limited access to the certificate stores of the

operating systems. They can access the certificate stores to

verify TLS connections or through plugin architectures like

extensions. JavaScript on a web page cannot access a

certificate private key to sign a payload. During

authentication, a server sends a message hash to the client;

the client signs the message hash and sends it to the server

as the proof-of-possession. Since JavaScript in a web page

cannot access the private key, such authentication requires

some form of helper applications or browser extensions.

Figure 3.18: Web socket connector for signing browser payload

Web sockets are like Unix sockets; however, a webpage can

access web sockets. A helper application runs in the

operating system and accepts connection on a web socket.

The webpage receives the signing payload from the web

server and sends it to the helper application to sign. The

helper application passes the message to the operating

system-managed cryptographic hardware to sign the

payload. The webpage receives the signed response over the

web socket. The scheme described is one of the many

possible implementations. A variation of this architecture is

used by the certificate authorities (CA) to provision

certificates using browser enrollment. Every CA has its

helper application workflow different from the competition.

We suggest the readers learn them from CA-specific

documentation based on their needs.

The support for passkeys with WebAuthn has made public

key authentication easier without a separate helper

application. We will discuss WebAuthn in a later chapter.

Conclusion

Finally, we ensured the data exchange between the client

and the server was encrypted. Thus, the information is

secured in transit. Cryptographically, the exchange is

secured against any man-in-the-middle attacks. We also

looked at a mutual TLS (m-TLS) handshake that ensures the

client is authenticated with the server. However, m-TLS is not

considered a preferred mode of authentication. The process

is cumbersome and an untrusted client certificate leads to

the termination of the connection. These steps make it hard

to analyze failures from the browser. Secondly, the user

experience is not friendly when some users need certificates

to authenticate while others do not. Certificate management

is complex for an end-user. m-TLS plays a crucial role in host-

to-host connections. Moreover, TLS connections are

terminated at applications or API gateways, freeing up

backend services from handling any authentication

overhead. With the advent of WebAuthn, PKI-based client

authentication can be managed easily by the browser and

OS combination effectively. We shall review the same in a

later chapter. With network security in place, we will explore

if authentication can be offered as a service. If any service

needs user authentication, it can delegate responsibility to

the specialized service. Federated authentication models

address such problems and that will be the next direction of

exploration.

Questions

1. What is Diffie-Hellman Exchange? Why is it needed in

TLS?

2. Is a certificate a must to initiate a TLS connection? Are

there any other mechanisms that clients and servers can

use to establish a TLS connection?

3. From the TLS handshake protocol, find out how the

browser determines the certificates to be displayed to

the user for client authentication.

4. How does the browser behavior change when a server

certificate is not trusted?

5. Provide a name to your machine and access it through

network commands, like ping. Can you use this name on

the certificate?

1 Forouzan; B. A., TCP/IP Protocol Suite, Fourth Edition, pp.859, McGraw-Hill

Company Ltd., 2010

2 HMAC based expand and extract key derivation function (HKDF),

https://www.rfc-editor.org/rfc/rfc5869

3 The Transport Layer Security (TLS) Protocol Version 1.3, https://www.rfc-

editor.org/rfc/rfc8446

4 On Windows machines, the file is located at %WINDIR%\system32\drivers\etc\hosts

5 The CIDR network range of 127.0.0.0/8 can be loopback addresses

6 Setting const CLIENT_AUTH = false in the main() method turns off client certificate

authentication.

7 CA/Browser Forum. https://cabforum.com

8 We used a Google Chrome browser on Microsoft Windows Platform.

https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc8446
https://cabforum.com/

CHAPTER 4

Federated Authentication-I

Introduction

In our journey, we identified the need for authentication in

web architectures, covered the basics of cryptography

technology for all authentication systems, and protected the

communication channel with TLS. On a timescale, we have

covered several decades of development of these systems.

The proponents of web architectures understood that

authentication systems were becoming overly complex and

independent services. Let us discuss this with an example. In

an organization, there is an HR department that has a leave

management system. While every employee can use the

system to apply for leave, the employee's manager or an HR

executive only can approve the leave. Mere employees

logging in is not good enough; access levels they can reach

are equally important. This access is known as authorization.

While we look at simple authorization techniques, there are

more complex authorization scenarios we will discuss in a

subsequent chapter. A finance department manages a

payroll application. The users can look at their payroll data

from such an application, while the finance department will

have payroll managers. A typical organization will have

hundreds of such applications. If every application maintains

user information in its independent database, an employee

will have a username for every application of the

organization. How does an organization address such needs?

Structure

In this chapter, we will cover the following topics:

Federated authentication

Single sign-on

Authentication ticket or token

Claims-based authentication

SAML token

An example

Identity and access management

Federated authentication

We did a Google search on how many SaaS applications an

average employee of a small organization uses. The

numbers were in the tens range. Assuming every user had a

username and password for each application, this situation is

not scalable. The industry identified this need even in the

pre-SaaS era, and organizations have been storing user

information in a user store. LDAP servers like Microsoft Active

Directory, Novell eDirectory, Oracle Directory Server,

OpenLDAP, etc. provide such services for several decades.

The servers stored identity information like usernames,

passwords, group belongingness of the users, and other

attributes relevant to the IT operations of the organizations

in a consolidated location. LDAP provides an excellent query

interface to search for users fast. However, it is not a web-

based protocol.

Figure 4.1: LDAP as a User Store

The on-premise IT applications are a thing of the past. Most

organizations have data centers in the cloud and are

connecting to some forms of cloud directories. Hence,

instead of using LDAP as a query protocol, they can use REST

APIs offered by cloud directories. While this addresses the

issue of using LDAP as a protocol, every application should

use the authentication methods of the directory service.

Figure 4.2: Moving the user store to the cloud does not end the challenges

Authentication is a specialized function. The industry realized

a dedicated service should cater to the authentication needs

of an organization. However, when a service collects user

information like username and password from a user and

presents it to an authentication server or identity store, it

can store or cache the password. It can handle this private

data in an unsecured manner. Since the service provider can

be in a data center outside the enterprise's control, multiple

network connections can transmit the password. Some of the

transmissions can be beyond the security posture of the

organization. This mode of authentication is called

delegated authentication.

Figure 4.3: Delegated vs Federated Authentication

We have seen one of the downsides of using delegated

authentication. The second issue is the variety of

authenticators used. While username and password are the

simplest form of authentication, an MFA authentication may

require additional form fields to be added, like OTP. Every

service provider in a delegation authentication workflow may

need modification as soon as the enterprise uses a new

authentication scheme. This is not scalable.

Federated authentication addressed these needs effectively.

There is an exclusive authentication service that validates

the user credentials and issues tickets consumed by other

services. However, federated authentication is not a web

paradigm. Kerberos-like protocols can be used effectively for

federated authentication. We will not discuss Kerberos here

as its use on the web is not as prevalent. However,

interested readers can review RFC 41201. Windows domain

authentication utilizes Kerberos as a base with several

extensions over the years. A federated authentication can be

triggered by the service provider or the identity provider. We

discuss both scenarios next.

Service provider initiated

The users contact the HR Portal, the service provider (SP), for

access to a specific page. They are redirected to the identity

provider (IDP). This scheme is often called a Service Provider

(SP) initiated authentication. The use of the term redirection

is colloquial here. It does not have to be an HTTP GET

redirect request. One can simulate the workflow using HTTP

POST requests as well. In the section on Binding, we will

review how SAML can be used in both HTTP GET Redirect and

HTTP POST context.

Figure 4.4: SP-initiated authentication

The potential authentication steps are:

1. The user agent (browser) tries to access a service

provider (SP).

2. The service provider redirects the user to authenticate

at an identity provider (IDP) and get an authentication

ticket.

3. The user authenticates with the IDP.

4. The IDP issues the user a ticket.

5. The user agent (browser) presents the ticket to the SP

and access request.

6. The SP validates the ticket.

7. The SP provides access to the resource.

IDP initiated

Let us contrast this with the IDP-initiated approach. Here, the

users log into the IDP portal using their username and

password. At the end of the authentication in step 2 in Figure

4.5: IDP initiated authentication, they land at a hyperlinked

bookmark page of web applications. Clicking on a hyperlink

will trigger step 3; the user can access the resource.

Figure 4.5: IDP initiated authentication

The user accessed the HR Application and provided a

username and password once at the IDP login screen. Now,

he goes to the payroll app. Does he have to present the login

and password again?

Single sign-on

With only the Identity Provider, if we had authenticated using

"Forms-based authentication", discussed in Chapter 1:

Introduction to Web Authentication, we could have managed

the authentication using a session cookie. If we could use the

session cookie in all other services, we could have

succeeded in single sign-on. The cookies are associated with

a specific domain or sub-domains; you cannot share them

across websites. An SP can offer a service from a different

DNS domain than the DNS domain of the consumer

enterprise. The access controls of the SPs can be different

from one to the other. We will discuss this further in the next

section. Sharing the cookie with all the SPs is not practical.

Figure 4.6: SSO with Federated Authentication

In Figure 4.6: SSO with Federated Authentication, we have

shown two SP-initiated authentication steps. The steps

starting with '1' authenticate into the HR Portal, while the

steps with '2' show authentication into the Payroll Portal. In

step 1d, the IDP sets a session cookie in the browser on

successful authentication. Step 2c utilizes the session cookie

to authenticate into the IDP without providing the username

and password. There is no requirement for a cross-domain

cookie or any necessity for two SPs to use the same

authentication ticket. The IDP maintains the session and

issues separate tickets to both SPs.

Authentication ticket or token

In Chapter 1, Introduction to Web Authentication, we

discussed access tokens. It is a good idea to extend that

concept here. The users presented their credentials

(username and password) to the IDP and obtained an access

token. The access token should be trustworthy for the SP;

the SP should ascertain the IDP issued it. If IDP signs this

token, the SP can validate it. Should IDP sign with the same

key pair for all the SPs? The IDP can use a different key pair

for each of the SPs. Some prefer the second approach, as

that ensures the token issued for SP1 cannot be of any use to

SP2. Hence, there is no possibility of it getting misused. The

ticket can have the following information:

Subject or name identifying a user

Issuer's identity

Recipient’s identity

Time of issuance of the token

The validity period of the token to be used:

not before

not after

Revocation information of the token, if applicable

Information on how and where to use the token

Looks familiar? We have seen some of this information with

certificates in Chapter 2: Fundamentals of Cryptography. All

this information is for the service provider to validate and

confirm before using the token. For SSO, should a day-long

ticket be issued to the SP? It depends on the SP. The tokens

are issued for short durations, like 5-10 minutes, to ensure

they are not affected by clock skews in distributed networks.

Once a ticket is validated, the SP can decide when to

revalidate with the IDP. A session cookie is maintained at the

IDP by the user agent. Hence a new ticket can be issued to

the SP as needed. Providing long-validity tokens may require

token revocation procedures like in the case of certificates,

which best be avoided. We looked at a token as a carrier of

identity information, yet not all services require identity

information for providing a service. Due to privacy concerns,

some tickets have no identity or carry a pseudonymized

identity. In some privacy-preserving blockchains, the

transactions keep the public key of the user only, which is a

form of pseudonymization.

Claims-based authentication

Let us continue with the pseudonymization example. An

organization is setting up an application for whistleblowers to

report on non-ethical practices. Such a service provider only

needs to know if the person reporting is a bonafide employee

of the organization. Their names, designations, or corporate

identities are best not communicated to the service. In short,

the SP is expecting the ticket provided by the IDP to claim if

it belongs to an employee.

Contrast this to the example of the HR team having

administrative rights on the HR Portal and the Finance team

on the Payroll Application. Providing a group membership as

part of the ticket is good enough for the SP to ascertain the

level of access to the service. A user attribute on the token

distinguishing full-time employees from contractors is

another way to provide specific access. Claims can be

considered a generalization over attribute-based or group-

membership-based access control. The SP demands claims

to be present in the token. The IDP fulfills them by

deciphering the user information it has. Suppose a service

requires the member to be above the age of majority; if the

IDP sends the date of birth or the exact age of the user, it

shares more information than expected. Merely reporting the

user as not a minor is a good enough claim for the service to

consume. It means the IDP will have a rules engine based on

the user attributes and utilize them to fulfill claims needed

for the SPs.

Do developers interested in federated authentication

address all these complex scenarios? The answer is yes, but

not by themselves. Fortunately, many vendors have

understood these requirements and have developed identity

and access management systems catering to such needs.

You will seldom write code for an IDP but will consume

tokens in SPs often. However, we will refrain from configuring

IAMs in this book (we leave it as an exercise for you to try).

There are many of them; they can be very complex to

explain in this short book.

SAML token

Security Assertion Markup Language (SAML) is one of the

most popular federated authentication schemes developed

for web applications across domains. It will be a misnomer to

call it just a ticket language. SAML has a well-defined

authentication framework addressing all the scenarios we

have discussed. SAML v2 standard came up in 2005. The

language of choice was XML. Web Services and Simple

Object Access Protocol (SOAP) were the popular standards

for APIs. Hence, SAML is not strictly designed for REST APIs.

SAML is still one of the most used Federated Authentication

protocols for the web, hence the need to understand the

design. Our focus will be on the conceptual aspects of SAML

interactions. We will use a SAML library to manipulate any

SAML constructs rather than manual editing.

The SAML specification has five broad parts.

Core: Focuses on the protocol schema primitives.

Bindings: Based on the underlying command of the

HTTP protocol used (POST vs GET), the parameter

structures of the communication change. Bindings

define the parameter schema.

Profiles: Common use cases the SAML protocol intends

to address. It will vary based on client types, like web

browsers vs. thick clients. We are interested in Web

Browser SSO and the single logout profiles for this book.

Metadata: The components of the SAML network, like

the IDP and the SPs, need to communicate to each other

their capabilities, signing and encryption certificates,

connection endpoints, etc. They share this information

as configuration metadata.

Conformance: The required portions of the SAML

protocol that the implementations should address for

interoperability. When applications written using a

standard can integrate without tweaking, the goals of

the standard are met.

When using custom SAML integrations, it is a good practice

to understand the SAML profile that is most relevant to you,

identify the interacting parties in the protocol exchanges,

and study the protocol primitives used from the core

specifications. Reading a reference sample application

addressing a similar example is another way to get the best

out of the protocol. Reading the complete protocol text can

be daunting. It can overwhelm any newbie programmer.

Hence, we will discuss a few commonly used profiles,

followed by parts of the primitives.

Metadata

Let us look at a simple IDP metadata to understand the

concept. The metadata defines an IDP's service.

There are two certificates, one for signing and the other

for encryption.

The IDP supports four encryption algorithms.

The IDP supports a transient name ID or subject. It may

not be meaningful outside of the transaction.

The IDP only offers a single sign-on service at /sso. An SP

can contact it through HTTP-Redirect (GET) or HTTP-POST.

<EntityDescriptor

xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

validUntil="2023-04-10T06:34:43.761Z" cacheDuration="PT48H"

entityID="/metadata">

<IDPSSODescriptor

xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:p

rotocol">

<KeyDescriptor use="signing">

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Data xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Certificate

xmlns="http://www.w3.org/2000/09/xmldsig#">MIIDBzCCAe

+…=</X509Certificate>

</X509Data>

</KeyInfo>

</KeyDescriptor>

<KeyDescriptor use="encryption">

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Data xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Certificate

xmlns="http://www.w3.org/2000/09/xmldsig#">MIIDBzCCAe

+…=</X509Certificate>

</X509Data>

</KeyInfo>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-

cbc"></EncryptionMethod>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes192-

cbc"></EncryptionMethod>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-

cbc"></EncryptionMethod>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-

mgf1p"></EncryptionMethod>

</KeyDescriptor>

<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:transient</NameIDFormat>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

Redirect" Location="/sso"></SingleSignOnService>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="/sso"></SingleSignOnService>

</IDPSSODescriptor>

</EntityDescriptor>

What about the SP? Does it also have metadata to

describe its service description? Here is a sample service

descriptor of an SP.

<EntityDescriptor

xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

validUntil="2023-04-06T13:24:10.714Z"

entityID="http://localhost:8000/saml/metadata">

<SPSSODescriptor

xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

validUntil="2023-04-06T13:24:10.7142742Z"

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:p

rotocol" AuthnRequestsSigned="true"

WantAssertionsSigned="true">

<KeyDescriptor use="encryption">

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Data xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Certificate

xmlns="http://www.w3.org/2000/09/xmldsig#">…=

</X509Certificate>

</X509Data>

</KeyInfo>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-

cbc"></EncryptionMethod>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes192-

cbc"></EncryptionMethod>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-

cbc"></EncryptionMethod>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-

mgf1p"></EncryptionMethod>

</KeyDescriptor>

<KeyDescriptor use="signing">

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Data xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Certificate

xmlns="http://www.w3.org/2000/09/xmldsig#">…=

</X509Certificate>

</X509Data>

</KeyInfo>

</KeyDescriptor>

<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://localhost:8000/saml/slo"

ResponseLocation="http://localhost:8000/saml/slo">

</SingleLogoutService>

<NameIDFormat></NameIDFormat>

<AssertionConsumerService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://localhost:8000/saml/acs" index="1">

</AssertionConsumerService>

<AssertionConsumerService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

Redirect" Location="http://localhost:8000/saml/acs"

index="2"></AssertionConsumerService>

</SPSSODescriptor>

</EntityDescriptor>

There are two certificates, one for signing and the other

for encryption.

The SP supports four encryption algorithms.

The SP only offers a single logout service at /saml/sso. An

IDP can contact it through HTTP-POST.

The SP provides assertion consumer service to receive

the login tokens at /saml/acs as HTTP-Redirect and HTTP-

POST.

The metadata of the SP should be configured in the IDP and

vice versa. This way, the SP and IDP can know each other

and communicate. However, the IDP or the SP does not need

to publish their metadata.

Profiles

The Web Browser SSO profile is one of the most used SAML

profiles and will be our subject matter of discussion here.

Figure 4.7: Web Browser SSO Profile (Reproduced Figure 1: Profiles for the

OASIS Security SAML v2)

A close look at Figure 4.7: Web Browser SSO Profile

(Reproduced Figure 1: Profiles for the OASIS Security

SAML v2) will ensure the scheme is not very different from

Figure 4.4: SP-initiated authentication. In step 3, the service

fills out an AuthnRequest for the user agent to submit to the

IDP. Similarly, in step 5, the IDP issues a Response for the SP.

<?xml version="1.0"?>

<samlp:AuthnRequest

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

ID="id-691d0ed575bb8f812b6ac961a7b5f7a7d2a558a8"

Version="2.0"

IssueInstant="2023-04-08T12:50:25.879Z"

Destination="/sso"

AssertionConsumerServiceURL="http://localhost:8001/saml/acs"

ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

POST">

<saml:Issuer

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

http://localhost:8001/saml/metadata

</saml:Issuer>

<samlp:NameIDPolicy

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"

AllowCreate="true"/>

</samlp:AuthnRequest>

In step 3, there is an AuthnRequest sent to the IDP to validate

the user. The request properties tell the IDP where to

connect back to the SP using HTTP-Post binding. It also tells

the IDP to create a user if the user does not exist. There is a

mention of the issuer which is a URL to the metadata of the

SP. It is not necessary for the IDP to access the SP at a

predesignated AssertionConsumerService location defined in the

metadata. The AuthnRequest can control that by providing an

AssertionConsumerServiceURL explicitly.

Figure 4.8: Single Logout Profile (Figure 3: Profiles for the OASIS Security SAML

v2)

The single logout profile or SLO profile is another important

profile. The idea here is simple. Since the IDP provides single

sign-on service to all the service providers, it knows all the

active service providers. If a user requests to log out from

any service provider, the logout request can come to the IDP,

and the IDP can create logout requests for all active service

providers and send them. As simple as it may conceptually

seem, there are some practical challenges. What if the SPs

are not on or in the middle of large transactions? Such a

request from a remote system can make the transactions

inconsistent. Many libraries do not implement SLO properly.

For example, the crewjam/saml package we use for the sample

applications implements only the SP part of the SLO but not

the IDP. If you use the SP library with an industry standard

IDP, you can achieve SLO for your applications. A typical

LogoutRequest looks like this2:

<samlp:LogoutRequest

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

ID="d2b7c388cec36fa7c39c28fd298644a8"

IssueInstant="2004-01-21T19:00:49Z" Version="2.0">

<Issuer>https://IdentityProvider.com/SAML</Issuer>

<NameID

Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent">005a06e0-ad82-110d-a556-

004005b13a2b</NameID>

<samlp:SessionIndex>1</samlp:SessionIndex>

</samlp:LogoutRequest>

A response looks like this:

<samlp:LogoutResponse

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

ID="b0730d21b628110d8b7e004005b13a2b"

InResponseTo="d2b7c388cec36fa7c39c28fd298644a8"

IssueInstant="2004-01-21T19:00:49Z" Version="2.0">

<Issuer>https://ServiceProvider.com/SAML</Issuer>

<samlp:Status>

<samlp:StatusCode

Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

</samlp:Status>

</samlp:LogoutResponse>

Binding

Profiles help us structure the data in a manner that can be

transmitted using the underlying transport. In all the

explanations, we have assumed the SPs and IDPs are

interacting over HTTP GET-Redirect requests. In such a

condition, the request can contain several parameters. When

authenticating from an SP, a typical redirect to IDP looks like

this2.

https://idp.local:8443/idp/o?

SAMLRequest=nJLNbtswDIBfReDdf7KbukJtIGswLEC3BU22w26sxSwCLMkT6W5

5+yFph3aXDNhREj+Sn8hbRj9OZjnLITzQj5lY1C8/nhw7mFExEdmwCemIjg9kuP

94bnZcGmSmJiwHeINNlZkpR4hBHUOtVB85mN7a17b5a3JRNU9PVQLXdP1atXjTa

4r4q2+t6sWgqAvWVErsYOtB5CWrNPNM6sGCQDnSp66xsMn21K1ujtdFVXl+330C

tiMUFlDN5EJnYFIWzUz7GAUfTNk19OhbMEdTyj9FdDDx7SltKT26gLw/3r/Ah5f

7I6ek1Q1OczAscGNTmRfCdC9aF75d/4/E5iM2H3W6TbT5vd9CfJ2LOekm9j8mjX

E5yunE2259DDQVxcoT+n916ErQoeFu8Kdi/7MMn9LRebeLohuN/NCEJAzsKAmo5

jvHnXSIU6kDSTFD0zyX/3rr+dwAAAP//&RelayState=ODvy8cKq5lMjwkXWiMj

rVtCKL1hw2FdK6B9bPAV8AvaptB_lIgnDeump&SigAlg=http://www.w3.org/

2000/09/xmldsig#rsasha1&Signature=SQKdCaxXwqcEgan7u6026h+KCPHn/

2RMCGlKWzeuoZfdZKJkQ94h+DD2XhCWvT0u2QGHTJTn74QHanRp2q9iv6TIHts6

gWEkvzS7iFUfFqOLQiupTNd9P82f8cLuFso9B/6/Re6yIXbY7JdnJshQeR4XHzz

k3Tnbwrx+yvACUPxZ2A95+Y43zIRQtRrzOpwDsGqnsARC4VcOWdFTN5uZDm6Y9y

4P0jWut3z9zzdsqbEboaM3pTU9lIUMb6d7VrOS3hUGJ2VxJk9zmXx231nTAJ+xE

D/jbkI9QWIYJrKKfMnMayaqcnbhipgMOX0aismYQ7j0DoILvYP/fPeZiQI8ag==

There are four parameters in this URL.

1. SAMLRequest: The actual XML AuthnRequest object.

2. RelayState: A state information that the IDP can send

back to the SP so that SP continues processing from that

state after an authentication response from IDP.

3. SigAlg: The algorithm used to generate the signature.

4. Signature: The actual signature.

XML data is compressed with the flate algorithm. The

binary data is base64 encoded. The overall URL is URL

encoded.

The actual XML of the SAMLRequest is:

<samlp:AuthnRequest

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

ID="id-9d8d8f1690443e5ce3dfb182642daf108736641e"

Version="2.0"

IssueInstant="2023-04-25T08:22:21.378Z"

Destination="https://idp.local:8443/idp/sso"

AssertionConsumerServiceURL=https://hr.mysrv.local:8444/saml/a

cs

ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

POST">

<saml:Issuer

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

https://hr.mysrv.local:8444/saml/metadata</saml:Issuer>

<samlp:NameIDPolicy

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"

AllowCreate="true"/>

</samlp:AuthnRequest>

If the SP sends the AuthnRequest over HTTP-GET Redirect, the IDP

does not need to respond on an HTTP-GET. The IDP can send

the response as an HTTP-POST request. That is precisely

mentioned in the above AuthnRequest. Here is a sample

AuthnRequest using HTTP-POST binding3.

<samlp:AuthnRequest

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="pfx41d8ef22-e612-8c50-9960-1b16f15741b3"

Version="2.0"

ProviderName="SP test"

IssueInstant="2014-07-16T23:52:45Z"

Destination="http://idp.example.com/SSOService.php"

ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

POST"

AssertionConsumerServiceURL="http://sp.example.com/demo1/index

.php?acs">

<saml:Issuer>http://sp.example.com/demo1/metadata.php</saml:Is

suer>

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

…

</ds:Signature>

<samlp:NameIDPolicy

Format="urn:oasis:names:tc:SAML:1.1:nameid-

format:emailAddress"

AllowCreate="true"/>

<samlp:RequestedAuthnContext Comparison="exact">

<saml:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTran

sport

</saml:AuthnContextClassRef>

</samlp:RequestedAuthnContext>

</samlp:AuthnRequest>

The signature and related information are part of one large

XML envelope of the AuthnRequest. Similarly, the response

XML in HTTP-POST contains one envelope with the assertion,

response, and signed data. While requests and responses are

communicated as several parameters in the HTTP-GET binding,

in HTTP-POST binding only one large XML blob contains all the

relevant parameters. We will look at the detailed response in

the next example.

An example

Enough of theory and conceptual discussions so far. Let us

get to some implementations for real life. While real-life

applications are complex and may need hundreds of

application access, we simulate similar concepts with just

three SPs and one IDP. We use the crewjam/saml Golang

package to provide us with these functionalities. We use

Flutter to render the user interface.

Figure 4.9: Architectural Diagram of the Example

In Chapter 4 folder of the sample code, you will find the

sources of this example. There are hundreds of lines of code

involved here. Hence, we will not be able to discuss all the

source code. However, we will discuss the salient features of

this code. The system comprises an IDP and three SPs. The

three SPs are:

HR App

Finance App

IDP Portal

We introduce the following changes in the /etc/hosts file such

that all these apps can run on the same physical machine.

Add these values to the /etc/hosts file.

On Windows, the file can be:

C:\Windows\System32\drivers\etc\hosts

127.0.0.5 mysrv.local

127.0.0.2 idp.local

127.0.0.3 finance.mysrv.local

127.0.0.4 hr.mysrv.local

The folder structure of the HR App is:

CHAPTER-4\HR

Similarly, the structure of the IDP App is:

The services are run on respective ports as shown in Figure

4.9: Architectural Diagram of the Example. The following

code snippet is used to launch a TLS server using the Golang

http module.

server := setupTLSServer("certs/ssl/idp.local.p12",

"idp.local")

log.Default().Fatal(server.ListenAndServeTLS("", ""))

Configuring the identity provider

We use the crewjam/saml library and extend its capabilities to

offer a minimal workable model for an identity provider.

Since our focus is web authentication, we additionally

provide single-sign-on capabilities to this application. The

application UI has four tables showing:

Users

Service providers

Shortcuts (used for IDP-initiated authentication)

Active sessions

An IDP strictly does not require user authentication per se to

the system. We like to provide IDP-initiated authentication

that requires the links to be active when a user has logged in

and a session exists. We call this service provided by the IDP

the IDP Portal. The IDP must be started with the following

command:

chapter-4\idp> go run ./idp.go

You can access it by reaching the website:

https://idp.local:8443/ on the browser.

Figure 4.10: IDP Initial Launch - No Service Provider is Loaded

On the initial launch, service provider metadata are not

loaded. Hence, the user can click the Load the SPs button to

load the service providers. As the service providers are

loaded, the login button in the top right corner gets active.

The user can log in by clicking on the icon.

Figure 4.11: SP Metadata is Loaded in the IDP

Under the hood, the IDP attaches as a handler to the HTTPS

server we started earlier. The following is the initialization

code4:

if idpServer, err := samlidp.New(samlidp.Options{

URL: *baseURL,

Key: key,

Certificate: cert,

Store: &samlidp.MemoryStore{},

}); err == nil {

addUsers(idpServer)

cors := cors.New(

cors.Options{

AllowedOrigins: []string{

"https://hr.mysrv.local:8444",

"https://finance.mysrv.local:8445"},

})

http.Handle("/idp/", cors.Handler(http.StripPrefix("/idp",

idpServer)))

http.HandleFunc("/", func(w http.ResponseWriter, r

*http.Request) {

http.SetCookie(w, &http.Cookie{

Name: "sploaded",

Value: strconv.FormatBool(sploaded),

HttpOnly: false,

Path: "/",

})

invalidateIDPSession(w, r, idpServer)

http.FileServer(http.Dir("frontend/build/web")).ServeHTTP(w,

r)

})

http.HandleFunc("/addsps", addServiceProviders)

addIDPAuth(idpServer, key.(*rsa.PrivateKey), cert)

}

As can be seen from the code:

1. The IDP service starts with a base URL, signing key,

certificate, and memory store. There is no persistent

store. Hence, every launch requires initialization.

2. Alice, Bob, Carol, and Don are the users. password is the

password for all the users. The IDP loads this

information.

3. The IDP is attached to the /idp virtual of the HTTPS

server. Since SPs can redirect to IDP URLs, the permitted

SPs should be white-listed. The Cross-Origin Resource

Sharing (CORS) policy addresses these.

4. We serve the flutter-based frontend code at the root

location. We also conduct some session cleanup as the

user accesses the system.

5. We add a virtual /addsps as a trigger. All the SP metadata

are loaded when the user clicks the Load the SPs

button.

6. In the end, we attach the IDP Portal SP to the system.

The IDP exposes the following URLs. We use these

extensively in the code to access the IDP5.

/idp/metadata - the SAML metadata

/idp/sso - the SAML endpoint to initiate an

authentication flow

/idp/login - prompt for a username and password if no

session is established

/idp/login/:shortcut - kick off an IDP-initiated authentication

flow

/idp/services - RESTful interface to Service objects

/idp/users - RESTful interface to User objects

/idp/sessions - RESTful interface to Session objects

/idp/shortcuts - RESTful interface to Shortcut objects

Once the IDP is configured and operational, we configure a

Service Provider (SP) to authenticate a user.

Configuring the HR app service

provider

HR App is a trivial pending leave view website. A user in the

hradmin group can see the leave balance of all the users,

while the users in the users group see the leave balances of

theirs only. It provides a login button to log in to the system.

To launch the application:

1. Make sure the IDP is running.

2. The SP metadata is loaded to the IDP.

3. Start the application by using the following command:

chapter-4\hr> go run ./hr.go

4. Launch the browser and go to the URL:

https://hr.mysrv.local:8444

Figure 4.12: User Alice accessing the HR App

Once the user interface shows up, the steps are relatively

simple.

1. Click on the lock icon in the top right corner.

2. The browser is directed to the

https://idp.local:8443/idp/sso URL with a SAML

request. Now, provide alice as the username and

password as the password.

3. Authentication is successful. One sees the username and

logout button in the top right corner.

4. As Alice belongs to the hradmin group, we see pending

leaves of all the users.

We met the expectations of the application, but how did it all

work under the hood?

In the code, we have configured a SAML service provider

(crewjam/saml/samlsp) as shown6:

key, cert, _ := getProviderCertAndKey("certs/hr.p12")

idpMetadataURL, _ :=

url.Parse("https://idp.local:8443/idp/metadata")

idpMetadata, _ := samlsp.FetchMetadata(context.Background(),

http.DefaultClient, *idpMetadataURL)

samlSP, _ := samlsp.New(samlsp.Options{

URL: *rootURL,

Key: key,

Certificate: cert,

AllowIDPInitiated: true,

SignRequest: true,

IDPMetadata: idpMetadata,

})

http.Handle("/saml/", samlSP)

http.Handle("/",

http.FileServer(http.Dir("frontend/build/web")))

We extract the key and the certificate from the pkcs12

envelope and provide them to the initialization API.

The initialization requires a few parameters like the

idpMetadata that we directly fetch from the IDP by

querying the metadata URL.

The SP signs all the requests it sends to the IDP.

The SP accepts IDP-initiated responses, which means the

IDP can send responses to the SP without the SP sending

an AuthnRequest. We will review this in a subsequent

section.

We bind the service provider to handle all requests

coming on the /saml/ virtual.

We also want the frontend flutter code to be served from

the / virtual.

Where is the authentication happening then? The

authentication is bound to the /auth virtual. This is triggered

when the lock button is clicked on the UI.

http.Handle("/auth/", samlSP.RequireAccount(

http.HandlerFunc(func(w http.ResponseWriter, r

*http.Request) {

sProvider := samlSP.Session

switch r.URL.Path {

case "/auth/logout":

// Session cleanup code goes here.

default:

// Session establishment code goes here.

}

http.Redirect(w, r, "/", http.StatusFound)

}),

),

)

SAML libraries, like crewjam/saml hide all the protocol-level

details. That is why you need to look at the network logs in

the developer tool of the Chrome browser. Here, the

RequireAccount call does all the magic. We will discuss this

method in session management with further details. Let us

relook at steps 1 to 4.

1. The IDP metadata tells the SP the availability of the Web

SSO profile at: https://idp.local:8443/idp/sso.

<EntityDescriptor

xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

validUntil="2023-04-29T03:40:35.161Z"

cacheDuration="PT48H"

entityID="https://idp.local:8443/idp/metadata">

<IDPSSODescriptor

xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0

:protocol">

<KeyDescriptor use="signing">

…

</KeyDescriptor>

<KeyDescriptor use="encryption">

…

 </KeyDescriptor>

<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid

format:transient

 </NameIDFormat>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

Redirect"

Location="https://idp.local:8443/idp/sso"/>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

POST"

Location="https://idp.local:8443/idp/sso"/>

</IDPSSODescriptor>

 </EntityDescriptor>

2. Hence, the authentication request is sent as an HTTP-

redirect to https://idp.local:8443/idp/sso. The URL is

shown here:

https://idp.local:8443/idp/sso?

SAMLRequest=…&

RelayState=…&

SigAlg=…&

Signature=…

The SAMLRequest is shown below:

<samlp:AuthnRequest

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

ID="id-9d8d8f1690443e5ce3dfb182642daf108736641e"

Version="2.0"

IssueInstant="2023-04-25T08:22:21.378Z"

Destination="https://idp.local:8443/idp/sso"

AssertionConsumerServiceURL="https://hr.mysrv.local:8

444/saml/acs"

ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings

:HTTP-POST">

<saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:entity">

https://hr.mysrv.local:8444/saml/metadata

</saml:Issuer>

<samlp:NameIDPolicy

Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"

AllowCreate="true"/>

</samlp:AuthnRequest>

The IDP verifies the request with the Signature

presented. The IDP has access to the metadata of the SP.

Hence, it knows the public key of the signature. There is

also a RelayState attribute sent along with the request.

The IDP sends back this value to the SP as part of the

SAMLResponse.

3. The IDP sends the response to the

AssertionConsumerServiceURL of the SP.

AssertionConsumerServiceURL is specified in the AuthnRequest.

The IDP also sends the RelayState along with the

response. The SP receives the response as an HTTP-Post.

Why? Here are the relevant sections from the SP’s

metadata.

<AssertionConsumerService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="https://hr.mysrv.local:8444/saml/acs"

index="1"></AssertionConsumerService>

<AssertionConsumerService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

Artifact"

Location="https://hr.mysrv.local:8444/saml/acs"

index="2"></AssertionConsumerService>

There is no definition of AssertionConsumerService (ACS) on

an HTTP-Redirect binding. You may see AuthnRequest with

Assertion ConsumerServiceIndex as an attribute. For

example, the AuthnRequest could have

AssertionConsumerServiceIndex=1 in the attributes list. The

SAML response has two form parameters. SAMLResponse

and RelayState. In most cases, the SAMLResponse is a

canonicalized XML document compressed using flate

and encoded with the Base-64 algorithm7. The encoded

form may look like this:

PHNhbWxwOlJlc3BvbnNlIHhtbG5zOnNhbWw9InVybjpvYXNpczpuYW1lczp

0YzpTQU1MOjIuMDphc3NlcnRpb24iIHhtbG5zOnNhbWxwPSJ1cm46b2FzaX

M6bmFtZXM6dGM6U0FNTDoyLjA6cHJvdG9jb2wiIHhtbG5zOnhzPSJodHRwO

i8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYSIgSUQ9ImlkLWI4MDdhYmYx

YzY0OWQyYTE0Y2VjMjdiNDRiOTBiNmZiZWViMDU4ZjciIEluUmVzcG9uc2V

Ubz0iaWQtOWQ4 …

HJpYnV0ZVZhbHVlPjxzYW1sOkF0dHJpYnV0ZVZhbHVlIHhtbG5zOnhzaT0i

aHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWEtaW5zdGFuY2UiIHh

zaTp0eXBlPSJ4czpzdHJpbmciPnVzZXJzPC9zYW1sOkF0dHJpYnV0ZVZhbH

VlPjwvc2FtbDpBdHRyaWJ1dGU+PC9zYW1sOkF0dHJpYnV0ZVN0YXRlbWVud

D48L3NhbWw6QXNzZXJ0aW9uPjwvc2FtbHA6UmVzcG9uc2U+

When decoded you see:

<samlp:Response

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

… Attributes deleted

Destination="https://hr.mysrv.local:8444/saml/acs">

<saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:entity">

https://idp.local:8443/idp/metadata</saml:Issuer>

<ds:Signature

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

… <!--- This is the signature of the response --->

</ds:Signature>

<samlp:Status>

<samlp:StatusCode

Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

</samlp:Status>

<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="id-cca9e5c45019296318fc0575edfe719b7785ba8f"

IssueInstant="2023-04-25T08:22:55.611Z"

Version="2.0">

<saml:Issuer

Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:entity">

https://idp.local:8443/idp/metadata</saml:Issuer>

<ds:Signature

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

… This is the signature of the assertion.

</ds:Signature>

<saml:Subject>

<saml:NameID

Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"

NameQualifier=https://idp.local:8443/idp/metadata

SPNameQualifier="https://hr.mysrv.local:8444/saml/met

adata">

alice@example.com </saml:NameID>

<saml:SubjectConfirmation

Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">

<saml:SubjectConfirmationData Address="127.0.0.1:61849"

InResponseTo="id-

9d8d8f1690443e5ce3dfb182642daf108736641e"

NotOnOrAfter="2023-04-25T08:24:25.487Z"

Recipient="https://hr.mysrv.local:8444/saml/acs"/>

</saml:SubjectConfirmation>

</saml:Subject>

<saml:Conditions NotBefore="2023-04-25T08:22:21.378Z"

NotOnOrAfter="2023-04-25T08:23:51.378Z">

<saml:AudienceRestriction>

<saml:Audience>https://hr.mysrv.local:8444/saml/metada

ta

</saml:Audience>

</saml:AudienceRestriction>

</saml:Conditions>

<saml:AuthnStatement

…

<saml:AuthnContext>

<saml:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordPro

tectedTransport

</saml:AuthnContextClassRef>

</saml:AuthnContext>

</saml:AuthnStatement>

<saml:AttributeStatement>

<saml:Attribute FriendlyName="uid"

Name="urn:oid:0.9.2342.19200300.100.1.1"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-

format:uri">

<saml:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xs:string">alice</saml:AttributeValue>

</saml:Attribute>

<saml:Attribute FriendlyName="eduPersonPrincipalName"

Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.6"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-

format:uri">

<saml:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xs:string">

alice@example.com</saml:AttributeValue>

</saml:Attribute>

…

<saml:Attribute FriendlyName="eduPersonAffiliation"

Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.1"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-

format:uri">

<saml:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"xsi:type="xs:string">hradmin</saml:Attribu

teValue>

<saml:AttributeValue

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"xsi:type="xs:string">users</saml:Attribute

Value>

</saml:Attribute>

</saml:AttributeStatement>

</saml:Assertion>

</samlp:Response>

The response is composed of three parts:

Status: This section lets the SP know if the

authentication has succeeded.

Assertion: This section states who has

authenticated and the various attributes known

about the subject.

Signature: IDP has signed the response.

The assertion stands by itself and can be extracted from

the response and validated. It has its signature section

that signs the assertion section only. The assertion

section has a few items that we like to highlight here.

Subject - The name of the user in well-defined

formats.

Subject Confirmation - This specific assertion can

be a bearer validation. In other cases, the relying

party can demand additional assurance to thrust the

assertion provider.

Conditions - NotBefore or NotOnOrAfter stating the

validity window of the assertion. This assertion is

valid for only 90 sec.

AuthnStatement - We bring your attention to the

AuthnContextRef. The user provided username and

password to authenticate. An AuthnRequest can

specifically demand a particular authenticator as

well.

Attributes - The Assertion contains several

attributes about the user.

4. For example, the groups attribute in the assertion

(eduPersonAffiliation) has hradmin as a value. Hence,

Alice sees the data of all the users.

Session management

The IDP issued an assertion to the bearer with a trust valid

for 90 sec. The SP must keep the user authenticated for as

long as he wants to work. The SP session management

addresses this situation. The samlsp package takes the

assertion and recreates another token using the JSON Web

Ticket (JWT) format. We shall review the details of this format

in the chapter on OIDC. JWT has three parts:

Header - contains the signing algorithm details with the

type, which is JWT.

Body - Contains the subject and attributes, which we

have seen in the assertion section.

Signature - The SP issued it. Hence, signed by the SP's

signature.

{

"alg": "RS256", "typ": "JWT"

}

{

"aud": "https://hr.mysrv.local:8444",

"exp": 1682414575, ### Tue Apr 25 2023 09:22:55 GMT+0000

"iat": 1682410975,

"iss": "https://hr.mysrv.local:8444",

"nbf": 1682410975, ### Tue Apr 25 2023 08:22:55 GMT+0000

"sub": "alice@example.com",

"attr": {

…

"cn": ["Alice Smith"],

"eduPersonAffiliation": ["hradmin","users"],

"eduPersonPrincipalName": ["alice@example.com"],

"givenName": ["Alice"],

"sn": ["Smith"],

"uid": ["alice"]

},

"saml-session": true

}

//Signature section not shown

This data is normally encoded using Base-64 encoding8. The

encoded string looks like this.

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOiJodHRwczovL2hyLm

15c3J2LmxvY2FsOjg0NDQiLCJleHAiOjE2ODI0MTQ1NzUsImlhdCI6MTY4MjQxM

Dk3NSwiaXNzIjoiaHR0cHM6Ly9oci5teXNydi5sb2NhbDo4NDQ0IiwibmJmIjox

NjgyNDEwOTc1LCJzdWIiOiJhbGljZUBleGFtcGxlLmNvbSIsImF0dHIiOnsiU2V

zc2lvbkluZGV4IjpbImUzNTFmZDk0Y2Q1MWY5YTVkMDAwNzNkMDQyOWRjYjJmOT

djMzAwOTllNzZjYTgwOGI2NWFhNGIxZTY2ZGJjYzYiXSwiY24iOlsiQWxpY2UgU

21pdGgiXSwiZWR1UGVyc29uQWZmaWxpYXRpb24iOlsiaHJhZG1pbiIsInVzZXJz

Il0sImVkdVBlcnNvblByaW5jaXBhbE5hbWUiOlsiYWxpY2VAZXhhbXBsZS5jb20

iXSwiZ2l2ZW5OYW1lIjpbIkFsaWNlIl0sInNuIjpbIlNtaXRoIl0sInVpZCI6Wy

JhbGljZSdfSwic2FtbC1zZXNzaW9uIjp0cnVlfQ.n3WbxSXmXJ-Sh2-

y2LMIrm_lrRZxZHL6y7WwAUkS1h6OX20KbNXtzhm6GViVoKXSlT78wfQ9tuCg8Q

VIyN-

Jauuj0kS0MivClXgIBbraKpYDAgbgDUVskWgfy6fX8Q_6KP5GB2kK34BT8ykK_I

dDJYe4YTWFYE-

jTY7VK4ynQuMJ4662IaaXqrY7XtWc3WVtep3mwPjlRTym79jjgEEPPJrpyKuD9R

tZhsn9rwFuwXiihyxu9lif44RnVyk2M7u8dFn_bXGDspY1rGZ81DBPz7hElbZBq

mqXNgXfkBU4UautXgm9SVwtnBnBu_-r7aG95NJ3YnHAclWW3_8TmQtbxQ

The issued JWT is for one hour while the original assertion

was only issued for 90 secs. It is time to relook at the /auth

handler again.

http.Handle("/auth/",

samlSP.RequireAccount(

http.HandlerFunc(func(w http.ResponseWriter, r

*http.Request) {

sProvider := samlSP.Session

switch r.URL.Path {

case "/auth/logout":

sProvider.DeleteSession(w, r)

// Delete the cookie named uid

default:

// set the cookie named uid

}

http.Redirect(w, r, "/", http.StatusFound)

}),

),

)

The RequireAccount handler does all the session management

activity here.

The session management does not involve the IDP at all.

The RequireAccount handler looks for a valid cookie with a

name token. The cookie contains the actual JWT string. It

checks the validity of the token.

If no token is found or the token is invalid, it initiates the

SAML Authentication workflow.

On successful authentication, the handler creates a JWT

token from the SAML assertion. This JWT token is signed

with the SP’s key and can be validated only with the SP’s

certificate. The token is marked HttpOnly. Hence, it

cannot be accessed by JavaScript of the browser.

We extract the uid from the token and set it separately.

Now, the browser can render the logged-in user in the

Flutter code.

appBar: AppBar(

title: const Text('HR App'),

actions: [

Consumer<CookieRead>(

builder: (context, cr, child) {

if (cr.uid == null) {

return IconButton(

onPressed: () {

launchUrl(

Uri(scheme: "https", path: "/auth/"),

webOnlyWindowName: "_self",

).then((_) => Provider.of<CookieRead>

(context).refresh());

},

icon: const Icon(Icons.lock),

tooltip: "Login",

);

} else {

return Row(

children: <Widget>[

Text(cr.uid!),

IconButton(

onPressed: () {

launchUrl(

Uri(scheme: "https", path: "/auth/logout"),

webOnlyWindowName: "_self",

).then((_) => Provider.of<CookieRead>

(context).refresh());

},

icon: const Icon(Icons.lock_open),

tooltip: "Logout",

),

]);}})]),

The CookieRead is a ChangeNotifier that looks for a cookie

by the name: uid and shows the username on the user

interface.

The logout implementation for the SP is local. This only

clears the token cookie. The IDP token is not affected. No

implementation of Single Logout (SLO) exists with the

samlidp library. Hence, we have implemented a simple

local logout only.

Protecting the APIs

With Flutter or React-based UI becoming central to web

development, we need limited privacy protection in the user

interface. REST APIs serve the View Models. We protect them

with authentication guards. Here is how we protect the /data

virtual.

http.HandleFunc("/data", func(w http.ResponseWriter, r

*http.Request) {

if session, err := samlSP.Session.GetSession(r); err == nil

{

attr := session.

(samlsp.SessionWithAttributes).GetAttributes()

var jsValue []byte

bFound := false

for _, v := range attr["eduPersonAffiliation"] {

switch v {

case "hradmin":

jsValue, _ = json.Marshal(database)

bFound = true

case "users":

uid := attr.Get("uid")

jsValue = []byte(fmt.Sprintf("{ \"%s\" : %d}", uid,

database[uid]))

}

if bFound {

break

}

}

w.Write(jsValue)

} else {

http.Error(w, "User not authenticated",

http.StatusUnauthorized)

}

})

Unlike RequireAccount, the GetSession method checks the

existence of a valid token cookie. If the cookie does not exist,

the authentication fails and an HTTP error is sent back as the

response. XMLHttpRequest browser objects (Flutter HttpClient)

access the REST APIs. These objects do not have access to

the browser front end to redirect to an authentication form.

Single sign-on

We have launched the IDP, HR App, and Finance App. Now

we access the HR App. We process the SP-initiated

authentication sequence and access the HR App. Next, we

access the Finance App by going to the URL:

https://finance.myserv.local:8445. As expected, Alice is

not prompted for any username and passwo]rd. She

accesses the Finance App. The outline of the workflow is

discussed in Figure 4.6: SSO with Federated

Authentication.

The Finance App redirects to the IDP with an AuthnRequest.

We suggest you go to the IDP page and open the

developer tools. Under the applications tab, you will see

a session cookie.

When a browser sends this cookie to the website

https://idp.local:8443, there is no authentication with

a username and password required.

The Finance App receives the relevant SAMLResponse on its

AssertionConsumerServiceURL.

The user logs in. Since Alice is not a member of the

financeadmin group, she does not see the information of

all the users.

Figure 4.13: SSO to the Finance App

If you visit the IDP, you will still see the closed lock icon.

However, clicking the icon will log in the user to the IDP

Portal SP. There will be no need to provide a username and

password.

Figure 4.14: IDP Portal on User Login

You will observe the highlighted changes:

Username and Logout buttons show up in the top right

corner.

In the Shortcuts section, the SP names will become

clickable. We will be able to log in to these Apps by

clicking on these cells. We will discuss this further under

the IDP-initiated authentication.

You will also see only one session in the Sessions

section, while we logged into three applications.

If you go to the developer tools and view the cookies

associated with this site, you will see these cookies:

token: An IDP Portal SP cookie used to maintain the

authentication in the IDP portal.

session: This is the actual SSO session the IDP maintains.

All the SSO authentications are carried out using this

cookie.

uid: The username cookie that is used to access the

username in the Flutter sources.

The IDP initialization code had a line addIDPAuth(idpServer,

key.(*rsa.PrivateKey), cert). This code sets up the IDP Portal

authentication. The code is like what we have seen with the

HR App.

We set up a /saml virtual and associate it with the samlsp

middleware.

We associate a /auth virtual that manages the sessions

and cookies for the SP.

The IDP logout deletes the SSO session cookie. This

means further authentications require a new

authentication session.

IDP-initiated authentication

Before starting this, make sure you log out of any HR App

screen open in the browser. And there is no residual token or

uid cookie on the website: https://hr.mysrv.local:8444.

Now, log in to the IDP as Alice. You will end up in Figure

4.14: IDP Portal on User Login. There is an InkWell set

around the SP names in the Shortcuts section. Clicking that

will open the HR App in a new tab.

Figure 4.15: Clicking the IDP Link Led to Authentication in SP

In the configuration of SP, we allowed IDP to send

SAMLResponse directly without the SP requesting an

AuthnRequest. If you look at the network logs in the browser

developer tools, you will see a complete SAMLResponse form

field posted to https://hr.mysrv.local:8444/saml/acs.

Instead of clicking the cell, you could directly access the URL

https://idp.local:8443/idp/login/hr. Could you spot the

error in the UI yet?

You will see the lock is closed in the top right corner, yet the

data is shown in the UI.

As the user has logged in already in the IDP when the

SAMLResponse reaches the ACS, the samlsp module creates

a valid token.

Since we check only for the token cookie in the /data

virtual, the results are reported in the table.

We create the uid cookie only when the /auth virtual is

hit. Now try this URL in the browser:

https://idp.local:8443/idp/login/hr/auth

Figure 4.16: Accessing with the proper RelayState ensures authentication

If you view the form data submitted to the ACS, you will

realize /auth was sent as the RelayState. The samlsp is

redirected to the RelayState once the authentication data is

verified at the ACS.

Protected resources

Did you realize the authentication guard set up for the

Finance App is different from the HR App? The Finance App

requires a logged-in user to access any file including UI

resources on the server, the authentication guard is set on

the root virtual (/). While the HR App routes authentication

through a specific virtual /auth. What should be the approach

in real life? The browser does not require downloading all the

files through a UI. With XMLHttpRequest (Flutter HttpClient)

objects, some resources can be downloaded in the

background. In such cases, redirection to authentication can

fail. It can be detrimental when some resource files cannot

be downloaded. Assume a background thread downloads a

resource file. The client redirects to the login page. Since

there is no UI, the user cannot authenticate. The user

authenticates on the first file that downloads through the UI

channel, like, an HTML file. There is a possibility that some

resource files are lost when accessed by a background

thread. With MVVM architecture, the UI or View layer may

not need authentication protection. The real private data is

available at the View Model (REST API) layer. Hence, a

dedicated virtual, like, /auth in HRApp, can carry out the

authentication. However, one must be careful of possible

oversights we observed in our implementation of using the

RelayState effectively.

Note:

Separating the authentication to a specific URL, like /auth,

helps the UI developers launch the URL in a popup or dialog

window and complete authentication there. This way, the

main application can continue to show the static view

(without authentication) on the screen. If the authentication

is successful in the popup window, the main application

receives an updated view model to render the

authenticated view. However, in all our sample code in the

book, we use complete application redirection to reduce the

UI complexity.

Identity and access management

Whenever we attempt to explain something using simplified

examples, we run the risk of trivializing the problem. Yet, a

simple system helps to visualize problems seen in real life. In

the example of IDP, HR App, and IT App, we discussed

significant concepts of identity and access management

(IAM). Let us take a closer look.

Figure 4.17: Identity and Access Management

We simplified the interaction into two categories: service

providers (SP) and identity providers (IDP). There are several

entities in the play. The IDP interacts with a user store for

user information and authenticates with authenticators of

many kinds. We simplified using a memory user store and

used only a password as an authenticator. A user store could

have been an LDAP server or a cloud-based user store using

a REST interface. We had the IDP maintain the SSO session.

SSO can be an independent component of the IDP. A vendor

can offer only SSO, delegating authentication to a third-party

IDP over SAML. We had the SPs mint the security tokens.

Some IAM solutions provide Secured Token Servers (STS) that

only issue and manage these tokens. Finally, access

managers consume these tokens and give access to

networks or specific applications with varying authorization.

IAM platforms undertake one or more such responsibilities

and delegate the others to upstream or downstream

systems. Fortunately, several commercial IAM platforms

address these responsibilities, reducing the scope of custom

development. At the same time, what we discussed is in

sync with the larger IAM framework.

Conclusion

We had quite a roller-coaster. We started with understanding

federated authentication and got some understanding of

SSO. We looked at the SAML protocol and its various

conceptual frameworks. Subsequently, we moved to an

example and looked at IDP and SPs. We showcased SP-

initiated authentication, IDP-initiated authentication,

assertions, attributes, SSO, and some code snippets as part

of the learning. Did that cover enough of SAML? The

standards have been in existence for more than a decade.

They feature several extensions and addendums. It is not

practical to cover all of it in one chapter. More importantly,

one need not understand the standard in so much detail to

use it through libraries and SDKs. We have discussed enough

to help you understand the rationale of the protocol. You

require additional exploration and applications to master the

protocol. In this chapter, the enterprise had control over the

SPs and IDPs. The IDP is trusted by all the SPs and vice-

versa. IDP provided all the claims that a trusted SP asked for.

What happens when the user decides what information the

IDP should share with the SP? What if the user does not want

to share all the data in IDP's possession but wants to share a

small subset? Can there be varying levels of access control

provided? All these are questions of the social networking

era of authentication and our subject matter for the next

chapter.

Questions

1. Pick up an open-source Identity and Access Management

product of your choice. Write a SAML application and

authenticate with the IAM system. Configure some

claims and verify them in your application.

2. Can a certificate act as an authentication token? What

are some of the downsides?

3. Open a SAML response in a text editor and identify

various authentication token parameters in it.

4. Why does an SP sign a SAML AuthnRequest? Can an SP

query for specific claims from the IDP through an

AuthnRequest?

5. How do the SPs establish mutual trust with the IDP? Do

the SPs need to trust each other for SSO?

1 RFC 4120, https://www.ietf.org/rfc/rfc4120.txt

2 Taken from the SAML Bindings Specifications.

3 Example from OneLogin.

https://developers.onelogin.com/saml/examples/authnrequest

4 Non-central concepts like error handling are not shown to keep the code simple.

5 From the samlidp documentation.

https://pkg.go.dev/github.com/crewjam/saml/samlidp#Server

6 Non-central concepts like error handling are not shown to keep the code simple.

7 Many decoders are available in the market to decode such responses. We do

not endorse any specific vendor nor recommend any such tools. We used the

online tools freely available at:

https://www.samltool.com/online_tools.php

8 Many decoders are available in the market to decode such responses. We do

not endorse any specific vendor nor recommend any such tools. We used the

https://www.ietf.org/rfc/rfc4120.txt
https://developers.onelogin.com/saml/examples/authnrequest
https://pkg.go.dev/github.com/crewjam/saml/samlidp#Server
https://www.samltool.com/online_tools.php

online tools freely available at: https://jwt.io

https://jwt.io/

CHAPTER 5

Federated Authentication - II

(OAuth and OIDC)

Introduction

In the previous chapter, we introduced federated authentication.

We realized the need for enterprises to separate user

authentication from other services in the organization. Users can

authenticate at the identity provider (IDP), while service

providers (SPs) can trust and extend access to the users. There

are a few assumptions in this system. The SPs must trust the IDP,

and the IDP trust all the SPs. It looks plausible in an organization,

but extending beyond an organization can be limiting. Let us say

there is a contractual employee or a partner organization whose

employees are to access the organization's systems. The

partner's IDP must be additionally trusted by the organization.

These kinds of architecture have been there for some time now.

Daisy chaining of IDPs or user stores is not unusual in a

corporate context.

Figure 5.1: IAM with Partner Organization

Identity and Access Management (IAM) systems of ACME

corporation trust the IDP or User Store of WeService Corp to

provide access to its employees. However, challenges are

complex in the era of social networking. Enterprises want to trust

a temporary worker without adding her to their IAM systems.

They are open to letting the worker log in to a social network

site, like Google, LinkedIn, Facebook, or GitHub. The worker

wants not all of the information they have in the social network

to be accessible to their employers. In this chapter, we will work

with many such complex access and data management

scenarios.

Structure

In this chapter, we will cover the following topics:

Authentication vs authorization

OAuth protocol

3 – Legged OAuth Protocol

Cross-Site Request Forgery (CSRF) Protection

Web application displaying GitHub user data

Limited capability device

Native applications

Token issuance

OpenID Connect (OIDC)

Using OAuth for Authentication

Identity Token

JSON Web Token

Login with Google

Authentication vs authorization

In Chapter 1, Introduction to Web Authentication, we looked at

authentication. The users provide their credentials, and someone

validates credentials in the backend; on successful validation,

users are treated as the persons they claim to be. The process of

authentication does not entrust any rights. It just identifies the

person. The SAML assertion we discussed in the previous chapter

had such characteristics. The Subject and NameID entries were

authentication parameters. The attributes or claims gave

differential rights to the user, namely, hradmin or users. These

differentiated rights are essentially the function of authorization.

Let us pick up an example from the non-IT world. Some advanced

cars have valet keys. The regular owner key gives access to the

boot space, gloves compartments, and so on. A valet key lets

access to the driver's side door and drive around only a small

distance for a limited period. Now you go to a restaurant and

give the valet the key to park the car. You may not authenticate

the valet, but by her standing in front of the restaurant, you will

trust her and give her the valet key authorizing her to use the car

for a specific purpose. In some sense, you gave the key to the

restaurant and let the restaurant provide the key to a bona fide

staff. The IAM world picked up this pattern which we will discuss

in this chapter. We are still discussing an authorization problem

but something that is well beyond the scope of claims and

attributes we discussed in the previous chapter. Here the bearer

of the valet key is the valet. There is no additional authentication

needed for him. HTTP authorization headers with bearer tokens

pretty much follow the same pattern.

Social networking has changed the authentication and

authorization landscape. Some of the networks have become

ubiquitous. There is hardly a user who does not have an account

in at least one of Google, Facebook, X (Twitter), LinkedIn, and the

like. All these platforms have spent and advertised their Identity

platforms extensively; they support multifactor authentication.

They have a substantial number of personally identifiable

information (PII) securely stored. Now, a service provider can

access all this information by obtaining consent from the user

while the user authenticates to an identity platform like Google

or Facebook. As an exercise, we request the readers to try this:

Create a new Google account.

Now, go to https://linkedin.com and use this new account

to access LinkedIn.

A LinkedIn account will be created while associating it with

the Google Account.

It reduces the need for the user to remember a password or

credential for LinkedIn. Will LinkedIn be able to access the user's

Google password? All the federated authentication schemes

establish a one-on-one linkage between the user and the IDP.

Hence, the service provider cannot access the credentials like

passwords or OTPs. Moreover, for a service provider like LinkedIn,

accessing the user's complete address book from Google is an

option if the user permits. Against this backdrop, the industry

conceived the OAuth protocol. There are more use cases we will

discuss as we explore further.

Social networking brought a revolution in content mashups. You

create content on one platform and reuse it on another platform.

For example, you want to show your X (Twitter) feeds or

Instagram reels on your webpage, at least a snippet as an

advertisement. You want a few lines from your LinkedIn biodata

on your web page. Your blog roll should show up on another page

of yours. All these are examples of mashups. While some of

https://linkedin.com/

these may not need any authorization, some websites will like

the user to authorize this access by a third party. Let us say you

want to show the basic profile of GitHub on your webpage. Here

is what you will do:

You will log in once to GitHub from your website.

You will consent on GitHub that your website will request

GitHub for your user profile.

GitHub will provide a token or ticket that your website can

store and request from GitHub the profile.

OAuth protocol

The protocol designers explain the protocol in this way1:

An open protocol to allow secure authorization in a simple and

standard method from web, mobile, and desktop applications.

Not limited to only web applications, the protocol encompasses

devices of varying form factors. The expanse of the protocol has

made it a de facto standard for web authorization today. With

REST APIs being the most common means of application

development, there is a lot of focus on protecting API endpoints

with tokens generated from OAuth protocols. OAuth 2.0 was

developed as RFC 67492 in 2012 with a proposal from Microsoft

Inc. It obsoletes the earlier version of OAuth 1.0 (RFC 58493).

With such a long involvement of OAuth in the industry, we will

only be discussing OAuth 2.0 here. Moreover, there is no 3.0

version of OAuth4 proposed in the market. Version 2.1 is in the

draft stages5. Our focus will be on understanding and using the

protocols rather than stringent adherence. General confusion

exists regarding OAuth 2.0 and OpenID Connect (OIDC) 1.0

protocols. While both have very similar roots, OAuth is an

authorization protocol, while OIDC is an authentication protocol.

The OAuth framework is the basis of the OIDC protocol, but there

are some differences. We will review these distinctions as part of

this chapter. A programmer should understand these differences

and use effective protocols and associated libraries.

3-legged OAuth protocol

At an abstract level, an OAuth workflow is the following

diagram6:

Figure 5.2: OAuth 2.0 Abstract Protocol Flow

While the above is a simplistic explanation of OAuth 2.0 flow, it is

far from how an actual browser workflow behaves. The browser is

on the end user's device. Such devices are considered unsecured

and not trustworthy. However, web browsers can interact with

any other server over the internet. Hence, the user can directly

interact with the authorization server and present their

credentials for obtaining the authorization code. While

interacting in the web framework, we will split the client into two

parts, the browser, and a web integration server. Let us relook at

the preceding workflow with the new components.

Figure 5.3: OAuth in the web workflow

1. The user initiates some activity that triggers authorization.

2. The integration server redirects the user to the authorization

server for user consent. The integration server may set a

scope for the access request.

3. The user gets a challenge on the browser based on the scope

and the policy configured in the authorization server. This

challenge depends on the kind of credentials; for example, it

can be a username and password, OTP, biometric credential,

and so on.

4. The user responds to the challenge with the credential

details.

5. Upon successful validation, the authorization server sends

an authorization code and redirects the browser to the

redirect_uri of the integration server.

6. The integration server requests an access_token from the

authorization server by providing the client_id, client_secret,

and authorization code.

7. When the client credentials and the authorization code are

validated, the authorization server issues an access_token.

8. The integration server can set the access_token as a browser

cookie for subsequent resource requests.

9. The browser sends the access_token to the resource server to

request the resource.

10. The resource server responds with the resource.

Such a complex web workflow for the seemingly simple OAuth

workflow can be confusing. There are a couple of reasons for the

same.

1. A user's device is amenable to attacks and cannot be

trusted. Hence, we do not store client_id and client_secret

on such devices.

2. The authorization server must reach the client. Inbound

connections are not available with the end user devices.

Through the redirect_uri, the authorization server can

contact the client through a browser redirect.

3. The integration server ensures web security. The workflow

expects a TLS channel setup between every communication

end-point. A hacker cannot orchestrate a man-in-the-middle

attack.

4. The integration server can set the tokens as cookies on the

browser with additional protection like HttpOnly and Secure

flags. The browser will send these cookies only over TLS

connections and cannot use JavaScript to read and analyze

the cookie.

Cross-Site Request Forgery (CSRF) Protection

In Figure 5.3, OAuth in the Web Workflow step 2, the web

browser is redirected from the web integration server. Is this step

required? If you follow the subsequent steps, the user interacts

with the authorization server directly and obtains an

authorization code. In step 6, the integration server gets the

access_token by providing the authorization code, client_id, and

client_secret as the inputs. Technically, a malicious actor can

hijack step 2 through CSRF and obtain an authorization code for

the scope of her choice from the user. Then she can use the

redirect_uri of the integration server and submit an access_token

request, thus elevating or reducing privileges. In the previous

chapter, we suggested an SP must sign AuthnRequest for SAML

workflows. There is no provision for signing the request here.

How do we ensure the actual request originated from the web

integration server?

In step 2, when the integration server creates a request for

redirection to the authorization server, it adds a request

parameter state=<<A RANDOM VALUE>>. In step 5, when the

authorization server redirects to the redirect_uri, it sends the

same value for the state parameter. The integration server

ensures the state parameter obtained in step 5 is the same that

it had added in step 2. The state parameter can help maintain

the state before and after authentication to continue processing,

like RelayState used in the SAML framework.

Web application displaying GitHub user data

Our web application displays a GitHub user's data. In this

application, we redirect the user to the GitHub website and ask

for her consent to access the user data. On her approval, we

render the data in our application. Before we build our

application, we register a new application in GitHub.

GitHub Configurations

1. Log in to your GitHub account.

2. Navigate to https://github.com/settings/developers. You

can also reach here from user Settings -> Developers ->

OAuth Apps.

3. Register a new application.

4. Click on the general tab on the newly registered application

and generate a new client secret. Make sure to save the

value of the secret. The secrets cannot be recovered later.

https://github.com/settings/developers

Figure 5.4: Adding a new client secret for the OAuth application in GitHub

5. Copy the client_id and client_secret and store them in a safe

place.

6. Configure the authorization callback URI

https://mysrv.local:8443/oauth/callback

Note

client_id and client_secret values are confidential. Do not check

into the public code repositories. You can use the environment

variables to use them in the continuous integration or

development (CI/CD) pipelines. Device authorization does not

require client_secret.

Setting up the web integration server

Our web integration server is the OAuth client configured at

https://mysrv.local:8443 and serves the Flutter web front end

at the root folder. It has two endpoints for OAuth.

/oauth/login - Handles step 2 in Figure 5.3 OAuth in the web

workflow.

/oauth/callback - Handles step 5 in Figure 5.3. When the

authorization code is issued, it handles the token workflow.

Lastly, it has a /resource endpoint that queries the GitHub API to

collect the user data for rendering the front end using the

access_token.

The main function

In the main function, we set up an HTTP server over TLS. We serve

the front-end static files from the root virtual. We have reviewed

this code several times earlier. I will request readers to look at:

chapter-5/github/authcode.go. We will only elaborate

addOAuthHandlers here.

Oauth handlers for GitHub access

We use the oauth2 library7 that handles all the OAuth 2 network

and transport. First, we configure a Config object providing it

OAuth 2 specific parameters. There is also a preconfigured

Endpoint for GitHub8 which we use here.

conf := &oauth2.Config{

ClientID: client_id,

ClientSecret: client_secret,

Scopes: []string{"user"},

Endpoint: github.Endpoint,

}

We configure the /oauth/login handler. The handler takes a

request from a browser or HTTP client, fills up all the relevant

parameters, and redirects it to the actual GitHub authorization

server. oauth2.AuthCodeURL function formulates the redirection URL

by taking two parameters state and access_type. We create a

unique ID with the UUID method and provide that as the input for

the state parameter. For access_type, we input AccessTypeOffline.

We will discuss this parameter in a later section. We store the

state parameter in a map9. Thus, we can query its availability

when the redirection comes back from the authorization server

after user consent. It confirms the request originated from the

integration server.

http.HandleFunc("/oauth/login", func(w http.ResponseWriter, req

*http.Request) {

state := uuid.New().String()

_setState(state)

url := conf.AuthCodeURL(state, oauth2.AccessTypeOffline)

log.Print(fmt.Sprintf("Redirecting to: %s", url))

http.Redirect(w, req, url, http.StatusFound)

})

Next, we configure the /oauth/callback handler. In this handler, we

first check for the state parameter in the collection and ensure it

is one of the values we created. If found, we delete it from the

map to avoid the possibility of a replay attack. If the request

does not contain errors, it has the authorization code. We pick up

the authorization code and exchange it for the access token by

calling conf.Exchange() function. The access token is set as a

cookie for resource access.

http.HandleFunc("/oauth/callback", func(w http.ResponseWriter, req

*http.Request){

state := req.FormValue("state")

if _existsState(state) {

_deleteState(state)

} else {

log.Println("Invalid state parameter")

http.Error(w, "Invalid state parameter", http.StatusBadRequest)

}

if err := req.FormValue("error"); err != "" {

desc := req.FormValue("error_description")

http.Error(w, desc, http.StatusUnauthorized)

}

if code := req.FormValue("code"); code != "" {

token, _ := conf.Exchange(context.Background(), code)

http.SetCookie(w, &http.Cookie{

Name: "token",

Value: token.AccessToken,

HttpOnly: true,

Secure: true,

Path: "/",

})

http.Redirect(w, req, "/", http.StatusFound)

} else {

http.Error(w, "Invalid code parameter", http.StatusUnauthorized)

}

})

We add a /oauth/logout handler where we delete the access token

cookie.

http.HandleFunc("/oauth/logout", func(w http.ResponseWriter, req

*http.Request) {

http.SetCookie(w, &http.Cookie{

Name: "token",

Value: "deleted",

HttpOnly: true,

Secure: true,

Path: "/",

Expires: time.Now().Add(-5 * time.Minute),

})

http.Redirect(w, req, "/", http.StatusFound)

})

Lastly, we configure the /resource handler. The handler takes the

cookie from the request and creates a Token object. The

conf.Client method takes the token and returns an *http.Client.

The returned http.Client connects to the user endpoint of GitHub

and obtains the response. The Flutter front end renders this data

in the browser.

http.HandleFunc("/resource", func(w http.ResponseWriter, req

*http.Request) {

cookie, err := r.Cookie("token")

if err != nil {

http.Error(w, "User not authorized.", http.StatusUnauthorized)

}

client := conf.Client(context.Background(), &oauth2.Token{

AccessToken: cookie.Value,

TokenType: "Bearer",

})

var (

user_uri = "https://api.github.com/user"

req *http.Request

res *http.Response

)

if req, err = http.NewRequest("GET", user_uri, nil); err == nil {

req.Header.Add("Accept", "application/vnd.github+json")

if res, err = client.Do(req); err == nil {

if res.StatusCode == 200 {

defer res.Body.Close()

b, _ := ioutil.ReadAll(res.Body)

w.Header().Set("Content-Type", "application/json")

w.Write(b)

}

} else {

log.Printf(err.Error())

http.Error(w, err.Error(), http.StatusInternalServerError)

}

}

})

User Interface

Note

Enter the frontend folder and run flutter build web to build the

front-end code.

The user interface is rudimentary. The Flutter web application

tries to access the /resource endpoint for user information as a

JSON object. Based on the availability of the cookie with the

access token, the UI can access the data and render it. When the

data is not available, the login button shows up. When the user

clicks on it, the application tries to open /oauth/login, which

triggers the authentication workflow. When the user data is

displayed, a logout button shows up. On clicking that button, you

will delete the access token cookie. In the interest of space, we

do not show the Flutter web sources here. We suggest the

readers review the code at chapter-

5/github/frontend/library/main.dart.

Figure 5.5: User interface with and without data access

When you click the login button, following activities are

triggered. These are captured from the developer tools of the

browser.

1. The browser navigates to https://mysrv.local:8443/oauth/login

2. The integration server in turn redirects to

https://github.com/login/oauth/authorize?

access_type=offline&client_id=

<<GH_CLIENT_ID>>&response_type=code&scope=user&state=ba6f0890-

0b54-4395-a78f-6d6302d08fcc

The parameter values are incidental and can change from

session to session. If you do not have an active GitHub

session, you must log in to GitHub here to proceed.

3. On successful authentication, GitHub will redirect the

browser to https://mysrv.local:8443/oauth/callback?code=

<<b4c93e8…63c26>>&state=ba6f0890-0b54-4395-a78f-6d6302d08fcc

The state parameter is the same value received by GitHub in

step 2.

4. The integration server requests the token using the code in

step 3. And the value is set as a cookie token=gho_d7WbWL…

vYP21D0s0; Path=/; HttpOnly; Secure.

5. To render the user interface, the integration server redirects

the browser to https://mysrv.local:8443/.

Limited capability device

Internet is not confined to computer or browser-compatible

devices only. The devices connect to the internet, yet they may

not have the user interface for rendering the browser. Some may

not have user-friendly input devices for text and biometry. For

example, typing a password with a television remote or pointer

can be cumbersome. A TV remote may not have a fingerprint

scanner, while a mobile phone has a FIDO2-compatible

fingerprint scanner. This protocol enables such devices to access

resources while the user consent and authentication can be

place-shifted to a separate device with UI and input capability.

The protocol is known as OAuth 2.0 Device Authorization Grant10,

while colloquially, terms like device flow and device grant are

synonymous.

Figure 5.6: Device Authorization Grant

Let us say a device requires a service registration. For example,

when you use your TV to connect to Amazon Prime Video or

Google TV, or you have developed a command-line tool that

requires GitHub access, and so on.

Note:

Steps 3, 4, and 5 run in parallel to step 6.

1. The device contacts the authorization server with a client_id

and the scope (the level of access required).

2. The authorization server responds with a device_code, a

user_code, a validation_uri, an expires_in (the authorization

will expire after these seconds), and an interval (time that

should elapse before the client polls for the access token

while waiting for the user).

3. The device retains the device code. It shows the user a

validation URI and asks to access the URI on a web browser

and enter the user code there.

4. The user initiates the user authorization request on a web

browser and provides the user_code.

5. The authorization server can authenticate the user by

challenging her for credentials, taking her consent for the

request, and so on. If the authorization is approved, the

authorization server can issue an access token for the

transaction.

6. In the meantime, the client provides the client_id, device_id,

grant_type (urn:ietf:params:oauth:grant-type:device_code) and

polls for the access token.

a. The client should wait for the interval number of

seconds before polling again.

b. A busy server can issue a slow_down error. In that case,

the client should add another 5 seconds to the wait time

interval.

c. The client stops polling for expires_in seconds when it

continues to get authorization_pending or slow_down as an

error code.

7. If the client gets any other error, it stops execution. When

the client receives an access token, it can stop polling.

8. Now that the client has the access token, it can send it to

the resource server as an Authorization bearer token in the

HTTP header.

Authorization: Bearer <token>

9. The client receives the relevant resource requested.

Device workflow specification just came out in 2019. Hence, not

all client libraries implement it. Some libraries have partial

implementations waiting in pull requests. It is easy and may

need about a hundred lines of client code with Golang. In our

example, we will write a command line application to obtain user

information from GitHub.

Command line utility for GitHub

Our command line utility is a perfect example of a limited

capability device as it cannot show a browser for user consent.

Hence, we obtain the user code and validation URI and show it to

the user. The user can access the browser, provide the user

code, and complete user consent. However, we need to configure

this OAuth App on the GitHub Account.

GitHub Configurations

1. Log in to your GitHub account.

2. Navigate to https://github.com/settings/developers. You

can also reach here from user Settings -> Developers ->

OAuth Apps.

3. Register a new application and make sure to select Enable

Device Flow.

https://github.com/settings/developers

Figure 5.7: Registering OAuth App for GitHub

4. Copy the client_id and keep it in a safe place.

First, we obtain the device authorization information.

type DeviceAuthResponse struct {

VerificationURI string

DeviceCode string

UserCode string

ExpiresIn time.Duration

Interval time.Duration

}

func get_device_authorization(device_uri string, client_id string,

scope []string)

(devres *DeviceAuthResponse, err error) {

var res *http.Response

if res, err = http.PostForm(device_uri, url.Values{

"client_id": {client_id},

"scope": scope,

}); err != nil {

log.Fatal(err)

} else {

if res.StatusCode == 200 {

defer res.Body.Close()

var (

b []byte

vs url.Values

)

if b, err = ioutil.ReadAll(res.Body); err == nil {

if vs, err = url.ParseQuery(string(b)); err == nil {

interval, _ := strconv.ParseInt(vs["interval"][0], 10, 0)

expires_in, _ := strconv.ParseInt(vs["expires_in"][0], 10,

0)

devres = &DeviceAuthResponse{

VerificationURI: vs["verification_uri"][0],

DeviceCode: vs["device_code"][0],

UserCode: vs["user_code"][0],

ExpiresIn: time.Duration(expires_in *

int64(time.Second)),

Interval: time.Duration(interval *

int64(time.Second)),

}

}

}

}

}

return

}

When we get the authorization response, we poll for the

access_token.

func get_device_flow_access_token(c map[string]string)

(access_token string, err error) {

var devres *DeviceAuthResponse

if devres, err = get_device_authorization(

c["device_uri"],

c["client_id"],

[]string{c["scope"]}); err == nil {

println("Using a browser on another device, visit: ")

println(devres.VerificationURI)

println("")

println("And enter the code: ")

println(devres.UserCode)

access_token, err = poll_for_access_token(

c["token_uri"], c["client_id"], devres)

}

return

}

Here are some characteristics of the polling:

1. The polling happens for 900 seconds (devres.ExpiresIn) till we

reach expire_time.

2. The client contacts the server every 5 seconds. However, if

the server responds with a slow_down error, we increment the

interval by another 5 seconds.

3. The response returned with an access_token or an error other

than authorization_pending or slow_down stops the polling.

func poll_for_access_token(token_uri string, client_id string,

devres *DeviceAuthResponse) (access_token string, err error) {

var res *http.Response

expire_time := time.Now().Add(devres.ExpiresIn)

for {

if res, err = http.PostForm(token_uri, url.Values{

"client_id": {client_id},

"device_code": {devres.DeviceCode},

"grant_type":

{"urn:ietf:params:oauth:grant-type:device_code"},

}); err == nil {

if res.StatusCode == 200 {

defer res.Body.Close()

var (

b []byte

vs url.Values

)

if b, err = ioutil.ReadAll(res.Body); err == nil {

if vs, err = url.ParseQuery(string(b)); err == nil {

if reason, ok := vs["error"]; !ok {

access_token = vs["access_token"][0]

break

} else if reason[0] != "slow_down" {

devres.Interval += (5 * time.Second)

} else if reason[0] != "authorization_pending" {

err = fmt.Errorf(vs["error_description"][0])

break

}

}

}

}

}

log.Println("Waiting for user consent…")

time.Sleep(devres.Interval)

if time.Now().After(expire_time) {

break

}

}

return

}

Once we obtain the access_token, we can query for the user info

from the REST end-point and print it.

func print_user_info(access_token string) (err error) {

var (

user_uri = "https://api.github.com/user"

req *http.Request

res *http.Response

)

if req, err = http.NewRequest("GET", user_uri, nil); err == nil {

req.Header.Add("Accept", "application/vnd.github+json")

req.Header.Add("Authorization", fmt.Sprintf("Bearer %s",

access_token))

if res, err = http.DefaultClient.Do(req); err == nil {

if res.StatusCode == 200 {

defer res.Body.Close()

b, _ := ioutil.ReadAll(res.Body)

var dst bytes.Buffer

json.Indent(&dst, b, "", " ")

log.Print(dst.String())

}

}

}

return

}

Here is the output from the run. Make sure to initialize the

GH_CLIENT_ID environment variable with your application client ID.

PS C:\work\HOWA\chapter-5\github> $env:GH_CLIENT_ID='<<YOUR CLIENT

ID>>'

PS C:\work\HOWA\chapter-5\github> go run ./device.go

Using a browser on another device, visit:

https://github.com/login/device

And enter the code:

63EC-119A

2023/05/06 10:15:18 Waiting for user consent…

2023/05/06 10:15:33 Waiting for user consent…

2023/05/06 10:15:53 Waiting for user consent…

2023/05/06 10:16:19 Waiting for user consent…

As the application waits, the user accesses the URL through a

browser and submits her user_code. To complete the

authentication, the user must log in to GitHub with her password

and/or OTP (if configured).

Figure 5.8: User completing authorization on the browser

When the authorization is complete, the application will receive

the access_token to obtain the logged-in user’s information.

2023/05/06 10:16:19 Contacting the resource server for user info…

{

"login": "sambitdash",

…

"url": "https://api.github.com/users/sambitdash",

"html_url": "https://github.com/sambitdash",

"followers_url":

"https://api.github.com/users/sambitdash/followers",

"subscriptions_url":

"https://api.github.com/users/sambitdash/subscriptions",

"organizations_url":

"https://api.github.com/users/sambitdash/orgs",

"repos_url": "https://api.github.com/users/sambitdash/repos",

"events_url":

"https://api.github.com/users/sambitdash/events{/privacy}",

…

"type": "User",

"site_admin": false,

"name": "Sambit Kumar Dash",

"company": null,

…

}

We authorized a web application and an application with a

command line with a limited user interface. Next, we authorize a

thick client or mobile app to request resources.

Native applications

What makes a web application secure? The server, the browser,

and the associated ecosystem ensure such a system remains

secure. Here are some things to remember from Figure 5.3

OAuth in the web workflow.

The redirection in Step 2 happens over HTTPS through the

browser. So, no one can read the state parameter.

The redirection in Step 5 also has the same state parameter.

Hence, there was no CSRF attack involved.

In Step 6, the request has a client_secret. A shared secret

cannot be on multiple devices as it is vulnerable to stealing

by a malicious actor.

The integration server sets the access token as a cookie as

HttpOnly and Secure. Thus, the cookie is transported over

HTTPS; JavaScript on a browser cannot manipulate it. The

browser honors it by design.

For a native application, like a desktop or mobile app, one can

place-shift the authorization operation to a browser and obtain

the authorization code. The native application uses this

authorization code to request the access token. The complete

scheme is shown in Figure 5.9:

Figure 5.9: PKCE workflow

In Figure 5.9, PKCE workflow Step 1, the native application

utilizes the operating system process launcher to pass

parameters to the browser. Process listing with a command like

ps can expose the state parameter. An exposed state parameter

makes the CSRF attack a possibility. Proof Key for Code Exchange

(PKCE)11 extends authentication for native clients. Here is a

possible workflow that ensures secure authentication without the

state and client_secret parameters:

1. The client creates a code_challenge and sends it as a

parameter to the launch URL for the browser to navigate.

Note:

The client generates the code_challenge from the code_verifier

using the code_challenge_method algorithm. In an implementation,

you may see:

The code_verifier is a 256-bit random byte array that is

base64 encoded with URL encoding.

The code_challenge is the SHA-256 hash

(code_challenge_method=S256) of code_verifier that is again

base64 encoded with URL encoding.

The browser URL has two parameters, code_challenge and

code_challenge_method.

Since code_challenge is a hash, no one other than the client

knows the code_verifier.

code_challenge_method=plain is another valid value. However

it is not enough protection against eavesdropping as the

code_challenge is transmitted in plain text.

1. The browser launches an authorization workflow for the user

to approve over an HTTPS channel.

2. The authorization server and the user will exchange

challenges and responses to authenticate and authorize.

3. The authorization server redirects to the integration server

to display an authorization_code on the browser.

4. The user types the authorization code into the native client.

The client sends a code_verifier for the code_challenge to

authenticate to the server. over an HTTPS channel.

5. When the authorization server validates the code_verifier

with the code_challenge, it delivers the access token for

resource requests.

6. The client sends the access token for the resource.

7. The resource server delivers the requested resource.

Can we use PKCE for native web clients? With reactive clients like

Flutter or React Native, the usage is easy.

Figure 5.10: PKCE for Web Clients

The browser will generate the code_challenge using

JavaScript. And request the authorization server for access.

Hence, steps 1 and 2 are fused.

Steps 4 and 5 can be a GET redirect or a form POST request.

The server can specify the authorization_code as part of the

redirect URL, or the client can extract the authorization_code

with JavaScript and submit the POST request. The integration

server can host the necessary JavaScript for the client.

There are no changes to the other steps. However, the

access_token will be delivered to the client directly. The browser

should take all the precautions to secure the access token. In the

case of Figure 5.3 OAuth in the web workflow, the integration

server receives the access token and sets it as a cookie with the

browser. The cookie property HttpOnly did not permit the browser

to access the cookie with JavaScript. With this workflow, this

protection will not be available. The browser must take all

precautions to keep the access token safe. PKCE is a new

protocol. Many servers do not implement the specification. The

GitHub server does not support it. Hence, we use a Golang-based

custom OAuth server in our example.

Authorization server

You can find the sample code for the server in chapter-5/idp. You

can open the command window with chapter-5/idp as the working

directory and type go run ./idp.go to launch the application. The

server configures an HTTPS connection at

https://idp.local:8443 using the certificate and private key in

the chapter-5/certs folder. The idp.local DNS entry is added to the

/etc/hosts file with a mapping to the loopback address. The

following code initializes the TLS Server.

…

tlsserver := setupTLSServer("../certs/idp.local.p12", "idp.local")

log.Fatal(tlsserver.ListenAndServeTLS("", ""))

We use go-oauth2/oauth2 for the OAuth2 server12. The server

provides methods and objects to manage and orchestrate

OAuth2 requests over an HTTPS channel. Two significant classes

are the Manager and Server. The Manager class maintains the

storage and configuration for the clients and tokens. The Server

class has the logic for the actual OAuth2 connections. We use the

following code to initialize and configure the Manager and the

Server.

…

manager := manage.NewDefaultManager()

manager.SetAuthorizeCodeTokenCfg(&manage.Config{

AccessTokenExp: time.Second * 30,

RefreshTokenExp: time.Hour,

IsGenerateRefresh: true,

})

manager.MustTokenStorage(store.NewMemoryTokenStore())

manager.MapAccessGenerate(generates.NewAccessGenerate())

clientStore := store.NewClientStore()

clientStore.Set("222222", &models.Client{

ID: "222222",

Domain: "https://mysrv.local:8444"

})

manager.MapClientStorage(clientStore)

srv := server.NewServer(&server.Config{

TokenType: "Bearer",

AllowedResponseTypes: []oauth2.ResponseType{oauth2.Code,

oauth2.Token},

AllowedGrantTypes: []oauth2.GrantType{

oauth2.AuthorizationCode,

oauth2.PasswordCredentials,

oauth2.ClientCredentials,

oauth2.Refreshing,

},

AllowedCodeChallengeMethods: []oauth2.CodeChallengeMethod{

oauth2.CodeChallengePlain,

oauth2.CodeChallengeS256,

},

}, manager)

For a PKCE server, setting oauth2.AuthorizationCode for

AllowedGrantTypes and

[oauth2.CodeChallengePlain,auth2.CodeChallengeS256] for

AllowedCodeChallengeMethods is important. The Oauth2 client is

configured with ID: 22222 and Domain: "https://mysrv.local:8444".

Refer to Figure 5.9 PKCE workflow, Step 2. The authorization

server has a /oauth/authorize endpoint to accept the PKCE

authorization request. Here is the relevant code for the same.

http.HandleFunc("/oauth/authorize", func(w http.ResponseWriter, r

*http.Request) {

if dumpvar {

dumpRequest(os.Stdout, "authorize", r)

}

store, err := session.Start(r.Context(), w, r)

if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

var form url.Values

if v, ok := store.Get("ReturnUri"); ok {

form = v.(url.Values)

}

r.Form = form

store.Delete("ReturnUri")

store.Save()

err = srv.HandleAuthorizeRequest(w, r)

if err != nil {

http.Error(w, err.Error(), http.StatusBadRequest)

}

})

The server initializes the store and searches an earlier successful

authentication. If no data is found, srv.HandleAuthorizeRequest(w,

r) is called. It triggers user authorization by invoking

userAuthorizeHandler(w http.ResponseWriter, r *http.Request). This

handler verifies if there is a logged-in user. If no user is found,

the user is redirected to /login for authentication.

func userAuthorizeHandler(w http.ResponseWriter, r *http.Request)

(userID string, err error) {

…

store, err := session.Start(r.Context(), w, r)

if err != nil {

return

}

uid, ok := store.Get("LoggedInUserID")

if !ok {

if r.Form == nil {

r.ParseForm()

}

store.Set("ReturnUri", r.Form)

store.Save()

w.Header().Set("Location", "/login")

w.WriteHeader(http.StatusFound)

return

}

userID = uid.(string)

store.Delete("LoggedInUserID")

store.Save()

return

}

Redirection to the /login, displays a form where the user

authenticates with login: alice and password: password. The

loginHandler function renders the form and addresses the

authentication.

func loginHandler(w http.ResponseWriter, r *http.Request) {

…

store, err := session.Start(r.Context(), w, r)

if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

if r.Method == "POST" {

if r.Form == nil {

if err := r.ParseForm(); err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

}

store.Set("LoggedInUserID", r.Form.Get("username"))

store.Save()

w.Header().Set("Location", "/auth")

w.WriteHeader(http.StatusFound)

return

}

w.Write([]byte(`

<html><body>

<h1>Login In</h1>

<form action="/login" method="POST">

<label for="username">Username</label>

<input type="text" name="username" required

placeholder="username">

<label for="password">Password</label>

<input type="password" name="password" placeholder="password">

<button type="submit">Login</button>

</form>

</body></html>`))

}

On successful authentication, the user is asked to authorize the

transaction. The URL for authorization can be accessed from

/auth. The authHandler function provides the necessary logic. The

function looks for a LoggedInUserID, if not found the user is

redirected to login.

func authHandler(w http.ResponseWriter, r *http.Request) {

…

store, err := session.Start(r.Context(), w, r)

if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

if _, ok := store.Get("LoggedInUserID"); !ok {

w.Header().Set("Location", "/login")

w.WriteHeader(http.StatusFound)

return

}

w.Write([]byte(`

<html><body>

<form action="/oauth/authorize" method="POST">

<h1>Authorize</h1>

<p>The client would like to perform actions on your behalf.

</p>

<p><button type="submit">Allow</button></p>

</form>

</body></html>`))

}

Lastly, we configure the endpoint /oauth/token for issuing access

tokens. You require the client_id, authorization_code, scope, and

code_verifier for valid token issuance. In PKCE, the authorization

server does not require client_secret to validate the client.

Hence, an end-user device can directly request a token.

http.HandleFunc("/oauth/token", func(w http.ResponseWriter, r

*http.Request) {

…

err := srv.HandleTokenRequest(w, r)

if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)

}

})

The method srv.HandleTokenRequest(w, r) extracts all the relevant

parameters from the HTTP Request. It uses the client_id and

authorization_code to identify the session. It validates the session

with the code_verifier and scope.

Integration and Resource Server

We have configured the integration and resource server at

https://mysrv.local:8444 and have assigned mysrv.local to the

loopback address in the /etc/hosts file. The sources are available

in the chapter-5/pkce/resource folder. It can be launched with the

command go run ./server.go from the command line.

When no redirect_url is specified in an OAuth authorization

request, the authorization server contacts the client at the

domain URL (https://mysrv.local:8444/). We have configured

the handler for the root path (/) as shown:

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

if r.Form == nil {

r.ParseForm()

}

if r.Form.Has("error") {

http.Error(w, r.Form.Get("error_description"),

http.StatusUnauthorized)

} else {

code := r.Form.Get("code")

w.Write([]byte(fmt.Sprintf(`

<html><body>

<h1>Code</h1>

<p>%s</p>

</body></html>

`, code)))

}

}

)

The code merely renders the value of the code parameter on the

HTML page.

The resource server is a handler at /resource that takes the

access token as a bearer token in an HTTP Authorization header,

extracts the token, and passes it to the IDP server

(https://idp.local:8443/test) to test its validity. If the token is

valid, the resource server receives properties like the user_id,

expires_in, and client_id. The resource server relays those back

to the client.

if auth_headers, ok = r.Header["Authorization"]; ok {

if req, err = http.NewRequest("GET",

"https://idp.local:8443/test", nil); err == nil {

req.Header.Add("Authorization", auth_headers[0])

if res, err = http.DefaultClient.Do(req); err == nil {

defer res.Body.Close()

if data, err = ioutil.ReadAll(res.Body); err == nil {

w.Write(data)

}

}

}

}

We have all the backend code in place. We need to develop the

frontend application and authenticate with the OAuth server.

Native client using Flutter

We have the server components in place. Now, we develop the

native frontend application using Flutter for Windows and Linux

operating systems. We open three command line windows and

launch the services as shown here.

IDP Service

HOWA\chapter-5\idp> go run ./idp.go

2023/05/25 13:18:51 Dumping requests

2023/05/25 13:18:51 Server is running at 8443 port.

2023/05/25 13:18:51 Point your OAuth client Auth endpoint to

https://idp.local:8443/oauth/authorize

2023/05/25 13:18:51 Point your OAuth client Token endpoint to

https://idp.local:8443/oauth/token

Integration and Resource Services

HOWA\chapter-5\pkce\resource> go run ./server.go

Flutter UI

HOWA\chapter-5\pkce\client> flutter run

Launching lib\main.dart on Windows in debug mode…

Building Windows

application… 28.0s

✓ Built build\windows\runner\Debug\client.exe.

Syncing files to device Windows…

180ms

Flutter run key commands.

r Hot reload. 🔥🔥🔥

R Hot restart.

h List all available interactive commands.

d Detach (terminate "flutter run" but leave application running).

c Clear the screen

q Quit (terminate the application on the device).

A Dart VM Service on Windows is available at:

http://127.0.0.1:57199/a6P0fj6Bpg0=/

The Flutter DevTools debugger and profiler on Windows is available

at: http://127.0.0.1:9100?uri=http://127.0.0.1:57199/a6P0fj6Bpg0=/

The following UI appears on the screen.

Figure 5.11: Launching the PKCE Client

Clicking on the lock icon on the top-right corner launches the

browser with the authorization URL for the user to authorize.

Figure 5.12: Browser workflow to obtain authorization code

The user uses the name alice and password to authenticate. She

authorizes the transaction and gets the authorization code in the

browser. She enters the code in the client application to obtain

the access token.

Figure 5.13: Access token, refresh token, and the expiration details received by the

client

getOAuthClient handles almost all the OAuth token acquisition

activity.

Future<oauth2.Client?> getOAuthClient(BuildContext context) {

final grant = oauth2.AuthorizationCodeGrant(

"222222",

Uri.parse("https://idp.local:8443/oauth/authorize"),

Uri.parse("https://idp.local:8443/oauth/token"),

httpClient: Provider.of<http.Client>(context, listen: false),

codeVerifier:

base64Url.encode(List<int>.generate(32, (i) =>

_random.nextInt(256))),

);

final authURI =

grant.getAuthorizationUrl(Uri.parse("https://mysrv.local:8444/"))

;

return launchUrl(authURI).then((ok) {

return showDialog<String>(

context: context,

builder: (context) {

return AlertDialog(

title: const Text("Please enter the code"),

content: TextField(autofocus: true, controller: dlgCtrl),

actions: [

TextButton(

onPressed: () => Navigator.of(context).pop(dlgCtrl.text),

child: const Text("SUBMIT"),

)

]);

},

);

}).then((code) {

return ((code == null) || (code == ""))

? Future.value(null)

: grant.handleAuthorizationCode(code);

});

}

Following are the steps in the function:

1. We create an AuthorizationCodeGrant object with a client ID,

authorization URL, token URL, an HTTP client, and a 32-byte

code verifier.

2. The grant.getAuthorizationUrl(redirectUrl) generates the

following URL and we launch the browser with the URL.

https://idp.local:8443/oauth/authorize?

response_type=code&client_id=222222&redirect_uri=https%3A%2F%2F

mysrv.local%3A8444%2F&code_challenge=zfOq689C2YbepoOxN5dmuth5Lg

nn4AqIBvOpxilUwRY&code_challenge_method=S256

The code_challenge is generated from the code_verifier after

applying the code_challenge_method.

3. The user completes the authorization on the browser

window and receives the authorization_code.

4. She enters the authorization code in the dialog box on the

client and submits it.

5. The grant.handleAuthorizationCode(code) method reaches the

token endpoint on the authorization server and obtains the

token. Here is the request dump from the authorization

server.

token:

POST /oauth/token HTTP/1.1

Host: idp.local:8443

Accept-Encoding: gzip

Content-Length: 210

Content-Type: application/x-www-form-urlencoded; charset=utf-8

User-Agent: Dart/3.0 (dart:io)

grant_type=authorization_code&code=YTMZMWMWOWQTYJBIYS0ZNDA1LWI5

NTETYWI1YTAYNDGYZJDH&redirect_uri=https%3A%2F%2Fmysrv.local%3A8

444%2F&code_verifier=ckUCagObNWMJRUa14shQ7pD0CuY8u5f42Rt03U3us1

0%3D&client_id=222222

6. getOAuthClient returns an oauth2.Client object. This can be

used as an HTTP Client to request for resources.

Here is the OnPressed() method on the lock IconButton.

onPressed: () {

getOAuthClient(context).then((client) {

oauth2Client = client;

return oauth2Client;

}).then((client) {

return client != null

? client.get(Uri.parse("https://mysrv.local:8444/resource"))

: Future.value(null);

});

…

}

The client is used to request the resource. From the server dump,

you can see the authorization header is auto-populated by the

library.

resource:

GET /resource HTTP/1.1

Host: mysrv.local:8444

Accept-Encoding: gzip

Authorization: Bearer MDMWOGUXY…MDU3

User-Agent: Dart/3.0 (dart:io)

The resource server sends the token to the test endpoint of the

authorization server. It receives the following information about

the validity of the token and relays it back to the client. The

client displays the result with the client ID (222222), user ID

(alice), and no of seconds (29) to go before the token expires.

Token issuance

All the hard work for the issuance of tokens, yet we have not

delved much into them. As per the OAuth specification13, an

access token has the following characteristics:

It acts as a credential to access a resource.

It is opaque to the client and only understood and

interpreted by resource and authorization servers.

The tokens are valid for a specific scope and only during a

specific time window.

Access tokens can be of different formats and types. One

such format is a bearer token. The bearer token gives the

possessor access rights to the resource. No further proof of

possession is needed.

RFC 675014 talks about the usage of bearer tokens. An

application can present a bearer token in one of the following

ways:

1. An HTTP header that looks like Authorization: Bearer <<token>>

2. An HTTP form parameter in a post request:

{

…

access_token: <<token>>,

…

}

3. An HTTP URL encoded parameter in a GET request, like

https://server/resource?access_token=<<token>>

We have used the first option in our samples.

Note:

Bearer tokens are secret information. Anyone in possession

of such a token can access resources. You should avoid

printing15 tokens in log files, consoles, and other places. A

stolen bearer token can present significant security risks.

Tokens should be valid only for a short duration. Tokens

valid for long durations introduce revocation requirements;

hence should not be used.

An access token withstands clock skews of client,

authorization, and resource servers. They are valid only for

a few minutes, for example, 5 mins.

A token response has the following:

access_token - The token used to access resources, for

example, MGM5NDJHZDITODQ5YY0ZZMZLLTK3OTGTYTU4NZY2ZTC2NMJH

refresh_token - The token the system can use to request a

new access token when the old access token expires, for

example, NZNKZTHMMWUTNZDKMS01ZJDILTG3ODYTYZBIZTEZMDQ2YZEZ

expires_in - The token is valid for these many seconds, for

example, 29 seconds

scope: The scope of the token. The authorization server can

narrow the authorization scope from the original request.

Additional optional parameters

The dart oauth2 package aggregates these values in the credential

attribute of the oauth2.Client object. We display this object in the

UI as a JSON.

onPressed: () {

getOAuthClient(context).then((client) {

…

}).then((res) {

bodyCtrl.text = "${res?.body ?? "No token info found\n"}"

bodyCtrl.text += "${oauth2Client!.credentials.toJson()}\n";

…

});

Next, we study how to effect single sign-on while using short-

lived tokens.

Token expiry

The authorization server issues token for a short duration of

time. The client that receives this token can use it to request

resources. The client can discard the token. Even though

eavesdroppers steal this token, the token expiry limits the attack

window. Short-duration tokens need user authorizations in a few

minutes and are not friendly for user experience. OAuth

addressed this by issuing a refresh token. The refresh token has

a long expiry period (a few hours to several days). The client can

request a new access token using the refresh token and use it for

another purpose.

Figure 5.14: Using the refresh token to obtain a new access token

In Figure 5.14, we have already seen steps 1–8. If the access

token expires, the client can request a new one at step 9. It does

not require user authorization; the refresh token is used as a

credential to issue the access token. We have set up the

following parameters while initializing the authorization server.

…

manager.SetAuthorizeCodeTokenCfg(&manage.Config{

AccessTokenExp: time.Second * 30,

RefreshTokenExp: time.Hour,

IsGenerateRefresh: true,

})

…

The access token is valid for 30 seconds, and the refresh token

for one hour. In real life, the validity period of access tokens is

set for 5–10 minutes to compensate for clock skews on the

internet. Moreover, we configured regenerating the refresh token

on every token refresh. Let us understand the security

implications of using bearer tokens.

Figure 5.15: A rogue resource server can be a source of man-in-the-middle attack

A secret transferred over the wire can become a target for

eavesdropping and man-in-the-middle attacks. An encrypted

channel minimizes such attacks when a client sends a bearer

token to a resource server. We assume all the connections in

Figure 5.15 are HTTPS-based.

1. The client embeds the bearer token in the HTTP header and

sends it to the resource server (R1).

2. R1 validates the bearer token with the authorization server.

This validation scheme is not part of the OAuth 2

specification, and the authorization servers can design the

methods that the resource servers adhere to.

3. R1 can potentially cache the bearer token and request a

resource from the server R2 impersonating the user.

4. The validation is successful when R2 presents the bearer

token to the authorization server.

A rogue resource server can orchestrate a man-in-the-attack if

the token issuance is not well thought-out. Here are some of the

remedial policies that the authorization server can undertake.

Only authenticated resource servers can validate tokens

with the authorization servers. The authorization server will

maintain the trusted resource server in its metadata for the

issued access token.

If the server R1 and R2 have different scopes, then the

access token issued for R1 cannot be used by R2.

An access token can be for one-time use by an authorization

server policy. Once R1 has validated the access token in

Figure 5.15 Step 2, R1 cannot present it to R2 in Step 3.

In the PKCE client, we request the access token. The client

obtains the access token and waits for it to expire. After expiry, it

refreshes the user interface and activates the refresh icon. The

code can be seen in chapter-5/pkce/client/lib/main.dart.

IconButton(

onPressed: () {

getOAuthClient(…).

then((res) {

bodyCtrl.text = ${oauth2Client!.credentials.toJson()}\n";

final wait = oauth2Client!.credentials.expiration!

.difference(DateTime.now()) +

const Duration(seconds: 1);

Future.delayed(wait, () {setState(() {});});

});

},

icon: const Icon(Icons.lock)…

);

Clicking on the refresh icon obtains a fresh access token. The UI

again waits for the access token to expire. When the

authorization server issues the access token, it sends a new

refresh token.

IconButton(

onPressed:(oauth2Client != null) &&

(oauth2Client!.credentials.isExpired)

? () {

oauth2Client!.refreshCredentials().then((_) {

bodyCtrl.text += "${oauth2Client!.credentials.toJson()}\n";

setState(() {});

})…

: null,

icon: const Icon(Icons.refresh),

)

oauth2Client!.refreshCredentials method is the client call for

refreshing the token. This, in turn, requests the /oauth/token

endpoint on the authorization server with the following payload:

grant_type=refresh_token&refresh_token=NJM5NGIZM…

ZDMWZJHI&client_id=222222

Here is how the user interface looks like.

Figure 5.16: Refreshing the access token from the PKCE client

While we show the examples of token refresh with the PKCE

client, the behavior on other clients is very similar.

Scopes

Scopes are mnemonics for an authorization level. The client fills

in the scope for an authorization request URL and redirects the

user to the browser. Based on the value of the scope parameter,

the user consents to various elements of the scope. Scopes can

be hierarchical and one scope can cover multiple underlying

scopes. In the GitHub examples, we requested for authorization

code with the scope=[user]. This in turn authorizes the following

activities16:

user Grants read/write access to profile info only. Note that this

scope includes user:email and user:follow

read:user Grants access to read a user's profile data.

user:email Grants read access to a user's email addresses.

user:follow Grants access to follow or unfollow other users.

Table 5.1: Hierarchical scopes in GitHub

Here is the code snippet from chapter-5/github/authcode.go:

http.HandleFunc("/oauth/login", func(w http.ResponseWriter, req

*http.Request) {

state := uuid.New().String()

_setState(state)

conf.Scopes = []string{"user"}

url := conf.AuthCodeURL(state, oauth2.AccessTypeOffline)

log.Print(fmt.Sprintf("Redirecting to: %s", url))

http.Redirect(w, req, url, http.StatusFound)

})

We are rendering the user’s read-only data in the browser.

Hence, we can request the read:user scope for the token. Since

read:user is part of the scope user hierarchy, the authorization

server will issue the token if the authorization code is used. That

is how we have coded.

http.HandleFunc("/oauth/callback",

func(w http.ResponseWriter, req *http.Request) {

…

if code := req.FormValue("code"); code != "" {

conf.Scopes = []string{"read.user"}

log.Printf("Reducing token scope to: %v\n", conf.Scopes)

token, _ := conf.Exchange(context.Background(), code)

http.SetCookie(w, &http.Cookie{

Name: "token",

Value: token.AccessToken,

HttpOnly: true,

Secure: true,

Path: "/",})

http.Redirect(w, req, "/", http.StatusFound)

}

…

)

This ensures the token’s scope is limited and not misused for

accessing a resource for writing. The user has given consent for

both read and write access. Hence if write access is required, the

client can use the refresh token, request for a token with scope=

[user], and enable write access with the new access token.

OpenID Connect (OIDC)

OAuth 2.0 has established itself as an authorization protocol that

provides access to a specific resource. Can we use it for

authentication? In Chapter 4, Federated Authentication – I, we

discussed SAML. In the SAML protocol, the service provider (SP)

trusts the Identity Provider (IdP), and the IDP trusts all the SPs.

While this is true for an enterprise, in social networks end-user

decides the IdP. For example, we want all the Google, Meta, X

(Twitter), and so on. users to access the e-retail site that we

developed. Based on our experience with GitHub data access, we

use the following OAuth workflow:

Our retail portal redirects the user to GitHub.

1. The user provides her credentials and consents to obtain the

email address from GitHub.

2. A code generated is provided in the token workflow to

request an access token.

3. The retail site presented the access token to obtain the

user's email address from the GitHub resource server.

4. The email obtained is the username for the retail portal.

We achieved login with GitHub; we want to replicate the same

with LinkedIn, Meta, and so on. Many libraries provide custom

login APIs to support users authenticating using an OAuth 2.0

workflow. However, steps 4 and 5 vary depending on the social

network used and the application integrating such

authentication. In the meantime, OpenID Authentication

Framework was already underway to provide a user-oriented

identity provider. The OpenID consortium archived OpenID 2.0

and introduced OpenID Connect 1.0, an identity framework built

over OAuth 2.0.

Using OAuth for Authentication

OpenID Connect (OIDC), built on the OAuth 2.0 framework, can

be shown in the following diagram:

Figure 5.17: OIDC Architecture

The client is the Relying Party (RP). The OIDC provider (OP)

comprises the authorization server and a user info resource

provider. The token response for OIDC includes three tokens.

1. access_token: Opaque token to query user info.

2. refresh_token: Opaque token to refresh the access_token on

expiry.

3. id_token: A token containing user information. This token is in

the JSON Web Token (JWT) format and can be signed to

ascertain the source. The token is like Assertion in a SAML

response, with claims regarding the user signed by the

issuer.

We draw your attention to the SAML Metadata for IDP. OPs

publish similar directory information. You can see one for Google

that we will use in a later section. However, there is no additional

metadata requirement for the relying party. An OP administrator

configures an RP with the following details like all OAuth clients:

Client ID

Client Secret

Redirect URL

A domain of the RP for exclusion in CORS policies.

Identity Token

ID tokens provide user information as claims. They have very

similar characteristics to SAML Assertions we have seen already.

Here are the claims17 that are in the ID token.

iss The issuer, or signer, of the token. For Google-signed ID tokens, this

value is https://accounts.google.com.

aud Optional. Who the token was issued to.

azp The audience of the token. The value of this claim must match the

application or service that uses the token to authenticate the

request. Typically, the client ID of the OIDC connection.

sub The subject: the ID that represents the principal making the

request.

iat Unix epoch time when the token was issued.

exp Unix epoch time when the token expires.

Table 5.2: Most commonly used claims in an ID token

https://accounts.google.com/

While these are only the mandatory claims for the issuer and

audience, there are also user information claims like name,

email, picture, and so on. We will see some of them in the

example in the section Login with Google. The token is presented

as a JSON Web Token (JWT). Secondly, ID tokens are only one of

the ways to request user information. The OPs also expose a

service endpoint to request user information using the access

token. In the default configuration, the user information endpoint

and ID token provide similar claims in the response. Some OPs

allow configuring them independently.

JSON Web Token

JSON Web Tokens (JWT) is a compact URL-safe approach to

exchange claims information across systems18. While we have

just discussed receiving claims data as a response in the form of

ID Tokens, the OIDC protocol allows JWTs used as requests19. JWTs

can be signed or even encrypted; when they are encrypted,

signing precedes encryption. We will discuss JSON Web

Signatures (JWS) here20, which is the formatting for the signed

JWTs.

Figure 5.18: JSON Web Signature Format21

JWS begins with a JSON Object Signing and Encryption (JOSE)

header. Following are some of the registered parameters used

commonly.

alg: Algorithm used to sign the JWS. HS256 and RS256 are

commonly used values. Both signing schemes utilize the

SHA-256 hash of the data. HS256 uses the HMAC-based signing

with a shared secret, while RS256 uses a RSA key pair.

typ: Typically, JWT.

kid: The ID of the key used in the signature. Although the

specification allows public keys in the JOSE headers, most

OPs publish them through the OpenID directory. kid provides

a mechanism to search such a directory and locate the key.

We apply Base64URL encoding on the header followed by a dot (.)

character. The claims are put inside a JSON object format and

encoded using Base64URL encoding; this is the payload of the JWS.

The combined data is signed using the algorithm specified in the

header (alg) with the relevant key. The resultant signature is

encoded using Base64URL encoding. Another dot (.) is added after

the payload. The encoded signature is placed right after it.

The combined token looks like:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.

yJpc3MiOiJqb2UiLCJleHAiOjEzMDA4MTkzODAsImh0dHA6Ly9leGFtcGxlLmNvbS9p

c19yb290Ijp0cnVlfQ.tzxo0VemMte9T1bdN1r3qh8PWYnsa3bP9dbzWkidVao

The following symmetric key22 was used to sign the payload

using HS256 algorithm.

{"kty":"oct", "k":"AyM1SysPpbyDfgZld3umj1qzKObwVMkoqQ-EstJQLr_T-

1qS0gZH75aKtMN3Yj0iPS4hcgUuTwjAzZr1Z9CAow"}

Here is the process to decode a JWT:

1. Take the first two parts, including the delimiter dot (.).

2. Compute the signature using the shared secret in HS256 or

RSA public key in the case of RS256.

3. Generate the Base64URL encoding from the signature.

4. The encoded signature should match the third part of the

token.

5. Decode the first and second parts of the JWT using Base64URL

encoding.

While the process is simple, good online resources are available

to decode JWTs23. We decode the above token using the

https://jwt.io debugging tool.

https://jwt.io/

Figure 5.19: Decoding of JWT using https://jwt.io

Some header and payload parameters are public and registered

with the Internet Assigned Numbers Authority (IANA). However,

you can use private parameters as well. You should provide it as

a URL with your domain, for example,

http://example.com/is_root.

Login with Google

The OIDC providers are certified and listed on openid.net24. The

IAM vendors have embraced the protocol and providing certified

products and solutions. Only a handful of social networking

giants have shown any interest in it. Most social networking

providers: LinkedIn, Meta, X (Twitter), and so on., provide OAuth-

based user information APIs; we can tune for user authentication,

but they do not implement the OIDC standard. Our GitHub

sample using OAuth (above) for authentication is a case in point.

Microsoft and Google provide extensive OIDC support due to

their interest in cloud computing and focus on enterprise IAM.

Google Federated Identity got certification as an OP in 2015. We

will review Google's OIDC implementation to a limited extent.

https://jwt.io/
http://example.com/is_root

OIDC is a collection of profiles. Google has been certified in four

of the profiles. IAM products work with other products; some

work as IDPs to other Identity Management systems. In such an

interconnected world, adherence to standards makes the

solutions useful for easier adoption. OpenID Federation (OIDF)

provides this certification process for vendors to register and

comply. Certification gives better visibility in vendor evaluation in

enterprise selling.

We will connect to the Google Cloud Platform (GCP) using an

OIDC client library. As the user authenticates, we collect the ID

Token and show the content on the screen. We also query the

user info endpoint of the OP and present the received data on

the screen juxtaposed to the data received from the ID Token.

Configuring the Google Cloud Platform

To configure the Google Cloud for OIDC authentication, follow the

steps below:

1. Open the Google Cloud Console at:

https://console.cloud.google.com.

2. Create a new project if you already do not have one.

3. Click on the APIs and Services Tab.

4. If you do not have an OAuth consent screen configured, you

must configure one to proceed. You will also add the test

user accounts who can use the client for authentication.

5. Now click on the credential in the navigation pane and

configure a new OAuth 2.0 Client ID. On completion of this

step a new client ID and secret will be created.

6. You can download the client details of client ID and secret

and keep them in a safe place25.

https://console.cloud.google.com/

Figure 5.20: Creating OAuth 2.0 client credentials

In the sample code, we use GOOGLE_CLIENT_ID and

GOOGLE_CLIENT_SECRET environment variables to pass the OIDC

Client ID and Secret into our application. While configuring OAuth

credentials, you cannot use domain names that do not have a

valid top-level domain (TLD). For example, you cannot configure

mysrv.local as a test domain. You can use localhost as a test

domain.

You can find the code in chapter-5/google. Enter this directory in a

shell and set the environment variables GOOGLE_CLIENT_ID and

GOOGLE_CLIENT_SECRET. Launch the OIDC client application with go

run ./oidc.go.

User Experience

The application is a simple demo. We show you the screens the

user will be interacting with.

Figure 5.21: Authenticate with Google using OIDC

Launch the browser and go to the URL http://localhost:8444/.

1. The browser shows the login button with both User Info and

ID Token section stating no user has authenticated.

2. On clicking the Login button, the browser is opens

/oauth/login which redirects to:

https://accounts.google.com/o/oauth2/v2/auth?

access_type=offline&client_id=

<<CLIENT_ID>>&redirect_uri=http%3A%2F%2Flocalhost%3A8444%2Foaut

h%2Fcallback&response_type=code&scope=openid+profile+email&stat

e=f97379cd-be86-4b6b-bbbe-3711cc860ae0

The URL is very similar to an OAuth redirect with scopes

openid and profile added. The scope openid is mandatory and

it suggests claims based on the scopes will be added. For

example, a profile scope adds name, picture, locale, etc.

properties to the claims. The scope email adds email and

email_verified to the claims.

3. Google will authenticate the user and redirect the browser to

/oauth/callback with the authorization code to complete the

token issuance workflow. We have already seen this in the

context of OAuth.

4. In the token request, the relying party receives an

access_token, an id_token, and a refresh_token. We create a

session cookie and associate these tokens with the session.

5. When the tokens are issued, the browser is redirected to

http://localhost:8444 which in turn contacts the /userinfo and

/idtoken endpoints to request for that information and render

the UI with the details.

Figure 5.22: User info and ID token data presented through UI

6. Lastly, the Login button changes to Logout.

We use the coreos/go-oidc26 library for the backend tasks in

Golang. We set up an HTTP server at port 8444 and assigned the

Flutter web frontend at the root (/) virtual.

func main(){

addOIDCHandlers()

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request)

{

http.FileServer(http.Dir("frontend/build/web")).ServeHTTP(w, r)

})

server := &http.Server{Addr: ":8444"}

}

In the addOIDCHandlers we initialize the provider object with the

OIDC discovery metadata.

func addOIDCHandlers() {

provider, _ := oidc.NewProvider(context.Background(),

"https://accounts.google.com")

…

verifier := provider.Verifier(&oidc.Config{ClientID: client_id})

…

conf := &oauth2.Config{

ClientID: client_id,

ClientSecret: client_secret,

Endpoint: provider.Endpoint(), // Obtained from the OIDC

directory

Scopes: []string{oidc.ScopeOpenID, "profile", "email"},

RedirectURL: "http://localhost:8444/oauth/callback",

}

The OIDC directory for Google is available at:

https://accounts.google.com/.well-known/openid-

configuration. The directory provides paths and capabilities

supported by the server. Parts of the information provided by the

directory are shown below.

{

"issuer": "https://accounts.google.com",

"authorization_endpoint":

"https://accounts.google.com/o/oauth2/v2/auth",

…

"token_endpoint": "https://oauth2.googleapis.com/token",

"userinfo_endpoint":

"https://openidconnect.googleapis.com/v1/userinfo",

"revocation_endpoint": "https://oauth2.googleapis.com/revoke",

"jwks_uri": "https://www.googleapis.com/oauth2/v3/certs",

…

"scopes_supported": ["openid","email","profile"],

https://accounts.google.com/.well-known/openid-configuration

"claims_supported":

["aud","email","email_verified","exp","family_name",

"given_name","iat","iss","locale","name","picture","sub"],

…

}

The /oauth/login handler is like what we have already seen in the

GitHub example (above). We redirect to the authorization_endpoint

to authenticate with Google.

http.HandleFunc("/oauth/login", func(w http.ResponseWriter, req

*http.Request) {

state := uuid.New().String()

_setState(state)

url := conf.AuthCodeURL(state, oauth2.AccessTypeOffline)

log.Printf("Redirecting to: %v", url)

http.Redirect(w, req, url, http.StatusFound)

})

The /oauth/callback handler is not far from the GitHub example as

well. Removing the error handling and state management code,

the token workflow is shown.

http.HandleFunc("/oauth/callback", func(w http.ResponseWriter, req

*http.Request){

…

if code = req.FormValue("code"); code != "" {

if token, err = conf.Exchange(req.Context(), code); err == nil{

log.Printf("The token is expiring at: %v", token.Expiry)

if err = _saveToken(w, token); err == nil {

http.Redirect(w, req, "/", http.StatusFound)

}

}

}

})

The exchange method returns three tokens, namely, access_token,

id_token, and refresh_token as part of the token object. It also has

the expiry time of the access_token. In the function _saveToken, we

create a session cookie and associate the token object to the

session. We also verify the id_token and the access_token.

_saveToken := func(w http.ResponseWriter, token *oauth2.Token) (err

error) {

…

if idToken, err = verifier.Verify(context.Background(),

idTokenStr); err == nil {

if err = idToken.VerifyAccessToken(token.AccessToken); err == nil

{

uuidstr := uuid.NewString()

muToken.Lock()

defer muToken.Unlock()

tokens[uuidstr] = token

_setCookie(w, "session", uuidstr, false)

}

}

return

}

Following are a few checks carried out on the id_token. One can

look at the specification for an elaborate list of checks27.

1. Issuer: The issuer exists and is well formatted and is

matching the issuer of the provider in the configuration.

2. Audience: The audience (aud) record of the token must the

client ID.

3. Expiry: Ensure the token has not expired. The current time

is within the not before (nbf) and expiry (exp) time. Google

does not provide a not before (nbf) value by default.

4. Signature: Verify the signature of the JSON Web Signature

(JWS) token. While the method Verify keeps the certificate

extraction transparent from the developer, we will discuss

this in some detail later.

In OAuth 2.0, the access_token is verified at the authorization

server. It increases network round-trip time. To overcome this

limitation, a hash of the access_token is embedded in the ID token

as the at_hash parameter28. The method idToken.VerifyAccessToken

implements this scheme.

Token Security

Access tokens could be random strings containing no Personally

Identifiable Information (PII). So, they are safe to be passed on to

clients like a browser cookie. What if an embedded JavaScript in

the page extracted the token and accessed the resource server?

You can secure the cookies by marking them HttpOnly, and the

browser JavaScript cannot access them. The browser shows a UI

element by querying the server REST API. The REST APIs can

provide access by analyzing the submitted cookie. Should ID

tokens be sent to the browser as a cookie? Some

implementations set complete ID tokens as cookies. We will

suggest you be judicious in your application. Suppose ID token

claims contain the group information of the user. The UI

rendering does not require this information, yet, it flows down to

the client's device. In a security-compromised browser, a hacker

can access the groups the user belongs to. For better security,

keep data transmission to the minimum and only when required.

In this sample, we do not expose the ID token through a cookie

but return the contents as a REST API for the client to render. We

provide two REST API endpoints, /idtoken and /userinfo, to convey

the ID token and the user info, respectively.

Token Expiry

Access tokens are issued only for a short period. Google access

tokens are valid for 60 mins. However, refresh tokens can be for

longer durations, or they may not expire. In such cases, the user

can revoke the refresh tokens. Checking for the expiry of access

tokens can be a cumbersome code. The oauth2 library provides a

TokenSource wrapper that refreshes the access token when the

caller calls its Token() method.

…

ts = conf.TokenSource(r.Context(), token)

if ntoken, err = ts.Token(); err == nil {

if ntoken != token {

log.Println("Refreshed the token and saving…")

err = _saveToken(w, ntoken)

}

}

…

Service Endpoints

If we had to implement the querying of Userinfo, we would have

followed the following steps.

1. Find the "userinfo_endpoint" from the OP directory, i.e.,

https://openidconnect.googleapis.com/v1/userinfo.

2. Create an HTTP query with the access_token as the Bearer

token in the authorization header and the userinfo_endpoint

as the URL.

provider.Userinfo method carries out all this tasks and obtains the

data.

…

if ui, err = provider.UserInfo(r.Context(), ts); err == nil {

claims := make(map[string]interface{}

if err = ui.Claims(&claims); err == nil {

w.Header().Set("Content-Type", "application/json")

enc := json.NewEncoder(w)

enc.SetIndent("", " ")

enc.Encode(claims)

}

}

…

For /idtoken, we take the ID token string and convert it to a JWT

token structure.

claims := jwt.MapClaims{}

idTokenStr := token.Extra("id_token").(string)

if idtoken, err := jwt.NewParser().ParseWithClaims(

idTokenStr, &claims, _keyFunc); err == nil {

w.Header().Set("Content-Type", "application/json")

enc := json.NewEncoder(w)

enc.SetIndent("", " ")

enc.Encode(idtoken)

}

The ParseWithClaims(idTokenStr, &claims, _keyFunc) method

decodes the three parts of the ID token we discussed earlier. The

_keyFunc function provides the necessary public key to verify the

https://openidconnect.googleapis.com/v1/userinfo

signature. Here is the relevant logic implemented in the _keyfunc

method.

1. Search the OP directory for the jwks_url and obtain the

public keys from Google.

2. Find the key whose key id (kid) matches the key id (kid)

mentioned in the JWT header.

3. The key is in the JSON web key format. Convert the key to

the RSA key format.

In the interest of space, we suggest the users review the _keyFunc

at chapter-5/google/oidc.go.

Web front end

Note:

Enter the frontend folder and run flutter build web to build the

front-end code.

The web front end is straightforward. It tries to access the

/userinfo and /idtoken endpoints.

late Future<String> userinfo;

late Future<String> idtoken;

@override

void initState() {

super.initState();

userinfo = getInfo(Uri(scheme: "http", path: "/userinfo"));

idtoken = getInfo(Uri(scheme: "http", path: "/idtoken"));

}

Future<String> getInfo(Uri uri) async {

var res = await http.get(uri);

if (res.statusCode == 200) {

return res.body;

} else {

throw Exception("${res.statusCode} ${res.body}");

}

}

If the user has authenticated, it receives the userinfo as a JSON

object which it renders in a tabular form.

Widget getUserInfo(BuildContext context) {

return FutureBuilder(

future: userinfo,

builder: (BuildContext ctx, AsyncSnapshot<String> sn) {

if (sn.hasData) {

List<TableRow> trs = [];

Map<String, dynamic> m = jsonDecode(sn.data!);

m.forEach((k, v) {

trs.add(TableRow(children: [

Padding(

padding: padding,

child: Text(k),

),

Padding(

padding: padding,

child: Text(v.toStr ing()),z),

]));

});

return Table(

defaultColumnWidth: const IntrinsicColumnWidth(),

children: trs,

border: TableBorder.all(),

);

} else if (sn.hasError) {

return Text(sn.error.toString());

} else {

return const Text("Reading data…");

}

},

);

}

For the ID token, the UI receives the JSON structure. It renders

the header, claims, signature, and validity of the signature.

Widget getIDToken(BuildContext context) {

return FutureBuilder(

future: idtoken,

builder: (BuildContext ctx, AsyncSnapshot<String> sn) {

if (sn.hasData) {

Map<String, dynamic> m = jsonDecode(sn.data!);

const encoder = JsonEncoder.withIndent(" ");

final headerPretty = encoder.convert(m["Header"]!);

final claimsPretty = encoder.convert(m["Claims"]!);

final signature = m["Signature"]!;

final valid = m["Valid"]!;

const padding = EdgeInsets.all(10);

return Column(

crossAxisAlignment: CrossAxisAlignment.start,

children: [

const Padding(

padding: padding,

child: Text("Header"),

),

Text(headerPretty),

const Padding(

padding: padding,

child: Text("Claims"),

),

Text(claimsPretty),

const Text("Signature"),

Text(signature),

Text("Valid: ${valid.toString()}"),

],

);

} else if (sn.hasError) {

return Text(sn.error.toString());

} else {

return const Text("Reading data…");

}

},

);

}

If the user has authenticated, the Login button changes to a

Logout button.

Widget getLoginButton(BuildContext context) {

return FutureBuilder(

future: userinfo,

builder: (BuildContext ctx, AsyncSnapshot<String> sn) {

final path = sn.hasData ? "/oauth/logout" : "/oauth/login";

final btnTxt = sn.hasData ? "Logout" : "Login";

return TextButton(

onPressed: () => launchUrl(Uri(scheme: "http", path: path),

webOnlyWindowName: "_self"),

child: Text(btnTxt, style: const TextStyle(color:

Colors.white)),

);

},

);

}

A Scaffold class places the preceding UI elements in the

designated locations.

Conclusion

We reviewed the IAM infrastructure of an enterprise and

identified the need for daisy chaining of IDPs. We looked at the

social networking world of sharing content and the need for

authorization beyond groups and attributes. We reviewed the

OAuth 2.0 specification and various grant types required for the

secure delivery of access tokens. Then we looked at the

rationality of developing an OIDC protocol and how OIDC

provides the capabilities of an IDP through ID tokens. We

reviewed the JWT format in the context of using them as ID

tokens. We discussed how to keep the tokens secured in

exchanges. However, we have not discussed the credentials to

authenticate with the authentication or authorization servers. We

discussed passwords in the context of cryptography. In the next

chapter, we will go beyond passwords as credentials or

authenticators.

Questions

1. Pick up an open-source Identity and Access Management

product. Write an OIDC application and authenticate with the

IAM system. Configure some claims and verify them in your

application.

2. What are the differences between the tokens in OAuth 2.0

and OIDC 1.0?

3. In Figure 4.17: Identity and Access Management, we

discussed the role of SAML IDPs. How will OAuth or OIDC-

based systems integrate into that architecture?

4. While SAML AuthnRequests are signed to ascertain the

requester, no signing is carried out in OAuth. Is OAuth

secured enough?

5. Can PKCE and Device Grant protocols be used

interchangeably? Are there cases where both protocols are

needed to be used together?

1 As mentioned in: https://oauth.net

2 The OAuth 2.0 Authorization Framework:

https://datatracker.ietf.org/doc/html/rfc6749

3 The OAuth 1.0 Protocol: https://datatracker.ietf.org/doc/html/rfc5849

4 https://oauth.net/3

5 https://oauth.net/2.1

6 Abstract Protocol Flow, Figure 1, Section 1.2, supra 2.

7 https://pkg.go.dev/golang.org/x/oauth2

8 https://pkg.go.dev/golang.org/x/oauth2/github

9 If you have multiple integration servers, you can persist the values in a shared

database. We used _setState, _deleteState, and _existsState as placeholders. Since

several threads can access the state concurrently, proper access locking must be

performed.

10 https://datatracker.ietf.org/doc/html/rfc8628

11 Proof Key for Code Exchange by OAuth Public Clients,

https://datatracker.ietf.org/doc/html/rfc7636

12 We have taken the example from the library and modified it to support PKCE. The

library can be found at https://pkg.go.dev/github.com/go-oauth2/oauth2/v4.

13 Access Token, Section 1.4, Supra 2.

14 Authentication Requests, Section 2, The OAuth 2.0 Authorization Framework: Bearer

Token Usage, https://datatracker.ietf.org/doc/html/rfc6750

https://oauth.net/
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc5849
https://oauth.net/3
https://oauth.net/2.1
https://pkg.go.dev/golang.org/x/oauth2
https://pkg.go.dev/golang.org/x/oauth2/github
https://datatracker.ietf.org/doc/html/rfc8628
https://datatracker.ietf.org/doc/html/rfc7636
https://pkg.go.dev/github.com/go-oauth2/oauth2/v4
https://datatracker.ietf.org/doc/html/rfc6750

15 We have printed tokens on the consoles and user interfaces to explain concepts and

help you understand the authorization process. They are not the code for a

production server.

16 Scopes of OAuth Apps in GitHub, https://docs.github.com/en/apps/oauth-

apps/building-oauth-apps/scopes-for-oauth-apps

17 Taken from Google Cloud documentation.

https://cloud.google.com/docs/authentication/token-types

18 RFC 7519, JSON Web Token, https://datatracker.ietf.org/doc/html/rfc7519

19 Section 6, OIDC Core 1.0 Specification, https://openid.net/specs/openid-

connect-core-1_0.html#JWTRequests

20 RFC 7515, JSON Web Signature, https://www.rfc-editor.org/rfc/rfc7515.html

21 Data used from RFC 7515

22 The data is provided in RFC 7515, Appendix-A.1, https://www.rfc-

editor.org/rfc/rfc7515.html#appendix-A.1

23 jwt.io, https://jwt.io

24 https://openid.net/certification/

25 Do not check-in client ID and the secret to any source control system as it can be

accessed by an unauthorized person.

26 Package oidc implements OpenID Connect client logic for the golang.org/x/oauth2

package. https://pkg.go.dev/github.com/coreos/go-oidc/v3/oidc

27 Section 3.1.3.7. ID Token Validation, https://openid.net/specs/openid-connect-

core-1_0.html#IDTokenValidation

28 Section 3.1.3.8 Access Token Validation, https://openid.net/specs/openid-

connect-core-1_0.html#CodeFlowTokenValidation

https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps
https://cloud.google.com/docs/authentication/token-types
https://datatracker.ietf.org/doc/html/rfc7519
https://openid.net/specs/openid-connect-core-1_0.html#JWTRequests
https://www.rfc-editor.org/rfc/rfc7515.html
https://www.rfc-editor.org/rfc/rfc7515.html#appendix-A.1
https://jwt.io/
https://openid.net/certification/
https://pkg.go.dev/github.com/coreos/go-oidc/v3/oidc
https://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowTokenValidation

CHAPTER 6

Multifactor Authentication

Introduction

In the chapters on federated authentication, we looked at how

service providers can present the identity providers with an

authentication request and how identity providers can respond

with a successful or a failed response. We did not focus on the

interaction between the user and the identity provider. In its

simplest form, the identity provider challenges the user to

provide her credentials to validate. The user submits her

credentials; the identity provider authorizes access if the

credentials are validated. We have seen some examples with

usernames and passwords as credentials. We talked about how

to keep passwords safe on the server. We also suggested some

best practices for managing passwords. Whatever you do,

passwords are cumbersome; enterprises spend billions of dollars

managing passwords1. With mobile devices and biometric

scanners becoming ubiquitous, industries are looking for

credentials beyond passwords. We will look at some of those in

this chapter.

Structure

In this chapter, we will cover the following topics:

Factors of authentication

OTP-based authentication

Fast Identity Online (FIDO)

Bringing it all together

Factors of authentication

We have already seen passwords in previous chapters.

Passwords have been in use since the inception of computers.

While they are one of the most common authentication

credentials, fingerprints, access cards, USB tokens, etc., are used

as authentication mechanisms.

Figure 6.1: Authentication factors

NIST classified these credentials into three factors of

authentication.

1. Something You Know: Here are some of the most common

credentials in this category

Passwords: We have discussed them at length and

found them hard to manage, yet they are most

prevalent. Personal Identification Numbers (PINs) used

on phone interfaces are similar.

Questionnaire: These are trivia-like facts known about

a person, e.g., date of birth, mother's maiden name, the

first school you went to, etc. There is not much variation

in the answers for an individual. Multiple websites can

use similar questions. For example, many websites store

the date of birth or mother's maiden name. In the era of

social networking, observing a person's profile can

answer many such questions.

Patterns: These are commonly used in mobile screen

locking. The number of combinations is limited.

All knowledge-based credentials are vulnerable to social

engineering attacks. For example, a malicious actor can ask

a few questions in an unrelated context, and the user

divulges private information without realizing his security is

compromised. In a phishing attack, a malicious actor can

present the user with a lookalike website. The user

innocently enters his knowledge information and exposes

the data. A malicious actor can harvest the knowledge

information once and use it several times later.

2. Something You Have: This authentication factor ensures

the user has a physical token or gadget. Here are a few

commonly used tokens:

Key fob: A device generates a temporary password that

the user can use only once within a specified period to

authenticate. We will discuss this further in a later

section.

USB Dongle/Common Access Cards: These devices

have asymmetric cryptography-based keypairs. When a

user wants to authenticate, the operating system sends

these devices signing requests. Once signed, the user is

validated.

Mobile Devices: Everyone today has one or more

mobile devices. When the user tries to authenticate, the

user receives a one-time password. He uses this

password to log in. The mobile device can have an

authenticator app that will receive a notification when a

user tries to log in to a website. The user can access the

website only when she approves the authentication

request on her mobile. The mobile device may have an

application that generates an OTP, like a key fob

discussed earlier.

A user can get locked out if the device is lost. A stolen

device can give the malicious actor access to the

authentication platform. Hence, some of these devices

require a PIN to access the device, or in a mobile phone, the

user must lock the screen. The malicious actor can sit in

line, harvest the credentials, and submit on behalf of the

user as a man-in-the-middle (MiTM) during the transaction;

but, an attacker cannot save the one-time password and use

it later2. However, there is no protection against a man-in-

the-middle attack unless you use a server authentication

scheme, like Transport Layer Security (TLS).

FIDO Devices and WebAuthn: TLS is one proven

defense against MiTM attacks. Since the communication

channel is encrypted end-to-end, no malicious actor can

access any credential data. Mutual TLS (m-TLS) provides

secured client authentication and defense against MiTM

attacks. However, m-TLS is cumbersome to use and is

not browser-friendly.Certificate-based authentication

(CBA) with a web browser either uses a Java-Applet3 or

requires a helper application to access the client

certificates on a desktop. WebAuthn workflow with FIDO

devices provides a user-friendly authentication scheme

and is supported on all modern browsers. FIDO devices

can integrate biometric authentication into the same

workflow as well. We will discuss this in a later section.

3. Something You Are: These authentication factors are

associated with a person's physical attributes. Most of these

are biometric characteristics of a person, e.g., face,

fingerprint, heartbeat, voice, iris/retina, etc. A sensor

captures these parameters and passes them over the

internet for validation. Some malicious actors capture these

biometric data and reuse them in another context. Stolen

biometric information can be detrimental as there is no way

to create new biometric information. Most biometric

authentication schemes verify if the person presenting the

biometric data is alive. These checks are known as liveness

checks. Some authentication experts insist biometry data

not be transmitted over the wire. In such cases, the

biometric data is validated in the device of capture, like the

mobile device, and a signed response is sent to the

authentication server confirming biometric data validation.

We will discuss this further in the context of WebAuthn in a

later section.

OTP-based authentication

Passwords are shared secrets between the server and the user,

yet they have these limitations:

A user must remember them. So, they are associated with

the user's past experiences and knowledge.

They cannot be of arbitrary binary values. They are valid

words or close derivatives of them. So, they cannot be as

random as binary data of the same length.

While password policies insist on higher complexity, they

make the passwords hard to remember.

The servers do not store the password in clear text. They

derive a key from the password and save the key. However,

the user sends the password in clear text through the

authentication channel. If the channel is unsecured, the

password is compromised.

Once compromised, a hacker can use the password later.

To overcome the shortcomings described above, we introduce

the following scheme. The server publishes a book of random

numbers and provides that to the user. While authenticating, the

user shall present one random number from the book in a

specific sequence, say left to right and top to bottom.

Figure 6.2: A book of random numbers

Once the server accepts the random number, the client and

server will mark the number as used (45367 and 12348). The user

will send the next number in the sequence (32360) in the

subsequent authentication attempt. If the server can provide

such a book to every user independent of the book given to

another user, we can overcome all the limitations we saw with

the passwords. The one-time password concept came from this

idea. The practical implementation looks like this:

1. The server and the device share a shared secret (K). In the

case of a hard token, the manufacturer burns it into the chip.

In the case of a soft token or mobile application, we use an

out-of-band transmission mechanism.

2. The user clicks a button on the device to increment a

counter (C).

3. The client generates an HMAC_SHA1(K, C). The generated string

is 160 bits (20 bytes) long.

4. The device truncates the string to a 31-bit value or a

positive 4-byte integer. The device divides the integer by 106

and shows the user the 6-digit one-time password. If

required, the device can generate 7 or 8-digit numbers as

options.

Figure 6.3: HMAC-based OTP workflow schematic

5. The user presents the value to the server.

6. The server follows steps 2–4 to generate the OTP. If the OTP

generated at the server matches the password sent by the

user, the validation is successful.

7. On a successful match, the server stores the

incrementedcounter. This step ensures the password is only

valid for one time.

The HMAC-based OTP (HOTP) algorithm4 expects the shared

secret to be random and should be at least 128 bits long. It does

not define the exchange workflow. In the figure, we have shown a

QR code-based exchange of the credential information.

HOTP Sample

We provide a sample code to understand the HOTP framework

and would like you to review it alongside reading the book.

1. Go to the Chapter-6/otp/frontend folder. Run flutter build web

to build the front end.

2. Go to the parent directory (Chapter-6/otp) and launch the

server using the command go run ./otp.go.

3. Now open the browser and go to the URL:

https://mysrv.local:8443/

Figure 6.4: HOTP workflows in one screen

Figure 6.4 is composed of three parts.

Registration:

When you enter a user name and click the generate

new HOTP key button, you see a new secret and QR

code. You can view the parameters of the

credentials in a tabular form.

If you have Google Authenticator installed on your

mobile device and scan the QR code, Google

Authenticator will prompt you if you want to add the

credential to your device. Alternatively, you can

manually add the secret to the Google

Authenticator.

The shared secret is in a base32 encoded form.

If you decipher the QR code, you will find a URL5 in the

format shown below:

otpauth://hotp/mysrv:alice?

issuer=mysrv&secret=WKBCPXOO6YUDSM6O5W7N5VLLPLU4YXKT

For the HOTP, the optional parameters are digits and

counter. If we include them, the URL will be as shown.

otpauth://hotp/mysrv:alice?

issuer=mysrv&secret=WKBCPXOO6YUDSM6O5W7N5VLLPLU4YXKT&counter=0&

digits=6

Under the hood, we implement a /register endpoint with a

handler for the following steps.

Create a cryptographically secure random number and

encode it using base32 encoding.

Formulate the otpauth URL using the format guide we

discussed above.

Create a new OTP secret key object from the URL.

Collect all the parameters from the key and form a JSON

object for the response.

Generate the QR code and add its path to the response

object.

The error handling has been removed for better readability

of the code.

http.HandleFunc("/register", func(w http.ResponseWriter, r

*http.Request) {

username := r.FormValue("username")

otptype := r.FormValue("type")

secret_bytes := make([]byte, 20)

rand.Read(secret_bytes)

secret := base32.StdEncoding.EncodeToString(secret_bytes)

url := fmt.Sprintf(

"otpauth://%s/mysrv:%s?issuer=mysrv&secret=%s",

otptype, username, secret)

key, _ := otp.NewKeyFromURL(url)

keyinfo := map[string]string{

"secret": key.Secret(),

"type": key.Type(),

"algorithm": key.Algorithm().String(),

"digits": key.Digits().String(),

}

img, _ := key.Image(200, 200)

var imgbuf bytes.Buffer

png.Encode(&imgbuf, img)

keyinfo["image"] =

base64.StdEncoding.EncodeToString(imgbuf.Bytes())

w.Header().Set("Content-Type", "application/json")

jsonResp, _ := json.Marshal(keyinfo)

log.Printf("new %s key provisioned for the user %s",

key.Type(), username)

w.Write(jsonResp)

users[username] = &_userData{

Type: key.Type(),

Secret: key.Secret(),

Counter: 1,

}

})

The user interface is straightforward. It obtains the

parameters for the credential and renders:

The QR Code

Base32 encoded secret

Other parameters in a tabular form.

A button for the user to trigger the provisioning of a new

key.

We suggest the readers review RegistrationView in

frontend/lib/main.dart.

Validation

The validation endpoint (/validate) receives the username

and the OTP. The method hotp.Validate call takes the shared

secret, counter, and OTP as inputs. If the OTP matches, the

validation is considered successful. The handler is shown

below:

http.HandleFunc("/validate", func(w http.ResponseWriter, r

*http.Request) {

username := r.FormValue("username")

otp := r.FormValue("otp")

authdata, _ := users[username]

if authdata.Type == "hotp" {

ok = hotp.Validate(otp, authdata.Counter, authdata.Secret)

if ok {

authdata.Counter++

}

}

if ok {

log.Printf("User %s authenticated successfully", username)

return

} else {

http.Error(w, "invalid username or otp",

http.StatusUnauthorized)

log.Print("invalid username or otp")

}

})

Authenticator

The authenticator code is all dart-based and rendered in the

browser. It does not require any backend REST APIs. The

package 'otp/otp.dart' is used for computing the OTP values.

OTP.generateHOTPCodeString(widget.secret, counter,

isGoogle: true) computes the OTP value.

A trigger button is provided to increment the counter.

We suggest the readers review AuthenticatorView in

frontend/lib/main.dart.

Synchronization of the counter

Synchronization of the counter across the server and

authenticator device is a challenge. Let us say a user received a

hard token and left it unattended. A kid in the house got hold of

the device and kept pressing the trigger button. Such a device is

out of sync with the server. Some devices ask for a protection PIN

before they increment the counter. However, that makes it

harder for the user. Can some steps be taken at the server?

Figure 6.5: HOTP device and server counter synchronization

When a server cannot validate an OTP, it can look ahead to ten

counter values to find a potential match. Once an OTP match

exists, the server will ask the user to present the next OTP value.

If that OTP matches, the synchronization is completed. In Figure

6.5, the device counter was 20, and the server was 10. When the

user presents the OTP, the server increments the counter till it

reaches 20. Then the server asks the user to submit the OTP for

counter 21. If the server can validate, the server sets the counter

value to 21. How reliable is such a scheme? The probability of a

random 6-digit number being a valid OTP is 10-6. The probability

of two such consecutive values being valid is 10-6 × 10-6 = 10-12.

At this small probability, it is more likely to assume the user owns

the device.

Unattended HOTP devices

Suppose Alice leaves her HOTP authenticator unattended, and a

malicious user (Mallory) gets access to it. Mallory can harvest a

few OTPs from the device and record them in a notebook. At her

convenience, Mallory can access the server and authenticate as

Alice. The OTPs are for one-time use only, but they never expire.

Hence, some devices insist the user uses a PIN to access the

OTP. There are only 106 possibilities of OTP values. In such cases,

one can orchestrate a brute-force attack. A server should only

allow limited authentication attempts for a user at any specific

instance and lock the account if such a limit is exceeded.

Time-based OTP

Synchronizing the counter across the device and the server can

be cumbersome. Secondly, we did not want OTPs to be valid for

an indefinite amount of time. What if the moving factor or the

counter is time-dependent? These led to the development of the

standard for time-based one-time passwords.

The default step is 30s.

While developing the TOTP standard7, SHA-1 is no longer

considered secure enough as a hash algorithm. Hence,

HMAC_SHA256, HMAC_SHA512, etc., became additional valid

hash algorithms. However, the HMAC_SHA1 algorithm is safe for

OTP generation with no known vulnerabilities and is the default

algorithm for the standard. We use the package totp of the

github.com/pquerna/otp library for developing the backend code.

The code is very similar to what we have seen for the hotp

implementation. We use the same dart library: otp/otp.dart for

front-end development.

Figure 6.6: TOTP workflow as a schematic. The QR code contains the time step

instead of the counter.

If you click on the button to generate a new TOTP secret, the

authenticator view will change to a TOTP counter with time

remaining to refresh the OTP. The QR code will have a new URL:

otpauth://totp/mysrv:alice?

issuer=mysrv&secret=NWIEBQGRXFVV23DZACSGOYWK5B22MT37

We use the default step size 30s and digits of length 6. Hence,

they do not show up explicitly in the URL.

Figure 6.7: TOTP workflows in one screen

Registration

We have already seen the code for registration. In the case of

TOTP, the period parameter is sent in place of the count

parameter.

http.HandleFunc("/register", func(w http.ResponseWriter, r

*http.Request) {

…

if otptype == "totp" {

keyinfo["period"] = fmt.Sprint(key.Period())

}

…

})

Validation

The TOTP validator takes the OTP and the secret as input.

http.HandleFunc("/validate", func(w http.ResponseWriter, r

*http.Request) {

…

if authdata.Type == "totp" {

ok = totp.Validate(otp, authdata.Secret)

}

…

})

Authenticator

We use the method:

OTP.generateTOTPCodeString(

widget.secret,

DateTime.now().millisecondsSinceEpoch,

algorithm: Algorithm.SHA1,

isGoogle: true,

);

to generate the OTP. The user interface has a step-down timer,

providing the remaining time before the next OTP will be

computed. The full code can be seen in the frontend/lib/main.dart

file.

Synchronization of time

TOTP is not entirely devoid of synchronization challenges. A user

picked up an OTP at time 00:00:05 hours. This device computed

this OTP at 00:00:00 hours. Suppose the user sent the code to

the server at 00:00:08 hours. The server validated the OTP. At

00:00:15 hours, the user wants to authenticate again. Can she

send the same OTP? That will fail the basic premise of OTP being

a one-time password8. The user must wait for the OTP period to

expire (30 sec) for a new OTP. Most APIs, including our examples,

do not check if the code has already been used. Maintaining the

context requires a database or local store to hold the context

information. We have avoided context tracking to keep the code

simple. However, that makes the implementation incomplete.

The code is valid for 30 seconds and is invalidated on use.

Figure 6.8: TOTP is a one-time password

We have a few conditions where synchronization brings

additional challenges.

Figure 6.9: TOTP clock synchronization

In Figure 6.9 TOTP clock synchronization, we show authenticators

generating OTPs and validating servers validating OTPs. General-

purpose computing devices like mobile phones can synchronize

time with a time server using the Network Time Protocol (NTP),

while hard tokens cannot synchronize with a time server; yet, the

code generated should be in sync with the server. To compute

the clock skew, the user must present two consecutive OTPs to

the server. The server must start searching for the OTPs

generated in the past, let us say from the past several hours. All

hardware OTP generators have an internal battery; with aging,

these device batteries lose power, and the clocks run slowly. If

you have an old TOTP generator, you may need to conduct these

calibrations several times a year. Most hard tokens have a shelf

life of 3–5 years. They are tamperproof and are not amenable to

battery replacement or other maintenance activities.

Figure 6.10: Several TOTPs are valid at the time: T=0

You are trying to log in to a site and get challenged to provide an

OTP. You open the authenticator app. You look at the OTP and

realize a good 15 seconds have passed. There are only 15

seconds left to enter it on your desktop browser, and you are

running against time, you make mistakes, fat-fingered while

typing, etc. That is where the servers will be more tolerant and

allow OTPs 2 or 3-time steps older. User experience takes priority

over security. In Figure 6.10 Several TOTPs are valid at the time:

T=0, we allow seven OTPs to be valid. Why future? While most

synchronization is for OTPs generated in the past, there are

cases when the authenticator runs on a device with a clock

ahead of time. Hard token authenticators, if not calibrated, can

have the internal clock running ahead of the server. Considering

all these, it is better to be tolerant on both sides.

Figure 6.11: Validity of past TOTP when a future OTP has been validated

Alice read the OTP from the device (T=−60) and wanted to enter

it in the authentication screen but missed it. So, she used the

subsequent OTP generated at (T = −30) and managed to log in.

At this time, Eve saw the OTP generated at (T=−60) through a

spy camera mounted over Alice's head. Fifteen seconds have

elapsed. Can Eve use the OTP generated at T=−60 and

impersonate Alice? Any time a server validates a TOTP

successfully, it must mark all older OTPs invalid. So as soon as

the OTP at T=−30 is validated, the OTP generated at T=−60

becomes an invalid OTP. It ensures OTPs cannot be harvested

and used within the extended validity period developed for

convenience.

Figure 6.12: Harvesting TOTP from a future time

Alice left her unlocked phone on the desk and went on a short

errand. Mallory took the opportunity, advanced the clock by a

day, and harvested the OTPs from 10:00 a.m. to 10.10 a.m. The

next day sitting at her home, Mallory impersonates herself as

Alice and accesses Alice's bank account. With 21 harvested

OTPs, she can virtually carry out any bank transaction in a 15-

minute window. It is not easy to carry out this attack on a hard

token as clock manipulation will require one to break open the

device and destroy it as such devices are tamperproof. But this

attack can be carried out on a mobile app authenticator. Hence,

some authenticator apps detect clock manipulations and reset

the authenticator. They notify the user and contact the server so

that no further authentication is permitted for the authenticator.

In addressing the counter-synchronization issues of HOTP, we

introduced the TOTP systems. Now, we realize TOTP-based

systems have their share of synchronization requirements. The

standard, while providing guidance, does not solve the

synchronization issues. The shared secret is the core of the OTP

systems. Is the key exchange as a QR code safe enough?

Exchanging shared secret

QR code is a mere visual encoding of data. It does not add any

security or encryption by default. Any QR code scanner can

decipher the content with ease. The QR code we used base32

encoded text of the secret; technically, you see a bare shared

secret on the screen. If you use TLS to access the website, you

are sure the QR code did not transmit over an unsecured

network. With security cameras all around, in workplaces,

shopping malls, etc., can you be sure a security camera did not

capture the QR code or the screen? We propose an alternative to

the original QR code algorithm.

Figure 6.13: Using key derivation function to generate a shared secret

In Figure 6.13 Using key derivation function to generate a shared

secret, the server presents only a server random (Rs) in the QR

code. The client creates a client random (Rc), uses the received

server random (Rs), and uses a key derivation function (KDF) to

generate the secret (K). It generates an OTP and sends it

alongwith the client random (Rc) to the server. The server

generates the same shared secret (K) using the server random

(Rs) and client random (Rc) using the key derivation function

(KDF). Now, the server can validate the OTP and ensure proof of

possession of the exchange. While we present only the outline, a

detailed specification can be seen from the Dynamic Symmetric

Key Provisioning Protocol (DSKPP)9.

Cryptography experts are generally paranoid about the safety of

shared secrets, application keys, passwords, etc. Here are some

guidelines that should be adhered to

When transmitted over the wire, channel encryption like TLS

must be used.

If practical, use a key derivation function to generate by

exchanging the seeds between the client and the server.

Avoid duplicating the key on another device or maintaining a

backup of the keys. The existence of such a backup has led

to several security attacks, the most notorious one being the

RSA breach10 of 2011.

Keeping the shared secrets on a mobile application can be a

significant challenge. Some applications use device hardware

parameters11 that are hard to replicate to cloak the shared

secret and store the cloaked value on the device. Modern

applications prefer special-purpose secured computing elements

to store and compute cryptographic operations. We will discuss

some of these in a later section. Authenticator apps by almost all

vendors are providing OTP wallets. You can provision multiple

TOTPs using QR codes and generate codes. You can use the code

on any validation server. Moreover, some authenticators provide

backup and restore of the credentials. You can get the OTPs on

your new phone and discard the old phone. A couple of things to

remember, if your backup system is hacked, hackers can access

your OTPs using the same technique. Secondly, when you

discard the old phone, ensure the OTP application data is cleared

and deleted. If not, a mere reinstallation can provide access to

the previously cached data. Again, these are implementation-

dependent and vary from application to application. We suggest

that users choose the safest authenticator that addresses these

issues. We do not recommend any specific vendor12.

Other OTP-like authenticators

Almost all authentication methods backed by a shared secret,

using a key derivative to authenticate, have similar

cryptographic strengths. For example, a 6-digit OTP is weaker

than 8-digit for a brute force attack. However, the attack vectors

needed to exploit both OTPs can be very similar. If someone

manages to steal the shared secret, a 6 vs. 8-digit OTP will not

significantly affect the security. The protection against brute

force attacks is a rate limitation, like allowing only five failed

attempts for a credential. Server-generated OTPs are the most

common method of OTP used in the industry. The authentication

server generates the OTP and sends it to the user over email,

SMS, enterprise messaging services, or even consumer-

encrypted messaging services like WhatsApp and Signal. More

than the OTP, the transport is open to attacks. Email and SMS

channels are unreliable and are potentially susceptible to

eavesdropping. Some encrypted channels for message exchange

eavesdrop and analyze messages. Technically, they can access

the OTPs as well. Some authenticators embed the authentication

code as a session ID and share it as a magic link over SMS or

email. All these have a similar cryptographic strength, but some

need lesser user involvement than others. If SMS OTP is

considered unsecured as the SMS channel can be attacked, all

other message-based channelsshould be evaluated for a similar

breach possibility. Hence, it is ideal to understand the underlying

technology and find the weakest link in the authentication

workflow rather than be carried away with the associated

marketing claims of the authenticators.

Fast Identity Online (FIDO)

Passwords are inherently cumbersome and unsecured. Shared

secret-based OTP systems can be hard to manage. They are

secured to a great extent if the secrets need not be stored,

archived, moved around, etc. Can public key cryptography and

digital certificates provide a better security framework? The

answer is yes, but they are not private enough. Let us assume,

that to use an Amazon Kindle device; I need a digital certificate. I

logged into the Amazon Kindle device and requested a certificate

from DigiCert. DigiCert now knows I have a Kindle device. Should

DigiCert know that? Alternatively, DigiCert can issue me a

certificate based on my tax filing ID. If I use that certificate to

authenticate to Amazon, Amazon will know my tax filing ID.

Some privacy is lost when an attesting authority issues a

certificate as the certificate is issued to some form of Personally

Identifiable Information (PII) like, email ID, tax filing ID, etc.

Secondly, mutual TLS (m-TLS) is a network protocol. When

authentication fails due to an improper client certificate, the

browser reports it as a connection failure. The web application

will not be aware of this failure as there is no network

connection. Other certificate-based authentication (CBA)

schemes are not browser-friendly as they require additional

helper applications. Thirdly, the architecture of issuing a

certificate to a user is cumbersome and requires a savvy user to

download the certificate safely to the device or a USB trust store.

Industry experts from companies like Google, Microsoft, Apple,

Yubico, etc., reviewed the complex authentication landscape and

decided to use Public Key Infrastructure (PKI) as the

authentication mechanism. PKI asymmetric cryptography is a

keypair but does not mandate the public key has to be attested

by a trusted attorney if the contract is between only two parties.

As shown in Figure 2.10: Signing using asymmetric cryptography,

for trusted communication between Alice and Bob, there is no

need for a Trent if Bob and Alice know each other. As in password

authentication, you do not need a Certificate Authority to

validate. Bob maintains the directory of public keys and validates

Alice against the directory.

Figure 6.14: Scope of FIDO Authentication Framework

The industry experts formed a consortium called Fast Identity

Online (FIDO)13. The FIDO consortium has vendors across the

spectrum; authenticator device manufacturers, OS and browser

vendors, IAM vendors, and even relying parties. It splits the

communication into two parts. Browser to a relying party (RP)

and Brower to the authenticator device.Protocols like client-to-

authenticator protocol (CTAP) and universal second factor (U2F)

provide the conduit for the user agent to the authenticator

device. Universal Authentication Framework (UAF) and its web

equivalent WebAuthn, are protocols for the browser to the relying

party. In this chapter, our focus will be the communication from

the browser to the relying party. The authenticators perform all

the PKI operations like keypair creation or payload signing.

WebAuthn only provides a secure channel to pass this

information to the server. The metadata info for keypairs

associated with a user and a website is cached in the browser as

passkeys. Just like autofill options with passwords, modern

browsers can suggest them to authenticate.

What is a passkey14?

Passkeys are like passwords but better. They are better because

they arenot created insecurely by humans and because they

use public key cryptography to create much more secure

experiences.

But passkeys arenot a new thing. It is just a new name starting

to be used for WebAuthn/FIDO2 credentials that enable fully

passwordless experiences. These types of credentials are also

called discoverable credentials or sometimes resident

credentials.

We will discuss introductory concepts of WebAuthn and leave the

advanced topics for the readers to explore as they get familiar

with the technology.

There are two workflows for WebAuthn.

Registration: In this workflow, we create a keypair in a

device and associate it with a user.

Authentication: Once a user association is there for

keypair, we can authenticate the user by signing some

payload.

Both the workflows have a begin and finish step.

Registration

The registration workflow is as shown.

Figure 6.15: WebAuthn credential registration workflow15

The workflow steps are:

1. The browser requests the relying party (RP) for the

credential creation options.

2. The RP sends the RP ID, the user information, the challenge

to be signed, and public key algorithms to be trusted. We

choose only RS256 and ES256 as valid public key

algorithms. Here is a sample

PublicKeyCredentialCreationOptions.

{

"publicKey": {

"rp": {

"name": "HOWA Webauthn",

"id": "mysrv.local"

},

"user": {

"name": "alice",

"displayName": "alice",

"id": "P4HRxVLRhlC…-f6DftobVe_DzK7FOSXEAxq7-Q2v5gWW-

r7c1w"

},

"challenge": "M2TWgXNr4KuwFcgYMp8py3qxwtM-kIReQzRyuN6dmpU",

"pubKeyCredParams": [

{

"type": "public-key",

"alg": -7

},

{

"type": "public-key",

"alg": -257

}

],

"timeout": 300000,

"authenticatorSelection": {

"requireResidentKey": false,

"userVerification": "preferred"

}

}

}

3. The browser invokes the window.navigator.credentials.create

to generate a passkey in a FIDO 2-compliant device.

4. The device verifies the user before the keypair is generated.

The verification can be a biometric or PIN verification. It also

generates an attestation16 for the device that generates the

key pair.

5. The browser receives the public key, a credential ID, and the

attestation information.

6. The browser encapsulates the data into an

AuthenticatorAttestation Response and sends it to the server.

Here is a sample response:

{

"CollectedClientData": {

"type": "webauthn.create",

"challenge": "M2TWgXNr4KuwFcgYMp8py3qxwtM-kIReQzRyuN6dmpU",

"origin": "https://mysrv.local:8443"

},

"AttestationObject": {

"AuthData": {

"rpid": "oJPAfsVbMMryZe5na+tp9WdzjjSy5jwSrFc+xWjL8q4=",

"flags": 69,

"sign_count": 0,

"att_data": {

"aaguid": "AAAAAAAAAAAAAAAAAAAAAA==",

"credential_id":

"VzGuzbEqdqS1N5ZHtRGFjg7CpThjPVfNPPdv+wpph9s=",

"public_key": "pAEDAzkBACBZAQDBDOf…RhIUMBAAE="

},

"ext_data": null

},

"authData": "oJPAfsVbMMryZe5na+…RhIUMBAAE=",

"fmt": "none"

},

"Transports": null

}

7. The server validates the response with the challenge it

generated in step 1.

The APIs we have used in the code have aggregated these seven

steps in three API calls.

1. Begin registration includes steps 0 and 1.

2. Steps 2, 3, and 4 are part of the WebAuthn JavaScript API

call.

3. Finish registration including steps 5 and 6.

Authentication

The authentication workflow is as shown:

Figure 6.16: WebAuthn authentication workflow17

1. The browser requests the relying party (RP) for the

credential for signing options.

2. The RP sends the RP ID, the user information, the challenge

to be signed, and a list of credentials for signing. Here is a

sample PublicKeyCredentialRequestOptions.

{

"publicKey": {

"challenge": "fg8DIlb7mtNxRfcnwT1CgjRr8W0KsgjOebyk2RM9lkM",

"timeout": 300000,

"rpId": "mysrv.local",

"allowCredentials": [

{

"type": "public-key",

"id": "VzGuzbEqdqS1N5ZHtRGFjg7CpThjPVfNPPdv-wpph9s"

}

],

"userVerification": "preferred"

}

}

3. The browser invokes the window.navigator.credentials.get to

access the passkey in a FIDO 2-compliant device.

4. The device verifies the user before the keypair is generated.

The verification can be a biometric or PIN verification. It also

generates an assertion that contains the signature for the

challenge.

5. The browser receives the public key, a credential ID, and the

assertion information.

6. The browser encapsulates the data into an

AuthenticatorAssertion Response and sends it to the server.

Here is a sample response:

{

"CollectedClientData": {

"type": "webauthn.get",

"challenge": "fg8DIlb7mtNxRfcnwT1CgjRr8W0KsgjOebyk2RM9lkM",

"origin": "https://mysrv.local:8443"

},

"AuthenticatorData": {

"rpid": "oJPAfsVbMMryZe5na+tp9WdzjjSy5jwSrFc+xWjL8q4=",

"flags": 5,

"sign_count": 1,

"att_data": {

"aaguid": null,

"credential_id": null,

"public_key": null

},

"ext_data": null

},

"Signature": "Nlt41J9VgUew5gkev…ktAkfvADYbYrUAT7A==",

"UserHandle": null

}

7. The server validates the response with the challenge it

generated in step 1.

The APIs we have used in the code have aggregated these seven

steps in three API calls.

1. Begin login includes steps 0 and 1.

2. Steps 2, 3, and 4 are part of the WebAuthn JavaScript API

call.

3. Finish login including steps 5 and 6.

Sample code and user interface

We implemented these workflows; the code is available in the

folder chapter-6/webauthn.

Go to the frontend folder and run flutter build web to build

the front end.

Go back to the parent directory and launch the WebAuthn

server by typing the command: go run ./webauthn.go

You can access the server at: https://mysrv.local:8443/

Figure 6.17: The test site opened on a Google Chrome browser with the developer

tools

In Figure 6.17 The test site opened on a Google Chrome browser

with the developer tools, using the highlighted user elements to

create a WebAuthn credential in the virtual credential

environment. In the Registration View, provide the username

alice and click on the Register button.

Figure 6.18: Credential created for mysrv.local

The highlighted credential was created in the virtual

authenticator environment for mysrv.local. If we go to the

Authentication View and authenticate using the credential, we

will see the signature count is incremented.

Figure 6.19: WebAuthn authentication in virtual authentication environment of

Chrome

If you have a fingerprint scanner configured with Microsoft

Windows Hello or have an Android or iOS phone, you can use

them as passkey providers.

Selection of FIDO 2 Devices

If you look at the credential creation options, the server is

looking for credentials of type public-key supporting algorithms of

type RS256 (-257) or ES256 (-7)18. We do not specifically mention

where to look for the security keys. In such a condition, if your

desktop has Windows Hello configured, Windows will prompt for

your fingerprint, PIN, Selfie, etc.

Figure 6.20: Windows Hello prompt for fingerprint

If a local security key is not found, Google Chrome will ask you to

pair an Android or iOS device using a QR Code.

Figure 6.21: Google Chrome pairing with a phone using QR code and NFC, USB, or

BLE

1. Google Chrome asks the user to register a phone or tablet.

2. The browser prompts the user to read the QR code19 using

his mobile camera.

3. On a scan, a mobile app asks for the user's permission to

connect the phone.

4. The mobile device waits for the user to provide her approval

with a fingerprint, PIN, or Selfie.

5. On success, the phone creates a passkey and notifies the

browser over a BLE or NFC connection per the CTAP-2

protocol20.

If WebAuthn is about PKI-based signing, how come all the

discussions in real-life examples are focused on biometric

authentication? Most FIDO-compliant devices store the private

key in a secured store. Any access or operation that uses the

private key requires user validation; a user's biometry, a device

PIN, etc. There is a two-factor authentication inherent in this

approach. One factor is the PKI-key validated at the server. The

second factor is locally validated in the device while accessing

the private key. Since the biometry information never leaves the

FIDO device, the potential stealing of biometry is minimal. We

will conceptually discuss this in the next chapter when we

discuss identity in detail. Providing access to the private key only

on user authentication is also known as user presence.

Front end for registration

The front-end code is available at chapter-

6/webauthn/frontend/lib/main.dart

1. In the RegistrationView, we contact the REST API at

/webauthn/register/begin to obtain the credential creation

parameters along with the challenge to sign.

2. We pass the parameter to the

window.navigator.credentials.create() method to create the

credential.

3. The results of the credentials are submitted to the

/webauthn/register/finish for the server to validate the

attestation data and record the registration status.

We have discussed the JSON payload in the earlier sections.

class _RegistrationViewState extends State<RegistrationView> {

final TextEditingController userCtrl = TextEditingController();

String regStatus = "";

@override

Widget build(BuildContext context) {

return Column(

children: <Widget>[

const Text("Registration View"),

padding,

TextField(

decoration: const InputDecoration(

border: UnderlineInputBorder(),

hintText: 'Username',

),

controller: userCtrl,

),

padding,

ValueListenableBuilder(

valueListenable: userCtrl,

builder: (context, uctrl, child) {

return ElevatedButton(

onPressed: uctrl.text.isEmpty

? null

: () async {

try {

final state = const Uuid().v4();

final res = await httpPost(

"/webauthn/register/begin",

{

"username": userCtrl.text,

"state": state,

},

null);

final publicKey = res["publicKey"];

if (publicKey == null ||

!publicKey.containsKey("challenge")) {

return;

}

final challenge = publicKey["challenge"];

res["publicKey"]["challenge"] = str2buffer(challenge);

fiwnal uid = publicKey["user"]["id"];

res["publicKey"]["user"]["id"] = str2buffer(uid);

final cred =

await window.navigator.credentials?.create(res);

if (cred == null) {

throw Exception("Failed to acquire credentials.");

} else {

var obj = {

"id": cred.id,

"rawId": buffer2str(cred.rawId),

"type": 'public-key',

};

obj["response"] = {

"attestationObject":

buffer2str(cred.response.attestationObject),

"clientDataJson":

buffer2str(cred.response.clientDataJson),

};

final res1 = await httpPost(

"/webauthn/register/finish",

{

"username": userCtrl.text,

"state": state,

},

obj);

setState(() {

regStatus = res1["message"];

});

}

} catch (e) {

setState(() {

regStatus = e.toString();

});

}

},

child: const Text("Register"),

);

},

),

Text(regStatus),

],

);

}

}

The data obtained from the Golang layer is in the base64url

encoding, while the browser expects the data in a byte array

format. We use the helper method str2buffer for the same.

Similarly, when we pass information from the browser to the

REST APIs, we convert the byte arrays to base64url encoding

using the buffer2str function.

ByteBuffer str2buffer(String s) {

var r = 4 - s.length.remainder(4);

while (r > 0) {

s += "=";

r--;

}

return base64Url.decode(s).buffer;

}

String buffer2str(ByteBuffer buf) {

return base64UrlEncode(buf.asUint8List());

}

We look at the REST APIs for beginning and finishing registration

next.

REST APIs for registration

The rest APIs are built using the go-webauthn/webauthn21 library. We

have developed two APIs. The begin API provides the credential

creation parameters and the finish API provides the response

from the browser back to the server to verify and associate the

registered credential with the user. Both APIs have a username and

a state parameter for tracking the sessions across the API calls.

http.HandleFunc("/webauthn/register/begin",

func(w http.ResponseWriter, r *http.Request) {

username := r.FormValue("username")

state := r.FormValue("state")

user := datastore.GetUser(username)

options, session, _ := wauthn.BeginRegistration(user,

webauthn.WithCredentialParameters(

[]protocol.CredentialParameter{

{

Type: protocol.PublicKeyCredentialType,

Algorithm: webauthncose.AlgES256,

},

{

Type: protocol.PublicKeyCredentialType,

Algorithm: webauthncose.AlgRS256,

},

},

))

datastore.SaveSession(state, session)

})

The begin API22 invokes the BeginRegistration API with the user

object and credential parameters and generates the credential

creation options for the browser. We use the datastore map object

to track the session information.

The finish REST API is shown here:

http.HandleFunc("/webauthn/register/finish",

func(w http.ResponseWriter, r *http.Request) {

username := r.FormValue("username")

state := r.FormValue("state")

ccr, _ := protocol.ParseCredentialCreationResponse(r)

session := datastore.GetSession(state)

if ccr.Response.CollectedClientData.Challenge !=

session.Challenge {

http.Error(w, "Internal Server Error", http.StatusBadRequest)

log.Print("invalid session or client")

return

}

user := datastore.GetUser(username).(userImpl)

credential, _ := wauthn.CreateCredential(user, *session, ccr)

user.AddCredential(credential)

datastore.SaveUser(user)

log.Printf("User: %s registered a WebAuthn credential.",

username)

},

)

We used the ParseCredentialCreationResponse23 method to collect

the credential information. We check for the Challenge parameter

with the parameter in the session object to ensure, that the begin

and finish calls maintain the session state across the call. Finally,

we create the credential using the CreateCredential call and

associate the same with the user object.

The authentication REST APIs are like the registration APIs. There

is a begin and a finish call. The begin API generates the challenge.

A FIDO 2 credential signs the challenge. The signed response is

sent to the server using the finish API. The session management

in login is like what we have seen in the registration APIs. We

suggest the readers review the handlers for /webauthn/login/begin

and /webauthn/login/finish.

Device Attestation

In our examples, we used FIDO 2 devices for registration and

authentication. We accept any form of FIDO 2 device in the

sample code. However, think of a bank (RP) that has issued

Google Titan Security devices to its customers to authenticate.

They would like to ensure the customer is using such devices

only. In such cases, the registration process mandates an

attestationConveyancePreferenceOption to enterprise. The device

attestation AAGUID will be sent to the RP. The attestation

statement is signed by the manufacturer certificate confirming

the device belongs to the manufacturer. FIDO Alliance provides a

metadata service24 with information regarding all registered

FIDO 2 devices. The RP can use this information to verify the

attestation data obtained from the device. The Google Titan

Security device metadata is presented here for reference.

{"aaguid": "42b4fb4a-2866-43b2-9bf7-6c6669c2e5d3",

"metadataStatement": {

"legalHeader": "… https://fidoalliance.org/metadata/metadata-

legal-terms/.",

"aaguid": "42b4fb4a-2866-43b2-9bf7-6c6669c2e5d3",

"description": "Google Titan Security Key v2",

"authenticatorVersion": 1,

"protocolFamily": "fido2"

"schema": 3,

…

"authenticationAlgorithms": ["secp256r1_ecdsa_sha256_raw"],

"publicKeyAlgAndEncodings": ["ecc_x962_raw","cose"],

"attestationTypes": ["basic_full"],

"userVerificationDetails": [

[{

"userVerificationMethod": "passcode_external",

"caDesc": {"base": 10, "minLength": 4, "maxRetries":

0,"blockSlowdown": 0}

},

…

],…

],

"keyProtection": ["hardware", "secure_element"],

"matcherProtection": ["on_chip"],

"cryptoStrength": 128,

"attachmentHint": ["external", "wired", "wireless", "nfc"],

"tcDisplay": [],

"attestationRootCertificates": ["MIICMjCCAdmgA…

vlW/yBqza/AdS0Sq6Q="],

"icon": "data:image/png;base64,…=",

"authenticatorGetInfo": {

"versions": ["FIDO_2_0", "U2F_V2"],

"extensions": ["credProtect","hmac-secret"],

"aaguid": "42b4fb4a286643b29bf76c6669c2e5d3",

"options": {"rk": true, "clientPin": false},

"maxMsgSize": 2200,

"pinUvAuthProtocols": [1]

}

},

"statusReports": [{

"status": "NOT_FIDO_CERTIFIED", "effectiveDate": "2023-06-15"

}],

"timeOfLastStatusChange": "2023-06-15"

},

The metadata has extensive information on the hardware’s

capabilities. RPs can use this information to whitelist or blacklist

devices.

Device Security

The metadata provided above contains keyProtection with hardware

and secure_element. Cryptographic secrets like private keys in the

case of asymmetric algorithms or shared secrets in the case of

symmetric algorithms require the highest level of protection. In

the token in the discussion, such a computing chip is available in

the hardware for storing the private key and computing

signatures. Even in the case of general-purpose operating

systems like Android or iOS, there are Trusted Execution

environments (TEE) that run parallel to the operating systems.

Only trusted or signed applications can run in such

environments. The TEE is not accessible to a regular app on a

mobile device. Thus, the cryptographic operations remain

secluded from other apps running in the system. The user

interface for sensitive data like passwords can be in the secured

user interface region backed by the TEE. Secure Enclave on

iPhones provides an encrypted computation environment on a

part of the processor. The purpose is to keep access to sensitive

data and computation isolated from the rest of the computational

surroundings. While we will not be delving into the details of

developing FIDO 2 authenticators as part of this book, we

discussed authenticator development in the context of OTPs.

Some apps write the keys on a KeyStore or KeyChain on Android

and iOS platforms. Sometimes the keys are protected by locking

the device. Most passkey interfaces on Android, document

unlocking the device provide access to the private keys. It also

simplifies the user experience. FIDO devices can communicate in

pairs over proximity technologies like NFC, Bluetooth LE, or USB-

like technologies. With varied kinds of hardware devices involved

in cryptographic operations, there is a need to standardize their

capabilities. It helps decide the class of devices fit for a particular

environment for their cryptographic protection strength that can

be tested and certified. The US Federal Information Processing

Standard Publications (FIPS) publishes the standard FIPS-140-225

that standardizes security requirements for cryptographic

modules. They describe a four-level classification.

Level-1: Lowest level of cryptographic hardware that can

run one approved cryptographic function. A PC encryption

board can be an example of such a system.

Level-2: The cryptographic module can run on general-

purpose computing hardware, but it must have some

evidence of tampering embedded in it. A minimum role-

based authorization is needed for the operator to access the

device.

Level-3: This cryptographic module must resist tampering.

Physical barriers can be present to make the system

tamperproof. The module should have identity-based

authentication and role-based authorization mechanisms for

the operators. The plaintext CSPs should have separate

paths from other data processed in the system. All critical

security parameters entering or leaving the system must be

encrypted. Many security fob devices fall into this category.

Level-4: The highest level of security that provides active

tamper protection and evidence reporting. The physical

operating environment is protected. The system is isolated

from external disturbances; it should be fault tolerant.

Physical security devices or hard tokens still play a significant

role in high-security environments like financial, banking,

defense, etc. As technologies are maturing in this area, we see

the interaction of the user and devices becoming more seamless.

Bringing it all together

In the previous two chapters, we reviewed SAML, OAuth 2, and

OIDC used extensively in federated authentication. However, we

used a password-based authentication mechanism in our

samples. Can we use other forms of authentication we studied in

this chapter? We have developed an integrated sample code to

take care of this. You can go to the folder chapter-6/integrated.

In this folder, we have developed two servers: idp.go and

mysrv.go.

1. idp.go is an authentication server that provides OAuth 2

authorization. We launch it with the command: go run

./idp.go.

2. mysrv.go is a service provider (SP) that provides access to

basic user information based on this authorization. We build

the front end from the folder mysrvfront with the command:

flutter build web. We launch the server with the command go

run ./mysrv.go.

3. Open the browser and go to the URL:

https://mysrv.local:8444/.

You will see the screen as shown in step 1 of Figure 6.22

Integrated sample for SP and Server. The user has no access to

the user information as she has not logged in. Now if you click on

the Login button on the top right corner of the page, you will be

redirected to https://idp.local:8443/login.

Authorization policy

Identity and Access Management (IAM) systems control user

authentication behaviors through authentication and

authorization policies. We have developed a simple authorization

policy here. The policy is in the function applyLoginPolicy. In our

sample, there is only one user alice.

If the user alice does not have a TOTP credential or a

WebAuthn credential, we redirect the user for password-

based authentication. The password is associated with the

user object as a field password.

If the user has a TOTP credential, we redirect the user to

authenticate with it.

If the user has a WebAuthn credential, we redirect the user

to authentication with WebAuthn.

If the user has no TOTP credential configured, we redirect

the user to register the TOTP credential.

If the user has no WebAuthn credential configured, we

redirect the user to register the WebAuthn credential.

If all the authentication steps are complete, we ask for the

user's consent for authorization.

We suggest the readers review the function to understand the

exact authentication sequence. An industry-grade IAM system

will have a rules-based engine to configure this policy rather than

to write code in if loops.

Figure 6.22: Integrated sample for SP and Authorization Server

Server-rendered authentication forms

In Figure 6.22 Integrated sample for SP and Authorization Server,

when the user clicks the Login button, he is redirected to

https://idp.local:8443/login URL. If the user has no registered

authenticators, the server redirects to the password page

https://idp.local:8443/password. In the section on WebAuthn, we

split the registration and authentication workflows into two REST

APIs, namely, begin and finish. The SPA client would contact

these services over a REST API, render the UI, and pass on the

user response to the finish API. Contrast it to authentication

pages rendered by the server based on the request parameters

(begin), and the user responds as a form submit (finish). This is

annotated in the handler for the /password page.

http.HandleFunc("/password", func(w http.ResponseWriter, r

*http.Request) {

…

if store, err = sess.Start(r.Context(), w, r); err == nil {

if r.Method == "POST" && r.Form == nil {

defer applyLoginPolicy(w, r)

u, _ := store.Get("LoggedInUser")

if err = r.ParseForm(); err == nil {

/*** The finish block ***/

if pw = r.Form.Get("password"); pw == u.(*userImpl).password {

store.Set("PasswordPassed", true)

store.Save()

}

return

}

}

}

…

/*** The begin block ***/

w.Write([]byte(`

<html>

<body>

<h1>Login In</h1>

<form method="POST">

<label for="password">Password</label>

<input type="password" name="password" placeholder="password">

<button type="submit">Next</button>

</form>

</body>

</html>

`))

})

In idp.go, you will find all the handlers are written in this manner.

In the interest of space, we will not quote code blocks here. We

encourage readers to review the authentication handlers.

1. /password – for password-based authentication.

2. /webauthn/register and /webauthn/login – for WebAuthn

3. /otp/register and /otp/login – for TOTP

Since the code is rendered by the server, we use hand-coded

HTML and JavaScript templates. In Step 3, when the password

authentication is completed, the server redirects to the OTP

registration page in Step 4.

Figure 6.23: WebAuthn registration in the authorization flow.

When the OTP registration is complete, the policy is verified

again. The policy router routers to the WebAuthn registration as

shown in step 5.

User consent

Before a user accesses the service provider, the authorization

server must apprise the user of the information shared with the

SP and should proceed only when the user consents. Consent

plays a crucial legal requirement in certain circumstances. The

intent is for the user to pause and take stock of the situation and

not proceed if not required to continue. We provide a simple

consent screen with an Allow button, but ideally, there should

also be a cancel button.

Figure 6.24: User explicitly consenting to proceed

The user consent should follow authentication. It ensures the

user consenting is a verified user. Once the user consents, the

authorization server redirects to the service provider and the

results are shown in step 7.

Session Management

In the previous chapters, we used a combination of cookies and

local maps for session management. We used locks to ensure the

local maps did not get to a race condition. All these were useful

for learning. For production use, you can use the go-

session/session26 package. The package maintains a cookie for

tracking purposes only. The data is stored in local maps, RDBMS,

in-memory databases, etc., based on configuration. For

clustering of application servers, it will be helpful. In our

example, we use local maps as storage which is the default.

http.HandleFunc("/password", func(w http.ResponseWriter, r

*http.Request) {

…

if store, err = sess.Start(r.Context(), w, r); err == nil {

if r.Method == "POST" && r.Form == nil {

defer applyLoginPolicy(w, r)

u, _ := store.Get("LoggedInUser")

if err = r.ParseForm(); err == nil {

if pw = r.Form.Get("password"); pw == u.(*userImpl).password {

store.Set("PasswordPassed", true)

store.Save()

}

return

}

}

}

…

}

sess.Start() function finds the cookie from the request and finds

out the associated storage. store.Get("LoggedInUser") finds the

user object from the local store. Once authentication is

successful, we store the flag “PasswordPassed" for future reference.

store.Save() commits the update to the underlying database. We

have followed the above approach with all the authenticators.

Post Registration

You can use the Logout button on the SP to terminate the active

sessions. Now, Login again. Once the WebAuthn and OTP

credentials are registered, the server challenges the WebAuthn

and OTP authentication. The password challenge is not there. You

can think of this as a temporary password to bind a strong

credential. Like administrators sending users a temporary

password for the user to set a stronger password, we used the

temporary password to achieve passwordless authentication for

the user.

Figure 6.25: Passwordless authentication

Now, the user can authenticate using WebAuthn (step 1) followed

by OTP (step 2) to reach the consent screen. Although

oversimplified in approach, we discussed a few critical

components of an IAM system for Web Authentication,

authorization server, service provider, authentication policies

and routing, consent management, etc.

Conclusion

It has been a long journey, starting with simple web architecture,

qualitative aspects of cryptography, applying it to web security,

introducing federated authentication, and taking asymmetric

cryptography to passwordless authentication. Our technology

pursuits around authentication have reached a logical closure.

How do we know the person presenting the authenticator is truly

human? Does he have the right to own and submit the

authenticator? In real life, our businesses are facing this

challenge regularly. Banks address these with Know Your

Customer (KYC) with government-supplied documents. The whole

class of such problems is called identity proofing. With the

advent of Artificial Intelligence (AI), ID proofing is getting

automated. There is a need to link the authenticators to identity

as well. In the next chapter, we will review some of these

aspects.

Questions

1. In the integrated example of OAuth2, TOTP, and WebAuthn,

add a configuration policy to use a HOTP authenticator.

2. In the integrated sample code, no limits are there on the

number of authentication failures. Add code such that no

more than three failures for a specific authenticator should

be permitted.

3. In the integrated sample, there are no restrictions on the

number of attempts to register a credential type. Ensure a

user gets only three attempts to register a credential.

4. With the integrated sample code, allow specific types of

AAGUIDs for WebAuthn authentication.

5. Implement the counter synchronization for a HOTP device

and the authentication server.

1 Enterprises spent over two billion USD managing passwords in 2022-23.

https://www.statista.com/statistics/1300988/global-password-

management-market-revenue/

2 When you know the internal working of OTP algorithms, you can generate OTPs

ahead of time and save them; you can use them later. We will discuss these cases in

a later section.

3 All browsers, like Google Chrome, Microsoft Edge, Apple Safari, etc., have

discontinued support for Java applets over the past several years. Hence, running a

helper application alongside the web browser is the only option for supporting CBA

with browsers.

4 The complete specification is documented in RFC 4226

https://www.ietf.org/rfc/rfc4226.txt

5 The complete format of the URL for otpauth can be seen at:

https://github.com/google/google-authenticator/wiki/Key-Uri-Format

6 Time elapsed since January 1, 1970, 00:00:00 UTC.

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.h

tml#tag_04_16

7 TOTP: Time-Based One-Time Password Algorithm, RFC-6238,

https://datatracker.ietf.org/doc/html/rfc6238

8 Section 5.2, Supra 4

9 Dynamic Symmetric Key Provisioning Protocol (DSKPP), RFC 6063,

https://datatracker.ietf.org/doc/html/rfc6063

https://www.statista.com/statistics/1300988/global-password-management-market-revenue/
https://www.ietf.org/rfc/rfc4226.txt
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://datatracker.ietf.org/doc/html/rfc6238
https://datatracker.ietf.org/doc/html/rfc6063

10 The Full Story of the Stunning RSA Hack Can Finally Be Told,

https://www.wired.com/story/the-full-story-of-the-stunning-rsa-hack-can-

finally-be-told/

11 Protecting cryptographic secrets using file system attributes,

https://patents.google.com/patent/US9171145B2/en

12 We have referred to Google Authenticator at places in this chapter. Google

Authenticator is one of the most popular authenticator applications; it quickly helps

readers connect to the concept. Secondly, it introduced the QR code and otpauth URL

provisioning. What we discussed applies to all the authenticators having similar

capabilities. Our statements should not be considered an endorsement for Google.

13 FIDO Alliance, https://fidoalliance.org/

14 Quoted from: https://passkey.org/ last accessed: 11th July 2023

15 Figure 1 Registration Flow, WebAuthn Specification,

https://www.w3.org/TR/webauthn-2/#fig-registration

16 The attestation here is for the device and not the user. It is a statement like, the

keypair was generated on a YubiKey device model number: AA001. It contains no

user PII.

17 Figure 2 Registration Flow, WebAuthn Specification,

https://www.w3.org/TR/webauthn-2/#fig-authentication

18 Some Windows 10 or 11 devices may consider SHA-1 unsecured. Not providing a list

of supported algorithms may fail credential registration.

19 The QR code contains a URL FIDO:/08071528303820966389…321447142660

20 The artwork is taken from: https://fidoalliance.org/design-

system/content/#passwordless-registration-success

21 Go WebAuthn, https://pkg.go.dev/github.com/go-webauthn/webauthn

22 The error handling and logging code segments are not shown.

23 There is a FinishRegistration method available that carries out the end-to-end

validation.

24 https://mds3.fidoalliance.org/

25 FIPS-140-2 specification,

https://csrc.nist.gov/publications/detail/fips/140/2/final, though the FIPS-140-

3 specification is available, the adoption will take some time.

26 session, An efficient, safely and easy-to-use session library for Go (sic.),

https://pkg.go.dev/github.com/go-session/session

https://www.wired.com/story/the-full-story-of-the-stunning-rsa-hack-can-finally-be-told/
https://patents.google.com/patent/US9171145B2/en
https://fidoalliance.org/
https://passkey.org/
https://www.w3.org/TR/webauthn-2/#fig-registration
https://www.w3.org/TR/webauthn-2/#fig-authentication
https://fidoalliance.org/design-system/content/#passwordless-registration-success
https://pkg.go.dev/github.com/go-webauthn/webauthn
https://mds3.fidoalliance.org/
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://pkg.go.dev/github.com/go-session/session

CHAPTER 7

Advanced Trends in

Authentication

Introduction

So far, we have looked at the technologies of authentication.

We developed a sample code and applied it to solve some

simple applications around authentication. This chapter goes

beyond technology and code. It is about the business

problems authentication addresses, new biometric

authentication trends, fundamental cryptography changes,

and so on. Authentication is associated with Identity and

Access Management (IAM), yet we have not even introduced

identity properly. What is the true identity of a person? Can

there be one authoritative identity for a person? Does the

association of biometric data of users to identity make them

foolproof? What kind of biometry is good to be captured?

Like most industries, AI will disrupt user authentication as

well. Is quantum computing posing authentication

challenges? All these will be subject matters of discussion for

this chapter.

Structure

In this chapter, we will cover the following topics:

Digital identity

Biometric authentication

Post-quantum cryptography

Zero trust architecture

Conclusion

Digital identity

Human identity is a complex phenomenon and is artificially

assigned by fellow humans. A person gets an identity from

the social network she keeps. For example, when a child is

born, the parents provide a name for the child. The visual

appearance of the human being is associated with the name.

We use this correlation to identify the person. In most

cultures, there are family names of a person and a public

name by which she is known outside. The family name is the

identity within the family group, while the external name is

the identity in the larger generic world. When people make

their friend circles, they call each other nicknames that could

be different from names kept by their parents. No one

understands such names outside the friend circle. But, those

names generally uniquely identify each person in the group.

The soldiers use nicknames to communicate with each other

and hide their actual names during a mission.

We need identities to recognize someone uniquely. It was

not hard to realize that names do not fit into unique

definitions. Two persons can have the same name. Two Alice

join the same class in the school. To break such barriers, we

introduced roll numbers identifying each student in a class.

From names, we started diversifying into numbers. These

schemes meet the purpose of uniqueness in the functional

context of the classroom. Hence, the roll number is a

functional identifier of a student in a classroom. A running

serial number for a group of people can be a great identifier

in ledger books.

Proliferation of identities

Every functional activity of a person introduces a new

identity. Let's consider a bank. You have a savings or

checking account for day-to-day transactions, several

deposit accounts, loan accounts, and so on. Each activity

provides a new account number as a new identifier. Very

soon, you realize you have a plethora of identifiers, and it all

becomes hard to track. The banks understood this issue and

introduced a customer relationship number. The customer

relationship number became the central entity to link and

track all accounts. Banks can now send consolidated account

statements intermittently for all the services the customer is

availing.

Figure 7.1: Customer relationship number (CRN) provides a holistic view of all

the banking activities

CRN solved the tracking problem for the customer, but not

for the bank. Suppose the loan is issued to the customer on

some special occasion on a discounted scheme; there are

several such customers the bank wants to notify for revision

of interest rate. The bank needs to keep identifiers for all the

loan accounts. There is a functional need to keep an

identifier. The introduction of CRN does not make the

functional identifiers redundant. All the customers,

irrespective of the service, have CRN. So, the bank may want

to associate some of the customer-specific properties with

the CRN in the master data.

Figure 7.2: Banking accounts linked to the CRN

The bank need not keep the user information against all the

accounts and can refer to the user's master data when such

information is required. All the user's data can be kept at one

location and is the foundation for a person to be a bank

customer. So CRN can be considered a foundational

identity of a person maintained by the bank.

Foundational identity

Let's extend the identities from a state perspective. Every

resident service requires an identity of its own. Here are

some of the identity cards in use in India.

Passport - is used for Indian citizens to travel abroad,

OCI and PIO cards for non-Indian citizens of Indian

descendants,

Voter's ID card - is only issued to citizens to exercise

their adult franchise,

Ration Card - to receive food or necessities through the

government public distribution scheme; issued to a

family with photographs of every member,

MNREGA Card - to receive employment under social

welfare schemes,

Personal Account Number (PAN) card - to pay income

tax,

Permanent Retirement Account Number (PRAN) card - is

used for linking the pension accounts of an individual,

Motor Driving License – is used for identifying an

authorized motorist, and so on.

Figure 7.3: A collection of Indian identity documents1

You realize all these documents, even in their simplest credit

card form factors, are a pain to carry. Some of them have a

manual signature; some have photographs as biometric

identities. Some have demographic information about the

person's date of birth, parent's name, and address. Indian

Govt realized the need to have an identification document

for every resident of India and link that to all these other

forms of identification. That became the foundational

identity of Indians or Aadhaar2. Is the proliferation of

identities a significant reason to introduce elaborate

identity management schemes? The answer is no. All

these functional identities do not cover the population of a

country of the size of India. When no identity is associated

with the people, the benefits and social initiatives do not

reach the target audience. This is the real reason for an

initiative of massive-scale identity drives3.

While the Indian national ID initiative is only a decade old,

countries like the USA have the Social Security Numbers

(SSN), Singapore National Registration Identity Cards (NRIC),

French National ID Cards, and so on, for several decades. As

digital presence increases, national IDs are no longer passive

cards carrying information; the service providers can validate

them online with the user's consent. There are several levels

of validation possibilities, like demographic data, OTPs over

SMS and email channels, and biometrics of the users. The

transition from a manual or machine-verifiable card to a

digitally verifiable identifier makes digital identifiers a

compelling proposition. Moreover, inclusiveness, technology-

focused design, and governance are considered the pillars of

a national identity development process. Developing a good

foundational identity system is not just technology; it

requires a well-defined policy and legal system to back it up.

World Bank initiative ID4D took cognizance of these and has

developed a practitioner's guide4. We suggest interested

readers go through it for a thorough understanding of the

National ID systems. Since we realize the national ID system

is a digital identity system, we will look at what digital

identity platforms should have.

Digital identity

The National Institute of Standards Technologies (NIST) is a

U.S. federal agency that studies various Information and

Communications Technologies (ICT) and proposes guidelines

for their use for the U.S. government to follow. While their

recommendations are normative and mandatory for the US

government and private enterprises, other countries look up

to them for reference material to build their policies. Digital

Identity Guidelines5 on computer security are the subject

matter of discussion for us in this section.

As per NIST:

Digital identity is the unique representation of a subject

engaged in an online transaction. A digital identity is always

unique in the context of a digital service, but does not

necessarily need to uniquely identify the subject in all

contexts. In other words, accessing a digital service may not

mean that the subject’s real-life identity is known.

There are three distinctive processes for identity:

1. Identity Proofing - Identity proofing establishes that a

subject is who they claim to be.

2. Authentication - Digital authentication establishes that

a subject attempting to access a digital service is in

control of one or more valid authenticators associated

with that subject’s digital identity. For services in which

return visits are applicable, successfully authenticating

provides reasonable risk-based assurances that the

subject accessing the service today is the same as that

which accessed the service previously.

3. Identity Federation - Federation is a process that

allows for the conveyance of authentication attributes

and subscriber attributes across networked systems. In a

federation scenario, the verifier or Credential Service

Provider (CSP) is referred to as an identity provider or

IdP. The RP is the party that receives and uses the

information provided by the IdP.

NIST provided recommendations for all possible IT

infrastructure that require user identity. Some systems can

be as simple as a web page or as complex as a national ID

infrastructure. Hence, it classified the identity-proofing

activities at three assurance levels. They are called Identity

Assurance Levels (IAL).

IAL-1: is the lowest level of assurance with the user

providing her information. No linkage is needed to

establish the user's digital persona to any real-life

identity. A user registers to a website and fills out the

profile information in an IAL-1 compliant system. No

document verification is needed.

IAL-2: The user's digital persona has to be linked to a

real-life identity, either remotely or in person.

IAL-3: The user has to physically appear in front of

authorized personnel to establish a linkage between the

digital personal and real-life identity. Biometric data

collection is a must for these highest assurance level

identity proofing systems. For enrollment into a national

ID database, the user may need this level of assurance.

Once an identity is established by a credential service

provider (CSP), a credential is issued to the user. The user

can use the credentials to authenticate and access the

system later. The assurance levels required for

authentication are different from the assurance level needed

for identity proofing. They are called the Authentication

Assurance Levels (AAL). The assurance levels establish

how strongly the claimant owns the authenticator.

AAL-1: A single-factor or multi-factor authentication can

be used by the claimant to establish proof of possession

of the credential using a secure authentication protocol.

AAL-2: At least two factors of authentication are needed

to establish proof of possession of the claimant over the

account. Only FIPS or NIST-approved algorithms have to

be used for authentication.

AAL-3: is the highest level of assurance needed for

authentication. Two factors of authentication using

approved algorithms have to be used, as we have seen

with AAL-2. The verifier should use hardware-based

authenticators. The authenticators should be verifier

impersonation resistant.

In Chapters 4 and 5 Federated Authentication: I and II, we

discussed federated authentication. The Identity Provider

(IdP) provided user assertions to other relying parties (RPs).

The Federated Assurance Levels (FALs) govern the exchange

of such assertions between IdP and RP. Just like IAL and AAL,

there are three levels here as well.

FAL-1: RPs receive signed assertions from IdPs using

approved algorithms. We have seen this in the examples

in earlier chapters.

FAL-2: RPs should receive encrypted assertions that

they only can decrypt.

FAL-3: Encrypted and signed assertions to be

exchanged with additional proof of possession of a

subscriber cryptographic key. These high-security data

exchanges keep the user information secured and

private in agency communications.

We stated only the overview of assurance statements. The

NIST specifications describe detailed procedures to comply

with the assurance levels. The codification of assurance

levels makes it easier to formulate identity requirements for

policy enforcement. Let's say an e-commerce platform like

Amazon will create a service that is just IAL-1 for its

customers. But, when it comes to vendors, they may prefer

an IAL-2 assurance. They may want to know if the vendor is

a serious business person and not some fly-by-night

operator. For their employees who have access to the data

center, they may prefer an IAL-3 needing biometric evidence

in person. Why such varying assurance levels for different

stakeholders? Every assurance level introduces cost and

complexity for the user. If your user account creation

requires document evidence for enrollment, the user may

find this cumbersome and shift to another vendor. The

identity assurance level should be just right to ensure

security, yet the process is not cumbersome for the average

user. Only a small set of trained people can access the core

needing the highest level of assurance. This principle applies

to authentication and federation assurance as well.

Assurance levels provide a concise way to communicate and

document security policies. Although defined by NIST, other

security standards of other countries also formulate similar

constructs for their jurisdictions.

Indian National Foundational Identity

(Aadhaar)

We discussed foundational identities as well as digital

identities. Indian foundational ID system Aadhaar merged

both. In the crudest of forms, one can say Aadhaar is a

unique 12-digit number issued to every resident of India

above a certain age. To enroll in Aadhaar, a person has to go

to designated Aadhaar enrollment centers or Aadhaar Seva

Kendra. There are about 35,000 such centers around India.

Mobile enrollment drives are conducted by the government

when needed for remote locations. The enrollment process

involves collecting some demographic data about the user.

Name

Parent's name

Date of birth

Address

Mobile number

Email address

Biometric information collected at the center:

All ten fingerprint

Iris data

Photograph

On successful validation and verification, an Aadhaar letter is

sent to the user by post.

Figure 7.4: A sample Aadhaar letter6

Validation

Authentication and credential validation are used

synonymously.

A relying party of Aadhaar would like to know if Ashok

Kumar, S/o Ramesh Kumar, Age: 40 has Aadhaar number

XXXX XXXX 1234. The Aadhaar system will validate this

information and report positive or negative. It is called

demographic validation. Partial matching of

demographic data can be used to validate addresses.

Aadhaar supports OTPs being delivered over SMS and

emails.

In biometric authentication, Aadhaar supports face,

fingerprint, and iris images. Only approved devices

can be used to capture biometric data.

Lastly, Aadhaar supports shared secret-based OTPs

generated on mobile authenticator applications.

For manual validation, the Aadhaar letter can be used.

The authentication API supports the validation of

multiple authenticators simultaneously.

Ecosystem

API access to the Aadhaar ecosystem is available to

registered entities only. There are three categories of

Aadhaar servers.

Central Identity Repository (CIDR) - All the Aadhaar user

data is available at the CIDR at a central location. Only

authorized services have access to this epository.

Authentication Service Agency (ASA) - Can contact the

CIDR over a VPN network.

Authentication User Agency (AUA) - Provides user

services based on Aadhaar authentication. These can be

banks, government departments, and so on.

A user or a kiosk operator on behalf of the user contacts an

AUA. The AUA makes an authentication request to the CIDR

directly if it has access or contacts an ASA to complete the

request. Some of the scenarios are shown in Figure 7.5.

While this is not true federated access, only limited and

registered agencies can contact the Aadhaar database for

identity information.

Figure 7.5: Aadhaar authentication flow under various scenarios7

Aadhaar provides development and test server access to the

public to test their solution during active development. Once

they are convinced their solution is working well, they can

migrate to the product setup through an AUA or ASA.

Beyond India (MOSIP)

Aadhaar was a historical milestone. Creating the

foundational ID for over a hundred billion people in a

developing nation with significant resource constraints

created confidence. Can such a model be replicated for other

nations as well? IIIT Bangalore took the initiative to build an

open-source platform with funding from Bill and Melinda

Gates Foundations, Omidyar Networks, and Tata Foundations

for the global public good. Such a system has to consider all

the use cases of Aadhaar yet be customizable to the

requirements of other nations and constraints. Welcome

Modular Open Source Identity Platform (MOSIP). Some even

call MOSIP Aadhaar in a Box8.

Figure 7.6: MOSIP Functional Architecture9

At a functional level, MOSIP has a kernel that provides these

capabilities:

Pre-registration - Think of a user who wants to register

herself. She goes to a portal, finds the availability of the

enrollment center, and books a slot.

Registration - She provides the demographic data with

proof which will be recorded. She also provides her

biometric data. The system should be flexible enough to

interface with all possible biometric sensors.

Registration Processor - In the backend, the

demographic data collected is verified from the provided

documentary evidence. The biometric data is compared

with all the data collected for uniqueness. This layer

requires integration with available third-party biometric

engines. MOSIP does not provide any biometric engine

but provides interfaces for integration.

ID Authentication - Yes and No authentication that

approves or rejects the user. KYC authentication provides

the data associated with the user like demographic and

address information.

The kernel provides system management capabilities like,

authentication and authorization for management tasks, PKI

for privacy, audit and logging, language and translations,

notifications, and master data management. The system can

integrate with automated biometric identification systems,

printing and postal systems for dispatch, and so on. The

modular aspects of MOSIP ensure the system is not

prescriptive, and deployment can be configured to specific

needs. Many developing nations in Asia and Africa have

deployed MOSIP for their foundational identity.

Know your customer

In Figure 7.1, a bank offers various services to a customer.

About 30-40 years back, you needed an introduction letter to

open a bank account. Another customer of the branch or

your company signed the letter. Since the number of

customers was small, the branch manager or official would

know all the customers in person, so this system of operation

was okay. Today we hardly visit branches for cash

withdrawals. We seldom go to the branches as most

transactions are completed online. So many transactions we

do on the banking channels that it may not be practical to go

to the bank for them. You can walk into any branch of the

bank for transactions. There is no designated home branch

as such. So no one recognizes you there. Against this

backdrop, how does a bank identify its customers? Even if

they could somehow identify the customer, do they know the

financial aspects of the person? A letter of introduction never

gave that confidence. Moreover, financial guarantee from

friends and family in nuclear families is hard to obtain, which

is very common in city living. So banks are relying on data

more than interpersonal relationships of the customer with

the staff. Hence, banks need identity information that is

accepted by everybody.

Let's understand how governments are benefiting their

citizens. In India, the government has started disbursing

monetary benefits directly to citizens and not to contractors

for social benefit schemes.

Figure 7.7: Direct benefit transfers making contractors responsible

When the government was developing the whole project, the

contractor used to get the funds. However, without

delivering the benefits to the customer, he would submit a

report to the officials. Some officials will receive bribes and

approve the projects when no quality work gets delivered to

the citizens. Today the money moves through the citizen's

bank account. The government deposits the funds into the

citizen's bank account. Only on completion of work does the

contractor get paid by the citizen. The funds the citizen

receives are fixed by the government scheme, yet he can

add his funds for additional customizations. It is also

beneficial for the contractor as he can provide better service

and get a better price for the customization he contributes.

In India, the Govt. has opened 480 million bank accounts for

citizens. There is a balance of 22 billion dollars USD worth of

funds in them by 30th Dec. 202210. The government has

claimed to have transferred 37 billion USD with direct benefit

transfer11. These schemes are achievable as citizens can be

tracked consistently with Aadhaar-like foundational

identities, and banks get the confidence to issue saving

accounts to individuals with just their identity.

Since we have elaborated on Aadhaar earlier, let's see what

information Aadhaar shares for KYC12. They are:

Proof-of-Identity (POI) - Name, DOB, Gender, Phone,

Email

Proof-of-Address (POA) - Components of Address of the

person

Photo of the user

A rendered image of a printable Aadhaar letter

This information is issued only when a user authenticates

and provides her consent using a strong credential like

biometry or shared secret-based OTP. Aadhaar does not

provide KYC information to all the AUAs or ASAs. Specifically

approved KYC User Agencies (KUAs) that work with KYC

Service Agencies (KSAs) who can request such data from the

Aadhaar CIDR (Figure 7.5).

Beyond identity

Based on the information in Aadhaar, a bank only issues a

customer relationship number or a basic savings bank

account. But, it gives no financial information about the

person. Can such a person be provided with a credit card or

a personal loan? If so, how much of a credit limit is safe for

such a person? Today, banks want to access such

information online from trusted sources. They are not looking

at someone walking up to a branch with documents as

evidence. They expect the customer to upload the

documents as electronic images. The data can be extracted

from the submitted images by AI-based systems. The banks

want to contact the tax filings and obtain the income

potential. They have a rules engine to approve the loans. So

from the customer applying for the loan to document and

database evidence collection to approval, all the steps can

be completed within a few hours of application.

Figure 7.8: e-KYC provider at work

Hence, this has become a repeatable business requirement

in the financial market, and some organizations are providing

such services for banks and non-banking financial

institutions (NBFC). They understand workflows and provide

the necessary user interface for identity and documentary

evidence. The customer approves such transactions by

providing necessary supporting documentation. Financial

institutions extract the information, verify it, and enable the

service for the customer.

e-Signing

In a traditional certificate signing infrastructure, the user has

to request a certificate from a certifying authority. The CA

validates the user and issues a certificate. We discussed this

in detail in Chapter 2: Fundamentals of Cryptography.

The user must keep the certificate and the private key in a

hardware token. The user will sign a digital contract by

applying her digital signature only. It requires every user

should have a certificate, she is involved in signing the

contract, and there is no flexibility in the workflow. A

technically savvy user can obtain a certificate for herself.

Figure 7.9: (a) Traditional signing vs. (b) e-Signing better workflow integration

Contrast this to the e-signing workflow.

The user submits a document to the eKYC provider.

The eKYC provider authenticates the user with the

government ID database (Aadhaar) and obtains all the

user information.

The eKYC provider presents the user details to the CA as

a registration agent (RA) to issue a certificate to the e-

signer when needed.

The e-signer generates a one-time use keypair for the

user and obtains a certificate for the user from the CA.

The e-signer obtains the document from the eKYC

provider, applies the digital signature, and sends it to

the eKYC provider. The private key is not stored but

deleted after signing.

The e-KYC provider submits the document to the bank.

The user can sign a document as part of a larger document

workflow of e-KYC. The user does not have to maintain the

key in secured hardware. We discussed a simplified

functional form of the Cloud Signature Consortium API13. The

exact technical workflow can vary substantially.

Identity Wallets

Foundational identities provide a mechanism to identify a

citizen. The KYC processes obtain verified information about

a user from many validated databases. However, all these

systems will like to authenticate the user subsequently. They

can issue a credential, and the user carries one for each

service provider. Here is a personal experience. Many

establishments in the USA where they serve alcohol insist

patrons produce valid identity cards certifying they are of the

age of majority. A USA citizen presents her driver's license

typically. As a foreigner, I showed my passport. The person

running the establishment had never seen an Indian

passport. So, he looked into further details, like the visa

pages, and ensured I was a bonafide traveler. In doing so, he

discovered I had visited several times, the specific dates of

my travel, and so on. Let us understand some terminologies

from the context.

Credential - The passport is the credential.

Issuer - The Government of India is the issuer.

Holder - I was the holder of the credential.

Verifier - The person at the establishment is the verifier.

Private data - my travel dates from and to the USA, the

ports of entry, how long I stayed, who has sponsored my

VISA, how long it is valid, my parents' names, my

spouse's name, and everything else that goes into a

passport.

Claim - The information that I was above the age of

majority (18 or 21 years).

In producing a simple identity to enter a business

establishment, I had to expose all this privacy information.

The verifier did not recognize the issuer (Indian Government)

hence all this confusion. He was convinced by the VISA

issued by a USA authority. In the digital world, we will have

this further aggravated as there may not be human

verification. For a verification system to work, a basic trust

between the holder, issuer, and verifier must exist.

Figure 7.10: Existing trust relationship before validation

In a credential verification setup, the following trusts exist:

1. The holder and the issuer trust each other.

2. The verifier trusts the issuer.

3. The holder trusts the verifier and presents the

credentials issued by the issuer to verify.

In the passport example, the verifier did not trust the issuer.

Let us relook at the same problem with digitally verifiable

credentials.

1. At the port of entry, I present my e-passport and e-visa

from my mobile application to the USA border protection

office.

2. The USA border protection verifies:

a. Indian Government has issued the passport.

b. The USA Immigration office has issued the visa.

c. The in-built technologies ensure that they do not

have to contact the issuers to validate.

3. Once USA border protection is convinced, they issue me

a new credential on my mobile device. The credential

has the following claims:

a. Name

b. Date of Birth

c. Time of Entry into the USA

d. Permitted time of exit from the USA

e. Country of Citizenship

4. When I enter the business establishment, I present the

credentials issued by the USA border protection service.

The establishment trusts it and lets me in. The

presentation and trust mechanism are cryptographic

operations, like signing.

ID Type Issuer Basis Claims

101 e-Aadhaar Govt. of India Foundation Sensitive

102 e-Passport Govt. of India 101 Sensitive

103 e-VISA USA

Immigration

102 Sensitive

104 e-I94 USA Border

Control

102, 103 Name, Age,

Validity, and

so on.

Table 7.1: The credentials in an identity wallet

The above is one of many use cases Identity Wallets can

address. There are several credentials listed in the identity

wallet of the user. The user will authenticate with the

appropriate credential trusted by the verifier. W3C

consortium has developed a Verifiable Credentials Data

Model14 that addresses some of these use cases and much

more. As digital identities proliferate, users will use

credential wallets and exchange information

cryptographically. The credential model also talks about

verifiable data registries maintained over distributed

databases and ledgers like blockchains.

Biometric authentication

In Chapter 6: Multifactor Authentication, we talked about

biometry under the something you are category. We will

delve deeper into understanding biometric authentication in

this chapter. Considering digital IDs are validated using

biometric identification techniques, it is in our interest we

realize their capabilities and limitations. For a biometric

technology to be relevant, it should be15:

Universal: available on most normal populations.

Unique: The characteristic must be unique to a person,

and no two persons should have similar characteristics.

Measurability: It should be easy to pick the

characteristics of a person.

Permanence: The characteristics must be permanent

and stand the passage of time.

Performance: They must perform accurately and

consistently on time.

Acceptable: The population should be comfortable

presenting the sample.

Circumvention: It should not be easily replicated by

some digital means.

With all the advances in biometric recognition technologies

and their ubiquitous usage in the industry, NIST does not

seem to consider a compelling need to use it for

authentication. Here are some of the cited reasons16:

The False Match Rate (FMR) does not provide the

necessary confidence in the system.

The techniques are statistical, while cryptographic or

password systems are deterministic.

Biometric templates, when compromised, are hard to

replace. Techniques have improved, yet, the usage is

still limited.

Some characteristics like photographs, and so on, can be

easily acquired.

Biometric systems can be an additional factor of

authentication in a multifactor authentication system when:

A what-you-have credential is additionally available,

A channel authentication should be before biometric

collection,

The False Match Rate (FMR) should be better than 1 in

100017,

The system should be resilient to 90% of the

presentation attacks,

The comparison of biometric data on the local devices is

preferred, and so on.

While NIST has not been encouraging about using biometric

data for authentication, there is a deferring viewpoint on

identity proofing. Here are some of the salient points18.

It can be collected for non-repudiation and reproofing

the identity.

In IAL3, biometrics can be used in deduplicating

enrollments, thus restricting fraudulent enrollments. At

IAL3, biometric collection is a mandatory requirement.

Document used for identity evidence must contain a

photograph or an identity template. Without the

presence of such information, the evidence is considered

unacceptable.

Similarly, while verifying evidence if the biometrics is not

compared with the actual, such verification is marked

weak or unacceptable.

While ID proofing is in person, the biometrics should be

collected firsthand from the user and not from another

source.

Now that we understand the scope of biometrics, let us look

at some of the common biometric authentication techniques.

Fingerprint

Human skin is not smooth. It has undulations and ridges that

are unique to every individual. These ridges are called

papillary or friction ridges. This fundamental property is used

as a mechanism to identify a person. Crime investigators

have been using fingerprints from time immemorial. Ink-

smeared fingerprints are applied on documents as a person's

signature and are considered an identifying attribute. So the

interest in using it for digital identity is quite understandable.

Fingerprint scanners are tactile sensors and not always

optical sensors like cameras. Some of them are earlier than

digital camera sensors. It is one of the reasons we see the

adoption of fingerprints in digital identity alongside storing

images of human beings. Here are some of the fingerprint

sensor technologies:

Inked capture - used on legal documents

Latent fingerprint - used in forensics

Optical sensors - the cameras cannot capture the

undulations with regular lighting

Solid state capacitive sensors - swipe motion sensors on

laptops and mobiles are parts of these

RF sensors - resilient to epidermal changes in the skin

Thermal fingerprint sensors

Multispectral image sensors

Ultrasonic and piezoelectric sensors

While laptop and mobile devices use capacitive sensors for

fingerprint acquisition, optical sensors are used for multiuser

fingerprint acquisition. Training capacitive sensors require

several iterations of providing the fingerprint, which is okay

for a personal device. However, the acquisition of

fingerprints for several users at a kiosk or public

authentication device is optical sensor-based. The optical

sensors use specialized illumination to ensure accurate

image capture.

Fingerprint analysis has a history spanning over a century.

Just like signature analysis, dermatoglyphics has been an

area of research. Some technologies, like Galton's minutiae,

Henry's classifications, and so on, are popular. Today

Automated Fingerprint Identification Systems (AFIS) handle

all forms of fingerprint images. One can consider these as

specialized image processing techniques. Finger images are

known to be stored in monochromatic and greyscale forms

as well. In extremely large-scale databases, like national IDs,

multiple fingerprint captures per person are taken19. For

example, for a USA visa or Indian Aadhaar enrollment, all ten

fingers are taken. Fingerprint quality may deteriorate as a

person ages. Hence, fingerprints may need re-enrollment for

the aging population.

Face biometry

While optical sensors were available long back, face feature

extraction technologies were not as developed. Modern face

detection technologies matured post-deep learning era.

Social networking giants like Google and Meta developed

compelling face recognition technologies for automatically

tagging users in photographs. FaceNet by Google20 can be

considered one of the early innovations that revolutionized

face detection. While other heuristics and face feature

identification existed earlier, machine learning and deep

learning techniques are the most common in face detection

today.

We use the open-source library Kagami/go-face21 to compare

two face images and provide the code for the same. The

library internally utilizes Dlib22 for face recognition. For

authentication tasks, we use a 1:1 face match.

We take two images.

Extract the mathematical face descriptors as a vector of

128 floating point numbers.

Find the Euclidean distance between the two face

descriptors.

If the distance is less than 0.6, there is a likely chance

that the faces belong to the same person 99.37% of the

time23.

The following is the source code that translates the workflow

mentioned earlier into the Go language.

http.HandleFunc("/compare", func(w http.ResponseWriter, r

*http.Request) {

if r.ParseForm() == nil {

img1 := r.Form.Get("img1")

img2 := r.Form.Get("img2")

imgbuf1, _ := base64.URLEncoding.DecodeString(img1)

imgbuf2, _ := base64.URLEncoding.DecodeString(img2)

face1, _ := rec.RecognizeSingleCNN(imgbuf1)

face2, _ := rec.RecognizeSingleCNN(imgbuf2)

dist := face.SquaredEuclideanDistance(face1.Descriptor,

face2.Descriptor)

msg := fmt.Sprintf("The square euclidean distance is: %f",

dist)

log.Println(msg)

w.Write([]byte(msg))

} else {

msg := "Internal server error"

log.Println(msg)

http.Error(w, msg, http.StatusInternalServerError)

}

})

Figure 7.11: The comparison of two selfies of the author

We provide a flutter-based front end to capture two images

of a user and pass them to the back end to compute the

Euclidean distance. We obtained 0.1624 as the observed

Euclidean distance. The code can be found in chapter-

7/frontend.

Setting up the sample application in a Linux operating

system is simple, as Dlib and its associated libraries are

available by default in most Linux distributions. The author

used the Windows Subsystem for Linux (WSL2) running

Ubuntu to develop the application.

Enter the chapter-7/frontend folder and build the front end

with the command: flutter build web. You can run this

step in Windows PowerShell if Flutter is not there for the

WSL2 environment.

Start a WSL 2 session and install the dependencies for

Dlib.

sudo apt-get install libdlib-dev libblas-dev libatlas-base-

dev liblapack-dev libjpeg-turbo8-dev

Make sure you have the g++ compiler in the WSL 2

environment. If not available, install it with sudo apt

install g++

Set up the go language environment in WSL 2.

Enter the folder chapter-7 and launch the backend by

running the application: go run ./face.go. The service

starts running on port 8080 of the WSL 2 environment.

However, the running server is not accessible from the

Windows browser. You have to forward the port to be

accessible from a Windows environment. On an admin

shell on Windows run:

netsh interface portproxy add v4tov4 8080 localhost 8080

Now, if you access http://localhost:8080 you will see

the UI appearing on your screen as shown in Figure 7.11.

Figure 7.12: 1:1 face matching architecture used for go-face

The libraries and models are not state-of-the-art. Hence, not

advised for use in production-ready authentication systems.

It is merely for training and understanding. The model uses a

modified version of ResNet and fits each identity into a ball

of 0.6 radii. We leave the details for the readers to review

the works of Davis King25. While this exposure is good for

learning, we draw the reader's attention to two reports.

Papers with Code reports on open-source face

verification results26.

NIST Face Recognition Vendor Test (FRVT) 1:1 face match

result27.

The MobileFaceNet-based model proposed in 2022 has a

TAR@FAR28=10-6 of 90.24%. The FaceNet model that was

state-of-the-art in 2015 had a TAR @FAR=0.01 of only 67%

on the IJB-C dataset. There have been significant

improvements in face verification approaches. Transfer

learning is used from one model to be reviewed and

improved over using another model to better the base

results. From the vendor test data released by NIST, one can

see an FNMR of 0.0016 with an FMR29 of 10-6 for the US

VISABORDER dataset. Moreover, NIST test results provide

geographical diversity-based NFMR results. One should

understand the NIST dataset is not comparable to the

datasets against which the open-source results are tested.

Face biometrics has many facets beyond the face verification

or matching we discussed. Here are some of them:

1:N face match – typically used by search engines to

locate a face in a database. Some applications include

searching for an image from a known criminal database,

social media tagging, and so on.

Emotion detection – body language and facial

expressions detection help identify the general attitude

of persons for recruitment.

Parts of facial features – locating eyes, ears, nose,

and so on, when a face is partly occluded due to

sunglasses or headgear, this helps identify the person.

In geographies where partially covering the face is

customary, these technologies are helpful in person

identification.

Identification of demographic attributes – age, sex,

ethnicity, etc. can be inferred from face biometrics.

While other biometric techniques are well-developed and can

provide better accuracy, face recognition is still one of the

preferred choices. Here are some of the reasons.

The input to the human and computer is the same. So, in

case an automated process fails, a human being can

take over and complete the task.

The sensors are available and ubiquitous. Today cameras

are everywhere on every mobile device. So, data

acquisition is easy.

The technology of automated face identification has

improved substantially.

Since a human being can see the input to the system,

she can help in debugging and forensic analysis in case

of a breach or failure.

Face recognition also poses challenges for authentication.

The capturing of the facial image is passive. Anyone can

pick up a facial image. Someone can steal this

information with ease.

A person's photograph is available easily. So, one can

collect such information and present it for authentication

(presentation attacks). Liveness detection is a must

when someone is using a face authentication system.

Substantially overlapping facial attributes like identical

twin images can affect face recognition30.

We suggest the readers undertake a thorough investigation

of the technologies available before deciding on a face

verification technology for their user authentication needs.

Other biometric technologies

Our emphasis on fingerprint and face recognition is

understandable as they are available on all end-point

devices like laptops, mobile phones, and so on. Yet, people

have used other technologies for digital identity. Here are a

few others:

Iris recognition

Handshape

Speaker

Vascular pattern

Dynamic signature

Keystroke, retina, DNA, gait, and so on.

Each biometric technology provides capabilities that are

different from the capabilities of the other technologies.

Mohammad Al Rousan and Benedetto Intrigila analyze

biometric technologies in ten different parameters and

classify their suitability in three levels of rankings, high,

medium, and low.

Figure 7.13: A comparison of biometrics types based on the characteristics of

biometric entities31

Iris scanning can have an FAR of 10-7 with an FRR of 10-4

with a very low possibility for spoofing32. This makes it a

compelling technology for national ID databases33. In the

next section, we will study if the biometric authentication

should be carried out in a local end-user device or a remote

server.

Local vs. server authentication

NIST encourages comparing biometric characteristics on a

local device over sending to a central server. It reduces the

potential for attacks on a larger scale. Even if there is a need

to send the data to a central server, NIST recommends the

following34:

Only approved devices that can attest biometric data for

source identification should be used.

The transmission should occur on an encrypted channel.

Standards-based biometric template revocation should

be implemented.

The FIDO alliance also focused on a similar path in their

biometric strategy. The FIDO 2 devices transmit signed data

from the devices using PKI crypto operations. Biometric

authentication provides access to the private keys to sign

the data for authentication. The device can sign the data in a

secured enclave that another application running in the

device cannot access. We discussed some of these aspects

in Chapter 6: Multifactor Authentication. Windows Hello35

supports face, iris, and fingerprint identification as part of its

technology stack. Devices store all the data in encrypted

format or special purposed trusted platform modules (TPM)

where available. Application developers cannot access the

raw capture of biometric data. For biometric authentication

for a web application, you can use FIDO 2 with WebAuthn.

We have already implemented some of these in Chapter 6:

Multifactor Authentication in the section on WebAuthn. If a

centralized comparison is necessary for implementations,

the end-user device should implement stringent encryption

methods like certificate and public key pinning36 for

additional security over TLS. However, certificate pinning

makes it harder when changing server certificates.

Digital non-repudiation has some challenges with the local

validation of biometrics. Suppose a bank wants customers to

use a FIDO 2 authenticator on a WebAuthn channel. When a

customer registers her mobile device as an authenticator,

the bank has no mechanism to verify the device and the

biometry used to unlock the phone. In such cases, the bank

can procure FIDO 2 hard tokens from suppliers like YubiKey

and send them to the customers to use. That way, the bank

can ascertain the devices used are actual devices assigned

to the customer. Any hard token introduces an additional

device the customer has to carry, reducing the convenience.

Suppose the bank captures the user's face on the same

mobile phone and validates it on the server while enrolling

the user's passkey on the mobile phone through WebAuthn;

this will ensure the mobile phone belongs to the user. If the

face image could be signed with the FIDO 2 private key,

there would be stronger proof-of-possession evidence.

Server-based biometric validation can enroll subsequent

FIDO 2 authenticators for future use. The workflow is for

remote credential enrollment improving user convenience.

Liveness and antispoofing

mechanisms

Fingerprints have been in use for authentication for several

decades. Hackers have also faked fingers using various

synthetic materials like latex, Play-Doh, wood glue, gelatin,

eco-flex, platinum-catalyzed silicone, modasil, and so on. It is

crucial for a system to identify the use of such fake material

and not permit authentication even when such fingers

generate a similar impression as the original finger on a

sensor. Hardware and software both work in tandem to

identify such fakes. Hardware-based systems can rely on

finger temperature, odor, heartbeat, pulse oximetry, and so

on. Image processing is the dominant technology in

software-based systems. Some characteristics captured are

skin deformity, texture features, pores features, and so on.

Pores in the fingerprint provide the most predictable results.

The perspiration emanating from pores and the density of

pores on the ridges are analyzed for liveness detection.

Researchers have used various machine learning statistical

techniques like wavelets, SVM, CNNs, deep neural networks,

and so on37.

While providing a fingerprint requires a positive activity from

a human being, someone can pick up a person's photograph

without the person being aware. A malicious person can

coerce a person to provide her biometry. Liveness detection

ensures a person is conducting herself in absolute control of

her actions. Someone can pick up some liveness

characteristics from one frame of a picture. If a person's eyes

are closed in an image capture, possibly the image capture

was not with the person's consent. We looked at a

systematic literature review38 conducted by some

researchers on liveness detection; we present some of their

findings in this section.

Figure 7.14: Categorization of Face Spoofing Attacks and Spoof Instruments39

We present modalities of face spoofing attacks in Figure

7.14. With sophisticated anti-spoofing measures, the

attackers are resorting to more complex attacks. For

example, static images are prone to an image of printed

photo-based attacks. When technology improves to

recognize those, people resort to 3-D masks. Infrared

cameras are good at capturing the material difference in skin

vs. an artificial face mask. Newer materials for masks make

infrared-based detection redundant. In such cases, video-

based face feature extraction can add to the protection.

Hackers are using video replays to attack. As a protection

mechanism, the system may ask the user to read something

from the screen that changes in every session. In short, anti-

spoofing can involve both voice and video from pure video.

Every anti-spoofing measure increases cost and

complexity40. Hence, NIST recommends that anti-spoofing

measures should be capable of handling at least 90% of the

cases.

Figure 7.15: Face anti-spoofing techniques using a machine learning

approach41

Today most anti-spoofing measures are based on machine

learning algorithms, like, Convolutional neural networks

(CNN), support vector machines (SVM), random forest, naïve

Bayes, decision trees, J48, and so on. They work on public

and private actual and spoof data samples and try to

optimize the metrics. Some of the metrics are:

Accuracy

False recognition rate (FRR)

Total positive rate (TPR)

Attack presentation classification error rate (APCER)

Bonafide presentation classification error rate (BPCER)

Half total error rate (HTER)

Features are extracted from the images to assess image

quality (IQA) or distortion (IDA) and study eye-blinking, head

movement, or blood circulation using photoplethysmography

(rPPG). Analysis of motion, texture, and depth can provide

cues to the liveness of the person. When multiple views like

video or stereo camera are present, 3D faces can be

constructed from the data for better liveness extraction.

Post-quantum cryptography

Explaining quantum computers is beyond the purview of this

book. However, we present the concepts in an oversimplified

manner. Bits can be in two states, 0 or 1. Quantum bits

(Qubit) can be 0 and 1 at any instance with varying

probability. However, the state is internal. When you

observe, they collapse to either 0 or 1. Qubits get entangled

with one another. So, two qubits can inherently store 22 = 4

values. Thus, N qubits can retain 2N values. But, when you

observe, they all collapse to one number of N values. If you

can manipulate the internal probabilities by some

computational means, and when you observe, you can get

the desired outcome of N-values. This one-step reduction

from exponential to linear values gives enormous power to

quantum computing. While there has been significant

research in the field, researchers from various private

organizations in the last decade have shown results of

commercial possibilities. Google has claimed to have solved

a problem in a few minutes using a quantum computer which

otherwise would have taken thousands of years in traditional

computing, thus, establishing quantum supremacy42.

Not all algorithms are suitable for a quantum computer, nor

are all the algorithms to be rewritten for their quantum

computing equivalents. Traditional computing will still be

there. However, some algorithms are better suited for

quantum machines. When quantum computers were still in

their conceptual phases, Shor showed that integer

factorization and discrete logarithms in the quantum

computing world are not hard problems. A quantum-resistant

RSA algorithm has to have parameters of the length of a

terabyte43. It is impractical to use the RSA kind of algorithm.

A few years later, Grover showed the searching keys with 2N

possibilities would take 2N-1 operations, while on a quantum

computer, the same operations can take 2N-2 operations.

Thus, symmetric key encryption of 128-bit will require 264

operations. AES-256-GCM in place of AES-128-GCM will be a

preferred choice. Similarly, SHA-3-512 will be chosen over

SHA-3-256 in the post-quantum world.

Current status

The National Institute of Standards and Technology (NIST)

has set up a committee of experts to finalize technologies

safe for the post-quantum phase. They have submitted the

report from the third round of the standardization process44.

The committee accepts CRYSTALS-Kyber as one of the Key

Exchange Methods (KEM). Similarly, CRYSTALS-Dilithium can

be used for digital signatures. Falcon and SPHINCS+ will be

standardized for digital signatures. BIKE, Classic McEliece,

HQC, and SIKE are considered for evaluation in the next

round for KEM. NIST is diversifying its signature portfolio with

non-structured lattice signature schemes as these schemes

are safe under quantum computing. As can be seen, the

process is ongoing for an authoritative list. As

standardization is in full swing, the implementations are not

far behind. The open-source open quantum-safe (OQS)

project45 is developing the quantum-safe version of OpenSSL

1.1.146. However, they released the last stable version in the

line in July 2023. The subsequent versions will be available

as a single shared library provider47 on OpenSSL 3.0. Digital

certificate vendors are updating their plans to launch PQC

certificates with regular announcements.

Zero trust architecture

Discussion of Zero Trust in a book on web authentication in

specific may not be very relevant, yet, if one delves deeper,

most authentication vendors speak about zero trust in some

of their communications. So, we decided to include it here as

a concept for us to be aware of. With enterprises distributing

their cloud workloads across multiple data centers,

employees, or external contractors accessing enterprise data

from anywhere, the earlier access control mechanisms of

trusted access to on-premise locations are no longer viable

options. The earlier assumption that anyone within the

perimeter is trustworthy vs. anyone outside of the perimeter

is no longer a valid paradigm for access control. The earlier

enterprise security models, like the castle-and-mort and

related network security equipment, like firewalls, intrusion

detection systems, and so on, are no longer relevant.

IT Analyst company Forrester was the first to define a zero

implicit trust model48 that insisted -

Ensuring all resources are accessed securely, regardless

of the location of the user or resource

Logging and inspecting all traffic

Enforcing the principle of least privilege

In the meantime, Google proposed HTTPS and SSH-based

access to the enterprise from anywhere under an

architecture BeyondCorp49 as its internal network

architecture. Today, it has productized the architecture for

external use. IT Analyst Gartner developed a Continuous

Adaptive Risk and Trust assessment (CARTA)50 approach to

zero trust. The framework suggests a Policy Decision Point

(PDP) and Policy Enforcement Point (PEP) to manage a zero-

trust network. Gartner introduced terms like Zero Trust

Network Access (ZTNA) for user-to-server security and Zero

Trust Network Segmentations (ZTNS) for server-to-server

security. While most of the architectures were discussing the

principles of Zero Trust, the Cloud Security Alliance, while

defining the Software Defined Perimeter (SDP), presented

the topological view of Zero Trust Architecture. It defined an

mTLS peer-to-peer network for secured communication

across various topological arrangements for data exchange

while a centralized controller manages the policies. Some of

the topological deployments51 are:

Client-to-Gateway

Client-to-Server

Server-to-Server

Client-to-Server-to-Client

Client-to-Gateway-to-Client

Gateway-to-Gateway

Figure 7.16: Connections secured by SDP deployment model52

The SDP architecture was inclusive of the enterprise security

systems already present. It established a significant role for

the Identity and Access Management (IAM) systems and

brought them to a central component for the policy

management and controller framework.

Standardization

NIST white paper on Zero Trust Architecture53 has accepted

the enterprise architecture complex; yet has defined the

principles as follows:

Zero trust (ZT) provides a collection of concepts and ideas

designed to minimize uncertainty in enforcing accurate, least

privilege per-request access decisions in information systems

and services in the face of a network viewed as

compromised. Zero trust architecture (ZTA) is an enterprise’s

cybersecurity plan that utilizes zero trust concepts and

encompasses component relationships, workflow planning,

and access policies. Therefore, a zero-trust enterprise is the

network infrastructure (physical and virtual) and operational

policies that are in place for an enterprise as a product of a

zero-trust architecture plan.

The whitepaper defines a set of components that should be

present to make the ZTA implementations work. Identity

Management and PKI play a significant role there. Both these

systems are parts of user authentication as well.

Figure 7.17: NIST core zero trust logical components54

Like the SDP architecture, the NIST ZTA also elaborates on

topological models of ZTA. Cybersecurity and Infrastructure

Security Agency (CISA) presents a maturity model55 for the

Zero Trust Architecture adoption. As per the model, Identity,

Devices, Networks, Applications & Workloads, and

Data are the building pillars for the enterprise. Those are to

be considered under these cross-cutting capabilities:

Visibility and Analytics, Automation and

Orchestration, and Governance.

Figure 7.18: CISA ZTA maturity model components56

There are four levels of maturity discussed as part of the

model:

Traditional

Initial

Advanced

Optimal

The Identity pillar includes the following functional

decompositions:

Authentication

Identity stores

Risk assessment

Access management

Visibility and analytics capability

Automation and orchestration capability

Governance capability

Controls are defined against each functional characteristic

for the classification under the maturity levels. For

authentication, at a traditional maturity level, one of the

password or multifactor authentication technologies can be

used. The agency may include locale or activity-based

authentication at an initial maturity level. Similarly, the

agency can consider phishing-resistant FIDO2 or PIV cards as

authentication mechanisms to achieve an advanced level of

maturity. Continuous authentication will provide an optimal

level of ZT maturity.

To summarize, irrespective of how the access management

and architectures change, the Zero Trust principles will

always consider Identity a central piece of the paradigm.

While we discussed the theoretical principles and

architectures for Zero Trust, such systems require massive

peer-to-peer encrypted networks for communication. Client-

to-gateway-to-client architectures may need peer nodes on

every network element connecting to other ends using mTLS

connections for the data network. Open-source technologies

like Wireguard57 are becoming the backbones of upcoming

next-generation access management tools.

Conclusion

We discussed a few trends in user authentication. However,

we did not explicitly talk about the effect of artificial

intelligence (AI). AI has been the new electricity affecting

almost every field. All biometric inference networks are on

Machine Learning (ML) principles. We did not talk much

about passwordless authentication in future trends because

we have discussed that as part of WebAuthn. Passwordless

authentication schemes include local biometry validation on

desktops, laptops, or mobile devices. In technology,

predicting future trends is like soothsaying and is best

avoided. We have discussed technologies that are being

adopted by the vendors who are supplying user

authentication solutions and products. There are 200+ multi-

factor authentication products58 in the market. There has

been an explosion of IAM and associated products, yet, it is

not a mature market because there has been a continuous

infusion of new ideas and concepts and newer application

landscapes. Technology companies are refreshing older

technologies and introducing newer ones. For example,

network integration technologies like RADIUS have taken a

backseat, and web-based authentication frameworks are

central to all authentication platforms. Manual identity

proofing has almost shifted to complete automation or

assistive technologies. Again, we have discussed the

application of technologies and kept academic research

outside of this book. We hope we did justice in introducing

you to the overall authentication landscape. Every field we

explained here has a lot of research, policies, and

documentation available to explore. We suggest you expand

your horizons per your needs and interests.

Questions

1. Design an identity wallet to keep multiple certificates on

a mobile device. How will you authenticate using the

wallet?

2. In Chapter 6: Multifactor Authentication, we developed a

sample application for TOTP and WebAuthn. Extend the

sample application to include a 1:1 face verification for

authentication.

3. Study some anti-spoofing mechanisms and analyze how

to incorporate them into your face authentication

system.

4. Set up a TLS server using Open Quantum-Safe enabled

OpenSSL server. Now, connect to it from a compliant

client.

5. Review the network access of servers in your

organization and propose how to bring zero trust access

to such an environment.

1 All ID cards are taken from https://www.wikipedia.org, the Driving License

template from the article: https://www.cars24.com/blog/driving-licence-

online-apply-in-maharashtra-mh-dl/

2 Aadhaar in many Indian languages means foundation.

3 Identity for Development, ID4D, World Bank, Principles on Identification for

Sustainable Development, https://id4d.worldbank.org/guide/1-principles

4 ID4D version 1, Practitioner’s Guide, © 2019 International Bank for

Reconstitution and Development/The World Bank 1818 H Street, NW,

Washington, D.C., 20433

5 NIST Special Publication 800-63 Revision 3, https://pages.nist.gov/800-63-3/

6 https://www.uidai.gov.in/images/Aadhaar_letter_large.png

7 Figure 1, Aadhar Authentication API Specification - version 2.5 (revision-1)

January-2022

8 Flanagan, Heather, ed. “Government-Issued Digital Credentials and the Privacy

Landscape.” OpenID Foundation, May 4, 2023.

https://openid.net/Government-issued-Digital-Credentials-and-the-

Privacy-Landscape-Final

9 MOSIP 101,

https://mosip.io/uploads/resources/5cb55cb4092b4MOSIP%20101.pdf

https://www.wikipedia.org/
https://www.cars24.com/blog/driving-licence-online-apply-in-maharashtra-mh-dl/
https://id4d.worldbank.org/guide/1-principles
https://pages.nist.gov/800-63-3/
https://www.uidai.gov.in/images/Aadhaar_letter_large.png
https://openid.net/Government-issued-Digital-Credentials-and-the-Privacy-Landscape-Final
https://mosip.io/uploads/resources/5cb55cb4092b4MOSIP%20101.pdf

10 Jan Dhan accounts total balance surge to ₹1.80-lakh cr in Dec 2022

https://www.thehindubusinessline.com/money-and-banking/jan-dhan-

accounts-total-balance-surge-to-180-lakh-crore-in-

december/article66365089.ece

11 Direct Benefits Transfer, Government of India, https://dbtbharat.gov.in/

12 Aadhaar eKYC API Specification – Version 2.0 May 2016

13 Architectures and protocols for remote signature applications,

https://cloudsignatureconsortium.org/resources/download-api-

specifications/

14 Verifiable Credentials Data Model 1.0, https://www.w3.org/TR/vc-data-

model-1.0/

15 Jain, A., and A. Ross, “Introduction to Biometrics,” in Handbook of Biometrics,

A. Jain, P. Flynn, and A. Ross, (eds.), New York: Springer, 2008, pp. 1–22.

16 SP-800-63B, section 5.2.3, Digital Identity Guidelines - Authentication and

Lifecycle Management, https://pages.nist.gov/800-63-3/sp800-

63b.html#sec5

17 Revised to 1 in 10000 in the 4th revision of SP-800-63B. This revision is still

under review.

18 SP-800-63A, Digital Identity Guidelines - Enrollment and Identity Proofing

Requirements, https://pages.nist.gov/800-63-3/sp800-63a.html

19 Shimon K. Modi, Biometrics in Identity Management Concepts to Applications,

2011, Artech House

20 FaceNet: A Unified Embedding for Face Recognition and Clustering,

https://arxiv.org/abs/1503.03832

21 go-face, go-face implements face recognition for Go using dlib, a popular

machine learning toolkit, https://pkg.go.dev/github.com/Kagami/go-face

22 Dlib C++ Library, Dlib is a modern C++ toolkit containing machine learning

algorithms and tools for creating complex software in C++ to solve real world

problems. http://dlib.net/

23 http://dlib.net/face_recognition.py.html

24 The API reports the square of this value.

25 dlib_face_recognition_resnet_model_v1.dat,

https://github.com/davisking/dlib-models

26 https://paperswithcode.com/task/face-verification

27 https://pages.nist.gov/frvt/html/frvt11.html

28 True Acceptance Rate at False Acceptance Rate – When you tighten the false

acceptance rate (a wrong user is identified less), the acceptance rate for the

real user will go down. That means some authentications will fail.

29 False Non-match Rate at False Match Rate – the complement of TAR@FAR.

https://www.thehindubusinessline.com/money-and-banking/jan-dhan-accounts-total-balance-surge-to-180-lakh-crore-in-december/article66365089.ece
https://dbtbharat.gov.in/
https://cloudsignatureconsortium.org/resources/download-api-specifications/
https://www.w3.org/TR/vc-data-model-1.0/
https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://pages.nist.gov/800-63-3/sp800-63a.html
https://arxiv.org/abs/1503.03832
https://pkg.go.dev/github.com/Kagami/go-face
http://dlib.net/
http://dlib.net/face_recognition.py.html
https://github.com/davisking/dlib-models
https://paperswithcode.com/task/face-verification
https://pages.nist.gov/frvt/html/frvt11.html

30 Vendor test data for identical twins can show a false match rate of over 99%

per NIST reports.

https://pages.nist.gov/frvt/html/frvt_twins_demonstration.html

31 Mohammad Al Rousan and Benedetto Intrigila, A Comparative Analysis of

Biometrics Types: Literature Review, Journal of Computer Science 2020, 16

(12): 1778.1788, DOI: 10.3844/jcssp.2020.1778.1788 (Table 1)

32 Otti, Csaba. (2016). Comparison of biometric identification methods. 339-344.

10.1109/SACI.2016.7507397.

33 Iris is used as one of the supported biometric types with Aadhar,

https://uidai.gov.in/en/ecosystem/authentication-devices-

documents/biometric-devices.html

34 Supra 2

35 https://learn.microsoft.com/en-us/windows/security/identity-

protection/hello-for-business/hello-biometrics-in-enterprise

36 Certificate and Public Key Pinning, https://owasp.org/www-

community/controls/Certificate_and_Public_Key_Pinning

37 D. Agarwal and A. Bansal, Journal of King Saud University – Computer and

Information Sciences 34 (2022) 4089–4098

38 Smita Khairnar, Shilpa Gite, Ketan Kotecha, and Sudeep D. Thepade, Face

Liveness Detection Using Artificial Intelligence Techniques: A Systematic

Literature Review and Future Directions, Big Data Cogn. Comput. 2023, 7, 37.

https://doi.org/10.3390/bdcc7010037

39 Figure 5, Ibid.

40 Windows Hello only allows face recognition when the system has an IR camera.

https://learn.microsoft.com/en-us/windows/security/identity-

protection/hello-for-business/hello-biometrics-in-enterprise#facial-

recognition-sensors

41 Figure 7. Supra 24.

42 Quantum supremacy is proof that quantum computers are better at solving

certain problems faster than normal computers.

43 David Wong, Real-World Cryptography, Copyright © 2021 Manning Publications

Co.

44 Status Report on the Third Round of the NIST Post-Quantum Cryptography

Standardization Process, NIST IR 8413-upd1, July 2022

45 https://openquantumsafe.org/

46 https://github.com/open-quantum-safe/openssl/

47 https://github.com/open-quantum-safe/oqs-provider/

48 SDP Working Group Software-Defined Perimeter Architecture Guide ©

Copyright 2019, Cloud Security Alliance. All rights reserved.

https://pages.nist.gov/frvt/html/frvt_twins_demonstration.html
https://uidai.gov.in/en/ecosystem/authentication-devices-documents/biometric-devices.html
https://learn.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-biometrics-in-enterprise
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://doi.org/10.3390/bdcc7010037
https://learn.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-biometrics-in-enterprise#facial-recognition-sensors
https://openquantumsafe.org/
https://github.com/open-quantum-safe/openssl/
https://github.com/open-quantum-safe/oqs-provider/

49 Rory Ward and Betsy Bayer, BeyondCorp – A New Approach to Enterprise

Security, DECEMBER 2014 VOL. 39, NO. 6, ;login:, www.usenix.org.

50 Nike Andravous, Zero Trust Security—A Complete Guide, Copyright © 2022

BPB Publications, India

51 Supra 7

52 Figure 8, Ibid.

53 Zero Trust Architecture, NIST Special Publication 800-207, August 2020

54 Figure 2, ibid.

55 Zero Trust Maturity Model, CISA, April 2023

56 Figure 1, Ibid.

57 Wireguard, https://www.wireguard.com/

58 Best Multi-Factor Authentication (MFA) Software, G2,

https://www.g2.com/categories/multi-factor-authentication-mfa#grid

http://www.usenix.org/
https://www.wireguard.com/
https://www.g2.com/categories/multi-factor-authentication-mfa#grid

APPENDIX A

The Go Programming

Language Reference

Introduction

In this appendix, we introduce some salient features of the

Go programming language. People conversant with the

language may skip. Most of our examples are simple and

cater to the needs of a new programmer. We will focus on

aspects we have used in this book.

Installation

1. Go to https://go.dev/dl/

2. Download the package relevant to your operating

system.

3. Follow the installation instructions on the web page

https://go.dev/doc/install for the operating system of

your choice.

The Go Play Ground

The Go language maintainers provide a website to run

simple Go programs and learn the language quickly. It is

called The Go Playground. You can access it at

https://go.dev/play. The following pieces of code are

already available as examples in the playground. You may

have to modify them at places as suggested in this

appendix.

https://go.dev/dl/
https://go.dev/doc/install
https://go.dev/play

Hello World

It is a simple piece of code that prints a Unicode string. The

code is available as an example in the Go Playground.

package main

import "fmt"

func main() {

fmt.Println("Hello, 世界")

}

We use a function Println that is defined in the library fmt.

So, we had to import it.

Figure A.1: Hello World example on Go Playground

We modify the previous code slightly and introduce a simple

function next.

Simple function

We add two integers in a function and invoke it from the main

method.

package main

import "fmt"

func sum(a, b int) int {

return a + b

}

func main() {

fmt.Println(sum(1, 2))

}

This prints 3 in when run. We can also define sum() inside

the main() function.

func main() {

var sum func(int, int) int

sum = func(a, b int) int {

return a + b

}

fmt.Println(sum(1, 2))

}

sum is not a function. It is a variable that is assigned an

anonymous function. You can declare and assign in one

compact statement with :=.

func main() {

sum := func(a, b int) int {

return a + b

}

fmt.Println(sum(1, 2))

}

Closure

In the playground, select the Fibonacci Closure code. A

function defines a variable and returns a function. When the

returned function is invoked, the variable is manipulated.

The concept is called a closure. The behavior is similar to

using static variables. With closures, you can create complex

constructs.

// fib returns a function that returns

// successive Fibonacci numbers.

func fib() func() int {

a, b := 0, 1

return func() int {

a, b = b, a+b

return a

}

}

func main() {

f := fib()

// Function calls are evaluated left-to-right.

fmt.Println(f(), f(), f(), f(), f())

}

This prints 1 1 2 3 5. Every time you call f(), the values of a

and b change.

HTTP server

In the Go playground, select HTTP Server.

We use the net/http package to start an HTTP server.

package main

import (

"fmt"

"io"

"log"

"net"

"net/http"

"os"

)

We create a handler for the server to listen on. The handler

runs at the endpoint /hello.

func main() {

http.HandleFunc("/hello", func(w http.ResponseWriter, r

*http.Request) {

fmt.Fprint(w, "Hello, playground")

})

We create a listener that runs at port 8080.

log.Println("Starting server…")

l, err := net.Listen("tcp", "localhost:8080")

if err != nil {

log.Fatal(err)

}

We spawn another Golang lightweight process and run the

HTTP server listening on port 8080. The server keeps running

in the background but relinquishes the control for the client

code to run next.

go func() {

log.Fatal(http.Serve(l, nil))

}()

log.Println("Sending request…")

We contact the server using a client call. Go client calls and

waits for the response to arrive.

res, err := http.Get("http://localhost:8080/hello")

if err != nil {

log.Fatal(err)

}

We copy the response body to the standard output.

log.Println("Reading response…")

if _, err := io.Copy(os.Stdout, res.Body); err != nil {

log.Fatal(err)

}

We see Hello, playground as the output. What happens when

another client contacts the server at the /hello endpoint?

The HTTP server spawns another lightweight process and

runs the registered handler. The implementation of net/http

module takes care of the management of connection

handlers. Thus, one client accessing the server does not stop

another client from accessing it.

Built-in data types

Like other programming languages, Go has several built-in

data types. We state only a few that we have used in this

book.

int: Integral numbers like 1, 35, -45, 0, etc.

They can be further classified as signed, unsigned,

and with bit sizes, like, int32, uint32, int64, uint8, etc.

float: Floating point numbers like 0.0, 1.0e6, 3.2e-6,

-5.4, etc.

Floating point numbers can have bit sizes specified,

like, float32, float64, etc.

string: Text strings are represented between two double

quotes, like, “Hello World.” Multiline preformatted text

can be written within backticks (`) as shown:

fmt.Println(` This is

a multiline text

formatting is preserved.`)

bool: Boolean data type. It can be either true or false.

These variables are used extensively in conditions and

branching.

rune: it is a 32-bit integer data type used to represent

character values. ‘a’, ‘b’, ‘5’, etc. are runes.

Variables

Variables can be declared as shown:

var i int

i = 10

or

i := 10

Even functions can be assigned to variables. Please review

the preceding Closure example.

By default, a zero value is assigned to a variable.

Pointers

We want to change the value of a parameter passed to a

function. We introduce a function incr which increments the

input parameter by one.

package main

import "fmt"

func incr(a *int) {

*a++

}

func main() {

i := 3

incr(&i)

fmt.Println(i)

}

4 will be printed.

a in the function is a pointer of type int. To the function, we

pass the address of i; the value of i gets incremented.

A pointer variable is assigned a nil value by default.

Global vs. local

When variables by the same name are declared in multiple

scopes, the variable in the current scope is used.

var i = 4

func main() {

i := 3

fmt.Println(i)

}

3 will be the output from this code.

Control flow

Like most structured programming languages, Golang

supports many control flow primitives. We start with the

conditional if…else loop.

func main() {

i := 5

k := 0

if i < 1 {

k = 1

} else if i < 10 {

k = 2

} else {

k = 3

}

fmt.Println(k)

}

The output is 2.

switch is a compact way of representing a long if…else loop.

func main() {

switch i := 3; i {

case 1:

fmt.Println("One")

case 2:

fmt.Println("Two")

default:

fmt.Println("Default")

}

for i := 0; i < 10; i++ {

fmt.Printf("%d ", i)

}

}

i defined in the switch statement is not available to the for

loop. As expected, this code will print the following output.

Default

0 1 2 3 4 5 6 7 8 9

The for loop has other forms that can behave like a while

loop of other languages. Golang has no while keyword.

func main() {

i := 0

for i < 10 {

fmt.Printf("%d ", i)

i++

}

}

What about do…while loop of other languages? We will

emulate the same using a for loop. The previous loop can be

rewritten as shown.

func main() {

i := 0

for ok := true; ok; ok = (i < 10) {

fmt.Printf("%d ", i)

i++

}

}

You can use a break to terminate a for loop. The following

code does the same task as the previous one. We use break

to end the infinite for loop.

func main() {

i := 0

for {

if i >= 10 {

break

}

fmt.Printf("%d ", i)

i++

}

}

Error handling

Other programming languages provide specialized control

flows for error handling. Golang does not provide any such

control flows. The errors are returned as additional values in

functions. Let us review it with some examples. A map is an

inbuilt data type in Golang that maps one value to another.

In the following example, we map a string to an int.

func main() {

m := map[string]int{"one": 1, "two": 2, "three": 3}

str := "two"

if v, ok := m[str]; !ok {

fmt.Printf("Mapping for %s not found.", str)

} else {

fmt.Printf("Mapping for %s is %d", str, v)

}

}

Accessing m[str] returns values v and ok. v contains the

mapped value and ok is true if a mapping exists and false

when no mapping exists. If we use the expression v :=

m[“two”], v will be assigned 2. If we want to collect the value

of ok only, we can use the expression: _, ok := m[“two”]. We

realize multiple values can be returned and apply the same

principles to a function.

package main

import (

"fmt"

"math"

)

func mysqrt(a float64) (float64, error) {

if a < 0 {

return 0.0, fmt.Errorf("No square root for negative numbers:

%f", a)

} else {

return math.Sqrt(a), nil

}

}

func main() {

a := -36.0

if sa, err := mysqrt(a); err != nil {

fmt.Println(err)

} else {

fmt.Println(sa)

}

}

In the preceding function mysqrt(), we returned two values;

one for success with the actual square root, and the other

value has the error information. In the main function, we

take the appropriate action based on the error. Golang

functions have a substantial portion of the code handling

errors from called methods.

User-defined data types

When you must describe a complete record, simple built-in

types may not be sufficient. Let us define a Rectangle

structure.

type Rectangle struct {

a, b float64

}

func Square(a float64) *Rectangle {

return &Rectangle{a: a, b: a}

}

func main() {

r := Square(5)

fmt.Println(r)

}

We defined a Rectangle with two sides as float64. The function

Square() takes a parameter of one side and constructs a

special constrained Rectangle. So Square is a constructor for a

Rectangle object. Constructor is a function that instantiates a

new object and returns the pointer to the object.

func (r Rectangle) Area() float64 {

return r.a * r.b

}

func (r *Rectangle) Set(a, b float64) {

r.a = a

r.b = b

}

func main() {

r := Square(5)

fmt.Println(r)

fmt.Printf("Area: %f\n", r.Area())

r.Set(5, 6)

fmt.Println(r)

}

We added an Area() method to the Rectangle. We added a

Set() method that can change the sides of the Rectangle. For

a method to change the values of a type, the method must

be defined for the pointer type.

type Ranges float64

func (r Ranges) String() string {

if r < 0 {

return "small"

} else if r < 100 {

return "medium"

} else {

return "large"

}

}

func main() {

r := Ranges(1000.0)

fmt.Println(r)

}

We have decomposed the floating-point range into three

parts and will output it based on the value. We create a new

type Ranges based on float64. We have defined the String

method for it. When the object is printed the Ranges.String()

method is called. While String() is used to export values from

a user-defined type, sometimes we need to export the values

as JSON objects. We take the same Rectangle example and

convert it to JSON.

import (

"encoding/json"

"fmt"

"os"

)

type Rectangle struct {

W float64 `json:"width"`

H float64 `json:"height"`

}

func main() {

r := Rectangle{W: 5, H: 6}

fmt.Println(r)

if js, err := json.Marshal(&r); err == nil {

os.Stdout.Write(js)

}

}

While defining the Rectangle we annotate that during

conversion to JSON, the parameter W will be named as “width”

and the parameter H will be named as “height.” We marshal

the structure using the method json.Marshal(). The output is

as shown:

{5 6}

{"width":5,"height":6}

Interface

Let us look at the following code:

package main

import (

"fmt"

"math"

)

type NumberError struct {

A float64

}

func (e NumberError) Error() string {

return fmt.Sprintf("The number is negative: %f", e.A)

}

func mysqrt(a float64) (float64, error) {

if a < 0 {

return 0.0, NumberError{a}

} else {

return math.Sqrt(a), nil

}

}

func main() {

a := -36.0

if sa, err := mysqrt(a); err != nil {

fmt.Println(err)

} else {

fmt.Println(sa)

}

}

The output is:

The number is negative: -36.000000

We define a new type NumberError. We define a function

Error() for the type. With these changes, we can use an

instance of NumberError for the return type error. error is an

interface defined as shown:

type error interface{

Error() string

}

A type implements an interface when it has all the methods

of the interface defined for it. Here NumberError has the

method Error() defined for it. Hence, NumberError implements

the error interface.

Exporting methods and variables

Every function or variable defined in a package is visible

within the package. However, when you define a function or

variable with the first letter capitalized, it is exported. Such a

function or variable can be accessed from outside the

package. Here are some examples of exported symbols.

package main

import (

"fmt"

"howa.in/geom"

)

func main() {

r := geom.Rectangle{A: 5.0, B: 6.0}

fmt.Println(r.A, " ", r.B)

}

-- go.mod --

module howa.in

-- geom/geom.go --

package geom

var A = 5

type Rectangle struct {

A, B float64

}

The symbols A and Rectangle can be accessed outside of the

package geom. If you instantiate an object of type Rectangle,

you can access its members as well in another package main.

This code will output:

5 6

If you have Rectangle defined with parameters in lowercase a

and b, you cannot access them from the package main.

However, you can define a constructor for Rectangle objects.

package main

import (

"fmt"

"howa.in/geom"

)

func main() {

r := geom.NewRectangle(5, 6)

fmt.Println(r)

}

-- go.mod --

module howa.in

-- geom/geom.go --

package geom

var A = 5

type Rectangle struct {

a, b float64

}

func NewRectangle(a, b float64) *Rectangle {

return &Rectangle{a: 5.0, b: 6.0}

}

The Go playground can run a multifile code. You specify a

new file by providing the name of the file delimited by two

dashes (--).

Resolving package dependencies

Note

This example must be run locally on a desktop or laptop.

You should not run it on the Go Playground. You need to

install the Golang development environment.

In the folder appendix-a, try to run the sample code sudoku.go1

with the command: go run ./sudoku.go. The execution will fail

with the following error:

sudoku.go:6:2: no required module provides package

github.com/gonutz/sudoku: go.mod file not found in current

directory or any parent directory; see 'go help modules'

Modules provide an easy way to create package

dependencies.

1. We will create a module with the command: go mod init

howa.in/sudoku

2. Resolve the package dependencies using the command:

go mod tidy

3. If you run the code using: go run ./sudoku.go, you will see

the following output.

631 784 925

894 265 713

527 913 684

965 427 138

712 836 459

483 159 276

378 692 541

256 341 897

149 578 362 <nil>

We see two files:

go.mod: has the direct package dependencies and version

dependency on Golang.

go.sum: has the indirect package dependencies with

version information.

Conclusion

We just scratched the surface of the programming language.

There are deeper concepts and constructs available with the

language. Refer to the Golang documentation at:

https://go.dev/doc/ for a detailed understanding of the

language.

1 This is the example code of the package gonutz/sudoku

https://pkg.go.dev/github.com/gonutz/sudoku

https://go.dev/doc/
https://pkg.go.dev/github.com/gonutz/sudoku

APPENDIX B

The Flutter Application

Framework

Introduction

In this appendix, we introduce some salient features of the

Flutter Application Framework. People conversant with the

framework may skip. Most of our examples are simple and

cater to the needs of a new programmer. We will focus on

aspects we have used in this book. Flutter helps you build

applications for Windows, Linux, Mac OS, iOS, Android, and

the Web. Most of our samples in this book are built for the

web platform.

Installation

1. Go to https://docs.flutter.dev/get-started/install.

2. Download the package relevant to your operating

system.

3. Follow the installation instructions on the web page for

the operating system of your choice.

DartPad

The Dart programming language is used to develop in Flutter

Application Framework. The maintainers of the Dart

programming environment provide DartPad, a web-based

IDE to try the Dart code and test their results. This

environment accepts Flutter UI code and displays the output

side-by-side. For this appendix, you can use that

environment. Flutter development may require you to

https://docs.flutter.dev/get-started/install

understand a variety of concepts. We will discuss some of

them in this chapter.

As a programming language, Dart is structurally comparable

to other front-end development languages like JavaScript or

TypeScript. If you are familiar with them, you will find

similar concepts here. Hence, we will not delve much into

the syntax and semantics of the language but focus on a few

sample programs available at https://dartpad.dev.

Hello World

On DartPad, select the sample Hello World. You will see the

following piece of code.

void main() {

for (var i = 0; i < 4; i++) {

print('hello $i');

}

}

Dart’s entry point is a main function. Here we print hello four

times in a loop as shown.

hello 0

hello 1

hello 2

hello 3

https://dartpad.dev/

Figure B.1: Hello World in DartPad

The print() function takes a string in this case. The string can

be quoted in a single quote (‘) or double quote (“). A variable

with $ is computed and the value is embedded in the string.

This is called interpolation. You can also interpolate an

expression like ${2*i}. The expression must appear within

curly braces. var i = 0 initializes a variable for the for loop.

The variable i is not visible outside of the for loop.

Fibonacci function

On DartPad, select the Fibonacci sample. The code is

presented as follows:

void main() {

var i = 20;

print('fibonacci($i) = ${fibonacci(i)}');

}

/// Computes the nth Fibonacci number.

int fibonacci(int n) {

return n < 2 ? n : (fibonacci(n - 1) + fibonacci(n - 2));

}

It outputs the 20th number from the Fibonacci series.

fibonacci(20) = 6765

The fibonacci function is recursive. We also see the ternary

(?:) operator here. String interpolation is used to create the

output for printing.

Futures

In the browsers, the front-end JavaScript code runs as a

single thread. However, there are code blocks that contact

the back-end REST APIs. Those can block the execution of

the user interface and provide an unacceptable user

experience. A cooperative multitasking framework has been

introduced in JavaScript (Promise) to address this. The

framework is called a Future in Dart. We will review Futures

in this section.

Future<int> delay(int id) {

return Future.delayed(const Duration(seconds: 1), () {

print('id: $id');

return id;

});

}

In the function delay, we have an identifier (id) as an

argument. The code calls the system method Future.delayed.

Future.delayed, waits for a second, prints the id, and returns

the value of the id. The returned value is wrapped inside a

Future<int> as id is of type int. A Future returned essentially

means the execution is not over yet. However, if you want to

wait for the execution to be over, you can invoke a then

function on it and compute the subsequent step inside the

argument function. The result wrapped in the Future is the

argument to the function parameter in the then method.

Future<int> delayGroup(int id) {

return delay(id).then((i) {

return delay(i + 1);

}).then((i) {

return delay(i + 1);

}).then((i) {

return delay(i + 1);

});

}

In the preceding function, we have taken four delay()

functions and chained them with then(). The output of the

previous method is incremented by one and passed to the

subsequent delay() function. All these evaluations should

happen in series, yet we do not want the execution to halt

for 4s. We invoke the delayGroup() function twice, once with id

10 and another time with the id of 20.

void main() {

delayGroup(10);

delayGroup(20);

}

The output is as follows:

id: 10

id: 20

id: 11

id: 21

id: 12

id: 22

id: 13

id: 23

The execution can be explained by the following illustration.

Figure B.2: Futures are placed on a queue. Execution is carried out by one then

block at a time

In this case, two future chains are executing, for example, f

and g. Once f is executed the next in the then block is placed

in the execution queue. So instead of executing f1, g is

executed. Similarly, after g is executed, g1 is placed in the

queue, and so on. This way f and g run in parallel, yielding to

each other at every then block. Some people find this syntax

cumbersome. Hence, Dart (also JavaScript) provides an

async/await notation for the same. Here is delayGroup() with

async/await syntax.

Future<int> delayGroupAsync(int id) async {

var i = await delay(id);

i = await delay(i + 1);

i = await delay(i + 1);

i = await delay(i + 1);

return i;

}

Just like then() for successful execution, you can add a

catchError() method to handle exceptions with Future.

HTTP Requests

On DartPad, select the HTTP Requests sample code.

import 'dart:convert' as convert;

import 'package:http/http.dart' as http;

void main(List<String> arguments) async {

// This example uses the Google Books API to search

// for books about HTTP. For details, see

// https://developers.google.com/books/docs/overview

final url = Uri.https(

'www.googleapis.com',

'/books/v1/volumes',

{'q': '{http}'},

);

// Await the HTTP GET response, then decode the

// JSON data it contains.

final response = await http.get(url);

if (response.statusCode == 200) {

final jsonResponse = convert.jsonDecode(response.body);

final itemCount = jsonResponse['totalItems'];

print('Number of books about HTTP: $itemCount.');

} else {

print('Request failed with status:

${response.statusCode}.');

}

}

We access the Google Books API to download information

regarding the books on HTTP. The downloaded data is in

JSON format. We convert the JSON data to equivalent Dart

constructs and access the total number of books. Since the

data is dynamic, the results may vary from the data reported

in the book.

Number of books about HTTP: 2395.

Here are the steps taken by the code:

We form a URI for the API.

We request async http.get() on the URL.

On successful completion of the get request, we convert

the request body to a dictionary by using the jsonDecode

function.

We read the number of books in the result from the

dictionary.

User interface

The Flutter framework is a representation of the MVVM

architecture. You can think of the client Flutter code as a

View that updates on changes with the View Model

represented by a REST API.

Figure B.3: Flutter client in the MVVM architecture

If you look at the examples discussed in the book, we have

used the MVVM architecture extensively. The REST APIs are

in the Golang in these examples. The flutter code accesses

the REST API using the http.get method or the HttpClient

object. We will focus on the client-side rendering code in the

following sections.

Stateless vs stateful widgets

Unlike MVC architectures, where the view gets updated

based on a trigger from the controller, a change in the view

model rebuilds the views in MVVM architectures. When we

talk about building the UI, it is not always that every UI

internal component is redrawn from scratch. The framework

has avenues to track changes and reconstruct where

necessary. However, from a code standpoint, the build

method is invoked several times.

A UI element in Flutter is a Widget. Pretty much everything is

a widget. It starts with an application at the highest level to

a static text widget at the lowest level. A StatelessWidget has

no state information. It is instantiated by the framework and

built. For any reason, if you refresh the widget, you will have

to rebuild it again. At the highest level, the application is a

StatelessWidget, that instantiates a MaterialApp. The MaterialApp

does not have any state information but has configuration

and style information only. The app has a home page or the

first screen to be shown.

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'Flutter Demo',

debugShowCheckedModeBanner: false,

theme: ThemeData(

colorScheme: ColorScheme.fromSeed(seedColor:

Colors.deepPurple),

useMaterial3: true,

),

home: const MyHomePage(title: 'Flutter Demo Home Page'),

);

}

}

The app instantiates a MyHomePage class. This class builds all

the visible UI. The visible UI has the following components:

An application toolbar containing a title.

The body area shows a numeric counter.

A floating button, when clicked, increments a number

shown in the body area.

Hence, the class has a state of a numeric counter. When the

numeric counter changes, we need to update the user

interface.

Figure B.4: Scaffold widget and its components

Hence, we create MyHomePage as a StatefulWidget. A

StatefulWidget has an associated State object that will

maintain the counter. When the value of the counter

changes, the setState method is invoked; it builds the

StatefulWidget.

class MyHomePage extends StatefulWidget {

final String title;

const MyHomePage({

Key? key,

required this.title,

}) : super(key: key);

@override

State<MyHomePage> createState() => _MyHomePageState();

}

The associated _MyHomePageState class has a _counter member.

Clicking on the floating action button invokes the

_incrementCounter() method. setState() method updates the

_counter member. The UI reflects the new value of the

_counter on rebuild.

class _MyHomePageState extends State<MyHomePage> {

int _counter = 0;

void _incrementCounter() {

setState(() {

_counter++;

});

}

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

backgroundColor:

Theme.of(context).colorScheme.inversePrimary,

title: Text(widget.title),

),

body: Center(

child: Column(

mainAxisAlignment: MainAxisAlignment.center,

children: [

const Text(

'You have pushed the button this many times:',

),

Text(

'$_counter',

style: Theme.of(context).textTheme.headlineMedium,

),

],

),

),

floatingActionButton: FloatingActionButton(

onPressed: _incrementCounter,

tooltip: 'Increment',

child: const Icon(Icons.add),

),

);

}

}

When a lot of data changes in a localized part of a UI due to

a change in a view model, StatefulWidgets are very useful.

What about the cases where a view model affects small

changes at various parts of UI? For example, the user has

added new items to the shopping cart, a new message has

come, and so on. Change notifications are ideal for such

scenarios.

Providers and change notifications

We reimplement the previous example using StatelessWidget

and ChangeNotifier. We retain the state of the counter outside

the UI widget and associate it with the application. We

associate a change notifier with the state of the counter so

that the UI that needs an update can be notified.

Figure B.5: Change notifier in action

Here are some of the proposed changes:

Since there is no state information with the widgets, all

the UI widgets are stateless.

We introduce a new Count widget that listens for

updates when the counter increments.

The floating button widget will send the notifier an

increment message.

The notifier will notify the Count widget of the

incremented counter.

How can the widgets find the notifier object? Who maintains

the lifecycle of the notifier object? The application object

holds a ChangeNotifierProvider that can provide access to the

ChangeNotifier.

import 'package:flutter/material.dart';

import 'package:provider/provider.dart';

void main() {

runApp(

MultiProvider(

providers: [

ChangeNotifierProvider(create: (context) => Counter()),

],

child: const MyApp(),

),

);

}

The Counter class is the ChangeNotifier.

class Counter with ChangeNotifier {

int _count = 0;

int get count => _count;

void increment() {

_count++;

notifyListeners();

}

}

There is hardly any change to the MyApp class.

class MyApp extends StatelessWidget {

const MyApp({Key? key}) : super(key: key);

@override

Widget build(BuildContext context) {

return MaterialApp(

theme: ThemeData(

colorSchemeSeed: Colors.blue,

useMaterial3: true,

),

home: const MyHomePage(),

);

}

}

MyHomePage is a StatelessWidget. It instantiates the Scaffold

class.

class MyHomePage extends StatelessWidget {

const MyHomePage({Key? key}) : super(key: key);

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: const Text('Provider example'),

),

body: const Center(

child: Column(

mainAxisSize: MainAxisSize.min,

mainAxisAlignment: MainAxisAlignment.center,

children: <Widget>[

Text('You have pushed the button this many times:'),

Count(),

],

),

),

floatingActionButton: FloatingActionButton(

key: const Key('increment_floatingActionButton'),

onPressed: () => context.read<Counter>().increment(),

tooltip: 'Increment',

child: const Icon(Icons.add),

),

);

}

}

There are two significant changes:

There is a Count class instantiated in the body for

showing the counter value.

The onPressed method of the floating action button. The

method invokes context.read<Counter>(). The notifier is

searched from the widget hierarchy and the increment

method is invoked on the notifier object. The read

method ensures the widget only sends messages to the

notifier and does not listen to the notifier updates.

The following code describes the Count class:

class Count extends StatelessWidget {

const Count({Key? key}) : super(key: key);

@override

Widget build(BuildContext context) {

return Text(

'${context.watch<Counter>().count}',

key: const Key('counterState'),

style: Theme.of(context).textTheme.headlineMedium,

);

}

}

context.watch<Counter>() ensures the Count widget listens to

notifications from the Counter notifier. When the count is

incremented, the Count widget is only rebuilt. The other

widgets are not updated. There are other concepts like

Consumer which also can be used to listen to notifiers. We have

used some of them in the examples.

Conclusion

We scratched the surface of the Flutter framework in this

appendix, the bare minimum knowledge needed in Flutter to

use this book. There are complex concepts and constructs

available within the framework. Moreover, our focus was

limited to building web applications using the framework. You

can also develop platform native applications using the

framework. Refer to the Flutter documentation at:

https://docs.flutter.dev/ for a detailed understanding. You

may also refer to: https://dart.dev/guides for information

on the Dart language.

https://docs.flutter.dev/
https://dart.dev/guides

APPENDIX C

TLS Certificate Creation

Introduction

In Chapter 3: Authentication with Network Security, we

discussed certificate chains for TLS servers and clients. In

this appendix, we provide the OpenSSL commands to create

such certificates. We use an intermediate CA to sign the leaf

certificate for the server. We use the root CA to sign the

intermediate CA. The chain of trust is in Figure 3.6: Server

certificate hierarchy.

Root certificate

The root CA is a self-signed certificate. While there are other

quick ways to create self-signing certificates in OpenSSL1,

we use a similar process for all certificates. First launch

OpenSSL with the openssl command and enter the OpenSSL

command mode. On the OpenSSL> prompt:

1. Generate a Certificate Signing Request (CSR) along with

generating an RSA-keypair.

req -newkey rsa:2048 -days 365 -config ssl.cfg -keyout

sroot.key -out sroot.csr

The file sroot.csr has the CSR for the certificate and

sroot.key has the private key. The command will prompt

for a password to protect the private key. The file ssl.cfg

has the configurations needed for OpenSSL. We use the

following file:

[root@controller certs_x509]# cat openssl.cnf

[req]

distinguished_name = req_distinguished_name

policy = policy_match

x509_extensions = v3_ext

For the CA policy

[policy_match]

countryName = optional

stateOrProvinceName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[req_distinguished_name]

countryName = Country Name (2 letter

code)

countryName_default = IN

countryName_min = 2

countryName_max = 2

stateOrProvinceName = State or Province Name

(full name) ## Print this message

stateOrProvinceName_default = KA ## This is the

default value

localityName = Locality Name (eg, city)

Print this message

localityName_default = BANGALORE ## This is the

default value

0.organizationName = Organization Name (eg,

company) ## Print this message

0.organizationName_default = HOWA ## This is the

default value

organizationalUnitName = Organizational Unit Name

(eg, section) ## Print this message

organizationalUnitName_default = Server Root ## This is

the default value

commonName = Common Name (eg, your

name or your server hostname) ## Print this message

commonName_max = 64

emailAddress = Email Address ## Print

this message

emailAddress_max = 64

[v3_ext]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

The file defines the policies for certificate generation,

for example, the parameters that should be prompted

to generate the CSR, the size of the parameters, etc.

2. Sign the CSR using the private key.

x509 -in sroot.csr -days 365 -signkey sroot.key -

CAcreateserial -out sroot.crt -extfile ca.ext -req

We use the private key to sign the CSR. We use a file

ca.ext to add a few extension parameters. The ca.ext file

is as shown:

basicConstraints = critical,CA:true

3. Annotate the certificate with the textual content for

readability.

x509 -in sroot.crt -text -out sroot.annot.crt

The file sroot.annot.crt has all the text content of the

root certificate.

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

6b:2e:e7:96:f2:fb:da:55:74:73:23:fe:a2:a4:02:36:f9:

21:2e:8e

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = IN, ST = KA, L = BANGALORE, O = HOWA, OU

= Server Root, CN = sroot

Validity

Not Before: Aug 13 17:32:01 2023 GMT

Not After : Aug 12 17:32:01 2024 GMT

Subject: C = IN, ST = KA, L = BANGALORE, O = HOWA, OU

= Server Root, CN = sroot

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:

00:a9:f9:9b:d5:f6:62:cd:3a:08:64:4c:3e:42:1a:

f4:3a:f3:3a:6d:97:79:33:40:e3:50:e2:81:8f:ba:

d2:c7:31:eb:07:b5:87:ef:64:f2:f5:67:0e:8b:37:

f3:df:05:20:81:39:9b:0e:e6:e2:14:e8:7a:a3:a7:

2b:03:3a:0a:87:94:08:1e:4e:32:66:d0:e1:e5:5e:

21:1c:88:d0:ed:c3:75:65:a7:6d:e1:5f:e6:ee:b5:

1b:b2:e7:31:ce:ca:7d:48:7b:15:44:4d:f4:1f:3e:

5b:67:29:5d:e1:e2:db:67:2c:39:bc:b2:bc:a9:7c:

a4:9d:b6:0c:f3:50:b7:46:c9:06:65:c2:0a:bd:23:

df:94:41:0d:84:fc:96:73:36:38:2f:68:9d:13:f4:

a8:bc:e2:02:00:77:89:91:67:2e:e1:69:3a:e2:d1:

ed:b4:75:87:4a:22:f2:fb:49:8f:d7:86:df:d5:e6:

77:40:b1:70:7b:94:c6:dc:27:d5:b3:67:60:cb:d3:

50:22:0a:3f:9e:c2:96:f2:6a:47:a7:55:8c:fc:52:

e1:e7:38:92:30:3a:24:94:16:e2:53:e2:30:0c:94:

7f:5e:1d:83:ea:cc:9f:48:c3:40:06:5e:c8:7f:6c:

0e:e4:02:76:4a:e2:91:e0:2f:39:65:42:6d:9c:a7:

a8:1b

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints: critical

CA:TRUE

Signature Algorithm: sha256WithRSAEncryption

9a:d2:8f:d7:c5:36:4c:6b:25:f5:1d:7c:e1:05:fb:60:fd:74

:

63:b8:21:34:98:8d:2f:a4:3e:f2:35:60:4b:32:f4:63:5a:d4

:

5d:d4:08:32:a3:63:aa:d2:d2:aa:70:54:3f:2b:a1:40:f7:30

:

71:74:75:83:18:8a:ed:23:7f:12:5e:f2:56:06:35:cc:b4:1a

:

0c:b5:b0:32:67:07:67:c7:21:cd:97:8d:f6:b6:2c:c0:57:a0

:

45:a7:fd:08:70:09:d9:f0:e2:48:c6:f8:be:5c:ea:3d:16:ea

:

12:c6:ba:75:d5:70:7a:32:b5:cf:0a:ec:15:0f:b2:d9:6d:aa

:

5d:4a:94:58:11:2d:cc:5b:93:c9:39:41:a0:a9:ed:63:87:0d

:

33:bb:92:b3:b5:48:cf:f1:0d:94:73:74:54:e4:ca:db:ac:ee

:

7d:96:6d:89:b3:48:d2:4e:72:3d:dd:73:6d:3c:87:fd:32:b1

:

b7:05:ca:a6:e5:0f:18:50:a7:a2:d3:94:0b:6c:02:d9:0e:41

:

5a:34:e6:5a:65:ca:31:98:6c:ff:fa:6c:f2:0b:67:ca:36:f2

:

aa:52:cc:4f:7b:ba:e1:50:29:08:c6:a8:d5:eb:7d:c9:1d:81

:

cf:a4:f0:e4:1c:3b:6f:3a:34:00:2a:ee:22:8c:6e:ef:e7:8a

:

95:a4:55:53

-----BEGIN CERTIFICATE-----

MIIDZzCCAk+gAwIBAgIUay7nlvL72lV0cyP+oqQCNvkhLo4wDQYJKoZIhv

cNAQEL

BQAwYzELMAkGA1UEBhMCSU4xCzAJBgNVBAgMAktBMRIwEAYDVQQHDAlCQU

5HQUxP

UkUxDTALBgNVBAoMBEhPV0ExFDASBgNVBAsMC1NlcnZlciBSb290MQ4wDA

YDVQQD

DAVzcm9vdDAeFw0yMzA4MTMxNzMyMDFaFw0yNDA4MTIxNzMyMDFaMGMxCz

AJBgNV

BAYTAklOMQswCQYDVQQIDAJLQTESMBAGA1UEBwwJQkFOR0FMT1JFMQ0wCw

YDVQQK

DARIT1dBMRQwEgYDVQQLDAtTZXJ2ZXIgUm9vdDEOMAwGA1UEAwwFc3Jvb3

QwggEi

MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCp+ZvV9mLNOghkTD5CGv

Q68zpt

l3kzQONQ4oGPutLHMesHtYfvZPL1Zw6LN/PfBSCBOZsO5uIU6HqjpysDOg

qHlAge

TjJm0OHlXiEciNDtw3Vlp23hX+butRuy5zHOyn1IexVETfQfPltnKV3h4t

tnLDm8

srypfKSdtgzzULdGyQZlwgq9I9+UQQ2E/JZzNjgvaJ0T9Ki84gIAd4mRZy

7haTri

0e20dYdKIvL7SY/Xht/V5ndAsXB7lMbcJ9WzZ2DL01AiCj+ewpbyakenVY

z8UuHn

OJIwOiSUFuJT4jAMlH9eHYPqzJ9Iw0AGXsh/bA7kAnZK4pHgLzllQm2cp6

gbAgMB

AAGjEzARMA8GA1UdEwEB/wQFMAMBAf8wDQYJKoZIhvcNAQELBQADggEBAJ

rSj9fF

NkxrJfUdfOEF+2D9dGO4ITSYjS+kPvI1YEsy9GNa1F3UCDKjY6rS0qpwVD

8roUD3

MHF0dYMYiu0jfxJe8lYGNcy0Ggy1sDJnB2fHIc2Xjfa2LMBXoEWn/QhwCd

nw4kjG

+L5c6j0W6hLGunXVcHoytc8K7BUPstltql1KlFgRLcxbk8k5QaCp7WOHDT

O7krO1

SM/xDZRzdFTkytus7n2WbYmzSNJOcj3dc208h/0ysbcFyqblDxhQp6LTlA

tsAtkO

QVo05lplyjGYbP/6bPILZ8o28qpSzE97uuFQKQjGqNXrfckdgc+k8OQcO2

86NAAq

7iKMbu/nipWkVVM=

-----END CERTIFICATE-----

The PEM-encoded certificate is placed within the beginning

and end block markers. Anything outside of the block is

taken as comments.

Intermediate CA

The steps for the Intermediate CA are similar to as shown

for the Root CA.

1. Generation of the RSA keypair and CSR.

req -newkey rsa:2048 -config ssl.cfg -keyout sint.key -out

sint.csr

Provide a password to encrypt the sint.key file.

2. Signing the CSR using the private key of the Root CA.

x509 -in sint.csr -CA sroot.crt -CAkey sroot.key -days 365

-CAcreateserial -out sint.crt -extfile ica.ext -req

We use the -CA and -CAkey parameters instead of the -

signkey parameter. We used ica.ext for extensions. The

contents of the file are as follows:

basicConstraints = critical,CA:true,pathlen:0

3. Annotate the certificate with the textual content for

readability.

x509 -in sint.crt -text -out sint.annot.crt

We create the end-entity server certificate next.

TLS server certificate

In our example, the server certificate is meant for the DNS

address mysrv.local. We follow similar steps as earlier.

1. Generation of the RSA keypair and CSR.

req -newkey rsa:2048 -config ssl.cfg -keyout

mysrv.local.key -out mysrv.local.csr

2. Signing the CSR using the private key of the

Intermediate CA.

x509 -in mysrv.local.csr -CA sint.crt -CAkey sint.key -

days 365 -CAcreateserial -out mysrv.local.crt -extfile

server.ext -req

The extensions for the server are as follows:

basicConstraints = CA:false

keyUsage =

digitalSignature,nonRepudiation,keyEncipherment,dataEnciph

erment

extendedKeyUsage = serverAuth

subjectAltName = DNS:mysrv.local

3. Annotate the certificate with the textual content for

readability.

x509 -in mysrv.local.crt -text -out mysrv.local.annot.crt

Generating the PKCS-12 file

PKCS-12 format helps carry multiple certificates and private

keys in one container in a secure manner. The container can

be a file or a cryptographic device. As we need to carry the

chain for convenience, we will concatenate all the CA

certificates to the end entity certificates. Here are the

commands.

Windows PowerShell: Get-Content

.\sroot.annot.crt,.\sint.annot.crt,.\mysrv.local.annot.crt

| Out-file .\mysrv.local.comb.crt

Linux: cat .\sroot.annot.crt .\sint.annot.crt

.\mysrv.local.annot.crt > .\mysrv.local.comb.crt

We use the pkcs12 command in OpenSSL to create the PKCS-

12 file.

OpenSSL> pkcs12 -export -in mysrv.local.comb.crt -inkey

mysrv.local.key -out mysrv.local.p12

Enter pass phrase for mysrv.local.key:

Enter Export Password:

Verifying - Enter Export Password:

OpenSSL>

The same process can be followed to create the PKCS-12

files for the Intermediate CA and the Root CA certificates.

Client hierarchy

In Figure 3.7: Client certificate hierarchy, we showed a

different chain for the client authentication certificates. The

generation of the client certificates is very similar to the

server certificates. We leave it here as an exercise for you.

The client extensions are different from the server as shown.

basicConstraints = CA:false

keyUsage =

digitalSignature,nonRepudiation,keyEncipherment,dataEncipherme

nt

extendedKeyUsage = clientAuth

subjectAltName = email:alice@mysrv.local

The subjectAltName has a format of an email. The extended

key usage is for client authentication, and so on.

1 The samples are developed using OpenSSL 1.1.1

Index

Symbols

3-legged OAuth protocol 127-129

A

Architectural Diagram

example 100, 101

asymmetric cryptography 43, 44

authentication

about 17, 18

credentials and access tokens 18-20

used, for digital signing 55, 56

versus authorization 125, 126

Authentication Assurance Levels (AAL) 236

authentication factor 184-186

authentication protocol

defining, for HTTP 20-22

authentication ticket 89, 90

authentication token 89, 90

authenticator code 192

authorization

about 83

versus authentication 125, 126

authorization policy 222, 223

authorization server 147-151

B

biometric authentication 249, 250

biometric technologies 256, 257

C

client hierarchy 307

control flow

about 275-277, 287, 288

Fibonacci function 289

futures 289-291

Hello World code example 288

HTTP requests 292

certificate signing request (CSR) 50

claims-based authentication 90

client authentication 71-73

command line utility

for GitHub 138-143

cookie parameters

reference link 14

cookies 8-10

counter cookie 12, 13

credential service provider (CSP) 236

Cross-Site Request Forgery (CSRF) Protection 129, 130

Cryptographic digests

properties 31

CURL

about 4

reference link 4

customer service 242-244

Cyclic Redundancy Check (CRC) 31

D

delegated authentication 85

demographic validation 238

digital certificates

about 48, 49

Alice's certificate, using to encrypt message 55

Alice's certificate, using to sign message 55

CSR keypair, generating 52

CSR, signing with CA 53

examples 51

issuance 50, 51

PKCS#12 container 55

profile 49, 50

RSA keypair, generating 52

self-signed certificate for CA 51

viewing 53, 54

digital identity

about 230, 234-237

biometric technologies 256, 257

customer service 242-244

ecosystem 239, 240

e-signing 245, 246

face biometry 251-256

fingerprint 250, 251

foundational identity 232-234

identity wallets 246-248

Indian National Foundational Identity (Aadhaar) 237, 238

KYC information 244, 245

liveness and antispoofing mechanisms 258-261

local authentication, versus server authentication 257, 258

Modular Open Source Identity Platform (MOSIP) 241, 242

proliferation of identities 230-232

validation 238, 239

digital signing

about 45-48

for authentication 55, 56

E

ecosystem 239, 240

e-signing

about 245

workflow 245, 246

error handling 277-279

F

Flutter Application framework

installation 287

face biometry 251-256

face recognition

authentication challenges 256

Fast Identity Online (FIDO)

about 202-204

authentication 207-209

device attestation 219, 220

device security 220, 221

devices, selection 211-213

frontend for registration 213, 216

registration 204-207

REST APIs for registration 217, 218

sample code and user interface 209-211

Federated Assurance Levels (FALs) 236

federated authentication

about 84-86

identity provider (IDP) 87

service provider (SP) 86, 87

fingerprint 250, 251

Flutter

using, in Native client 152-157

Flutter framework

about 5

reference link 5

form-based authentication 24-27

friction ridges 250

G

Go Language

about 4, 5

reference link 5

Google Chrome 4

Google Cloud Platform

configuring 170, 171

Google login 169, 170

Go Playground

about 269

Fibonacci Closure code 271, 272

Hello World code example 270

HTTP server 272, 273

simple function 271

Go programming language

built-in data types 274

installation 269

H

hash functions 31

header-based authentication 23

headers 6-8

HOTP sample 188-191

HR app service provider

configuring 104-109, 112

HTTP protocol basics

about 5, 6

cookie protection 14

cookies 8-10

counter cookie 12, 13

headers 6-8

minimal web server 11, 12

session cookie 13, 14

session management 10, 11

I

interface 281, 282

Intermediate CA 306

identity and access management (IAM) 121, 264

Identity Assurance Levels (IAL) 235

identity provider (IDP) 87

identity token 166

identity wallets 246-248

IDP-initiated authentication 119, 120

Indian National Foundational Identity (Aadhaar) 237, 238

integration and resource server 151, 152

J

JSON Web Ticket (JWT)

about 167-169

body 113

header 113

signature 113

K

key exchange protocol 44

KYC information 244, 245

L

limitations 23, 24

limited capability device 136, 137

liveness and antispoofing mechanisms 258-261

local authentication

versus server authentication 257, 258

M

MDN Web Docs 3

message consistency

about 30-32

encryption 35, 36

protection 32, 33

signature 37-39

metadata 91-94

minimal web server 11, 12

Model-View-View-Model (MVVM) 17

Modular Open Source Identity Platform (MOSIP) 241, 242

Mozilla Developer Network (MDN) 3

methods

exporting 282, 283

N

Native application 143-146

Native client

with Flutter 152-157

network protocols 59, 60

O

OAuth for Authentication

using 165, 166

OAuth protocol

3-legged OAuth protocol 127-129

about 126, 127

authorization server 147-151

command line utility, for GitHub 138-143

integration and resource server 151, 152

limited capability device 136, 137

Native application 143-146

Native client, with Flutter 152-157

scope 163, 164

token expiry 159-162

token issuance 157-159

web application, displaying in GitHub user data 130-135

one-way functions 34

OpenID Connect (OIDC)

about 164, 165

Google Cloud Platform, configuring 170, 171

Google login 169, 170

identity token 166

JSON Web Tokens (JWT) 167-169

OAuth for Authentication, using 165, 166

service endpoints 177, 178

token expiry 176

token security 176

User Experience 171-175

web front end 178-181

OpenSSL

about 4

reference link 4

OTP-based authentication

about 186-188

counter synchronization 192, 193

HOTP sample 188-191

OTP-like authenticators 201, 202

shared secret, exchanging 200, 201

time-based OTP 193-196

time synchronization 196-199

unattended HOTP devices 193

P

papillary ridges 250

passkey 203

password safety 40-43

post-quantum cryptography

about 261, 262

current status 262

post registration 227, 228

package dependencies

resolving 284, 285

PKCS-12 file

generating 307

pointers 275

R

root certificate 301-303

S

stateful widget

versus stateless widget 293-296

stateless widget

versus stateful widget 293-296

SAML specification

bindings 91

conformance 91

core 91

metadata 91

profiles 91

SAML token

about 90, 91

APIs, protecting 116, 117

binding 97-99

HR app service provider, configuring 104-109, 112

identity provider (IDP), configuring 101-104

IDP-initiated authentication 119, 120

profile 94-97

protected resources 120

session management 113-116

Single Sign-On (SSO) 117, 118

scope 163, 164

Security Assertion Markup Language (SAML) 90

server authentication

about 63-70

versus local authentication 257, 258

server-rendered authentication forms 223-225

service endpoints 177, 178

service provider (SP) 86, 87

session cookie 13, 14

session management 10-116, 226, 227

Single Sign-On (SSO) 88, 89, 117, 118

symmetric cryptography

about 33, 34

benefits 34

limitations 34

T

three-tier application architecture 16, 17

token expiry 159-162, 176

token issuance 157-159

token security 176

tools and resources

about 3

Flutter Framework 5

Go Language 4, 5

Google Chrome 4

MDN Web Docs 3

OpenSSL 4

transport layer security (TLS) 61-63

TLS server certificate 306

U

user consent 225, 226

User Experience 171-175

user-defined data types 279-281

user interface

about 293

change notification 297-300

providers 297-300

stateless widget, versus stateful widget 293

V

validation endpoint 191

variables

about 274

exporting 282, 283

global, versus local 275

pointers 275

W

web application

displaying, in GitHub user data 130-135

web architecture 15

Web Browser Support

about 74-76

client certificate 76-79

non-TLS certificate-based authentication 80, 81

web front end 178-181

Z

Zero trust architecture

about 262-264

standardization 265-267

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	Foreword
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Introduction to Web Authentication
	Introduction
	Structure
	Tools and Resources
	MDN Web Docs
	Google Chrome
	CURL
	OpenSSL
	Go Language
	Flutter Framework
	HTTP Protocol Basics
	Headers
	Cookies
	Session Management
	Minimal Web Server
	Counter Cookie
	Session Cookie
	Protecting the Cookies

	Web Architecture
	Web Application Architecture

	Introduction to Authentication
	Credentials and access tokens

	Authentication over HTTP
	Limitations
	Form-based authentication

	Conclusion
	Questions

	2. Fundamentals of Cryptography
	Introduction
	Security by Obscurity

	Structure
	Message Consistency
	Protection

	Symmetric Cryptography
	Encryption
	Signing

	Password Safety
	Asymmetric Cryptography
	Digital Signing
	Digital Certificates
	Certificate Profile
	Issuance
	Examples
	Self-Signed Certificate for CA
	Generating RSA Keypair and CSR
	Signing the CSR with CA
	Viewing the Certificate
	PKCS#12 Container
	Encryption Using Certificates
	Signing Using Certificates

	Digital Signing for Authentication
	Conclusion
	Reference Books
	Questions

	3. Authentication with Network Security
	Introduction
	Network Protocols

	Structure
	Transport Layer Security
	Server Authentication
	Client Authentication
	Web Browser Support
	Client Certificates
	Non-TLS certificate-based authentication

	Conclusion
	Questions

	4. Federated Authentication-I
	Introduction
	Structure
	Federated authentication
	Service provider initiated
	IDP initiated

	Single sign-on
	Authentication ticket or token
	Claims-based authentication
	SAML token
	Metadata
	Profiles
	Binding
	Configuring the identity provider
	Configuring the HR app service provider
	Session management
	Protecting the APIs
	Single sign-on
	IDP-initiated authentication
	Protected resources

	Identity and access management
	Conclusion
	Questions

	5. Federated Authentication - II (OAuth and OIDC)
	Introduction
	Structure
	Authentication vs authorization
	OAuth protocol
	3-legged OAuth protocol
	Web application displaying GitHub user data

	Limited capability device
	Command line utility for GitHub

	Native applications
	Authorization server
	Integration and Resource Server
	Native client using Flutter

	Token issuance
	Token expiry
	Scopes

	OpenID Connect (OIDC)
	Using OAuth for Authentication
	Identity Token
	JSON Web Token
	Login with Google
	Configuring the Google Cloud Platform
	User Experience
	Token Security
	Token Expiry
	Service Endpoints
	Web front end

	Conclusion
	Questions

	6. Multifactor Authentication
	Introduction
	Structure
	Factors of authentication
	OTP-based authentication
	HOTP Sample
	Synchronization of the counter
	Unattended HOTP devices
	Time-based OTP
	Synchronization of time
	Exchanging shared secret
	Other OTP-like authenticators

	Fast Identity Online (FIDO)
	Registration
	Authentication
	Sample code and user interface
	Selection of FIDO 2 Devices
	Front end for registration
	REST APIs for registration
	Device Attestation
	Device Security

	Bringing it all together
	Authorization policy
	Server-rendered authentication forms
	User consent
	Session Management
	Post Registration

	Conclusion
	Questions

	7. Advanced Trends in Authentication
	Introduction
	Structure
	Digital identity
	Proliferation of identities
	Foundational identity
	Digital identity
	Indian National Foundational Identity (Aadhaar)
	Validation
	Ecosystem

	Beyond India (MOSIP)
	Know your customer
	Beyond identity
	e-Signing

	Identity Wallets

	Biometric authentication
	Fingerprint
	Face biometry
	Other biometric technologies
	Local vs. server authentication
	Liveness and antispoofing mechanisms

	Post-quantum cryptography
	Current status

	Zero trust architecture
	Standardization

	Conclusion
	Questions

	Appendix A: The Go Programming Language Reference
	Introduction
	Installation
	The Go Play Ground
	Hello World
	Simple function
	Closure
	HTTP server

	Built-in data types
	Variables
	Pointers
	Global vs. local

	Control flow
	Error handling
	User-defined data types
	Interface
	Exporting methods and variables
	Resolving package dependencies
	Conclusion

	Appendix B: The Flutter Application Framework
	Introduction
	Installation
	DartPad
	Hello World
	Fibonacci function
	Futures
	HTTP Requests

	User interface
	Stateless vs stateful widgets
	Providers and change notifications

	Conclusion

	Appendix C: TLS Certificate Creation
	Introduction
	Root certificate
	Intermediate CA
	TLS server certificate
	Generating the PKCS-12 file
	Client hierarchy

	Index

