

Table	of	Contents
Introduction

Preface

Who	Should	Read	This	Book

How	to	Use	This	Book

Conventions	and	Organization

Where	to	Download	the	Projects

Chapter	1	-	Machine	Learning	at	a	Glance

1-1	What	is	Machine	Learning

Machine	Learning's	Role

Methods	of	Machine	Learning

1-2	Types	of	Algorithms

Linear	Regression

Decision	Trees

Support	Vector	Machines

K-Nearest	Neighbors

1-3	Machine	Learning	APIs

Implementation	Tools

Training	Tools

Chapter	2	-	Building	an	Image	Classification	App

2-1	Preparing	your	Project

Setting	up	Xcode

Create	a	New	Project

Save	your	Project

Preparing	to	Debug

User	Interface	Design

Auto	Layout

2-2	Pre-Processing	Video	Feed

Connecting	to	Code

Interface	Builder	Outlets

Using	the	Assistant	Editor

Camera	Usage	Description

Capture	Session

Session	I/O

Preparing	for	Processing

2-3	Image	Classification	and	Labeling

Image	Classification

Displaying	the	Results

Chapter	3	-	A	Primer	on	Python	and	Jupiter	Notebook

3-1	Jupyter	Notebook	and	Anaconda

What	is	a	Jupyter	Notebook?

Installing	Anaconda

Creating	a	Jupyter	Notebook

3-2	Basic	Python

Variables,	Loops,	and	Control	Flow

Data	Structures	and	Functions

Classes,	Methods,	and	Objects

3-3	Uses	of	Jupyter	Notebook

Code	and	Prose

Data	Visualization

Markdown	and	LaTeX

Chapter	4	-	Training	Your	Own	Image	Classifier

4-1	Preparing	Training	Data

Finding	the	Images

Image	Preparation	Tips

Getting	the	Training	Data	Ready

4-2	Training	with	Turi	Create

Using	Turi	Create

Training	with	Turi	Create

4-3	Delving	into	Create	ML

Introducing	Create	ML

What	Models	Can	You	Build?

Training	with	Create	ML

Chapter	5	-	Natural	Language	Processing

5-1	What	is	Natural	Language	Processing?

Natural	Language	at	a	Glance

Challenges	of	NLP

Types	of	NLP

5-2	Tokenization,	Stemming,	and	Lemmatization

Understanding	and	Responding

Internal	Steps	and	Techniques

5-3	Training	a	Text	Classifier

Finding	and	Sourcing	Data

Text	Classification	Algorithms

Creating	your	Classifier

Chapter	6	-	Sound	Classification	Models

6-1	Overview	and	Gathering	Sounds

About	Sound	Classification

Recording	Sounds	Yourself

Sourcing	Sounds	from	Datasets

6-2	Training	a	Sound	Classifier

Training	using	Create	ML

Testing	your	Model

6-3	Implementing	the	Model

Building	the	Sound	Classification	App

Capturing	and	Processing	Live	Audio

Chapter	7	-	Cloud-Based	Machine	Learning	with	Firebase

7-1	Firebase	at	a	Glance

Basic	Uses	of	Firebase

Account	Creation	and	Setup

CocoaPods	Dependency	Manager

7-2	Barcode	Scanning	and	Image	Labelling

Starting	a	Live	Feed

Barcode	Scanning

Image	Labelling

7-3	Translating	Between	Languages

Creating	a	Text	Experience

Connecting	Interface	to	Code

Language	Translation

Chapter	8	-	Updatable	ML	Models	for	On-Device	Training

8-1	How	Updatable	ML	Models	Work

User	Experience

Transfer	Learning

Updatable	Models	at	a	Glance

8-2	Open-Source	Training	Code

Obtaining	the	Code

Preparation	for	Training

8-3	Training	the	Model

Code	Explained

Chapter	9	-	Action	Classification	and	Style	Transfer

9-1	Action	Classification

Obtaining	Videos

Training	the	Model

9-2	Image	and	Video	Style	Transfer

About	Style	Transfer

Uses	of	Style	Transfer

9-3	Training	your	Model

Training,	Adjusting,	and	Testing

Chapter	10	-	Supercharge	ML	Workflow	with	these	Tips	and	Tricks

10-1	Machine	Learning	Design

Choose	Datasets	Carefully

Use	Data	Augmentation

Embrace	Limitations

10-2	Model	Conversion	and	Usage

Using	Model	Conversion

Using	Models	Without	Core	ML

Copyright	©2020	by	AppCoda	Limited

All	right	reserved.	No	part	of	this	book	may	be	used	or	reproduced,	stored	or	transmitted
in	any	manner	whatsoever	without	written	permission	from	the	publisher.

Published	by	AppCoda	Limited

Written	by	Vardhan	Agrawal

Edited	by	Kelly	Chan

ISBN:	978-9-887535-00-3

Published: 7/8/2020 | Last updated: 1/12/2020 | AppCoda © 2020

7Mastering Machine Learning with Core ML and Python

About	the	Author
Vardhan	Agrawal	is	a	self-taught	developer	who	works	primarily	with	Swift	and	iOS
development.	Some	of	the	other	languages	Vardhan	is	well-versed	with	include	Java,
Javascript,	Objective-C,	HTML,	and	CSS.	Not	only	does	he	tinker	with	new	projects	and
ideas,	but	he	also	makes	it	possible	for	others	to	do	the	same	by	teaching	others	to	code.
Vardhan	is	a	part	of	the	tutorials	team	at	raywenderlich.com,	Envato	Tuts,	Heartbeat	by
Fritz,	and	freeCodeCamp.	He	has	also	been	recognized	for	his	dedication	to	social	good.
He	helps	disadvantaged	students	learn	to	code	through	TheOpenCode	Foundation.

He	is	also	active	in	the	open-source	community	and	has	been	personally	recognized	by
GitHub	for	his	contributions.	Vardhan	has	also	developed	several	ingenious	products	to
better	the	lives	of	people	around	the	world.	Whether	it’s	helping	the	local	city	solve	their
chronic	street	light	problem	with	drones,	developing	a	novel	blood	pressure	monitoring
device,	or	creating	a	breakthrough	in	space	medicine,	Vardhan	has	a	penchant	for
turning	his	far-fetched	ideas	into	scientific	realities.	When	he’s	not	coding,	you	can	find
him	producing	and	editing	videos,	working	on	getting	his	private	pilot	license,	or	playing
the	violin.

You	can	reach	him	via	LinkedIn	at	https://www.linkedin.com/in/vardhanagrawal	or
Twitter	at	https://twitter.com/vhanagwal.	He	can	also	be	found	on	his	website,
www.vardhanagrawal.com.

8Mastering Machine Learning with Core ML and Python

https://www.linkedin.com/in/vardhanagrawal
https://twitter.com/vhanagwal
http://www.vardhanagrawal.com

About	the	Xcode	Version
All	source	code	and	projects	are	compatible	with	Xcode	12	and	iOS	14.	Xcode	12	is
required	to	follow	along	with	this	book.	While	macOS	Big	Sur	isn’t	required,	it	is	highly
recommended.	You	can	find	all	appropriate	software	on	the	Mac	App	Store.

Xcode	12	(https://apps.apple.com/us/app/xcode/id497799835)
macOS	Big	Sur	(https://apps.apple.com/us/app/macos-big-sur/id1526878132)

9Mastering Machine Learning with Core ML and Python

https://apps.apple.com/us/app/xcode/id497799835
https://apps.apple.com/us/app/macos-big-sur/id1526878132

Preface
Machine	learning,	now	more	than	ever,	plays	a	pivotal	role	in	almost	everything	we	do	in
our	digital	lives.	Whether	it’s	interacting	with	a	virtual	assistant	like	Siri	or	typing	out	a
message	to	a	friend,	machine	learning	is	the	technology	facilitating	those	actions.	It’s
clear	that	machine	learning	is	here	to	stay,	and	as	such,	it’s	a	vital	skill	to	have	in	the
upcoming	decades.	Since	more	users	will	be	reliant	on	such	technology,	it’s	important	to
dive	in	and	hone	your	machine	learning	skills	to	make	your	apps	more	engaging,	fun,	and
useful	for	your	users!

Core	ML	is	Apple’s	end-to-end	platform	which	allows	for	fast,	powerful,	and	on-device
machine	learning	in	your	iOS	apps.	Core	ML	is	a	Swift-based	framework	which	allows
developers	to	deploy	lightweight	models	and	ship	them	with	their	apps.	As	Core	ML
continually	gets	betslter,	more	developers	will	begin	using	it	because	of	it’s	close-knit
compatibility	with	Apple’s	hardware.

In	this	book,	I’ll	not	only	be	covering	Core	ML	in-depth,	but	I’ll	also	be	teaching	you
about	Turi	Create,	Create	ML,	Keras,	Firebase,	and	Jupyter	Notebooks,	just	to	name	a
few.	These	are	a	few	examples	of	professional	tools	which	are	staples	for	many	machine
learning	experts.	Throughout	this	book,	you’ll	also	become	proficient	with	Python,	the
language	that’s	most	frequently	used	for	machine	learning.	By	the	end	of	the	book,	you
would	have	created	a	handful	of	ready-to-use	apps	such	as	barcode	scanners,	image
classifiers,	and	language	translators.	And,	you	would	have	mastered	the	ins-and-outs	of
Core	ML!

I’ve	been	writing	Swift	since	the	day	it	was	announced,	back	in	2014.	Ever	since,	it	has
become	one	of	my	favorite	languages	to	program	in.	I’ve	also	spent	the	last	few	years
writing	high-quality	technical	tutorials	with	reputed	tutorial	sites	including	Envato	Tuts,
Heartbeat,	freeCodeCamp,	and	raywenderlich.com.	Ranging	from	machine	learning	to
augmented	reality,	my	tutorials	teach	readers	advanced	computer	science	skills,	while
neither	requiring	nor	assuming	any	prior	experience.

10Mastering Machine Learning with Core ML and Python

What	I	believe	is	that	readers	should	never	be	asked	to	paste	in	code	without
understanding	every	line	of	it.	My	unique	approach	lets	readers	understand	the	purpose
of	every	character	they’re	typing,	and	that	same	approach	is	used	in	this	book.	As	a
software	developer,	my	responsibility	isn’t	only	to	code	amazing	things;	that’s	less	than
half	of	the	picture.	I’m	responsible	for	welcoming	newcomers	to	the	world	of	software
development	and	guiding	them	every	step	of	the	way.	Through	writing	this	book,	I’m	able
to	reach	hundreds	of	thousands	of	readers	like	you,	and	by	the	end	of	the	book,	you’ll
know	enough	to	think	of	a	problem	and	dive	straight	into	engineering	the	solution.

Whether	you’re	a	tech	enthusiast	or	a	computer	science	major,	you’re	sure	to	get	value
from	reading	this	book;	I’ll	make	sure	you’ll	understand	what	you’re	doing	and	why
you’re	doing	it	throughout	the	book.	Whether	it’s	building	an	image	classifier	or	an
instrument	sound	recognizer,	my	hope	is	that	you’ll	read	all	of	the	explanations	and
understand	the	code	before	typing	it	out.

Becoming	well-versed	with	machine	learning	has	brought	me	a	lot	of	opportunities	and
has	given	me	the	ability	to	solve	problems	in	my	community	with	code,	which	I	likely
wouldn’t	have	been	able	to	do	otherwise.	My	goal	in	writing	this	book	is	to	reach	people
from	around	the	world	and	give	them	the	same	opportunities	to	use	computer	science	in
a	positive	way.	Whether	you	have	an	app	idea,	or	you	just	want	to	get	your	feet	wet	in
building	a	machine	learning	app,	this	book	will	take	you	from	where	you	currently	are	to
a	master	at	building	machine	learning	apps.

After	nearly	two	years	of	wriggling	out	of	parties,	shunning	movie	theaters,	and	spending
time	indoors,	I’ve	finished	writing	this	book,	which	I	hope	you’ll	enjoy.	Also,	I’d	like	to
thank	you	for	purchasing	this	book!	If	you’re	reading	this	right	now,	you’ve	helped	make
all	of	the	time	and	effort	I’ve	spent	on	this	book	worth	it.	And	finally,	if	you	have	any
questions	or	just	want	to	share	something	cool	you’ve	made,	I’d	be	happy	to	hear	from
you!	Just	Tweet	me	@vhanagwal	or	send	me	a	note	at	vardhanagrawal22@gmail.com.
Have	fun	on	your	machine	learning	adventure,	and	happy	coding!

Sincerely,
Vardhan	K.	Agrawal

11Mastering Machine Learning with Core ML and Python

Who	Should	Read	This	Book
While	this	book	is	beginner-friendly,	it	would	be	helpful	to	have	a	working	understanding
of	Swift.	Since	this	book	is	a	machine	learning	book,	you	don’t	have	to	have	any
experience	with	machine	learning	whatsoever;	however,	if	you	haven’t	coded	in	Swift
before,	I	highly	recommend	picking	up	those	skills	before	reading	this	book.

If	you	don’t	know	Swift	but	know	another	programming	language,	you	could	still	follow
along;	however	many	of	the	Swift-specific	nuances	may	not	make	sense	to	you.	If	this	is
the	case,	reading	Chapter	2	is	a	must,	since	it	covers	more	fundamental	topics	in	iOS
development	than	other	chapters.

Since	this	book	is	based	on	Swift	and	Apple’s	lineup	of	products,	most	chapters	require
that	you’re	running	macOS	Catalina	(10.15)	or	later.	In	addition,	the	image	processing
chapters	require	that	you	use	a	physical	device	to	test	your	apps.	If	you	don’t	have	access
to	such	iOS	devices,	don’t	fret.	You	can	still	create	your	apps;	however,	you	won’t	be	able
to	test	them.

How	to	Use	This	Book
The	chapters	in	this	book	are	approximately	the	same	length,	and	the	best	way	to	read
this	book	is	cover-to-cover.	Unlike	many	other	technical	books	out	there,	I’ll	be	using	a
more	conversational	tone—to	help	you	stay	engaged	and	follow	along.

Some	chapters,	of	course,	are	standalone	chapters;	however	many	of	them	build	on	each
other.	If	you	feel	that	you’re	unable	to	read	all	of	the	chapters,	or	if	you’re	already	familiar
with	a	concept,	feel	free	to	skip	it.	If	you’re	getting	stuck,	you	can	always	revisit	the	ones
you	missed.	Here’s	a	quick	outline	of	what	you’ll	learn:

Chapter	1	teaches	you	about	machine	learning	from	a	birds-eye	view.	You’ll	explore
its	applications,	different	model	types,	and	machine	learning	APIs.
Chapter	2	brings	in	the	hands-on	approach	that	this	book	is	centered	around	by
taking	you	through	building	your	own	image	classification	app.

12Mastering Machine Learning with Core ML and Python

Chapter	3	delves	straight	into	Python	and	introduces	you	to	Jupyter	Notebooks	to
prepare	you	for	the	upcoming	Turi	Create	chapters.
Chapter	4	teaches	you	to	build	an	image	classifier	in	two	ways:	through	Turi	Create
and	Create	ML.
Chapter	5	switches	gears	and	teaches	you	about	natural	language	processing
theoretically	and	then	how	to	build	a	text	classification	model.
Chapter	6	will	introduce	yet	another	application	of	machine	learning:	sound
classification.	You’ll	first	learn	about	it	and	then	build	your	own	sound	classifier.
Chapter	7	brings	a	fresh	perspective	to	mobile	machine	learning	by	guiding	you
through	building	a	couple	of	apps	using	a	cloud-based	API	called	Firebase.
Chapter	8	introduces	a	more	advanced	topic:	updatable	models.	This	chapter	will
later	guide	you	line-by-line	through	an	open-source	Jupyter	Notebook.
Chapter	9	introduces	action	classification	and	style	transfer,	two	emerging
technologies	which	have	the	potential	to	revolutionize	machine	learning's	role	in
various	fields	from	gaming	to	art.
Chapter	10	reviews	and	reflects	on	what	you’ve	learned	throughout	this	book	and
provides	tips	and	tricks	to	supercharge	your	machine	learning	workflow.

If	you’re	looking	to	only	learn	a	particular	skill,	first	check	what	that	skill	requires.	For
example,	if	you’re	looking	to	learn	a	skill	which	requires	an	understanding	of	Python,	it
would	be	helpful	to	read	Chapter	3	beforehand.	Similarly,	if	that	chapter	takes	you
though	building	an	app,	it	would	be	best	to	read	Chapter	2	before	reading	that	chapter.

If	you	just	want	to	learn	the	basics,	then	you	can	stop	reading	at	Chapter	6,	but	if	you
want	to	hone	in	on	more	advanced	skills,	then	it’s	best	to	stick	around	until	the	end.
Again,	though,	the	recommended	method	is	to	read	the	entire	book	cover-to-cover	and
then	go	back	to	the	chapters	which	you	need	to	review.

Conventions	and	Organization
While	writing	this	book,	I’ve	used	the	following	conventions	to	make	the	chapters	both
engaging	to	read	and	easier	to	skim:

Bolded	Text	is	used	for:

13Mastering Machine Learning with Core ML and Python

important	keywords
new	terminology
file	and	extension	names

	Inline	Code		is	used	for:

single	lines	of	code
method	and	function	names
classes	and	structs
filenames,	on	occasion

Italics	is	used	for:

providing	emphasis
avoiding	pitfalls
other	non-technical	uses

Level	4	headers	are	for:

providing	specific	details	about	a	topic
outlining	steps	during	hands-on	lessons

So,	if	you’re	ever	skimming	back	through	a	chapter,	keep	a	lookout	for	these	different
types	of	stylized	text.	They’ll	help	you	get	to	the	information	you	need	much	faster.

Where	to	Download	the	Projects
This	book	comes	with	a	lot	of	hands-on	projects	to	help	you	understand	the	machine
learning	and	the	integration	with	iOS	apps.	All	the	starter	and	complete	projects	are
downloadable	for	all	chapters.	You	can	click	the	link	below	to	download	it:

https://link.appcoda.com/mastering-ml-projects

I	encourage	you	download	the	projects	first,	so	you	can	follow	the	rest	of	the	content
easily.

14Mastering Machine Learning with Core ML and Python

https://link.appcoda.com/mastering-ml-projects

Chapter	1
Machine	Learning	at	a	Glance

Welcome	to	the	first	chapter	of	this	book!	I’m	certain	that	you	will	learn	a	lot	from	this
book,	and	by	the	end,	you’ll	be	able	to	create	your	own	computer	vision	models,	natural
language	models,	and	sound	processing	models	to	contribute	to	the	ever-growing
machine	learning	community.	I’m	excited	to	share	the	latest	and	greatest	in	machine
learning	technology	with	you,	and	I	hope	you	enjoy	it!

In	the	first	chapter,	you’ll	learn	about	how	machine	learning	affects	you	in	your	day-to-
day	business	and	how	you	interact	with	it	as	you	go	about	your	life.	You’ll	also	learn
about	cutting-edge	applications	of	the	technology.	Next,	you’ll	learn	about	various	types
of	algorithms,	including	Linear	Regression	models,	K-Nearest	Neighbor	models,	and
Decision	Trees.

15Mastering Machine Learning with Core ML and Python

Last,	you’ll	explore	various	tools	and	technologies	which	will	supercharge	your	machine
learning	workflows	and	allow	you	to	train	robust,	powerful	models	for	your	projects.
Some	of	them	are	beginner-friendly,	while	some	are	more	advanced.	Either	way,	this
chapter	is	packed	with	useful	information.	I	suggest	returning	to	it	after	you’ve	read	some
of	the	other	chapters	to	reabsorb	what	may	not	have	made	sense	at	the	beginning.
Onwards!

1-1	What	is	Machine	Learning?
Before	we	dive	into	learning	about	different	machine	learning	algorithms	and	minor
implementation	details,	let's	learn	about	what	machine	learning	actually	is	and	grasp	a
better	understanding	of	its	function	in	the	society.	Machine	learning,	in	the	simplest
terms,	is	the	analysis	of	statistics	to	help	computers	make	decisions	base	on	repeatable
characteristics	found	in	the	data.

A	computer	identifies	these	patterns	to	form	an	abstract	understanding	of	them,	called	a
model,	and	analyze	new	data	for	the	same	patterns.	In	other	words,	it’s	when	a	computer
performs	actions	without	specifically	being	told	to	do	so	—	it’s	given	a	set	of	data	and	an
expected	outcome	for	it	to	infer	the	path	to	getting	there.

Machine	Learning's	Role

Machine	learning	is	better	now	than	ever,	and	is	constantly	evolving.	Many	of	the	things
we	use	on	a	day-to-day	basis	rely	on	machine	learning	without	even	knowing	it!

Whether	it's	having	your	phone	predict	what	you're	going	to	type	next,	summoning	Siri,
or	seeing	relevant	ads	in	your	Facebook	feed,	machine	learning	is	all	around	us.	And	now
is	a	great	time	to	learn	how	to	use	it	to	enhance	your	current	apps	or	make	robust	new
apps.

16Mastering Machine Learning with Core ML and Python

Medicine

In	the	medical	field,	machine	learning	is	being	used	to	recommend	lifestyle	changes,
analyze	readings,	and	even	diagnose	diseases	with	high	accuracy.	Already,	many	amazing
things	are	possible	using	the	power	of	machine	learning,	for	example:

Irregular	Heartbeats	can	be	recognized	while	wearing	your	Apple	Watch	on	a
day-to-day	basis.	Your	smartwatch	can	alert	you	when	it,	based	on	a	model,	thinks
that	your	heart	isn't	functioning	as	it	should.
Disease	Risk-Factor	prediction	can	be	done	using	prior	patient	data	with
characteristics	such	as	age,	gender,	weight,	and	more.

Finance

The	field	of	finance	is	all	about	numbers	and	analytics,	isn't	it?	Machine	learning	can	play
a	massive	role	in	improving	the	way	this	field	works.	Using	RNNs,	a	type	of	model	we'll
learn	about	later	in	the	book,	analysts	can	make	a	lot	of	meaningful	predictions!

Stock	Patterns	can	be	predicted	using	a	model	trained	with	several	years	of	past
market	data.	As	unreal	as	it	may	sound,	this	can	be	done	quite	accurately	using	the
right	machine	learning	techniques.
Loans	can	be	granted	based	on	the	calculated	risk	for	financial	institutions,	based
on	characteristics	of	the	customer.	This	can	minimize	risk	and	maximize	profit	for
institutions	who	grant	loans.

Advertising

Nowadays,	advertising	is	a	profitable	field.	This	is	partially	due	to	the	fact	that	machine
learning	can	match	those	who	supply	products	and	services	with	those	who	need	them.

Social	Media	Ads	take	user	data	about	the	pages	they	follow	and	the	posts	they
like	to	make	a	machine	learning	model	to	predict	the	types	of	products	and	services
they	would	be	most	interested	in.
Pixels	are	bits	of	code	that	companies	install	on	their	webpages	to	track	data	about

17Mastering Machine Learning with Core ML and Python

customers	to	retarget	them	later	and	make	them	more	likely	to	buy	while	minimizing
costs.

Clearly,	machine	learning	has	a	wide	variety	of	applications	in	our	daily	life,	and	there	are
many	opportunities	to	innovate	different	fields.	Machine	learning	and	artificial
intelligence	aren't	going	anywhere	soon,	so	let's	continue	the	journey	to	learn	machine
learning.	By	the	end	of	the	book,	you'll	be	a	pro!

Methods	of	Machine	Learning

Just	as	there	are	many	applications	of	machine	learning,	there	are	many	ways	to	train
models.	There	are	dozens	of	ways	to	represent	them,	and	we'll	learn	about	the	specific
different	machine	learning	algorithms	later	in	the	book.	They	can	be	categorized	into
three	main	methods:	supervised	learning,	unsupervised	learning,	and	reinforcement
learning.

Supervised	Learning

Supervised	learning,	as	the	name	suggests,	means	the	model	is	monitored	to	ensure
accuracy	during	training.	When	you	learn	something	in	a	classroom,	you	are	supervised
by	an	instructor	to	make	sure	what	you're	learning	is	right	and	to	correct	any	mistakes
you	may	have	made.

Similarly,	during	supervised	learning,	all	data	given	to	the	model	has	been	pre-labeled
manually	by	a	human	to	"give"	the	model	the	correct	answer.	For	example,	if	you	wanted
to	make	a	model	to	identify	various	breeds	of	dogs,	you	would	give	the	model	a	set	of
images	which	are	already	tagged	with	labels	such	as	"Labrador	Retriever"	or	"Australian
Cobberdog"	to	ensure	its	accuracy.	However,	some	of	the	labeled	images	are	not	shown	to
the	model	using	training.	These	images	will	be	used	to	test	the	model	later	on.	Without
exposing	the	labels	of	these	images,	the	model	will	try	classifying	them,	and	its	accuracy
can	be	easily	calculated.

Supervised	learning	is	useful	for	classifying	data,	as	well	as	predicting	a	specific	output
based	on	one	or	more	inputs.	Sometimes	though,	a	large	enough	dataset	of	pre-labeled
images	may	not	be	available,	and	that's	where	the	other	learning	types	come	in.

18Mastering Machine Learning with Core ML and Python

Unsupervised	Learning

From	what	you've	learned	so	far,	you	may	have	noticed	that	machine	learning	boils	down
to	one	thing:	patterns.	Machine	learning	models	are	amazing	at	finding	patterns,	and	can
sometimes	even	perform	better	than	a	human!	In	some	cases,	the	correlation	in	the	data
that	you're	presenting	to	the	model	may	be	too	complex	for	you	to	pre-determine,	so
there	is	no	way	of	providing	pre-labeled	data	to	the	model.	In	this	case,	it's	up	to	the
model	to	find	relationships	between	each	data	point	provided.

The	model	can	tell	you	where	the	patterns	lie	and	also	guide	you	to	different
arrangements	of	images,	but	it	cannot	tell	you	what	the	patterns	actually	mean;	that
analysis	is	left	up	to	you,	the	human.

Back	to	the	dog	breed	example,	if	you	didn't	have	the	expertise	to	accurately	name	each
dog	breed,	the	neural	network	could	find	associations	between	the	dog's	tail	length,	coat
color,	and	muzzle	size.	This,	again,	leaves	the	analysis	to	you,	but	it	does	find	meaningful
patterns	which	you	can	use	to	make	something	useful.

There	are	a	few	different	ways	an	unsupervised	model	can	use	to	group,	or	organize	the
given	data,	two	of	which	include:

1.	 Using	unexpected	patterns	to	eliminate	data	in	a	dataset.
2.	 Using	characteristics	of	the	data	to	group	data	together.

There	are,	of	course,	several	other	ways	as	well,	but	these	are	the	most	commonly	used,
and	they	help	us	make	sense	of	the	unsupervised	learning	model.	However,	there	is	a
problem	with	this	kind	of	model,	that	is	you	can't	be	sure	whether	it's	"right"	or	"wrong"
because	there	is	no	defined	outcome.	This	can	make	it	difficult	to	calculate	its	accuracy	as
compared	to	the	supervised	learning	model.

Reinforcement	Learning

You	can	think	of	a	reinforcement	learning	model	like	a	child;	it	acts	based	on	a	reward	or
incentive	system,	making	it	constantly	correct	its	own	mistakes	when	being	punished	and
learn	good	behaviors	when	being	rewarded.	Unlike	supervised	learning	and	unsupervised

19Mastering Machine Learning with Core ML and Python

learning	models,	a	reinforcement	learning	model	takes	a	goal,	and	uses	incentive	to	find
the	best	path	to	that	goal.

Interestingly,	this	model	is	able	to	correlate	between	current	actions	and	future
outcomes,	similar	to	how	a	human	thinks.	By	using	this	incentive	system,	the
reinforcement	model	is	able	to	improve	its	performance	every	time.

The	more	times	that	it	runs,	the	more	accurate	the	model	gets;	closer	to	the	optimal	path
to	the	end	goal!	This	is	used	for	varios	fields	such	as	navigating	roads	in	driverless	cars,
and	for	other	applications	such	as	competing	in	video	games	against	even	the	best
players.

As	you	can	see,	machine	learning	has	many	applications,	and	comes	in	many	different
forms.	As	you	continue	through	this	book,	you'll	learn	about	machine	learning	in	depth
and	how	to	apply	it	to	your	daily	life.

1-2	Types	of	Algorithms
In	the	previous	section,	you	learned	about	machine	learning's	role	in	society	as	well	as
three	types	of	machine	learning	methods:	supervised	learning,	unsupervised	learning,
and	reinforcement	learning.

Since	there	are	so	many	different	use	cases	for	machine	learning,	there	are	many
different	algorithms	that	suit	each	of	these	use	cases.	In	this	section,	we'll	go	over	some	of
the	most	common	types	of	machine	learning	algorithms	and	look	at	some	examples
where	they	might	be	used.

Linear	Regression

Linear	regression	models	are	the	most	well-known	and	frequently	used	types	of	machine
learning	models.	You	might	remember	hearing	the	name	in	your	statistics	class	during
high	school	or	college.	It	makes	sense;	machine	learning	is	all	about	statistics	anyway,
isn't	it?	Think	of	a	linear	equation:

y = mx+ b

20Mastering Machine Learning with Core ML and Python

You	realize	that	there	is	exactly	one	y-value	for	every	x-value.	These	variables	are	also
commonly	known	as	dependent	variables	and	explanatory	variables.	Linear
regression	aims	to	relate	these	two	variables	using	a	line	of	best	fit	to	make	meaning	of
the	data.

Regression	Equation

Though	the	line	can	also	be	modeled	using	the	slope-intercept	form,	the	following
equation	is	also	used	in	the	field,	and	it's	commonly	known	as	the	regression
equation:

y = β + β x

It's	not	much	different—it	essentially	means	the	same	thing,	but	it	has	a	slightly	different
style	of	notation.	In	this	book,	we	won't	be	exploring	hyper-plane	representations	of
linear	regression	models,	but	this	form	of	the	equation	can	be	modified	to	accept	multiple
inputs	—	that	is	—	more	than	one	x-value.

ε	is	the	epsilon	or	residual	value,	which	represents	the	margin	of	error	in	the	data.	The
smaller	this	value	is,	the	closer	the	data	points	are	to	the	line	of	best	fit.

If	you	want	to	take	into	consideration	this	value	in	the	equation,	you	can	simply	add	it	to
the	end	of	the	equation	as	follows:

y = β + β x+ ε

This	is,	in	actuality,	a	more	complete	version	of	the	above	equation.	Here's	a	quick
summary	of	what	each	of	these	terms	represent:

β 	is	y-intercept	of	the	data	set.

β 	is	the	slope	of	the	line	of	best	fit.
x	is	the	explanatory	variable	(independent).
ε	is	the	error	value.

0 1

0 1

0

1

21Mastering Machine Learning with Core ML and Python

Manually	Calculating	Coefficients

If	we	go	back	to	our	simpler	equation,	the	slope-intercept	form,	we	can	learn	how	to
manually	calculate	each	coefficient	in	the	equation	to	create	our	own	equation.	If	you	can
do	it	by	hand,	you	will	know	you	can	program	your	computer	to	do	it!	As	a	reminder,	the
equation	is:

y = mx+ b

In	order	to	find	the	equation,	you'll	need	a	dataset.	The	table	below	has	a	small,
manageable	dataset	for	you	to	follow	along	with.	Of	course,	you	can	use	your	own
dataset,	and	things	will	work	the	same.

Subject Age	(x) Glucose xy x y

1 43 99 4257 1849 9801

2 21 65 1365 441 4225

3 25 79 1975 625 6241

Figure	1-1:	Linear	Regression	Data	Table

You'll	see	that	age	is	the	explanatory	variable,	and	glucose	is	the	dependent

variable.	On	the	right,	you'll	notice	that	there	are	some	pre-calculated	values	for	xy,	x ,

and	y .	In	your	own	data,	you	may	need	to	calculate	these	yourself,	but	they're	provided
here	just	to	spare	you	the	arithmetic.

The	equations	below	represent	the	slope	value	and	the	y-intercept,	and	to	some,	they
may	look	intimidating.

m =

b =

2 2

2

2

n(x)−(x)∑ 2 ∑ 2
n(xy)−(x)(y)∑ ∑ ∑

n(x)−(x)∑ 2 ∑ 2
(y)(y)−(x)(xy)∑ ∑ 2 ∑ ∑

22Mastering Machine Learning with Core ML and Python

Not	to	worry,	though,	we'll	dissect	these	equations	so	that	they	make	sense,	regardless	of
your	mathematical	background.	The	symbol	 	or	"sigma"	usually	means	the	sum	of
something.	In	this	case,	you'll	see	 	precede	the	terms	in	the	table	above	insert	figure
number.	This	means	you'll	need	to	add	up	all	of	the	values	in	that	given	column,	and	plug
the	values	back	into	the	equation.

In	short,	if	you	see	 xy,	you	need	to	add	together	4257 + 1365 + 1975	and	put	the	value

into	the	equation.	Similarly,	if	you	see	 x ,	you	need	to	add	1849 + 441 + 625.

These	equations	should	help	you	gain	a	better	understanding	of	linear	regression	models.
While	they're	useful	for	a	variety	of	cases,	they	won't	work	for	all	machine	learning
applications.

Decision	Trees

To	understand	decision	trees,	you	can	think	about	a	tree	in	nature.	It	starts	with	a	trunk,
and	then	begins	to	branch	off.	Each	branch	has	its	own	set	of	branches,	which	has
another	set	and	so	on.

Usually,	a	decision	tree	is	visualized	as,	well…	a	tree!	Unlike	a	tree,	the	root	of	the
decision	tree	is	drawn	at	the	top,	and	it	branches	downwards.	This	visual	representation
can	be	very	helpful	in	making	sense	of	an	otherwise	complicated	machine	learning
algorithm.	Each	branch	split	represents	a	question,	condition,	or	decision	to	be	made.

Decision	trees	are	a	supervised	machine	learning	algorithm,	which	you	learned	about
earlier	in	the	previous	session.	The	two	main	types	of	problems	that	can	be	solved	with
this	approach	are	regression	problems	and	classification	problems.

Benefits	of	Decision	Trees

While	overfitting	and	underfitting	can	cause	your	model	to	malfunction,	these	issues
shouldn't	stop	you	from	using	decision	trees	—	they're	useful	in	a	variety	of	settings.

Handling	Non-Linear	Relationships

∑

∑

∑

∑ 2

23Mastering Machine Learning with Core ML and Python

Many	of	the	other	machine	learning	models	require	the	presented	data	has	a	linear
relationship;	decision	trees,	however,	do	not.	This	is	one	of	the	areas	where	decision	trees
outperform	other	types	of	models.

You	can	use	a	decision	tree	to	predict	customer	behavior,	and	other	obscurely	related
datasets	—	you	wouldn't	attempt	to	plug	the	seemingly	random	actions	of	your	customers
into	a	formula.	With	a	decision	tree,	you	can	see	what	variables	are	affecting	your
customers	to	make	choices.

Datasets	with	Many	Outliers

Since	most	machine	learning	models	rely	on	some	sort	of	"averaging"	system,	they	tend
to	be	overly	sensitive	to	outliers.	For	this	reason,	rawly	collected	data	needs	to	be	filtered
and	organized	before	it	can	be	used	to	train	these	sorts	of	models.

With	a	decision	tree,	you	don't	need	to	worry	about	processing	your	data	ahead	of	time.
For	example,	if	you	were	building	a	stock	prediction	model,	you	would	have	several
outliers	when	the	stock	markets	changed	due	to	interest	rates,	political	events,	or	other
unrelated	variables.	These	outliers	would	affect	other	models,	but	decision	trees	would
remain	ambivalent	to	these	special	cases.	Clearly,	these	types	of	models	have	a	lot	of
benefits,	but	they	also	come	with	their	own	drawbacks,	too.

Disadvantages	of	Decision	Trees

As	you	saw	above,	decision	trees	can	be	very	versatile	and	can	help	you	when	other	types
of	models	begin	to	find	correlations	that	don’t	actually	exist.	However,	outside	these
cases,	decision	trees	have	their	own	drawbacks.	They	have	two	major	flaws,	which	can
end	up	making	them	a	poor	choice	in	your	application.	These	issues	are	called
overfitting	and	underfitting.	When	decision	trees	work,	they	perform	really	well,	but
when	they	don't,	their	problems	can	adversely	affect	your	results.	Thus,	it	is	important	to
explore	their	issues.

24Mastering Machine Learning with Core ML and Python

Overfitting

A	more	common	issue	in	decision	trees	is	overfitting.	Overfitting	occurs	when	the	tree
isn't	generalized	enough,	and	it's	too	specific	to	the	training	dataset.	It	may	depend	on
characteristics	not	found	in	other	data	given	to	the	model.	If	a	tree	is	overfitted,	the
"noise"	or	unintentional	variation	in	the	data	is	considered,	expecting	each	new	data
input	to	have	the	exact	same	types	of	variation.

For	example,	if	you	had	a	dataset	of	fruit	pictures,	you	could	have	a	picture	of	two	apples,
one	banana,	and	three	watermelons.	An	overfitted	model	may	notice	a	tree	in	the
background	in	one	of	the	three	watermelon	pictures	and	classify	the	two	watermelons
differently	from	the	one	with	the	tree	in	it.	This	causes	unwanted	combinations,	making
the	model	less	accurate.

Underfitting

The	less	common	issue	is	underfitting.	If	a	model	is	underfitted,	it	is	too	general	and
may	not	be	specific	enough	for	it	to	be	completely	accurate.	It	may	funnel	two	different
cases	into	the	same	branch,	resulting	in	a	completely	distorted	result.

Going	back	to	the	fruit	pictures	example,	if	you	had	an	underfitted	model,	the	model
could	notice	that	the	apples	are	both	round	and	red,	and	for	future	images,	it	may	assume
that	any	fruit	which	is	round	and	red	is	an	apple,	which,	as	you	know,	isn't	true.	If	you
later	gave	it	a	cherry,	it	may	misclassify	it	as	an	apple,	rendering	the	model	useless.

Support	Vector	Machines

Support	Vector	Machines,	often	called	SVMs,	are	also	commonly	used	alongside	or
instead	of	linear	regression	models	and	decision	trees.	A	support	vector	machine,	at	a
basic	level,	is	a	machine	learning	model	which	separates	values	into	their	appropriate
labels	based	on	a	function	it	determines.

25Mastering Machine Learning with Core ML and Python

Trees	Versus	Bushes

As	an	example,	let’s	take	the	problem	of	classifying	whether	something	is	a	tree	or	a	bush.
Most	of	the	time,	you	wouldn’t	have	any	trouble	finding	the	differences	on	your	own.	But,
imagine	that	you’re	walking	through	a	hiking	trail	one	day,	and	you	see	a	tree	which	is
shaped	like	a	bush;	what	tells	you	it’s	a	tree	and	not	a	bush?	This	is	where	support	vector
machines	shine:	they	take	the	data	points	from	each	“class”	which	look	the	most	similar
and	then	draw	a	“border	wall”	between	them.	Any	future	images	are	classified	based	on
which	side	of	the	“wall”	they	fall	on.

Support	Vectors

So,	what	is	a	support	vector?	As	complicated	as	the	name	may	sound,	a	support	vector	is
simply	one	or	more	of	the	data	points	which	are	closest	to	the	other	classes.	In	other
words,	these	are	the	trees	which	look	like	bushes	or	the	apples	which	look	like	oranges.	A
Support	Vector	Machine	uses	these	support	vectors	to	draw	an	accurate	line,	plane,	or
sphere	between	the	data	types	that	the	model	is	being	asked	to	distinguish	between.

1D,	2D,	or	3D

As	you	may	have	guessed,	the	“border	wall”	can	be	drawn	in	any	number	of	dimensions;
it	could	be	a	sphere,	a	parabola,	a	curve,	or	simply	a	straight	line.	Furthermore,	the
hyperplane	(technical	term	for	“border	wall”),	can	be	shaped	in	any	way.	For	example,	a
linear	SVM	would	use	a	straight	line,	while	a	polynomial	SVM	might	use	a	parabolic
curve	to	distinguish	between	groups	of	data.

K-Nearest	Neighbors

Aside	from	the	fact	that	this	type	of	model	is	listed	last,	K-Nearest	Neighbor	machine
learning	models	are	the	most	basic	ones.	In	fact,	it’s	so	simple	that	many	data	scientists
don’t	even	consider	it	a	machine	learning	algorithm.

Delayed	Learning

26Mastering Machine Learning with Core ML and Python

K-Nearest	Neighbor	algorithms,	or	KNN	for	short,	don’t	learn	on	the	data	you	provide
them	for	training.	Instead,	they	compare	the	input	data	(from	a	user,	perhaps)	directly	to
the	“training”	data.	Whichever	example	is	closest	to	the	example	image	gets	chosen	as	the
category	or	classification	label.	This	method	of	“waiting”	until	classification	stage	to
actually	learn	anything	is	known	as	delayed	learning.

Selecting	Neighbors

Now,	you	might	wonder	how	a	KNN	model	exactly	selects	its	neighbors.	The	constant,	k,
stands	for	the	number	of	neighbors	that	the	K-Nearest	Neighbors	algorithm	would
compare	the	target	data	with.	For	example,	if	k=3	in	an	instance	of	a	KNN	model,	an
image	of	a	fruit	would	be	compared	with	three	of	the	neighbors	around	it.	If	two	or	more
of	the	neighbors	are	apples,	it	would	determine	that	the	fruit	is	an	apple.

1-3	Machine	Learning	APIs
Now	that	you're	familiar	with	the	three	types	of	machine	learning	methods	and	their
variety	of	algorithms	for	various	use	cases,	including	linear	regression	models,	decision
trees,	and	neural	networks.

In	the	first	half	of	this	section,	you'll	learn	about	different	APIs	you	can	use	to	apply	your
new	conceptual	understanding	of	machine	learning.	These	range	from	easy-to-use
libraries	for	implementing	machine	learning	in	your	apps,	to	robust,	enterprise-level
tools	of	the	trade.	Later	in	the	section,	you'll	learn	about	some	tools	you	can	use	to	train
models,	such	as	TensorFlow,	Caffe,	and	Turi	Create.

Implementation	Tools

Since	several	pre-trained	models	already	exist,	let's	first	focus	on	the	different
implementation	tools	you	can	use	if	you	already	have	a	model	on	hand.	Of	course,
training	your	own	models	gives	you	a	lot	of	leverage,	but	it	can	be	time	consuming,
especially	if	you	want	to	get	started	with	machine	learning	right	away!

27Mastering Machine Learning with Core ML and Python

Core	ML

If	you're	reading	this	book,	you're	likely	an	Apple	Developer,	meaning	you	develop	apps
for	iOS,	macOS,	watchOS,	or	tvOS.	Core	ML	is	an	Apple's	machine	learning	framework,
which	allows	you	to	integrate	machine	learning	capabilities	into	your	app.	It	is	also	used
across	their	own	products	and	services,	to	enable	functionalities	such	as	Siri,	QuickType,
and	more.	For	developers,	Core	ML	offers	powerful	tools	for	vision	and	natural	language
processing,	but	its	use	is	currently	limited	to	Apple's	own	platforms.

Benefits

Core	ML	operates	on	local	processing	as	opposed	to	cloud	processing,	which	has	its	own
set	of	benefits	and	limitations.	However,	the	features	offered	by	this	framework	are	best
handled	on-device.	Since	network	calls	aren't	necessary,	the	user	doesn't	need	an	internet
connection	for	your	app	to	work.	In	addition	to	this,	requests	can	be	handled	more
quickly	and	securely	than	if	a	cloud	service	was	involved.	Lastly,	many	of	Apple's	latest
devices	have	GPUs	dedicated	for	machine	learning	tasks,	which	Core	ML	allows	you	to
access	directly.	This	significantly	boosts	performance	and	reduces	the	time	it	takes	for
machine	learning	requests	to	be	processed.

Limitations

When	programs	are	stored	in	the	cloud,	they	don't	require	storage	on	the	device.	This
may	pose	an	issue	when	you	have	large	models,	and	make	complex	requests	to	Core	ML;
your	app	binary	may	be	too	big	for	some	users	to	install.	Keep	in	mind,	however,	that
Core	ML	is	still	the	best	for	all	other	cases,	especially	due	to	its	superior	integration	with
Apple	devices.

Firebase	ML	Kit

For	those	looking	for	a	more	cross-platform	tool,	Firebase	ML	Kit	is	definitely	the	way	to
go!	In	fact,	I’ll	be	covering	it	in	one	of	the	chapters	towards	the	end	of	this	book.	Firebase
ML	is	also	great	if	you’re	interested	in	cloud-based	machine	learning;	when	your	model
sizes	might	be	too	large	to	store	locally.

28Mastering Machine Learning with Core ML and Python

Benefits

The	ability	to	use	cloud	storage	for	your	models	and	API	calls	is	great;	especially	since
Core	ML	cannot	do	that	—	yet!	Additionally,	Firebase	has	created	tons	of	templates	for
you	to	use.	They	work	great	with	basic	functions	ranging	from	barcode	scanning	to	image
classification	with	most	of	the	work	already	done	for	you.	Finally,	Firebase	is	owned	by
Google,	so	you	know	that	they’re	likely	to	be	reliable	and	stay	up-and-running	when	you
need	them.

Limitations

A	major	limitation	of	Firebase	ML	Kit	is	that	it	isn’t	made	by	Apple.	While	Apple	creates
excellent	hardware,	they	often	only	optimize	it	for	their	own	softwares.	For	example,
Firebase	would	not	be	allowed	to	use	the	dedicated	machine	learning	chips	on	the	latest
iPhones,	which	will	likely	limit	its	performance.	Further,	if	you	exceed	the	free	limits,
Firebase	will	begin	to	charge	you;	the	price	is	significantly	lower	than	other	cloud-based
machine	learning	services,	however,	it	is	not	free	like	Core	ML.

IBM	Watson

If	you’re	looking	for	more	cutting-edge	technology,	IBM	Watson	is	a	great	candidate.
Core	ML	and	Watson	integrate	very	well	together,	and	Watson	gives	you	more	flexibility
to	improve	your	models	than	Core	ML,	including	models	which	improve	over	time	(not
possible	in	Core	ML).

Benefits

IBM’s	Watson	is	definitely	ahead	of	many	of	the	other	available	tools.	The	company
spends	a	significant	portion	of	their	funds	for	research	and	development	of	Watson.	It
also	includes	the	ability	to	customize	a	fully-functional	chatbot	for	tasks	such	as	patient
management	and	customer	service.

29Mastering Machine Learning with Core ML and Python

Limitations

Watson	is	more	tedious	to	setup	and	install,	and	it	may	be	more	expensive	if	you	choose
to	use	it	in	the	long	run.	Since	it’s	primarily	business-oriented,	Watson’s	services	usually
take	more	expertise	in	machine	learning	to	use	and/or	install;	however,	it	isn’t
impossible.	It	simply	takes	more	time,	dedication,	and	patience.

Training	Tools

At	this	point,	you	probably	have	no	idea	on	how	to	train	a	model;	and	that’s	why	you	have
this	book!	The	following	section	has	a	couple	of	the	most	popular	tools	for	training	a
model,	and	I	recommend	returning	to	this	section	after	reading	the	chapters	on	training
your	own	models.	It’ll	make	more	sense	to	you	later.

TensorFlow

Like	Firebase,	TensorFlow	is	owned	and	operated	by	Google.	It	is	a	widely	used	open
source	platform	for	data	science	and	machine	learning	applications,	including	certain
math	operations	and	model	training.	While	it	had	been	previously	used	as	primarily	a
training	tool,	it	has	expanded	over	the	past	few	years	to	provide	other	services.

Compilation	Time

TensorFlow	is	known	for	its	great	compilation	times	and	comparatively	small	file	sizes.
In	fact,	it	can	even	run	smoothly	on	low-performance	devices	such	as	Raspberry	Pi,
Arduino	boards,	and	on	the	cloud.	If	you	have	limited	computing	power	on	your
computer,	or	if	you	need	to	develop	energy	efficient	devices,	TensorFlow	is	a	great
option.

Visualization

One	of	the	major	features	of	TensorFlow	is	its	advanced	visualization	tools.	It’s	known	for
generating	beautiful	and	informative	graphs,	charts,	and	diagrams.	In	fact,	it	has	its	own
online	Neural	Network	Playground	(https://playground.tensorflow.org)	where	you	can

30Mastering Machine Learning with Core ML and Python

https://playground.tensorflow.org

experiment	with	the	values	for	different	“data”	and	“layers”	to	see	how	your	imitation
model	would	respond.	So,	if	you	need	to	present	your	work	to	employers,	clients,	or
colleagues,	TensorFlow	is	the	tool	for	the	job.

Stability	and	Scalability

Since	it’s	operated	by	Google,	TensorFlow	is	known	to	be	reliable.	It	uses	state-of-the	art
technology	and	is	constantly	being	updated.	One	of	the	other	benefits	of	TensorFlow	is
that	it	allows	you	to	scale	your	models	if	needed.	For	example,	if	you’re	selling	software
which	is	gaining	traction,	you	can	use	your	existing	TensorFlow	models	and	workflow.

Caffe

Caffe,	similar	to	TensorFlow,	is	a	machine	learning	framework	and	was	developed	at	the
University	of	California,	Berkeley.	If	you	don’t	have	much	prior	experience	with	machine
learning,	Caffe	is	not	the	best	option	to	get	started	with.	However,	it’s	an	excellent	tool
for	professionals	or	academicians	who	specialize	in	machine	learning.

Modular	Code

Like	some	of	the	other	frameworks	listed,	Caffe	is	open-source,	and	its	code	is	known	to
be	some	of	the	best	when	it	comes	to	mutability	and	ease	of	customization.	Since	Caffe	is
geared	towards	professionals,	it	allows	for	deeper,	source-code-level	configurations
which	may	be	inconvenient	with	other	platforms.	In	addition,	Caffe	integrates	well	with
Core	ML,	and	there	are	tools	readily	available	to	easily	export	your	Caffe	models	as	Core
ML	models.

Image	Processing

In	addition	to	being	a	pro-tool,	Caffe	focuses	on	one	aspect	of	machine	learning:	image
processing	with	convolutional	neural	networks.	In	fact,	it	isn’t	particularly	good	with
natural	language	processing	and	other	types	of	machine	learning	applications.	So	if	you
choose	to	use	it,	do	so	for	CNNs	specifically.	Berkeley’s	Artificial	Intelligence	lab	has
worked	extensively	in	this	area,	and	their	expertise	reflects	in	the	work	they’ve	done	on
Caffe.

31Mastering Machine Learning with Core ML and Python

Community

Caffe	is	undoubtedly	a	popular	tool	among	data	scientists.	Aside	from	the	power	and
performance	it	offers,	Caffe	also	has	a	large	community	of	individuals	who’ve	shared
their	open-source	Caffe	projects.	This	is	especially	helpful	for	beginners,	since	it	helps
them	get	an	idea	on	where	to	start.	When	you’re	starting	out	with	this	tool,	consider
taking	advantage	of	the	openly	available	projects	out	there.

32Mastering Machine Learning with Core ML and Python

Turi	Create

Turi,	just	recently,	was	an	early-stage	artificial	intelligence	startup	which	was	bought	by
Apple.	Since	then,	Apple	has	developed	it	extensively	as	an	easy-to-use,	Python-based
machine	learning	tool.	In	addition,	it	has	excellent	support	for	Core	ML,	including	the
ability	to	export	models	directly	as	Core	ML	models.	Turi	Create	is	excellent	for	both
beginners	and	more	advanced	data	scientists	because	it’s	both	easy-to-learn	and
powerful.	You’ll	learn	how	to	use	it	in	later	chapters.

Experimentation

Because	of	its	easy	task-based	syntax,	Turi	Create	allows	you	to	quickly	experiment	with	a
wide	range	of	machine	learning	models.	With	a	few	lines	of	Python,	you	can	be	up	and
running	with	a	fully-functional	machine	learning	model	to	see	which	algorithm,
architecture,	and	approach	works	best	for	your	project	before	diving	head-first	into
something	you	don’t	know	will	work.

Optimization

Since	its	owned	by	Apple,	Turi	Create	shares	some	of	the	technologies	which	allow	Create
ML	to	quickly	train	relatively	large	datasets	on	your	computer.	By	this	token,	you	can
start	out	with	a	small,	experimental	dataset	and	quickly	move	to	a	larger	model	without
having	to	change	your	underlying	code.	Also,	with	macOS’s	eGPU	support,	you	can	easily
expand	your	current	laptop’s	training	capabilities	to	train	more	quickly,	if	necessary.

Diverse	Models

Unlike	Caffe,	for	example,	Turi	Create	offers	a	wider	range	of	data	types,	such	as	images,
sound,	numbers,	and	video,	and	does	them	all	well.	It	also	doesn’t	“specialize”	in	a
certain	area,	so	you	can	quickly	switch	from	field-to-field	and	change	projects	without
having	to	switch	to	a	different	training	platform.	This	is	one	of	the	reasons	why	this	book
spends	time	covering	Turi	Create	in	detail.

33Mastering Machine Learning with Core ML and Python

Conclusion
In	this	chapter,	you	learned	about	how	machine	learning	affects	you	in	your	day-to-day
business	and	how	you	interact	with	it	as	you	go	about	your	life.	You	also	learned	about
cutting-edge	applications	of	the	technology.	Later	in	the	chapter,	you	learned	about
various	types	of	algorithms,	including	Linear	Regression	models,	K-Nearest	Neighbor
models,	and	Decision	Trees.

Lastly,	we	explored	various	tools	and	technologies	which	can	supercharge	your	machine
learning	workflows	and	allow	you	to	train	robust,	powerful	models	for	your	projects.
Some	of	them	are	beginner-friendly,	while	some	are	more	advanced.	Either	way,	this
chapter	is	packed	with	useful	information.	I	suggest	returning	to	this	chapter	after	you’ve
read	some	of	the	other	chapters	to	reabsorb	what	may	not	have	made	sense	to	you	at	the
beginning.

34Mastering Machine Learning with Core ML and Python

Chapter	2
Building	an	Image	Classification	App

In	the	previous	chapter,	you	learned	about	various	categories	of	machine	learning	and
the	types	of	algorithms	they	come	in.	Before	we	learn	how	to	train	our	own	models,	let's
learn	how	to	create	an	image	classification	app	first.	The	app	will	be	able	to	identify	a
household	object	in	real	time,	without	requiring	an	internet	connection.

For	this	chapter,	we'll	be	using	Core	ML,	which	you	learned	about	in	the	previous
chapter.	Google	and	several	other	companies	have	already	given	us	some	models	we	can
use,	and	they'd	be	more	accurate	than	anything	we'll	be	able	to	produce.	These	models
have	been	trained	with	hundreds	of	thousands	of	images,	if	not	millions!	As	you	have
learned	in	Chapter	1,	Core	ML	models	are	machine	learning	models	that	work	with	iOS

35Mastering Machine Learning with Core ML and Python

apps,	and	Xcode	automatically	compiles	these	sorts	of	models	into	Swift	code.	You’ll
learn	how	to	create	your	own	iOS	app	which	uses	Core	ML	and	a	pre-trained	model	to
classify	any	objects	that	it	detects	through	your	iPhone’s	camera.

2-1	Preparing	your	Project
I	assume	you	have	some	experience	programming	in	Swift	using	Xcode,	but	if	you're
completely	new	to	this	development	environment,	you	will	first	need	to	download	and
install	Xcode	12.	In	this	section,	you’ll	learn	how	to	download	and	install	Xcode	as	well	as
prepare	the	necessary	tools	you’ll	need	to	follow	along	with	this	chapter.	Next,	you’ll
configure	wireless	debugging	to	use	your	physical	device	to	test,	debug,	and	run	your
applications	in	a	real-world	setting	as	opposed	to	being	subject	to	the	limitations	of	the
Xcode	simulator.

However,	this	section	is	only	targeted	towards	absolute	beginners,	so	if	you	know	how	to
create	an	Xcode	project	and	a	basic	user	interface,	skip	to	the	Capture	Session	part	in
2-2	Pre-Processing	Video	Feed	and	use	the	starter	project	(under		Chapter	2/Starter
Project		of	the	project	resources.	Refer	to	preface	for	the	download	link).

Towards	the	end,	you’ll	get	an	in-depth	look	at	the	various	ways	iOS	developers	design
immersive	user	interfaces	via	Xcode’s	all-mighty	Interface	Builder.	And	then,	you'll	use
advanced	tools	to	scale	your	applications	to	a	variety	of	devices	and	screen	sizes	using
Auto-Layout,	Stack	Views,	and	Constraints.

Setting	up	Xcode

As	you	may	have	guessed,	you'll	need	Xcode	to	make	your	app.	In	case	you're	not	familiar
with	Xcode,	it's	an	integrated	development	environment	which	allows	you	to	create	apps
for	Apple	platforms,	including	iOS,	macOS,	watchOS,	and	tvOS.	To	follow	along	with	the
Xcode-related	sections	in	this	book,	you'll	need	Xcode	12	or	newer.

If	you	have	a	version	of	Xcode	older	than	Xcode	12,	you'll	need	to	update	it	by	visiting	the
Mac	App	Store.	Or	if	you	don't	currently	have	it	installed,	you	can	download	it	for	free	on
the	Mac	App	Store.

36Mastering Machine Learning with Core ML and Python

https://itunes.apple.com/us/app/xcode/id497799835?mt=12

Create	a	New	Project

Once	you've	had	the	latest	version	of	Xcode,	you	need	to	create	a	new	project	to	house
your	image	classification	app.	Open	Xcode,	and	click	Create	a	new	Xcode	project.

Figure	2-1:	Launching	Xcode

Then,	you'll	be	prompted	to	choose	a	template	for	your	app.	We'll	be	starting	from
scratch,	so	you	can	choose	App	under	the	iOS	tab,	which	tells	Xcode	not	to	create
anything	for	you,	including	game	graphics,	augmented	reality	templates,	or	any	sample
code.

37Mastering Machine Learning with Core ML and Python

Figure	2-2:	Selecting	a	Template

Save	your	Project

Next,	give	your	project	a	useful	name.	I'll	be	calling	mine	Chapter	2,	since	we’ll	have
new	projects	for	each	successive	chapter	in	this	book.	Make	sure	Swift	is	selected	in	the
dropdown	under	Language,	since	that’s	what	we’ll	be	using	to	make	our	image
classification	app.	For	the	Interface	option,	please	choose	Storyboard.

38Mastering Machine Learning with Core ML and Python

Figure	2-3:	Naming	your	Project

Last,	choose	where	you’d	like	to	save	your	project.	Choose	a	safe	location,	where	you’d	be
least	likely	to	move	it.	In	some	cases,	moving	your	Xcode	project	can	cause
complications.

39Mastering Machine Learning with Core ML and Python

Figure	2-4:	Saving	your	Project

Preparing	to	Debug

Image	processing	requires	the	use	of	your	phone’s	camera	(duh,	image	classification).
Since	the	Xcode	simulator	doesn't	have	its	own	camera,	you	won’t	be	able	to	use	it.
Therefore,	you’ll	need	an	iPhone	to	follow	along.	If	you	don’t	have	one	yourself,	it	would
be	best	to	borrow	one	for	this	chapter,	since	you	won’t	be	able	to	catch	those	annoying
bugs	without	being	able	to	run	and	test	your	app.

Assuming	you	already	have	an	iPhone,	or	have	been	able	to	obtain	one	to	follow	along
with	the	chapter,	let’s	set	it	up	with	Xcode.	Previously,	you	needed	to	use	a	cable	to
connect	your	target	device	to	your	computer	to	test.	But	you	can	now	test	your	apps
wirelessly,	that	is,	over	Wi-Fi	or	Bluetooth,	as	opposed	to	a	physical	cable.	This	makes
your	workflow	as	a	developer	much	easier,	but	it	requires	some	setup.

40Mastering Machine Learning with Core ML and Python

If	you	already	have	your	device	setup	with	Xcode	for	wireless	debugging,	you	can	skip
ahead,	but	if	not,	we’ll	go	through	it	step-by-step.

Wireless	Debugging

To	set	up	Xcode’s	nifty	feature,	start	by	opening	Xcode	if	it	has	not	been	opened	yet.
Then,	head	over	to	the	menu	bar	on	your	Mac	and	select	Window	>	Devices	and
Simulators.	The	Devices	and	Simulator	window	will	be	opened	by	then.

Plug	your	iPhone	into	your	Mac	using	a	lightning	cable,	and	you	should	see	your	device
pop	up	in	the	left	side	pane	of	your	window.	On	the	right,	it’ll	show	you	details	about	your
phone,	such	as	the	model,	the	amount	of	storage,	and	the	serial	number.	Below,	you	can
see	any	apps	you	may	have	installed	and	your	paired	Apple	Watch	if	you	have	one.

41Mastering Machine Learning with Core ML and Python

Figure	2-5:	Devices	and	Simulators	Window

To	complete	setting	up	wireless	debugging,	check	the	Connect	via	Network	box.	While
your	phone	is	being	setup,	you'll	see	a	dialog	which	says	your	phone	is	being	setup,	but
after	it's	done,	you’ll	be	able	to	disconnect	your	device	and	it	should	work	with	Xcode,
cable-free!

Select	Simulator

Now,	open	up	the	Xcode	project	you	created,	in	case	it’s	not	already.	If	you’ll	recall,	it
should	look	something	like	this:

42Mastering Machine Learning with Core ML and Python

Figure	2-7:	Your	Xcode	Project

In	the	upper	left	corner	of	the	window,	you’ll	see	a	triangular	button	called	the	Run
button.	And	next	to	it,	you’ll	see	a	device	name,	such	as	iPhone	11,	iPhone	8	Plus,	or
something	more	specific,	like	Vardhan’s	iPhone.	In	order	to	use	your	own	iPhone	for
debugging,	you’ll	need	to	select	it	from	the	dropdown	menu.

A	network	icon	appears	next	to	your	device	to	indicate	that	wireless	debugging	is	enabled
and	that	Xcode	has	a	connection	to	your	device.	If	you	don’t	see	this,	you	may	need	to
restart	Xcode,	or	remove	your	device	and	add	it	back	to	wireless	debugging.

User	Interface	Design

Finally,	we’re	ready	to	begin	to	work	on	our	image	classification	app!	If	you’ve	never	built
a	user	interface	using	Xcode’s	storyboards,	you’ll	gain	a	working	understanding	of	it	here.

43Mastering Machine Learning with Core ML and Python

For	those	who’d	like	to	skip	ahead,	we’ll	have	an	image	view	with	two	labels,	and	a	view
that	holds	them	together	by	the	end	of	this	section.	I’ll	be	doing	it	step-by-step	for	those
who’d	like	to	follow	along.

To	get	started,	open	the		Main.storyboard		file	in	the	Project	Navigator,	which	is	on	the
left	pane	of	your	Xcode	window.

Image	View

The	heart	of	our	design	will	be	a		UIImageView		to	show	the	user	what	they’re	pointing	at	in
real	time.	The	device	will	get	a	video	stream	from	the	camera	and	display	it	to	the	user	via
this	view.

Object	Library

Head	to	the	Object	Library	to	search	for	an	image	view.	You	can	access	this	by	clicking
on	the	seventh	icon	from	the	right	in	the	uppermost	toolbar	of	Xcode.	The	icon	appears
as	a	box	inscribed	in	a	circle.

Now,	search	for	an	image	view,	and	you	should	see	something	like	this:

44Mastering Machine Learning with Core ML and Python

Figure	2-8:	Object	Library

You	can	drag	the	image	view	directly	into	your	storyboard,	and	it	should	fill	the	screen.	If
it	doesn’t,	use	the	white	squares	along	the	image	view	to	resize	it	to	match	the	size	of	your
View	Controller.

Placeholder

Optionally,	you	can	add	a	placeholder	image	to	get	a	sense	of	how	your	design	will	appear
in	your	final	app.	I	got	an	image	of	a	banana	from	the	internet,	and	I’ve	used	it	to	fill	my
image	view.	To	add	a	placeholder,	simply	drag	an	image	to	your	project	navigator	on	the
left.

45Mastering Machine Learning with Core ML and Python

Then,	select	the	image	from	the	dropdown	on	the	right	pane	(attributes	inspector)	after
selecting	the	image	view	on	your	storyboard.	Finally,	set	the	Content	Mode	to	Aspect
Fill	to	make	your	image	appear	appropriately.

Figure	2-9:	Adding	a	Placeholder

View	and	Labels

Since	this	is	an	image	classification	app,	we	need	to	have	a	way	to	tell	the	user	what	our
app	thinks	their	object	is.	For	this,	we’ll	have	a	plain	white	view	at	the	top,	which
contains	two	labels:	one	for	the	prediction,	and	one	for	the	confidence.	We	can	build	our
basic	user	interface	using	the	storyboard	in	our	Xcode	project.

46Mastering Machine Learning with Core ML and Python

Adding	the	View

As	you	did	before,	head	to	your	Object	Library	and	find	a	view	(it's	simply	a	"view"	and
not	an	"image	view"	or	any	other	type	of	view).	Search	“view”,	and	it	should	be	the
second-to-last	object	in	the	list.	Drag	it	into	your	View	Controller	and	position	it	as	you
see	fit.

Figure	2-10:	Adding	a	Label

I’ve	put	mine	towards	the	top	of	my	view,	but	of	course,	you	can	put	yours	wherever	you
like.	For	aesthetics,	you	can	even	make	yours	translucent	or	use	a	blur	view	to	add	a	cool
effect	for	transparency—be	creative	with	it!

Adding	the	Labels

47Mastering Machine Learning with Core ML and Python

Now,	for	the	most	important	part:	the	labels.	We’ll	be	using	one	label	for	the	prediction
and	one	for	the	confidence.	Similar	to	the	previous	two	steps,	drag	in	two	labels.	You	can
find	them	by	searching	for	“label”	in	the	object	library.

Make	sure	you	drag	them	into	the	view	and	not	on	top.	You’ll	see	why	this	is	important
when	we	cover	auto	layout	a	little	later.

Figure	2-11:	Attributes	Inspector

If	you	look	closely,	you	might	notice	that	I’ve	styled	my	labels.	If	you’d	like	to	do	this,
make	sure	that	the	right	pane	of	Xcode	is	visible,	and	then,	use	the	attributes	inspector
tab	to	change	the	size,	style,	and	font	of	your	labels.

48Mastering Machine Learning with Core ML and Python

Auto	Layout

Apple	makes	a	lot	of	devices,	and	to	support	them	all,	Xcode	has	a	useful	tool	called
“Auto	Layout”	built	into	it.	Though	the	name	may	lead	you	to	believe	that	it
“automatically”	sets	constraints	for	you	and	resizes	on	multiple	devices,	you	need	to	tell
Xcode	where	to	place	your	objects	in	the	view.

After	you’re	done	roughly	placing	your	user	interface	elements	via	the	storyboard,	you’re
ready	to	set	constraints	and	anchor	your	elements.

At	the	bottom	of	your	storyboard,	you’ll	notice	a	menu	bar	which	has	the	current	zoom	in
the	center	as	well	as	some	icons	on	the	right	side.	These	icons	will	help	you	set	auto
layout	constraints	for	your	app.

Constraining	the	Image	View

For	starters,	let’s	constrain	the	image	view	to	the	size	of	the	view.	This	way,	we	can	make
sure	that	no	matter	the	size	of	the	physical	screen,	the	image	view	scales	to	fill	the	entire
screen	instead	of	leaving	unwanted	gaps	or	bezels	between	the	actual	image	and	the
screen.

To	start	adding	constraints,	click	on	the	second	icon	from	the	right,	which	looks	like	a
square	with	lines	surrounding	it.	A	popup	should	appear,	and	you’ll	see	something	like
this:

49Mastering Machine Learning with Core ML and Python

Figure	2-12:	Setting	Contraints

The	four	numbers	surrounding	the	box	tell	Xcode	where	to	place	the	object	in	terms	of	its
surrounding	objects.	Since	the	image	view	doesn’t	have	surrounding	objects	other	than
the	screen’s	edge,	these	numbers	represent	the	distance	of	the	edges	of	the	image	view	to
the	edge	of	the	screen.	If	we	want	the	image	view	to	fill	the	screen,	all	of	these	numbers
must	be	zero.

Press	the	return	key	four	times	to	add	all	of	the	constraints	and	hit	the	Add
Constraints	button	at	the	bottom	of	the	dialogue.	If	you	run	your	app	on	different
simulators	now,	you’ll	notice	that	other	elements,	like	the	view	and	labels,	will	be
misplaced,	but	the	image	view	will	always	fill	the	screen.	This	is	because	Xcode	now
knows	exactly	where	to	place	your		UIImageView		based	on	your	layout	constraints.

Constraining	the	Label	Container

50Mastering Machine Learning with Core ML and Python

Remember	the	white	view	we	created	earlier?	Our	next	step	is	to	constrain	it	to	the
screen.	Similar	to	how	you	constrained	the	image	view,	open	the	Add	Constraints
menu	—	it’s	the	second	icon	from	the	right.

This	time,	however,	instead	of	having	zeroes	for	our	constraints,	we’ll	need	to	specify	the
distance	of	the	view	from	the	edges	of	the	screen.	In	my	example,	I	want	it	to	be	20	pixels
from	the	top	and	I	want	a	distance	of	40	pixels	from	either	side.	Since	we	aren’t
specifying	a	bottom	constraint,	we	need	the	height	to	be	fixed	to	50	pixels.

Figure	2-13:	Selecting	Constraints

Change	the	numbers	in	the	dialogue	to	be	20	on	the	top,	40	on	the	left,	and	40	on	the
right.	The	dotted	lines	should	become	red,	indicating	that	a	constraint	will	be	set.	In
addition,	check	the	box	next	to	height	and	set	a	value	of	75	to	indicate	that	the	view
should	always	be	75	pixels	tall.

51Mastering Machine Learning with Core ML and Python

Labels	and	Stack	Views

Hold	down	the	Shift	key	and	select	both	labels,	we’ll	create	what’s	called	a	stack	view.	A
stack	view	is	one	of	the	marvels	of	auto-layout.	In	fact,	it’s	one	of	my	top	go-to	tools	for
quick	user	interface	layouts.

They	allow	you	to	create	sets	of	objects	which	can	be	anchored	as	groups,	while	taking
care	of	spacing,	widths,	and	heights	within	the	stack	view	automatically	—	here’s	where
the	“auto”	part	comes	in…

Once	you’ve	selected	the	two	labels,	head	to	Editor	>	Embed	In	>	Stack	View,	which
should	make	your	two	labels	appear	as	if	they’ve	been	grouped	together.	This	“group”	can
now	be	used	as	an	individual	unit	to	set	constraints	to	the	two	labels	simultaneously.

Constraining	the	Stack	View

The	last	step	of	ensuring	that	auto-layout	is	set	correctly,	is	to	constrain	the	stack	view	we
just	created	to	the	inside	of	the	view.	If	you	remember,	we	ensured	that	the	labels	were
inside	of	the	view	and	not	on	top.	This	allows	us	to	set	constraints	to	the	view	as	opposed
to	the	screen,	since	the	view	is	already	constrained	to	the	screen’s	bounds.

Select	the	stack	view	by	clicking	on	one	of	the	labels,	and	then	click	on	the	edge	of	the
highlighted	region.	Ensure	that	you’ve	selected	the	stack	view,	and	not	one	of	the	labels.

52Mastering Machine Learning with Core ML and Python

Figure	2-14:	Centering	the	Stack	View

We’ll	use	this	opportunity	to	learn	one	more	tool	in	auto	layout	—	the	Align	tool.	This
allows	you	to	center	your	views	both	vertically	and	horizontally	in	a	container	or	align
your	views.	With	your	stack	view	selected,	click	on	the	third	icon	from	the	right,	which
looks	like	a	sideways	bar	graph.	Then,	check	the	boxes	which	say	Horizontally	in
Container	and	Vertically	in	Container.	These	boxes	tell	Xcode	to	center	your	stack
view	inside	the	white	container	view	we	created	earlier.

2-2	Pre-Processing	Video	Feed
In	the	previous	section,	you	set	up	your	user	interface	using	the	Interface	Builder	and
learned	to	use	some	advanced	tools,	such	as	Stack	Views,	Auto-Layout	Constraints,	and
more.	These	skills	will	come	in	handy	when	you	build	future	apps	in	this	book	as	well	as

53Mastering Machine Learning with Core ML and Python

other	iOS	apps	in	the	future.	If	the	previous	section	was	a	review	for	you,	not	to	worry.
Now,	I’ll	likely	cover	topics	which	are	new	to	you,	and	the	rest	of	the	book	will	only
become	more	advanced	from	here	on	out.

In	this	section,	you’ll	learn	how	to	use	the	built	in	camera	of	your	device	to	input	a	video
feed	and	pre-process	it	for	machine	learning	purposes.	The	frames	that	you	extract	from
the	video	feed	in	this	section	will	be	used	later	to	predict	the	objects	present	in	each
scene.

Connecting	to	Code

You	now	should	have	a	user	interface	created	for	our	image	recognition	app.	The	last
thing	left	to	do	before	we	actually	begin	coding	our	app,	is	to	connect	the	user	interface
elements	from	the	Interface	Builder	to	our	corresponding	Swift	file,
ViewController.swift.

Interface	Builder	Outlets

Open	ViewController.swift	via	the	left	pane	of	your	Xcode	window.	Inside	the
	ViewController		class,	add	the	following	three	lines	of	code	above	the		viewDidLoad()	
method:

@IBOutlet	weak	var	predictionLabel:	UILabel!

@IBOutlet	weak	var	confidenceLabel:	UILabel!

@IBOutlet	weak	var	imageView:	UIImageView!

The		@IBOutlet		tag	tells	Xcode	that	you’re	declaring	a	connection	from	code	to	the
Interface	Builder.	If	you	didn’t	use	the	tag,	Xcode	would	assume	that	you’re	building	your
interface	purely	in	code.

The	word		weak		indicates	that	the	Interface	Builder	has	a	weak	reference	to	the	label	or
the	image	view,	in	this	case.	This	tells	Xcode	that	you	want	iOS	to	allocate	and	deallocate
the	memory	required	for	the	element	automatically	instead	of	leaving	it	in	memory	at	all

54Mastering Machine Learning with Core ML and Python

times.	Though	you	won’t	be	using		weak		most	of	the	time,	you’ll	likely	be	better	off
sticking	with	it.	It’s	okay	if	you	don’t	fully	understand	this	concept	—	it’s	an	advanced
computer	science	concept,	which	Swift	handles	for	you	automatically!

Last,	we’re	declaring	a	regular	Swift	variable,	and	giving	it	the	type	of	the	element	we’re
trying	to	connect	to.	The	exclamation	point	on	the	end	declares	the	type	as	an	Implicitly
Unwrapped	Optional,	which	tells	Swift	that	you	know,	100%,	that	the	object	will	never
be		nil	.

Using	the	Assistant	Editor

Now	that	the	code	portion	is	set,	we’ll	use	the	Assistant	Editor	to	help	us	connect	each
	@IBOutlet		to	their	corresponding	element	in	the	storyboard.

Open	your	ViewController.swift	file	using	the	left	pane	of	your	Xcode	window.

55Mastering Machine Learning with Core ML and Python

Figure	2-15:	Xcode	Editor

Then,	in	the	top	right	of	your	file	preview,	select	the	icon	which	looks	like	a	plus	button
next	to	a	window.	It's	not	This	opens	the	Assistant	Editor,	which	should	automatically
open	your	ViewController.swift	file	on	the	right	of	the	storyboard.	If	it	doesn't	open
your	storyboard,	simply	select	it	using	the	file	hierarchy	at	the	top	of	the	new	pane.

56Mastering Machine Learning with Core ML and Python

Figure	2-16:	Assistant	Editor

Instead	of	line	numbers,	you	should	see	un-filled	white	circles	to	the	left	of	each
	@IBOutlet	,	meaning	that	they	aren’t	connected	to	the	storyboard.	Drag	your	cursor	from
the	inside	of	these	circles	to	the	corresponding	element	in	your	storyboard.	The	circles
will	become	filled	when	they’re	connected	successfully.

57Mastering Machine Learning with Core ML and Python

Figure	2-17:	Assistant	Editor	with	Storyboard

Go	ahead	and	click	the	Assistant	Editor	button	again	to	return	to	your	original	view.	You
no	longer	need	your	storyboard	to	be	opened	alongside	your	Swift	file.	By	now,	you
should	have	three	variables	in	your	ViewController.swift	file.	I’ve	named	mine	as
follows:

	predictionLabel		for	the	upper	label.
	confidenceLabel		for	the	lower	label.
	imageView		for	the	image	view.

Of	course,	you	don’t	need	to	use	the	same	names	that	I	did,	but	I’ll	be	using	them
throughout	the	course	of	this	chapter.	If	you	chose	different	names,	make	sure	you
changed	them	in	all	of	the	places	they’re	referenced.

58Mastering Machine Learning with Core ML and Python

Camera	Usage	Description

Since	we’ll	be	using	the	camera	for	this	app,	we	need	to	ask	the	user	for	permission
before	doing	so	—	otherwise,	our	app	won’t	work.	Head	to	your	Info.plist	file	first.
Then,	click	the	+	button	next	to	the	Information	Property	List	and	paste	the
following:

NSCameraUsageDescription

This	will	auto-correct	to		Privacy	-	Camera	Usage	Description		if	done	correctly.	In	the	value
section	for	this	key,	type	a	string	which	describes	why	you	need	to	use	the	camera.

Figure	2-18:	Information	Property	List

59Mastering Machine Learning with Core ML and Python

Capture	Session

Since	our	app	involves	recognizing	objects	through	a	live	video	feed	instead	of	a	still
image,	we	have	some	additional	work	to	do	in	creating	a	video	feed.	While	this	may	seem
like	a	long	process	at	first,	I’ll	be	explaining	each	thing	step-by-step.	It’s	an	important
skill	to	have,	even	for	other	camera-related	apps.

Conforming	to	the	Delegate

To	get	updates	on	what	the	device’s	camera	is	doing,	including	getting	the	camera’s	video
feed,	we	need	our		ViewController		class	to	conform	to	the
	AVCaptureVideoDataOutputSampleBufferDelegate		delegate.	Yes,	that’s	a	long	name,	but	don’t
let	that	scare	you!

Import	List

To	get	access	to	the	Audio-Video	APIs	that	Apple	provides	their	developers,	we	can
import	the		AVKit		library	at	the	top	of	our	file.	Enter	the	following	line	of	code	directly
under	the	import	statement	for		UIKit	:

import	AVKit

While	we're	at	it,	let's	import	some	of	the	other	libraries	we'll	be	needing	later	on.	For	the
Vision	API	we'll	be	using	to	analyze	video	frames,	let's	import	the		Vision		framework	and
for	importing	machine	learning	models,	let's	import		Core	ML		like	this:

import	Vision

Import	CoreML

Great!	You're	all	set	with	the	import	statements.

60Mastering Machine Learning with Core ML and Python

Class	Extension

To	let	our		ViewController		class	conform	to	the
	AVCaptureVideoDataOutputSampleBufferDelegate		protocol,	we	can	create	an	extension	of	the
class	and	use	it	to	contain	all	of	the	methods	from	our	delegate.	If	you	wanted,	you	could
do	it	without	an	extension,	but	industry	norms	are	to	use	one.

To	create	an	extension	that	conforms	to	this	protocol,	you	need	to	enter	the	following
after	the	closing	brace	of	your		ViewController		class	declaration:

//	MARK:	-	AVCaptureSession

extension	ViewController:	AVCaptureVideoDataOutputSampleBufferDelegate	{

				func	setupSession()	{

								//	Your	code	goes	here

				}

}

An	extension	in	Swift	is	used	to	add	functionality	to	a	class	—	in	this	case,	we’re	adding
conformance	to	the		AVCaptureVideoDataOutputSampleBufferDelegate		protocol	to	our
	ViewController		class.

Inside	it,	we’ll	create	a	method	to	set	up	our		AVCaptureSession	.	Later	on,	we’ll	call	this
method	to	set	up	whatever	we	need	to	at	the	beginning	of	the	app’s	life	cycle.

Session	I/O

The	purpose	of	this	app	is	not	to	get	a	live	video	feed,	but	instead,	it	is	to	process
individual	frames	from	the	camera	through	a	machine	learning	model.	In	addition,	we’ll
be	displaying	the	live	feed	through	the		UIImageView		we	created	earlier.

Capture	Session	Configuration

Now,	it’s	time	to	setup	an		AVCaptureSession	,	which	allows	you	to	capture	camera	input	in
real-time	from	your	device’s	camera.	Since	our	app	is	a	live	image	classification	app,	we’ll
need	to	use	one.

61Mastering Machine Learning with Core ML and Python

Declaring	your	Session

Go	ahead	and	put	the	following	in	the		setupSession()		which	you	declared	in	your
	ViewController		delegate	extension.

guard	let	device	=	AVCaptureDevice.default(for:	.video)	else	{	return	}

guard	let	input	=	try?	AVCaptureDeviceInput(device:	device)	else	{	return	}

In	the	code	you	just	added,	we’re	making	sure	we	have	a	device	capable	of	streaming
video	from	its	camera.	Then,	the		AVCaptureDeviceInput		(after	making	sure	there	aren’t	any
errors	thrown)	is	storing	the	input	from	the	device	to	use	later.

Next,	add	the	following	lines	of	code:

let	session	=	AVCaptureSession()

session.sessionPreset	=	.hd4K3840x2160

You’ve	now	created	an		AVCaptureSession		object	and	set	its	bitrate	and	resolution	to	Ultra
High-Definition	(UHD)	at	4K	with	3840	pixels	x	2160	pixels.	Of	course,	you	can	change
this	later	if	you’d	like	to	adjust	aspects	of	your	stream.

Preview	Layer

After	we’re	done	setting	up	the	device	and	its	capture	session,	we’re	ready	to	create	a
preview	layer,	which	allows	the	user	to	see	where	their	camera	is	pointing	to	—	after	all,
you	want	to	see	the	object	you’re	trying	to	classify!	Later,	we’ll	use
	AVCaptureVideoDataOutput		to	help	us	capture	the	individual	frames	in	the	video	feed	for
processing	via	our	machine	learning	model.

In	your		setupSession()		method,	add	the	following:

let	previewLayer	=	AVCaptureVideoPreviewLayer(session:	session)

previewLayer.frame	=	view.frame

previewLayer.videoGravity	=	.resizeAspectFill

imageView.layer.addSublayer(previewLayer)

62Mastering Machine Learning with Core ML and Python

In	the	first	line	of	code,	we’ve	created	an	instance	of	the		AVCaptureVideoPreviewLayer	,
which	takes	in	our		AVCaptureSession		as	a	parameter.	Then,	to	display	the	video	feed,	we
set	the	size	of	the	preview	layer	to	the	size	of	the	entire	screen,	as	denoted	by		view.frame	.
We	also	need	to	set	the		videoGravity		so	that	it	fills	the	screen,	while	maintaining	the
aspect	ratio	of	the	feed.	Last,	we	used	the		layer		attribute	of	the	image	view	to	show	the
feed	inside	the	image	view	you	created	in	Chapter	2-1.

Preparing	for	Processing

Now	that	we	have	our	video	feed	taken	care	of,	we’re	ready	to	export	it	frame-by-frame	to
use	it	with	a	machine	learning	model	later	on.	We	can	use	certain	features	of	the		AVKit	
framework	to	help	us	reach	our	end	goal.

Session	Output

To	output	the	frames	of	the	video	feed,	we	need	to	create	an		AVCaptureVideoDataOutput	.
You	can	do	this	by	pasting	the	following	two	lines	of	code	into	the	same		setupSession()	
method.

let	output	=	AVCaptureVideoDataOutput()

output.setSampleBufferDelegate(self,	queue:	DispatchQueue(label:	"videoQueue"))

Similar	to	what	you	did	previously,	we	just	created	an		AVCaptureVideoDataOutput()	.	As	you
recall,	our		ViewController		conforms	to	the		AVCaptureVideoDataOutputSampleBufferDelegate	,
so	that	we	can	receive	each	frame	to	process	it	individually	from	the	live	video	feed.	The
second	line	of	code	from	the	snippet	above	sets	the		ViewController		to	the	delegate	of	the
output	stream.	The		DispatchQueue		is	there	to	ensure	that	each	frame	gets	sent	to	the
delegate	in	the	correct	order.

Starting	the	Session

Now,	we’re	almost	done	on	the	I/O	side	of	our	app,	but	we	still	need	to	do	one	more	thing
—	to	add	the	input	and	the	output,	and	then	start	the		AVCaptureSession	.

63Mastering Machine Learning with Core ML and Python

Add	the	following	at	the	end	of	the		setupSession()		method:

session.addOutput(output)

session.addInput(input)

session.startRunning()

We’ve	used	the		addOutput()		and		addInput()		methods	of	the		AVCaptureSession		we	created
earlier	to	gain	access	to	the	device’s	camera,	display	our	live	feed	to	our	image	view,	and
extract	individual	frames	in	the	video	for	machine	learning	processing.

Now,	we	need	to	finally	call	the	method		setupSession()		inside	the		viewDidLoad()		method
overridden	from	the		UIViewController		class.	After	doing	this,	your		viewDidLoad()		method
should	look	like	this:

override	func	viewDidLoad()	{

				super.viewDidLoad()

				setupSession()

}

64Mastering Machine Learning with Core ML and Python

2-3	Image	Classification	and	Labeling
In	the	previous	section,	you	learned	how	to	connect	your	user	interface	from	the	interface
builder	to	actual	Swift	code.	You	also	learned	how	to	capture	a	live	video	feed	from	your
device’s	camera	and	then	extract	individual	frames	to	process.	By	this	point,	you	should
now	have	an	app	with	a	live	video	feed.

In	this	section,	we’ll	find	an	image	classification	model	to	use	in	our	app.	Next,	you’ll
learn	how	to	use	basic	image	processing	techniques	to	classify	frames	of	our	live	video
feed	from	the	previous	section.	By	the	end	of	the	chapter,	you’ll	have	a	fully-functional
image	classification	app	which	can,	in	real	time,	process	and	identify	objects.

Image	Classification

Before	we	begin	processing	and	classifying	our	images,	let’s	first	find	a	machine	learning
model	to	use.	For	this	chapter,	we	won’t	be	using	a	custom	model,	but	in	later	chapters,
you’ll	learn	to	build	your	own	models	using	robust,	state-of-the	art	tools	and	techniques.

Finding	a	Model

Since	we’re	using	Core	ML	for	this	app,	Apple’s	website	is	a	great	place	to	find	a	machine
learning	model.	We’ll	find	a	suitable	model	on	this	website	for	our	image	classification
app	to	work	as	desired.

Browsing	and	Downloading

On	the	Working	with	Core	ML	Models	page,	you’ll	find	a	variety	of	models	to	choose
from	towards	the	bottom	of	the	page.

65Mastering Machine Learning with Core ML and Python

https://developer.apple.com/machine-learning/build-run-models/

Figure	2-18:	Browsing	for	Core	ML	Models

For	convenience,	I’ve	selected	the	first	model	listed,	which	was	originally	developed	by
Andrew	Howard	as	a	Caffe	model,	and	converted	into	Core	ML	later	—	something	which
we’ll	be	doing	later	in	the	book.

You	can	download	this	model	by	either	clicking	the	Download	Core	ML	Model	button
underneath	the	model	you	want,	or	download	it	directly.

Importing

Importing	the	model	you’ve	created	is	easy.	All	you	need	to	do	is	to	drag	the	.mlmodel
file	you've	just	downloaded	into	your	Xcode	project.	Make	sure	you	do	this	in	the	folder
which	shares	a	name	as	your	project.	This	is	where	all	of	your	other	important	items

66Mastering Machine Learning with Core ML and Python

https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel

located,	such	as	your	ViewController.swift	and	Main.storyboard	files.

Figure	2-19:	Imported	MobileNet	Model

All	Core	ML	models	have	an	accompanying	Swift	wrapper	class,	which	we	can	use	to
access	important	attributes	of	the	machine	learning	model	as	needed	throughout	the
development	of	the	app.	While	yours	may	have	already	been	generated,	you	might	need
to	Build	your	project	by	pressing	Command	+	B	or	selecting	Product	>	Build	from
the	menu	bar.

Pixel	Buffers

A	pixel	buffer	is	a	way	to	store	a	small	amount	of	image	data	shortly	before	it	needs	to	be
used.	In	this	app,	we’ll	use	a	pixel	buffer	to	store	individual	frames	of	our	video	feed	to
later	feed	them	into	the	image	classification	model.	Once	we’re	done	with	the	image,	we

67Mastering Machine Learning with Core ML and Python

can	easily	and	efficiently	dispose	of	it.

Capturing	Output

In	the	previous	section,	you	created	an	extension	of	the		ViewController		class,	which
conforms	to	the		AVCaptureVideoDataOutputSampleBufferDelegate	.	If	you	recall,	we	did	this	in
order	to	build	a	live	video	stream	and	extract	individual	frames	for	image	processing.	To
access	these	frames,	add	the	following	delegate	method	to	your		ViewController	
extension:

func	captureOutput(_	output:	AVCaptureOutput,	didOutput	sampleBuffer:	CMSampleBuff

er,	from	connection:	AVCaptureConnection)	{

				//	your	code	here

}

The		sampleBuffer		parameter	of	this	method	is	where	the	delegate	passes	in	an	image
buffer.	It’s	our	job	to	turn	this	parameter	into	a	pixel	buffer	that’s	compatible	with	our
Core	ML	model.

Pixel	Buffer	Conversion

Now,	we	need	to	turn	the		CMSampleBuffer		from	the	method	call	to	a		CVPixelBuffer	.	To	do
this,	add	the	following	into	the	delegate	method	you	created	earlier:

guard	let	pixelBuffer:	CVPixelBuffer	=	CMSampleBufferGetImageBuffer(sampleBuffer)	

else	{	return	}

If	you’ve	done	Swift	development	in	the	past,	the		guard-let		statement	will	look	familiar
to	you,	but	essentially,	it	checks	whether	the	pixel	buffer	can	be	created	using	the	passed
in	parameter.	If	it	cannot,	the	program	gracefully	returns	as	opposed	to	attempting	to
unwrap	a		nil		optional.

Using	the	Model

Instantiation

68Mastering Machine Learning with Core ML and Python

Now,	it’s	time	to	create	a		VNCoreMLModel		version	of	the	file	you	imported	earlier.	With	a
similar	concept	as	the	pixel	buffer,	type	the	following	to	create	a	constant	to	store	the
model:

guard	let	model	=	try?	VNCoreMLModel(for:	MobileNet(configuration:	MLModelConfigur

ation()).model)	else	{	return	}

This	will	use	the	model	we	imported	and	its	Swift	wrapper	class	to	create	a
	VNCoreMLModel	.	We	would	use	the		VLCoreMLModel		for	vision	and	image	analysis,	since	the
wrapper	class	doesn't	give	us	any	useful	information.

To	instantiate	a		VNCoreMLModel	,	we	create	an	instance	of	the	model's	wrapper	class	by
passing	a	blank	configuration	(which	you	could	use	to	adjust	the	model,	if	you'd	like),	and
then	accessing	its		model		property.

Core	ML	Request

To	finally	use	this	model,	we’ll	need	to	create	a		VNCoreMLModelRequest	,	which	allows	us	to
pass	in	the	model	as	a	parameter	and	receive	the	result	—	as	well	as	any	errors	—	in	a
completion	handler.	Type	the	following	under	the		guard-let		statements:

let	request	=	VNCoreMLRequest(model:	model)	{	(data,	error)	in

				//	your	code	here

}

The		data		and		error		references	can	be	used	inside	the	declaration	of		request		to	access
the	results	of	the	model	request.	Remember,	though,	that	we	haven’t	made	this	request
yet;	we’re	only	declaring	what	to	do	when	we	eventually	make	this	request.

Displaying	the	Results

Excellent	job	so	far!	We’re	almost	finished	with	our	image	classification	app.	Now	all	we
need	to	do	is	to	display	our	results	to	the	user	interface	we	created	at	the	beginning	of	the
chapter.

69Mastering Machine Learning with Core ML and Python

Unwrapping	Optionals

As	always,	there’s	a	catch;	we	need	to	first	unwrap	our	results	to	prevent	the	program
from	crashing	in	the	case	of	a	nil-value.	Let’s	use		guard-let		statements	like	we	did	before
to	ensure	that	we’re	safely	assigning	these	results	to	their	own	constants.

Getting	Results

When	we	receive	the	result	from	the	model,	it’s	actually	not	a	single	result	—	it’s	an	array
which	carries	a	list	of	results.	Since	the	machine	learning	model	is	only	a	computer,	it
might	be	unsure	of	what	the	actual	object	is.	For	example,	it	may	think	your	television	is
a	computer	monitor,	but	also	think	that	it’s	a	television,	a	rectangle,	or	a	picture	frame.
While	the	model	is	most	confident	that	it’s	a	“computer	monitor,”	it	also	lists	these	other
guesses	in	case	we	need	to	do	something	else	with	them.

To	extract	this	list	from	the	parameter,	type	the	following	inside	the		request		closure:

guard	let	results	=	data.results	as?	[VNClassificationObservation]	else	{	return	}

This	assigns	the	list	as	an	array	of		VNClassificationObservation		to	a	constant	called
	results	.	If	this	isn’t	possible,	the	function	returns	safely.

First	Result

You’ve	learned	that	the	results	are	a	list	of	possible	guesses	of	the	model,	so	you	now
know	that	you	need	only	one	of	the	results;	but,	the	question	is	which	one	to	choose	from
an	array	of	several.	The	results	array	we	just	created	sorts	the	observations	in	descending
level	of	confidence.	To	access	the	one	we	want,		results.first		can	be	used.

Add	the	following		guard-let		to	your	closure:

guard	let	firstObject	=	results.first	else	{	return	}

This		firstObject		constant	can	be	used	later,	with	the	assumption	that	we	won’t	have	a
	nil		value	because	of	our	safe	optional	unwrapping.

70Mastering Machine Learning with Core ML and Python

User	Interface	Update

Last,	we	need	to	update	the	user	interface	created	at	the	beginning	of	the	chapter.
However,	we’ll	need	to	handle	it	differently	since	we’re	doing	it	from	inside	an
asynchronous	type,	a	closure.

Checking	Confidence

We	don’t	want	our	label	to	keep	changing	unless	the	model	is	sure	of	the	object	it’s
seeing,	to	some	degree.	We	can	check	the	confidence	and	wait	it	to	display	the	result	with
a	simple		if-statement	:

if	firstObject.confidence	*	100	>=	20	{

				//	display	observation	and	confidence

}	else	{

				//	display	placeholders

}

The		confidence		property	of	the		VNClassificationObservation		is	a	value	with	a	floating
point	decimal,	so	we’ll	need	to	convert	it	to	a	percentage	by	multiplying	it	by	100.	Then,
we	can	check	if	the	confidence	is	20%	or	higher	before	displaying	the	observation	to	the
user.

Main	Thread

iOS	requires	you	to	update	the	user	interface	on	the	main	thread	since	the	graphics
rendering	is	done	synchronously.	In	a	completion	handler,	which	is	what	we’re	currently
in,	the	system	sends	the	process	to	a	background	thread.	The	background	thread	waits
for	the	model	to	be	done	processing	the	image	and	gives	us	the	result.	While	this	is	all
done	in	a	fraction	of	a	second,	the	other	code	has	already	been	executed.

To	exit	the	asynchronous	program	and	update	the	UI,	add	the	following	to	each	condition
of	your		if-else	block	:

71Mastering Machine Learning with Core ML and Python

DispatchQueue.main.async	{

				//	UI	update	here

}

Now,	you	can	reliably	update	your	user	interface	after	receiving	the	observations	from
the	model.

Updating	the	Labels

Finally,	let’s	update	the	labels	with	the	information	we	need.	In	the	first	condition	of	the
	if-statement	,	add	the	following	lines	of	code:

self.predictionLabel.text	=	firstObject.identifier.capitalized

self.confidenceLabel.text	=	String(firstObject.confidence	*	100)	+	"%"

Here,	we’ve	capitalized	the	first	observation’s		identifier		string	for	a	nicer	look	when
displayed.	Then,	we	converted	the	confidence	into	a	percentage	for	a	more	user-friendly
way	to	visualize	the	confidence.	Now,	we	also	need	to	handle	the	case	where	the	classifier
is	unsure	of	what	the	object	is,	which’ll	look	like	this:

self.predictionLabel.text	=	"--"

self.confidenceLabel.text	=	"--"

In	this	case,	we’ll	just	display	two	dashes	to	indicate	to	the	user	that	our	classifier	is
unable	to	identify	the	object	the	phone	is	pointing	towards,	encouraging	them	to	move
the	phone	around	—	instead	of	displaying	incorrect	results	on	the	screen.

Running	the	Request

Now,	after	all	of	this	setup,	you're	ready	to	actually	run	the	request.	This	way,	all	of	the
code	you	wrote	inside	of	the	closure	—	including	getting	the	most	confident	result	from
the	model	and	displaying	it	to	the	user	in	a	good-looking	way.

72Mastering Machine Learning with Core ML and Python

Request	Handler

Using	the		VNImageRequestHandler	,	we'll	run	the	request	you	created	earlier.	After	the
closing	brace	of	the		VNCoreMLRequest		closure	(same	indent	as		let	request		line),	enter	the
following:

try?	VNImageRequestHandler(cvPixelBuffer:	pixelBuffer,	options:	[:]).perform([requ

est])

Here,	you're	using	the		VNImageRequestHandler		and	passing	in	the	pixel	buffer	(a	single
image	frame	while	capturing	live	video)	as	well	as	the	requests	you	created	from	earlier.
All	of	the	code	you	wrote	runs	each	time	the	video	feed	gets	a	new	frame!

Running	Code

And,	since	you're	all	set,	plug	your	iPhone	in	and	test	it	out!	If	you	move	your	phone
around	your	room,	you'll	see	it	begin	to	recognize	the	objects	around	you.	Awesome,
right?

73Mastering Machine Learning with Core ML and Python

Conclusion
Good	work!	You’ve	now	created	your	own	image	classification	app,	which,	when	pointed
at	an	object,	it	can	identify	the	object	and	tell	you	how	confident	it	is.	This	chapter	was
only	an	introduction	to	the	power	of	machine	learning,	however.	As	you’ll	learn
throughout	the	course	of	the	book,	you	can	train	your	own	models	as	well,	which
specialize	in	the	tasks	you	want	them	to	undertake.

As	a	recap,	you	learned	several	important	skills	in	this	chapter.	These	include	enabling	a
live	video	feed,	extracting	individual	frames	into	a	pixel	buffer,	setting	up	a	simple	user
interface	with	auto-layout	constraints,	and	using	the	vision	framework	and	a	machine
learning	model	to	classify	visible	objects	in	the	live	video	feed.

In	the	next	chapter,	you’ll	learn	how	to	improve	this	app	further	by	integrating
augmented	reality,	an	unrelated,	but	nonetheless	interesting	feature.	Augmented	reality
allows	your	labels	to	be	"attached"	to	the	object	itself	as	opposed	to	being	stuck	in	a	view
at	the	top	of	your	screen.	Onward!

74Mastering Machine Learning with Core ML and Python

Chapter	3
A	Primer	on	Python	and	Jupyter
Notebook

In	the	previous	chapter,	you	built	your	own	image	classification	app,	and	learned	about
using	the		AVCaptureSession		as	well	as	other		AVKit		to	segment	a	video	feed	into	frames
for	processing.	You	also	got	a	glimpse	at	building	an	intuitive	user	interface.	However,
you	used	a	pre-built	model	to	classify	the	objects	in	your	scene.

In	this	chapter,	you’ll	learn	Python,	a	general-purpose	language,	which	could	be
considered	similar	to	Swift	in	some	aspects.	If	you’ve	never	used	Python	before,	nor	have
heard	of	it,	you’re	in	luck;	I’ll	go	step-by-step	and	explain	the	syntax	of	Python,	no	matter

75Mastering Machine Learning with Core ML and Python

your	skill	level.	If	you’re	a	Python	pro,	you	may	skip	(not	recommended)	the	first	section
and	proceed	with	the	remaining	sections	of	this	chapter.

Later	in	the	chapter,	you’ll	learn	about	Jupyter	Notebook,	a	boon	for	everyone	working	in
the	data	science	field.	You’ll	learn	what	they	are,	how	to	use	them,	and	where	they	fit	into
your	day-to-day	workflow	in	the	world	of	machine	learning.

3-1	Jupyter	Notebook	and	Anaconda
In	this	section,	you’ll	learn	about	Jupyter	Notebook,	what	they’re	used	for,	and	how	you
can	use	them	in	your	machine	learning	workflow.	You’ll	also	learn	to	install	the
appropriate	tools	to	use	Jupyter	Notebook,	and	you’ll	be	able	to	create	a	Jupyter
Notebook	by	the	end	of	this	section.	You	don’t	need	to	know	anything	about	Python	just
yet;	as	I’ll	be	covering	that	in	the	next	section.

Towards	the	end	of	the	section,	you’ll	learn	about	virtual	environments,	so	that	you	don’t
need	to	run	Jupyter	Notebook	and	Python	scripts	directly	on	your	Mac.	Instead,	you’ll
use	a	virtual	environment	called	Anaconda	to	isolate	your	scripts,	but	don’t	worry	—	I’ll
cover	everything	step-by-step,	so	no	prior	experience	is	needed!

What	is	a	Jupyter	Notebook?

If	you	haven’t	been	in	the	data	science	or	machine	learning	industry,	it's	likely	that	you’ve
never	heard	of	a	Jupyter	Notebook	—	and	are	probably	thinking	it’s	an	old-school
composition	style	notebook	from	Jupyter.	Conversely,	if	you’ve	done	anything	at	all	with
machine	learning,	you’re	likely	to	have	heard	about	Jupyter	Notebook.	But,	what	are
they,	and	what	makes	them	special?

In	essence,	Jupyter	Notebooks	are	places	where	you	can	congregate	your	code,	data,
graphs,	and	text	to	store	for	yourself,	share	with	your	colleagues,	or	even	publish	for	the
data	science	community.	Formally	speaking,	they	are	web	applications	which	usually	run
locally	on	your	machine	and	can	update	live	as	your	notebook	changes.	As	a	side	note,	I’ll

76Mastering Machine Learning with Core ML and Python

be	referring	to	machine	learning	and	data	science	interchangeably	in	this	chapter	—	since
they’re	very	closely	related.	While	they’re	not	the	same	field,	the	distinction	isn’t
important	for	you	to	know	right	now.

Before	we	begin	installing	and	setting	one	up,	let’s	take	a	look	at	what	you	can	do	with	a
Jupyter	Notebook	first	—	since	it	doesn’t	seem	that	interesting	to	you	so	far.

Terminal	Commands

As	developers,	we	all	know	how	annoying	it	can	be	to	enter	a	series	of	shell	commands
multiple	times	over	—	especially	when	we’re	doing	the	same	daily	tasks	like	traversing
our	file	system	or	installing	Cocoapods	in	our	apps.

This	is	one	place	where	a	Jupyter	Notebook	can	be	used	with	ease.	You	can	simply	write
out	your	commands	(as	you’ll	learn	how	to	do	later),	and	precede	by	an	exclamation
point	to	tell	the	system	that	you’re	dealing	with	shell	commands	here.

Presentation	Slide	Deck

Now,	our	comfort	zone	is,	obviously,	behind	a	computer.	However,	it’s	important	to
realize	that	some	of	our	best	work	happens	when	we	communicate	it	with	those	around
us,	including	projects	at	work,	school,	or	with	the	open	source	community.	But,
sometimes,	code	can	be	clumsy	to	read	when	projected	as	plain	text	on	a	presentation.

Jupyter	Notebook	has	a	feature	in	which	you	can	generate	slides	from	your	blocks	of	code
in	your	notebooks,	which	takes	care	of	syntax	highlighting	and	styling	for	you.	This
allows	you	to	keep	your	audience	engaged	as	you	present	your	information,	without
having	to	take	out	time	to	create	a	slide	deck.

Visualizations	and	Tables

Sometimes,	just	seeing	a	dataset	isn’t	enough,	and	it’s	easier	to	graph	it	or	view	it	in	an
organized	format,	like	a	table.	But,	when	you	do	graph	your	data,	it	takes	too	long	to
update	your	graphs	when	you	add	more	points	to	your	dataset,	or	if	you	change	the
dataset	altogether.

77Mastering Machine Learning with Core ML and Python

You	guessed	it:	Jupyter	Notebook	allows	you	to	create	customized	charts,	graphs,	and
tables,	which	update	each	time	you	run	your	code.	This	makes	it	nearly	seamless	to
interact	with	your	data	in	a	visual	way,	while	being	able	to	make	changes	on	the	fly.

Now,	there’s	a	lot	more	you	can	actually	do	with	Jupyter	Notebooks,	many	of	which	you’ll
learn	throughout	the	course	of	this	chapter.	But	hopefully,	you	now	have	a	better	idea	of
what	a	Jupyter	Notebook	is	and	why	it’s	so	commonly	used	in	the	machine	learning
industry.	As	a	side	note,	you’re	likely	to	see	them	referred	to	as	IPython	Notebooks,	since
Jupyter	Notebook	has	evolved	from	them.	This	might	help	if	you’re	checking	out	older
tutorials	or	resources	on	the	internet.

Installing	Anaconda

Now,	I’m	sure	you’re	exited	to	dive	in	and	begin	working	with	your	own	Jupyter
Notebook.	Let’s	make	sure	everything	is	in	line	first.	While	you	can	run	these	directly	on
your	system,	most	professionals	prefer	to	use	a	virtual	environment,	which	allows	you	to
isolate	your	projects	and	have	unique	modules	—	or	dependencies	—	for	each	of	your
projects.

If	you	aren’t	aware	and	create	projects	directly,	Python	goes	to	the	same	place	on	your	file
system	to	retrieve	dependencies.	Therefore,	if	you	were	using	two	different	versions	of
the	same	dependency	for	two	different	projects,	it	may	cause	problems.	So,	to	turn	you
into	a	professional,	let’s	use	virtual	environments!

As	we	mentioned	before,	you	can	install	Jupyter	Notebook	directly	using		pip	,	a	Python
tool	for	managing	dependencies.	However,	using	a	pre-packaged	module	such	as
Anaconda	is	the	best	way	to	install	data	science	tools	for	beginners.	In	addition,	you’ll
have	many	other	tools	needed	for	future	projects	as	well.	Let’s	start	installing	it.

First,	download	the	64-Bit	Command	Line	Installer	for	Anaconda	on	the	Anaconda
Distribution	Downloads	Page	(https://www.anaconda.com/distribution/).	You’ll	need	to
select	your	operating	system	and	press	the	download	button.	We'll	be	using	the	Python
3.8	version	in	this	book,	since	that's	currently	the	only	version	supported	by	Anaconda.

78Mastering Machine Learning with Core ML and Python

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

Figure	3-1:	Installing	Python	3.8

If	you’re	not	as	comfortable	with	the	command	line	installer,	you	can	use	the	64-Bit
Graphical	Installer	instead,	which	is	pretty	straightforward	to	use.	However,	I
strongly	recommend	the	command	line	installer,	since	it	gets	you	adapted	to	the
command	line	and	is	much	more	reliable	(especially	when	there	are	conflicting
installations	on	your	computer).

Open	Terminal

Once	you	have	the	file	downloaded,	open	Terminal.	You’ll	find	this	in	a	folder	called
Other	in	your	Applications	folder.	Alternatively,	you	can	press	Command	+	Space
to	reveal	Spotlight	Search,	where	you	can	search	for	the	Terminal.

Once	you	find	it,	you’ll	see	a	window	with	a	black	background,	which	looks	something
like	this:

79Mastering Machine Learning with Core ML and Python

Figure	3-2:	Terminal	Window

Run	the	Installer

Now,	all	you	need	to	do	is	run	the	installer.	It’s	worth	noting	that	the		%		or		$		signs
before	the	command	are	called	prompts,	and	they	shouldn’t	be	entered.

To	run	the	installer,	type		bash		and	then	drag	the	downloaded	file	into	your	Terminal
window.	The	path	will	auto	populate	and	look	something	like	this:

%	bash	~/Downloads/Anaconda2-2019.03-MacOSX-x86_64.sh

80Mastering Machine Learning with Core ML and Python

The	command	above	tells	your	terminal	to	run	the	bash	shell	script,	which	you
downloaded	earlier.	The	file	contains	a	series	of	commands,	or	steps,	which	allow	for	easy
installation	of	Anaconda.	When	you’ve	entered	this	command,	you’ll	see	a	screen	which
looks	like	this:

Figure	3-3:	Starting	the	Anaconda	Installer

This	screen	should	read	"Welcome	to	Anaconda2	20XX.XX"	if	you’ve	installed	the
correct	version	of	Anaconda.	Next,	press	Enter/Space	to	continue	to	the	license
agreement.

81Mastering Machine Learning with Core ML and Python

Figure	3-4:	Anaconda	End	User	Licence	Agreement

When	you	see	the	license	agreement,	continue	pressing	Enter	several	times	to	read
through	it.	When	you’ve	reached	the	end,	you’ll	see	text	which	reads	"Do	you	accept	the
license	terms?"

82Mastering Machine Learning with Core ML and Python

Figure	3-5:	Accepting	the	EULA

Type	"yes"	in	your	terminal	window	to	accept	the	license	terms.

83Mastering Machine Learning with Core ML and Python

Figure	3-6:	Confirming	the	Install	Location

Then,	you’ll	see	a	message	which	asks	you	to	confirm	your	installation	location.	I
recommend	that	you	press	Enter	and	confirm	your	installation,	but	if	you’d	like,	you	can
change	where	you’d	like	to	install	it.

84Mastering Machine Learning with Core ML and Python

Figure	3-7:	Installation	Confirmation

Finally,	after	a	few	minutes	of	waiting,	you’ll	see	a	confirmation	screen	asking	you	to
close	your	Terminal	window	and	reopen	it	to	cause	the	installation	to	take	effect.

And	you’re	done!	You	should	be	proud	of	yourself	for	installing	Anaconda	completely	on
the	command	line;	if	this	is	your	first	time	using	the	Terminal,	it’s	a	huge
accomplishment.	Congratulations!

Creating	a	Jupyter	Notebook

Here	comes	to	the	moment	you’ve	been	waiting	for	—	it’s	time	to	create	your	own	Jupyter
Notebook.	In	the	next	section,	you’ll	learn	about	Python.	But	before	that,	you	need	to
create	and	navigate	Jupyter	Notebook.

85Mastering Machine Learning with Core ML and Python

Launch	Anaconda

By	now,	you	should	have	Anaconda	installed,	which	comes	bundled	with	Jupyter
Notebook.	Start	by	launching	Anaconda	Navigator,	which	you	can	find	using	Spotlight
Search	on	your	Mac.	The	icon	looks	like	a	green	circle	with	a	geometric	pattern	on	the	left
side.	When	you’ve	launched	it,	you’ll	see	a	screen	like	this:

Figure	3-8:	Anaconda	Navigator

Launch	Jupyter	Notebook

Now,	click	the	Launch	button,	enclosed	in	a	rectangle,	underneath	the	box	which	says
Jupyter	Notebook.	You’ll	see	a	Terminal	window	popup,	which	looks	something	like	this:

86Mastering Machine Learning with Core ML and Python

Figure	3-9:	Command	to	Launch	Jupyter	Notebook

After	a	couple	of	seconds,	the	command	in	the	terminal	will	execute,	and	you’ll	see
another	terminal	window	which	looks	like	this:

87Mastering Machine Learning with Core ML and Python

Figure	3-10:	Executing	Launch	Command

You	don’t	need	to	worry	about	what	it	says,	but	the	text	will	help	you	understand	how	to
use	Jupyter	Notebook	yourself.	But,	don’t	worry	if	you	don’t	want	to	read	it.	A	window
will	open	soon	in	your	web	browser,	in	my	case,	Safari,	to	present	the	Jupyter	Notebook
interface.	You’ll	see	your	file	system	contents,	and	you	can	navigate	around	similar	to
your	Finder.

88Mastering Machine Learning with Core ML and Python

Figure	3-11:	Jupyter	Notebook	File	Directory

Create	a	New	Notebook

With	the	New	button	listed	at	the	top	right,	you’ll	be	able	to	create	a	new	Text	File,
Folder,	and	Terminal.	If	you’d	like,	you	can	create	a	folder	to	organize	your	Jupyter
notebooks;	but	if	not,	go	ahead	and	tap	Python	2	to	create	a	new	Jupyter	Notebook	in
the	current	directory.

89Mastering Machine Learning with Core ML and Python

Figure	3-12:	Creating	a	Jupyter	Notebook

Great!	A	new	window	should	open	up	with	your	Jupyter	notebook.	You’ll	see	an	empty
box	where	you	can	start	typing	code,	and	a	word-processor-style	menu	along	the	top	of
the	webpage.

90Mastering Machine Learning with Core ML and Python

Figure	3-13:	New	Jupyter	Notebook

You’ll	also	see	the	Terminal	window	update	as	you	make	changes	to	your	notebook,	such
as	creating	a	new	notebook,	deleting	a	notebook,	or	making	changes	on	one.	After
creating	your	notebook,	your	Terminal	will	look	something	like	this:

91Mastering Machine Learning with Core ML and Python

Figure	3-14:	Notebook	Updates	in	Terminal

When	you	close	your	notebook	(File	>	Close	and	Halt),	you’ll	see	it	appear	as	a		.ipynb	
file	in	both	your	Finder	and	the	file	navigator	within	Jupyter	Notebook.	It	may	look	like
this:

92Mastering Machine Learning with Core ML and Python

Figure	3-15:	Running	Jupyter	Notebook

Exiting	Jupyter	Notebook

For	now,	we’re	done.	Now,	you	need	to	close	your	Jupyter	Notebook	so	that	it	doesn’t	run
eternally	on	your	computer.	To	do	this,	head	back	to	your	Terminal	window	and	click
Control	+	C	to	quit	Jupyter	Notebook.	You’ll	then	see	a	confirmation	message,	asking
you	to	confirm	whether	you’d	like	to	quit	your	notebook:

93Mastering Machine Learning with Core ML and Python

Figure	3-16:	Shutting	Down	Jupyter	Notebook

When	you	see	this	message,	you	have	5	seconds	to	type		y		or		Y		to	confirm	your
notebook	shutdown,	otherwise,	your	notebook	will	continue	running.	Finally,	when
you’re	able	to	confirm	that	you	want	to	shutdown	your	notebook	server,	you’ll	get	a
message	which	says		[Process	completed]		to	confirm.

94Mastering Machine Learning with Core ML and Python

Figure	3-17:	Shutdown	Confirmation	Message

3-2	Basic	Python
In	the	previous	section,	you	learned	about	what	Jupyter	Notebook	is	as	well	as	how	to
install	and	set	them	up	on	your	computer.	You	also	created	your	first	Jupyter	Notebook
and	learned	about	how	Anaconda	can	help	you	use	various	other	tools	for	your	data
science	needs.	You	now	have	a	better	sense	of	how	you	can	use	these	tools	in	your
professional	machine	learning	workflow.

In	this	section,	you’ll	learn	about	Python,	the	language	in	which	the	world	of	machine
learning	is	written.	Essentially,	you’ll	have	a	whole	new	programming	language	under
your	belt	by	the	end	of	the	section.	If	you	already	have	some	Python	experience,	you	may

95Mastering Machine Learning with Core ML and Python

skip	this	section;	however,	you’ll	review	your	fundamentals	and	may	even	learn
something	new	about	Jupyter	Notebook	if	you	stick	around.

Variables,	Loops,	and	Control	Flow

First,	let’s	get	the	bare-bone	fundamentals	out	of	the	way.	Variables,	loops,	and	if-
statements	are	likely	concepts	you’ve	come	across	in	other	languages,	including	Swift.
While	the	syntax	may	be	slightly	different	in	Python,	the	core	fundamentals	are	very
similar.

Variables

In	Python,	declaring	variables	is	easy.	All	you	need	to	do	is	write	the	variable	name,
followed	by	the	value	of	the	variable.	Like	Swift,	Python	automatically	determines	the
type	of	the	variable,	so	you	don’t	have	to	explicitly	tell	it	whether	your	variable	is	an
integer,	boolean,	or	string.

If	I	wanted	to	create	a		name		variable	and	set	it	to	my	name,	I	could	do	it	like	this:

name	=	"Vardhan"

Easy	as	that!	No	semicolons	or	keywords	to	use;	all	you	needed	to	do	was	say	what	you
wanted.	You	can	now	access	the		name		variable	to	mean	the	string		"Vardhan"	

Loops

As	you	may	know,	loops	allow	programmers	to	repeat	actions	without	copying	and
pasting	the	same	code	multiple	times.	If	one	needed	to	print	a	million	asterisks,	they
would	use	a	loop	instead	of	pasting	the	line	to	do	so	a	million	times.

While	Loops

	While		loops	allow	you	to	repeat	a	certain	action	until	a	specific	condition	is	met.	For
instance,	if	you	wanted	to	print	"hello"	and	increment	a	variable	until	that	variable	is
greater	than	10,	you	would	do	the	following:

96Mastering Machine Learning with Core ML and Python

num	=	0

while	(num	<	10):

				print("hello")

				num	=	num	+	1

As	you	can	tell	in	this	example,	the	variable		num		is	set	to	a	default	value	of		0	.	Before	the
code	inside	the		while		loop	is	executed,	Python	checks	if		num		is	less	than		10	.	If	the	test
succeeds,	the	body	of	the	loop	is	executed,	resulting	in	"hello"	being	printed	and		num	
being	incremented	by	one.

For	Loops

	For		loops	help	you	get	more	quantitative	control	of	your	looping.	If	you	need	to	print	a
list	of	numbers	from	1	to	10,	you	can	easily	do	this	with	a	for	loop,	and	this	task	would
likely	require	significantly	more	effort	with	a	while	loop	instead.	To	loop	through	a	set	of
numbers,	you	can	do	the	following:

for	num	in	range(1,	10):

				print(num)

By	default,	the	variable		num		will	get	incremented	by		1	,	but	you	can	increment	it	by
another	number	by	adding	a	third	parameter	to	the	range.	You	can	increment	it	by		3	,
for	example,	as	follows:

for	num	in	range(1,	10,	3):

				print(num)

You	can	also	loop	through	other	types,	such	as	strings,	arrays,	and	tuples.	To	loop
through	the	characters	of	the	word		apple	,	you	could	do	this:

word	=	"apple"

for	char	in	word:

				print(char)

97Mastering Machine Learning with Core ML and Python

In	this	example,	the	variable		word		is	defined	as	the	string		"apple"	,	and	we’re	looping
through	each	character	in	the	string	by	defining	the	loop	with	an	existing	variable
parameter,	as	opposed	to	the	range	function.

Control	Flow

Now,	you	might	only	want	certain	code	to	run	under	certain	conditions,	and	you	can
control	the	flow	of	your	code	via		if		and		if-else		statements.	Of	course,	you’re	likely
familiar	with	this	in	Swift,	and	the	concept	is	nearly	identical	in	Python.	Examine	these
lines	of	code:

num	=	1

if	num	<	0:

				print("false")

Straightforward,	right?	If	the	variable		num		is	less	than		0	,	the	program	prints	"false,"
otherwise,	it	prints	nothing.	But,	if	you	wanted	to	print	something	in	that	otherwise	case,
you	could	use	an		else		statement	such	as	this:

num	=	1

if	num	<	0:

				print("false")

else:

				print("true")

Finally,	if	you	want	to	give	the		else		parameter	a	specific	condition,	you	can	do	the
following	to	narrow	it	down	further:

num	=	1

if	num	<	0:

				print("false")

elif	num	==	1:

				print("right	on")

else:

				print("true")

98Mastering Machine Learning with Core ML and Python

The		elif		statement	specifies	that	if	the		num		variable	is	not	less	than		0	,	then	the
compiler	should	check	if		num		is	equal	to		1	.	If		num		is	not	equal	to		1	,	it	should	default
to	printing	"true."

Data	Structures	and	Functions

As	you	may	have	guessed,	Python	has	many	of	the	same	data	structures	as	Swift,	Java,
and	other	object-oriented	programming	languages.	Similarly,	Python	also	has	primitive
data	structures	and	non-primitive	data	structures,	both	are	likely	familiar	to	you.

Primitive	Data	Structures

Primitive	data	structures	are	those	which	are	the	most	basic	—	or	pure	—	types	in	Python.
They’re	essentially	the	building	blocks	of	the	language	and	are	used	quite	frequently	in
day-to-day	programming.

Integers	and	Floats

Integers	and	floats	are	both	ways	of	representing	numbers.	In	Swift,	these	two	types	work
in	the	same	way.	An	integer	can	represent	whole	numbers,	such	as		1	,		5	,	and		9	,	while
floats	can	represent	numbers	with	floating	points,	such	as		1.1	,		5.89	,	and		3.14	.	As	you
may	imagine,	these	can	be	useful	for	a	variety	of	purposes,	and	you	probably	already	use
them	without	thinking	about	it.

You	can	declare	an	integer	like	this:

num	=	1

x	=	3

integer	=	9

Or,	you	can	declare	a	float	like	this:

num	=	1.1

y	=	5.89

float	=	3.14

99Mastering Machine Learning with Core ML and Python

Booleans

If	you	only	need	to	represent	a	true	or	false	value,	you	can	use	a	boolean,	again,
something	identical	to	Swift.	You	can	declare	a	boolean	as	follows:

ketchup	=	false

mustard	=	true

Simple	enough,	right?	Booleans	are	perfect	to	use	with	control	flow,	since	you	can
logically	execute	your	code	in	an	easy-to-read	way.

Strings

Knitting	is	a	great	way	to	express	your	creativity	—	not	those	type	of	strings!	Strings	are	a
series	of	characters	which	spell	out	words,	sentences,	or	even	nothing	at	all.

In	almost	all	languages,	including	Python,	you	can	use	single	or	double	quotes	to	define
strings.	You	can	define	a	string	like	this:

name	=	'Vardhan'

Or,	for	double	quotes,	you	can	do	this:

name	=	"Vardhan"

And,	you	can	use	the		+		operator	to	concatenate,	or	add	together,	two	strings	and	make	a
larger	string,	such	as	the	following:

first	=	"Swift	"

second	=	"Rules!"

print(first	+	second)

The	program	will	print	the	string	"Swift	Rules!"	after	combining	the	two	strings		first	
and		second		together.

100Mastering Machine Learning with Core ML and Python

Non-Primitive	Data	Types

There	are	many	non-primitive	data	types,	unlike	the	primitives,	which	there	are	only	four
of.	Since	I’m	not	teaching	a	full	computer	science	course	here,	we’ll	only	talk	about	the
main	ones,	but	you’re	welcome	to	Google	more	if	you’re	interested	in	learning	about	the
ones	not	covered	in	this	chapter.

Arrays	and	Lists

Arrays	are	one	of	my	favorite	data	types,	since	they	allow	you	to	store	a	list	of	several	data
types.	For	example,	you	can	convert	a	string	into	an	array	of	characters,	or	you	could
store	the	items	in	your	to-do	list	in	an	array.	However,	in	Python,	the	data	structure	we
call	arrays	in	Swift	are	known	as	lists.

While	Python	does	have	arrays,	they	work	quite	differently	with	that	arrays	in	Swift.
Lists,	on	the	other	hand,	work	exactly	the	same	as	arrays	in	Swift.	Other	than	the
confusing	naming,	they’re	quite	similar	in	their	usage.	You	can	declare	a	list	like	this:

nums	=	[1,	5,	9]

The	list	above	contains	three	integers,	which	are		1	,		5	,	and		9	.	Unlike	Swift,	you	can
put	different	types	in	the	same	array,	like	this:

nums	=	[true,	"like",	3.14,	"?"]

While	it	seems	unnatural	to	us	Swift	developers,	the	above	is	actually	valid.	We	can	store
the	boolean		true	,	the	string	"like",	the	float		3.14	,	and	the	string	"?"	in	the	same	array.

To	access	values	of	an	array,	you	must	specify	the	index	at	that	location	and	use	subscript
notation	like	the	following	example:

nums	=	[true,	"like",	3.14,	"?"]

word	=	nums[1]

101Mastering Machine Learning with Core ML and Python

The	variable		word		will	be	set	to	"like,"	since	it’s	located	at	index	1	of	the		nums		array.
Remember,	arrays	always	begin	at	0,	not	1.	You	can	also	change	values	of	an	array	in	the
same	way,	using	subscript	notation.

Tuples

You	may	or	may	not	be	familiar	with	tuples,	but	they’re	quite	useful,	especially	when	you
don’t	need	the	full	functionality	of	an	array	but	still	need	to	store	more	than	one	value.
One	limitation,	however,	is	that	tuples	are	immutable,	meaning	that	they	can’t	be
changed	after	they’re	defined.	You	can	create	a	tuple	as	follows:

my_tuple	=	1,	4

my_other_tuple	=	(1,	5)

As	you	can	see,	there	are	two	ways	of	writing	a	tuple:	one	with	parentheses	and	one
without.	Similar	to	an	array,	you	can	access	tuples	using	subscript	notation:

mine	=	my_tuple[0]

Here,	the	variable		mine		will	be	set	to	the	value		1	,	as	common	sense	might	dictate.
However,	different	from	arrays,	you	cannot	set	tuples	in	this	way.

Dictionaries

As	with	arrays,	you’ve	likely	used	dictionaries	quite	extensively	in	Swift,	especially	if
you’ve	dealt	with	JSON	or	networking	calls	of	any	kind.	A	dictionary	is	just	as	it	sounds:	a
set	of	keys	and	values.	Here’s	how	you	create	a	dictionary	in	Python:

contacts	=	{	"Vardhan"	:	"555-555-5555",	"Simon"	:	"333-3333-3333"	}

In	this	dictionary,	the	two	keys	are	"Vardhan"	and	"Simon,"	and	their	phone	numbers	—
or	the	associated	values	—	are	"555-555-5555"	and	"333-333-3333,"	respectively.	It’s
worth	noting	that	the	keys	and	values	don’t	necessarily	have	to	be	of	the	same	type	in	a
dictionary.

102Mastering Machine Learning with Core ML and Python

To	access	values	in	a	dictionary,	you	use	the	key	as	opposed	to	the	index	like	in	arrays.	To
get	the	phone	number	associated	with	"Vardhan,"	you	would	do	the	following:

phone_num	=	contacts["Vardhan"]

The		phone_num		variable	is	now	set	to	"555-555-5555"	using	the	subscript	notation	as	we
did	for	arrays	and	tuples.

Functions

Instead	of	reusing	code,	we	use	functions.	You	use	functions	all	the	time	in	Swift:	not
only	do	you	write	functions,	but	you	also	take	advantage	of	the	built-in	ones.	By	using	the
	def		keyword	(similar	to		func		in	Swift),	you	can	define	a	function	like	this:

def	the_best_function():

				print("I'm	actually	useless.")

The	function	won’t	actually	do	anything	until	it’s	called,	so	to	call	it,	you	simply	type	out
the	name	of	the	function,	again,	similar	to	Swift:

the_best_function()

To	pass	parameters	into	functions,	just	declare	a	variable	name	inside	the	parentheses	to
tell	Python	that	it	should	expect	a	value	passed	in	when	the	function	is	called.	To	do	this,
do	the	following:

def	my_email(email):

				print("My	email	is:	"	+	email)

When	you	call	the		my_email()		function,	you’ll	need	to	pass	in	an	email	parameter,	which,
in	this	case,	will	be	printed	out	in	the	program’s	output.

103Mastering Machine Learning with Core ML and Python

Classes,	Methods,	and	Objects

To	wrap	up	this	section,	let’s	briefly	look	at	classes	and	objects	to	see	how	you	can	put	the
"object"	in	"object-oriented"	for	the	purposes	of	Python.

Classes

A	class,	as	with	Swift,	is	similar	to	a	template.	It	outlines	how	to	create	an	object,	but	isn’t
one	on	its	own.	To	create	a	class,	you	must	use	the		class		keyword	like	shown	below:

class	Person:

				name	=	"Tim"

In	this	example,	the	class		Person		has	one	attribute:	the		name		variable.	When	creating	an
instance	of	this	class,	known	as	an	object,	you	can	access	this	field	and	change	it
depending	on	your	intent.

Methods

You	can	also	create	methods	to	do	various	tasks.	When	functions	belong	to	a	class,
they’re	referred	to	as	methods.	To	change	the	name	of		name	,	you	could	write	a	function
called		rename	,	like	this:

class	Person:

				name	=	"Tim"

				def	rename(self,	updated_name):

								self.name	=	updated_name

You’ll	notice	that	the	first	argument	that		rename(:)		takes	in	is		self	.	This	is	required	for
a	method	in	Python.	The	second	parameter	is	the	new	name.	Inside	the	method	body,
you	set		self.name		to		updated_name	.

You	may	be	wondering	about	the		init		method.	You	can	also	add	an		init		method	like
this,	which	allows	you	to	avoid	hardcoding	your	attributes:

104Mastering Machine Learning with Core ML and Python

def	__init__(self,	name):

				self.name	=	name

Objects

When	you	instantiate	a	class,	it’s	called	an	object.	As	mentioned	before,	a	class	is	a
blueprint,	and	an	object	is	a	concrete	representation	of	it.	Think	of	it	like	a	house	plan
and	the	house	itself.	To	create	an	object,	do	the	following:

man	=	Person()

Now,		man		contains	an	instance	of	the		Person		class,	and	you	can	access	the		name	
attribute	using	dot	notation.	For	example,	you	can	set	a	name	variable	(outside	of	the
class)	as	follows:

name	=	man.name

To	change	the	name,	we	can	use	the	method	we	created	earlier.	Again,	using	dot
notation,	you	can	call	the	method	on		man	:

man.rename("Timothy")

Now,	if	you	try	to	access		man.name	,	you’ll	find	that	it’s	been	changed	to	"Timothy"	from
"Tim."	However,	this	change	is	only	valid	for	the		man		object,	not	for	other	instances	of
the		Person		class.

105Mastering Machine Learning with Core ML and Python

3-3	Uses	of	Jupyter	Notebook
In	the	previous	section,	you	learned	about	Python.	If	you	didn’t	have	any	experience	with
Python,	you	should	now	be	at	a	level	where	you	can	do	basic	things	in	Python.	Later	in
the	book,	you’ll	hone	your	skills	further	by	building	real-world	models	and	programs	in
this	new	language.	You	can	now	relate	your	Python	skills	to	Swift	and	see	how	similar	the
two	languages	are.

Earlier	I	covered	how	to	install	Jupyter	Notebook,	now	let's	learn	about	how	you	can	use
Jupyter	Notebook,	including	styling	your	text,	writing	clear	descriptions,	and	interlacing
your	newly	learned	Python	code.	You’ll	also	learn	how	to	represent	mathematical
expressions	using	LaTeX	and	create	various	heading	styles.

Code	and	Prose

As	we	discussed	earlier	in	the	chapter,	one	of	the	major	benefits	of	using	Jupyter
Notebook	is	the	ability	to	intersperse	code	and	prose	—	that	is,	descriptions	—	to	make
your	code	more	like	an	article	or	a	book,	rather	than	a	plain-old	Python	file.	You	can	also
use	the	output	from	your	code	and	make	your	text-based	elements	of	your	Jupyter
Notebook	update	dynamically.

Start	by	creating	a	new	Jupyter	notebook	like	you	did	earlier	in	the	chapter.	No	worries	if
you	don’t	remember;	feel	free	to	refer	the	pages	towards	the	beginning	of	the	chapter	to
strengthen	your	skills.	Once	you’re	ready,	create	a	new	Jupyter	Notebook:

106Mastering Machine Learning with Core ML and Python

Figure	3-18:	Jupyter	Notebook	File	Directory

Mine,	as	you	can	see,	is	called	Untitled.ipynb.	After	clicking	on	it,	it	opens	and	appears
something	like	this:

107Mastering Machine Learning with Core ML and Python

Figure	3-19:	New	Jupyter	Notebook

Great!	You	now	have	a	new	Jupyter	Notebook.	You	can	also	use	the	old	one	you	created
earlier	to	proceed.

Python	Output

One	of	the	great	things	about	Jupyter	Notebook	is	the	ability	to	get	output	from
individual	cells,	instead	of	needing	to	run	the	entire	notebook	for	one	single	output	file	in
the	end.

Printing	a	Message

108Mastering Machine Learning with Core ML and Python

When	you	first	open	your	notebook,	your	cursor	will	be	on	the	first	cell.	Here,	you	can
type	Python	code.	For	our	first	example,	print	the	following:

print("hello")

Pretty	self-explanatory,	right?	And,	you	must	be	wondering	why	we	didn’t	type	"Hello
World"	—	it’s	simple.	It’s	overused,	but	that’s	besides	the	point.	When	you	hit	the	Run
button	in	the	toolbar,	you’ll	see	the	output	which	looks	like	this:

Figure	3-20:	Printing	a	Message

Printing	a	List	of	Numbers

109Mastering Machine Learning with Core ML and Python

Now,	since	you	haven’t	yet	practiced	your	newly	developed	Python	skills,	let’s	print	the
following	with		for		loops	and		print		statements.

1

2

3

4

It’s	simple	enough,	but	it	helps	you	get	a	sense	for	what	you	can	do	in	Jupyter	Notebook.
Since	you	already	ran	the	code,	a	new	cell	should	now	be	active.	In	the	cell,	type	the
following:

for	num	in	range(1,	5):

				print(num)

Note	that	the	range	goes	until		5	,	even	though	we	only	want	numbers	only	until		4	.	This
is	because,	as	you	may	have	guessed,	the		range(:)		function	in	Python	is	exclusive,	so	by
typing		range(1,	5)	,	you’re	telling	the		for		loop	to	go	in	the	interval	1	≤		num		<	5,	which
ultimately	gets	us	the	outcome	we	want:

110Mastering Machine Learning with Core ML and Python

Figure	3-21:	Printing	a	List	of	Numbers

Now,	run	your	code,	and	you’ll	see	that	you’ve	achieved	the	end-result.	Your	Jupyter
Notebook	now	has	the	numbers		1		through		4		printed,	each	on	their	own	line.

Writing	Descriptive	Text

Now,	our	little	coding	project	was	fun,	but	when	someone	reading	the	code,	they	may	not
understand	why	the	code	is	there,	especially	if	they’re	very	new	to	Python.	Or,	you	may
have	intended	to	make	some	changes	to	the	code,	and	you	sent	your	Jupyter	Notebook	to
a	friend.	For	these	scenarios,	it’s	useful	to	use	text	in	between	your	code	snippets.

111Mastering Machine Learning with Core ML and Python

With	a	new	cell	is	selected,	change	the	Cell	Type,	which	you	can	do	using	the	unlabeled
dropdown	which	defaults	to	read	Code.	You’ll	need	to	change	this	to	Markdown.	You’ll
see	the		In		prompt	on	the	left	of	the	cell	disappear,	and	you	can	now	type	a	message.

When	you	do,	your	screen	should	look	something	like	this:

Figure	3-22:	Adding	a	Description	Cell

Finally,	run	your	code	using	the	Run	button,	and	your	text	will	render	into	markdown.
Don’t	worry	if	you	don’t	know	what	that	is	yet.	We’ll	be	covering	it	at	the	very	end	of	this
chapter.

Data	Visualization

112Mastering Machine Learning with Core ML and Python

Another	reason	to	use	Jupyter	Notebook,	as	you	learned,	is	its	ability	to	visualize	your
code	outputs,	and	interact	with	your	data	(in	the	data	science	sense).	There	are	also
third-party	libraries	which	can	help	you	produce	tables,	graphs,	and	models	to	see	your
data	at	a	different	level,	and,	more	importantly,	help	others	understand	what	you’re
trying	to	do.

Creating	a	Graph

The	most	common	tool	for	data	visualization	in	Python	is		matplotlib	.	It’s	an	open-
source	tool,	and	it	can	be	used	for	the	purposes	detailed	before.	Before	starting,	make
sure	your	cursor	is	on	a	new	cell,	where	it	likely	already	is.

Configuring	Inline	Graphs

By	default,	Jupyter	Notebook	will	show	you	a	text	representation	of	your	graph,	so	you
need	to	explicitly	tell	it	to	show	a	graph	of	your	—well	—	graph.	Doing	this	is	very	simple;
all	you	need	to	do	is	to	enter	the	following	lines	of	code	in	your	new	cell:

%matplotlib	inline

Great!	You	won’t	run	into	the	issue	of	having	your	graphs	be	invisible	anymore.	If	you’re
curious,	you	can	find	out	about	the	other		%		operators	you	can	use	with	Jupyter
Notebook	to	display	various	other	things.

Importing	Frameworks

First,	you’ll	need	to	import	the		matplotlib		framework,	which’ll	allow	you	to	use	the
plotting	framework	in	your	program.	You’ll	also	need	to	import		numpy	,	which	handles
basic	mathematical	functions	in	Python.	To	do	this,	continue	by	adding	the	following
lines	of	code:

import	numpy	

import	matplotlib.pyplot	as	plot

113Mastering Machine Learning with Core ML and Python

The	first	one,		numpy	,	doesn’t	have	an		as		modifier,	which	means	that	it	will	be	referred
to	as		numpy		throughout	the	program.	However,	the		matplotlib		line	does,	since	we	don’t
want	to	type	out		matplotlib.pyplot		each	time	we	want	to	use	it.	Instead,	by	specifying		as
plot	,	we’re	telling	Python	that	we’ll	refer	to	it	as		plot		for	short.

Creating	the	Cosine	Function

For	our	example	here,	let’s	create	the	cosine	function.	We’ll	define	the		x		and		y	
variables	separately	and	then	plot	them	in	the	next	step.	This	is	that	step	which	required
us	to	import	the		numpy		framework.	Type	the	following:

x	=	numpy.arange(0,	5	*	numpy.pi,	0.001)	

y	=	numpy.cos(x)

For	the		x		variable,	we	use	the		arange(:)		method	to	evenly	distribute	values	from	0	to
5π	for	our	x-coordinates.	In	addition,	the	method	takes	a	third	parameter	which
defines	the	resolution	—	or	frequency	—	of	the	distributed	values.

For	the		y		variable,	we	simply	pass	in	the		x		values	into	the	graph	of	cosine,	which	is
conveniently	provided	to	us	by	the		numpy		framework.	This	generates	the		y		values	for
each	of	the		x		values	generated	earlier.

Displaying	the	Graph

Finally,	you’re	ready	to	display	your	graph.	And,	for	this	step,	we’re	back	using	the
	matplotlib		framework	by	passing	in	the		x		and		y		values	we	generated	in	the	previous
step.	Type	in	the	following	code	to	get	your	graph:

plot.plot(x,	y)

plot.show()

As	self	explanatory	as	it	is,	the		plot(:)		function	takes	in	two	parameters:	the		x		and	the
	y		coordinates.	It	then	plots	them,	as	the	name	suggested.	The		show()		method	takes	no
parameters	and	displays	the	graph	below	your	cell.

Now,	when	you	run	your	code,	you	should	see	something	like	this:

114Mastering Machine Learning with Core ML and Python

Figure	3-23:	Displaying	a	Cosine	Graph

Later	on,	you	can	also	add	things	like	chart	labels,	axis	labels,	keys,	and	even	use
different	types	of	graphs,	such	as	histograms,	pie	charts,	and	more.	However,	the	basic
concepts	are	the	same	for	nearly	all	graphs.

115Mastering Machine Learning with Core ML and Python

Markdown	and	LaTeX

We’ll	conclude	this	chapter	by	learning	Markdown	and	LaTeX.	Chances	are,	if	you’ve
done	any	sort	of	online	documentation,	especially		README		files	on	GitHub,	you’re	likely
familiar	with	Markdown.	If	not,	that’s	okay,	we’ll	review	it	here	anyways.	LaTeX,	in	case
you’re	not	familiar	with,	is	used	to	represent	mathematical	expressions.	A	fun	fact:	this
entire	book	was	written	in	100%	markdown	and	LaTeX	(for	the	math/numerical	bits).
While	it’s	crazy	to	think	about,	it	demonstrates	the	true	power	of	these	tools.

Markdown

Indirectly,	you’ve	already	used	the	Markdown	feature	of	Jupyter	Notebook.	If	you	recall,
you	were	asked	to	switch	your	cell	to	Markdown	when	you	were	entering	a	comment.
The	same	comment,	and	its	surrounding	text,	can	be	styled	using	Markdown.

Markdown	allows	you	to	use	a	series	of	shorthand	symbols	to	convey	italics,	bold,
headings,	and	other	stylized	content	in	a	quick	way,	without	needing	to	click	on	buttons
in	a	WYSIWYG	(what-you-see-is-what-you-get)	editor.

To	begin,	change	your	new	cell	type	to	Markdown.	It’ll	be	a	dropdown	in	the	top	menu
which	reads	Code	by	default.	You’ll	see	the		In		prompt	on	the	left	of	the	cell	disappear
as	before.

Headers

Headers	are	one	of	the	most	commonly	used	features	of	markdown,	since	they	help	you
bring	some	structures	to	seemingly	long-form	writing.	They’re	also	the	simplest	to	use,
since	they’re	just	one	or	more	hashtags	in	a	line.

Type	the	following	into	your	new	cell:

#	I	am	a	title

116Mastering Machine Learning with Core ML and Python

This	will	render	as	blue	text,	and	while	it’ll	still	retain	the	hashtag,	it	will	appear	larger
than	it	did	before.	This	is	called	a	Header	1	or	a	Title.	This	should	be	used	to	convey
major	changes	in	your	Jupyter	Notebook,	perhaps	to	separate	completely	different	pieces
of	code	from	each	other	in	longer	notebooks.

You	can	also	test	other	header	sizes,	and	see	how	they	appear	differently	from	the	others,
by	doing	the	following:

#	I	am	a	title

##	I	am	header	2

###	I	am	header	3

####	I	am	header	4

This	way,	you’ll	be	able	to	compare	how	each	of	the	headers	looks	in	relation	to	the
others.	These	get	progressively	smaller,	and	at	some	point,	it’s	easier	to	use	bolded	text
than	a	header	—	just	a	whimsical	quirk	of	Markdown!

Stylized	Text

We’ve	all	written	a	Word	document	or	an	email	in	which	we’re	using	the	common	bold,
italics,	and	underline	features	of	our	word	processors.	These	common	functionalities,
while	convenient	in	day-to-day	use	as	keyboard	shortcuts,	lend	themselves	easier	to
quick	symbols.

Similar	to	headings,	you	can	define	bolded	text	like	this:

I'm	bold.

And,	to	define	italicized	text,	you	can	do	this:

I'm	italicized.

And,	to	use	them	both,	you	can	do	so	by	combining	them:

I'm	both.

117Mastering Machine Learning with Core ML and Python

Unfortunately,	many	Markdown	editors	don’t	support	underlined	text,	unless	it’s	being
used	in	the	context	of	a	link.	However,	you’re	unlikely	to	need	underlined	text	in	a
Jupyter	Notebook	—	since	the	features	you’re	being	given	are	already	likely	an	overkill.

Lists

Lists	in	markdown	aren’t	anything	special.	You	can	declare	a	numbered	list	by	using	just
numbers,	like	this:

1.	Item	one.

2.	Item	two.

3.	Item	three.

And,	unordered	lists	are	even	easier:

*	Item.

*	Item.

*	Item.

And,	that’s	it!	Now,	it’s	hopefully	clearer	why	developers	choose	to	use	Markdown
instead	of	anything	else:	it’s	easier	than	HTML,	and	it’s	definitely	easier	than	using	the
buttons	on	a	menu	bar.

LaTeX

Though	technically	unrelated,	LaTeX	(pronounced	"lay-tech")	is	like	Markdown,	but	for
math.	This	tool	is	slightly	harder	to	use,	but	is	very	powerful	for	typing	out	complicated
mathematical	expression	and	special	symbols	such	as	π	and	unique	structures	such
as	matrices.

Simple	Expressions

The	most	common	use	of	LaTeX	is	for	inline	formulas,	meaning	those	which	appear	in
between	text.	These	don’t	have	their	own	dedicated	lines	on	your	Jupyter	notebook,	and
they	appear	interspersed	between	your	text	(kind	of	like	bolding	or	italicizing	a	particular

118Mastering Machine Learning with Core ML and Python

portion).

To	enter	the	equation	$f(x)	=	3x	+	4$	inline,	type	the	following	into	your	cell:

$f(x)	=	3x	+	4$

That	was	simple.	All	you	need	to	do	for	inline	LaTeX	is	surround	your	latex	command	in
dollar	($)	signs.	However,	this	equation	doesn’t	have	any	special	symbols.	It’ll	render
like	this:

Figure	3-24:	Rendering	Simple	Equations	with	LaTeX

Complicated	Expressions

Let’s	try	$f(\theta)	=	3\pi\theta^2	+	\frac{2}{3}$.	More	complicated,	right?	Imagine
typing	that	out	manually.	It	would	take	forever,	and	it	would	look	terrible.	Luckily,	you
can	do	this	with	ease	in	LaTeX,	like	this:

119Mastering Machine Learning with Core ML and Python

$f(\theta)	=	3\pi\theta^2	+	\frac{2}{3}$

With	a	backslash,	you	can	enter	various	commands,	many	of	which	are	special	characters
and	math	symbols.	Our	variable	here	is	theta	(θ),	and		\theta		gives	you	just	that.
Our	coefficient	is	three	pi	(3π),	and	similar	to	theta,	pi	can	be	typed	out	as		\pi	.	To
get	an	exponent,	we	just	use	the	carrot	symbol	 	̂ 		and	then	type	out	the	exponent.	Lastly,
the		\frac{numerator}{denominator}		function	gives	us	a	nice	looking	fraction	like	$\frac{2}
{3}$	instead	of	an	ugly	one	like	2/3.	When	you	run	it,	it’ll	look	like	this:

Figure	3-25:	Rendering	Complex	Equations	with	LaTeX

As	you	can	see,	it	renders	nicely	among	the	other	text,	as	if	it	were	part	of	the	sentence	—
that’s	why	it’s	called	"inline."	You	can,	of	course,	do	other	things	with	LaTeX,	but	you’re
likely	not	building	projects	that	are	too	mathematically	involved	just	yet.	However,	if
you’re	interested,	this	resource	is	a	great	cheat	sheet	for	you	if	you’re	interested	in
learning	more	about	LaTeX.

120Mastering Machine Learning with Core ML and Python

http://tug.ctan.org/info/undergradmath/undergradmath.pdf

Conclusion
In	this	chapter,	you	learned	Python,	a	general-purpose	language,	which	could	be
considered	similar	to	Swift	in	some	aspects.	I	went	step-by-step	and	explained	the	syntax
of	Python.	If	you	choose	to	continue	pursuing	machine	learning	or	data	science,	Python
will	prove	to	be	an	invaluable	skill	in	your	toolkit	as	you	advance	in	your	career.

You	also	learned	about	Jupyter	Notebook,	a	boon	for	everyone	working	in	the	data
science	field.	Towards	the	beginning,	you	learned	what	they	are,	how	to	use	them,	and
where	they	fit	into	your	day-to-day	workflow	in	the	world	of	machine	learning.	Then,	you
created	one	and	saw	how	it	can	come	in	handy	for	machine	learning	tasks.

121Mastering Machine Learning with Core ML and Python

Chapter	4
Training	Your	Own	Image	Classifier

In	the	previous	chapter,	you	learned	about	Jupyter	Notebooks,	Python,	and	how	you	can
use	those	tools	in	the	real	world.	You	also	learned	about	the	basics	of	Python,	focusing	on
how	you	can	relate	it	to	the	Swift	you	have	already	known.	You	also	learned	how	to	install
Jupyter	Notebooks	using	Anaconda	and	use	them	with	markdown	as	well	as	LaTeX.	It's
now	time	to	put	your	skills	to	the	test	and	start	training	models!

In	this	chapter,	you'll	learn	about	image	classification	models,	what	they're	useful	for,
and	how	you	can	train	your	own	image	classification	models	for	your	apps.	With	Apple's
tool,	Create	ML,	we	can	train	these	models	and	change	certain	parameters	to	improve	the
accuracy	and	research	what	works	best.

122Mastering Machine Learning with Core ML and Python

By	the	end,	you'll	have	a	working	image	classification	model,	which	you	can	drag	into
your	image	classification	app	from	Chapter	2	to	use	right	away.	You'll	also	learn	how	to
optimize	your	models,	and	ensure	that	they're	fully	accurate	before	you	begin	shipping
them	with	your	apps.

4-1	Preparing	Training	Data
As	with	any	supervised	learning	model,	you	need	to	specify	the	"true	value"	of	the	inputs
to	train	a	machine	learning	model.	An	image	classification	model	is	no	different,	and	this
section	focuses	on	finding,	organizing,	and	labeling	these	images	so	that	they	can	be	used
while	training	your	machine	learning	model.

By	the	end	of	this	section,	you'll	have	a	folder	which	contains	a	set	of	labeled	images	to	be
used	in	the	following	section	as	training	data.	While	we'll	be	using	these	images	to	train
Core	ML	models,	you	can	adjust	them	to	work	with	other	types	of	models	in	the	future	as
well.

Finding	the	Images

To	create	your	own	image	classifier,	the	very	first	step	is	to	prepare	your	own	images.	For
most	commercial	apps,	you'd	capture	and	label	your	own	images	to	ensure	optimal
performance.	But	this	takes	a	lot	of	time	and	research	to	get	right.	At	a	large	scale,
companies	like	Apple,	Google,	and	Microsoft	focus	a	large	portion	of	their	resources
towards	research	of	this	type	and	dedicate	entire	teams	to	it.

However,	you're	just	learning	right	now	—	there's	no	need	to	worry	about	creating	your
own	images.	In	fact,	for	most	of	the	apps	you	make,	you'd	benefit	from	using	the	images
that	others	have	already	made,	provided	that	you	know	where	to	find	the	images.
Remember,	you'd	better	make	sure	they're	labeled	for	reuse	before	using	anything	online,
so	that	you're	not	limited	if	you	choose	to	use	them	commercially	in	the	future.

There	are	several	datasets	you	can	find	online	to	use	the	work	that	others	have	already
done	for	you	—	there	is	no	point	to	reinvent	the	wheel,	right?

123Mastering Machine Learning with Core ML and Python

MNIST	(http://yann.lecun.com/exdb/mnist/)

The	MNIST	dataset,	as	the	name	(doesn't)	suggest,	is	an	image	dataset	of	60,000	images
and	10,000	additional	images	for	testing	(you'll	learn	about	this	later).	These	images
contain	a	wide	range	of	digits	drawn	by	tens	of	thousands	of	people.	You	can	use	the
MNIST	database	to	train	your	own	handwriting	classification	model	and	take	advantage
of	the	professionally	captured	images.

SVHN	(http://ufldl.stanford.edu/housenumbers/)

SVHN	stands	for	Stanford's	Street	View	House	Numbers	dataset.	Stanford	University	has
gone	into	over	600,000	house	numbers	using	Google	Maps'	Street	View	feature	for	a
real-world	application	of	digit	recognition.	It's	similar	to	the	MNIST	database,	but
designed	for	a	more	complex	application.

CIFAR-10/100
(http://www.cs.utoronto.ca/%7Ekriz/cifar.html)

If	you're	interested	in	a	more	traditional	dataset,	you	can	also	go	for	the	CIFAR-10	or
CIFAR-100	datasets.	They	are	labeled	images	from	a	parent	dataset	called	Tiny	Images
Dataset,	which	contains	8,000,000	images.	As	it's	far	too	many	for	casual	use,	these	two
datasets	were	created.	CIFAR-10	contains	10	classes,	and	CIFAR-100	contains	100
classes,	which	means	they	can	support	distinguishing	between	10	and	100	images,
respectively.

COCO	(http://cocodataset.org/#home)

Similar	to	CIFAR-10	and	CIFAR-100,	the	COCO	database	is	a	collection	of	several	object
categories	along	with	their	respective	images.	COCO	stands	for	Common	Objects	in
Context,	which	makes	sense	for	an	object/image	classification	dataset.	You	can	use	these
sorts	of	models	for	a	wide	range	of	applications,	since	they	cover	many	day-to-day	objects
in	great	detail.

124Mastering Machine Learning with Core ML and Python

http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
http://www.cs.utoronto.ca/%7Ekriz/cifar.html
http://cocodataset.org/#home

SDD
(http://vision.stanford.edu/aditya86/ImageNetDogs/)

The	Stanford	Dogs	Dataset	comes	from	ImageNet,	and	all-encompassing	dataset	of
various	objects.	This	SDD	dataset	has	120	different	dog	breeds,	with	20,580	images.
That's	a	lot	of	images	of	dogs!	In	the	rest	of	the	chapter,	we'll	be	using	a	carefully	selected
subset	of	this	data	to	simplify	our	machine	learning	routine.	You	can	also	use	the	full
version	when	you're	ready	and/or	able.

These	models	are	all	robust	enough	to	serve	the	purpose	of	a	production-level	app	for	the
App	Store,	however,	they	may	have	too	many	complications	when	you're	just	starting	out
—	like	in	this	chapter	of	this	book.	To	ease	some	of	these	concerns,	I've	put	together	a
subset	of	the	Stanford	Dogs	dataset	for	you	to	use	in	your	starter	app.	You	can	download
it	here	if	you'd	like	to	use	this	one.	It's	the	one	I'll	be	using	for	the	rest	of	the	chapter.

125Mastering Machine Learning with Core ML and Python

http://vision.stanford.edu/aditya86/ImageNetDogs/
https://github.com/vhanagwal/dog-breed-dataset

Image	Preparation	Tips

For	professionally-taken	dataset	of	images,	there	is	nothing	to	worry	about.	But	if	you're
using	your	own	data,	you'll	need	to	ensure	that	your	images	are	high-quality	and	will	help
the	model	instead	of	confusing	it	more.

Simulated	Conditions

When	you're	taking	pictures,	make	sure	that	they're	in	the	same	scenarios	as	which	your
users	would	be	taking	pictures.	You	need	to	make	sure	that	your	model	has	been
thoroughly	trained	using	a	certain	type	of	image	(the	type	your	user	will	provide)	because
this	is	important	to	your	model's	accuracy.	However,	this	might	be	hard	to	understand
conceptually,	so	let's	look	at	an	example.

Pretend	you're	building	a	hot-dog	classifier	for	hot-dogs	out	in	nature	—	like	on	a	picnic.
Avoid	using	images	of	hot-dogs	indoors,	and	use	more	outdoor-taken	pictures	of	them.
This	will	help	your	classifier	hone	in	on	one	niche	application	instead	of	trying	to	be	too
good	at	everything.

Skip	Confusing	Images

While	it	may	seem	like	a	good	idea	to	include	"edge	cases"	in	your	image	training	dataset,
it's	likely	going	to	reduce	the	accuracy	of	your	model,	since	images	like	these	will
introduce	characteristics	of	other	classes	in	the	weights	of	unrelated	classes.	Our	bottom
line	is:	if	the	image	confuses	you,	don't	use	it	in	training.	Conversely,	though,	you	should
use	this	image	to	test	your	model,	just	to	make	sure	it's	performing	at	its	very	best	(but
don't	take	the	results	to	heart	on	these	kinds	of	images).

Balance	Classes

One	very	important	thing	to	keep	in	mind	while	training	these	models	is	to	ensure	the
same	number	of	images	for	each	label	during	training.	While	this	may	not	seem
important,	it	may	cause	your	model	to	be	biased	towards	the	"heavily	weighted"	pieces	of

126Mastering Machine Learning with Core ML and Python

your	model.	In	other	words,	if	you	have	2500	images	for	microphone	images,	then	use
2500	images	for	headsets.	This	way,	you	won't	make	your	model	more	accurate	for	some
types	of	images	and	balance	out	the	weight.

Getting	the	Training	Data	Ready

After	spending	enough	time	searching	—	or,	if	you	have	the	courage	to	capture	your	own
images	—	for	your	dataset,	it's	time	to	prepare	these	images	for	training.	The	following
are	the	things	you	need	to	keep	in	mind	before	plugging	these	images	straight	into	Create
ML.

80-20	Rule

In	machine	learning,	we	have	a	(sometimes	unstated)	rule,	which	I	like	to	call	the	"80-20
rule".	From	the	name,	you	can	infer	the	definition.	It	means	that	80%	of	the	data	should
be	used	for	training	the	actual	model,	and	20%	should	be	saved	for	testing.

The	keyword	here	is	"should,"	since	this	isn't	a	hard-and-fast	rule.	Instead,	it	is	more	of	a
guideline	to	help	you	stay	on	track.	Nothing	bad	will	happen	if	you	don't	save	20%	of
your	data	for	training.	However,	it	will	help	you	get	a	better	sense	for	how	your	model	is
performing	if	you	do	so.	One	example	in	which	you	might	be	better	off	saving	less	than
20%	for	testing	is	when	your	dataset	is	extremely	small.	In	cases	like	this,	your	training
dataset	may	take	up	too	large	of	a	chunk	of	the	valuable	data	which	could	have	been	used
for	training.	Therefore,	it's	always	best	to	collect	more	data	than	less.

When	you	do	this,	one	thing	you'll	want	to	keep	in	mind	is	to	ensure	that	none	of	the
testing	data	images	are	also	in	the	training	data,	because	this	will	cause	you	to	get
inaccurate	results	when	going	back	to	test	your	Core	ML	model.

The	Folder	Name	is	the	Label

Now	that	you	have	your	images,	it's	important	to	structure	your	files	properly	for	Create
ML,	Turi	Create,	and	other	tools	to	recognize	your	images	and	their	labels.	Labelling	your
images	is	easy,	since	it	only	requires	you	to	move	your	images	into	folders	with	the

127Mastering Machine Learning with Core ML and Python

appropriate	names.	For	example,	if	you	had	700	images	of	apples,	you'd	put	them	in	a
folder	called	"apple"	or	a	similar	name.

The	model	I	provided,	i.e.	the	subset	of	the	Stanford	Dogs	dataset,	is	already	in	the
recommended	structure	to	make	it	easier	for	you.	All	you	need	to	do	is	download	it	from
https://github.com/vhanagwal/dog-breed-dataset.

4-2	Training	with	Turi	Create
In	the	previous	section,	you	learned	about	how	to	find	images	(or	capture	your	own
images)	and	prepare	them	for	training	your	image	classification	model.	You	also	learned
what	makes	good	images	and	which	ones	to	avoid,	as	well	as	several	great	resources	for
you	to	use	in	your	future	apps.	Lastly,	I	provided	you	a	subset	of	data	for	you	to	utilize,
instead	of	having	to	jump	through	the	hoops	in	downloading,	setting	up,	and	extracting
the	images	in	the	linked	datasets.

In	a	moment,	you'll	use	the	images	—	that	you	either	captured	or	downloaded	—	to	train
your	own	image	classification	model	which	can	be	exported	and	used	in	Core	ML	format.
This	model	can	then	be	dragged	directly	into	your	apps,	similar	to	the	image
classification	app	we	built	in	Chapter	2.

We	will	explore	two	ways	to	train	your	own	image	classifier

1.	 Using	Turi	Create
2.	 Using	Create	ML

Using	Turi	Create

The	first	method	is	using	Turi	Create,	a	Python-based	library	owned	and	managed	by
Apple.	By	default,	your	Mac	won't	come	with	Turi	Create	installed,	so	you'll	need	to
install	it	before	using	it	to	train	your	image	classification	model.	Not	to	worry,	though,
since	the	installation	is	pretty	straightforward,	especially	if	you've	used	the	command	line
in	the	past.

128Mastering Machine Learning with Core ML and Python

https://github.com/vhanagwal/dog-breed-dataset

System	Requirements

Turi	Create	has	some	system	requirements,	which	are	pretty	standard	for	almost	any
software	you	install	—	and	here	they	are,	if	there's	any	chance	your	computer	doesn't
support	Turi	Create,	or	you	just	enjoy	reading	this	kind	of	stuff.

Turi	Create	supports:

macOS	10.12+
Linux	(with	glibc	2.12+)
Windows	10	(via	WSL)

Turi	Create	requires:

Python	2.7,	3.5,	3.6
x86_64	architecture
At	least	4	GB	of	RAM

All	this	means	is	that	if	your	Mac	is	somewhat	new,	you	should	be	able	to	use	Turi
Create.	If,	by	any	chance,	your	computer	cannot	use	Turi	Create,	don't	worry,	you'll	still
be	able	to	follow	along	with	other	sections	in	the	book,	since	they	involve	other
technologies	which	is	more	likely	to	work	with	outdated	computers.

Command	Line	Installation

Once	you	have	system	requirements	out	of	the	way,	you'll	need	to	ensure	that	Python	is
installed	properly	with	the	correct	version,	so	that	you	can	follow	along	with	the
commands	in	the	rest	of	the	section.

Open	Terminal

Start	by	opening	Terminal,	which	you'll	find	either	via	Launchpad	or	Spotlight	search.
You	can	also	find	it	at	the	path	Applications	>	Utilities	>	Terminal	in	your	file
system.

Checking	Python	Version

129Mastering Machine Learning with Core ML and Python

For	this	section	—	and	throughout	the	book	—	we'll	be	using	Python	3.8,	since	it's	the
most	stable	version	of	Python	at	the	time	of	writing.	Your	computer	should	already	have
Python	installed,	so	let's	check	which	version	you	have.	Enter	the	following	into	your
terminal:

python	--version

If	your	output	says	Python	3.x,	you're	good	to	go!	If	not,	you'll	need	to	install	Python	3
from	their	website.	This	is	a	fairly	straightforward	GUI-based	installation,	so	we	won't
cover	it	here.

Installing	pip

To	install	Turi	Create,	we'll	be	using	pip	(https://pypi.org/project/pip/).	In	case	you
aren't	familiar,	pip	is	a	package	manager	for	Python,	which	means	it	helps	developers
easily	install	and	manage	the	libraries	for	your	Python-based	projects.	It's	pretty	useful
and	once	you've	installed	it,	your	life	as	a	developer	will	become	much	easier.	Luckily,	pip
itself	is	very	easy	to	install.	Assuming	you	have	Python	installed,	enter	the	following	into
Terminal	to	start	the	pip	installation:

sudo	easy_install	pip

Now,	enter	your	administrator	password	(the	one	you	use	to	log	in	to	your	computer).
When	you're	done,	hit	the	Return	key	to	begin	the	installation.	After	a	few	minutes,
you'll	see	your	prompt	again,	and	then	you're	done.

Installing	Turi	Create

After	pip	is	installed,	Turi	Create	and	other	libraries	are	painless	to	install.	They	each
require	only	one	line.	To	install	Turi	Create,	type	the	following	into	the	terminal:

pip	install	turicreate

130Mastering Machine Learning with Core ML and Python

https://www.python.org/ftp/python/3.9.0/python-3.9.0-macosx10.9.pkg
https://pypi.org/project/pip/

Your	installation	should	begin,	and	you'll	see	the	steps	printing	to	the	console.	In	a	few
minutes,	you'll	see	the	prompt	again,	and	you'll	know	that	Turi	Create	was	installed
successfully.

Training	with	Turi	Create

Training	an	image	classification	model,	typically,	can	be	done	without	writing	a	single
line	of	code.	But	this	book	aims	to	challenge	you	—	so,	we'll	start	off	with	the	more
"involved"	method	of	training	an	image	classifier.	This	method	involves	the	use	of	a
Python-based	library	called	Turi	Create	(already	acquired	by	Apple).	Don't	worry	even	if
you	have	no	experience	with	it,	since	I'll	go	step-by-step	through	the	process.

Setting	up	the	Python	File

Now	that	you	have	Turi	Create	installed,	you're	ready	to	train	your	image	classification
model	with	it.	Take	a	look	at	the	images	you	downloaded	earlier.	The	file	structure	is	as
follows:

	image-classification	

	training	

	cocker-spaniel	

	IMG1XX.png	

	IMG9XX.png	

	golden-retriever	

	IMG1XX.png	

	IMG9XX.png	

First,	type		cd		and	drag	your		image-classification		folder	into	your	terminal	window.
You'll	get	a	path	and	command	which	looks	like	this:

cd	/Users/vardhanagrawal/Desktop/image-classification

131Mastering Machine Learning with Core ML and Python

When	you	hit	the	Return	key,	you	would	have	entered	the		image-classification		folder
via	your	Terminal.	You	can	now	create	a	file	here	through	the	command	line.	To	do	this,
enter	the	following	command:

touch	classifier.py

When	you	navigate	to	the		image-classification		folder	from	Finder	now,	you'll	find	that	a
new	file	has	appeared	named		classifier.py	.	Open	it	with	Xcode	or	your	favorite	editor.

Writing	the	Python	Script

Now	we	will	write	this	Python	script	to	load	the	training	data	and	create	the	model.	At	the
very	beginning	of	the	script,	you	need	to	import	the	necessary	frameworks	to	train	your
image	classification	model.	Since	you've	already	installed	Turi	Create	onto	your	system,
you	can	now	use	it	in	any	projects.	All	you	need	to	do	is	import	it	as	follows	in	the	Python
file:

import	turicreate	as	turi

You	could	omit	the		as	turi		specifier.	However,	if	you	do	so,	whenever	you	needed	to
refer	to	it,	you	would	have	to	type	out	the	entire	word		turicreate		each	time.	With	the
specifier,	Python	knows	that	you	mean	the		turicreate		package	when	you	write		turi		in
your	program.

To	gain	access	to	your	file	system,	you'll	need	to	import	the		os		framework,	which	stands
for	"operating	system."	You	can	use	a	similar	method	to	import	it:

import	os

Since	the	name	is	fairly	short	this	time,	you	don't	need	to	rename	it;	typing		os		is	only
two	letters	and	isn't	much	effort.	But	if	you're	feeling	extra	lazy,	you	may	even	rename	it
to	a	single	character.

132Mastering Machine Learning with Core ML and Python

Loading	Images

Now	that	your	file	is	all	set	up,	you	need	to	load	the	images	into	a	format	which	Python
can	read,	understand,	and	process.	The	reason	we	spent	so	much	time	in	the	previous
section	doing	this	was	to	save	time	and	effort	on	this	step.

First,	we	need	to	load	the	directory	of	the	training	data	images	and	store	it	as	a	variable.
You	have	already	learned	how	to	declare	a	variable	in	Python	in	the	previous	chapter,	and
you	can	apply	that	knowledge	here.	Turi's		load_image(:)		method	will	help	us	do	just	that.
Type	the	following	after	the	import	statements	in	the		classifier.py		file:

data	=	turi.image_analysis.load_images('training',	with_path=True)

Since	the		classifier.py		file	is	in	the	same	folder	as	the		training		folder,	we	can	directly
reference	the	name	of	the	folder	in	the	first	argument	of	the		load_images		method.

Mapping	Folder	Names	to	Classes

If	you	remember,	we	named	each	of	the	folders	a	certain	dog	breed	and	put	all	of	the
images	of	that	breed	into	its	respective	folder.	This	was	to	be	able	to	use	those	folder
names	as	labels	(known	as	classes)	to	identify	the	objects	given	to	the	model.	To	do	this,
use	the	following	function:

data['label']	=	data['path'].apply(lambda	path:	os.path.basename(os.path.dirname(p

ath)))

In	case	you	haven't	observed,	the		data		variable	is	a	dictionary-like	type	(which	has	keys
and	values),	and	we're	mapping	each	of	the	subfolder	names	to	the		label		key.	The
	basename(:)		method	extracts	the	name	of	the	folder	from	the	path.

Saving	Data	in	an	SFrame

133Mastering Machine Learning with Core ML and Python

An	SFrame	is	a	data	structure	in	Turi	Create,	which	can	hold	large	amounts	of	data.	We
have	a	dataset,	which	we	can	save	for	later	use.	Let's	save	our	data	from	the	previous
steps	in	an	SFrame:

data.save('image-classifier.sframe')

This		save(:)		method,	as	the	name	suggests,	saves	the	data	with	the	specified	parameter
name.	You	can	access	the		image-classifier.sframe		later	in	the	program	to	use	the	data	for
training.

Processing	Images

By	this	point,	your	images	are	parsed	into	a	format	which	Turi	Create	can	handle.	You
now	have	an		SFrame		saved	as	a	representation	of	the	images	we	input	in	the	previous
step.

Loading	SFrame

To	use	the		SFrame	,	you'll	need	to	load	it	first.	While	it	doesn't	make	much	sense	in	a
small	project	such	as	this	one,	saving	and	then	loading	the	data	later	on	can	be	a	boon	for
many	larger,	more	enterprise-level	projects.	Loading	the		SFrame		is	just	as	easy	as	saving
it:

data	=	turi.SFrame('image-classifier.sframe')

Here,	we've	used	the	name	to	identify	the	SFrame	and	then	pull	it	out	to	save	to	the		data	
variable.	The	current	value	of		data		is	now	the	SFrame	we	saved	earlier.	Again,	this	step
is	redundant	in	a	small	project,	but	it's	worth	getting	a	sense	for	how	this	may	be	used	in
other	projects	later.

Splitting	Data

As	you	learned	earlier	in	the	book,	you	should	retain	80%	of	your	data	for	training	and
put	aside	20%	for	testing	the	trained	model.	This	way,	you	can	instantly	validate	your
model	within	Turi	Create,	without	needing	to	create	an	app	to	test	it	out.	In	your	Python

134Mastering Machine Learning with Core ML and Python

file,	split	your	data	like	this:

testing,	training	=	data.random_split(0.8)

In	case	it	isn't	clear,	the		random_split(:)		method	takes	in	a	parameter	and	randomly
splits	data	into	two	"buckets."	We're	saving	our	testing	and	training	data	in	two	variables,
called		testing		and		training	,	respectively.

Training,	Testing	and	Exporting

Now,	your	data	is	ready	to	use	for	training	the	model.	After	training,	you	can	use	Turi
Create's	built-in	methods	to	test	the	model.	In	the	end,	you	can	export	it	as	a	Core	ML
model	to	use	in	your	iOS,	macOS,	watchOS,	and	tvOS	apps.

Training	the	Model

So,	after	all	of	this	work,	we're	ready	to	train	and	test	the	model	with	the	data	we	set	aside
from	the	previous	step.	With	the	following	Python	code,	you	can	train	your	model:

classifier	=	turi.image_classifier.create(training,	target='label',	model='resnet-

50')

In	this	case,	we're	creating	a	variable	called		classifier		and	storing	the	return	value	of
	image_classifier(:)	.	This	model	is	being	trained	with	the	ResNet	50	architecture,	which
is	typically	used	to	differentiate	between	household	objects.

Testing	the	Model

Once	you	trained	a	model,	we	need	to	test	it	to	see	how	it	performs.	Type	the	following	to
test	your	model	against	the	test	data	that	was	randomly	selected	from	the	training	data:

result	=	classifier.evaluate(testing)

135Mastering Machine Learning with Core ML and Python

The		evaluate(:)		method	takes	the		testing		data	and	plugs	each	image	back	into	the
model	which	you	created	in	the	previous	line	of	code.	This	automatically	checks	whether
the	model	produced	the	expected	result	and	how	often.	Then,	type	the	following:

print(result['accuracy'])

After	storing	the	results	in	the		result		variable,	we	print	out	the	value	associated	with	the
	accuracy		key.	You'll	be	able	to	see	how	your	model	performed.

Saving	and	Exporting	the	Model

After	you're	satisfied	with	your	model's	performance,	you're	ready	to	save	it	and	export	it
as	a	Core	ML	model	which	can	plug	straight	into	your	iOS	app	from	Chapter	2.	You	can
save	your	model	like	this:

classifier.save('image-classifier.model')

Finally,	you	can	export	the	model	by	typing	the	following:

classifier.export_coreml('image-classifier.mlmodel')

This	will	allow	your	model	to	appear	in	the	appropriate	format	inside	of	your	main
	image-classification		folder	—	the	same	folder	as	your		classifier.py		file	is	located	—
named		image-classifier.mlmodel		or	whatever	else	you	choose	to	name	it.	By	this	point,
your	entire	file	should	look	like	this:

136Mastering Machine Learning with Core ML and Python

Figure	4-1:	Python	File

Running	the	Code

Unlike	Xcode	with	Swift,	which	you're	used	to,	Python	files	don't	compile	automatically
in	the	background.	Therefore,	if	you've	made	any	mistakes,	they	won't	be	caught	by	the
compiler,	and	instead,	will	be	found	when	you	run	the	code.

137Mastering Machine Learning with Core ML and Python

Go	back	to	your	command	line.	Type		cd		and	drag	your		image-classification		folder	into
your	terminal	window.	You'll	get	a	path	and	command	which	looks	like	this:

cd	/Users/vardhanagrawal/Desktop/image-classification

When	you	hit	the	Return	key,	you	would	have	entered	the		image-classification		folder
via	your	Terminal.	This	is	the	same	step	as	before,	which	will	render	you	access	to	your
	classifier.py		file.	From	here,	type:

python	classifier.py

This	will	run	your	code	and	perform	all	of	the	expected	tasks,	all	at	once.	Your	Terminal
window	will	appear	like	this:

138Mastering Machine Learning with Core ML and Python

Figure	4-2:	Running	Python	Script

The	output	in	the	Terminal	serves	a	few	purposes.	First,	it	informs	you	if	your	code	has
any	errors	and	references	them	by	line	number.	Next,	it	shows	you	the	progress	of	your
classifier.	Last,	it	shows	you	the	results	of	the	tests	it's	performed	using	the	last	20%	of
your	data,	which	you	saved	specifically	for	testing.

Files	and	Folders

After	a	couple	minutes	of	training	(depending	on	your	machine,	for	older	machines,	it
may	take	over	10	minutes),	you'll	see	multiple	files	appeared	in	the		image-classification	
folder	including:

	image-classifier.sframe	

139Mastering Machine Learning with Core ML and Python

	image-classifier.model	

	image-classifier.mlmodel	

What	we	concern	is	the		.mlmodel		file,	since	that's	the	Core	ML	model	file	for	the	iOS	app.
There's	nothing	left	to	do	now!	Your	Core	ML	model	is	ready	to	be	used	in	your	app;	you
can	drag	it	in,	in	place	of	any	other	Core	ML	model,	and	replace	any	code	references	to	it
with	the	name		image-classifier	.

4-3	Delving	into	Create	ML
In	the	previous	section,	you	created	your	own	image	classifier	using	a	Python-based	tool
called	Turi	Create.	You	went	through	the	process	of	installing	pip	and	using	it	to
ultimately	install	Turi	Create	using	the	command	line.	You	also	learned	some	basic
Terminal	commands	to	traverse	your	file	system	on	your	Mac.	Finally,	you	ended	up	with
a	Core	ML	model	which	you	can	use	in	your	existing	apps.

In	this	section,	you'll	learn	how	to	create	the	same	image	classification	model	—	but	this
time,	with	significantly	less	effort.	The	reason	you	did	the	more	complex	version	first	was
to	challenge	yourself	and	to	learn	an	advanced	tool	when	you	develop	more	advanced
machine	learning	needs	throughout	your	career.	However,	if	you're	doing	some	quick
research,	Create	ML	is	the	way	to	go!

Introducing	Create	ML

You	just	finished	creating	a	Core	ML	model	using	Turi	Create	which	allows	you	to	create
a	variety	of	robust	machine	learning	models.	Admittedly,	though,	the	model	we	just
created	wasn't	too	complex,	and	there's	an	easier	way	to	create	it	—	without	writing	a
single	line	of	code!

Create	ML	comes	bundled	with	Xcode,	and	when	you	first	open	Xcode	12,	you'll	notice
that	it	installs	additional	packages.	These	packages	include	Create	ML,	which	is	a	GUI-
based	machine	learning	model	training	software.

140Mastering Machine Learning with Core ML and Python

To	open	Create	ML,	you	can	search	it	using	Spotlight	(press	Command	+	Space).	The
icon	is	blue	and	circular	with	the	letters	"ML"	on	it.	Alternatively,	you	can	open	Xcode.	In
the	menu	bar,	choose	Xcode	>	Open	Developer	Tool	>	Create	ML	to	launch	the	tool.

Once	launched,	you'll	see	a	Finder	window	in	which	you	can	select	existing	projects	or
create	a	new	document.	Click	the	New	Document	button	in	the	bottom-left	corner	to
create	a	new	project.	You'll	get	a	popup	like	this:

Figure	4-3:	Launching	Create	ML

This	shows	you	all	of	the	different	types	of	projects	you	can	create	with	this	software.
Apple	will	continue	to	update	it,	and	in	the	future,	there	may	be	even	more	applications
than	there	are	now.	For	example,	in	the	beta	version	of	this	software,	Apple	added	one

141Mastering Machine Learning with Core ML and Python

feature	at	a	time	in	each	successive	release	of	their	beta	software.

Now	you're	ready	to	start	creating	your	first	image	classifier	in	Create	ML.

What	Models	Can	You	Build?

As	you	learned,	Create	ML	is	an	excellent	tool	which	allows	you	to	create	moderately
complex	machine	learning	models	using	only	a	graphical	user	interface,	as	opposed	to	the
seemingly	discouraging	code	we	wrote	in	the	previous	half	of	this	section.	Let's	take	the
time	to	look	through	Create	ML	and	learn	a	little	bit	more	about	it.

Model	Categories

In	the	left	pane	of	Create	ML,	you'll	see	a	whole	bunch	of	models,	grouped	by	their
categories.	At	the	time	of	writing,	these	consist	of	the	following:

Image
Sound
Motion
Text
Table

More	specifically,	these	model	types	have	a	couple	of	model	templates	inside,	which	allow
you	to	do	niche	tasks	and	narrow	in	on	a	specific	type	of	function	you'd	like	your	model	to
perform.	For	a	dog	breed	classifier,	for	example,	you'd	use	an	image	classification	model.

Specific	Models

In	this	book,	we'll	be	exploring	Image,	Sound,	and	Text	machine	learning	models	in
detail,	since	these	are	mainstream	and	necessary	for	you	to	call	yourself	a	machine
learning	professional!

Image	Models	come	in	two	basic	types:	image	classification	and	image	segmentation.
The	two	are	fairly	similar	but	differ	in	one	major	aspect.	Image	classification	models
attempt	to	generalize	the	entire	image	as	a	whole,	while	image	segmentation	models	—	as

142Mastering Machine Learning with Core ML and Python

the	name	suggests	—	segment	the	image	into	parts	and	identify	the	specific	parts	of	the
whole.

Sound	Models	are	fairly	new.	They	were	launched	fairly	recently,	and	Core	ML	3	is	the
first	version	of	the	framework	to	support	sound	classification	on	Apple's	platforms.	This
opens	up	a	whole	new	perspective	for	developers,	since	it	allows	people	to	create	apps
which	haven't	been	possible	in	the	past.

Text	Models	have	been	around	for	a	while.	In	fact,	they're	one	of	the	oldest	types	of
models	being	at	the	core	of	Google	when	they	were	first	developing	their	search	platform.
In	Create	ML,	you	can	make	either	a	text	classifier	or	a	word	tagger.	These	are
reminiscent	of	image	models,	since	a	text	classifier	deals	with	a	chunk	of	text,	while	a
word	tagger	deals	with	specific	words.

Training	with	Create	ML

Excellent	job!	Bootcamp	is	now	over,	and	you're	ready	to	start	training	the	same	image
classification	model	using	Create	ML.	This	time,	you	won't	need	to	write	a	single	line	of
code,	which	I've	already	mentioned	dozens	of	times.	Are	you	ready	to	train?

Preparing	your	data

Your	data	structure	for	Create	ML	should	be	similar	to	that	of	Turi	Create.	However,	you
need	neither	of	your	top-level	folder,	nor	a	Python	file	to	hold	your	code	in	it.	Technically
speaking,	all	you	need	are	the	following	folders:

	cocker_spaniel	

	german_shepherd	

	golden_retriever	

	laborador_retriever	

	standard_poodle	

These	folders,	as	you	know,	contain	your	images	along	with	their	names,	which
represents	their	labels	in	the	machine	learning	model.	Similar	to	Turi	Create,	Create	ML
checks	for	these	labels	and	uses	them	to	automatically	generate	text	labels	when	your
model	is	used	later	in	its	life.

143Mastering Machine Learning with Core ML and Python

Starting	a	Project

You	first	need	to	start	your	project	within	Create	ML.	You'll	need	to	choose	a	type,	name
your	project,	and	choose	a	location	for	it.	Then,	you	can	add	your	training	data	as	input
for	Create	ML	to	do	its	magic.

Choose	Model	Type

The	first	model	listed	is	the	Image	Classification	model,	which	should	be	selected	by
default	when	you	open	the	Create	ML	app.	However,	if	it's	not,	select	Image	in	the	left
window	pane	and	Image	Classification	in	the	right	window	pane.	Your	window	should
look	something	like	this:

144Mastering Machine Learning with Core ML and Python

Figure	4-4:	Naming	your	Create	ML	Project

Name	and	Save	Project

You'll	now	be	prompted	to	name	your	project.	You	can	make	this	name	as	entertaining	or
as	boring	as	you'd	like.	I'm	calling	mine	plain	old	"image-classifier."	It	also	gives	you	a
chance	to	edit	the	metadata:	author	and	description.	These	fields	will	appear	when	you
finally	export	and	use	your	Core	ML	model.

Input	your	Data

145Mastering Machine Learning with Core ML and Python

Inputting	your	data	into	Create	ML	is	a	piece	of	cake.	Simply	tap	on	the	Select	Files…
dropdown,	and	then,	select	the		training		folder	with	labeled	images	inside	them.	Create
ML	will	automatically	infer	your	labels	based	on	the	folder	names	of	the	images.	This
folder	can	be	downloaded	from	https://github.com/vhanagwal/dog-breed-dataset.	You
will	do	something	similar	with	the		testing		folder	in	a	bit.

	dog-breed-dataset-master	

	testing	

	standard_poodle	

	labrador_retriever	

	golden_retriever	

	german_shepherd	

	cocker_spaniel	

	training	

	standard_poodle	

	labrador_retriever	

	golden_retriever	

	german_shepherd	

	cocker_spaniel	

As	discussed	in	4-1	Finding	and	Preparing	Data,	I	have	separated	the	full	dataset
with	most	of	the	images	being	used	for	training	and	a	small	amount	reserved	for	testing.
Based	on	your	dataset,	you	can	feel	free	to	adjust	how	many	you	allocate	to	each;
however,	the	general	principle	is	around	20%	for	testing	and	80%	for	training.

You’ll	need	to	select	the		training		folder,	which	contains	all	of	your	folders	and	their
images	inside.	Create	ML	can	understand	this	structure	and	automatically	generate
labels	for	you.

Great!	At	this	point,	you	should	have	finished	naming	your	project	and	importing	your
image	data.	When	you’re	done,	your	window	should	look	something	like	this:

146Mastering Machine Learning with Core ML and Python

https://github.com/vhanagwal/dog-breed-dataset

Figure	4-5:	Importing	the	training	data

As	you	can	see,	it	counts	the	number	of	Images	and	the	number	of	Classes.	In	case	you
aren’t	familiar	with	the	term,	classes	refers	to	the	object’s	label.	Now	you’re	geared	up	to
train	your	model.

Exploring	Parameters

Though	simple,	Create	ML	allows	you	to	configure	more	complex	options	if	necessary.
While	not	as	powerful	as	Turi	Create,	it	allows	for	a	few	additional	"tweaks"	to	your
model's	performance.

Parameters	Tab

First,	let's	explore	Parameters.

147Mastering Machine Learning with Core ML and Python

Figure	4-6:	Viewing	Parameters

Currently,	there	is	only	one	option,	called	Max	Iterations.	However,	Apple	may	choose
to	add	more	augmentation	in	future	releases	of	Create	ML.	The	Max	Iterations	feature
lets	you	limit	the	number	of	times	the	model	refines	itself.	For	a	dataset	as	small	as	ours,
this	number	won't	matter.	But	if	you're	dealing	with	larger	datasets,	you'll	likely	find	this
option	useful	to	limit	the	amount	of	time	it	takes	to	train	your	model.

Augmentations	Tab

Next,	you	can	take	a	look	at	the	Augmentations	that	you	can	use	on	your	model.
Similar	to	the	Parameters	tab,	you	can	expand	it	by	tapping	on	the	small	arrow	on	the
left	of	the	label.	It'll	look	like	this:

148Mastering Machine Learning with Core ML and Python

Figure	4-7:	Viewing	Augmentations

You'll	see	an	array	of	options	here,	which	are	designed	to	increase	your	dataset.	If	you
want	more	data	to	train	your	model	with,	these	features	will	apply	these	"effects"	to	the
images	in	your	dataset	and	make	a	copy	of	the	images.	So	one	will	be	augmented,	and	one
won't	be.	This	way,	the	model	has	doubled	the	data	to	learn	with.	However,	you	should
only	use	this	if	you	know	that	the	augmentation	won't	cause	your	image	to	be	too
different	from	what	it'll	receive	as	input.

Training

Now	that	you've	had	a	chance	to	explore	the	various	options	and	configurations	for	your
Create	ML	model,	you're	ready	to	finally	train	it.	We'll	use	the	raw	images,	however,	feel
free	to	apply	the	augmentations	you	learned	about;	they	won't	make	or	break	your	image
classifier!

Select	Validation	Data

149Mastering Machine Learning with Core ML and Python

Before	we	start	to	train	our	model,	we’ll	have	the	option	of	specifying	validation	data	to
go	with	it.	Validation	data,	unlike	testing	data,	is	a	pre-labeled	dataset	which	isn’t	used	to
train	the	model	but	is	used	to	check	the	model	at	each	iteration.

We	can	allow	Create	ML	to	automatically	do	this	for	us—by	setting	aside	a	subset	of	the
labelled	data	we’ve	provided.	In	the	second	cell,	you’ll	notice	that	the	Auto	option	is
already	selected	for	us,	which,	as	the	name	suggests,	means	that	Create	ML	will	randomly
set	aside	certain	images	for	the	validation	set.

Change	Parameters	and	Apply	Augmentations

In	the	previous	part,	you've	learned	a	little	bit	about	the	augmentations	you	can	apply
before	training	your	model.	If	you	wish	to,	you	may	apply	them	at	this	step.	For	the
purposes	of	this	chapter,	we	won't	be	adding	them	because	our	dataset	is	large	enough
not	to	require	augmentations	and	small	enough	not	to	require	limiting	the	maximum
number	of	iterations.	However,	if	you'd	like	to	play	around	with	these	settings,	you	may.

Testing	Data

In	the	repository	I	provided,	you’ll	find	a	folder	called		testing	.	Download	these	images
and	upload	them	to	the	Testing	Data	section	of	your	Create	ML	window.	At	the	end	of
this	chapter,	we	will	discuss	the	importance	of	testing	datasets	and	how	they	are
important	to	your	machine	learning	workflow.

Training	your	Model

Finally,	it's	time	to	train	your	image	classification	model.	Create	ML,	as	you	know,	makes
it	much	easier	to	do	than	if	you	were	doing	it	using	Turi	Create.

At	the	bottom	left	of	your	screen,	you'll	see	a	message	that	reads	"Ready	to	Train,"	which
means	your	dataset	has	been	validated	by	Create	ML	and	you're	ready	to	train	your
model.	Tap	the	Train	button	in	the	top	left	of	the	Create	ML	window.	It	has	a	"play"
button	as	its	icon,	similar	to	the	Run	button	in	Xcode.	First,	Create	ML	will	go	through	a
process	of	analyzing	the	features	of	your	images	with	a	progress	bar	like	this:

150Mastering Machine Learning with Core ML and Python

https://github.com/vhanagwal/dog-breed-dataset

Figure	4-8:	Extracting	Features

Then,	a	graph	will	appear,	and	the	software	will	iterate	over	your	model	to	optimize	it:

151Mastering Machine Learning with Core ML and Python

Figure	4-9:	Training	Model

Last,	you'll	see	percentages	appear	in	the	upper	right	of	the	main	window	pane,	which	tell
you	how	accurate	your	model	is.	If	you	specified	any	testing	data,	your	results	will	appear
in	the	center	of	the	screen.

152Mastering Machine Learning with Core ML and Python

Figure	4-10:	Viewing	Precision	and	Recall

The	table	at	the	bottom	shows	you	how	accurately	each	class	was	trained,	as	well	as	there
number	of	images	in	each	class.

Using	the	Training	Model

Your	hard	work	has	finally	paid	off!	If	you'll	recall	from	the	previous	section,	you	ended
with	a	machine	learning	model	in	the	Core	ML	format,	which	you	could	download	and
use	directly	in	your	apps.	You	now	have	a	similar	model	from	your	Create	ML	training.

Exporting	your	Model

The	rightmost	cell	in	the	top	row	labeled	as	Output	contains	the	Core	ML	logo.	This
represents	your	trained	model,	which	you	may	drag	onto	your	desktop	or	directly	into	an
Xcode	project.

153Mastering Machine Learning with Core ML and Python

Testing	Different	Models

If	you	want	to	create	many	different	models	to	compare	with	one-another,	you	can	click
the	Add	button	in	the	top-left	of	your	Create	ML	window.	This	will	let	you	change	your
datasets,	parameters,	or	augmentations	to	see	what	works	best	in	each	scenario.

Evaluating	Model	Performance

When	you	train	your	model,	Core	ML	creates	a	validation	set	automatically	from	your
training	data,	while	you	provide	it	a	testing	set	to	use	after	your	model	has	trained.	This
can	be	confusing	for	beginners,	so	let’s	take	a	look	at	the	nuances.

Validation	Set

The	validation	set,	not	to	be	confused	with	the	testing	set,	evaluates	the	model	while
training,	causing	Create	ML	to	adjust	the	model	weights	accordingly.	This	set	is	created
using	the	data	you	provided	for	training,	which	as	80%	of	your	total	dataset	(as	discussed
in	4-1	Finding	and	Preparing	Data).	Another	nuance	of	the	validation	set	is	that	it
isn’t	used	to	train	the	data	directly;	it	is	used	to	evaluate	the	model	after	every	iteration
(or	step)	in	the	training	process.

Testing	Set

The	other	20%	of	the	dataset,	or	the	testing	set,	had	never	been	“seen”	by	the	model.	You
can	use	the	testing	set	to	determine	the	final	model’s	performance.	The	performance	of
the	model	does	not	improve	or	deteriorate	based	on	the	results	of	the	testing	set.
Providing	a	testing	set	only	provides	you	information	on	how	your	model	is	performing
to	determine	whether	you	need	to	continue	working	on	it	or	whether	it’s	ready	for	use.

Importance	of	Testing

Testing	your	models	is	important	because	it	helps	you	gain	insights	on	your	model’s	real-
world	performance	before	your	users	see	it.	Depending	on	the	type	of	model	you’re
creating,	you	may	have	stricter	or	looser	requirements	for	your	model’s	performance,	and

154Mastering Machine Learning with Core ML and Python

using	a	testing	dataset	provides	the	information	you	need	to	know	to	determine	whether
your	model	is	on-par	or	needs	work.

When	looking	through	your	model’s	results,	look	for	where	your	model	normally	goes
wrong.	If	it’s	overfitting	the	data,	try	creating	a	more	diverse	dataset.	If	it’s	underfitting,
try	and	increase	the	number	of	iterations.	To	learn	more	about	the	fundamentals	of
machine	learning,	visit	Chapter	1.

Conclusion
In	this	chapter,	you	learned	about	image	classification	models,	what	they're	useful	for,
and	how	to	train	your	own	image	classification	models	to	be	used	in	your	apps.	Through
Create	ML,	you	trained	these	models	and	changed	certain	parameters	to	improve	their
accuracy.

By	the	end,	you'd	created	a	working	image	classification	model,	which	you	can	drag	into
any	iOS	app	to	deploy	using	Core	ML.	Lastly,	you	learned	how	to	optimize	your	models
and	ensure	that	they	perform	to	your	standards	before	you	begin	shipping	them	with
your	apps.

155Mastering Machine Learning with Core ML and Python

Chapter	5
Natural	Language	Processing

In	the	previous	chapter,	you	built	an	image	classification	model	using	two	different
techniques.	To	challenge	yourself,	you	first	built	it	in	the	"hard"	way,	using	your	new
knowledge	about	Python	from	Chapter	3	in	Turi	Create.	You	also	learned	the	easier	way,
using	Create	ML	to	make	lightweight	models	for	quick	on-the-go	model	training.

In	this	chapter,	you’ll	learn	about	linguistics	in	machine	learning,	including	natural
language	processing,	text	classification,	and	word	tagging.	In	addition	to	this,	you’ll	learn
more	about	sentiment	classifiers,	which	help	identify	the	mood	or	intention	behind	what
someone	is	saying.

156Mastering Machine Learning with Core ML and Python

By	the	end	of	the	chapter,	you’ll	have	some	useful,	fully	trained	models	which	you	can	use
in	your	apps.	You’ll	also	walk	away	with	a	complete	understanding	of	how	computer
science	and	linguistics	are	connected,	as	well	as	how	you	can	use	the	power	of	natural
language	processing	in	your	day-to-day	workflow.

5-1	What	is	Natural	Language
Processing?
Natural	Language	Processing,	or	NLP	for	short,	is	everywhere.	You’ve	likely	seen	it	in
action	without	even	knowing	it.	If	you’ve	ever	spoken	to	Siri,	typed	a	message	on	your
phone,	or	dictated	an	email,	your	language	was	processed	by	a	machine	learning
algorithm	to	interpret	it,	and	even	to	predict	what	you’re	about	to	say	(or	write)	next.

In	this	section,	you’ll	learn	about	NLP,	Word	Tagging,	and	Text	Classification	from	a
high-level	perspective.	Though	interrelated,	these	concepts	have	a	fine	line	of	distinction
between	them	and	are	important	to	know	about	before	training	your	own	linguistics
algorithms.	By	the	end	of	the	section,	you’ll	be	familiar	with	the	basics	of	machine
learning	in	linguistics.

Natural	Language	at	a	Glance

From	a	bird’s	eye	view,	NLP	enables	many	human-computer	interactions	you
experienced	on	a	daily	basis.	Virtual	assistants	and	dictation-enabled	keyboards	are	great
examples	of	NLP	in	action.

Day-to-Day	Speech

In	order	to	understand	natural	language	processing,	however,	you	first	need	to
understand	what	is	meant	by	natural	language.	Computer	code,	such	as	Swift	and
Python,	has	defined	sets	of	rules	which	must	be	followed	closely.	For	example,	if	you	miss
a	curly	brace	in	Swift,	the	compiler	won’t	let	you	run	the	code.

157Mastering Machine Learning with Core ML and Python

However,	in	day-to-day	speech	—	say	with	your	friend	at	work	or	school,	you	don’t	need
to	worry	about	syntax.	Your	friend	will	understand	what	you’re	trying	to	say	even	if	you
missed	a	word	or	used	an	incorrect	sentence	structure.	This	style	of	speech	is	referred	to
as	natural	language,	in	computer	science	terms.

Written	Text

Natural	language	also	comes	in	the	form	of	written	text.	Whether	it’s	texting	a	coworker
or	jotting	down	notes,	what	you’re	putting	down	is	natural	language	which	doesn’t
necessarily	follow	a	certain	structure	—	like	computer	code	would.	For	example,	if	you
made	a	to-do	list,	there	are	infinitely	many	ways	you	could	say	the	same	task;	but	in	a
compiled	language,	there	are	fewer	and	more	structured	ways	to	convey	your	ideas.

Semantic	Search

When	you	ask	your	digital	assistants	—	such	as	Siri	—	to	"find	files	from	last	night	that
were	shared	with	Tim,"	you’re	using	semantic	search.	In	case	you	aren’t	familiar	with
this,	the	algorithm	focuses	on	the	context	more	than	the	content	of	the	text.	So,	when	it’s
looking	for	files	on	your	computer,	it’ll	check	that	those	were	created	last	night,	and	were
shared	with	Tim.	It	won’t,	however,	look	for	files	which	contain	the	word	Tim	in	them.

Challenges	of	NLP

Now	that	you’ve	seen	a	couple	examples	of	natural	language,	you	may	have	a	basic	sense
for	what	makes	natural	language	processing	so	difficult.	After	all,	a	computer	is	terrible
at	"thinking"	about	what	it’s	doing,	but	is	excellent	at	repetitive	tasks.	The	problem	of
natural	language	processing	can	be	broken	down	into	converting	unstructured	text	into
structured,	parsable	information	for	a	computer.

Vocabulary	and	Context

While	you	may	think	the	words	you	use	on	a	regular	basis	are	just	ordinary,	it’s	quite	the
opposite	from	a	computer’s	perspective.	For	example,	you	may	use	the	word	"leaves"	in
the	sentence	"I	saw	the	leaves	on	the	tree,"	you	may	also	use	it	in	a	completely	different

158Mastering Machine Learning with Core ML and Python

context,	"I’ll	do	it	when	he	leaves	today."	You	might	understand	these	differences	in	a
heartbeat,	but	to	an	algorithm,	understanding	context	can	be	very	difficult.

Parts	of	Speech

As	you	may	remember	from	your	English	class,	words	can	be	categorized	into	groups
called	parts	of	speech,	some	of	which	include	adjectives,	nouns,	prepositions,	and	more.
A	computer	doesn’t	understand	language	in	the	same	way	we	do,	so	it	needs	to	break
down	sentences	into	more	quantitative	measures	such	as	parts	of	speech.

Phrases

After	identifying	the	parts	of	speech,	the	algorithm	must	recognize	phrases.	Again,	since
the	algorithm	doesn’t	understand	context,	it	needs	a	qualitative	measure	to	further	group
the	categorized	words.	This	helps	it	identify	the	main	subject	and	verb	of	the	sentence	to
get	a	better	sense	of	what	the	user	is	saying.	At	this	point,	the	computer	usually	has	a
sentence,	which	is	broken	down	into	phrases,	which	are	broken	down	into	individual
words,	forming	a	sort	of	tree.

Clearly,	natural	language	processing	is	a	challenge.	With	machine	learning,	this	process
becomes	slightly	more	human-like.	However,	a	computer	still	doesn’t	process	natural
language	like	humans	do.

Types	of	NLP

Now,	you	should	have	a	better	sense	of	why	natural	language	processing	is	so	difficult;
large	corporations	such	as	Google,	Apple,	and	Amazon	have	poured	billions	into
developing	their	versions	of	the	technology.	Since	computers	cannot	process	natural
language	like	humans,	there	are	several	approaches	to	help.	Keep	in	mind	that	there	are
thousands	of	different	uses	of	NLP	technology,	and	the	approaches	discussed	below	are
tailored	to	those	specific	use-cases.

Text	Summarization

159Mastering Machine Learning with Core ML and Python

Oftentimes,	natural	language	processing	takes	extensive	expertise	to	execute	well	—	and
for	good	reason.	Because	of	this,	machine	learning	developers	use	a	more	basic	approach
which	works	fairly	well	for	most	purposes	—	Text	Summarization.	At	a	fundamental	level,
this	approach	extracts	all	the	words	and	counts	the	most	common	ones.	While	easier
than	many	of	the	other	NLP	methods,	this	approach	must	ensure	that	the	sentences
formed	make	sense.	Don’t	worry	if	you	cannot	understand	it	yet.	We’ll	discuss	this
technique	in	more	detail	in	the	next	section.

Translation

If	you’ve	ever	used	a	translation	service	such	as	Google	Translate,	you	know	firsthand
how	much	of	the	meaning	can	be	lost	while	trying	to	task	a	computer	algorithm	with
translations	—	it	adds	a	new	level	of	difficulty	in	NLP.	Not	only	does	a	computer	need	to
understand	the	source	language,	it	needs	to	produce	logical	text	in	the	target	language.	In
Google	Translate’s	case,	they	use	their	own	computer-recognized	language.

For	example,	if	you’re	translating	from	English	to	Chinese,	the	algorithm	would	take	the
English	string	and	translate	it	into	a	language	which	only	Google’s	algorithm	would
understand	(i.e.	jargon	to	us	humans).	If	it	has	doubts	about	any	of	the	text,	it’ll	go
through	prior	uses	of	the	phrases	it	doesn’t	understand	and	translate	it	that	way.	Finally,
it’ll	use	machine	learning	to	produce	text	in	Chinese	and	run	it	through	another
algorithm	to	ensure	that	it	makes	sense.

Sentiment	Analysis

As	the	name	suggests,	sentiment	analysis	is	the	use	of	a	natural	language	processing
algorithm	to	analyze	the	emotion	behind	text.	This	often	involves	taking	out	adjectives
and	qualitative	words	to	check	whether	a	certain	text	is	more	positive	or	more	negative.
Advertisers	use	this	method	to	analyze	whether	there’s	positivity	around	their	products
on	social	media,	or	whether	their	consumers	dislike	what	they’ve	released.	In	addition,
this	helps	social	media	platforms	censor	inappropriate	content	or	hate	speech	from
younger	users.

160Mastering Machine Learning with Core ML and Python

5-2	Tokenization,	Stemming,	and
Lemmatization
In	the	previous	section,	you	learned	about	natural	language	processing	from	a	birds-eye
view	and	some	of	the	challenges	that	developing	this	technology	poses.	You	also	learned
about	the	various	ways	you	use	NLP	in	your	daily	life.	You	are	now	familiar	with	how	text
summarization,	language-to-language	translations,	and	sentiment	analysis	work.

In	this	section,	you’ll	learn	more	about	tokenization,	stemming,	lemmatization,	and
many	of	the	other	steps	that	a	NLP	algorithm	needs	to	take	in	order	to	get	to	its	desired
result.	In	essence,	you’ll	dive	deeper	into	what	makes	your	day-to-day	NLP	interactions
tick,	which	is	especially	important	given	the	vast	differences	in	the	applications	of	this
technology.

Understanding	and	Responding

As	you’ve	learned	from	the	previous	section,	there	are	countless	ways	that	NLP	is	used	in
your	daily	life.	Whether	it’s	talking	to	Siri	or	having	a	news	article	summarized,	some
forms	of	NLP	is	heavily	involved	in	the	process.	Given	that	these	algorithms	are	often
replacing	humans	(such	as	in	chatbots),	much	of	the	work	is	split	between	understanding
language	and	responding	to	it	in	a	comprehensible	manner.

Extracting	Meaning	from	Text

As	briefly	discussed	in	the	previous	section,	NLP	algorithms	have	various	techniques	to
understand	language.	Unlike	humans,	these	algorithms	turn	natural	language	into	a
chunks	for	quantitative	analysis.	Regardless	of	the	method	they	use,	however,
understanding	the	gist	of	what’s	being	spoken	or	written	is	integral	to	an	NLP	algorithm’s
success.

Producing	Comprehensible	Results

161Mastering Machine Learning with Core ML and Python

In	some	cases,	an	NLP	algorithm	must	also	be	able	to	create	output	which	makes	sense.
For	example,	when	you	text	a	chatbot	on	your	company’s	website,	the	software	needs	to
understand	what	you’re	saying,	give	you	a	response	that	makes	sense	to	you,	and	conveys
what	the	robot	is	trying	to	convey	accurately	and	concisely.	This	allows	for	a	significantly
better	user	experience	and	one	day	may	allow	natural	language	processing	algorithms	to
pass	the	Turing	test.

Internal	Steps	and	Techniques

As	explored	in	depth	in	the	previous	section,	an	NLP	algorithm’s	job	is	no	easy	task.	In
fact,	both	understanding	and	responding	to	human-produced	language	have	their	unique
challenges.	It’s	important	to	understand	the	specific	steps	a	typical	NLP	algorithm	takes
to	reach	its	end	goal.	Obviously,	some	algorithms	may	use	a	different	approach	or	skip
steps	entirely	—	this	is	only	a	general	idea	of	how	these	algorithms	work.

Tokenization

A	machine	learning	model,	or	an	NLP	algorithm,	must	first	break	up	the	many	words
passed	in	as	input.	Typically,	this	involves	simply	separating	words,	and	in	most	cases,
removing	punctuation.	Tokenization	is	usually	used	on	the	"understanding"	side	of
natural	language	processing,	as	it	involves	breaking	up	an	existing	sentence.	Unlike	some
of	the	other	techniques	you’ll	learn	about,	tokenization	is	the	most	widely	used	one,
ranging	from	text	summarization	to	language	translations.

For	example,	consider	the	following	phrase:

"The	quick	brown	fox	jumped	over	the	lazy	dog."

The	tokenized	result	would	look	like	this:

162Mastering Machine Learning with Core ML and Python

https://en.wikipedia.org/wiki/Turing_test

0:	"the"

1:	"quick"

[***]

7:	"lazy"

8:	"dog"

While	seemingly	fundamental,	this	task	is	vital	to	the	algorithm’s	success.	Breaking	the
problem	down	into	a	whole	bunch	of	smaller	sub-tasks	allows	the	program	to	have	its
"first	try"	at	understanding	the	input	text.	Tokenization	is	one	of	the	most
straightforward	parts	of	natural	language	processing,	and	requires	only	basic	string
processing.

Stemming

As	you	may	have	guessed	from	its	name,	stemming	takes	the	root	word	("stem")	out	of	a
tokenized	word.	This	often	involves	removing	prefixes	such	as	pre-,	de-,	anti-	and
suffixes	such	as	-ing,	-illy,	-ed.	This	greatly	simplifies	the	sentence	and	makes	it	easier	to
interpret	the	meaning.

Here’s	an	example	of	this:

"jumped"					->		"jump"

"running"				->		"run"

"different"		->		"differ"

As	you	can	see,	stemming	simply	removes	prefixes	and	suffixes	which	it	deems
unnecessary	to	be	left	with	a	root	word.	However,	it’s	worth	noting	that	stemming	does
not	consider	the	dictionary	definitions	of	the	words	it’s	altering.	So,	when	an	algorithm	is
in	its	stemming	phase,	it	may	lose	some	meaning,	depending	on	its	complexity.	When	a
word	loses	its	meaning,	it’s	usually	a	result	of	understemming	or	overstemming,
which	is	when	too	much	of	the	word	is	left	behind	or	too	much	of	a	word	gets	cut	off.

Consider	the	role	that	root	words	play	in	your	own	day-to-day	language:	you	have	to	take
a	root	and	add	a	prefix	or	suffix	to	convey	what	you’re	trying	to	say.	This	is	known	as
inflected	language,	and	it	allows	you	to	form	grammatically	correct	sentences.

163Mastering Machine Learning with Core ML and Python

Lemmatization

Stemming	and	lemmatization	are	both	very	similar:	they’re	both	techniques	used	for	text
normalization.	Text	normalization	is	the	idea	of	removing	the	parts	of	a	word	that
don’t	define	its	meaning.	Lemmatization	is	a	process	in	which	a	word	is	"reduced"	while
staying	true	to	its	dictionary	definition.	The	output	after	lemmatization,	unlike
stemming,	is	an	actual	word.

The	following	is	an	example	of	this:

"run",	"ran",	"running"	->	"run"

"hopped",	"hopping",	"hop"	->	"hop"

"eaten",	"eating",	"eat"	->	"eat"

In	this	example,	run,	hop,	and	eat	are	all	actual	words,	but	they	may	not	make
grammatical	sense	in	all	types	of	sentences.	Lemmatization	relies	on	the	word’s	lemma,
which	is	defined	as	a	word’s	dictionary	definition.	Therefore,	a	natural	language
processing	algorithm	which	uses	lemmatization	would	require	a	dictionary	to	operate.

Lemmatization	is	understandably	more	complex	than	stemming	as	it	requires	a	solid
understanding	of	the	target	language.	Unlike	stemming,	lemmatization	does	not	rely	on
the	structure	of	the	word,	but	instead,	it	focuses	on	the	definition.	Before	making	any
changes,	it	examines	the	parts	of	speech,	the	context,	and	placement	of	a	word	in	a
sentence	to	ensure	that	alterations	don’t	affect	the	meaning	of	the	word	in	question.

Chunking

As	you	learned	earlier,	tokenization	is	the	separation	of	sentences	or	phrases	into	words
or	"tokens."	Chunking	is	a	technique	in	which	separate	words	are	put	together	into
phrases	to	form	something	that	makes	sense.	In	a	way,	chunking	is	the	opposite	of
tokenization	and	is	used	mostly	on	the	"responding"	side	of	natural	language	processing.

One	major	part	of	chunking	is	called	part-of-speech	tagging.	As	the	name	suggests,	it
classifies	words	based	on	whether	they’re	nouns,	verbs,	prepositions,	or	adjectives.	This
allows	the	algorithm	to	create	a	sentence	which	is	structurally	sound	and	sensible	to	the

164Mastering Machine Learning with Core ML and Python

user.

Another	large	part	of	chunking	is	named	entity	recognition.	Named	entity
recognition	is	the	process	of	recognizing	proper	nouns.	For	example,	if	the	words	Donald,
President,	and	Trump	showed	up	separately,	named	entity	recognition	would	help	a
chunking	algorithm	combine	them	into	a	phrase:	President	Donald	Trump.

5-3	Training	a	Text	Classifier
In	the	previous	sections,	you	learned	about	the	basics	of	natural	language	processing,
ranging	from	the	various	use	cases	of	the	technology	to	the	steps	that	NLP	algorithms
take	under	the	hood.	You	also	saw	some	examples	of	how	these	steps,	including
tokenization,	stemming,	lemmatization,	and	chunking,	interact	to	face	the	challenge	of
understanding	and	generating	natural	language.

In	this	section,	you’ll	put	your	skills	to	the	test	and	build	your	own	text	classifier.	Earlier
in	the	book,	you	created	your	own	image	classifier	using	the	Create	ML	app.	Although
you	can	easily	create	a	text	classifier	with	the	same	method,	you’ll	learn	to	use	Swift
playgrounds	to	make	a	text	classifier	in	this	section.	This	way,	you’ll	be	able	to
understand	what’s	happening	behind	the	scene,	and	you’ll	know	multiple	ways	of	doing
the	same	thing	—	like	a	true	data	scientist!

Finding	and	Sourcing	Data

In	the	image	classification	chapter,	you	learned	about	the	importance	of	finding	a	good
dataset	for	your	image	processing	needs.	I	also	shared	a	list	of	excellent	places	you	can	go
to	find	these	datasets.

Finding	Models

Unlike	image	classification	datasets,	which	are	plentiful	on	the	internet,	text
classification	datasets	are	harder	to	come	by	—	partly	because	of	how	specific	NLP	is	to	a
particular	genre,	style,	or	type	of	writing.	However,	there	still	are	a	few	good	places	to
look.

165Mastering Machine Learning with Core ML and Python

GroupLens	Movie	Dataset
(https://grouplens.org/datasets/movielens/latest/)

GroupLens	Research	has	put	together	a	great	combination	of	movie	reviews,	which
they’ve	labelled	as	positive	or	negative.	If	you’d	like	to	use	this	resource,	the	link	above
has	a	couple	variations	of	the	dataset.	This	dataset	is	mostly	useful	for	sentiment	analysis
—	especially	in	the	case	of	customer	reviews.

Spambase	Dataset	(https://archive.ics.uci.edu/ml/machine-learning-
databases/spambase/)

The	Spambase	Dataset	has	a	ton	of	emails	labelled	as	either	spam	or	not	spam.	This	type
of	dataset	is	useful	when	you	would	like	to	classify	social	media	posts,	or	maybe,	you’re
simply	building	another	spam	detector.	Either	way,	this	dataset	is	well-made	and	is	an
accurate	representation	of	actual	emails.

Cornell	Review	Dataset	(http://www.cs.cornell.edu/people/pabo/movie-
review-data/)

Cornell’s	excellent	computer	science	department	came	up	with	another	great	movie
review	dataset.	This	is	the	one	we’ll	be	using	in	the	text	classifier	a	little	bit	later.	It	is
great	to	analyze	product	reviews,	business	ratings,	or	movie	critic	comments.	It’s	also
lightweight	and	doesn’t	take	too	long	to	train	on.

Creating	Datasets

It	doesn’t	take	a	lot	of	data	to	have	a	decent	starter	model.	In	fact,	it’s	better	to	test	out
the	data	you	have	before	adding	more.	That’s	one	of	the	biggest	benefits	of	lightweight,
easy,	and	fast	training	tools	like	Create	ML	and	Turi	Create.	It	just	takes	two	steps	to
create	your	own	model:

Create	Folders

First,	you	need	to	create	folders.	Similar	to	the	image	processing	chapter,	you’ll	need	to
organize	your	data	inside	their	corresponding	folder.	For	example,	all	of	the	"positive"
documents	should	go	in	the	"positive"	folder.	This	will	help	Create	ML	determine	your

166Mastering Machine Learning with Core ML and Python

https://grouplens.org/datasets/movielens/latest/
https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/
http://www.cs.cornell.edu/people/pabo/movie-review-data/

labels.

Write	Text	Files

Next,	you	need	to	create	text	files.	These	files	can	be	copied	from	the	internet	(always	cite
your	sources!)	or	generated	by	yourself.	All	that	matters	is	that	these	files	you	made	are
representative	of	the	entire	sample	size.	They	must	also	be	as	close	to	the	target	text	as
possible.	For	example,	if	you’re	making	a	Twitter	sentiment	analysis	model,	don’t	use
formal	literature	as	your	training	data.

Text	Classification	Algorithms

Now	that	you’ve	either	found	a	dataset,	created	your	own,	or	used	the	one	we’re	using	in
this	book.	You’re	ready	to	learn	more	about	the	different	algorithms	you	can	choose	in
Create	ML.	Don’t	worry,	this	isn’t	as	long	as	the	previous	two	sections,	and	I	highly
recommend	that	you	read	through	it	carefully.	Here	are	the	three	algorithm	types	Create
ML	supports:

Transfer	Learning

Apple’s	latest	addition	to	Create	ML	is	the	support	for	transfer	learning.	It	allows
developers	to	get	the	benefits	of	using	large	datasets	while	using	small	datasets.	Transfer
Learning,	as	its	name	suggests,	uses	an	existing	machine	learning	model	to	transfer	the
information	it	learned	to	a	different	use	case.	Since	Apple’s	large	machine	learning	model
has	learned	the	semantics	of	English,	your	models	will	have	a	higher	accuracy.

Maximum	Entropy

The	Maximum	Entropy	algorithm,	or	MaxEnt	for	short,	is	the	fastest	option	for	training.
Since	this	algorithm	makes	few	assumptions	about	the	target	data,	it’s	best	to	use	it	when
you	don’t	know	anything	about	the	data	you’re	using.	In	addition,	data	scientists	often
use	it	for	testing	because	of	how	much	faster	it	is	than	the	other	options	that	Create	ML
offers.

167Mastering Machine Learning with Core ML and Python

Conditional	Random	Field

Conditional	Random	Field	is	a	more	quantitative	approach	to	natural	language
processing.	It	relies	on	the	number	of	words	present	rather	than	the	structure	of	the
sentences.	This	approach	usually	works	best	when	the	phrases	in	the	training	data	aren’t
very	complex,	and	don’t	obscure	meaning	with	double	negatives	or	prefixes	such	as	anti-,
de-,	or	un-	that	change	the	meaning	of	words.

Creating	your	Classifier

Great	work	so	far!	You’re	now	ready	to	create	your	own	text	classifier.	In	this	classifier,
you’ll	use	the	Cornell	Movie	Dataset,	which	I’ve	edited	for	the	purposes	of	this	book	and
put	in	a	repository	for	you	to	download	at	https://github.com/vhanagwal/sentiment-
analysis.	You	can	click	the	download	button	to	download	the	dataset,	which	contains
1000	positive	and	1000	negative	reviews.	I’ve	gone	through	and	split	up	20%	of	the	data
for	testing	(in	a		testing		folder)	and	80%	for	training	(in	a		training		folder).	Your	model
will	be	able	to	classify	a	positive	comment	versus	a	negative	comment	by	the	end.	As
mentioned	before,	this	is	a	great	dataset	to	get	started	with	because	it	uses	a	realistic,
informal	style	of	speaking.

First	and	foremost,	you’ll	need	to	create	a	Swift	Playground.	In	case	you	haven’t	used
them	before,	Swift	Playground	is	a	place	where	you	can	quickly	test	out	your	Swift	code
without	creating	a	fully-fledged	Xcode	project.	It’s	also	excellent	for	tasks	like	creating	a
machine	learning	model	with	Create	ML.

Swift	Playground	is	a	part	of	Xcode,	so	go	ahead	and	open	a	new	Xcode	window.	Then,
click	on	the	first	option,	get	started	with	a	playground.

168Mastering Machine Learning with Core ML and Python

http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
https://github.com/vhanagwal/sentiment-analysis

Figure	5-1:	Opening	Xcode

Since	you’re	not	creating	a	game	or	demonstration	in	Swift	Playgrounds,	you	don’t	need
to	use	a	template.	Blank	should	be	selected	by	default,	so	click	Next.	Please	be	sure	to
select	macOS	at	the	top	instead	of	iOS.	Otherwise,	all	the	rest	of	the	procedures	won’t
work.

169Mastering Machine Learning with Core ML and Python

Figure	5-2:	Selecting	a	Template

Next,	name	your	project	something	fun;	something	you’ll	remember.	I’m	naming	mine
something	boring:	"Text	Classifier."	Then,	choose	where	you	want	to	save	your	project
and	click	Create.

170Mastering Machine Learning with Core ML and Python

Figure	5-3:	Naming	and	Saving	your	Playground

Anatomy	of	a	Swift	Playground

Your	project	is	ready,	and	it	should	look	something	like	the	following.	The	blue	"play"
button	on	the	left	lets	you	execute	your	code	partially,	and	the	"play"	button	at	the
bottom	left	of	the	screen	runs	all	of	your	code.	In	the	center,	you	can	enter	code.	That’s	all
you	need	to	know	to	get	started!

171Mastering Machine Learning with Core ML and Python

Figure	5-4:	Playground	Editor

Writing	the	Code

It’s	now	time	to	start	writing	the	code.	Create	ML	allows	you	to	create	a	lightweight	text
classifier	in	very	few	lines	of	code.	Don’t	worry	if	certain	things	don’t	make	sense;	I’ll	be
explaining	each	line	to	make	things	clear.

Clear	Boilerplate	Code

172Mastering Machine Learning with Core ML and Python

Since	we’ll	be	starting	from	scratch,	go	ahead	and	delete	everything	which	is	currently	in
the	editor	window.	After	this,	you	should	see	a	blank	canvas	and	you’re	ready	to	start
training	your	text	classifier.

Importing	Frameworks

For	this	part	of	the	book,	you’ll	be	using	the	CreateML	framework,	CoreML	framework,
and	basic	Foundation	framework.	With	these	three	framworks	combined,	you	will	be	able
to	access	to	all	of	the	methods	you	need	to	build	your	text	classifier.	Import	all	of	them
like	this:

import	CreateML

import	CoreML

import	Foundation

Loading	your	Dataset

First,	you’ll	need	to	get	the	dataset	you	downloaded	into	a	constant	that	you	can	access
within	your	code.	To	do	this,	declare	a	new	constant	and	name	it		trainingURL	.	Then,	type
the	following	to	declare	it:

let	trainingURL	=	URL(fileURLWithPath:	

				"/Users/vardhanagrawal/Downloads/sentiment-analysis-master/training")

This	constant	essentially	stores	a	URL	object	which	contains	the	path	to	your	file.	Just
make	sure	to	change	your	path	to	suit	your	own	computer.	Assuming	you've	downloaded
the	files	to	your	Downloads	folder,	you	can	write	the	code	like	below	by	changing	the
username:

let	trainingURL	=	URL(fileURLWithPath:	

				"/Users/<YOUR_USERNAME>/Downloads/sentiment-analysis-master/training")

By	default,	macOS	saves	your	downloads	at	this	path,	given	that	your	currently	logged-in
user	is	entered	correctly.	Alternatively,	you	could	right-click	on	your	downloaded	dataset
and	click	More	Info	to	get	its	path.

173Mastering Machine Learning with Core ML and Python

Selecting	your	Algorithm

As	you	recently	learned,	there	are	currently	three	supported	algorithms	for	text
classification	in	Create	ML.	They	are	transfer	learning,	maximum	entropy,	and
conditional	random	field.	While	transfer	learning	is	great,	it	takes	significantly	longer
time	to	train.	If	you	have	the	patience,	I	recommend	going	with	it.	Either	way,	enter	the
following	line	of	code	into	your	editor:

let	parameters	=	MLTextClassifier.ModelParameters(algorithm:	

				.transferLearning(.dynamicEmbedding,	revision:	nil))

For	the		algorithm		parameter	of	the		ModelParameters		method,	you	need	to	pass	in	the
algorithm	you’d	like	to	use.	Your	options	are	the	following:

Conditional	Random	Field:
	.crf(revision:	nil)	

Transfer	Learning:
	.transferLearning(.staticEmbedding,	revision:	nil)	

	.transferLearning(.dynamicEmbedding,	revision:	nil)	

Maximum	Entropy:
	.maxEnt(revision:	nil)	

Whatever	you	choose	to	use,	you’ll	need	to	put	it	in	the		algorithm		parameter	of	the
	ModelParameters		method,	and	specify		static		or		dynamic		embedding	if	you	choose	to	us
Transfer	Learning.

Defining	the	Classifier

Now	that	you	have	your	data	and	your	parameters,	you’re	ready	to	declare	your	classifier.
Since	it	may	throw	an	error,	you’ll	need	to	use	the		try		keyword	to	end	program
execution	in	case	of	an	error	or		nil		value.	Type	the	following:

let	classifier	=	try	MLTextClassifier(trainingData:	

				.labeledDirectories(at:	trainingURL))

174Mastering Machine Learning with Core ML and Python

Here,	you’re	trying	to	create	an	instance	of	the		MLTextClassifier		class	using	the	training
data	from	the	URL	you	created	earlier.	The	method	attempts	to	grab	data	from	the
provided	URL	and	throws	an	error	if	there’s	nothing	there.

Creating	Metadata

While	this	step	isn’t	required,	it’s	always	good	practice	to	use	metadata	correctly.	It	is
what	appears	when	someone	tries	to	open	your	file.	You	can	define	parameters	such	as
the	author,	description,	and	permissions,	so	that	people	know	a	little	bit	about	the	model
if	you	plan	to	publish	it	online	or	share	it	with	friends.	You	can	define	metadata	like	this:

let	metadata	=	MLModelMetadata(

				author:	"Vardhan	Agrawal",

				shortDescription:	"A	sentiment	classifier.",

				license:	"BSD-2",

				version:	"1.5.1"

)

In	this	code,	I’ve	included	my	name	as	the		author		parameter,	a	quick	description	in	the
	shortDescription		parameter,	and	so	on.	This	is	a	data	type	called	a		struct		and	is	named
	MLModelMetadata	.	We	can	pass	this	value	into	the		write(:)		method	later	on.

Exporting	your	Model

Believe	it	or	not,	you’re	almost	done	with	creating	your	text	classifier!	All	that’s	left	to	do
is	decide	where	you	want	your	exported	model	to	be	and	then	actually	export	it.	Define
your	destination	path	like	this:

let	destinationURL	=	URL(fileURLWithPath:	

				"/Users/vardhanagrawal/Downloads")

I’ve	decided	to	put	my	model	in	my	Downloads	folder,	but	you	can	choose	to	put	it
wherever	you’d	like.	Again,	make	sure	you	have	changed	the	name	of	the	path	to
something	which	actually	exists	on	your	computer;	don’t	use	my	name!	Finally,	export
your	model	as	follows:

175Mastering Machine Learning with Core ML and Python

try	classifier.write(to:	destinationURL,	

				metadata:	metadata)

Again,	since	there’s	a	URL	involved,	and	there’s	a	degree	of	uncertainty	of	whether	the
	write(:)		method	will	succeed,	you	need	to	use	the		try		keyword	to	catch	any	errors.	In
the	parameters,	you’re	passing	in	both	the	destination	URL	and	metadata	constants	you
created	earlier.

Evaluating	Model	Performance

As	you	know	by	now,	testing	your	model’s	performance	using	20%	of	your	dataset	is	very
important.	If	you	haven’t	yet	read	Chapter	4,	I	recommend	visiting	4-3	Delving	into
Create	ML	and	reading	the	section	labeled	Evaluating	Model	Performance.	Here,
you’ll	learn	about	the	differences	and	similarities	of	the	validations	sets	and	the
importance	of	testing	your	models.

Uploading	Testing	Data

To	test	your	model,	you	can	upload	the	20%	of	the	dataset	which	I	set	aside	in	the
provided	repository	(https://github.com/vhanagwal/sentiment-analysis).	This	data	is
also	pre-labelled	for	Create	ML	to	automatically	determine	the	percentage	accuracy	of
the	model.

Type	the	following	at	the	end	of	your	Swift	Playground:

let	testingURL	=	

				URL(fileURLWithPath:	"/Users/vardhanagrawal/Downloads/sentiment-analysis-maste

r/testing")

Similar	as	before,	make	sure	you	type	in	the	path	which	you’ve	saved	your	dataset,	as	the
above	is	just	an	example.	In	this	line,	you’re	storing	the	URL	to	the		testing		folder	of	the
dataset.

Testing	your	Model

176Mastering Machine Learning with Core ML and Python

https://github.com/vhanagwal/sentiment-analysis

Finally,	to	evaluate	your	model’s	performance	using	the	testing	set,	type	the	following:

print(classifier.evaluation(on:	.labeledDirectories(at:	testingURL)))

This	will	print	out	the	results	of	running	the	testing	set	through	the	trained	model	into
your	console,	which’ll	look	something	like	this	after	you	run	it:

Number	of	examples:	402

Number	of	classes:	2

Accuracy:	88.06%

******CONFUSION	MATRIX******

True\Pred	negative		positive		

negative		178							23								

positive		25								176							

******PRECISION	RECALL******

Class				Precision(%)			Recall(%)						

negative	87.68										88.56										

positive	88.44										87.56

The	accuracy	value	(third	line)	tells	you	what	percentage	of	the	testing	set	the	model	got
correct.	88%	is	a	great	accuracy;	however,	there’s	no	absolute	value	which	determines
how	good	or	bad	your	model	is.	Depending	on	the	amount	of	classes	and	the	dataset	size,
you’ll	have	different	accuracies.	If	you	have	a	model	with	hundreds	of	different	classes,
for	example,	60%	may	be	an	acceptable	accuracy.	But,	if	you	only	had	two	classes,	60%
would	be	considered	pretty	bad.	Make	sure	you	evaluate	your	model’s	accuracy	based	on
these	parameters.	Don’t	judge	a	book	by	it’s	cover!

The	Confusion	Matrix	is	a	common	tool	used	to	evaluate	model	performance	in	the
data	science	space,	and	it	shows	you	how	many	the	model	got	correct	for	each	class,
giving	you	insights	on	which	classes	the	model	performed	best	on	and	which	classes	the
model	struggled	on.

177Mastering Machine Learning with Core ML and Python

The	Precision	Recall	table	is	most	useful	when	there	are	more	data	available	for	one
class	than	another.	The	Precision	value	indicates	how	many	"positives"	out	of	all	of	the
predicted	positives	in	that	class	were	correct,	and	the	Recall	indicates	the	number	of
predicted	positives	out	of	the	total	correct	positives.	Most	of	the	time,	though,	you	won’t
need	to	use	the	Precision-Recall	table;	however,	if	you	want	to	learn	more	about	this,
check	out	this	article.

Run	your	Code

Now,	you’re	all	done!	Just	press	the	"play"	button	in	the	lower	left	of	your	Xcode	window
and	wait.	The	console	will	pop	up	and	show	you	what’s	going	on.

178Mastering Machine Learning with Core ML and Python

https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c

Figure	5-5:	The	final	Playground	project	and	the	console	message

At	the	end,	your	console	should	look	something	like	this:

179Mastering Machine Learning with Core ML and Python

Tokenizing	data	and	extracting	features

20%	complete

40%	complete

60%	complete

80%	complete

100%	complete

Starting	MaxEnt	training	with	1598	samples

Iteration	1	training	accuracy	0.500000

Iteration	2	training	accuracy	0.950563

Iteration	3	training	accuracy	0.989362

Finished	MaxEnt	training	in	0.94	seconds

No	file	name	specified	for	saving	the	model,	using	default	name	'TextClassifier.ml

model'.

Trained	model	successfully	saved	at	/Users/vardhanagrawal/Downloads/TextClassifier

.mlmodel.

Number	of	examples:	402

Number	of	classes:	2

Accuracy:	88.06%

******CONFUSION	MATRIX******

True\Pred	negative		positive		

negative		178							23								

positive		25								176							

******PRECISION	RECALL******

Class				Precision(%)			Recall(%)						

negative	87.68										88.56										

positive	88.44										87.56

And—your	model	should	be	saved	where	you	specified.	You	can	refer	to	the	console
message	to	figure	the	file	path.	For	instance,	my	trained	model	is	saved	at
	/Users/vardhanagrawal/Downloads/TextClassifier.mlmodel	.	Now,	you	can	drag	that	model	into
any	iOS	app	and	use	it	similar	to	the	image	processing	model	you	created	earlier	in	the
book.	For	more	information	on	different	ways	to	use	this	model,	check	out	Apple’s
documentation.

180Mastering Machine Learning with Core ML and Python

https://developer.apple.com/documentation/coreml/integrating_a_core_ml_model_into_your_app

Figure	5-6:	The	trained	model

Using	your	Model

Though	this	app	doesn’t	have	a	sample	project,	let’s	look	at	how	the	API	calls	would	work
for	the	finished	Text	Classifier.	When	you	need	to	use	your	model,	you	must	first	create
an	instance	of	the	model	(through	its	wrapper	class	we	discussed	earlier):

181Mastering Machine Learning with Core ML and Python

let	model	=	TextClassifier()

All	that’s	left	to	do	is	get	the	result	from	the	model:

guard	let	result	=	try?

				model.prediction(text:	"I'm	happy	today!")	else	{

				fatalError("An	error	occured.")

}

Since	the		prediction(:)		method	throws	errors,	we’ll	use	the		try?		keyword	and	use	a
	guard	let		statement	to	unwrap	the	optional	value.	By	the	end,		result		will	be	equal	to
the	result	from	the	model	with	the	passed	in	String.

Conclusion
In	this	chapter,	you	learned	about	linguistics	in	machine	learning,	including	natural
language	processing,	text	classification,	and	word	tagging.	In	addition	to	this,	you	learned
more	about	sentiment	classifiers,	which	help	identify	the	mood	or	intention	behind	what
someone	is	saying.

After	reading	this	chapter,	you	were	able	to	create	useful,	fully	trained	models	which	you
can	use	in	your	apps.	You	also	walked	away	with	a	complete	understanding	of	how
computer	science	and	linguistics	are	connected	and	how	you	can	use	the	power	of	natural
language	processing	in	your	day-to-day	workflow.

182Mastering Machine Learning with Core ML and Python

Chapter	6
Sound	Classification	Models

In	the	previous	chapter,	you	learned	about	natural	language	processing	and	how	it
applies	to	your	day-to-day	life.	You	also	learned	about	what	happens	under-the-hood
with	detailed	explanations	about	each	of	the	algorithms.	Finally,	you	used	Swift
Playgrounds	to	create	your	own	text	classification	model.	With	all	of	this	knowledge
about	natural	language	processing,	you	should	be	well-versed	with	basic	NLP-related
tasks.

In	this	chapter,	you'll	learn	about	sound	classification	in	detail.	With	Apple's	latest
update,	Xcode	comes	bundled	with	Create	ML	and	a	new	array	of	audio	processing
frameworks.	In	the	beginning	of	the	chapter,	you'll	learn	how	to	find,	record,	and	source
audio	clips	for	sound	classification,	and	later,	you'll	learn	how	to	organize	them	correctly.

183Mastering Machine Learning with Core ML and Python

In	the	second	half	of	the	chapter,	you'll	use	Create	ML	to	train	your	own	sound	classifier
using	the	IRMAS	audio	dataset	and	learn	how	to	use	it	in	an	iOS	app.	Throughout	the
way,	you'll	learn	how	to	use	the	SoundAnalysis	framework	and	an	AVAudioEngine	to
utilize	the	built-in	hardware	microphone,	and	run	the	audio	clips	through	your	trained
machine	learning	model.

6-1	Overview	and	Gathering	Sounds
Over	the	preceding	chapters,	you've	learned	about	different	ways	to	apply	machine
learning	technology:	including	image	and	sentiment	classification.	In	the	previous
chapter,	you	learned	about	natural	language	processing	algorithms	and	how	each	step
works	under	the	hood.	At	the	end,	you	made	your	own	sentiment	classification	model
using	Swift	Playgrounds	and	Create	ML.

Sound	classification,	another	excellent	application	of	machine	learning	technology,
allows	a	model	to	"hear"	the	world	around	it.	In	this	section,	you'll	learn	about	sound
classification	and	how	to	record	your	own	sounds	for	use	in	a	sound	classifier.	You'll	also
learn	about	effective	ways	to	find	pre-recorded	sounds,	in	case	you	don't	want	to	use	your
own	for	model	training.

About	Sound	Classification

Think	about	the	sounds	you	hear	on	a	daily	basis.	Whether	it's	a	dog	barking	or	a	car
passing	by,	sounds	are	difficult	to	quantify.	In	other	words,	it's	hard	to	describe	sounds,
and	they	appear	to	be	even	less	structured	than	natural	language.	Considering	this,	sound
classification	is	an	impressive	feat	in	machine	learning,	since	it	requires	a	computer	to
make	sense	of	seemingly	random	sound	inputs.

Classification	Methods

There	are	several	ways	to	classify	sounds,	including	identifying	the	source,	type,	or
characteristics	of	the	sound.	Since	sounds	are	so	difficult	to	define	—	unlike	images,
words,	or	numbers	—	the	best	sound	classifiers	would	use	the	most	general	approach,

184Mastering Machine Learning with Core ML and Python

rather	than	narrowing	in	on	specific	details	of	the	sound	wave.

Source	Classification

One	way	to	think	about	sound	classification	is	source	classification.	This	simply	identifies
what	type	of	person,	animal,	or	instrument	is	making	the	sound.	For	example,	if	you
wanted	to	distinguish	between	a	bird's	chirp	and	a	dog's	bark,	you	could	use	source
classification.	This	can	be	used	both	in	noisy	environments,	where	a	model	is	picking
apart	a	certain	sound	from	the	rest;	or,	it	can	be	used	where	only	one	voice	can	be	heard.

Type	Classification

Alternatively,	if	there	was	no	particular	sound	you	were	targeting,	you	could	identify
where	you	(or,	the	microphone)	is.	For	instance,	the	sounds	you	would	hear	at	the
subway	station	would	be	different	from	those	you	would	hear	on	the	freeway.	In	both	of
these	cases,	there's	no	particular	noise	the	model	is	identifying,	but	instead,	it's	making	a
generalization	based	on	all	of	the	sounds	put	together.

Problems	and	Techniques

By	now,	you	may	be	wondering	how	sound-based	machine	learning	models	work	if
sounds	are	so	seemingly	random.	Their	trick	is	to	hone	in	on	specific	features	of	sounds
and	then	look	for	those	features	in	all	of	their	input	data.	In	other	words,	they	look	for
what	sounds	are	unique	to	certain	clips	and	don't	appear	in	other	clips.

Noisy	Clips

When	we	talk	about	"noise"	in	a	sound	classification	sense,	we	mean	sounds	that	are
irrelevant	in	identifying	an	audio	clip.	For	example,	if	you're	trying	to	identify	a	wolf's
howl	in	the	wild,	the	shuffling	of	leaves	and	the	sound	of	raindrops	would	be	considered
noise,	since	they're	irrelevant	in	determining	whether	a	wolf	is	present.	Audio	clips	are
especially	prone	to	noise	because	smartphone	microphones	aren't	particularly	good	at
avoiding	background	sounds.

185Mastering Machine Learning with Core ML and Python

Filtering	and	Normalization

In	response	to	the	unwanted	noise,	one	may	choose	to	filter	or	normalize	the	audio	clip.
This	may	include	removing	white	noise,	static,	or	other	disturbances	which	may	hinder	a
machine	learning	model's	ability	to	classify	sounds.	However,	it's	important	to	be	careful
when	doing	this.	Since	real	world	recordings	aren't	filtered,	if	your	model	is	only	trained
on	filtered	data,	it	may	not	perform	well	when	tested	with	unfiltered	data.

Support	Vector	Machines

As	you	learned	in	chapter	1,	support	vector	machines,	or	SVMs,	use	training	data	to	draw
"borders"	that	separate	or	distinguish	between	different	classes.	A	sound	classification
model	works	in	a	similar	way.	After	it	gathers	the	appropriate	features	from	the
waveforms,	it	arranges	them	to	find	similarities	and	differences	that	it	can	use	to
distinguish	sounds.

Recording	Sounds	Yourself

A	great	way	to	get	your	audio	clips	for	your	sound	classification	model	is	to	record	them
yourself.	Remember,	though,	that	the	data	you	collect	quite	literally	defines	the	quality	of
your	machine	learning	model.	Here	are	some	tips	to	record	high	quality	audio	clips	which
you	can	use	to	train	your	sound	classifier.

1.	Don't	Over-Filter

A	mistake	that	many	beginners	make	is	trying	to	stay	away	from	background	noises,	or
worse,	trying	to	simulate	a	real	world	environment	instead	of	recording	the	actual	sound.
The	issue	with	doing	this	is	that	your	model	is	more	likely	to	underperform	when	tested
with	real	data.	Avoiding	this	mistake	can	greatly	increase	the	accuracy	of	your	model.

2.	Use	System	Microphone

186Mastering Machine Learning with Core ML and Python

The	microphone	on	your	mobile	device	might	not	have	the	best	quality,	but	it's	the	only
way	your	users	have	to	record	audio.	Then,	if	you're	developing	a	mobile	app,	your	best
bet	would	be	to	train	your	classifier	using	data	from	the	built-in	smartphone	microphone
as	opposed	to	using	professional	equipment	or	a	different	mic.

3.	Record	Edge	Cases

In	case	you	aren't	familiar,	"edge	cases"	refer	to	data	points	which	are	close	to	the
boundaries	and	are	likely	to	"trick"	the	algorithm.	In	the	sound	classification	world,	an
edge	case	might	be	a	dog's	whimper	which	sounds	like	a	cat.	As	you	record,	try	your	best
to	seek	out	some	of	these	confusing	sounds	to	improve	your	model's	performance	when
dealing	with	these	cases.

Sourcing	Sounds	from	Datasets

Obviously,	if	the	sound	data	you're	looking	for	is	available	online,	it'll	likely	be	easier	not
to	record	your	own.	In	fact,	you	probably	won't	need	to	record	sounds	yourself	unless
you're	dealing	with	a	super-niche	topic	such	as	specific	engine	noises	or	extinct	animal
species.

Datasets

With	user-produced	videos	flooding	the	internet,	there	is	no	shortage	of	sounds	to	choose
from.	People	have	gone	through	these	and	created	large	datasets	for	you	to	use	in
training	your	models.	Below	are	a	few	resources	which	will	help	you	source	audio	files	for
use	in	a	sound	classification	machine	learning	model.

AudioSet	(https://research.google.com/audioset/)

YouTube	has	millions	of	videos	published	by	users,	and	Google	has	gone	through	the
paces	of	labelling	10-second	audio	clips	from	these	videos	for	a	massive	dataset	of	2
million	audio	files.	You	can	use	this	for	almost	anything,	since	there's	a	wide	range	of
labelled	data	and	in	large	volumes.

187Mastering Machine Learning with Core ML and Python

https://research.google.com/audioset/

UrbanSound8K
(https://urbansounddataset.weebly.com/urbansound8k.html)

As	the	name	suggests,	the	UrbanSound8K	dataset	has	around	8,000	different	audio	clips
of	10	types	of	sounds	(classes).	They	include	common	city	noises,	such	as	sirens,	street
music,	and	dogs	barking.	Since	the	files	are	meant	to	represent	the	sounds	an	average
person	would	hear	while	going	about	their	day,	models	trained	with	UrbanSound8K	are
likely	to	perform	well	in	similar	situations.

MIVIA	(https://mivia.unisa.it/datasets/audio-analysis/mivia-audio-events/)

The	MIVIA	dataset	brings	out	the	"dark	side"	in	machine	learning	developers	and
contains	around	6,000	clips	of	people	screaming,	guns	being	fired,	and	glass	breaking.
It's	great	for	building	security	applications	or	other	software	which	requires	detection	of
criminal	activity.

Data	Organization

Finally,	let's	review	how	to	store	and	organize	your	training	data	and	get	a	preview	of	how
to	handle	your	testing	data,	which	is	something	new	covered	in	this	chapter.	Depending
on	where	you	get	your	data,	it	may	already	be	in	the	required	format,	or	you	may	need	to
adjust	it.

Training

Similar	to	the	image	and	text	classifiers	you've	seen,	you'll	need	to	create	folders	to
organize	your	data.	Just	like	before,	you	should	create	the	same	number	of	folders	as
labels	and	store	all	of	the	appropriate	audio	files	in	their	respective	folders.	This	way,	you
can	drag	all	of	them	into	the	Create	ML	app,	which	will	recognize	this	structure	and
correspond	the	labels	to	the	training	data.

Testing

In	this	chapter,	we'll	be	focusing	more	on	testing	than	before,	so	make	sure	you	have
extracted	some	testing	data.	Many	datasets	will	have	a	random	testing	folder,	but	if	not,
you'll	need	to	take	out	some	of	your	training	data	and	put	it	in	an	unlabeled	"testing"

188Mastering Machine Learning with Core ML and Python

https://urbansounddataset.weebly.com/urbansound8k.html
https://mivia.unisa.it/datasets/audio-analysis/mivia-audio-events/

folder.	Create	ML	will	then	run	all	of	this	data	through	your	trained	model.

6-2	Training	a	Sound	Classifier
In	the	previous	section,	you	learned	about	sound	classification	and	how	it	works	at	a
glance.	You	also	got	some	tips	on	how	to	record	your	own	sounds	effectively	with	a
classification-oriented	mindset.	Further,	you	learned	about	datasets	where	you	can	get
millions	of	pre-labeled	sound	files	at	no	cost.	At	the	end,	you	learned	about	organizing
your	data	for	easy	model	training	within	Create	ML.

In	this	section,	you'll	train	your	sound	classifier.	At	the	beginning,	you'll	create	a	Create
ML	project	to	experiment	with	different	sounds.	Then,	you'll	get	familiar	with	your	data.
After	training	your	machine	learning	model,	we'll	focus	on	testing	in	various	ways	to
explore	the	powerful	testing	features	in	the	Create	ML	app.

Training	using	Create	ML

In	previous	chapters,	you've	used	Create	ML	for	both	image	processing	and	text
classification.	The	process	for	creating	a	sound	classification	model	is	similar	in	many
ways,	but	its	applications	are	vastly	different.	Let's	train	a	sound	classification	model
using	the	Create	ML	app.

Create	a	Project

The	first	step	of	training	a	Create	ML	model	is	to	start	a	new	project.	It's	worth	noting
that	a	project	can	have	multiple	models	within	it,	which	makes	it	perfect	for	testing
different	datasets,	specifications,	and	training	sets.

Open	Create	ML

First	,	open	your	beloved	Create	ML	app.	In	case	you	haven't	followed	the	previous
chapters,	Create	ML	comes	bundled	with	Xcode	and	can	be	found	in	your	Applications
folder	or	using	Spotlight	Search	via	the	Command	+	Space	keyboard	shortcut.

189Mastering Machine Learning with Core ML and Python

Choose	Model

In	Create	ML,	choose	File	->	New	Project.	You	have	many	options	when	it	comes	to	the
type	of	model	you	choose,	including	an	image	classifier,	word	tagger,	and	table-based
model.	For	sound,	however,	there	is	only	sound	classification	at	this	point	in	time.
Choose	Sound	Classification	and	click	Next.

Figure	6-1:	Choosing	a	Create	ML	Template

Name	and	Save	Project

Create	ML	will	then	prompt	you	to	name	your	project	and	choose	a	location	in	your	file
system	to	save	it.	Obviously,	you	may	name	it	whatever	you	wish,	but	bear	in	mind	that
the	description	and	author	will	show	up	within	Xcode	if	you	choose	to	share	or	publish

190Mastering Machine Learning with Core ML and Python

you	model.

Figure	6-2:	Naming	Your	Project

Gather	and	Prepare	Data

Before	you	train	your	sound	classification	model,	you'll	need	to	gather	data.	For	the
purposes	of	this	book,	I'll	be	using	the	IRMAS	dataset
(https://www.upf.edu/web/mtg/irmas).	This	dataset	labels	the	dominant	instrument
playing	in	each	audio	clip.

Download	Training	Data

191Mastering Machine Learning with Core ML and Python

https://www.upf.edu/web/mtg/irmas

IRMAS	gives	you	many	files	to	download,	all	of	which	11	GB	in	total.	Fortunately,	you
don't	need	all	of	them	to	continue.	First,	you'll	need	to	download	the	training	data,	which
is	named		IRMAS-TrainingData.zip		under	the	downloads	tab	on	the	IRMAS	website.	Or	you
can	use	this	direct	link	(https://zenodo.org/record/1290750#.XuW03GozadZ).

Label	Training	Data

When	you	open	the	unzipped	file,	you'll	find	11	folders,	each	containing	its	corresponding
audio	clips.	It	should	be	structured	in	this	way:

	IRMAS-TrainingData	

	README.txt	

	cel	

	[xxx][xxx].wav	

	[xxx][xxx].wav	

	cla	

	[xxx][xxx].wav	

	[xxx][xxx].wav	

	[xxx][xxx].wav	

	flu	

	[xxx][xxx].wav	

	[xxx][xxx].wav	

However,	when	you	train	your	model,	you	don't	want	output	labels	like	"cel"	and	"cla,"
but	instead,	something	more	descriptive,	like	"cello"	and	"clarinet."	You	may	use	the	key
below	to	rename	the	folders:

192Mastering Machine Learning with Core ML and Python

https://zenodo.org/record/1290750#.XuW03GozadZ

Original New

“cel” “cello”

“cla” “clarinet”

“flu” “flute”

“gac” “acoustic	guitar”

“gel” “electric	guitar”

“org” “organ”

“pia” “piano”

“sax” “saxophone”

“tru” “trumpet”

“vio” “violin”

“voi” “human	vocalist”

And,	while	you	don't	need	to	rename	these	files,	it	might	be	useful	to	do	so	for	easier
readability	in	the	next	section	of	the	chapter,	where	you'll	learn	how	to	create	an	app
which	utilizes	the	model	you	created.

Remove	README	File

Finally,	remove	the		README.txt		file	in	the	downloaded	folder.	Without	doing	this,	Create
ML	will	think	it's	a	part	of	the	training	data	and	will	not	proceed	because	it	has	a	different
file	type	than	the	audio	clips.

Download	Testing	Data

Then,	you'll	need	to	download	the	testing	data.	Since	we're	not	building	a	professional-
scale	model	right	now,	you	can	just	download	the	first	part,	named		IRMAS-TestingData-
Part1.zip	.	Again,	you	can	find	the	testing	data	in	this	direct	link

193Mastering Machine Learning with Core ML and Python

(https://zenodo.org/record/1290750#.XuW03GozadZ).	Since	the	testing	data	isn't	pre-
ordered	for	us,	we	won't	use	it	in	the	auto-testing	section	of	Core	ML;	however,	we'll	use
it	for	manual	spot-testing	later	on.

Train	your	Model

Now,	after	your	mini-detour	from	Create	ML,	it's	time	to	get	back	on	track	to	training
your	sound	classification	model.	Open	your	Create	ML	project	you	created	earlier.	I
suggest	it	is	a	good	time	to	plug	into	a	power	source,	since	training	might	take	a	long	time
and	drain	a	significant	portion	of	your	battery.

Figure	6-3:	Blank	Create	ML	Project

Drag	in	Training	Data

194Mastering Machine Learning with Core ML and Python

https://zenodo.org/record/1290750#.XuW03GozadZ

Just	as	with	image	processing	models,	you	can	drag	your	training	data,	which	is	the
IRMAS-TrainingData	folder,	directly	into	the	Training	Data	box	in	Create	ML.	The	tool
then	automatically	loads	the	training	data	and	you	should	see	a	screen	similar	to	figure	6-
4.	If	you	have	an	older	machine	or	you're	not	willing	to	wait	that	long,	I	suggest	removing
some	of	the	folders	in	the	training	data	or	thin	down	the	number	of	files	in	each	folder	for
faster	model	training.

Figure	6-4:	Import	Audio	Files	for	Training

Next,	click	the	Play	button,	towards	the	left	side	of	the	top	toolbar,	to	start	the	training.
Go	and	make	yourself	some	popcorn.	It	may	take	a	while	to	train	your	sound	classifier,
especially	if	you're	using	the	full	dataset.

The	model	will	first	extract	the	features,	as	you	learned	before:

195Mastering Machine Learning with Core ML and Python

Figure	6-5:	Processing	Audio	Files

Then,	it	will	train	the	model	using	a	SVM	architecture.

196Mastering Machine Learning with Core ML and Python

Figure	6-6:	Training	the	Model

Testing	your	Model

Testing	models	after	training	them	is	as	important	as	training	them.	After	all,	if	your
model	isn't	able	to	correctly	classify	sounds,	it	defeats	the	purpose	of	its	existence.	The
dataset	that	we	are	using	in	this	chapter	has,	thankfully,	provided	us	with	a	ton	of	testing
data	to	work	with.

Testing	Data

Like	the	training	data,	the	testing	data	isn't	correctly	formatted	for	Create	ML	when	you
download	it.	Therefore,	you'll	need	to	make	adjustments	to	the	file	hierarchy	before	you
can	begin.	When	you	first	download	the	testing	data,	it'll	be	structured	like	this:

	IRMAS-TestingData-Part1	

	README.txt	

	Part	1	

197Mastering Machine Learning with Core ML and Python

	(xxx)-xxx.wav	

	(xxx)-xxx.txt	

Notice	that	we	have	a	README	file	and	a	folder.	Within	the	folder,	there	are	both	WAV
and	TXT	files.	Obviously,	we	don't	need	the	text	file	for	Create	ML,	so	we'll	need	to
handle	the	data	in	one	of	two	ways	below:

1.	Automated	Testing

With	automated	testing,	Create	ML	will	automatically	run	your	data	through	the	trained
model	and	track	the	accuracy	quantitatively.	To	take	advantage	of	this	feature,	you'll	need
to	arrange	your	testing	data	into	folders	in	the	same	way	as	the	training	data.	If	you
choose	this	route,	arrange	your	test	data	you	downloaded	earlier	like	this:

	IRMAS-TestingData-Part1	

	cello	

	[xxx][xxx].wav	

	[xxx][xxx].wav	

	clarinet	

	[xxx][xxx].wav	

	[xxx][xxx].wav	

	[xxx][xxx].wav	

	flute	

	[xxx][xxx].wav	

	[xxx][xxx].wav	

You	will	notice	that	the	files	have	been	moved	out	of	the		Part	1		folder	and	the
	README.txt		file	has	been	deleted.	Using	the	text	in	each	song's	corresponding	text	file	of
the	audio	files,	you'll	need	to	sort	your	clips	into	the	appropriate	folders,	which	will	likely
take	a	lot	of	time;	however,	it's	up	to	you	whether	or	not	it	worths.	Then,	go	to	the
Testing	tab	in	the	menu	bar	and	drag	your	folder	with	sorted	audio	files	in	for	your
results.

2.	Manual	Spot	Testing

198Mastering Machine Learning with Core ML and Python

The	"easier"	way	is	to	remove	all	of	the	text	files,	including	the		README.txt		file,	and	use
the	Output	tab	to	drag	your	files	in.	This	way,	you	can	playback	the	clips	to	see	the
model's	prediction	for	every	few	seconds	of	the	soundtrack.	While	this	method	won't	give
you	numerical	data,	it	will	help	you	get	a	general	sense	of	how	your	model	is	performing.

Figure	6-7:	Testing	Specific	Audio	Files

Recording	and	Exporting

Now,	you	have	a	fully	trained	model,	and	you're	ready	to	use	it	in	a	sound	classification
app.	However,	before	you	do	that,	let's	take	a	look	at	one	last	way	to	test	your	data:	using
your	own	voice.

Live	Recording

One	of	my	favorite	features	of	Create	ML	is	the	ability	to	see	how	your	model	performs	in
real-time	without	having	to	create	an	Xcode	project	to	test	it	out.	To	use	this	excellent
feature,	tap	the	+	button	at	the	bottom	of	the	Output	tab.	Then,	click	Record

199Mastering Machine Learning with Core ML and Python

Microphone.	This	way,	you'll	be	able	to	talk,	sing,	or	play	an	instrument	and	watch
your	hard	work	pay	off!

Figure	6-8:	Testing	a	Live	Recording

Export	your	Model

As	always,	getting	your	finished	model	from	Create	ML	is	seamless.	All	you	need	to	do	is
drag	the	Core	ML	file	icon	under	the	Output	tab	into	your	desktop	or	Xcode.	And,	that’s
a	wrap!	You	now	have	your	completed	Core	ML	model,	and	it’s	ready	for	use	in	the	final
section	of	this	chapter.

Rename	your	Model

By	default,	Create	ML	names	your	model		SoundClassifier1.mlmodel	.	To	make	things
simpler	and	more	readable,	let's	rename	the	file	to		SoundClassifier.mlmodel	.	You	can	do
this	by	holding	down	Control	and	clicking	on	the	file;	then,	select	rename	and	type	the

200Mastering Machine Learning with Core ML and Python

new	name.	It's	a	subtle	difference,	but	the	simpler	name	makes	it	a	whole	lot	easier	to	use
in	your	app.

6-3	Implementing	the	Model
At	the	beginning	of	the	chapter,	you	learned	about	sound	classification	and	how	to	source
sounds	for	model	training	appropriately.	You	also	learned	about	some	excellent	resources
which	can	help	you	get	high-quality	audio	clips	for	your	models.	Later,	you	used	the
IRMAS	database	to	train	a	sound	classification	model	which	can	detect	the	dominant
instrument	in	a	song.	Finally,	you	tested	your	model	against	testing	data	to	measure	its
performance.

So	far,	you	learned	about	sound	classification	and	how	to	source	sounds	for	model
training	appropriately.	You	also	learned	about	some	excellent	resources	which	can	help
you	get	high-quality	audio	clips	for	your	models.	Later,	you	used	the	IRMAS	database	to
train	a	sound	classification	model	which	can	detect	the	dominant	instrument	in	a	song.
Finally,	you	tested	your	model	against	testing	data	to	measure	its	performance.

In	this	section,	you'll	learn	how	to	create	an	iOS	app	which	uses	your	sound	classifier	to
record	live	audio,	process	it,	and	display	results	to	your	user.	Through	this	process,	you'll
learn	not	only	how	sound	classifiers	work	in	real-world	apps,	but	also	how	to	ask	for
microphone	permission,	use	the	SoundAnalysis	framework,	and	connect	everything	for	a
coherent,	well-built	application.

Building	the	Sound	Classification	App

The	first	step,	as	with	any	app,	is	to	create	an	Xcode	project.	If	you'll	remember	back	to
Chapter	2,	you'll	recall	that	we	created	an	image	classification	app	with	a	pre-built	model.
In	this	section,	we're	doing	something	similar,	but	with	the	audio	classifier	you	built	in
the	previous	section.

You'll	first	need	to	name	your	app,	select	your	language,	and	set	your	bundle	identifier	to
begin.	You're	likely	already	familiar	with	this	process,	so	feel	free	to	skip	a	few	steps.	To
begin,	open	Xcode.

201Mastering Machine Learning with Core ML and Python

Figure	6-9:	Xcode	Welcome	Screen

As	always,	we'll	be	using	a	Single	View	Application	as	our	template	which	allows	us	to
write	our	code	from	scratch.	If	you	prefer	a	different	template,	feel	free	to	use	it;	however,
certain	steps	may	be	different	if	you	choose	something	else.

202Mastering Machine Learning with Core ML and Python

Figure	6-10:	Choosing	an	Xcode	Project	Template

Xcode	will	then	prompt	you	to	name	your	project.	This	name	doesn't	matter	much,	so
you	can	choose	any	convenient	name:	I'm	using	Chapter	6	as	my	project	name.	Then
select	Swift	for	your	Language	and	Storyboard	for	your	User	Interface.

It's	worth	noting	that	Swift	UI	is	an	option	as	well.	At	the	time	of	this	writing,	it	isn't
widely	used	yet.	So,	we'll	stick	with	traditional	storyboards.	Once	you	make	the
appropriate	selections,	your	screen	will	look	something	like	this:

203Mastering Machine Learning with Core ML and Python

Figure	6-11:	Naming	Your	Project

Finally,	Xcode	will	ask	you	where	you'd	like	to	save	your	project.	Again,	you	can	put	it
wherever	you	like,	but	make	sure	you	store	it	in	a	place	which	you'll	remember	and	be
able	to	access	it	easily	later.

204Mastering Machine Learning with Core ML and Python

Figure	6-12:	Saving	Your	Project

User	Interface	and	Model

Now,	let's	take	care	of	the	user	interface	and	importing	the	model	we	created.	Since	much
of	the	heavy	lifting	is	done	under-the-hood,	you	don't	need	to	spend	too	much	of	your
attention	on	the	user	interface	if	you	don't	want	to.	However,	if	you're	a	more	creative
person,	feel	free	to	make	it	as	fancy	as	you'd	like!

Designing	your	Interface

To	design	a	user	interface,	you	need	to	open	the	Main.storyboard	file.	And,	if	you
haven't	read	it	yet,	Chapter	2	covers	user	interface	design	in	more	detail	than	we	will	in
this	chapter.	Whatever	you	do,	just	make	sure	you	have	two	things:	a	prediction	label	and
a	confidence	label.	For	reference,	my	user	interface	looks	like	this:

205Mastering Machine Learning with Core ML and Python

Figure	6-13:	Building	an	Interface

Once	you	have	your	user	interface,	you	need	to	connect	it	to	your	code.	To	do	this,	open
your		ViewController.swift		file	from	the	Project	Navigator	and	type	the	following	under
the		ViewController		class	declaration:

@IBOutlet	weak	var	resultLabel:	UILabel!

@IBOutlet	weak	var	confidenceLabel:	UILabel!

Then,	use	the	Add	Editor	button	(top	right	of	current	editor)	to	open	the
	Main.storyboard		file,	where	you	can	link	each		@IBOutlet	.

206Mastering Machine Learning with Core ML and Python

Figure	6-14:	Adding	an	Assistant	Editor

At	the	left	of	the	labels,	where	the	line	numbers	usually	sit,	you'll	find	an	un-filled	circle.
You	can	drag	it	to	the	corresponding	label	in	the	user	interface	on	the	right.	After	you	do
this,	it'll	look	something	like	this	with	the		resultLabel		variable	connecting	to	Guitar	and
the		confidenceLabel		variable	to	the	percentage	label.

207Mastering Machine Learning with Core ML and Python

Figure	6-15:	Connecting	Interface	Builder	to	Code

Setting	Microphone	Permissions	and	Importing	the	ML
Model

Apple	is	highly	particular	about	allowing	apps	to	use	sensors	such	as	the	microphone,
camera,	and	location	services.	For	this	reason,	we,	as	app	developers,	are	required	to
explain	why	we	need	to	use	the	built-in	microphone	and	ask	the	user	for	permission.

The		Info.plist		file,	or	Information	Property	List,	contains	important	metadata	about
the	app	you're	creating.	This	is	where	you'll	put	your	microphone	usage	description.
You'll	find	this	file	in	the	Project	Navigator,	which	is	at	the	left	pane	of	your	Xcode
window.

Next	to	the	first	cell	in	the	table,	which	says	Information	Property	List,	click	on	the	+
button.	This	will	allow	you	to	create	a	new	entry	of	your	usage	description	in	the	table.
When	the	blank	field	pops	up,	enter		NSMicrophoneUsageDescription		for	the	key,	and	explain

208Mastering Machine Learning with Core ML and Python

why	you	need	the	microphone	in	the	value.	Once	done,	it'll	look	something	like	this:

Figure	6-16:	Edit	Info.plist	and	request	microphone	permissions

Whether	or	not	you	used	the	IRMAS	dataset	from	the	previous	section,	you	should	have	a
trained	model	somewhere	on	your	computer.	If	you	didn't	export	your	model	from	Create
ML	or	forgot	where	you	saved	it,	you	can	drag	your	model	directly	from	Create	ML	into
your	Xcode	project	or	from	your	file	system	into	Xcode.	Then,	Xcode	will	recognize	it	and
display	the	metadata	you	specified:

209Mastering Machine Learning with Core ML and Python

Figure	6-17:	Importing	Sound	Classifier

Capturing	and	Processing	Live	Audio

Great!	You	now	have	your	Xcode	project	ready,	your	user	interface	completed,	and	your
trained	model	imported	into	your	project.	The	next	step	is	to	get	a	live	stream	of	audio
into	your	app	for	processing.	To	do	this,	you'll	be	using	a	built-in	API	called
AVAudioEngine,	which	allows	apps	to	interface	with	the	on-board	microphone	and
speakers	of	Apple	devices.

Capturing	Audio

Before	we	can	process	the	audio,	we	have	to	use	the	phone's	microphone	to	capture
sound	from	the	user's	environment.	We	also	need	to	split	this	data	into	bite-sized	clips,
specify	its	quality,	and	format	it	correctly	for	the	Core	ML	model.

210Mastering Machine Learning with Core ML and Python

For	the	tasks	we	need	to	do,	there's	only	one	framework	needed:	SoundAnalysis.	To
import	it,	enter	the	following	under		import	UIKit		in	your		ViewController.swift		file:

import	SoundAnalysis

This	framework	is	specifically	designed	for	sound	classification	and	contains	other	tools
we'll	use	later.	Now,	you'll	be	able	to	use	it	within	the		ViewController.swift		file.

To	begin	capturing	sounds,	you	need	to	use	the	framework	we	have	just	imported.
Declare	the	following	variable,	which	has	an	instance	of	the		AVAudioEngine		class,	under
the		confidenceLabel		variable:

let	engine	=	AVAudioEngine()

Similar	with	all	"engines"	in	real-life,	we	need	to	start	our		AVAudioEngine		for	it	to	work.
However,	since	the		start()		method	of	the	engine	can	throw	errors,	you'll	need	to	make
sure	it	doesn't	fail.	Inside	your		viewDidLoad()		method,	enter	the	following:

(try?	engine.start())	??	print("An	error	occurred.")

If	you	aren't	that	familiar	with	Swift,	this	syntax	may	look	unfamiliar	to	you;	however,	it's
simple	once	you	dissect	it.	The		engine.start()		is	our	way	of	"starting	the	engine"	we
created	in	the	previous	step.

The		??		operator,	in	Swift,	is	known	as	the	Nil	Coalescing	Operator.	It	allows	you	to
specify	an	alternate	value	or	action	if	the	original	return	is		nil	.	And,	since		start()	
throws	errors,	we	can	catch	them	using	this	operator.	Alternatively,	you	could	have	used
the	standard		try-catch		block	which	is	more	commonly	used	in	other	object-oriented
programming	languages.

Handle	the	Request

211Mastering Machine Learning with Core ML and Python

When	you	use	a	sound	classification	model	with	the	SoundAnalysis	framework,	a	method
called		request		is	called	by	the	system,	in	which	you	can	specify	what	to	do	with	the	data
received	from	the	model.	Let's	define	this	method	now.

To	gain	access	to	the		request		model,	your		ViewController		class	needs	to	conform	to	the
	SNResultsObserving		protocol.	To	do	this,	we	will	create	an	extension	to	adopt	it.	Insert	the
following	code	at	the	bottom	of	your	file,	after	the	last	closing	curly	brace:

extension	ViewController:	SNResultsObserving	{

				//	your	code	here.

}

While	you	could	have	done	this	directly	in	the	main		ViewController		class	declaration,	we
use	extensions	to	better	organize	the	code.	At	this	point,	Xcode	will	give	you	an	error,
which	we'll	address	in	the	following	step.

The	error	you	probably	see	is	Xcode	trying	to	tell	you	that	the		ViewController		class	does
not	conform	to	the	protocol		SNResultsObserving	.	To	fix	this	issue,	simply	add	the
	result(:)		method	inside	the	extension	as	follows:

func	request(_	request:	SNRequest,	didProduce	result:	SNResult)	{

				//	your	code	here.

}

The		request		parameter	of	this	method	is	internal,	and	we	don't	need	to	deal	with	it.
However,	we	do	need	to	deal	with	the		result		parameter.	As	the	name	suggests,	the
	result		parameter	is	the	classification	label	produced	by	the	model	and	is	passed	in	when
this	method	is	called	by	the	system.

As	with	all	machine	learning	tasks	in	Swift,	there	are	optionals	involved.	To	access	the
data	stored	in	the		result		parameter,	you'll	need	to	cast	it	as	an		SNClassificationResult	
(currently	an		SNResult		protocol,	which	isn't	a	concrete	type).	To	do	this,	enter	the
following	in	the		request(:)		method:

212Mastering Machine Learning with Core ML and Python

guard	let	result	=	result	as?	SNClassificationResult

				else	{	return	}

The		guard-let		statement	ensures	that	the		result		parameter	can	indeed	be	casted	as	an
	SNClassificationResult		type,	and	it	will	simply	return	if	it	fails.	Next,	you	need	to	gather
the	actual	classification	text	from	this	object.	To	do	this,	enter	the	following	under	the
previous	line:

guard	let	label	=	result.classifications.first

				else	{	return	}

This	will	collect	the		SNClassification		object	with	the	highest	confidence	from	the		result	
parameter.	More	specifically,	it	will	grab	the	first	item	from	the		classifications		array.

After	we	have	the	result	in	an	accessible	format,	we	need	to	display	it	to	the	user.	The
	label		parameter	currently	contains	a		SNClassification		object,	which	contains	both	a
label	and	a	confidence	value	inside	it.	The	confidence	value	is	a	long	decimal,	which	look
something	like	this	when	displayed:

92.3667…%

However,	we'd	rather	get	a	value	like		92.4%		to	keep	things	looking	clean,	simple,	and
elegant.	Thankfully,	Swift	has	a	quick		round()		method	for	such	decimals,	and	you	can
access	and	round	the	confidence	level	like	this:

let	confidence	=	round(label.confidence	*	1000)	/	10

Great!	You	now	have	the	rounded	value	stored	in	the		confidence		variable.	To	display	the
text,	do	this:

213Mastering Machine Learning with Core ML and Python

DispatchQueue.main.async	{

				self.resultLabel.text	=	"\(label.identifier)"

				self.confidenceLabel.text	=	"\(confidence)%"

}

As	you	know,	the	user	interface	must	be	updated	on	the	main	thread	to	maintain
performance,	and	therefore,	we	should	wrap	it	in	a	block.

Finally,	you	want	to	ensure	that	the	app	doesn't	change	the	label	too	fast	for	the	user	to
read	it.	To	do	this,	you	can	check	whether	the	confidence	is	above	65%	(or	some	other
percentage)	before	updating	the	user	interface.	Wrap	your	user	interface	code	in	an	if-
statement	to	look	like	this:

if	confidence	>	65	{

				DispatchQueue.main.async	{

								self.resultLabel.text	=	"\(label.identifier)"

								self.confidenceLabel.text	=	"\(confidence)%"

				}

}

We	also	want	to	display	that	the	sound	wasn't	recognized	if	the	confidence	is	under	our
threshold.	To	do	this,	add	the	following	else-block:

	else	{

				DispatchQueue.main.async	{

				self.resultLabel.text	=	"not	recognized"

				self.confidenceLabel.text	=	"--%"

				}

}

Here,	we're	checking	that	the	confidence	isn't	greater	than	65%	and	then	displaying	"not
recognized"	in	the	results	label.	We're	also	displaying	dashes	in	the	confidence	label	to
make	it	clear	that	we	don't	have	a	result.

Request	Analysis

214Mastering Machine Learning with Core ML and Python

You've	setup	what	needs	to	happen	after	we	ask	our	model	to	process	our	audio.	But	now,
we	need	to	actually	make	the	request	so	that	our		request		method	gets	called.

Instantiate	Model

When	you	imported	your	model	into	Xcode,	it	automatically	created	a	Swift	wrapper
class	for	it.	Since	my	model	was	called		SoundClassifier.mlmodel	,	I	can	expect	a	Swift	class
called		SoundClassifier()		to	be	created	for	me	to	use.	Similarly,	you'll	have	a	model
wrapper	class	created	with	the	name	you	chose	for	it.	To	instantiate	this	model,	insert	the
following	code	under	your	previous		engine		declaration:

let	classifier	=	try!	SoundClassifier(configuration:	MLModelConfiguration())

Now,	you	can	access	this	single	instance	of	your	model	in	the		ViewController.swift		file,
instead	of	making	multiple	redundant	instances	of	the	same	class.

One	thing	to	note	is	that	I've	used	the		try!		keyword	(note	the	exclamation	point).	This
means	that	if	an	error	is	thrown	during	the	initialization	of	either		SoundClassifier		or
	MLModelConfiguration	,	the	program	will	crash.

You	should	rarely	use	exclamation	points	in	Swift,	but	in	this	case,	we	don't	mind	our	app
crashing	because	if	there's	a	problem	with	the	classifier,	there's	likely	a	bigger	problem
we	have	to	deal	with	first.	Of	course,	in	production-level	code,	you	would	always	want	to
handle	errors	and	show	messages	to	the	user	instead;	but	here,	we're	in	our	little
development	sandbox!

Format	Audio

Remember	that	you	have	created	an	instance	of		AVAudioEngine		for	audio	capture	before
setting	up	the		request		function.	Now,	you	need	to	format	your	input	audio	for	analysis.
To	do	this,	you'll	first	need	to	define	the	format.	Declare	the	following	variable	after	the
	classifier		constant:

var	format:	AVAudioFormat!

215Mastering Machine Learning with Core ML and Python

This	is	an	uninitialized	variable.	Since	we're	making	it	non-optional,	the	program	would
crash	if	we'd	forgotten	to	initialize	it.	Let's	define	it	in	the		viewDidLoad()		method	and
insert	the	following	line	of	code	after		super.viewDidLoad()	:

format	=	engine.inputNode.inputFormat(forBus:	0)

The		inputNode		singleton	contains	much	of	the	information	needed	for	using	the	internal
microphones	to	capture	sound.	It	also	contains	the	format,	which	you	accessed	using	the
	inputFormat		method.	Please	note	that

Create	Analyzer

Now,	you	can	use	the	format	you	created	to	instantiate	another	object,	an
	SNAudioStreamAnalyzer	.	This	object	is	used	to	handle	audio	input	and	classification
outputs	for	your	app.	It	will	eventually	call	the		request		method	you	created	earlier.
Create	another	variable	under		format		like	this:

var	analyzer:	SNAudioStreamAnalyzer!

Then,	go	back	to	the		viewDidLoad()		method	and	initialize	it:

analyzer	=	SNAudioStreamAnalyzer(format:	format)

Here,	you're	simply	initializing	the		SNAudioStreamAnalyzer		using	the		format		from	the
previous	step.	This	analyzer	will	allow	you	to	make	requests	after	inputting	the	audio	that
came	from	the	audio	engine.

Add	Request

We're	almost	done.	Now,	we	have	to	create	an		SNClassifySoundRequest		with	our	sound
classification	model	as	a	parameter	and	then	add	it	to	the	analyzer	we've	just	created.
You	need	to	do	this	in	the		viewWillAppear()		method	as	such:

216Mastering Machine Learning with Core ML and Python

override	func	viewWillAppear(_	animated:	Bool)	{

				if	let	request	=	try?	SNClassifySoundRequest(mlModel:	classifier.model)	{

								//	your	code	here.

				}

}

Again,	we're	using	an		if-let		statement	to	catch	any	possible	errors	which	may	occur
while	trying	to	instantiate	an		SNClassifySoundRequest	.	If	there	is	an	issue,	the	system	will
simply	not	add	the		request		to	the	analyzer.	If	there	is	no	error,	we	need	to	specify	what
to	do.	Inside	the	block,	type	the	following	code:

(try?	analyzer.add(request,	withObserver:	self))	??	print("An	error	occurred.")

If	you	haven't	seen	enough	optionals	today,	the		add()		method	of		SNAudioStreamAnalyzer	
also	throws	errors.	So,	we'll	need	to	use	the		try?		keyword	to	add	the	request	we	created
and	print	an	error	message	if	problems	arise.	Specifying	the	observer	as		self		will	allow
our		request		method	to	get	called	at	the	correct	time.

Create	Audio	Tap

Last	but	not	least,	you	need	to	install	an	audio	tap	to	collect	a	sample	of	the	audio	from
the	live	audio	stream.	Still,	inside	the		viewWillAppear()		method,	add	this:

engine.inputNode.installTap(onBus:	0,	bufferSize:	1024,	format:	format)	{	(buffer:	

AVAudioPCMBuffer,	when:	AVAudioTime)	in

				//	your	code	here.

}

This	audio	tap	will	be	installed	on	the		inputNode		singleton	from	the	audio	engine.	The
	installTap		method	specifies	the	bus	(same	as	the	format	bus),	buffer	size	(which	means
quality),	and	format	(same	as	the	one	we	declared	earlier).	Inside	the	closure,	Swift	gives
us	the	buffer	itself	and	the	timestamps	we	need.	Finally,	make	your	analysis	request	like
this	inside	the	curly	braces:

217Mastering Machine Learning with Core ML and Python

DispatchQueue.main.async	{

				self.analyzer.analyze(buffer,	atAudioFramePosition:	when.sampleTime)

}

Here,	you	simply	passed	in	the	closure	parameters	into	the		analyze(:)		method	and	did
so	on	the	main	thread.	Great!	The	request	will	begin	to	process,	and	you	can	now	run
your	app	to	see	the	results!

Make	sure	you	do	this	on	a	physical	device,	because	the	audio	framework	isn't	compatible
on	the	simulator.	When	you	begin	talking,	playing	an	instrument,	or	singing,	your	app
will	tell	you	what	the	dominant	sound	is	and	its	confidence	level.

Conclusion
In	this	chapter,	you	learned	about	sound	classification	in	detail.	With	Apple's	latest
update,	Xcode	comes	bundled	with	Create	ML	and	a	new	array	of	audio	processing
frameworks.	In	the	beginning	of	the	chapter,	you	learned	how	to	find,	record,	and	source
audio	clips	for	sound	classification,	and	later,	you	learned	how	to	organize	them
correctly.

In	the	second	half	of	the	chapter,	you	used	Create	ML	to	train	your	own	sound	classifier
using	the	IRMAS	audio	dataset	and	learned	how	to	use	it	in	an	iOS	app.	You	also	learned
how	to	use	the	SoundAnalysis	framework	and	an	AVAudioEngine	to	utilize	the	built-in
hardware	microphone,	and	run	the	audio	clips	through	your	trained	machine	learning
model.

218Mastering Machine Learning with Core ML and Python

Chapter	7
Cloud-Based	Machine	Learning	with
Firebase

In	the	previous	chapter,	you	learned	all	about	sound	classification.	You	first	learned	how
to	gather	and	source	sounds	to	train	a	machine	learning	model.	Then,	you	actually
trained	your	own	sound	classification	model	using	Create	ML.	Finally,	you	built	a	fully
functional	app	which	could	capture	audio	from	your	device's	microphone	and	process	it
using	your	custom-made	model.	You	learned	a	lot	about	the	unique	caveats	of	machine
learning	in	the	previous	chapter.

219Mastering Machine Learning with Core ML and Python

In	this	chapter,	you'll	learn	even	more	about	machine	learning,	through	another	aspect
which	we	haven't	explored	yet:	cloud-based	machine	learning.	You'll	first	learn	how	to
setup	Firebase	through	a	dependency	manager	called	CocoaPods.	Next,	you'll	connect
your	Xcode	project	to	Firebase.	Then,	you'll	learn	different	image	processing	techniques,
such	as	barcode	scanning	and	image	classification.

Later	in	the	chapter,	we'll	shift	gears	to	text-based	machine	learning,	and	create	a
language	translation	tool	to	end	the	chapter.	By	the	end,	you'll	have	an	excellent	grasp	on
using	Firebase's	machine	learning	tools	and	have	three	fully	functional	apps	built!

7-1	Firebase	at	a	Glance
In	this	chapter,	you'll	learn	about	Firebase	and	how	to	install	it	on	your	computer.	You'll
also	create	an	account	and	learn	about	a	dependency	manager	called	CocoaPods,	which
allows	you	to	download	many	different	dependencies	—	almost	all	of	them	support
CocoaPods.	This	way,	you'll	greatly	increase	your	app	development	flexibility,	aside	from
the	machine	learning	aspect.

For	those	of	you	who	haven't	used	Firebase	in	the	past,	you'll	also	get	a	bird's	eye	view	at
what	you	can	do	with	the	API.	By	the	end	of	this	section,	you	would	be	able	to	create	your
own	app,	configure	it	with	CocoaPods	on	the	command	line,	and	then	connect	it	to	the
Firebase	account	you'll	create	in	this	section	of	the	book.

220Mastering Machine Learning with Core ML and Python

Figure	7-1:	Working	with	Firebase

Basic	Uses	of	Firebase

In	case	you're	not	familiar	with	it,	Firebase	was	started	as	a	backend-service	which
promised	realtime	data,	different	from	anything	else	at	the	time.	Instead	of	using	typical
HTML		POST		and		GET		requests	from	the	database,	Firebase	allowed	its	users	to	get
realtime	data	through	WebSockets.	Later,	Firebase	got	bought	by	Google	and	has	then
been	integrated	into	their	cloud	services	division.

Now,	with	the	new	integration,	the	platform	offers	several	new	features,	including
machine	learning	applications,	storage,	and	even	some	user-interface	options.	Nowadays,
many	of	the	apps	you	are	using	every	day	are	powered	by	Firebase,	because	of	its	cutting-
edge	security	and	competitively	low	prices.

Onboarding	and	Customer	Retention

221Mastering Machine Learning with Core ML and Python

When	your	user	first	opens	your	app,	you	can	use	Firebase	to	tell	them	how	to	use	it,	how
to	set	up	an	account,	and	how	to	engage	with	your	content.	Firebase	makes	it	easy	to	do
that.	It	also	enables	you	to	track	your	users	as	they	navigate	through	your	app,	allowing
you	to	find	which	features	are	the	most	useful	to	your	users.

Bug	Testing	and	Feature	Release

If	you're	unsure	whether	a	feature	will	fly	with	your	users,	you	can	test	it	out	with	a	small
subset	of	them	first.	Coupled	with	the	analytics	tools	of	Firebase,	this	allows	you	to	do
A/B	test	on	your	features	and	launch	only	what's	most	relevant.	You	can	also	gain
insights	on	how	your	app	is	performing,	since	you	can	track	crashes	and	other	bugs.

Login,	Storage,	and	Chat

The	more	popular	features	of	Firebase	are	the	abilities	to	create	quick	sign	in	pages,	store
images	and	other	media	files,	and	implement	a	chatroom	into	your	apps.	Firebase	makes
it	easy	to	implement	these	otherwise	complex	features	into	your	app	with	only	a	few	lines
of	code.

Database	and	Machine	Learning

As	mentioned	before,	Firebase	started	as	a	—	well	—	database,	hence	the	name.	Their
database	is	among	the	strongest	available,	allowing	your	app	to	get	real-time	updates
without	having	to	“refresh”	or	“update”	the	app.	In	addition,	the	machine	learning
division	of	Firebase	allows	you	to	perform	some	of	the	tasks	we've	explored	in	this	book
in	the	cloud,	so	you	can	improve	your	models	live.	This	is	the	feature	we'll	be	looking	at
most	and	exploring	in-depth	throughout	this	chapter.

Account	Creation	and	Setup

Before	you	can	start	using	Firebase,	you'll	need	an	account.	Since	Firebase	was	acquired
by	Google,	a	Google	account	will	be	enough.	You	likely	already	have	a	Google	account,	so
you	can	log	in;	but	if	you	don't,	now	is	a	good	time	to	create	one.

222Mastering Machine Learning with Core ML and Python

Creating	a	Project

To	begin,	you'll	need	to	create	your	first	Firebase	project.	And,	once	you	have	your
Google	account	ready,	you'll	need	to	visit	https://firebase.google.com.	Then,	log	in	with
your	Google	account	and	select	"Go	to	console"	to	enter	the	Firebase	console.

Figure	7-2:	Firebase	Welcome	Screen

In	the	console,	tap	the	white	Create	a	Project	(or	Add	project)	button	in	the	middle	of	the
screen.	Alternatively,	you	could	start	with	a	demo	project,	but	in	this	book,	we'll	start
from	scratch.

223Mastering Machine Learning with Core ML and Python

https://firebase.google.com

Figure	7-3:	Naming	your	Project

I'm	naming	mine	CloudML,	but	as	usual,	you	can	name	your	project	whatever	you'd	like.
Next,	tap	the	blue	Continue	button	underneath.

Now,	it'll	ask	you	whether	you	want	to	enable	analytics.	Flip	the	switch,	since	this	chapter
only	focuses	on	machine	learning,	not	analytics.	If	you	enable	the	option,	you'll	need	to
configure	a	Google	Analytics	account,	so	I	advise	that	you	proceed	without	analytics	for
now.	Finally,	tap	the	blue	Create	Project	button,	and	Firebase	will	start	to	create	your
project.

224Mastering Machine Learning with Core ML and Python

Figure	7-4:	Adding	Google	Analytics

Once	your	project	has	been	created,	you'll	get	a	project	screen	in	a	minute	or	two,
depending	on	the	speed	of	your	internet	connection.

225Mastering Machine Learning with Core ML and Python

Figure	7-5:	Firebase	Project	Console

Great!	You've	created	your	first	Firebase	project,	which	you	can	use	for	a	variety	of
different	tasks.	Follow	along	to	learn	about	cloud	computing	and	machine	learning	tools
offered	by	Firebase.	Next	up,	you	will	proceed	to	connecting	Firebase	with	an	Xcode
project.

Create	an	Xcode	Project

After	you've	created	your	Firebase	project,	you	need	to	create	an	Xcode	project	to	link	it
with.	By	now,	you're	probably	familiar	with	the	process,	but	if	not,	let's	go	through	it
step-by-step.	Feel	free	to	skip	this	section	if	you	feel	confident	with	this	step.

First,	you'll	need	to	open	Xcode.	Again,	select	Single	View	Application	as	your
template,	so	you	can	write	your	project	from	scratch.	If	you	prefer,	you	may	use	other
templates,	but	a	Single	View	Application	works	best	for	connecting	with	Firebase.

226Mastering Machine Learning with Core ML and Python

Figure	7-6:	Selecting	an	Xcode	Project	Template

Xcode	will	then	prompt	you	to	name	your	project.	This	name	doesn't	matter	much,	so
you	can	choose	any	convenient	name:	I'm	using	CloudML	as	my	project	name.	Then
select	Swift	for	your	Language	and	Storyboard	for	your	User	Interface.

Finally,	Xcode	will	ask	you	where	you'd	like	to	save	your	project.	Again,	you	can	put	it
wherever	you	like,	but	make	sure	you	store	it	in	a	place	which	you'll	remember	and	be
able	to	access	it	easily	later.

CocoaPods	Dependency	Manager

Now	that	you	have	an	Xcode	project	connected,	you're	ready	to	install	CocoaPods	to	add
Firebase	to	your	Xcode	project.	In	case	you	haven't	used	CocoaPods,	it's	a	dependency
manager	which	helps	you	easily	keep	track	of	the	different	libraries	you're	using.

227Mastering Machine Learning with Core ML and Python

Installation

If	you've	never	used	CocoaPods	before,	you'll	need	to	install	it	on	the	command	line.	You
don't	need	to	be	familiar	with	the	command	line	for	this	installation,	since	it's
significantly	easier	than	installations	we've	done	earlier	in	this	book.	If	you	have	used	it
before,	you	can	skip	the	installation	steps,	as	they	would	be	redundant	for	you.

First,	open	the	Terminal	app,	which	gives	you	access	to	your	computer's	command	line.
You	can	find	this	by	clicking	Command	+	Space	and	typing	“Terminal”	or	finding	it	in
your	file	directory	in	Applications	>	Terminal.	When	you	open	it,	you'll	see	a	window
that	looks	like	this:

Figure	7-7:	New	Terminal	Window

228Mastering Machine Learning with Core ML and Python

Afterwards,	you	can	install	CocoaPods	if	you	don't	have	it.	If	you're	unsure,	you	can	run
the	command	anyway,	as	it	won't	hurt	your	system.	Since	CocoaPods	is	a	Ruby-based
dependency	manager,	you	can	easily	install	it	using	the		gem		command.	Enter	the
following	(excluding	the		%		prompt)	into	your	command	line:

%	sudo	gem	install	cocoapods

After	you	press	Enter,	it	will	prompt	you	for	your	computer	password	to	give		gem		the
appropriate	permissions	it	needs	to	install	CocoaPods.	After	a	couple	minutes,	your
installation	should	finish,	and	when	you	see	the		%		prompt,	you're	ready	to	move	on.

Configuration

To	use	CocoaPods,	you'll	need	to	configure	it	for	each	project	you'd	like	to	use	it	with.	If
you'd	already	had	CocoaPods	installed,	you	can	resume	following	along	from	this	point
forward.

Enter	the	Project	Directory

We	will	start	by	entering	the	project	directory	through	the	command	line.	To	do	this,	you
can	type		cd		and	drag	the	folder	where	your	project	is	located	to	automatically	fill	in	the
path.	Alternatively,	you	could	type	your	directory	name	manually	in	this	form:

%	cd	/<your	directory>

Say,	if	your	project	is	saved	under	the	Desktop	folder,	you	can	type	the	command	like
this:

%	cd	/Desktop/CloudML/

Initialize	CocoaPods

229Mastering Machine Learning with Core ML and Python

For	every	project	you	want	to	use	with	CocoaPods,	you	have	to	initialize	it	separately.
While	you	only	have	to	do	the	previous	step	once,	you	have	to	do	the	following	step	each
time	you	want	to	use	CocoaPods	in	your	project.	Enter	the	following	once	you're	in	your
project	directory:

%	pod	init

Press	Enter,	and	after	a	few	seconds,	you'll	find	there	to	be	a	new	Podfile	file.	This	is
where	you'll	specify	which	libraries,	or	dependencies,	you'd	like	to	include	as	part	of	your
project.

Add	Firebase

Finally,	all	that's	left	to	do	is	install	the	relevant	Firebase	libraries.	For	now,	we'll	install
the	base	one,	but	later	in	this	chapter,	you'll	install	the	specific	ones	you	need	for	cloud-
based	machine	learning	tasks!

Edit	Podfile

First,	open	the	Podfile	with	a	text	editor	(e.g.	Atom)	and	locate	the	following.	If	you	don't
want	to	install	a	third-party	text	editor,	you	can	simply	open	it	with	TextEdit	by	double-
clicking	on	the	Podfile.

##	Pods	for	CloudML

This	comment	indicates	where	you	need	to	put	your	Firebase	installation	line.	To	add	the
Firebase	pod,	type	the	following	under	the	comment:

pod	'Firebase'

Install	Pods

Now	that	you've	specified	the	Pods	you'd	like	to	use,	save	the	Podfile	and	type	the
following	into	your	Terminal:

230Mastering Machine Learning with Core ML and Python

https://atom.io/

%	pod	install

This	should	install	all	of	the	dependencies	required	for	Firebase	—	at	least	up	until	this
point.	After	you're	done,	you've	successfully	used	CocoaPods	to	install	Firebase	to	your
Xcode	project.

As	you	may	have	noticed,	an	additional	file	with	the	extension		.xcworkspace		appeared	in
your	project	after	running	the		pod	install		command.	In	essence,	this	is	a	wrapper	which
contains	both	your	actual	project	and	your	pods.	From	now	on,	you'll	need	to	open	this
file	instead	of	your		.xcodeproj		file.

Connect	Project	to	Firebase

After	you've	created	your	Xcode	project	and	installed	Firebase	using	CocoaPods,	you're
ready	to	take	the	last	step	and	connect	it	to	Firebase.	This	will	allow	Firebase	to	know
that	your	app	is	truly	your	app	via	a	series	of	authentication	methods.	Don't	worry,	this	is
the	fun	part!

Add	an	App

In	your	Project	Dashboard	on	Firebase,	you	should	see	the	option	to	“add	an	app	to	get
started.”	Above	this	text,	there	are	icons	for	iOS,	Android,	and	Web.	Obviously,	we'll	be
adding	an	iOS	app,	so	click	on	the	circular	iOS	button.

231Mastering Machine Learning with Core ML and Python

Figure	7-8:	Firebase	Project	Console

Register	Bundle	ID

Firebase	will	then	ask	for	your	project's	Bundle	ID	as	part	of	its	guided	setup	process.	To
find	your	Bundle	ID,	open	the		.xcworkspace		version	of	your	project	and	then	click	the
name	of	it	(with	the	blue	icon	on	the	left	of	it)	in	the	project	navigator	on	the	left	of	the
screen.

Then,	under	TARGETS,	select	your	project	name	and	find	the	Bundle	Identifier	in
the	center	of	the	screen.	Yours	should	look	similar	to	mine:

com.vardhanagrawal.Chapter-8

Once	you've	found	this	identifier,	enter	it	to	where	it	says	iOS	Bundle	ID	back	in	your
Firebase	console.	Then,	ignore	the	other	two	fields	and	click	Next.

232Mastering Machine Learning with Core ML and Python

Figure	7-9:	Adding	Name	and	iOS	Bundle	ID

Download	Configuration	File

Next,	Firebase	needs	a	way	to	tell	your	app	about	your	Firebase	project.	It	does	this	using
a		.plist		property	list	file,	where	it	stores	unique	information	about	your	project.
Firebase	should	prompt	you	to	download	this	file,	and	it	should	be	done	in	a	few	seconds.

233Mastering Machine Learning with Core ML and Python

Figure	7-10:	Importing	Property	List	File

Once	downloaded,	your	file	will	be	called		GoogleService-Info.plist	.	Drag	this	file	from
your	Downloads	folder	into	your	Xcode	project,	alongside	your	other	files	such	as
	ViewController.swift	,		AppDelegate.swift	,	and		Main.storyboard	.

Configure	Firebase

Last,	you	need	to	tell	your	app	to	configure	Firebase	as	soon	as	it	launches.	You	can	do
this	in	the		AppDelegate.swift		file.	The	first	method	you	see	in	the		AppDelegate		class
should	read	like	this:

func	application(_	application:	UIApplication,

				didFinishLaunchingWithOptions	launchOptions:

								[UIApplication.LaunchOptionsKey:	Any]?)	->	Bool	{

												FirebaseApp.configure()

												return	true

}

234Mastering Machine Learning with Core ML and Python

Notice	that	we've	added	only	one	line	of	code:

FirebaseApp.configure()

And,	before	Xcode	starts	showing	warnings,	let's	add	an	import	statement	under		import
UIKit		to	import	Firebase:

import	Firebase

Excellent	work!	You've	just	finished	setting	up	a	Firebase	workspace,	creating	an	Xcode
project,	and	connecting	everything	using	CocoaPods.	You're	becoming	a	pro!	Over	the
next	few	sections,	you'll	learn	three	different	ways	to	use	Firebase's	machine	learning
tools.

7-2	Barcode	Scanning	and	Image
Labelling
In	the	previous	section,	you	learned	how	to	use	the	CocoaPods	dependency	manager	to
create	your	first	Firebase-connected	app.	To	use	CocoaPods,	you	first	installed	it	using
Ruby	and	then	initialized	an	Xcode	project	with	it.	After	that,	you	created	a	Podfile	and
added	Firebase	to	it.

In	this	section,	you'll	learn	two	ways	to	use	Firebase	ML	Kit	in	your	application.	The	first
is	barcode	scanning,	and	the	second	is	image	labelling.	By	the	end,	you'll	have	an	app
which	can	scan	barcodes	and	label	specific	objects	in	images,	all	without	local	models.

Starting	a	Live	Feed

For	both	barcode	scanning	and	image	labelling,	we	need	a	live	video	feed.	So,	we'll	start
by	making	one.	Then,	you	can	choose	to	make	either	a	barcode	scanner	or	an	image
labelling	app.	If	you'd	like	to	build	both,	just	comment	out	your	work	for	the	one	you	did
first.

235Mastering Machine Learning with Core ML and Python

Create	User	Interface

The	first	step	is	to	create	your	user	interface.	Since	the	app	is	just	scanning	barcodes,	all
it	needs	is	an	image	view	to	preview	the	barcode,	and	a	label	to	display	the	barcode's
contents.

Open	the	Interface	Builder

Start	by	opening	the		Main.storyboard		file	from	the	file	inspector	on	the	left	side.	As	a
side-note,	make	sure	you've	opened	your		.xcworkspace		and	not	the		.xcodeproj		file,	since
you're	using	CocoaPods	for	this	project.	Once	your	interface	builder	is	open,	you're	ready
to	build	the	interface.

Add	an	ImageView

Next,	you'll	need	to	add	a	place	for	the	user	to	preview	the	barcode.	We	can	achieve	this
using	a		UIImageView	,	similar	to	the	live	preview	in	Chapter	2.	If	you	don't	remember	how
to	do	this,	you	can	refer	back	to	that	chapter	for	more	detailed	instructions.

236Mastering Machine Learning with Core ML and Python

Figure	7-11:	Adding	an	ImageView

Add	a	Label

Finally,	you’ll	need	a	label	which	will	tell	you	the	barcode’s	value.	Add	this	to	the
storyboard,	and	place	it	wherever	you’d	like.	Just	make	sure	it’s	visible	when	the	app
runs.	You	may	also	choose	to	add	a	background	color	to	create	contrast	from	the	image
view.

237Mastering Machine Learning with Core ML and Python

Figure	7-12:	Adding	a	Label	for	Results

Add	Constraints

Again,	since	we’ve	already	covered	the	concept	of	constraints	previously,	I	won’t	be
covering	them	in	detail	in	this	chapter.	For	your	app,	you’ll	need	to	constrain	the	image
view	and	the	label	so	that	they	work	correctly	on	multiple	devices	and	orientations.

238Mastering Machine Learning with Core ML and Python

Figure	7-13:	Adding	Auto-Layout	Constraints

Connect	IBOutlets

The	last	step	is	to	declare	your	interface	elements	as		@IBOutlet		variables.	Open	your
	ViewController.swift		file	and	enter	the	following	inside	the		ViewController		class
declaration:

@IBOutlet	weak	var	imageView:	UIImageView!

@IBOutlet	weak	var	label:	UILabel!

Next,	in	your		Main.storyboard		file,	connect	these	outlets	by	two-finger	clicking	(right
clicking)	on	the		ViewController	,	and	then	connect	the	interface	elements	to	their
respective	variables.	When	you	return	to	your		ViewController.swift		file,	the	circles	on	the

239Mastering Machine Learning with Core ML and Python

left	of	the		IBOutlets		will	be	filled,	confirming	that	you've	successfully	connected	the
outlets.

Create	Live	Feed

After	your	user	interface	has	been	created,	we	need	to	populate	it	with	a	live	video	feed.
This	is	a	very	useful	skill	to	have	for	computer	vision	applications,	since	a	live	feed	adds	a
ton	to	the	user	experience.

Import	Framework

To	start,	import	the		AVKit		framework,	which	will	allow	you	to	create	a	live	video	feed	for
your	app.	Simply	put	the	following	under	the		import	UIKit		line	of	your
	ViewController.swift		file:

import	AVKit

Create	an	Extension

To	keep	things	organized,	start	by	extending		ViewController		after	the	last	closing	curly
brace.	The	extension	should	also	conform	to		AVCaptureVideoDataOutputSampleBufferDelegate	
for	our	video-related	tasks	and	will	look	like	this:

	extension	ViewController:

				AVCaptureVideoDataOutputSampleBufferDelegate	{

								//	your	code	goes	here.

}

Create	a	Method

To	contain	all	of	our	code,	we'll	create	a	method	called		setupSession()	.	It	will	take	no
parameters	and	do	exactly	as	its	name	suggests:	create	and	setup	the		AVCaptureSession	.
Do	this	inside	the	extension	you've	just	created	in	the	previous	step:

240Mastering Machine Learning with Core ML and Python

func	setupSession()	{

				//	your	code	goes	here.

}

Then,	call	the	method	in	the		viewDidLoad()		method	in	the	main	body	of	the
	ViewController		class.	This	will	ensure	that	everything	gets	setup	after	the	view	loads	up.
After	adding	that	in,	your		viewDidLoad()		method	will	look	like	this:

override	func	viewDidLoad()	{

				super.viewDidLoad()

				setupSession()

}

Now,	on	to	the	next	step!

Declare	Input

Inside	your	extension,	type	the	following	lines	of	code	to	ensure	that	your	device,	in	fact,
has	a	camera	and	that	it	is	available	for	use.	If	these	lines	of	code	fail,	the	function	will
return	without	crashing	your	program	as	indicated	by	the		guard	let		statements:

guard	let	device	=	AVCaptureDevice.default

					(for:	.video)	else	{	return	}

guard	let	input	=	try?	AVCaptureDeviceInput

				(device:	device)	else	{	return	}

Create	a	Session

Now,	you	can	declare	the	capture	session	and	specify	the	quality	at	which	you'll	capture
video.	Here,	we'll	use	the	highest	quality,	but	if	you're	making	an	app	geared	for	millions
of	users,	you'll	need	to	think	about	the	battery	life,	efficiency,	quality	and	how	these
factors	affect	the	usability	of	your	app.	Enter	the	following	before	the	previous	lines	of
code:

241Mastering Machine Learning with Core ML and Python

let	session	=	AVCaptureSession()

session.sessionPreset	=	.hd4K3840x2160

The	session,	an	instance	of		AVCaptureSession	,	is	stored	inside	of	the		session		variable.	In
the	next	line,	its	property		sessionPreset		is	set	to	the	highest	resolution	through	an		enum	
within	the	framework.

Allow	Video	Preview

Obviously,	we	want	our	user	to	be	able	to	see	the	video	captured	from	the	camera,	so	they
can	aim	it	at	the	correct	target.	Therefore,	we	need	a	preview	layer	to	display	the	video
stream	within	the	image	view	we	added	earlier.	To	do	this,	add	the	following	into	the
	setupSession()		method:

let	previewLayer	=	AVCaptureVideoPreviewLayer

				(session:	session)

previewLayer.frame	=	view.frame

previewLayer.videoGravity	=	.resizeAspectFill

imageView.layer.addSublayer(previewLayer)

In	the	code	above,	first,	the		previewLayer		is	declared,	and	the	current		session		is	passed
in.	Then,	we	set	the	size	to	the	entire	screen,	regardless	of	the	size	of	the	image	view.	To
prevent	distortion,	we	use		.resizeAspectFill		in	the	third	line,	and	finally,	we	add	the
preview	layer	to	the	image	view.

Output	the	Data

After	showing	the	data	to	the	user,	we	need	to	output	it	for	Firebase	to	use	later	on.
Eventually,	we'll	be	extracting	individual	frames	from	this	live	video	feed.	Add	the
following	after	the	previous	lines	of	code:

let	output	=	AVCaptureVideoDataOutput()

output.setSampleBufferDelegate(self,

				queue:	DispatchQueue(label:	"videoQueue"))

242Mastering Machine Learning with Core ML and Python

Run	the	Session

The	last	thing	to	do	in	our		setupSesssion()		method	is	to	add	the		input		and		output	
specifications	to	the	capture	session,	and	then	start	running	it:

session.addOutput(output)

session.addInput(input)

session.startRunning()

All	set!	If	you	run	your	app	now,	you	should	be	able	to	see	the	live	video	feed.	Since	this	is
a	camera-based	application,	you'll	need	to	use	a	physical	device	to	test	it	out	—	the	Xcode
simulator	doesn't	have	any	camera	support,	unfortunately.

Barcode	Scanning

Nowadays,	barcodes	are	everywhere.	You	can	find	one	on	the	back	of	your	laundry
detergent,	bag	of	chips,	or	even	the	back	of	this	book,	if	you're	reading	the	paperback
version.	Conventionally,	barcodes	are	scanned	using	a	laser-based	barcode	scanner,	but
you	can	also	scan	them	using	your	smartphone's	camera	and	machine	learning.

Finish	Housekeeping

Before	you	can	actually	start	scanning	barcodes,	you'll	need	to	import	the	appropriate
frameworks	and	fetch	an	image	from	the	live	video	feed.	Let's	finish	get	the	housekeeping
out	of	the	way	now.

Add	Pods

In	the	previous	section,	you	configured	Firebase.	But	now,	you'll	need	to	install	some
specific	libraries	for	vision	and	barcode	scanning.	For	reference,	these	libraries	used	to	be
part	of	the	Firebase	SDK,	but	they	have	since	been	moved	to	Google's	ML	Kit.	So,	we'll	be
using	that	version	here	instead.

The	first	step	is	to	add	a	couple	of	pods	to	your	Podfile.	On	the	left	side	inside	the	project
navigator,	you	can	find	the	Podfile	under	the	Pods	target	(with	the	blue	icon).

243Mastering Machine Learning with Core ML and Python

Open	your	Podfile	and	add	the	following	line	of	code	after	the		pod	‘Firebase'		you	added
earlier:

pod	'GoogleMLKit/BarcodeScanning'

Install	Pods

After	saving	the	file,	head	back	to	the	Terminal	and	enter	your	project	directory.	After
getting	into	the	project's	folder,	type		pod	install		to	install	both	of	these	new	pods.

Import	Firebase

When	that's	been	completed,	go	back	into	the		ViewController.swift		file	and	add	the
following	import	statement	after		import	UIKit	:

import	MLKit

This	tells	Xcode	that	you	want	to	use	the	MLKit	library	you	imported	using	Cocoapods	in
the	previous	step.

Capture	a	Pixel	Buffer

Earlier,	you	created	a	live	video	stream,	and	we're	ready	to	use	that	feed.	However,	you
cannot	give	Firebase	a	video	feed	and	expect	a	result;	you'll	need	to	first	extract
individual	frames.	To	do	this,	add	the	following	method	to	your		ViewController	
extension,	beneath		setupSession()	:

func	captureOutput(_	output:	AVCaptureOutput,

				didOutput	sampleBuffer:	CMSampleBuffer,

								from	connection:	AVCaptureConnection)	{

				//	your	code	goes	here.

}

This	delegate	method	gets	called	for	every	frame	in	your	video	output	and	gives	you	the
frame	in	the	form	of	a		CMSampleBuffer	,	which	you	can	convert	to	an	image	for	Firebase.

244Mastering Machine Learning with Core ML and Python

Scanning	Barcodes

Now,	you're	finally	ready	to	scan	barcodes!	Scanning	barcodes	using	Firebase	happens
locally,	which	means	you	don't	need	an	internet	connection	for	it	to	work.	For	the
purposes	of	this	app,	we'll	simply	fetch	the	value	stored	in	the	barcode	and	display	it	to
the	user.	So,	let's	dive	in.

Specifying	Format

First,	let's	specify	the	format	of	barcodes	that	you'd	like	to	detect.	You	can	do	this	by
entering	the	following	inside	the		captureOutput()		method:

let	format	=	BarcodeFormat.all

This	creates	a	constant	and	stores	all	of	the	barcode	formats	inside	it.	Alternatively,	you
could	select	specific	formats	for	your	scanner	to	only	detect	those.	Then,	create	another
constant	to	store	your	barcode	options:

let	options	=	BarcodeScannerOptions(formats:	format)

Create	a	Barcode	Detector

Next,	you'll	need	to	create	your	actual	barcode	detector	using	the	options	you	created
earlier.	You	can	do	this	using	the		Vision		API	like	this:

let	barcodeDetector	=	BarcodeScanner.barcodeScanner(options:	options)

This	creates	an	instance	of	a		barcodeScanner	,	using	an	initial	parameter	of	the		options	
from	the	previous	step.	This	specifies	the	barcode	types	it's	able	to	take.

Extract	Image

As	mentioned	earlier,	you	can	convert	the	pixel	buffer	to	an	image	for	use	in	the	Firebase
API.	Luckily,	Firebase's		VisionImage()		class	takes	in	a		CMPixelBuffer		as	an	initial
parameter,	so	you	can	create	an	instance	of		VisionImage		like	this:

245Mastering Machine Learning with Core ML and Python

let	image	=	VisionImage(buffer:	sampleBuffer)

The		image		constant	now	stores	an	image	for	you	to	process	using	the		barcodeDetector	
which	we	created	earlier.

Detect	Barcodes

After	all	these	configurations,	you're	ready	to	scan	barcodes	using	the		barcodeDetector	.
You	can	do	this	using	the		process(:)		method	with		image		as	a	parameter:

barcodeDetector.process(image)	{	(barcodes,	error)	in

				//	your	code	goes	here.

}

This	will	detect	the	barcodes,	but	you	also	need	to	show	the	result	to	the	user,	with	the
label	we	created	earlier.	To	do	this,	add	the	following	inside	the	closure	of	the		process	
method:

if	let	value	=	barcodes?.first?.displayValue	{

								self.label.text	=	value

}

Since	we're	unsure	whether	a	value	actually	exists	in	the	image,	we	need	to	unwrap	the
optional.	The	code	inside	the		if-let		statement	only	executes	if	there	is	a	barcode.

To	get	the	value	of	the	barcode,	we	get	the	first	element	of	the	features	array	(it's	an	array
for	scanning	multiple	barcodes)	and	take	the		displayValue		from	it.	Then,	inside	the		if-
let		statement,	we	set	the	label's	text	to	the	value	of	the	barcode.

Camera	Usage	Description

But,	there's	still	one	last	thing	you	need	to	do	if	you	want	your	app	to	run	without
crashing:	user	permissions!

246Mastering Machine Learning with Core ML and Python

Since	we’ll	be	using	the	camera	for	this	app,	we	need	to	ask	the	user	for	permission
before	doing	so	—	otherwise,	our	app	won’t	work.	Head	to	your	Info.plist	file	first.
Then,	click	the	+	button	next	to	the	Information	Property	List	and	paste	the
following:

NSCameraUsageDescription

This	will	auto-correct	to		Privacy	-	Camera	Usage	Description		if	done	correctly.	In	the	value
section	for	this	key,	type	a	string	which	describes	why	you	need	to	use	the	camera.

Great!	You	now	have	a	barcode	scanning	app,	which	will	display	the	value	of	any
barcodes	when	you	run	it.	Go	ahead	and	run	it;	try	it	out	with	some	barcodes	from
Google	or	create	your	own.

Image	Labelling

Creating	an	image	labelling	app	is	much	easier	with	Firebase	than	it	was	with	Core	ML,
which	we	have	tried	earlier	in	this	book.	Also,	with	Firebase,	you	have	the	option	of
performing	the	image	labelling	locally	or	on	the	cloud.	Both	of	these	methods	have	their
advantages	and	disadvantages,	but	we'll	be	using	the	on-device	version	since	it's	free	for
an	unlimited	number	of	requests.

Finish	Housekeeping

If	you've	already	created	the	barcode	scanner,	you	may	have	already	completed	some	of
these	steps.	If	not,	you	can	follow	along	with	all	of	them.	We'll	need	to	install	some	pods,
import	frameworks,	and	capture	a	pixel	buffer.

Add	Pods

There	are	two	new	pods	you'll	need	for	Firebase's	machine	learning	tasks.	To	add	them,
open	your	Podfile	from	the		Pods		target	on	the	project	navigator	on	the	left	side.	Then,
enter	the	following	where	you	see	the	other	pods:

247Mastering Machine Learning with Core ML and Python

pod	'GoogleMLKit/ImageLabeling'

Install	Pods

After	updating	your	Podfile,	you'll	need	to	save	it.	Then,	you	can	start	installing	the
specified	pods	using	the	Terminal.	Enter	your	project	directory	and	type	the	following:

pod	install

Import	Firebase

In	a	few	moments,	after	your	pods	have	been	installed,	go	back	into	the
	ViewController.swift		file	and	add	the	following	import	statement	after	import	UIKit:

import	MLKit

If	you've	already	created	the	barcode	scanner,	however,	you've	already	taken	care	of	this
step.

Capture	a	Pixel	Buffer

If	you	haven't	created	the	barcode	scanner,	you'll	need	to	extract	individual	frames	from
the	live	video	feed.	To	do	this,	add	the	following	method	to	your		ViewController	
extension,	beneath		setupSession()	:

func	captureOutput(_	output:	AVCaptureOutput,

				didOutput	sampleBuffer:	CMSampleBuffer,

								from	connection:	AVCaptureConnection)	{

				//	your	code	goes	here.

}

This	delegate	method	gets	called	for	every	frame	in	your	video	output	and	gives	you	the
frame	in	the	form	of	a		CMSampleBuffer	,	which	you	can	convert	to	an	image	for	Firebase.

248Mastering Machine Learning with Core ML and Python

Label	Images

Now,	you're	ready	to	label	the	images	you	captured	as	pixel	buffers.	Remember,	if	you	did
the	barcode	project,	comment	out	your	code	from	the	Scanning	Barcodes	section,	or	it
will	conflict	with	what	we're	about	to	do	now.	Alternatively,	create	a	new	project	and
repeat	the	steps	from	scratch.

Extract	Image

First,	you'll	need	to	convert	the	pixel	buffer	into	an	image.	Since	Firebase's	Vision	APIs
don't	directly	accept	input	as	a		CMPixelBuffer	,	you'll	need	to	convert	it	to	Firebase's	own
image	format.	Do	the	following	inside	the		captureOutput()		method:

let	image	=	VisionImage(buffer:	sampleBuffer)

This	stores	the		VisionImage		created	using	the	pixel	buffer	into	a	constant	called		image	.
You	can	later	use		image		in	the	request.

Define	Labeler

Next,	you'll	need	to	create	an	instance	of	the	labeler.	Depending	on	whether	you	want	to
do	it	on	device,	or	on	the	cloud,	your	work	will	be	a	little	bit	different.	For	on-device
labelling,	type	the	following:

let	options	=	ImageLabelerOptions()

let	labeler	=	ImageLabeler.imageLabeler(options:	options)

Here,	we're	declaring	a	blank	set	of		ImageLabelerOptions()	,	since	we	don't	want	to	set	any
custom	parameter	right	now	--	just	to	meet	the	requirements.	And	with	that,	we're
creating	an	image	labeler.

A	side	note:	if	you	want	your	model	to	run	on	the	cloud,	you'll	need	to	use	Firebase's	API
instead.	In	the	past,	it	was	possible	to	do	it	in	the	same	API;	however,	it	appears	Google
has	only	chosen	to	migrate	their	on-device	image	labeling	to	Google	ML	Kit,	leaving	the
cloud-based	image	labeler	to	Firebase.

249Mastering Machine Learning with Core ML and Python

Process	Images

Using	the		labeler		you've	just	created,	you	can	process	the	video	frame.	Similar	to	the
barcode	scanning	app,	the		process()		method	has	a	closure,	in	which	it	passes	the	result
and	error,	if	applicable.	To	call	this	method,	type	the	following:

labeler.process(image)	{	labels,	error	in

	//	your	code	goes	here.

}

This	runs	the		image		from	the	earlier	steps	in	a	machine	learning	model	in	the	cloud	or
on	your	phone,	depending	on	the		labeler		you	specified	earlier.

Display	Results

Finally,	you're	ready	to	display	the	results	you've	got	from	the		process()		method	in	the
previous	step.	Inside	the	closure	of	the	method,	type	the	following	to	update	your	label:

if	let	labels	=	labels	{

				var	text	=	""

				for	label	in	labels	{

								text	+=	"\(label.text)\n"

				}

				self.label.text	=	text

}

First,	using	an		if-let		statement,	you've	checked	whether	the	optional		labels		array
exists	(or	if	it's		nil).	If	it	does	exist,	you're	creating	a	variable	string	and	appending	each
label	to	it	using	a		for-loop	.	At	the	end	of	the	string,	you'll	notice		\n	,	which	is	a	newline
character.	This	means	that	each	detected	item	will	be	on	a	new	line	in	your	label.

Allow	Multiline	Label

Since	by	default,	each		UILabel		only	has	one	line.	While	we're	using	multiple	lines	to
display	the	label,	we	need	to	allow	our	label	to	have	multiple	lines.	To	do	this,	head	to	the
	viewDidLoad()		method	in	your		ViewController		class	and	add	the	following:

250Mastering Machine Learning with Core ML and Python

label.numberOfLines	=	0

By	setting	the	number	of	lines	to		0	,	we're	telling	Xcode	to	allow	as	many	lines	as	needed
to	display	the	entire	text.	This	allows	the	label	to	change	size	dynamically	instead	of
having	a	fixed,	single-lined	height.

Now,	when	you	run	your	app,	you	should	see	your	images	(or	video	in	this	case)	get
classified	and	displayed	on	the	label.	You've	successfully	built	an	image	labelling	app
using	Firebase,	congrats!

7-3	Translating	Between	Languages
In	the	previous	section,	you	learned	to	create	a	barcode	scanner	and	an	image	labelling
app.	You	created	one	(or	both)	of	these	apps	using	a	live	video	feed	for	a	high-quality	user
experience.	You	learned	to	use	your	device's	camera	and	then	extract	pixel	buffers	to
process	frame-by-frame.	By	the	end,	you	had	two	fully	functional	apps	which	used
Firebase	for	machine	learning	purposes.

In	this	section,	you'll	learn	another	application	of	Firebase's	machine	learning	tools.	This
time,	though,	you'll	be	dealing	with	natural	language	processing	instead	of	image
processing,	as	in	Chapter	5.	By	the	end	of	this	section,	you'll	know	how	to	translate	text
between	languages	and	have	an	app	which	can	provide	on-device,	realtime	translations
between	the	languages	of	your	choice.

Creating	a	Text	Experience

Before	starting	with	machine	learning,	we	need	to	create	a	user	interface	that	can	handle
text	input	and	display	text	output.	To	do	this,	start	by	creating	a	new	Xcode	project	and
setting	up	a	new	Firebase	project.	You	will	need	to	follow	the	steps	in	Chapter	7-1	again
to	configure	CocoaPods	and	Firebase	for	a	new	project.	The	good	news	is	that	practice
makes	perfect,	and	doing	it	again	will	only	make	you	better	at	the	process!

Design	Layout

251Mastering Machine Learning with Core ML and Python

The	first	step	in	creating	an	app	is	the	interface.	Let's	take	a	moment	now	to	design	the
layout	for	the	app.	Even	though	you	can	make	it	as	simple	or	as	complex	as	you'd	like,
each	element	is	important	in	the	app	as	a	whole.

Add	a	Text	Field

The	most	important	user	interface	of	text-classification	apps	is	the	text	field,	of	course.
Start	by	opening	your		Main.storyboard		file	and	adding	a	text	field.	Then,	customize	the
placeholder	text	and	adjust	the	size.

Figure	7-14:	Adding	a	Text	Field	for	Source	Language	Input

Add	a	Button

252Mastering Machine Learning with Core ML and Python

Next,	we	need	a	“submit”	style	button,	where	the	user	can	tell	the	app	that	they’re	done
typing.	For	a	messaging	app,	this	would	be	like	the	“send”	button;	or,	for	a	searching	app,
this	would	be	the	“search”	button.	Make	sure	you	put	this	button	where	the	keyboard
won’t	block	it,	since	we	won’t	cover	“hiding	the	keyboard“	in	this	chapter.

Figure	7-15:	Adding	a	Translate	Button

Add	a	Label

We’ll	also	need	to	show	output	to	the	user,	so	add	a	label	to	your	view.	I	used	a	stack	view
to	layout	everything	correctly,	but	you	can	use	auto	layout	just	as	well.	If	you’d	like,	you
can	change	the	color	or	font,	but	that’s	unnecessary	for	the	machine	learning	part	of	this
chapter.

253Mastering Machine Learning with Core ML and Python

Figure	7-16:	Adding	a	Label	for	Translated	Result	String

Connect	Interface	to	Code

As	you’ve	done	for	several	times	throughout	this	book,	you’ll	need	to	connect	the	user
interface	elements	to	your	Swift	code,	so	that	you	can	reference	them	later.	As	usual,	we’ll
first	type	out	the	references,	and	then,	we’ll	go	back	and	connect	them	in	the
	Main.storyboard		file.

Create	IBOutlets

First,	we'll	connect	the		@IBOutlets	,	which	provide	us	information	about	the	current	state
of	the	user	interface	object.	This	will	apply	to	both	the	text	field	and	the	label,	so	declare
the	following	inside	the		ViewController		class	in	the		ViewController.swift		file:

254Mastering Machine Learning with Core ML and Python

@IBOutlet	weak	var	label:	UILabel!

@IBOutlet	weak	var	textField:	UITextField!

Create	IBAction

For	the	“submit”	button	we	created	earlier,	we	want	a	function	to	get	called	when	the
button	is	pressed.	To	do	this,	we	can	create	a	method	with	the		@IBAction		tag.
Conventionally,	Swift	developers	place	their		@IBAction		methods	at	the	end	of	the	class.
So,	type	the	following	before	the	closing	curly	brace	in	the		ViewController.swift		file:

@IBAction	func	submitButtonTapped()	{

				//	your	code	here.

}

When	connected,	the		submitButtonTapped()		method	will	get	called	whenever	the	user	taps
the	“submit”	button	on	their	screen.	In	the	previous	section,	we	were	performing	our
Firebase	actions	whenever	a	new	frame	was	captured	from	the	live	video	feed.	And	in	this
section,	we'll	do	machine	learning	processing	when	the	“submit”	button	is	tapped.

Connect	Interface	Elements

Finally,	head	to	your		Main.storyboard		file	and	two-finger	click	on	each	of	the	user
interface	elements.	Then,	drag	the	circle	next	to	the	appropriate	variable	from	the	popup
to	the	element.	When	the	circle	is	filled,	you	know	that	they've	been	connected
successfully.

Once	that's	done,	you're	finished!	You	now	have	the	skeleton	of	an	app	you	can	use	for
text-based	machine	learning	purposes,	like	the	translation	app	you're	about	to	create.

Language	Translation

You've	likely	used	a	language	translator	in	the	past	—	whether	it	was	Google	Translate	in
a	foreign	country	or	an	old-school	pocket	translator.	You	may	have	wondered	how	these
tools	function.	In	Chapter	5,	you	learned	about	the	inner	workings	of	language	processing
tools,	and	in	this	chapter,	you'll	learn	how	to	build	your	own	language	translator.

255Mastering Machine Learning with Core ML and Python

Finish	Housekeeping

As	you	may	have	guessed,	there	are	a	few	things	we	need	to	do	before	building	our
language	translator.	Luckily,	since	there's	no	live	video	feed,	all	you	need	to	do	is	to
install	one	additional	pod	before	getting	started.

Add	Pod

Open	your		Podfile		under	the		Pods		target	of	your	workspace.	You	can	also	open	it	in	the
Finder	directly	or	via	the	Terminal.	Then,	add	an	additional	pod	under	the		pod
'Firebase'		line	like	this:

pod	'Firebase/MLNLTranslate'

This	will	add	the	appropriate	framework	needed	for	translation	via	Firebase.

Install	Pod

Then,	save	your	Podfile	and	install	the	pod.	This	is	the	same	procedure	as	you've	been
doing,	but	as	you	know,	practice	makes	perfect!	Navigate	to	your	project	directory	via	the
Terminal	and	enter	the	following	command	to	install:

pod	install

Import	Firebase

When	that's	been	completed,	go	back	into	the		ViewController.swift		file	and	add	the
following	import	statement	after		import	UIKit	.	That's	all	the	housekeeping	you	have	to
do	for	this	project!

import	MLKit

Translating	Strings

256Mastering Machine Learning with Core ML and Python

Now,	you're	ready	to	actually	start	translating	strings	from	one	language	to	another.	In
essence,	you'll	need	to	download	translation	models,	wait	for	them	to	be	installed	using
multithreading,	and	then	create	your	translation	request	and	display	it	to	the	end	user.

Language	Options

The	first	logical	step	in	creating	a	translation	tool	is	specifying	the	languages	you're
translating	between.	Since	I	know	both	Spanish	and	English,	I'll	be	using	those	as	my
target	and	source	languages,	respectively.	Define	your	languages	in	the
	submitButtonTapped()		from	before	like	this:

let	options	=	TranslatorOptions

				(sourceLanguage:	.english,	targetLanguage:	.spanish)

This	line	of	code	creates	an	instance	of		TranslatorOptions		and	specifies	both	a	target	and
source	language.	Both	parameters	are	of	type		TranslateLanguage	.	In	the	past,	the	enum
for	languages	was	more	cryptic,	but	thankfully,	they've	made	it	more	obvious.	For
"English,"	you	simply	say		.english	!

Create	Translator

Next,	you	can	use	your	language	options	to	create	a	translator.	I	suggest	naming	this	so
that	you	can	easily	understand	the	language	that	it	uses.	In	the	future,	you	may	choose	to
expand	the	app	to	support	multiple	languages,	and	for	this	purpose,	naming	is	especially
important.	Define	your	translator	as	follows	in	the	same		submitButtonTapped()		method:

let	spanishTranslator	=	Translator.translator(options:	options)

Here,	the		spanishTranslator		constant	contains	an	instance	of	a		translator	,	which
converts	English	into	Spanish	(through	the	parameter		options).	You	could	create	an
array	of	these	translators	if	you	wanted	to	use	multiple	languages,	in	a	similar	fashion	--
just	make	sure	you	change	the	source	and	target	languages	appropriately!

Download	Translation	Model

257Mastering Machine Learning with Core ML and Python

To	continue	with	using	the	translator	you	created,	you	need	to	first	download	the
appropriate	translation	model	from	Firebase.	You	also	have	the	option	of	specifying	the
conditions	under	which	a	model	can	be	downloaded,	including	permitting	the	use	of
cellular	data.	Here,	we	won't	specify	anything:

spanishTranslator.downloadModelIfNeeded()	{	error	in

				//	your	code	goes	here.

}

When	the	model	has	been	downloaded	successfully,	or	if	it	returns	with	an	error,	the
code	inside	the	body	of	the	closure	will	execute;	perfect	for	performing	our	actual	task.

Translate	your	String

Finally,	you're	ready	to	translate	the	user's	string	into	your	target	language.	Inside	the
body	of	the		downloadModelIfNeeded()		closure,	enter	the	following	code	to	make	the
translation	request:

spanishTranslator.translate(self.textField.text	??	"")

				{	translatedText,	error	in

								//	your	code	goes	here.

}

The		translate()		method	takes	in	the	target	string	as	a	parameter,	and	we	are	passing	in
the	text	entered	in	the	text	field.	If	there's	no	text	(i.e.		self.textField.text		is		nil),	it	will
pass	in	an	empty	string	using	the	nil	coalescing	operator	(??).	The	resulting	string,	if
applicable,	will	be	passed	through	the		translatedText		variable.

Display	Result

Now	that	the	translator	has	given	you	a	result,	you	can	display	it	to	the	user	using	the
label	you've	made.	To	do	this,	first	check	whether	a	result	exists,	and	if	it	does,	display	it
to	the	user.	Do	this	inside	the	closure	of	the		translate()		function.

258Mastering Machine Learning with Core ML and Python

if	let	translatedText	=	translatedText	{

				self.label.text	=	translatedText

}

That	may	have	been	too	many	closures	to	follow,	so	here's	how	your		submitButtonTapped()	
method	should	look	like	by	the	end:

@IBAction	func	submitButtonTapped()	{

				let	options	=	TranslatorOptions(sourceLanguage:	.en,	targetLanguage:	.es)

				let	spanishTranslator	=	NaturalLanguage.naturalLanguage().translator(options:	

options)

				spanishTranslator.downloadModelIfNeeded()	{	error	in

								spanishTranslator.translate(self.textField.text	??	"")	{	translatedText,	e

rror	in

												if	let	translatedText	=	translatedText	{

																self.label.text	=	translatedText

												}

								}

				}

}

Now,	when	you	run	your	app,	enter	some	text	and	press	“submit.”	The	first	time	you	do
this,	it	might	take	a	minute,	since	it's	downloading	the	model	from	Google	ML	Kit.
However,	after	the	first	time,	you'll	get	near-instant	translation.

Conclusion
In	this	chapter,	you	learned	even	more	about	machine	learning	through	a	slightly
different	approach:	cloud-based	machine	learning.	First,	you	learned	how	to	setup
Firebase	through	a	dependency	manager	called	CocoaPods.	Next,	you	connected	your
Xcode	project	to	Firebase.	In	one	part	of	the	chapter,	you	learned	about	different	image
processing	techniques,	such	as	barcode	scanning	and	image	classification.

259Mastering Machine Learning with Core ML and Python

Later	in	the	chapter,	you	learned	to	create	a	text-based	machine	learning	and	a	language
translation	tool.	By	now,	you	should	have	an	excellent	grasp	on	using	Firebase's	machine
learning	tools	and	have	three	fully	functional	apps!

260Mastering Machine Learning with Core ML and Python

Chapter	8
Updatable	ML	Models	for	On-Device
Training

In	the	previous	chapter,	you	learned	to	integrate	cloud-based	machine	learning	into	your
app	through	Firebase.	At	the	beginning	of	the	chapter,	you	learned	to	use	CocoaPods	to
implement	Firebase	into	your	Xcode	project.	Then,	you	built	your	fully	functioning	own
barcode	scanner,	image	classifier,	and	language	translation	app.	Through	creating	these
apps,	you	learned	a	lot	about	cloud-based	machine	learning	and	Firebase’s	APIs	in
general.

261Mastering Machine Learning with Core ML and Python

In	this	chapter,	you’ll	be	discovering	a	more	advanced	Core	ML	topic:	updatable	models.
As	the	name	suggests,	updatable	models	are	machine	learning	models	which	can	be
augmented	over	time	with	user-provided	data.	In	the	beginning	of	the	chapter	you’ll
learn	all	about	updatable	models	and	how	they	work.	Within	this,	you’ll	learn	about	the
intricacies	of	how	the	user	interacts	with	updatable	models	and	how	they	work	from	a
developer’s	standpoint.

Later,	you’ll	be	learning	about	tools	available	on	the	internet	to	help	you	train,	source,
and	interact	with	updatable	models.	You’ll	also	obtain	open-source	software	from	Apple
and	refresh	your	skills	on	Jupyter	Notebooks	and	Python.	Finally,	we’ll	dissect	the
somewhat	complicated	code	line-by-line	to	make	sure	you	have	a	solid	understanding	of
what’s	going	on.

8-1	How	Updatable	ML	Models	Work
In	this	chapter,	you’ll	learn	about	updatable	models.	These	types	of	models	provide
significant	benefits	over	traditional	models	for	certain	use	cases,	since	they	can	adapt	to
each	user’s	individual	needs.	Each	user	is	different,	and	these	types	of	models	can
improve	and	personalize	each	user’s	experience.	By	creating	such	models,	we’re	able	to
provide	the	user	a	more	accurate	result.

In	this	section,	you’ll	learn	the	benefits	of	an	updatable	model	and	how	it	works.	First,
you’ll	discover	how	they	work	from	a	user’s	standpoint.	Then,	you’ll	learn	about	transfer
learning	in	general.	Finally,	you’ll	get	a	glimpse	of	the	challenges	of	implementing	such
technology.

User	Experience

From	a	user’s	standpoint,	updatable	models	can	improve	the	user	experience
significantly.	Updatable	models	not	only	allow	for	customization,	but	also	make	the	user
feel	in	control	of	your	app,	instead	of	having	presets.	Further,	it	allows	for	the	app
experience	to	improve	over	time,	even	if	you	never	pushed	an	update	to	the	app.	Let’s
look	at	some	examples	of	how	this	could	work	in	an	app.

262Mastering Machine Learning with Core ML and Python

Handwritten	Symbols

As	presented	at	WWDC,	one	great	example	of	updatable	models	being	used	in	an	app	is	a
handwritten	symbol	recognizer.	Instead	of	having	the	user	learn	specific	ways	of	drawing
Emojis,	updatable	models	allow	the	user	to	train	the	app.	By	shipping	a	basic	(but
updatable)	model	with	your	app,	you’re	allowing	the	user	to	decide	how	your	app	should
function,	which	can	be	invaluable	in	some	use-cases.

Custom	Image	Classifier

Another	great	use	of	updatable	models	is	for	classification	—	especially	objects	which
aren’t	standard.	For	instance,	if	a	user	wanted	to	detect	their	car	keys	in	an	image,	it
would	be	nearly	impossible	to	train	a	model	that	worked	on	everyone’s	car	keys.	With	all
the	makes	and	models	of	cars	available,	making	a	generalized	model	would	greatly	limit
the	number	of	users	your	app	could	reach.	With	updatable	models,	a	user	could	train	the
app	to	recognize	their	own	keys,	only	requiring	a	basic	model	from	the	start.

Voice	Recognition

Most	modern	voice	assistants	such	as	Alexa	and	Google	Assistant	are	equipped	with	a
voice	recognition	feature,	which	allows	them	to	personalize	their	interactions	with	each
user.	Under-the-hood,	an	updatable	model	is	being	used	to	train	on	an	individual	user’s
voice.	So,	when	it	asks	you	to	say	what’s	the	weather	like?	or	show	me	my	contacts?
during	the	set	up,	you’re	actually	training	a	machine	learning	model	to	recognize	your
voice.

Transfer	Learning

Digging	a	little	bit	deeper,	updatable	models	are	a	lighter-weight	version	of	transfer
learning	techniques.	In	other	words,	when	a	user	inputs	data	into	your	app,	the
algorithms	updating	the	models	are	strikingly	similar	to	those	used	when	training	models
using	transfer	learning,	and	the	underlying	technique	used	by	Create	ML	and	other	drag-
and-drop	model	training	models.	Let’s	learn	about	transfer	learning	to	get	a	better
understanding	of	updatable	models.

263Mastering Machine Learning with Core ML and Python

What	is	Transfer	Learning?

As	an	increasingly	popular	way	to	train	machine	learning	models,	transfer	learning	uses
an	existing	model,	often	trained	with	a	large	dataset,	and	repurposes	it	to	be	used	for	a
more	specific	purpose.	For	example,	if	you	wanted	to	create	a	smartphone	classifier,	you
could	use	a	standard	object	recognition	model	and	train	on	a	small	dataset	of
smartphones.	This	would	result	in	an	end-product	which	would	be	able	to	detect
smartphones.

Benefits	of	Transfer	Learning

While	it	might	not	seem	obvious	at	first,	transfer	learning	is	an	excellent	technique	for
model	training	and	can	potentially	save	you	a	lot	of	time	and	money.	Whether	it’s
allowing	you	to	use	smaller	datasets	to	train	on,	or	requiring	less	time	to	train,	transfer
learning	is	a	great	technique	to	use.	Let’s	look	at	some	of	the	benefits	of	transfer	learning:

Smaller	Datasets

One	of	the	most	significant	benefits	of	using	transfer	learning	to	train	your	models	is	the
ability	to	use	smaller	datasets	to	achieve	the	same	results	as	using	larger	ones.	So,	instead
of	having	to	use	a	million	images	to	get	an	accurate	result,	you	can	use	a	pre-trained
model	with	a	million	images	and	then	only	provide	a	hundred	of	your	own.	This	way,
you’ll	achieve	the	same	result,	but	with	significantly	less	data.

Shorter	Training	Times

Since	you’re	using	a	smaller	dataset	and	the	model	is	already	pre-trained,	the	amount	of
time	it	takes	to	train	a	model	using	transfer	learning	is	significantly	less.	This	means	that
if	you’re	training	in	the	cloud	or	using	a	pay-per-hour	service,	you’ll	save	both	time	and
money	through	transfer	learning.	This	is	another	reason	that	transfer	learning	is
becoming	increasingly	popular	in	the	machine	learning	community.

Higher	Accuracy

264Mastering Machine Learning with Core ML and Python

Finally,	since	you’re	using	a	pre-trained	model,	often	with	millions	of	images,	you’ll
inevitably	get	better	results	when	training	with	transfer	learning.	By	taking	advantage	of
Google	or	Apple’s	models,	you’re	able	to	attain	much	higher	accuracy	than	you’d	be	able
to	on	your	own;	unless	you	have	millions	of	custom	images	to	train	on.

Updatable	Models	at	a	Glance

Finally,	before	you	get	to	create	your	own	updatable	model,	let’s	take	a	look	at	how	it
works	under-the-hood.	As	you	learned	earlier,	updatable	models	operate	similarly	to
models	trained	with	transfer	learning;	however,	they	are	not	the	same.	It’s	worth	taking
the	time	to	explore	how	updatable	models	work	in	the	context	of	iOS	development	and
Core	ML.

Obtaining	Models

Any	model	in	the	Core	ML	format	cannot	be	used	as	an	updatable	model.	As	such,	you
need	to	download	updatable	models	for	use	in	your	apps	or	you	need	to	use	a	conversion
tool	to	create	an	updatable	model.	At	the	time	of	writing,	it	is	not	possible	to	train
updatable	models	using	the	tools	provided	by	Apple;	however,	you	can	create	these
models	(or	find	them	online)	to	easily	configure	to	work	with	Core	ML.

Accepting	User	Input

When	your	model	is	deployed,	you	can	prompt	your	users	to	provide	data	to	update	the
model.	You	will	then	use	this	data	to	retrain	the	updatable	layers	of	your	Core	ML	model.
Since	the	principles	of	updatable	models’	use	are	similar	to	that	of	transfer	learning,	your
pre-trained	model	won’t	require	a	significant	amount	of	data	from	the	users.	After	you
receive	data	from	the	user,	you	can	have	your	model	update	on	a	background	thread
while	the	user	continues	to	use	their	device.

On-Device	Training

265Mastering Machine Learning with Core ML and Python

One	of	the	most	praised	features	of	updatable	models	in	Core	ML	is	their	ability	to	train
on-device.	This	might	not	seem	like	a	big	deal	at	first,	but	on-device	model	training	is	a
boon	for	both	the	privacy	of	the	user	and	the	operating	costs	of	the	app.	By	allowing	for
on-device	model	updating,	Core	ML	enables	an	easier	and	faster	approach	which	wasn’t
possible	before.

8-2	Open-Source	Training	Code
In	the	previous	section,	you	learned	about	updatable	models	at	a	glance.	First,	you
learned	about	how	updatable	models	work	from	a	user	interface	standpoint.	Then,	you
examined	the	similarities	between	updatable	models	and	existing	machine	learning
techniques	by	learning	about	transfer	learning.	Finally,	you	explored	some	of	the
specifics	of	updatable	models	with	Core	ML	to	get	ready	to	implement	them.

In	this	section,	you’ll	be	training	an	updatable	nearest	neighbor	classifier	through	open-
source	software	provided	by	Apple.	Then,	you’ll	convert	this	model	into	an	updatable
model	to	use	with	Core	ML.	For	educational	purposes,	we’ll	be	looking	at	an	extreme	case
of	updatable	models:	one	in	which	the	model	can	only	provide	one	output	label,	until	it	is
eventually	updated.	We’ll	also	explore	a	handwritten	symbols	recognizer.	This	will	clearly
illustrate	the	difference	between	a	boilerplate	and	an	updated	model.

Obtaining	the	Code

Unlike	many	of	the	other	chapters	in	this	book,	you’ll	be	using	open-source	software
instead	of	writing	code	from	scratch.	You’ll	get	a	flavor	of	the	software	development
world,	where	developers	publish	open-source	libraries	for	others	to	build	on.	This	helps
the	community	grow	as	a	whole,	instead	of	individual	developers	writing	code	in
isolation.

Exploring	Open-Source	Options

266Mastering Machine Learning with Core ML and Python

At	the	time	of	writing,	there	aren’t	many	end-to-end	options	when	it	comes	to	open-
source	software	for	Core	ML	updatable	models.	This	is	likely	because	the	technology	isn’t
fully	utilized	yet.	That	said,	Apple	provides	a	handful	of	Jupyter	Notebooks	which	can	be
used	to	create	and	export	updatable	models	for	Core	ML.	To	see	Apple’s	options,	check
out	their	GitHub	repository.	Let’s	take	a	look	at	them	here:

MNIST	Dataset	Model

As	explored	earlier	in	the	book,	the	MNIST	dataset	is	designed	to	train	handwritten
number	classifiers.	While	the	dataset	is	designed	for	numbers,	it	can	be	used	for	other
characters	by	making	it	an	updatable	model.	If	this	is	your	intent,	you	can	use	this
Jupyter	Notebook,	which	trains	a	Keras	model	on	MNIST	and	creates	two	updatable
layers	in	the	exported	Core	ML	model.	We’ll	be	exploring	this	one	in	more	detail	later	on.

Tiny	Drawing	(Linked)	Pipeline	Model

This	Jupyter	Notebook	consists	of	a	model	trained	on	user-sourced	drawings	of	simple
drawings	and	sketches.	This	model	will	later	be	exported	as	an	updatable	model	for	use
in	Core	ML.	This	is	relevant	for	similar	uses	as	the	MNIST	notebook.	However,	it	is	more
angled	towards	small	sketches	and	drawings	as	opposed	to	symbols	and	characters.

Nearest	Neighbor	Classifier

Being	the	most	bare-bones	example	on	list,	the	nearest	neighbor	classifier	Jupyter
Notebook	provides	a	nearly	blank	canvas	for	you	to	work.	In	this	chapter,	this	is	another
example	we’ll	be	exploring.	By	default,	this	classifier	only	outputs	a	default	label.	After
you’ve	updated	it	through	your	iOS	client,	you’ll	be	able	to	see	the	difference.

Using	Third-Party	Tools

Since	Apple’s	own	tools	don’t	allow	you	to	directly	train	updatable	models	(yet!),	you
need	to	use	third	party	tools	to	train	these	models.	In	the	above	examples,	the	models
were	trained	manually.	However,	if	you	have	models	already	trained	in	other	formats,
you	can	use	the		coremltools		framework	to	convert	them	into	updatable	Core	ML	models.

267Mastering Machine Learning with Core ML and Python

https://github.com/apple/coremltools/tree/master/examples/updatable_models

Popular	tools	include	Keras	and	Caffe,	which	allow	you	to	create	more	fine-tuned	models
than	you	could	with	Core	ML.	With		coremltools	,	you	can	easily	use	them	as	native	Core
ML	models,	which	is	especially	convenient	for	updatable	models.	There	are	also	a
significant	number	of	open-source	models	trained	in	these	formats.	Using	Apple’s
documentation,	you	can	convert	them	to	the	Core	ML	format.

Preparation	for	Training

Before	you	dive	into	the	code	and	learn	how	an	updatable	model	is	built,	it’s	worth
refreshing	your	Python	skills.	In	Chapter	3,	you	learned	about	Python	and	Jupyter
Notebooks.	It’s	time	to	put	your	skills	to	the	test!	Since	we	won’t	be	covering	the
implementation	of	updatable	models	in	this	chapter,	the	following	steps	are	optional	but
highly	recommended	for	you	to	follow.	If	you	don’t	want	to	follow	along	with	the
installation,	you	can	view	the	Python	code	in	the	GitHub	preview	for		.ipynb		files.

Installing	the	Code

As	the	industry	standard	for	Python	scripts,	you’ll	be	using	Jupyter	Notebooks	a	lot	as
you	continue	on	your	machine	learning	journey.	If	you	haven’t	read	the	chapter	yet,	I
recommend	you	to	do	so	before	trying	to	install	the	Jupyter	Notebooks	here.	If	you	don’t
want	to	train	models	in	this	chapter,	you	can	follow	along	anyway	as	this	is	more	of	a
“theory”	chapter	than	a	hands-on	one.

If	you	don’t	have	a	GitHub	account,	you’ll	need	to	create	one	in	order	to	install	the
GitHub	repository.	If	you	already	have	one,	go	ahead	and	login.	You’ll	be	given	options	to
either	create	a	new	account	or	to	authenticate	with	Google,	among	other	choices.

Then,	you’ll	need	to	install	the	Core	ML	Tools	repository.	You	can	do	this	by	clicking	the
green	Clone	or	Download	button	and	then	Download	ZIP.	This	will	download	the
entire		coremltools		repository	to	your	Downloads	folder.

268Mastering Machine Learning with Core ML and Python

https://github.com/apple/coremltools

Figure	8-1:	Core	ML	Tools	GitHub	Repository

The	next	steps	is	to	use	Anaconda	Navigator	and	launch	the	Jupyter	Notebooks	program.
This	will	allow	you	to	view	and	edit	the	Python	code	you	just	downloaded	from	the
GitHub	repository.

269Mastering Machine Learning with Core ML and Python

Figure	8-2:	Anaconda	Navigator

Launch	Jupyter	Notebooks

You	can	use	your	skills	from	Chapter	3	to	open	Jupyter	Notebooks.	In	case	you’ve
forgotten,	you	need	to	first	launch	Anaconda	Navigator,	and	then	click	Launch	under
the	Jupyter	Notebook	task.	If	you	do	not	have	Anaconda	installed	on	your	computer,
you’ll	need	to	follow	along	with	this	chapter	using	the	GitHub	preview.

270Mastering Machine Learning with Core ML and Python

Figure	8-3:	Jupyter	Notebooks	File	Navigator

Then,	you’ll	see	a	browser	window	opened	with	your	files	inside.	If	none	of	these	sounds
familiar,	I	highly	recommend	referring	back	to	Chapter	3.	This	will	help	you	hone	in	on
your	Jupyter	Notebooks	skills	and	learn	Python,	the	language	that	the	code	is	written	in
for	this	chapter.

Open	the	MNIST	Notebook

Using	the	file	explorer	in	the	Jupyter	Notebooks	window,	navigate	to		coremltools-master	
>		examples		>		updatable_models		and	then	open	the		updatable_mnist.ipynb		file.	Next,	you
should	see	the	Python	code	appear.	From	here,	you’ll	be	able	run	individual	cells,	make
changes,	and	add	annotations.

271Mastering Machine Learning with Core ML and Python

Figure	8-4:	MNIST	Jupyter	Notebook

8-3	Training	the	Model
In	the	previous	section,	you	learned	about	open-source	options	for	training	and	using
updatable	models	with	Core	ML.	You	also	learned	about	using	third	party	libraries	and
converting	them	to	the	Core	ML	format.	Finally,	you	downloaded	Apple’s	GitHub
repository	and	used	your	existing	Jupyter	Notebooks	knowledge	to	open	it	up	with
Anaconda	Navigator.

In	this	section,	you’ll	learn	to	train	an	updatable	model	using	the	open-source	code	you
obtained	from	Apple’s	GitHub	repository.	While	we	won’t	be	going	over	the
implementation	of	such	a	model	in	an	iOS	app,	you	will	learn	a	lot	about	how	to	train
updatable	models	using	Python	and		coremltools	.

Code	Explained

272Mastering Machine Learning with Core ML and Python

As	mentioned	earlier,	this	chapter	is	more	of	a	theory	chapter	than	a	hands-on	one.	Even
though	we’ll	be	building	an	updatable	model,	the	main	part	is	understanding	the	code
required	to	do	so.	In	this	section,	I’ll	be	going	over	the	code	line-by-line	to	dissect	how
Apple	has	structured	their	Jupyter	Notebook.	To	get	started,	open	up	the	MNIST	Jupyter
Notebook	from	Apple’s	example	repository.

Convolutional	Neural	Network	with	Keras

The	very	first	step	in	training	an	updatable	model	is	to	create	a	base	model	—	one	which
will	be	built	upon.	In	this	case,	the	base	model	will	be	a	convolutional	neural	network
built	using	Keras	and	trained	using	a	dataset	similar	to	MNIST.

In	case	you	weren’t	familiar	with,	the	MNIST	database	is	a	publicly	available	dataset
which	contains	handwritten	numbers	and	their	corresponding	labels.	Also,	a
convolutional	neural	network	is	a	machine	learning	model	architecture	which	is
commonly	used	for	image	processing.	All	of	the	image	classification	models	we’ve	trained
in	this	book	are	convolutional	neural	networks.

Defining	Method

To	keep	the	code	organized,	the	author	of	the	Jupyter	Notebook	created	a	method	to
handle	the	creation	of	the	Keras	base	model	and	appropriately	named	it
	create_keras_base_model()	.	This	model	was	defined	in	the	first	cell	of	the	notebook	and
called	later:

def	create_keras_base_model(url):

Importing	Frameworks

As	usual,	it’s	necessary	to	import	the	appropriate	frameworks.	In	this	case,	we	need	to
import	Keras	and	some	specific	sub-frameworks.	These	are	necessary	only	in	the	creation
of	the	base	model,	so	they	exist	only	within	the	scope	of	the		create_keras_base_model()	
method	declaration.

273Mastering Machine Learning with Core ML and Python

import	keras

from	keras.models	import	Sequential

from	keras.layers	import	Dense,	Dropout,	

				Flatten,	Conv2D,	MaxPooling2D

Specifically,	we	need	to	import	the	main		keras		framework	and	then	import	the
necessary	tools	to	build	a	convolutional	neural	network	from	scratch.

Building	a	Base	CNN

The	next	step	is	to	build	a	convolutional	neural	network,	or	CNN,	from	scratch.	To	do
this,	we’ll	need	to	clear	the	Keras	graph.	To	ensure	the	maximum	efficiency,	this	will
make	sure	we	start	on	a	blank	canvas:

keras.backend.clear_session()

Then,	we	create	a	sequential	model	and	use		model		to	refer	to	it	in	the	code	later	on.	In
Keras,	a	Sequential	type	model	is	a	linear	stack	of	layers	(which	is	the	most	types	in
image	classification	models).

model	=	Sequential()

The	CNN	machine	learning	architecture	is	made	up	of	layers.	Each	layer	performs	a
specific	task	to	analyze	the	input	image,	and	in	the	following	code,	we’re	defining	these
layers	from	scratch.	When	you	build	CNN’s	with	Turi	Create	and	Create	ML,	however,
this	step	is	done	using	a	pre-determined	model	architecture.

274Mastering Machine Learning with Core ML and Python

model.add(Conv2D(32,	kernel_size=(3,	3),

																					activation='relu',

																					input_shape=(28,	28,	1)))

model.add(Conv2D(64,	(3,	3),	activation='relu'))

model.add(MaxPooling2D(pool_size=(2,	2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128,	activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(10,	activation='softmax'))

Compile	and	Save	the	Model

The	logical	last	step	in	the		create_keras_base_model()		method	is	to	compile	the	newly	built
model	and	then	save	it.	Compiling	the	model	requires	you	to	specify	a	loss	function,
which	tells	you	how	well	(or	how	poorly)	the	model	is	performing.	In	this	case,	Apple
uses	a	standard	loss	function	called	Cross	Entropy.	It	isn’t	necessary	to	understand	the
details,	but	you	can	learn	more	about	loss	functions	if	you’d	like.

model.compile(loss=keras.losses.categorical_crossentropy,

																		optimizer=keras.optimizers.SGD(lr=0.01),

																		metrics=['accuracy'])

model.save(url)

There’s	also	a	specified	optimizer,	called	Stochastic	Gradient	Descent,	often	regarded	as
the	most	accurate.	This	tells	Keras	which	algorithm	to	use	while	compiling	the	model.
The	other	parameter	being	specified	in	the	call	to	the		compile()		method	is	the		metrics	
parameter.	This	tells	Keras	to	optimize	the	model	for	accuracy.	Finally,	we	save	the
model	to	the	passed-in	location	URL.

Call	the	Method

After	creating	a	long,	complex	method	to	create	a	base	model	for	the	MNIST	classifier,	we
must	call	the	method.	First,	the	URL	is	stored	for		./KerasMnist.h5		and	then	passed	into
the	model.

275Mastering Machine Learning with Core ML and Python

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/

keras_model_path	=	'./KerasMnist.h5'

create_keras_base_model(keras_model_path)

Note	that	this	is	done	outside	of	the	model	declaration,	so	it	is	no	longer	indented.	If	you
aren’t	aware,	Python	uses	indentation	to	mark	blocks	of	code	instead	of	curly	braces	like
in	Swift.

Convert	Keras	to	Core	ML

Now	that	we	(or	Apple)	have	saved	a	Keras	model,	we	need	to	convert	it	into	the	Core	ML
format	in	order	to	continue	with	our	mission.	Thankfully,	this	is	pretty	straightforward
with		coremltools	.

Create	a	Method

To	organize	the	code,	Apple	has	split	this	task	up	into	another	method.	This	time,	the
method	takes	in	two	URLs:	one	where	the	Keras	model	is	and	one	where	the	Core	ML
models	should	be.

def	convert_keras_to_mlmodel(keras_url,	mlmodel_url):

Load	Keras	Model

Inside	the	newly	created	method,	you	take	the	Keras	model	URL	which	was	passed	in
through	the		convert_keras_to_mlmodel()		method	and	load	it	into		keras_model	.	To	do	this,
you’ll	need	to	import	the		load_model		tool	from	Keras.

from	keras.models	import	load_model

keras_model	=	load_model(keras_url)

Structure	Core	ML	Model

276Mastering Machine Learning with Core ML and Python

Once	the	Keras	model	has	been	successfully	loaded	to	a	variable,	the	Core	ML	model
must	be	setup.	First	things	first,	the	Keras	converter	is	imported	from	the		coremltools	
library.

from	coremltools.converters	import	

				keras	as	keras_converter

Then,	Core	ML	wants	to	know	the	possible	labels	the	model	can	output.	Since	we’re	using
MNIST,	which	is	a	handwritten	digits	dataset,	we’ll	simply	list	the	digits	from	zero
through	nine	and	store	it	in		class_labels	.

class_labels	=	

				['0',	'1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9']

We	then	call	the		convert()		method	from	the	converter	we	imported	earlier.	This	asks	us
to	name	our	input	and	output	and	passes	in	the	class	labels	from	earlier.

mlmodel	=	keras_converter.convert(keras_model,

				input_names=['image'],

				output_names=['digitProbabilities'],

				class_labels=class_labels,

				predicted_feature_name='digit')

Once	that’s	done,	we	can	save	the	newly	created	Core	ML	model	stored	inside	of		mlmodel	
to	the	URL	passed	into	the		convert_keras_to_mlmodel()		method.

mlmodel.save(mlmodel_url)

Call	the	Method

Similar	to	the	creation	of	the	Keras	model,	we	need	to	finally	call	the
	convert_keras_to_mlmodel()		method.	To	do	this,	we’ll	need	to	pass	in	the		keras_model_path	
from	the	previous	cell	and	create	a	path	to	store	the	Core	ML	model.	Then,	we’ll	pass	in
both	of	them	as	parameters.

277Mastering Machine Learning with Core ML and Python

coreml_model_path	=	'./MNISTDigitClassifier.mlmodel'

convert_keras_to_mlmodel(keras_model_path	,	coreml_model_path)

Again,	make	sure	you	do	this	outside	the	method	declaration	by	un-indenting	it.	You
wouldn’t	want	to	call	a	method	inside	a	method!

Inspecting	Layers	Before	Updating

With	the	power	of	a	Jupyter	Notebook,	Apple	uses	the		inspect_layers		function	to	check
each	layer	to	know	whether	it’s	updatable	or	not.	While	this	step	didn’t	require	to	create
an	updatable	model,	it	is	definitely	important	for	understanding.

Import	Frameworks

Since		coremltools		isn’t	yet	imported,	we	need	to	do	that	before	attempting	to	inspect	the
layers	of	the	convolutional	neural	network.

import	coremltools

Load	Model

Then,	we	must	load	a	model	to	inspect.	Since	we	have	the	path	of	the	new	Core	ML	model
stored	in		coreml_model_path		from	the	previous	cell,	we	can	use	that	to	create	a
specification.

spec	=	coremltools.utils.load_spec(coreml_model_path)

Then,	we	need	to	initialize	a		NeuralNetworkBuilder		with	the	specification.	In		coremltools	,
a		NeuralNetworkBuilder		builds	a	neural	network	by	its	layers	and	from	its	specification.

builder	=	coremltools.models.neural_network.NeuralNetworkBuilder

				(spec=spec)

Inspect	Layers

278Mastering Machine Learning with Core ML and Python

Since	we’ll	be	making	the	last	three	layers	of	the	neural	network	updatable,	those	are	the
ones	that	we	should	inspect.	By	calling	the		inspect_layers()		method	on		builder		and
passing	in		3	,	we	can	achieve	this.

builder.inspect_layers(last=3)

The	output	of	this,	when	run,	shows	that	all	three	layers	are	not	updatable.

Setting	Input	Types	and	Descriptions

The	next	cell	is	more	of	a	“housekeeping”	one.	Here,	we	define	what	kind	of	input	is
allowed	for	the	model	and	then	create	descriptions	to	document	the	inputs	and	outputs
for	the	end-user.	By	looking	at	Apple’s	Jupyter	Notebook,	we’re	learning	not	only	how	to
create	updatable	models,	but	also	the	good	practices	in	code.

Inspect	Input

Before	making	any	changes	to	the	type	of	input	accepted	by	the	model,	it’s	a	good	idea	to
check	what	the	input	type	was	before	you	make	the	change.	Using	the	same		builder	
from	the	previous	cell	and	the		inspect_input_features()		method,	we’re	checking	the
current	input	type.

builder.inspect_input_features()

Setting	the	Input	Resolution

To	set	the	input	resolution,	you’ll	need	to	create	a	specification	from	the
	NeuralNetworkBuilder	.	This	tells	us	the	specification	it	was	originally	created	with	(see
previous	cell).

neuralnetwork_spec	=	builder.spec

Then,	using	that	specification,	we	can	set	the	width	and	height	of	the	image	to	be	a	28x28
sized	square.

279Mastering Machine Learning with Core ML and Python

neuralnetwork_spec.description.input[0].type.imageType.width	=	28

neuralnetwork_spec.description.input[0].type.imageType.height	=	28

Since	we’re	doing	handwritten	digit	recognition,	we	only	need	a	small,	square	image.	This
is	how	the	data	in	the	MNIST	dataset	looks.	And	as	you	learned	earlier	in	the	book,	it’s
important	to	structure	your	input	data	just	like	your	training	data.

Take	the	Grayscale	Version

In	a	handwritten	digit,	there’s	not	a	whole	lot	in	terms	of	colors.	For	this	reason,	we’ll
only	take	the	grayscale	version	of	the	image.	To	do	this,	we	first	import	the
	FeatureTypes_pb2		library	from		coremltools		and	then	use	the		GRAYSCALE		colorspace.	Then,
we	set	the	colorspace	of	the	input	image	to	the		grayscale		colorspace	we	just	defined.

from	coremltools.proto	import	FeatureTypes_pb2	as	_FeatureTypes_pb2

grayscale	=	_FeatureTypes_pb2.ImageFeatureType.ColorSpace.

				Value('GRAYSCALE')

neuralnetwork_spec.description.input[0].type.imageType.

				colorSpace	=	grayscale

If	you’re	not	familiar	with	colorspaces,	they	define	the	structure	with	which	the	colors
stored	in	your	images.	For	example,	in	a	grayscale	image,	there’s	no	need	to	store	the	red,
green,	and	blue	components	of	an	image,	so	they	are	stripped	out	altogether.

Verify	Input	Changes

At	the	top	of	this	cell,	Apple	checked	the	input	features.	Now,	we	should	check	them
again	to	make	sure	the	changes	we’ve	made	are	now	reflected.	We	do	this	using	a	line	of
code	identical	to	the	first	in	the	cell.

builder.inspect_input_features()

Setting	Metadata

280Mastering Machine Learning with Core ML and Python

To	make	life	easier	for	the	people	using	this	model,	let's	update	the	metadata.	First,
create	descriptions	for	the	input	and	output	that	the	model	produces.

neuralnetwork_spec.description.input[0].shortDescription	=	'Input	image	of	the	han

dwriten	digit	to	classify'

neuralnetwork_spec.description.output[0].shortDescription	=	'Probabilities	/	score

	for	each	possible	digit'

neuralnetwork_spec.description.output[1].shortDescription	=	'Predicted	digit'

Then,	you	can	credit	the	author	of	the	model	and	specify	the	type	of	license	the	software,
or	model,	is	under.	You	should	also	describe	the	model	and	what	it’s	designed	to	do.

neuralnetwork_spec.description.metadata.author	=	'Core	ML	Tools'

neuralnetwork_spec.description.metadata.license	=	'MIT'

neuralnetwork_spec.description.metadata.shortDescription	=	

				('An	updatable	hand-written	digit	classifier	setup	

				to	train	or	be	fine-tuned	on	MNIST	like	data.')

Make	the	Model	Updatable

Finally,	the	elephant	in	the	room!	After	preparing	everything	else,	it’s	finally	time	to
convert	our	ordinary	convolutional	neural	network	into	an	updatable	one.	Some
procedures	of	this	part	might	be	confusing	if	you	don’t	have	prior	experience	with
machine	learning	model	architectures.	But	if	you	follow	along	closely,	everything	should
make	sense!

Declare	a	Method

For	all	of	the	larger	tasks,	this	Jupyter	Notebook	has	been	using	helper	methods.	The
	make_updatable		method	is	no	exception.	This	method	takes	in	the	path	of	the	current
Core	ML	model	and	the	path	where	the	new	model	should	be	saved.

def	make_updatable(builder,	mlmodel_url,	mlmodel_updatable_path):

Import	and	Create	Specification

281Mastering Machine Learning with Core ML and Python

Next,	since	we’re	using		coremltools		again,	we	should	import	it	within	the	function	body.
Then,	we’ll	set	the		builder	’s	specification	to	the		model_spec		variable	to	access	it	later.
This	is	the	same	specification	created	and	used	in	the	previous	two	cells.

import	coremltools

model_spec	=	builder.spec

Set	the	Updatable	Layers

If	you’ll	recall,	we	inspected	the	layers	of	the	CNN	in	the	last	few	cells.	From	the	result	of
this,	we	can	get	the	names	of	the	layers	in	the	model.	To	make	these	layers	updatable,	we
can	pass	them	as	a	list	of	names	to	the		make_updatable()		method	on		builder	.

builder.make_updatable(['dense_1',	'dense_2'])

Set	Loss	Function	and	Optimizer

Towards	the	top	of	the	notebook,	in	the	first	cell,	a	Keras	model	was	created	with	certain
specifications	for	the	loss	function	and	optimizer.	The	same	preferences	must	be	re-
specified	when	creating	the	updatable	model.	The	first	was	to	use	the	Cross	Entropy	Loss
function,	described	earlier.

builder.set_categorical_cross_entropy_loss

				(name='lossLayer',	input='digitProbabilities')

Then,	we	must	re-specify	that	we’re	using	the	Stochastic	Gradient	Descent	optimizer	with
a	learning	rate	of	0.01	and	a	batch	of	32.	These	numbers,	again,	aren’t	particularly
important	to	understand	at	this	point.	However,	you	can	definitely	learn	more	on	your
own.

from	coremltools.models.neural_network	import	SgdParams

builder.set_sgd_optimizer(SgdParams(lr=0.01,	batch=32))

282Mastering Machine Learning with Core ML and Python

https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e

Last	but	not	least,	we	need	to	set	the	number	of	epochs.	The	number	of	epochs,	in
machine	learning,	defines	the	number	of	times	the	model	is	checked	against	the	loss
function.	In	other	words,	it’s	the	number	of	times	that	a	model	is	“corrected”	based	on
feedback	from	the	loss	function.	In	this	case,	we’re	using		10		to	keep	it	somewhat	light
on	the	GPU	during	training.

builder.set_epochs(10)

Adding	Metadata

Since	we’re	treating	this	updatable	model	as	a	separate	model,	we	need	new	descriptions
for	its	inputs	and	outputs.	Let’s	quickly	add	those	in.

model_spec.description.trainingInput[0].shortDescription	

				=	'Example	image	of	handwritten	digit'

model_spec.description.trainingInput[1].shortDescription	

				=	'Associated	true	label	(digit)	of	example	image'

Saving	the	Model

Now	that	the	heavy	lifting	is	done,	we	just	need	to	save	the	model	to	the	URL	specified	in
the	method	parameter.	First,	create	an	instance	of		MLModel		using	the	model
specification.	Then,	we	use	the		save()		method	and	pass	in	the	destination	URL.

from	coremltools.models	import	MLModel

mlmodel_updatable	=	MLModel(model_spec)

mlmodel_updatable.save(mlmodel_updatable_path)

Call	the	Method

After	creating	the	method,	we	must	call	the	method	with	a	file	path	for	the	new	model.
Simply	create	a	variable	for	the	path	and	then	call	the		make_updatable		method.

283Mastering Machine Learning with Core ML and Python

coreml_updatable_model_path	

				=	'./UpdatableMNISTDigitClassifier.mlmodel'

make_updatable

				(builder,	coreml_model_path,	coreml_updatable_model_path)

Last	Minute	Inspections

Finally,	the	model	has	been	created,	converted,	and	exported	as	a		.mlmodel		file	to	your
file	system.	Now,	let’s	again	utilize	the	power	of	Jupyter	Notebooks	to	check	that	all	our
ducks	are	in	a	row!

Check	Loss	Layer

First,	we’ll	check	whether	the	loss	layer,	or	the	layer	which	defines	what	the	model	is
optimizing	for,	is	correctly	optimizing	for	our		digitProbabilities		target.	We	can	do	this
similar	to	how	we	checked	the	last	three	layers	of	the	model.

import	coremltools

spec	=	coremltools.utils.load_spec(coreml_updatable_model_path)

builder	=	coremltools.models.neural_network.NeuralNetworkBuilder

				(spec=spec)

builder.inspect_loss_layers()

Inspect	the	Optimizer	and	Updatable	Layers

In	the		make_updatable()		method,	we’d	specified	certain	parameters,	such	as	the	learning
rate	and	batch	size.	Let’s	make	sure	that	these	are	correctly	set.

builder.inspect_optimizer()

Finally,	let’s	check	that	the	layers	we	wanted	to	be	updatable	are,	in	fact,	updatable.

builder.inspect_optimizer()

284Mastering Machine Learning with Core ML and Python

Conclusion
In	this	chapter,	you	discovered	a	more	advanced	Core	ML	topic:	updatable	models.	In	the
beginning	of	the	chapter	you	learned	all	about	updatable	models	and	how	they	work.
Within	this,	you	learned	about	the	intricacies	of	how	the	user	interacts	with	updatable
models	and	how	they	work	from	a	developer’s	standpoint.

Later,	you	learned	about	tools	available	on	the	internet	to	help	you	train,	source,	and
interact	with	updatable	models.	You	also	obtained	open-source	software	from	Apple	and
refreshed	your	skills	on	Jupyter	Notebooks	and	Python.	Finally,	you	dissected	the
somewhat	complicated	code	line-by-line	to	learn	best	practices	in	creating	updatable
models.

285Mastering Machine Learning with Core ML and Python

Chapter	9
Action	Classification	and	Style
Transfer

In	the	previous	chapter,	you	learned	about	updatable	models,	a	more	advanced	topic	in
Core	ML.	You	started	by	looking	at	how	updatable	models	work	from	a	birds-eye	view,
from	both	a	user	and	a	developer’s	perspective.	Then,	you	learned	about	resources	for
training	such	models	and	obtained	an	open-source	Jupyter	Notebook	to	train	a	MNIST-
like	updatable	model	for	handwritten	symbols	classification.	Finally,	you	learned	about
what	each	line	of	code	in	that	notebook	does	and	gained	a	solid	understanding	of	training
updatable	models.

286Mastering Machine Learning with Core ML and Python

In	this	chapter,	you'll	learn	about	action	classification	and	style	transfer,	two	emerging
technologies	which	have	the	potential	to	revolutionize	machine	learning's	role	in	various
fields	from	gaming	to	art.	Action	classification	is	the	use	of	machine	learning	to	observe
movements	of	the	human	body	and	make	sense	of	them.	In	the	beginning	of	the	chapter,
you'll	use	action	classification	to	create	a	fitness	classifier	after	learning	how	to	find,
record,	and	source	videos	for	action	classification.

Later	in	the	chapter,	we'll	dive	deep	into	style	transfer.	Style	transfer	is	the	use	of
machine	learning	to	replicate	the	style	of	a	certain	image	on	another,	unrelated	image.
We'll	first	learn	about	the	structure	of	style	transfer	model	projects	—	they're	quite
different	from	anything	we've	seen	in	the	past.	Next,	you'll	learn	about	different	use-cases
of	style	transfer	models.	Finally,	you'll	create	your	own	style	transfer	model	to	replicate
the	style	of	Vincent	Van	Gogh's	"Starry	Night"	painting.	And,	along	the	way,	you'll	learn
about	fine-tuning	model	control,	including	pausing,	adding	iterations,	and	model
snapshots	within	Create	ML.

9-1	Action	Classification
In	this	section,	you'll	learn	about	Action	Classification,	a	feature	of	Create	ML	which
allows	you	to	analyze	motion	of	the	human	body	through	a	video.	In	past	chapters,	we've
used	image	classifiers	to	sequentially	analyze	each	frame	in	a	live	video	feed	to	classify
objects;	however,	in	this	chapter,	we'll	use	Create	ML's	built-in	tools	to	analyze	videos	in
their	entirety.	Think	of	it	like	analyzing	an	audio	clip	in	our	instrument	classification
model.

Through	Create	ML,	we'll	train	a	model	that	takes	video	clips	of	people	doing	day-to-day
actions	such	as	walking,	waving,	and	climbing	stairs.	First,	you'll	obtain	a	dataset	of
videos,	train	a	dataset	on	them	with	Create	ML,	and	then	test	your	model	with	sample
videos.	You'll	be	able	to	quickly	see	how	your	model	performs.	Along	the	way,	you'll	learn
about	adjusting	model	parameters	to	improve	your	results.

Obtaining	Videos

287Mastering Machine Learning with Core ML and Python

The	first	step,	as	you're	already	aware,	is	to	get	data	to	train	your	model	with.	Unlike
other	chapters,	though,	you'll	find	that	it's	harder	to	find	pre-made	datasets	for	Action
Classification,	and	we'll	discuss	ways	you	can	get	data	for	your	models.

Provided	Dataset

Since	training	machine	learning	models	on	videos	is	much	less	common	than	training	on
still	images,	you'll	realize	that	it's	much	harder	to	find	full-fledged	datasets	of	videos	like
you	can	for	images.	Fortunately	for	you,	I've	gone	through	to	adapt	and	compile	a	dataset
which	is	ready-to-use	for	you,	which	you	can	find	in	the	downloads	for	this	book.

Feel	free	to	adapt	this	dataset	for	your	own	uses	—	if	you	need	to	customize	it	to	fit	your
needs,	you	can	handpick	the	actions	you	need	and	then	combine	them	with	other	publicly
available	datasets.

Recording	your	Own

If	you	want	to	create	a	custom	model,	I	highly	recommend	recording	your	own	videos.
You	don't	need	nearly	as	many	videos	to	get	a	good	result,	and	depending	on	the	number
of	classes,	you	could	get	away	with	as	few	as	3-5	videos	per	class.	Let's	look	at	tips	for	you
to	record	your	own	videos	with.

Record	in	Real-Life	Situations

As	with	other	types	of	data,	including	images	and	audio	clips,	it's	important	to	create	a
dataset	which	accurately	represents	the	situations	your	users	will	be	using	your	model	in.
So,	if	you're	creating	a	workout	classifier	for	at-home	workout	coaching,	then	it's	best	to
have	your	recordings	be	in	home	settings	—	not	at	a	gym.

Use	Longer	Clips

Back	to	the	exercise	example:	if	you're	creating	a	model	which	recognizes	squats,	create	a
video	of	you	squatting	multiple	times.	This	way,	Create	ML	will	average	out	your
movements,	instead	of	taking	your	single	squat	as	the	gold	standard.	Similar	to	providing
more	images	to	an	image	classification	model,	using	longer	video	clips	with	more
repetitions	will	improve	your	model's	performance.

288Mastering Machine Learning with Core ML and Python

Don't	Overdo	It

Unless	you're	using	an	eGPU,	training	on	video	clips	can	take	an	unreasonably	long	time
to	train.	So,	try	and	keep	the	amount	of	classes—and	the	number	of	videos	in	each	class—
as	manageable	as	possible.	The	last	thing	you	need	is	training	for	days,	only	to	find	that
you're	not	getting	your	desired	results.

Compiling	a	Dataset

While	it's	definitely	harder	to	find	datasets,	it	isn't	impossible.	Sometimes,	the	best
option	is	to	simply	find	different	datasets	and	compile	the	data	to	create	your	own.	Keep
in	mind,	though,	that	these	datasets	are	often	not	targeted	and	contain	thousands	of
videos	of	random	actions—often	ones	that	don't	fit	under	the	realm	of	Action
Classification.	Here	are	some	resources	you	could	use:

Video	Dataset	Overview

If	you're	looking	for	a	single	place	to	find	your	datasets,	I	recommend	using	this	database
of	video	datasets.	Simply	search	what	you	want,	and	it'll	give	you	a	link	where	you	might
—	or	might	not	—	be	able	to	find	it.	This	gives	you	some	preview	information	ahead	of
time,	too,	so	it's	easier	to	gloss	over	the	ones	you	aren't	interested	in.

VIRAT	Video	Dataset

With	action	classification,	an	important	use-case	is	video	surveillance	—	after	all,	the	key
in	surveillance	is	detecting	suspicious	actions	taken	by	people.	The	VIRAT	Dataset
provides	both	aerial	and	ground	footage	of	people	from	security	cameras	and	can	be
useful	if	you're	creating	a	model	for	these	use-cases.

HMDB	Dataset

If	you	want	more	general	human	movements,	you	can	find	them	in	the	Human	Motion
Database.	Here,	you'll	be	able	to	sort	through	the	movements	you'd	like	and	then	train
your	model	on	those.	For	example,	if	you	wanted	an	exercise	model,	you	could	select	only
the	exercise	videos	from	the	dataset.

289Mastering Machine Learning with Core ML and Python

https://www.di.ens.fr/~miech/datasetviz/
https://viratdata.org
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

VGG	Pose	Dataset

The	VGG	Pose	Dataset	focuses	on	upper	body	poses,	which	can	be	used	to	categorize	the
type	of	video	you're	watching.	Some	examples	of	videos	in	this	dataset	are	stand-up
comedy,	sign	language	videos,	and	performing	arts.	These	different	types	of	videos	could
be	used	for	a	video	curation	app,	for	example.

Of	course,	this	list	isn't	exhaustive;	however,	it	should	give	you	a	good	starting	place.
Since	there	isn't	a	huge	number	of	datasets	available	yet,	you	may	have	to	mix	and	match
to	get	the	result	you	need	—	or,	just	record	your	own!

Training	the	Model

Now	that	you	have	your	data	all	ready	to	go,	it's	time	to	train	your	model.	Though	you're
working	with	videos	in	this	particular	model,	training	is	surprisingly	similar	to	other
models	you've	trained	in	this	book.

Preparing	your	Data

If	you've	used	the	dataset	that	I've	provided,	you	can	feel	free	to	skip	this	step.	However,	I
recommend	you	read	over	it	so	that	you	know	what	to	do	when	you	eventually	use	your
own	data.	As	with	other	models	we've	dealt	with,	you'll	need	to	have	training,	validation,
and	testing	folders.

Each	folder	should	have	a	name,	such	as	"validation"	and	should	have	the	name	of	each
class	within	in.	Make	sure	these	names	match,	in	that	you	don't	call	it	"pushup"	in	one
folder	but	call	it	"pushups"	in	the	other.	These	folder	names	are	what	Create	ML	uses	to
identify	your	videos.

Training

Training	data	should	make	up	the	majority	of	your	videos.	In	my	case,	I've	provided	you	a
fairly	small	subset	of	the	HMDB	database,	so	I	only	have	about	8	video	clips	in	each
testing	folder.

Validation

290Mastering Machine Learning with Core ML and Python

https://www.robots.ox.ac.uk/~vgg/data/pose/index.html

From	what	you've	learned	before,	you	should	set	aside	at	least	20%	of	your	data	for
validation	—	this	is	what	Create	ML	uses	to	measure	your	model	and	tweak	its
performance	while	training.	In	my	case,	I	used	3	images	for	validation	per	class.

Testing

The	testing	dataset	is	what	Create	ML	uses	to	test	the	model	after	it's	been	trained	and
give	you	the	result.	You	could	choose	to	omit	this	and	test	your	model	manually	later	on;
however,	I've	included	3	additional	videos	to	test	with.

Inputting	Data

Once	your	data	is	ready,	you	can	create	a	project	in	Create	ML	to	put	everything	in.	This
is	one	of	the	easier	steps,	and	you've	done	it	several	times	before	—	so,	let's	get	to	it!

Select	Model	Type

When	you	open	Create	ML,	you'll	be	greeted	with	a	screen	that	asks	you	to	select	your
project	type.	The	Action	Classification	project	—	not	to	be	confused	with	the	activity
classification	type	—	is	the	one	you	need	to	select.

291Mastering Machine Learning with Core ML and Python

Figure	9-1:	Choosing	a	Create	ML	Template

Save	Model

You'll	then	be	asked	to	give	it	a	useful	name	and	description	—	this	name	will	appear	on
your	model	when	you	use	it	in	your	apps	or	share	it	with	others.	Then	click	Next.

292Mastering Machine Learning with Core ML and Python

Figure	9-2:	Naming	your	Create	ML	Project

Once	you're	done	naming	your	project,	you'll	be	asked	where	you	want	to	store	it.	Choose
a	convenient	location	for	your	project	and	then	move	on.	This	isn't	where	your	model	will
be	stored,	but	instead,	your	Create	ML	project	—	a	subtle	distinction.

293Mastering Machine Learning with Core ML and Python

Figure	9-3:	Saving	your	Project

Add	Training	Data

When	your	project	has	been	created,	you'll	get	a	dashboard	which	looks	something	like
this:

294Mastering Machine Learning with Core ML and Python

Figure	9-4:	Create	ML	Dashboard

Here,	you'll	see	three	boxes	for	training,	validation,	and	testing	data,	respectively.	Go
ahead	and	drag	in	the	folder	you	named	"training"	into	the	Training	Data	box.

295Mastering Machine Learning with Core ML and Python

Figure	9-5:	Adding	Training	Data

You	will	see	the	number	of	classes,	which,	in	my	case	is	4	—	and	the	total	number	of
videos	in	the	training	set.

Add	Validation	and	Testing	Data

In	my	case,	my	validation	and	testing	data	is	the	same	size.	It's	also	worth	noting	that	if
you	don't	include	validation	data,	Create	ML	will	automatically	use	some	of	your	testing
data	as	validation	data.

Drag	your	"validation"	folder	to	the	Validation	Data	box	and	then	your	"testing"	folder
to	the	Testing	Data	box.

296Mastering Machine Learning with Core ML and Python

Figure	9-6:	Adding	Validation	and	Testing	Data

Once	you've	done	this,	you'll	see	that	all	of	the	boxes	say	the	same	number	of	classes	and
reflect	the	number	of	videos	in	each	folder.

Exploring	Model	Parameters

Before	you	train,	you'll	see	some	options	that	you	can	adjust	beforehand.	So,	let's	look	at
these	options	and	see	how	they	can	help	you	create	a	better	model	in	the	end.	You	can
always	use	the	defaults	and	try	again	later,	but	let's	look	at	what	they	each	mean.

Iterations

By	now,	you're	likely	familiar	with	the	concept	of	iterations.	The	number	of	iterations
tells	Create	ML	how	many	times	to	tweak	the	model	and	check	its	performance	with	the
validation	set.	Normally,	models	converge	—	or	stop	getting	better	—	after	a	certain

297Mastering Machine Learning with Core ML and Python

number	of	iterations.	Our	goal	when	setting	the	number	of	iterations	is	to	get	the
smallest	number	at	which	we	have	the	best	result.	Usually,	I	recommend	just	going	with
the	default	value.

Frame	Rate

The	frame	rate	of	a	video	dictates	how	many	frames	you	see,	per	second.	Your	phone's
camera	normally	records	between	30	and	60	frames	per	second	—	and	that's	usually
plenty.	If	you	have	some	really	fast-moving	action,	you	may	want	to	step	up	the	frame
rate,	but	remember:	it	increases	the	amount	of	time	needed	to	train.

Action	Duration

Since	we're	dealing	with	videos,	Create	ML	asks	us	to	specify	an	action	duration.	This	is
how	long	each	action	lasts.	For	example,	if	your	app	detects	jump	rope	(a	repetitive
motion),	you	would	put	in	the	amount	of	time	it	takes	for	the	rope	to	go	once	around.
Similarly,	if	you	were	detecting	a	golf	swing,	you	would	put	in	the	amount	of	time	it	takes
to	finish	the	entire	swing.

Augmentations

The	only	augmentation	available	for	video-based	models	in	Create	ML	is	a	horizontal	flip.
While	this	might	make	sense	for	some	models,	we	won't	be	using	it	here.	Using
augmentations	are	an	easy	way	to	increase	the	size	of	your	dataset,	if	you	have	a	limited
amount	of	videos	to	work	with.

Model	Training	and	Adjustment

Now,	with	all	of	that	out	of	the	way,	you're	ready	for	the	exciting	part	—	model	training!
Similar	to	other	models	we've	created	in	the	past,	model	training	is	fairly	straightforward.

Start	Training

To	start	training,	click	the	blue,	triangular	Train	button	in	the	upper-left	of	your	Create
ML	window.	Your	videos	will	then	be	processed.

298Mastering Machine Learning with Core ML and Python

Figure	9-7:	Starting	Model	Training

Soon,	model	training	will	start,	and	Create	ML	will	begin	extracting	the	features	from
each	of	your	training	videos.

299Mastering Machine Learning with Core ML and Python

Figure	9-8:	Model	Training	Progress	Bar

After	Create	ML	is	done	with	this	step,	you'll	see	the	training	and	validation	accuracies	on
a	graph.	The	goal	is	to	get	these	lines	as	flat	as	possible,	which	means	that	adding	more
iterations	won't	make	your	model	much	better	—	which,	it	looks	like	I've	achieved	here:

300Mastering Machine Learning with Core ML and Python

Figure	9-9:	Model	Training	Accuracy	Graph

Pausing	and	Snapshots

If	you	feel	that	you've	reached	a	solid	number	of	iterations,	you	can	pause	training	early,
and	if	you	want	to	capture	a	particular	iteration,	you	can	take	a	model	snapshot,	which
you	can	work	with	later.	Don't	worry	if	this	doesn't	make	complete	sense	yet	—	we'll	learn
more	about	this	later	in	the	chapter.

Project	Modes

Once	your	model	is	done	training,	you're	presented	with	a	few	metrics	to	evaluate	how
your	model	did.	Let's	break	down	these	metrics	and	see	if	you	have	a	sufficiently	well-
performing	model,	or	not.	We'll	look	at	this	by	examining	each	of	the	options	in	the	top
menu	bar.

Evaluation	Tab

301Mastering Machine Learning with Core ML and Python

If	you	click	on	the	Evaluation	tab	at	the	top,	you'll	see	training,	testing,	and	validation
on	the	left	column.	If	you	click	on	each	of	these,	you'll	see	a	detailed	breakdown	of	each
class	and	it's	precision-recall	values.	This	will	help	you	understand	how	your	model
performed	at	each	stage	of	the	training	process	for	each	video	type.

Figure	9-10:	Evaluating	your	Action	Classifier

Preview	Tab

In	the	Preview	tab,	you'll	be	able	to	drag	in	additional	images	and	see	how	your	model
classifies	it.	You'll	also	be	able	to	see	a	really	cool	wireframe,	which	Create	ML	shows	you
to	help	visualize	what	your	model	sees.	I've	dragged	in	some	data	from	my	testing	folder
to	see	how	it	looks.

302Mastering Machine Learning with Core ML and Python

Figure	9-11:	Previewing	Action	Classification	Model

Exporting	your	Model

Once	everything	looks	good	to	you,	you	can	head	to	the	Output	tab	and	export	your
model.

303Mastering Machine Learning with Core ML and Python

Figure	9-12:	Exporting	your	Action	Classifier

9-2	Image	and	Video	Style	Transfer
In	the	previous	section,	you	learned	about	an	exciting	use	of	machine	learning	—	Action
Classification.	First,	you	learned	about	obtaining	the	video	datasets	needed	to	train	such
a	model,	and	then,	you	trained	and	tested	your	own	action	classification	model	which
could	accurately	analyze	body	poses	and	generate	a	classification	result.	In	this	section,	I
have	something	just	as	exciting	in	store!

Here,	you'll	learn	about	style	transfer	—	not	only	on	images,	but	on	videos	as	well.	So,	if
you	have	a	particular	artist	you	like	but	can't	afford	to	commission	a	painting,	you	can
just	train	a	model	to	paint	one	in	their	style!	To	start,	you'll	learn	about	what	style
transfer	is	and	how	it	works.	Next,	you'll	choose	a	source	and	test	image,	and	then	you'll
train	your	model.	Let's	jump	right	in!

304Mastering Machine Learning with Core ML and Python

About	Style	Transfer

While	many	people	are	familiar	with	style	transfer	through	social	media	apps	and	AI-
powered	filters,	few	know	about	style	transfer	from	the	lens	of	a	software	development
standpoint.	So,	before	we	create	our	own	style	transfer	models,	let's	learn	about	what
style	transfer	is	and	how	it	works	under	the	hood.

Media	Types

Style	transfer,	as	the	name	suggests,	is	the	transfer	of	styles,	colors,	and	textures	from
style	media	to	content	media.	This	means	that	the	target	media	will	be	altered	to	match
the	style	of	the	content	image.	Let's	dissect	this	a	little	bit	further,	to	make	sure	you	have
a	hang	of	it.

Style	Media

The	style	media,	normally	in	the	form	of	an	image,	dictates	the	how	you	want	your
content	media	to	look.	By	adjusting	certain	parameters	—	as	you'll	learn	about	in	the	next
section	—	you'll	be	able	to	control	how	closely	your	model	matches	the	appearance	of	the
style	media.

You	can	draw	a	real-world	analogy	to	understand	this	a	little	bit	better.	Think	of	yourself
as	an	artist,	trying	to	match	the	style	of	another	artist.	If	you	were	a	machine	learning
model,	your	reference	media	would	be	the	art	you're	trying	to	replicate.

Content	Media

The	content	media,	which	could	be	a	still	image	or	a	video	—	depending	on	the
complexity	of	your	model	and	training	tools	—	is	the	image	which	you're	aiming	to	adapt
to	the	style	media's	appearance.	In	the	art	example	from	above,	the	content	media	would
be	the	painting	you're	sitting	down	to	create,	in	the	style	of	the	other	artist.

Notable	Art

305Mastering Machine Learning with Core ML and Python

Believe	it	or	not,	paintings	created	using	machine	learning	are	recognized	as	actual	works
of	art	in	the	art	community	—	and,	for	good	reason.	If	you've	ever	seen	pieces	of	art
created	using	artificial	intelligence,	you	might	not	be	able	to	distinguish	between	the
artificially	generated	piece	from	ones	that	the	actual	artist	has	created.

Recently,	an	AI-generated	piece	was	sold	for	over	almost	half-a-million	dollars.	This
makes	it	clear	that	style	transfer	is	promising	technology,	and	it's	at	the	unexpected
intersection	between	computer	science	and	art.	Looking	at	examples	like	this,	we	see	how
machine	learning	can	quantify	and	concretize	a	seemingly	qualitative	form	of	expression
—	art.

Uses	of	Style	Transfer

Clearly,	style	transfer	isn't	going	anywhere	in	the	next	few	years,	but	what	are	its	practical
uses?	Before	we	create	our	own	style	transfer	model,	let's	take	the	time	to	learn	more
about	it	in	detail.

Photo	Apps

Whether	it's	independent	developers	or	major	platforms	such	as	Instagram	and
Snapchat,	there's	no	shortage	of	apps	which	allow	you	to	transform	your	face	—	or	ones
that	allow	you	to	create	art	in	the	style	of	someone	else.	At	their	core,	style	transfer	is
what	makes	them	possible.

Professional	Art

As	mentioned	earlier,	art	generated	by	style	transfer	algorithms	is	now	considered	a	form
of	actual	art	in	the	art	community	—	after	all,	they	look	just	like	actual	art	pieces	and	take
skill	to	make.	You'll	be	learning	that	skill	in	this	chapter!	Aside	from	auctions	and
museums,	we	may	see	more	artists	majoring	in	computer	science,	bridging	the	gap
between	the	humanities	and	STEM.

Games	and	Augmented	Reality

306Mastering Machine Learning with Core ML and Python

https://www.christies.com/features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

Now,	even	game	developers	are	exploring	the	possibility	of	using	style	transfer	to	make
their	games	pop.	With	an	increasing	emphasis	being	placed	on	how	a	game	feels,	game
developers	are	trying	new	things	to	make	their	games	stand	out,	while	still	being
engaging.	AR	developers	are	also	trying	to	use	style	transfer	apps	to	blend	real-world
objects	and	virtual	objects	better.

Preparing	Data

In	some	ways,	preparing	a	dataset	for	style	transfer	is	easier	than	datasets	we've	created
in	the	past.	You	just	need	three	things:	a	style	image,	a	validation	image,	and	an	optional
set	of	content	images.	If	you	want	to	skip	over	this	step,	feel	free	to	use	the	dataset	that
I've	already	created.	As	always,	you	can	find	this	in	the	downloads	of	this	book.

Choosing	Content	Images

Though	it's	an	optional	step,	I	strongly	recommend	choosing	content	images.	These
should	be	images	which	represent	what	your	model's	users	will	want	to	stylize.	For
example,	if	you're	making	a	model	for	a	selfie	app,	you'd	want	your	content	images	to	be
people's	faces.	I'll	be	applying	Van	Gogh's	style	to	landscape	images,	so	my	content
images	are	images	of	mountains	and	bodies	of	water.

Choosing	a	Style	Image

This	is	the	easiest	—	and,	arguably	the	most	fun	—	part	of	creating	style	transfer	models.
Here,	simply	choose	an	image	or	artist	who's	style	you	like	and	pick	an	image.	You'll	be
training	your	model	to	replicate	this	style,	so	pick	a	good	one!	I	really	like	the	style	of	Van
Gogh's	"Starry	Night,"	so	that's	the	style	image	I'll	go	with.

307Mastering Machine Learning with Core ML and Python

Figure	9-13:	A	Style	Image,	Van	Gogh's	Starry	Night

Choosing	a	Validation	Image

Later	in	this	section,	we'll	learn	about	fine-tuning	your	style	transfer	training	process,	so
the	validation	image	is	a	visual	tool	for	you	to	know	when	your	model	meets	—	or	doesn't
meet	—	your	expectations.	Your	validation	image	should	well	represent	your	dataset	of
content	images,	so	choose	wisely!

308Mastering Machine Learning with Core ML and Python

Figure	9-14:	A	Validation	Image

9-3	Training	your	Model
In	the	previous	section,	you	learned	a	little	about	what	style	transfer	actually	is,	including
some	examples	of	how	it's	revolutionizing	the	field	of	art.	You	also	looked	at	possible	use-
cases	for	style	transfer	models	and	prepared	data	for	your	own	style	transfer	model.

In	this	section	of	the	book,	we'll	roll	up	our	sleeves	and	dive	into	the	world	of	fine	art.
Without	any	artistic	prowess,	we'll	turn	an	ordinary	photograph	into	a	painting	in	the
style	of	Vincent	Van	Gogh's	"Starry	Night."	If	you're	even	remotely	familiar	with	art,	you
would	be	familiar	with	this	piece.	If	you	have	something	else	in	mind,	feel	free	to	follow
along	with	your	own	data.

309Mastering Machine Learning with Core ML and Python

Now	that	you	have	a	solid	understanding	of	how	style	transfer	works	and	have	your	own
data	to	go	with	it,	you	can	start	training	your	model.	By	the	end,	you'll	have	a	finished
style	transfer	model,	suited	to	your	preferences!

Inputting	Data

Once	you're	data	is	ready,	you're	almost	ready	to	start	training.	Let's	first	feed	the	data
into	the	Create	ML	App,	so	that	everything	is	set	for	training	once	you're	ready.	If	you're
using	your	own	data,	pay	attention	to	what	I'm	putting	where.	You	don't	want	to	mix	up
your	style	image	and	validation	image,	for	instance.

Select	Model	Type

First	and	foremost,	open	the	Create	ML	app.	You	should	be	greeted	with	a	screen	which
asks	you	what	type	of	model	you	want	to	create.

310Mastering Machine Learning with Core ML and Python

Figure	9-15:	Choosing	a	Create	ML	Template

Save	Project

Here,	you'll	need	to	select	the	one	which	says	Style	Transfer	and	click	Next.	Then,	give
your	project	a	name	and	a	detailed	description:

311Mastering Machine Learning with Core ML and Python

Figure	9-16:	Naming	your	Create	ML	Project

You'll	then	be	asked	to	choose	where	you	want	to	store	your	project.

312Mastering Machine Learning with Core ML and Python

Figure	9-17:	Saving	your	Create	ML	Project

Here,	just	choose	a	convenient	location	on	your	file	system	where	you	can	quickly	and
easily	access	your	project	when	you	need	it.

Add	Style	and	Validation	Image

Next,	you'll	need	to	input	the	data	you	prepared	into	Create	ML.	After	you	create	your
project,	you'll	be	greeted	with	this	dashboard:

313Mastering Machine Learning with Core ML and Python

Figure	9-18:	Create	ML	Dashboard

You'll	see	three	main	boxes,	where	you	can	drag	the	corresponding	data.	First,	drag	your
style	image	into	the	box	which	says	Training	Style	Image.

314Mastering Machine Learning with Core ML and Python

Figure	9-19:	Adding	Style	Image

Then,	drag	your	validation	image	into	the	Validation	Image	box.

315Mastering Machine Learning with Core ML and Python

Figure	9-20:	Adding	Validation	Image

Add	Content	Images

Once	both	of	these	have	been	dragged	in,	you'll	see	previews	for	each	appear	in	their
corresponding	boxes.	Finally,	drag	your	folder	of	content	images	into	the	box	which	says
Content	Images.

316Mastering Machine Learning with Core ML and Python

Figure	9-21:	Adding	Content	Images

This	time,	you'll	see	the	number	of	images	in	your	folder	—	instead	of	a	preview	of	any
particular	image.	Once	everything	looks	right,	you	know	you're	all	set!

Model	Parameters

Before	you	start	training,	let's	define	some	of	the	options	you're	presented	with	before
you	train	your	model.	You	can	configure	how	your	model	will	match	the	style	image	using
both	style	strength	and	style	density	parameters.

Use	Case

The	use	case	parameter	allows	you	to	either	optimize	for	video	style	transfer	—	which
supports	up	to	120	frames	per	second!	Or,	you	can	optimize	for	image	style	transfer.	For
this	chapter,	we'll	be	using	images;	however,	if	you	have	videos	you	want	to	try	this	on,
feel	free	to	go	with	the	video	option!

317Mastering Machine Learning with Core ML and Python

Iterations

Later,	we'll	explore	how	you	can	use	iterations	to	improve	the	performance	of	your
model,	but	for	now,	you	can	leave	it	at	the	default.	If	you	have	an	older	Mac,	which	you
believe	might	take	too	long	to	train,	you	may	reduce	the	number	of	iterations.

Style	Strength

As	the	name	suggests,	style	strength	defines	how	much	of	the	content	image	gets	stylized.
If	you	only	want	your	style	to	be	mildly	transferred	over,	you	would	choose	a	low	style
strength.	On	the	flip	side,	if	you	want	your	content	image	to	be	completely	restyled,	you
should	choose	a	higher	style	strength.

Style	Density

This	parameter,	style	density,	provides	more	nuanced	control	over	your	results.	With	this
parameter,	you	can	adjust	whether	you	want	a	course	or	fine	stylized	result.

Depending	on	what	you	select	for	this	parameter,	Create	ML	will	divide	your	image	into	a
grid.	It	will	then	look	at	each	square	in	that	grid	as	a	reference	for	the	style.	If	you	choose
a	fine	stylization,	your	model	will	transfer	details	like	brush	strokes	and	colors.	If	you
choose	a	course	stylization,	your	model	may	focus	more	on	shapes	and	textures.

Training,	Adjusting,	and	Testing

Now	that	everything	is	setup	and	ready-to-go,	you're	ready	to	train	your	model.	Along	the
way,	you'll	learn	how	to	adjust	your	model	training,	including	creating	model	snapshots
and	pausing	training.

Training	your	Model

After	you've	inputted	everything,	you're	finally	ready	to	train	your	model.	Here,	we'll	look
at	each	stage	in	the	model	training	process	and	take	a	moment	to	look	at	all	of	the
different	options	you	have	while	training.

Start	Training

318Mastering Machine Learning with Core ML and Python

Once	everything	is	loaded	into	the	three	boxes	on	the	Settings	page,	click	the	blue
Train	button	(shaped	like	a	triangle)	in	the	upper-left	of	your	Create	ML	window.	This
will	start	the	training	process.

Figure	9-22:	Training	your	Style	Transfer	Model

Creating	Model	Snapshots

As	your	model	goes	through	each	iteration	of	training,	you'll	be	able	to	see	how	the	model
evolves	—	both	through	graphs	and	changes	to	your	validation	image.	If	you	like	how	a
certain	iteration	looks,	use	the	Snapshot	button	in	the	menu	bar	to	save	that	iteration.
You	can	then	go	back	to	that	model	and	tweak	it	for	use	later	on.

Each	model	snapshot	is	its	own	Core	ML	model,	so	if	you	don't	like	the	result	at	the	end
of	training,	you	can	simply	use	one	of	your	snapshots	in	your	apps	instead	—	no	need	to
start	training	from	scratch	again!

Pausing	Training

319Mastering Machine Learning with Core ML and Python

While	you'll	learn	about	fine-tuned	model	control	in	the	next	section	of	this	chapter,	let's
take	a	moment	to	cover	pausing.	If	you	don't	feel	like	model	training	needs	to	continue,
you	can	pause	and	resume	your	model	training	at	any	time.	Each	time	you	pause
training,	a	snapshot	gets	trained	automatically.

Handling	Trained	Model

Once	you've	finished	training,	you	have	a	few	options	left	to	improve	your	model,	test
your	model,	or	share	it	with	colleagues	to	provide	input.	Let's	explore	these	options
before	we	end	this	section.

Adding	Iterations

If	you've	trained	your	model	with	500	iterations,	but	you	noticed	that	the	style	loss	graph
(left	graph)	hasn't	yet	converged	to	a	certain	value,	you	can	add	more	iterations	without
needing	to	start	training	from	scratch.

Figure	9-23:	Adding	Training	Iterations

320Mastering Machine Learning with Core ML and Python

In	the	upper	left,	you'll	notice	that	the	previous	Train	button	now	has	a	plus	button	and
the	words	Train	More	under	it.	To	train	more,	just	click	that	button	and	enter	the
number	of	additional	iterations	you	want.

Figure	9-24:	Specifying	Additional	Iterations

Your	model	will	now	continue	training	for	your	number	of	specified	additional	iterations.
Again,	you	can	always	revert	to	a	model	snapshot	or	pause	training	at	any	time.

Testing	the	Model

In	the	dataset	I	provided,	I	have	four	images	as	testing	images.	Since	style	transfer	is	a
very	subjective	process,	it's	up	to	you	how	you	want	your	results.	If	you	head	to	the
Preview	tab,	you'll	be	able	to	drag	in	your	test	images	and	see	how	your	model	works!

321Mastering Machine Learning with Core ML and Python

Figure	9-25:	Previewing	your	Style	Transfer	Model

I	like	my	results,	so	I'll	stick	with	my	model	as-is;	however,	you	might	not	like	it	as	much,
so	you	can	change	your	model	parameters	and	train	again	—	or,	you	can	add	iterations	to
your	current	model	and	continue	training.

Exporting	your	Model

Once	you're	done,	you	can	head	to	the	output	tab	to	learn	about	your	final	model.	In	the
Metadata	tab,	you	can	preview	the	name	and	description	you	provided	when	you
created	your	Create	ML	project,	and	in	the	Predictions	tab,	you	can	see	the	input	and
output	the	model	requires.

322Mastering Machine Learning with Core ML and Python

Figure	9-26:	Exporting	your	Trained	Model

You	also	have	three	options	to	export	your	model.	The	Get	button	will	download	your
model,	the	Xcode	button	will	open	it	in	Xcode,	and	the	Share	button	will	allow	you	to
send	your	trained		.mlmodel		file	via	Messages,	Mail,	or	AirDrop.

Conclusion
In	this	chapter,	you	learned	about	action	classification	and	style	transfer	models,	which
are	at	the	cutting	edge	of	machine	learning.	I	first	showed	you	how	to	find	and	source
videos	for	an	action	classifier	and	then,	you	trained	your	own	fitness	classifier.	Later	in
the	chapter,	you	learned	about	style	transfer.

Style	transfer,	a	significant	part	of	the	chapter,	is	an	emerging	field	of	machine	learning	is
likely	to	play	a	major	role	in	many	fields	currently	untouched	by	computer	science.	You
first	learned	about	the	applications	of	style	transfer	and	then	learned	about	its	future

323Mastering Machine Learning with Core ML and Python

merits.	We	ended	the	chapter	by	creating	a	style	transfer	app	which	mimics	the	style	of
"Starry	Night."

324Mastering Machine Learning with Core ML and Python

Chapter	10
Supercharge	ML	Workflow	with	these
Tips	and	Tricks

In	this	chapter,	I	will	wrap	up	this	book	by	giving	advice	on	how	to	further	your	machine
learning	adventures.	Hopefully,	this	book	has	sparked	your	curiosity	in	machine
learning,	and	you	will	continue	learning	about	the	topic.	I’ll	also	discuss	tips	and	tricks	to
help	you	supercharge	your	machine	learning	workflow.

Finally,	I’ll	leave	you	off	with	some	food	for	thought	and	some	cutting-edge	apps	which
are	making	use	of	machine	learning	technology	to	revolutionize	their	industries.	By	the
end	of	the	chapter,	you’ll	have	clear	picture	about	how	to	proceed	with	your	machine
learning	endeavors.

325Mastering Machine Learning with Core ML and Python

10-1	Machine	Learning	Design
In	this	section,	you’ll	learn	ways	to	improve	your	skills	and	supercharge	your
development	workflows	with	pro	tips	and	tricks.

Often,	when	you	think	of	machine	learning,	it	seems	like	something	which	happens
under-the-hood	and	doesn’t	directly	concern	the	user.	However,	the	design	of	your
machine	learning	models	is	critical	to	the	experience	that	the	user	is	going	to	have.
Thinking	about	the	user	while	creating	your	machine	learning	experiences	is	going	to
help	make	your	user’s	experience	much	more	meaningful.

Choose	Datasets	Carefully

One	of	the	defining	aspects	of	your	machine	learning	model	is	the	data	used	to	power	it.
For	this	reason,	it’s	very	important	to	select	your	dataset	to	match	your	user’s	expected
input.

Imagine	you’re	training	an	image	classifier	to	detect	whether	the	image	has	a	dog	or	not,
and	you	expect	your	user	to	input	images	with	different	dog	breeds.	If	you,	for	example,
only	trained	your	model	with	Golden	Retrievers,	the	model	may	not	recognize	your
neighbor’s	Cocker	Spaniel	as	well.	Because	of	this,	it’s	crucial	that	you	think	about	your
user	as	you’re	choosing	a	training	and	validation	dataset.

Use	Data	Augmentation

Often,	if	you’re	creating	your	own	datasets,	they	won’t	be	large	enough	to	train	a	robust
model.	However,	as	we’ve	discussed	throughout	the	book,	data	augmentation	is	a	great
technique	to	increase	your	dataset.	Through	augmentation,	you	could	significantly
increase	the	amount	of	data	you	have,	through	cropping,	flipping,	or	scaling	your	images.

Create	ML	provides	you	with	this	option	when	you	first	enter	your	dataset.	By	checking
the	boxes,	you	can	choose	the	type	of	data	augmentation	you’d	like	to	use.	If	you	do
choose	to	do	this,	make	sure	you	test	your	model’s	performance	with	and	without	it,
because	in	some	use	cases,	augmentation	may	result	in	a	decreased	performance.

326Mastering Machine Learning with Core ML and Python

Embrace	Limitations

Even	when	you	do	choose	your	dataset	carefully	and	use	augmentation	to	increase	its
size,	there	will	be	some	cases	which	aren’t	covered:	it	isn’t	humanely	possible.	Instead	of
trying	to	obscure	these	limitations	from	your	user,	you	should	make	them	clear	in	your
app.	Your	users	will	thank	you	for	this	and	trust	your	app	more.

Let’s	pretend	that	you’ve	created	a	fruit	detection	app.	You’ve	used	a	varied	dataset,	so	it
can	find	all	sorts	of	fruits	from	apples	to	bananas.	However,	your	app	cannot	find	fruits
easily	in	the	outdoors.	If	you	don’t	communicate	this	limitation	with	your	users,	your	app
may	come	across	as	finicky	or	inaccurate	if	they	try	and	use	your	app	in	these	situations.

327Mastering Machine Learning with Core ML and Python

10-2	Model	Conversion	and	Usage
In	this	book,	you	first	learned	about	APIs	which	give	you	results	in	the	form	of	a	Core	ML
model,	but	at	the	end,	you	learned	to	use	Firebase,	which	did	not	use	Core	ML	at	all.
Similarly,	there	are	other	platforms	which	give	you	finer	control	over	certain	aspects	of
model	training.

Using	Model	Conversion

A	common	“fear”	of	people	starting	out	with	machine	learning	is	converting	model
formats.	While	it	seems	daunting	at	first,	some	frameworks	such	as	Caffe	and	Keras
provide	much	more	advanced	tools	than	Turi	Create	and	Create	ML.	If	you	ever	need
these	tools,	there	are	ways	to	convert	your	models	to	the	Core	ML	format,	even	if	you
can’t	export	them	directly.	And,	since	you	know	how	to	code	in	Python	now,	it	will	be
much	easier	to	learn	such	tools.

To	convert	your	models	from	the	supported	models	to	the	Core	ML	format,	you	can	use
the	built	in		coremltools	.	Simply	add	the	following	in	the	Python	file	you	use	to	train	your
model.	Let’s	look	at	an	example	of	how	you’d	do	this	in	real	life.

Import	Framework

To	start,	you’ll	need	to	import	the		coremltools		framework,	which	was	installed	alongside
with	the	Xcode	installation.	To	import	it	in	your	Python	file,	insert	the	following	import
statements:

import	coremltools

328Mastering Machine Learning with Core ML and Python

https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml

Convert	a	Model

Now,	you	need	to	actually	convert	the	model	from	your	source	format	to	the	Core	ML
format.	Make	sure	you	add	this	after	your	model	has	been	created,	since	this	line	of	code
references	a	created	model.	Here	is	a	generalized	version,	where		<model_format>		is	one	of
the	supported	models	and		<model_name>		is	how	you’re	referencing	the	model	in	the	code.

coreml_model	=	coremltools.converters.<model_format>.convert

				('<model_name>.<model_format>')

Assuming	your	model	was	named		my_caffe_model.caffemodel	,	and	you	were	using	a	Caffe
model,	for	example,	the	same	line	of	code	would	look	like	this:

coreml_model	=	coremltools.converters.caffe.convert

				('my_caffe_model.caffemodel')

Export	a	Model

Finally,	you’ll	just	need	to	export	your	model.	You	can	name	your	model	whatever	you
like,	and	keep	the		coreml_model		parameter	the	same	to	convert	it	to	a	Core	ML	model.
Here’s	how	you	do	it:

coremltools.utils.save_spec

				(coreml_model,	'my_model.mlmodel')

Using	Models	Without	Core	ML

Whatever	you’ve	learned	just	now	was	assuming	that	you	want	to	use	Core	ML.	However,
as	you’ve	seen	in	the	cloud	machine	learning	chapter,	Core	ML	does	have	its	limitations,
especially	the	lack	of	cloud	computing	abilities.	For	this	reason,	it	may	make	more	sense
to	explore	other	options	if	you’re	looking	for	added	capabilities	such	as	these.	Here	are
some	good	ones	to	consider:

329Mastering Machine Learning with Core ML and Python

https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml

TensorFlow

Through	TensorFlow	Lite,	you	can	easily	connect	your	iOS	app	to	a	powerful,	robust
machine	learning	model	trained	using	TensorFlow.	This	platform	is	great	for	training
models	with	fine-tuned	control	and	excellent	data	visualization	tools.	It	also	has	a	ton	of
starter	projects	to	help	you	learn	the	ropes	before	you	begin.

IBM	Watson

IBM	has	constantly	been	in	the	headlines	for	their	cutting-edge	machine	learning
research,	and	just	recently,	Apple	has	announced	support	for	IBM	Watson	tools	in	iOS
apps.	This	means	that	your	apps	can	now	take	advantage	of	the	robust	features	that	IBM
has	to	offer,	while	reaping	the	benefits	of	Apple’s	hardware-software	integration.

Microsoft	Azure

The	Microsoft	Azure	suite	also	integrates	well	with	Swift	apps.	Similar	to	what	Firebase
offers,	Azure	allows	developers	to	take	advantage	of	pre-trained	models	and	use	cloud
computing	services.	You	can	also	use	their	easy-to-use	machine	leaning	model	training
tool	called	Microsoft	Custom	Vision,	which	allows	you	to	create	models	using	a	drag-and-
drop	interface.

Conclusion
In	this	chapter,	you	learned	some	quick	tips	and	tricks,	which	should	help	you
supercharge	your	machine	learning	workflow.	Now	you	should	get	a	clearer	picture	about
how	to	continue	your	machine	learning	endeavors.	Hopefully,	this	book	has	sparked	your
curiosity	in	machine	learning,	and	you	will	continue	learning	about	the	topic	in	your	own
time.

330Mastering Machine Learning with Core ML and Python

https://www.tensorflow.org
https://developer.apple.com/ibm/
https://azure.microsoft.com/en-us/services/app-service/mobile/azure-for-ios/

	Preface
	Chapter 1 - Machine Learning at a Glance
	Chapter 2 - Building an Image Classification App
	Chapter 3 - A Primer on Python and Jupiter Notebook
	Chapter 4 - Training Your Own Image Classifier
	Chapter 5 - Natural Language Processing
	Chapter 6 - Sound Classification Models
	Chapter 7 - Cloud-Based Machine Learning with Firebase
	Chapter 8 - Updatable ML Models for On-Device Training
	Chapter 9 - Action Classification and Style Transfer
	Chapter 10 - Supercharge ML Workflow with these Tips and Tricks

