

Bash
for

Data scientists

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you agree that
this license grants permission to use the contents contained herein, but does not give
you the right of ownership to any of the textual content in the book or ownership to
any of the information, files, or products contained in it. This license does not permit
uploading of the Work onto the Internet or on a network (of any kind) without the
written consent of the Publisher. Duplication or dissemination of any text, code, simu-
lations, images, etc. contained herein is limited to and subject to licensing terms for
the respective products, and permission must be obtained from the Publisher or the
owner of the content, etc., in order to reproduce or network any portion of the textual
material (in any media) that is contained in the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, production, accompanying algorithms, code, or computer
programs (“the software”), and any accompanying Web site or software of the Work,
cannot and do not warrant the performance or results that might be obtained by using
the contents of the Work. The author, developers, and the Publisher have used their
best efforts to insure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind, express
or implied, regarding the performance of these contents or programs. The Work is
sold “as is” without warranty (except for defective materials used in manufacturing the
book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the algo-
rithms, source code, computer programs, or textual material contained in this publica-
tion. This includes, but is not limited to, loss of revenue or profit, or other incidental,
physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book and only at the discretion of the Publisher. The use of “implied warranty”
and certain “exclusions” vary from state to state, and might not apply to the purchaser
of this product.

Companion files are also available for downloading from the publisher at
info@merclearning.com.

Bash
for

Data scientists

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Oswald Campesato

Copyright ©2023 by Mercury Learning and inforMation LLc. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and inforMation

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

O. Campesato. Bash for Data Scientists.
ISBN: 978-1-68392-973-4

The publisher recognizes and respects all marks used by companies, manufacturers, and develop-
ers as a means to distinguish their products. All brand names and product names mentioned in
this book are trademarks or service marks of their respective companies. Any omission or misuse
(of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of
others.

Library of Congress Control Number: 2022948076

222324321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital ven-
dors. Companion files for this title are available by writing to the publisher at info@merclearning.
com. The sole obligation of Mercury Learning and inforMation to the purchaser is to replace
the book, based on defective materials or faulty workmanship, but not based on the operation or
functionality of the product.

I’d like to dedicate this book to my parents —
may this bring joy and happiness into their lives.

Preface xv

Chapter 1: Introduction 1
What is Unix? 2

Available Shell Types 2
What is Bash? 3

Getting Help for Bash Commands 3
Navigating Around Directories 3
The history Command 4

Listing Filenames with the ls Command 5
Displaying Contents of Files 6

The cat Command 6
The head and tail Commands 7
The Pipe Symbol 8
The fold Command 9

File Ownership: Owner, Group, and World 10
Hidden Files 11
Handling Problematic Filenames 11
Working with Environment Variables 12

The env Command 12
Useful Environment Variables 12
Setting the PATH Environment Variable 13
Specifying Aliases and Environment Variables 13

Finding Executable Files 14
The printf Command and the echo Command 14
The cut Command 15
The echo Command and Whitespaces 16
Command Substitution (“Back Tick”) 17
The Pipe Symbol and Multiple Commands 18

CONTENTS

viii • Bash for Data Scientists

Using a Semicolon to Separate Commands 18
The paste Command 19

Inserting Blank Lines with the paste Command 20
A Simple Use Case with the paste Command 20
A Simple Use Case with cut and paste Commands 21
Working with Meta Characters 23
Working with Character Classes 23
What about zsh? 24

Switching between bash and zsh 24
Configuring zsh 25

Summary 25

Chapter 2: Files and Directories 27
Create, Copy, Remove, and Move Files 27

Creating Files 27
Copying Files 27
Copy Files with Command Substitution 28
Deleting Files 28
Moving Files 29

The basename, dirname, and file Commands 29
The wc Command 30
The more Command and the less Command 31
The head Command 31
The tail Command 32
File Comparison Commands 33
The Parts of a Filename 34
Working with File Permissions 35

The chmod Command 35
The chown Command 36
The chgrp Command 36
The umask and ulimit Commands 36

Working with Directories 36
Absolute and Relative Directories 37
Absolute and Relative Path Names 37
Creating Directories 38
Removing Directories 39
Changing Directories 39
Renaming Directories 40

Using Quote Characters 40
Streams and Redirection Commands 41
Metacharacters and Character Classes 41

Digits and Characters 41
Working with “^” and “\” and “!” 42

Filenames and Metacharacters 42
Summary 43

Contents • ix

Chapter 3: Useful Commands 45
The join Command 46
The fold Command 46
The split Command 47
The sort Command 47
The uniq Command 49
How to Compare Files 50
The od Command 50
The tr Command 51
A Simple Use Case 54
The find Command 55
The tee Command 56
File Compression Commands 56

The tar Command 56
The cpio Command 57
The gzip and gunzip Commands 57
The bunzip2 Command 58
The zip Command 58

Commands for zip Files and bz Files 58
Internal Field Separator (IFS) 59
Data from a Range of Columns in a Dataset 59
Working with Uneven Rows in Datasets 61
The alias Command 62
Summary 62

Chapter 4: Conditional Logic and Loops 63
Arithmetic Operations and Operators 63
Working with Arrays 64
Arrays and Text Files 68
Working with Variables 70

Assigning Values to Variables 70
Working with Operators for Strings and Numbers 72
The read Command for User Input 73
The test Command for Variables, Files, and Directories 74

Relational Operators 75
Boolean Operators 75
String Operators 75
File Test Operators 75

Conditional Logic with if/else Statements 76
The case/esac Statement 77
Arithmetic Operators and Comparisons 80
Working with Strings in Shell Scripts 82

Working with Strings 82
Working with Loops 83

Using a for loop 83

x • Bash for Data Scientists

Working with Nested Loops 84
Using a while Loop 85
The while, case, and if/elif/fi Statements 87
Using an until Loop 88
User-defined Functions 88
Creating a Simple Menu from Shell Commands 89
Summary 91

Chapter 5: Processing Datasets with grep and sed 93
What is the grep Command? 94
Metacharacters and the grep Command 95
Escaping Metacharacters with the grep Command 95
Useful Options for the grep Command 96

Character Classes and the grep Command 100
Working with the –c Option in grep 100
Matching a Range of Lines 102
Using Back References in the grep Command 103
Finding Empty Lines in Datasets 105
Using Keys to Search Datasets 105
The Backslash Character and the grep Command 106
Multiple Matches in the grep Command 106
The grep Command and the xargs Command 107

Searching zip Files for a String 108
Checking for a Unique Key Value 109

Redirecting Error Messages 110
The egrep Command and fgrep Command 110

Displaying “Pure” Words in a Dataset with egrep 110
The fgrep Command 112

Delete Rows with Missing Values 112
A Simple Use Case 114
What is the sed Command? 116

The sed Execution Cycle 116
Matching String Patterns Using sed 117
Substituting String Patterns Using sed 118

Replacing Vowels from a String or a File 119
Deleting Multiple Digits and Letters from a String 119

Search and Replace with sed 120
Datasets with Multiple Delimiters 121
Useful Switches in sed 122
Working with Datasets 123

Printing Lines 123
Character Classes and sed 124
Removing Control Characters 125

Counting Words in a Dataset 126
Back References in sed 126
One-line sed Commands 127

Contents • xi

Populate Missing Values with the sed Command 133
A Dataset With 1,000,000 Rows 134

Numeric Comparisons 134
Counting Adjacent Digits 135
Average Support Rate 136

Summary 138

Chapter 6: Processing Datasets with awk 139
The awk Command 140

Built-in Variables that Control awk 140
How Does the awk Command Work? 141

Aligning Text with the printf Command 142
Conditional Logic and Control Statements 142

The while Statement 143
A for loop in awk 144
A for loop with a break Statement 144
The next and continue Statements 145

Deleting Alternate Lines in Datasets 145
Merging Lines in Datasets 146

Printing File Contents as a Single Line 146
Joining Groups of Lines in a Text File 147
Joining Alternate Lines in a Text File 147

Matching with Metacharacters and Character Sets 149
Printing Lines Using Conditional Logic 150
Splitting Filenames with awk 150
Working with Postfix Arithmetic Operators 151
Numeric Functions in awk 152
One-line awk Commands 154
Useful Short awk Scripts 155
Printing the Words in a Text String in awk 156
Count Occurrences of a String in Specific Rows 157
Printing a String in a Fixed Number of Columns 158
Printing a Dataset in a Fixed Number of Columns 159
Aligning Columns in Datasets 159
Aligning Columns and Multiple Rows in Datasets 161
Displaying a Subset of Columns in a Text File 162
Subsets of Column-aligned Rows in Datasets 164
Counting Word Frequency in Datasets 165
Displaying Only “Pure” Words in a Dataset 167
Delete Rows with Missing Values 169
Working with Multi-line Records in awk 171
A Simple Use Case 172
Another Use Case 174
A Dataset with 1,000,000 Rows 176

Numeric Comparisons 176
Counting Adjacent Digits 176

xii • Bash for Data Scientists

Average Support Rate 177
Summary 178

Chapter 7: Processing Datasets (Pandas) 179
Prerequisites for this Chapter 179
Analyzing Missing Data 180

Causes of Missing Data 180
Pandas, CSV Files, and Missing Data 181

Single Column CSV Files 181
Two Column CSV Files 186

Missing Data and Imputation 190
Counting Missing Data Values 190
Drop Redundant Columns 192
Remove Duplicate Rows 192
Display Duplicate Rows 193
Uniformity of Data Values 195
Too Many Missing Data Values 196
Categorical Data 196
Data Inconsistency 196
Mean Value Imputation 197
Random Value Imputation 198
Multiple Imputation 200
Matching and Hot Deck Imputation 201
Is a Zero Value Valid or Invalid? 201

Skewed Datasets 202
CSV Files with Multi-row Records 204
Column Subset and Row Subrange of the Titanic CSV File 207
Data Normalization 209

Assigning Classes to Data 209
Other Data Cleaning Tasks 211
DeepChecks and Data Validation 211

Handling Categorical Data 211
Processing Inconsistent Categorical Data 211
Mapping Categorical Data to Numeric Values 212
Mapping Categorical Data to One Hot Encoded Values 213

Working with Currency 215
Working with Dates 219

Find Missing Dates 220
Find Unique Dates 221
Switch Date Formats 222

Working with Imbalanced Datasets 224
Data Sampling Techniques 224
Removing Noisy Data 225
Cost-sensitive Learning 226
Detecting Imbalanced Data 227
Rebalancing Datasets 227

Contents • xiii

Specify stratify in Data Splits 228
What is SMOTE? 228
Data Wrangling 228

Data Transformation: What Does This Mean? 229
A Dataset with 1,000,000 Rows 230

Dataset Details 230
Numeric Comparisons 232
Counting Adjacent Digits 233

Saving CSV Data to XML, JSON, and HTML Files 236
Summary 237

Chapter 8: NoSQL, SQLite, and Python 239
Non-relational Database Systems 240

Advantages of Non-relational Databases 240
What is NoSQL? 241

What is NewSQL? 241
RDBMS VERSUS NOSQL: WHICH ONE TO USE? 241

Good Data Types for NoSQL 242
Some Guidelines for Selecting a Database 242
NoSQL Databases 243

What is MongoDB? 243
Features of MongoDB 243
Installing MongoDB 243
Launching MongoDB 244

Useful Mongo APIs 244
Metacharacters in Mongo Queries 245

MongoDB Collections and Documents 246
Document Format in MongoDB 246

Create a MongoDB Collection 246
Working with MongoDB Collections 248

Find All Android Phones 248
Find All Android Phones in 2018 249
Insert a New Item (Document) 249
Update an Existing Item (Document) 249
Calculate the Average Price for Each Brand 250
Calculate the Average Price for Each Brand in 2019 250
Import Data with mongoimport 250

What is Fugue? 250
What is Compass? 252
What is PyMongo? 252
MySQL, SQLAlchemy, and Pandas 253

What is SQLAlchemy? 253
Read MySQL Data via SQLAlchemy 253

Export SQL Data from Pandas to Excel 255
MySQL and Connector/Python 257

Establishing a Database Connection 257

xiv • Bash for Data Scientists

Creating a Database Table 258
Reading Data from a Database Table 259

What is SQLite? 260
SQLite Features 260
SQLite Installation 261
SQLiteStudio Installation 261
DB Browser for SQLite Installation 263
SQLiteDict (Optional) 263

What is Timescaledb? 264
Install Timescaledb (Macbook) 264
Setting Up the TimescaleDB Extension 265
The rides Table 266
The Parallel Copy Command 266
Data Analysis 266

Large Scale Data Imputation 267
Summary 267

Index 269

WHAT IS THE GOAL?

The goal of this book is to introduce readers to an assortment of powerful command line
utilities that can be combined to create simple yet powerful shell scripts for processing
datasets. The code samples and scripts use the bash shell, and typically involve small
datasets so that you can focus on understanding the features of grep, sed, and awk.
Aimed at a reader relatively new to working in a bash environment, the book is compre-
hensive enough to be a good reference and teach a few new tricks to those who already
have some experience with creating shells scripts.

This short book contains a variety of code fragments and shell scripts for data scientists,
data analysts, and other people who want shell-based solutions to “clean” various types
of datasets. In addition, the concepts and code samples in this book are useful for people
who want to simplify routine tasks.

This book takes introductory concepts and commands in bash, and then demonstrates their
use in simple yet powerful shell scripts. This book does not cover “pure” system administra-
tion functionality for Unix or Linux.

IS THIS BOOK IS FOR ME AND WHAT WILL I LEARN?

This book is intended for general users, data scientists, data analysts, and other people
who perform a variety of tasks from the command line, and who also have a modest
knowledge of shell programming.

You will acquire an understanding of how to use various bash commands, often as part
of short shell scripts in later chapters. The chapters also contain simple use cases that
illustrate how to perform various tasks involving datasets, such as switching the order
of a two-column dataset (Chapter 1), removing control characters in a text file (Chapter
2), find specific lines and merge them (Chapter 3), reformatting a date field in a dataset
(Chapter 5), and removing nested quotes (Chapter 6).

PREFACE

xvi • Bash for Data Scientists

This book saves you the time required to search for relevant code samples, adapting
them to your specific needs, which is a potentially time-consuming process.

HOW WERE THE CODE SAMPLES CREATED?

The code samples in this book were created and tested using bash on a MacBook
Pro with OS X 10.15.7 (macOS Catalina). Regarding their content: the code samples
are derived primarily from scripts prepared by the author, and in some cases there
are code samples that incorporate short sections of code from discussions in online
forums. The key point to remember is that the code samples follow the “Four Cs”:
they must be Clear, Concise, Complete, and Correct to the extent that it’s possible to
do so, given the size of this book.

WHAT YOU NEED TO KNOW FOR THIS BOOK

You need some familiarity with working from the command line in a Unix-like envi-
ronment. However, there are subjective prerequisites, such as a desire to learn shell
programming, along with the motivation and discipline to read and understand the
code samples. In any case, if you’re not sure whether or not you can absorb the mate-
rial in this book, glance through the code samples to get a feel for the level of com-
plexity.

WHICH BASH COMMANDS ARE EXCLUDED?

The commands that do not meet any of the criteria listed in the previous section are not
included in this book. Consequently, there is no coverage of commands for system admin-
istration (e.g., shutting down a machine, scheduling backups, and so forth). The purpose
of the material in the chapters is to illustrate how to use bash commands for handling com-
mon data cleaning tasks with datasets before you process them in tools such as Pandas,
after which you can do further reading to deepen your knowledge.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to use
Finder to navigate to Applications > Utilities and then double click on the
Utilities application. Next, if you already have a command shell available, you can
launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

Preface • xvii

A second method for Mac users is to open a new command shell on a MacBook from
a command shell that is already visible simply by clicking command+n in that com-
mand shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that
simulates bash commands, or use another toolkit such as MKS (a commercial prod-
uct). Please read the online documentation that describes the download and installa-
tion process.

If you use RStudio, you launch a command shell inside of RStudio by navigating to
Tools > Command Line, and then you can launch bash commands. Note that custom
aliases are not automatically set if they are defined in a file other than the main start-
up file (such as .bash_login).

WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?

The answer to this question varies widely, mainly because the answer depends heavily
on your objectives. The best answer is to try a new tool or technique from the book
out on a problem or task you care about, professionally or personally. Precisely what
that might be depends on who you are, as the needs of a data scientist, manager,
student, or developer are all different. In addition, keep what you learned in mind
as you tackle new data cleaning or manipulation challenges. Sometimes knowing a
technique is possible will make finding a solution easier, even if you have to re-read
the section to remember exactly how the syntax works.

If you have reached the limits of what you have learned here and want to get further
technical depth on these commands, there is a wide variety of literature published
and online resources describing the bash shell, Unix programming, and the grep,
sed, and awk commands.

CHAPTER 1
INTRODUCTION

This chapter introduces you to basic commands in Bash, such as navigating around
the file system, listing files, and displaying the contents of files. This chapter is
dense and contains a very eclectic mix of topics to quickly prepare you for later

chapters. If you already have some knowledge of shell programming, you can probably
skim quickly through this introductory chapter and proceed to Chapter 2.

 The first part of this chapter starts with a brief introduction to some Unix shells, and then
discusses files, file permissions, and directories. You will also learn how to create files and
directories and how to change their access permissions.

The second part of this chapter introduces simple shell scripts, along with instructions
for making them executable. As you will see, shell scripts contain Bash commands (and can
optionally contain user-defined functions), so it’s a good idea to learn about Bash commands
before you can create shell scripts (which includes Bash scripts).

The third portion of this chapter discusses two useful Bash commands: the cut com-
mand (for cutting or extracting columns and/or fields from a dataset) and the paste com-
mand (for “pasting” text or datasets together vertically).

In addition, the final part of this chapter contains a use case involving the cut command
and paste command that illustrates how to switch the order of two columns in a dataset.
You can also perform this task using the awk command (discussed in Chapter 5).

There are a few points to keep in mind before delving into the details of shell scripts.
First, shell scripts can be executed from the command line after adding “execute” permis-
sions to the text file containing the shell commands. Second, you can use the crontab util-
ity to schedule the execution of your shell scripts. The crontab utility allows you to specify
the execution of a shell script on an hourly, daily, weekly, or monthly basis. Tasks that are
commonly scheduled via crontab include performing backups and removing unwanted
files. If you are completely new to Unix, just keep in mind that there is a way to run scripts
both from the command line and in a “scheduled” manner. Setting file permissions to run the
script from the command line will be discussed later.

2 • Bash for Data Scientists

Third, the contents of any shell script can be as simple as a single command, or can
comprise hundreds of lines of Bash commands. In general, the more interesting shell scripts
involve a combination of several Bash commands. A learning tip: since there are usually sev-
eral ways to produce the desired result, it’s helpful to read other people’s shell scripts to learn
how to combine commands in useful ways.

WHAT IS UNIX?

Unix is an operating system created by Ken Thompson in the early 1970s, and today
there are several variants available, such as HP/UX for HP machines and AIX for IBM
machines. Linus Torvalds developed the Linux operating system during the 1990s, and
many Linux commands are the same as their Bash counterparts (but differences exist,
often in the commands for system administrators). The Mac OS X operating system is
based on AT&T Unix.

Unix has a rich and storied history, and if you are really interested in learning about
its past, you can read online articles and also Wikipedia. This book foregoes those details
and focuses on helping you quickly learn how to become productive with various com-
mands.

Available Shell Types
The original Unix shell is the Bourne shell, which was written in the mid-1970s by Ste-

phen R. Bourne. In addition, the Bourne shell was the first shell to appear on Bash systems,
and you will sometimes hear “the shell” as a reference to the Bourne shell. The Bourne shell
is a POSIX standard shell, usually installed as /bin/sh on most versions of Unix, whose
default prompt is the $ character. Consequently, Bourne shell scripts will execute on almost
every version of Unix. In essence, the AT&T branches of Unix support the Bourne shell (sh),
bash, Korn shell (ksh), tsh, and zsh.

However, there is also the BSD branch of Unix that uses the “C” shell (csh), whose
default prompt is the % character. In general, shell scripts written for csh will not execute
on AT&T branches of Unix, unless the csh shell is also installed on those machines (and vice
versa).

The Bourne shell is the most “unadorned” in the sense that it lacks some commands that
are available in the other shells, such as history and noclobber. The various subcatego-
ries for Bourne Shell are listed as follows:

• Bourne shell (sh)
• Korn shell (ksh)
• Bourne Again shell (bash)
• POSIX shell (sh)
• zsh (“Zee” shell)

The different C-type shells are as follows:

• C shell (csh)
• TENEX/TOPS C shell (tcsh)

Introduction • 3

While the commands and the shell scripts in this book are based on the Bash shell, many
of the commands also work in other shells (and if not, those other shells have a similar
command to accomplish the same goal). Performing an Internet search for “how do I do
<Bash command> in <shell name>” will often get you an answer. Sometimes the command
is essentially the same, but with slightly different syntax, and typing “man <command>” in a
command shell can provide useful information.

WHAT IS BASH?

Bash is an acronym for “Bourne Again Shell,” which has its roots in the Bourne shell cre-
ated by Stephen R. Bourne. Shell scripts based on the Bourne shell will execute in Bash, but
the converse is not true. The Bash shell provides additional features that are unavailable in
the Bourne shell, such as support for arrays (discussed later in this chapter).

On Mac OS X, the /bin directory contains the following executable shells:
-rwxr-xr-x 1 root wheel 31440 Sep 21 2020 sh
-rwxr-xr-x 1 root wheel 110848 Sep 21 2020 dash
-r-xr-xr-x 1 root wheel 623472 Sep 21 2020 bash
-rwxr-xr-x 1 root wheel 529424 Sep 21 2020 tcsh
-r-xr-xr-x 1 root wheel 1300256 Sep 21 2020 ksh
-rwxr-xr-x 1 root wheel 529424 Sep 21 2020 csh
-rwxr-xr-x 1 root wheel 637840 Sep 21 2020 zsh

A nice comparison matrix of the support for various features among the preceding shells
is available online:

https://stackoverflow.com/questions/5725296/difference-between-sh-and-bash
In some environments, the Bourne shell sh is the Bash shell, which you can check by

typing the following command:
sh --version
GNU bash, version 3.2.57(1)-release (x86_64-apple-darwin16)
Copyright (C) 2007 Free Software Foundation, Inc.

If you are new to the command line (be it Mac, Linux, or PCs), please read the preface of
this book, which provides some useful guidelines for accessing command shells.

Getting Help for Bash Commands

If you want to see the options for a specific Bash command, invoke the man command to
see a description of that Bash command and its options, as shown here:
man cat

The man command produces terse explanations, and if those explanations are not clear
enough, you can search for online code samples that provide more details.

Navigating Around Directories
In a command shell, you will often perform basic operations, such as displaying (or chang-

ing) the current directory, listing the contents of a directory, and displaying the contents of
a file. The following set of commands shows you how to perform these operations, and you
can execute a subset of these comments in the sequence that is relevant to you. Options for

4 • Bash for Data Scientists

some of the commands in this section (such as the ls command) are described in greater
detail later in this chapter.

A frequently used Bash command is pwd (“print working directory”) that displays the
current directory, as shown here:
pwd

The output of the preceding command might look something like this:
/Users/jsmith

Use the cd (“change directory”) command to go to a specific directory. For example, type
the command cd /Users/jsmith/Mail to navigate to this directory. If you are currently
in the /Users/jsmith directory, type cd Mail.

You can navigate to your home directory with either of these commands:
$ cd $HOME
$ cd

One convenient way to return to the previous directory is the command cd –. The cd
command on Windows merely displays the current directory and does not change the cur-
rent directory (unlike the Unix cd command).

The history Command

The history command displays a list (i.e., the history) of commands that you executed
in the current command shell:
history

A short sample output of the preceding command (the maximum number of lines is 500)
is here:
 1202 cat longfile.txt > longfile2.txt
 1203 vi longfile2.txt
 1204 cat longfile2.txt |fold -40
 1205 cat longfile2.txt |fold -30
 1206 cat longfile2.txt |fold -50
 1207 cat longfile2.txt |fold -45
 1208 vi longfile2.txt
 1209 history
 1210 cd /Library/Developer/CommandLineTools/usr/include/c++/
 1211 cd /tmp
 1212 cd $HOME/Desktop
 1213 history

If you want to navigate to the directory that is shown in line 1210, you can do so simply
by typing the following command:
!1210

The preceding snippet executes the same command that appears as line 1210 in the
previous sample’s output. However, !cd will search backward through the history of com-
mands to find the first command that matches cd command: in this case, line 1212 is the
first match. If there aren’t any intervening cd commands between the current command and
the command in line 1210, then !1210 and !cd will have the same effect.

Introduction • 5

Be careful with the “!” option with Bash commands because the command that matches
the “!” might not be the one you intended, especially something of the form !rm, which
will remove one or more files. Hence, it’s safer to use the history command and then
explicitly specify the correct number (in that history) when you invoke the “!” operator.

LISTING FILENAMES WITH THE LS COMMAND

The ls command is for listing filenames, and there are many switches available that you
can use, as shown in this section. For example, the ls *txt command displays the follow-
ing filenames (the actual display depends on the font size and the width of the command
shell) on my Mac:
ReservedWords.txt data2.txt input-info.txt longfile2.txt
abc.txt good-info.txt longfile.txt names.txt

The command ls -1t (the letter “l”) displays a time-based long listing of filenames:
-rw-r--r-- 1 oswaldcampesato staff 2101 Jun 16 13:07

input-info.txt
-rw-r--r-- 1 oswaldcampesato staff 29 Jun 16 13:07

data2.txt
-rw-r--r-- 1 oswaldcampesato staff 407 Jun 16 13:07

longfile2.txt
-rw-r--r-- 1 oswaldcampesato staff 408 Jun 16 13:07

longfile.txt
-rw-r--r-- 1 oswaldcampesato staff 2267 Jun 16 13:07

ReservedWords.txt
-rw-r--r-- 1 oswaldcampesato staff 1638 Jun 16 13:07

good-info.txt
-rw-r--r-- 1 oswaldcampesato staff 45 Jun 16 13:07

abc.txt
-rw-r--r-- 1 oswaldcampesato staff 35 Jun 16 13:07
names.txt

The command ls -ltr (the letters “l”, “t”, and “r”) displays a reversed time-based long
listing of filenames:
-rw-r--r-- 1 oswaldcampesato staff 35 Jun 16 13:07

names.txt
-rw-r--r-- 1 oswaldcampesato staff 45 Jun 16 13:07

abc.txt
-rw-r--r-- 1 oswaldcampesato staff 1638 Jun 16 13:07

good-info.txt
-rw-r--r-- 1 oswaldcampesato staff 2267 Jun 16 13:07

ReservedWords.txt
-rw-r--r-- 1 oswaldcampesato staff 408 Jun 16 13:07

longfile.txt

NOTE

6 • Bash for Data Scientists

-rw-r--r-- 1 oswaldcampesato staff 407 Jun 16 13:07
longfile2.txt

-rw-r--r-- 1 oswaldcampesato staff 29 Jun 16 13:07
data2.txt

-rw-r--r-- 1 oswaldcampesato staff 2101 Jun 16 13:07
input-info.txt

Here are the descriptions of all the listed columns in the preceding output:
• Column #1: represents the file type and permission given on the file (see below)
• Column #2: the number of memory blocks taken by the file or directory
• Column #3: the (Bash user) owner of the file
• Column #4: represents the group of the owner
• Column #5: represents file size in bytes
• Column #6: the date and time when this file was created or last modified
• Column #7: represents the file or directory name

In the ls -l listing example, every file line began with a d, -, or l. These characters
indicate the type of file that’s listed. These (and other) initial values are described as follows:

• - Regular file (ASCII text file, binary executable, or hard link)
• b Block special file (such as a physical hard drive)
• c Character special file (such as a physical hard drive)
• d Directory file that contains a listing of other files and directories
• l Symbolic link file
• p Named pipe (a mechanism for interprocess communications)
• s Socket (for interprocess communication)

Consult online documentation for more details regarding the ls command.

DISPLAYING CONTENTS OF FILES

This section introduces you to several commands for displaying different lines of text in a
text file. Before doing so, let’s invoke the wc (word count) command to display the number
of lines, words, and characters in a text file, as shown here:
wc longfile.txt
37 80 408 longfile.txt

The preceding output shows that the file longfile.txt contains 37 lines, 80 words,
and 408 characters, which means that the file size is actually quite small (despite its name).

The cat Command

Invoke the cat command to display the entire contents of longfile.txt:
cat longfile.txt

The preceding command displays the following text:
the contents

Introduction • 7

of this
long file
are too long
to see in a
single screen
and each line
contains
one or
more words
and if you
use the cat
command the
(other lines are omitted)

The preceding command displays the entire contents of a file; however, there are several
commands that display only a portion of a file, such as less, more, page, head, and tail
(all of which are discussed later).

As another example, suppose that the file temp1 has the following contents:
this is line1 of temp1
this is line2 of temp1
this is line3 of temp1

Let’s also suppose that the file temp2 has these contents:
this is line1 of temp2
this is line2 of temp2

Type the following command that contains the ? meta character (discussed in detail later
in this chapter):
cat temp?

The output from the preceding command is shown here:
this is line1 of temp1
this is line2 of temp1
this is line3 of temp1
this is line1 of temp2
this is line2 of temp2

The head and tail Commands

The head command displays the first ten lines of a text file (by default), an example of
which is here:
head longfile.txt

The preceding command displays the following text:
the contents
of this
long file

8 • Bash for Data Scientists

are too long
to see in a
single screen
and each line
contains
one or
more words

The head command also provides an option to specify a different number of lines to
display, as shown here:
head -4 longfile.txt

The preceding command displays the following text:
the contents
of this
long file
are too long

The tail command displays the last 10 lines (by default) of a text file:
tail longfile.txt

The preceding command displays the following text:
is available
in every shell
including the
bash shell
csh
zsh
ksh
and Bourne shell

NOTE The last two lines in the preceding output are blank lines (not a typographical error in this page).

Similarly, the tail command allows you to specify a different number of lines to display:
tail –4 longfile.txt displays the last 4 lines of longfile.txt.

Use the more command to display a screenful of data, as shown here:
more longfile.txt

Press the <spacebar> to view the next screen full of data, and press the <return>
key to see the next line of text in a file. Incidentally, some people prefer the less command,
which generates essentially the same output as the more command. (A geeky joke: “What’s
less? It’s more.”)

The Pipe Symbol

A very useful feature of Bash is its support for the pipe symbol (“|”), which enables you
to “pipe” or redirect the output of one command to become the input of another command.
The pipe command is useful when you want to perform a sequence of operations involving
various Bash commands.

Introduction • 9

For example, the following code snippet combines the head command with the cat
command and the pipe (“|”) symbol:
cat longfile.txt| head -2

A technical point: the preceding command creates two Bash processes (more about pro-
cesses later) whereas the command head -2 longfile.txt only creates a single Bash
process.

You can use the head and tail commands in more interesting ways. For example, the
following command sequence displays lines 11 through 15 of longfile.txt:
head -15 longfile.txt |tail -5

The preceding command displays the following text:
and if you
use the cat
command the
file contents
scroll

To display the line numbers for the preceding output, use the following:
cat –n longfile.txt | head -15 | tail -5

The preceding command displays the following text:
 11 and if you
 12 use the cat
 13 command the
 14 file contents
 15 scroll

You won’t see the “tab” character from the output, but it’s visible if you redirect the previ-
ous command sequence to a file and then use the -t option with the cat command:
cat –n longfile.txt | head -15 | tail -5 > 1
cat –t 1
 11^Iand if you
 12^Iuse the cat
 13^Icommand the
 14^Ifile contents
 15^Iscroll

The fold Command

The fold command enables you to “fold” the lines in a text file, which is useful for text
files that contain long lines of text that you want to split into shorter lines. For example, here
are the contents of longfile2.txt:

the contents of this long file are too long to see in a single
screen and each line contains one or more words and if you use
the cat command the file contents scroll off the screen so you can
use other commands such as the head or tail or more commands in
conjunction with the pipe command that is very useful in Bash and

10 • Bash for Data Scientists

is available in every shell including the bash shell csh zsh ksh
and Bourne shell

You can “fold” the contents of longfile2.txt into lines whose length is 45 (just as an
example) with this command:
cat longfile2.txt |fold -45

The output of the preceding command is here:
the contents of this long file are too long t
o see in a single screen and each line contai
ns one or more words and if you use the cat c
ommand the file contents scroll off the scree
n so you can use other commands such as the h
ead or tail or more commands in conjunction w
ith the pipe command that is very useful in U
nix and is available in every shell including
the bash shell csh zsh ksh and Bourne shell

Notice that some words in the preceding output are split based on the line width, and not
“newspaper style.”

In Chapter 5, you will learn how to display the lines in a text file that match a string or a pat-
tern, as well as how to replace a string with another string in a text file.

FILE OWNERSHIP: OWNER, GROUP, AND WORLD

Bash files can have partial or full rwx privileges, where r = read privilege, w = write
privilege, and x = file can be executed from the command line simply by typing the file name
(or the full path to the file if the file is not in your current directory). Invoking an executable
file from the command line will cause the operating system to attempt to execute commands
inside the text file.

Use the chmod command to set permissions for files. For example, if you need to set the
permission rwx rw- r-- for a file, use the following:
chmod u=rwx g=rw o=r filename

In the preceding command, the options u, g, and o represent user permissions, group
permissions, and others’ permissions, respectively.

To add additional permissions on the current file, use + to add permission to the user,
group, or others and use - to remove the permissions. For example, given a file with the
permissions rwx rw- r--, add the executable permission as follows:
chmod o+x filename

This command adds the x permission for others. Add the executable permission to all
permission categories that is, for user, group, and others as follows:
chmod a+x filename

In the preceding command, the letter a means “all groups.” Conversely, specify a - to
remove a permission from all groups, as shown here:
chmod a-x filename

Introduction • 11

HIDDEN FILES

An “invisible” file is one whose first character is the dot or period character (.). Bash pro-
grams (including the shell) use most of these files to store configuration information. Some
common examples of hidden files include the following files:

• .profile: the Bourne shell (sh) initialization script
• .bash_profile: the Bash shell (bash) initialization script
• .kshrc: the Korn shell (ksh) initialization script
• .cshrc: the C shell (csh) initialization script
• .rhosts: the remote shell configuration file

To list invisible files, specify the -a option to ls:
ls -a
. .profile docs lib test_results
.. .rhosts hosts pub users
.emacs bin hw1 res.01 work
.exrc ch07 hw2 res.02
.kshrc ch07.bak hw3 res.03

Single dot .: This represents the current directory.
Double dot ..: This represents the parent directory.

HANDLING PROBLEMATIC FILENAMES

Problematic filenames contain one or more whitespaces, hidden (non-printing) charac-
ters, or start with a dash (-) character.

You can use double quotes to list filenames that contain whitespaces, or you can precede
each whitespace by a backslash (\) character.

For example, if you have a file named One Space.txt, you can use the ls command
as follows:
ls -1 ̎One Space.txt̎
ls –l One\ Space.txt

Filenames that start with a dash (-) character are difficult to handle because the dash
character is the prefix that specifies options for Bash commands. Consequently, if you have a
file whose name is –abc, then the command ls –abz will not work correctly, because -z
is interpreted as a switch for the ls command, and since there is no “z” option, you will see
the following type of output:
ls: illegal option -- z
usage: ls [-@ABCFGHLOPRSTUWabcdefghiklmnopqrstuwx1%] [file ...]

In most cases, the best solution to this type of file is to rename the file. This can be done
in your operating system if your client isn’t a Unix shell, or you can use the following special
syntax for the mv (“move”) command to rename the file. The preceding two dashes tell mv
to ignore the dash in the filename. An example is here:
mv -- -abc.txt renamed-abc.txt

12 • Bash for Data Scientists

WORKING WITH ENVIRONMENT VARIABLES

There are many built-in environment variables available, and the following subsections
discuss the env command and then some of the more common variables.

The env Command

The env (“environment”) command displays the variables that are in your Bash environ-
ment. An example of the output of the env command is here:
SHELL=/bin/bash
TERM=xterm-256color
TMPDIR=/var/folders/73/39lngcln4dj_scmgvsv53g_w0000gn/T/
OLDPWD=/tmp
TERM_SESSION_ID=63101060-9DF0-405E-84E1-EC56282F4803
USER=ocampesato
COMMAND_MODE=bash2003PATH=/opt/local/bin:/Users/ocampesato/

android-sdk-mac_86/platform-tools:/Users/ocampesato/android-
sdk-mac_86/tools:/usr/local/bin:

PWD=/Users/ocampesato
JAVA_HOME=/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/

Contents/Home
LANG=en_US.UTF-8
NODE_PATH=/usr/local/lib/node_modules
HOME=/Users/ocampesato
LOGNAME=ocampesato
DISPLAY=/tmp/launch-xnTgkE/org.macosforge.xquartz:0
SECURITYSESSIONID=186a4
_=/usr/bin/env

Some interesting examples of setting an environment variable and also executing a com-
mand are described online:

https://stackoverflow.com/questions/13998075/setting-environment-variable-for-one-
program-call-in-bash-using-env

Useful Environment Variables
This section discusses some important environment variables, most of which you prob-

ably will not need to modify, but it’s useful to be aware of the existence of these variables and
their purpose.

• The HOME variable contains the absolute path of the user’s home directory.
• The HOSTNAME variable specifies the Internet name of the host.
• The LOGNAME variable specifies the user’s login name.
• The PATH variable specifies the search path (see the next subsection).
• The SHELL variable specifies the absolute path of the current shell.
• The USER specifies the user’s current username. This value might be different than

the login name if a superuser executes the su command to emulate another user’s
permissions.

Introduction • 13

Setting the PATH Environment Variable
Programs and other executable files can live in many directories, so operating systems

provide a search path that lists the directories that the operating system searches for execut-
able files. Add a directory to your path so that you can invoke an executable file by specifying
just the filename: you don’t need to specify the full path to the executable file.

The search path is stored in an environment variable, which is a named string maintained
by the operating system. These variables contain information available to the command shell
and other programs.

The path variable is named PATH in Bash or Path in Windows (Bash is case-sensitive;
Windows is not).

Setting the path in Bash/Linux:
export PATH=$HOME/anaconda:$PATH

To add the Python directory to the path for a particular session in Bash, use the fol-
lowing:
export PATH=̎$PATH:/usr/local/bin/python̎

In Bourne shell or ksh shell, enter this command:
PATH=̎$PATH:/usr/local/bin/python̎

NOTE /usr/local/bin/python is the path of the Python directory.

Specifying Aliases and Environment Variables

The following command defines an environment variable called h1:
h1=$HOME/test

Now if you enter the following command,
echo $h1

you will see the following output on OS X:
/Users/jsmith/test

The next code snippet shows you how to set the alias ll so that it displays a long listing
of a directory:
alias ll=̎ls -l̎

The following three alias definitions involve the ls command and various switches:
alias ll=̎ls –l̎
alias lt=̎ls –lt̎
alias ltr=̎ls –ltr̎

As an example, you can replace the command ls -ltr (the letters “l”, “t”, and “r”) that
you saw earlier in the chapter with the ltr alias and you will see the same reversed time-
based long listing of filenames (reproduced here):
total 56
-rwx------ 1 ocampesato staff 176 Jan 06 19:21 ssl-

instructions.txt
-rw-r--r-- 1 ocampesato staff 12 Jan 06 19:21 output.txt
-rw-r--r-- 1 ocampesato staff 11 Jan 06 19:21 outfile.txt

14 • Bash for Data Scientists

-rwx------ 1 ocampesato staff 12 Jan 06 19:21 kyrgyzstan.txt
-rwx------ 1 ocampesato staff 478 Jan 06 19:21 iphonemeetup.txt
-rwx------ 1 ocampesato staff 146 Jan 06 19:21 checkin-

commands.txt
-rwx------ 1 ocampesato staff 25 Jan 06 19:21 apple-care.txt

You can also define an alias that contains the Bash pipe (|) symbol:
alias ltrm=̎ls –ltr|more̎

In a similar manner, you can define aliases for directory related commands:
alias ltd=̎ls –lt | grep ̍^d̍̎
alias ltdm=̎ls –lt | grep ̍^d̍|more̎

FINDING EXECUTABLE FILES

There are several commands available for finding executable files (binary files or shell
scripts) by searching the directories in the PATH environment variable via the commands
which, whence, whereis, and whatis.

The preceding commands produce similar results to the which command. The which
command gives the full path to whatever executable you specify or a blank line if the execut-
able is not in any directory that is specified in the PATH environment variable. This is useful
for finding out whether a particular command or utility is installed on the system.
which rm

The output of the preceding command is here:
/bin/rm

The whereis command provides the information that you get from the where command:
$ whereis rm
/bin/rm

The whatis command looks up the specified command in the whatis database, which
is useful for identifying system commands and important configuration files:
git-rm(1) - Remove files from the working tree and

from the index
grm(1), rm(1) - remove files or directories
rm(1), unlink(1) - remove directory entries

Consider it a simplified version of the man command, which displays concise details
about Bash commands (e.g., type man ls and you will see several pages of explanation
regarding the ls command).

THE printf COMMAND AND THE echo COMMAND

In brief, use the printf command instead of the echo command if you need to control
the output format. One key difference is that the echo command prints a newline character
whereas the printf statement does not print a newline character. Keep this point in mind
when you see the printf statement in the awk code samples in Chapter 6.

Introduction • 15

As a simple example, place the following code snippet in a shell script:
printf ̎%-5s %-10s %-4s\n̎ ABC DEF GHI
printf ̎%-5s %-10s %-4.2f\n̎ ABC DEF 12.3456

Make the shell script executable and then launch the shell script, after which you will see
the following output:
ABC DEF GHI
ABC DEF 12.35

However, if you type the following pair of commands:
echo ̎ABC DEF GHI̎
echo ̎ABC DEF 12.3456̎

you will see the following output:
ABC DEF GHI
ABC DEF 12.3456

A detailed (and very lengthy) discussion regarding the printf statement and the echo
command is here:

https://unix.stackexchange.com/questions/65803/why-is-printf-better-than-echo

THE cut COMMAND

The cut command enables you to extract fields with a specified delimiter (another word
commonly used for IFS, especially when it’s part of a command syntax, instead of being set
as an outside variable) as well as a range of columns from an input stream. Some examples
are here:
x=̎abc def ghi̎
echo $x | cut –d̎ ̎ –f2

The following code snippet displays the contents of field 3 followed by field 1:
x=̎abc def ghi̎
echo $x | cut –d̎ ̎ –f3,2

The output (using space ̎ ̎ as IFS, and -f2 to indicate the second column) of the
preceding code snippet is here:
def

Consider this code snippet:
x=̎abc def ghi̎
echo $x | cut –c2-5

The output of the preceding code snippet (-c2-5 means “extract the characters in col-
umns 2 through 5 from the variable”) is here:
bc d

Listing 1.1 displays the content of SplitName1.sh that illustrates how to split a file-
name containing the “.” character as a delimiter/IFS.

16 • Bash for Data Scientists

Listing 1.1: SplitName1.sh

fileName=̎06.22.04p.vp.0.tgz̎

f1=̍echo $fileName | cut -d̎.̎ -f1̍
f2=̍echo $fileName | cut -d̎.̎ -f2̍
f3=̍echo $fileName | cut -d̎.̎ -f3̍
f4=̍echo $fileName | cut -d̎.̎ -f4̍
f5=̍echo $fileName | cut -d̎.̎ -f5̍

f5=̍expr $f5 + 12̍

newFileName=̎${f1}.${f2}.${f3}.${f4}.${f5}̎
echo ̎newFileName: $newFileName̎

Listing 1.1 uses the echo command and the cut command to initialize the variables
f1, f2, f3, f4, and f5, after which a new filename is constructed. The output of the
preceding shell script is here:
newFileName: 06.22.04p.vp.12

THE echo COMMAND AND WHITESPACES

The echo command preserves whitespaces in variables, but in some cases, the results
might be different than your expectations.

Listing 1.2 displays the content of EchoCut.sh that illustrates the differences that can
occur when the echo command is used with the cut command.

Listing 1.2: EchoCut.sh

x1=̎123 456 789̎
x2=̎123 456 789̎
echo ̎x1 = $x1̎
echo ̎x2 = $x2̎

x3=̍echo $x1 | cut -c1-7̍
x4=̍echo ̎$x1̎ | cut -c1-7̍
x5=̍echo $x2 | cut -c1-7̍
echo ̎x3 = $x3̎
echo ̎x4 = $x4̎
echo ̎x5 = $x5̎

Launch the code in Listing 1.1 and you will see the following output:
x1 = 123 456 789
x2 = 123 456 789
x3 = 123 456
x4 = 123 4
x5 = 123 456

Introduction • 17

The value of x3 is probably different from what you expected: there is only one blank
space between 123 and 456 instead of the three blank spaces that appear in the definition
of the variable x1.

This seemingly minor detail is important when you write shell scripts that check
the values contained in specific columns of text files, such as payroll files and other
files with financial data. The solution involves the use of double quote marks (and
sometimes the IFS variable that is discussed in Chapter 2) that you can see in the
definition of x4.

COMMAND SUBSTITUTION (“BACK TICK”)

The back tick or command substitution feature of the Bourne shell is very powerful and
enables you to combine multiple Bash commands. You can also write very compact and
powerful (and complicated) shell scripts with command substitution. The syntax is to simply
precede and follow your command with a “`” (back tick) character. In Listing 1.3 below, the
command between back ticks is ̍ls *py̍.

Listing 1.3 displays the content of CommandSubst.sh displays a subset of files in a
directory.

Listing 1.3: CommandSubst.sh

for f in `ls *py`
do
 echo ̎file is: $f̎
done

Listing 1.2 contains a for loop that displays the filenames (in the current directory) that
have a py suffix. The output of Listing 1.2 on my Macbook is here:
file is: CapitalizeList.py
file is: CompareStrings.py
file is: FixedColumnCount1.py
file is: FixedColumnWidth1.py
file is: LongestShortest1.py
file is: My2DMatrix.pyß
file is: PythonBash.py
file is: PythonBash2.py
file is: StringChars1.py
file is: Triangular1.py
file is: Triangular2.py
file is: Zip1.py

The output depends on whether you have any files with a .py suffix in the directory where
you execute CommandSubst.sh. NOTE

18 • Bash for Data Scientists

THE PIPE SYMBOL AND MULTIPLE COMMANDS

At this point, you’ve seen various combinations of Bash commands that are connected
with the “|” symbol. In addition, you can redirect the output to a file. The general form looks
something like this:
cmd1 | cmd2 | cmd3 …. >mylist

What happens if there are intermediate errors? You can redirect error messages to /
dev/null, and you can also redirect error messages to a text file if you want to review them.
Yet another option is to redirect stderr (“standard error”) to stdout (“standard out”),
which is beyond the scope of this chapter. For example, the following command shows you
how to redirect errors from the ls command to /dev/null:
ls /tmp2 2>/dev/null

An intermediate error can cause an entire “pipeline” to fail. Unfortunately, it’s usually
a trial-and-error process to debug long and complex commands that involve multiple pipe
symbols.

Now consider the case where you need to redirect the output of multiple commands to
the same location. For example, the following commands display output on the screen:
ls | sort; echo ̎the contents of /tmp: ̎; ls /tmp

You can easily redirect the output to the file myfile1.txt with this command:
(ls | sort; echo ̎the contents of /tmp:̎; ls /tmp) > myfile1.txt

However, each of the preceding commands inside the parentheses spawns a subshell
(which is an extra process that consumes memory and increases CPU usage, both of which
can sometimes be significant). You can avoid spawning subshells by using {} instead of (),
as shown here (and the whitespace after { and before } are required):
{ ls | sort; echo ̎the contents of /tmp:̎; ls /tmp } > myfile1.txt

Suppose that you want to set a variable, execute a command, and invoke a second com-
mand via a pipe, as shown here:
name=SMITH cmd1 | cmd2

Although cmd2 in the preceding code snippet does not recognize the value of name,
there is a simple solution, as shown here:
(name=SMITH cmd1) | cmd2

Use the double ampersand (&&) symbol if you want to execute a command only if a prior
command succeeds. For example, the cd command only works if the mkdir command suc-
ceeds in the following code snippet:
mkdir /tmp2/abc && cd /tmp2/abc

The preceding command will fail because (by default) /tmp2 does not exist. However,
the following command succeeds because the –p option ensures that intermediate directo-
ries are created:
mkdir –p /tmp/abc/def && cd /tmp/abc && ls –l

USING A SEMICOLON TO SEPARATE COMMANDS

You can combine multiple commands with a semicolon (“;”), as shown here:
cd /tmp; pwd; cd ~; pwd

Introduction • 19

The preceding code snippet navigates to the /tmp directory, prints the full path to the
current directory, returns to the previous directory, and again prints the full path to the cur-
rent directory. The output of the preceding command is here:
/tmp
/Users/jsmith

You can use command substitution (discussed in the next section) to assign the output to
a variable, as shown here:
x=`cd /tmp; pwd; cd ~; pwd`
echo $x

The output of the preceding snippet is here:
/tmp /Users/jsmith

THE paste COMMAND

The paste command is useful when you need to combine two files in a pairwise fashion.
For example, Listing 1.4 and Listing 1.5 display the contents of the text files list1 and
list2, respectively. You can think of paste as treating the contents of the second file as
an additional column for the first file. In our first example, the first file has a list of files to
copy, the second file has a list of files that are the destination for the cp command. Paste
then merges the two files into output that could then be run to execute all the cp commands
sequentially.

Listing 1.4: list1

cp abc.sh
cp abc2.sh
cp abc3.sh

Listing 1.5: list2

def.sh
def2.sh
def3.sh

Listing 1.6 display the result of invoking the following command:
paste list1 list2 >list1.sh

Listing 1.6: list1.sh

cp abc.sh def.sh
cp abc2.sh def2.sh
cp abc3.sh def3.sh

Listing 1.6 contains three cp commands that are the result of invoking the paste com-
mand. If you want to execute the commands in Listing 1.6, make this shell script executable
and then launch the script, as shown here:
chmod +x list1.sh
./list1.sh

20 • Bash for Data Scientists

Inserting Blank Lines with the paste Command

Instead of merging two equal length files, paste can also be used to add the same thing
to every line in a file.

Suppose that the text file names.txt contains the following lines:
Jane Smith
John Jones
Dave Edwards

The following command inserts a blank line after every line in names.txt:
paste -d̍\n̍ - /dev/null < names.txt

The output from the preceding command is here:
Jane Smith

John Jones

Dave Edwards

Insert a blank line after every other line in names.txt with this command:
paste -d̍\n̍ - - /dev/null < names.txt

The output is here:
Jane Smith
John Jones
Dave Edwards

Insert a blank line after every third line in names.txt with this command:
paste -d̍\n̍ - - - /dev/null < names.txt

The output is here:
Jane Smith
John Jones
Dave Edwards

There is a blank line after the third line in the2 preceding output. The shell script
joinlines.sh (later in this chapter) also contains examples of one-line paste com-
mands for joining consecutive lines of a dataset or text file.

A SIMPLE USE CASE WITH THE paste COMMAND

The code sample in this section shows you how to use the paste command in order to
join consecutive rows in a dataset. Listing 1.7 displays the content of linepairs.csv, which
contains letter and number pairs, and Listing 1.8 contains reversecolumns.sh, which
illustrates how to match the pairs even though the line breaks are in different places between
numbers and letters.

NOTE

Introduction • 21

Listing 1.7: linepairs.csv

a,b,c,d,e,f,g
h,i,j,k,l
1,2,3,4,5,6,7,8,9
10,11,12

Listing 1.8: linepairs.sh

inputfile=̎linepairs.csv̎
outputfile=̎linepairsjoined.csv̎

join pairs of consecutive lines:
paste -d ̎ ̎ - - < $inputfile > $outputfile

join three consecutive lines:
#paste -d ̎ ̎ - - - < $inputfile > $outputfile

join four consecutive lines:
#paste -d ̎ ̎ - - - - < $inputfile > $outputfile

The contents of the output file are shown here (note that the script is just joining pairs of
lines, and the three- and four-line command examples are commented out):
a,b,c,d,e,f,g h,i,j,k,l
1,2,3,4,5,6,7,8,9 10,11,12

Notice that the preceding output is not completely correct: there is a space “ ” instead of
a “,” whenever a pair of lines is joined (between “g” and “h” and “9 and 10”). We can make
the necessary revision using the sed command (discussed in Chapter 4):
cat $outputfile | sed ̎s/ /,/g̎ > $outputfile2

Examine the contents of $outputfile to see the result of the preceding code snippet.

A SIMPLE USE CASE WITH cut AND paste COMMANDS

The code sample in this section shows you how to use the cut and paste commands to
reverse the order of two columns in a dataset. The purpose of the shell script in Listing 1.10
is to help you get some practice for writing Bash scripts. The better solution involves a single
line of code (shown at the end of this section).

Listing 1.9 displays the content of namepairs.csv that contains the first name and last
name of a set of people, and Listing 1.10 contains reversecolumns.sh, which illustrates
how to reverse these two columns.

22 • Bash for Data Scientists

Listing 1.9: namepairs.csv

Jane,Smith
Dave,Jones
Sara,Edwards

Listing 1.10: reversecolumns.sh

inputfile=̎namepairs.csv̎
outputfile=̎reversenames.csv̎
fnames=̎fnames̎
lnames=̎lnames̎

cat $inputfile|cut -d̎,̎ -f1 > $fnames
cat $inputfile|cut -d̎,̎ -f2 > $lnames

paste –d̎,̎ $lnames $fnames > $outputfile

The contents of the output file $outputfile are shown here:
Smith,Jane
Jones,Dave
Edwards,Sara

The code in Listing 1.10 (after removing blank lines) consists of seven lines of code that
involves creating two extra intermediate files. Unless you need those files, it’s a good idea to
remove those two files (which you can do with one rm command).

Although Listing 1.10 is straightforward, there is a simpler way to execute this task: use
the cat command and the awk command (discussed later). Specifically, compare the con-
tents of reversecolumns.sh with the following single line of code that combines the
cat command and the awk command to generate the same output:
cat namepairs.txt |awk -F̎,̎ ̍{print $2 ̎,̎ $1}̍

The output from the preceding code snippet is here:
Smith,Jane
Jones,Dave
Edwards,Sara

As you can see, there is a big difference in these two solutions. If you are unfamiliar with
the awk command, then obviously you would not have thought of the second solution. How-
ever, the more you learn about Bash commands and how to combine them, the more adept
you will become in terms of writing better shell scripts to solve data cleaning tasks. Another
important point: document the commands as they become more complex, as they can be
hard to interpret later by others (and even by yourself, if enough time has passed). A com-
ment such as the following can be extremely helpful to interpreting code:
This command reverses first and last names in namepairs.txt
cat namepairs.txt |awk -F̎,̎ ̍{print $2 ̎,̎ $1}̍

Introduction • 23

WORKING WITH META CHARACTERS

Meta characters can be thought of as a complex set of wildcards. Regular expressions are
a “search pattern” which are a combination of normal text and meta characters. In concept,
it is much like a “find” tool (press ctrl-f on your search engine), but Bash (and Unix in
general) allows for much more complex pattern matching because of its rich meta character
set. There are entire books devoted to regular expressions, but this section contains enough
information to get started, and the key concepts needed for data manipulation and cleansing.

The following meta characters are useful with regular expressions:
• The ? meta character refers to 0 or 1 occurrences of something.
• The + meta character refers to 1 or more occurrences of something.
• The * meta character refers to 0 or more occurrences of something.

“Something” in the preceding descriptions can refer to a digit, letter, word, or more com-
plex combinations.

Some examples involving meta characters are shown here:
The expression a? matches the string a and also the string a followed by a single char-

acter, such as a1, a2, …, aa, ab, ac, and so forth. However, abc and a12 do not match
the expression a?.

The expression a+ matches the string a followed by one or more characters, such as a1,
a2, …, aa, ab, ac, and so forth (but abc and a12 do not match).

The expression a* matches the string a followed by zero or more characters, such as a,
a1, a2, …, aa, ab, ac, and so forth.

The pipe “|” meta character (which has a different context from the pipe symbol in the
command line: regular expressions have their own syntax, which does not match that of the
operating system a lot of the time) provides a choice of options. For example, the expression
a|b means a or b, and the expression a|b|c means a or b or c.

The “$” meta character refers to the end of a line of text, and in regular expressions inside
the vi editor, the “$” meta character refers to the last line in a file.

The “^” meta character refers to the beginning of a string or a line of text. For example:
*a$ matches ̎Mary Anna̎ but not ̎Anna Mary̎
^A* matches ̎Anna Mary̎ but not ̎Mary Anna̎

In the case of regular expressions, the “^” meta character can also mean “does not match.”
The next section contains some examples of the “^” meta character.

WORKING WITH CHARACTER CLASSES

Character classes enable you to express a range of digits, letters, or a combination of both.
For example, the character class [0-9] matches any single digit; [a-z] matches any lower-
case letter; and [A-Z] matches any uppercase letter. You can also specify subranges of digits
or letters, such as [3-7], [g-p], and [F-X], as well as other combinations:

• [0-9][0-9] matches a consecutive pair of digits
• [0-9[0-9][0-9] matches three consecutive digits
• \d{3} also matches three consecutive digits

NOTE

24 • Bash for Data Scientists

The previous section introduced you to the “^” meta character, and here are some exam-
ples of using “^” with character classes:

1. ^[a-z] matches any lowercase letter at the beginning of a line of text

2. ^[^a-z] matches any line of text that does not start with a lowercase letter

Based on what you have learned thus far, you can understand the purpose of the following
regular expressions:

1. ([a-z]|[A-Z]): either a lowercase letter or an uppercase letter

2. (^[a-z][a-z]): an initial lowercase letter followed by another lowercase letter

3. (^[^a-z][A-Z]): anything other than a lowercase letter followed by an uppercase letter

Chapter 4 contains a section that discusses regular expressions, which combine character
classes and meta characters to create sophisticated expressions for matching complex string
patterns (such as email addresses).

WHAT ABOUT ZSH?

The latest version of OS X provides zsh as the default shell instead of the Bash shell. You
can find the directory that contains zsh by typing this command:
which zsh

and the result will be
/bin/zsh

Bash and zsh have some features in common, as shown here:
• the z-command
• auto-completion
• auto-correction
• color customization

Unlike zsh, the Bash shell does not have inline wildcard expansion. Hence, tab comple-
tion in Bash acts like a command output. However, tab completion in zsh resembles a “drop
down” list that disappears after you type additional characters.

In addition, the Bash shell does not support prefix or postfix command aliases. A compari-
son of the Bash shell and zsh is available online:

https://sunlightmedia.org/bash-vs-zsh

Switching between bash and zsh

Type the following command to set as the default shell in a command shell:
chsh -s /bin/zsh

Switch from zsh back to bash with this command:
chsh -s /bin/bash

Both of the preceding commands only affect the command shell where you launched the
commands.NOTE

Introduction • 25

Configuring zsh
Bash stores user-related configuration settings in the hidden file (in your home directory)

.bashrc, whereas zsh uses the file .zshrc. However, keep in mind that you need to cre-
ate the latter file because it’s not created for you.

Bash uses the login-related file .bash_profile, whereas zsh uses the file .zprofile
(also in your home directory) that is invoked when you log into your system. Consider the
use of configuration managers such as Prezto or Antigen to help you set values to variables.
Perform an online search for more details regarding zsh.

SUMMARY

This chapter started with an introduction to some Unix shells, followed by a brief discus-
sion of files, file permissions, and directories. You also learned how to create files and direc-
tories and how to change their permissions.

Next you learned about environment variables, how to set them, and also how to use
aliases. You also learned about “sourcing” (also called “dotting”) a shell script and how this
changes variable behavior from calling a shell script in the normal fashion. In addition, you
learned about meta characters that can be used in regular expressions.

Next you learned about the cut command (for cutting columns and/or fields) and the
paste command (for “pasting” test together vertically). Finally, you saw two use cases, the
first of which involved the cut command and paste command to switch the order to two
columns in a dataset, and the second showed you another way to perform the same task using
concepts from later chapters.

CHAPTER 2
FILES AND DIRECTORIES

This chapter discusses files and directories and various useful Unix commands for
managing them. You will learn how to use simple commands that can simplify your
tasks.

The first part of this chapter shows you file permissions and how to set them according to
your requirements. The second part of this chapter works with file-related commands, such
as touch, mv, cp, and rm. The third part of this chapter contains shell commands for
managing directories. The fourth part of this chapter discusses metacharacters and variables
that you can use when working with files and shell scripts.

CREATE, COPY, REMOVE, AND MOVE FILES

Unix supports file-related commands, such as touch, cp, and rm that enable you to
create, copy, and remove files, respectively. The following subsections illustrate how to use
these convenient commands.

Creating Files

The touch command enables you to create an empty file. For example, the following
command illustrates how to create an empty file called abc:
touch abc

If you issue the command ls –l abc, you will see something like this:
-rw-r--r-- 1 owner staff 0 Jul 2 16:39 abc

Copying Files

You can copy the file abc (or any other file) to abc2 with this command:
cp abc abc2

28 • Bash for Data Scientists

The cp command provides several switches, including the following:

• the -a archive flag (for copying an entire directory tree)
• the -u update flag (prevents overwriting identically-named newer files)
• the -r and -R recursive flags

The –r option is useful for copying the files and all the subdirectories of a directory to
another directory. For example, the following command copies the files and subdirectories
(if any) from $HOME/abc to the directory $HOME/def:
cd $HOME/abc
cp –r . ../def

Copy Files with Command Substitution

Listing 2.1 displays the content of CommandSubstCopy.sh that illustrates how to use
a pair of back ticks (̍̍) to copy a set of files to a directory.

Listing 2.1 CommandSubst.sh

mkdir textfiles
cp `ls *txt` textfiles

The preceding pair of commands creates a directory textfiles in the current directory
and then copies all the files (located in the current directory) with the suffix txt into the
textfiles subdirectory.

The cp command will not copy any subdirectories that have the suffix txt. If you want
to copy files that have the suffix .txt, use this command:
cp `ls *txt` textfiles

Another caveat: if you have the directory abc.txt, or some other directory with the
.txt suffix, then the contents of that directory will not be copied (you will see an error
message). The following commands will also fail to copy the contents of abc.txt to the
subdirectory textfiles:
cp `ls –R *.txt` textfiles

cp –r `ls –R *.txt` textfiles

You need to use the following command to ensure that the subdirectory abc.txt is
copied into textfiles:
cp –r abc.txt textfiles

If you want to copy the subdirectories of abc.txt but not the directory abc.txt into
textfiles, use this command:
cp –r abc.txt/* textfiles

Deleting Files

The rm command removes files and directories (when it’s invoked with the –r option).
For example, remove the file abc using the rm command:
rm abc

Files and Directories • 29

The rm command has some useful options, such as –r, –f, and –I, which represent the
terms recursive, force, and interactive, respectively.

You can remove the contents of the current directory and all of its subdirectories with
this command:
rm –rf *

NOTE
Exercise caution when you use rm –rf * so that you do not inadvertently delete the
wrong tree of files on your machine.

The –i option is useful when you want to be prompted before a file is deleted. Before
deleting a set of files, use the ls command to preview the files that you intend to delete
using the rm command. For example, run this command:
ls *.sh

The preceding command shows you the files that you will delete when you run this com-
mand:
rm *.sh

Later, you will use command substitution, which redirects the output of one command
as the input of another command. As a simple preview, the following command removes the
files that are listed in the file remove_list.txt:
rm `cat remove_list.txt`

If there is a possibility that you might need some of the files that you intend to delete, you
could create a directory and move those files into that directory, as shown here:
mkdir $HOME/backup-shell-scripts
mkdir *sh $HOME/backup-shell-scripts

Moving Files

The mv command is equivalent to a combination of cp and rm. You can use this com-
mand to move multiple files to a directory or even to rename a directory. When used in a
non-interactive script, mv supports the -f (force) option to bypass user input. When a
directory is moved to a preexisting directory, it becomes a subdirectory of the destination
directory.

THE BASENAME, DIRNAME, AND FILE COMMANDS

The following code snippets show you how to extract the base portion of a filename, the
directory portion, and the type of file, respectively.
$ x=̎/tmp/a.b.c̎
$ basename $x
$ a.b.c

$ a=̎/tmp/a.b̎
$ basename $a
a.b

30 • Bash for Data Scientists

$ dirname $x
/tmp

$ file /bin/ls
/bin/ls: Mach-O 64-bit executable x86_64

THE wc COMMAND

In Chapter 1, you learned how to use the ls command to obtain information about files
in a given directory. You can view the number of lines, words, and characters in a set of files
using the wc command. For example, if you execute the command wc *o*.txt in a com-
mand shell, you will see information for all the text files in a directory that contain the letter
o, similar to the following output:
-rw-r--r-- 1 oswaldcampesato staff 89 Jun 18 16:50 columns4.

txt
-rw-r--r-- 1 oswaldcampesato staff 89 Jun 18 16:50 columns3.

txt
-rw-r--r-- 1 oswaldcampesato staff 77 Jun 18 16:50 columns2.

txt
-rw-r--r-- 1 oswaldcampesato staff 64 Jun 18 16:50 columns.

txt
-rw-r--r-- 1 oswaldcampesato staff 407 Jun 18 16:44 longfile2.

txt
-rw-r--r-- 1 oswaldcampesato staff 408 Jun 18 16:44 longfile.

txt
-rw-r--r-- 1 oswaldcampesato staff 2101 Jun 18 16:44 input-

info.txt
-rw-r--r-- 1 oswaldcampesato staff 1638 Jun 18 16:44 good-

info.txt
-rw-r--r-- 1 oswaldcampesato staff 2267 Jun 18 16:44
ReservedWords.txt

If you run the command wc long*, you will see information about files that start with
the string long, as shown here:
 37 80 408 longfile.txt
 3 80 407 longfile2.txt
 40 160 815 total

You can count the number of files in directory with ls -1 |wc, as shown here:
20 173 1420

The shell commands cat, more, less, head, and tail display different parts of a
file. For short files, these commands can overlap in terms of their output. The next several
sections provide more details about some of these commands, along with some examples.

Files and Directories • 31

THE more COMMAND AND THE less COMMAND

The more command enables you to view “pages” of the contents of a text file. Press the
space bar to advance to the next page, and press the return key to advance a single line. The
less command is similar to the more command. An example of the more command is
here:
more abc.txt

Alternatively, you can use this form, but remember that it’s less efficient because two
processes are involved:
cat abc.txt |more

THE head COMMAND

The head command enables you to display an initial set of lines, and the default number
is 10. For example, the following command displays the first three lines of test.txt:
cat test.txt |head -3

The following command also displays the first three lines of test.txt:
head -3 test.txt

You can display the first three lines of multiple files. The following command displays the
first three lines in the text file columns2.txt, columns3.txt, and columns4.txt:
head -3 columns[2-4].txt

The output of the preceding command is here:
==> columns2.txt <==
one two
three four
one two three four

==> columns3.txt <==
123 one two
456 three four
one two three four

==> columns4.txt <==
123 ONE TWO
456 three four
ONE TWO THREE FOUR

The following code snippet checks if the first line of test.txt contains the string aa:
x=`cat test.txt |head -1|grep aa`
if [̎$x̎ != ̎̎]
 echo ̎found aa in the first line̎
fi

32 • Bash for Data Scientists

The head command displays the first 10 lines of a file, and the tail command displays
the final 10 lines of a file. Instead of showing you the output (which you can see from the
previous listing), let’s combine the head and tail commands with the wc command.

The following command combines the head and wc commands:
head longfile.txt |wc

The preceding command displays the following output:
10 22 112

You can also display the contents of a file whereby each line is preceded by a line number.
For example, the following command combines the cat and head commands:
cat –n longfile.txt |head -4

The preceding command displays the following output that starts with 5 space characters,
and the embedded ^I characters are shown for emphasis:
 1^Ithe contents
 2^Iof this
 3^Ilong file
 4^Iare too long

THE tail COMMAND

The tail command enables you to display a set of lines at the end of a file, and the
default number is 10. For example, the following command displays the last three lines of
test.txt:
cat test.txt |tail -3

The following command also displays the last three lines of test.txt:
tail -3 test.txt

You can display the last three lines of multiple files. The following command displays the
last three lines in the text file columns2.txt, columns3.txt, and columns4.txt:
tail -3 columns[2-4].txt

The output of the preceding command is here:
==> columns2.txt <==
five six
one two three
four five

==> columns3.txt <==
five 123 six
one two three
four five

Files and Directories • 33

==> columns4.txt <==
five 123 six
one two three
four five

The following code snippet checks if the last line of test.txt contains the string aa:
x=`cat test.txt |tail -1|grep aa`
if [̎$x̎ != ̎̎]
 echo ̎found aa in the last line̎
fi

The following command displays three values:
tail longfile.txt |wc
10 15 84

The first number in both output listings is 10, which confirms that only the first 10 lines or
the final 10 lines are displayed. Note that if a file contains 10 or fewer lines, then the output
of head, tail, cat, and more is identical.

You can change the number of lines that you want to see in the output of the head com-
mand or the tail command. For example, this command displays three lines:
$ head -3 longfile.txt
the contents
of this
long file

The next command displays the last three lines:
$ tail -3 longfile.txt
and Bourne shell

 Note that the preceding pair of blank lines are the last two lines of longfile.txt.
The tail command with the –f option is useful when you have a long running process

that is redirecting output to a file. For example, suppose that you invoke this command from
your home directory:
find . –print |xargs grep –I abc >/tmp/abc &

Invoke the following command to see the contents of the file /tmp/abc whenever it is
updated:
tail –f /tmp/abc

FILE COMPARISON COMMANDS

There are several commands for comparing text files, such as the cmp command and the
diff command.

The cmp command is a simpler version of the diff command: diff reports the differ-
ences between two files, whereas cmp only shows at what point they differ.

34 • Bash for Data Scientists

NOTE
 Both diff and cmp return an exit status of 0 if the compared files are identical, and 1 if the
files are different, so you can use both commands in a test construct within a shell script.

The comm command is useful for comparing sorted files:
comm –options first-file second-file

The command comm file-1 file-2 outputs three columns:

• column 1 = lines unique to file-1
• column 2 = lines unique to file-2
• column 3 = lines common to both

The following options allow you to suppress the output of one or more columns:

• -1 suppresses column 1
• -2 suppresses column 2
• -3 suppresses column 3
• -12 suppresses both columns 1 and 2, etc.

The comm command is useful for comparing “dictionaries” or word lists containing sorted
text files with one word per line.

THE PARTS OF A FILENAME

The basename command “strips” the path information from a file name, printing only
the file name. The construction basename $0 is the name of the currently executing script.
This functionality can be used for “usage” messages if, for example a script is called with
missing arguments:
echo ̎Usage: ̍basename $0̍ arg1 arg2 ... argn̎

The dirname command strips the basename from a filename, printing only the path
information.

NOTE
 basename and dirname can operate on any arbitrary string. The argument does not need
to refer to an existing file, or even be a filename.

The strings command displays printable strings (if any) in a binary or data file. An
example invocation is here:
strings /bin/ls

The first few lines of output from the preceding command are here:
$FreeBSD: src/bin/ls/cmp.c,v 1.12 2002/06/30 05:13:54 obrien Exp

$
@(#) Copyright (c) 1989, 1993, 1994
The Regents of the University of California. All rights

reserved.

Files and Directories • 35

$FreeBSD: src/bin/ls/ls.c,v 1.66 2002/09/21 01:28:36 wollman Exp
$

$FreeBSD: src/bin/ls/print.c,v 1.57 2002/08/29 14:29:09 keramida
Exp $

$FreeBSD: src/bin/ls/util.c,v 1.38 2005/06/03 11:05:58 dd Exp $
\\̎̎
@(#)PROGRAM:ls PROJECT:file_cmds-264.50.1
COLUMNS
1@ABCFGHLOPRSTUWabcdefghiklmnopqrstuvwx
bin/ls
Unix2003

WORKING WITH FILE PERMISSIONS

In a previous section, you used the touch command to create an empty file abc and
then saw its long listing:
-rw-r--r-- 1 owner staff 0 Nov 2 17:12 abc

Each file in Unix contains a set of permissions for three different user groups: the owner,
the group, and the world. The set of permissions are read, write, and execute, and they have
values 4, 2, and 1, respectively, in base 8 (octal). Thus, the permissions for a file in each group
can have the following values:

• 0 (none)
• 1 (execute)
• 2 (write)
• 4 (read)
• 5 (read and execute)
• 6 (read and write)
• 7 (read, write, and execute).

For example, a file whose permissions are 755 indicate:

• Owner has read/write/execute permissions
• Group has write/execute permissions
• World has write/execute permissions

You can use various options with the chmod command to change permissions for a file.

The chmod Command

The chmod command enables you to change permissions for files and directories. The
octal representation 777 corresponds to the permissions rwxrwxrwx, which enables read,
write, and execute for all three groups. The octal representation 644 corresponds to the
permissions rw-r—r—.

36 • Bash for Data Scientists

The following command makes “filename” executable for all users:
chmod +x filename

Note that the following command makes a file executable only for the owner of the file:
chmod +x filename

The following command sets the SUID bit on the “filename” permissions. (You probably
won’t need this option so it’s not discussed, but you can find details online):
chmod u+s filename
An ordinary user may execute ̎filename̎ with same privileges as

the file̍s owner.
(This does not apply to shell scripts.)
chmod 644 filename

The following command makes “filename” readable/writable to the owner and readable
to others:
chmod 444 filename

Chapter 4 discusses how to use conditional logic to check (and also modify) file permis-
sions via shell scripts.

The chown Command

The chown command enables you to change permissions for files. For example, the fol-
lowing command assigns dsmith as the owner of the files with a suffix “txt” in the current
directory:
chown dsmith *txt

The chgrp Command

The chgrp command changes the group of files and directories, as shown here:
chgrp internal *.txt

The chown and chgrp commands support recursion via the –R option.

The umask and ulimit Commands

Whenever you create a file in Unix, the environment variable umask contains the com-
plement (base 8) of the default permissions that are assigned to that file. You can see the
value of umask by typing this command at the command line, and its typical value is 0022.
If you perform the (base 8) complement of this value, the result is 755.

The ulimit command specifies the maximum size of a file that you can create on your
machine. You will either see a numeric value or the word unlimited.

WORKING WITH DIRECTORIES

A directory is a file that acts like a container that stores file names and related informa-
tion. All files, whether ordinary, special, or directory, are contained in directories.

UNIX uses a hierarchical structure for organizing files and directories.
This structure is often referred to as a directory tree. The tree has a single root node and

the slash character (/), and all other directories are contained below it. The position of any

Files and Directories • 37

file within the hierarchy is described by its path name. (which is sometimes written as path-
name in addition to pathname).

Elements of a path name are separated by a /. A path name is absolute if it is described
in relation to root, so absolute pathnames always begin with a /. These are some examples of
absolute paths:
/etc/passwd
/users/oac/ml/class
/dev/rdsk/Os5

A path name can also be relative to your current working directory. Relative path names
begin with ./ (such as ./myscript.sh)

Absolute and Relative Directories
You can navigate to your home directory with any of these commands:

cd $HOME
cd ~
cd

Note that in Windows, the cd command shows you the current directory (it does not
navigate to the home directory).

The tilde (~) always indicates home directory. If you want to go in any other user’s home
directory, then use the following command:
cd ~username

You can navigate back to the location of the directory before navigating to the current
directory with this command:
cd -

Absolute and Relative Path Names
Directories are arranged in a hierarchy with the root (/) at the top. The position of any

file within the hierarchy is described by its full path name. Elements of a path name are
separated by a slash (/).

A path name is absolute if it is described in relation to the root, so absolute path names
always begin with a /. Here are some examples of absolute paths:

• /etc/passwd
• /users/oac/ml/class
• /dev/rdsk/Os5

To determine your current directory, use the pwd command:
$ pwd

The output will be something like this:
/Users/owner/Downloads

Display the contents of a directory with the ls command:
$ ls /usr/bin

38 • Bash for Data Scientists

A partial display from the preceding command is here:
// files omitted for brevity
fg
fgrep
file
filebyproc.d
fileproviderctl
filtercalltree
find
find2perl
find2perl5.18
findrule
findrule5.18
findrule5.28
finger
fixproc
flex
flex++
fmt
fold
fontrestore
footprint
// files omitted for brevity

Creating Directories

If you specify multiple directories on the command line, mkdir creates each of the
directories. For example, the following command creates the directories docs and pub as
siblings under the current directory:
mkdir docs pub

Compare the preceding command with the following command that creates the directory
test and a subdirectory data under the current directory:
mkdir –p test/data

The -p option forces the creation of missing intermediate directories (if any).
Sometimes you need to create a directory, but its parent directory or intermediate direc-

tories might not exist. In this case, mkdir issues an error message as follows:
$mkdir /tmp/accounting/test
mkdir: Failed to make directory ̎/tmp/accounting/test̎;
No such file or directory

You can use the –p option to create intermediate directories that are specified as the par-
ent directories of the target directory:
mkdir –p $HOME/a/b/c/new-directory

Files and Directories • 39

The preceding command creates all the intermediate directories before creating the
right-most directory:

• $HOME/a
• $HOME/a/b
• $HOME/a/b/c
• $HOME/a/b/c/new-directory

Removing Directories

Use the rm command to remove non-empty directories and use the rmdir command to
remove empty directories:
rmdir dirname1

You can remove multiple empty directories at a time as follows:
rmdir dirname1 dirname2 dirname3

The preceding command removes the directories dirname1, dirname2, and
dirname2 if they are empty. The rmdir command produces no output if it is successful.

Since this directory is empty, you can remove it with this command:
rmdir test

However, if there are files in the test directory, you can use either this command
rm –r test

or you can first remove the files and then remove the directory:
cd test
rm –rf *
cd ../
rmdir test

Changing Directories

You can use the cd command to change to any directory by specifying a valid absolute or
relative path. The syntax is as follows:
cd dirname

The value of dirname is the name of the target directory. For example, the command
cd /usr/local/bin

will change to the directory /usr/local/bin.
You can change directories using an absolute path (as in the previous example) or via a

relative path. For example, you can switch from this directory to the directory /usr/home/
jsmith via the following relative path:
cd ../../home/jsmith

The file system is a hierarchical tree-like system; hence, you can navigate to a parent
directory via the double dot (“../”) syntax. You can also navigate to the parent directory of
the parent directory of the current directory (and even higher if there are additional ancestor
directories), as shown in the preceding example.

40 • Bash for Data Scientists

Renaming Directories

The mv (move) command can also be used to rename a directory. The syntax is as follows:
mv olddir newdir

USING QUOTE CHARACTERS

There are three types of quotes characters: single quotes (‘), double quotes(“), and back
quotes (`); all of these quotes occur in matching pairs (‘’, “”, or ``), and they are not mixed
(e.g., `abc” causes an error).

Single quotes prevent the shell from “globbing” the argument or substituting the argu-
ment with the value of a shell variable. Characters within a pair of single quotes are inter-
preted literally, which means that their metacharacter meanings (if any) are ignored. Simi-
larly, the shell does not replace references to shell or environment variables with the value
of the referenced variable.

Characters within a pair of double quotes are interpreted literally: their metacharacter
meanings (if any) are ignored. However, the shell does replace references to shell or environ-
ment variables with the value of the referenced variable.

Text within a pair of back quotes is interpreted as a command, which the shell executes
before executing the rest of the command line. The output of the command replaces the
original back-quoted text.

In addition, a metacharacter is treated literally whenever it is preceded by the backslash
(\) character.

The following examples illustrate the differences when you use different quote charac-
ters.
echo $PATH

The echo command will print the value of the PATH shell variable. However, by enclos-
ing the argument within single quotes, you obtain the desired result:
echo ̍$PATH̍

Double quotes have a similar effect. They prevent the shell from globbing a filename, but
permit the expansion of shell variables.

Back quotes allow you to execute a command and use its output as an argument of
another command. For example, the following command displays the number of files in a
user’s home directory:
echo My home directory contains ̍ls ~ | wc -l̍ files.

The command works by first executing the command contained within back quotes:
ls ~ | wc -l

This command displays the number of files in the user’s directory. Since the command
is enclosed in back quotes, its output replaces the original back quotes text, as shown here:
echo My home directory contains 22 files.

When executed, this command prints the output:
My home directory contains 22 files.

Files and Directories • 41

STREAMS AND REDIRECTION COMMANDS

The numbers 0,1, and 2 have a special significance when 0 is preceded by the “<” symbol,
and when 1 and 2 are followed by the “>” symbol.

In this situation, 0 refers to standard input, 1 refers to standard output, and 2 refers to
standard error. The patterns 1>file1 and 2>file2 enable you to redirect output from an
executable file.

In addition, the “directory” /dev/null refers to the null bit bucket, and any-
thing that you redirect to this directory is essentially discarded. This construct is useful when
you want to redirect error message that can be safely ignored. Here are some examples:
find . -print |grep ̎\.py$̎ 1>std1 2>std2

In addition, you can redirect standard error to standard output and then redirect the lat-
ter to a single file, as shown here:
find . -print |grep ̎\.py$̎ 2>&1 1>both.txt

You can redirect the output of Unix commands in various ways, as shown in the following
section.

METACHARACTERS AND CHARACTER CLASSES

Unix supports metacharacters as well as regular expressions. If you have worked with a
scripting language such as Perl, or languages such as JavaScript and Java, you have undoubt-
edly encountered metacharacters.

Unix supports the following list of metacharacters:

• ? (matches 0 or 1): a? matches the string a (but not ab)
• * (matches 0 or more): a* matches the string aaa (but not baa)
• + (matches 1 or more): a+ matches aaa (but not baa)
• ^ (beginning of line): ^[a] matches the string abc (but not bc)
• $ (end of line): [c]$ matches the string abc (but not cab)
• . (a single dot): matches any character (except newline)

The preceding metacharacters can be used with Unix commands such as ls and sed, in
shell scripts, and in editors such as vi (with subtle differences).

Digits and Characters
The following code snippets illustrate how to specify sequences of digits and sequences

of character strings:

• [0-9] matches a single digit
• [0-9][0-9] matches 2 consecutive digits
• ^[0-9]+$ matches a string consisting solely of digits

You can define similar patterns using uppercase or lowercase letters:

• [a-z] matches a single lowercase letter
• [A-Z] matches a single uppercase letter

42 • Bash for Data Scientists

• [a-z][A-Z] matches a single lowercase letter that is followed by 1 uppercase letter
• [a-zA-Z] matches any upper or lowercase letter

Working with “^” and “\” and “!”
The purpose of the “^” character depends on its context in a regular expression. For

example, the following expression matches a text string that starts with a digit:
^[0-9]

However, the following expression matches a text string that does not start with a digit:
^[^0-9]

Thus, the “^” character inside a pair of matching square brackets ([]) negates the expres-
sion immediately to its right that is also inside the square brackets.

The backslash (\) allows you to “escape” the meaning of a metacharacter. Just to clarify a
bit further: a dot “.” matches a single character, whereas the sequence “\.” matches the dot
“.” character. Other examples are here:

• \.H.* matches the string .Hello
• H.* matches the string Hello
• H.*\. matches the string Hello.
• .ell. matches the string Hello
• .* matches the string Hello
• \..* matches the string .Hello

The “!” means negation, as shown here:
[! abc ...] Matches any character other than those specified
[!a-z] Matches any character that is not in the specified range

FILENAMES AND METACHARACTERS

Before the shell passes arguments to an external command or interprets a built-in com-
mand, it scans the command line for certain special characters and performs an operation
known as filename “globbing.” You already saw some metacharacters in an early section, and
this section shows you how to use them with the ls command.
ls -l file1 file2 file3 file04

However, the following command reports the same information and is much quicker to
type:
ls -l file*

Suppose you issued the following command:
ls -l file?

The ? filename metacharacter can match only a single character. Therefore, file04
would not appear in the output of the command. Similarly, the command displays only file2
and file3:
$ ls -l file[2-3]

Files and Directories • 43

The files file2 and file3 are the only files whose names match the specified pattern,
which requires that the last character of the filename be in the range 2-3.

You can use more than one metacharacter in a single argument. For example, consider
the following command:
ls -l file??

Most commands let you specify multiple arguments. If no files match a given argument,
the command ignores the argument. Here’s another command that reports all four files:
ls -l file0* file[1-3]

Suppose that a command has one or more arguments that include one or more metacha-
racters. If none of the arguments matches any filenames, the shell passes the arguments to
the program with the metacharacters intact. When the program expects a valid filename, an
unexpected error may result.

Another metacharacter lets you easily refer to your home directory. For example, the fol-
lowing command lists the files in the user’s home directory:
ls ~

SUMMARY

This chapter gave you an introduction to the Unix operating system, along with some
Unix commands. You learned how to use the cp command for copying files, the rm com-
mand for removing files, and the mv command for moving files.

Next, you learned how to use the wc command for counting the number of lines in a text
file, followed by an assortment of Unix commands such as cat, more, head, and tail. In
addition, you saw how to create and rename a directory, along with how to work with relative
paths.

CHAPTER 3
USEFUL COMMANDS

This chapter discusses various Bash commands that you can use when working with
datasets, such as splitting, sorting, and comparing datasets. You see examples of
finding files in a directory and then searching for strings in those files using the Bash

pipe command that redirects the output of one Bash command as the input of a second
Bash command.

The first part of this chapter shows you how to merge, fold, and split datasets. This sec-
tion also shows you how to sort files and find unique lines in files using the sort and uniq
commands, respectively. The last portion explains how to compare text files and binary files.

The second section introduces you to the find command, which is a powerful command
that supports many options. For example, you can search for files in the current directory
or in subdirectories; you can search for files based on their creation date and last modifica-
tion date. One convenient combination is to “pipe” the output of the find command to the
xargs command to search files for a particular pattern.

Next you will see how to use the tr command, which is an executable that handles many
commonly used text transformations, such as capitalization or removal of whitespace. In
addition, you will see a use case for the tr command to remove the ^M control character
from a dataset.

The third section contains compression-related commands, such as cpio, tar, and
bash commands for managing files that are already compressed (such as zdiff, zcmp,
and zmore).

The fourth section introduces you to the IFS option, which is useful for extracting data
from a range of columns in a dataset. You will also see how to use the xargs command to
“line up” the columns of a dataset so that all rows have the same number of columns.

The fifth section shows you how to create shell scripts that contain Bash commands that
are executed sequentially.

46 • Bash for Data Scientists

THE join COMMAND

The join command allows you to merge two files in a meaningful fashion, which essen-
tially creates a simple version of a relational database. The join command operates on
exactly two files, but pastes together only those lines with a common tagged field (usually a
numerical label), and writes the result to stdout.

The files to be joined should be sorted according to the tagged field for the matchups
to work properly. Listing 3.1 and Listing 3.2 display the contents of 1.data and 2.data,
respectively.

Listing 3.1: 1.data

100 Shoes
200 Laces
300 Socks

Listing 3.2: 2.data

100 $40.00
200 $1.00
300 $2.00

Now launch the following command:
join 1.data 2.data
File: 1.data 2.data
 100 Shoes $40.00
 200 Laces $1.00
 300 Socks $2.00

THE fold COMMAND

As you know from Chapter 1, the fold command enables you to display a set of lines
with a fixed column width, and this section contains a few more examples. Note that this
command does not take into account spaces between words: the output is displayed in col-
umns that resemble a “newspaper” style.

The following command displays a set of lines with ten characters in each line:
x=̎aa bb cc d e f g h i j kk ll mm nn̎
echo $x |fold -10

The output of the preceding code snippet is here:
aa bb cc d
 e f g h i
 j kk ll m
m nn

As another example, consider the following code snippet:
x=̎The quick brown fox jumps over the fat lazy dog. ̎
echo $x |fold -10

Useful Commands • 47

The output of the preceding code snippet is here:
The quick
brown fox
jumps over
 the fat l
azy dog.

THE split COMMAND

The split command is useful when you want to create a set of subfiles of a given file.
By default, the subfiles are named xaa, xab, …, xaz, xba, xbb, …, xbz, … xza, xzb,
… , xzz. Thus, the split command creates a maximum of 676 files (=26x26). The default
size for each of these files is 1,000 lines.

The following snippet illustrates how to invoke the split command to divide the file
abc.txt into files with 500 lines each:
split -l 500 one-dl-course-outline.txt

For example, if the file abc.txt contains between 501 and 1,000 lines, then the preced-
ing command will create the following pair of files:
xaa
xab

You can also specify a file prefix for the created files, as shown here:
split -l 500 one-dl-course-outline.txt shorter

The preceding command creates the following pair of files:
shorterxaa
shorterxab

THE sort COMMAND

The sort command sorts the lines in a text file. For example, suppose the text file
test2.txt contains the following lines:
aa
cc
bb

The following simple example sorts the lines in test2.txt:
cat test2.txt |sort

The output of the preceding code snippet is here:
aa
bb
cc

48 • Bash for Data Scientists

The sort command arranges lines of text alphabetically by default. Some options for the
sort command are here:
Option Description
-n Numeric sort (ex: 10 sorts after 2), ignore blanks and

tabs
-r Reverse the order of sort
-f Sort upper- and lowercase together
+x Ignore first x fields when sorting

The sort –r command sorts the list of files in reverse chronological order. The sort
–n command sorts on numeric data and sort –k command sorts on a field. For example,
the following command displays the long listing of the files in a directory that are sorted
increasing order based on their file size:
ls –l | sort –k 5

The output is here:
total 120
-rw-r--r-- 1 oswaldcampesato staff 12 Aug 15 13:55 test.txt
-rw-r--r-- 1 oswaldcampesato staff 29 Aug 15 13:55 data2.txt
-rw-r--r-- 1 oswaldcampesato staff 35 Aug 15 13:55 names.txt
-rwxr-xr-x 1 oswaldcampesato staff 40 Aug 15 13:55

CommandSubst.sh
-rw-r--r-- 1 oswaldcampesato staff 45 Aug 15 13:55 abc.txt
-rw-r--r-- 1 oswaldcampesato staff 64 Aug 15 13:55 columns.

txt
-rw-r--r-- 1 oswaldcampesato staff 77 Aug 15 13:55 columns2.

txt
-rw-r--r-- 1 oswaldcampesato staff 89 Aug 15 13:55 columns3.

txt
-rw-r--r-- 1 oswaldcampesato staff 89 Aug 15 13:55 columns4.

txt
-rw-r--r-- 1 oswaldcampesato staff 125 Aug 15 13:55 abc2.txt
-rw-r--r-- 1 oswaldcampesato staff 407 Aug 15 13:55 longfile2.

txt
-rw-r--r-- 1 oswaldcampesato staff 408 Aug 15 13:55 longfile.

txt
-rw-r--r-- 1 oswaldcampesato staff 1638 Aug 15 13:55 good-

info.txt
-rw-r--r-- 1 oswaldcampesato staff 2101 Aug 15 13:55 input-

info.txt
-rw-r--r-- 1 oswaldcampesato staff 2267 Aug 15 13:55

ReservedWords.txt

Useful Commands • 49

Notice that the file listing is sorted based on the fifth column, which displays the file size
of each file. In addition to sorting lists of files, you can use the sort command to sort the
contents of a file. For example, suppose that the file abc2.txt contains the following:
This is line one
This is line two
This is line one
This is line three
Fourth line
Fifth line
The sixth line
The seventh line

The following command sorts the contents of abc2.txt:
sort abc2.txt

You can sort the contents of multiple files and redirect the output to another file:
sort outfile.txt output.txt > sortedfile.txt

An example of combining the commands sort and tail is shown here:
cat abc2.txt |sort |tail -5

The preceding command sorts the contents of the file abc2.txt and then displays the
final five lines:
The sixth line
This is line one
This is line one
This is line three
This is line two

As you can see, the preceding output contains two duplicate lines. The next section shows
you how to use the uniq command to remove duplicate lines.

THE uniq COMMAND

The uniq command prints only the unique lines in a sorted text file and omits duplicates.
As a simple example, suppose the file test3.txt contains the following lines:
abc
def
abc
abc

The following command displays the unique lines:
cat test3.txt |sort | uniq

The output of the preceding code snippet is here:
abc
def

50 • Bash for Data Scientists

HOW TO COMPARE FILES

The diff command enables you to compare two text files and the cmp command com-
pares two binary files. For example, suppose that the file output.txt contains these two
lines:
Hello
World

Suppose that the file outfile.txt contains these two lines:
goodbye
world

Then the output of this command
diff output.txt outfile.txt

is shown here:
1,2c1,2
< Hello
< World

> goodbye
> world

Note that the diff command performs a case-sensitive text-based comparison, which
means that the strings Hello and hello are different.

THE od COMMAND

The od command displays an octal dump of a file, which can be very helpful when you
want to see embedded control characters (such as tab characters) that are not normally vis-
ible on the screen. This command contains many switches that you can see when you type
man od.

As a simple example, suppose that the file abc.txt contains one line of text with the
following three letters, separated by a tab character (these tab characters are not visible
here) between each pair of letters:
a b c

The following command displays the tab and newline characters in the file abc.txt:
cat control1.txt |od -tc

The preceding command generates the following output:
0000000 a \t b \t c \n
0000006

In the special case of tabs, another way to see them is to use the following cat command:
cat –t abc.txt

Useful Commands • 51

The output from the preceding command is here:
a^Ib^Ic

In Chapter 1, you learned that the echo command prints a newline character whereas
the printf statement does not print a newline character (unless it is explicitly included).
You can verify this fact for yourself with this code snippet:
echo abcde | od -c
0000000 a b c d e \n
0000006
printf abcde | od -c
0000000 a b c d e
0000005

THE tr COMMAND

The tr command is a highly versatile command that supports many operations. For
example, the tr command enables you to remove extraneous whitespaces in datasets, insert
blank lines, print words on separate lines, and translate characters from one character set to
another character set (i.e., from uppercase to lowercase, and vice versa). The following com-
mand capitalizes the letters in the variable x:
x=̎abc def ghi̎
echo $x | tr [a-z] [A-Z]
ABC DEF GHI

Another way to convert from lowercase to uppercase:
cat columns4.txt | tr ̍[:lower:]̍ ̍[:upper:]̍

In addition to uppercase and lowercase, you can use the following POSIX characters
classes (whose purpose is self-explanatory) in the tr command:

• alnum: alphanumeric characters
• alpha: alphabetic characters
• cntrl: control (non-printing) characters
• digit: numeric characters
• graph: graphic characters
• lower: lower-case alphabetic characters
• print: printable characters
• punct: punctuation characters
• space: whitespace characters
• upper: upper-case characters
• xdigit: hexadecimal characters 0-9 A-F

52 • Bash for Data Scientists

The following example removes white spaces in the variable x (initialized above):
echo $x |tr -ds ̎ ̎ ̎̎
abcdefghi

The following command prints each word on a separate line:
echo ̎a b c̎ | tr -s ̎ ̎ ̎\012̎
a
b
c

The following command replaces commas “,” with a linefeed:
echo ̎a,b,c̎ | tr -s ̎,̎ ̎\n̎
a
b
c

The following example replaces the linefeed in each line with a blank space, which pro-
duces a single line of output:
cat test4.txt |tr ̍\n̍ ̍ ̍

The output of the preceding command is here:
abc def abc abc

The following example removes the linefeed character at the end of each line of text in a
text file. As an illustration, Listing 3.3 displays the contents of abc2.txt.

Listing 3.3: abc2.txt

This is line one
This is line two
This is line three
Fourth line
Fifth line
The sixth line
The seventh line

The following code snippet removes the linefeed character in the text file abc2.txt:
tr -d ̍\n̍ < abc2.txt

The output of the preceding tr code snippet is here:
This is line oneThis is line twoThis is line threeFourth

lineFifth lineThe sixth lineThe seventh line

As you can see, the output is missing a blank space between consecutive lines, which we
can insert with this command:
tr -s ̍\n̍ ̍ ̍ < abc2.txt

The output of the modified version of the tr code snippet is here:
This is line one This is line two This is line three Fourth line

Fifth line The sixth line The seventh line

Useful Commands • 53

You can replace the linefeed character with a period “.” with this version of the tr com-
mand:
tr -s ̍\n̍ ̍.̍ < abc2.txt

The output of the preceding version of the tr code snippet is here:
This is line one.This is line two.This is line three.Fourth

line.Fifth line.The sixth line.The seventh line.

The tr command with the –s option works on a one-for-one basis, which means that the
sequence ‘.’ has the same effect as the sequence ‘. ‘. As a sort of “preview,” we can add a blank
space after each period ‘.’ by combining the tr command with the sed command (discussed
in Chapter 5), as shown here:
tr -s ̍\n̍ ̍.̍ < abc2.txt | sed ̍s/\./\. /g̍

The output of the preceding command is here:
This is line one. This is line two. This is line three. Fourth

line. Fifth line. The sixth line. The seventh line.

Think of the preceding sed snippet as follows: “whenever a ‘dot’ is encountered, replace
it with a ‘dot’ followed by a space, and do this for every such occurrence.”

You can also combine multiple commands using the Bash pipe symbol. For example, the
following command sorts the contents of Listing 3.3, retrieves the “bottom” five lines of text,
retrieves the lines of text that are unique, and then converts the text to uppercase letters.
cat abc2.txt |sort |tail -5 | uniq | tr [a-z] [A-Z]

Here is the output from the preceding command:
THE SEVENTH LINE
THE SIXTH LINE
THIS IS LINE ONE
THIS IS LINE THREE
THIS IS LINE TWO

You can also convert the first letter of a word to uppercase (or to lowercase) with the tr
command, as shown here:
x=̎pizza̎
x=̍echo ${x:0:1} | tr ̍[a-z]̍ ̍[A-Z]̍̍${x:1}
echo $x

A slightly longer way (one extra line of code) to convert the first letter to uppercase is
shown here:
x=̎pizza̎
first=̍echo $x|cut -c1|tr [a-z] [A-Z]̍
second=̍echo $x|cut -c2-̍
echo $first$second

However, both of the preceding code blocks are somewhat obscure (at least for novices),
so it’s probably better to use other tools, such as data frames in Pandas or RStudio.

54 • Bash for Data Scientists

As you can see, it’s possible to combine multiple commands using the Bash pipe symbol
“|” to produce the desired output.

A SIMPLE USE CASE

The code sample in this section shows you how to use the tr command to replace the
control character ^M with a linefeed. Listing 3.4 displays the content of the dataset con-
trolm.csv, which contains embedded control characters.

Listing 3.4 controlm.csv

IDN,TEST,WEEK_MINUS1,WEEK0,WEEK1,WEEK2,WEEK3,WEEK4,
WEEK10,WEEK12,WEEK14,WEEK15,WEEK17,WEEK18,WEEK19,
WEEK21^M1,BASO,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4^M1,BASOAB,,
0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05^M1,EOS,,6.1,,6.2,,7.5,,
6.6,,,7.0,,,6.2^M1,EOSAB,,0.22,,0.30,,0.27,,0.25,,,0.22,,,
0.21^M1,HCT,,35.0,,34.2,,34.6,,34.3,,,36.2,,,34.1^M1,HGB,,
11.8,,11.1,,11.6,,11.5,,,12.1,,,11.3^M1,LYM,,36.7

Listing 3.5 displays the content of the file controlm.sh that illustrates how to remove
the control characters from controlm.csv.

Listing 3.5 controlm.sh

inputfile=̎controlm.csv̎
removectrlmfile=̎removectrlmfile̎
tr -s ̍\r̍ ̍\n̍ < $inputfile > $removectrlmfile

For convenience, Listing 3.5 contains a variable for the input file and one for the output
file, but you can simplify the tr command in Listing 3.5 by using hard-coded values for the
filenames.

The output from launching the shell script in Listing 3.5 is here:
IDN,TEST,WEEK_MINUS1,WEEK0,WEEK1,WEEK2,WEEK3,WEEK4,WEEK10,WEEK12,

WEEK14,WEEK15,WEEK17,WEEK18,WEEK19,WEEK21
1,BASO,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4
1,BASOAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05
1,EOS,,6.1,,6.2,,7.5,,6.6,,,7.0,,,6.2
1,EOSAB,,0.22,,0.30,,0.27,,0.25,,,0.22,,,0.21

As you can see, the current task is easily solved via the tr command. Note that additional
data cleaning is required to handle the empty fields in the output.

You can also replace the current delimiter “,” with a different delimiter, such as a “|” sym-
bol with the following command:
cat removectrlmfile |tr -s ̍,̍ ̍|̍ > pipedfile

The resulting output is shown here:
IDN|TEST|WEEK_MINUS1|WEEK0|WEEK1|WEEK2|WEEK3|WEEK4|WEEK10|

WEEK12|WEEK14|WEEK15|WEEK17|WEEK18|WEEK19|WEEK21

Useful Commands • 55

1|BASO|1.4|0.8|1.2|1.1|2.2|1.4
1|BASOAB|0.05|0.04|0.05|0.04|0.07|0.05
1|EOS|6.1|6.2|7.5|6.6|7.0|6.2
1|EOSAB|0.22|0.30|0.27|0.25|0.22|0.21

If you have a dataset with multiple delimiters in arbitrary order in multiple files, you can
replace those delimiters with a single delimiter via the sed command, which is discussed in
Chapter 5.

THE find COMMAND

The find command supports many options, including one for printing (displaying) the
files returned by the find command, and another one for removing the files returned by the
find command.

In addition, you can specify logical operators such as AND as well as OR in a find com-
mand. You can also specify switches to find the files (if any) that were created, accessed, or
modified before (or after) a specific date.

Several examples are here:
find . –print displays all the files (including subdirectories)
find . –print |grep ̎abc̎ displays all the files whose names

contain the string abc
find . –print |grep ̎sh$̎ displays all the files whose names have

the suffix sh
find . –depth 2 –print displays all files of depth at most 2

(including subdirectories)

You can also specify access times pertaining to files. For example, atime, ctime,
and mtime refer to the access time, creation time, and modification time of a file,
respectively.

As another example, the following command finds all the files modified in less than 2 days
and prints the record count of each:
$ find . –mtime -2 –exec wc –l {} ;

You can remove a set of files with the find command. For example, you can remove all
the files in the current directory tree that have the suffix “m” as follows:
find . –name ̎*m$̎ –print –exec rm {}

NOTE
 Be careful when you remove files: run the preceding command without exec rm {} to
review the list of files before deleting them.

The wget command downloads any file from the Internet, an example of which is shown
here:
wget https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-

pages/data/iris.csv

56 • Bash for Data Scientists

Use the find command to find files and directories. Moreover, the —exec enables you to
execute other Linux commands on the list of files or directories that are retrieved by the find
command. Here is a simple example:
find . -name ̎*.txt̎ -type f

The next example shows you how to copy a set of files from the find command using the
—exec option, followed by example that uses the xargs command:
mkdir /tmp/abc
find . -name ̎*.txt̎ -type f --exec cp /tmp/abc
find . -name ̎*.txt̎ -type f |xargs cp cp /tmp/abc

THE tee COMMAND

The tee command enables you to display output to the screen and also redirect the out-
put to a file at the same time. The –a option will append subsequent output to the named
file instead of overwriting the file. Some examples are here:
find . –print |xargs grep ̎sh$̎ | tee /tmp/blue

The preceding code snippet redirects the list of all files in the current directory (and
those in any subdirectories) to the xargs command, which then searches and prints all the
lines that end with the string sh. The result is displayed on the screen and also redirected to
the file /tmp/blue.
find . –print |xargs grep ̎^abc$̎ | tee –a /tmp/blue

The preceding code snippet also redirects the list of all files in the current directory (and
those in any subdirectories) to the xargs command, which then searches and prints all
the lines that contain only the string abc. The result is displayed on the screen and is also
appended to the file /tmp/blue.

FILE COMPRESSION COMMANDS

Bash supports various commands for compressing sets of files, including the tar, cpio,
gzip, and gunzip commands. The following subsections contain simple examples of how
to use these commands.

The tar command

The tar command enables you to compress a set of files in a directory, uncompress a
tar file, and display the contents of a tar file. The “c” option specifies “create,” the “f”
option specifies “file,” and the “v” option specifies “verbose.”

For example, the following command creates a compressed file called testing.
tar and displays the files that are included in testing.tar during the creation of
this file:
tar cvf testing.tar *.txt

Useful Commands • 57

The compressed file testing.tar contains the files with the suffix txt in the current
directory, and you will see the following output:
a apple-care.txt
a checkin-commands.txt
a iphonemeetup.txt
a kyrgyzstan.txt
a outfile.txt
a output.txt
a ssl-instructions.txt

The following command extracts the files that are in the tar file testing.tar:
tar xvf testing.tar

The following command displays the contents of a tar file without uncompressing its
contents:
tar tvf testing.tar

The preceding command displays the same output as the ls –l command that displays
a long listing.

The “z” option uses gzip compression. For example, the following command creates a
compressed file called testing.tar.gz:
tar czvf testing.tar.gz *.txt

The cpio Command

The cpio command provides further compression after you create a tar file. For exam-
ple, the following command creates the file archive.cpio:
ls file1 file2 file3 | cpio -ov > archive.cpio

The “-o” option specifies an output file and the “-v” option specifies verbose, which
means that the files are displayed as they are placed in the archive file. The “-i” option speci-
fies input, and the “-d” option specifies “display.”

You can combine other commands (such as the find command) with the cpio command,
an example of which is here:
find . –name ̎.sh̎ | cpio -ov > shell-scripts.cpio

You can display the contents of the file archive.cpio with the following command:
cpio -id < archive.cpio

The output of the preceding command is here:
file1
file2
file3
1 block

The gzip and gunzip Commands

The gzip command creates a compressed file. For example, the following command
creates the compressed file filename.gz:
gzip filename

58 • Bash for Data Scientists

Extract the contents of the compressed file filename.gz with the gunzip command:
gunzip filename.gz

You can create gzipped tarballs (i.e., an archive file that is compressed via gzip technol-
ogy) using the following methods:

Method #1:
tar -czvf archive.tar.gz [FILES]

Method #2:
tar -cavf archive.tar.gz [FILES]

The -a option specifies that the compression format should automatically be detected
from the extension.

The bunzip2 Command

The bunzip2 utility uses a compression technique that is similar to gunzip2, except
that bunzip2 typically produces smaller (more compressed) files than gzip. It comes with
all Linux distributions. To compress with bzip2, use the following:
bzip2 filename
ls
filename.bz2

The zip Command

The zip command is another utility for creating zip files. The first argument is the name
of the zip file, followed by one or more filenames.

For example, if you have the files called file1, file2, and file3, then the following
command creates the file file.zip that contains these three files:
zip file.zip file1 file2 file3

This command creates a zip file that contains all the txt files in the current directory:
zip sample2.zip *.txt

Alternatively, you can use the Java jar command:
jar cvf sample3.zip *.txt

The unzip command will unzip the contents of a zip file, as shown here:
unzip sample1.zip

Alternatively, you can use the Java jar command to unzip a zip file:
jar xvf sample3.zip

The zip command has useful options (such as –x for excluding files), and you can find
more information in online tutorials.

COMMANDS FOR zip FILES AND bz FILES

There are various commands for handling zip files, including zdiff, zcmp, zmore,
zless, zcat, zipgrep, zipsplit, zipinfo, zgrep, zfgrep, and zegrep.

Useful Commands • 59

Remove the initial z or zip from these commands to obtain the corresponding “regular”
Bash command.

For example, the zcat command is the counterpart to the cat command, so you can
display the contents of a file in a .gz file without manually extracting that file and also with-
out modifying the contents of the .gz file. Here is an example of a file called test.gz that
contains two lines of text:
zcat test.gz
The output from the preceding command is here:

A test file
file test contains a line “A test file”
Another set of utilities for bz files includes bzcat, bzcmp, bzdiff, bzegrep,

bzfgrep, bzgrep, bzless, and bzmore. Read the online documentation to find
out more about these commands.

INTERNAL FIELD SEPARATOR (IFS)

The Internal Field Separator is an important concept in shell scripting that is useful while
manipulating text data. An Internal Field Separator (IFS) is an environment variable that
stores delimiting characters. The IFS is the default delimiter string used by a running shell
environment.

Consider the case where we need to iterate through words in a string or comma sepa-
rated values (CSV). In the first case, we will use IFS =̎ ̎ and in the second we will use
IFS=̎,̎. Suppose that the shell variable data is defined as follows:
data=̎name,sex,rollno,location̎

To read each of the data elements into a variable, we can use IFS, as shown here:
oldIFS=$IFS
IFS=, now,
for item in $data;
do
 echo Item: $item
done
IFS=$oldIFS

The next section contains a code sample that relies on the value of IFS to extract data
correctly from a dataset.

DATA FROM A RANGE OF COLUMNS IN A DATASET

Listing 3.6 displays the contents of the dataset datacolumns1.txt and Listing 3.7
displays the contents of the shell script datacolumns1.sh that illustrates how to extract
data from a range of columns from the dataset in Listing 3.6.

60 • Bash for Data Scientists

Listing 3.6 datacolumns1.txt

#23456789012345678901234567890
 1000 Jane Edwards
 2000 Tom Smith
 3000 Dave Del Ray

Listing 3.7 datacolumns1.sh

empid: 03-09
fname: 11-20
lname: 21-30
IFS=̍̍
inputfile=̎datacolumns1.txt̎

while read line
do
 pound=”`echo $line |grep ̍^# `”

 if [x̎$pound̎ == x̎̎]
 then
 echo ̎line: $line̎
 empid=`echo ̎$line” |cut -c3-9`
 echo ̎empid: $empid̎

 fname=`echo ̎$line” |cut -c11-19`
 echo ̎fname: $fname̎

 lname=`echo ̎$line” |cut -c21-29`
 echo ̎lname: $lname̎
 echo ̎--------------̎
 fi
done < $inputfile

Listing 3.7 sets the value of IFS to an empty string, which is required for this shell script
to work correctly (try running this script without setting IFS and see what happens). The
body of this script contains a loop that reads each line from the input file called datacol-
umns1.txt and sets the pound variable equal to “” if a line does not start with the “#”
character OR sets the pound variable equal to the entire line if it does start with the “#”
character. This is a simple technique for “filtering” lines based on their initial character.

The if statement executes for lines that do not start with a “#” character, and the vari-
ables empid, fname, and lname are initialized to the characters in columns 3 through 9,
then 11 through 19, and then 21 through 29, respectively. The values of those three variables
are printed each time they are initialized. As you can see, these variables are initialized by a
combination of the echo command and the cut command, and the value of IFS is required

Useful Commands • 61

to ensure that the echo command does not remove blank spaces. The output from Listing
3.7 is as follows:
line: 1000 Jane Edwards
empid: 1000
fname: Jane
lname: Edwards

line: 2000 Tom Smith
empid: 2000
fname: Tom
lname: Smith

line: 3000 Dave Del Ray
empid: 3000
fname: Dave
lname: Del Ray

WORKING WITH UNEVEN ROWS IN DATASETS

Listing 3.8 displays the content of the dataset uneven.txt that contains rows
with a different number of columns. Listing 3.9 displays the content of the Bash script
uneven.sh that illustrates how to generate a dataset whose rows have the same num-
ber of columns.

Listing 3.8: uneven.txt

abc1 abc2 abc3 abc4
abc5 abc6
abc1 abc2 abc3 abc4
abc5 abc6

Listing 3.9: uneven.sh

inputfile=̎uneven.txt̎
outputfile=̎even2.txt̎

==> four fields per line

#method #1: four fields per line
cat $inputfile | xargs -n 4 >$outputfile

#method #2: two equal rows
#xargs -L 2 <$inputfile > $outputfile

62 • Bash for Data Scientists

echo ̎input file:̎
cat $inputfile

echo ̎output file:̎
cat $outputfile

Listing 3.9 contains two techniques for realigning the input file so that the output appears
with four columns in each row. Both techniques involve the xargs command (which is an
interesting use of the xargs command). Launch the code in Listing 3.9 and you will see the
following output:
abc1 abc2 abc3 abc4
abc5 abc6 abc1 abc2
abc3 abc4 abc5 abc6

THE alias COMMAND

The alias command enables you to define shortcut commands, as shown here:
alias lt=̍ls -lt̍
alias ltr=̍ls -ltr̍
alias ltr1=̍ls -ltr1̍
alias ltm=̍ls -lt|more̍
alias ltrm=̍ls -ltr|more̍
alias latr=̍ls -latr̍
alias ltr8=̍ls -ltr|tail -8̍
alias ltd=̍ls -lt|grep ̎^d̎̍
alias ltdr=̍ls -ltr|grep ̎^d̎̍
alias mtd=̍ls -lt|grep ̎^d̎̍
alias ltdm=̍ls -lt|grep ̎^d̎|more̍

The preceding list of aliases is just a sample of the type of aliases that you can define in
order to execute custom commands from the command line.

SUMMARY

This chapter showed you examples of how to use some useful and versatile Bash com-
mands. First, you learned about the Bash commands join, fold, split, sort, and
uniq. Next, you learned about the find command and xargs command. You also learned
about various ways to use the tr command, which is part of the “use case” in this chapter.

Then you saw some compression-related commands, such as cpio and tar, which help
you create new compressed files and also help you examine the contents of compressed files.
In addition, you learned about extracting column ranges of data, as well as the usefulness of
the IFS option.

CHAPTER 4
CONDITIONAL LOGIC AND LOOPS

This chapter introduces you to arrays, user input, relational and string operators, con-
ditional logic, and various types of loops in Bash. In addition, various code samples
illustrate the Bash features that are introduced in the chapter.

The first part of this chapter introduces arithmetic operations and operators, as well as
working with arrays and with variables. You will also learn how to work with strings in Bash.

The second part of this chapter explains how to prompt users for input, along with opera-
tors to test for variables, files, and directories. This section introduces you to conditional logic
with if/elif statements.

The third section discusses the case/esac statement, arithmetic operators and com-
parisons, and how to work with strings in shell scripts. The fourth section introduces for
loops, while loops, and until loops. You will also learn how user-defined functions are
created, and how to create menus of options.

ARITHMETIC OPERATIONS AND OPERATORS

Arithmetic in POSIX shells is performed with $ and double parentheses, as shown here:
echo ̎$(($num1+$num2))̎

You can use command substitution to assign the result to a variable:
num1=3
num2=5
x=̍echo ̎$(($num1+$num2))̎̍

Another option is to use the expr command, as shown here:
expr $num1 + $num2

The expr command supports arithmetic operations, as shown in the following example
that adds two numbers:

64 • Bash for Data Scientists

#!/bin/sh
sum=`expr 2 + 2`
echo ̎The sum: $sum̎

The preceding code block generates the following result:
The sum: 4
Spaces are required between operators and expressions (so 2+2 is incorrect), and expres-

sions must be inside back tick characters (also called “inverted commas”).
The Bash shell also supports the arithmetic operations addition, subtraction, multiplica-

tion, and division via the operators +, -, *, and /, respectively. The following example illus-
trates these operations.
x=15
y=3

sum=`expr $x + $y`
diff=`expr $x - $y`
prod=`expr $x * $y`
div=`expr $x / $y`

echo ̎sum = $sum̎
echo ̎difference = $diff̎
echo ̎product = $prod̎
echo ̎quotient = $div̎

Other operators include modulus (%), equality (==), and inequality (!=). Here are some
examples (assume that x and y have numeric values):

• ̍expr $x % $y̍ equals 0.
• [$x == $y] returns false.
• [$x != $y] returns true.

Note the required spaces in the preceding expressions. All arithmetic calculations are
done using long integers. One other point to keep in mind: in scripting, $(()) avoids a fork/
execute that occurs when you use the expr command.

WORKING WITH ARRAYS

Arrays are available in many programming languages, and they are also available in Bash.
Note that a one-dimensional array is known as a vector in mathematics, and a two-dimen-
sional array is called a matrix; however, virtually all online code samples use the term “array”
in shell scripts. The syntax in Bash is different enough from other programming languages
that it’s worthwhile to use several examples to explore its behavior.

Listing 4.1 displays the content of Array1.sh that illustrates how to define an array and
access elements in the array.

Conditional Logic and Loops • 65

Listing 4.1: Array1.sh

initialize the names array
names[0]=̎john̎
names[1]=̎nancy̎
names[2]=̎jane̎
names[3]=̎steve̎
names[4]=̎bob̎

display the first and second entries
echo ̎First Index: ${names[0]}̎
echo ̎Second Index: ${names[1]}̎

Listing 4.1 defines the names array that is initialized with five strings, starting from index
0 through index 4. The two echo statements display the first and second elements in the
names array, which are at index 0 and 1, respectively. The output from Listing 4.1 is here:
First Index: john
Second Index: nancy

If you need to access all the items in an array, you can do so with either of the following
code snippets:
${array_name[*]}
${array_name[@]}

Listing 4.2 displays the content of the shell script loadarray.sh that initializes an
array and then prints its values.

Listing 4.2 loadarray.sh

#!/bin/bash
numbers=̎1 2 3 4 5 6 7 8 9 10̎
array1=(`echo ̎$numbers̎`)
total1=0
total2=0

for num in ̎${array1[@]}̎
do
 #echo ̎array item: $num̎
 total1+=$num
 let total2+=$num
done

echo ̎Total1: $total1̎
echo ̎Total2: $total2̎

66 • Bash for Data Scientists

Listing 4.2 defines a string variable numbers that contains the digits from 1 to 10 inclu-
sive. The array1 variable is initialized with all the values of the numbers array by the echo
statement that is inside a pair of back ticks.

Next, the two numeric variables total1 and total2 are initialized to 0, followed by
a loop that finds the sum of all the numbers in the array1 variable. The last pair of echo
statements display the results. Launch the shell script in Listing 4.2 and the output is as fol-
lows:
Total1: 012345678910
Total2: 55

As you can see, total1 is the result of appending the elements of the numbers array
into a single string, whereas total2 is the numeric sum of the elements of the numbers
array. The difference is due to the let keyword in the loop.

Listing 4.3 displays the content of the shell script update-array.sh that shows you
some operations you can perform on an initialized array.

Listing 4.3 updated-array.sh

array=(̎I̎ ̎love̎ ̎deep̎ ̎dish̎ ̎pizza̎)

#the first array element:
echo ${array[0]}

#all array elements:
echo ${array[@]}

#all array indexes:
echo ${!array[@]}

#Remove array element at index 3:
unset array[3]

#add new array element with index 1234:
array[1234]=̎in Chicago̎

#all array elements:
echo ${array[@]}

Launch the code in Listing 4.3 and you will see the following output:
I
I love deep dish pizza
0 1 2 3 4
I love deep pizza in Chicago

Conditional Logic and Loops • 67

Arrays enable you to “group together” related data elements as rows, and then each row
contains logically-related data values. As a simple example, the following array defines three
fields for a customer (obviously not a complete set of fields):
cust[0] = name
cust[1] = Address
cust[2] = phone number

Listing 4.4 displays the contents of fruits-array1.sh that illustrates how to use an
array and some operations that you can perform on arrays.

Listing 4.4: fruits-array1.sh

#!/bin/bash

method #1:
fruits[0]=̎apple̎
fruits[1]=̎banana̎
fruits[2]=̎cherry̎
fruits[3]=̎orange̎
fruits[4]=̎pear̎
echo ̎first fruit: ${fruits[0]}̎

method #2:
declare -a fruits2=(apple banana cherry orange pear)
echo ̎first fruit: ${fruits2[0]}̎

range of elements:
echo ̎last two: ${fruits[@]:3:2}̎

substring of element:
echo ̎substring: ${fruits[1]:0:3}̎

arrlength=${#fruits[@]}
echo ̎length: ${#fruits[@]}̎

Launch the code in Listing 4.4 and you will see the following output:
first fruit: apple
first fruit: apple
last two: orange pear
substring: ban
length: 5

68 • Bash for Data Scientists

ARRAYS AND TEXT FILES

Text files can contain different delimiters, such as CSV (comma-separated-values) files
and TSV (tab-separated-values) files. Other delimiters include a colon “:”, a pipe “|” symbol,
and so forth. The delimiter is called the IFS (Internal Field Separator).

In Bash, you can populate an array with data from external files, such as text files and
CSV files. Listing 4.5 displays the content of names.txt and Listing 4.6 displays the con-
tent of array-from-file.sh that contains a for loop to iterate through the elements of
an array whose initial values are based on the contents of names.txt.

Listing 4.5: names.txt

Jane Smith
John Jones
Dave Edwards

Listing 4.6: array-from-file.sh

#!/bin/bash

names=̎names.txt̎
contents1=(`echo ̎$names̎`)

echo ̎First loop:̎
for w in ̎${contents1[@]}̎
do
 echo ̎$w̎
done

IFS=̎̎
names=̎names.txt̎
contents1=(`echo ̎$names̎`)

echo ̎Second loop:̎
for w in ̎${contents1[@]}̎
do
 echo ̎$w̎
done

Listing 4.6 initializes the array variable contents1 by using command substitution with
the cat command, followed by a loop that displays elements of the array contents1. The
second loop is the same code as the first loop, but this time with the value of IFS equal to “”,
which has the effect of using the newline as a separator, one data element per row. Launch
the code in Listing 4.6 and you will see the following output:
First loop:
Jane

Conditional Logic and Loops • 69

Smith
John
Jones
Dave
Edwards
Second loop:
Jane Smith
John Jones
Dave Edwards

Listing 4.7 displays the content of array-function.sh that illustrates how to initial-
ize an array and then display its contents in a user-defined function.

Listing 4.7: array-function.sh

#!/bin/bash

compact version of the code later in this script:
#items() { for line in ̎${@}̎ ; do printf ̎%s\n̎ ̎${line}̎ ; done

; }
#aa=(7 -4 -e) ; items ̎${aa[@]}̎

items() {
 for line in ̎${@}̎
 do
 printf ̎%s\n̎ ̎${line}̎
 done
}

arr=(123 -abc ̍my data̍)
items ̎${arr[@]}̎

Listing 4.7 contains the items() function that displays the content of the arr array
initialized prior to invoking this function. The output is shown here:
123
-abc
my data

Listing 4.8 displays the content of array-loops1.sh that illustrates how to determine
the length of an initialized array and then display its contents via a loop.

Listing 4.8: array-loops1.sh

#!/bin/bash

fruits[0]=̎apple̎
fruits[1]=̎banana̎

70 • Bash for Data Scientists

fruits[2]=̎cherry̎
fruits[3]=̎orange̎
fruits[4]=̎pear̎

array length:
arrlength=${#fruits[@]}
echo ̎length: ${#fruits[@]}̎

print each element via a loop:
for ((i=1; i<${arrlength}+1; i++));
do
 echo ̎element $i of ${arrlength} : ̎ ${fruits[$i-1]}
done

Listing 4.8 contains straightforward code for initializing an array and displaying its values.
Launch the code in Listing 4.8 and you will see the following output:
length: 5
element 1 of 5 : apple
element 2 of 5 : banana
element 3 of 5 : cherry
element 4 of 5 : orange
element 5 of 5 : pear

WORKING WITH VARIABLES

Earlier code samples contain examples of variables in Bash, and this section shows you
how to assign values to variables. Always remember that Bash variables do not have any type-
related information, which means that no distinction is made when assigning a number or a
string to a variable (similar to JavaScript).

Assigning Values to Variables
This section contains some simple examples of assigning values to variables with double

quotes and single quotes:
x=̎abc̎
y=̎123̎
echo ̎x = $x and y = ${y}̎
echo ̎xy = xy̎
echo ̎double and single quotes: $x̎ ̍$x̍

The preceding code block results in the following output:
x = abc and y = 123
xy = abc123
double and single quotes: abc $x

Conditional Logic and Loops • 71

Make sure that you do not insert any whitespace between a variable and its value. For
example, if you type the following command:
z = ̎abc̎

You will see the following output:
-bash: z: command not found

However, you can insert whitespace between text strings and variables in the echo com-
mand, as you saw in the previous code block.

Listing 4.10 displays the content of variable-operations.sh that illustrates how
to update variables with different values.

Listing 4.10: variable-operations.sh

#length of myvar:
myvar=123456789101112
echo ${#myvar}

#print last 5 characters of myvar:
echo ${myvar: -5}

#10 if myvar was not assigned
echo ${myvar:-10}

#last 10 symbols of myvar
echo ${myvar: -10}

#substitute part of string with echo:
echo ${myvar//123/999}

#add integers a to b and assign to c:
a=5
b=7
c=$((a+b))
echo ̎a: $a b: $b c: $c̎

#error:
#c=̍expr $a + $b̍
#error:
#c=̍echo ̎$a+$b̎|bc̍

Launch the code in Listing 4.10 and you will see the following output:
15
01112
123456789101112
6789101112

72 • Bash for Data Scientists

999456789101112
a: 5 b: 7 c: 12

WORKING WITH OPERATORS FOR STRINGS AND NUMBERS

Bash provides a set of operators for making comparisons between string values
and numeric values, some of which are discussed in this section using simple code
snippets.

Use == in an expression for a string comparison and = to assign a value to a variable:
[$a == $b]

Use -eq for numeric comparisons:
[$a -eq $b]

Use -gt (greater than) to make a numeric comparison:
[$a -gt 12]

Use -lt (less than) to make a numeric comparison:
[$b -le 12]

Use == and a metacharacter to test if a string begins with abc:
[[$string == abc*]]

Use == and a metacharacter and quote marks to test if there is an exact match:
[[$string == ̎abc*̎]]

Use the ^ and | symbols to find a list of usernames that start with ab or xy:
egrep ̎^ab|^xy̎ /etc/passwd|cut -d: -f1

The following code block adds two integers:
x1=1
x2=2
let x3=$x1+$x2
echo $x3

The output from the preceding block is here:
3

If you omit the word let in the preceding code block, the output is 1=2 instead of 3.
The following code snippet assigns a value to a variable and then references its value:

name=John && echo ̎My name is $name̎
My name is John

Display a substring of a given string variable as follows:
myvar=̎Hello everyone I am machine learning engineer̎
echo ${myvar:8:6}
eryone

Conditional Logic and Loops • 73

Note that 8 specifies the starting position and 6 specifies the length of the substring.
Here is an interesting set of expressions:

myvar=̎code:555:777:/usr/bin̎:
echo ̎expression1:̎
echo ${myvar#*:*:*:}
echo
echo ̎expression2:̎
echo ${myvar#*:*:}
echo
echo ̎expression3:̎
echo ${myvar%:*:*:*:}

The output from the preceding code block is here:
expression1:
/usr/bin:

expression2:
777:/usr/bin:

expression3:
code

THE read COMMAND FOR USER INPUT

The following statement will read “n” characters from standard input into the variable
variable_name:
read -n number_of_chars variable_name

The following code block reads a string of the specified number of characters from user
input from the command line:
read -n 1 var
echo ̎result1: $var̎

read -n 2 var
echo ̎result2: $var̎

read -n 3 var
echo ̎result3: $var̎

A sample output from the preceding code block is here:
aresult1: a
abresult2: ab
abcresult3: abc

74 • Bash for Data Scientists

THE test COMMAND FOR VARIABLES, FILES, AND DIRECTORIES

The test command supports many options for testing files, strings, and numbers, as
shown here:

• -d file The specified file exists and is a directory.
• -e file The specified file exists.
• -r file The specified file exists and is readable.
• -s file The specified file exists and has non-zero size.
• -w file The specified file exists and is writable.
• -x file The specified file exists and is executable.
• -L file The specified file exists and is a symbolic link.
• f1 -nt f2 : File f1 is newer than file f2.
• f1 -ot f2 : File f1 is older than file f2.
• -n s1 : String s1 has a nonzero length.
• -z s1 : String s1 has zero length.
• s1 = s2 : String s1 is the same as string s2.
• s1 != s2 : String s1 is not the same as string s2.
• n1 -eq n2 : Integer n1 is equal to integer n2.
• n1 -ge n2 : Integer n1 is greater than or equal to integer n2.
• n1 -gt n2: Integer n1 is greater than integer n2.
• n1 -le n2: Integer n1 is less than integer n2.
• n1 -lt n2: Integer n1 is less than or equal to integer n2.
• n1 -ne n2: Integer n1 is not equal to integer n2.
• ! The not operator, which reverses the value of the following condition
• -a The and operator, which joins two conditions. Both conditions must be true for

the overall result to be true.
• -o The or operator, which joins two conditions. If either condition is true, the overall

result is true.
• \(... \) You can group expressions within the test command by enclosing them

within \(and \).

Bash supports the following types of operators:

• arithmetic operators
• relational operators
• Boolean operators
• string operators
• file test operators

The following subsections contain examples that illustrate each of the preceding operator
types.

Conditional Logic and Loops • 75

Relational Operators
Bash supports relational operators that are specific to numeric values: they will not work

correctly for string values unless their value is numeric. For example, the following operators
determine if a quantity is between 5 and 15 as well as in between “5” and “15” but not in
between “five” and “fifteen.” Suppose that the variable a equals 5 and variable b equals 15
in the following examples:

• $a –eq $b determines whether $a and $b are equal.
• $a –ne $b determines whether $a and $b are unequal.
• $a –gt $b determines whether $a is larger than $b.
• $a –lt $b determines whether $a is smaller than $b.
• $a –ge $b determines whether $a is larger or equal to $b.
• $a –ge $b determines whether $a is smaller than or equal to $b.

Note that the preceding expressions are written inside a pair of square brackets with
spaces on both sides, such as [$a –eq $b].

Boolean Operators

Bash supports several Boolean operators. Suppose that variable a equals 5 and variable
b equals 15 in the following examples.
[! false] is true.

The -o flag is for a logical OR that is true if at least one operand is true:
[$a -lt 20 -o $b -gt 100] is true if either operand is true.

The -a flag is a logical AND that is true only if all operands are true:
[$a -lt 20 -a $b -gt 100] is true only if both operands are

true.

String Operators
The Bash shell supports various string-related operators. For example, suppose that the

variable a equals “abc” and variable b equals “efg.” Then,

• [$a = $b] is false.
• [$a != $b] is true.
• [-z $a] is false because $a has a non-zero length.
• [-n $a] is true because $a has a non-zero length.
• [$a] is false because $a is a non-empty string.

File Test Operators
Bash supports operators to test various properties of files. For example, suppose that the

variable file equals “test” that matches an existing file name whose size is 100 bytes and has
read, write, and execute permissions:

• if [-b file] checks if a file is a block special file.
• if [-c file] checks if a file is a character special file.

76 • Bash for Data Scientists

• if [-d file] checks if a file is a directory.
• if [-f file] checks if a file is a file versus a directory or special file.
• if [-g file] checks if a file has its set group ID (SGID) bit set.
• if [-k file] checks if a file has its sticky bit set.
• if [-p file] checks if a file is a named pipe.
• if [-t file] checks if a file descriptor is open and associated with a terminal.
• if [-u file] checks if a file has its set user id (SUID) bit set.
• if [-r file] checks if a file is readable.
• if [-w file] checks if a file is writable.
• if [-x file] checks if a file is executable.
• if [-s file] checks if a file has a size greater than 0.
• if [-e file] checks if a file exists.

CONDITIONAL LOGIC WITH if/else STATEMENTS

The following example shows you how to use -lt in an if/else/elif statement:
x=25
if [$x -lt 30]
then
 echo ̎x is less than 30̎
else
 echo ̎x is at least 30̎
fi

The preceding code block illustrates how to use if/else conditional logic, and the
output is exactly what you expected. Listing 4.11 displays the contents of the shell script
testvars.sh that checks if the variable x is defined.

Listing 4.11: testvars.sh

x=̎abc̎

if [-n ̎$x̎]
then
 echo ̎x is defined: $x̎
else
 echo ̎x is not defined̎
fi

Listing 4.11 initializes x with the value abc and then performs if/else logic with the -n
option to determine whether x contains a value. The output from Listing 4.11 is shown here:

x is defined: abc
Listing 4.12 displays the contents of the shell script testvars2.sh that checks if the

variable y is undefined.

Conditional Logic and Loops • 77

Listing 4.12: testvars2.sh

x=̎abc̎

if [-z ̎$y̎]
then
 y=̎def̎
 echo ̎y is defined: $y̎
else
 echo ̎y is defined: $y̎
fi

Listing 4.12 initializes x with the value abc and then performs if/else logic with the -z
option to determine whether y is uninitialized: if so, then y is initialized with the value def
and its value is printed. Otherwise, the existing value of y is printed. The output from Listing
4.12 is shown here:
y is defined: def

THE case/esac STATEMENT

The case statement allows you to test various conditions that can include metacharac-
ters. A common scenario involves testing user input: you can check if users entered a string
that starts with an uppercase or lowercase “n” (for no) as well as “y” (for yes).

Listing 4.13 displays the content of case1.sh that checks various conditions in a case/
esac statement.

Listing 4.13: case1.sh

x=̎abc̎

case $x in
 a) echo ̎x is an a̎ ;;
 c) echo ̎x is a c̎ ;;
 a*) echo ̎x starts with a̎ ;;
 *) echo ̎no matches occurred̎ ;;
esac

Listing 4.13 initializes x with the value abc and then uses a case statement to compare
the value of x with a and c, neither of which is true. Next, the case statement compares the
value of x with a regular expression that starts with the letter a, and this does match the con-
tents of the variable x. The output from Listing 4.12 is shown here:
x starts with a

Listing 4.14 shows you how to prompt users for an input string and then process that
input via a case/esac statement.

78 • Bash for Data Scientists

Listing 4.14: UserInfo.sh

echo -n ̎Please enter your first name: ̎
read fname
echo -n ̎Please enter your last name: ̎
read lname
echo -n ̎Please enter your city: ̎
read city

fullname=̎$fname $lname̎
echo ̎$fullname lives in $city̎

case $city in
 San*) echo ̎$fullname lives in California ̎ ;;
 Chicago) echo ̎$fullname lives in the Windy City ̎ ;;
 *) echo ̎$fname lives in la-la land ̎ ;;
esac

Listing 4.14 prompts users to enter values for fname, lname, and city, initializes the
variable fullname with the concatenation of $fname and $lname, and then prints the
result.

The final block of code in Listing 4.14 checks if the value of $city starts with the string
San or Chicago, and then prints an appropriate message.

Listing 4.15 displays the content of StartChar.sh that checks the type of the first
character of a user-provided string.

Listing 4.15: StartChar.sh

while (true)
do
 echo -n ̎Enter a string (x to exit): ̎
 read var

 case ${var:0:1} in
 x) echo ̎Exiting program...̎; break;;
 [0-9]*) echo ̎$var starts with a digit̎ ;;
 [A-Z]*) echo ̎$var starts with an uppercase letter̎ ;;
 [a-z]*) echo ̎$var starts with a lowercase letter̎ ;;
 *) echo ̎$var starts with another symbol̎ ;;
 esac
done

Listing 4.15 contains a while loop that prompts users to enter a string and a case state-
ment that compares the input string in the variable var with various regular expressions.
If the first character is a digit, uppercase letter, or lowercase letter, then an appropriate

Conditional Logic and Loops • 79

message is printed. The default case is executed if the first three regular expressions do not
match the first character of the variable var.

Listing 4.16 displays the content of StartChar2.sh that checks the type of the first
pair of characters of a user-provided string.

Listing 4.16: StartChar2.sh

while (true)
do
 echo -n ̎Enter a string (x to exit): ̎
 read var

 case ${var:0:2} in
 x) echo ̎Exiting program...̎; break;;
 [0-9][0-9]) echo ̎$var starts with to digit̎ ;;
 [A-Z][A-Z]) echo ̎$var starts with two uppercase letters̎ ;;
 [a-z][a-z]) echo ̎$var starts with two lowercase letters̎ ;;
 *) echo ̎$var starts with another pattern̎ ;;
 esac
done

Listing 4.16 extends the code in Listing 4.15 in the sense that the case statement in
Listing 4.16 checks for two consecutive occurrences of the same data type: two digits, two
uppercase letters, or two lowercase letters.

Listing 4.17 displays the content of StartChar3.sh that checks the type of the first
character of a user-provided string.

Listing 4.17: StartChar3.sh

while (true)
do
 echo -n ̎Enter a string (x to exit): ̎
 read var

 case ${var:0:1} in
 x) echo ̎Exiting program...̎; break;;
 [0-9]*) echo ̎$var starts with a digit̎ ;;
 [[:upper:]]) echo ̎$var starts with a uppercase letter̎ ;;
 [[:lower:]]) echo ̎$var starts with a lowercase letter̎ ;;
 *) echo ̎$var starts with another symbol̎ ;;
 esac
done

Listing 4.17 is essentially an alternate way to express the regular expressions in Listing
4.16, and the results will be the same.

80 • Bash for Data Scientists

ARITHMETIC OPERATORS AND COMPARISONS

Conditions are usually enclosed in square brackets []. There is a space between [or] and
the operands: an error occurs if no space is provided. Hence, the following term is correct:
[$var -eq 0]

The following term results in an error:
[$var -eq 0]

Performing arithmetic conditions over variables or values can be done as follows:

• [$var -eq 0] # true if $var equals 0
• [$var -ne 0] # true if $var is unequal to 0

Here are other important comparison operators that are useful for you to know:

• -gt: greater than
• -lt: less than
• -ge: greater than or equal to
• -le: less than or equal to

Multiple test conditions can be combined as follows:
[$var1 -ne 0 -a $var2 -gt 2] # using AND -a
[$var -ne 0 -o var2 -gt 2] # OR -o

We can also test for various attributes of files and directories, as shown in the following
examples.True if the variable is a regular file path or file name:
[-f $var]

True if the variable is a file path or file name that is executable:
[-x $var]

True if the variable is a directory path or directory name:
[-d $var]

True if the variable is an existing file:
[-e $var]

True if the variable is a path of a character device file:
[-c $var]

True if the variable is a path of a block device file:
[-b $var]

True if the variable is a path of a file that is writable:
[-w $var]

True if the variable is a path of a file that is readable:
[-r $var]

Conditional Logic and Loops • 81

True if the variable is a path of a symbolic link:
[-L $var]

An example of the -e switch is as follows:
fpath=̎/etc/passwd̎
if [-e $fpath]; then
 echo File exists;
else
 echo Does not exist;
fi

For string comparison, use double square brackets since single brackets can result in
errors.

Perform string comparisons as shown in the following examples. The presence of a space
after and before = indicates a comparison, whereas the absence of a space indicates an
assignment statement.

True when str1 equals str2:
[[$str1 = $str2]]

Another way to check for string equality:
[[$str1 == $str2]]

True when str1 and str2 are different:
[[$str1 != $str2]]

True when str1 is alphabetically greater than str2:
[[$str1 > $str2]]

True when str1 is alphabetically lesser than str2:
[[$str1 < $str2]]

True if str1 is an empty string:
[[-z $str1]]

True if str1 is a non-empty string:
[[-n $str1]]

Combine multiple conditions using the logical operators && and || for AND and OR,
respectively, using the following syntax:
if [[-n $str1]] && [[-z $str2]] ;
then
 commands;
fi

if [[-n $str1]] || [[-z $str2]] ;
then
 commands;
fi

82 • Bash for Data Scientists

An example of using the && syntax is shown here:
str1=̎Not empty ̎
str2=̎̎
if [[-n $str1]] && [[-z $str2]];
then
 echo str1 is non-empty and str2 is empty string.
fi

The output from launching the preceding block of code is as follows:
str1 is non-empty and str2 is empty string.

The test command can be used for performing condition checks. It helps to avoid usage
of many braces. The same set of test conditions enclosed within [] can be used for the test
command. For example:
if [$var -eq 0]; then echo ̎True̎; fi

can be written as
if test $var -eq 0 ; then echo ̎True̎; fi

WORKING WITH STRINGS IN SHELL SCRIPTS

Bash provides the expr command for finding the length of a string and finding sub-
strings of a string using curly braces, both of which are discussed in this section.

The expr command enables you to find the length of a character string. Some examples
are here:
x=̎abc̎
expr ̎$x̎ : ̍.*̍
3
echo ${#x}
3
echo `expr ̎$x :̍.*`
3

Working with Strings

Listing 4.18 displays the content of substrings.sh that illustrates how to use curly
braces to find the substrings of a given string.

Listing 4.18: substrings.sh

x=̎abcdefghij̎
echo ${x:0}
echo ${x:1}
echo ${x:5}
echo ${x:7:3}

echo ${x:-4}

Conditional Logic and Loops • 83

echo ${x:(-4)}
echo ${x: -4}

Listing 4.18 initializes the variable x with the first ten letters of the alphabet and then
uses the echo command to display various substrings of x. Launch the code in Listing 4.18
and you will see the following output:
abcdefghij
bcdefghij
fghij
hij
abcdefghij
ghij
ghij

The next portion of this chapter discusses additional types of loops that you can use in
shell scripts.

WORKING WITH LOOPS

Bash supports the for loop construct and the while loop construct. The following sub-
sections illustrate how you can use each of these constructs.

Using a for loop

The for loop syntax is slightly different from other languages (such as JavaScript and
Java). The following code block shows you how to use a for loop to iterate through a set of
files in the current directory.
for f in ̍ls *txt̍
do
 echo ̎file: $f̎
done

Listing 4.19 displays the content of renamefiles.sh2 that illustrates how to rename a
set of files in a directory.

Listing 4.19: renamefiles.sh2

newsuffix=̎txt̎

for f in `ls *sh`
do
 base=`echo $f |cut -d̎.̎ -f1`
 suffix=`echo $f |cut -d̎.̎ -f2`

 newfile=̎${base}.${newsuffix}̎
 echo ̎file: $f new: $newfile̎

84 • Bash for Data Scientists

 #either ̍cp̍ or ̍mv̍ the file
 #mv $f $newfile
 #cp $f $newfile
done

Listing 4.19 initializes the variable suffix with the value txt, followed by a for loop
that processes all the files in the current directory that have the suffix sh. During each itera-
tion, the variables’ base and suffix are initialized with the initial portion and the suffix of the
current file, after which the variable newfile is initialized with the same initial portion, but
with a new suffix, txt. For example, the filename abc.txt is generated from an existing
filename abc.sh.

Uncomment either the mv command or the cp command in Listing 4.17, launch the code
again, and compare the results.

WORKING WITH NESTED LOOPS

This section is mainly for fun: you will see how to use nested loops to displays a “triangu-
lar” output. Listing 4.9 displays the contents of nestedloops.sh that illustrates how to
display an alternating set of symbols in a triangular fashion.

Listing 4.9: nestedloops2.sh

#!/bin/bash

outermax=10
symbols[0]=̎#̎
symbols[1]=̎@̎

for ((i=1; i<${outermax}; i++));
do
 for ((j=1; j<${i}; j++));
 do
 printf ̎%-2s̎ ${symbols[($i+$j)%2]}
 done
 printf ̎\n̎
done

for ((i=1; i<${outermax}; i++));
do
 for ((j=${i}+1; j<${outermax}; j++));
 do
 printf ̎%-2s̎ ${symbols[($i+$j)%2]}
 done
 printf ̎\n̎
done

Conditional Logic and Loops • 85

Listing 4.9 initializes some variables, followed by a nested loop. The outer loop is “con-
trolled” by the loop variable i, whereas the inner loop (which depends on the value of i) is
“controlled” by the loop variable j.

The key point to notice is how the following code snippet prints alternating symbols in the
symbols array, depending on whether the value of $i + $j is even or odd:
printf ̎%-2s̎ ${symbols[($i+$j)%2]}

You can easily generalize this code: if the symbols array contains arrlength elements,
then replace the preceding code snippet with the following:
printf ̎%-2s̎ ${symbols[($i+$j)% $arrlength]}

Launch the code in Listing 4.9, and you will see the following output:
@
@
@ # @
@ # @
@ # @ # @
@ # @ # @
@ # @ # @ # @
@ # @ # @ # @
@ # @ # @ # @ #
@ # @ # @ # @
@ # @ # @ #
@ # @ # @
@ # @ #
@ # @
@ #
@

USING A while LOOP

Listing 4.20 displays the content of while1.sh that illustrates how to use a while loop
to iterate through a set of numbers.

Listing 4.20: while1.sh

x=0
x=`expr $x + 1`
echo ̎new x: $x̎

while (true)
do
 echo ̎x = $x̎
 x=`expr $x + 1`
 if [$x > 4]

86 • Bash for Data Scientists

 then
 break
 fi
done

Listing 4.20 initializes the variable x with the value 0, followed by a while loop that incre-
ments and prints the value of x until it is greater than 4.

Listing 4.21 displays the content of wordfile.txt. Listing 4.22 shows you how to use a
while loop to iterate through a text file and convert the lines with an even number of words
to uppercase and the lines with an odd number of words to lowercase.

Listing 4.21: wordfile.txt

abc def
def
abc ghi
abc

Listing 4.22: upperlowercase.sh

infile=̎wordfile.txt̎
outfile=̎converted.txt̎
rm -f $outfile 2>/dev/null

while read line
do
 # word count of current line
 wordcount=`echo ̎$line” |wc -w`

 modvalue=`expr $wordcount % 2`
 if [$modvalue = 0]
 then
 # even: convert to uppercase
 echo ̎$line̎ | tr ̍[a-z]̍ ̍[A-Z]̍ >> $outfile
 else
 # odd: convert to lowercase
 echo ̎$line̎ | tr ̍[A-Z]̍ ̍[a-z]̍ >> $outfile
 fi
done < $infile

Listing 4.22 initializes the variables infile and outfile and then removes outfile
unconditionally. Next, a while loop converts the contents of even-numbered rows in the
file wordfile.txt to uppercase characters, and converts the contents of odd-numbered
rows in the file wordfile.txt to lower case characters. In both cases, the converted text
is redirected to outfile. Notice the use of >>, which appends to file, whereas a single >

Conditional Logic and Loops • 87

would truncate any existing text in the output file. Launch the code in Listing 4.22. The out-
put creates the file converted.txt, whose contents are shown here:
ABC DEF
def
ABC GHI
abc

THE while, case, AND if/elif/fi STATEMENTS

Listing 4.23 displays the content of yesno.sh that illustrates how to combine the
while, case, and if/elif/fi statements in the same shell script.

Listing 4.23: yesno.sh

while(true)
do
 echo -n ̎Proceed with backup (Y/y/N/n): ̎
 read response

 case $response in
 n*|N*) proceed=̎false̎ ;;
 y*|Y*) proceed=̎true̎ ;;
 *) proceed=̎unknown̎ ;;
 esac

 if [̎$proceed̎ = ̎true̎]
 then
 echo ̎proceeding with backup̎
 break
 elif [̎$proceed̎ = ̎false̎]
 then
 echo ̎cancelling backup̎
 else
 echo ̎Invalid response̎
 fi
done

Listing 4.23 contains a while loop that prompts users for an input string that is pro-
cessed by a case statement. If the input string starts with a lowercase n or uppercase N,
then the variable proceed is initialized with the value false. If the input string starts with a
lowercase y or uppercase Y, then the variable proceed is initialized with the value true. In
all other cases, the variable proceed is initialized with the value unknown.
Proceed with backup (Y/y/N/n): abc
Invalid response
Proceed with backup (Y/y/N/n):

88 • Bash for Data Scientists

Invalid response
Proceed with backup (Y/y/N/n): YES
proceeding with backup

USING AN UNTIL LOOP

The until command allows you to execute a series of commands as long as a condition
tests false:
until command
do
 commands
done

Listing 4.24 illustrates how to use an until loop to iterate through a set of parameters.

Listing 4.24 until1.sh

x=5
until [$x -gt 10];
do
 echo ̎x = $x̎
 x=`expr $x + 1`
done

Listing 4.24 contains an until loop that increments the value of x (which is initially 5)
until it exceeds the value 10. The value of x is incremented each time that its value is incre-
mented inside the until loop.

USER-DEFINED FUNCTIONS

Bash provides built-in functions and enables you to define your own functions. You can
define functions to provide the required functionality. Here are simple rules to define a func-
tion in a shell script:

1. Function blocks begin with the keyword function, followed by the function name
and parentheses ().

2. The code block within every function starts with a curly brace { and ends with another
curly brace }.

A very simple custom function Hello() is defined here:
function Hello()
{
 echo ̎Hello World̎
}

#invoke the preceding function:
Hello

Conditional Logic and Loops • 89

The next example illustrates how to pass a parameter to a function:
Hello()
{
 echo ̎Hello $1̎
}

#invoke the preceding function
Hello Bob

The next example uses conditional logic to check for the existence of a parameter and
then prints the appropriate message:
function Hello()
{
 if [̎$1̎ != ̎̎]
 then
 echo ̎Hello $1̎
 else
 echo ̎Please specify a name̎
 fi
}

#invoke the preceding function
Hello $1

Place the preceding code block in the file hello.sh, make it executable (chmod +x
hello.sh), and launch the code. You will see the following output:
Please specify a name

Launch the preceding code as follows:
./hello.sh pizza

The output from the preceding invocation is shown here:
Hello pizza

CREATING A SIMPLE MENU FROM SHELL COMMANDS

Listing 4.25 displays the content of AppendRow.sh that illustrates how to update a set
of users.

Listing 4.25: AppendRow.sh

dataFile=̎users.txt̎

while (true)
do
 echo ̎List of Users̎

90 • Bash for Data Scientists

 echo ̎=============̎
 cat users.txt 2>/dev/null

 echo ̎-----------------------------̎
 echo ̎Enter ̍x̍ to exit this menu̎
 echo ̎Enter ̍d̍ to delete all users̎
 echo ̎-----------------------------̎
 echo

 echo -n ̎First Name: ̎
 read fname

 if [-n $fname -a $fname == ̎x̎]
 then
 break
 elif [-n $fname -a $fname == ̎d̎]
 then
 rm $dataFile; touch $dataFile
 continue
 fi

 echo -n ̎Last Name: ̎
 read lname

 if [-n $fname -a -n $lname]
 then
 # append new line to the file
 echo ̎$fname $lname̎ >> $dataFile
 else
 echo ̎Please enter non-empty values̎
 fi
done

Listing 4.25 initializes the variable dataFile with the name of a text file. This
is followed by a while loop that displays a menu of options and then prompts users
for their input. The body of the loop contains several if/else conditional code blocks
that check if the variables fname and lname have been initialized with user-specified
values.

If fname is set equal to x, the program terminates, whereas if fname is set equal to d,
the program deletes $Datafile. If fname and lname are set equal to other values, a new
“record” containing their values is appended to $Datafile.

Conditional Logic and Loops • 91

A sample invocation of Listing 4.25 is here, which illustrates the insertion of two users.
This is followed by exiting the program.
List of Users
=============

Enter ̍x̍ to exit this menu
Enter ̍d̍ to delete all users

First Name: John
Last Name: Smith
List of Users
=============
John Smith

Enter ̍x̍ to exit this menu
Enter ̍d̍ to delete all users

First Name: Jane
Last Name: Edwards
List of Users
=============
John Smith
Jane Edwards

Enter ̍x̍ to exit this menu
Enter ̍d̍ to delete all users

First Name: x

SUMMARY

This chapter started with an introduction to arrays as well as arithmetic operations and
operators. Then you learned about working with strings in Bash. Next, you learned how to
prompt users for input and then test variables for file types and directory types.

In addition, you learned conditional logic, starting with if/elif statements and the
case/esac statement. You learned how to work with for loops, while loops, and until
loops.

Finally, you saw how user-defined functions are created, as well as how to display a menu
of options and then process the option that users have selected.

CHAPTER 5
PROCESSING DATASETS WITH GREP
AND SED

This chapter introduces you to the versatile grep command and sed command that
can process an input text stream to generate a desired output text stream. Both
of these commands work well with other Unix commands. This chapter contains

many short code samples that illustrate various options of the grep command. Some code
samples illustrate how to combine the grep command and the sed command with com-
mands from previous chapters.

The first part of this chapter introduces the grep command used in isolation, combined
with regular expression metacharacters (from Chapter 1) and code snippets that illustrate
how to use some of the options of the grep command. Next, you will learn how to match
ranges of lines, how to use the so-called “back references” in grep, and how to “escape”
metacharacters in grep.

The second part of this chapter shows you how to use the grep command to find empty
lines and common lines in datasets, as well as the use of keys to match rows in datasets. Next,
you will learn how to use character classes with the grep command, as well as the backslash
(\) character, and how to specify multiple matching patterns. You will learn how to combine
the grep command with the find command and the xargs command, which is useful for
matching a pattern in files that reside in different directories. This section also contains some
examples of common mistakes that people make with the grep command.

The third section briefly discusses the egrep command and the fgrep command,
which are related commands that provide additional functionality that is unavailable in the
standard grep utility. The fourth section contains a use case that illustrates how to use the
grep command to find matching lines that are then merged to create a new dataset.

The fifth part of this chapter contains basic examples of the sed command, such as
replacing and deleting strings, numbers, and letters. The sixth part of this chapter discusses
various switches that are available for the sed command, along with an example of replacing
multiple delimiters with a single delimiter in a dataset.

94 • Bash for Data Scientists

WHAT IS THE grep COMMAND?

The grep (“Global Regular Expression Print”) command is useful for finding substrings
in one or more files. Several examples are here:

grep abc *sh displays all the lines of abc in files with suffix sh
grep –i abc *sh is the same as the preceding query, but case-insensitive
grep –l abc *sh displays all the filenames with suffix sh that contain abc
grep –n abc *sh displays all the line numbers of the occurrences of the string abc

in files with suffix sh

You can perform logical AND and logical OR operations with this syntax:
grep abc *sh | grep def matches lines containing abc AND def
grep ̎abc\|def̎ *sh matches lines containing abc OR def

You can combine switches as well: the following command displays the names of the files
that contain the string abc (case insensitive):
grep –il abc *sh

In other words, the preceding command matches filenames that contain abc, Abc,
ABc, ABC, abC, and so forth.

Another (less efficient way) to display the lines containing abc (case insensitive) is here:
cat file1 |grep –i abc

The preceding command involves two processes, whereas the “grep using –l switch
instead of cat to input the files you want” approach involves a single process. The execution
time is roughly the same for small text files, but the execution time can become more signifi-
cant if you are working with multiple large text files.

You can combine the sort command, the pipe symbol, and the grep command. For
example, the following command displays the files with a Jan date in increasing size:
ls -l |grep ̎ Jan ̎ | sort -n

A sample output from the preceding command is here:
-rw-r--r-- 1 oswaldcampesato2 staff 3 Sep 27 2022 abc.txt
-rw-r--r-- 1 oswaldcampesato2 staff 6 Sep 21 2022

control1.txt
-rw-r--r-- 1 oswaldcampesato2 staff 27 Sep 28 2022 fiblist.

txt
-rw-r--r-- 1 oswaldcampesato2 staff 28 Sep 14 2022 dest
-rw-r--r-- 1 oswaldcampesato2 staff 36 Sep 14 2022 source
-rw-r--r-- 1 oswaldcampesato2 staff 195 Sep 28 2022

Divisors.py
-rw-r--r-- 1 oswaldcampesato2 staff 267 Sep 28 2022

Divisors2.py

Processing Datasets with grep and sed • 95

METACHARACTERS AND THE grep COMMAND

The fundamental building blocks are the regular expressions that match a single char-
acter. Most characters, including all letters and digits, are regular expressions that match
themselves. Any metacharacter with a special meaning may be quoted by preceding it with
a backslash.

A regular expression may be followed by one of several repetition operators:

• “.” matches any single character.
• “?” indicates that the preceding item is optional and will be matched at most once: Z?

matches Z or ZZ.
• “*” indicates that the preceding item will be matched zero or more times: Z* matches Z,

ZZ, ZZZ, and so forth.
• “+” indicates that the preceding item will be matched one or more times: Z+ matches

ZZ, ZZZ, and so forth.
• “{n}” indicates that the preceding item is matched exactly n times: Z{3} matches ZZZ.
• “{n,}” indicates that the preceding item is matched n or more times: Z{3} matches ZZZ,

ZZZZ, and so forth.
• “{,m}” indicates that the preceding item is matched at most m times: Z{,3} matches Z,

ZZ, and ZZZ.
• “{n,m}” indicates that the preceding item is matched at least n times, but not more than

m times: Z{2,4} matches ZZ, ZZZ, and ZZZZ.

The empty regular expression matches the empty string (i.e., a line in the input stream
with no data). Two regular expressions may be joined by the infix operator “|.” When used in
this manner, the infix operator behaves exactly like a logical “OR” statement, which directs
the grep command to return any line that matches either regular expression.

ESCAPING METACHARACTERS WITH THE grep COMMAND

Listing 5.1 displays the content of lines.txt that contains lines with words and
metacharacters.

Listing 5.1: lines.txt

abcd
ab
abc
cd
defg
.*.
..

The following grep command lists the lines of length 2 (using the ̂ begin with and $ end
with operators to restrict length) in lines.txt:
grep ̍^..$̍ lines.txt

96 • Bash for Data Scientists

The following command lists the lines of length two in lines.txt that contain two dots
(the backslash tells grep to interpret the dots as actual dots, not as metacharacters):
grep ̍^\.\.$̍ lines.txt

The result is shown here:
ab
cd
..

The following command also displays lines of length two that begin and end with a dot.
Note that the * matches any text of any length, including no text at all, and is used as a
metacharacter because it is not preceded with a backslash:
grep ̍^\.*\.$̍ lines.txt

The following command lists the lines that start with a period, followed by an asterisk
(*), and then another period, all of which are “escaped” by a backslash that precedes each of
these metacharacters (the right-most “$” is an end-of-line anchor):
grep ̍^\.*\.$̍ lines.txt

USEFUL OPTIONS FOR THE grep COMMAND

There are many types of pattern-matching possibilities with the grep command, and this
section contains an eclectic mix of such commands that handle common scenarios.

In the following examples, we have four text files (two .sh and two .txt) and two Word
documents in a directory. The string abc is found on one line in abc1.txt and three lines
in abc3.sh. The string ABC is found on 2 lines in in ABC2.txt and 4 lines in ABC4.sh.
Notice that abc is not found in ABC files, and ABC is not found in abc files.
ls *

ABC.doc ABC4.sh abc1.txt ABC2.txt
abc.doc abc3.sh

The following code snippet searches for occurrences of the string abc in all the files in
the current directory that have sh as a suffix:
grep abc *sh
abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

The -c option counts the number of occurrences of a string: even though ABC4.sh has
no matches, it still counts them and returns zero:
grep –c abc *sh

The output of the preceding command is here:
ABC4.sh:0
abc3.sh:3

Processing Datasets with grep and sed • 97

The -e option lets you match patterns that would otherwise cause syntax problems (the
– character normally is interpreted as an argument for grep):
grep –e ̎-abc̎ *sh
abc3.sh:ends with -abc

The -e option also lets you match multiple patterns.

grep –e ̎-abc̎ -e ̎comment̎ *sh

ABC4.sh:# ABC in a comment
abc3.sh:ends with -abc

The -i option performs a case insensitive match:
grep –i abc *sh
ABC4.sh:ABC at start
ABC4.sh:ends with ABC
ABC4.sh:the ABC is in the middle
ABC4.sh:# ABC in a comment
abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

The -v option “inverts” the matching string, which means that the output consists of the
lines that do not contain the specified string (ABC doesn’t match because -i is not used, and
ABC4.sh has an entirely empty line):
grep –v abc *sh

Use the -iv options to display the lines that do not contain a specified string using a case
insensitive match:
grep –iv abc *sh
ABC4.sh:
abc3.sh:this line won̍t match

The -l option lists only the filenames that contain a successful match (note this matches
contents of files, not the filenames). The Word document matches because the actual text
is still visible to grep; it is just surrounded by proprietary formatting gibberish. You can do
similar things with other formats that contain text, such as XML, HTML, and .csv:
grep -l abc *

abc1.txt
abc3.sh
abc.doc

The -l option lists only the filenames that contain a successful match:
grep –l abc *sh

98 • Bash for Data Scientists

Use the -il option to display the filenames that contain a specified string using a case
insensitive match:
grep –il abc *doc

The preceding command is useful when you want to check for the occurrence of a string
in Word documents.

The -n option specifies the line numbers of any matching file:
grep –n abc *sh
abc3.sh:1:abc at start
abc3.sh:2:ends with -abc
abc3.sh:3:the abc is in the middle

The -h option suppresses the display of the filename for a successful match:
grep –h abc *sh
abc at start
ends with -abc
the abc is in the middle

For the next series of examples, we will use columns4.txt, as shown in Listing 5.2.

Listing 5.2: columns4.txt

123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
one two three
four five

The -o option shows only the matched string (this is how you avoid returning the entire
line that matches):
grep –o one columns4.txt

The -o option followed by the –b option shows the position of the matched string (it
returns the character position, not the line number. The “o” in “one” is the 59th character
of the file):
grep –o –b one columns4.txt

You can also specify a recursive search (output not shown because it will be different on
every client or account. This searches not only every file in directory /etc, but every file in
every subdirectory of etc):
grep –r abc /etc

The preceding commands match lines where the specified string is a substring of a longer
string in the file. For instance, the preceding commands will match occurrences of abc as
well as abcd, dabc, and abcde.
grep ABC *txt

Processing Datasets with grep and sed • 99

ABC2.txt:ABC at start or ABC in middle or end in ABC
ABC2.txt:ABCD DABC

If you want to exclude everything except for an exact match, you can use the –w option,
as shown here:
grep –w ABC *txt

ABC2.txt:ABC at start or ABC in middle or end in ABC

The --color switch displays the matching string in color:
grep --color abc *sh
abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

You can use the pair of metacharacters (.*) to find the occurrences of two words that are
separated by an arbitrary number of intermediate characters.

The following command finds all lines that contain the strings one and three with any
number of intermediate characters:
grep ̎one.*three̎ columns4.txt
one two three

You can “invert” the preceding result by using the –v switch, as shown here:
grep –v ̎one.*three̎ columns4.txt
123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
four five

The following command finds all lines that contain the strings one and three with any
number of intermediate characters, where the match involves a case-insensitive comparison:
grep -i ̎one.*three̎ columns4.txt
ONE TWO THREE FOUR
one two three

You can “invert” the preceding result by using the –v switch, as shown here:
grep –iv ̎one.*three̎ columns4.txt
123 ONE TWO
456 three four
five 123 six
four five

Sometimes you need to search a file for the presence of either of two strings. For exam-
ple, the following command finds the files that contain start or end:
grep -l ̍start\|end̍ *
ABC2.txt

100 • Bash for Data Scientists

ABC4.sh
abc3.sh

Later in the chapter, you will see how to find files that contain a pair of strings via the
grep and xargs commands.

Character Classes and the grep Command

This section contains some simple one-line commands that combine the grep command
with character classes.
echo ̎abc̎ | grep ̍[:alpha:]̍
abc
echo ̎123̎ | grep ̍[:alpha:]̍
(returns nothing, no match)
echo ̎abc123̎ | grep ̍[:alpha:]̍
abc123
echo ̎abc̎ | grep ̍[:alnum:]̍
abc
echo ̎123̎ | grep ̍[:alnum:]̍
(returns nothing, no match)
echo ̎abc123̎ | grep ̍[:alnum:]̍
abc123
echo ̎123̎ | grep ̍[:alnum:]̍
(returns nothing, no match)
echo ̎abc123̎ | grep ̍[:alnum:]̍
abc123
echo ̎abc̎ | grep ̍[0-9]̍
(returns nothing, no match)
echo ̎123̎ | grep ̍[0-9]̍
123
echo ̎abc123̎ | grep ̍[0-9]̍
abc123
echo ̎abc123̎ | grep -w ̍[0-9]̍
(returns nothing, no match)

WORKING WITH THE –C OPTION IN grep

Consider a scenario in which a directory (such as a log directory) has files created by an
outside program. Your task is to write a shell script that determines which (if any) of the files
that contain two occurrences of a string, after which additional processing is performed on
the matching files (e.g., use email to send log files containing two or more errors messages to
a system administrator for investigation).

One solution involves the –c option for grep, followed by additional invocations of the
grep command.

Processing Datasets with grep and sed • 101

The command snippets in this section assume the following data files whose contents are
as follows.

The file hello1.txt contains the following:
hello world1

The file hello2.txt contains the following:
hello world2
hello world2 second time

The file hello3.txt contains the following:
hello world3
hello world3 two
hello world3 three

Launch the following commands, where warnings and errors are redirected to 2>/dev/
null, so you will not see them:
grep -c hello hello*txt 2>/dev/null
hello1.txt:1
hello2.txt:2
hello3.txt:3
grep -l hello hello*txt 2>/dev/null
hello1.txt
hello2.txt
hello3.txt
grep -c hello hello*txt 2>/dev/null |grep ̎:2$̎
hello2.txt:2

Note how we use the “ends with” ̎$̎ metacharacter to grab just the files that have
exactly two matches. We also use the colon ̎:2$̎ rather than just ̎2$̎ to prevent grab-
bing files that have 12, 32, or 142 matches (which would end in :12, :32, and :142).

What if we wanted to show “two or more” (as in the “2 or more errors in a log”)? In this
case, you would use the invert (-v) command to exclude counts of exactly 0 or exactly 1.
grep -c hello hello*txt 2>/dev/null |grep -v ̍:[0-1]$̍
hello2.txt:2
hello3.txt:3

In a real world application, you would want to strip off everything after the colon to
return only the filenames. There are a many ways to do so, but we’ll use the cut command
we learned in Chapter 1, which involves defining : as a delimiter with -d̎:̎ and using
-f1 to return the first column (i.e., the part before the colon in the return text):
grep -c hello hello*txt 2>/dev/null | grep -v ̍:[0-1]$̍| cut

-d̎:̎ -f1
hello2.txt
hello3.txt

102 • Bash for Data Scientists

MATCHING A RANGE OF LINES

In Chapter 1, you saw how to use the head and tail commands to display a range of
lines in a text file. Now suppose that you want to search a range of lines for a string. For
instance, the following command displays lines 9 through 15 of longfile.txt:
cat -n longfile.txt |head -15|tail -9

The output is here:
 7 and each line
 8 contains
 9 one or
 10 more words
 11 and if you
 12 use the cat
 13 command the
 14 file contents
 15 scroll

This command displays the subset of lines 9 through 15 of longfile.txt that contains
the string and:
cat -n longfile.txt |head -15|tail -9 | grep and

The output is here:
 7 and each line
 11 and if you
 13 command the

This command includes a whitespace after the word and, thereby excluding the line with
the word command:
cat -n longfile.txt |head -15|tail -9 | grep ̎and ̎

The output is here:
 7 and each line
 11 and if you

Note that the preceding command excludes lines that end in “and” because they do not
have the whitespace after “and” at the end of the line. You could remedy this situation with
an “OR” operator including both cases:
cat -n longfile.txt |head -15|tail -9 | grep ̎ and\|and ̎
 7 and each line
 11 and if you
 13 command the

However, the preceding allows command back into the mix. Hence, if you really want
to match a specific word, it’s best to use the -w tag, which is smart enough to handle the
variations:
cat -n longfile.txt |head -15|tail -9 | grep -w ̎and̎

Processing Datasets with grep and sed • 103

 7 and each line
 11 and if you

The use of whitespace is safer if you are looking for something at the beginning or end of
a line. This is a common approach when reading contents of log files or other structured text
where the first word is often important (a tag like ERROR or Warning, a numeric code or a
date). This command displays the lines that start with the word and:
cat longfile.txt |head -15|tail -9 | grep ̎^and ̎

The output is here (without the line number because we are not using cat -n):
and each line
and if you

Recall that the “use the file name(s) in the command, instead of using cat to display the
file first” style is more efficient:
head -15 longfile.txt |tail -9 | grep ̎^and ̎
and each line
and if you

However, the head command does not display the line numbers of a text file, so the
“cat first” (cat -n adds line numbers) style is used in the earlier examples when you
want to see the line numbers, even though this style is less efficient. Hence, add an extra
command to a pipe if it adds value, otherwise start with a direct call to the files you want
to process with the first command in the pipe (assuming the command syntax is capable of
reading in filenames).

USING BACK REFERENCES IN THE grep COMMAND

The grep command allows you to reference a set of characters that match a regular
expression placed inside a pair of parentheses. For grep to parse the parentheses correctly,
each has to be preceded with the escape character (\). For example, grep ̍a\(.\)̍ uses
the “.” regular expression to match ab or a3, but not 3a or ba.

The back-reference \n, where n is a single digit, matches the substring previously
matched by the nth parenthesized sub-expression of the regular expression. For example,
grep ̍\(a\)\1̍ matches aa and grep ̍\(a\)\2̍ matches aaa.

When used with alternation, if the group does not participate in the match, then the back-
reference makes the whole match fail. For example, grep ̍ a\(.\)|b\1̍ does not match
ba or ab or bb (or anything else).

If you have more than one regular expression inside a pair of parentheses, they are refer-
enced (from left to right) by \1, \2, …, \9:
grep -e ̍\([a-z]\)\([0-9]\)\1̍ is the same as this command:
grep -e ̍\([a-z]\)\([0-9]\)\([a-z]\)̍
grep -e ̍\([a-z]\)\([0-9]\)\2̍ is the same as this command:
grep -e ̍\([a-z]\)\([0-9]\)\([0-9]\)̍

104 • Bash for Data Scientists

The easiest way to think of it is that the number (for example, \2) is a placeholder or
variable that saves you from typing the longer regular expression it references. As regular
expressions can become extremely complex, this often helps code clarity.

You can match consecutive digits or characters using the pattern \([0-9]\)\1. For
example, the following command is a successful match because the string 1223 contains a
pair of consecutive identical digits:
echo ̎1223̎ | grep -e ̍\([0-9]\)\1̍

Similarly, the following command is a successful match because the string 12223 con-
tains three consecutive occurrences of the digit 2:
echo ̎12223̎ | grep -e ̍\([0-9]\)\1\1̍

You can check for the occurrence of two identical digits separated by any character with
this expression:
echo ̎12z23̎ | grep -e ̍\([0-9]\).\1̍

In an analogous manner, you can test for the occurrence of duplicate letters, as shown
here:
echo ̎abbc̎ | grep -e ̍\([a-z]\)\1̍

The following example matches an IP address, and does not use back-references, just the
“\d” and “\.” Regular expressions to match digits and periods:
echo ̎192.168.125.103̎ | grep -e ̍\(\d\d\d\)\.\(\d\d\d\)\.\

(\d\d\d\)\.\(\d\d\d\)̍

If you want to allow for fewer than three digits, you can use the expression {1,3}, which
matches 1, 2, or 3 digits on the third block. In a situation where any of the four blocks might
have fewer than three characters, you must use the following type of syntax in all four blocks:
echo ̎192.168.5.103̎ | grep -e ̍\(\d\d\d\)\.\(\d\d\d\)\.\(\d\)\

{1,3\}\.\(\d\d\d\)̍

You can perform more complex matches using back references. Listing 5.3 displays the
content of columns5.txt that contains several lines that are palindromes (the same spell-
ing from left-to-right as right-to-left). Note that the third line is an empty line.

Listing 5.3: columns5.txt

one eno
ONE ENO

ONE TWO OWT ENO
four five

The following command finds all lines that are palindromes:
grep -w -e ̍\(.\)\(.\).*\2\1̍ columns5.txt

The output of the preceding command is here:
one eno
ONE ENO
ONE TWO OWT ENO

Processing Datasets with grep and sed • 105

The idea is as follows: the first \(.\) matches a set of letters, followed by a second \
(.\) that matches a set of letters, followed by any number of intermediate characters. The
sequence \2\1 reverses the order of the matching sets of letters specified by the two con-
secutive occurrences of \(.\).

FINDING EMPTY LINES IN DATASETS

Recall that the metacharacter “^” refers to the beginning of a line and the metacharacter
“$” refers to the end of a line. Thus, an empty line consists of the sequence ^$. You can find
the single empty line in columns5.txt with this command:
grep -n ̎^$̎ columns5.txt

The output of the preceding grep command is here (use the -n switch to display line
numbers, as blank lines will not otherwise show in the output):
3:

More commonly, the goal is to strip the empty lines from a file. We can do that just by
inverting the prior query (and not showing the line numbers)
grep -v ̎^$̎ columns5.txt

one eno
ONE ENO
ONE TWO OWT ENO
four five

As you can see, the preceding output displays four non-empty lines, and as we saw in the
previous grep command, line #3 is an empty line.

USING KEYS TO SEARCH DATASETS

Data is often organized around unique values (typically numbers) to distinguish other-
wise similar things: for example, John Smith the manager must not be confused with
John Smith the programmer in an employee dataset. Hence, each record is assigned a
unique number that will be used for all queries related to employees. Moreover, their names
are merely data elements of a given record, rather than a means of identifying a record that
contains a particular person.

With the preceding points in mind, suppose that you have a text file in which each line
contains a single key value. In addition, another text file consists of one or more lines, where
each line contains a key value followed by a quantity value.

As an illustration, Listing 5.4 displays the contents of skuvalues.txt and Listing 5.5
displays the contents of skusold.txt. Note that an SKU is a term often used to refer to an
individual product configuration, including its packaging, labeling, and so forth.

Listing 5.4: skuvalues.txt

4520
5530

106 • Bash for Data Scientists

6550
7200
8000

Listing 5.5: skusold.txt

4520 12
4520 15
5530 5
5530 12
6550 0
6550 8
7200 50
7200 10
7200 30
8000 25
8000 45
8000 90

THE BACKSLASH CHARACTER AND THE grep COMMAND

The backslash (\) character has a special interpretation when it’s followed by the following
characters:

• \b = Match the empty string at the edge of a word.
• \B = Match the empty string provided it’s not at the edge of a word, so:

• ̍\brat\b̍ matches the separate word “rat” but not “crate,” and
• ̍\Brat\B̍ matches “crate” but not “furry rat.”

• \< = Match the empty string at the beginning of word.
• \> = Match the empty string at the end of word.
• \w = Match word constituent; it is a synonym for ̍[_[:alnum:]]̍.
• \W = Match non-word constituent; it is a synonym for ̍[^_[:alnum:]]̍.
• \s = Match whitespace; it is a synonym for ̍[[:space:]]̍.
• \S = Match non-whitespace; it is a synonym for ̍[^[:space:]]̍.

MULTIPLE MATCHES IN THE GREP COMMAND

In an earlier example, you saw how to use the –i option to perform a case insensitive
match. However, you can also use the pipe “|” symbol to specify more than one sequence of
regular expressions.

For example, the following grep expression matches any line that contains one as well as
any line that contains ONE TWO:
grep ̎one\|ONE TWO̎ columns5.txt

Processing Datasets with grep and sed • 107

The output of the preceding grep command is here:
one eno
ONE TWO OWT ENO

Although the preceding grep command specifies a pair of character strings, you can
specify an arbitrary number of character sequences or regular expressions, as long as you put
̎\|̎ between each thing you want to match.

THE grep COMMAND AND THE xargs COMMAND

The xargs command is often used in conjunction with the find command in Bash. For
example, you can search for the files under the current directory (including subdirectories)
that have the sh suffix and then check which one of those files contains the string abc, as
shown here:
find . –print |grep ̎sh$̎ | xargs grep –l abc

A more useful combination of the find and xargs command is shown here:
find . -mtime -7 -name ̎*.sh̎ –print | xargs grep –l abc

The preceding command searches for all the files (including subdirectories) with suffix
sh that have not been modified in at least seven days, and pipes that list to the xargs com-
mand, which displays the files that contain the string abc (case insensitive).

The find command supports many options, which can be combined via AND as well as OR
to create very complex expressions.

Note that grep –R hello . also performs a search for the string hello in all files,
including subdirectories, and follows the “one process” recommendation. However, the find
. –print command searches for all files in all subdirectories, and you can pipe the output
to xargs grep hello to find the occurrences of the word hello in all files (which
involves two processes instead of one process).

You can use the output of the preceding code snippet to copy the matching files to another
directory, as shown here:
cp `find . –print |grep ̎sh$" | xargs grep –l abc` /tmp

Alternatively, you can copy the matching files in the current directory (without matching
files in any subdirectories) to another directory with the grep command:
cp `grep –l abc *sh` /tmp

Yet another approach is to use back tick so that you can obtain additional information:
for file in ̍find . –print̍
do
 echo ̎Processing the file: $file̎
 # now do something here
done

If you pass too many filenames to the xargs command, you will see a “too many files”
error message. In this situation, try to insert additional grep commands prior to the xargs
command to reduce the number of files that are piped into the xargs command.

108 • Bash for Data Scientists

If you work with NodeJS, you know that the node_modules directory contains a large
number of files. In most cases, you probably want to exclude the files in that directory when
you are searching for a string, and the -v option is ideal for this situation. The following com-
mand excludes the files in the node_modules directory while searching for the names of
the HTML files that contain the string src and redirecting the list of file names to the file
src_list.txt (and also redirecting error messages to /dev/null):
find . –print |grep –v node |xargs grep –il src >src_list.txt 2>/

dev/null

You can extend the preceding command to search for the HTML files that contain the
string src and the string angular with the following command:
find . –print |grep –v node |xargs grep –il src |xargs grep –il

angular >angular_list.txt 2>/dev/null

You can use the following combination of grep and xargs to find the files that contain
both xml and defs:
grep -l xml *svg |xargs grep -l def

A variation of the preceding command redirects error messages to /dev/null, as
shown here:
grep -l hello *txt 2>/dev/null | xargs grep -c hello

Searching zip Files for a String
There are at least three ways to search for a string in one or more zip files. As an example,

suppose that you want to determine which zip files contain SVG documents.
The first way is shown here:

for f in `ls *zip`
do
 echo ̎Searching $f̎
 jar tvf $f |grep ̎svg$̎
done

When there are many zip files in a directory, the output of the preceding loop can be
verbose, in which case you need to scroll backward and probably copy/paste the names of
the files that actually contain SVG documents into a separate file. A better solution is to put
the preceding loop in a shell and redirect its output. For instance, create the file findsvg.
sh whose contents are the preceding loop, and then invoke this command:
./findsvg.sh 1>11 2>22

Notice that the preceding command redirects error message (2>) to the file 22 and the
results of the jar/grep command (1>) to the file 11 (and obviously you can specify differ-
ent filenames).

Processing Datasets with grep and sed • 109

CHECKING FOR A UNIQUE KEY VALUE

Sometimes you need to check for the existence of a string (such as a key) in a text file, and
then perform additional processing based on its existence. However, do not assume that the
existence of a string means that that string only occurs once. As a simple example, suppose
the file mykeys.txt has the following content:
2000
22000
10000
3000

Suppose that you search for the string 2000, which you can do with findkey.sh whose
contents are displayed in Listing 5.6.

Listing 5.6: findkey.sh

key=̎2000̎

if [̎̍`grep $key mykeys.txt`̎ != ̎̎]
then
 foundkey=true
else
 foundkey=false
fi

echo ̎current key = $key̎
echo ̎found key = $foundkey̎

Listing 5.6 contains if/else conditional logic to determine whether the file mykeys.
txt contains the value of $key (which is initialized as 2000). Launch the code in Listing 5.6
and you will see the following output:
current key = 2000
found key = true
linecount = 2

While the key value of 2000 does exist in mykeys.txt, you can see that it matches two
lines in mykeys.txt. However, if mykeys.txt were part of a file with 100,000 (or more)
lines, it’s not obvious that the value of 2000 matches more than one line. In this dataset, 2000
and 22000 both match, and you can prevent the extra matching line with this code snippet:
grep –w $key

Thus, in files that have duplicate lines, you can count the number of lines that match the
key via the preceding code snippet. Another way to do so involves the use of wc –l, which
displays the line count.

110 • Bash for Data Scientists

Redirecting Error Messages

Another scenario involves the use of the xargs command with the grep command,
which can result in “no such …” error messages:
find . –print |xargs grep –il abc

Make sure to redirect errors using the following variant:
find . –print |xargs grep –il abc 2>/dev/null

THE egrep COMMAND AND fgrep COMMAND

The egrep command is extended grep that supports added grep features like “+” (1
or more occurrence of previous character), “?” (0 or 1 occurrence of previous character), and
“|” (alternate matching). The egrep command is almost identical to the grep -E, along
with some caveats that are described in the following online article:

https://www.gnu.org/software/grep/manual/html_node/Basic-vs-Extended.html
One advantage of using the egrep command is that it’s easier to understand the regular

expressions than the corresponding expressions in grep (when it’s combined with backward
references).

The egrep (“extended grep”) command supports extended regular expressions, as well
as the pipe “|” to specify multiple words in a search pattern. A match is successful if any of
the words in the search pattern appears. For example, the pattern abc|def matches lines
that contain either abc or def (or both).

For example, the following code snippet enables you to search for occurrences of the
string abc, as well as occurrences the string def in all files with the suffix sh:
egrep -w ̍abc|def̍ *sh

The preceding egrep command is an “or” operation: a line matches if it contains either
abc or def.

You can also use metacharacters in egrep expressions. For example, the following code
snippet matches lines that start with abc or end with four and a whitespace:
egrep ̍^123|four $̍ columns3.txt

A more detailed explanation of grep, egrep, fgrep is available online:
https://superuser.com/questions/508881/what-is-the-difference-between-grep-pgrep-

egrep-fgrep

Displaying “Pure” Words in a Dataset with egrep
For simplicity, let’s work with a text string and that way we can see the intermediate

results as we work toward the solution. Let’s initialize the variable x as shown here:
x=̎ghi abc Ghi 123 #def5 123z̎

The first step is to split x into words:
echo $x |tr -s ̍ ̍ ̍\n̍

Processing Datasets with grep and sed • 111

The output is here:
ghi
abc
Ghi
123
#def5
123z

The second step is to invoke egrep with the regular expression ^[a-zA-Z]+, which
matches any string consisting of one or more uppercase and/or lowercase letters (and noth-
ing else):
echo $x |tr -s ̍ ̍ ̍\n̍ |egrep ̎^[a-zA-Z]+$̎

The output is here:
ghi
abc
Ghi

If you also want to sort the output and print only the unique words, use this command:
echo $x |tr -s ̍ ̍ ̍\n̍ |egrep ̎^[a-zA-Z]+$̎ |sort | uniq

The output is here:
123
123z
Ghi
abc
ghi

If you want to extract only the integers in the variable x, use this command:
echo $x |tr -s ̍ ̍ ̍\n̍ |egrep ̎^[0-9]+$̎ |sort | uniq

The output is here:
123

If you want to extract alphanumeric words from the variable x, use this command:
echo $x |tr -s ̍ ̍ ̍\n̍ |egrep ̎^[a-zA-Z0-9]+$̎ |sort | uniq

The output is here:
123
123z
Ghi
abc
ghi

Note that the ASCII collating sequences places digits before uppercase letters, and the
latter are before lowercase letters for the following reason: 0 through 9 are hexadecimal val-
ues 0x30 through 0x39, and the uppercase letters in A-Z are hexadecimal 0x41 through
0x5a, and the lowercase letters in a-z are hexadecimal 0x61 through 0x7a.

112 • Bash for Data Scientists

You can replace echo $x with a dataset to retrieve only alphabetic strings from that
dataset.

The fgrep Command

The fgrep (“fast grep”) is the same as grep –F and although fgrep is deprecated, it’s
still supported to allow historical applications that rely on them to run unmodified. In addi-
tion, some older systems might not support the –F option for the grep command, so they
use the fgrep command. If you really want to learn more about the fgrep command,
perform an Internet search for tutorials.

DELETE ROWS WITH MISSING VALUES

The code sample in this section shows you how to use the awk command to split the
comma-separated fields in the rows of a dataset, where fields can contain nested quotes of
arbitrary depth.

Listing 5.7 displays some of the rows in titanic.csv and Listing 5.8 displays the
contents of the file delete-empty-cols-grep.sh that show you how to create a new
dataset that contains only rows that are fully populated with data values.

Listing 5.7: titanic.csv

survived,pclass,sex,age,sibsp,parch,fare,embarked,class,who,adu
lt_male,deck,embark_town,alive,alone

0,3,male,22.0,1,0,7.25,S,Third,man,True,,Southampton,no,False
1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,Cherbourg,yes

,False
1,3,female,26.0,0,0,7.925,S,Third,woman,False,,Southampton,yes,

True
1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Southampton,yes,

False
0,3,male,35.0,0,0,8.05,S,Third,man,True,,Southampton,no,True
0,3,male,,0,0,8.4583,Q,Third,man,True,,Queenstown,no,True
// rows omitted for brevity
0,3,male,25.0,0,0,7.05,S,Third,man,True,,Southampton,no,True
0,3,female,39.0,0,5,29.125,Q,Third,woman,False,,Queenstown,n

o,False
0,2,male,27.0,0,0,13.0,S,Second,man,True,,Southampton,no,True
1,1,female,19.0,0,0,30.0,S,First,woman,False,B,Southampton,yes,

True
0,3,female,,1,2,23.45,S,Third,woman,False,,Southampton,no,Fa

lse
1,1,male,26.0,0,0,30.0,C,First,man,True,C,Cherbourg,yes,True
0,3,male,32.0,0,0,7.75,Q,Third,man,True,,Queenstown,no,True

Processing Datasets with grep and sed • 113

Listing 5.8: delete-empty-cols-grep.sh

#field5,field4,field3,̎field2,foo,bar̎,field1,field6,field7,̎fieldZ̎
input=̎titanic.csv̎
output=̎titanic_clean.csv̎

row_count1=`wc $input | awk ̍{print $1}̍`
echo ̎Number of input rows: $row_count1̎

compare this code with the awk example in chapter 6:
cat $input |grep -v ",," > $output

row_count2=̍wc $output | awk ̍{print $1}̍̍
echo ̎Number of output rows: $row_count2̎

echo
echo ̎=> First five rows in $input:̎
cat $input |head -6 |tail -5
echo ̎-------------------------̎
echo

echo ̎=> First five rows in $output:̎
cat $output |head -6 |tail -5
echo ̎̎

Listing 5.8 starts by initializing the variables input and output with the values titanic.
csv and titanic_clean.csv, respectively. Next, the variable row_count1 is initial-
ized with the number of rows from the input file, and then its value is printed.

The next code snippet uses a combination of the cat command and the grep com-
mand to find all rows that do not contain two consecutive commas (which represent missing
values) and redirect that list of rows into the output file. In a similar fashion as the variable
row_count1, the variable row_count2 is initialized and its value is printed.

The next block of code in Listing 5.8 uses a combination of the cat, head, and tail
commands to extract the first six rows of the input file and then the last five rows of the pre-
ceding output, which extracts rows 2 through 6 instead of rows 1 through 5.

Similarly, the final block of code in Listing 5.8 uses a combination of the cat, head, and
tail commands to extract the first six rows of the output file and then the last five rows of
the preceding output, which extracts rows 2 through 6 instead of rows 1 through 5. Launch
the code in Listing 5.8 and you will see the following output:
Number of input rows: 892
Number of output rows: 183

=> First five rows in titanic.csv:
0,3,male,22.0,1,0,7.25,S,Third,man,True,,Southampton,no,False

114 • Bash for Data Scientists

1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,Cherbourg,yes
,False

1,3,female,26.0,0,0,7.925,S,Third,woman,False,,Southampton,yes,
True

1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Southampton,yes,
False

0,3,male,35.0,0,0,8.05,S,Third,man,True,,Southampton,no,True

=> First five rows in titanic_clean.csv:
1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,Cherbourg,yes

,False
1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Southampton,yes,

False
0,1,male,54.0,0,0,51.8625,S,First,man,True,E,Southampton,no,

True
1,3,female,4.0,1,1,16.7,S,Third,child,False,G,Southampton,yes,

False
1,1,female,58.0,0,0,26.55,S,First,woman,False,C,Southampton,yes

,True

In Chapter 6, you will see how to perform the same task using the awk command, and
you might be surprised to learn that the solution for this task is actually simpler using the
grep command than the awk command.

A SIMPLE USE CASE

The code sample in this section shows you how to use the grep command to find specific
lines in a dataset and then “merge” pairs of lines to create a new dataset. This is very much
like what a “join” command does in a relational database. Listing 5.9 displays the content of
the file test1.csv that contains the initial dataset.

Listing 5.9: test1.csv

F1,F2,F3,M0,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12
1,KLM,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4
1,KLMAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05
1,TP,,7.4,,7.7,,7.6,,7.6,,,8.0,,,7.3
1,XYZ,,4.03,3.96,,3.99,,3.84,4.12,,,,4.04,,
2,KLM,,0.9,0.7,,0.6,,0.8,0.5,,,,0.5,,
2,KLMAB,,0.04,0.04,,0.03,,0.04,0.03,,,,0.03,,
2,EGFR,,99,99,,99,,99,99,,,,99,,
2,TP,,6.6,6.7,,6.9,,6.6,7.1,,,,7.0,,
3,KLM,,0.9,0.1,,0.5,,0.7,,0.7,,,0.9,,
3,KLMAB,,0.04,0.01,,0.02,,0.03,,0.03,,,0.03,,

Processing Datasets with grep and sed • 115

3,PLT,,224,248,,228,,251,,273,,,206,,
3,XYZ,,4.36,4.28,,4.58,,4.39,,4.85,,,4.47,,
3,RDW,,13.6,13.7,,13.8,,14.1,,14.0,,,13.4,,
3,WBC,,3.9,6.5,,5.0,,4.7,,3.7,,,3.9,,
3,A1C,,5.5,5.6,,5.7,,5.6,,5.5,,,5.3,,
4,KLM,,1.2,,0.6,,0.8,0.7,,,0.9,,,1.0,
4,TP,,7.6,,7.8,,7.6,7.3,,,7.7,,,7.7,
5,KLM,,0.7,,0.8,,1.0,0.8,,0.5,,,1.1,,
5,KLM,,0.03,,0.03,,0.04,0.04,,0.02,,,0.04,,
5,TP,,7.0,,7.4,,7.3,7.6,,7.3,,,7.5,,
5,XYZ,,4.73,,4.48,,4.49,4.40,,,4.59,,,4.63,

Listing 5.10 displays the content of the file joinlines.sh that illustrates how to merge
the pairs of matching lines in joinlines.csv.

Listing 5.10: joinlines.sh

inputfile=̎test1.csv̎
outputfile=̎joinedlines.csv̎
tmpfile2=̎tmpfile2̎

patterns to match:
klm1=̎1,KLM,̎
klm5=̎5,KLM,̎
xyz1=̎1,XYZ,̎
xyz5=̎5,XYZ,̎

#output:
#klm1,xyz1
#klm5,xyz5

step 1: match patterns with CSV file:
klm1line="`grep $klm1 $inputfile`"
klm5line="`grep $klm5 $inputfile`"
xyz1line="`grep $xyz1 $inputfile`"
$xyz5 matches 2 lines (we want first line):
grep $xyz5 $inputfile > $tmpfile2
xyz5line=̎̍head -1 $tmpfile2̍̎
echo ̎klm1line: $klm1line̎
echo ̎klm5line: $klm5line̎
echo ̎xyz1line: $xyz1line̎
echo ̎xyz5line: $xyz5line̎

116 • Bash for Data Scientists

step 3: create summary file:
echo ̎$klm1line̎ | tr -d ̍\n̍ > $outputfile
echo ̎$xyz1line̎ >> $outputfile
echo ̎$klm5line̎ | tr -d ̍\n̍ >> $outputfile
echo ̎$xyz5line̎ >> $outputfile
echo; echo

The output from launching the shell script in Listing 5.10 is here:
1,KLM,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.41,

XYZ,,4.03,3.96,,3.99,,3.84,4.12,,,,4.04,,
5,KLM,,0.7,,0.8,,1.0,0.8,,0.5,,,1.1,,5,K

LM,,0.03,,0.03,,0.04,0.04,,0.02,,,0.04,,5,
XYZ,,4.73,,4.48,,4.49,4.40,,,4.59,,,4.63,

As you can see, the task in this section is easily solved via the grep command. Note that
additional data cleaning is required to handle the empty fields in the output.

This concludes the portion of the chapter devoted to the grep command. The next
portion discusses the sed command, along with various examples that illustrate some of its
feature.

WHAT IS THE sed COMMAND?

sed (“stream editor”) is a utility that derives many of its commands from the ed
line-editor (ed was the first Unix text editor). The sed command is a “non-interactive”
stream-oriented editor that can be used to automate editing via shell scripts. This abil-
ity to modify an entire stream of data (which can be the contents of multiple files, in
a manner similar to how grep behaves) as if you were inside an editor is not common
in modern programming languages. This behavior allows some capabilities not easily
duplicated elsewhere, while behaving exactly like any other command (such as grep,
cat, ls, and find) in how it can accept data, output data, and pattern match with
regular expressions.

Some of the more common uses for sed include printing matching lines, deleting match-
ing lines, and finding/replacing matching strings or regular expressions.

The sed Execution Cycle

Whenever you invoke the sed command, an execution cycle refers to various options that
are specified and executed until the end of the file/input is reached. Specifically, an execution
cycle performs the following steps:

• Reads an entire line from stdin/file.
• Removes any trailing newline.
• Places the line in its pattern buffer.
• Modifies the pattern buffer according to the supplied commands.
• Prints the pattern buffer to stdout.

Processing Datasets with grep and sed • 117

MATCHING STRING PATTERNS USING sed

The sed command requires you to specify a string to match the lines in a file. For exam-
ple, suppose that the file numbers.txt contains the following lines:
1
2
123
3
five
4

The following sed command prints all the lines that contain the string 3:
cat numbers.txt |sed –n ̎/3/p̎

Another way to produce the same result:
sed –n ̎/3/p̎ numbers.txt

In both cases, the output of the preceding commands is as follows:
123
3

As we saw earlier with other commands, it is always more efficient to just read in the file
using the sed command than to pipe it in with a different command. You can “feed” it data
from another command if that other command adds value (such as adding line numbers,
removing blank lines, or other similar helpful activities).

The –n option suppresses all output, and the p option prints the matching line. If you
omit the –n option, then every line is printed, and the p option causes the matching line to
be printed again. Hence, if you issue the following command:
sed ̎/3/p̎ numbers.txt

The output (the data to the right of the colon) is as follows. Note that the labels to the
left of the colon show the source of the data to illustrate the “one row at a time” behavior
of sed.
Basic stream output :1
Basic stream output :2
Basic stream output :123
Pattern Matched text:123
Basic stream output :3
Pattern Matched text:3
Basic stream output :five
Basic stream output :4

It is also possible to match two patterns and print everything between the lines that
match:
sed –n ̎/123/,/five/p̎ numbers.txt

118 • Bash for Data Scientists

The output of the preceding command (all lines between 123 and five, inclusive) is
here:
123
3
Five

SUBSTITUTING STRING PATTERNS USING sed

The examples in this section illustrate how to use sed to substitute new text for an exist-
ing text pattern.
x=̎abc̎
echo $x |sed ̎s/abc/def/̎

The output of the preceding code snippet is here:
def

In the prior command, you have instructed sed to substitute (̎s) the first text pattern (/
abc) with the second pattern (/def) and no further instructions(/̎).

Deleting a text pattern is simply a matter of leaving the second pattern empty:
echo ̎abcdefabc̎ |sed ̎s/abc//̎

The result is here:
defabc

As you see, this only removes the first occurrence of the pattern. You can remove all the
occurrences of the pattern by adding the “global” terminal instruction (/g̎):
echo ̎abcdefabc̎ |sed ̎s/abc//g̎

The result of the preceding command is here:
def

Note that we are operating directly on the main stream with this command, as we are not
using the -n tag. You can also suppress the main stream with -n and print the substitution,
achieving the same output if you use the terminal p (print) instruction:
echo ̎abcdefabc̎ |sed -n ̎s/abc//gp̎

def

For substitutions, either syntax will do, but that is not always true of other commands.
You can also remove digits instead of letters by using the numeric metacharacters as your

regular expression match pattern (from Chapter 1):
ls svcc1234.txt |sed ̎s/[0-9]//g̎
ls svcc1234.txt |sed –n ̎s/[0-9]//gp̎

The result of either of the two preceding commands is here:
svcc.txt

Processing Datasets with grep and sed • 119

Recall that the file columns4.txt contains the following text:
123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
one two three
four five

The following sed command is instructed to identify the rows between 1 and 3, inclusive
(̎1,3), and delete (d̎) them from the output:
cat columns4.txt | sed ̎1,3d̎

The output is here:
five 123 six
one two three
four five

The following sed command deletes a range of lines, starting from the line that matches
123 and continuing through the file until reaching the line that matches the string five (and
also deleting as all the intermediate lines). The syntax should be familiar from the earlier
matching example:
sed ̎/123/,/five/d̎ columns4.txt

The output is here:
one two three
four five

Replacing Vowels from a String or a File
The following code snippet shows you how simple it is to replace multiple vowels from a

string using the sed command:
echo ̎hello̎ | sed ̎s/[aeio]/u/g̎

The output from the preceding code snippet is here:
Hullu

Deleting Multiple Digits and Letters from a String

Suppose that we have a variable x that is defined as follows:
x=̎a123zAB 10x b 20 c 300 d 40w00̎

Recall that an integer consists of one or more digits, so it matches the regular expres-
sion [0-9]+, which matches one or more digits. However, you need to specify the regular
expression [0-9]* to remove every number from the variable x:
echo $x | sed ̎s/[0-9]//g̎

The output of the preceding command is here:
azAB x b c d w

120 • Bash for Data Scientists

The following command removes all lowercase letters from the variable x:
echo $x | sed ̎s/[a-z]*//g̎

The output of the preceding command is here:
123AB 10 20 300 4000

The following command removes all lowercase and uppercase letters from the variable x:
echo $x | sed ̎s/[a-z][A-Z]*//g̎

The output of the preceding command is here:
123 10 20 300 4000

SEARCH AND REPLACE WITH sed

The previous section showed you how to delete a range of rows of a text file, based on a start
line and end line, using either a numeric range or a pair of strings. As deleting is just substitut-
ing an empty result for what you match, it should now be clear that a replace activity involves
populating that part of the command with something that achieves your desired outcome. This
section contains various examples that illustrate how to get the exact substitution you desire.

The following examples illustrate how to convert lowercase abc to uppercase ABC in
sed:
echo ̎abc̎ |sed ̎s/abc/ABC/̎

The output of the preceding command is here (which only works on one case of abc):
ABC
echo ̎abcdefabc̎ |sed ̎s/abc/ABC/g̎

The output of the preceding command is here (/g̎ means it works on every case of
abc):
ABCdefABC

The following sed expression performs three consecutive substitutions, using -e to
string them together. It changes exactly one (the first) a to A, one b to B, one c to C:
echo ̎abcde̎ |sed -e ̎s/a/A/̎ -e ̎s/b/B/̎ -e ̎s/c/C/̎

The output of the preceding command is here:
ABCde

Obviously, you can use the following sed expression that combines the three substitu-
tions into one substitution:
echo ̎abcde̎ |sed ̎s/abc/ABC/̎

Nevertheless, the –e switch is useful when you need to perform more complex substitu-
tions that cannot be combined into a single substitution.

The “/” character is not the only delimiter that sed supports, which is useful when
strings contain the “/” character. For example, you can reverse the order of /aa/bb/cc/
with this command:
echo ̎/aa/bb/cc̎ |sed -n ̎s#/aa/bb/cc#/cc/bb/aa/#p̎

Processing Datasets with grep and sed • 121

The output of the preceding sed command is here:
/cc/bb/aa/

The following examples illustrate how to use the w terminal command instruction to write
the sed output to both standard output and also to a named file upper1 if the match suc-
ceeds:
echo ̎abcdefabc̎ |sed ̎s/abc/ABC/wupper1̎
ABCdefabc

If you examine the contents of the text file upper1, you will see that it contains the same
string ABCdefabc that is displayed on the screen. This two-stream behavior that we noticed
earlier with the print (“p”) terminal command is unusual, but sometimes useful. It is more
common to simply send the standard output to a file using the > syntax, as shown below (both
syntaxes work for a replace operation), but in that case, nothing is written to the terminal
screen. The above syntax allows both at the same time:
echo ̎abcdefabc̎ | sed ̎s/abc/ABC/̎ > upper1
echo ̎abcdefabc̎ | sed -n ̎s/abc/ABC/p̎ > upper1

Listing 5.13 displays the contents of update2.sh that replace the occurrence of the
string hello with the string goodbye in the files with the suffix txt in the current direc-
tory.

Listing 5.13: update2.sh

for f in ̍ls *txt̍
do
 newfile=̎${f}_new̎
 cat $f | sed -n ̎s/hello/goodbye/gp̎ > $newfile
 mv $newfile $f
done

Listing 5.13 contains a for loop that iterates over the list of text files with the txt
suffix. For each such file, initialize the variable newfile that is created by appending the
string _new to the first file (represented by the variable f). Next, replace the occurrences of
hello with the string goodbye in each file f, and redirect the output to $newfile. Finally,
rename $newfile to $f using the mv command.

If you want to perform the update in matching files in all subdirectories, replace the for
statement with the following:
for f in ̍find . –print |grep ̎txt$̎̍

DATASETS WITH MULTIPLE DELIMITERS

Listing 5.14 displays the content of the dataset delimiter1.txt that contains mul-
tiple delimiters: |, :, and ^. Listing 5.15 displays the content of delimiter1.sh that illus-
trates how to replace the various delimiters in delimiter1.txt with a single comma
delimiter (,).

122 • Bash for Data Scientists

Listing 5.14: delimiter1.txt

1000|Jane:Edwards^Sales
2000|Tom:Smith^Development
3000|Dave:Del Ray^Marketing

Listing 5.15: delimiter1.sh

inputfile=̎delimiter1.txt̎
cat $inputfile | sed -e ̍s/:/,/̍ -e ̍s/|/,/̍ -e ̍s/\^/,/̍

As you can see, the second line in Listing 5.15 is simple yet powerful: you can extend
the sed command with as many delimiters as you require to create a dataset with a single
delimiter between values. The output from Listing 5.3 is shown here:
1000,Jane,Edwards,Sales
2000,Tom,Smith,Development
3000,Dave,Del Ray,Marketing

Do keep in mind that this kind of transformation can be a bit unsafe unless you have
checked that your new delimiter is not already in use. For that a grep command is useful
(you want result to be zero):
grep -c ̍,̍ $inputfile
0

USEFUL SWITCHES IN sed

The three command line switches -n, -e, and -i are useful when you specify them with
the sed command. Specify -n when you want to suppress the printing of the basic stream
output:
sed -n ̍s/foo/bar/̍

Specify -n and end with /p̍ when you want to match the result only:
sed -n ̍s/foo/bar/p̍

We briefly touched on using -e to do multiple substitutions, but it can also be used to
combine other commands. This syntax lets us separate the commands in the last example:
sed -n -e ̍s/foo/bar/̍ -e ̍p̍

A more advanced example that hints at the flexibility of sed involves the insertion
a character after a fixed number of positions. For example, consider the following code
snippet:
echo ̎ABCDEFGHIJKLMNOPQRSTUVWXYZ̎ | sed ̎s/.\{3\}/&\n/g̎

The output from the preceding command is here:
ABCnDEFnGHInJKLnMNOnPQRnSTUnVWXnYZ

While the above example does not seem especially useful, consider a large text stream
with no line breaks (everything on one line). You could use something like this to insert
newline characters or something else to break the data into easier-to-process chunks. It is

Processing Datasets with grep and sed • 123

possible to work through exactly what sed is doing by looking at each element of the com-
mand and comparing to the output, even if you don’t know the syntax. (Sometimes you will
encounter very complex instructions for sed without any documentation in the code.)

The output changes after every three characters and we know dot (.) matches any single
character, so .{3} must be telling it to do that (with escape slashes \ because brackets are a
special character for sed, and it won’t interpret it properly if we just leave it as .{3}. The
n is clear enough in the replacement column, so the &\ must be somehow telling it to insert
a character instead of replacing it. The terminal g command, of course, means to repeat. To
clarify and confirm those guesses, take what you could infer and perform an Internet search.

WORKING WITH DATASETS

The sed utility is very useful for manipulating the contents of text files. For example,
you can print ranges of lines, subsets of lines that match a regular expression. You can also
perform search-and-replace on the lines in a text file. This section contains examples that
illustrate how to perform such functionality.

Printing Lines

Listing 5.16 displays the content of test4.txt (doubled-spaced lines) that is used for
several examples in this section.

Listing 5.16: test4.txt

abc

def

abc

abc

The following code snippet prints the first 3 lines in test4.txt (we used this syntax
before when deleting rows, it is equally useful for printing):
cat test4.txt |sed -n ̎1,3p̎

The output of the preceding code snippet is here (the second line is blank):
abc

def

The following code snippet prints lines 3 through 5 in test4.txt:
cat test4.txt |sed -n ̎3,5p̎

The output of the preceding code snippet is here:
def

abc

124 • Bash for Data Scientists

The following code snippet takes advantage of the basic output stream and the second
match stream to duplicates every line (including blank lines) in test4.txt:
cat test4.txt |sed ̎p̎

The output of the preceding code snippet is here:
abc
abc

def
def

abc
abc

abc
abc

The following code snippet prints the first three lines and then capitalizes the string
abc, duplicating ABC in the final output because we did not use -n and did end with /p̎
in the second sed command. Remember that /p̎ only prints the text that matched the
sed command, where the basic output prints the whole file, which is why def does not get
duplicated:
cat test4.txt |sed -n ̎1,3p̎ |sed ̎s/abc/ABC/p̎
ABC
ABC

def

Character Classes and sed

You can also use regular expressions with sed. As a reminder, here are the contents of
columns4.txt:
123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
one two three
four five

As our first example involving sed and character classes, the following code snippet illus-
trates how to match lines that contain lowercase letters:
cat columns4.txt | sed -n ̍/[0-9]/p̍

Processing Datasets with grep and sed • 125

The output from the preceding snippet is here:
one two three
one two
one two three four
one
one three
one four

The following code snippet illustrates how to match lines that contain lowercase letters:
cat columns4.txt | sed -n ̍/[a-z]/p̍

The output from the preceding snippet is here:
123 ONE TWO
456 three four
five 123 six

The following code snippet illustrates how to match lines that contain the numbers 4, 5,
or 6:
cat columns4.txt | sed -n ̍/[4-6]/p̍

The output from the preceding snippet is here:
456 three four

The following code snippet illustrates how to match lines that start with any two charac-
ters followed by EE:
cat columns4.txt | sed -n ̍/^.\{2\}EE*/p̍

The output from the preceding snippet is here:
ONE TWO THREE FOUR

Removing Control Characters

Listing 5.17 displays the contents of controlchars.txt that contains the ^M control
character. The code sample in this section shows you how to remove control characters via
the sed just like any other character.

Listing 5.17: controlchars.txt

1 carriage return^M
2 carriage return^M
1 tab character^I

The following command removes the carriage return and the tab characters from the text
file ControlChars.txt:
cat controlChars.txt | sed ̎s/^M//̎ |sed ̎s/ //̎

You cannot see the tab character in the second sed command in the preceding code
snippet; however, if you redirect the output to the file nocontrol1.txt, you can see that
there are no embedded control characters in this new file by typing the following command:
cat –t nocontrol1.txt

126 • Bash for Data Scientists

COUNTING WORDS IN A DATASET

Listing 5.18 displays the content of WordCountInFile.sh that illustrates how to
combine various Bash commands to count the words (and their occurrences) in a file.

Listing 5.18: wordcountinfile.sh

The file contents are converted to lowercase via the ̎tr̎
command

sed removes commas and periods, then changes whitespace to
newlines

uniq needs each word on its own line to count the words
properly

Uniq filters unique words and the number of times they
appeared

The final sort orders the data by the wordcount.

cat ̎$1̎ | xargs -n1 | tr A-Z a-z | \
sed -e ̍s/\.//g̍ -e ̍s/\,//g̍ -e ̍s/ /\ /g̍ | \
sort | uniq -c | sort -nr

The previous multi-line command performs the following operations:

• Lists each word in each line of the file
• Shifts characters to lowercase
• Filters out periods and commas
• Changes space between words to linefeed,
• Removes duplicates and sorts numerically

BACK REFERENCES IN sed

In the first part of the chapter describing grep, you learned about back references, and
similar functionality is available with the sed command. The main difference is that the back
references can also be used in the replacement section of the command.

The following sed command matches the consecutive “a” letters and prints four of
them:
echo ̎aa̎ |sed -n ̎s#\([a-z]\)\1#\1\1\1\1#p̎

The output of the preceding code snippet is here:
aaaa

The following sed command replaces all duplicate pairs of letters with the letters aa:
echo ̎aa/bb/cc̎ |sed -n ̎s#\(aa\)/\(bb\)/\(cc\)#\1/\1/\1/#p̎

The output of the previous sed command is here (note the trailing “/” character):
aa/aa/aa/

Processing Datasets with grep and sed • 127

The following command inserts a comma in a four-digit number:
echo ̎1234̎ |sed -n ̎s@\([0-9]\)\([0-9]\)\([0-9]\)\([0-

9]\)@\1,\2\3\4@p̎

The preceding sed command uses the @ character as a delimiter. The character class
[0-9] matches one single digit. Since there are four digits in the input string 1234, the
character class [0-9] is repeated 4 times, and the value of each digit is stored in \1, \2,
\3, and \4. The output from the preceding sed command is here:
1,234

A more general sed expression that can insert a comma in five-digit numbers is here:
echo ̎12345̎ | sed ̍s/\([0-9]\{3\}\)$/,\1/g;s/^,//̍

The output of the preceding command is here:
12,345

ONE-LINE sed COMMANDS

This section is intended to show more useful problems you can solve with a single line of
sed, and to expose you to more switches and arguments that can be mixed and matched to
solve related tasks.

Moreover, sed supports other options (which are beyond the scope of this book) to per-
form many other tasks, some of which are sophisticated and correspondingly complex. If you
encounter something that none of the examples in this chapter addresses, but seems like it is
the sort of thing sed might do, the odds are decent that it does: an Internet search along the
lines of “how do I do <xxx> in sed” will likely either point you in the right direction or to an
alternative Bash command that will be helpful.

Listing 5.19 displays the content of data4.txt that is referenced in some of the sed
commands in this section. Note that some examples contain options that have not been dis-
cussed earlier in this chapter: they are included in case you need the desired functionality
(and you can find more details by reading online tutorials).

Listing 5.19: data4.txt

hello world4
 hello world5 two
 hello world6 three
 hello world4 four
line five
line six
line seven

Print the first line of data4.txt with this command:
sed q < data4.txt

The output is here:
 hello world3

128 • Bash for Data Scientists

Print the first three lines of data4.txt with this command:
sed 3q < data4.txt

The output is here:
 hello world4
 hello world5 two
 hello world6 three

Print the last line of data4.txt with this command:
sed ̍$!d̍ < data4.txt

The output is here:
line seven

You can also use this snippet to print the last line:
sed -n ̍$p̍ < data4.txt

Print the last two lines of data4.txt with this command:
sed ̍$!N;$!D̍ <data4.txt

The output is here:
line six
line seven

Print the lines of data4.txt that do not contain world with this command:
sed ̍/world/d̍ < data4.txt

The output is here:
line five
line six
line seven

Print duplicates of the lines in data4.txt that contain the word world with this com-
mand:
sed ̍/world/p̍ < data4.txt

The output from the preceding code snippet is here:
 hello world4
 hello world4
 hello world5 two
 hello world5 two
 hello world6 three
 hello world6 three
 hello world4 four
 hello world4 four
line five
line six
line seven

Processing Datasets with grep and sed • 129

Print the fifth line of data4.txt with this command:
sed -n ̍5p̍ < data4.txt

The output from the preceding code snippet is here:
line five

Print the contents of data4.txt and duplicate line five with this command:
sed ̍5p̍ < data4.txt

The output from the preceding code snippet is here:
 hello world4
 hello world5 two
 hello world6 three
 hello world4 four
line five
line five
line six
line seven

Print lines four through six of data4.txt with this command:
sed –n ̍4,6p̍ < data4.txt

The output from the preceding code snippet is here:
 hello world4 four
line five
line six

Delete lines four through six of data4.txt with this command:
sed ̍4,6d̍ < data4.txt

The output from the preceding code snippet is here:
 hello world4
 hello world5 two
 hello world6 three
line seven

Delete the section of lines between world6 and six in data4.txt with this com-
mand:
sed ̍/world6/,/six/d̍ < data4.txt

The output from the preceding code snippet is here:
 hello world4
 hello world5 two
line seven

Print the section of lines between world6 and six of data4.txt with this command:
sed -n ̍/world6/,/six/p̍ < data4.txt

130 • Bash for Data Scientists

The output from the preceding code snippet is here:
hello world6 three
 hello world4 four
line five
line six

Print the contents of data4.txt and duplicate the section of lines between world6
and six with this command:
sed ̍/world6/,/six/p̍ < data4.txt

The output from the preceding code snippet is here:
 hello world4
 hello world5 two
 hello world6 three
 hello world6 three
 hello world4 four
 hello world4 four
line five
line five
line six
line six
line seven

Delete the even-numbered lines in data4.txt with this command:
sed ̍n;d;̍ <data4.txt

The output from the preceding code snippet is here:
 hello world4
 hello world6 three
line five
line seven

Replace letters a through m with a “,” with this command:
sed ̎s/[a-m]/,/g̎ <data4.txt

The output from the preceding code snippet is here:
 ,,,,o wor,,4
 ,,,,o wor,,5 two
 ,,,,o wor,,6 t,r,,
 ,,,,o wor,,4 ,our
,,n, ,,v,
,,n, s,x
,,n, s,v,n

Replace letters a through m with the characters “,@#” with this command:
sed ̎s/[a-m]/,@#/g̎ <data4.txt

Processing Datasets with grep and sed • 131

The output from the preceding code snippet is here:
 ,@#,@#,@#,@#o wor,@#,@#4
 ,@#,@#,@#,@#o wor,@#,@#5 two
 ,@#,@#,@#,@#o wor,@#,@#6 t,@#r,@#,@#
 ,@#,@#,@#,@#o wor,@#,@#4 ,@#our
,@#,@#n,@# ,@#,@#v,@#
,@#,@#n,@# s,@#x
,@#,@#n,@# s,@#v,@#n

The sed command does not recognize escape sequences such as \t, which means that
you must literally insert a tab on your console. In the case of the Bash shell, enter the control
character ^V and then press the <TAB> key to insert a <TAB> character.

Delete the tab characters in data4.txt with this command:
sed ̍s/ //g̍ <data4.txt

The output from the preceding code snippet is here:
 hello world4
hello world5 two
 hello world6 three
hello world4 four
line five
line six
line seven

Delete the tab characters and blank spaces in data4.txt with this command:
sed ̍s/ //g̍ <data4.txt

The output from the preceding code snippet is here:
helloworld4
helloworld5two
helloworld6three
helloworld4four
linefive
linesix
lineseven

Replace every line of data4.txt with the word pasta with this command:
sed ̍s/.*/\pasta/̍ < data4.txt

The output from the preceding code snippet is here:
pasta
pasta
pasta
pasta
pasta
pasta
pasta

132 • Bash for Data Scientists

Insert two blank lines after the third line and one blank line after the fifth line in data4.
txt with this command:
sed ̍3G;3G;5G̍ < data4.txt

The output from the preceding code snippet is here:
 hello world4
 hello world5 two
 hello world6 three

 hello world4 four
line five

line six
line seven

Insert a blank line after every line of data4.txt with this command:
sed G < data4.txt

The output from the preceding code snippet is here:
 hello world4

 hello world5 two

 hello world6 three

 hello world4 four

line five

line six

line seven

Insert a blank line after every other line of data4.txt with this command:
sed n\;G < data4.txt

The output from the preceding code snippet is here:
 hello world4
 hello world5 two

 hello world6 three
 hello world4 four

line five

Processing Datasets with grep and sed • 133

line six

line seven

Reverse the lines in data4.txt with this command:
sed ̍1! G; h;$!d̍ < data4.txt

The output of the preceding sed command is here:
line seven
line six
line five
 hello world4 four
 hello world6 three
 hello world5 two
 hello world4

POPULATE MISSING VALUES WITH THE sed COMMAND

The example in this section shows you how to update the values in datasets
without using Python or Pandas. Although this approach is useful in some cases, Pandas
does provide significant functionality that is often simpler than a Bash-based counter-
part.

Listing 5.20 shows you the content of missing-titanic-ages.sh that shows you
how to replace missing values in the titanic.csv dataset with the string MISSING, and
then count the number of rows whose age value is missing.

Listing 5.20: missing-titanic-ages.sh

newfile=̎titanic-sed.csv̎

this command replaces missing values with MISSING:
cat titanic.csv |sed ̎s/,,/,MISSING,/g̎ > $newfile

cat $newfile | awk -F̎,̎ ̍
BEGIN { count = 0 }
{
 if ($4 ~ /MISSING/) { count += 1 }
}
END { print ̎number of missing age values:̎,count }
̍

Listing 5.20 initializes the variable newfile with the name of CSV file whose missing
values are replaced with the string MISSING, and the latter is performed by the subsequent
code snippet that starts with the cat command.

The next portion of Listing 5.20 is an awk script that initializes the variable count with
the value 0, and then increments this value whenever a row is encountered with a missing

134 • Bash for Data Scientists

value for the age column. Launch the code in Listing 5.20 and you will see the follow-
ing output:
number of missing age values: 177

A DATASET WITH 1,000,000 ROWS

The code samples in this section shows you how to use grep to perform various compari-
sons on a dataset that contains 1,000,000 rows.

Numeric Comparisons
Listing 5.21 shows you how to check for a specific number (e.g., 58) and the occurrence

of one, two, or three adjacent digits in the first field of each row.

Listing 5.21: numeric_comparisons.sh

filename=̎1000000_HRA_Records_short.csv̎
echo ̎first loop:̎
rownum=0
matches=0

while read line
do
field1=`echo $line | cut -d"," -f1`
 if [rownum > 0]
 then
 if [$field1 > 50]
 then
 matches=̍expr $matches + 1̍
 fi
 fi
 rownum=̍expr $rownum + 1̍
done < $filename
echo ̎matching records: $matches̎

echo ̎second loop:̎
rownum=0
matches=0
while read line
do
field1=`echo $line | cut -d"," -f1`
field4=`echo $line | cut -d"," -f4`
field5=`echo $line | cut -d"," -f5`

 if [rownum > 0]
 then

Processing Datasets with grep and sed • 135

 if [$field1 > 50 -a ̎$field5̎ == ̎Support̎]
 then
 matches=̍expr $matches + 1̍
 fi
 fi
 rownum=̍expr $rownum + 1̍
done < $filename
echo ̎matching records: $matches̎

Listing 5.21 initializes the variable newfile with the name of the CSV file and then
initializes some scalar values. Next, a while loop processes each row (except for the first
row) in the CSV file and initializes the value of the variable field1 with the contents of the
first field of the comma-delimited CSV file. If field1 is greater than 50, then the variable
matches is incremented.

The next portion of Listing 5.21 is another while loop that processes each row (except
for the first row) in the CSV file and then extracts the first, fourth, and fifth fields with the
following code block:
field1=`echo $line | cut -d"," -f1`
field4=`echo $line | cut -d"," -f4`
field5=`echo $line | cut -d"," -f5`

Next, a conditional statement checks whether the value of field1 is greater than 40 and
the value of field5 equals the string Support, as shown here:
if [$field1 > 40 -a ̎$field5̎ == ̎Support̎]

If the preceding statement is true, the variable matches is incremented. The final code snip-
pet in the while loop updates the value of the variable rownum and then the next row in the CSV
file is processed. Launch the code in Listing 5.21 and you will see the following output:
first loop:
matching records: 1001
second loop:
matching records: 153

Counting Adjacent Digits
Listing 5.22 shows you how to find a specific number (e.g., 58) and the occurrence of one,

two, or three adjacent digits in the first field of each row.

Listing 5.22: adjacent_digits.sh

filename=̎1000000_HRA_Records.csv̎

echo ̎first:̎
grep 58 $filename |wc
echo

echo ̎second:̎
grep ̎[0-9]̎ $filename |wc

136 • Bash for Data Scientists

echo

echo ̎third:̎
grep ̎[0-9][0-9]̎ $filename |wc
echo

echo ̎fourth:̎
grep ̎[0-9][0-9][0-9]̎ $filename |wc

Listing 5.22 initializes the variable filename with the name of a CSV file, followed by
four code blocks that contain a combination of the grep command and the wc command.

The first block determines the number of rows that contain the string 58, whereas the
second code block determines the number of rows that contain a digit in the CSV file. The
third block determines the number of rows that contain two consecutive digits, whereas the
fourth code block determines the number of rows that contain three consecutive digits in the
CSV file. Launch the code in Listing 5.22 and you will see the following output:
first:
 161740 453166 25044202

second:
 1000001 2799978 154857624

third:
 1000001 2799978 154857624

fourth:
 1000000 2799977 154857110

Average Support Rate

Listing 5.23 uses the Bash commands echo, cut, and expr to calculate the average rate
for people who are over 50 and are in the Support department.

Listing 5.23: average_rate.sh

filename=̎1000000_HRA_Records.csv̎

rownum=0
matches=0
total=0
num_records=0
min_rate=99999
max_rate=0

while read line
do

Processing Datasets with grep and sed • 137

 if [$rownum -gt 0]
 then
 field1=`echo $line | cut -d"," -f1`
 field4=`echo $line | cut -d"," -f4`
 field5=`echo $line | cut -d"," -f5`

 if [$field1 > 40 -a ̎$field5̎ == ̎Support̎]
 then
 total=`expr $total + $field4`
 num_records=̍expr $num_records + 1̍

 if [$min_rate -gt $field4]
 then
 min_rate=$field4
 fi

 if [$max_rate -lt $field4]
 then
 max_rate=$field4
 fi
 fi
 fi
 rownum=`expr $rownum + 1`
done < $filename

avg_rate=̍expr $total / $num_records̍
echo ̎Number of Records: $num_records̎
echo ̎Minimum Rate: $min_rate̎
echo ̎Maximum Rate: $max_rate̎
echo ̎Sum of All Rates: $total̎
echo ̎Average Support Rate: $avg_rate̎

Listing 5.23 initializes the variable filename as the name of a CSV file, followed by
initializing a set of scalar variables. The main portion of Listing 5.23 consists of a while loop
that processes each row after the first row in the CSV file, and then extracts the first, fourth,
and fifth fields with the following code block:
field1=`echo $line | cut -d"," -f1`
field4=`echo $line | cut -d"," -f4`
field5=`echo $line | cut -d"," -f5`

Next, a conditional statement checks whether the value of field1 is greater than 40 and
the value of field5 equals the string Support, as shown here:
if [$field1 > 40 -a ̎$field5̎ == ̎Support̎]

138 • Bash for Data Scientists

If the preceding statement is true, the variables total and num_records are updated
accordingly. Another pair of simple if statements determines whether the values of the
variables min_rate and max_rate also need to be updated. The final code snippet in the
while loop updates the value of the variable rownum, and then the next row in the CSV
file is processed.

The final code block displays the values of the scalar variables that were initialized in the
first section of this code sample:
avg_rate=̍expr $total / $num_records̍
echo ̎Number of Records: $num_records̎
echo ̎Minimum Rate: $min_rate̎
echo ̎Maximum Rate: $max_rate̎
echo ̎Sum of All Rates: $total̎
echo ̎Average Support Rate: $avg_rate̎

Launch the code in Listing 5.23 and you will see the following output:
Number of Records: 153
Minimum Rate: 107
Maximum Rate: 1489
Sum of All Rates: 118610
Average Support Rate: 775

SUMMARY

This chapter showed you how to work with the grep utility, which is a powerful Unix
command for searching text fields for strings. You saw various options for the grep com-
mand, and examples of how to use those options to find string patterns in text files.

Next you learned about egrep, which is a variant of the grep command, which can
simplify and expand on the basic functionality of grep, indicating when you might choose
one option over another.

Finally, you learned how to use key values in one text file to search for matching lines of
text in another file and performed join-like operations using the grep command.

CHAPTER 6
PROCESSING DATASETS WITH AWK

This chapter introduces you to the awk command, which is a highly versatile utility
for manipulating data and restructuring datasets. In fact, this utility is so versatile
that entire books have been written about the awk utility. Awk is essentially a pro-

gramming language in a single command, which accepts standard input, gives standard
output and uses regular expressions and metacharacters in the same way as other Unix
commands. This functionality enables you to combine awk with other command line tools.
Include commands in awk scripts because its versatility can make an awk script challeng-
ing to understand based on just a quick glance.

The first part of this chapter provides a very brief introduction of the awk command. You
will learn about some built-in variables for awk and how to manipulate string variables using
awk. Note that some of these string-related examples can also be handled using other Bash
commands.

The second part of this chapter shows you conditional logic, while loops, and for loops
in awk to manipulate the rows and columns in datasets. This section also shows you how to
delete lines and merge lines in datasets, and also how to print the contents of a file as a single
line of text. You will see how to “join” lines and groups of lines in datasets.

The third section contains code samples that involve metacharacters (introduced in
Chapter 1) and character sets in awk commands. You will also see how to use conditional
logic in awk commands to determine whether to print a line of text.

The fourth section illustrates how to “split” a text string that contains multiple “.” char-
acters as delimiters, followed by examples of awk to perform numeric calculations (such
as addition, subtraction, multiplication, and division) in files containing numeric data. This
section also shows you various numeric functions that are available in awk, and also how to
print text in a fixed set of columns.

The fifth section explains how to align columns in a dataset and also how to align and
merge columns in a dataset. You will see how to delete columns, select a subset of columns

140 • Bash for Data Scientists

from a dataset, and work with multi-line records in datasets. This section contains some one-
line awk commands that can be useful for manipulating the contents of datasets.

The final section of this chapter has a pair of use cases involving nested quotes and date
formats in structured data sets.

Please keep in mind the following points before you read this chapter. First, the datasets
in this chapter are very short so that you can focus on learning the rich feature set of the awk
command. After you have completed this chapter, you can use the awk, grep, and sed
commands in any combination that you need to process your own datasets.

Datasets containing 25 terabytes of data have been successfully processed via awk. If you
work with multi-terabyte datasets, most likely you will process them in a cloud-based envi-
ronment. Moreover, the awk command is useful for data cleaning tasks involving datasets of
almost any size, and some examples of such tasks are discussed in Chapter 7.

THE awk COMMAND

The awk (Aho, Weinberger, and Kernighan) command has a C-like syntax and you can
use this utility to perform very complex operations on numbers and text strings.

As a side comment, there is also the gawk command that is GNU awk, as well as the
nawk command is “new” awk (neither command is discussed in this book). One advantage
of nawk is that it allows you to set externally the value of an internal variable.

Built-in Variables that Control awk

The awk command provides variables that you can change from their default values to
control how awk performs operations. Examples of such variables (and their default values)
include: FS (̎ ̎), RS (̎\n̎), OFS (̎ ̎), ORS (̎\n̎) , SUBSEP, and IGNO-
RECASE. The variables FS and RS specify the field separator and record separator, whereas
the variables OFS and ORS specify the output field separator and the output record separa-
tor, respectively.

You can think of the field separators as delimiters/IFS we used in other commands earlier.
The record separators behave in a way similar to how sed treats individual lines; for exam-
ple, sed can match or delete a range of lines instead of matching or deleting something that
matches a regular expression (and the default awk record separator is the newline character, so
by default awk and sed have similar ability to manipulate and reference lines in a text file).

As a simple example, you can print a blank line after each line of a file by changing the
ORS, from default of one newline to two newlines, as shown here:

cat columns.txt | awk ̍BEGIN { ORS =̎\n\n̎ } ; { print $0 }̍
Alternatively, you can include one or more print (or printf) statements in the body of

an awk script, depending on the number of blank lines that you want to appear in the output
after each input line. In fact, you can use conditional logic to print a different number of
blank lines after a given input line.

Other built-in variables include FILENAME (the name of the file that awk is currently
reading), FNR (the current record number in the current file), NF (the number of fields in
the current input record), and NR (the number of input records awk has processed since the
beginning of the program’s execution).

Processing Datasets with awk • 141

Consult the online documentation for additional information regarding these (and other)
arguments for the awk command.

How Does the awk Command Work?

The awk command reads the input files one record at a time (by default, one record
is one line). If a record matches a pattern (specified by you), then an associated action is
performed (otherwise no action is performed). If the search pattern is not given, then awk
performs the given actions for each record of the input. The default behavior if no action is
given is to print all the records that match the given pattern. Finally, empty braces without
any action results in nothing; i.e., the program will not perform the default printing opera-
tion. Note that each statement in the actions should be delimited by a semicolon.

To make the preceding paragraph more understandable, here are some simple examples
involving text strings and the awk command (the results are displayed after each code snip-
pet). The -F switch sets the field separator to whatever follows it, in this case, a space.
Switches will often provide a shortcut to an action that normally needs a command inside a
‘BEGIN{} block):
x=̎a b c d e̎
echo $x |awk -F̎ ̎ ̍{print $1}̍
a
echo $x |awk -F̎ ̎ ̍{print NF}̍
5
echo $x |awk -F̎ ̎ ̍{print $0}̍
a b c d e
echo $x |awk -F̎ ̎ ̍{print $3, $1}̍
c a

Let’s change the FS (record separator) to an empty string to calculate the length of a
string, this time using the BEGIN{} syntax:
echo ̎abcde̎ | awk ̍BEGIN { FS = ̎̎ } ; { print NF }̍
5

The following example illustrates several equivalent ways to specify test.txt as the
input file for an awk command:

• awk < test.txt ̍{ print $1 }̍
• awk ̍{ print $1 }̍ < test.txt
• awk ̍{ print $1 }̍ test.txt

Yet another way is shown here (but as we’ve discussed earlier, it can be inefficient, so only
do it if the cat command adds value in some way):
cat test.txt | awk ̍{ print $1 }̍

The preceding four ways to perform the same task illustrate why the inclusion of com-
ments in awk scripts is generally a good idea. The next person to look at your code may not
know/remember the syntax you are using (and that person might be you).

142 • Bash for Data Scientists

ALIGNING TEXT WITH THE printf COMMAND

Since awk is a programming language inside a single command, it also has its own way of
producing formatted output via the printf command.

Listing 6.1 displays the content of columns2.txt and Listing 6.2 displays the content
of the shell script AlignColumns1.sh that shows you how to align the columns in a text
file.

Listing 6.1: columns2.txt

one two
three four
one two three four
five six
one two three
four five

Listing 6.2: AlignColumns1.sh

awk ̍
{
 # left-align $1 on a 10-char column
 # right-align $2 on a 10-char column
 # right-align $3 on a 10-char column
 # right-align $4 on a 10-char column
 printf(̎%-10s*%10s*%10s*%10s*\n̎, $1, $2, $3, $4)
}
̍ columns2.txt

Listing 6.2 contains a printf() statement that displays the first four fields of each row
in the file columns2.txt, where each field is 10 characters wide.

The output from launching the code in Listing 6.2 is here:
one * two* * *
three * four* * *
one * two* three* four*
five * six* * *
one * two* three* *
four * five* * *

Keep in mind that printf is reasonably powerful and as such, has its own syntax, which
is beyond the scope of this chapter. A search online can find the manual pages and also dis-
cussions of “how to do X with printf()”.

CONDITIONAL LOGIC AND CONTROL STATEMENTS

Like other programming languages, awk provides supports conditional logic (if/else) and
control statements (for/while loops). awk is the only way to put conditional logic inside a

Processing Datasets with awk • 143

piped command stream without creating, installing, and adding to the path a custom execut-
able shell script. The following code block shows you how to use if/else logic:
echo ̎̎ | awk ̍
BEGIN { x = 10 }
{
 if (x % 2 == 0) }
 print ̎x is even̎
 }
 else }
 print ̎x is odd̎
 }
}
̍

The preceding code block initializes the variable x with the value 10 and prints “x is
even” if x is divisible by 2, otherwise it prints “x is odd.”

The while Statement

The following code block illustrates how to use a while loop in awk:
echo ̎̎ | awk ̍
{
 x = 0
 while(x < 4) {
 print ̎x:̎,x
 x = x + 1
 }
}
̍

The preceding code block generates the following output:
x:0
x:1
x:2
x:3

The following code block illustrates how to use a do while loop in awk:
echo ̎̎ | awk ̍
{
 x = 0

 do {
 print ̎x:̎,x
 x = x + 1
 } while(x < 4)
}
̍

144 • Bash for Data Scientists

The preceding code block generates the following output:
x:0
x:1
x:2
x:3

A for loop in awk

Listing 6.3 displays the content of Loop.sh that illustrates how to print a list of num-
bers in a loop. Note that i++ is another way of writing i=i+1 in awk (and most C-derived
languages).

Listing 6.3: Loop.sh

awk ̍
BEGIN {}
{
 for(i=0; i<5; i++) {
 printf(̎%3d̎, i)
 }
}
END { print ̎\n̎ }
̍

Listing 6.3 contains a for loop that prints numbers on the same line via the printf()
statement. Notice that a new line is printed only in the END block of the code. The output
from Listing 6.3 is here:
0 1 2 3 4

A for loop with a break Statement

The following code block illustrates how to use a break statement in a for loop in awk:
echo ̎̎ | awk ̍
{
 for(x=1; x<4; x++) {
 print ̎x:̎,x
 if(x == 2) {
 break;
 }
 }
}
̍

The preceding code block prints output only until the variable x has the value 2, after
which, the loop exits (because of the break inside the conditional logic). The following output
is displayed:
x:1

Processing Datasets with awk • 145

The next and continue Statements

The following code snippet illustrates how to use next and continue in a for loop
in awk:
awk ̍
{
 /expression1/ { var1 = 5; next }
 /expression2/ { var2 = 7; next }
 /expression3/ { continue }
 // some other code block here
} ̍ somefile

When the current line matches expression1, then var1 is assigned the value 5 and
awk reads the next input line: hence, expression2 and expression3 will not be
tested. If expression1 does not match and expression2 does match, then var2
is assigned the value 7 and then awk will read the next input line. If only expression3
results in a positive match, then awk skips the remaining block of code and processes the
next input line.

DELETING ALTERNATE LINES IN DATASETS

Listing 6.4 displays the content of linepairs.csv and Listing 6.5 displays the content
of deletelines.sh that illustrates how to print alternating lines from the dataset line-
pairs.csv that have exactly two columns.

Listing 6.4: linepairs.csv

a,b,c,d
e,f,g,h
1,2,3,4
5,6,7,8

Listing 6.5: deletelines.sh

inputfile=̎linepairs.csv̎
outputfile=̎linepairsdeleted.csv̎
awk ̍ NR%2 {printf ̎%s̎, $0; print ̎̎; next}̍ < $inputfile >

$outputfile

Listing 6.5 specifies NR%2 to determine whether the current record number NR is divis-
ible by 2, in which case, it prints the current line and then specifies next to skip the next
line in the dataset. The output is redirected to the specified output file, the contents of which
are here:
a,b,c,d
1,2,3,4

A slightly more common task involves merging consecutive lines, which is the topic of the
next section.

146 • Bash for Data Scientists

MERGING LINES IN DATASETS

Listing 6.6 displays the content of columns.txt, and Listing 6.7 displays the content
of ColumnCount1.sh that illustrates how to print the lines from the text file columns.
txt that have exactly two columns.

Listing 6.6: columns.txt

one two three
one two
one two three four
one
one three
one four

Listing 6.7: ColumnCount1.sh

awk ̍
{
 if(NF == 2) { print $0 }
}
̍ columns.txt

Listing 6.7 is straightforward: if the current record contains an even number of fields,
then the current line is printed (i.e., odd-numbered rows are skipped). The output from
launching the code in Listing 6.7 is here:
one two
one three
one four

If you want to display the lines that do not contain 2 columns, use the following code
snippet:
if(NF != 2) { print $0 }

Printing File Contents as a Single Line

The contents of test4.txt are here (note the blank lines):
abc

def

abc

abc

The following code snippet illustrates how to print the content of test4.txt as a single
line:
awk ̍{printf(̎%s̎, $0)}̍ test4.txt

Processing Datasets with awk • 147

The output of the preceding code snippet is here. See if you can tell what is happening
before reading the explanation in the next paragraph:

Abcdefabcabc
Explanation: %s here is the record separator syntax for printf(); with the end quote

after it means the record separator is the empty field “”. Our default record separator for awk
is /n (newline): printf is stripping out all the newlines. The blank rows will vanish entirely,
as all they have is the newline, so the result is that any actual text will be merged together with
nothing between them. Had we added a space between the %s and the ending quote, there
would be a space between each character block, plus an extra space for each newline.

Notice how the following comment helps the comprehension of the code snippet:
Merging all text into a single line by removing the newlines
awk ̍{printf(̎%s̎, $0)}̍ test4.txt

Joining Groups of Lines in a Text File

Listing 6.8 displays the content of digits.txt, and Listing 6.9 displays the content of
digits.sh that “joins” three consecutive lines of text in the file digits.txt.

Listing 6.8: digits.txt

1
2
3
4
5
6
7
8
9

Listing 6.9: digits.sh

awk -F̎ ̎ ̍{
 printf(̎%d̎,$0)
 if(NR % 3 == 0) { printf(̎\n̎) }
}̍ digits.txt

Listing 6.9 prints three consecutive lines of text on the same line, after which a linefeed
is printed. This has the effect of “joining” every three consecutive lines of text. The output
from launching digits.sh is here:
123
456
789

Joining Alternate Lines in a Text File

Listing 6.10 displays the content of columns2.txt, and Listing 6.11 displays the con-
tent of JoinLines.sh that “joins” two consecutive lines of text in the file columns2.
txt.

.

148 • Bash for Data Scientists

Listing 6.10: columns2.txt

one two
three four
one two three four
five six
one two three
four five

Listing 6.11: JoinLines.sh

awk ̍
{
 printf(̎%s̎,$0)
 if($1 !~ /one/) { print ̎ ̎ }
}
̍ columns2.txt

The output from launching Listing 6.11 is here:
one two three four
one two three four five six
one two three four five

Notice that the code in Listing 6.11 depends on the presence of the string one as the first
field in alternating lines of text. We are merging data based on matching a simple pattern,
instead of tying it to record combinations.

To merge each pair of lines instead of merging based on matching a pattern, use the
modified code in Listing 6.12.

Listing 6.12: JoinLines2.sh

awk ̍
BEGIN { count = 0 }
{
 printf(̎%s̎,$0)
 if(++count % 2 == 0) { print ̎ ̎ }
}̍ columns2.txt

Yet another way to “join” consecutive lines is shown in Listing 6.13, where the input file
and output file refer to files that you can populate with data. This is another example of an
awk command that might be a puzzle if encountered in a program without a comment. It
is doing exactly the same thing as Listing 6.12, but its purpose is less obvious because of the
more compact syntax.

Listing 6.13: JoinLines2.sh

inputfile=̎linepairs.csv̎
outputfile=̎linepairsjoined.csv̎
awk ̍ NR%2 {printf ̎%s,̎, $0; next;}1̍ < $inputfile > $outputfile

Processing Datasets with awk • 149

MATCHING WITH METACHARACTERS AND CHARACTER SETS

If we can match a simple pattern, we can also match a regular expression, just as we did
in grep and sed. Listing 6.14 displays the content of Patterns1.sh that uses metacha-
racters to match the beginning and the end of a line of text in the file columns2.txt.

Listing 6.14: Patterns1.sh

awk ̍
 /^f/ { print $1 }
 /two $/ { print $1 }
̍ columns2.txt

The output from launching Listing 6.14 is here:
one
five
four

Listing 6.15 displays the content of RemoveColumns.txt with lines that contain a dif-
ferent number of columns.

Listing 6.15: columns3.txt

123 one two
456 three four
one two three four
five 123 six
one two three
four five

Listing 6.16 displays the content of MatchAlpha1.sh that matches text lines start-
ing with alphabetic characters as well as lines that contain numeric strings in the second
column.

Listing 6.16: MatchAlpha1.sh

awk ̍
{
 if($0 ~ /^[0-9]/) { print $0 }
 if($0 ~ /^[a-z]+ [0-9]/) { print $0 }
}
̍ columns3.txt

The output from Listing 6.16 is here:
123 one two
456 three four
five 123 six

150 • Bash for Data Scientists

PRINTING LINES USING CONDITIONAL LOGIC

Listing 6.17 displays the content of products.txt that contains three columns of
information.

Listing 6.17: products.txt

MobilePhone 400 new
Tablet 300 new
Tablet 300 used
MobilePhone 200 used
MobilePhone 100 used

The following code snippet prints the lines of text in products.txt whose second
column is greater than 300:
awk ̍$2 > 300̍ products.txt

The output of the preceding code snippet is here:
MobilePhone 400 new

The following code snippet prints the lines of text in products.txt whose product is
new:
awk ̍($3 == ̎new̎)̍ products.txt

The output of the preceding code snippet is here:
MobilePhone 400 new
Tablet 300 new

The following code snippet prints the first and third columns of the lines of text in prod-
ucts.txt whose cost equals 300:
awk ̍ $2 == 300 { print $1, $3 }̍ products.txt

The output of the preceding code snippet is here:
Tablet new
Tablet used

The following code snippet prints the first and third columns of the lines of text in prod-
ucts.txt that start with the string Tablet:
awk ̍/^Tablet/ { print $1, $3 }̍ products.txt

The output of the preceding code snippet is here:
Tablet new
Tablet used

SPLITTING FILENAMES WITH awk

Listing 6.18 displays the content of SplitFilename2.sh that illustrates how to split
a filename containing the “.” character to increment the numeric value of one of the com-
ponents of the filename. Note that this code only works for a file name with exactly the

Processing Datasets with awk • 151

expected syntax. It is possible to write more complex code to count the number of segments,
or alternately, to say “change the field right before .zip,” which would only require the file-
name had a format matching the final two sections (<anystructure>.number.zip).

Listing 6.18: SplitFilename2.sh

echo ̎05.20.144q.az.1.zip̎ | awk -F̎.̎ ̍
{
 f5=$5 + 1
 printf(̎%s.%s.%s.%s.%s.%s̎,$1,$2,$3,$4,f5,$6)
}̍

The output from Listing 6.18 is here:
05.20.144q.az.2.zip

WORKING WITH POSTFIX ARITHMETIC OPERATORS

Listing 6.19 displays the content of mixednumbers.txt that contains postfix opera-
tors, which means numbers where the negative (and/or positive) sign appears at the end of a
column value instead of the beginning of the number.

Listing 6.19: mixednumbers.txt

324.000-|10|983.000-
453.000-|30|298.000-
783.000-|20|347.000-

Listing 6.20 displays the content of AddSubtract1.sh that illustrates how to add the
rows of numbers in Listing 6.19.

Listing 6.20: AddSubtract1.sh

myFile=̎mixednumbers.txt̎

awk -F̎|̎ ̍
BEGIN { line = 0; total = 0 }
{
 split($1, arr, ̎-̎)
 f1 = arr[1]
 if($1 ~ /-/) { f1 = -f1 }
 line += f1

 split($2, arr, ̎-̎)
 f2 = arr[1]
 if($2 ~ /-/) { f2 = -f2 }
 line += f2

152 • Bash for Data Scientists

 split($3, arr, ̎-̎)
 f3 = arr[1]
 if($3 ~ /-/) { f3 = -f3 }
 line += f3

 printf(̎f1: %d f2: %d f3: %d line: %d\n̎,f1,f2,f3, line)
 total += line
 line = 0
}
END { print ̎Total: ̎,total }
̍ $myfile

The output from Listing 6.20 is here. See if you can work out what the code is doing
before reading the explanation that follows:
f1: -324 f2: 10 f3: -983 line: -1297
f1: -453 f2: 30 f3: -298 line: -721
f1: -783 f2: 20 f3: -347 line: -1110
Total: -3128

The code assumes we know the format of the file. The split() function turns each field
record into a length two vector (the first position is a number, and the second position is either
an empty value or a dash) and then captures the first position number into a variable. The if
statement determines if the original field has a dash in it. If the field has a dash, then the numeric
variable is made negative; otherwise, it is left alone. Then it adds up the values in the line.

NUMERIC FUNCTIONS IN awk

The int(x) function returns the integer portion of a number. If the number is not
already an integer, it falls between two integers. Of the two possible integers, the function
will return the one closest to zero. This is different from a rounding function, which chooses
the closer integer.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is -3, and int(-3) is -3 as
well. An example of the int(x) function in an awk command is here:
awk ̍BEGIN {
 print int(3.534);
 print int(4);
 print int(-5.223);
 print int(-5);
}̍

The output is here:
3
4
-5
-5

Processing Datasets with awk • 153

The exp(x) function gives you the exponential of x, or reports an error if x is out of range.
The range of values x can have depends on your machine’s floating point representation.
awk ̍BEGIN{
 print exp(123434346);
 print exp(0);
 print exp(-12);
}̍

The output is here:
inf
1
6.14421e-06

The log(x) function gives you the natural logarithm of x, if x is positive; otherwise, it
reports an error (inf means “infinity” and nan in the output means “not a number”).
awk ̍BEGIN{
 print log(12);
 print log(0);
 print log(1);
 print log(-1);
}̍

The output is here:
2.48491
-inf
0
Nan

The sin(x) function gives you the sine of x and cos(x) gives you the cosine of x, with
x in radians:
awk ̍BEGIN {
 print cos(90);
 print cos(45);
}̍

The output is here:
-0.448074
0.525322

The rand() function gives you a random number. The values of rand() are uniformly-
distributed between 0 and 1: the value is never 0 and never 1.

Often, you want random integers instead. Here is a user-defined function you can use to
obtain a random nonnegative integer less than n:
function randint(n) {
 return int(n * rand())
}

154 • Bash for Data Scientists

The product produces a random real number greater than 0 and less than n. We then
make it an integer (using int) between 0 and n - 1.

Here is an example where a similar function is used to produce random integers between
1 and n:
awk ̍
Function to roll a simulated die.
function roll(n) { return 1 + int(rand() * n) }
Roll 3 six-sided dice and print total number of points.
{
 printf(̎%d points\n̎, roll(6)+roll(6)+roll(6))
}̍

Note that rand() starts generating numbers from the same point (or “seed”) each time
awk is invoked. Hence, a program will produce the same results each time it is launched. If
you want a program to do different things each time it is used, you must change the seed to
a value that will be different in each run.

Use the srand(x) function to set the starting point, or seed, for generating random
numbers to the value x. Each seed value leads to a particular sequence of “random” numbers.
Thus, if you set the seed to the same value a second time, you will get the same sequence of
“random” numbers again. If you omit the argument x, as in srand(), then the current date
and time of day are used for a seed.

This is how to obtain random numbers that are unpredictable. The return value of
srand()is the previous seed. This makes it easy to keep track of the seeds for use in consis-
tently reproducing sequences of random numbers.

The time() function (not in all versions of awk) returns the current time in seconds
since January 1, 1970. The function ctime (not in all versions of awk) takes a numeric
argument in seconds and returns a string representing the corresponding date, suitable for
printing or further processing.

The sqrt(x) function gives you the positive square root of x. It reports an error if x is
negative. Thus, sqrt(4) is 2.
awk ̍BEGIN{
 print sqrt(16);
 print sqrt(0);
 print sqrt(-12);
}̍

The output is here:
4
0
Nan

ONE-LINE awk COMMANDS

The code snippets in this section reference the text file short1.txt, which you can
populate with any data of your choice.

Processing Datasets with awk • 155

These code snippets do the following actions:
Prints each line preceded by the number of fields in each line:

awk ̍{print NF ̎:̎ $0}̍ short1.txt

Prints the right-most field in each line:
awk ̍{print $NF}̍ short1.txt

Prints the lines that contain more than 2 fields:
awk ̍{if(NF > 2) print }̍ short1.txt

Prints the value of the right-most field if the current line contains more than 2 fields:
awk ̍{if(NF > 2) print $NF }̍ short1.txt

Removes the leading and trailing whitespaces:
echo ̎ a b c ̎ | awk ̍{gsub(/^[\t]+|[\t]+$/,̎̎);print}̍

Prints the first and third fields in reverse order for the lines that contain at least 3 fields:
awk ̍{if(NF > 2) print $3, $1}̍ short1.txt

Prints the lines that contain the string one:
awk ̍{if(/one/) print }̍ *txt

As you can see from the preceding code snippets, it’s easy to extract information or sub-
sets of rows and columns from text files using simple conditional logic and built-in variables
in the awk command.

USEFUL SHORT awk SCRIPTS

This section contains a set of short awk -based scripts for performing various operations.
Some of these scripts can also be used in other shell scripts to perform more complex opera-
tions. Listing 6.21 displays the content of the file data.txt that is used in various code
samples in this section.

Listing 6.21: data.txt

this is line one that contains more than 40 characters
this is line two
this is line three that also contains more than 40 characters
four

this is line six and the preceding line is empty

line eight and the preceding line is also empty

The following code snippet prints every line that is longer than 40 characters:
awk ̍length($0) > 40̍ data.txt

Now print the length of the longest line in data.txt:
awk ̍{ if (x < length()) x = length() }
END { print ̎maximum line length is ̎ x }̍ < data.txt

156 • Bash for Data Scientists

The input is processed by the expand utility to change tabs into spaces, so the widths
compared are actually the right-margin columns. This snippet prints every line that has at
least one field:
awk ̍NF > 0̍ data.txt

The output from the preceding code snippet shows you how to create a file whose con-
tents do not include blank lines.

This snippet prints seven random numbers from 0 to 100, inclusive:
awk ̍BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) }̍

This snippet counts the lines in a file:
awk ̍END { print NR }̍ < data.txt

This snippet prints the even-numbered lines in the data file:
awk ̍NR % 2 == 0̍ data.txt

If you use the expression ̍NR % 2 == 1̍ in the previous code snippet, the program
would print the odd-numbered lines.

This snippet inserts a duplicate of every line in a text file:
awk ̍{print $0, ̍\n̍, $0}̍ < data.txtThis snippet inserts a

duplicate of every line in a text file and also remove blank
lines:

awk ̍{print $0, ̎\n̎, $0}̍ < data.txt | awk ̍NF > 0̍

This snippet inserts a blank line after every line in a text file:
awk ̍{print $0, ̎\n̎}̍ < data.txt

PRINTING THE WORDS IN A TEXT STRING IN awk

Listing 6.22 displays the content of Fields2.sh that illustrates how to print the words
in a text string using the awk command.

Listing 6.22: Fields2.sh

echo ̎a b c d e̎| awk ̍
{
 for(i=1; i<=NF; i++) {
 print ̎Field ̎,i,̎:̎,$i
 }
}
̍

The output from Listing 6.22 is here:
Field 1 : a
Field 2 : b

Processing Datasets with awk • 157

Field 3 : c
Field 4 : d
Field 5 : e

COUNT OCCURRENCES OF A STRING IN SPECIFIC ROWS

Listing 6.23 and Listing 6.24 display the content data1.csv and data2.csv, respec-
tively. Listing 6.25 displays the content of checkrows.sh that illustrates how to count the
number of occurrences of the string past in column 3 in rows 2, 5, and 7.

Listing 6.23: data1.csv

in,the,past,or,the,present
for,the,past,or,the,present
in,the,past,or,the,present
for,the,paste,or,the,future
in,the,past,or,the,present
completely,unrelated,line1
in,the,past,or,the,present
completely,unrelated,line2

Listing 6.24: data2.csv

in,the,past,or,the,present
completely,unrelated,line1
for,the,past,or,the,present
completely,unrelated,line2
for,the,paste,or,the,future
in,the,past,or,the,present
in,the,past,or,the,present
completely,unrelated,line3

Listing 6.25: checkrows.sh

files=̎̍ls data*.csv| tr ̍\n̍ ̍ ̍̍̎
echo ̎List of files: $files̎

awk -F̎,̎ ̍
(FNR==2 || FNR==5 || FNR==7) {
 if ($3 ~ ̎past̎) { count++ }
}
END {
 printf ̎past: matched %d times (INEXACT) ̎, count
 printf ̎in field 3 in lines 2/5/7\n̎
}̍ data*.csv

158 • Bash for Data Scientists

Listing 6.25 looks for occurrences in the string past in columns 2, 5, and 7 because of
the following code snippet:
(FNR==2 || FNR==5 || FNR==7) {
 if ($3 ~ ̎past̎) { count++ }
}

If a match occurs, then the value of count is incremented. The END block reports the
number of times that the string past was found in columns 2, 5, and 7. Note that strings
such as paste and pasted will match the string past. The output from Listing 6.25 is
here:
List of files: data1.csv data2.csv
past: matched 5 times (INEXACT) in field 3 in lines 2/5/7

The shell script checkrows2.sh replaces the term $3 ~ ̎past̎ with $3 ==
̎past̎ in checkrows.sh to check for exact matches, which produces the following
output:
List of files: data1.csv data2.csv
past: matched 4 times (EXACT) in field 3 in lines 2/5/7

PRINTING A STRING IN A FIXED NUMBER OF COLUMNS

Listing 6.26 displays the content of FixedFieldCount1.sh that illustrates how to
print the words in a text string using the awk command.

Listing 6.26: FixedFieldCount1.sh

echo ̎aa bb cc dd ee ff gg hh̎| awk ̍
BEGIN { colCount = 3 }
{

 for(i=1; i<=NF; i++) {
 printf(̎%s ̎, $i)
 if(i % colCount == 0) {
 print ̎ ̎
 }
 }
}
̍

The output from Listing 6.26 is here:
aa bb cc
dd ee ff
gg hh

Processing Datasets with awk • 159

PRINTING A DATASET IN A FIXED NUMBER OF COLUMNS

Listing 6.27 displays the content of VariableColumns.txt with lines of text that
contain a different number of columns.

Listing 6.27: VariableColumns.txt

this is line one
this is line number one
this is the third and final line

Listing 6.28 displays the content of Fields3.sh that illustrates how to print the words
in a text string using the awk command.

Listing 6.28: Fields3.sh

awk ̍{printf(̎%s ̎, $0)}̍ | awk ̍
BEGIN { columnCount = 3 }
{
 for(i=1; i<=NF; i++) {
 printf(̎%s ̎, $i)
 if(i % columnCount == 0)
 print ̎ ̎
 }
}
̍ VariableColumns.txt

The output from Listing 6.28 is here:
this is line
one this is
line number one
this is the
third and final
line

ALIGNING COLUMNS IN DATASETS

If you have read the preceding two examples, the code sample in this section is easy to
understand: you will see how to realign columns of data that are correct in terms of their
content, but have been placed in different rows (and therefore are misaligned). Listing 6.29
displays the content of mixed-data.csv with misaligned data values. In addition, the first
line and final line in Listing 6.28 are empty lines, which will be removed by the shell script
in this section.

Listing 6.29: mixed-data.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,
Dave, Jones, 3000, FL, John, Jones,

160 • Bash for Data Scientists

4000, CA,
Dave, Jones, 5000, NY, Mike,
Jones, 6000, NY, Tony, Jones, 7000, WA

Listing 6.30 displays the content of mixed-data.sh that illustrates how to realign the
dataset in Listing 6.29.

Listing 6.30: mixed-data.sh

#---
1) remove blank lines
2) remove line feeds
3) print a line feed after every fourth field
4) remove trailing ̍,̍ from each row
#---

inputfile=̎mixed-data.csv̎

grep -v ̎^$̎ $inputfile |awk -F̎,̎ ̍{printf(̎%s̎,$0)}̍ | awk ̍
BEGIN { columnCount = 4 }
{
 for(i=1; i<=NF; i++) {
 printf(̎%s ̎, $i)
 if(i % columnCount == 0) { print ̎̎ }
 }
}̍ > temp-columns

4) remove trailing ̍,̍ from output:
cat temp-columns | sed ̍s/, $//̍ | sed ̍s/ $//̍ > $outputfile

Listing 6.30 starts with a grep command that removes blank lines, followed by an awk
command that prints the rows of the dataset as a single line of text. The second awk com-
mand initializes the columnCount variable with the value 4 in the BEGIN block, followed
by a for loop that iterates through the input fields.

After four fields are printed on the same output line, a linefeed is printed, which has the
effect of realigning the input dataset as an output dataset consisting of rows that have four
fields. The output from Listing 6.30 is here:
Sara, Jones, 1000, CA
Sally, Smith, 2000, IL
Dave, Jones, 3000, FL
John, Jones, 4000, CA
Dave, Jones, 5000, NY
Mike, Jones, 6000, NY
Tony, Jones, 7000, WA

Processing Datasets with awk • 161

ALIGNING COLUMNS AND MULTIPLE ROWS IN DATASETS

The preceding section showed you how to re-align a dataset so that each row contains the
same number of columns and represents a single data record. The code sample in this sec-
tion illustrates how to realign columns of data that are correct in terms of their content, and
places two records in each line of the new dataset.

Listing 6.31 displays the content of mixed-data2.csv with misaligned data values,
followed by Listing 6.32, which displays the content of aligned-data2.csv with the
correctly formatted dataset.

Listing 6.31: mixed-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,
Dave, Jones, 3000, FL, John, Jones,
4000, CA,
Dave, Jones, 5000, NY, Mike,
Jones, 6000, NY, Tony, Jones, 7000, WA

Listing 6.32: aligned-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL
Dave, Jones, 3000, FL, John, Jones, 4000, CA
Dave, Jones, 5000, NY, Mike, Jones, 6000, NY
Tony, Jones, 7000, WA

Listing 6.33 displays the content of mixed-data2.sh that illustrates how to realign the
dataset in Listing 6.31.

Listing 6.33: mixed-data2.sh

#---
1) remove blank lines
2) remove line feeds
3) print a LF after every 8 fields
4) remove trailing ̍,̍ from each row
#---
inputfile=̎mixed-data2.txt̎
outputfile=̎aligned-data2.txt̎

grep -v ̎^$̎ $inputfile |awk -F̎,̎ ̍{printf(̎%s̎,$0)}̍ | awk ̍
BEGIN { columnCount = 4; rowCount = 2; currRow = 0 }
{
 for(i=1; i<=NF; i++) {
 printf(̎%s ̎, $i)
 if(i % columnCount == 0) { ++currRow }
 if(currRow > 0 && currRow % rowCount == 0) {currRow = 0;

print ̎̎}
 }

162 • Bash for Data Scientists

}̍ > temp-columns

4) remove trailing ̍,̍ from output:
cat temp-columns | sed ̍s/, $//̍ | sed ̍s/ $//̍ > $outputfile

Listing 6.33 is similar to Listing 6.30. The main idea of the code is to print a linefeed
character after a pair of “normal” records have been processed, which is implemented via the
code that is shown in bold in Listing 6.33.

You can generalize Listing 6.33 easily by changing the initial value of the rowCount
variable to any other positive integer, and the code will work correctly without any further
modification. For example, if you initialize rowCount to the value 5, then every row in the
new dataset (with the possible exception of the final output row) will contain 5 “normal” data
records.

DISPLAYING A SUBSET OF COLUMNS IN A TEXT FILE

Listing 6.34 displays the content of VariableColumns.txt with lines of text that
contain a different number of columns.

Listing 6.34: products.txt

MobilePhone 400 new
Tablet 300 new
Tablet 300 used
MobilePhone 200 used
MobilePhone 100 used

Listing 6.35 displays the content of RemoveColumn.sh that removes the first column
from the text file.

Listing 6.35: RemoveColumn.sh

awk ̍{ for (i=2; i<=NF; i++) printf ̎%s ̎, $i; printf ̎\n̎; }̍
products.txt

The loop is between 2 and NF, which iterates over all the fields except for the first field.
In addition, printf explicitly adds newlines. The output of the preceding code snippet is
here:
400 new
300 new
300 used
200 used
100 used

Listing 6.36 displays the content of RemoveColumns.sh that contains an awk state-
ment that prints all but the third column of a text file, followed by an awk statement that
prints all but the third and seventh columns of a text file.

Processing Datasets with awk • 163

Listing 6.36: RemoveColumns.sh

filename=̎aligned-data2.csv̎
echo ̎=> contents of $filename:̎
cat $filename
echo ̎̎

print all but the third column:
echo ̎Skipping field 3:̎
awk ̍
{
 for (i=1; i<=NF; i++) {
 if(i != 3) {
 printf(̎%s ̎, $i)
 }
 }
 print ̎̎
}̍ $filename
echo ̎̎

print all but the third and seventh columns:
echo ̎Skipping field 3 and field 7:̎
awk ̍
{
 for (i=1; i<=NF; i++) {
 if((i != 3) && (i != 7)) {
 printf(̎%s ̎, $i)
 }
 }
 print ̎̎
}̍ $filename

Listing 6.36 is an enhancement of the Listing 6.35, and it starts by initializing the vari-
able filename with the name of a CSV file. Next, the loop in the first awk statement
prints each column of each row in the CSV file unless it’s the third column. The loop in
the second awk statement prints each column of each row in the CSV file unless it’s the
third column or the seventh column. Launch the code in Listing 6.36 and you will see the
following output:
=> contents of aligned-data2.csv:
Sara, Jones, 1000, CA, Sally, Smith, 2000, IL
Dave, Jones, 3000, FL, John, Jones, 4000, CA
Dave, Jones, 5000, NY, Mike, Jones, 6000, NY
Tony, Jones, 7000, WA

164 • Bash for Data Scientists

Skipping field 3:
Sara, Jones, CA, Sally, Smith, 2000, IL
Dave, Jones, FL, John, Jones, 4000, CA
Dave, Jones, NY, Mike, Jones, 6000, NY
Tony, Jones, WA

Skipping field 3 and field 7:
Sara, Jones, CA, Sally, Smith, IL
Dave, Jones, FL, John, Jones, CA
Dave, Jones, NY, Mike, Jones, NY
Tony, Jones, WA

SUBSETS OF COLUMN-ALIGNED ROWS IN DATASETS

The code sample in this section illustrates how to extract a subset of the existing columns
and a subset of the rows. Listing 6.37 displays the content of sub-rows-cols.txt of the
desired dataset that contains two columns from every even row of the file aligned-data.
txt.

Listing 6.37: sub-rows-cols.txt

Sara, 1000
Dave, 3000
Dave, 5000
Tony, 7000

Listing 6.38 displays the content of sub-rows-cols.sh that illustrates how to gener-
ate the dataset in Listing 6.37. Most of the code is the same as Listing 6.33, with the new
code shown in bold.

Listing 6.38: sub-rows-cols.sh

#---
1) remove blank lines
2) remove line feeds
3) print a LF after every fourth field
4) remove trailing ̍,̍ from each row
#---

inputfile=̎mixed-data.txt̎

grep -v ̎^$̎ $inputfile |awk -F̎,̎ ̍{printf(̎%s̎,$0)}̍ | awk ̍
BEGIN { columnCount = 4 }
{
 for(i=1; i<=NF; i++) {
 printf(̎%s ̎, $i)

Processing Datasets with awk • 165

 if(i % columnCount == 0) { print ̎̎ }
 }
}̍ > temp-columns

4) remove trailing ̍,̍ from output:
cat temp-columns | sed ̍s/, $//̍ | sed ̍s/$//̍ > temp-columns2

cat temp-columns2 | awk ̍
BEGIN { rowCount = 2; currRow = 0 }
{
 if(currRow % rowCount == 0) { print $1, $3 }
 ++currRow
}’ > temp-columns3

cat temp-columns3 | sed ̍s/,$//̍ | sed ̍s/ $//̍ > $outputfile

Listing 6.38 contains a new block of code that redirects the output of step #4 to a tem-
porary file temp-columns2, whose contents are processed by another awk command in
the last section of Listing 6.38. Notice that that the awk command contains a BEGIN block
that initializes the variables rowCount and currRow with the values 2 and 0, respec-
tively.

The main block prints columns 1 and 3 of the current line if the current row number is
even, and then the value of currRow is then incremented. The output of this awk command
is redirected to yet another temporary file that is the input to the final code snippet, which
uses the cat command and two occurrences of the sed command to remove a trailing “,”
and a trailing space, as shown here:
cat temp-columns3 | sed ̍s/,$//̍ | sed ̍s/ $//̍ > $outputfile

There are other ways to perform the functionality in Listing 6.38, and the main purpose
is to show you different techniques for combining various Bash commands.

COUNTING WORD FREQUENCY IN DATASETS

Listing 6.39 displays the content of WordCounts1.sh that illustrates how to count the
frequency of words in a file.

Listing 6.39: WordCounts1.sh

awk ̍
Print list of word frequencies
{
 for (i = 1; i <= NF; i++)
 freq[$i]++
}

166 • Bash for Data Scientists

END {
 for (word in freq)
 printf ̎%s\t%d\n̎, word, freq[word]
}
̍ columns2.txt

Listing 6.39 contains a block of code that processes the lines in columns2.txt. Each
time that a word (of a line) is encountered, the code increments the number of occurrences
of that word in the hash table freq. The END block contains a for loop that displays the
number of occurrences of each word in columns2.txt.

The output from Listing 6.39 is here:
two 3
one 3
three 3
six 1
four 3
five 2

Listing 6.40 displays the content of columns4.txt, and Listing 6.41 displays the con-
tent of WordCounts2.sh that performs a case insensitive word count.

Listing 6.40: columns4.txt

123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
one two three
four five

Listing 6.41: WordCounts2.sh

awk ̍
{
 # convert everything to lower case
 $0 = tolower($0)

 # remove punctuation
 #gsub(/[^[:alnum:]_[:blank:]]/, ̎̎, $0)

 for(i=1; i<=NF; i++) {
 freq[$i]++
 }
}
END {
 for(word in freq) {

Processing Datasets with awk • 167

 printf ̎%s\t%d\n̎, word, freq[word]
 }
}
̍ columns4.txt

Listing 6.41 includes the following code snippet that converts the text in each input line
to lowercase letters:
$0 = tolower($0)

The output from launching Listing 6.41 with columns4.txt is here:
456 1
two 3
one 3
three 3
six 1
123 2
four 3
five 2

DISPLAYING ONLY “PURE” WORDS IN A DATASET

For simplicity, let’s work with a text string and that way we can see the intermediate
results as we work toward the solution. This example will be familiar from prior chapters, but
now we see how awk does it.

Listing 6.42 displays the content of onlywords.sh that contains three awk commands
for displaying the words, integers, and alphanumeric strings, respectively, in a text string.

Listing 6.42: onlywords.sh

x=̎ghi abc Ghi 123 #def5 123z̎

echo ̎Only words:̎
echo $x |tr -s ̍ ̍ ̍\n̍ | awk -F̎ ̎ ̍
{
 if($0 ~ /^[a-zA-Z]+$/) { print $0 }
}
̍ | sort | uniq
echo

echo ̎Only integers:̎
echo $x |tr -s ̍ ̍ ̍\n̍ | awk -F̎ ̎ ̍
{
 if($0 ~ /^[0-9]+$/) { print $0 }
}
̍ | sort | uniq

168 • Bash for Data Scientists

echo

echo ̎Only alphanumeric words:̎
echo $x |tr -s ̍ ̍ ̍\n̍ | awk -F̎ ̎ ̍
{
 if($0 ~ /^[0-9a-zA-Z]+$/) { print $0 }
}
̍ | sort | uniq
echo

Listing 6.42 starts by initializing the variable x as a space separated set of tokens:
x=̎ghi abc Ghi 123 #def5 123z̎

The next step is to split x into words:
echo $x |tr -s ̍ ̍ ̍\n̍

The output is here:
ghi
abc
Ghi
123
#def5
123z

The third step is to invoke awk and check for words that match the regular expression
^[a-zA-Z]+, which matches any string consisting of one or more uppercase and/or lower-
case letters (and nothing else):
if($0 ~ /^[a-zA-Z]+$/) { print $0 }

The output is here:
ghi
abc
Ghi

Finally, if you also want to sort the output and print only the unique words, redirect the
output from the awk command to the sort command and the uniq command.

The second awk command uses the regular expression ^[0-9]+ to check for integers
and the third awk command uses the regular expression ^[0-9a-zA-Z]+ to check for
alphanumeric words. The output from launching Listing 6.42 is here:
Only words:
Ghi
abc
ghi

Only integers:
123

Processing Datasets with awk • 169

Only alphanumeric words:
123
123z
Ghi
abc
ghi

Now you can replace the variable x with a dataset to retrieve only alphabetic strings from
that dataset.

DELETE ROWS WITH MISSING VALUES

The code sample in this section shows you how to use the awk command to split the
comma-separated fields in the rows of a dataset, where fields can contain nested quotes of
arbitrary depth.

Listing 6.43 displays some of the rows in titanic.csv and Listing 6.44 displays the
content of the file delete-empty-cols-awk.sh that shows you how to create a new
dataset whose rows are fully populated with data values.

Listing 6.43: titanic.csv

survived,pclass,sex,age,sibsp,parch,fare,embarked,class,who,
adult_male,deck,embark_town,alive,alone

0,3,male,22.0,1,0,7.25,S,Third,man,True,,Southampton,no,False
1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,Cherbourg,yes

,False
1,3,female,26.0,0,0,7.925,S,Third,woman,False,,Southampton,yes,

True
1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Southampton,yes,

False
0,3,male,35.0,0,0,8.05,S,Third,man,True,,Southampton,no,True
0,3,male,,0,0,8.4583,Q,Third,man,True,,Queenstown,no,True
// rows omitted for brevity
0,3,male,25.0,0,0,7.05,S,Third,man,True,,Southampton,no,True
0,3,female,39.0,0,5,29.125,Q,Third,woman,False,,Queenstown,no,

False
0,2,male,27.0,0,0,13.0,S,Second,man,True,,Southampton,no,True
1,1,female,19.0,0,0,30.0,S,First,woman,False,B,Southampton,yes,

True
0,3,female,,1,2,23.45,S,Third,woman,False,,Southampton,no,

False
1,1,male,26.0,0,0,30.0,C,First,man,True,C,Cherbourg,yes,True
0,3,male,32.0,0,0,7.75,Q,Third,man,True,,Queenstown,no,True

170 • Bash for Data Scientists

Listing 6.44: delete-empty-cols-awk.sh

input=̎titanic.csv̎
output=̎titanic_clean.csv̎

row_count1=̍wc $input | awk ̍{print $1}̍̍
echo ̎Number of input rows: $row_count1̎

compare the awk code with the grep example in chapter 5:
awk -F”,” ‘
{
 if ($0 !~ /,,/) { print $0 }
}’ < $input > $output

row_count2=`wc $output | awk ̍{print $1}̍`
echo ̎Number of output rows: $row_count2̎

echo
echo ̎=> First five rows in $input:̎
cat $input |head -6 |tail -5
echo ̎-------------------------̎
echo

echo ̎=> First five rows in $output:̎
cat $output |head -6 |tail -5
echo ̎̎

Listing 6.44 starts by initializing the variables input and output with the values titanic.
csv and titanic_clean.csv, respectively. The next code snippet is an awk command
that extracts the rows from the CSV file that do not contain two consecutive commas (which
indicate a missing field value) and redirects those rows to the output file.

The next code snippet initializes the variable row_count2 with the rows 2 through 6 of
the input file and displays their contents, followed by a code snippet that performs the same
operation using the input file. Launch the code in Listing 6.44 and you will see the following
output:
Number of input rows: 892
Number of output rows: 183

=> First five rows in titanic.csv:
0,3,male,22.0,1,0,7.25,S,Third,man,True,,Southampton,no,False
1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,Cherbourg,yes

,False
1,3,female,26.0,0,0,7.925,S,Third,woman,False,,Southampton,yes,

True

Processing Datasets with awk • 171

1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Southampton,yes,
False

0,3,male,35.0,0,0,8.05,S,Third,man,True,,Southampton,no,True

=> First five rows in titanic_clean.csv:
1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,Cherbourg,yes

,False
1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Southampton,yes,

False
0,1,male,54.0,0,0,51.8625,S,First,man,True,E,Southampton,no,

True
1,3,female,4.0,1,1,16.7,S,Third,child,False,G,Southampton,yes,

False
1,1,female,58.0,0,0,26.55,S,First,woman,False,C,Southampton,yes

,True

As a quick refresher, the file delete-empty-cols-grep.sh contains the following
code snippet that skips any records that contain two consecutive commas, which indicate a
missing value for a feature:

cat $input |grep -v ̎,,̎ > $output
Although the awk command is more powerful than grep, sometimes you can per-

form the same task with less (and more intuitive) code using the grep command.
Hence, it’s worthwhile for you to gain proficiency in grep, sed, and awk so that you
can create shell scripts that are clear, concise, and can also be enhanced (or debugged)
with less effort.

Moreover, you can take advantage of the power of grep, sed, and awk to perform
pre-processing on datasets before you perform data cleaning tasks using utilities such
as Pandas.

WORKING WITH MULTI-LINE RECORDS IN AWK

Listing 6.45 displays the content of employee.txt and Listing 6.46 displays the con-
tent of Employees.sh that illustrates how to concatenate text lines in a file.

Listing 6.45: employees.txt

Name: Jane Edwards
EmpId: 12345
Address: 123 Main Street Chicago Illinois

Name: John Smith
EmpId: 23456
Address: 432 Lombard Avenue SF California

172 • Bash for Data Scientists

Listing 6.46: employees.sh

inputfile=̎employees.txt̎
outputfile=̎employees2.txt̎

awk ̍
{
 if($0 ~ /^Name:/) {
 x = substr($0,8) ̎,̎
 next
 }

 if($0 ~ /^Empid:/) {
 #skip the Empid data row
 #x = x substr($0,7) ̎,̎
 next
 }

 if($0 ~ /^Address:/) {
 x = x substr($0,9)
 print x
 }
}
̍ < $inputfile > $outputfile

The output from launching the code in Listing 6.46 is here:
Jane Edwards, 123 Main Street Chicago Illinois
John Smith, 432 Lombard Avenue SF California

Now that you have seen a plethora of awk code snippets and shell scripts containing the
awk command that illustrate various type of tasks that you can perform on files and datasets,
you are ready for some uses cases. The next section (which is the first use case) shows you
how to replace multiple field delimiters with a single delimiter, and the second use case
shows you how to manipulate date strings.

A SIMPLE USE CASE

The code sample in this section shows you how to use the awk command to split the
comma-separated fields in the rows of a dataset, where fields can contain nested quotes of
arbitrary depth.

Listing 6.47 displays the content of the file quotes3.csv that contains a “,” delimiter
and multiple quoted fields.

Processing Datasets with awk • 173

Listing 6.47: quotes3.csv

field5,field4,field3,̎field2,foo,bar̎,field1,field6,field7,̎fieldZ̎
fname1,̎fname2,other,stuff̎,fname3,̎fname4,foo,bar̎,fname5
̎lname1,a,b̎,̎lname2,c,d̎,̎lname3,e,f̎,̎lname4,foo,bar̎,lname5

Listing 6.48 displays the content of the file delim1.sh that illustrates how to replace
the delimiters in quotes3.csv with a “,” character.

Listing 6.48: delim1.sh

#inputfile=̎quotes1.csv̎
#inputfile=̎quotes2.csv̎
inputfile=̎quotes3.csv̎

grep -v ̎^$̎ $inputfile | awk ̍
{
 print ̎LINE #̎ NR ̎: ̎ $0
 printf (̎-------------------------\n̎)
 for (i = 0; ++i <= NF;)
 printf ̎field #%d : %s\n̎, i, $i
 printf (̎\n̎)
}’ FPAT=’([^,]+)|(“[^”]+”)’ < $inputfile

The output from launching the shell script in Listing 6.48 is here:
LINE #1: field5,field4,field3,̎field2,foo,bar̎,field1,field6,field7,

̎fieldZ̎

field #1 : field5
field #2 : field4
field #3 : field3
field #4 : ̎field2,foo,bar̎
field #5 : field1
field #6 : field6
field #7 : field7
field #8 : ̎fieldZ̎

LINE #2: fname1,̎fname2,other,stuff̎,fname3,̎fname4,foo,bar̎,
fname5

field #1 : fname1
field #2 : ̎fname2,other,stuff̎
field #3 : fname3
field #4 : ̎fname4,foo,bar̎
field #5 : fname5

174 • Bash for Data Scientists

LINE #3: ̎lname1,a,b̎,̎lname2,c,d̎,̎lname3,e,f̎,̎lname4,foo,bar̎,
lname5

field #1 : ̎lname1,a,b̎
field #2 : ̎lname2,c,d̎
field #3 : ̎lname3,e,f̎
field #4 : ̎lname4,foo,bar̎
field #5 : lname5

LINE #4: ̎Outer1 ̎Inner ̎Inner ̎Inner C̎ B̎ A̎ Outer1̎,̎XYZ1,c,
d̎,̎XYZ2lname3,e,f̎

field #1 : ̎Outer1 ̎Inner ̎Inner ̎Inner C̎ B̎ A̎ Outer1̎
field #2 : ̎XYZ1,c,d̎
field #3 : ̎XYZ2lname3,e,f̎

LINE #5:

As you can see, the task in this section is very easily solved via the awk command.

ANOTHER USE CASE

The code sample in this section shows you how to use the awk command to reformat
the date field in a dataset and change the order of the fields in the new dataset. For example,
given the following input line in the original dataset,
Jane,Smith,20140805234658

the reformatted line in the output dataset has this format:
2014-08-05 23:46:58,Jane,Smith

Listing 6.49 displays the content of the file dates2.csv that contains a “,” delimiter
and three fields.

Listing 6.49: dates2.csv

Jane,Smith,20140805234658
Jack,Jones,20170805234652
Dave,Stone,20160805234655
John,Smith,20130805234646
Jean,Davis,20140805234649
Thad,Smith,20150805234637
Jack,Pruit,20160805234638

Listing 6.50 displays the content of string2date2.sh that converts the date field to
a new format and shifts the new date to the first field.

Processing Datasets with awk • 175

Listing 6.50: string2date2.sh

inputfile=̎dates2.csv̎
outputfile=̎formatteddates2.csv̎

rm -f $outputfile; touch $outputfile

for line in `cat $inputfile`
do
 fname=`echo $line | cut -d̎,̎ -f1`
 lname=`echo $line | cut -d̎,̎ -f2`
 date1=`echo $line | cut -d̎,̎ -f3`

 # convert to new date format
 newdate=̍echo $date1 | awk ̍{ print substr($0,1,4)̎-

̎substr($0,5,2)̎-̎substr($0,7,2)̎ ̎substr($0,9,2)̎:̎substr($
0,11,2)̎:̎substr($0,13,2)}̍̍

 # append newly formatted row to output file
 echo ̎${newdate},${fname},${lname}̎ >> $outputfile
done

Listing 6.50 initializes the inputfile and outputfile variables with the names of the
two CSV files. The next code snippet removes those files, thereby ensuring that they are
empty. The next portion of Listing 6.50 contains a for loop that iterates through the rows
in the input file, and initializes the variables fname, lname, and date1 with the contents
of the first, second, and third fields, respectively, of each input line.

The next code block constructs the variable newdate via an awk statement that extracts
the appropriate contents of each input row using the substr() function. The final por-
tion of Listing 6.50 appends a new string to the outputfile that consists of the comma-
separated values of newdate, fname, and lname. Launch Listing 6.50 and you will see the
following output:
2014-08-05 23:46:58,Jane,Smith
2017-08-05 23:46:52,Jack,Jones
2016-08-05 23:46:55,Dave,Stone
2013-08-05 23:46:46,John,Smith
2014-08-05 23:46:49,Jean,Davis
2015-08-05 23:46:37,Thad,Smith
2016-08-05 23:46:38,Jack,Pruit

176 • Bash for Data Scientists

A DATASET WITH 1,000,000 ROWS

The code samples in this section shows you how to use awk to perform various compari-
sons on a dataset that contains 1,000,000 rows.

Numeric Comparisons
The code snippets in this section illustrate how to check for a specific number (e.g., 58)

and the occurrence of one, two, or three adjacent digits in the first field of each row.
Listing 6.51 displays the content numeric_comparisons.sh that shows you how to

work with a dataset that contains 1,000,000 rows.

Listing 6.51: numeric_comparisons.sh

filename=̎1000000_HRA_Records.csv̎

echo ̎first:̎
awk -F̎,̎ ̍{ if($1 > 50) { print $1 } }̍ < $filename | wc
echo

echo ̎second:̎
awk -F̎,̎ ̍{ if($1 > 50 && $5 > 70) { print $4 } }̍ < $filename |

wc

Listing 6.51 initializes the variable filename with a CSV filename, followed by an awk
statement that counts the number of rows in which the first field is greater than 50.

The second and final awk statement counts the number of rows whose first field is greater
than 50 and whose fifth field is greater than 70. Launch the code in Listing 6.48 and you will
see the following output:
first:
 232161 232161 696484

second:
 232161 232161 696484

third:
 232161 232161 1011843

Counting Adjacent Digits
The code snippet in this section illustrates how to check for a specific number (e.g., 58)

and the occurrence of one, two, or three adjacent digits in the first field of each row.

Listing 6.52: adjacent_digits.sh

filename=̎1000000_HRA_Records.csv̎

echo ̎first:̎
awk -F̎,̎ ̍{ if($1 ~ /58/) { print $1} }̍ < $filename |wc

Processing Datasets with awk • 177

echo

echo ̎second:̎
awk -F̎,̎ ̍{ if($1 ~ /[0-9]/) { print $1} }̍ <$filename |wc
echo

echo ̎third:̎
awk -F̎,̎ ̍{ if($1 ~ /[0-9][0-9]/) { print $1} }̍ < $filename |wc
echo

echo ̎fourth:̎
awk -F̎,̎ ̍{ if($1 ~ /[0-9][0-9][0-9]/) { print $1} }̍ < $filename

|wc

Listing 6.52 initializes the variable filename with a CSV filename, followed by three
awk statements. The first awk statement counts the number of rows whose first field
contains the string 58. The second awk statement counts the number of rows whose first
field contains a digit, and the third awk statement counts the number of rows whose first
field contains three consecutive digits. Launch the code in Listing 6.52 and you will see
the following output:
first:
 23199 23199 69597

second:
 1000000 1000000 3000000

third:
 1000000 1000000 3000000

fourth:
 0 0 0

Average Support Rate
The code snippet in this section illustrates how to check for a specific number (e.g., 58)

and the occurrence of one, two, or three adjacent digits in the first field of each row.

Listing 6.53: average_rate.sh

filename=̎1000000_HRA_Records.csv̎

awk -F̎,̎ ̍
BEGIN { total = 0; num_records = 0 }
{
 if($1 > 40 && $5 == ̎Support̎) {
 total += $4

178 • Bash for Data Scientists

 num_records += 1
 }
}
END {
 avg_rate = total/num_records
 print ̎Number of Records: ̎,num_records
 print ̎Average Support Rate:̎,avg_rate
}
̍ < $filename

Listing 6.53 initializes the variable filename with a CSV filename, followed by an awk
statement that calculates the total value in the fourth field of the rows whose first field is
greater than 40 and whose fifth field equals the string Support.

The final portion of Listing 6.53 calculates the avg_rate, which is the total value divided
by the number of matching rows. Next, the avg_rate and num_records are displayed.
Launch the code in Listing 6.53 and you will see the following output:
Number of Records: 77482
Minimum Rate: 100
Maximum Rate: 1500
Average Support Rate: 798.935

SUMMARY

This chapter introduced the awk command, which is essentially an entire programming
language packaged into a single Unix command.

We explored some of its built-in variables, as well as conditional logic, while loops,
and for loops in awk, to manipulate the rows and columns in datasets. You then saw how
to delete lines and merge lines in datasets, and how to print the contents of a file as a single
line of text.

Next, you learned how to use metacharacters and character sets in awk commands. You
learned how to perform numeric calculations (such as addition, subtraction, multiplication,
and division) in files containing numeric data, as well as some numeric functions.

In addition, you saw how to align columns in a dataset, delete columns, select a subset of
columns from a dataset, and work with multi-line records in datasets. Finally, you saw some
simple use cases involving nested quotes and date formats in a structured dataset.

At this point, you have all the tools necessary to do sophisticated data cleansing and pro-
cessing. You should try to apply them to some task or problem of interest. The final step of
the learning process is using the tools to solve real problems.

CHAPTER 7
PROCESSING DATASETS (PANDAS)

This chapter shows you how to clean data, which includes missing data, incorrect
data, and duplicate data.

The first part of this chapter contains several Pandas code samples that use Pandas
to read CSV files and then calculate statistical values such as the mean, median, mode, and
standard deviation.

The second part of this chapter uses Pandas to handle missing values in CSV files, starting
with CSV files that contain a single column, followed by two-column CSV files. These code
samples will prepare you to work with multi-column CSV files, such as the custom bmi.csv
file and Titanic titanic.csv file.

After you have completed this chapter, you will be ready to learn how to “split” CSV files
into subregions that are then processed via classification algorithms, such as kNN, decision
trees, and random forests.

PREREQUISITES FOR THIS CHAPTER

This chapter contains a mixture of Python-based code samples and an awk-based shell
script. All the code samples are straightforward, and if you can follow the Pandas and awk-
based code samples in Chapter 1, then you will most likely be able to understand the code
samples in this chapter.

This chapter requires basic knowledge of Python and Pandas, such as creating Pandas
data frames, as well as reading and writing CSV files. Knowledge of the awk programming
language is required for three shell scripts that invoke the awk command if you decide to
read those code samples.

In addition, the following list contains all the import statements that you will encounter
in the Python code samples for this chapter:

• from imblearn.over_sampling import SMOTE
• from scipy import stats

180 • Bash for Data Scientists

• from sklearn.covariance import EllipticEnvelope
• from sklearn.linear_model import LogisticRegression
• from sklearn.metrics import confusion_matrix
• from sklearn.metrics import classification_report
• from sklearn.model_selection import train_test_split
• import numpy as np
• import pandas as pd
• import random

ANALYZING MISSING DATA

This section contains subsections that describes types of missing data, common causes
of missing data, and various ways to input values for missing data. Keep in mind that outlier
detection, fraud detection, and anomaly detection pertain to existing data that is problem-
atic, with varying degrees of severity.

By contrast, missing data presents a different type of issue that raises the following ques-
tion: what can you do about the missing values? Is it better to discard data points (e.g., rows
in a CSV file) with missing values or is it better to estimate reasonable values as a replace-
ment for the missing values? Missing data can adversely affect a thorough analysis of a data-
set, whereas erroneous data can increase bias and uncertainty.

At this point, you’ve undoubtedly realized that a single solution does not exist for every
dataset: you need to perform an analysis on a case-by-case basis, after you have learned some
of the techniques that might help you effectively address missing data values.

Causes of Missing Data
There are various reasons for missing values in a dataset, some of which are listed here:

• values are unavailable
• values were improperly collected
• inaccurate data entry

Although you might be tempted to always replace a missing value with a concrete value,
there are situations in which you cannot determine a value. As a simple example, a survey that
contains questions for people under 30 will have a missing value for respondents who are over
30, and in this case, specifying a value for the missing value would be incorrect. With these
details in mind, there are various ways to fill missing values, some of which are listed here:

• remove row with a high percentage of missing values (50% or larger)
• one-hot encoding for categorical data
• handling data inconsistency
• use the Imputer class from the scikit-learn library
• fill missing values with the value in an adjacent row
• replace missing data with the mean/median/mode value
• infer (“impute”) the value for missing data
• delete rows with missing data

Processing Datasets (Pandas) • 181

Once again, the technique that you select for filling missing values is influenced by vari-
ous factors, such as

• how you want to process the data
• the type of data involved
• the cause of missing values (see above)

Although the most common technique involves the mean value for numeric features,
someone needs to determine which technique is appropriate for a given feature.

However, if you are not confident that you can impute a reasonable value, consider delet-
ing the row with a missing value, and then train a model with the imputed value and deleted
row.

One problem that can arise after removing rows with missing values is that the resulting
dataset is too small. In this case, consider using SMOTE (Synthetic Minority Oversampling
Technique), which is discussed later in this chapter to generate synthetic data.

PANDAS, CSV FILES, AND MISSING DATA

This section contains several subsections with Python-based code samples that create
Pandas data frames and then replace missing values in the data frames. First, we’ll look at
small CSV files with one column and then we’ll look at small CSV files with two columns.
Later, we’ll look at skewed CSV files as well as multi-row CSV files.

Single Column CSV Files

Listing 7.1 displays the content of the CSV file one_char_column1.csv, and Listing
7.2 displays the content of one_char_column1.py that fills in the missing values in the
CSV file.

Listing 7.1: one_char_column1.csv

gender
Male
Male
NaN
Female
Male

Listing 7.2: one_char_column1.py

import pandas as pd

df1 = pd.read_csv(̍one_char_column1.csv̍)

print(̎=> initial dataframe contents:̎)
print(df1)
print()

df = df1.fillna(̎FEMALE̎)

182 • Bash for Data Scientists

print(̎dataframe after fillna():̎)
print(df)
print()

Listing 7.2 starts with two import statements and then initializes the Pandas data frame
df1 with the content of one_char_column1.csv, after which its contents are displayed.
The next code block invokes the fillna() method to replace the missing values with the
string FEMALE. Launch the code in Listing 7.2 and you will see the following output:
=> initial dataframe contents:
 gender
0 Male
1 Male
2 NaN
3 Female
4 Male

dataframe after fillna():
 gender
0 Male
1 Male
2 FEMALE
3 Female
4 Male

Listing 7.3 displays the content of the CSV file one_char_column2.csv, and Listing
7.4 displays the content of one_char_column2.py that fills in the missing values in the
CSV file.

Listing 7.3: one_char_column2.csv

gender
Male
Male
Null
Female
Male

Listing 7.4: one_char_column2.py

import pandas as pd

df1 = pd.read_csv(̍one_char_column1.csv̍)

print(̎=> initial dataframe contents:̎)
print(df1)
print()

Processing Datasets (Pandas) • 183

df = df1.fillna(̎FEMALE̎)
print(̎dataframe after fillna():̎)
print(df)
print()

Listing 7.4 starts with two import statements and then initializes the Pandas data frame
df1 with the content of one_char_column1.csv, after which its contents are displayed.
The next code block invokes the fillna() method to replace the missing values with the
string FEMALE. Launch the code in Listing 7.4 and you will see the following output:
=> initial dataframe contents:
 gender
0 Male
1 Male
2 Null
3 Female
4 Male

df after fillna():
 gender
0 Male
1 Male
2 Null
3 Female
4 Male

gender mode: Male

=> first mapped dataframe:
 gender
0 Male
1 Male
2 Female
3 NaN
4 Male

=> second mapped dataframe:
 gender
0 Male
1 Male
2 Female
3 Female
4 Male

184 • Bash for Data Scientists

Listing 7.5 displays the content of the CSV file one_numeric_column.csv, and List-
ing 7.6 displays the content of one_numeric_column.py that fills in the missing values
in the CSV file.

Listing 7.5: one_numeric_column.csv

age
19
np.nan
16
NaN
17

Listing 7.6: one_numeric_column.py

import pandas as pd
import numpy as np

df1 = pd.read_csv(̍one_numeric_column.csv̍)
df2 = df1.copy()
print(̎=> initial dataframe contents:̎)
print(df1)
print()

maxval = 12345
df1[̍age̍] = df1[̍age̍].map({̍np.nan̍ : maxval})
print(̎=> dataframe after map():̎)
print(df1)
print()

refresh contents of df1:
df1 = df2
df1[̍age̍] = df1[̍age̍].fillna(maxval)
print(̎=> refreshed dataframe after fillna():̎)
print(df1)
print()

df1 = df1.fillna(777)
print(̎dataframe after second fillna():̎)
print(df1)
print()

#print(df1.describe())
error due to np.nan value:
#df1[̍age̍].astype(int)

Processing Datasets (Pandas) • 185

cols = df1.select_dtypes(np.number).columns
df1[cols] = df1[cols].fillna(9876)
print(̎df1 after third fillna():̎)
print(df1)
print()

=> this code block works:
#df1 = df1.replace(̍np.nan̍, 9876)
df1 = df1.replace({̍np.nan̍: 9876})
print(̎df1 after replace():̎)
print(df1)
print()

Listing 7.6 starts with two import statements and then initializes the Pandas data frame
df1 with the content of one_numeric_column.csv, after which its contents are dis-
played. The next code block invokes the fillna() method to replace the missing values with
the string FEMALE. Launch the code in Listing 7.6 and you will see the following output:
=> initial dataframe contents:
 age
0 19
1 np.nan
2 16
3 NaN
4 17

=> dataframe after map():
 age
0 NaN
1 12345.0
2 NaN
3 NaN
4 NaN

=> refreshed dataframe after fillna():
 age
0 19
1 np.nan
2 16
3 12345
4 17

dataframe after second fillna():
 age

186 • Bash for Data Scientists

0 19
1 np.nan
2 16
3 12345
4 17

df1 after third fillna():
 age
0 19
1 np.nan
2 16
3 12345
4 17

df1 after replace():
 age
0 19
1 9876
2 16
3 12345
4 17

Two Column CSV Files

Listing 7.7 displays the content of the CSV file two_columns.csv, and Listing 7.8
displays the content of two_columns.py that fills in the missing values in the CSV file.

Listing 7.7: two_columns.csv

gender,age
Male,19
Male,np.nan
NaN,16
Female,NaN
Male,17

Listing 7.8: two_columns.py

import pandas as pd

df1 = pd.read_csv(̍two_columns.csv̍)

print(̎=> initial dataframe contents:̎)
print(df1)
print()

Processing Datasets (Pandas) • 187

df1 = df1.fillna(̎MISSING̎)
print(̎dataframe after fillna():̎)
print(df1)
print()

df1 = df1.replace({̍np.nan̍: 99})
print(̎dataframe after replace():̎)
print(df1)
print()

Listing 7.8 starts with two import statements and then initializes the Pandas data frame
df1 with the content of two_columns.csv, after which its contents are displayed. The
next code block invokes the fillna() method to replace the missing values with the string
FEMALE. Launch the code in Listing 7.8 and you will see the following output:
=> initial dataframe contents:
 gender age
0 Male 19
1 Male np.nan
2 NaN 16
3 Female NaN
4 Male 17

dataframe after fillna():
 gender age
0 Male 19
1 Male np.nan
2 MISSING 16
3 Female MISSING
4 Male 17

dataframe after replace():
 gender age
0 Male 19
1 Male 99
2 MISSING 16
3 Female MISSING
4 Male 17

Listing 7.9 displays the content of the CSV file two_columns2.csv, and Listing 7.10
displays the content of two_columns2.py that fills in the missing values in the CSV file.

Listing 7.9: two_columns2.csv

gender,age
Male,19

188 • Bash for Data Scientists

Male,NaN
NaN,16
Female,18
Male,17

Listing 7.10: two_columns2.py

import pandas as pd

df1 = pd.read_csv(̍two_columns2.csv̍)
df2 = df1.copy()

print(̎=> initial dataframe contents:̎)
print(df1)
print()

calculates the mean value on the
̍age̍ column and skips NaN values:
full_avg = df1.mean()
print(̎full_avg:̎)
print(full_avg)
print()

avg = df1[̍age̍].mean()
print(̎average age:̎,avg)
print()

#WRONG: *all* values are updated:
df1[̍age̍] = df1[̍age̍].mean()
print(̎updated all with same avg:̎)
print(df1)
print()

refresh contents of df1:
df1 = df2

fillna() replaces NaN with avg:
df1[̍age̍] = df1[̍age̍].fillna(avg)
print(̎updated age NaN with avg:̎)
print(df1)
print()

#this does not replace NaN with avg:
#df1 = df1.replace({̍NaN̍: avg})

Processing Datasets (Pandas) • 189

mode = df1[̍gender̍].mode()[0]
print(̎mode:̎,mode)

df1[̍gender̍] = df1[̍gender̍].fillna(mode)
print(̎updated gender NaN with mode:̎)
print(df1)
print()

Listing 7.10 starts with two import statements and then initializes the Pandas data frame
df1 with the content of two_columns2.csv, after which its contents are displayed. The
next code block invokes the fillna() method to replace the missing values with the string
FEMALE. Launch the code in Listing 7.10 and you will see the following output:
=> initial dataframe contents:
 gender age
0 Male 19.0
1 Male NaN
2 NaN 16.0
3 Female 18.0
4 Male 17.0

full_avg:
age 17.5
dtype: float64

average age: 17.5

updated all with same avg:
 gender age
0 Male 17.5
1 Male 17.5
2 NaN 17.5
3 Female 17.5
4 Male 17.5

updated age NaN with avg:
 gender age
0 Male 19.0
1 Male 17.5
2 NaN 16.0
3 Female 18.0
4 Male 17.0

190 • Bash for Data Scientists

mode: Male
updated gender NaN with mode:
 gender age
0 Male 19.0
1 Male 17.5
2 Male 16.0
3 Female 18.0
4 Male 17.0

MISSING DATA AND IMPUTATION

In general, data cleaning involves one or more of the following tasks, which are specific
to each dataset:

• Counting missing data values
• Removing/dropping redundant columns
• Assigning values to missing data
• Removing duplicate values
• Checking for incorrect values
• Ensuring uniformity of data
• Using the Imputer class (to fill with the mean, median, and most_frequent)

In addition, you can assign previous/next value to missing values using the following tech-
niques:

• Random Value Imputation
• Multiple Imputation
• Matching and Hot Deck Imputation

Perform an online search for articles that contain details regarding any of the preceding
techniques.

Counting Missing Data Values

Listing 7.11 displays the content of missing_values2.py that illustrates how to
count the missing data values in a Pandas data frame.

Listing 7.11: missing_values2.py

import pandas as pd
import numpy as np

̎̎̎
Count NaN values in one column:
df[̍column name̍].isna().sum()

Count NaN values in an entire data frame:
df.isna().sum().sum()

Processing Datasets (Pandas) • 191

Count NaN values in one row:
df.loc[[index value]].isna().sum().sum()
̎̎̎

data = {̍column1̍: [100,250,300,450,500,np.nan,650,700,np.nan],
 ̍column2̍: [̍X̍,̍Y̍,np.nan,np.nan,̍Z̍,̍A̍,̍B̍,np.nan,np.

nan],
 ̍column3̍:[̍XX̍,np.nan,̍YY̍,̍ZZ̍,np.nan,np.nan,̍AA̍,np.

nan,np.nan]
 }

df = pd.DataFrame(data,columns=[̍column1̍,̍column2̍,̍column3̍])
print(̎dataframe:̎)
print(df)

print(̎Missing values in ̍column1̍:̎)
print(df[̍column1̍].isna().sum())

print(̎Total number of missing values:̎)
print(df.isna().sum().sum())

print(̎Number of missing values for row index 7 (= row #8):̎)
print(df.loc[[7]].isna().sum().sum())

Listing 7.11 starts with two import statements and a comment block that explains the
purpose of several Pandas methods pertaining to the sums of values and the isna() method
for finding the NaN values in a dataset.

The next portion of Listing 7.11 initializes a dictionary with three arrays of values that
are used to initialize the Pandas data frame df. Next, the missing values in column 1 are
displayed, followed by the number of missing values in every column of df. The final code
block displays the number of missing values for the row whose index is 7. Launch the code
in Listing 7.11 and you will see the following output:
dataframe:
 column1 column2 column3
0 100.0 X XX
1 250.0 Y NaN
2 300.0 NaN YY
3 450.0 NaN ZZ
4 500.0 Z NaN
5 NaN A NaN
6 650.0 B AA
7 700.0 NaN NaN
8 NaN NaN NaN

192 • Bash for Data Scientists

Missing values in ̍column1̍:
2
Total number of missing values:
11
Number of missing values for row index 7 (= row #8):
2

The following site has additional Python code samples for data cleaning:
https://lvngd.com/blog/data-cleaning-with-python-pandas/

Drop Redundant Columns

Listing 7.12 displays the content of drop_columns.py that illustrates how to remove
redundant columns from a Pandas data frame.

Listing 7.12: drop_columns.py

import pandas as pd

specify a valid CSV file here:
df1 = pd.read_csv(̎my_csv_file.csv̎) # <= specify your own CSV

file

remove redundant columns:
df2 = df1.drop([̍url̍],axis=1)

remove columns with over 50% missing values
df3 = df2.dropna(thresh=half_count,axis=1)

Listing 7.12 initializes the Pandas data frame df1 with the content of the CSV file my_
csv_file.csv, and then initializes the Pandas data frame df2 with the contents of df1,
and then drops the column url, or some other column that exists in your CSV file. Finally,
the Pandas data frame df3 is initialized with the content of Pandas data frame df2, after
which columns are dropped if they have more than 50% missing values.

Remove Duplicate Rows
Data deduplication refers to the task of removing row-level duplicate data values. Listing

7.13 displays the content of duplicates.csv, and Listing 7.14 displays the content of
duplicates.sh that removes the duplicate rows and creates the CSV file no_dupli-
cates.csv that contains unique rows.

Listing 7.13: duplicates.csv

Male,19,190,0
Male,19,190,0
Male,15,180,0
Male,15,180,0
Female,16,150,0

Processing Datasets (Pandas) • 193

Female,16,150,0
Female,17,170,0
Female,17,170,0
Male,19,160,0
Male,19,160,0

Listing 7.14: remove-duplicates.sh

filename1=̎duplicates.csv̎
filename2=̎no_duplicates.csv̎

cat $filename1 | sort |uniq > $filename2

Listing 7.14 is straightforward: after initializing the variables filename1 and filename2
with the names of the input and output files, respectively, the only remaining code snippet
contains a Unix pipe (“|”) with a sequence of commands. The left-most command displays
the contents of the input file, which is redirected to the sort command that sorts the input
rows. The result of the sort command is redirected to the uniq command, which removes
duplicates rows, and this result set is redirected to the file specified in the variable file-
name2.

The sort command must be followed by the uniq command: this is how the uniq
command can remove adjacent duplicate rows. Launch the code in Listing 7.14 and you will
see the output that is displayed in Listing 7.15.

Listing 7.15: no_duplicates.csv

Male,19,190,0
Female,16,150,0
Female,17,170,0
Male,15,180,0
Male,19,160,0
Male,19,190,0
Male,19,190,0

Display Duplicate Rows
The preceding example shows you how to find the unique rows, and the code sample in

Listing 7.16 in this section shows you how to find the duplicate rows.

Listing 7.16: find-duplicates.sh

filename1=̎duplicates.csv̎
sorted=̎sorted.csv̎
unique=̎unique.csv̎
multiple=̎multiple.csv̎

sorted rows:
cat $filename1 | sort > $sorted

194 • Bash for Data Scientists

unique rows:
cat $sorted | uniq > $unique

duplicates rows:
diff -u $sorted $unique |sed -e ̍1,3d̍ -e ̍s/^ //̍ -e ̍s/-//̍ >

$multiple

Listing 7.16 starts by initializing several scalar variables as filenames that will contain
CSV-based data. The remaining portion of Listing 7.16 consists of two statements with the
cat command and another statement with the diff command, which populates the follow-
ing three CSV files with data:
sorted.csv
unique.csv
multiple.csv

The first cat command pipes the content of duplicates.csv to the sort com-
mand, that in turn populates the CSV file sorted.csv, which contains the sorted set of
rows from duplicates.csv. In addition, the duplicate rows (if any) in sorted.csv will
appear as consecutive rows in sorted.csv.

The second cat command pipes the contents of sorted.csv to the uniq command
that in turn populates unique.csv with the unique rows from sorted.csv so that the
rows in the file unique.csv are unique.

Finally, the diff command highlights the differences in the content of sorted.csv
and unique.csv. The output of the diff command is input for the sed command, which
does three things:

• Remove the first three text lines from its input
• Remove an initial space character from its input
• Remove an initial hyphen (-) character from its input

After the sed command has completed, the output is redirected to the file $multiple,
which contains duplicate rows. Launch the code in Listing 7.17 to see the content of mul-
tiple.csv:
Female,16,150,0
Female,16,150,0
Female,17,170,0
Female,17,170,0
Male,15,180,0
Male,15,180,0
Male,19,160,0
Male,19,160,0
Male,19,190,0
Male,19,190,0

Processing Datasets (Pandas) • 195

Uniformity of Data Values
An example of the uniformity of data involves verifying that the data in a given

feature contains the same units measure. For example, the following three items have
numeric values with different units of measure, so they need to be updated in order to
have the same unit of measure (either kph or mph or some other unit of measure that
you specify):
50mph
50kph
100mph
20kph

Listing 7.18 displays the content of same_units.sh that illustrates how to ensure that
the values in a set of strings have the same unit of measure.

Listing 7.18: same_units.sh

strings=̎120kph 100mph 50kph̎
new_unit=̎fps̎

for x in ̍echo $strings̍
do
 number=̍echo $x | tr -d [a-z][A-Z]̍
 unit=̍echo $x | tr -d [0-9][0-9]̍
 echo ̎initial: $x̎
 new_num=̎${number}${new_unit}̎
 echo ̎new_num: $new_num̎
 echo
done

Listing 7.18 starts by initializing the variables strings and new_unit, followed by a
for loop that iterates through each string in the strings variable. During each iteration,
the variables number and unit are initialized with the characters and digits, respectively,
in the current string represented by the loop variable x.

Next, the variable new_num is initialized as the concatenation of the contents of
number and new_unit. Launch the code in Listing 7.18 and you will see the follow-
ing output:
initial: 120kph
new_num: 120fps

initial: 100mph
new_num: 100fps

initial: 50kph
new_num: 50fps

196 • Bash for Data Scientists

Too Many Missing Data Values
Datasets with mostly N/A values, which is to say, 80% or more are N/A or NaN values,

are always daunting, but not necessarily hopeless. As a simple first step, you can drop rows
that contain N/A values, which might result in a loss of 99% of the data. A variation of the
preceding all-or-nothing step for handling datasets with a majority of N/A values is as follows:

• Use a kNN imputer to fill in missing values in high value columns
• Drop low priority columns that have > 50% missing values
• Use a KNN imputer (again) to fill in the remaining missing values
• Try using 3 or 5 as the # of nearest neighbors

The preceding sequence attempts to prune insignificant data to concentrate on recon-
structing the higher priority columns through data imputation. Of course, there is no guar-
anteed methodology for salvaging such a dataset, so you need some ingenuity as you experi-
ment with datasets containing highly limited data values. If the dataset is highly imbalanced,
consider oversampling before you drop columns and/or rows.

Categorical Data
Categorical values are usually discrete and can easily be encoded by specifying a number

for each category. If a category has n distinct values, then visualize the nxn identity matrix:
each row represents one of the distinct values.

This technique is called one-hot encoding, and you can use the OneHotEncoder class
in scikit-learn by specifying the dataset X and also the column index to perform one-
hot encoding:
from scikit-learn.preprocessing import OneHotEncoder
ohc = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()

Since each one hot encoded row contains one 1 and (n-1) zero values, this technique
is inefficient when n is large. Another technique involves the Pandas map() function that
replaces string values with a single column that contains numeric values. For example, the
following code block replaces Male and Female with 0 and 1, respectively:
values = {̍Male̍ : 0, ̍Female̍ : 1}
df[̍gender̍] = df[̍gender̍].map(values)

A variation of the preceding code is the following code block:
data[̍gender̍].replace(0, ̍Female̍,inplace=True)
data[̍gender̍].replace(1, ̍Male̍,inplace=True)

Another variation of the preceding code is this code block:
data[̍gender̍].replace([0,1],[̍Male̍,̍Female̍],inplace=True)

Keep in mind that the Pandas map() function converts invalid entries to NaN.

Data Inconsistency
Data inconsistency occurs when distinct values are supposed to be the same value, such

as “smith” and “SMITH” instead of “Smith.” Another example would be “YES,” “Yes,” “YS,”

Processing Datasets (Pandas) • 197

and “ys” instead of “yes.” In all cases except for “ys,” you can convert all the other strings to
lowercase, which replaces all the strings with smith or yes, respectively.

Alternatively, you can use the Python-based Fuzzy Wuzzy module if there are too many
distinct values to specify manually. This module identifies strings that are likely to be the
same by comparing two strings and generating a numeric value, such that values closer 100
are more likely to represent the same string.

Mean Value Imputation

Listing 7.19 displays the content of mean_imputation.py that shows you how to
replace missing values with the mean value of each feature.

Listing 7.19: mean_imputation.py

import numpy as np
import pandas as pd
import random

filename=̎titanic.csv̎
df = pd.read_csv(filename)

display null values:
print(̎=> Initial df.isnull().sum():̎)
print(df.isnull().sum())
print()

replace missing ages with mean value:
df[̍age̍] = df[̍age̍].fillna(df[̍age̍].mean())

̎̎̎
Or use median(), min(), or max():
df[̍age̍] = df[̍age̍].fillna(df[̍age̍].median())
df[̍age̍] = df[̍age̍].fillna(df[̍age̍].min())
df[̍age̍] = df[̍age̍].fillna(df[̍age̍].max())
̎̎̎

FILL MISSING DECK VALUES WITH THE mode():
mode = df[̍deck̍].mode()[0]
#df[̍deck̍] = df[̍deck̍].fillna(mode)

print(̎=> new age and deck values:̎)
print([df[[̍deck̍,̍age̍]]])

Listing 7.19 starts with several import statements and then populates the Pandas data
frame df with the contents of the CSV file titanic.csv. The next portion of Listing 7.19
displays the number of rows with null values, followed by setting the missing age values to

198 • Bash for Data Scientists

the mean of the existing age values. The following comment block shows you how to initialize
missing age values with the median, minimum, and maximum age values.

The next code snippet initializes the variable mode with the mode of the deck values,
which are chapter strings (which means that we cannot use the mean of the mode values).
Launch the code in Listing 7.19 and you will see the following output:
=> Initial df.isnull().sum():
survived 0
pclass 0
sex 0
age 177
sibsp 0
parch 0
fare 0
embarked 2
class 0
who 0
adult_male 0
deck 688
embark_town 2
alive 0
alone 0
dtype: int64

=> new age and deck values:
[deck age
0 C 22.000000
1 C 38.000000
2 C 26.000000
3 C 35.000000
4 C 35.000000
..
886 C 27.000000
887 B 19.000000
888 C 29.699118
889 C 26.000000
890 C 32.000000

[891 rows x 2 columns]]

Random Value Imputation
Random value imputation involves generating random values and using them to replace

null values. Listing 7.20 displays the content of random_imputation.py that shows
you how to replace missing values with random values that are selected from a given feature.

Processing Datasets (Pandas) • 199

Listing 7.20: random_imputation.py

import numpy as np
import pandas as pd
import random

filename=̎titanic.csv̎
df = pd.read_csv(filename)

display null values:
print(̎=> Initial df.isnull().sum():̎)
print(df.isnull().sum())
print()

replace missing ages with mean value:
df[̍age̍] = df[̍age̍].fillna(df[̍age̍].mean())

#Randomise missing column data
def randomize_deck(df2):
 df = df2.copy()
 data = df[̎deck̎]
 mask = data.isnull()
 samples = random.choices(data[~mask].values , k = mask.sum())
 data[mask] = samples
 return df

FILL MISSING DECK VALUES WITH RANDOM non-null values:
df = randomize_deck(df)

print(̎=> new age and deck values:̎)
print([df[[̍deck̍,̍age̍]]])

Listing 7.20 contains code that is similar to Listing 7.19, along with the user-defined
Python function randomize_deck() that invokes the choices() method (that exists
in the Python random class) to generate a set of random numbers and then replace null
values in the deck feature with those random values.

The next code snippet invokes the randomize_deck() function to update the data
frame df with non-null values, followed by a code snippet that displays the contents of the
deck and age features in the data frame df. Launch the code in Listing 7.20 and you will
see the following output:
=> Initial df.isnull().sum():
survived 0
pclass 0

200 • Bash for Data Scientists

sex 0
age 177
sibsp 0
parch 0
fare 0
embarked 2
class 0
who 0
adult_male 0
deck 688
embark_town 2
alive 0
alone 0
dtype: int64

=> new age and deck values:
[deck age
0 D 22.000000
1 C 38.000000
2 C 26.000000
3 C 35.000000
4 B 35.000000
..
886 E 27.000000
887 B 19.000000
888 D 29.699118
889 C 26.000000
890 E 32.000000

[891 rows x 2 columns]]
=> see warning message when this code is launched

Multiple Imputation
Instead of using the same inputed value to replace every missing value in a dataset,

another option involves replacing missing values with several imputed values.
As a simple example, multiple imputation can generate four imputed values for each

missing value in a dataset. These values would typically be slightly different from each other
in order to represent a certain degree of sampling variability.

Next, replace the missing values with a set of imputed values in order to generate a full
dataset. The final step involves performing an analysis on each dataset, after which the infer-
ences from each dataset can be combined. This technique is analogous to a random forest in
which predictions are made by combining the results of multiple trees.

Processing Datasets (Pandas) • 201

Matching and Hot Deck Imputation
Hot deck imputation is performed by randomly selecting another row that has similar

values on other variables and use its value in the row that contains missing values.
You can also impute values by using an existing value that appears in a similar data point,

which is one technique that is used recommendation systems.
For example, suppose that data collected for a data set involves estimating a risk factor for

each data point, where the risk is derived information from an associated document. How-
ever, the information might be insufficient to calculate an accurate risk value. One potential
solution involves finding the nearest neighbors to the new data point and then calculating the
average of the risk values in the nearest neighbors.

Is a Zero Value Valid or Invalid?
In general, replacing a missing numeric value with zero is a risky choice: this value is

obviously incorrect if the values of a feature are positive numbers between 1,000 and 5,000
(or some other range of positive numbers). For a feature that has numeric values, replacing
a missing value with the mean of existing values can be better than the value zero (unless the
average equals zero); also consider using the median value. For categorical data, consider
using the mode to replace a missing value.

There are situations where you can use the mean of existing values to impute missing
values but not the value zero, and vice versa. As a first example, suppose that an attribute
contains the height in centimeters of a set of persons. In this case, the mean could be a rea-
sonable imputation, whereas 0 suffers from

1. being an invalid value (nobody has height 0)
2. skewing statistical quantities, such as the mean and variance

You might be tempted to use the mean instead of 0 when the minimum allowable value
is a positive number, but use caution when working with highly imbalanced datasets. As a
second example, consider a small community of 50 residents where

1. 45 people have an average annual income of $50,000
2. 4 other residents have an annual income of $10,000,000
3. 1 resident has an unknown annual income

Although the preceding example might seem contrived, it’s likely that the median income
is preferable to the mean income, and certainly better than imputing a value of 0.

As a third example, suppose that a company generates weekly sales reports for multiple
office branches, and a new office has been opened but has yet to make any sales. In this case,
the use of the mean to impute missing values for this branch would produce fictitious results.
Hence, it makes sense to use the value 0 for all sales-related quantities, which will accurately
reflect the sales-related status of the new branch.

202 • Bash for Data Scientists

SKEWED DATASETS

This section contains three files: a skewed CSV file, a shell script to generate a single out-
put line, and another shell script that splits the preceding “one liner” into rows that contains
four columns.

Listing 7.21 displays the content of the CSV file skewed_four_columns.csv, List-
ing 7.22 displays the content of gen_one_line.sh, and Listing 7.23 displays the content
of skewed_four_columns.sh that generates output consisting of rows with an equal
number of columns.

Listing 7.21: skewed_four_columns.csv

survived,pclass,sex,age
0,3,male,22.0,
1,1,female,38.0,1,3,
female,26.0,1,1,female,35.0,
0,3,male,35.0,0,3,
male,23.0,0,1,male,54.0,0,3,male,2.0,1,3,female,27.0
1,2,
female,14.0,
1,3,female,4.0,
1,1,female,
58.0,
0,3,male,20.0,
0,3,
male,39.0,
0,3,female,14.0,
1,2,female,55.0,0,3,male,2.0,1,2,male,23.0,
0,3,female,31.0,

Listing 7.22: gen_one_line.sh

filename=̎skewed_four_columns.csv̎
cat $filename |sed ̎1d̎ | awk -F̎,̎ ̍{ printf(̎%s̎,$0) }̍

Listing 7.22 uses the sed command to delete the first line of its input, which is the
content of the CSV file. The output of the sed command is sent to the awk command,
which prints each input line without a line feed, thereby generating a one-line string of
the content of the CSV file. Launch the code in Listing 7.22 and you will see the fol-
lowing output:
0,3,male,22.0,1,1,female,38.0,1,3,female,26.0,1,1,female,35.0,0

,3,male,35.0,0,3,male,23.0,0,1,male,54.0,0,3,male,2.0,1,3,fe
male,27.01,2,female,14.0,1,3,female,4.0,1,1,female,58.0,0,3,
male,20.0,0,3,male,39.0,0,3,female,14.0,1,2,female,55.0,0,3,
male,2.0,1,2,male,23.0,0,3,female,31.0,

Processing Datasets (Pandas) • 203

Notice that the shell script gen_one_line.sh matches the initial portion of Listing
7.23 that is shown in bold, and that this shell script is not actually used in the solution for this
task. The purpose of showing you the output from gen_one_line.sh is to ensure that you
understand that its output is the input for the second awk command in Listing 7.22, which
contains the code that splits the input text into lines of text that contain four fields.

Listing 7.23: skewed_four_columns2.sh

filename=”skewed_four_columns.csv”
cat $filename |sed “1d” | awk -F”,” ‘{ printf(“%s”,$0) }’

 | awk -F̎,̎ ̍
BEGIN { colCount = 4 }
{
 for(i=1; i<=NF; i++) {
 printf(̎%s,̎, $i)
 #if(i < colCount) { printf(̎,̎)}
 if(i % colCount == 0) { printf(̎\n̎) }
 }
}
̍ | sed -e ̍s/,$//̍ -e ̍s/,$//̍

Listing 7.23 starts with the cat command that outputs the contents of the file speci-
fied in the variable filename, which becomes the input for the sed command that simply
deletes the first line (i.e., the header line).

The output from the sed command is the input for the first awk command that gener-
ates a one-line string by invoking the printf() statement that suppresses a line feed after
each input line. The output from the first awk command becomes the input for the second
awk command, that starts by initializing the variable colCount to 4, which is the number
of fields that we want to appear in each output row.

The body of the second awk command sequentially prints a field and a comma. When
four fields have been printed, a line feed is also printed, which is how we generate four fields
for every output row.

Finally, the output from the awk command generates a set of lines with a trailing comma
in each line, along with two consecutive commas in the final output. These extra commas are
removed with the following code snippet:
sed -e ̍s/,$//̍ -e ̍s/,$//̍

Launch the code in Listing 7.23 and you will see the following output:
0,3,male,22.0
1,1,female,38.0
1,3,female,26.0
1,1,female,35.0
0,3,male,35.0
0,3,male,23.0
0,1,male,54.0
0,3,male,2.0

204 • Bash for Data Scientists

1,3,female,27.01
2,female,14.0,1
3,female,4.0,1
1,female,58.0,0
3,male,20.0,0
3,male,39.0,0
3,female,14.0,1
2,female,55.0,0
3,male,2.0,1
2,male,23.0,0
3,female,31.0

CSV FILES WITH MULTI-ROW RECORDS

This section contains a CSV file with multi-row records such that each field is on a sepa-
rate line (e.g., survived:0) instead of comma-separated field values for each record.

The solution is surprisingly simple when we use awk: set RS equal to the string pattern
that separates records. In our case, we need to set RS equal to \n\n, after which $0 will
contain the contents of each multi-line record. In addition, specify FS=̍\n̍ so that get each
line is treated as a field (i.e., $1, $2, and so forth).

Listing 7.24 displays the content of the CSV file multi_line_rows.csv, and Listing
7.25 displays the content of multi_line_rows.sh.

Listing 7.24: multi_line_rows.csv

survived:0
pclass:3
sex:male
age:22.0

survived:1
pclass:1
sex:female
age:38.0

survived:0
pclass:3
sex:male
age:35.0

survived:1
pclass:3
sex:female
age:27.0

Processing Datasets (Pandas) • 205

Listing 7.25: multi_line_rows.sh

filename=̎multi_line_rows.csv̎

cat $filename | awk ̍
BEGIN { RS=̎\n\n̎; FS=̎\n̎ }
{
 # name/value pairs have this format:
 # survived:0 pclass:3 sex:male age:22.0
 split($1,arr,̎:̎); printf(̎%s,̎,arr[2]);
 split($2,arr,̎:̎); printf(̎%s,̎,arr[2]);
 split($3,arr,̎:̎); printf(̎%s,̎,arr[2]);
 split($4,arr,̎:̎); printf(̎%s\n̎,arr[2]);
}̍

The main idea in Listing 7.25 is shown in bold, which specifies the value of RS (record
separator) as two consecutive line feed characters and then specifies FS (field separator) as
a line feed character. The main block of code splits the fields $1, $2, $3, and $4 based on a
colon (“:”) separator, and then prints the second field, which is the actual data value.

Note that arr[1] contains the name of the fields, such as survived, pclass, sex,
or age, whereas arr[2] contains the value of the fields. Launch the code in Listing 7.25
and you will see the following output:
0,3,male,22.0
1,1,female,38.0
0,3,male,35.0
1,3,female,27.0

There is one more detail: Listing 7.25 does not display the header line with the names of
the fields. Listing 7.26 shows you how to modify Listing 7.25 to generate the header line.

Listing 7.26: multi_line_rows2.sh

filename=̎multi_line_rows.csv̎

cat $filename | awk ̍
BEGIN { RS=̎\n\n̎; FS=̎\n̎; count=0}
{
 if(count == 0) {
 count += 1
 split($1,arr,̎:̎); header = arr[1]
 split($2,arr,̎:̎); header = header ̎,̎ arr[1]
 split($3,arr,̎:̎); header = header ̎,̎ arr[1]
 split($4,arr,̎:̎); header = header ̎,̎ arr[1]
 print header
 }

206 • Bash for Data Scientists

 # name/value pairs have this format:
 # survived:0 pclass:3 sex:male age:22.0
 split($1,arr,̎:̎); printf(̎%s,̎,arr[2]);
 split($2,arr,̎:̎); printf(̎%s,̎,arr[2]);
 split($3,arr,̎:̎); printf(̎%s,̎,arr[2]);
 split($4,arr,̎:̎); printf(̎%s\n̎,arr[2]);
}̍

Listing 7.26 initializes the variable count with the value 0, followed by a conditional
block of code that constructs the contents of the variable header (which will contain the
names of the fields) by sequentially concatenating the field names. The contents of header
are printed, and since the value of count has been incremented, this block of code is exe-
cuted only once, which prevents the header line from being repeatedly displayed. Launch
the code in Listing 7.26 and you will see the following output:
survived,pclass,sex,age
0,3,male,22.0
1,1,female,38.0
0,3,male,35.0
1,3,female,27.0

Other variations of the preceding code are also possible, such as changing the display
order of the fields. Listing 7.27 displays the fields in reverse order: age, sex, pclass, and
survived.

Listing 7.27: multi_line_rows3.sh

filename=̎multi_line_rows.csv̎

cat $filename | awk ̍
BEGIN { RS=̎\n\n̎; FS=̎\n̎; count=0}
{
 # fields displayed in reverse order:
 if(count == 0) {
 count += 1
 split($4,arr,̎:̎); header = arr[1]
 split($3,arr,̎:̎); header = header ̎,̎ arr[1]
 split($2,arr,̎:̎); header = header ̎,̎ arr[1]
 split($1,arr,̎:̎); header = header ̎,̎ arr[1]
 print header
 }

 # name/value pairs have this format:
 # survived:0 pclass:3 sex:male age:22.0
 split($1,arr,̎:̎); survived = arr[2];

Processing Datasets (Pandas) • 207

 split($2,arr,̎:̎); pclass = arr[2];
 split($3,arr,̎:̎); sex = arr[2];
 split($4,arr,̎:̎); age = arr[2];

 # fields displayed in reverse order:
 printf(̎%s,%s,%s,%s\n̎,age, sex, pclass, survived)
}̍

Listing 7.27 contains a conditional block of code that constructs the contents of the vari-
able header by sequentially concatenating the field names in reverse order. The contents of
header are printed, and since the value of count has been incremented, this block of code
is executed only once, which prevents the header line from being repeatedly displayed.

The second block of code constructs an output string by initializing the variables sur-
vived, pclass, sex, and age, and then printing them in reverse order. Launch the code
in Listing 7.27 and you will see the following output:
age,sex,pclass,survived
22.0,male,3,0
38.0,female,1,1
35.0,male,3,0
27.0,female,3,1

COLUMN SUBSET AND ROW SUBRANGE OF THE TITANIC CSV FILE

At this point in the chapter, you have enough knowledge to create your own variations
with respect to the order in which the fields are displayed. Note that the CSV file contains
only a subset of the fields in the Titanic CSV file. As a final example for this section, List-
ing 7.28 displays a subset of the columns and a subrange of the rows in the Titanic dataset
consisting of the passengers who survived.

Listing 7.28: titanic-subrange.sh

filename=̎titanic.csv̎

cat $filename | awk -F̎,̎ ̍
BEGIN { start_row = 10; end_row=25; survived_count = 0
 print ̎=> The row range is from̎,start_row,̎to̎,end_row,̎\n̎
}
{
 if(count == 0) {
 count += 1
 header = $3 ̎,̎ $4 ̎,̎ $7
 print header
 }

208 • Bash for Data Scientists

 if(count >= start_row && count <= end_row) {
 if($1 ~ /1/) {
 survived_count += 1
 print $3 ̎,̎ $4 ̎,̎ $7
 }
 }
 count += 1
}
END { print ̎\n=> Number of survivors:̎,survived_count}
̍

Listing 7.28 starts by initializing some scalar variables that specify the start row number
as 10 and end row number as 25 and want to print the rows between the 10th row and the
25th row in the titanic.csv dataset. The first portion of the main body of code performs
a one-time display of the third, fourth, and seventh column headers.

The next portion of code is executed when count is between the start and end values
that were previously initialized. Moreover, the code increments the variable survived_
count if the first field equals one. Next, the variable count is incremented by 1 so that the
initial code block is not executed again. Launch the code in Listing 7.28 and you will see the
following output:
=> The row range is from 10 to 25

sex,age,fare
female,27.0,11.1333
female,14.0,30.0708
female,4.0,16.7
female,58.0,26.55
female,55.0,16.0
male,,13.0
female,,7.225
male,34.0,13.0
female,15.0,8.0292
male,28.0,35.5

=> Number of survivors: 10

Another way to solve this task involves a combination of the head and tail commands
to extract the range of lines from row 10 through row 25, as shown here:
cat $filename | head -26 | tail -15

However, the preceding code snippet does not retain the header row, so you need to
perform some further adjustments.

Processing Datasets (Pandas) • 209

DATA NORMALIZATION

Normalization is the process of scaling numeric columns in a dataset so that they have a
common scale. In addition, the scaling is performed as follows:

1. scaling values to the range [0,1]
2. without losing information
3. without distorting any differences that exist in the ranges of values.

You can perform data normalization via the function MinMaxScaler() in the Scikit-
Learn library.

Assigning Classes to Data

Listing 7.29 displays the content of product_prices.csv, and Listing 7.30 displays
the content of assign_classes.py that illustrates how to assign a class value to each
row in a dataset.

Listing 7.29: product_prices.csv

item,price
product1,100
product2,200
product3,250
product4,300
product5,400

Listing 7.30: assign_classes.py

import pandas as pd

df = pd.read_csv(̎product_prices.csv̎)
print(̎contents of df:̎)
print(df)
print()

define class ranges:
def class_value2(y):
 if y<=100:
 return ̍(1) 0 - 100̍
 elif y<=200:
 return ̍(2) 100 - 200̍
 elif y<=250:
 return ̍(3) 200 - 250̍
 else:
 return ̍(4) 250+̍

def class_value(y):

210 • Bash for Data Scientists

 if y<=100:
 return ̍1̍
 elif y<=200:
 return ̍2̍
 elif y<=250:
 return ̍3̍
 else:
 return ̍4̍

df[̍class1̍] = df[̍price̍].apply(class_value)
df[̍class2̍] = df[̍price̍].apply(class_value2)

print(̎contents of df:̎)
print(df)

Listing 7.30 initializes the Pandas data frame df with the contents of the CSV file prod-
uct_prices.csv (shown in Listing 7.29) and displays its contents.

The next portion of Listing 7.30 is the Python function class_value2 that returns a
string whose contents are a range of values that are based on the parameter y. For example,
if y is less than or equal to 100, the function returns the string (1) 0 - 100, and similar
strings for larger values of y.

The next portion of Listing 7.30 is the Python function class_value that returns a
string 1, 2, 3, or 4, depending on the parameter y. The last portion of Listing 7.30 initializes
the column class1 and class2 in df, respectively, by invoking the apply() method
with the Python functions class_value and class_value2. Launch the code in List-
ing 7.30 and you will see the following output:
contents of df:

 item price

0 product1 100

1 product2 200

2 product3 250

3 product4 300

4 product5 400

contents of df:

 item price class1 class2

0 product1 100 1 (1) 0 - 100

1 product2 200 2 (2) 100 - 200

Processing Datasets (Pandas) • 211

2 product3 250 3 (3) 200 - 250

3 product4 300 4 (4) 250+

4 product5 400 4 (4) 250+

Other Data Cleaning Tasks
As a quick review, here are additional tasks that belong to data cleaning that might be

relevant to a given dataset:

• detect outliers/anomalies
• resolve missing data
• resolve incorrect data
• resolve duplicate data
• remove hidden control characters (ex: \t, ^L, ^M)
• remove HTML tags (such as <div> and <a>)
• handle diacritical marks
• check for gaps in sequences of data
• check for unusual distributions
• examine the actual data instead of relying on documentation

DeepChecks and Data Validation
DeepChecks is a Python module that enables you to specify a set of rules to validate data

in a dataset:
https://deepchecks.com/
A DeepChecks suite contains one or more checks, where a check displays pass/fail output,

depending on the outcome of the check. Moreover, conditions can be added, modified, or
removed from a check, and similarly for each check in a suite. If you have written Java unit
tests, then DeepChecks might remind you of JUnit, which was written by Kent Beck, the
creator of the “Extreme Programming” methodology.

HANDLING CATEGORICAL DATA

A feature with categorical data can suffer from various issues, such as missing data, invalid
data, or inconsistently formatted data. The following section discusses examples of incon-
sistent categorical data followed by a section that discusses how to map categorical data to
numeric values.

Processing Inconsistent Categorical Data
This section contains examples of processing inconsistent data values. For features that

have very low cardinality, consider dropping those features, and similarly for numeric col-
umns with zero or very low variance.

Next, check the contents of categorical columns for inconsistent spellings or errors. For
example, suppose that a feature contains the values M and F (for male and female), along with
a mixture of gender-related strings, some of which are in the following list:

212 • Bash for Data Scientists

male
Male
female
Female
m
f
M
F

The preceding categorical values for gender can be replaced with two categorical values
(unless you have a valid reason to retain some of the other values). Moreover, if you are train-
ing a model whose analysis involves a single gender, then you need to determine which rows
(if any) of a dataset must be excluded. Also check categorical data columns for redundant or
missing whitespaces.

Check for data values that have multiple data types, such as a numerical column with
numbers as numerals and some numbers as strings or objects. Ensure there are consistent
data formats (such as integers or floating numbers) and that dates have the same format (for
example, do not mix a mm/dd/yyyy date format with another date format, such as dd/mm/
yyyy).

Mapping Categorical Data to Numeric Values
Character data is often called categorical data, examples of which include people’s names,

home or work addresses, and email addresses. Many types of categorical data involve short
lists of values. For example, the days of the week and the months in a year involve seven and
twelve distinct values, respectively. Notice that the days of the week have a relationship: each
day has a previous day and a next day, and this is similar for the months of a year.

The colors of an automobile are independent of each other: the color red is not “better”
or “worse” than the color blue. However, cars of a certain color can have a statistically higher
number of accidents, which is of interest to insurance companies, but we won’t address this
case here.

There are several well-known techniques for mapping categorical values to a set of
numeric values. A simple example where you need to perform this conversion involves the
gender feature in the Titanic dataset. This feature is one of the relevant features for training
a machine learning model. The gender feature has {M,F} as its set of values. As you will see
later in this chapter, Pandas makes it very easy to convert the pair of values {M,F} to the
pair of values {0,1}.

Another mapping technique involves mapping a set of categorical values to a set of consecu-
tive integer values. For example, the set {Red, Green, Blue} can be mapped to the set of
integers {0,1,2}. The set {Male, Female} can be mapped to the set of integers {0,1}.
The days of the week can be mapped to {0,1,2,3,4,5,6}. Note that the first day of the
week depends on the country: in some cases, it’s Sunday and in other cases, it’s Monday.

Another technique is called one-hot encoding, which converts each value to a vector
(check Wikipedia if you need a refresher regarding vectors). Thus, {Male, Female} can
be represented by the vectors [1,0] and [0,1], and the colors {Red, Green, Blue}
can be represented by the vectors [1,0,0], [0,1,0], and [0,0,1].

Processing Datasets (Pandas) • 213

If you vertically “line up” the two vectors for gender, they form a 2x2 identity matrix, and
doing the same for the colors {R,G,B} will form a 3x3 identity matrix, as shown here:
[1,0,0]
[0,1,0]
[0,0,1]

If you are familiar with matrices, you probably noticed that the preceding set of vectors
looks like the 3x3 identity matrix. In fact, this technique generalizes in a straightforward
manner. Specifically, if you have n distinct categorical values, you can map each of those
values to one of the vectors in an nxn identity matrix.

As another example, the set of titles {̎Intern̎,̎Junior̎,̎Mid-Range̎,
̎Senior̎, ̎Project Leader̎,̎Dev Manager̎} have a hierarchical relationship in
terms of their salaries (which can also overlap, but we’ll gloss over that detail for now).

Another set of categorical data involves the season of the year: {̎Spring̎, ̎ Summer̎,
̎Autumn̎, ̎Winter̎} and while these values are generally independent of each other,
there are cases in which the season is significant. For example, the values for the monthly
rainfall, average temperature, crime rate, and foreclosure rate can depend on the season,
month, week, or even the day of the year.

If a feature has a large number of categorical values, then a one-hot encoding will pro-
duce many additional columns for each datapoint. Since the majority of the values in the
new columns equal 0, this can increase the sparsity of the dataset, which can result in more
overfitting and adversely affect the accuracy of the machine learning algorithms you adopt
during the training process.

One solution is to use a sequence-based solution in which N categories are mapped to the
integers 1, 2, . . ., N. Another solution involves examining the row frequency of each categori-
cal value. For example, suppose that N equals 20, and there are 3 categorical values for 95%
of the values for a given feature. You can try the following:

1. Assign the values 1, 2, and 3 to those three categorical values.
2. Assign numeric values that reflect the relative frequency of those categorical values.
3. Assign the category “OTHER” to the remaining categorical values.
4. Delete the rows that whose categorical values belong to the 5%.

Mapping Categorical Data to One Hot Encoded Values

Listing 7.31 displays the content of one_hot_encode.py that illustrates how to deter-
mine perform one-hot encoding on a CSV file.

Listing 7.31: one_hot_encode.py

import pandas as pd
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

214 • Bash for Data Scientists

filename=̎titanic.csv̎
df = pd.read_csv(filename)

sns.countplot(x=̍class̍,data=df)
#plt.show()

print(̎=> class values:̎)
print(df[̍class̍])
print()

create ohe values:
ohe = pd.get_dummies(df[̍class̍])
print(̎=> ohe:̎)
print(ohe)

Listing 7.31 starts with several import statements followed by a codes snippet that ini-
tializes the Pandas data frame df with the contents of the CSV file titanic.csv. The next
snippet generates a chart that displays the relative frequency of each label (there are three
such labels) in the class feature.

The next portion of Listing 7.31 displays the set of values in the class feature for the
entire CSV file. The last portion of Listing 7.31 invokes the get_dummies() method that
generates three new columns that represent a one-hot encoding for the categorical values
First, Second, and Third, respectively. Launch the code in Listing 7.31 and you will see
the following output:
=> class values:
0 Third
1 First
2 Third
3 First
4 Third
 ...
886 Second
887 First
888 Third
889 First
890 Third
Name: class, Length: 891, dtype: object

=> ohe:
 First Second Third
0 0 0 1
1 1 0 0
2 0 0 1

Processing Datasets (Pandas) • 215

3 1 0 0
4 0 0 1
..
886 0 1 0
887 1 0 0
888 0 0 1
889 1 0 0
890 0 0 1

[891 rows x 3 columns]

WORKING WITH CURRENCY

The format for currency depends on the country, which includes different interpretations
for a “,” and “.” in currency (and decimal values in general). For example, 1,124.78 equals
“one thousand one hundred twenty-four point seven eight” in the US, whereas 1.124,78
has the same meaning in Europe (i.e., the “.” symbol and the “,” symbol are interchanged).

If you need to combine data from datasets that contain different currency formats, then
you probably need to convert all the disparate currency formats to a single common currency
format. There is another detail to consider: currency exchange rates can fluctuate on a daily
basis, which can affect the calculation of taxes, late fees, and so forth. Although you might be
fortunate enough where you won’t have to deal with these issues, it’s still worth being aware
of them.

The next code sample shows you how to calculate the value between a pair of currencies,
and also how to calculate the value of Bitcoin in USD. As an initial step, launch the following
command from the command line:
pip3 install forex-python

Listing 7.32 displays the content of convert_currency.py that illustrates how to
determine some currency values.

Listing 7.32: convert_currency.py

import pandas as pd

from forex_python.converter import CurrencyRates

curr = CurrencyRates()
usd = curr.get_rates(̍USD̍)
print(̎USD currency:̎,usd)
print()

#convert USD to EURO:
usd2eur = curr.get_rate(̍USD̍, ̍EUR̍)
print(̎usd2eur:̎, usd2eur)

216 • Bash for Data Scientists

#rounded = print(round(usd2eur, 3))
#print(̎rounded:̎, rounded)

from forex_python.bitcoin import BtcConverter
Bitcoin in USD:
btc = BtcConverter()
bcoin = btc.get_latest_price(̍USD̍)
print(̎bcoin: ̎, bcoin)

Listing 7.32 starts with an import statement and then initializes the variables curr as
an instance of the CurrencyRates class, and then initializes the variable usd with a set of
currency USD currency rates.

The next code snippet initializes the currency exchange rate from USD to the EUR cur-
rency. The final code block initializes the variable btc as an instance of the BtcConverter
class and then displays the latest Bitcoin price in USD currency. Launch the code in Listing
7.32 and you will see the following output:
USD currency: {̍EUR̍: 0.8880994671403198, ̍JPY̍:

114.6714031971581, ̍BGN̍: 1.7369449378330375, ̍CZK̍:
21.611900532859682, ̍DKK̍: 6.608081705150977, ̍GBP̍:
0.7415452930728242, ̍HUF̍: 316.50088809946715, ̍PLN̍:
4.067850799289521, ̍RON̍: 4.392984014209592, ̍SEK̍:
9.275133214920071, ̍CHF̍: 0.9213143872113678, ̍ISK̍:
127.708703374778, ̍NOK̍: 8.84884547069272, ̍HRK̍:
6.685168738898757, ̍RUB̍: 76.66412078152754, ̍TRY̍:
13.378685612788633, ̍AUD̍: 1.4092362344582594, ̍BRL̍:
5.290586145648313, ̍CAD̍: 1.2698934280639433, ̍CNY̍:
6.36101243339254, ̍HKD̍: 7.795648312611013, ̍IDR̍:
14321.74955595027, ̍INR̍: 74.77531083481351, ̍KRW̍:
1202.1403197158081, ̍MXN̍: 20.541385435168742, ̍MYR̍:
4.185523978685613, ̍NZD̍: 1.5126110124333927, ̍PHP̍:
51.079928952042636, ̍SGD̍: 1.349822380106572, ̍THB̍:
33.195381882770874, ̍ZAR̍: 15.242717584369451}

usd2eur: 0.8880994671403198
bcoin: 38515.2783

Listing 7.33 displays the content of convert_currency2.py that illustrates how to
display side-by-side countries and their currency conversion rates.

Processing Datasets (Pandas) • 217

Listing 7.33: convert_currency2.py

import pandas as pd

df = pd.DataFrame(data=[̍1000USD̍,̍2000EUR̍,̍3000EUR̍],columns=
[̍price̍])

print(̎Dataset:̎)
print(df)
print()

cc = pd.DataFrame({̍from̍:[̍EUR̍,̍USD̍],̍to̍:[̍USD̍,̍EUR̍],̍rat
e̍:[1.33,0.75]})

print(̎Conversion Table:̎)
print(cc)
print()

Listing 7.33 starts with an import statement to initialize the Pandas data frame df with
three column titles, followed by the variable cc that contains currency conversion rates. The
next code snippet displays the content of cc in a tabular format. Launch the code in Listing
7.33 and you will see the following output:
Dataset:
 price
0 1000USD
1 2000EUR
2 3000EUR

Conversion Table:
 from to rate
0 EUR USD 1.33
1 USD EUR 0.75

Listing 7.34 displays the content of mixed_currency.csv, and Listing 7.35 displays
the content of convert_currency3.sh that illustrates how to replace a “,” with a “.” and
vice versa when it’s necessary so that strings have a valid USD currency format. The code does
not check strings for invalid date formats.

Listing 7.34: mixed_currency.csv

product1|1129.95
product2|2110,99
product3|2.110,99
product4|2.110.678,99
product5|1,130.95

218 • Bash for Data Scientists

Listing 7.35: convert_currency3.sh

filename=̎mixed_currency.csv̎

echo ̎=> INITIAL CONTENTS OF CSV FILE:̎
cat $filename
echo

echo ̎=> UPDATED CONTENTS OF CSV FILE:̎
awk -F̎|̎ ̍
BEGIN { modified=0 }
{
 comma = index($2,̎,̎)
 period = index($2,̎.̎)
 OLD2=$2

 if(comma > 0 && period == 0) {
 gsub(/,/,̎.̎,$2)
 modified += 1
 #print ̎comma(s) but no period:̎, $2
 }
 else if(comma > period) {
 # replace right-most ̎,̎ with ̎Z̎
 gsub(/,/,̎Z̎,$2)
 # replace ̎.̎ with ̎,̎
 gsub(/\./,̎,̎,$2)
 # replace ̎Z̎ with ̎.̎
 gsub(/Z/,̎.̎,$2)
 modified += 1
 #print ̎comma(s) before period:̎, $2
 }
 NEW2=$2

 printf(̎OLD: %18s NEW: %15s\n̎,OLD2, NEW2)
}
END { print ̎=> Modified lines:̎,modified }
̍ < mixed_currency.csv

Listing 7.35 starts by initializing the variable filename as mixed_currency.csv and
then displays its contents. The next portion of Listing 7.35 is an awk script that initializes
the variables comma and period with the index of a comma (“,”) and period (“.”) for every
input line from the file mixed_currency.csv. Unlike other programming languages,
there is no explicit loop keyword in the code: instead, it’s an implicit aspect of the awk pro-
gramming language (which might take some time to become accustomed to this style).

Processing Datasets (Pandas) • 219

The next block of conditional code checks for the presence of a comma and the absence
of a period: if so, then the gsub() function replaces the comma (“,”) with a period (“.”) in
the second field, which is the numeric portion of each line in Listing 7.35, and the variable
modified is incremented. For example, the input line product3|2110,99 is processed
by the conditional block and replaces the contents of $2, which is the second field, with the
value 2110.99.

The next portion of code checks for the presence of a comma and a period where the
location of the comma is on the right side of the period: if so, then three substitutions are
performed. First, the right-most comma is replaced with the letter Z, after which the period
is replaced with a comma, and then the Z is replaced with a period. Launch the code in List-
ing 7.35 with the following code snippet:
./convert-currency3.sh

You will see the following output:
=> INITIAL CONTENTS OF CSV FILE:
product1|1129.95
product2|2110,99
product3|2.110,99
product4|2.110.678,99
product5|1,130.95

=> UPDATED CONTENTS OF CSV FILE:
OLD: 1129.95 NEW: 1129.95
OLD: 2110,99 NEW: 2110.99
OLD: 2.110,99 NEW: 2,110.99
OLD: 2.110.678,99 NEW: 2,110,678.99
OLD: 1,130.95 NEW: 1,130.95
=> Modified lines: 3

WORKING WITH DATES

The format for calendar dates varies among different countries, and this belongs to some-
thing called the localization of data (not to be confused with i18n, which is data internation-
alization). Some examples of date formats are shown here (and the first four are probably the
most common):
MM/DD/YY
MM/DD/YYYY
DD/MM/YY
DD/MM/YYYY
YY/MM/DD
M/D/YY
D/M/YY
YY/M/D
MMDDYY

220 • Bash for Data Scientists

DDMMYY
YYMMDD

If you need to combine data from datasets that contain different date formats, then con-
verting the disparate date formats to a single common date format will ensure consistency.

Find Missing Dates

Listing 7.36 displays the content of pandas_missing_dates.py that illustrates how
to display missing dates from a range of dates.

Listing 7.36: pandas_missing_dates.py

import pandas as pd

A dataframe from a dictionary of lists
data = {̍Date̍: [̍2022-01-18̍, ̍2022-01-20̍,̍2022-01-21̍,̍2022-

01-24̍],
 ̍Name̍: [̍Joe̍, ̍John̍, ̍Jane̍, ̍Jim̍]}
df = pd.DataFrame(data)

Setting the Date values as index:
df = df.set_index(̍Date̍)

to_datetime() converts string format to a DateTime object:
df.index = pd.to_datetime(df.index)

start_d=̎2022-01-18̎
end_d=̎2022-01-25̎

display dates that are not in the sequence:
print(̎MISSING DATES BETWEEN̎,start_d,̎and̎,end_d,̎:̎)
dates = pd.date_range(start=start_d, end=end_d).difference(df.

index)

for date in dates:
 print(̎date:̎,date)
print()

Listing 7.36 starts with an import statement and then initializes the variable data as a
dictionary of lists, which is used to initialize the Pandas data frame df. The next code snip-
pet sets the field Date as the index, followed by converting the strings in df to DateTime
objects, as shown here:
df.index = pd.to_datetime(df.index)

Then the variables start_d and end_d are initialized as string-based dates that rep-
resent a date range, after which the variable dates is initialized with a set of missing dates.

Processing Datasets (Pandas) • 221

The final loop displays the missing dates. Launch the code in Listing 7.36 and you will see
the following output:
MISSING DATES BETWEEN 2022-01-18 and 2022-01-25 :
date: 2022-01-19 00:00:00
date: 2022-01-22 00:00:00
date: 2022-01-23 00:00:00
date: 2022-01-25 00:00:00

Find Unique Dates

Listing 7.37 displays the content of multiple_dates.csv, and Listing 7.38 displays
the content of pandas_misc1.py that determines the unique years in Listing 7.37.

Listing 7.37: multiple_dates.csv

̎dates̎,̎values̎
2021-01-31,40
2021-02-28,45
2021-03-31,56
2021-04-30,NaN
2022-05-31,NaN
2022-06-30,140
2022-07-31,95
2022-08-31,40
2023-09-30,55
2023-10-31,NaN
2023-11-15,65

Listing 7.38: pandas_misc1.py

import pandas as pd

df = pd.read_csv(̍multiple_dates.csv̍, parse_dates=[̍dates̍])
print(̎df:̎)
print(df)
print()

the_years = df[̍dates̍]
year_list = set(the_years)

arr1 = np.array([])
for long_year in year_list:
 year = str(long_year)
 short_year = year[0:4]
 arr1 = np.append(arr1,short_year)

222 • Bash for Data Scientists

unique_years = set(arr1)
print(̎unique_years:̎)
print(unique_years)
print()

unique_arr = np.array(pd.DataFrame.from_dict(unique_years))
print(̎unique_arr:̎)
print(unique_arr)
print()

Listing 7.38 starts with an import statement and then initializes the Pandas data frame
df with the contents of the CSV file multiple_dates.csv. After initializing the vari-
able the_years with the dates feature in df, and also initializing year_list with the
distinct values in the variable the_years, a loop extracts the year value for each date and
appends this value to the NumPy array arr1.

Next, unique_years is populated with the distinct values in the variable arr1 and
then the result is printed. The final code snippet initializes the variable unique_arr with
the unique years from the dictionary unique_years and the result is displayed. Launch
the code in Listing 7.38 and you will see the following output:
MISSING DATES BETWEEN 2022-01-18 and 2022-01-25
df:
 dates values
0 2021-01-31 40.0
1 2021-02-28 45.0
2 2021-03-31 56.0
3 2021-04-30 NaN
4 2022-05-31 NaN
5 2022-06-30 140.0
6 2022-07-31 95.0
7 2022-08-31 40.0
8 2023-09-30 55.0
9 2023-10-31 NaN
10 2023-11-15 65.0

unique_years:
{̍2022̍, ̍2023̍, ̍2021̍}

unique_arr:
[[̍2022̍]
 [̍2023̍]
 [̍2021̍]]

Processing Datasets (Pandas) • 223

Switch Date Formats

Listing 7.39 displays the content of standard_formats.csv, and Listing 7.40 dis-
plays the content of switching_date_formats.sh that illustrates how to show missing
dates from a range of dates.

Listing 7.39: standard_dates.csv

2021-01-31
2021-02-28
2022-04-30
2022-05-31
2023-10-31
2023-11-15

Listing 7.40: switching_date_formats.sh

file=̎standard_dates.csv̎

echo ̎first output:̎
cat $file | awk -F̎-̎ ̍ { print $3 $2 $1 }̍
echo

echo ̎second output:̎
cat $file | awk -F̎-̎ ̍ { print $3,$2,$1 }̍
echo

echo ̎third output:̎
cat $file | awk -F̎-̎ ̍ { print $3 ̎-̎ $2 ̎-̎ $1 }̍

Listing 7.40 starts by initializing the variable file with standard_dates.csv, whose
contents are shown in Listing 7.39. The remaining portion of Listing 7.40 consists of three
short code blocks, each of which contains an awk command that specifies a hyphen (-) as the
delimiter for the dates. The values of $1, $2, and $3 are the three hyphen-delimited values
in each input line. For example, $1, $2, and $3 equal 2021, 01, and 31, respectively, for the
first input line 2021-01-31.

The first awk command displays the date fields in the order $3, $2, and $1. The second
awk command also displays the date fields in the order $3, $2, and $1, along with a comma
delimiter. The third awk command also displays the date fields in the order $3, $2, and $1,
along with a hyphen (-) delimiter. Note that if you want to display the date fields in the order
month, day, and year, use the following statement: print $2,$3,$1. Launch the code in
Listing 7.40 and you will see the following output:
first output:
31012021
28022021
30042022
31052022

224 • Bash for Data Scientists

31102023
15112023

second output:
31 01 2021
28 02 2021
30 04 2022
31 05 2022
31 10 2023
15 11 2023

third output:
31-01-2021
28-02-2021
30-04-2022
31-05-2022
31-10-2023
15-11-2023

WORKING WITH IMBALANCED DATASETS

Imbalanced datasets contain at least once class that has significantly more values than
another class in the dataset. For example, if class A has 99% of the data and class B has 1%,
which classification algorithm would you use? Unfortunately, classification algorithms don’t
work as well with this type of imbalanced dataset.

However, there are various techniques that you can use to reduce the imbalance in a data-
set. Regardless of the technique that you decide to use, keep in mind the following detail:
resampling techniques are only applied to the training data (not the validation data or the
test data).

In addition, if you perform k-fold cross validation on a training set, then oversampling is
performed in each fold during the training step. To avoid data leakage, make sure that you
do not perform oversampling prior to k-fold cross validation.

Data Sampling Techniques
Data sampling techniques reduce the imbalance in imbalanced datasets, and some well-

known techniques are as follows:

• random resampling: rebalances the class distribution
• random undersampling: deletes examples from the majority class
• random oversampling: duplicates data in the minority class
• SMOTE (Synthetic Minority Oversampling Technique)

Random resampling rebalances the class distribution by resampling the data space to
reduce the discrepancy between the number of rows in the majority class and the minority
class. The random undersampling technique removes samples that belong to the majority
class from the dataset, and involves the following:

Processing Datasets (Pandas) • 225

• randomly remove samples from majority class
• can be performed with or without replacement
• alleviates imbalance in the dataset
• may increase the variance of the classifier
• may discard useful or important samples

However, random undersampling does not work well with extremely unbalanced datas-
ets, such as a 99% and 1% split into two classes. Moreover, undersampling can result in losing
information that is useful for a model.

Random oversampling generates new samples from a minority class: this technique dupli-
cates examples from the minority class.

Another option to consider is the Python package imbalanced-learn in the scikit-
learn-contrib project. This project provides various re-sampling techniques for datas-
ets that exhibit class imbalance. More details are here:

https://github.com/scikit-learn-contrib/imbalanced-learn
Another well-known technique is called SMOTE, which involves data augmentation (i.e.,

synthesizing new data samples). SMOTE was initially developed by means of the kNN algo-
rithm (other options are available), and it can be an effective technique for handling imbal-
anced classes. SMOTE is discussed in more detail in a later section.

Removing Noisy Data
There are several techniques that attempt to remove so-called noisy data so that there is

less ambiguity in the classification of the remaining data. Some of these techniques are listed
here:

• Near Miss
• Condensed Nearest Neighbor (CNN)
• Tomek links
• ENN (Edited Nearest Neighbor)
• OSS (One-sided Selection)
• Neighborhood Cleaning Rule (NCR)

One potential drawback to CNN is due to its random choice of sample points. Tomek
links is an undersampling technique that modified CNN in two ways. One improvement
involves finding pairs of data points (x,y) that are cross-class nearest neighbors, which is
to say, x and y belong to different classes and x and y also have the smallest Euclidean dis-
tance. After finding all such pairs, the values that belong to the majority class are removed.
However, the efficacy of Tomek links does vary, and it’s often used in conjunction with other
undersampling techniques (including CNN).

ENN (Edited Nearest Neighbor) removes data points in the majority class that are mis-
classified as belonging to the minority class. ENN uses a “pairing” technique to find a match-
ing nearest neighbor in the majority class that is paired with a “noisy” or ambiguous point
that is located along the class boundary, and then removes the point in the majority.

The following code snippet for ENN links shows you how to import the appropriate class
from imblearn:

226 • Bash for Data Scientists

from imblearn.under_sampling import EditedNearestNeighbours
// details omitted
undersampled = EditedNearestNeighbours(n_neighbors=5)

The default value for n_neighbors is 3, whereas the value 5 is specified in the preced-
ing code snippet.

Cost-sensitive Learning
This section discusses the confusion matrix, which is not covered in this book. If you are

unfamiliar with this matrix, perform an Internet search for articles that describe the details
of the confusion matrix.

Cost-sensitive learning refers to assigning different costs for misclassification of data
points, which is often relevant to imbalanced datasets. For example, the consequences
of a type II error (false negative) are considerably worse than a type I error (false posi-
tive) for datasets pertaining to fraud detection, medical diagnosis (such as cancer), and
so forth.

Specifically, the cost in cost-sensitive learning refers to the penalty that is assigned to an
incorrect prediction. As such, the goal is to minimize the overall cost of a given model during
the training step.

Another important concept is the confusion matrix for binary classification tasks, which
has four possibilities:

• true positive
• false positive
• true negative
• false negative

An example of a confusion matrix is shown here, followed by the interpretation of the
values in the confusion matrix:
[[60 4]
 [16 20]]

The four values in the preceding 2x2 matrix represent the following quantities:
True positive: 60
False positive: 4
True negative: 20
False negative: 16

Thus, the main diagonal consists of correct predictions, whereas the “off” diagonal con-
sists of incorrect predictions. Cost-sensitive learning involves defining a cost matrix from the
values in the confusion matrix. An example of a cost matrix is shown here:
[[0 5]
 [50 0]]

The value 50 is much larger than the value 5 because 50 is the cost associated with a false
negative, whereas 5 is associated with a false positive, and zero cost is associated with correct
predictions.

Processing Datasets (Pandas) • 227

In this example, the associated cost function that we wish to minimize is shown here:
Cost = 50*FN + 5*FP

More information regarding the confusion matrix and associated metrics (accuracy, preci-
sion, recall, sensitivity, and F1 score) is accessible by performing an online search.

Detecting Imbalanced Data
This step involves counting the number of rows that are associated with each class. First,

read the dataset into a Pandas data frame (let’s call it df) and then invoke the following code
snippet:
df[̍your-target-column̍].value_counts()

An example of the output from the preceding code snippet is here:
[OUT]
1 21000
0 6000

As you can see in the output, class 1 is more than 3 times larger than class 0, so this col-
umn in the dataset is imbalanced.

The Python-based open source library Scikit-Learn contains a vast set of algorithms
for machine learning, some of which support a class_weight parameter, as listed here:

• LogisticRegression
• Perceptron
• RandomForest
• SVM

Set the value of the class_weight parameter equal to balanced before training the
chosen model. Incidentally, it might also be worthwhile to train the chosen model with the
default value for the class_weight parameter.

Rebalancing Datasets

Let’s return to the example of a dataset for which class A has 99% of the data and
class B has 1%. Which classification algorithm would you use? The following list con-
tains several well-known techniques for handling imbalanced datasets (not in any par-
ticular order):

• Random resampling (rebalances the class distribution)
• Random oversampling (duplicates data in the minority class)
• Random undersampling (deletes examples from the majority class)
• Algorithm Selection
• Cross-Validation for Imbalanced Data
• Generating Synthetic Data (ex: SMOTE)
• Performance Metric Selection

Several of the techniques in the preceding list are discussed in the following
subsections.

228 • Bash for Data Scientists

Specify stratify in Data Splits
This step also is straightforward because Scikit-Learn supports a stratify param-

eter that ensures the data is split so that the train data and test data contain the same propor-
tion of class values. For example, if a dataset contains 60% and 40%, respectively, of class A
and class B in a column, then the train data and test data will contain the same proportions
for class A and B.

The following code block demonstrates how to split a dataset (where X and y have already
been initialized) so that the data is stratified:
from scikit-learn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X,
 y,
 test_size=0.25,
 random_state=42,
 stratify=y)

WHAT IS SMOTE?

SMOTE (Synthetic Minority Oversampling Technique) is a technique for synthesizing
new samples for a dataset. This technique is based on linear interpolation:

Step 1: Select samples that are close in the feature space.
Step 2: Draw a line between the samples in the feature space.
Step 3: Draw a new sample at a point along that line.
A more detailed explanation of the SMOTE algorithm is here:

• Select a random sample “a” from the minority class.
• Find k nearest neighbors for that example.
• Select a random neighbor “b” from the nearest neighbors.
• Create a line L that connects “a” and “b.”
• Randomly select one or more points “c” on line L.

If need be, you can repeat this process for the other (k-1) nearest neighbors to distribute
the synthetic values more evenly among the nearest neighbors.

One disadvantage of SMOTE is that the creation of new data points does not take into
account the majority class, which could result in some ambiguity if there is overlap between
the minority and majority classes. However, variations SMOTE are more selective about
generating synthetic samples, which is the topic of the next section.

DATA WRANGLING

Data wrangling means different things to different people, which might cause some con-
fusion unless people clarify what they mean when they talk about data wrangling. Data wran-
gling involves multiple steps that can include transforming one or more files. Here are some
of the interpretations of data wrangling:

Processing Datasets (Pandas) • 229

• It’s part of a sequence of steps.
• Data wrangling transforms datasets.
• It’s essentially the same as data cleaning.

This book adopts the approach of the first and second bullet items but not the third. Navi-
gate to the following link that lists data wrangling as part of a six-step process:

https://en.wikipedia.org/wiki/Data_wrangling
In addition to the steps outlined in the preceding Web page, data wrangling can also

involve the following tasks:

• transforming datasets from one format into another format (convert)
• creating new datasets from subsets of columns in existing datasets (extract)

As you can see, the preceding steps differentiate between converting data to a different
format versus extracting data from multiple datasets to create new datasets. The conversion
process can be considered a data cleaning task if only the first step is performed; i.e., there
is no extraction step.

One additional comment: the interpretation of data wrangling in this chapter is conve-
nient, but it’s not a universally accepted standard definition. Hence, you are free to adopt
your own interpretation of data wrangling (versus data cleaning) if you find one that better
suits your needs. You may want to read more about data wrangling:

https://pub.towardsai.net/tutorial-on-data-wrangling-college-towns-dataset-a0e8f8dfb6ae

Data Transformation: What Does This Mean?
In general, data cleaning involves a single data source (not necessarily in a CSV format),

with some type of modification to the content of the data source (e.g., filling missing values,
changing date formats, and so forth), without creating a second data source.

For example, suppose that the data source is a MySQL table called employees that contains
employee-related information. After data cleaning tasks on the employees table are completed,
the result will still be named the employees table. In database terminology, data cleaning is
somewhat analogous to executing a SQL statement that involves a SELECT on a single table.

However, if two CSV files contain different date formats and you need to create a single
CSV file that is based on the date columns, then there will be some type of conversion pro-
cess that could be one of the following:

• Convert the first date format to the second date format.
• Convert the second date format to the first date format.
• Convert both date formats to a third date format.

In the case of financial data, you are likely to also encounter different currencies, which
involves a conversion rate between a pair of currencies. Since currency conversion rates fluc-
tuate, you need to decide the exchange rate to use for the data, which can be

• the exchange rate during the date that the CSV files were generated
• the current currency exchange rate
• some other mechanism

230 • Bash for Data Scientists

In addition, you might also need to convert the CSV files to XML documents, where the
latter might be required to conform to an XML Schema, and perhaps also conform to XBRL,
which is a requirement for business reporting purposes:

https://en.wikipedia.org/wiki/XBRL
As mentioned earlier, data transformation can involve two or more data sources to

create yet another data source whose attributes are in the required format. Here are
four scenarios of data transformation with just two data sources, A and B, where data
from A and from B are combined to create data source C, where A, B, and C can have
different file formats:

• all attributes in A and all attributes in B
• all attributes in A and some attributes in B
• a subset of the attributes in A and all attributes in B
• a subset of the attributes in A and some attributes in B

In database terminology, data transformation is somewhat analogous to executing a SQL
statement that involves a SELECT statement on two or more database tables with a JOIN
clause. Such SQL statements typically involve a subset of columns from each database table,
which would correspond to selecting a subset of the features in the data sources.

There is also the scenario involving the concatenation of two or more data sources. If all
data sources have the same attributes, then their concatenation is straightforward, but you
might need to check for duplicate values. For example, if you want to load multiple CSV files
into a database table that does not allow duplicates, then one solution involves concatenating
the CSV files from the command line and then excluding the duplicate rows.

A DATASET WITH 1,000,000 ROWS

The code sample in this section shows you how to use Pandas to perform various
comparisons on a dataset that contains 1,000,000 rows. Listing 7.41 displays the con-
tent numeric_comparisons.sh that shows you how to work with a dataset that
contains 1,000,000 rows.

Dataset Details

Listing 7.41 displays the content of read_1000000.py that shows you how to display
the details of a dataset that contains 1,000,000 rows.

Listing 7.41: read_1000000.py

import pandas as pd

filename=̎1000000_HRA_Records.csv̎
df = pd.read_csv(filename)

print(̎df.describe():̎)
print(df.describe())
print()

Processing Datasets (Pandas) • 231

print(̎df.info():̎)
print(df.info())
print()

Listing 7.41 reads the contents of a CSV file with one million records into the Pandas data
frame df; this is followed by a code block that displays some statistics about the CSV file,
followed by a second code block that describes the contents of the CSV file. Launch the code
in Listing 7.41 and you will see the following output:
df.describe():
 Age ... YearsWithCurrManager
count 1000000.000000 ... 1000000.000000
mean 38.976191 ... 5.878886
std 12.403615 ... 6.016144
min 18.000000 ... 1.000000
25% 28.000000 ... 2.000000
50% 39.000000 ... 4.000000
75% 50.000000 ... 8.000000
max 60.000000 ... 40.000000

[8 rows x 26 columns]

df.info():
<class ̍pandas.core.frame.DataFrame̍>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 35 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Age 1000000 non-null int64
 1 Attrition 1000000 non-null object
 2 BusinessTravel 1000000 non-null object
 3 DailyRate 1000000 non-null int64
 4 Department 1000000 non-null object
 5 DistanceFromHome 1000000 non-null int64
 6 Education 1000000 non-null int64
 7 EducationField 1000000 non-null object
 8 EmployeeCount 1000000 non-null int64
 9 EmployeeNumber 1000000 non-null int64
 10 EnvironmentSatisfaction 1000000 non-null int64
 11 Gender 1000000 non-null object
 12 HourlyRate 1000000 non-null int64
 13 JobInvolvement 1000000 non-null int64
 14 JobLevel 1000000 non-null int64
 15 JobRole 1000000 non-null object

232 • Bash for Data Scientists

 16 JobSatisfaction 1000000 non-null int64
 17 MaritalStatus 1000000 non-null object
 18 MonthlyIncome 1000000 non-null int64
 19 MonthlyRate 1000000 non-null int64
 20 NumCompaniesWorked 1000000 non-null int64
 21 Over18 1000000 non-null object
 22 OverTime 1000000 non-null object
 23 PercentSalaryHike 1000000 non-null int64
 24 PerformanceRating 1000000 non-null int64
 25 RelationshipSatisfaction 1000000 non-null int64
 26 StandardHours 1000000 non-null int64
 27 StockOptionLevel 1000000 non-null int64
 28 TotalWorkingYears 1000000 non-null int64
 29 TrainingTimesLastYear 1000000 non-null int64
 30 WorkLifeBalance 1000000 non-null int64
 31 YearsAtCompany 1000000 non-null int64
 32 YearsInCurrentRole 1000000 non-null int64
 33 YearsSinceLastPromotion 1000000 non-null int64
 34 YearsWithCurrManager 1000000 non-null int64
dtypes: int64(26), object(9)
memory usage: 267.0+ MB
None

Numeric Comparisons
The code snippets in this section illustrate how to check for a specific number (e.g., 58)

and the occurrence of one, two, or three adjacent digits in the first field of each row.
Listing 7.42 displays the content of numeric_comparisons.sh that shows you how

to work with a dataset that contains 1,000,000 rows.

Listing 7.42: numeric_comparisons.py

import pandas as pd

filename=̎1000000_HRA_Records.csv̎
filename=̎1000000_HRA_Records_short.csv̎

df = pd.read_csv(filename)
age_filter = df[̍Age̍] > 50
age = df[age_filter]
print(̎1) => Age Count: ̎, age[̍Age̍].sum())

Support = df[̍Department̍] == ̎Support̎
print(̎2) => Support count: ̎, Support.sum())

Processing Datasets (Pandas) • 233

AgeSupport = (df[̍Age̍] > 58) & (df[̍Department̍] == ̎Support̎)
print(̎3) => Age and Support:̎, AgeSupport.sum())

Listing 7.42 initializes the variable filename as the file that contains only 1,000 rows
because the processing time for this file is much shorter than the processing time for the
dataset that contains one million rows. However, feel free to use the entire CSV file for this
code sample.

Next, the Pandas data frame df is initialized, followed by a code block that filters the
rows in df based on the rows whose Age value is greater than 50. The number of such rows
is counted, and that number is then displayed.

The next block of code initializes the variable Support with the set of rows from df
whose Department value equals “Support,” and then prints the number of rows in the
variable Support. The final code block initializes the variable AgeSupport with the rows
from df whose Age feature is greater than 58 and whose Department feature equals
“Support,” and then prints the number of rows in the variable AgeSupport. Launch the
code in Listing 7.42 and you will see the following output:
1) => Age Count: 12534
2) => Support count: 153
3) => Age and Support: 7

Counting Adjacent Digits
The code sample in Listing 7.43 shows you how to check for a specific number (e.g., 58)

and the occurrence of one, two, or three adjacent digits in the first field of each row.

Listing 7.43: adjacent_digits.py

import pandas as pd

#filename=̎1000000_HRA_Records.csv̎
filename=̎1000000_HRA_Records_short.csv̎

df = pd.read_csv(filename)
age_filter = df[̍Age̍] == 58

df_age = df[age_filter]
df_age_count = df_age[̍Age̍].count()
print(̎1) => df_age_count = ̎, df_age_count)
print()

df[̍DailyRate̍] = df[̍DailyRate̍].astype(str)
three_digits = df[̍DailyRate̍].str.extract(pat = ̍(\d{3})̍)
print(̎Three digits:̎,three_digits)
print()

df[̍DailyRate̍] = df[̍DailyRate̍].astype(str)

234 • Bash for Data Scientists

four_digits = df[̍DailyRate̍].str.extract(pat = ̍(\d{4})̍)
print(̎Four digits: ̎,four_digits)
print()

Listing 7.43 starts by initializing the variable filename with a CSV file that is the “short”
version of the CSV file containing 1,000,000 records that is located in the same directory as
this Python file.

The next portion of Listing 7.43 initializes the variable df with the contents of the CSV
file, and then initializes the variable age_filter to “filter” the records whose Age value
equals 58, extracts that dataset from the data frame df, and then prints the result.

The next portion of Listing 7.43 converts the DailyRate feature to a string type, and
then initializes the variable three_digits with the dataset whose records contain three
consecutive digits in the DailyRate feature, after which the results are printed. The final
portion of Listing 7.43 contains a block of code that searches for four consecutive digits in
the DailyRate feature and then prints the results. Launch the code in Listing 7.43 and you
will see the following output:
1) => df_age_count = 22

Three digits:
 0
0 200
1 720
2 140
3 131
4 711
.. ...
995 395
996 116
997 322
998 129
999 119

[1000 rows x 1 columns]

Four digits:
 0
0 NaN
1 NaN
2 1406
3 1316
4 NaN
.. ...
995 NaN

Processing Datasets (Pandas) • 235

996 1162
997 NaN
998 1292
999 1190

[1000 rows x 1 columns]

Notice that the preceding output contains rows that do not match a sequence of four
consecutive digits, and so the output is NaN.

Listing 7.44: average_rate.py

import pandas as pd

filename=̎1000000_HRA_Records.csv̎
filename=̎1000000_HRA_Records_short.csv̎

df = pd.read_csv(filename)

age_filter = df[̍Age̍] > 40
support_filter = df[̍Department̍] == ̍Support̍

print(̎1) => Values for ̍Support̍:̎)
df_support = df[support_filter]
total_rate = df_support[̍DailyRate̍].sum()
row_count = df_support[̍DailyRate̍].count()
average_rate = total_rate/row_count
print(̎total_rate:̎, total_rate)
print(̎average: ̎, average_rate)
print()

print(̎2) => Values for ̍Age̍:̎)
df_age = df[age_filter]
total_rate = df_age[̍DailyRate̍].sum()
row_count = df_age[̍DailyRate̍].count()
average_rate = total_rate/row_count
print(̎total_rate:̎, total_rate)
print(̎average: ̎, average_rate)
print()

print(̎3) => Values for ̍Age̍ and ̍Support̍:̎)
df_age_support = df[age_filter & support_filter]
total_rate = df_age_support[̍DailyRate̍].sum()
row_count = df_age_support[̍DailyRate̍].count()

236 • Bash for Data Scientists

average_rate = total_rate/row_count
print(̎total_rate:̎, total_rate)
print(̎average: ̎, average_rate)

Listing 7.44 contains code with logic that is very similar to the code in Listing 7.43. In
addition, Listing 7.44 contains a final code block that calculates the sum of all the Daily-
Rate values, counts the number of such rows, and performs a division operation to calculate
the average DailyRate value. Launch the code in Listing 7.44 and you will see the follow-
ing output:
1) => Values for ̍Support̍:
total_rate: 118610
average: 775.2287581699346

2) => Values for ̍Age̍:
total_rate: 374756
average: 805.9268817204301

3) => Values for ̍Age̍ and ̍Support̍:
total_rate: 56175
average: 838.4328358208955

SAVING CSV DATA TO XML, JSON, AND HTML FILES

Listing 7.45 shows you how to read the contents of a CSV file into a Pandas data frame
and then save the data frame as a JSON, HTML, and XML file.

Listing 7.45: adjacent_digits.py

import pandas as pd

csvfile=̎short.csv̎
xmlfile=̎short.xml̎
jsonfile=̎short.json̎
htmlfile=̎short.html̎

df = pd.read_csv(csvfile)

df.to_html(htmlfile)
df.to_json(jsonfile)

#requires Pandas v1.3 (or higher):
df.to_xml(xmlfile)

Processing Datasets (Pandas) • 237

code samples for saving data frames to XML if you do not have
v1.3:

https://stackoverflow.com/questions/18574108/how-do-convert-a-
pandas-dataframe-to-xml

Listing 7.45 initializes four variables with the names of a CSV file, XML file, JSON file,
and an HTML file, respectively. Next, the variable df is initialized with the contents of the
CSV file, after which its contents are saved as an HTML file as well as a JSON file.

The contents of the variable df are also saved as an XML file: note the comment indicat-
ing that Pandas v1.3 or higher is required to execute this code snippet. Launch the code in
Listing 7.45 and you will see the following files in the same directory as Listing 7.45. The
newly created files are shown in bold:
short.xml
short.json
short.html
short.csv

SUMMARY

This chapter started with several Pandas code samples that use Pandas to read CSV files.
We then analyzed missing data in CSV files that contain a single column, followed by two-
column CSV files. In addition, you saw how to work with multi-column CSV files, such as the
custom bmi.csv file and the Titanic titanic.csv CSV file.

Next, you learned about missing data and imputation, how to count missing data val-
ues, drop redundant columns, and remove duplicate rows via a Bash script. In addition, you
learned about data uniformity, which involves verifying that the data values in a column have
the same unit of measure (i.e., all values in meters, or all values in centimeters, and so forth).

Moreover, you learned about the data inconsistency that can arise when user-supplied
data (such as inputs for text fields) allow for inconsistent values, such as Y, ys, and Yes as
variations for the single value YES. You also saw that the value 0 can be a legitimate value,
even though there are numerous situations where the value 0 is invalid.

Next, you saw a Bash script for processing datasets that contain a variable number of
fields in each row and replacing them with datasets that have a fixed number of columns in
each row. In addition, you saw how to process CSV files containing records that span multiple
lines using a Bash script.

Furthermore, you learned about data normalization, which is the process of scaling
numeric columns in a dataset so that they have a common scale. Then, you saw how to
map categorical data to numeric values using one-hot encoding, and how to use the Pandas
map() function. Next, you learned how to work with currency in datasets, as well as per-
forming various tasks on date fields, such as finding missing dates, finding duplicate dates,
and changing the format of dates.

You learned about imbalanced datasets and sampling techniques, and had a brief intro-
duction to SMOTE for generating synthetic data. Finally, you learned how to use Pandas to
work with a dataset that contains 1,000,000 rows.

CHAPTER 8
NOSQL, SQLITE, AND PYTHON

This chapter introduces non-relational databases whose feature sets are well-suited
to certain types of applications. Specifically, you will learn about NoSQL and Mon-
goDB, which is a popular NoSQL database. Then you will see some of the features

of SQLite and SQLAlchemy, as well as how to access both of them through Python scripts.
This is followed by Python code that accesses MySQL.

The first section (which is roughly half of this chapter) introduces NoSQL, along with
Python code samples to manage data in a MongoDB collection. To some extent, this section
shows you how to perform operations in MongoDB that are counterparts to SQL commands.
You will learn how to create a database in MongoDB, how to create a collection, and how to
populate the collection with documents.

The second section shows you the NoSQL command for querying data from a NoSQL
collection, as well as deleting document from a collection. You will also learn about Compass
(a GUI tool for MongoDB) and PyMongo, which is a Python distribution for working with
MongoDB.

The third section returns to MySQL, where you will see how to read MySQL data into a
Pandas data frame and then save the data frame as an Excel spreadsheet. Although we won’t
discuss the details of Pandas and its rich functionality, the Pandas-related code is straight-
forward. If need be, you can also find many online tutorials that discuss various features of
Pandas.

The fourth section provides a short description of SQLite, which is a database that is
available on mobile devices, such as Android and iOS. As you can probably surmise from its
name, SQLite supports a subset of SQL. You can invoke SQL commands in SQLite in vari-
ous ways (such as SQLiteStudio) that are discussed in this section.

The final section provides an overview of SQLite, which is a command line tool for man-
aging databases that is available on mobile devices. This section also introduces related tools,
such as SQLiteStudio (an IDE for SQLite), DB Browser, and SQLiteDict.

240 • Bash for Data Scientists

NON-RELATIONAL DATABASE SYSTEMS

There are several types of non-relational data stores, some of which are listed here:

• key-value store
• document store
• wide-column stores
• graph database

The following paragraphs contain a high-level description of the data stores in the pre-
ceding list of bullet items. Note that the details of NoSQL are deferred until later sections
in this chapter.

A key/value store is analogous to a Python dictionary or a hash table (hash map) in Java.
In abstract terms, a key can unlock a door to give you access to the contents on the other side
of that door. In the case of key/value pairs of a key/value store, the value is the contents. The
value can be anything, including a scalar, a data structure, or a concrete instance of a class.
Although key/value stores provide limited functionality, they do provide high performance
and are convenient as an in-memory cache.

A document store focuses on managing the storage of documents, which can involve
XML, JSON, or binary formats. You can also view a document store as a generalization of a
key/value store, where the values in these pairs are documents. In general, document stores
also provide APIs to perform various operations, such as save, delete, update, and find docu-
ments.

• A wide document store provides column-based storage of name/value pairs, which
includes documents. Keep in mind that a single column can consist of multiple columns,
somewhat analogous to a table. Row keys provide access to individual columns, and
columns with the same row key belong to the same row in the store. Examples of wide
document stores include Bigtable (Google) and Cassandra (Facebook).

Graph databases are well-suited for more complex data models, such as those that exist in
social networks. Each node in a graph database is a record and each edge between two nodes
is a relationship between those two nodes. Graph databases are optimized to represent com-
plex relationships with many foreign keys or many-to-many relationships. Unsurprisingly, the
complexity of their structure makes it correspondingly more difficult to access their contents
in a straightforward manner.

Advantages of Non-relational Databases
A NoSQL database is designed to provide fast access to data that may be stored in mul-

tiple locations (nodes). Important considerations include

• good scalability
• support for structured and non-structured data
• simpler updates to schemas
• shared nothing architecture

Due to the last point in the preceding bullet list, a DDB (distributed database) is a loosely
coupled system in which each node operates on its own physical resources.

NoSQL, SQLite, and Python • 241

 In some cases, a DDB will provide strong query abilities, whereas others focus on key-
value data representation. A homogeneous DDB involves multiple databases with the same
underlying DBMS, whereas a heterogeneous DDB involves multiple databases with differ-
ent underlying DBMSs.

While distributed databases provide multiple advantages, they can also be more complex
than a centralized DBMS.

WHAT IS NOSQL?

Let’s start with a clarification: in the early days, NoSQL usually meant “not SQL.” More
recently NoSQL has evolved to mean “not only SQL.” Moreover, RDBMSs such as Oracle
have adapted their databases to include support for non-structured data as well as semi-
structured data. Nevertheless, RDBMSs are primarily about structured data, and NoSQL
databases were designed for data types that are less structured (more about this later). In
fact, some RDBMSs, such as Oracle, added support for NoSQL to the Oracle database.

NoSQL includes the data stores and graph databases that are discussed in the previous
section. Recall that RDBMSs includes the normalization of database tables, whereas NoSQL
data is denormalized, and JOIN operations are typically performed in the application code.
NoSQL databases enable you to store and retrieve documents (often based on JSON) of
variable length, and you can do so without defining a schema or even a table structure. In
general, NoSQL databases do not support ACID (they lean toward eventual consistency), so
they tend to have high speed transactions.

As you know, SQL stores data in tabular form with labelled rows and columns. By con-
trast, NoSQL databases have the notion of a “collection” that is analogous to an RDBMS
table. A collection can contain multiple documents, where a document is analogous to a row
in an RDBMS table.

Collections are not required to conform to a schema, which means that a collection can
contain unrelated documents. Although you will probably populate each collection with docu-
ments that are logically related, you have a great deal of flexibility when making this decision.

Moreover, it’s very easy to add new fields to one or more documents in a collection with-
out updating a formal schema. Of course, if the documents in a collection have a highly simi-
lar (or identical) structure, then it’s easier to insert, update, select, or delete such documents.

What is NewSQL?
NewSQL refers to databases that provide the scalability of NoSQL databases and the

transactional support of relational databases. Such databases can offer decentralized SQL
support and often will provide support for dynamic JSON. Several examples of NewSQL
databases include Snowflake, CockroachDB, and Spark SQL. More details regarding
NewSQL and additional databases are available online:

https://en.wikipedia.org/wiki/NewSQL

RDBMS VERSUS NOSQL: WHICH ONE TO USE?

Although RDBMSs and NoSQL databases can support the same types of data (and there
are many types), they have different strengths: RDBMSs are suitable for structured data and
NoSQL databases excel in their support for unstructured data. An important advantage of

242 • Bash for Data Scientists

NoSQL and key/value stores is their unlimited horizontal scalability, whereas RDBMSs have
vertical expansion.

As you learned in previous chapters, RDBMSs are well-suited for data that can be stored
in a tabular form. In addition, the structure of tables (i.e., their attributes along with their
types) must be defined in advance. Furthermore, data is accessed through SQL queries,
many of which are discussed in Chapter 2 and Chapter 4.

Some simple examples of “suitable data” include the details for customers and purchase
orders (one-to-many relationship), along with purchase orders and lines items (also a one-to-
many relationship).

Another example involves students and classes whose many-to-many relationship
is replaced by a “join” table whose key is the union of 1) the attributes from the primary key
for the students table and 2) the primary key for the classes table. As a result, both the
students table and the classes table have a one-to-many relationship with the join table.

Good Data Types for NoSQL
A NoSQL database is well-suited for documents, images, audio, and video, all of which

have variable lengths (and different formats) and can be stored as single entities without
adhering to the normalization process that you will see in Chapter 6. Although it’s certainly
possible for RDBMSs to manage these types of entities, write and read operations might
require accessing different parts of an entity from multiple tables. Recall that normalization
requires a JOIN keyword in SQL clauses that retrieve data from multiple tables, which in
turn can adversely affect performance.

Moreover, the document model for NoSQL allows for fields to vary from document to
document, all of which can belong to the same collection. In addition, more recent versions
of MongoDB provide ACID compliance, and in conjunction with transaction support, this
functionality can give MongoDB the look and feel of RDBMSs.

The important point is to select the system (whenever possible) that best fits the require-
ments for your application.

Some Guidelines for Selecting a Database
MongoDB might be a better choice than an RDBMS under the following conditions:

• you need high data availability and fast, automatic, and instant data recovery
• you work with an unstable schema
• your services are mostly cloud-based, the native scale-out architecture that MongoDB

comes with will be suitable for your business
• the architecture provides sharding, which aligns with horizontal scaling offered through

cloud computing.

MySQL could be a better option under the following conditions:

• you are starting a business and the database is not going to scale
• the schema is fixed and its data structure will not change over time
• you want high-performance ability on a low budget
• you need a high transaction rate
• data security is the foremost priority

NoSQL, SQLite, and Python • 243

Of course, the preceding lists of bullet items only provide guidelines rather than a defini-
tive list of criteria. Before you make a decision, make sure you perform a thorough evaluation
of two types of databases based on a prioritized list of requirements.

NoSQL Databases
The following list contains several NoSQL databases that are available for free:

• CockroachDB
• FaunaDB
• HarperDB
• RethinkDB

Before you decide to adopt one of the preceding databases, compare your list of require-
ments with each of these databases (and you might decide to adopt MySQL). If two of them are
viable candidates, check for blog posts that contain a detailed comparison. If you decide to an
application that uses each of those two databases, keep in mind that performance related issues
generally arise when there is a high volume of data and/or many simultaneous transactions.

Now that you have an overview of some of the differences between RDBMSs and NoSQL
databases, let’s take a closer look at MongoDB, which is the topic of the next section.

WHAT IS MONGODB?

MongoDB is a popular NoSQL database that supports NoSQL operations on data. An
RDBMS allows you to create databases and tables and then insert data into those tables. By
contrast, MongoDB supports the creation of databases and collections, after which you can
insert documents into the collections (discussed in more detail shortly).

Features of MongoDB
In addition to support for many standard query types, MongoDB offers the following

features:

• sharding
• load balancing
• scalability
• schemas are optional
• support for indexes

Installing MongoDB
There are two versions of MongoDB that you can install on your machine. The Mon-

goDB community edition is available for download at the following website:
https://docs.mongodb.com/manual/installation/#mongodb-community-edition-installa-

tion-tutorials
Note that on MacOS you can use brew to install MongoDB. The MongoDB Enterprise

edition is also downloadable:
https://docs.mongodb.com/manual/administration/install-enterprise/
In addition, you can use MongoDB with Docker (search online for tutorials and

instructions).

244 • Bash for Data Scientists

Launching MongoDB

Use the command mongo without arguments, which then launches a command shell and
connects to the URL mongod://127.0.0.1:27017.

The preceding URL is the default local server, and you’re connected to the local host
through port 27017. Type the following command to find the location of the mongo executable:
$ which mongo
/usr/local/bin/mongo

Now type mongo from a command shell to enter the mongo shell:
$ mongo

If everything has been set up correctly, you will see the following (or something similar):
MongoDB shell version v4.4.3
connecting to: mongodb://127.0.0.1:27017/?compressors=disabled&g

ssapiServiceName=mongodb
Implicit session: session { ̎id̎ : UUID(̎2c254ca6-adf4-466f-

8a87-a182d801ee0e̎) }
MongoDB server version: 4.4.3
// other details omitted for brevity
>

The mongo shell makes a connection to the test database, and you can verify the latter
by typing the following in the MongoDB command shell:
> db
Test

Display the existing MongoDB databases with this command:
> show databases
admin 0.000GB
config 0.000GB
local 0.000GB

You can also replace databases with dbs in the preceding command. Note that admin
and local are databases that are part of every MongoDB cluster.

USEFUL MONGO APIS

With MongoDB, you can create one or more databases, where each database can contain
one or more collections, and each collection can contain one or more JSON-based documents.

MongoDB supports CRUD operations (see below) that include find(), insert(),
update(), and delete(), where these keywords can be suffixed with “One” or “Many”
(e.g., findOne() and findMany()).

You can find data in a Mongo database with the following APIs:
• db.collection.find() lists all the documents in the collection.
• db.collection.findOne() lists only the first document in the collection.

NoSQL, SQLite, and Python • 245

Insert data with these MongoDB APIs:

• db.collection.insert() creates a new document in a collection.
• db.collection.insertOne() inserts a new document in a collection.
• db.collection.insertMany() inserts several new documents in a collection.

Update data with these MongoDB APIs:

• db.collection.update() modifies a document in a collection.
• db.collection.updateOne() modifies a single document in a collection.
• db.collection.updateMany() modifies multiple documents in a collection.
• db.collection.replaceOne() modifies a single document in a collection.

Delete data with these MongoDB APIs:

• db.collection.remove(): Delete a single document or all documents that match
a specified filter.

• db.collection.deleteOne(): Delete, at most, a single document that matches a
specified filter even though multiple documents may match the specified filter.

• db.collection.deleteMany(): Delete all documents that match a specified
filter.

Metacharacters in Mongo Queries
MongoDB supports two metacharacters and a lowercase switch that you can use when

you want to find substrings of a text string:

• $ matches the end of a line
• ^ matches the beginning of a line
• i means “ignore case”

Consider the following list of names that we will use with the preceding bullet items:
Smith1
Smith2
Smith3
Smith4
Smith5

The following expression does not match anything in the list (it starts with a lowercase s
instead of uppercase S):
/smith1/

The following expression matches Smith1 in the list because of the i switch:
/smith1/i

The following expression matches Smith1 through Smith5 because ^S matches any
string that starts with a capital S:
/^S/

246 • Bash for Data Scientists

The following expression matches Smith5 because /^5/ matches any string that ends
in the digit 5:
/5$/

MONGODB COLLECTIONS AND DOCUMENTS

In simplified terms, think of a collection as a container-like entity that enables you to store
documents. In addition, you can think of a document as a set of name/value pairs, where the
values can be simple data types (e.g., numbers or strings) as well as arrays. Thus, MongoDB
has a document-oriented data model instead of a table-oriented data model.

MongoDB’s document-oriented model means that documents can be managed in their
entirety instead of splitting them into components that are stored in different tables whose
relationship must be defined, such as a one-to-many relationship that involves a foreign key.

Instead, you create a collection and simply insert documents in that collection. Mon-
goDB provides APIs for managing the documents in a given collection. MongoDB performs
lazy creation of databases and collections, which means that databases and collections are
created after you insert the first document.

Document Format in MongoDB
The documents in MongoDB are composed of field-and-value pairs and have the follow-

ing structure:
{
 field1 → value1,
 field2 → value2,
 field3 → value3,
 ...
 fieldN → valueN
}

The value of a field can be any JSON data type, including other documents, arrays, and
arrays of documents. In practice, you’ll specify your documents using the JSON format.

CREATE A MONGODB COLLECTION

Unlike an RDBMS, MongoDB does not have a CREATE command. Instead, you need to
invoke the use command to create a database and then the INSERT command to insert a
document, after which a database is created:
use temp
Insert a document in temp

Specifically, enter the following commands from the command line:
> use temp
switched to db temp
> db.temp.insertOne({̎fname̎: ̎John̎, ̎lname̎: ̎Smith̎})

NoSQL, SQLite, and Python • 247

{
 ̎acknowledged̎ : true,
 ̎insertedId̎ : ObjectId(̎603dad30876da25aabd36d5f̎)
}

You can also insert multiple documents, as shown here:

> doc1 = {̎fname̎: ̎John̎, ̎lname̎: ̎Smith̎}
{ ̎fname̎ : ̎John̎, ̎lname̎ : ̎Smith̎ }

> doc2 = {̎fname̎: ̎Jane̎, ̎lname̎: ̎Jones̎}
{ ̎fname̎ : ̎Jane̎, ̎lname̎ : ̎Jones̎ }

> doc3 = {̎fname̎: ̎Dave̎, ̎lname̎: ̎Stone̎}
{ ̎fname̎ : ̎Dave̎, ̎lname̎ : ̎Stone̎ }

> db.temp.insertMany([doc1,doc2,doc3])
{
 ̎acknowledged̎ : true,
 ̎insertedIds̎ : [
 ObjectId(̎603daee5876da25aabd36d60̎),
 ObjectId(̎603daee5876da25aabd36d61̎),
 ObjectId(̎603daee5876da25aabd36d62̎)
]
}
>
> db.temp.find()
{ ̎_id̎ : ObjectId(̎603dad30876da25aabd36d5f̎), ̎fname̎ :

̎John̎, ̎lname̎ : ̎Smith̎ }
{ ̎_id̎ : ObjectId(̎603daee5876da25aabd36d60̎), ̎fname̎ :

̎John̎, ̎lname̎ : ̎Smith̎ }
{ ̎_id̎ : ObjectId(̎603daee5876da25aabd36d61̎), ̎fname̎ :

̎Jane̎, ̎lname̎ : ̎Jones̎ }
{ ̎_id̎ : ObjectId(̎603daee5876da25aabd36d62̎), ̎fname̎ :

̎Dave̎, ̎lname̎ : ̎Stone̎ }
>
> db.temp.find({fname : ̎Jane̎})
{ ̎_id̎ : ObjectId(̎603daee5876da25aabd36d61̎), ̎fname̎ :

̎Jane̎, ̎lname̎ : ̎Jones̎ }
>

Now let’s create a MongoDB collection called cellphones whose documents contain
the attributes year, os, model, color, and price. Unlike an RDBMS that requires
you to define the attributes of a database table, you can create a collection simply by inserting
a document in that collection. Here is an example of inserting a row in the cellphones

248 • Bash for Data Scientists

collection, which will create the cellphones collection if it does not already exist:
> use cellphones
switched to cellphones
> db
cellphones
> db.cellphones.insert({̎year̎:̎2017̎,̎os̎:̎android̎,̎model̎:̎pi

xel2̎,̎color̎:̎black̎,̎price̎:320})
The following document contains data for a specific cell phone in the cellphones col-

lection:
{
 ̎_id̎ : ObjectId(̎600c626932e0e6419cee81a7̎),
 ̎year̎ : ̎2017̎,
 ̎os̎ : ̎android̎,
 ̎model̎ : ̎pixel2̎,
 ̎color̎ : ̎black̎,
 ̎price̎ : 320
}

Invoke the following command if you want to delete the cellphones collection:
> db.cellphones.drop()

WORKING WITH MONGODB COLLECTIONS

This section contains a set of examples that illustrate how to use various MongoDB APIs
for managing the data in the cellphones collection that was created in the previous sec-
tion. The following sections contain code blocks that illustrate how to use the following APIs:
find()
insertOne()
insertMany()
aggregate()

Find All Android Phones

NoSQL (and MongoDB) provide the find() function to query a collection for docu-
ments. The following query finds the Android cell phones in the cellphones collection:
> db.cellphones.find({os: ̎android̎}).limit(1).pretty(){
 ̎_id̎ : ObjectId(̎600c63cf32e0e6419cee81ab̎),
 ̎year̎ : ̎2017̎,
 ̎os̎ : ̎android̎,
 ̎model̎ : ̎pixel2̎,
 ̎color̎ : ̎black̎,
 ̎price̎ : 28000
}

NoSQL, SQLite, and Python • 249

In addition to the find() function, the preceding query contains two additional func-
tions. First, the limit() function is invoked to limit the number of rows that are returned
in a query. Second, the pretty() function is invoked to display the output in a more aes-
thetically pleasing manner.

If you decide to omit the pretty() function in the preceding query, the output looks
like this:
> db.cellphones.find({os: ̎android̎}).limit(1){ ̎_id̎ : Obje

ctId(̎600c63cf32e0e6419cee81ab̎), ̎year̎ : ̎2017̎, ̎os̎ :
̎android̎, ̎model̎ : ̎pixel2̎, ̎color̎ ̎black̎, ̎price̎ :
320 }

Find All Android Phones in 2018
NoSQL and MongoDB allow you to list multiple comma-separated conditions to specify

Boolean AND logic on the specified conditions, an example of which is shown here:
> db.cellphones.find({os: ̎android̎, year: ̎2018̎}).pretty(){
 ̎_id̎ : ObjectId(̎600c63cf32e0e6419cee81af̎),
 ̎year̎ : ̎2018̎,
 ̎os̎ : ̎android̎,
 ̎model̎ : ̎pixel3̎,
 ̎color̎ : ̎white̎,
 ̎price̎ : 700
}

Insert a New Item (Document)

MongoDB provides the insertOne() function to insert a single document in a collec-
tion. An example of inserting (creating) a new document is as follows:
> db.cellphones.insertOne(
... {year: ̎2017̎, os: ̎bmw̎, color: ̎silver̎,
... km: 28000, price: 39000}
...){
 ̎acknowledged̎ : true,
 ̎insertedId̎ : ObjectId(̎600c6bc79445b834692e3b91̎)
}

Update an Existing Item (Document)

MongoDB provides the update() function to update an existing document in a collec-
tion. For example, the following query specifies the condition that indicates the documents
to be updated, and then passes the updated values as well as the set keyword:
> db.cellphones.update(
... { os: ̎bmw̎ },
... { $set: { os: ̎ios̎ }},
... { multi: true }
...)WriteResult({ ̎nMatched̎ : 5, ̎nUpserted̎ : 0, ̎nModified̎ :

5 })

250 • Bash for Data Scientists

We need to use the multi parameter to update all the documents that meet the given
condition. Otherwise, only one document will be updated.

Calculate the Average Price for Each Brand

MongoDB provides the aggregate() function to group documents into similar groups.
The subsequent query does the following:

1. groups the documents based on brands by selecting $os as id
2. specifies both the aggregation function which is $avg
3. specifies the field to be aggregated
4. inserts a single document in a collection

Here is the query that performs the preceding list of steps:
> db.cellphones.aggregate([
... { $group: { _id: ̎$make̎, avg_price: { $avg: ̎$price̎ }}}
...]){ ̎_id̎ : ̎hyundai̎, ̎avg_price̎ : 36333.333333333336 }
{ ̎_id̎ : ̎ios̎, ̎avg_price̎ : 47400 }
{ ̎_id̎ : ̎android̎, ̎avg_price̎ : 35333.333333333336 }

If you are familiar with Pandas, the syntax is similar to the groupby function.

Calculate the Average Price for Each Brand in 2019
This task is straightforward: start with the query in the preceding section and simply add

another condition that specifies a value of 2019 for the year, as shown in bold in the fol-
lowing code:
> db.cellphones.aggregate([
... { $match: { year: ̎2019̎ }},
... { $group: { _id: ̎$os̎, avg_price: { $avg: ̎$price̎ }}}
...]){ ̎_id̎ : ̎ios̎, ̎avg_price̎ : 53000 }
{ ̎_id̎ : ̎android̎, ̎avg_price̎ : 42000 }
{ ̎_id̎ : ̎ios̎, ̎avg_price̎ : 41000 }

Import Data with mongoimport

The mongoimport utility is a command line utility that enables you to import JSON,
CSV, or TSV files into a MongoDB database. For example, you can import the CSV file
data.csv into the mytools database with the following command:
mongoimport —db mytools —file /tmp/data.csv

WHAT IS FUGUE?

Fugue a Python-based library that enables you to invoke SQL-like queries against Pan-
das data frames via FugueSQL. Install Fugue with the following command (specify a differ-
ent version if you need to do so):
pip3.7 install fugue

NoSQL, SQLite, and Python • 251

Listing 8.1 displays the content of fugue1.py that illustrates how to populate a Pandas
data frame and then invoke various SQL commands to retrieve a subset of the data from the
Pandas data frame.

Listing 8.1: fugue1.py

import pandas as pd
from fugue_sql import fsql

df1 = pd.DataFrame({̍fnames̍: [̍john̍, ̍dave̍, ̍sara̍, ̍eddy̍],
 ̍lnames̍: [̍smith̍,̍stone̍,̍stein̍,̍bower̍],
 ̍ages̍: [30,33,34,35],
 ̍gender̍: [̍m̍,̍m̍,̍f̍,̍m̍]})

print(̎=> data frame:̎)
print(df1)
print()

Example #1: select users who are older than 33:
query_1 = ̎̎̎
SELECT fnames, lnames, ages, gender FROM df1
WHERE ages > 33
PRINT
̎̎̎

display the extracted data:
fsql(query_1).run()

Listing 8.1 starts with import statements and then initializes the Pandas data frame df1
with a set of data values. The next portion of Listing 8.1 constructs a query that retrieves the
data values of all users who are older than 33. Launch the code in Listing 8.1 and you will
see the following output:
collection:
=> data frame:
 fnames lnames ages gender
0 john smith 30 m
1 dave stone 33 m
2 sara stein 34 f
3 eddy bower 35 m

ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
PandasDataFrame

252 • Bash for Data Scientists

fnames:str|lnames:str|ages:long|gender:str
----------+----------+---------+----------
sara |stein |34 |f
eddy |bower |35 |m
Total count: 2

WHAT IS COMPASS?

MongoDB Compass is a free GUI tool for MongoDB that enables you to manage data in
a MongoDB database. Compass provides a GUI for accessing the contents of a MongoDB
database. In addition, you can use this GUI to visually explore data and execute ad hoc que-
ries. Compass is available for multiple platforms, such as Mac, Linux, and Window. Navigate
to the following URL that contains instructions for downloading Compass:

https://docs.mongodb.com/compass/master/install/
After completing the installation, launch Compass and in the “Connect to Host” page,

enter the following information:
Hostname: localhost
Port: 27107
Favorite Name: You Decide

Search online for more information if you are interested in using Compass with MongoDB.

WHAT IS PYMONGO?

PyMongo is a Python distribution for working with MongoDB via Python. Install
PyMongo on your machine with the following command:

pip3 install pymongo==3.11.2
The following website contains thorough documentation for learning how to use

PyMongo:
https://pymongo.readthedocs.io/en/stable/index.html

Listing 8.2 displays the content of pymongo1.py that connects to the mytools Mon-
goDB database.

Listing 8.2: pymongo1.py

import pymongo

a client instance:
myclient = MongoClient(̎localhost̎,27017)

connect to mytools:
db = myclient[̍mytools̍]

coll = db[̍weather̍]
print(̎collection:̎)
print(coll)

NoSQL, SQLite, and Python • 253

Listing 8.2 starts with an import statement and then initializes the variable mycli-
ent as an instance of the MongoClient class. Next, the variable db is initialized as data-
base connection to the mytools database. The remaining code involves the variable coll,
which is a reference to the weather collection, whose contents are then displayed. Launch
the code in Listing 8.2 and you will see the following output:
collection:
Collection(Database(MongoClient(host=[̍localhost:27017̍],

document_class=dict, tz_aware=False, connect=True),
̍mytools̍), ̍weather̍)

In addition, PyMongoArrow enables you to load MongoDB result sets in several ways:
as NumPy arrays, as Pandas data frames, or as Apache Arrow tables. Install PyMongoAr-
row with this command:
pip3 install pymongoarrow

This concludes the portion of the chapter regarding MongoDB. The next section returns
to MySQL and discusses how to access a MySQL database via SQLAlchemy and Pandas.

MYSQL, SQLALCHEMY, AND PANDAS

There are several ways to interact with a MySQL database, one of which is via SQLAl-
chemy. The Python code samples in subsequent sections rely on SQLAlchemy (which is
briefly described in the next section) and Pandas.

What is SQLAlchemy?
SQLAlchemy is an ORM (Object Relational Mapping), which serves as a “bridge”

between Python code and a database. Install SQLAlchemy with this command:
pip3 install sqlalchemy

SQLAlchemy handles the task of converting Python function invocations into the appro-
priate SQL statements, as well as providing support for custom SQL statements. In addi-
tion, SQLAlchemy supports multiple databases, including MySQL, Oracle, PostgreSQL, and
SQLite.

Read MySQL Data via SQLAlchemy
The previous section showed you how to install SQLAlchemy. Install Pandas (if you

haven’t done so already) with this command:
pip3 install pandas

The Pandas functionality in the code samples involve the intuitively named read_sql()
method and the related read_sql_query() method, both of which read the contents of
a MySQL table.

Listing 8.3 displays the content of read_sql_data.py that reads the contents of the
people table.

254 • Bash for Data Scientists

Listing 8.3: read_sql_table.py

from sqlalchemy import create_engine
import pymysql
import pandas as pd

engine = create_engine(̍mysql+pymysql://root:yourpassword@127.0.
0.1̍,pool_recycle=3600)

dbConn = engine.connect()
frame = pd.read_sql(̎select * from mytools.people̎, dbConn);

pd.set_option(̍display.expand_frame_repr̍, False)
print(frame)
dbConn.close()

Listing 8.3 starts with several import statements that are required to access a MySQL
database. The next portion of code initializes the variable engine as a reference to MySQL,
followed by dbConn, which is a database connection. Next, the variable frame is initialized
with the rows in the people table. Launch the following command in a command shell:
python3 read_sql_table.py

You will see the following output:
 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
5 eddy bower 35 m spain

Listing 8.4 displays the content of sql_query.py that reads the contents of the
people table.

Listing 8.4: sql_query.py

from sqlalchemy import create_engine
import pymysql
import pandas as pd
engine = create_engine(̍mysql+pymysql://root:yourpassword@127.0.

0.1̍,pool_recycle=3600)

query_1 = ̍̍̍
select * from mytools.people
̍̍̍

NoSQL, SQLite, and Python • 255

print(̎create dataframe from table:̎)
df_2 = pd.read_sql_query(query_1, engine)

print(̎dataframe:̎)
print(df_2)

Listing 8.4 starts with several import statements followed by initializing the variable
engine as a reference to a MySQL instance. Next, the variable query_1 is defined as a
string variable that specifies a SQL statement that selects all the rows of the people table,
followed by the variable df_2 (a data frame) that returns the result of executing the SQL
statement specified in the variable query_1. The final code snippet displays the contents of
the people table. Launch the following command in a command shell:
python3 sql_query.py

You will see the following output:
 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
5 eddy bower 35 m spain

Launch the following Python script in a command shell:
python3 sql_query.py

You will see the following output:
 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
5 eddy bower 35 m spain

EXPORT SQL DATA FROM PANDAS TO EXCEL

Listing 8.5 displays the content of sql_query_excel.py that reads the contents of
the people table into a Pandas data frame and then exports the latter to an Excel file.

Listing 8.5: sql_query_excel.py

from sqlalchemy import create_engine
import pymysql
import pandas as pd

256 • Bash for Data Scientists

engine = create_engine(̍mysql+pymysql://root:yourpassword@127.0.
0.1̍,pool_recycle=3600)

query_1 = ̍̍̍
select * from mytools.people
̍̍̍

print(̎create dataframe from table:̎)
df_2 = pd.read_sql_query(query_1, engine)

print(̎Contents of Pandas dataframe:̎)
print(df_2)

import openpyxl
print(̎saving dataframe to people.xlsx̎)
df_2.to_excel(̍people.xlsx̍, index=False)

Listing 8.5 contains several import statements followed by the variable engine, which is
initialized to an “endpoint” from which a MySQL database can be accessed. The next code snip-
pet initializes the variable query_1 as a string that contains a simple SQL SELECT statement.

Next, the variable df_2 is a Pandas data frame that was initialized as the result of invok-
ing the SQL statement defined in the variable query_1. Next, the contents of df_2 are
displayed. The final portion of code in Listing 8.5 saves the contents of df_2 to an Excel
document called people.xlsx. Launch the following command in a command shell:
python3 sql_query_excel.py

The preceding command will generate the following output:
Creating dataframe from table people
Contents of Pandas dataframe:
 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
..
73 jane smith 31 f france
74 jack jones 32 m france
75 dave stone 33 m italy
76 sara stein 34 f germany
77 eddy bower 35 m spain

[78 rows x 5 columns]
saving dataframe to people.xlsx

NoSQL, SQLite, and Python • 257

NOTE You might need to launch the earlier Python script using Python 3.7 instead of Python 3.8
or Python 3.9.

The next section contains Pandas-related functionality that does not involve any database
connectivity. Since the previous portion of this chapter contains Pandas-related functionality,
it’s a convenient location for this material. However, if you prefer, you can skip this section
with no loss of continuity, and proceed to the next section that discusses SQLite.

MYSQL AND CONNECTOR/PYTHON

MySQL provides a connector as another mechanism for connecting to a MySQL data-
base. This section contains some simple Python code samples that rely on the connector to
connect to a database and retrieve rows from a database table.

Before delving into the code samples, keep in mind that MySQL 8 uses mysql_native_
password instead of caching_sha2_password. As a result, you need to specify a value
for auth_plugin (which is not specified in various online code samples). Here is the error
message:
mysql.connector.errors.NotSupportedError: Authentication
plugin ̍caching_sha2_password̍ is not supported

The solution is highlighted in the Python code sample in the next section.

Establishing a Database Connection

Listing 8.6 displays the content of mysql_conn1.py that illustrates how to establish a
connector/Python database connection.

Listing 8.6: mysql_conn1.py

import mysql.connector

cnx = mysql.connector.connect(user=̍root̍,
 password=̍yourpassword̍,
 host=̍localhost̍,
 database=̍employees̍,
 auth_plugin=̍mysql_native_password̍)
cnx.close()

Listing 8.6 contains an import statement to set the appropriate path for Python 3.9.
If the code executes correctly on your system without these two lines of code, then you can
safely delete them.

The next code snippet is an import statement, followed by initializing the variable cnx
as a database connection. Note the snippet shown in bold, which is required for MySQL 8
to connect to a MySQL database, as described in the introductory portion of this section.
Launch the code in Listing 8.6 and if you don’t see any error messages, then the code worked
correctly.

258 • Bash for Data Scientists

Creating a Database Table

Listing 8.7 displays the content of create_fun_table.py that illustrates how to
establish a database connection and create a database table.

Listing 8.7: create_fun_table.py

my_table = (
 ̎CREATE TABLE ̍for_fun̍ (̎
 ̎ ̍dept_no̍ char(4) NOT NULL,̎
 ̎ ̍dept_name̍ varchar(40) NOT NULL,̎
 ̎ PRIMARY KEY (̍dept_no̍), UNIQUE KEY ̍dept_name̍ (̍dept_

name̍)̎
 ̎) ENGINE=InnoDB̎)

DB_NAME = ̍for_fun_db̍

import mysql.connector
cnx = mysql.connector.connect(user=̍root̍,
 password=̍yourpassword̍,
 host=̍localhost̍,
 database=̍mytools̍)
cursor = cnx.cursor()

try:
 print(̎Creating table {}: ̎.format(my_table), end=̍̍)
 cursor.execute(my_table)
except mysql.connector.Error as err:
 if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:
 print(̎already exists.̎)
 else:
 print(err.msg)
else:
 print(̎Table created:̎,my_table)

cursor.close()

cnx.close()

Listing 8.7 starts by initializing the variable my_table as a string that contains a SQL
statement for creating a MySQL table. The next portion of Listing 8.7 initializes the variable
cnx as a connection to the mytools database, and then initializes the variable cursor as
a database cursor.

NoSQL, SQLite, and Python • 259

The next portion of Listing 8.7 contains a try/catch block to create the table for_
fun that is specified in the string variable my_table. The except block catches the con-
nection-related error, and displays an appropriate message if the error occurred because the
specified table already exists (or for some other reason).

Now launch the code in Listing 8.7, and if everything worked correctly, you will see the
following output:
Creating table CREATE TABLE ̍for_fun̍ (̍dept_no̍ char(4)

NOT NULL, ̍dept_name̍ varchar(40) NOT NULL, PRIMARY
KEY (̍dept_no̍), UNIQUE KEY ̍dept_name̍ (̍dept_name̍))
ENGINE=InnoDB: Table created: CREATE TABLE ̍for_fun̍ (
̍dept_no̍ char(4) NOT NULL, ̍dept_name̍ varchar(40) NOT
NULL, PRIMARY KEY (̍dept_no̍), UNIQUE KEY ̍dept_name̍
(̍dept_name̍)) ENGINE=InnoDB

Open a command shell, and from the MySQL prompt, enter the following command:
MySQL [mytools]> desc for_fun;

The output of the preceding statement is shown here:
+-----------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+-------+
| dept_no | char(4) | NO | PRI | NULL | |
| dept_name | varchar(40)| NO | UNI | NULL | |
+-----------+-------------+------+-----+---------+-------+
2 rows in set (0.060 sec)

Reading Data from a Database Table

Listing 8.8 displays the content of mysql_pandas.py that illustrates how to establish
a database connection and retrieve the rows in a database table.

Listing 8.8: mysql_pandas.py

import mysql.connector

mydb = mysql.connector.connect(user=̍root̍,
 password=̍yourpassword̍,
 host=̍localhost̍,
 database=̍employees̍,
 auth_plugin=’mysql_native_password’)
mycursor = mydb.cursor()
select all rows from the employees table:
mycursor.execute(̍SELECT * FROM employees̍)

260 • Bash for Data Scientists

import pandas as pd

populate a Pandas data frame with the data:
table_rows = mycursor.fetchall()
df = pd.DataFrame(table_rows)

print(̎data frame:̎)
print(df)

mydb.close()

Listing 8.8 starts with the same import statement as Listing 8.7 and for the same pur-
pose. The next code snippet is an import statement, followed by initializing the variable
cnx as a database connection. Note the snippet shown in bold, which is required for MySQL
8 to connect to a MySQL database. Launch the code in Listing 8.8, and if everything worked
correctly, you will see the following output:
=> Contents of data frame:
 0 1 2
0 1000 2000 Developer
1 2000 3000 Project Lead
2 3000 4000 Dev Manager
3 4000 4000 Senior Dev Manager

WHAT IS SQLITE?

SQLite is a lightweight, portable, and open source RDBMS that is available on Windows,
Linux, and MacOS, as well as Android and iOS. The following websites have more informa-
tion:

https://www.sqlite.org
https://www.sqlitetutorial.net/sqlite-commands/
In addition, SQLite is ACID-compliant and implements most SQL standards. Let’s look

at some features of SQLite and the installation process, both of which are discussed in two
subsections.

SQLite Features
SQLite provides several useful features, some of which are listed here:

• doesn’t require a separate server process or system to operate
• no system administration
• no external dependencies
• can operate in a serverless environment.
• available in multiple platforms (Unix, Linux, Mac, and Windows)
• ACID transactions
• full support for all features in SQL92

NoSQL, SQLite, and Python • 261

SQLite Installation
Navigate to the following website and download the distribution for your operating system:
https://www.sqlite.org/download.html
The second step is to unzip the downloaded file in a convenient location, which we’ll

assume is the directory $HOME/sqlite3_home.
Note that if you have a MacBook, then the directory that contains the sqlite3 execut-

able is automatically in the PATH variable. Just to be sure, type the following command to
see if the sqlite3 is accessible:
which sqlite3

If the preceding command returns a blank line, then you need to include the path to
the bin directory where sqlite3 is located. For example, if the preceding directory is
$HOME/sqlite3_home/bin, then update the PATH environment variable as follows:
export PATH=/$HOME/sqlite_home/bin:$PATH

The following sequence of commands show you how to launch sqlite, open a database,
and display the contents of the employees table (which is created in the next section). Now
type all the text that is displayed in bold:
sqlite3
sqlite> use sqlite3_mytools
sqlite> .open /Users/oswaldcampesato/sqlite3_mytools
sqlite> .tables
employees
sqlite> select * from employees;
1200|10000|BizDev
1100|10000|Sales
1000|10000|Developer
sqlite> .quit

The .open command opens existing databases and creates a new database, as shown
above. The employees table was already created in an IDE, and you will see how to create
that table (and any other table that you want) in the next section.

Although you can perform SQL operations from the command line, just like you can with
MySQL, it’s probably easier to work with SQLite in an IDE. In fact, a very robust IDE is
SQLiteStudio, which is discussed in the next section.

SQLiteStudio Installation
SQLiteStudio is an open source IDE for SQLite that enables you to perform many data-

base operations, such as creating, updating, and dropping tables and views. Navigate to the
following websites, download the distribution for your operating system, and perform the
specified installation steps:

https://sqlitestudio.pl/
https://mac.softpedia.com/get/Developer-Tools/SQLiteStudio.shtml
Figure 8.1 displays the structure of the employees table whose definition is the same

as the employees table in the mytools database in MySQL.

262 • Bash for Data Scientists

Figure 8.1 The employees table.

Figure 8.2 displays a screenshot of three rows in the employees table, where you can
insert a fourth row of data in the top row that is pre-populated with NULL values.

Figure 8.2 Three rows in the employees table.

NoSQL, SQLite, and Python • 263

DB Browser for SQLite Installation
DB Browser is an open source and visual-oriented tool for SQLite that enables you to

perform various database-related operations, such as creating and updating files. Moreover,
this tool enables you to manage data through an interface that resembles a spreadsheet.

Navigate to the following website, download the distribution for your operating system,
and perform the specified installation steps:

https://www.macupdate.com/app/mac/38584/db-browser-for-sqlite/download/secure
The following website contains a multitude of URLs that provide details regarding the

features of DB Browser:
https://sqlitebrowser.org

SQLiteDict (Optional)

SQLiteDict is an open source tool that is a wrapper around sqlite3, and it’s down-
loadable here:

https://pypi.org/project/sqlitedict/
SQLiteDict enables you to persist dictionaries to a file on the file system, as illustrated by

the code in Listing 8.9.

Listing 8.9: sqlitesavedict1.py

pip3 install sqlitedict

from sqlitedict import SqliteDict

mydict = SqliteDict(̍./my_db.sqlite̍, autocommit=True)
mydict[̍pasta̍] = ̍pasta̍
mydict[̍pizza̍] = ̍pizza̍

for key, value in mydict.iteritems():
 print(̎key:̎,key,̎ value:̎,value)

dictionary functions work:
print(̎length:̎,len(mydict))
mydict.close()

a client instance:
myclient = MongoClient(̎localhost̎,27017)

Listing 8.9 contains an import statement followed by the variable mydict, which is
initialized as a dictionary that includes the two strings pasta and pizza. The next code
snippet displays the key/value pairs of mydict, followed by the length of the mydict dic-
tionary. The next close snippet closes the dictionary and then launches a MongoDB client at
the default port. Launch the code in Listing 8.9 and you will see the following output:
key: pasta value: pasta
key: pizza value: pizza
number of items: 2

Listing 8.9 shows you how to save key/value pairs, and Listing 8.10 illustrates how to read
the content of the file that was saved in Listing 8.9.

264 • Bash for Data Scientists

Listing 8.10: sqlitereaddict1.py

pip3 install sqlitedict

read the contents of my_db.sqlite
and note no autocommit=True
with SqliteDict(̍./my_db.sqlite̍) as mydict:
 print(̎old:̎, mydict[̍pasta̍])
 mydict[̍pasta̍] = u̎more pasta̎
 print(̎new:̎, mydict[̍pasta̍])
 mydict[̍pizza̍] = range(10)
 mydict.commit()
 # this is not persisted to disk:
 mydict[̍dish̍] = u̎deep dish̎

open the same file again:
with SqliteDict(̍./my_db.sqlite̍) as mydict:
 print(̎pasta:̎,mydict[̍pasta̍])
 # this line will cause an error:
 #print(̎dish value:̎,mydict[̍dish̍])

Listing 8.10 contains a block of code that reads the existing value of pasta from mydict,
updates its value, and then saves its new value. The final code block in Listing 8.10 reads the
stored contents and displays the key/value pairs. Launch the code in Listing 8.10 and you will
see the following output:
old: pasta
new: more pasta
pasta: more pasta

Check the online documentation for information regarding other functionality that is
available through sqlitedict.

WHAT IS TIMESCALEDB?

Timescaledb is a relational database that supports IoT datasets, and its home page is here:
https://www.timescale.com
There are two ways work with timescaledb: you can work with an online instance or

you can install timescaledb on your local system, which is described in the next section.
https://docs.timescale.com/timescaledb/latest/tutorials/nyc-taxi-cab/#introduction-to-iot-

new-york-city-taxicabs

Install Timescaledb (Macbook)
Navigate to the following URL and download the appropriate distribution for your laptop:
https://docs.timescale.com/install/latest/self-hosted/installation-macos/#install-self-

hosted-timescaledb-on-macos-systems

NoSQL, SQLite, and Python • 265

After you have downloaded and uncompressed the distribution for timescaledb,
install it on a MacBook via the homebrew command line utility by performing the following
steps (note the version number 2.7.0, shown in bold):
brew tap timescale/tap
brew install timescaledb

for Catalina:
timescaledb-tune -conf-path /usr/local/var/postgres/postgresql.

conf --yes
cd /usr/local/Cellar/timescaledb/2.7.0/bin
./timescaledb_move.sh

If need be, replace the hard-coded version number (shown in bold above) with the cor-
rect version number associated with your installation of timescaledb.

Setting Up the TimescaleDB Extension

On your laptop, connect to the PostgreSQL instance as the postgres superuser:
psql -U postgres -h localhost

If your connection is successful, you’ll see a message like this, followed by the psql
prompt:
psql (14.4)

Type “help” for help.
At the psql prompt, create an empty database named tsdb:

CREATE database tsdb;

Connect to the tsdb database that you created:
\c tsdb

Add the TimescaleDB extension:
CREATE EXTENSION IF NOT EXISTS timescaledb;

Now verify that the TimescaleDB extension is installed by using \dx command at the
psql prompt, which will generate the following type of output:
sql
tsdb-# \dx
 List of installed extensions
 Name | Version | Schema |Description
-------------+---------+------------+-------------------------
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural

 language
 timescaledb | 2.7.0 | public | Enables scalable

inserts and complex queries for time-series data
(2 rows)

266 • Bash for Data Scientists

After creating the extension and the database, connect directly to your database using
this command:
psql -U postgres -h localhost -d tsdb

The rides Table

The first step involves downloading the CSV file nyc_data_rides.csv (a 400M
dataset) by navigating to the following link and then clicking on the rounded button (shown
in blue) that is displayed in the first section:

https://docs.timescale.com/timescaledb/latest/tutorials/nyc-taxi-cab/
The second step involves populating the table rides with data in the CSV file nyc_

data_rides.csv by invoking the following command:
\COPY rides FROM nyc_data_rides.csv CSV;

Although you can upload small-to-medium sized CSV files quickly with the preceding
command, it’s also possible to upload CSV files in parallel, which is described in the next
section.

The Parallel Copy Command

A faster alternative for uploading CSV files to a database table is the parallel-copy
command that creates multiple threads to import a CSV file in blocks of 5,000 rows, which
reduces the execution time compared with a single thread.

Set --workers <= CPUs (or CPUs x 2) if they support hyperthreading. Replace the
values for the connection string, database name, and file location that are relevant for your
system in the following command:
timescaledb-parallel-copy --connection {CONNECTION STRING} --db-

name {DATABASE NAME} --table rides --file {PATH TO nyc_data_
rides.csv} --workers 4 --truncate --reporting-period 30s

Now that the rides table has been populated with data, execute the following SQL
query that selects 5 rows from the rides table:
SELECT * FROM rides LIMIT 5;

Data Analysis

The following SQL query returns the number of rides for the first 5 days:
SELECT date_trunc(̍day̍, pickup_datetime) as day, COUNT(*)
FROM rides
GROUP BY day
ORDER BY day;

The following code block displays the contents of average_fare.sql:
-- Calculate the daily average fare for rides
-- with only one passenger for first 7 days:
SELECT date_trunc(̍day̍, pickup_datetime)
AS day, avg(fare_amount)
FROM rides
WHERE passenger_count = 1

NoSQL, SQLite, and Python • 267

AND pickup_datetime <̍2016-01-08̍
GROUP BY day ORDER BY day;

LARGE SCALE DATA IMPUTATION

Scikit-learn provides the SimpleImputer class that you can combine with Pan-
das to process datasets, an example of which is here:
from scikit-learn.impute import SimpleImputer
from scikit-learn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=.2, random_state=1066)

imp = SimpleImputer(missing_values=np.NaN, strategy=̍mean̍)

X_train = imp.fit_transform(X_train)
X_test = imp.transform(X_test)

Moreover, SimpleImputer can update missing values by setting the parameter add_
indicator to True, as shown here:

imp = SimpleImputer(missing_values=np.NaN,strategy=̍mean̍,add_in-
dicator=True)

Despite the usefulness of the preceding code snippets, Pandas and SimpleIm-
puter are not designed for large datasets (i.e., in the multi-terabyte range and beyond).
Although there are Python packages (such as Dask and Vaex) that can handle such
datasets, there can be significant transfer time for moving data from its source to its
intended destination.

One cost-effective solution involves uploading the dataset to cloud-based storage, which
manages terabytes of data and also supports a Linux-like execution environment.

SUMMARY

This chapter introduced you to non-relational databases and some of their advantages.
Then you learned about NoSQL and a NoSQL database called MongoDB. You saw how to
create a database in MongoDB and a collection, as well as how to populate the collection with
documents. You also saw how to query data from a MongoDB collection and how to delete a
document from a collection.

Next, you learned about Compass (a GUI tool for MongoDB) and PyMongo, which is a
Python distribution for working with MongoDB. You also learned about DynamoDB, which
is a NoSQL database from Amazon. Then you saw how to read MySQL data into a Pandas
data frame and then save the data frame as an Excel spreadsheet.

268 • Bash for Data Scientists

In addition, you learned about SQLite, which is a command line tool for managing
databases that is available on mobile devices. Then you learned about related tools, such as
SQLiteStudio (an IDE for sqlite), DB Browser, and SQLiteDict.

At this point, there is one more thing to say: congratulations! You have completed a fast-
paced yet dense book, and if you are a Bash neophyte, the material will probably keep you
busy for many hours. The combined effect demonstrates that the universe of possibilities is
larger than the examples in this book, and ultimately, they will spark ideas in you. Good luck!

INDEX

A
adjacent digits, 176–177, 233–235
aggregate() function, 250
alias command, 62
AND IF statement, 87–88
arithmetic operators, 80–82
arrays, 64–68

and text files, 68–70
average support rate, 177–178, 235–236
awk command, 112, 139, 140–141

multi-line records in, 171–172
text string in, 156–157

B
back quotes (`), 40
backslash (\) character, 11, 106
basename command, 34–35
Bash, 3–5
bash command, 45
boolean operators, 75
Bourne Again shell, 2
Bourne shell, 2
break statement, 144
bunzip2 command, 58

C
case/esac statement, 77–79
case statement, 87–88

cat command, 6, 9, 22, 50, 59, 68, 113, 133,
141, 165, 194

categorical data, 211–215
inconsistent, 211–212
to numeric values, 212–213
to one hot encoded values, 213

categorical values, 196
cd command, 37
“^” and “\” and “!” character, 42
character classes, 23–24
chgrp command, 36
chmod command, 10, 35–36
chown command, 36
cmp command, 33–34
CNN. See Condensed Nearest Neighbor
command substitution (“back tick”), 17–18, 28
comma separated values (CSV), 59, 68
Condensed Nearest Neighbor (CNN), 225
conditional logic

and control statements, 142–145
printing lines using, 150
with if/else statements, 76–79

confusion matrix, 226
continue statement, 145
controlm.sh character, 54
–c option, 100–101
cost-sensitive learning, 226–227

270 • Bash for Data Scientists

cp command, 27–28
cpio command, 45, 57
“C” shell, 2
CSV. See comma separated values
CSV data, 236–237
CSV files, 181–190; with multi-row records,
204–207

currency, 215–219
cut command, 15–16, 60–61

D
data analysis, 266
dash (-) character, 11
data cleaning tasks, 211
datacolumns1.txt, 60
data deduplication, 192–194
data inconsistency, 196–197
data normalization, 209–211
data sampling techniques, 224–225
datasets, 123–125

aligning columns in, 159–160
alternate lines in, 145
columns and multiple rows in, 161–162
counting words in, 126
empty lines in, 105–106
in a fixed number of columns, 159
merging lines in, 146–148
“pure” words in a, 167–169
rebalancing, 227
search, 105
with, 1,000,000 rows, 134–138, 176–178,

230–236
word frequency in, 165–167

data transformation, 229–230
data validation, 211
data values

missing, 190–192, 196
uniformity of, 195

data wrangling, 228–230
dates, 219–224
dates2.csv, 174
DB Browser, 263
DeepChecks, 211
delim1.sh, 173–174
diff command, 33–34, 50, 194
directories, 36

absolute and relative directories, 37
absolute and relative path names, 37–38
changing, 39–40
creating, 38–39
removing, 39
renaming, 40

directory tree, 36–37
dirname command, 34–35
document store, 240
double ampersand (&&) symbol, 18
double quotes(“), 40
drop redundant columns, 192

E
echo command, 40, 60

and whitespaces, 16–17
Edited Nearest Neighbor (ENN), 225
egrep command, 93, 110–112
employees table, 229, 259, 261–262
end_d variable, 220
ENN. See Edited Nearest Neighbor
env (“environment”) command, 12–14
–e switch, 81, 120
executable files, 14
expr command, 63–64, 82
exp(x) function, 153

F
fgrep command, 93, 110–112
? filename metacharacter, 42–43
file test operators, 75–76
fillna () method, 182–183, 185, 187, 189
find command, 55–59, 107
find () function, 248–249
fold command, 9–10, 46–47
for loop, 144
Fugue, 250–252

G
globbing, 42
graph databases, 240
grep command, 93, 94

back references in, 103–105
character classes and, 100
escaping metacharacters with, 95–96
metacharacters and the, 95

Index • 271

multiple matches in, 106
useful options for the, 96–100
and xargs command, 107–108

gsub() function, 219
gunzip command, 57–58
gzip command, 57–58

H
head command, 7–8, 31–32, 102–103, 113, 208
history command, 4–5
HOME variable, 12
HOSTNAME variable, 12
hot deck imputation, 201

I
if/elif/fi statements, 87–88
if/else statements, 76–77
IFS. See Internal Field Separator
imbalanced data, 227
imbalanced datasets, 224–228
import statement, 179, 182–183, 185, 187,
189, 191, 197, 214, 216–217, 220, 222, 251,
253–257, 260, 263

insertOne() function, 249
Internal Field Separator (IFS), 59, 68
int(x) function, 152
inverted commas, 64
“invisible” file, 11

J
jar/grep command, 108
join command, 46

K
key/value store, 240

L
large scale data imputation, 267
less command, 31
limit () function, 249
localization of data, 219
LOGNAME variable, 12
log(x) function, 153
loops, 83–84
ls command, 5–6

M
matrix, 64
mean value imputation, 197–198
meta characters, 23

and character sets, 149
missing data, 180–190

and imputation, 190–201
missing data values, 190–192
missing dates, 220–221
MONGO APIS, 244–246
MongoDB, 243–244

all android phones, 248–249
collection, 246–250
document format in, 246

MongoDB Compass, 252
mongoimport utility, 250
more command, 31
multiple delimiters, 121–122
multiple imputation, 200
mv command, 29, 40
MYSQL, 253–255

and Connector/Python, 257–260

N
nested loops, 84–85
$newfile, 121
new_num variable, 195
NewSQL, 241
new_unit variable, 195
next statement, 145
noisy data, 225–226
non-relational database systems, 240–241
NOSQL, 241

databases, 243
good data types for, 242
RDBMS vs, 241–243

numeric comparisons, 176, 232–233

O
Object Relational Mapping (ORM), 253
od command, 50–51
one-hot encoding, 196, 212–214, 237
one-line awk commands, 154–155
one-line sed commands, 127–133
.open command, 261

272 • Bash for Data Scientists

operators, 72–73
ORM. See Object Relational
Mapping

P
Pandas, 181–190, 253–255
parallel copy command, 266
paste command, 19–20

blank lines with, 20
simple use case with, 20–21
simple use case with cut AND, 21–22

path name, 36–37
PATH variable, 12, 13
people.xlsx, 256
pipe symbol, 8–9, 18
POSIX characters classes, 51
POSIX shell, 2
postfix arithmetic operators, 151–152
pretty() function, 249
printf command, 142
printf statement, 15, 203
PyMongo, 252–253

Q
quotes3.csv, 172–173

R
rand() function, 153–154
randomize_deck() function, 199
random oversampling, 225
random resampling, 224
random undersampling, 224–225
random value imputation, 198–200
RDBMS, 241–243
read command, 73
relational operators, 75
rides Table, 266
rm command, 27–29, 39
rmdir command, 39

S
sed command, 116, 194

back references in, 126–127
character classes and, 124–125
control character, 125
missing values with, 133–134
search and replace with, 120–121

string pattern using, 117–120
switches in, 122–123

semicolon to separate commands, 18–19
SHELL variable, 12
short awk scripts, 155–156
single quotes (‘), 40
sin(x) function, 153
skewed datasets, 202–204
SMOTE. See Synthetic Minority
Oversampling Technique

sort command, 47–49
split command, 47
split() function, 152
SQLALchemy, 253–255
SQL data, 255–257
SQLite, 260–264
SQLiteDict, 263–264
SQLiteStudio, 261–262
sqrt(x) function, 154
srand(x) function, 154
stratify parameter, 228
streams and redirection commands, 41
string2date2.sh, 175
string operators, 75
strings, 82–83

count occurrences of, 157–158
in a fixed number of columns, 158

strings command, 34–35
strings variable, 195
subset, 162–164; of column-aligned rows, 164–165
switch date formats, 223–224
Synthetic Minority Oversampling Technique
(SMOTE), 225, 228

T
tab-separated-values (TSV), 68
tail command, 7–8, 32–33, 102, 113, 208
tar command, 45, 56–57
tee command, 56
TENEX/TOPS C shell, 2
test command, 74–76
time() function, 154
timescaledb, 264–267
titanic.csv, 112–113, 133, 169–170, 197,
207–208, 214

Index • 273

titanic-subrange.sh, 207–208
touch command, 27, 35
tr command, 45, 51, 53
TSV. See tab-separated-values

U
ulimit Command, 36
uneven rows, datasets, 61–62
uniq command, 49, 168, 193–194
unique_arr, 222
unique dates, 221–222
unique key value, 109–110
unique_years, 222
Unix, 2, 36

available shell types, 2–3
unmask command, 36
until loop, 88
update() function, 249
USER, 12
user-defined functions, 88–89

V
variables, 70–72
vector, 64

W
wc command, 30
wget command, 55
whatis command, 14
where command, 14
whereis command, 14
which command, 14
while loop/statement, 85–88, 143–144
wide document store, 240

X
xargs command, 45, 56, 107–108

Z
zero value, 201
zip command, 58
zsh (“Zee” shell), 2, 24–25

bash and, 24–25
configuring, 25

	Bash for Data Scientists
	CONTENTS
	PREFACE
	WHAT IS THE GOAL?
	IS THIS BOOK IS FOR ME AND WHAT WILL I LEARN?
	HOW WERE THE CODE SAMPLES CREATED?
	WHAT YOU NEED TO KNOW FOR THIS BOOK
	WHICH BASH COMMANDS ARE EXCLUDED?
	HOW DO I SET UP A COMMAND SHELL?
	WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?

	CHAPTER 1 INTRODUCTION
	WHAT IS UNIX?
	Available Shell Types

	WHAT IS BASH?
	Getting Help for Bash Commands
	Navigating Around Directories
	The history Command

	LISTING FILENAMES WITH THE LS COMMAND
	DISPLAYING CONTENTS OF FILES
	The cat Command
	The head and tail Commands
	The Pipe Symbol
	The fold Command

	FILE OWNERSHIP: OWNER, GROUP, AND WORLD
	HIDDEN FILES
	HANDLING PROBLEMATIC FILENAMES
	WORKING WITH ENVIRONMENT VARIABLES
	The env Command
	Useful Environment Variables
	Setting the PATH Environment Variable
	Specifying Aliases and Environment Variables

	FINDING EXECUTABLE FILES
	THE printf COMMAND AND THE echo COMMAND
	THE cut COMMAND
	THE echo COMMAND AND WHITESPACES
	COMMAND SUBSTITUTION (“BACK TICK”)
	THE PIPE SYMBOL AND MULTIPLE COMMA
	USING A SEMICOLON TO SEPARATE COMMANDS
	THE paste COMMAND
	Inserting Blank Lines with the paste Command

	A SIMPLE USE CASE WITH THE paste COMMAND
	A SIMPLE USE CASE WITH cut AND paste COMMANDS
	WORKING WITH META CHARACTERS
	WORKING WITH CHARACTER CLASSES
	WHAT ABOUT ZSH?
	Switching between bash and zsh
	Configuring zsh

	SUMMARY

	CHAPTER 2 FILES AND DIRECTORIES
	CREATE, COPY, REMOVE, AND MOVE FILES
	Creating Files
	Copying Files
	Copy Files with Command Substitution
	Deleting Files
	Moving Files

	THE BASENAME, DIRNAME, AND FILE COMMANDS
	THE wc COMMAND
	THE more COMMAND AND THE less COMMAND
	THE head COMMAND
	THE tail COMMAND
	FILE COMPARISON COMMANDS
	THE PARTS OF A FILENA
	WORKING WITH FILE PERMISSIONS
	The chmod Command
	The chown Command
	The chgrp Command
	The umask and ulimit Commands

	WORKING WITH DIRECTORIES
	Absolute and Relative Directories
	Absolute and Relative Path Names
	Creating Directories
	Removing Directories
	Changing Directories
	Renaming Directories

	USING QUOTE CHARACTERS
	STREAMS AND REDIRECTION COMMANDS
	METACHARACTERS AND CHARACTER CLASSES
	Digits and Characters
	Working with “^” and “\” and “!”

	FILENAMES AND METACHARACTERS
	SUMMARY

	CHAPTER 3 USEFUL COMMANDS
	THE join COMMAND
	THE fold COMMAND
	THE split COMMAND
	THE sort COMMAND
	THE uniq COMMAND
	HOW TO COMPARE FILES
	THE od COMMAND
	THE tr COMMAND
	A SIMPLE USE CASE
	THE find COMMAND
	THE tee COMMAND
	FILE COMPRESSION COMMANDS
	The tar command
	The cpio Command
	The gzip and gunzip Commands
	The bunzip2 Command
	The zip Command

	COMMANDS FOR zip FILES AND bz FILES
	INTERNAL FIELD SEPARATOR (IFS)
	DATA FROM A RANGE OF COLUMNS IN A DATASET
	WORKING WITH UNEVEN ROWS IN DATASETS
	THE alias COMMAND
	SUMMARY

	CHAPTER 4 CONDITIONAL LOGIC AND LOOPS
	ARITHMETIC OPERATIONS AND OPERATORS
	WORKING WITH ARRAYS
	ARRAYS AND TEXT FILES
	WORKING WITH VARIABLES
	Assigning Values to Variables

	WORKING WITH OPERATORS FOR STRINGS AND NUMBERS
	THE read COMMAND FOR USER INPUT
	THE test COMMAND FOR VARIABLES, FILES, AND DIRECTORIES
	Relational Operators
	Boolean Operators
	String Operators
	File Test Operators

	CONDITIONAL LOGIC WITH if/else STATEMENTS
	THE case/esac STATEMENT
	ARITHMETIC OPERATORS AND COMPARISONS
	WORKING WITH STRINGS IN SHELL SCRIPTS
	Working with Strings

	WORKING WITH LOOPS
	Using a for loop

	WORKING WITH NESTED LOOPS
	USING A while LOOP
	THE while, case, AND if/elif/fi STATEMENTS
	USING AN UNTIL LOOP
	USER-DEFINED FUNCTIONS
	CREATING A SIMPLE MENU FROM SHELL COMMANDS
	SUMMARY

	CHAPTER 5 PROCESSING DATASETS WITH GREPAND SED
	WHAT IS THE grep COMMAND?
	METACHARACTERS AND THE grep COMMAND
	ESCAPING METACHARACTERS WITH THE grep COMMAND
	USEFUL OPTIONS FOR THE grep COMMAND
	Character Classes and the grep Command

	WORKING WITH THE –C OPTION IN grep
	MATCHING A RANGE OF LINES
	USING BACK REFERENCES IN THE grep COMMAND
	FINDING EMPTY LINES IN DATASETS
	USING KEYS TO SEARCH DATASETS
	THE BACKSLASH CHARACTER AND THE grep COMMAND
	MULTIPLE MATCHES IN THE GREP COMMAND
	THE grep COMMAND AND THE xargs COMMAND
	Searching zip Files for a String

	CHECKING FOR A UNIQUE KEY VALUE
	Redirecting Error Messages

	THE egrep COMMAND AND fgrep COMMAND
	Displaying “Pure” Words in a Dataset with egrep
	Redirecting Error Messages

	THE egrep COMMAND AND fgrep COMMAND
	Displaying “Pure” Words in a Dataset with egrep
	The fgrep Command

	DELETE ROWS WITH MISSING VALUES
	A SIMPLE USE CASE
	WHAT IS THE sed COMMAND?
	The sed Execution Cycle

	MATCHING STRING PATTERNS USING sed
	SUBSTITUTING STRING PATTERNS USING sed
	Replacing Vowels from a String or a File
	Deleting Multiple Digits and Letters from a String

	SEARCH AND REPLACE WITH sed
	DATASETS WITH MULTIPLE DELIMITERS
	USEFUL SWITCHES IN sed
	WORKING WITH DATASETS
	Printing Lines
	Character Classes and sed
	Removing Control Characters

	COUNTING WORDS IN A DATASET
	BACK REFERENCES IN sed
	ONE-LINE sed COMMANDS
	POPULATE MISSING VALUES WITH THE sed COMMAND
	A DATASET WITH 1,000,000 ROWS
	Numeric Comparisons
	Counting Adjacent Digits
	Average Support Rate

	SUMMARY

	CHAPTER 6 PROCESSING DATASETS WITH AWK
	THE awk COMMAND
	Built-in Variables that Control awk
	How Does the awk Command Work?

	ALIGNING TEXT WITH THE printf COMMAND
	CONDITIONAL LOGIC AND CONTROL STATEMENTS
	The while Statement
	A for loop in awk
	A for loop with a break Statement
	The next and continue Statements

	DELETING ALTERNATE LINES IN DATASETS
	MERGING LINES IN DATASETS
	Printing File Contents as a Single Line
	Joining Groups of Lines in a Text File
	Joining Alternate Lines in a Text File

	MATCHING WITH METACHARACTERS AND CHARACTER SETS
	PRINTING LINES USING CONDITIONAL LOGIC
	SPLITTING FILENAMES WITH awk
	WORKING WITH POSTFIX ARITHMETIC OPERATORS
	NUMERIC FUNCTIONS IN awk
	ONE-LINE awk COMMANDS
	USEFUL SHORT awk SCRIPTS
	PRINTING THE WORDS IN A TEXT STRING IN awk
	COUNT OCCURRENCES OF A STRING IN SPECIFIC ROWS
	PRINTING A STRING IN A FIXED NUMBER OF COLUMNS
	PRINTING A DATASET IN A FIXED NUMBER OF COLUMNS
	ALIGNING COLUMNS IN DATASETS
	ALIGNING COLUMNS AND MULTIPLE ROWS IN DATASETS
	DISPLAYING A SUBSET OF COLUMNS IN A TEXT FILE
	SUBSETS OF COLUMN-ALIGNED ROWS IN DATASETS
	COUNTING WORD FREQUENCY IN DATASETS
	DISPLAYING ONLY “PURE” WORDS IN A DATASET
	DELETE ROWS WITH MISSING VALUES
	WORKING WITH MULTI-LINE RECORDS IN AWK
	A SIMPLE USE CASE
	ANOTHER USE CASE
	A DATASET WITH 1,000,000 ROWS
	Counting Adjacent Digits
	Average Support Rate

	SUMMARY

	CHAPTER 7 PROCESSING DATASETS (PANDAS)
	PREREQUISITES FOR THIS CHAPTER
	ANALYZING MISSING DATA
	Causes of Missing Data

	PANDAS, CSV FILES, AND MISSING DATA
	Single Column CSV Files
	Two Column CSV Files

	MISSING DATA AND IMPUTATION
	Counting Missing Data Values
	Drop Redundant Columns
	Remove Duplicate Rows
	Display Duplicate Rows
	Uniformity of Data Values
	Too Many Missing Data Values
	Categorical Data
	Data Inconsistency
	Mean Value Imputation
	Random Value Imputation
	Multiple Imputation
	Matching and Hot Deck Imputation
	Is a Zero Value Valid or Invalid?

	SKEWED DATASETS
	CSV FILES WITH MULTI-ROW RECORDS
	COLUMN SUBSET AND ROW SUBRANGE OF THE TITANIC CSV FILE
	DATA NORMALIZATION
	Assigning Classes to Data
	Other Data Cleaning Tasks
	DeepChecks and Data Validation

	HANDLING CATEGORICAL DATA
	Processing Inconsistent Categorical Data
	Mapping Categorical Data to Numeric Values
	Mapping Categorical Data to One Hot Encoded Values

	WORKING WITH CURRENCY
	WORKING WITH DATES
	Find Missing Dates
	Find Unique Dates
	Switch Date Formats

	WORKING WITH IMBALANCED DATASETS
	Data Sampling Techniques
	Removing Noisy Data
	Cost-sensitive Learning
	Detecting Imbalanced Data
	Rebalancing Datasets
	Specify stratify in Data Splits

	WHAT IS SMOTE?
	DATA WRANGLING
	Data Transformation: What Does This Mean?

	A DATASET WITH 1,000,000 ROWS
	Dataset Details
	Numeric Comparisons
	Counting Adjacent Digits

	SAVING CSV DATA TO XML, JSON, AND HTML FILES
	SUMMARY

	CHAPTER 8 NOSQL, SQLITE, AND PYTHON
	NON-RELATIONAL DATABASE SYSTEMS
	Advantages of Non-relational Databases

	WHAT IS NOSQL?
	What is NewSQL?

	RDBMS VERSUS NOSQL: WHICH ONE TO USE?
	Good Data Types for NoSQL
	Some Guidelines for Selecting a Database
	NoSQL Databases

	WHAT IS MONGODB?
	Features of MongoDB
	Installing MongoDB
	Launching MongoDB

	USEFUL MONGO APIS
	Metacharacters in Mongo Queries

	MONGODB COLLECTIONS AND DOCUMENTS
	Document Format in MongoDB

	CREATE A MONGODB COLLECTION
	WORKING WITH MONGODB COLLECTIONS
	Find All Android Phones
	Find All Android Phones in 2018
	Insert a New Item (Document)
	Update an Existing Item (Document)
	Calculate the Average Price for Each Brand
	Calculate the Average Price for Each Brand in 2019
	Import Data with mongoimport

	WHAT IS FUGUE?
	WHAT IS COMPASS?
	WHAT IS PYMONGO?
	MYSQL, SQLALCHEMY, AND PANDAS
	What is SQLAlchemy?
	Read MySQL Data via SQLAlchemy

	EXPORT SQL DATA FROM PANDAS TO EXCEL
	MYSQL AND CONNECTOR/PYTHON
	Establishing a Database Connection
	Creating a Database Table
	Reading Data from a Database Table

	WHAT IS SQLITE?
	SQLite Features
	SQLite Installation
	SQLiteStudio Installation
	DB Browser for SQLite Installation
	SQLiteDict (Optional)

	WHAT IS TIMESCALEDB?
	Install Timescaledb (Macbook)
	Setting Up the TimescaleDB Extension
	The rides Table
	The Parallel Copy Command
	Data Analysis

	LARGE SCALE DATA IMPUTATION
	SUMMARY

	INDEX

