

Building Micro Frontends
with React 18

Develop and deploy scalable applications using
micro frontend strategies

Vinci J Rufus

BIRMINGHAM—MUMBAI

Building Micro Frontends with React 18
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Kushal Dave
Senior Editor: Aamir Ahmed
Book Project Manager: Sonam Pandey
Technical Editor: K Bimala Singha
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Ponraj Dhandapani
DevRel Marketing Coordinator: Nivedita Pandey

First published: September 2023

Production reference: 1180923

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB

ISBN 978-1-80461-096-1
www.packtpub.com

http://www.packtpub.com

Contributors

About the author
Vinci J Rufus is VP of Technology with Publicis Sapient, with over 25 years of experience in leading
teams that build rich web and internet applications for top retail brands. He was an early pioneer in
adopting HTML5 and JavaScript frameworks such as Angular, React, and serverless technologies to
deploy web apps in production.

For the past 5 years, Vinci has specialized in architecting and implementing micro frontends.
He enjoys the technical challenges and complexity these systems entail.

At his core, Vinci is an engineer who loves collaborating directly with his team to solve real-world
problems. He still codes regularly and stays hands-on with the latest technologies.

Vinci is particularly fascinated by emerging technologies such as edge computing and generative AI.
He sees enormous potential in how these innovations can transform the way we develop software in
the coming years.

Acknowledgments

To Sheldon Monteiro and the entire leadership team at the Chief Marketing Technology Officer
University (CMTOu) – where my journey into micro frontends all began.

I am tremendously thankful for the guidance, support, and opportunities provided by my leaders
at Publicis Sapient, Tilak Doddapaneni and Rakesh Ravuri. Your trust in allowing me to explore
cutting-edge technologies has been instrumental in my knowledge of micro frontends. My sincere
appreciation to the outstanding experience Engineering community at Publicis Sapient, from whom
I have learned so much.

A huge thank you to Sourav Mondal for our many brainstorming and debugging. Thanks to Nuala
Monaghan, Devesh Kaushal, Hari Om Bangari and Davide Fortuna for those additional reviews,
comments and feedback. I am grateful for your time and insight. Most importantly, I wish to express
my deepest love and gratitude to my amazing wife, Raina, and wonderful children, Shannon and
Jaden. Your unrelenting support and understanding during our many sacrificed holidays have made
this book possible. I could not have done this without you.

About the reviewers
Alberto Arias López is a continuously evolving software engineer with extensive work experience
building consumer-focused online products and services in different domains within a number of
international companies of all sizes. He has witnessed the evolution of the frontend, empowering
developers to build more complex web applications each time that improve the user experience.
Nevertheless, it is still a young software engineering area compared to others. Micro frontends is a
step further that allows the community to keep evolving and responding to the increasing demand
of the product life cycle.

The work I’ve done on this book is dedicated to my family: my parents, Ana María and Antonio, and
my brothers, Antonio and Chumy. I love you.

I would also like to mention all the professional mates I have had the opportunity to know and learn
from during the journey – teamwork is invaluable.

Israel Antonio Rosales Laguan is an experienced full stack software engineer using JavaScript, React,
and Node.js, with a focus on process improvement, developer ergonomics, systems integration, and
pipeline automation. He also has a lot of experience in international SCRUM teams and mentoring
others, working in Equinox, OnDeck, and Lazard, among others. Other expertise: OWASP compliance,
GraphQL, CI/CD with Docker, and advanced CSS.

Preface� xiii

Part 1: Introduction to Microfrontends

1
Introducing Microfrontends� 3

Technical requirements� 4
Defining Microfrontends� 5
Understanding the Microfrontend Premium� 5
Exploring the benefits of Microfrontends� 6

Understanding Microfrontend patterns� 8
The Multi-SPA Pattern� 8

The Micro Apps Pattern� 10

Choosing a suitable pattern� 12
Team Composition� 12
Frequency of Deployments� 12

Hello World with Microfrontends� 13
Summary� 17

2
Key Principles and Components of Microfrontends� 19

Understanding the Key Principles� 19
Domain Driven Teams� 20
Isolating Failure� 21
Deploying Independently� 21
Preferring Runtime Integrations� 21
Avoiding the “Distributed Monolith” trap� 22
Technology agnostic� 22
Granular Scaling� 23
Culture of Automation and DevOps� 23

The key Components of a
Microfrontend Architecture� 24
Routing Engine� 24
A global state and a Communication Channel� 24
Source code Version Control� 25
A Component Library� 25

Summary� 26

Table of Contents

Table of Contentsviii

3
Monorepos versus Polyrepos for Microfrontends� 27

Technical requirements� 28
Repo types and their nuances� 28
Monorepos� 29
Polyrepos� 29
Differences between Polyrepos and Monorepos� 30

Choosing Monorepos for
Microfrontends� 33

Popular Monorepo tools� 34

Setting up our Monorepo� 34
Running the app locally� 38
Creating a new app with Nx Console� 39
Setting permissions in your Monorepo� 40

Summary� 42

Part 2: Architecting Microfrontends

4
Implementing the Multi-SPA Pattern for Microfrontends� 45

Technical requirements� 46
Understanding the multi-SPA
architecture� 46
Building our Multi-SPA Microfrontend�47
Setting up our mini-apps� 48
Using a shared component library� 50

Setting up Routing� 54
Setting up a mocked product list� 56
Adding the product grid and checkout
components� 57
Setting up a Global Shared State� 63

Summary� 72

5
Implementing the Micro-Apps Pattern for Microfrontends� 73

Technical requirements� 74
Why do we need Module Federation
for Microfrontends?� 74
What is Module Federation?� 75
ModuleFederationPlugin� 75
Host apps� 76
Remote Apps� 76
remoteEntry.js� 77

Setting up Microfrontends with a
Host and Remote app� 78
Clean up� 79
Setting up the App-shell host app� 79
Setting up our Remote apps� 82

Extending Module Federation to a
true Micro-apps Pattern� 87
Creating the Recommendations Remote

Table of Contents ix

Micro app� 88
Adding Recommendations as a Remote app
to Catalog� 89

State management with Module

Federation� 90
Adding the Like button to the host app� 94
Avoiding Unnecessary Re-rendering� 96

Summary� 97

6
Server-Rendered Microfrontends� 99

Technical requirements� 100
How do Client Rendered and Server
Rendered Apps differ?� 100
Client Side Rendered Apps (CSR)� 101
Server Side Rendered Apps (SSR)� 102

Building out our Server Rendered
Microfrontend� 103
Getting started with Turborepo and Next.js� 103
Setting up our Micro Apps� 105

Summary� 117

Part 3: Deploying Microfrontends

7
Deploying Microfrontends to Static Storage� 121

Technical requirements� 122
What is Static Storage?� 122
Setting up Firebase� 123
Setting up a project with multiple sites� 124
Installing and configuring the Firebase CLI� 124

Creating the Microfrontend
Production build� 125
Deploying our Apps to Firebase� 128

Fixing CORS issues� 131
Deploying only the selected target� 132

Deploying only Micro Apps that
changed� 132
NX Affected� 133
Creating an Nx custom command executor to
deploy� 134

Summary� 136

8
Deploying Microfrontends to Kubernetes� 137

Technical requirements� 138
Introduction to Kubernetes� 138

What is Kubernetes?� 139
Key concepts of Kubernetes� 139
Kubernetes architecture for microfrontends� 140

Table of Contentsx

Containerizing our micro-apps with
Docker� 141
Installing Docker� 141
Creating standalone app builds� 141
Creating a Dockerfile� 142
Setting up Docker Hub to store Docker images� 145

Creating a Kubernetes configuration
file� 146
The structure of a Kubernetes spec file� 146
Creating spec files to deploy our
microfrontends� 146

Setting up a managed Kubernetes
Cluster on Azure� 149

Logging into the Azure portal and setting up
a subscription key� 150
Accessing your Kubernetes cluster via the
Azure CLI� 152
Generating credentials for your DevOps
pipelines� 152

Setting up CI/CD with GitHub
Actions� 153
Setting up GitHub secrets� 154
Getting started with GitHub Actions� 154

Updating the remotes� 160
Summary� 162

Part 4: Managing Microfrontends

9
Managing Microfrontends in Production� 165

Foundational components for a
strong software delivery model� 165
Branching strategies� 166
Versioning micro apps� 169

Rolling back a micro app� 171
Deploying micro apps with feature
toggles� 172
Summary� 172

10
Common Pitfalls to avoid when Building Microfrontends� 173

Don’t make your micro apps too small�174
Avoiding the overuse of Shared
Component Code� 175
Avoiding using multiple frameworks
in your microfrontend� 176
An inability to deploy an individual
micro app� 176
Excessively relying on state� 177

Avoiding build-time compilation to
assemble Microfrontends� 177
Avoiding packing your micro apps
into NPM packages� 178
Summary� 178

Table of Contents xi

Part 5: Emerging Trends

11
Latest Trends in Microfrontends� 181

Microfrontends – decoupled
modular frontends� 181
The island pattern� 182
Beyond Webpack with ES Modules� 183

Using WebAssembly Modules� 184
Edge Functions or Cloud functions� 186
Generative AI and Microfrontends� 187
Summary� 188

Index� 189

Other Books You May Enjoy� 196

Preface

Microfrontends have emerged as a popular architectural pattern for building large, complex web
applications by breaking them down into smaller, independent pieces that can be developed and
deployed separately. This makes it easier to scale development, accelerate release velocity, and adopt
new technologies incrementally.

This book provides a comprehensive guide to implementing micro frontends in practice, from
architectural principles and patterns to hands-on examples using frameworks such as React. You
will learn how to divide a monolithic application into autonomous micro frontends. We will look at
some of the key principles of micro frontends and scenarios where micro frontends may or may not
be the right pattern.

We will explore the different patterns of micro frontends and create micro frontends using module
federation for client-side rendered apps and server-side rendered apps.

We will learn how to deal with things such as routing and state management when building micro
frontends, and finally, we will learn how to deploy our micro frontends on Firebase and on a Kubernetes
cluster using Azure.

Who this book is for
This book is for frontend and full stack developers aiming to build large, scalable web applications
using modern JavaScript frameworks such as React. It will also benefit solution architects looking
to adopt micro frontend architecture. You should have a good understanding of JavaScript, React,
module bundling, and basic web development concepts.

What this book covers
Chapter 1, Introducing Microfrontends, introduces different architectural patterns, such as the multi-
SPA and micro apps pattern for building micro frontends.

Chapter 2, Key Principles and Components of Microfrontends, covers core principles such as independent
deployability, bounded contexts, isolating failures, runtime integrations, and so on.

Chapter 3, Monorepos versus Polyrepos for Microfrontends, compares monorepos and multirepos for
managing micro frontend code bases, and why monorepos are preferred for building microfrontends.

Chapter 4, Implementing the Multi-SPA Pattern for Microfrontends, demonstrates building micro
frontends as a collection of Single-Page Apps.

Prefacexiv

Chapter 5, Implementing the Micro-Apps Pattern for Microfrontends, dives deeper into building micro
frontends using module federation and covering critical topics around routing and sharing state
between different micro apps.

Chapter 6, Server-Rendered Microfrontends, shows how to go about building a server-side rendered
micro-frontend using module federation.

Chapter 7, Deploying Microfrontends to Static Storage, takes us through the journey of deploying our
micro frontend to a static storage hosting service such as Firebase.

Chapter 8, Deploying Microfrontends to Kubernetes, demonstrates deploying micro frontends to
Kubernetes such as AKS on Azure.

Chapter 9, Managing Microfrontends in Production, covers topics such as branching strategies, versioning,
rollback strategies, and feature toggles that are essential to managing micro frontends in production.

Chapter 10, Common Pitfalls to avoid when Building Microfrontends, talks about some of the common
mistakes developers and architects make that negatively impact the benefits of why we chose micro
frontends in the first place.

Chapter 11, Latest Trends in Microfrontends, covers some of the new trends, such as ES builds, cloud
or edge functions, island patterns, and generative AI, and how they could be used to build micro
frontends in the future.

To get the most out of this book
The code examples use React, webpack, Node.js, and npm. Familiarity with these tools will be helpful.
The examples can be followed on any operating system.

The digital version of this book includes detailed code examples that can be copied and pasted to get up
and running quickly. For the best learning experience, try building the examples yourself from scratch.

Software/hardware covered in the book Operating system requirements

React 18 Windows, macOS, or Linux

TypeScript 3.7 Windows, macOS, or Linux

Docker Engine 24 Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Preface xv

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Building-Micro-Frontends-with-React-18. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Ensure
we have the URL routing set up in the proxy.conf.json file.”

A block of code is set as follows:

  "scripts": {
    "start": "nx serve",
    "build": "nx build",
    "test": "nx test",
    "serve:all": "nx run-many --target=serve"
  },

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

pnpm install semantic-ui-react semantic-ui-css

Any command-line input or output is written as follows:

pnpm serve:all

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Next, we update the Add and Remove
button onclick events as follows.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React-18
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React-18
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com

Share Your Thoughts
Once you’ve read Building Micro Frontends with React 18, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
https://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-804-61096-8
https://packt.link/r/1-804-61096-8

Preface xvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610961

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

.

https://packt.link/free-ebook/9781804610961

Part 1:
Introduction to Microfrontends

This part covers the core concepts and principles behind microfrontends, including the motivations
for using this architecture, key components, and how microfrontends differ from monoliths.

This part has the following chapters:

•	 Chapter 1, Introducing Microfrontends

•	 Chapter 2, Key Principles and Components of Microfrontends

•	 Chapter 3, Monorepos versus Polyrepos for Microfrontends

1
Introducing Microfrontends

We are coming full circle with microfrontends! During the Web 1.0 era, websites primarily comprised
single pages built in ASP, JSP, or PHP, where we could make changes to each individual page and upload
it to a server via FTP and it was immediately available to consumers. Then came the Web 2.0 era and
the notion of web apps and Single-Page Apps (SPAs), where we compile, transpile, and deploy large
monolithic apps. Now, we seem to be going back to working with smaller apps and pages.

The early 2000s brought in the era of Web 2.0 and the notion of web apps. A few years later, JavaScript
frameworks allowed you to build SPAs that updated instantly and didn’t reload a new page each time
the user clicked on a link or a button. SPAs were indeed fast for small to medium-sized apps, but as
teams went full throttle with building large-scale SPAs, and as applications and teams grew, the velocity
and speed of development dropped significantly. Teams seemed to be debating about folder structures,
state management, and breaking each other’s code, due to centrally managed libraries and so on. These
large SPAs also started becoming less performant due to the large bundle sizes of these apps. More
importantly, the high execution time required to parse these JavaScript bundles made the apps even
more sluggish on low-end devices and mobile phones. That’s when developers and architects started
looking for solutions to these problems. Thankfully, they didn’t have to look too far.

You see, the backend teams went through the exact same problems with the large backend monoliths
a few decades back and moved toward the microservices architecture pattern in order to solve their
performance and scaling challenges. The frontend teams now look to apply the same principles of
microservices to their frontend apps, which are being referred to as microfrontends.

The journey for backend teams toward microservices has been a very long one, spanning multiple
decades, and many teams still struggle with it. However, thanks to a lot of debates, discussions,
thoughts, leadership, and sharing learning from various microservice implementations, there is an
overall maturity to and consensus around microservices architecture.

Frontend teams are just waking up to the notion of microfrontends, and there are multiple schools
of thought on what defines a microfrontend, including, in fact, whether microfrontends are even a
good thing or not. It will take a couple of years, if not a decade, before there is some consensus around
microfrontends. The good thing, however, is that we can learn a lot from the journey of microservices,
as a lot of principles and architecture patterns of microservices also apply to microfrontends.

Introducing Microfrontends4

In this chapter, we’ll start by understanding the need for microfrontends. We will cover the definition
of microfrontends, and then the different patterns of microfrontends. We will also look into the
parameters that will help us choose which pattern to go with for designing your apps. Finally, we will
create our very first microfrontend.

In this chapter, we will cover the following topics:

•	 Defining Microfrontends

•	 Understanding Microfrontend patterns

•	 Choosing a suitable pattern

•	 Hello World with Microfrontends

By the end of this chapter, you will have a better understanding of two of the most common patterns
for building microfrontends and a guide to help you decide which one would be most suitable for you.

Toward the end of this chapter, we will build out a simple multi-SPA microfrontend example and get
a feel for how we navigate between the the different SPAs.

Technical requirements
As you go through the code examples in this chapter, you will need the following:

•	 A PC, Mac, or Linux desktop/laptop with at least 8 GB of RAM (16 GB preferred)

•	 An Intel chipset i5+, AMD, or an Apple M1 + chipset

•	 At least 256 GB of free hard disk storage

You will also need the following software installed on your computer:

•	 Node.js version 16+ (use nvm to manage different versions of Node.js if you have to).

•	 Terminal: A modern shell such as zsh, iTerm2 with oh-my-zsh for Mac (you will thank me
later), or Hyper for Windows (https://hyper.is/).

•	 IDE: We recommend VS Code.

•	 npm, yarn, or pnpm. We recommend PNPM because it’s fast and storage efficient.

•	 Browser: Chrome/Microsoft Edge, Brave, or Firefox (I use Firefox).

The code files for this chapter can be found here: https://github.com/PacktPublishing/
Building-Micro-Frontends-with-React.

https://hyper.is/
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React

Defining Microfrontends 5

Defining Microfrontends
In this section, we will focus on defining what microfrontends and their key benefits are, and also
become aware of the initial upfront investments associated with setting up microfrontends.

The currently accepted definition of a microfrontend is as follows.

“Microfrontends are a composition of micro apps that can be independently deployed and are owned by
independent teams responsible for delivering business value of a focused area of the overall application”.

The keywords in this definition are independently deployed and independent teams. If at least one
of these terms doesn’t apply to you or your team, then you probably don’t need a microfrontend.
A regular SPA would work out to be more efficient and productive. As we will see later, microfrontends
come with a bit of upfront complexity and may not be worth it unless you have a large application,
where sections of the app are managed by individual teams.

We’ve noticed that some teams that are on their journey to implementing microfrontends misinterpret
the micro part of microfrontends and believe an application doesn’t follow a microfrontend architecture
unless it’s broken down to its smallest level. They break down their apps into really small apps, which
adds a lot of unnecessary complexity. In fact, it negates all the benefits that microfrontends are
supposed to deliver.

In our opinion, it actually works the other way around. When breaking down an application into micro
apps, the teams should ideally look to identify the largest possible micro app or micro apps that a
scrum team can independently manage and deploy to production without impacting other micro apps.

The key takeaway from this is not to be swayed by the term “micro” but instead identify the largest
possible app that can be independently deployed by a single scrum team.

Before we go deeper into the wonderful world of microfrontends, it is important to remember that every
application doesn’t need to be a microfrontend. Let’s learn more about this in the following section.

Understanding the Microfrontend Premium

Martin Fowler talks about the microservice premium. This refers to the fact that microservices come
with a bit of overhead and complexity, mainly in terms of the initial setup and the communication
channels between the services. Martin goes on to say that the benefits of a microservices architecture
only start showing when size and complexity boosters kick in. To understand this, let’s look at the
following diagram:

Introducing Microfrontends6

Figure 1.1 – The microservice premium graph (source: https://

martinfowler.com/bliki/MicroservicePremium.html)

The preceding diagram is a graph of the productivity versus the complexity of an application and
depicts the drop in productivity for a monolith SPA and microfrontend as complexity grows.

The same holds true for the microfrontend architecture. The whole process of decoupling the various
parts of components, routing, and templates and delegating them to different systems can become an
unnecessary overhead for small or medium-scale apps.

The benefits of microfrontends kick in only when your project starts reaching the size and complexity
thresholds shown in Figure 1.1.

Exploring the benefits of Microfrontends

All the benefits of a microfrontend architecture are linked to size and scale. Having said that, the
following benefits of microfrontends hold true only for apps that are built and supported by teams
with over 15 people.

In the following sections, we will learn about the benefits that teams can expect when they implement
a microfrontend architecture, all of which are directly linked to improved productivity and better
developer experience for team members.

https://martinfowler.com/bliki/MicroservicePremium.html
https://martinfowler.com/bliki/MicroservicePremium.html

Defining Microfrontends 7

Faster development and deployments

One of the main drawbacks of monolithic Single Page Apps is that as the application and team sizes
grow, feature development and deployments come to a crawl. We notice the team spending a lot more
time where one team is waiting on the other team to finish something before the application can be
deployed. With a microfrontend architecture, every scrum team works independently on their micro
app, building and releasing features without having to worry a lot about what other teams are doing.

Easier to scale as the application grows

A microfrontend architecture is all about composing smaller micro apps, so as the application grows
in size, it’s just a question of adding additional micro apps and having a scrum team own it.

Now, since each team deals with a smaller micro app, their team members need to spend less time
understanding the code base and should not get overwhelmed or worried about how their code
changes will impact other teams.

Microfrontends allow one to scale up very quickly, with scrum teams working in parallel once the
base microfrontend framework is set up.

Improved Developer Experience

With isolated, independent micro apps, the time required for each team to compile, build, and run
automated unit tests for their part of the micro apps is greatly reduced. This allows teams to build
and deliver features a lot faster.

While teams run isolated unit and automation tests for their micro apps more frequently, we recommend
running full regression suites of end-to-end tests on demand or before committing the code to Git.

Progressive upgrades

The frontend ecosystem is the fastest-evolving ecosystem. Every few months, a new framework or
library springs up that is better and faster than the previous one. Having said that, there is always an
urge to rewrite your existing application using the latest framework.

With large applications, it’s not possible to easily upgrade or introduce a new framework without
rewriting the entire application. The cost of rewriting the application and the associated risks of
introducing bugs due to the rewrite are far too high. Teams keep deprioritizing the upgrade and within
a few years, they find themselves working on an outdated framework.

With microfrontends, it is easier to pick up one small micro app and upgrade it or rewrite it and then
gradually roll it out to other micro apps. This also allows teams to experience the benefits of the new
change and learn and course-correct as they migrate the new framework to the other micro apps.

Introducing Microfrontends8

As we move on to the next section, let’s quickly recap some of the key points that we’ve learned so far:

•	 Microfrontends are suited for building large-scale apps where teams are set up as full-stack
teams, where the backend developers, frontend developers, product owners, and so on are
within the same scrum team.

•	 Microfrontends have numerous benefits, such as team independence, features launched
with improved velocity, and better developer experience. However, these benefits will start
becoming visible once you have overcome the initial phase of complexity associated with the
“microfrontend premium.”

Understanding Microfrontend patterns
When it comes to microfrontends, there are way too many interpretations. These are still early days
for microfrontends, and there is no right or wrong way of building them. The answer to any technical/
architectural question is “It depends….” In this section, we will focus on two of the most common
patterns that teams adopt while building microfrontends. We will see what key factors to consider
when deciding which pattern may be right for you. We will end this section by building a really basic
microfrontend to get the ball rolling.

At a very high level, there are two primary patterns for microfrontends. Both of these patterns can be
applied irrespective of whether you are building a Server-Side-Rendered (SSR) app or a Client-Side-
Rendered (CSR) app. To better illustrate these patterns, we will take the use case of an e-commerce
application such as Amazon.

In the following subsections, we will look at these two patterns and how they differ from each other.

The Multi-SPA Pattern

The first pattern that we will discuss is the multi-SPA pattern. As the name suggests, the application is
built up of multiple SPAs. Here, the app is broken down into 2-3 distinct SPAs and each app is rendered
at its own URL. When the user navigates from one SPA to another, they are redirected via a browser
reload. In the case of an e-commerce application, we could look at the search, product listing, and
product details as one SPA, and the cart and checkout as the other SPA. Similarly, the My Accounts
section, which includes the login, registration, and profile information, would form the third SPA.

The following figure shows an illustration of a multi-SPA pattern microfrontend for an e-commerce app:

Understanding Microfrontend patterns 9

Figure 1.2 – Multi-SPA pattern microfrontend for an e-commerce app

As you can see from the preceding figure, our e-commerce application consists of three SPAs: the
Catalog SPA, the Checkout SPA, and the Accounts SPA.

In the simplest form of this pattern, each app behaves as an independent SPA that sits within its own
unique global URL.

Each SPA is deployed at a unique global route. For example, the catalog app would be deployed at a
URL such as mysite.com/catalog/* and all subsequent secondary routes within the catalog
app will load up as an SPA within the /catalog/* route.

Similarly, the accounts app would live in the global route of mysite.com/accounts/ and the
different pages within the account’s app login, signup, and profile would be available at URLs such as
mysite.com/accounts/login or mysite.com/accounts/register.

As mentioned earlier, when the user moves from one macro app to another, there will be a reload of
the page in the browser. This is because we usually use the HTML href tags to navigate between
the apps. This browser refresh is perfectly fine. I’ve seen teams go to great lengths, complicating
their architecture, to try to achieve a single-page experience. The truth, however, is that users don’t
really care if your app is an SPA or a Multi-Page App (MPA). As long as the experience is fast and
non-janky, they are happy.

At times, the browser reload may work in your favor as it will reduce the risks of memory bloat due
to either memory leaks or too much data being put into a data store.

However, if you really want to nail that SPA experience, then you can always create a thin app shell
that hosts the global routes and data store, such that each app is called within this app shell. We will
be going into more detail of this pattern in the upcoming chapters.

Introducing Microfrontends10

In this pattern, the routing is generally split into two parts, the global or primary routes, which reside
within the app shell, and the secondary routes, which reside within the respective apps.

The following figure shows an example of a multi-SPA with an app shell:

Figure 1.3 – A multi-SPA pattern with an app shell to give an SPA experience

Here, you will notice that we have introduced the notion of an app shell, which incorporates the
header component, and the different SPAs load within the content slot. This pattern gives a true SPA
experience as the header component doesn’t refresh when transitioning from one SPA to the other.

The Micro Apps Pattern

The other pattern for building microfrontends is what we call the micro apps pattern. The reason we
call it the micro apps pattern is that this is a more granular breakdown of the application.

As you can see in Figure 1.4, the web page is composed of different components where each component
is an independent micro app that can exist in isolation and work in tandem with other micro apps
as part of the same page.

Understanding Microfrontend patterns 11

Figure 1.4 – Micro app architecture with product images and

recommended products co-existing as different micro apps

You will notice the preceding diagram is a more granular version of Figure 1.3, where we further
break down the central content slot into smaller micro apps. Notice how the central content area
now consists of two micro apps, namely the product details and recommended products micro apps.

The micro apps pattern is a lot more complex than the multi-SPA pattern and it is recommended
mainly for very large web applications, where there are multiple teams that own different elements
on a single page.

In Figure 1.4, we would assume that there is a dedicated team that manages the product description
component of the page, and another team that manages the product recommendations component
on the same page.

We would also assume that the frequencies at which these components get updated with feature
enhancements would be different; for example, the recommendations micro app would constantly
undergo A/B tests, and hence would need to be deployed more frequently than the product image
and description micro app, which may not change as often.

Introducing Microfrontends12

In this pattern, all the routes, both primary and secondary, are managed by the app shell. Here, in
addition to managing the routing and global states, the app shell also needs to store/retrieve information
about the page layout for each of the routes and the different micro apps that need to be loaded within
each of the pages.

In most cases, such large apps usually have a Content Management System (CMS) in place or a
templating engine where the layout and the component tree are stored and served to the frontend.

To summarize, as we come to the end of this section, we saw two primary patterns for building
microfrontends, the multi-SPA pattern and the micro apps pattern. These patterns primarily differ
in the level of granularity at which you break down your application, and how routing is managed
within the microfrontend architecture.

In the next section, we will look at the guidelines that will help you choose the right pattern.

Choosing a suitable pattern
Now that we have a broad understanding of the two patterns of microfrontends, let’s spend some time
on some of the key considerations that will help you decide which pattern to go with.

While there may be numerous points of view on what is right, how far to think into the future, and
how to future-proof your app and architecture, we believe there are two primary factors that will help
you decide on which of the two patterns to go with for your microfrontend architecture. Let’s look at
them in detail in the following sections.

Team Composition

For teams that build applications on microservices and microfrontends, it is a common practice
that they are vertically sliced based on business functionality. In the e-commerce example, we may
have a team that focuses on the browsing journey and another team that focuses on the checkout
journey. If one scrum team owns the entire browser journey and one scrum team owns the entire
checkout journey, then it is recommended that you go for the multi-SPA pattern. However, if you
have numerous small teams that own different entities of the business domain, such as, say, search,
product recommendations, and promotions, then it would be wise to go for the micro apps pattern.
As mentioned earlier, the rule of thumb is for each scrum team to ideally own a single micro app.

Frequency of Deployments

Another factor that would come into play when deciding how to break down your microfrontend would
be the frequency of deployments. If there are specific sections of the app that change more than others,
then those sections can be separated into its own microfrontend, which can be separately deployed
without affecting the other sections of the app. This reduces the amount of testing that needs to be done
because now we need to test only the micro app that is being changed and not the entire application.

Hello World with Microfrontends 13

As we can see, the decision on whether you should go for a multi-SPA pattern or the micro apps
pattern boils down to the two key factors of team composition and deployment frequency, and this
is directly related to the two keywords from the definition of microfrontend, namely, independent
teams and independent deployments.

Hello World with Microfrontends
OK, it’s time to get our hands dirty writing some code. We are going to start simple by building a basic
multi-SPA pattern app. In this example, we will use Next.js, which is currently the most popular tool
for building performant React applications. Follow these steps:

Note
For the rest of this chapter, we assume you are using pnpm as the package manager. If not,
replace pnpm with npm in the respective commands.

1.	 Let’s start by creating a root folder for our app. We’ll call it my-store. Run the following
command in your terminal:

mkdir my-store

2.	 Now, let’s cd into my-store and create our two Next.js apps, namely, home and catalog,
by typing the following commands in our terminal:

cd my-store
pnpm create-next-app@12

Or, we can type the following:
cd my-store
npx create-next-app@12

3.	 When it prompts you to add a project name, call it home. It will then go through the various
steps and complete the installation.

The interesting thing about create-next-app is even through you define the version as @12, it
will nevertheless pull the latest version of Next.js, hence to ensure consistency with the rest of
this chapter we will update the version of next in package.json as follows:

 "dependencies": {
    "next": "12",
    "react": "18.2.0",
    "react-dom": "18.2.0"

Introducing Microfrontends14

4.	 Now delete the node_modules folder and the package lock file and run the pnpm i command

Important note
While you can always use yarn or npx to run the CLI, we recommend using pnpm as it is
2-3 times faster than npm or yarn.

5.	 Once it’s done with the setup, go ahead and create another app repeating steps 2-5. Let’s call
this project catalog.

Once complete, your folder structure would look as follows:
└── my-store/
    ├── home
    └── catalog

6.	 Now, let’s run the home app by typing the following commands:

cd home
pnpm run dev

7.	 Your app should now be served on port 3000. Verify it by visiting http://localhost:3000
on your browser.

8.	 Let’s get rid of the boilerplate code and add simple navigation. Locate and open up the file
located at home/pages/index.js and replace everything within the <main></main>
tags with the following:

     <main className={styles.main}>
       <nav>Home | Catalog</
a> </nav>
        <h1 className={styles.title}>
          Home:Hello World!
          </h1>
          <h2>Welcome to my store</h2>
        </main>

Hello World with Microfrontends 15

Note that we’ve added basic navigation to navigate between the home and catalog pages. Your
home app that is running on localthost:3000 should now look as follows:

Figure 1.5 – Screenshot of the home app with two navigation links for Home and Catalog

9.	 Now, let’s move on to the catalog app. Navigate to the index page, located at /catalog/
pages/index.js, and again, let’s get rid of the boilerplate code and replace the contents
within the <main> tag with the following code:

      <main className={styles.main}>
        <nav>Home | Catalog</
a> </nav>
        <h1 className={styles.title}>
            Catalog:Hello World!
      </h1>
       <h2>List of Products</h2>
      </main>

Now, since we already have the home page being served on port 3000, we will run our catalog
app on port 3001.

10.	 We do this by adding the port flag for the dev command within the scripts section of the
catalog/package.json file, as follows:

"scripts": {
    "dev": "next dev -p 3001
…
}

11.	 Now, running pnpm run dev from within the catalog app should run the catalog app on
http://localhost:3001. You can see this in the following screenshot:

Figure 1.6 – Screenshot of the catalog app running on port 3001

Introducing Microfrontends16

The next step is to wire these up such that when the user hits localhost:3000, it directs
them to the home app, and when the user hits localhost:3000/catalog, they are
redirected to the catalog app. This is to ensure that both apps feel as if they are part of the same
app, even though they are running on different ports.

12.	 We do this by setting the rewrites rule in the home/next.config.js file, as follows:

const nextConfig = {
  reactStrictMode: true,
  swcMinify: true,
  async rewrites() {
    return [
      {
        source: '/:path*',
        destination: `/:path*`,
      },
      {
        source: '/catalog',
        destination: `http://localhost:3001/catalog`,
      },
      {
        source: '/catalog/:path*',
        destination: `http://localhost:3001/catalog/:path*`,
      },
    ]
  },
}

module.exports = nextConfig

As you can see from the preceding code, we simply tell Next.js that if the source URL is /
catalog, then load the app from localhost:3001/catalog.

13.	 Before we test it out, there is another small change needed to the catalog app. As you can see,
the catalog app will be served on the root of port 3001, but what we would like is for it to be
served at :3000/catalog. This is because with the rewrite we did earlier, Next.js will expect
the catalog apps and its assets to be available at /catalog/*. We can do this by setting the
basePath variable in the catalog/next.config.js file as follows:

const nextConfig = {
  reactStrictMode: true,
  swcMinify: true,
  basePath:'/catalog'
}

Summary 17

14.	 Now, to test that this is working fine, we will run up both of the apps in two different terminal
windows by navigating to the home and catalog apps and running the pnpm run dev command.

15.	 Open up http://localhost:3000 in your browser and verify that the home app is
loaded. Click on the Catalog link and verify that the catalog page does load up at http://
localhost:3000/catalog. Notice that the app catalog that’s running individually on
port 3001 is sort of “proxied” to load up within a unique URL of the parent/host app. This is
one of the key principles of microfrontends, where apps running on different ports and different
locations are “stitched” together to make it look like they are a part of the same application.

With that, we come to the end of creating our very first microfrontend with the multi-SPA pattern. We
will look at the micro apps pattern in more detail in the upcoming chapters. This pattern meets the
majority of the use cases for building microfrontends and checks all the key principles of microfrontends,
which we are going to see in the next chapter.

Summary
It’s a wrap for this chapter. We started off by learning how microfrontends (when executed correctly)
help teams to continue to release new features at a consistent pace even as the app size and complexity
grow. Then, we learned that there are two primary patterns for implementing microfrontends, the multi-
SPA pattern and the micro apps pattern. We saw that the multi-SPA pattern is easier to implement and
would suit the majority of use cases. The micro apps pattern would be more suitable when different
elements of a given page are owned by different scrum teams. Finally, we learned how to build our
very own microfrontend application and saw how we can navigate between the two apps while still
giving the user the illusion that they are both part of a single app.

In the next chapter, we will look at some of the key principles to strictly adhere to when designing
your microfrontend architecture. We will also look at some of the key components of microfrontend
and the various ways they can be implemented.

2
Key Principles and Components

of Microfrontends

Microfrontends are a double-edged sword. When done right, they can bring a great amount of joy and
productivity to teams; however, if not implemented the right way, they can make things way worse.

Having said that, there are a couple of key principles and considerations we need to keep in mind
when building a microfrontend architecture.

In this chapter, we will look at the key design principles of a microfrontend architecture and why it
is important to treat them as sacrosanct. The reason we emphasize these principles is that they lay
the foundation of the microfrontend architecture. Teams may not be able to extract all the benefits
of a microfrontend pattern if they choose to ignore these principles. Then, we will look at the key
components that are critical to any microfrontend architecture.

In this chapter, we will cover the following topics:

•	 Understanding the Key Principles

•	 The key Components of a Microfrontend Architecture

By the end of this chapter, you will have a better understanding of the guiding principles and key
considerations that teams need to keep in mind when designing a microfrontend architecture.

Understanding the Key Principles
It’s important that all software teams lay down a set of rules and guiding principles that all team
members and the code they write adhere to. This ensures that when teams discuss certain technical
approaches, they can validate them against these guidelines. This, in turn, ensures that the teams can
focus on the outcomes by mapping them against these key guidelines and not get too obsessed with
the nuances of the process. This helps teams to arrive at decisions a lot faster.

Key Principles and Components of Microfrontends20

In the following sections, we will look at the key principles that teams must adhere to when following
a microfrontend pattern.

Domain Driven Teams

Dan Abramov, who leads the React project at Meta, once tweeted the question, “Is Microfrontends
solving a technology problem or an organizational problem?”

When you think about it, a lot of problems we see in today’s software development do stem from the
way teams are organized.

Domain Driven Design is a well-established concept in the microservices world. Backend microservice
teams are commonly organized around these domain models. With microfrontends, we extend the
same thinking to the frontend world, and by re-organizing the frontend teams within these domain
models, we are now able to create vertically sliced teams, where a domain-driven team can own the
responsibility of a business functionality from end to end and is able to work independently.

For us to be successful with microfrontends, it is critical that the micro apps and teams that own them
are mapped to these domain models and the business value they aim to provide.

Let’s have a quick look at what a Domain Driven Team might look like:

Figure 2.1 – Domain-driven teams

The preceding diagram shows three domain-driven teams for an e-commerce application, namely
Catalog Team, Checkout Team, and User Account Team. Within each team, you will see that they
have dedicated team members who play the roles of frontend, backend, and integration engineers.

Understanding the Key Principles 21

Isolating Failure

Microfrontends are inherently designed to be “decentralized.” One of the many benefits of that is
isolating failures and reducing the blast radius of an error. A common problem with monolith Single
Page Apps (SPAs) is that a single line of error in any one of the modules would prevent an entire
application from being compiled, or a runtime error would cause an entire page to error out.

When designing a microfrontend architecture, you need to ensure graceful service degradation if one
or more of the microfrontends fail.

If one microfrontend is dependent on another for its functioning, then we are breaking one of the key
principles of microfrontends, which should be avoided at all costs.

Deploying Independently

Another key principle of a microfrontend architecture is the ability to deploy each app independently
without having to redeploy the other apps.

When a new app is deployed, it should immediately be available to a user and should not require a
restart of the host app or the servers for the changes to take effect.

An interesting observation with different teams working on microfrontends is that while, from an
architecture standpoint, these micro apps can be updated independently, the DevOps pipelines that
deploy these microfrontends are designed to deploy all the apps simultaneously, thereby negating the
benefits of independent deployment.

It is critical that the DevOps pipelines are also designed such that when any app is ready for deployment,
only the relevant pipeline runs and deploys the app, without impacting the other apps.

This misconfiguration of the DevOps pipelines mainly stems from the problem where there are
separate DevOps teams that are responsible for building the pipelines and production deployments.

The best way to fix this is to ensure that we have “full life cycle teams,” who are responsible for building
the app and also responsible for deploying it to production. These teams work closely with the DevOps
teams to build the CI and CD pipelines and then take over the control of managing and running them.

Preferring Runtime Integrations

A common discussion in the context of microfrontends is build time integrations versus runtime
integrations. With build time integrations, the different teams build and publish their micro apps
either to a version control system or an artifact repository, such as NPM or Nexus.

Then, during building time, all these micro apps are brought together to build a single app bundle,
which is then deployed to production. We strongly discourage this pattern of build-time integration,
as it breaks the aforementioned principle of independent deployment. A pattern like this may be
suitable where you have scheduled releases that happen either once or twice a month. However, in

Key Principles and Components of Microfrontends22

that case, you probably would be better off with a monolith single-page app and don’t really have to
deal with all the complexities of a microfrontend architecture.

Always prefer runtime integrations when designing a microfrontend architecture.

Your micro apps should immediately be available for use the moment they are deployed. This ensures
that each team can continuously deploy their micro apps to production and are not dependent on
other teams to make their app available.

In most microfrontend patterns, we can make use of a host application or a shell app that keeps a tab
of the different micro apps that load within it, but care must be taken to ensure that this host/app shell
is built with scalability in mind. If the process of checking for new versions of a micro app takes up a
lot of CPU or memory resources, then there is a high risk that it will become a single point of failure
when your application scales, in terms of the micro apps and the traffic it receives.

Avoiding the “Distributed Monolith” trap

Don’t Repeat Yourself (DRY) has a slightly different meaning in the microservice/microfrontend
world. Most developers associate DRY with code reusability. When working with microfrontends,
teams can go overboard creating libraries and utilities, which eventually get imported and used in each
of the micro apps. Now, as each team’s needs grow, they start adding functionality to these common
libraries and utilities, in the hope that it will be beneficial to other teams. However, the problem it
creates is that additional unused code is now being imported into the other micro apps (while tree
shaking will solve this problem, in most cases, mainly due to poor coding practices, tree shaking
doesn’t work well, and we end up with unnecessary code imported into the apps). Another problem
with these shared libraries is that there is a much higher risk of introducing breaking changes, with
changes made for one micro app now breaking the other micro apps. By going overboard with code
reusability, we end up with what’s commonly called a “distributed monolith,” which is essentially the
worst of both worlds.

It’s okay to have some shared libraries or, if using TypeScript, a shared types/interfaces file, but we
must avoid creating large common libraries.

In the microservice/microfrontend world, DRY essentially refers to automating tasks so that you don’t
have to manually repeat the steps for each microservice or micro app. These could be things such as
automating quality gates, or performance and security checks as part of the developers’ pipelines.

Technology agnostic

Another principle of a microfrontend architecture is that it should be technology agnostic, meaning
that each of the micro apps could “in theory” be built using different frameworks/languages. However,
just because it’s possible doesn’t mean teams should go all out and use either Vue, Angular, or React
to build out different micro apps.

Understanding the Key Principles 23

There are multiple reasons why this should be avoided:

•	 Multiple libraries/frameworks mean an additional payload being sent down the wire to
users’ devices

•	 It makes it difficult to rotate team members, and moving from one team to another means
having to get comfortable with a new framework/library

The primary reason for this principle is to allow for incremental upgrades, either from an older version
to a newer version of the same library or to explore the benefits of a new framework.

Granular Scaling
When planning out a deployment strategy for your microfrontend, you must ensure that it supports
granular scaling. By granular scaling, what we mean is that if a certain set of pages is getting a lot of
traffic, either due to a marketing campaign or something similar, then only the servers serving those
pages should scale, while the rest of the pods serving other parts of your microfrontend can remain
at their regular levels. This ensures optimal cloud and hosting costs.

Culture of Automation and DevOps
A strong culture of automation and DevOps is critical for the long-term success of a
microfrontend architecture.

As you can imagine with microfrontends, since we break up a single app into smaller apps, all the
activities associated with tasks such as compiling the app and running quality, performance, and security
checks will now need to be done multiple times for each of the apps. If we don’t have automation
processes for all of the aforementioned items, then the overall development and release of these apps
will take a lot longer than what it would have been with a monolith.

Hence, it is important to invest time and effort into building these automation processes, most of
which are generally done as part of the DevOps pipelines.

Teams can also invest in tooling and building code generators and micro app templates that can help
speed up the creation of newer micro apps. They can also run linters, security, and other quality checks
automatically as part of the DevOps pipelines.

With this, we come to the end of this section, where we saw some of the important principles that
teams must keep in mind when designing a microfrontend architecture.

We saw how principles such as domain-driven teams, independent deployments, and granular scaling
allow teams to move consistently and quickly. We saw how teams should avoid falling into the trap
of a distributed monolith and build a pattern that uses build-time integrations, and finally, we saw
how keeping the architecture technology agnostic and focusing on automation helps an architecture
to easily evolve and become future-proof.

In the next section, we will look at some of the important components of the microfrontend architecture.

Key Principles and Components of Microfrontends24

The key Components of a Microfrontend Architecture
After spending time going through the principles of a microfrontend, now let’s look at some of the
key components of a microfrontend architecture.

In this section, we will look at the essential components any microfrontend architecture needs to have,
and we will look at some of the nuances associated with them.

After completing this section, you will be aware of the four basic components that make up any
microfrontend architecture.

Routing Engine

As we saw in the previous chapter, depending on the type of microfrontend pattern you aim to build,
the routing engine for your app will be partially or fully decoupled from your apps.

There are multiple approaches we can take. We can use NGINX as a reverse proxy and have a list of all
the primary routes that map to the respective apps in the multi-SPA pattern. If the apps are deployed
in a Kubernetes cluster, we can make use of Ingress routes to map the primary routes to the respective
apps. We will go into more detail about this in Chapter 8, Deploying Microfrontends to Kubernetes,
where we will look at deploying these microfrontends in the cloud.

A global state and a Communication Channel

In addition to routing, the next important thing to design well in your microfrontend architecture is
the communication channel between the different apps and also the notion of a global state, which
can be shared between the different apps.

With a monolith SPA, the most common practice is to use a single global store such as Redux or MobX,
where everything is written into that store and read from it. With microfrontends, the recommendation
is to avoid such global client-side stores and instead let each micro app get its data from the backend
API, as that is the real source of truth.

However, there would be a genuine need for client-side state management to avoid making unnecessary
calls to the backend, to fetch things such as user_id or a cart count. For things such as these, we
can look to use a really thin global store in the app shell or maybe even look toward localStorage
or IndexedDB to store the values that are needed to make API calls.

With a micro app microfrontend pattern, it also becomes important to establish a common communication
channel that the different apps use to communicate with each other. A classic use case would be
when clicking on the Add to Cart button on a product page, the mini cart present in the header is
automatically incremented. In such cases, an event-driven communication channel works best.

The key Components of a Microfrontend Architecture 25

Source code Version Control

Another important item that teams need to agree on is how they plan to organize their Git repositories.
Two schools of thought prevail here – organizing your apps in a polyrepo or a monorepo. Let’s look
at their nuances.

Polyrepos

Polyrepos are where you have each of your multi-SPAs or micro apps managed in its own independent
Git repository. These are easiest to start with and give complete team independence. From a DevOps
standpoint too, they are a lot easier to manage. However, this approach has a few drawbacks. There
is a higher risk of teams becoming siloed and reduced inter-team collaboration. Another drawback
is duplication and higher maintenance costs for tooling, such as DevOps pipelines and automation
scripts, which need to be duplicated and updated in each of the repos.

Monorepos

In a monorepo structure, all your multi-SPAs or micro apps are co-located in a single Git repo, with
each app located within its own individual folder.

Monorepos are starting to become a de facto approach for many frontend teams to manage their code
repositories. The main advantage of monorepos is increased team collaboration, as everybody is able
to see every other team’s code and provide valuable feedback. Tooling and automation scripts can be
centralized, whereby optimizations done by one team are immediately available for other teams to
follow. Some of the drawbacks of monorepos include DevOps setups being a bit complicated. Teams
also need to set up fine-grained folder-level permissions to prevent teams from overwriting each
other’s code. In the grand scheme of things, monorepos provide more advantages and, hence, are a
preferred approach to managing the source code for your microfrontends.

A Component Library

When building microfrontends, it is critical to ensure a consistent look and feel as a user navigates
through the different apps. The way we achieve that is by ensuring all apps make use of a common
design system and component library. It is also recommended that all teams use a common theming
and styling engine to ensure that all the components look and behave the same, irrespective of which
app they are served in.

A common pattern is to publish a component library as an NPM module and set up all the other apps
to import and use it. Each time a new version of the component library is published, teams will need
to update their respective apps to the latest version.

An emerging trend, thanks to monorepos, is to build directly from source. What this means is that a
component library is stored within the libs section of the monorepo and the components are directly
linked from the library path. The main advantage of this method is that every time teams build their
app, they automatically receive the latest version of the component library.

Key Principles and Components of Microfrontends26

In this section, we learned about the key components of a microfrontend architecture, namely a
routing engine, a global state, and a communication channel. We also saw the distinctions between a
polyrepo and monorepo and saw why frontend teams prefer to use monorepos. Finally, we also learned
about the component library and different ways teams consume components from a common library.

Summary
With that, we come to the end of our second chapter. We started the chapter by looking at the key
principles we need to keep in mind. We saw why it is important to break teams down based on domain
models, and why it is critical for teams to be able to independently deploy their own apps. We learned
about the misconceptions associated with code reuse and how it can lead to a distributed monolith
trap. We also saw the importance of DevOps and an automation culture. Finally, we learned about the
four key components of a microfrontend. Everything that we learned in this chapter we will put into
practice in the coming chapters, as we go about building our very own microfrontend application.

In the next chapter, we will dive deeper into monorepos versus polyrepos and learn how it’s more about
team culture than technology. We will also start off by setting up our code repository as a monorepo
to set up the foundation for future work.

3
Monorepos versus Polyrepos

for Microfrontends

Since the time engineers at Google and Facebook mentioned they have a single monorepo in their
organization, the developer community – especially the frontend community – has been actively
participating in debates and discussions on monorepos versus polyrepos.

We are seeing more and more teams leaning more toward monorepos for maintaining their frontend
code. However, which should you choose between a polyrepo and a monorepo based on what the
community thinks?

As we will learn in this chapter, the decision to go with a monorepo or a polyrepo is far deeper than
just fancy technology or hype. We will see that, in fact, it is more to do with teams, and the culture
we would like to establish within teams.

In this chapter, we start by understanding what polyrepos and monorepos are. We will see how each of
them impacts how teams work and collaborate, then we will see why monorepos are more suited for
microfrontends. Finally, we will set up our monorepo base application with the necessary permissions
to work in teams.

In this chapter, we will cover the following topics:

•	 Repo types and their nuances

•	 Why Monorepos for Microfrontends?

•	 Setting up our Monorepo with Team permissions

By the end of this chapter, you will have a deep understanding of the differences between and
implications of choosing a polyrepo versus a monorepo.

We will also have our monorepo set up and ready for vertically sliced domain-driven teams to get
started with it.

Monorepos versus Polyrepos for Microfrontends28

Technical requirements
As we go through the code examples in this chapter, we will need the following:

•	 A PC, Mac, or Linux desktop or laptop with at least 8 GB of RAM (16 GB preferred)

•	 An Intel chipset i5+, AMD, or Mac M1 + chipset

•	 At least 256 GB of free hard disk storage

You will also need the following software installed on your computer:

•	 Node.js version 16+ (use nvm to manage different versions of Node.js if you have to)

•	 Terminal: iTerm2 with Oh My Zsh (you will thank me later)

•	 IDE: We strongly recommend VS Code as we will be making use of some of the plugins that
come with VS Code for an improved developer experience

•	 npm, yarn, or pnpm – we recommend pnpm because it’s fast and storage-efficient

•	 Browser: Chrome, Microsoft Edge, Brave, or Firefox (I use Firefox)

The code files for this chapter can be found here: https://github.com/PacktPublishing/
Building-Micro-Frontends-with-React

We also assume you have a basic working knowledge of Git, such as branching, committing code,
and raising pull requests.

Repo types and their nuances
In this section, we will learn exactly what a polyrepo and a monorepo are.

As most of you will already know by now, repo is short for repository and refers to storage for all the
files for your project. It also keeps track of all the changes to those files. This means, at any time, we
can easily go and see what lines of code were changed, by whom, and when. In most cases, we use Git
for version control. Some teams may use other systems, such as Mercurial or some other distributed
version control system.

There are two strategies that teams most commonly use for managing repos. They are commonly
known as monorepos and polyrepos. There are other patterns, such as Git submodules or Git subtrees,
but these are beyond the scope of this chapter. We will focus on monorepos and polyrepos.

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React

Repo types and their nuances 29

Monorepos

As the name suggests, mono means single and so the source code is managed in a single Git repo. This
means that all team members work on a common single repository, and in most cases, the monorepo
will consist of multiple applications. The following figure shows a monorepo setup:

Figure 3.1 – Monorepo setup

As you can see in the preceding diagram, we have a single repo that consists of multiple apps within it.
All the apps use a shared set of tools for CI and CD and linting and a shared component library that
is usually built from source each time an application is built. You will also notice that all the teams
have access to all the items within the repo.

Polyrepos

Polyrepos are where each app has its own repository. Teams generally work on multiple repos, switching
repos as they work on different apps.

Monorepos versus Polyrepos for Microfrontends30

Most teams prefer going down the polyrepos route as they are a lot easier to manage and each team can
define its own branching strategies and repo permissions. The following figure shows a polyrepo setup:

Figure 3.2 – Polyrepo setup

In the polyrepo setup, you will notice multiple repositories, denoted by the dotted-line boxes. Each
app generally has its own repository, and we have another repository for shared components and
libraries. The shared components need to first be published to an artifact repository such as npm or
Nexus before they can be consumed by the other repositories. We also notice that each repository
has its own team, and generally, teams don’t have access to another team’s repository (unless you are
an admin or a senior developer that looks after multiple applications).

Differences between Polyrepos and Monorepos

As mentioned earlier, choosing between a polyrepo or a monorepo is not just about how code is
organized but goes a lot deeper and has a huge impact on how teams collaborate, the culture within
the teams, how your build tools are set up, and so on.

In this section, let us go a bit deeper into understanding the nuances of monorepos and polyrepos.

Repo types and their nuances 31

Team Collaboration

With polyrepos, teams create their own individual repositories and decide and define their own rules
and guidelines on how the code is maintained. Obviously, this is the easiest and fastest way to get
started, and teams become productive quite quickly. However, this pattern also has a few drawbacks.
With polyrepos, teams tend to become more siloed as each team is just focused on its repo and doesn’t
really have a lot of visibility of what other teams are doing.

Another drawback with polyrepos is the effort required to set up and maintain all the build pipelines,
and precommit hooks and so on are duplicated for each repo.

With monorepos, teams are forced to collaborate as they need to agree on a common way for how the
code will be maintained. In a monorepo setup, since everybody is able to see everybody else’s code, the
chances of them working in silos are greatly reduced. Teams are naturally encouraged to collaborate
by providing feedback on code and it also provides an opportunity for teams to replicate good code
patterns that other teams may have implemented.

Build tools and Quality gates

With polyrepos, each team needs to implement its own build systems and quality gates such as
precommit hooks. This results in duplication of effort and leads to higher maintenance costs. It also
boils down to the engineering maturity of each team. Teams with strong leads will obviously have
optimized build tools, while junior teams will struggle with not-very-optimized build tools and quality
gates and will need intervention from other teams.

With a monorepo, all the build tools and quality gates can be centrally managed, reducing duplication
of effort. In most cases, this is usually set up by the experts within one of the teams. This allows
leveraging strengths and skillsets across all teams and teams immediately benefit from the knowledge
within the wider organization.

Code Ownership

In a polyrepo, the permissions are set at a repo level in terms of who has permission to view the code
in a repo or make changes to it.

In a monorepo, all team members have access to view and edit all the files in the code. The permissions
and control in a monorepo are maintained via a CODEOWNERS file, which allows us to set granular
permissions at a folder level within the monorepo. We will be learning more about the CODEOWNERS
file later in this chapter.

The mental model with monorepos is everybody in the team can make changes to a file and raise a
request to merge their changes; however, only the rightful owner defined in the CODEOWNERS file
has the permission to accept or reject the changes being made by a team member.

Monorepos versus Polyrepos for Microfrontends32

Flexibility

As may be obvious by now, polyrepos provide the highest level of flexibility, in terms of how the code
within each team is managed.

In a monorepo, this flexibility is intentionally restricted to ensure that all team members benefit from
the best coding practices and tooling setup that the team can offer.

Refactoring Code

With polyrepos, refactoring code across multiple repos can be time-consuming as one will need to check
out all the different repos and individually raise a merge request or pull request for each repository.

With monorepos, doing such large-scale refactoring is quite easy by making atomic commits where
a single merge request can contain the necessary changes for all the apps.

Ownership of Upgrades

When the time comes to upgrade libraries or tooling is when the most interesting differences between
a polyrepo and monorepo setup come into play.

In a polyrepo, the onus of upgrading shared libraries or tools lies with each of the teams, and the teams
can choose to defer an upgrade if they have other priorities. This can be both good and bad. While it
allows teams to upgrade at their own pace, there is always a risk that some teams may get far behind
in upgrading their libraries. This becomes a serious issue if an outdated library has a serious security
vulnerability, and teams have ignored upgrading it. Since each team is responsible for upgrading
libraries, they are also responsible for fixing breaking changes, and this is often the primary trigger
to defer upgrades.

With monorepos, if a shared library or tool is being upgraded, it is easy to make atomic commits
across all the apps within the monorepo, which means all teams directly get the benefit of the latest
versions. What’s interesting with monorepos (that have the right build tools and quality gates in place)
is the ownership of fixing any breaking changes lies with the library owner or the person doing the
upgrade, as the build pipelines will not allow you to merge the code unless it passes all the build steps
and quality gates.

Code base Size

With polyrepos, your code base gradually increases over time; however, with a monorepo, you are
dealing with a large code base right from day one, and the monorepo tends to grow exponentially as
the application grows.

A large code base has a negative impact on productivity. Not only does checking out code take time
but also, all the other activities, such as running build steps or running unit tests, take longer both on
the local developer PC and also on the CI and CD pipelines.

Choosing Monorepos for Microfrontends 33

Unless one makes use of features such as caching and building and testing only what has changed,
monorepos can become very slow to work with.

As we reach the end of this section, we have learned about the differences between polyrepos and
monorepos and have gone into the details of how they differ when it comes to things such as code
refactoring and ownership, tooling team culture, collaboration, and so on.

In the next section, we will see which of the two is more suited for building microfrontends.

Choosing Monorepos for Microfrontends
After going through the pros and cons of polyrepos and monorepos, which one would you choose
to use for your project? Well, you can choose either one of them and build microfrontends. Like all
things in programming, there are trade-offs for every decision you make, and you need to be clear
about what trade-offs you are comfortable with.

For the rest of this book, we will choose to go with the monorepo setup for the following reasons:

•	 With monorepos, team members are naturally encouraged to collaborate by learning and
reviewing each other’s code.

•	 It allows all teams to easily use a shared library of components. This ensures that each micro-
app built as part of the overall app has the same look and feel and the overall user experience
is consistent as the user interacts with the different micro-apps.

•	 It also makes it easy for central platform teams, such as the DevOps team or admin team, to
easily refactor code across all the micro-apps.

•	 Some of the drawbacks of monorepos, such as the slower execution of quality gates on pipelines,
can be overcome by making use of caching techniques, many of which are the default with
most monorepo tools.

•	 As your overall app grows, and new features get added, new micro-apps will keep getting added
to your app. Now, if you have a polyrepo setup with each micro-app in its own repo, it will
become quite difficult to manage the large number of repos.

•	 In a microfrontend setup, most of the time, you would work on your individual micro-app;
however, at times you would need to run all the micro-apps together to test out your app locally.
This would be quite difficult to achieve if your micro apps are set up in a polyrepo.

In the following section, we will have a look at some of the popular open source monorepo tools out
there, which will help you decide which would be the most suitable for you.

Monorepos versus Polyrepos for Microfrontends34

Popular Monorepo tools

This section covers some of the most popular open source monorepo tools that you can choose when
building your microfrontends.

Lerna

Lerna was probably the first and most widely used monorepo tool. It follows what is called the
packages-based monorepo style. What this basically means is each app sits under the packages
folder and has its own package.json file, so every app has its own set of dependencies and there
is nothing common between these apps.

Lerna was recently adopted by the nrwl team who originally built the Nx monorepo.

Nx

Nx was the next monorepo to become very popular and is probably the most mature and feature-
rich of all the monorepo tools out there. Nx started off as an integrated monorepo. What that means
is, in Nx, there is a single package.json file on the root and all apps use the same version of the
packages. Nx has now evolved to also support the package-based style of monorepos.

It comes with advanced local and distributed caching solutions and is ideal for managing large
monorepo code bases.

Turborepo

Turborepo is the newest entrant in the monorepos war. It follows a package-based style and is very
similar to how Lerna works. The main advantage of Turborepo is it supports a local and distributed
caching system and is tightly integrated with Vercel’s product suite, including Next.js and Vercel
cloud hosting.

As we come to the end of this section, we have learned about the pros and cons of polyorepos versus
monorepos. We saw some of the reasons why we choose to use monorepos for microfrontends and
we also learned about some of the popular monorepo tools that teams use. In the next section, we
will get our hands dirty setting up our monorepo.

Setting up our Monorepo
In this section, we are going to set up our monorepo, which will act as a base for our microfrontend apps.
We will learn how to set up the right permissions and the necessary quality gates. Along the way, we
will also learn about a couple of productivity tricks and plugins that improve the developer experience.

For this example and the rest of the chapters, we will use Nx as the monorepo to build our microfrontends
as it allows you to build both a package-setup-style and an integrated-style monorepo. You can equally
choose either Lerna or Turborepo to build your microfrontends.

Setting up our Monorepo 35

Follow along with the step-by-step guide to set up an Nx monorepo:

1.	 Open up the terminal, cd into the folder where you generally keep your projects, and run the
following command:

pnpx create-nx-workspace@14

The preceding command will install a couple of libraries and will then prompt you for the name
of the workspace (e.g., org name). This will be the name of the folder within which your
monorepo will be set up. We will call it my-mfe for the sake of consistency.

2.	 Next, it will prompt you to select what kind of apps you would like to create. We will choose react:

Figure 3.3 – Select a workspace with a single React application

3.	 When prompted for the application name, enter catalog, as this will be the catalog app
within our microfrontend.

4.	 When prompted to select the stylesheet format, you can select the default, CSS, or any other
format you prefer.

5.	 Next, it will prompt you to enable distributed caching. For this exercise, we will say No.

Important note
You can find complete details of setting up NX here: https://nx.dev/getting-
started/intro

https://nx.dev/getting-started/intro
https://nx.dev/getting-started/intro

Monorepos versus Polyrepos for Microfrontends36

It will then go on to install all the dependencies and, once successfully completed, you should
have a folder structure similar to Figure 3.4:

Figure 3.4 – Folder structure for our monorepo

 You will notice it will have created a monorepo called my-mfe and an app called catalog
within the apps folder.

6.	 Go ahead and open up this folder in Visual Studio Code and, once you do that, you will get
a prompt to install recommended plugins. Go ahead and install the recommended plugins.

Setting up our Monorepo 37

Once all the plugins have been installed, you will notice a new icon on the VS Code pane, as
highlighted here:

Figure 3.5 – Nx Console installed on VS Code

Nx Console is one of the coolest features of using Nx and we will be extensively using it for the rest
of this book.

For those curious about how this popup to install recommended plugins came up, the answer lies in
the my-mfe/.vscode/extensions.json file.

This is a VS Code feature and you can read about it here: https://code.visualstudio.com/
docs/editor/extension-marketplace#_workspace-recommended-extensions

You can use this file to add your own list of recommended plugins that you would like your team
members to use.

https://code.visualstudio.com/docs/editor/extension-marketplace#_workspace-recommended-extensions
https://code.visualstudio.com/docs/editor/extension-marketplace#_workspace-recommended-extensions

Monorepos versus Polyrepos for Microfrontends38

This is an easy way for teams to standardize plugins and help junior developers get productive faster
without them having to learn things the hard way.

You will also notice that Nx has also created a few other files, such as eslintrc.json, .prettierrc,
.editorconfig, and so on. All of these files help lay a good foundation for writing good code and
ensuring consistency in how that code is written with regard to things such as indentation, the use of
single versus double quotes, and so on.

Running the app locally

To run the app locally, we could always run the terminal commands, but for a better developer
experience, we will use the newly auto-added Nx Console extension we talked about earlier.

Click on the Nx Console icon and then, under GENERATE & RUN TARGET, select serve and then,
from the dropdown at the top, select the catalog app, then select Execute:nx run catalog:serve

Figure 3.6 – Serving the catalog app using Nx Console

Setting up our Monorepo 39

You will notice that it actually runs pnpm exec nx serve catalog in the terminal and, after
a few seconds, you will have the catalog app running at http://localhost:4200.

Open the link in the browser and get a feel for the newly created catalog app:

Figure 3.7 – Catalog app running on port 4200

Creating a new app with Nx Console

Next, let us create another new app. Follow these steps:

1.	 Go to Nx Console and from GENERATE & RUN TARGET, select the generate command.
Then, from the dropdown, select Create React application. On the following screen, where it
asks for the name of the application, enter checkout.

2.	 As you scroll down the form for the section that says e2eTestRunner, select none. This will
ensure the checkout-e2e folder is not created.

Monorepos versus Polyrepos for Microfrontends40

Important note
Notice as you fill in the form fields that Nx is actually doing a dry run on the terminal to show
what the output would look like.

3.	 Go ahead and click on the Generate button to generate our checkout app.

Once done, you will notice the checkout app created within the apps folder of the monorepo.

4.	 Using Nx Console, go ahead and serve the checkout app. On the nx serve checkout screen,
scroll down a bit and select port and type 4201 then select Execute:nx run checkout:serve
–port=4201 to run the checkout app on port 4201.

We can follow the same steps to create additional apps. Nx comes with a whole set of core and community
plugins, which allows you to create apps in different frameworks, such as Angular, Next.js, Vue, and
so on. You can view the full list of plugins available here: https://nx.dev/community.

Setting permissions in your Monorepo

Now that we have multiple apps within the monorepo and we assume there are independent teams
working on each of these apps, the next thing that arises is how we ensure the right permissions to
ensure that teams don’t accidentally make changes to another team’s code.

As we saw earlier, the general thought process with monorepos is that everybody with access to the
repo has access to all the apps and folders within the monorepo but they can’t merge code changes
in apps they don’t own.

In monorepos, the permissions are set at a folder level and by making use of the CODEOWNERS file. You
can read in detail about CODEOWNERS here: https://docs.github.com/en/repositories/
managing-your-repositorys-settings-and-features/customizing-your-
repository/about-code-owners.

Important note
The CODEOWNERS file works with GitHub and GitLab. If you are using Azure DevOps, this
feature is implemented via the required approvers feature: https://learn.microsoft.
com/en-gb/azure/devops/repos/git/branch-policies?view=azure-de
vops&tabs=browser#automatically-include-code-reviewers.

In short, the CODEOWNERS file allows us to ensure that an individual or a team is explicitly involved
in the code review and approval of changes to files they own.

We can assign files in two ways: all files within a given folder or all files of a certain type.

https://nx.dev/community
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://learn.microsoft.com/en-gb/azure/devops/repos/git/branch-policies?view=azure-devops&tabs=browser#automatically-include-code-reviewers
https://learn.microsoft.com/en-gb/azure/devops/repos/git/branch-policies?view=azure-devops&tabs=browser#automatically-include-code-reviewers
https://learn.microsoft.com/en-gb/azure/devops/repos/git/branch-policies?view=azure-devops&tabs=browser#automatically-include-code-reviewers

Setting up our Monorepo 41

Let’s see this in action.

In the root of our monorepo, let’s create a file called CODEOWNERS:

/apps/catalog @my-org/catalog-team
/apps/checkout @my-org/checkout-team

What this means is if any of the pull requests contain modifications to files within the apps/catalog
folder, it will automatically add people from the catalog team as reviewers to the pull request, and
without approval from that team, the pull request cannot be merged.

The same holds true for pull requests with modifications to files in the checkout folder. In this case,
it will require an explicit approval from members of the checkout team.

We can also assign an individual in the CODEOWNERS file. Let’s say we want to ensure that any changes
to files in the tools folder need approval from GitHub user @msadmin. Let’s also assume we have
a CSS expert on our team and would like that person to review all CSS changes in the entire repo.
We can add the following two rules to enable this:

/tools @msadmin
*.css @cssexpert

This way, we can ensure a fine-grained approval process for pull requests, ensuring that the right
stakeholders are involved in the approval of all changes being made to the files they are responsible
for. As you can see, this also allows you to set rules so that an individual’s expertise on a certain subject
can be leveraged for the overall benefit of the whole team.

The following are a few points to keep in mind as you create entries in the CODEOWNERS file:

•	 File paths in the file are case-sensitive

•	 The priority of the rules is from the bottom to the top of the CODEOWNERS file; for example,
if there are multiple matching rules, the bottom-most row gets the highest priority

•	 If a row has a syntax error, it will be skipped, and GitHub will simply move on to the next row

To test this, push the code to GitHub with the entries in the CODEOWNERS file, make changes to the
file, and raise a pull request to see the CODEOWNERS file come into action.

Having come to the end of this section, we have learned how to initialize a monorepo using Nx, how to
create apps within our monorepo, and how to run them individually using NX Console. We also had
a quick look at some of the tooling advantages we get with Nx, which offers a really good developer
experience for beginners and also ensures a strong foundation for your application by automatically
setting up some of the quality gates for your repo. Finally, we looked at the various way we can set
up permissions on our repo to allow open collaboration and also leverage individual team members’
strengths for the benefit of the whole team.

Monorepos versus Polyrepos for Microfrontends42

Summary
With this, we come to the end of this chapter, where we unpacked quite a bit. We saw how teams
today are choosing between a monorepo and a polyrepo approach to version control their code bases.

We then went into the details of how the choice of a polyrepo or a monorepo impacts how your teams
operate, how easy or difficult it is to refactor code, and who owns the responsibility of fixing breaking
changes in the repo.

We then saw why choosing monorepos for microfrontends has more benefits, such as the ease of
managing all the micro-apps within a single repo, especially when it comes to running multiple apps
locally and managing the tooling centrally for all the apps within the monorepo.

Finally, we went about setting up our monorepo, where we saw the benefits of using a tool such as Nx,
which provides us with prebaked quality gates such as ESLint and Prettier to ensure consistency and
code quality. We also saw how to use Nx Console to easily create new micro-apps and run existing
micro-apps. We then saw how to set up the CODEOWNERS file to ensure granular control over who
can approve code changes for a given micro-app.

In the next chapter, we will take our current setup and go about creating a full-fledged multi-SPA
pattern microfrontend.

Part 2:
Architecting Microfrontends

This part explores various architectural patterns for implementing microfrontends, including Multi-
SPA, micro-apps, Module Federation, and server-side rendering approaches. It provides concrete
examples that cover topics around routing and state management for microfrontends.

This part has the following chapters:

•	 Chapter 4, Implementing the Multi-SPA Pattern

•	 Chapter 5, Implementing the Micro-Apps Pattern

•	 Chapter 6, Server - Rendered Microfrontends

4
Implementing the Multi-SPA

Pattern for Microfrontends

Imagine you are an architect tasked with building the frontend for a large government ePortal that
has and provides numerous online services for individuals and businesses. These services include
registering for health benefits, submitting accounts for income tax, registering a small business, and
paying vehicle road tax, in addition to publishing a whole bunch of informational content.

Or, scenario two, imagine you have been tasked to build a banking portal that provides multiple
online services, from managing saving accounts to buying insurance, to investment opportunities,
loans, mortgages, credit cards, and so on.

How would you go about planning not just your architecture but also the team that will be responsible
for building it? Naturally, the first level of thinking would be to break down the large portal into multiple
smaller modules or mini-apps and have each team focus on one of these mini-apps.

This would be the right approach, and this is also what we refer to as the multi-SPA pattern for
building microfrontends.

In this chapter, we will go about building our multi-SPA pattern microfrontend, where we will look
at the following:

•	 The high-level architecture of the multi-SPA microfrontend

•	 Establishing routing between multi-SPAs

•	 Using a shared component library

•	 Setting up a persistent state to share state between mini apps

Implementing the Multi-SPA Pattern for Microfrontends46

Technical requirements
As we go through the code examples in this chapter, we will need the following:

•	 A PC, Mac, or Linux desktop or laptop with at least 8 GB of RAM (16 GB preferred)

•	 An Intel chipset i5+ or Mac M1+ chipset

•	 At least 256 GB of free hard disk storage

You will also need the following software installed on your computer:

•	 Node.js version 16+ (use nvm to manage different versions of Node.js if you have to)

•	 Terminal: iTerm2 with OhMyZsh (you will thank me later)

•	 IDE: We strongly recommend VS Code as we will be making use of some of the plugins that
come with VS Code for an improved developer experience

•	 npm, yarn, or pnpm – we recommend pnpm because it’s fast and storage-efficient

•	 Browser: Chrome, Microsoft Edge, or Firefox (I use Firefox)

•	 A basic understanding of Nx.dev monorepos and a basic understanding of using the NX
Console plugin in VS Code

•	 Working knowledge of React

The code files for this chapter can be found here: https://github.com/PacktPublishing/
Building-Micro-Frontends-with-React

We also assume you have a basic working knowledge of Git, such as branching, committing code,
and raising pull requests.

Understanding the multi-SPA architecture
The multi-SPA architecture pattern is one of the most common patterns for building large-scale
applications. As the name suggests, in this pattern, we have a collection of SPAs that together form a
large application. In this pattern, each SPA behaves as its own independent feature or module that can
be directly accessed via a URL namespaced and mapped to the app. These SPAs also share a very thin
layer of shared components and global state to ensure coherency and consistency between the apps.

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React

Building our Multi-SPA Microfrontend 47

Figure 4.1 – The multi-SPA architecture

As you can see in Figure 4.1, we have four SPAs: a catalog, which will hold pages such as product
listings, product details, search, and so on; a checkout SPA containing pages such as shopping cart,
payments, and so on; the MyAccounts SPA; and the Seller/Admin SPA. You will also notice that this
pattern allows us to easily add additional SPAs as the application grows.

Each of these SPAs is mapped to a unique primary URL, such that users clicking the /catalog
URL will be redirected to the catalog app, while users clicking the /checkout URL will go to the
checkout app.

Building our Multi-SPA Microfrontend
Building a multi-SPA microfrontend essentially consists of three broad areas: breaking down the app
into logical mini-apps, then we need to set up the routing between these mini-apps, and finally, we
set up a global state the different mini-apps can read and write data to. Let us look at each of them
in the subsequent sections.

Implementing the Multi-SPA Pattern for Microfrontends48

Setting up our mini-apps

We will start with where we left off in the previous chapter.

In case you skipped the previous chapter and are directly jumping in here, you can start by cloning the
repo from https://github.com/PacktPublishing/Building-Micro-Frontends-
with-React/tree/main/ch3/my-mfe.

Let us quickly run pnpm install (if you haven’t already done so) and serve the respective apps
to make sure that they are running properly.

Since we are going to build an e-commerce application, let us call our app eBuy. Feel free to rename
your app folder to ebuy.

During active development, we would ideally be working on our own respective mini-app and you
could easily use the NX Console to serve your respective app.

However, periodically you may want to test the entire end-to-end app flow across the different mini-
apps and for that, it is important that you are able to run all the mini-apps locally. This is exactly what
we are going to do next.

We first need to ensure that each mini-app runs on its own unique port. To do this, we need to first
locate the project.json file located in the apps/catalog folder. You will notice it basically
contains all the commands and configuration needed to run the various tasks on your app.

We navigate to the "serve": section and under "options", add the line "port": 4200:

    "serve": {

      "executor": "@nrwl/web:dev-server",

      "defaultConfiguration": "development",

      "options": {

        "buildTarget": "catalog:build",

        "hmr": true,

        "port": 4200

      },

      "configurations": {

        "development": {

          "buildTarget": "catalog:build:development",

        },

        "production": {

          "buildTarget": "catalog:build:production",

          "hmr": false

        }

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React/tree/main/ch3/my-mfe
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React/tree/main/ch3/my-mfe

Building our Multi-SPA Microfrontend 49

      }

    },

We do the exact same thing in the project.json file located in the apps/checkout folder, but
this time we will ensure this runs on "port": 4201 like so:

      "options": {

        "buildTarget": "checkout:build",

        "hmr": true,

        "port": 4201

      },

This will ensure that, by default, the catalog will run on port 4200 while the checkout app runs on
port 4201.

Thanks to inheritance, we will be able to run the app in development and production mode from the
same ports.

Next, we will create a script command that will allow us to run all the apps in parallel on their
respective ports.

For this, we go into the package.json file located at the root of the project and add a script called
"serve:all": "nx run-many --target=serve":

  "scripts": {

    "start": "nx serve",

    "build": "nx build",

    "test": "nx test",

    "serve:all": "nx run-many --target=serve"

  },

Now, in your terminal, run the following command:

pnpm serve:all

You will see nx is starting up the webpack development server and is launching the two apps.

Verify it by visiting these two URLs in the browser:

•	 Catalog app: http://localhost:4200

•	 Checkout app: http://localhost:4201

Implementing the Multi-SPA Pattern for Microfrontends50

With microfrontends, it is important that each SPA follows the same brand guidelines and look and
feel. We ensure this by building a shared set of UI components that both apps make use of. In the next
section, we will see how to create a shared component library.

Using a shared component library

As you are building a series of mini-apps as part of your overall bigger app, we want to ensure that
all these mini-apps have a consistent design – things such as having a consistent header and footer
and a consistent way for the various components to behave. What is equally important is, when we
make a change to some of these core elements, we need to ensure that it can be updated across all the
different apps without too much trouble. This is where the libs folder comes into play.

This would also be a good time to define an NPM scope so that all these shared components can be
imported via their scope names.

To define an NPM scope, we open up the nx.json file located at the root of the monorepo. We are
going to name our scope ebuy but in reality, it could be anything – the name of your team, the name
you have for your component library, and so on.

Locate the npmScope property in the nx.json file and update it as follows:

  "npmScope": "ebuy",

Let us use our trustworthy Nx Console to create a library. From Nx Console, select generate and
then select @nrwl/react – library React Library.

Select the Show all options and provide/modify the following details and leave the rest as the default:

Library name   : ui

Generate a default component    : No

importPath : @ebuy/ui

We can leave the rest as the default and click the run button to generate the ui folder within libs.

In addition to creating the ui folder within libs, you will notice Nx has also added an entry into
the paths object of tsconfig.base.json as follows:

    "paths": {

      "@ebuy/ui": ["libs/ui/src/index.ts"]

    }

It is this setting that will allow us to import our UI components via the scoped name instead of a
long folder path.

Next, let’s create a couple of UI components.

Building our Multi-SPA Microfrontend 51

We will use the awesome Semantic-UI React component library to build out our UI components.
You can also use any other component library, such as Chakra UI, MUI React-Bootstrap, and so on:

1.	 Let’s install it on the root of the monorepo using the following command:

pnpm install semantic-ui-react semantic-ui-css

2.	 Remember you can always use npm or yarn to install npm packages as follows:

yarn add semantic-ui-react semantic-ui-css

npm install semantic-ui-react semantic-ui-css

Now let’s create a couple of our common components in the libs/ui folder.

3.	 Let us use Nx Console and create a new component:

Nx | Generate | Create a react component

4.	 Use the following information to create the component:

	� Name: header

	� Project: ui

	� Flat: Select the checkbox to ensure we have a flatter folder structure within

5.	 Hit the run button and verify the header.tsx file is created within the libs/ui/src/
lib folder.

6.	 Open the header.tsx file and replace the contents of it with simple markup for our
header component:

import { Menu, Container, Icon, Label } from 'semantic-
ui-react';

export function Header() {

  return (

    <Menu fixed="top" inverted>

      <Container>

        <Menu.Item as="a" header>

          eBuy.com

        </Menu.Item>

        <MenuItems />

        <Menu.Item position="right">

          <Label>

Implementing the Multi-SPA Pattern for Microfrontends52

            <Icon name="shopping cart" />

            00

          </Label>

        </Menu.Item>

      </Container>

    </Menu>

  );

}

const MenuItems = () => {

  return (

    <>

      {NAV_ITEMS.map((navItem, index) => (

        <Menu.Item key={index}>

          {navItem.label}</
a>

        </Menu.Item>

      ))}

    </>

  );

};

interface NavItem {

  label: string;

  href?: string;

}

const NAV_ITEMS: Array<NavItem> = [

  {

    label: 'Catalog',

    href: '/',

  },

  {

    label: 'Checkout',

    href: '/checkout',

  },

];

export default Header;

Building our Multi-SPA Microfrontend 53

This is simple React component code that will display the header with navigation for the catalog
and checkout.

7.	 The next step is to export it out it from the ui. Locate the /libs/ui/src/index.ts file
and add an entry as follows:

export * from './lib/header';

This will allow our header component to be importable via our shorter import path. Now let
us import it into our catalog and checkout apps.

8.	 Open the apps/catalog/src/spp/app.tsx file and import the header component
as follows:

import { Header } from '@ebuy/ui';

9.	 Let us clean up some of the boilerplate code. Remove the imports for styles and NxWelcome
and add the Header component in the JSX. You can also delete the nx-welcome.tsx file
in the catalog folder. Your final code should look like this:

import { Header } from '@ebuy/ui';

import { Container, Header as Text } from 'semantic-ui-
react';

import 'semantic-ui-css/semantic.min.css';

export function App() {

  return (

    <Container style={{ marginTop: '5rem' }}>

      <Header />

      <Text size="huge">Catalog App</Text>

    </Container>

  );

}

export default App;

In the preceding code, we import the semantic-ui’s css file and include our Header component
and text that displays the name of the app.

When running in the browser, the catalog app will look something like this:

Implementing the Multi-SPA Pattern for Microfrontends54

Figure 4.2 – Catalog app with the common header menu bar

10.	 We will make the same changes to the apps/checkout/src/app/app.tsx file within
the checkout app.

11.	 Let us test out our code. Run pnpm serve:all and refresh your browser on http://
localhost:4200 to see our latest changes.

Try clicking on the navigation links for the catalog or checkout and notice it doesn’t do anything. That
is because we haven’t set up routing between our apps, which is exactly what we will be doing next.

Setting up Routing

As we discussed earlier, from time to time, we would like to test our end-to-end app functionality,
and although we are able to run apps in parallel on different ports, there are some challenges with
testing end-to-end functionality:

•	 We need to ensure a consistent navigation structure for our apps both on localhost and
on production.

•	 Apps running on different ports are treated as apps on different domains and hence it will not
be possible to share cookies, session states, and so on

To overcome these problems, we need to make the browser think the apps are running on the same
port. We do this by setting up a reverse proxy. The way we will set up routing is each mini-app will
have its own namespaced primary route, for example:

•	 eBuy.com: Home page app

•	 eBuy.com/catalog: Catalog app

•	 eBuy.com/checkout: Checkout app

The secondary routes are generally set up within the mini-apps themselves. For example, the product
details page for, say, apples would be eBuy.com/catalog/apples.

Webpack development servers and Nx come with easy-to-use proxy support that we can take advantage of.

Building our Multi-SPA Microfrontend 55

At the root of the catalog app, /apps/catalog, let us create a new file called proxy.conf.
json with the following entries:

{

  "/catalog": {

    "target": "http://localhost:4200"

  },

  "/checkout": {

    "target": "http://localhost:4201"

  }

}

Next, we need to tell the catalog app to use this file for its proxy configuration.

We do this by adding the proxyConfig property to the development configuration under the serve
object in the apps/catalog/project.json file as follows:

    "options": {

        "buildTarget": "catalog:build",

        "hmr": true,

        "port": 4200,

        "proxyConfig": "apps/catalog/proxy.conf.json"

      },

Let us quickly test it out. We will need to restart our development servers to pick up the latest
proxy configurations.

Run the serve:all command and try clicking on the Checkout and Catalog navigation links…
Erm… It didn’t work and the same catalog app shows up when you click on the Checkout link... But
wait – the title tag on the browser tab does show Checkout:

Figure 4.3 – Checkout app in the title but loading the catalog bundle

Implementing the Multi-SPA Pattern for Microfrontends56

So, what’s happening here? If you look at the development tools, the problem becomes quite obvious.
What’s happening here is the proxy has correctly redirected us to the checkout app and that’s why we see
the correct index.html file served via the checkout app, however, the script’s src tags loading the
js bundles point to the root and hence they are actually loading the js bundles from the catalog app.

Fixing this problem is relatively easy again thanks to Nx.

We simply need to define the baseRef for the checkout app. We do this by adding "baseHref":
"/checkout/" to the /apps/checkout/project.json file.

This is what your development object under the parent serve object should look like:

     "options": {

          "buildTarget": "checkout:build:development",

          "port": 4201,

          "baseHref": "/checkout/"

        },

Restart the development servers and now you will be able to navigate between the two applications
and have the right JS bundles load in. In the next section, we will work toward adding a product list
response to simulate the mocked response from a product list API call.

Setting up a mocked product list

A common practice with all web development activities is to set up a mock server or a mocked set
of API responses that the frontend apps can consume until the actual APIs are ready. Since our
e-commerce app requires a list of products that will be required across all the other mini-apps, we
create a shared library to hold our mocks.

So again, using our favorite, Nx Console, let us create another React library, let us call it mocks, and
we will use the scope name @ebuy/mocks.

Within the mocks library at libs/mocks/src/lib, let us create our file called product-
list-mocks.tsx with the following code:

interface productListItem {

  id: string;

  title: string;

  image: string;

  price: number;

}

export const PRODUCT_LIST_MOCKS: Array<productListItem> = [

Building our Multi-SPA Microfrontend 57

  {

    id: '1',

    title: 'Apples',

    image: '/assets/apple.jpg',

    price: 1.99,

  },

  {

    id: '2',

    title: 'Oranges',

    image: '/assets/orange.jpg',

    price: 2.5,

  },

  {

    id: '3',

    title: 'Bananas',

    image: '/assets/banana.jpg',

    price: 0.7,

  },

];

export default PRODUCT_LIST_MOCKS;

Let us not forget to export it out from the /libs/mocks/src/index.ts file with the following
line of code:

export * from './lib/product-list-mocks';

Also, don’t forget to place the product images in the catalog app’s src/assets folder. You can
find the images here https://github.com/PacktPublishing/Building-Micro-
Frontends-with-React-18/tree/main/ch4/ebuy/apps/catalog/src/assets.

We will now look to use this across our apps, wherever we need data from the product list.

Adding the product grid and checkout components

Now we have a decent-looking header and an app where we can navigate from one mini-app to the
other. However, the rest of the app doesn’t do much, so let’s add a product list component to the catalog
app and a shopping basket component to the checkout app.

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React-18/tree/main/ch4/ebuy/apps/catalog/src/assets
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React-18/tree/main/ch4/ebuy/apps/catalog/src/assets

Implementing the Multi-SPA Pattern for Microfrontends58

We will start by creating the ProductList component within our /apps/catalog/src/app
folder. We will name the file product-list.tsx. We will start by creating an empty shell component:

import { Card } from 'semantic-ui-react';

import ProductCard from './product-card';

import { PRODUCT_LIST_MOCKS } from '@ebuy/mocks';

export function ProductList() {

  return (

    <Card.Group>

      {PRODUCT_LIST_MOCKS.map((product) => (

        <ProductCard key={product.id} product={product} />

      ))}

    </Card.Group>

  );

}

export default ProductList;

We will get an error for the missing ProductCard component. Don’t worry – we will create that
component in the next step. Next, we need to create our ProductCard component. We will name
the file product-card.tsx.

We start by defining the skeleton of our ProductCard component:

import { Button, Card, Image } from 'semantic-ui-react';

export function ProductCard(productData: any) {

  const { product } = productData;

  return (

    <Card>

      <Card.Content>

        <Image alt={product.title} src={product.image} />

        <Card.Header>{product.title}</Card.Header>

        <Card.Description>{product.description}</Card.
Description>

        <Card.Header>${product.price}</Card.Header>

      </Card.Content>

      <Card.Content extra>

        <div className="ui three buttons">

Building our Multi-SPA Microfrontend 59

          <Button basic color="red">

            Remove

          </Button>

          <Button basic color="blue">

            {0}

          </Button>

          <Button basic color="green">

            Add

          </Button>

        </div>

      </Card.Content>

    </Card>

  );

}

export default ProductCard;

Next, let us import the ProductList app.tsx file of the catalog app located at /apps/
catalog/src/app/app.tsx.

Your app.tsx code should now look like this:

import { Header } from '@ebuy/ui';

import { Container, Header as Text } from 'semantic-ui-react';

import 'semantic-ui-css/semantic.min.css';

import ProductList from './product-list';

export function App() {

  return (

    <Container style={{ marginTop: '5rem' }}>

      <Header />

      <Text size="huge">Catalog App</Text>

      <ProductList />

    </Container>

  );

}

export default App;

Implementing the Multi-SPA Pattern for Microfrontends60

If your catalog app looks like the following screenshot, that means you are on the right path:

Figure 4.4 – Catalog app with a header and product list component

Next, we are going to create our shopping basket component. So, in our app.tsx checkout file located
in the /apps/checkout/src/app folder, let us create a basic skeleton with the following code:

import { Header } from '@ebuy/ui';

import { Container, Header as Text } from 'semantic-ui-react';

import 'semantic-ui-css/semantic.min.css';

import ShoppingBasket from './basket';

import { PRODUCT_LIST_MOCKS } from '@ebuy/mocks';

export function App() {

  return (

    <Container style={{ marginTop: '5rem' }}>

      <Header />

      <Text size="huge">Checkout</Text>

      <ShoppingBasket basketList={PRODUCT_LIST_MOCKS} />

Building our Multi-SPA Microfrontend 61

    </Container>

  );

}

export default App;

This code should start looking familiar now. As you can see, we have a ShoppingBasket component
and, for the time being, we are passing PRODUCT_LIST_MOCKS to it for the purpose of mocking.

Next up is to create that ShoppingBasket component, which is throwing an error at the moment.

So let us create a basket.tsx file in the /apps/checkout/src/ app folder:

import { Table, Image, Container } from 'semantic-ui-react';

export function ShoppingBasket(basketListData: any) {

  const { basketList } = basketListData;

  return (

    <Container textAlign="center">

      <Table basic="very" rowed>

        <Table.Header>

          <Table.Row>

            <Table.HeaderCell>Items</Table.HeaderCell>

            <Table.HeaderCell>Amount</Table.HeaderCell>

            <Table.HeaderCell>Quantity</Table.HeaderCell>

            <Table.HeaderCell>Price</Table.HeaderCell>

          </Table.Row>

        </Table.Header>

        <Table.Body>

          {basketList.map((basketItem: any) => (

            <Table.Row key={basketItem.id}

>

              <Table.Cell>

                <Image src={basketItem.image} rounded
size="mini" />

              </Table.Cell>

              <Table.Cell> {basketItem.title}</Table.Cell>

              <Table.Cell>{basketItem.quantity || 0}</Table.
Cell>

Implementing the Multi-SPA Pattern for Microfrontends62

              <Table.Cell>${basketItem.price * basketItem.
quantity}</Table.Cell>

            </Table.Row>

          ))}

        </Table.Body>

      </Table>

    </Container>

  );

}

export default ShoppingBasket;

This is all self-explanatory dummy markup content that at the moment doesn’t do much. In the
following sections, we are going to make this all work together.

Your running checkout app should now look like this:

Figure 4.5 – Mocked up checkout app

With this, we have our two apps working well and displaying the right data, however, they are not
“talking” to each other yet. The checkout app has no idea what items the user has added to the cart in
the catalog app. In the next section, we will set up a global shared state that both the mini-apps can
talk to and read from.

Building our Multi-SPA Microfrontend 63

Before we proceed to the next section, let us quickly go through a checklist of things we’ve done so far:

•	 Ensured we have the catalog and checkout apps running on different ports

•	 Ensured we have the URL routing setup in the proxy.conf.json file

•	 We have both apps reading data from the mocked product list

Setting up a Global Shared State

Now that we are able to navigate between our two mini-apps, the next thing to tackle is setting up
a shared state between these two different apps. Because these are two independent apps, the usual
state management solutions such as the Context API, Redux, MobX, and so on will not work. This is
because these libraries store the state as an object within the app and when you refresh the page or
navigate to another app, this state is lost state. Hence, to overcome this problem, we resort to using
some of the browser’s native features, such as local storage, session storage, or Index-db.

For this example, we will be using session storage. We will set up a simple custom hook to persist state
in sessionStorage and have both our mini-apps read and write to this state.

In any large-scale app, there will be a lot of similar custom hooks that teams can reuse. This is also a
good opportunity for us to set up another library for these custom hooks.

It is important to remember that this global state should be used sparingly only when we need to share
information between the different mini-apps. To manage the states within each micro app, we should
use a regular state management tool such as the Context API or Redux, and so on.

Let us use Nx Console to create another library called custom-hooks:

Nx Console > generate > Create a React Library

Then, we’ll fill use the following information in the form:

•	 Name: custom-hooks

•	 Component: off (Generate a default component)

•	 importPath: @ebuy/custom-hooks

Verify that the custom-hooks folder is created under libs and also make sure it has been added
to the tsconfig.base.json file at the root of the monorepo, which should now look something
like this:

    "paths": {

      "@ebuy/custom-hooks": ["libs/custom-hooks/src/index.ts"],

      "@ebuy/mocks": ["libs/mocks/src/index.ts"],

      "@ebuy/ui": ["libs/ui/src/index.ts"],

Implementing the Multi-SPA Pattern for Microfrontends64

      "@ebuy/utils": ["libs/utils/src/index.ts"]

    }

Let us now create our custom hook. Use the generate command to create a React component with
the following information:

•	 Name of the component: useSessionStorage

•	 Project: custom-hooks

•	 fileName: use-session-storage

•	 flat: Selected (generate flat file structure)

In the newly created use-session-storage.tsx component file, let’s replace the boilerplate
code with the following:

import {

  Dispatch,

  SetStateAction,

  useCallback,

  useEffect,

  useState,

} from 'react';

import { useEventCallback, useEventListener } from 'usehooks-
ts';

declare global {

  interface WindowEventMap {

    'session-storage': CustomEvent;

  }

}

type SetValue<T> = Dispatch<SetStateAction<T>>;

export function useSessionStorage<T>(key: string, initialValue:
T): [T, SetValue<T>] {

  // Get from session storage then

  // parse stored json or return initialValue

  const readValue = useCallback((): T => {

    // Prevent build error "window is undefined" but keep
working

Building our Multi-SPA Microfrontend 65

    if (typeof window === 'undefined') {

      return initialValue;

    }

    try {

      const item = window.sessionStorage.getItem(key);

      return item ? (parseJSON(item) as T) : initialValue;

    } catch (error) {

      console.warn(`Error reading sessionStorage key
"${key}":`, error);

      return initialValue;

    }

  }, [initialValue, key]);

  // State to store our value

  // Pass initial state function to useState so logic is only
executed once

  const [storedValue, setStoredValue] = useState<T>(readValue);

  // Return a wrapped version of useState's setter function
that ...

  // ... persists the new value to sessionStorage.

  const setValue: SetValue<T> = useEventCallback((value) => {

    // Prevent build error "window is undefined" but keeps
working

    if (typeof window === 'undefined') {

      console.warn(

        `Tried setting sessionStorage key "${key}" even though
environment is not a client`

      );

    }

    try {

      // Allow value to be a function so we have the same API
as useState

      const newValue = value instanceof Function ?
value(storedValue) : value;

      // Save to session storage

      window.sessionStorage.setItem(key, JSON.
stringify(newValue));

      // Save state

Implementing the Multi-SPA Pattern for Microfrontends66

      setStoredValue(newValue);

      // We dispatch a custom event so every useSessionStorage
hook are notified

      window.dispatchEvent(new Event('session-storage'));

    } catch (error) {

      console.warn(`Error setting sessionStorage key
"${key}":`, error);

    }

  });

  useEffect(() => {

    setStoredValue(readValue());

    // eslint-disable-next-line react-hooks/exhaustive-deps

  }, []);

  const handleStorageChange = useCallback(

    (event: StorageEvent | CustomEvent) => {

      if ((event as StorageEvent)?.key && (event as
StorageEvent).key !== key) {

        return;

      }

      setStoredValue(readValue());

    },

    [key, readValue]

  );

  // this only works for other documents, not the current one

  useEventListener('storage', handleStorageChange);

  // this is a custom event, triggered in
writeValueTosessionStorage

  // See: useSessionStorage()

  useEventListener('session-storage', handleStorageChange);

  return [storedValue, setValue];

}

export default useSessionStorage;

// A wrapper for "JSON.parse() to support "undefined" value

function parseJSON<T>(value: string | null): T | undefined {

  try {

    return value === 'undefined' ? undefined : JSON.parse(value
?? '');

Building our Multi-SPA Microfrontend 67

  } catch {

    console.log('parsing error on', { value });

    return undefined;

  }

}

This custom hook code is part of the usehooks-ts library and is available here: https://
usehooks-ts.com/react-hook/use-session-storage

Since this custom hook makes use of the usehook-ts library, we will install that npm module:

pnpn i usehook-ts

Next, we need to export it so that it can be imported via the scoped path. We do this in the /libs/
custom-hooks/src/index.ts file by adding the following line:

export * from './lib/use-session-storage'

Next, we will use our newly created custom-hook in the product-card component such that
every time the user adds products to or removes products from the shopping cart, it will store it as
an array in sessionStorage.

In the /apps/catalog/src/app/productcard.tsx file, we will start by importing the
useSessionStorage hook:

import { useSessionStorage } from '@ebuy/custom-hooks;

Then, within the product card component, we make use of the useSessionStorage hook and
add the functions to add and remove items from the basket with the following code:

const [basket, setBasket]: any =
useSessionStorage('shoppingBasket', {});

  const addItem = (id: string) => {

    basket[id] = basket[id] ? basket[id] + 1 : 1;

    setBasket(basket);

  };

 const removeItem = (id: string) => {

    basket[id] = basket[id] <= 1 ? 0 : basket[id] - 1;

    setBasket(basket);

https://usehooks-ts.com/react-hook/use-session-storage
https://usehooks-ts.com/react-hook/use-session-storage

Implementing the Multi-SPA Pattern for Microfrontends68

Next, we update the Add and Remove button on-click events as follows:

<div className="ui three buttons">

          <Button basic color="red" onClick={() =>
removeItem(product.id)}>

            Remove

          </Button>

          <Button basic color="blue">

            {basket[product.id] || 0}

          </Button>

          <Button basic color="green" onClick={() =>
addItem(product.id)}>

            Add

          </Button>

        </div>

Let’s test this out by running the following command:

pnpm serve:all

Click on the Add and Remove buttons for some of the products and see the product counts work.

Let’s open up the development tools and have a look at the sessionStorage under the Application tab:

Figure 4.6 – Shopping basket stored in Session Storage

Building our Multi-SPA Microfrontend 69

Once the state is present in Session Storage, we will need to read it from multiple places across different
components. It is best to create it as a utility function that can be reused as needed.

We will create another library using Nx Console, but this time instead of creating a React library, we
will use the @nrwl/workspace – library template to generate our generic utils library
and use the import scope called @ebuy/utils.

The information we fill in during the Nx Console > generate step is as follows:

•	 @nwrl/workspace: library

•	 Name: utils

•	 importScope: @ebuy/utils

Running this command will generate the utils folder and also create the utils.ts file. Let us
rename it to get-session-storage.ts.

Add the following code to read the values of a given key:

export function getSessionStorage(key: any) {

  const sessionStorageValue = JSON.parse(

    window.sessionStorage.getItem(key) || '{}'

  );

  return sessionStoragevalue;

}

export default getSessionStorage;

As you can see, this is a very simple function that accepts a key and returns the values from session
storage for the given key.

Next, we will get the mini basket in the header hooked up to show the total items in the shopping
basket. In the header.tsx file, let us add the necessary code to read and total up the items in the
shopping basket.

Let us import the necessary functions:

import { useEffect, useState } from 'react';

import { useEventListener } from 'usehooks-ts';

import { getSessionStorage } from '@ebuy/utils';

We will create our function to calculate the total count like so:

const getTotalBasketCount = (basket: any): any => {

  return Object.values(basket).reduce((a: any, b: any) => a +
b, 0);

};

Implementing the Multi-SPA Pattern for Microfrontends70

Next, within the Header component, we will use a combination of useEffects and
eventListeners to ensure that the mini basket updates every time items are added to or removed
from the cart:

const [miniBasketCount, setMiniBasketCount] = useState(null);

  useEffect(() => {

    const basket: any = getSessionStorage('shoppingBasket');

    const totalCount: any = getTotalBasketCount(basket);

    setMiniBasketCount(totalCount);

  }, []);

  useEventListener('session-storage', () => {

    const basket: any = getSessionStorage('shoppingBasket');

    const totalCount: any = getTotalBasketCount(basket);

    setMiniBasketCount(totalCount);

  });

Finally, we will update the shopping cart icon to display {miniBasketCount} like so:

<Menu.Item position="right">

          <Label>

            <Icon name="shopping cart" />

            {miniBasketCount}

          </Label>

        </Menu.Item>

Run the apps and try adding and removing items using the Add and Remove buttons, and see how
the counts update.

The last part of this chapter is where we will complete the shopping cart component in the checkout app.

What we need to do is fetch the data for the shoppingBasket key in sessionStorage and
display the products and the quantity added to the cart.

We open the app.tsx checkout file located in the apps/checkout/src/app/app.tsx file
and follow these steps to get the data from sessionStorage:

First we import getSessionStorage like so:

import { getSessionStorage } from '@ebuy/utils';

Building our Multi-SPA Microfrontend 71

Then within the App function we add the following:

const basketFromStorage: any =
getSessionStorage('shoppingBasket');

    console.log('Basket: ', basketFromStorage);

When we run the app and have a look at the console, we will be able to see the array of items
from shoppingBasket.

Since shoppingBasket only stored the product IDs and their quantity we will need to map the
product IDs to the product names so that we can display names in the shopping basket.

Let us create another function to do that. We will call it createCompleteBasket:

const createCompleteBasket = (allItems: any, quantities: any)
=> {

  return allItems

    .filter((item: any) => quantities[item.id])

    .map((item: any) => {

      return {

        ...item,

        quantity: quantities[item.id],

      };

    });

};

And then, finally, within our app’s component's function, we create completeBasket by filtering
and mapping the values from the product list to shoppingbasket like so:

  const completeBasket = createCompleteBasket(

    PRODUCT_LIST_MOCKS,

    basketFromStorage

  );

Now we update the ShoppingBasket component to pass in this new prop like so:

 <ShoppingBasket basketList={completeBasket} />

Test your app in the browser and give it a play. Add and remove items to and from the basket in
the catalog app and then navigate to the checkout app to see the shopping basket all synced up and
displaying the correct list of items.

Implementing the Multi-SPA Pattern for Microfrontends72

A note on the coding samples
As you must have seen, in numerous places we have used the ‘any' type definition and have
skipped a few details (including unit tests). This is intentional to avoid overcomplicating the
examples so that we stay focused on the core aspects of this chapter, such as routing between
apps and sharing state. When building an app for production, we would encourage you to
define the correct types and interfaces to take advantage of the full power of TypeScript and
write relevant tests.

With this, we come to the end of this rather intense section... Take a break. Well done!

We covered a lot here. We picked up from where we had left off in the previous chapter and added a
shared header component to our apps. We then set up routing via a proxy so that we could navigate
between the two different apps, but as if they were part of the same domain and port. We also saw how
to share state between the two mini-apps using session storage. We then created a common custom
hook to store and retrieve data from session storage, and while doing so we built up the bare bones
of an e-commerce app, adding items to the cart and updating the cart information on the checkout
app and the mini cart on the header.

Summary
This was a long chapter, so well done for staying with us until the end. We started off by looking
at what the multi-SPA pattern looks like. We saw how this pattern would be most suitable for very
large applications such as a banking portal, a government portal, or an e-commerce site. We saw the
architecture pattern where all these different mini-apps can take advantage of a shared common library
of components and utilities to ensure the consistency of the different apps.

We then took a deep dive into code and went about setting up our two mini-apps within the Nx
monorepo, after which we went about creating our shared UI header component and used Semantic
UI to build out our catalog and checkout apps. This was also a good opportunity for us to see how to
use scoped names, which makes our import paths look clean and simple.

Then we went about setting up the routing so that we could navigate between the two different apps,
and finally, we set up a custom hook to store our app state in session storage and saw how to have it
synced between the two mini-apps.

In the next chapter, we will look at the micro-apps pattern where we will have multiple micro-apps
loaded within the same page.

5
Implementing the Micro-Apps

Pattern for Microfrontends

In the previous chapter, we saw the multi-SPA pattern for building microfrontends, which is ideal for
building large-scale applications where each SPA contains its own user journey.

The primary advantage of this pattern is that each app is completely independent of the others, and they
are connected via a namespaced primary route that is external to the app. As a user, while navigating
through the app, you will have also noticed that when you move from one SPA to another, you are
redirected via the browser and the page reloads. If this is something you’d like to avoid, and if you want
a consistent SPA experience, then we can explore the micro-apps-pattern that uses Module Federation.

In this chapter, we will go about building a micro-apps microfrontend, where we will learn about
the following:

•	 What is Module Federation, and why is it a key to building microfrontends?

•	 Setting up a microfrontend app with host and remote apps

•	 Breaking down the app into smaller micro apps that are loaded via Module Federation

•	 Setting up routing between the different pages

•	 Sharing state between the different micro apps

By the end of this chapter, we will have converted our multi-SPA microfrontend into a micro-apps
microfrontend using Module Federation. In doing so, we will have also learned about Zustand, an
easy-to-use state management library.

Implementing the Micro-Apps Pattern for Microfrontends74

Technical requirements
As we go through the code examples in this chapter, we will need the following:

•	 A PC, Mac, or Linux desktop or laptop with at least 8 GB of RAM (16 GB preferred)

•	 An Intel chipset i5+ or a Mac M1 + chipset

•	 At least 256 GB of free hard disk storage

You will also need the following software installed on your computer:

•	 Node.js version 18+ (use nvm to manage different versions of Node.js if you have to)

•	 Terminal: iTerm2 with OhMyZsh (you will thank me later)

•	 IDE: We strongly recommend VS Code as we will be making use of some of the plugins that
come with it for an improved developer experience

•	 NPM, Yarn, or PNPM. We recommend PNPM because it’s fast and storage-efficient

•	 Browser: Chrome, Microsoft Edge, or Firefox

•	 A basic understanding of Nx.dev monorepos and a basic understanding of using the NX
console plugin in VS Code

•	 Working knowledge of React

The code files for this chapter can be found here: https://github.com/PacktPublishing/
Building-Micro-Frontends-with-React.

We also assume you have a basic working knowledge of Git, including branching, committing code,
and raising a pull request.

Why do we need Module Federation for Microfrontends?
In the multi-SPA approach to microfrontends, you may have noticed that we end up duplicating some
of the common dependencies across the different micro apps. In the grand scheme of things, when
the primary goal is to keep things simple, this would be an acceptable trade-off. However, when the
number of dependencies being duplicated and the number of apps being built are high, you need
to optimize things and minimize duplication. Trying to achieve this before Webpack 5 would have
led to having to deal with complex dependency management. It would also have made it difficult to
maintain and evolve microfrontend applications. Module Federation helps us solve these challenges.

In the next sections, we will learn more about what Module Federation is and how it helps with
building microfrontends.

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React

What is Module Federation? 75

What is Module Federation?
Module Federation is a new feature introduced in Webpack 5 that allows us to load external JS
bundles in real time.

Before Module Federation, the standard way to import all the necessary modules for an application
was only during build time, where it created a large JS bundle or smaller chunks that got loaded based
on page routes, but it wasn’t quite possible to dynamically load an app bundle in real time.

Module Federation provides us with a radically new way to architect our apps, build and deploy shared
components, and update them without the need to rebuild the entire application.

Traditionally, we build most of our shared components, such as UI component libraries or npm
modules, and import them into our application during build time. With Module Federation, these
modules can be hosted at an independent URL and imported into the application at runtime. We
take advantage of this very same feature to build our microfrontend architecture, where we have our
micro apps independently hosted and loaded into the host or shell app in real time.

Before we get into how to go about doing it, let us look at some basic terminology associated with
Module Federation. Module Federation revolves around a few concepts. Here are some of them.

ModuleFederationPlugin

All of Module Federation’s features are made available in Webpack 5+ via the
ModuleFederationPlugin plugin. This is where you define the settings of how Module
Federation should work.

This plugin allows a build to provide or consume modules during runtime with other independent builds.

You can read in detail about ModuleFederationPlugin and its specs here: https://webpack.
js.org/plugins/module-federation-plugin/.

In its simplest form, the code for ModuleFederationPlugin should look like this:

const { ModuleFederationPlugin } = require('webpack').container;
module.exports = {
  plugins: [
    new ModuleFederationPlugin({
      // module federation configuration options
    }),
  ],
};

The preceding code is the skeleton that holds all the configurations required to enable Module Federation.

https://webpack.js.org/plugins/module-federation-plugin/
https://webpack.js.org/plugins/module-federation-plugin/

Implementing the Micro-Apps Pattern for Microfrontends76

Host apps

This is the root application within which remote or external apps are loaded. The host app’s Module
Federation configuration stores the list of remote apps that need to load within it. In our use cases of
microfrontends, the host app also contains information about the different routes and the mapping
of the routes to the respective remote apps.

Webpack’s configuration for Module Federation in the host app should look like this:

module.exports = {
  plugins: [
    new ModuleFederationPlugin({
      name: 'hostAppName',
      remotes: {
        app1: '<app1's URL path to remoteEntry.js>',
       app2: '<app2's URL path to remoteEntry.js>',
      },
    }),
  ],
};

The preceding code is simple to understand. We let Module Federation know the name of the host
app and provide a list of remote apps and the path to their corresponding remoteEntry file in the
remotes object.

Remote Apps

Remote apps, as you would have guessed, are apps that load dynamically within the host app. These
remote apps are also referred to as containers in Module Federation terminology. The JS bundle of
these remote apps is usually exposed via a single .js file usually called remoteEntry.js, which
the host app looks out for.

Every remote app is exposed in Webpack’s Module Federation configuration in the following way:

new ModuleFederationPlugin({
      name: 'remoteAppName', // this name needs to match with the
entry name
      exposes: ['./public-path/remoteEntry.js'],
      // ...
    }),

Every remote app needs to have a unique name defined in its name property, and this name
needs to match the names that are part of the remotes object defined in the host app’s Module
Federation configuration.

What is Module Federation? 77

remoteEntry.js

The remoteEntry.js file is a small JS file that is created by Module Federation at runtime.
It contains metadata for each of the remote apps. The host app relies on the remoteEntry.js file
to know which modules to load into.

Use cases for Module Federation are not just limited to building microfrontends; they can also be used
to dynamically load common libraries or a module such as a design system, for example, negating the
need to publish these common libraries as npm packages and having to rebuild and re-deploy every
time a common library has changed.

The following diagram helps to explain how Module Federation works:

Figure 5.1 – Module Federation with three micro apps loaded in real time

From the diagram, we see that we have apps running on ports 3001, 3002, and 3003. Each of them
has its metadata exposed in its respective remoteEntry.js files. These apps are dynamically loaded
into the host app that is running on port 3000 via Module Federation.

It may be prudent to know that it is not just apps. Any kind of JS module can be dynamically imported
into Module Federation.

In the next section, we will put all of this into practice.

Implementing the Micro-Apps Pattern for Microfrontends78

Setting up Microfrontends with a Host and Remote app
We are going to take our multi-SPA app and convert it into a microfrontend with a Host and Remote
app using Module Federation. As mentioned earlier, the main benefit of this approach is that users get
a true single-page experience while still ensuring that each app is independently built and deployed.

Let us see what it takes for us to do this:

Figure 5.2 – Module Federation setup

You will notice that Figure 5.2 is similar to Figure 5.1 and explains the implementation details of Module
Federation. We see that the Host app contains the header component and runs on port 4200. We
then have our Catalog and Checkout apps running on ports 4202 and 4201. We aim to load these
remote apps dynamically whenever the correct route is called.

To convert our multi-SPA into a module-federated microfrontend, we will need to make the
following changes:

1.	 Create a new Host app that we’ll call App-shell.

2.	 Remove the header component from each SPA and move it into App-shell.

3.	 Define the remote apps, namely Catalog and Checkout, that need to be loaded into the host app.

4.	 Define the remote entry for the Catalog and Checkout micro apps.

Setting up Microfrontends with a Host and Remote app 79

Let us get started. Open up the e-buy app that you built in the previous chapter.

You may also download it from the Git repo:

https://github.com/PacktPublishing/Building-Micro-Frontends-with-
React/tree/main/ch4/ebuy

In the coming subsections, we will see how to create our host and remote apps, but first, we will clean
up our existing apps and prep them to use Module Federation.

Clean up

With Module Federation, the host app takes care of routing, and there is no need for us to use the
proxy configurations we defined in the proxy.conf.json file. So, we will delete this file and
remove the unnecessary configuration from the project.json file.

Go ahead and delete /apps/catalog/proxy.conf.json and, in the catalog/project.
json file, delete the following line:

"proxyConfig": "apps/catalog/proxy.conf.json"

While we’re at it, we can also get rid of baseRef, which we defined in our checkout/project.
json file. Locate this line and delete it:

"baseHref": "/checkout/"

Setting up the App-shell host app

With this, we are now set to start migrating our multi-SPA apps to Module Federation.

Nx Console has a nifty generator for creating a host and remote apps for Module Federation. Follow
these steps:

1.	 Create a React host app:

Nx Console | Generate | @nrwl/react – host Generate a host react application

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React/tree/main/ch4/ebuy
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React/tree/main/ch4/ebuy

Implementing the Micro-Apps Pattern for Microfrontends80

Figure 5.3 – Selecting the host app generator from Nx Dev Console

2.	 Enter the following information in this form:

	� Name: app-shell

	� devServerPort: 4200

	� e2eTestrunner: none

	� remotes: We will leave this blank and add it manually due to a bug that doesn’t allow multiple
app names

3.	 After you hit the Generate button, you will see the app-shell folder within apps.

When you navigate into the folder and have a peek at the files in it, you will notice that it has
a new file on the root of the app called apps/app-shell/module-federation.
config.js.

4.	 Open up the file and, in the remotes array, add Catalog and Checkout as the remote apps:

remotes: ['catalog', 'checkout']

Setting up Microfrontends with a Host and Remote app 81

5.	 Now let us open up the apps/app-shell/src/app/app.tsx file and have a look.

You will notice that this uses familiar React concepts such as React.Suspence and React
Router’s Route.

6.	 We will tweak this boilerplate file:

import React from 'react';
import { Container } from 'semantic-ui-react';
import { Route, Routes } from 'react-router-dom';
import 'semantic-ui-css/semantic.min.css';
import { Header } from ‘@ebuy/ui’;

const Catalog = React.lazy(() => import('catalog/Module'));
const Checkout = React.lazy(() => import('checkout/Module'));

export function App() {
  return (
    <React.Suspense fallback={null}>
      <Container style={{ marginTop: '5rem' }}>
        <Header />
        <Routes>
          <Route path="/" element={<Catalog />} />
          <Route path="/catalog" element={<Catalog />} />
          <Route path="/checkout" element={<Checkout />} />
        </Routes>
      </Container>
    </React.Suspense>
  );
}

export default App;

As you can see from the preceding code, we first import the Header component into App-shell.

You will also notice that we are using dynamic imports to import our Catalog and Checkout
apps using React.lazy. These lines will currently be throwing errors as it is unable to find
the module.

7.	 To solve this, create a file called /apps/app-shell/src/remotes.d.ts with the
following code:

declare module 'catalog/Module';
declare module 'checkout/Module';

The remotes.d.ts file is used to provide TypeScript type declarations for remotes in a
Module Federation setup.

Implementing the Micro-Apps Pattern for Microfrontends82

Further down in the JSX, you will notice that we import the Catalog app on the / and /
catalog routes while we import the Checkout app on the /checkout route.

This more or less completes the setup for the host app.

Setting up our Remote apps

Setting up our remote apps will take a bit of work. Let us crack on and work on them one at a time.

Here’s what we need to do in order to convert an existing React app within Nx to a remote app:

•	 Create remote entries in the module-federation.config.js file.

•	 Swap the app builder in project.json to use the module-federation plugin.

•	 Add a serve-static executor.

•	 Use a custom Webpack configuration that defines the remote entry modules.

Let us carry out the preceding changes in the Catalog app to start with. Follow these steps:

1.	 In the apps/catalog folder, create a new file called module-federation.config.
js and add the following code:

const moduleFederationConfig = {
  name: 'catalog',
  exposes: {
    './Module': './src/app/app.tsx',
  },
};

module.exports = moduleFederationConfig;

This is where we define the Catalog remote app and the module path that it exposes.

2.	 Next, we need to make a couple of changes to the apps/catalog/project.json file.

3.	 First, we add a new command under the targets and call it serve-static:

    "serve-static": {
      "executor": "@nrwl/web:file-server",
      "defaultConfiguration": "development",
      "options": {
        "buildTarget": "catalog:build",
        "port": 4201
      }
    }

Notice that we intend to run our app on 4201, so let’s also make sure the serve command
also uses port 4201.

Setting up Microfrontends with a Host and Remote app 83

4.	 Make sure the port under the regular serve command is defined within the options object:

"serve": {
      "executor": "@nrwl/web:dev-server",
      "defaultConfiguration": "development",
      "options": {
        "buildTarget": "catalog:build",
        "hmr": true,
        "port": 4201
      },

This is because the Module Federation plugin expects the port to be defined within the options
object. If not, it will use a default port, which can lead to very interesting bugs.

Refer to this line in the source code: https://github.com/nrwl/nx/blob/master/
packages/react/src/module-federation/with-module-federation.
ts#L29.

5.	 Next, under the serve object, we update the executor to use module-federation
dev-server:

"serve": {
      "executor": "@nrwl/react:module-federation-dev-server",

6.	 Next, ensure we have WebpackConfig with a custom Webpack configuration:

"webpackConfig": "apps/catalog/webpack.config.js"

7.	 Now let us update webpack.config.js with the following code:

const { withModuleFederation } = require('@nrwl/react/module-
federation');
const baseConfig = require('./module-federation.config');

const defaultConfig = {
  ...baseConfig,
};

module.exports = withModuleFederation(defaultConfig);

Now let us repeat the same steps for the Checkout app:

1.	 In the apps/checkout/ folder, create a new file called module-federation.config.
js with the following code:

const moduleFederationConfig = {
  name: 'checkout',
  exposes: {
    './Module': './src/app/app.tsx',

https://github.com/nrwl/nx/blob/master/packages/react/src/module-federation/with-module-federation.ts#L29
https://github.com/nrwl/nx/blob/master/packages/react/src/module-federation/with-module-federation.ts#L29
https://github.com/nrwl/nx/blob/master/packages/react/src/module-federation/with-module-federation.ts#L29

Implementing the Micro-Apps Pattern for Microfrontends84

  },
};

module.exports = moduleFederationConfig;

As you can see, it is identical to what we had on the Catalog app. The only difference is that we
changed the name value to checkout.

2.	 Next, let us add the serve-static command to the targets object in the apps/
checkout/project.json file:

      "serve-static": {
      "executor": "@nrwl/web:file-server",
      "defaultConfiguration": "development",
      "options": {
        "buildTarget": "checkout:build",
        "port": 4202
      }
    }

3.	 In the same file, we continue to update the executor:

"serve": {
      "executor": "@nrwl/react:module-federation-dev-server",

4.	 Then under the serve.options update the port number to 4202.

5.	 We also update webpackConfig:

"webpackConfig": "apps/checkout/webpack.config.js"

Since there are no changes to the webpack.config.js file, we can simply copy and paste
this file from the Catalog app.

6.	 Finally, we will update the Header component to use the Link component from ReactRouter
so that we get that single-page experience.

7.	 Open up the /libs/ui/src/lib/header.tsx file and update the following to use
<Link> instead of <a>:

<Link to={navItem.href ?? '#'}>{navItem.label}</Link>

8.	 Don’t forget to import the <Link> command:

import { Link } from 'react-router-dom';

9.	 Before we try testing, let us not forget to remove the header component from the respective
Catalog app located at /apps/catalog/src/app/app.tsx and the Checkout app at
/apps/checkout/src/app/app.tsx.

10.	 Let’s do a quick test on the terminal. Run the following command:

Setting up Microfrontends with a Host and Remote app 85

pnpm nx serve app-shell

As you see, the commands being executed in the terminal notice that the Catalog app is being
built along with the app-shell serve command.

11.	 Once everything is running without any errors, open up http://localhost:4200 and
verify that the Catalog and Checkout apps load up on the correct routes.

You will also notice that the product images don’t show up any longer. This is because the app
is looking for images in the /assets folder of the App-shell app.

12.	 In the multi-SPA approach, the Catalog app was the default route and was sort of acting
like the host app. Since App-shell is now our host, we will need to copy the images from the
/catalog/src/assets folder into the app-shell/src/assets folder. Once you
have done this, the images should load up into the app.

13.	 Navigate between the Catalog and Checkout apps. Add items to your cart and enjoy seeing
the apps work nicely.

Since everything is going well, and since each micro app team should be able to work on their
individual apps, let us also make sure that we can run each app individually.

14.	 Run pnpm nx serve catalog and you’ll notice you get an error:

Error
Shared module is not available for eager consumption: webpack/
sharing/consume/default/react/react

This is due to Module Federation treating the Catalog app as a bidirectional host and not being
able to eagerly load the shared modules.

You can read more about it here:

https://webpack.js.org/concepts/module-federation/#uncaught-
error-shared-module-is-not-available-for-eager-consumption

To overcome this issue, we need to define an asynchronous boundary to split out the initialization
code of a larger chunk and avoid any additional roundtrips to the server.

15.	 To solve it, we need to make a couple of tweaks. In the Catalog app, let us first rename /apps/
catalog/src/main.tsx to bootstrap.tsx.

16.	 Next, we create a new file called main.ts within the same src folder and have a single line
importing bootstrap:

import('./bootstrap');

17.	 Next, we need to ensure that this newly created main.ts file is what is being used as the entry
point, so now, in our project.json file for the Catalog app, we update the main property
within the build > options object:

"main": "apps/catalog/src/main.ts",

https://webpack.js.org/concepts/module-federation/#uncaught-error-shared-module-is-not-available-for-eager-consumption
https://webpack.js.org/concepts/module-federation/#uncaught-error-shared-module-is-not-available-for-eager-consumption

Implementing the Micro-Apps Pattern for Microfrontends86

18.	 Repeat the same steps for the Checkout app. Now, you should be able to run the apps as a
module-federated microfrontend or each app individually.

You may have also noticed that at the start of this chapter, we referred to the remoteEntry.js file
as the entry file for the remote apps and that we didn’t really define one.

However, if you look at your dev tools’ network tab, you will notice there are two remoteEntry.
js files being called from ports 4201 and 4202 respectively. This is Nx and Module Federation
doing a bit of magic here.

Important note
If you dig into the source code in this file, you will notice the filename being defined as part of
the ModuleFederationPlugin configuration (https://github.com/nrwl/nx/
blob/master/packages/react/src/module-federation/with-module-
federation.ts).

The screenshot in Figure 5.4 shows the remoteEntry.js file being called from the respective apps:

Figure 5.4 – RemoteEntry.js

https://github.com/nrwl/nx/blob/master/packages/react/src/module-federation/with-module-federation.ts
https://github.com/nrwl/nx/blob/master/packages/react/src/module-federation/with-module-federation.ts
https://github.com/nrwl/nx/blob/master/packages/react/src/module-federation/with-module-federation.ts

Extending Module Federation to a true Micro-apps Pattern 87

If you are keen to explicitly define the file and stay as close as possible to the native workings of
Module Federation, then go ahead and create a file in apps/catalog/src/remote-entry.
js with the following line:

export { default } from './app/app';

Update the exposes value in the apps/catalog/module-federation.js file to read
as follows:

const moduleFederationConfig = {
  name: 'catalog',
  exposes: {
    './Module': './src/remote-entry.ts',
  },
};

With that, we have completed the section on using Module Federation and successfully converted
our multi-SPA app into a module-federated microfrontend.

In this section, we saw what minimal steps are required to get Module Federation working and what
extra steps, such as defining the remotes and exposing the module names, are needed to allow each
app to work independently.

In the next section, we will see how to further break down a remote app into a true micro-app microfrontend.

Extending Module Federation to a true Micro-apps
Pattern
Imagine you are part of a team that manages a very large e-Commerce app (think of Amazon.com).
For such large sites, it is a common practice to have teams that own a single organism-level component
(https://atomicdesign.bradfrost.com/chapter-2/#organisms) instead of the
entire mini app.

For example, we have a dedicated team that works exclusively on the Product Recommendations
component. This component is injected into, say, the Catalog app.

https://atomicdesign.bradfrost.com/chapter-2/#organisms

Implementing the Micro-Apps Pattern for Microfrontends88

In such a case, it would be prudent to create another micro app called Recommendations and dynamically
import it into the Catalog app. This would allow for true, federated, micro-app pattern architecture.

Figure 5.5 – Tree of remote apps with Module Federation

As you can see from the preceding diagram, we can further break down our Catalog and Checkout apps
into smaller organism-level components and have each of them load into the Catalog app remotely
via Module Federation.

Important note
Remember, while this may seem very cool, it is important that we don’t overdo it by converting
every single organism into a module-federated micro app. It is important to follow the principles
of microfrontends mentioned in Chapter 2, namely, breaking down the app into the largest
independently deployable app owned by a single team and not necessarily the smallest.

Having said that, and assuming you do have an independent team owning the Recommendations
micro app, let us go about creating the micro app.

Creating the Recommendations Remote Micro app

Let us use our trusted Nx dev console and the GENERATE command and follow these steps:

1.	 Select @nrwl/react - remote Generate a remote application and use the
following information while leaving the rest as their defaults:

	� Name: recommendations

	� e2eTestRunner: none

	� host: catalog

	� devServerPort: 4203

Extending Module Federation to a true Micro-apps Pattern 89

2.	 Use the Generate command and verify that the recommendations app has been
successfully created.

3.	 Let us quickly edit apps/recommendations/src/app.tsx to remove the boilerplate
code and leave it with a simple message:

import 'semantic-ui-css/semantic.min.css';
export function App() {
  return (
    <div className="ui raised segment">
      <h1>Recommendations</h1>
      <p>Recommendations goes here</p>
    </div>
  );
}

export default App;

Note
Building a full-fledged Recommendations micro app is beyond the scope of this book.

4.	 Run npx nx serve recommendations and verify that the app loads up properly on
port 4203.

Keep it running while we work on adding it as a remote to our Catalog app.

Adding Recommendations as a Remote app to Catalog

Since we want the Recommendations micro app to load within Catalog, as a remote app, we need to
convert Catalog to behave like a host. We do this using the following steps:

1.	 Open up the apps/catalog/module-federation.config.js file and add the
remotes entry to it:

const moduleFederationConfig = {
  name: 'catalog',
  remotes: ['recommendations'],
  exposes: {
    './Module': './src/app/app.tsx',
  },
};

module.exports = moduleFederationConfig;

Implementing the Micro-Apps Pattern for Microfrontends90

2.	 Next, let us create a remotes.d.ts file within the apps/catalog/src folder using the
following line:

declare module 'recommendations/Module';

3.	 Finally, let us import and call the Recommendations app into our apps/catalog/src/
app/app.tsx file:

. . .
import React from 'react';
const Recommendations = React.lazy(() =>
import('recommendations/Module'));

4.	 In the jsx part of the component, here is how we call our Recommendations component:

<Recommendations />

5.	 Open up a new terminal window and run the following command:

pnpm nx serve app-shell

If everything goes as planned, you will see the Catalog app with the Recommendations component
loaded within it. With this, we come to the end of this section.

In this section, we saw how we can use Module Federation to further break down a host app into
smaller micro apps and have them all working together as a tree of remote apps.

In the next section, we will see how to set up state management within our micro apps microfrontend.

State management with Module Federation
As you may have noticed by now, our custom state management system, which uses sessionStorage,
continues to work seamlessly with Module Federation. This is because, from a React perspective, it
all looks like a regular React application, with modules being lazy-loaded. So, one of the benefits of
Module Federation is that we can use any of the regular state management concepts, such as prop
drilling, context API, or libraries such as Redux or Zustand, to manage the state.

In this section, we will make use of the Zustand state management library as it is extremely user-friendly
and has zero boilerplate code.

Now, logically, especially for those who use a lot of context API, we would be inclined to have the store
within App-shell and have the other micro apps consume it. However, with Module Federation, this
would not be ideal, because the store would need to be exposed as a remote app and imported into
other micro apps that act as hosts. If you try plotting this, it kind of feels like a cyclic dependency of
sorts, where App-shell acts as a host for all other components but the store located in it is a remote
for other components.

State management with Module Federation 91

The following diagram better illustrates the problem of this cyclic flow:

Figure 5.6 – Cyclic flow between App-shell and the store

When working with Module Federation, it is preferable to have a unidirectional flow of how the
remote and host apps are loaded in. With that in mind, it would be more prudent to have our store as
its own independent micro app and have it defined as a remote app to all the other apps that consume
it. With this new structure, the diagram in Figure 5.6 can be redrawn:

Figure 5.7 – Unidirectional remotes for the Store app

As evident from Figure 5.7, the unidirectional flow of remotes for the Store app looks a lot cleaner,
and it ensures that App-shell isn’t getting unnecessarily bloated with business logic and state.

Implementing the Micro-Apps Pattern for Microfrontends92

Since we are going to use Zustand for state management, this would be a good time for us to install
it. Run the following command:

pnpm install zustand

Let us now create our Store remote app using the steps we used to create our Recommendations
remote app:

1.	 Using Nx Console and the @nrwl/react - remote Generate a remote
application file, create the Store micro app.

2.	 Fill in the form with the following information, and leave the rest as their defaults:

	� Name: store

	� e2eTestRunner: none

	� host: (leave this blank because we will manually add the hosts)

	� devServerPort: 4204

Once the app has been created, let us go about setting up our store. To demonstrate the working of the
state and store across the different micro apps, we will have a Like button in the host app. Clicking it
will increment the like count. We will also display the count within the Recommendations app. Then,
we will have a Reset button in the Recommendations micro app that will reset the store and verify
that the like count has reset in all places.

Let us get started:

1.	 Navigate to the /apps/store/src folder and create a new file called store.tsx. This
is where we will define our store and hooks.

Note
Zustand is super easy to work with. Have a look at the documentation at https://docs.
pmnd.rs/zustand/getting-started/introduction.

2.	 Begin in the store.tsx file by importing Zustand and defining the LikeCount interface:

import {create} from 'zustand';
interface LikeCount {
  count: number;
  increment: () => void;
  reset: () => void;
}

https://docs.pmnd.rs/zustand/getting-started/introduction
https://docs.pmnd.rs/zustand/getting-started/introduction

State management with Module Federation 93

3.	 Next, we create our useStore hook and define the initial state, increment, and
reset functions. This is the standard way to do so:

const useStore = create<LikeCount>((set) => ({
  count: 0,
  increment: () => set((state) => ({ count: state.count + 1 })),
  reset: () => set(() => ({ count: 0 })),
}));

export default useStore;

And that is it! Our store with the useStore hook is ready to be consumed.

4.	 Next, we need to expose this as a remote app. We will do this by making two additional
changes. In the apps/store/src/remote-entry.ts file, modify the following line
to the following text:

export { default } from './store';

5.	 Next, we let App-shell and the Recommendations app know that they need to use Store as
a remote app. We do this by adding Store to the remote array in the respective module-
federation.config.js files in App-shell and the Recommendations app:

//apps/app-shell/module-federation.config.js
const moduleFederationConfig = {
  name: 'app-shell',
  remotes: ['catalog', 'checkout', 'store'],
};

module.exports = moduleFederationConfig;

Here is what we have in the apps/recommendations/module-federation.
config.js file:

const moduleFederationConfig = {
  name: 'recommendations',
  remotes: ['store'],
  exposes: {
    './Module': './src/remote-entry.ts',
  },
};
module.exports = moduleFederationConfig;

6.	 The next thing we need to do is declare the store module in the remotes.d.ts file
app-shell file:

declare module 'store/Module';

Implementing the Micro-Apps Pattern for Microfrontends94

7.	 We will need to do the same in the Recommendations app. Since the remotes.d.ts file
doesn’t exist, we can create a new file with the following line in /apps/recommendations/
src/remotes.d.ts:

declare module 'store/Module';

We now have the store hooked up so that Recommendations and App-shell can read and write to
our Store micro app.

Adding the Like button to the host app

In this section, we will create a Like button that increments the like count and gets stored in the store.

Now that we have set up the remotes, let us import the store into our app shell and create the Like
button in the /apps/app-shell/src/app/app.tsx file. Follow these steps:

1.	 Import useStore:

import { Button } from ‘semantic-ui-react’
import useStore from 'store/Module';

2.	 Then, de-structure the count and increment within the App function:

const { count, increment } = useStore();

3.	 Finally, in our JSX, we add our button after the <Header/> component:

<Button onClick={increment}>{count} Likes </Button>

4.	 Restart all the apps. You can also make use of the following custom command that we created
to serve all apps:

pnpm serve:all

We’ve got the state working with Zustand within the host app, and as you can tell, it is refreshingly
simple and devoid of any boilerplate code. But the true purpose of us setting up the state and
store is to ensure that this state can be shared with other micro apps. In our case, it will be the
Recommendations app, right at the bottom of the federation hierarchy.

5.	 In the apps/recommendations/src/app/app.tsx file, our code should look very
similar to the following:

import 'semantic-ui-css/semantic.min.css';
import { Button } from ‘semantic-ui-react’
import useStore from 'store/Module';
export function App() {
  const { count, reset } = useStore();
  return (
    <div className="ui raised segment">

State management with Module Federation 95

      <h1>Recommendations</h1>
      <p>Recommendations goes here</p>
      <p> {count} people liked the recommendations</p>
      <Button onClick={reset}>reset</Button>
    </div>
  );
}

export default App;

That’s it!

6.	 Run your apps and play around with the Like button. Reset it and verify that the count stays
in sync between the host and the Recommendations app:

Figure 5.8 – Complete working app with shared state across micro apps

Implementing the Micro-Apps Pattern for Microfrontends96

Our app works great, but let us make sure it’s performant as well!

Avoiding Unnecessary Re-rendering

When working with the state, a very important performance-related point to check is avoiding
unnecessary re-rendering. This is especially true when the state is being shared between different
components or when it is being prop drilled.

One way to verify that is to go into Developer Tools, open up the Rendering pane, select Paint flashing
and Frame Rendering Stats, and verify that when you click on the buttons, only the necessary items
within the components are updating.

In Chrome, you can access this panel by opening up Developer Tools, going into More Tools, and
then selecting the Rendering pane:

Figure 5.9 – Rendering pane in the developer consoles

As you can see from Figure 5.9, once we have Paint flashing enabled, you will see a green rectangle
encapsulating the sections of the page that re-render due to a change or user interaction. The ideal
state is when only a small part of the page flashes when the user interacts with it. Frame Rendering
Stats displays the frame rate as the user is interacting with the page. The frame rate should ideally
stay close to 60 fps for a smooth user experience.

Summary 97

And with that, we come to the end of this section regarding state management with Zustand in a
module-federated application. In this section, we learned the benefits of defining the Store app as a
separate micro app. It is then dynamically imported into the other micro apps. We learned how to
go about setting up the store as a module-federated module. We then saw how the host app and the
Recommendations app can share state via the shared store. Finally, we were also able to turn on paint
flashing and frame rendering to verify that as the state changes, only the necessary elements within
the apps update, and it doesn’t cause components that haven’t changed to be re-rendered.

Summary
We’ve finally come to the end of another interesting chapter. We started by learning about Module
Federation and how it is a game-changer in the way we build and maintain apps. We learned some of
the basic concepts of Module Federation, such as host apps, remote apps, remoteEntry, and more.

We then saw how to convert our multi-SPA app into a module-federated app with an app shell and
how to load the Catalog and Checkout apps as remote apps. Then, we further broke things down to
include smaller micro apps within these apps to create a tree of module-federated micro apps. Finally,
we saw some of the best practices of managing the state and saw how we can look at tools such as
Zustand to manage the state between these different micro apps.

In the next chapters, we will see how to build these apps for production and how to deploy them to
static storage on the cloud.

6
Server-Rendered

Microfrontends

Most JavaScript frameworks, including React, are primarily used to build client-side-rendered
(CSR) applications. Client-rendered apps are great for certain use cases, such as admin dashboards
or banking apps where users interact with the app in a logged-in area. CSR apps are not ideal for use
cases where users access a site via a search engine or for anonymous short user journeys, such as news
sites, blogs, or guest checkouts on e-commerce sites. This is because many search engine bots are not
capable of indexing CSR-based web apps. CSR apps also have a poor Largest Contentful Paint (LCP)
score – that is, their first-time page load performance scores are bad, leading to higher bounce rates.

To overcome these drawbacks, it is now an accepted practice to have a web app’s pages rendered on
a Node.js server and serve the rendered HTML pages to the browser. This is commonly known as
Server-Side Rendering (SSR), or a Server-Side-Rendered (SSR) app.

In this chapter, we will look at how to build a module-federated microfrontend for a server-side-
rendered app. While the process for implementing module federation is very similar to what we saw
in the previous chapter, the fact that the pages are server-side-rendered brings a bit of complexity,
and we will look at some of the nuances that we need to deal with when it comes to implementing a
microfrontend with SSR.

In this chapter, we will cover the following topics:

•	 A quick look at how CSR and SSR apps differ

•	 Learning about Next.js and Turbo repo

•	 Learning how to set up hosts and remote apps with Next.js and module federation

•	 See how to expose multiple components as remotes that can be consumed into different apps

•	 Looking into issues relating to hydration of state in SSRs and also how to go about reflecting
the changes made in one micro app in the main app

Server-Rendered Microfrontends100

By the end of this chapter, we will have a server-side-rendered microfrontend built using Next.js.

Technical requirements
As we go through the code examples in this chapter, we will need the following:

•	 A PC, Mac, or Linux desktop/laptop with at least 8 GB of RAM (16 GB is preferred)

•	 An Intel chipset i5+ or a Mac M1 + chipset

•	 At least 256 GB of free hard disk storage

•	 A basic understanding of Next.js and Turborepo would be ideal

•	 A basic understanding of Node.js would be helpful

You will also need the following software installed on your computer.

•	 Node.js version 18+ (use nvm to manage different versions of Node.js if you have to).

•	 Terminal: iTerm2 with OhMyZsh (you will thank me later).

•	 IDE: We strongly recommend VS Code, as we will make use of some of the plugins that come
with it for an improved developer experience.

•	 NPM, Yarn, or PNPM; we recommend PNPM because it’s fast and storage-efficient.

•	 Browser: Chrome, Microsoft Edge, or Firefox.

The code files for this chapter can be found here: https://github.com/PacktPublishing/
Building-Micro-Frontends-with-React.

We also assume you have a basic working knowledge of Git, such as branching and committing code
and raising a pull request.

How do Client Rendered and Server Rendered Apps differ?
When it comes to building web apps with JavaScript, there are two primary methods in terms of how
a user interface gets built and served to the user. They are referred to as Client-Side-Rendered (CSR)
and Server-Side-Rendered (SSR).

From a development standpoint, coding a CSR or an SSR app predominantly remains the same, except
for some additional steps for SSR. However, there are differences in the internal working of these apps
in terms of how they are rendered, and also in how they can be deployed on the cloud.

In this section, we will look a bit deeper into these differences.

How do Client Rendered and Server Rendered Apps differ? 101

Client Side Rendered Apps (CSR)

Let us have a look at how a Client Side app works. As its full name suggests, the CSR app is “rendered”
on the client. In short, the app runs within the user’s browser, makes a call to fetch data, and the page
is generated on the browser. The following diagram illustrates this better:

Figure 6.1 – The request and response flow for a CSR app

The preceding Figure 6.1 illustrates the request flow in a CSR application. Here, the browser makes
a first call to the server for a given URL, and the server (or sometimes the CDN itself) will respond
back with a nearly empty HTML shell, containing the link to the app’s JavaScript bundle. The browser
parses the bundle and then makes a second AJAX call to the server API, receiving the JSON response
for the given URL. The browser then parses the response and, based on the views in the client-side app,
renders the HTML page in the browser before serving it to the user. For every other call, the browser
continues to make AJAX calls to the API endpoint and parses the page on the browser.

With this flow, note that for the very first request from the user, there are two round trips to the server
– first, to fetch the JavaScript bundle, and second, to get the page data and render the page.

Due to the nature of how CSR apps work, they are ideally suited for user experiences where users
generally stay logged into an app and navigate through multiple pages per session.

Some of the drawbacks of Client side Rendered apps are as follows:

•	 For the very first request, users have to wait a bit longer due to the additional round trip to
the server

•	 Since the server response doesn’t contain any actual HTML data, search engine bots that are not
optimized to parse JavaScript will have difficulty in indexing content from a client-rendered app

Server-Rendered Microfrontends102

CSR apps are not suited for scenarios where the user journey is short, such as e-commerce websites
where a user arrives via a search result link, buys a product or two, and leaves, or a blog site where
users generally read only one to two articles at a time.

Now, let us see how an Server Side Rendered app works.

Server Side Rendered Apps (SSR)

In a Server Side Rendered app, as the full name suggests, for the very first request the page is generated
on the server, and the rendered HTML page is sent to the browser. Let us look at it in a bit more in detail:

Figure 6.2 – The request and response flow for an SSR app

The working of an SSR app is illustrated in the preceding Figure 6.2. What we see here is when the
first request for a page is made from the browser to the Node.js server, it in turn makes a call to the
API server to fetch the data. Then, the HTML page is generated on the server itself and sent back to
the browser, along with the initial state and the JavaScript bundles. The state hydrates on the browser,
then all subsequent calls are made from the browser to the API server, and the pages are rendered
on the browser itself.

Since the browser receives a fully rendered HTML page on the first request itself, the perceived
performance for end users is good. It also helps with Search Engine Optimization (SEO), especially
where search engine bots are not very good at parsing CSR pages.

Server-rendered apps are preferred for web apps where user journeys are short, such as B2C e-commerce
apps, or content-heavy apps such as news sites or blogs.

Building out our Server Rendered Microfrontend 103

We now have a good understanding of how SSR and CSR apps work, what their pros and cons are,
and what use cases are most suited for each of them. With this information, let us start building our
SSR microfrontend in the next section.

Building out our Server Rendered Microfrontend
In this section, we will look at how to build SSR apps using a meta framework such as Next.js, and then
we will take it further to build a module-federated microfrontend using webpack’s module federation
plugin. While doing so, we will explore another monorepo tool called Turborepo.

Important Note
At the time of writing this book the Module Federation Plugin doesn’t support Next.js 13 and
the App Router and hence for this chapter we will use Next.js version 12

When it comes to building an SSR app in React, there are two common approaches:

•	 A custom build using Node.js: Here, we set up a Node.js server, render the React app on Node.
js, stringify the response using the renderToString or renderToPipeableStream
methods, and then use the hydrateRoot method, which are all part of the react-dom/
server module to attach React to the rendered HTML

•	 Use an SSR meta-framework: Meta-frameworks such as Next.js, Remix, or Shopify’s Hydrogen
can abstract away all the complexities of setting up an SSR app and provide a simple interface
to build performant SSR React apps

For this chapter, we will use Next.js to build our SSR app. Next.js is one of the oldest and most popular
frameworks to build SSR React apps.

For the mono repo, we will use another tool called Turborepo. While we can build Next.js apps with
Nx monorepos as well, we will choose Turborepo so that we can also learn about the nuances of the
different monorepo tools and how they operate.

Getting started with Turborepo and Next.js

Next.js is the most popular meta-framework that allows you to build SSR apps with React. Turborepo
is another new monorepo framework that is gaining popularity, and it was recently acquired by Vercel,
the company that builds and maintains Next.js.

While we will cover the essentials of Turborepo and Next.js in this chapter, I strongly encourage you
to spend time going through their docs to get a deeper understanding of how these frameworks work.

Server-Rendered Microfrontends104

We will start from a clean slate here; let us begin by creating our monorepo with Turborepo:

1.	 Run the following command in the terminal:

pnpx create-turbo@1.6

Alternatively, you can run the following:
npx create-turbo@1.6

2.	 This will download a bunch of libraries and then prompt you to decide where you’d like your
monorepo to be created. Let’s call it ebuy-ssr.

3.	 On the next prompt to assign a package manager, you can choose the one you prefer. For the
purpose of this chapter, we will choose pnpm.

4.	 Let Turborepo go and do its stuff, and after the process is complete, you can cd into the ebuy-
ssr folder and run the following command:

pnpm dev

5.	 Note that it launches two apps, web and docs, on ports 3000 and 3001, respectively. In the
browser, open up http://localhost:3000 and http://localhost:3001 and
have a look at the really minimalistic default pages.

6.	 Open up the ebuy-ssr folder within your IDE and take a look at the folder structure.

It will look something like this:
.
└── ebuy-ssr/
├── apps/
│   ├── docs
│   └── web
├── packages/
│   ├── eslint-config-custom
│   ├── tsconfig
│   └── ui
├── package.json
└── turbo.json

The key files and folders that we need to consider are as follows:

•	 apps: This is the folder that will hold all our micro apps.

•	 packages: This is the folder where we keep all our utilities, shared components, libraries,
and so on. It is the equivalent of the libs folder in Nx.

•	 package.json: The package.json files play a crucial role in how the turbo
monorepo functions.

•	 turbo.json: This is the file where we define the configurations for Turborepo.

Building out our Server Rendered Microfrontend 105

The differences between Turborepo and Nx

While both Turborepo and Nx do the same job of managing a monorepo for us, there are differences
in their approach. Nx feels like a thin layer of abstraction that allows us to manage our monorepos,
mainly via configurations. We tend to heavily rely on NX and its commands to build and manage
our mono repos; Nx really doing all the heavy lifting for us. Turborepo, on the other hand, is quite
lightweight and relies more on the npm package manager’s standards to manage the monorepo.
Turborepo’s approach is to stay invisible in the background and let the developers have full control over
how they manage their monorepos. This also means you need to do a bit more work when managing
your monorepo with Turborepo.

Setting up our Micro Apps

As we can see, we have two apps created by default within our apps folder, web and docs. We will
start by renaming the web folder to home let us delete the docs folder for now:

1.	 Rename the web folder home, delete the docs folder. Make sure that you update the name
property in apps/home/package.json to "name": "home", as this is what Turborepo
uses to recognize the app.

2.	 While we have the file open, let us define the port in which it will run in dev mode. Update the
dev script in apps/home/package.json to "dev": "next dev --port 3000".

Note that with Turborepo, we have multiple package.json files. The package.json file in the
root folder is used to manage the dev dependencies that are needed to manage the monorepo, and
also the common dev dependencies needed for all the apps in the monorepo. We can also define our
common script commands there.

The package.json file in each of the apps’ folders is used to manage the workspace and the
dependencies for each of the apps. The primary advantage here is that each of your micro apps has
its own npm_modules folder, thereby ensuring that each team is fully independent in managing
their packages and dependencies.

Creating pages and components in Next.js

Let us get started with creating a few components in our respective micro apps.

1.	 Creating components with Next.js is very similar to how you’d do it with other React apps;
we generally create a components folder and keep our components in it.

2.	 When it comes to routing, Next.js 12 uses a filesystem-based router; what this means is to create
a new route. We need to create a file with the route name in the /pages folder.

For example, for a route such as http://localhost:3000/about-us, we would create
a file like so – /pages/about-us.tsx.

Server-Rendered Microfrontends106

3.	 Let us create our components. Since we will use semantic-ui to build out our components,
let us go ahead and add them as dependencies in our micro apps’ package managers.

4.	 Run pnpm add semantic-ui-react semantic-ui-css in apps/home of the
micro apps folder.

5.	 Then, create a folder called /components within the home folder, and then create the
Header component in there.

6.	 In the /apps/components/Header.tsx file, add the following code:

import { Menu, Container, Icon, Label } from "semantic-ui-
react";
import Link from "next/link";
export function Header() {
  return (
    <Menu fixed="top" inverted>
      <Container>
        <Menu.Item as="a" header>
          eBuy.com
        </Menu.Item>
        <MenuItems />
        <Menu.Item position="right">
          <Label>
            <Icon name="shopping cart" />0
          </Label>
        </Menu.Item>
      </Container>
    </Menu>
  );
}
const MenuItems = () => {
  return (
    <>
      {NAV_ITEMS.map((navItem, index) => (
        <Menu.Item key={index}>
          <Link href={navItem.href ?? "#"}>{navItem.label}</
Link>
        </Menu.Item>
      ))}
    </>
  );
};

interface NavItem {
  label: string;
  href?: string;
}

Building out our Server Rendered Microfrontend 107

const NAV_ITEMS: Array<NavItem> = [
  {
    label: "Catalog",
    href: "/catalog",
  },
  {
    label: "Checkout",
    href: "/checkout",
  },
];
export default Header;

The preceding code is very similar to the code we used for the Header component in the
previous chapter. It’s simply a markup to display the menu items and the mini basket in the
Header component.

7.	 Next, let us include the header in our home app.

With Next.js, if we want code to be available within all the pages, we can create a file called
_app.tsx within the /pages folder and put our relevant code in there, which is exactly
what we will do to get our Header component to display across all the pages.

8.	 Create a new file called _app.tsx in the apps/home/pages folder with the following code:

import { AppProps } from "next/app";
import Head from "next/head";
import { Container } from "semantic-ui-react";
import "semantic-ui-css/semantic.min.css";
import Header from “../components/Header”;

function CustomApp({ Component, pageProps }: AppProps) {
  return (
    <>
      <Head>
        <title>Welcome to ebuy!</title>
      </Head>
      <main>
        <Header />
        <Container style={{ marginTop: "5rem" }}>
          <Component {...pageProps} />
        </Container>
      </main>
    </>
  );
}

export default CustomApp;

Server-Rendered Microfrontends108

9.	 Run pnpm dev and verify that the Header component shows up on http://
localhost:3000.

10.	 Now, we will create our catalog micro app. Simply create a copy of the home app and rename
the folder catalog.

11.	 Open up the catalog’s package.json file, located in apps/catalog/package.json
file, and make a few minor changes.

12.	 Change the app name to "name": "catalog"; let us also change the port to run on 3001:

"dev": "next dev --port 3001".

13.	 Now, let us create our product card component in the components folder.

14.	 Create a new file in apps/catalog/components/ProductCard.tsx with the
following code:

import { Button, Card, Image } from "semantic-ui-react";

export function ProductCard(productData: any) {
  const { product } = productData;

  return (
    <Card>
      <Card.Content>
        <Image alt ={product.title}
 src={product.image} />

        <Card.Header>{product.title}</Card.Header>
        <Card.Description>{product.description}</Card.
Description>
        <Card.Header>${product.price}</Card.Header>
      </Card.Content>
      <Card.Content extra>
        <div className="ui three buttons">
          <Button basic color="red">
            Remove
          </Button>
          <Button basic color="blue"></Button>
          <Button basic color="green">
            Add
          </Button>
        </div>
      </Card.Content>

Building out our Server Rendered Microfrontend 109

    </Card>
  );
}
export default ProductCard;

Again, this is very similar to the ProductCard component we created in Chapter 5. This is
a basic markup to display the product image, product name, and price, along with the add to
cart button.

15.	 Feel free to delete the Header.tsx file from catalog/components and remove its reference
from the _app.tsx file, as we already have it in the home app and will not be using it here.

16.	 Next, to save us some time, let us copy and paste the product-list-mocks.tsx file
from Chapter 4 into the apps/catalog/mocks folder. While we are here, let us also
copy the assets folder containing the product images from https://github.com/
PacktPublishing/Building-Micro-Frontends-with-React-18/tree/
main/ch4/ebuy/apps/catalog/src/assets and paste it into /apps/catalog/
public/assets.

17.	 Next, in the apps/catalog/pages/index.tsx file, let us add the following code:

import { Card } from "semantic-ui-react";
import ProductCard from "../components/ProductCard";
import { PRODUCT_LIST_MOCKS } from "../mocks/product-list-
mocks";

export function ProductList() {
  return (
    <Card.Group>
      {PRODUCT_LIST_MOCKS.map((product) => (
        <ProductCard key={product.id} product={product} />
      ))}
    </Card.Group>
  );
}

export default ProductList;

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React-18/tree/main/ch4/ebuy/apps/catalog/src/assets
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React-18/tree/main/ch4/ebuy/apps/catalog/src/assets
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React-18/tree/main/ch4/ebuy/apps/catalog/src/assets

Server-Rendered Microfrontends110

18.	 Run pnpm dev from the root of the ebuy-ssr folder and verify that the home and catalog
apps work as expected. These are the URLs for our apps:

	� The home app: http://localhost:3000

	� The catalog app: http://localhost:3001

Figure 6.3 – The home micro app running on port 3000

Figure 6.4 – The catalog micro app running on port 3001

Now that we have our individual apps running, let us work toward loading the catalog micro app into
the home app via module federation.

Building out our Server Rendered Microfrontend 111

Setting up Module Federation

Now that we have our apps running independently, it’s time to embed the catalog app into the home
app via module federation. For module federation with Next.js, we will use the dedicated nextjs-mf
npm module. Follow these steps:

1.	 Let us first install the nextjs-mf npm module along with webpack in the catalog app:

pnpm add @module-federation/nextjs-mf webpack

2.	 We now need to expose the catalog app as a remote; we do this in the app/catalog/next.
config.js file.

3.	 We replace the contents of the next.config.js file with the following:

const NextFederationPlugin = require("@module-federation/
nextjs-mf");
// this enables you to use import() and the webpack parser
// loading remotes on demand, not ideal for SSR
const remotes = (isServer) => {
  const location = isServer ? "ssr" : "chunks";
  return {
    catalog: `catalog@http://localhost:3001/_next/
static/${location}/remoteEntry.js`,
  };
};
module.exports = {
  webpack(config, options) {
    config.plugins.push(
      new NextFederationPlugin({
        name: "catalog",
        filename: "static/chunks/remoteEntry.js",
        exposes: {
          "./Module": "./pages/index.tsx",
        },
        remotes: remotes(options.isServer),
        shared: {},
        extraOptions: {
          automaticAsyncBoundary: true,
        },
      })
    );

    return config;
  },
};

Server-Rendered Microfrontends112

Looking through the code, we first import NextFederationPlugin, and then we define
the remote with its name and the path where its remoteEntry.js file can be located.
Next.js creates two builds of its app – one for the server and the other for the client. Note that
we conditionally load the remoteEntry.js file from either the ssr or chunks folder,
depending on where it is executed.

4.	 Next, we define the webpack config where we set the properties of NextFederationPlugin,
namely the name and what it exposes, like so:

exposes: {
  "./Module": "./pages/index.tsx",
   },

We can define an array of remotes and have different components or pages from within the catalog
micro app load in other apps. This completes the setup on the catalog side.

Creating the checkout micro app

For the sake of completeness, let us also create the checkout micro app by creating a copy of the
catalog app and renaming the folder to checkout. Follow these steps:

1.	 Let us make the necessary changes to the apps/checkout/package.json file, as follows:

"name": "checkout",

2.	 Then, update the port number:

"dev": "next dev --port 3002",

3.	 Now, create a file called Basket.tsx in apps/checkout/components/Basket.
tsx with the following code:

import { Table, Image, Container } from "semantic-ui-react";

export function ShoppingBasket(basketListData: any) {
  const { basketList } = basketListData;
  return (
    <Container textAlign="center">
      <Table basic="very" rowed=”true”>
        <Table.Header>
          <Table.Row>
            <Table.HeaderCell>Items</Table.HeaderCell>
            <Table.HeaderCell>Amount</Table.HeaderCell>
            <Table.HeaderCell>Quantity</Table.HeaderCell>
            <Table.HeaderCell>Price</Table.HeaderCell>
          </Table.Row>
        </Table.Header>

Building out our Server Rendered Microfrontend 113

        <Table.Body>
          {basketList.map((basketItem: any) => (
            <Table.Row key={basketItem.id}>
              <Table.Cell>
                <Image alt={ basketItem.title } src={basketItem.
image} rounded size=”mini” />
              </Table.Cell>
              <Table.Cell> {basketItem.title}</Table.Cell>
              <Table.Cell>{basketItem.quantity || 1}</Table.
Cell>

              <Table.Cell>£{basketItem.price||1 * basketItem.
quantity}</Table.Cell>
            </Table.Row>
          ))}
        </Table.Body>
      </Table>
    </Container>
  );
}

export default ShoppingBasket;

4.	 Let us also change the content of the apps/checkout/pages/index.tsx file to ensure
that the checkout app loads the basket component by passing the right set of information:

import { Container, Header as Text } from "semantic-ui-react";
import ShoppingBasket from "../components/Basket";
import "semantic-ui-css/semantic.min.css";

import { PRODUCT_LIST_MOCKS } from "../mocks/product-list-
mocks";
export function App() {
  return (
    <Container style={{ marginTop: "5rem" }}>
      <Text size="huge">Checkout</Text>
      <ShoppingBasket basketList={PRODUCT_LIST_MOCKS} />
    </Container>
  );
}

export default App;

5.	 Now, let us update the module federation configuration in the apps/checkout/next.
config.js to set up the checkout app as a remote.

Server-Rendered Microfrontends114

6.	 Let us update the remote array to reflect the name checkout and update the port to 3002, as
highlighted in the following code snippet:

return {
    checkout: `checkout@http://localhost:3002/_next/
static/${location}/remoteEntry.js`,
  };
The next set of changes in the same file are here
  new NextFederationPlugin({
        name: "checkout",
        filename: "static/chunks/remoteEntry.js",
        exposes: {
          "./Module": "./pages/index.tsx",
        },
. . .

Let’s quickly check the app to see whether the checkout app loads properly by running pnpm dev
in the root folder and by visiting the following URL in the browser – http://localhost:3002.

Setting up the host app

Now, let us focus on the home app:

1.	 We will need to again install the module-federation/nextjs-mf npm package
and webpack:

pnpm add @module-federation/nextjs-mf webpack

2.	 Once done, set up the host app as the host by updating the apps/home/next.config.
js file, as follows:

const NextFederationPlugin = require("@module-federation/
nextjs-mf");
const remotes = (isServer) => {
  const location = isServer ? "ssr" : "chunks";
  return {
    catalog: `catalog@http://localhost:3001/_next/
static/${location}/remoteEntry.js`,
    checkout: `checkout@http://localhost:3002/_next/
static/${location}/remoteEntry.js`,
  };
};
module.exports = {
  webpack(config, options) {
    config.plugins.push(
      new NextFederationPlugin({
        name: "home",
        filename: "static/chunks/remoteEntry.js",

Building out our Server Rendered Microfrontend 115

        exposes: {},
        remotes: remotes(options.isServer),
        shared: {},
        extraOptions: {
          automaticAsyncBoundary: true,
        },
      })
    );

    return config;
  },
};

3.	 Since we want to load the catalog micro app within the catalog route, we will create a new file
called catalog.tsx in apps/home/pages/ with the following code:

import dynamic from "next/dynamic";

const Catalog = dynamic(() => import("catalog/Module"), {
  ssr: true,
});

export default function catalog() {
  return <Catalog />;
}

4.	 Let us create a similar file called checkout in apps/home/pages/checkout.tsx with
the following similar code:

import dynamic from "next/dynamic";

const Checkout = dynamic(() => import("checkout/Module"), {
  ssr: true,
});

export default function checkout() {
  return <Checkout />;
}

As you can see, we import Next.js’s dynamic module for the first time, which is the recommended
way to import dynamically with Next.js.

You can choose to dynamically import the module to execute the client side by setting up
ssr:false; this will execute the module on the client side and be bypassed by SSR. This is
suitable when your module contains personalized content, for example, recommendations,
order history, and so on.

Server-Rendered Microfrontends116

Then, we define the const called Catalog and import it from the catalog/Module.
Note that the TypeScript throws an error. That’s because we’ve not defined the types for it.

5.	 So, let us quickly create the /apps/home/remotes.d.ts file with the following lines:

declare module "catalog/Module";
declare module "checkout/Module";

6.	 Let’s test out everything by shutting down all running servers.

killall node is a really helpful command to kill all node processes.

7.	 Run pnpm dev and visit http://localhost:3000. Click on the catalog and checkout
apps to see the respective micro apps load.

Note
You may need to copy the public/assets folder from the catalog into the host app.

Figure 6.5 – The catalog micro app loaded in the catalog route

Summary 117

The following screenshot shows the checkout micro app loaded on the checkout route:

Figure 6.6 – The checkout micro app loaded on the checkout route

Congratulations!! We now have a full server side rendered microfrontend.

Let’s recap what we’ve learned so far. We started off by creating our individual micro apps using
Turborepo and Next.js, and we learned about Turborepo’s folder structure and how it differs from Nx.
We then created our micro apps using Next.js, and finally, we saw how to set up module federation
to load the different micro apps in different routes.

Summary
We’ve come to the end of this chapter, where we learned about the differences between Client side
rendered and server side rendered apps, and which one is suitable for which type of application. We
looked at the various options to build an SSR app and zeroed in on Next.js and Turborepo to build out
our module-federated app. We then saw how to set up module federation using the next.js-mf
plugin, and we went about setting up our remote and host apps. Finally, we saw how to import these
modules dynamically into the host app and set up routing between the different apps.

As a stretch goal for this chapter, you can explore setting up a shared state management solution or a
shared component library, following the same approach we took in Chapter 5.

In the next chapter, we will learn how to go about deploying our apps to the cloud. See you on the
other side!

Part 3:
Deploying Microfrontends

This part discusses strategies for deploying microfrontends, including deployment to static hosting
platforms and container orchestration with Kubernetes on Azure. It covers practical considerations
for deployment.

This part has the following chapters:

•	 Chapter 7, Deploying Microfrontends to Static Storage

•	 Chapter 8, Deploying Microfrontends to Kubernetes

7
Deploying Microfrontends

to Static Storage

Things start to get interesting from this chapter on, because we are now stepping out of the frontend/
React world and moving into the areas of cloud and full life cycle engineering.

As you may recollect from earlier chapters of this book, one of the primary goals of a microfrontend
architecture is to ensure that we don’t need to deploy the entire application each time a small change
is made but instead only deploy the micro apps that have changed. Hence, a book on microfrontends
wouldn’t be deemed complete unless we covered the critical topic of deploying our microfrontend to
production in the right way.

When it comes to deploying SPAs, usually we run the webpack build command to generate our
JavaScript bundles and assets in the /build or /dist folder, which we then simply copy to a static
website hosting provider to make our app available to our users. However, deploying microfrontends
is a bit more complex.

In this chapter, we will see how to deploy the client-side-rendered microfrontend we built in Chapter 5
to a static storage cloud provider such as Firebase. We will cover the following topics:

•	 Understanding what static storage is

•	 Setting up Firebase Hosting

•	 Learning how to build production bundles with Nx

•	 Learning how to only build and deploy modified apps

By the end of this chapter, we will have our microfrontend apps running on Firebase, and we will have
also created scripts that only build and deploy the apps that have been modified.

Deploying Microfrontends to Static Storage122

Technical requirements
As we go through the code examples in this chapter, we will need the following:

•	 A PC, Mac, or Linux desktop/laptop with at least 8 GB of RAM (16 GB preferred)

•	 An Intel chipset i5+ or Mac M1+ chipset

•	 At least 256 GB of free hard disk storage

You will also need the following software installed on your computer:

•	 Node.js version 18+ (use nvm to manage different versions of Node.js if you have to)

•	 Terminal: iTerm2 with OhMyZsh (you will thank me later)

•	 IDE: We strongly recommend VS Code as we will be making use of some of the plugins that
come with VS Code for an improved developer experience

•	 npm, Yarn, or pnpm: We recommend pnpm because it’s fast and storage efficient

•	 Browser: Chrome/Microsoft Edge, Firefox

•	 A basic understanding of Nx.dev monorepos

•	 A basic understanding of Firebase and static site hosting would be helpful

The code files for this chapter can be found here:

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React

We also assume you have a basic working knowledge of Git, such as branching, committing code,
and raising a pull request.

What is Static Storage?
Cloud hosting providers such as AWS, Google, and Azure offer a variety of hosting solutions. Static
storage, also known as blob storage, refers to a type of storage service that is optimized for storing
large amounts of unstructured data, such as Binary Large Objects (Blob). This data can be of any
type, including images, videos, audio files, and text file formats such as HTML, CSS, and JavaScript.

Static storage is designed to be highly scalable and is usually served via a Content Delivery Network
(CDN). This allows it to handle large volumes of data without performance degradation, and also
makes it highly durable, with data replication across different nodes to ensure that data is not lost due
to hardware failures or other disruptions.

A key point to keep in mind about static storage is that it doesn’t have any compute power; that is,
it doesn’t have any CPU or RAM resources. It can only serve static files. Think of it like a very large
external hard disk connected to the cloud.

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React

Setting up Firebase 123

Historically, static storage has been used to store and serve images, JavaScript, or CSS files, or as backup
storage. It was never an option to host web apps. However, with the advent of SPAs that execute on
the browser, frontend engineers realized they could use storage to host JavaScript and CSS bundles
and have the apps execute and run on the browser. Most hosting providers now officially offer static
site hosting. Some popular static site hosting providers are the following:

•	 Firebase

•	 Netlify

•	 Cloudflare

•	 Azure Static Web Apps

•	 Google Cloud Storage

•	 Amazon S3

Due to its simplicity and very low costs, static storage is ideal for serving client-side-rendered (CSR)
React apps. Due to the lack of compute power, they cannot be used to serve backend or node-based
APIs, or to execute server-side rendering (SSR).

In our case, since our microfrontend is client-side-rendered, we will use it to deploy our apps.

Of the various hosting options available, we will choose Firebase for our hosting solution, and in the
next section, we will go about setting up our Firebase application.

Just a note that deploying the microfrontend to any other hosting provider will follow a similar process
to what we will go through in the rest of the sections of this chapter.

Setting up Firebase
Firebase, which is part of Google Cloud Platform, is an extremely easy-to-use and developer-friendly
hosting provider. Firebase has a lot of offerings and services for building and managing web and
mobile applications.

Many of these services have free tiers, which make it ideal for building and testing things out. You
can access all the products and services by heading over to www.firebase.com and logging in
with your Google account.

Once you’ve logged in to Firebase, head over to Manage Console (https://console.firebase.
google.com/).

Create a new project. Let's call it ebuy. In the next section, we will set up our sites within this project.

https://www.firebase.com
https://console.firebase.google.com/
https://console.firebase.google.com/

Deploying Microfrontends to Static Storage124

Setting up a project with multiple sites

We will be using Firebase’s hosting service to deploy our apps. If you are not familiar with Firebase
Hosting, we strongly encourage you to head over to https://firebase.google.com/docs/
hosting and read about it:

1.	 Once in the console, select the ebuy project.

2.	 Head over to the Build | Hosting link on the left navigation pane. Click on the Get Started
button to start the wizard and follow the steps to create a new site within the ebuy project.

3.	 We are going to need a new site for every micro app that we build, so on the Dashboard page
use the Add another site and go ahead and create five sites. For the sake of consistency in this
chapter, let’s name them as follows:

	� ebuy-app-shell.web.app

	� ebuy-catalog.web.app

	� ebuy-checkout.web.app

	� ebuy-recommendations.web.app

	� ebuy-datastore.web.app

Note that these names need to be unique to the entirety of Firebase. If the name is taken (and most
likely it would have been taken), you can choose suitable names or go with the recommendation
Firebase provides.

Once you’ve created these five sites, note down the URLs at which these sites will be available, as we
will need them later.

Installing and configuring the Firebase CLI

Next, we need to install Firebase tools and connect them to our project and site:

1.	 In the terminal, run npm install -g firebase-tools.

2.	 Then, run firebase login. This will open up a browser window and request you to log
in to your Firebase account.

3.	 Run firebase init hosting. This will take you through a series of steps. If all goes
well, then you will see new .firebaserc and firebase.json files created.

4.	 Next, we need to let Firebase know which micro app should be deployed to which target site.
We do this by running the following commands. The syntax looks as follows:

firebase target:apply hosting <micro-app-name> <firebase-
site-name

https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting

Creating the Microfrontend Production build 125

5.	 So, in our case, given the names we have for our micro apps and the websites created within
Firebase, our commands would look as follows:

A.	 firebase target:apply hosting app-shell ebuy-app-shell

B.	 firebase target:apply hosting catalog ebuy-catalog

C.	 firebase target:apply hosting checkout ebuy-checkout

D.	 firebase target:apply hosting recommendations
ebuy-recommendations

E.	 firebase target:apply hosting store ebuy-datastore

Once these commands have been executed successfully, you’ll notice these entries being made in the
.firebaserc file.

This completes our setup on the Firebase side of things. In the next section, we will prepare our
microfrontend for production builds.

Creating the Microfrontend Production build
As you may recollect, so far, we’ve only run and tested our microfrontends in development mode,
using the nx serve command. For us to deploy applications to a hosting server, they need to be
built in production mode.

This is usually quite straightforward in regular React apps, but with our microfrontends, it needs a
bit more work.

Open up the ebuy app we built in Chapter 5 and follow these steps. Let's first create a script command
to build all our apps:

1.	 Open up the package.json file on the root and just like the serve:all command, let's
create a new command for build:all as follows:

"build:all": "nx run-many --target=build"

2.	 Run the pnpm build:all command and let us see whether all the apps build. Oops! You’ll
notice while all the other apps built fine, app-shell threw out some error about not being
able to find catalog/Module or checkout/Module, and so on.

Let's dig a bit into it.

3.	 Open up the /apps/app-shell/project.json file and have a look at the build scripts
object. You will notice that it uses a different webpackConfig file for production builds,
namely the one located here: apps/app-shell/webpack.config.prod.js.

Deploying Microfrontends to Static Storage126

Let's open up this file and have a look. In there, you will notice that the remotes array is
blank. This is the reason why our app-shell build command is failing, because webpack doesn’t
know the path from where it needs to fetch the remoteEntry.js file.

4.	 Let's add our list of remotes to this array. This should mirror the list of apps in the remotes
array of our module-federation.config file.

When entering these remote paths, since module-federation is now going to pick them from
a publicly hosted URL, we will need to use the full path for where these remoteEntry files
will exist.

5.	 We update the remotes array in apps/app-shell/webpack.config.prod.js as follows:

  remotes: [

    ['catalog', 'https://ebuy-catalog.web.app/'],

    ['checkout', 'https://ebuy-checkout.web.app/'],

    ['store', 'https://ebuy-datastore.web.app/'],

  ]

6.	 Now, rerun the pnpm build:all command and verify that all the apps build successfully.

Our work isn’t fully done yet. As you will recollect, our catalog and recommendations
apps also need the array of remotes in their webpack.config.prod.js files.

We also notice that because our catalog and checkout apps were not originally built as microfrontend
remote apps, they have a slightly different configuration and are missing webpack.config.
prod.js files. Let's fix that first.

7.	 First and foremost, let’s copy and paste the webpack.config.prod.js files from the
app-shell app into our catalog, checkout and recommendations apps.

Then, we need to let the builder know that we want webpack to pick up the configurations from
this .prod.js file when building the production builds.

8.	 So, in their respective project.json files, we add the following line within the build >
configuration > production object, as follows:

//apps/catalog/project.json

 . . .

"vendorChunk": false,

  "webpackConfig": "apps/catalog/webpack.config.prod.js"

        },

//apps/checkout/project.json

Creating the Microfrontend Production build 127

 . . .

"vendorChunk": false,

  "webpackConfig": "apps/checkout/webpack.config.prod.js"

        },

This will now ensure that all apps use their corresponding webpack.config.prod.js
file to run their production builds.

9.	 Now, let's go and update the array for the remote paths in our apps/catalog/webpack.
config.prod.js file. Since the catalog app has only one remote, which is the recommendations
micro app, our remotes array would look like this:

  remotes: [

    ['recommendations', 'https://ebuy-recommendations.
web.app/'],

  ],

Next, let's do the same for our recommendations apps, which use the store micro app as
a remote. So, in the apps/recommendations/webpack.config.prod.js file,
we update the remotes array as follows:

  remotes: [

    [‘store’, 'https://ebuy-datastore.web.app/'],

  ],

10.	 10. Since the checkout app also needs to use the store as a remote we update the apps/
checkout/webpack.config.prod.js as follows:

  remotes: [

    [‘store’, 'https://ebuy-datastore.web.app/'],

  ],

11.	 Run our pnpm build:all command again to generate the production builds based on the
latest webpack configurations we made.

When the build is successful, have a look in the /dist folder on the root of the project and verify
that all our micro-app folders are present within /dist/apps. Note their paths as we will need
them in the next section.

In this section, we were able to generate production builds for our microfrontends by ensuring all the
apps used the right webpack configuration, including the correct public URLs for the remoteEntry.
js files.

In the next section, we will see how to deploy these apps to Firebase.

Deploying Microfrontends to Static Storage128

Deploying our Apps to Firebase
Deploying our apps to Firebase is quite easy using the Firebase CLI’s deploy command. However,
before we run our Firebase deploy command, we need to let Firebase know which micro-apps go
into the corresponding Firebase website. We do this in the /firebase.json file.

Replace the default configuration with the following:

 {

  "hosting": [

    {

      "target": "app-shell",

      "public": "dist/apps/app-shell",

      "ignore": ["firebase.json", "**/.*", "**/node_
modules/**"],

      "rewrites": [

        {

          "source": "**",

          "destination": "/index.html"

        }

      ]

    }

    {

      "target": "catalog",

      "public": "dist/apps/catalog",

      "ignore": ["firebase.json", "**/.*", "**/node_
modules/**"],

      "rewrites": [

        {

          "source": "**",

          "destination": "/index.html"

        }

      ]

    },

    {

      "target": "checkout",

Deploying our Apps to Firebase 129

      "public": "dist/apps/checkout",

      "ignore": ["firebase.json", "**/.*", "**/node_
modules/**"],

      "rewrites": [

        {

          "source": "**",

          "destination": "/index.html"

        }

      ]

    },

    {

      "target": "recommendations",

      "public": "dist/apps/recommendations",

      "ignore": ["firebase.json", "**/.*", "**/node_
modules/**"],

      "rewrites": [

        {

          "source": "**",

          "destination": "/index.html"

        }

      ],

    },

    {

      "target": "store",

      "public": "dist/apps/store",

      "ignore": ["firebase.json", "**/.*", "**/node_
modules/**"],

      "rewrites": [

        {

          "source": "**",

          "destination": "/index.html"

        }

      ]

    }

  ]

}

Deploying Microfrontends to Static Storage130

As you can see, the preceding code is a configuration, where we have an array of our target apps, and we
define the folder path where Firebase should look for the bundles for each of the micro apps. We also
have a few settings regarding ignoring and not deploying node_modules and a rewrite rule, which
is essential if you want each micro app to also be available as its own SPA within its respective site.

With this, we are now ready to deploy our apps to Firebase. Let's first run it manually to ensure things
work fine.

In the terminal of the project, run the following command:

firebase deploy --only hosting

This would generate a .firebase folder with a lot of files. Don’t forget to add .firebase to
your .gitignore.

Let Firebase do its thing, and if all goes well, it should display a success message and print out the list
of URLs where the sites have been deployed, like so:

Figure 7.1 – List of website URLs published after a successful deployment on Firebase

Great! Let’s click on the app-shell link and check whether we can see our microfrontend.

Err, we see a blank page... Have a peek into the browser’s developer tools console and you’ll notice
what the problem is. Our browser has blocked calls to the remoteEntry.js files because of Cross-
Origin Resource Sharing (CORS).

Deploying our Apps to Firebase 131

Figure 7.2 – CORS policy headers due to missing Access-Control-Allow-Origin header

We will see how to fix this in the next section.

Fixing CORS issues

If you’ve been building React or any other web apps, you’ll be familiar with the dreaded CORS problem.
This is where the browser, for security reasons, prevents calls to external domains unless it sees an
explicit 'Access-Control-Allow-Origin' header. The access control is set on the apps that
decide whether they want assets from their domain to be consumed and executed on other domains.

So, for our microfrontend apps to work properly, the host app needs to be able to load the remoteEntry.
js file from the public URL where each of the micro apps is hosted. This is what we are going to set
in the next steps.

With Firebase Hosting, it is quite easy, and we can define a headers array in the firebase.json file.

Open up /firebase.json for all the apps except app-shell, and within each of the target
objects, define the headers we’d like to set:

      "headers": [

        {

          "source": "**/*.@
(eot|otf|ttf|ttc|woff||woff2|js|font.css|remoteEntry.js)",

          "headers": [

            {

Deploying Microfrontends to Static Storage132

              "key": "Access-Control-Allow-Origin",

              "value": "https://ebuy-app-shell.web.app"

            }

          ]

        }

      ]

What we are basically saying here is each of the micro apps allows the list of defined file types to be
called and executed from https://ebuy-app-shell.web.app.

Note that we need to add the headers array for every target app defined within the firebase.
json file.

Rerun firebase deploy --only hosting and now, you should be able to view all the sites
working on https://ebuy-app-shell.web-app/.

Deploying only the selected target

Currently, the firebase command deploys all the micro-apps. If we wanted to deploy only one of
the micro apps, we’d simply need to pass the target name as an argument:

firebase deploy --only hosting:<app-name>

So, if we wanted to deploy only app-shell, our command would look as follows:

firebase deploy --only hosting:app-shell

This will be critical in the next section.

Looking back at this section, we were able to deploy our apps to Firebase, and we also managed to fix
the CORSs issue by setting Access-Control-Allow-Origin headers. We also saw the CLI
syntaxes that allow us to deploy only the apps that we need.

In the next section, we will use these CLI commands in combination with another nifty command
from Nx to control and deploy only the apps that changed.

Deploying only Micro Apps that changed
To be able to deploy only the micro apps that have been impacted by modifications to a file, we basically
need to be able to do two things:

1.	 Identify which apps have been impacted due to changes to a given set of files

2.	 Only build and deploy the micro-apps that have been impacted

Deploying only Micro Apps that changed 133

For the second point, from the previous section, we now know how to let the Firebase CLI know
which micro-app we would like to be deployed. We will look at how to achieve the first point in the
next subsection.

NX Affected

The NX dev tools come with a handy command called nx affected, which is able to keep track
of what files changed from the previous commit and highlight the apps that have been impacted due
to the changes to these files.

This is a nifty feature that can be used for various purposes, such as speeding up the execution of tests
by running unit tests or build commands only against projects that have been impacted by changes
to certain files – or, in our case, deploying only the micro-apps that have changed.

To give it a quick try, run git add. and git commit to commit all the changes we have made
so far. Try and make a small visual change to apps/app-shell/src/app/app.tsx. Save the
file and run the following command:

pnpm nx print-affected --type=app --select=projects

It should print out app-shell as the app that was modified. Now, try and make changes to libs/
mocks/src/lib/product-list-mocks.tsx and run the same command. You will see the
catalog and checkout apps also added to the list of apps that are affected.

The way the nx affected command works is by comparing the difference between the SHAs of the
main branch and the current HEAD. You can pass in additional parameters to the affected command
to compare the difference between any base and head and run a command passed to the target flag:

pnpm nx affected --target=deploy --base=main --head=HEAD

--target is the custom command to run, --base is the base you want to compare against, and
--head is the tip of your Git branch.

This will probably return a message saying Nx successfully ran target deploy on 0 projects. This is
because we haven’t created our custom deploy command yet.

To get a deeper understanding of the various options for nx affected, have a read here: https://
nx.dev/nx/affected#affected.

In addition to affected, you may also find the nx graph command useful for getting a nice, visual
representation of the various micro-apps consuming the different shared components and utilities
form the libs folder.

Try running pnpm nx affected:dep-graph to get a visual graph of how the modified files
impact the micro-apps.

https://nx.dev/nx/affected#affected
https://nx.dev/nx/affected#affected

Deploying Microfrontends to Static Storage134

Here is an example of how changes to the libs/mocks/src/lib/product-list-mocks.
tsx file impact both the catalog and checkout apps, because both these apps import the product list
from the product-list-mocks file:

Figure 7.3 – nx affected:dep-graph highlighting the projects impacted due to a change in mocks

Note
nx graph or nx affected doesn’t take into account the host and remote features of module federation.

Creating an Nx custom command executor to deploy

Executors in Nx allow you to create custom script commands for a project, which you can run via
the Nx command system.

Please do take the time to read more about Nx custom command executors here: https://nx.dev/
recipes/executors/run-commands-executor#3.-run-the-command.

Let's create a custom command to deploy an individual micro app.

In apps/app-shell/project.json, add the following code within the target attribute:

    "deploy": {

      "executor": "@nrwl/workspace:run-commands",

      "options": {

        "commands": ["firebase deploy --only hosting:app-

https://nx.dev/recipes/executors/run-commands-executor#3.-run-the-command
https://nx.dev/recipes/executors/run-commands-executor#3.-run-the-command

Deploying only Micro Apps that changed 135

shell"],

        "parallel": true

      }

}

Add the deploy custom command to each of the micro-app’s project.json files. Pass the correct
micro-app name in the argument.

Once that is done, try making a small change in the mocks file and run the following two commands:

pnpm nx affected -–target=build

pnpm nx affected -–target=deploy

Assuming Nx has detected the difference correctly, it will only build the catalog and checkout apps
and you will also notice that these are the only two apps that deployed to Firebase.

You can verify that by going into Firebase Console’s hosting dashboard and checking the timestamp
of when the apps were last deployed:

Figure 7.4 – Firebase Console displaying the deployed timestamp of modified apps

Deploying Microfrontends to Static Storage136

Navigate to https://ebuy-app-shell.web-app/ (use the correct URL as displayed in your
Firebase Console) and verify that everything continues to work fine and that the changes you’ve made
reflect on the app. You may need to do a hard reload on your browser to view the updates.

And with this, we’ve successfully managed to deploy only the apps that have changed while ensuring
that the rest of the app works as expected.

Summary
With that, we come to the end of this chapter, where we learned about static storage hosting and why
it is ideal for deploying and serving client-side-rendered React apps. We saw how to build production
bundles for our module-federated micro app. We then saw how to set up a multi-site project in Firebase
and used Firebase CLI commands to deploy our apps. We also saw how to address CORS issues by
setting the right header values for the Access-Control-Allow-Origin header, and then
finally, we saw how to combine the nx affected command and Firebase’s hosting:<app-
name> command to detect the micro-apps that have been impacted by a change and only build and
deploy them to Firebase. We also used this as an opportunity to create a custom command executor
to deploy these affected apps.

In the next chapter, we will go deeper into DevOps and cloud territory by seeing how to deploy our
microfrontends to a managed Kubernetes cluster.

https://ebuy-app-shell.web-app/

8
Deploying Microfrontends

to Kubernetes

In the previous chapter, we learned how to manually deploy our microfrontends to a static storage
provider such as Firebase.

In this chapter, we will go deeper into cloud and DevOps territory by learning how to deploy our apps
to a managed Kubernetes cluster. Kubernetes has become the de facto choice to deploy enterprise-
grade web apps (both backend and frontend) to the cloud.

When it comes to deploying SPAs, we run usually the webpack build command to generate our
JavaScript bundles and assets in the /build or /dist folder, which we then simply copy to a static
website hosting provider to make our app available to our users. However, deploying microfrontends
is a bit more complex.

In this chapter, we will see how to deploy our module-federated microfrontend to a managed
Kubernetes cluster.

We will cover the following topics:

•	 How to containerize our apps using Docker

•	 The basics of Kubernetes and its various components

•	 Some basic commands to manage our Kubernetes cluster

•	 DevOps and how to automate deploying our micro-apps to Kubernetes

By the end of this chapter, we will have our microfrontend apps running on a Kubernetes cluster in
Azure. We will deploy them via an automated Continuous Integration (CI) and Continuous Delivery
(CD) pipeline that will automatically build and deploy the necessary apps whenever code is merged.

Deploying Microfrontends to Kubernetes138

Technical requirements
In addition to all the standard technical requirements that we mentioned in the previous chapters,
you will need the following:

•	 An Azure cloud subscription

•	 Access to GitHub and GitHub Actions

•	 A high-level understanding of CI and CD concepts

•	 Knowledge of Docker and containerizing apps will be helpful

The code files for this chapter can be found at the following URL, where we essentially started with the
microfrontend we built in Chapter 6: https://github.com/PacktPublishing/Building-
Micro-Frontends-with-React.

We also assume you have a basic working knowledge of Git, such as branching committing code and
raising a pull request.

Introduction to Kubernetes
Kubernetes, also known as K8s, has taken the cloud and DevOps world by storm. Originally developed
by Google and now part of the Cloud Native Computing Foundation, Kubernetes provides all the
tools necessary to deploy and manage large-scale, mission-critical applications on the cloud from a
single interface.

Traditionally, managing a large-scale, production-grade application on the cloud meant having to
deal with things such as web servers, load balancers, auto-scaling, and internal and external traffic
routing. Kubernetes now brings all of that under a single umbrella and provides a consistent way to
manage all the components of a cloud environment.

The premise of Kubernetes is that you tell it the end state of what you want via a spec file, and Kubernetes
will go about getting it done for you. For example, if you tell Kubernetes that you want three replicas
for your application with a service load balancer, Kubernetes will figure out how to spin up the three
replicas and ensure that the traffic is equally distributed between the three replicas. If, for some reason,
one of the pods restarts or shuts down, Kubernetes will automatically spin up a new pod to ensure that,
at any given time, three replicas of the pod service traffic. Similarly, when you deploy a new version of
the app, Kubernetes will take over the responsibility of gradually spinning up new pods with the latest
version of the app, while gracefully shutting down the pods with the older version of the application.

Through the rest of this section, we will look at some of the key components of Kubernetes that apply
to us, along with the architecture to deploy our microfrontend on Kubernetes.

https://github.com/PacktPublishing/Building-Micro-Frontends-with-React
https://github.com/PacktPublishing/Building-Micro-Frontends-with-React

Introduction to Kubernetes 139

What is Kubernetes?

Kubernetes is a platform-agnostic container orchestration platform that enables the deployment,
scaling, and management of containerized applications in a cluster of machines.

It abstracts the underlying infrastructure, allowing you to run your applications in a variety of
environments, including on-premises data centers, public cloud providers such as Microsoft Azure,
Google Cloud Platform, and Amazon Web Services, and even on your own laptop.

Kubernetes is designed to be highly modular and extensible, and it integrates with a variety of tools
and services to support the complete life cycle of an application, including deployment, scaling,
monitoring, and maintenance. It is widely adopted in the industry and has become the de facto
standard for container orchestration.

Key concepts of Kubernetes

Kubernetes can be quite a vast topic and would need a dedicated area of focus to go deep into it. You
can go into the details of the various components of Kubernetes here: https://kubernetes.
io/docs/concepts/overview/components. However, as a frontend engineer and for the
scope of this book, there are six basic concepts and terms that you need to be aware of:

•	 Nodes: A node is a worker machine in a Kubernetes cluster. It can be a physical or virtual
machine, and it is responsible for running the containerized applications deployed to it.

•	 Pods: A pod is the basic execution unit of a Kubernetes application. It is a logical host for one
or more containers, as well as all containers in a pod run on the same node. Pods provide a
shared context for containers, such as shared storage and networking.

•	 Services: A service is a logical abstraction over a group of pods. It defines a policy to access
the pods, typically via a stable IP address or DNS name. Services allow you to decouple the
dependencies between your applications, enabling you to scale or update a group of pods
without affecting the consumers of the service.

•	 Deployments: A deployment is a declarative way to manage a ReplicaSet, which is a set of
identical pods that are deployed to the cluster. Deployments allow you to specify the desired
state of your application, and Kubernetes will ensure that the actual state matches the desired
state. This includes rolling updates, rollbacks, and self-healing.

•	 Ingress: Ingress is a way to expose your services to the external world. It provides a way to
map external traffic to a specific service in your cluster, typically via a stable IP address or DNS
name. Ingress can also provide additional features, such as SSL termination and load balancing.
Think of it as a router where a URL is mapped to a service.

•	 Namespaces: A namespace is a logical partition in a Kubernetes cluster. It allows you to use
the same resources (such as names) in different contexts, and it can be used to isolate resources
within a cluster.

https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/overview/components

Deploying Microfrontends to Kubernetes140

Kubernetes architecture for microfrontends

When deploying our microfrontends on Kubernetes, we create a pod for each micro app, and this
micro app is exposed internally via an Ingress service.

The home app module federates all these micro-apps. The following diagram helps to explain the
architecture better:

Figure 8.1 – Kubernetes topology architecture to deploy microfrontends

As you can see in Figure 8.1, each of our micro-apps is deployed within its own pod. These pods can
be replicated or set to auto-scale as traffic increases. This is denoted by the dotted box around the pod.
These pods are exposed via a service, which acts as a sort of load balancer. Therefore, the home app
service is the single endpoint for all the replications of the home micro app pod.

Each of the services is exposed via an Ingress route. This is where we define the URL for our micro
app, which eventually will be used in our module federation configuration. This is what the overall
Kubernetes architecture will look like.

With this, we come to the end of this section, where we learned about some of the key concepts of
Kubernetes, such as nodes, pods, services, Ingress, and the architecture of our micro-apps within a
Kubernetes cluster. In the next section, we will see how to go about containerizing our app so that it
can be deployed into a Kubernetes cluster.

Containerizing our micro-apps with Docker 141

Containerizing our micro-apps with Docker
Containers are a way to package software applications in a standardized and portable way, allowing
them to run consistently across different environments. They provide a lightweight and efficient way to
run applications and are particularly well-suited for microservices architectures, where an application
is composed of multiple, independently deployable services.

In this section, we will look at how to install Docker and create a Docker image by creating a Dockerfile.

Installing Docker

Docker Engine is available for personal use on multiple Linux, Mac, and Windows systems via Docker
Desktop. You can follow the instructions here to install the Docker engine: https://docs.
docker.com/engine/install/.

Note
If you don’t want to or can’t use Docker Desktop on your Windows or Mac, there are alternatives,
such as Rancher Desktop, Podman, and Colima.

Once you have Docker installed, verify it by running the following command in the terminal:

docker -v

If it returns the version of Docker, then you are all set, and it means that Docker was installed
successfully on your system.

Creating standalone app builds

Before we can start creating a Docker image, we will first need to ensure that the build outputs of our
micro apps are self-contained and can run in standalone mode. We do this by adding the following
lines in each of the next.config.js files, like so:

const path = require("path");

module.exports = {

  output: "standalone",

  experimental: {

    outputFileTracingRoot: path.join(__dirname, "../../"),

  },

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

Deploying Microfrontends to Kubernetes142

…

}

outputFileTracingRoot is an experimental feature introduced in Next.js 12+ onward; this helps
reduce the size of the build outputs, especially when we want to try and reduce our Docker image sizes.

Make sure to add these lines to the next.config.js file for each of the micro apps.

Creating a Dockerfile

The next step is to create our Dockerfile, which contains the instructions for Docker to create our
Docker image.

Since we need to create a Docker image for each micro app, we will create a Dockerfile within apps/
home. The default filename we usually give to this is Dockerfile.

Let's add the following commands to this Dockerfile. We will use the default Dockerfile provided by
Turborepo and Next.js.

We will build our Dockerfile as a multi-stage file, which allows us to leverage the caching of the layers
and also ensures that the size of the Docker image is as small as possible.

We will build it in three stages, starting with the builder stage:

FROM node:18-alpine AS base

FROM base AS builder

Check https://github.com/nodejs/docker-node/tree/
b4117f9333da4138b03a546ec926ef50a31506c3#nodealpine to
understand why libc6-compat might be needed.

RUN apk add --no-cache libc6-compat

RUN apk update

Set working directory

WORKDIR /app

RUN yarn global add turbo

COPY . .

RUN turbo prune --scope=home --docker

As you can see, we use a base image of Node Alpine 18.14, and we call it the builder stage. Alpine is
the most minimalistic version of Node.js.

Now, we install the libc6-compact library and run the update command. Then, we set the
working directory for the app and install turbo.

Containerizing our micro-apps with Docker 143

Then, we copy everything from our repo (note the space between the two periods in the COPY command).

Finally, we run the turbo prune command to extract all the files necessary for the home micro app.

Now, we will move on to the installer stage and continue writing the following code immediately
after the previous code:

FROM base AS installer

RUN apk add --no-cache libc6-compat

RUN apk update

WORKDIR /app

First install the dependencies (as they change less often)

COPY .gitignore .gitignore

COPY --from=builder /app/out/json/ .

COPY --from=builder /app/out/pnpm-lock.yaml ./pnpm-lock.yaml

RUN yarn global add pnpm

RUN pnpm install --no-frozen-lockfile

Build the project

COPY --from=builder /app/out/full/ ./

COPY turbo.json turbo.json

RUN ENV=PROD yarn turbo run build --filter=home...

Again, we start by defining the base image as the installer, running the regular apk add and update
commands, and setting the working directory.

Then, we copy the .gitignore file as well as the relevant files from the /app/out folder from
the builder stage.

We then install pnpm and run the pnpm install command.

Then, we copy all the files from the app/out/full folder from our builder stage and run the
turbo build command.

Then, we move on to the final runner stage where we write the following code:

FROM base AS runner

WORKDIR /app

Don't run production as root

RUN addgroup --system --gid 1001 nodejs

RUN adduser --system --uid 1001 nextjs

Deploying Microfrontends to Kubernetes144

USER nextjs

COPY --from=installer /app/apps/home/next.config.js .

COPY --from=installer /app/apps/home/package.json .

Automatically leverage output traces to reduce image size

https://nextjs.org/docs/advanced-features/output-file-tracing

COPY --from=installer --chown=nextjs:nodejs /app/apps/home/.
next/standalone ./

COPY --from=installer --chown=nextjs:nodejs /app/apps/home/.
next/static ./apps/home/.next/static

COPY --from=installer --chown=nextjs:nodejs /app/apps/home/
public ./apps/home/public

CMD node apps/home/server.js

In the preceding code, we basically create a user group to avoid the security risks of running the code
as root, and then we copy the relevant files from our installer stage and run the node command.

Now, we need to create a .dockerignore file in the root of the repo, where we list the files and
folders that we don’t want Docker to copy to the image:

node_modules

npm-debug.log

**/node_modules

.next

**/.next

Let's test the Dockerfile to see whether it builds. From the root of the application, run the following
command in the terminal:

docker build -t home -f apps/home/Dockerfile .

-t stands for the tag name, and it will create a Docker image with the name home. The -f part is
the path to the Dockerfile.

Note the space and period at the end of the command, which is important. The period at the end
denotes the build context – that is, the set of files and folders Docker should use to build the image.
The period also denotes that we want to package all the files and folders in the current directory.

Containerizing our micro-apps with Docker 145

This command will take several minutes to run on its first time, as Docker will download the base
node image and other dependencies. The subsequent builds will be a lot faster, as Docker will cache
the layers and reuse them if the layer hasn’t changed.

You can run the Docker image locally by running the following command:

docker run -p 3000:3000 home

Once we’ve verified that this works fine, we will need to create similar Dockerfiles for each of our apps.

So, in apps/catalog and apps/checkout, copy and paste the Dockerfile and replace all
instances of home with the relevant micro app name.

Note that each of these micro apps runs on the same port, 3000, so to test them locally, we can test
only one image at a time, unless you change the hostPort value to something different or use a
docker-compose file.

Now that we have learned how to dockerize our micro apps and run them locally, we will move on to
the next section on setting up Docker Hub.

Setting up Docker Hub to store Docker images

In the previous section, we created Docker images of our apps and were able to run them locally.
For us to be able to deploy them on Kubernetes, we need to store them in a container library from
where our DevOps pipelines can pull the images. We will use a free artifact registry solution such as
Docker Hub for this. Alternatively, you can use other container registry solutions provided by various
hosting providers, such as Azure Container Registry, Google Container Registry, and Amazon Elastic
Container Registry:

1.	 Log in/register at https://hub.docker.com, and then create three public repositories
one for each micro-app. We will call them the following:

	� ebuy-home

	� ebuy-catalog

	� ebuy-checkout

2.	 Make a note of the Docker registry paths, which are usually of the <your-username>/
ebuy-home format, <your-username>/ebuy-catalog format, and so on.

3.	 Then, let's create an access token that will be needed for our CI and CD pipelines. Go to Account
Settings, and on the Security page, create a new access token and give it a description. Under
Access permissions, select Read and Write, as our pipelines will need to push and pull the
Docker images.

https://hub.docker.com

Deploying Microfrontends to Kubernetes146

4.	 Once the token is generated, copy and keep it safe, as it will never be displayed again. (You can
always generate a new token if you’ve lost the old one.)

Our work on Docker Hub is done!

In the next section, we will create our Kubernetes configuration files that will be used to spin up our
Kubernetes cluster.

Creating a Kubernetes configuration file
Earlier in this chapter, in the Introduction to Kubernetes section, we learned about the various Kubernetes
services that we will use to deploy our microfrontends.

Deploying these services on Kubernetes is commonly done by defining the various configuration
settings in a .yaml file and then applying the configuration to the Kubernetes cluster.

In this section, we will learn about the structure of these Kubernetes spec files and how to go about
creating them for our deployments, services, and Ingress.

The structure of a Kubernetes spec file

A Kubernetes spec file is a YAML document that describes the desired state of a Kubernetes object,
such as a Deployment, Pod, Service, or ConfigMap. The structure of a Kubernetes spec file generally
consists of two main parts – the metadata section and the spec section. Each file always starts by
defining the apiVersion and the kind of spec file.

The metadata section includes information about the object, such as its name, labels, and annotations.
This section is used by Kubernetes to manage the object and enable other objects to reference it.

The spec section includes the desired state of the object, such as the container image, resource requests
and limits, networking configuration, and any other relevant settings. This section is used by Kubernetes
to create and manage the object according to its desired state.

Creating spec files to deploy our microfrontends

As we saw earlier, the structure of a Kubernetes spec file follows a hierarchical format, with each
section and its corresponding properties nested under the appropriate heading. Additionally, many
Kubernetes objects have properties that are specific to their type, so the structure of the spec file may
vary depending on the object being described.

Let's start by creating these files in a folder called k8s within each of the micro apps folders.

Creating a Kubernetes configuration file 147

Let’s start by creating the /apps/home/k8s/deployment.yml file with the following code.
The deployment.yml file contains the configuration to set up and configure the Kubernetes pods
within which our micro app will run:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: home

  namespace: default

  labels:

    app: home

spec:

  replicas: 1

  selector:

    matchLabels:

      app: home

  template:

    metadata:

      labels:

        app: home

    spec:

      containers:

        - name: home

          image: <dockerUserID>/ebuy-home:latest

          imagePullPolicy: Always

          ports:

            - name: http

              containerPort: 3000

              protocol: TCP

As you read through the deployment.yml configuration file, you will see that we label the app
as home and also use the same name to define the name of our container. We define the number of
replicas as one, which means it will spin up one pod; increase this number to two or more if you want
multiple replicas of the pod. Then, within the container section of the file, we define the name of the
path of the Docker image it should use and the ports and protocols that it should use. Replace this
with the values of your Docker repository. Note :latest at the end of the Docker image value; this
is something we add to ensure that Kubernetes always picks up the latest version of the Docker image.

Deploying Microfrontends to Kubernetes148

Now, we define the service, which acts as a sort of load balancer over one or more replicas of the pod.

Create a new file called /apps/home/k8s/service.yml with the following code:

kind: Service

apiVersion: v1

metadata:

  name: home

  namespace: default

  labels:

    app: home

spec:

  type: LoadBalancer

  selector:

    app: home

  ports:

    - protocol: TCP

      port: 80

      targetPort: 3000

      name: home

The service.yml file is quite straightforward, wherein we provide the necessary metadata such
as the name, label, and namespace for the Kubernetes cluster.

Then, within the specs, we define what type of service this is; we will set it as a LoadBalancer. This
will help expose a public IP address that we will need later and, finally, within the ports section, the
protocol and port numbers on which we will expose the service.

Finally, we need to define the ingress.yml file where we will assign a URL to the service. Create
a file called /apps/home/k8s/ingress.yml with the following code.

The Ingress within Kubernetes essentially runs nginx under the hood, so if you are familiar with nginx,
configuring this should be easy:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: home

  namespace: default

Setting up a managed Kubernetes Cluster on Azure 149

  labels:

    app: home

  annotations:

    # nginx.ingress.kubernetes.io/enable-cors: 'true'

    # nginx.ingress.kubernetes.io/cors-allow-origin: '*'

    nginx.ingress.kubernetes.io/rewrite-target: /$2

spec:

  ingressClassName: nginx

  rules:

  - http:

      paths:

      - path: /home(/|$)(.*)

        pathType: Prefix

        backend:

          service:

            name: home

            port:

              number: 80

This is generally a bit of a tricky file to configure, as this is where you define the URL structures and
rewrite rules and other nginx configurations as you’d do for a web server. As you can see, we define
the regular metadata information under annotations, and we define the various rewrite rules and
nginx configurations, such as CORS. Then, we set the regex path, which tells Kubernetes through
which URLs it should direct traffic to this service and pod. Finally we need to copy and paste the K8s
folder into each of our micro apps and update the relevant paths and app names to match the name
of the micro app.

As we come to the end of this section, we’ve seen how to create Kubernetes spec files to deploy pods,
how to set up a service that sits over these pods, and finally, the ingress that provides routing to these
pods. In the next section, we will create an Azure Kubernetes cluster, against which we will execute
these specs.

Setting up a managed Kubernetes Cluster on Azure
In this section, we will learn how to set up a managed Kubernetes cluster on Azure. The reason it’s
called managed is because the master node, which is sort of the brain of Kubernetes, is managed by
Azure, and we only need to spin up the worker nodes. We will see how to log in to Azure and create
a subscription key, and we will install Azure CLI and collect the various credentials that we need for
our DevOps pipeline.

Deploying Microfrontends to Kubernetes150

For this chapter, we will use Azure Kubernetes Service (AKS) to set up our cloud-based managed
Kubernetes cluster. You can also set up a managed Kubernetes cluster on Google Cloud using Google
Kubernetes Engine (GKE), or you can use Amazon Elastic Kubernetes Service (EKS) on AWS.

Irrespective of whichever hosting provider you use to set up your Kubernetes cluster, the Dockerfile
and the Kubernetes configuration .yaml files remain the same.

Logging into the Azure portal and setting up a subscription key

To carry out any activity on the Azure platform, you need to have the login credentials for the platform
and a subscription key. All the resources that we create within Azure need to be mapped to a subscription
key, which eventually is used by Azure to calculate the hosting charges. To do this, follow these steps:

1.	 Head over to https://portal.azure.com and log in with a Microsoft login; if you
don’t have one, you can always sign up for one.

2.	 Once logged into the portal, search for Subscriptions and add a Pay-As-You-Go
subscription. If you have an Azure for Student or free trial subscription in your list, feel free
to select either one of them as well. This subscription will be used for all the hosting costs that
will be incurred as part of the various services you run within Azure.

3.	 Then, in the search box, search for Resource Group and create a resource group. Let’s
call it ebuy-rg; the rg suffix stands for resource group. It would have selected the default
subscription that you created in the earlier step. For the region, you can select US East or a
region of your choice; for the sake of consistency in this chapter, we will stick with US East.

In Azure, it is always a good practice to create a resource group for a project and then have all
the various services associated with that project within the resource group. This allows us to
easily manage the resources within the resource group, especially when we want to shut down
all the services for the project.

4.	 Next, we will create our AKS cluster; search for Azure Kubernetes Service (AKS),
click on the Create button in the top-left corner, and then select the Create a Kubernetes
cluster menu item. You will be presented with a screen, as shown in the following screenshot:

https://portal.azure.com

Setting up a managed Kubernetes Cluster on Azure 151

Figure 8.2 – The Create Kubernetes cluster screen

5.	 Select the subscription and resource group we created in the earlier steps, and then, in the
Cluster preset configuration, select Production Standard as the preset configuration. You
can also choose other higher configurations; however, note that the AKS cluster is the most
expensive component of your Azure monthly billing.

6.	 Provide the Kubernetes cluster name as ebuy, and select the same region where you have your
resource group created; in our case, it is (US) East US. For the Kubernetes version, you can
choose to leave it as default or select 1.26.6 to ensure the settings are consistent with the code
and configuration defined in the chapter. For the scale method, set it to Autoscale, and for the
maximum number of nodes, leave it at 1 or 2. Finally, hit Review + Create, and then after the
validation check is done, hit Create.

Deploying Microfrontends to Kubernetes152

We now have our Kubernetes cluster running within AKS.

Accessing your Kubernetes cluster via the Azure CLI

The de facto approach to interacting with your Kubernetes cluster on Azure is via the Azure CLI at
https://learn.microsoft.com/en-us/cli/azure/. If you are working with Kubernetes
it is best to also install kubectl, the instructions for which you can find here https://kubernetes.
io/docs/tasks/tools/install-kubectl-macos/

Follow the documentation at the preceding URL to get the Azure CLI set up on your system.

Once you have the Azure CLI up and running, the next step is to log in using the following command:

az login

Once you’ve successfully logged in, it will display the details of the subscription and tenant details
for your subscription.

Run a couple of the following commands to get a feel for the Azure CLI and the basic Kubernetes commands:

•	 az aks list //: To get a list of all your aks clusters

•	 az aks get-credentials --resource-group ebuy-rg --name ebuy //:
To connect to your aks cluster

•	 kubectl get nodes //: To get a list of all the nodes

•	 kubectl get pods //: To get a list of all the pods running (we don’t have any pods
running yet, so don’t worry if you get an error message)

These are just a few commands to help you get started; if you are keen to learn about the rest of the
kubectl commands head over to the official kubectl Cheat Sheet: https://kubernetes.io/
docs/reference/kubectl/cheatsheet/.

Once you are happy trying out the different kubectl commands and comfortable interacting with
your Kubernetes cluster, we will proceed to the next step of gathering the necessary credentials to
automate deployments.

Generating credentials for your DevOps pipelines

For any DevOps pipeline to access the various resources on Azure to spin up Kubernetes clusters,
it will need access permissions.

We will now collect the necessary access permissions. Ensure that you are logged in at https://
portal.azure.com, or log in via the az login CLI command.

https://learn.microsoft.com/en-us/cli/azure/
https://kubernetes.io/docs/tasks/tools/install-kubectl-macos/
https://kubernetes.io/docs/tasks/tools/install-kubectl-macos/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://portal.azure.com
https://portal.azure.com

Setting up CI/CD with GitHub Actions 153

The following is a list of IDs and secrets that we need from Azure and the process to find them within
the Azure portal:

•	 Subscription ID: Search for Subscriptions and select your subscription to display the
subscription ID.

•	 Tenant ID: Search for Azure Active Directory and note the Tenant_ID displayed

•	 Then, we need to create a service principle that can create and manage resources within our
resource group; we do that using the az CLI. In the terminal, fire the following command, replacing
{subscriptionid} with the value you noted in the previous steps, and {resource-
group} with the name of the resource group; in this case, it is ebuy-rg:

az ad sp create-for-rbac --name “MyApp” --role
Contributor --scopes /subscriptions/{subscriptionid}/
resourceGroups/ebuy-rg --sdk-auth

Run the command, and if all goes well, it will publish a list of configuration variables, as shown
in Figure 8.3, which you can easily save for further use.

Figure 8.3 – Output from running the command to create a service principle

Note down the configurations from the preceding output, as we will need it in the following steps.

Now that we have all the necessary credentials we need, let's proceed to the next section on setting
up the CI and CD pipelines where we will use these credentials.

Setting up CI/CD with GitHub Actions
In this section, we will learn how to go about setting up a DevOps pipeline using GitHub Actions.
A DevOps pipeline is a series of steps that we define to automate the build and deployment of our
apps. In this section, we will learn how to set up GitHub secrets and the workflow .yml file.

Deploying Microfrontends to Kubernetes154

GitHub Actions is an automation and workflow tool provided by GitHub that allows developers to
automate software development workflows and streamline their software development process. With
GitHub Actions, you can create custom workflows that automate tasks such as building, testing,
deploying, and releasing code directly from your GitHub repository. Other tools that we can use
for CI and CD are Jenkins, Azure DevOps, Google Cloud Build, and so on. For the purpose of this
chapter, we will use GitHub Actions.

Setting up GitHub secrets

As part of the CI and CD steps, GitHub Actions needs to push the Docker image to Docker Hub
and spin up new Kubernetes pods, and so on. For all these activities, it needs to be able to log in to
the systems with the right credentials. As a rule and for security purposes, we should never directly
hardcode the usernames or passwords directly into the DevOps pipelines. The correct way is to create
GitHub secrets and use those in your pipelines.

First and foremost, make sure you have committed and pushed the latest changes we’ve made so far
to GitHub.

Let's create our GitHub secrets by first going to the Settings tab on the GitHub repo and then to the
Secrets and variables section. Then, under Actions, we will create the following secrets along with
the corresponding values that we noted down earlier from Docker and the Azure subscription:

AZ_CLIENT_ID

AZ_CLIENT_SECRET

AZ_SUBSCRIPTION_ID

AZ_TENANT_ID

DOCKERHUB_USERNAME

DOCKERHUB_TOKEN

We will create these as secrets in our DevOps pipeline. These secrets can be accessed in the pipeline
as ${{ secrets.<variable-name> }}.

Getting started with GitHub Actions

GitHub Actions is a relatively new feature provided by GitHub that allows you to create workflows to
automate tasks. It can also be used to set up an automated CI and CD pipeline, which is exactly what
we will use it for in this chapter.

Note
You can read more about GitHub Actions in detail here: https://docs.github.com/
en/actions.

https://docs.github.com/en/actions
https://docs.github.com/en/actions

Setting up CI/CD with GitHub Actions 155

Creating a GitHub action is straightforward. All we need to do is, at the root of our project folder,
create a folder called .github/workflows and then a .yaml file. Once pushed to GitHub, it will
automatically detect that you have a workflow file and it will execute it as per the triggers:

1.	 Let's create our .yaml file at .github/workflows/home-build-deploy.yml, and
within it, let’s write the following code:

name: home-build-deploy

on:

  workflow_dispatch:

  push:

    branches:

      - main

    paths:

      - apps/home/**

We will provide a name for our GitHub action; which is what will be shown in GitHub Actions.
Then, we define the triggers, on push: and on:workflow_dispatch. The workflow_
dispatch trigger allows you to manually trigger a pipeline when needed (especially when
testing your pipelines), and as you can see, on push has further options for branches:
main and paths: apps/catalog/**. This means a change to any file within the home
micro-app that is pushed to the main branch will trigger this pipeline. The paths section
is critical to ensure that the pipeline builds and deploys only the changed micro app.

2.	 Now, we need to define the list of jobs that GitHub actions should run; we will do this as follows:

jobs:

  build-and-deploy:

    runs-on: ubuntu-latest

    strategy:

    permissions:

    steps:

For every job we define in the pipeline, we need to define what operating system the DevOps
pipeline needs to run on, any strategies, what permissions to provide, and finally, the steps
that it needs to run.

Now, we will expand into each of these sections.

Deploying Microfrontends to Kubernetes156

3.	 Since the commands to build and deploy the micro apps remain the same, we will use a matrix
strategy that allows us to define variables that can be used later in these steps. Within the strategy
section, write the following code:

strategy:

      fail-fast: false

      matrix:

        include:

          - dockerfile: './apps/home/Dockerfile'

            image: areai51/ebuy-home

            k8sManifestPath: './apps/home/k8s/'

We set the fail-fast option to false so that GitHub action continues to run the pipeline
for the other micro apps, even if one of them fails. Then, we define the matrix of our variables,
which are as follows:

	� Dockerfile: The path to where the micro app’s Dockerfile is located in your code base

	� Image: The path to the Docker image in Docker Hub

	� k8sManifestPath: The location of the Kubernetes manifest files needed to spin up your
micro app pod, services, and ingress

For permissions, we set the following:

    permissions:

      contents: read

      packages: write

We set the contents scope to read and the packages scope to write.

The next series of steps is where the actual work happens.

As we will see, every step has two to three properties – the first is name; then uses, which is the
component that is used to perform the step; and finally, with, which is optional and defines the
additional properties required to perform the step.

All of the code in the following steps will be in the steps: section of the .yml file:

1.	 We start by checking out the repository:

    - name: Checkout Repository

      uses: actions/checkout@v3.3.0

Setting up CI/CD with GitHub Actions 157

2.	 Then, we log in to Docker Hub, passing our username and the access token as the password.
Note that we pass them as secrets, which we defined earlier:

      - name: Login to Docker Hub

        uses: docker/login-action@v2

        with:

          username: ${{ secrets.DOCKERHUB_USERNAME }}

          password: ${{ secrets.DOCKERHUB_TOKEN }}

3.	 In the next step, we extract the git SHA value, which we will use to tag our Docker images:

      - name: Extract git SHA

        id: meta

        uses: docker/metadata-action@v4

        with:

          images: ${{ matrix.image }}

          tags: |

            type=sha

4.	 The next step is the build and push command, where we build the Docker image by passing the
micro app name via the matrix variable, and then we push that build Docker image to Docker
Hub, using the git SHA value as the image tag:

      - name: Build and push micro app docker image

        uses: docker/build-push-action@v4.0.0

        with:

          context: "."

          file: ${{ matrix.dockerfile }}

          push: true

          tags: ${{ steps.meta.outputs.tags }}

5.	 Once the Docker images are pushed to Docker Hub, it’s time for us to set up our Kubernetes
pods and services, for which we first need to set up Kubectl:

      - name: Setup Kubectl

        uses: azure/setup-kubectl@v3

Deploying Microfrontends to Kubernetes158

6.	 First, we log in to Azure using the client ID and client secrets:

      - name: Azure Login

        uses: Azure/login@v1

        with:

          creds: '{"clientId":"${{ secrets.AZ_CLIENT_
ID }}","clientSecret":"${{ secrets.AZ_CLIENT_SECRET
}}","subscriptionId":"${{ secrets.AZ_SUBSCRIPTION_ID
}}","tenantId":"${{ secrets.AZ_TENANT_ID }}"}'

7.	 Next, we set up the Kubernetes context:

      - name: Set K8s Context

        uses: Azure/aks-set-context@v3

        with:

          cluster-name: ebuy

          resource-group: ebuy-rg

8.	 Finally, we run the Kubernetes deploy commands:

      - name: Deploy to K8s

        uses: Azure/k8s-deploy@v4

        with:

          namespace: "default"

          action: deploy

          manifests: |

            ${{ matrix.k8sManifestPath }}

          images: |

            ${{ steps.meta.outputs.tags }}

Once you’ve verified that all the indentation in the file is correct, go ahead and commit the
file to the main branch.

Then, make a small change to any one of the code files within the home app, commit it, and
push it to GitHub. After committing your change, head over to the actions tab at github.
com, and you should be able to see the GitHub pipeline begin to run.

Follow the steps as GitHub Actions goes step by step through the jobs. If there are any errors, the
jobs will fail, so look through the errors and make the necessary fixes. Feel free to seek help from
your friends and the community as you navigate through this critical step, and keep testing until the
pipeline runs successfully.

https://github.com
https://github.com

Setting up CI/CD with GitHub Actions 159

Once the pipeline builds successfully, make copies of the workflow file within the .github/
workflows folder to build and deploy the other micro apps. We will call these files .github/
workflows/catalog-build-deploy.yml and .github/workflows/checkout-
build-deploy.yml.

In the respective files, change all occurrences of the word home to catalog and checkout. For
example, in your catalog-build-deploy.yml file, you will have the following:

name: catalog-build-deploy

on:

  workflow_dispatch:

  push:

    branches:

      - main

    paths:

      - apps/catalog/**

The matrix section under strategies will look as follows:

      matrix:

        include:

          - dockerfile: "./apps/catalog/Dockerfile"

            image: areai51/ebuy-ssr-catalog

            k8sManifestPath: "./apps/catalog/k8s/"

Similarly, the checkout-build-deploy.yml file will have the following changes:

name: checkout-build-deploy

on:

   workflow_dispatch:

  push:

    branches:

      - main

    paths:

      - apps/checkout/**

Also, the matrix section under strategies will be as follows:

      matrix:

        include:

          - dockerfile: "./apps/checkout/Dockerfile"

Deploying Microfrontends to Kubernetes160

            image: areai51/ebuy-ssr-checkout

            k8sManifestPath: "./apps/checkout/k8s/"

Then, make a small change, commit files to the checkout and catalog apps, and verify that only the
relevant pipeline is triggered.

We can also verify the micro app pods have been successfully created within the ebuy-ssr Kubernetes
cluster by running the following kubectl get pods command in the terminal.

If any of the pods don’t show a ready status or have a high restart count, you can look into the pod
logs using the kubectl logs <pod-name> command in the terminal.

With this, we have successfully created our DevOps pipeline using GitHub Actions, where we learned
how to securely save our credentials as GitHub action secrets, created an individual workflow .yml
file for each micro app, and configured it so that they are triggered only when the corresponding
micro app has changed.

While these micro apps are individually running, they will not work with module federation, as the
remotes on Kubernetes are different from what we ran locally. In the next section, we will update the
remotes to ensure that it works on the cloud as well.

Updating the remotes
Once you have your pipelines deployed successfully, log in to portal.azure.com, go to the
Kubernetes services, select your Kubernetes cluster, go to the Services and Ingress link, and note the
external IP address for the service of the micro apps.

You can achieve the same by running the kubectl get services command in the terminal.

Once we have the IP address, we need to update our module federation remotes with the updated URLs.

Now, as you may have figured out, the URLs for our microapps are different locally and on Kubernetes.
Since we want to be able to run our apps locally as well as on Kubernetes, we will need to conditionally
load in the remotes based on whether the app is running in dev or production mode. We do
this as follows:

In the apps/home/next.config.js file within the remotes object, we update the code
as follows:

const remotes = (isServer) => {

  const location = isServer ? "ssr" : "chunks";

  const ENV = process.env.ENV;

https://portal.azure.com

Updating the remotes 161

  const CATALOG_URL_LOCAL = 'http://localhost:3001';

const CHECKOUT_URL_LOCAL = 'http://localhost:3002’;

  const CATALOG_URL_PROD = 'http://<your-k8s-ip-address>’

  const CHECKOUT_URL_PROD = 'http://<your-k8s-ip-address>’

  const CATALOG_REMOTE_HOST = ENV === 'PROD' ? CATALOG_URL_PROD
: CATALOG_URL_LOCAL;

  const CHECKOUT_REMOTE_HOST = ENV === 'PROD' ? CHECKOUT_URL_
PROD : CHECKOUT_URL_LOCAL;

  return {

    catalog: `catalog@${CATALOG_REMOTE_HOST}/_next/
static/${location}/remoteEntry.js`,

    checkout: `checkout@${CHECKOUT_REMOTE_HOST}/_next/
static/${location}/remoteEntry.js`,

  };

};

What we do here is define a new variable called ENV that captures whether the app is running in dev
or prod mode, then we create the consts for LOCAL URL and PROD URLS for our micro apps, and
conditionally set the values of the CATALOG_REMOTE_HOST and CHECKOUT_REMOTE_HOST
values based on the ENV values.

Make the same set of changes to the next.config.js files in the checkout and catalog apps, and
then save the changes.

Now, we can and build the apps locally to verify that things work fine.

Run the pnpm dev command from the root of the project.

Once this works locally, let us commit the changes to Git and let the GitHub actions auto-trigger and
deploy the new apps to our Kubernetes cluster.

Once it’s all done, head over to the URL of the home micro app (http://<your-k8s-ip-
address>/) and verify that the app is working.

Important note
Make sure the catalog and checkout apps are deployed first before the home app pipeline starts. This
is because, in prod mode, the home app now expects the remoteEntry.js files to be present
at the URLs we defined in the CATALOG_URL_PROD and CHECKOUT_URL_PROD constants.

Deploying Microfrontends to Kubernetes162

Summary
And with that, we have come to the end of this chapter. I hope you have been able to follow along and
enjoyed the joys and pains of wearing a DevOps engineer’s hat.

As you can see, we covered a lot in this chapter. We learned about Kubernetes and its various key
components. We saw how you spin up an empty Kubernetes cluster on Azure and learned about
the Kubernetes spec files that deploy our micro apps into a Kubernetes cluster. We learned how to
containerize our micro apps using Docker and how to set up Docker Hub as a remote image repository.
Then, we went through the detailed steps of setting up a CI/CD pipeline using GitHub Actions, and
finally, we made the necessary tweaks to our code base so that we can run our module-federated
microfrontend on Kubernetes. Now that you have managed to complete this chapter, give yourself a
pat on the back and take a well-deserved break before we start with the next chapter, where we will
see how to manage our microfrontend in production.

Part 4:
Managing Microfrontends

This part focuses on managing microfrontends in production, including versioning, feature toggles,
rollbacks, and branching strategies. It provides guidance on operations best practices.

This part has the following chapters:

•	 Chapter 9, Managing Microfrontends in Production

•	 Chapter 10, Common Pitfalls to Avoid When Building Microfrontends

9
Managing Microfrontends

in Production

Being able to develop and test web applications on your local computer is great; however, deploying
them them to production, maintaining them, and releasing new features while your applications are
being visited by hundreds and thousands of visitors takes your software development skills to the
next level. This chapter will cover some of the key concepts around deploying and maintaining your
microfrontends in production.

In this chapter, we will cover the following topics:

•	 Branching strategies

•	 Versioning

•	 Rollback strategies

•	 Feature toggles

By the end of this chapter, you will have taken the first steps toward reliably maintaining your
microfrontend applications in production.

Foundational components for a strong software delivery
model
When it comes to deploying and maintaining applications in production, I recommend using DevOps
Research and Assessment’s (DORA’s) software delivery maturity model to help prioritize areas to
focus on and aspects of your production deployment processes you should optimize.

Managing Microfrontends in Production166

Important note
The software delivery maturity model talks about four key areas—namely, Deployment
frequency, Lead time for changes, Time to restore service, and Change failure rate, and these are
categorized as Elite, High, Medium, and Low. You can read more about this in detail here in the
State of DevOps 2021 report: https://dora.dev/publications/pdf/state-of-
devops-2021.pdf. You can also register and view the rest of the reports at https://
dora.dev/publications/ and https://cloud.google.com/devops/state-
of-devops.

We will look at a couple of key components that help you create the right foundation to ensure you are
able to move up the maturity model as your team gains more confidence in deploying and managing
microfrontends in production.

Branching strategies

In my opinion, the branching strategy is the most critical component that helps you improve the
Deployment frequency and Lead time for changes metrics.

GitFlow and GitHub Flow are two popular branching strategies for Git-based version control systems,
each with its strengths and weaknesses.

GitFlow is a branching model that uses two long-lived branches, main and develop, as well as
feature, release, and hotfix branches.

GitHub Flow, on the other hand, is a simpler and more flexible branching strategy that is suitable
for smaller teams and projects. It revolves around a single main branch, typically master or main,
and encourages developers to make changes in feature branches that are then merged into the main
branch through pull requests.

In our opinion, when working with microfrontends and monorepos, GitHub Flow is the only viable
branching strategy. This is primarily because of the following reasons:

•	 Simplicity: GitHub Flow simplifies the development process by enforcing a single, linear
history on the main branch. Every feature, bug fix, or improvement is developed on a separate
branch created from main, and once ready, it’s merged back into main. There are no long-lived
branches apart from main, avoiding the complications of managing, syncing, and maintaining
multiple long-term branches.

•	 Isolation of changes: In a monorepo, it’s crucial to ensure changes to one project don’t
unintentionally impact another. GitHub Flow’s practice of isolated branches for each new feature
or bug fix aids in containing the scope of changes, reducing the risk of cross-project interference.

•	 Continuous Integration/Continuous Deployment (CI/CD): GitHub Flow is designed with
CD in mind. In monorepos, this can be even more beneficial. Since all projects live within
the same repository, it’s easier to ensure that all changes are tested and deployed consistently.

https://dora.dev/publications/pdf/state-of-devops-2021.pdf
https://dora.dev/publications/pdf/state-of-devops-2021.pdf
https://dora.dev/publications/
https://dora.dev/publications/
https://cloud.google.com/devops/state-of-devops
https://cloud.google.com/devops/state-of-devops

Foundational components for a strong software delivery model 167

•	 Reduced merge conflicts: With a strategy such as Git Flow, where changes are often merged
into develop or release branches before main, there can be significant delays between
when code is written and when it’s deployed. In a fast-paced monorepo, this can lead to complex
merge conflicts. GitHub Flow mitigates this by encouraging frequent merges directly into main.

While working with GitFlow we’ve also seen that it is beneficial to slightly switch how code is merged
to main based on whether you are in active development or post your first production deployment.

During active development

During the active development phase of a project, team members diligently generate feature branches,
merging them back into the main branch only after the pull requests have received the necessary
approvals. It’s common practice, and possibly part of your CI builds, to initiate an array of automated
unit tests on each pull request prior to merging into the main branch. Additionally, a suite of integration
and end-to-end tests are preferably executed on the main branch each night. This routine helps ensure
that any disruptions in the main branch are identified and rectified promptly.

Let us look at the branching and merging workflow with GitHub Flow during active development:

Figure 9.1 – Branching and merging strategy during active development

As you can see, with GitHub Flow, branching and merging is quite straightforward. Developers branch
off the main branch and merge back into main.

After the first release to production

Subsequent to your inaugural production release, the merging strategy undergoes a subtle evolution.
The teams continue to create feature branches off the main branch as before; however, the process
diverges post-feature testing and approval. The tested feature release is rebased with main, tagged
and deployed directly from the feature branch into production. It is only once stability in production
is confirmed that the feature branch is merged into the main branch.

Managing Microfrontends in Production168

The following workflow will help illustrate the process:

Figure 9.2 – Branching and releasing after the first release

As you can see in Figure 9.2, the process to deploy a feature, bug, or hotfix is the same, keeping things
simple. A key step here is to rebase the main branch before you deploy your feature or bug.

Although this may sound unconventional, adhering to this approach has several benefits, as follows:

•	 The main branch perpetually mirrors the stable, current version in production.

•	 The team is given the opportunity to swiftly address and resolve any minor issues encountered
during feature deployment, stabilizing the release prior to its merge into the main branch.

•	 It eliminates the necessity of prohibiting commits to the main branch until the release stabilizes,
an impractical strategy when executing multiple daily deployments.

•	 As the main branch is always in alignment with the current production version, the process
of deploying a feature or hotfix remains consistent.

•	 Since all merges into the main branch are post-release, the likelihood of a disrupted main
branch is significantly reduced. Such disruptions can impede a large development team and
halt further production deployments until the issue is resolved.

In the context of GitHub Flow, it is vital to note the following:

•	 Prior to deploying your feature branch, ensure a final rebase from the main branch. This
ensures that your feature branch encompasses all previous deployments executed while your
feature was in development.

Contrary to popular belief, GitHub Flow development is not exclusive to small 2-3-member teams.
It is, in fact, notably advantageous for large teams operating in small, focused squads or pods.

Foundational components for a strong software delivery model 169

Versioning micro apps

The versioning of applications being deployed to production is standard practice, and there are different
ways of defining versioning strategies. Versioning is important from many aspects; it helps in managing
changelogs and mapping the different features and bugs to a build. It also helps with rollback strategies.

Semantic versioning, also known as SemVer, is a popular technique to define versions. It follows the
format of MAJOR.MINOR.PATCH.

This structure not only helps users to understand the nature of changes in the new release but also
helps with dependency management in software systems.

Our recommended strategy is to use SemVer as a guide. Each micro app should adhere to its own
versioning rules, ensuring that any changes to the application’s public features are reflected in its
version number. A micro app can increment its version number following the MAJOR.MINOR.
PATCH pattern each time there’s a major feature release, minor feature release, or a bug fix change.
We recommend prefixing the app name to the semantic version—for example, catalog-2.8.3
would mean the following:

•	 Micro app name: catalog

•	 Major version: 2

•	 Minor version: 8

•	 Path/bug fix version: 3

For a simple way to manage tagging, whenever you are working on a release, we recommend creating
a release branch such as releases/catalog-2.0.1.

Once the release is tested and ready to deploy, we tag it like so:

•	 git tag catalog-2.0.0

•	 git push origin catalog-2.0.0

With a CI/CD pipeline, we can set it to automatically trigger a deployment to the test environments
whenever a new tag is detected.

Note that while SemVer’s official definition uses the term breaking changes to define a major version,
with microfrontends and module federation we can’t really have a breaking change. Hence for us,
a micro app containing a major feature release would warrant a major version number increment.

A common scenario with multiple micro apps and multiple frequent releases is that it becomes
challenging for everybody in the team to know which version of which micro app is currently in
production. A simple way to solve this is to have a /versions route in every micro app that will
display information such as the current version number, the date of release, the branch it was released
from, and so on. This can be super helpful for developers trying to debug issues in production.

Managing Microfrontends in Production170

Here is an example of information we had on a /versions route:

{

appName: Catalog

branchName: release/catalog-2.0.0

tagName: catalog-2.0.4

deployedDate: Thu 25 May 2023 13:34:04 GMT

}

For a large number of micro apps or frequent releases, manually tagging every version might become
tedious. You might want to consider automating this using a script. Here is an example of a bash script:

Microfrontend names

MICROFRONTENDS=(home catalog checkout)

for i in ${MICROFRONTENDS[@]}

do

  cd apps/$i

  # Fetch latest tags

  git fetch --tags

  # Get latest version from Git

  VERSION=$(git describe --tags `git rev-list --tags --max-
count=1`)

  # Increment version

  npm version patch

  # Add release notes

  git commit -am "Release v$VERSION [skip ci]"

  # Tag commit

  git tag v$VERSION

  # Push changes

  git push --follow-tags origin main

  # Build microfrontend

  pnpm run build

done

In the preceding code, you will notice that the script loops through each micro app in the apps folder,
fetches the latest tags from git using the git describe and git rev-list commands, runs
the npm version command to update the version numbers, and then commits and pushes the
updated tags back to git.

Rolling back a micro app 171

We can also use tools such as semantic-release or standard-version. These tools automate
version management and changelog generation based on commit messages.

Versioning and tagging micro apps is critical to ensure that there is clarity with all stakeholders on
the current status of which version of each micro app is currently in production. As we will see in the
next section, it also plays a critical role in rollback strategies.

Rolling back a micro app
A rollback strategy is a key component to managing any production software. This impacts the Time
to restore service metric.

Rollback strategies for microfrontends center on the ability to revert a specific micro app or the
entire system to a previous stable state when issues arise during or post-deployment. Thanks to the
independence of microfrontends, a rollback doesn’t necessarily affect the entire application but can be
targeted to the problematic component, reducing overall system disruption.

The simplest rollback strategy involves utilizing version control systems such as Git along with CI/CD
pipelines. In this setup, each microfrontend has specific tagged releases, which are stored and can be
redeployed if required. For instance, if the current version of a microfrontend is catalog-1.2.3
and an issue is detected, you can quickly revert to the previous stable version, catalog-1.2.2,
by triggering the corresponding deployment in your CI/CD pipeline.

Additionally, leveraging a blue-green deployment strategy can be effective. In this approach, two
environments—blue and green—are maintained. While one serves live traffic (blue), the other (green) is
idle or being prepared for the next release. If something goes wrong with the green environment post-
deployment, you can quickly switch back to the blue environment, effectively rolling back the changes.

Rollbacks in Kubernetes are straightforward thanks to its declarative nature and built-in versioning
mechanism. When a new deployment is created, Kubernetes automatically versions it and stores its
details. If an issue arises with a new release, you can quickly roll back to a previous version using the
kubectl rollout undo command. For instance, if you find a problem with a deployment named
deployment/catalog, you can roll back using the kubectl rollout undo deployment/
catalog command. Kubernetes will revert the deployment to the previous stable version gracefully
without any downtime, making it a powerful tool for managing rollbacks in microfrontend architectures.

When rolling back a micro app, it is important to be aware of any incompatibilities with backend APIs
and whether the corresponding backend API also needs to be rolled back.

Rollbacks at times can be painful, and the need for rollbacks can be mitigated by releasing new features
or versions of micro apps using feature toggles, which we will see in the next section.

Managing Microfrontends in Production172

Deploying micro apps with feature toggles
Feature toggling, also known as feature flagging, is a powerful technique that allows individual features
to be turned on or off at runtime without requiring a redeployment. This is particularly useful in a
microfrontend architecture, as it enables the independent release and control of micro apps across
multiple micro applications.

With feature toggling, teams can deploy new features to production but have them “hidden” behind
a toggle until they’re ready to be released. This allows for extensive testing in the live environment
and enables progressive delivery techniques such as canary releases or A/B testing. If any issues arise
with the new feature, it can be quickly “switched off ” via the feature toggle, effectively mitigating the
impact without requiring a full rollback or redeployment.

Unleash (https://www.getunleash.io/) is a popular open source tool for feature toggles.

Feature toggles can be used to provide different experiences for different users. For instance, you can
use them to selectively enable features for specific user groups, such as beta testers or premium users.

However, feature toggling needs to be managed carefully to avoid an accumulation of outdated toggles,
which can lead to code complexity and technical debt. Regular audits and cleanup of feature toggles
should be part of the development process.

With this, we come to the end of this section, which covered some of the foundational elements of
managing your microfrontends in production. This goes in conjunction with everything we saw in
the previous chapters about deploying microfrontends to the cloud and eventually helping reduce the
overall stress involved with deploying and maintaining applications in production.

Summary
As we conclude this chapter, let us quickly summarize what we’ve learned so far. We learned about
DORA’s software delivery performance metrics: Deployment frequency, Lead time for changes, Time
to restore service, and Change failure rate. We then had a look at some of the foundational elements
that teams need to focus on to ensure they are set up for success.

We learned about branching strategies and that GitHub Flow is the preferred branching strategy.
We also learned about the nuances of workflows when software is being built versus when it’s deployed.

We learned about the right way to version our micro apps. We also learned about the importance of
rollback strategies and how microfrontends help minimize the blast radius. And finally, we learned
about feature toggles and how we can gradually release new micro apps into production via feature
toggles and, more importantly, if there are any problems.

In the next chapter, we will look at some common pitfalls to avoid when building microfrontends.

https://www.getunleash.io/

10
Common Pitfalls to avoid when

Building Microfrontends

We’ve come a long way! We’ve learned how to build microfrontends, how to deploy them to the native
cloud, and how to manage them in production.

As we start working with microfrontends, we will make mistakes, but we will learn from them and
eventually build our own set of best practices, discovering what works best for our use cases. However,
it is always a smart thing to learn from others’ mistakes as well. In this chapter, we will cover some of
the pitfalls earlier teams faced when working with microfrontends.

We will teach you about some common pitfalls and how to avoid them, which are as follows:

•	 Not making your microapps too small

•	 Avoiding the overuse of common shared code/libraries

•	 Avoiding multiple frameworks within a microfrontend

•	 The inability to deploy individual micro apps

•	 Excessively relying on state

•	 Avoiding build-time compilation to assemble Microfrontends

•	 Avoiding packing your micro apps into NPM packages

By the end of this chapter, you will have learned about the various pitfalls developers fall into when
transitioning from single-page apps to microfrontends.

Common Pitfalls to avoid when Building Microfrontends174

Don’t make your micro apps too small
We touched upon this at the start of the book, but it’s important to stress it again. Way too many
developers think that, in a microfrontend architecture, the micro apps need to be really small. This is
not true, as creating very small microapps greatly increases the complexity and maintenance headaches,
without achieving any benefits.

In trying to identify what the right size is for your micro app, we’ve seen it helps if we take into
consideration the following points:

1.	 Is it the largest possible micro app that can independently exist?

2.	 Is it the largest possible micro app that’s owned by a single agile scrum team?

3.	 Does this app undergo changes and updates that are at a pace different from the rest of
the application?

4.	 Another point to consider is thinking in terms of domains, based on domain-driven design
principles, to determine what business features a given micro app should support or not support.

If your answer to all the preceding questions is yes, then the micro app is the right size. If the answer
is no to any one of the preceding questions, then either we haven’t broken down our micro apps in
the right way or microfrontends may not be the right architectural choice.

Another guide to help identify the right size for your app is to look at the atomic design pattern
(https://bradfrost.com/blog/post/atomic-web-design/), which defines how
components are structured in an application.

Figure 10.1 – Organisms and templates can be converted to micro apps

If you look at the atomic design pattern in Figure 10.1, the ideal level to break down your app into
micro apps would be either at the organism level or the template level; anything other than that would
be either too small or too big.

https://bradfrost.com/blog/post/atomic-web-design/

Avoiding the overuse of Shared Component Code 175

Breaking down the application into the right-sized micro app is key to building a performant and
scalable microfrontend architecture, and investing more time in getting this right will pay high
dividends as we move forward.

Avoiding the overuse of Shared Component Code
When it comes to building microservices or microfrontends, team independence is the highest priority.
Anything that makes a team dependent on another team should be strongly discouraged.

In our experience as software developers, we’ve always come across principles such as reusability,
Do not Repeat Yourself (DRY), and so on. In fact most senior developers are constantly looking
how do they create common utilities, helpers shared components, and so on, to help the teams be
more productive.

However, when it comes to the world of microservices and microfrontends, overuse of these shared
libraries can lead to what is called “dependency hell” or a “distributed monolith,” which is the worst
of both worlds.

This is bad for microfrontends because using shared libraries or code immediately takes away the
independence of teams, as now two or more teams are dependent on updates or bug fixes to be made
for this shared library, in order for them to be able to proceed further.

As more and more teams start using a shared library, it tends to start getting bulkier, as it now needs
to accommodate the use cases of the different teams. There is also a constant risk that changes or
updates to this shared code may break the functionality of one or more teams.

Hence, when it comes to microfrontends, we need to be strict about not falling into this trap. As a
rule of thumb, we should avoid creating any business or application logic as shared common code.
One item that can ideally be shared between micro-apps is the UI component library because we
want to ensure that all micro apps have a consistent look and feel. Another item that can be put into
a shared library is any other low-level utility function that doesn’t contain any business logic. Some
examples of these would be an HTTP client, an error-handling utility, or other utilities to format
dates or manipulate strings.

Remember that with monorepos, it’s a lot easier to “find and replace” than to deal with the challenges
of a distributed monolith.

While initially the whole idea of prioritizing team independence over code reuse may sound like an
anti-pattern and not a smart thing to do, speaking from experience, this is the second most important
point to keep in mind when you want your teams to move fast and frequently deploy code to production.

Common Pitfalls to avoid when Building Microfrontends176

Avoiding using multiple frameworks in your
microfrontend
One of the benefits of microfrontends is that, technically, it’s possible to have each app built using a
different framework. However, just because it’s possible doesn’t mean you have to. There are numerous
drawbacks to using multiple frameworks within a single microfrontend:

•	 The cognitive overload for team members as they potentially switch from one team to the other
over time is very high.

•	 Since every framework comes with its own JavaScript bundle, and since every framework
will have a different set of NPM modules that the team uses, the amount of JavaScript code
transferred to the user’s devices will be high. Therefore, we will not be able to take full advantage
of browser caching or service worker caching, since each app uses its own bundle.

•	 Different frameworks will have different performance challenges and issues, and each team
will have to deal with them individually and not be able to use the collective knowledge within
the broader team.

Having said that, it is fine to have multiple frameworks or multiple versions of them for a short
transitional phase when you evaluate a new framework or incrementally upgrade to a newer version.
Overall, though, having multiple frameworks as an architecture principle should be avoided.

An inability to deploy an individual micro app
One of the primary reasons to adopt a microfrontend architecture is to allow certain parts of an
application to be independently updated without impacting the rest of it.

This obviously means that we need the ability to build and deploy each micro app independently. If
your DevOps build and release pipeline can’t do this, then it’s better to go with Single-Page Application
(SPA) architecture.

In the past, many DevOps tools weren’t sophisticated enough to work with monorepos or microfrontends;
however, most of the latest tools are better equipped to detect which folders have changed and only
trigger the necessary app builds.

Hence, when working on a microfrontend architecture, it is critical that you’ve thought it through
and through, including how it will be deployed, as this will impact the choice of tools you select for
the DevOps pipeline or the monorepo.

For example, if your DevOps pipelines can be conditionally triggered based on which micro app has
changed, then you are free to choose any monorepo tool.

Excessively relying on state 177

However, if your DevOps pipeline is unable to detect changes, or if you are limited to a single pipeline
for all your microfrontends, then going with a mono repo tool such as Nx, which has built-in change
detection, would be more suitable.

Excessively relying on state
With the advent of React, state management became a thing, and with it rose the popularity of tools
such as Redux that advocated a single central data store to manage state. Over time, developers seem
to have become obsessed with state management, relying far too much on these state management
libraries. When developers make the shift from SPAs to microfrontends, they continue their obsession
with state and spend a lot of time trying to persist state, making it work across different micro apps.
With SPAs and also microfrontends, it is important to sparingly use these application-level states.
When working with microfrontends, we encourage exploring concepts around Pub/Sub or an event
emitter approach to sharing data between different micro apps. Alternatively, look at native browser
data stores, such as session storage, IndexedDB, or local storage to manage persistent state, or if none
of these is an option, then explore lightweight state management libraries such as Zustand or React’s
Context API.

As you may have realized by now, when building microfrontends, there is a fair bit of unlearning and
relearning involved, especially if you have been building SPAs for a while. The use of state management
in microfrontends is something that needs to be understood and is also the most difficult change that
some developers occasionally have to deal with, especially those who have got used to excessively
relying on state.

Avoiding build-time compilation to assemble
Microfrontends
There is a current trend in the frontend community to move as many tasks as possible to the build
time phase of application compilation, rather than the runtime. Good examples of these are static site
generation, where the HTML pages are generated at build time, or Ahead of Time (AoT) compilation
in Angular, which improves the overall performance of an application.

While, in general, build-time compilation is a good practice, reducing the load on the browser and
JavaScript engines during the runtime phase, it doesn’t help when assembling the microfrontend.
This is because every time any microfrontend changes, you need to rebuild the assembly layer as well,
defeating the principle of independent micro app deployments.

We can choose to have individual micro apps do more work during build time (e.g., generate static
pages), but the assembling of micro apps or module federation should always be done on the server
or at runtime.

Common Pitfalls to avoid when Building Microfrontends178

This is another key point to keep in mind to ensure we don’t blindly follow “popular trends.” It is
important to always remember what the key principles of your architecture pattern are and that you’ve
thought through your pattern, end to end and all the way to how it will be deployed into production.

Avoiding packing your micro apps into NPM packages
Another common trend within the SPA world is to convert any sharable modules into NPM packages
for easier distribution and then import them into other apps.

In our experience, we have seen a few teams package and version their micro apps into NPM modules
before importing them into the host or assembly app. We strongly discourage this practice for the
primary reason that every time a new version of a micro app is published as an npm module, all the hosts
using that micro app will need to update their package.json files and rebuild and redeploy their
apps, defeating the primary principle of independent deployments. We covered this in a bit of detail in
Chapter 2, Key Principles and Components of Microfrontends, in the Prefer runtime integrations section.

Summary
With this, we come to the end of this chapter. Being a relatively new architecture pattern, the concepts
and best practices around microfrontends are constantly evolving.

In this chapter, we saw some of the common pitfalls that teams have fallen into while building
microfrontends – namely, things such as not being able to identify the right level at which to break
down an app into a micro app, overuse of state management libraries, using multiple frameworks
within a micro app, the inability to individually deploy a micro app, overuse of shared common code,
and ending up with a build-time integration. Hopefully, this chapter will prevent you from repeating
the same mistakes your peers have made in the past.

Another important point to remember is to understand the reasoning behind these best practices,
looking at them through the lens of your specific use case. Follow the best practices that apply to your
use case and tweak the ones that don’t quite fit it.

As the famous saying goes, “The answer to every architecture question is… it depends.”

In the next chapter, we will look at some of the emerging trends in the world of microfrontends that
you should keep an eye on.

Part 5:
Emerging Trends

This part explores the microfrontend landscape and analyzes bleeding-edge techniques and technologies
applicable to microfrontends, such as generative AI, edge functions, and the island architecture pattern.

This part has the following chapter:

•	 Chapter 11, Latest Trends in Microfrontends

11
Latest Trends in
Microfrontends

The world of frontend engineering is constantly evolving, and as we go about building microfrontends
following the currently available tools, approaches, and best practices, it is important to keep an eye
on the latest trends that are evolving in this space and keep exploring and experimenting with them
to see how they can help us become more efficient and build better apps.

In this chapter, we will cover some trends that can influence how we build microfrontends in the
future. Some of the trends we will explore are the following:

•	 The name microfrontends itself and what is a better term for it

•	 The island pattern of mixing static content with dynamic content

•	 Looking at other build tools beyond Webpack

•	 WebAssembly

•	 Cloud or edge functions

•	 How generative AI can influence our work

By the end of this chapter, we will have learned about the latest trends in the frontend engineering
space that impact how we build microfrontends.

Microfrontends – decoupled modular frontends
The term microfrontends has obviously become very popular, and this entire book uses it, but to be
honest, I’ve always felt it was poorly coined and unfortunately, it has stuck within the community.
As mentioned a couple of times, the word microfrontend has led to a lot of misinterpretation, leading
to bad architectural patterns that cause more harm than good. A new proposal has been put forward
to start calling them composable decoupled frontends (https://microfrontend.dev/),
which I think is apt and clearly explains the intent and purpose of what we are building. I really hope

https://microfrontend.dev/

Latest Trends in Microfrontends182

the community starts picking this term up and that we collectively all start moving to building and
calling microfrontends what they really are and defining what they are really supposed to do.

I’m sure many of you will wonder how simply changing the name helps and what’s really in a name;
however, I feel that, in this case, a name that clearly articulates the architecture pattern greatly
reduces the misconceptions, misinterpretation, and complications arising from wrongly architected
systems. As you will have realized through the course of this book, it is all about building modular
applications that are decoupled from each other and hence they should be rightfully called Decoupled
Modular Frontends.

The island pattern
Statically generated pages are gaining a lot of popularity as they ship very little to no JavaScript;
however, the challenge with them has always been on how to serve dynamic content.

The island pattern aims to solve this problem. It was made popular by the Astro build framework,
wherein we have our application published as a set of statically generated HTML pages, within which
the dynamic parts of the page are imported as islands.

Here is an example of how this can be achieved using Astro, a popular framework for building statically
generated sites.

You can read more about this at https://docs.astro.build/en/concepts/islands/:

//index file

// Example: Use a dynamic React component on the page.

import MyReactComponent from '../components/MyReactComponent.
jsx';

<!-- This component is now interactive on the page!

     The rest of your website remains static and zero JS. -->

<MyReactComponent client:load />

Run the Astro build command, test the app locally, and look into your Inspect command; you will
notice that while the rest of the page is plain HTML with little to no JavaScript, MyReactComponent
is a small JavaScript element and executes on the client side.

As you can see, with the island pattern, we get a clear distinction between static and dynamic content
with the potential added benefit of not being locked down to a single framework for all parts of
the application.

https://docs.astro.build/en/concepts/islands/

Beyond Webpack with ES Modules 183

Having said that, there are a few differences between the island pattern and microfrontends, including
the following:

•	 Islands in Astro are components that are hydrated/rendered on the client side, while microfrontends
are independent applications with their own code bases, routing, and backends. Microfrontends
are more isolated and decoupled.

•	 Astro builds the entire app and islands at build time. Microfrontends are built and deployed
independently. Astro has a unified build, while microfrontends can have separate builds.

•	 Routing in Astro happens in the shell, while each microfrontend manages its own routing.
Astro islands don’t have independent routing.

•	 Astro islands can communicate with each other via Astro integration, while microfrontends
typically communicate via well-defined APIs and events. Islands have tighter coupling and
integration with the Astro app.

Beyond Webpack with ES Modules
With the dawn of JavaScript-based frameworks, Webpack rose in popularity, and it became the de facto
module bundler for all JavaScript frameworks. However, bundling/compiling large applications with
Webpack can be very slow, and manually configuring it to efficiently bundle an app is very complex.
Recently, a new breed of bundler tools that takes advantage of ES modules has taken the frontend
world by storm, promising compilation over 20 times faster than Webpack.

ES modules are a standardized way to define and import modules in JavaScript. They allow for modular
code organization, which can make it easier to develop and maintain large applications. ES modules
also provide a clear and explicit syntax for importing and exporting code, making it easier to reason
about the dependencies between different modules.

Each of our micro apps can be exported as ES modules, and by using dynamic imports, we can embed
them into our host application.

The entire microfrontend application can be bundled using an ES build-based module bundler such as
Vite (https://vitejs.dev/). Monorepo frameworks such as Nx allow you to easily configure
using Vite as your module bundler.

We can scaffold out a React app using Vite as follows:

pnpm create vite microfrontend-app --template react

Here is a rough example of how this can be achieved:

// Catalog App

function CatalogApp() {

  return <h1>Hello World</h1>;

https://vitejs.dev/

Latest Trends in Microfrontends184

}

export default CatalogApp;

In the host app, we use the classic React suspense and lazy functions to load in CatalogApp
at runtime:

// Host App

import React, { lazy, Suspense } from 'react';

const CatalogApp = lazy(() => import('./catalog'));

function App() {

  return (

    <>

      <Suspense fallback={<div>Loading...</div>}>

        <CatalogApp />

      </Suspense>

    </>

  );

}

As you will have noticed, we have managed to get our app working without using Webpack or Webpack’s
module federation, and I’m sure you will also notice how fast the app builds after any changes that
you make.

We believe ES modules and ES build systems will soon replace Webpack to become the de facto tools
of choice for building all modern frontends. What is also interesting to note is that while React’s lazy
and suspense functions are commonly thought of as performance optimization techniques, we
take advantage of their ability to load modules in real time to build microfrontends.

Using WebAssembly Modules
WebAssembly (Wasm) has been around for many years now. Despite its huge benefits in terms of
performance and low bundle size, it hasn’t gained much popularity, primarily because it wasn’t easy for
developers to build a WASM module. However, now that people are starting to work with tools such as
Rust, it gets fairly easy to build WebAssembly modules with Rust. We anticipate that WebAssembly will
become mainstream when building applications that require a high level of computation on the browser.

WASM modules can work really well in a microfrontend architecture, where the critical compute-
intensive modules are built in WASM wrapped as a micro app and imported into a microfrontend
architecture in which the rest of the micro apps in the microfrontend are built using the standard React.

Using WebAssembly Modules 185

Here is a rough approach of how you could set this up in your module federated Next.js app. Use
our module federation code from Chapter 6. First build a Rust app using wasm_bindgen within a
/rust folder.

To compile the rust app to wasm we need to install the wasm-pack-plugin as using pnpm install
@wasm-tool/wasm-pack-plugin and use it in the next.config.js configuration as follows:

const NextFederationPlugin = require("@module-federation/
nextjs-mf");

const WasmPackPlugin = require('@wasm-tool/wasm-pack-plugin');

const path= require("path")

const remotes = (isServer) => {

  const location = isServer ? "ssr" : "chunks";

  return {

    catalog: `catalog@http://localhost:3001/_next/
static/${location}/remoteEntry.js`,

  };

};

module.exports = {

  webpack(config, options) {

    config.plugins.push(

      new WasmPackPlugin({

        crateDirectory: ('./rust'),

    }),

      new NextFederationPlugin({

        name: "catalog",

        filename: "static/chunks/remoteEntry.js",

        exposes: {

          "./Module": "./pages/index.tsx",

        },

        remotes: remotes(options.isServer),

        shared: {},

        extraOptions: {

          automaticAsyncBoundary: true,

        },

      

Latest Trends in Microfrontends186

  

      })

    );

    config.experiments = {

      syncWebAssembly: true,

    };

    config.module.rules.push({

      test: /\.wasm$/,

      type: 'webassembly/sync',

    });

    return config;

  },

};

Then using dynamic imports, import the wasm module into the index page of the remote app. And
finally using the approaches we used in Chapter 6 import the remote app into the host app.

WASM is already being used in some very popular web-based tools such as Figma, AutoCAD, Google
Earth, the Unity game engine, and so on. Combining WebAssembly modules with microfrontends
helps bring the best of both worlds: the power and performance of WASM, and the ease of use and
modularity of microfrontends.

Edge Functions or Cloud functions
Edge functions are gaining a lot of popularity, as they provide the power to compute on the edge. Think
of them like a Content Delivery Network (CDN) but with the power and ability to run computations.

The primary benefits of edge functions are that they provide very low latency, which greatly helps
improve performance, and they use an automatic distributed deployment, which mitigates single
points of failure and helps improve scalability.

Edge functions and microfrontends work quite well hand in hand, where you can have each micro
app deployed within a cloud function; this automatically allows for modular deployments, and each
team can manage its cloud functions independently.

Cloudflare is one of the most popular providers that support cloud functions. Cloudflare Workers
and most recently Cloudflare Pages support computing on the edge. Here is an example of how to
deploy a Next.js App on Cloudflare Pages using Edge Runtime.

Generative AI and Microfrontends 187

1.	 Start with any of the existing Next.js apps we’ve built.

npm install --save-dev @cloudflare/next-on-pages

2.	 Commit your changes and push them into a Git repo.

3.	 Login into the Cloudflare dashboard and go to Workers & Pages | Create Application | Pages
| Connect to Git.

4.	 4. Select the repo where you pushed the code and in the Setup builds and deployments, select
Next.js as your Framework. Leave the rest of the settings as default.

Next we need to set the Compatibility Flags which we do by going into the Pages | Settings | Functions
| Compatibility Flags. And we need to set the value to nodejs_compat.

From the Deployment Details section go to the Manage Deployment and select Retry deployment
from the dropdown.

Thanks to the low costs and ease of deployments, we believe there is a great potential to deploy all
frontend applications, irrespective of whether they are microfrontends or not, on platforms such as
Vercel, Cloudflare, Fastly, and so on.

Most edge function providers have very good support for the JavaScript ecosystem; however, it is
important to keep in mind that based on the vendor/platform you are working on, there may be certain
restrictions. For example, Cloudflare limits the size of each worker to be under 1 MB, or it explicitly
supports package versions that are compatible with the broader Node.js runtime environments.
For Cloudflare, you can read more about Node.js compatibility here: https://developers.
cloudflare.com/pages/framework-guides/.

Generative AI and Microfrontends
Generative AI has clearly taken the world by storm. We are seeing amazing examples of generative
AI being able to generate complete end-to-end applications.

When it comes to building microfrontends, it will be very interesting to see how things evolve. While
I believe generative AI can’t take over a developer’s job, I do see interesting use cases of how generative
AI can work hand in hand with microfrontends in building unique customer experiences.

Generative AI can be leveraged to dynamically generate and assemble various parts of a web application.
By intelligently analyzing user behavior, preferences, and real-time context, AI can create microfrontends
that are tailor-made for individual users, resulting in a highly personalized and optimized user
experience. This approach also simplifies the development process by allowing developers to focus
on creating modular, composable micro apps, while the AI system takes care of the overall assembly
and rendering of the web application.

https://developers.cloudflare.com/pages/framework-guides/
https://developers.cloudflare.com/pages/framework-guides/

Latest Trends in Microfrontends188

New AI-powered tools such as GPT-Engineer, smol-ai, and Auto-GPT are emerging, which allow
developers to describe application requirements using plain text or Markdown. These tools then scaffold
and generate code for the full application based on the developer’s specifications. This removes the
need for manually writing all of the code, and instead, lets the AI handle much of the initial setup.
These kinds of AI developer assistants are still at quite an early stage; developers will need to learn
skills such as crafting effective prompts to get the most consistent and accurate results from the AI,
but the potential is there for AI to significantly enhance and accelerate development workflows. The
key will be continuing to improve the AI’s code generation abilities while also helping developers
provide the right input and guidance.

The use of AI in microfrontends can lead to more efficient resource utilization and improved
performance, as the system can adaptively load and unload components based on user interactions
and needs. This innovative integration of AI and microfrontends has the potential to revolutionize
the way web applications are designed, developed, and delivered to users.

Summary
With this, we have come to the end of this chapter and the book. We really hope you’ve enjoyed
the journey.

In this chapter, we looked at a few new trends that will influence the way we build and deploy
microfrontends. We saw how concepts such as the island pattern can help interlace dynamic content
blocks within a statically generated multipage app. We saw how the new Rust-based bundler can be
many times faster than Webpack. We learned about WebAssembly and how it can be used within
microfrontends, and finally, we looked at cloud functions, which have the potential to become the
default solution for deploying all modern frontend applications.

I’m truly excited about how quickly technology is evolving and how it affects the way we build our
applications. I can’t wait to see you go out in the wild and build things that make this world a better place.

In closing, it is essential to remember that the world of microfrontends, much like our dynamic
digital landscape, is in a constant state of evolution. The concepts, techniques, and technologies we
have unraveled throughout this journey, such as Module Federation and the intriguing practice of
deploying microfrontends to the cloud, are just the beginning of this ever-evolving tapestry. They
provide us with the building blocks to construct high-performing, scalable, and maintainable frontend
architectures. Yet, the future beckons with promises of newer trends and advancements that will
continue to redefine the horizon.

I encourage you, the next generation of developers, to step into this exciting journey and build upon
the foundational knowledge this book has attempted to provide. Challenge the status quo, experiment
with the latest trends, and mold them to fit the unique demands of your projects. It’s a grand time to
be a frontend engineer, and the world awaits the innovative solutions you will create using React and
microfrontends. Remember, every line of code you write is an opportunity to improve, innovate, and
inspire. So, go forth and build for the future.

Index

A
Ahead of Time (AoT) compilation 177
apps

deploying, to Firebase 128-130
atomic design

reference link 174
Azure

managed Kubernetes Cluster,
setting up on 149

Azure CLI
Kubernetes cluster, accessing via 152

Azure Kubernetes Service (AKS) 150
Azure portal

logging into 150, 151
subscription key, setting up 150, 151

B
Binary Large Objects (Blobss) 122
blob storage 122
branching strategies 166, 167

and releasing after first release 167, 168
during active development 167

build time compilation
avoiding, to assemble

microfrontends 177, 178

C
catalog app

running, locally 38
checkout components

adding 57-62
checkout micro app

creating 112-114
host app, setting up 114-117

CI/CD
setting up, with GitHub Actions 153

Client-Side-Rendered (CSR) 8, 99, 101
drawbacks 101
versus Server-Side-Rendered (SSR) 100

Cloud functions 186, 187
CODEOWNERS 31

reference link 40
component library 25
composable decoupled frontends 181
Content Delivery Network (CDN) 122, 186
Content Management System (CMS) 12
CORS issues

fixing 131, 132
Cross-Origin Resource Sharing (CORS) 130

Index190

D
decoupled modular frontends 181, 182
dependency hell 175
DevOps pipelines

credentials, generating 152, 153
DevOps Research and Assessment’s

(DORA’s) 165
distributed monolith 175
Docker

creating 142-144
installing 141
standalone app builds, creating 141, 142
used, for containerizing micro-apps 141

Docker Hub
setting up, to store Docker images 145, 146

Domain Driven Design 20
domain driven team 20
Don't repeat yourself (DRY) 22, 175

E
edge functions 186, 187
ES Modules

Webpack with 183, 184

F
feature toggles

micro app, deploying with 172
Firebase

apps, deploying to 128-130
deploying, selected target of micro-apps 132
project, setting up with multiple sites 124
setting up 123
URL 123

Firebase CLI
configuring 124, 125
installing 124, 125

Firebase Hosting
reference link 124

foundational components, software
delivery model 165, 166

branching strategies 166
micro apps, versioning 169, 170

G
generative AI 187, 188
GitHub Actions

used, for setting up CI/CD 153
working with 154-160

GitHub Flow
advantages 166, 167

GitHub secrets
setting up 154

Global Shared State
setting up 63-72

Google Kubernetes Engine (GKE) 150

H
Hello World, with microfrontends 13-17

I
island pattern 182, 183

K
Kubernetes cluster

accessing, via Azure CLI 152

Index 191

 Kubernetes (K8s) 138, 139
architecture, for microfrontends 140
concepts 139
configuration file, creating 146

Kubernetes spec file
creating, to deploy microfrontends 146-149
structure 146

L
Largest Contentful Paint (LCP) 99
Lerna 34

M
managed Kubernetes Cluster

setting up, on Azure 149
micro apps

deploying 132
deploying, inability 176
deploying, with feature toggles 172
checkout micro app, creating 112-114
containerizing, with Docker 141
creating, with Nx Console 39, 40
host app, setting up 114-117
Module Federation, setting up 111, 112
Next.js 105-110
NPM packages, avoiding for 178
rolling back 171
setting up 105

micro apps pattern 10, 11
Module Federation, extending 87, 88
Recommendations as Remote app

to Catalog, adding 89, 90
Recommendations Remote Micro

app, creating 88, 89

microfrontend patterns 8
considerations 12
Hello World 13-17
micro apps pattern 10, 11
multi-SPA pattern 8, 9
selection guidelines 12

Microfrontend Production build
creating 125-127

microfrontends 3, 19, 181, 182, 187, 188
benefits 6-8
defining 5
Kubernetes architecture 140
Kubernetes spec file, creating

to deploy 146-149
microfrontend premium 5, 6

microfrontends, key components 24
communication channel 24
component library 25
global state 24
routing engine 24
source code version control 25

microfrontends, key principles 19
culture of automation, and DevOps 23
distributed monolith, avoiding 22
domain-driven teams 20
granular scaling 23
independent deployment 21
isolating failures 21
runtime integrations, preferring 21
technology agnostic 22, 23

microfrontends, with Host app
app-shell host app, setting up 79-81
clean up 79
setting up 78, 79

microfrontends, with Remote app
setting up 78-87

Index192

mini-apps
setting up 48-50

mocked product list
setting up 56, 57

Module Federation 75
extending, to micro-app pattern 87, 88
host app 76
plugin 75
remote app 76
remoteEntry.js 77
setting up 111, 112

Module Federation, for microfrontends
need for 74

monorepos 25, 28, 29
permissions, setting 40, 41
selecting, for microfrontends 33
selecting, reasons 33
setup 29
versus polyrepos 30

monorepo tools
Lerna 34
Nx 34
Turborepo 34

Multi-Page App (MPA) 9
multiple frameworks

avoiding, in microfrontend 176
multi-SPA architecture pattern 46, 47
multi-SPA microfrontend

building 47
checkout components, adding 57-62
Global Shared State, setting up 63-72
mini-apps, setting up 48-50
mocked product list, setting up 56, 57
product grid, adding 57-62
routing, setting up 54-56
shared component library, using 50-54

multi-SPA pattern 8, 9

N
Next.js

pages and components, creating 105-110
versus Turborepo 105

NPM packages
avoiding, for micro apps 178

Nx 34
nx affected command 133, 134

reference link 133
Nx Console 37

used, for creating micro-apps 39, 40
Nx custom command executor

creating, to deploy 134-136
reference link 134

Nx monorepos
catalog app, running locally 38
setting up 35-38

P
permissions

setting, in monorepo 40, 41
polyrepos 25, 28, 29

disadvantage 31
setup 30
versus monorepos 30

polyrepos, versus monorepos
build tools and quality gates 31
code base size 32, 33
code ownership 31
flexibility 32
ownership of upgrade libraries 32
refactoring code 32
team Collaboration 31

product grid
adding 57-62

Index 193

R
remotes

updating 160, 161
resource group 150
reusability 175
right-sized micro app

building 174, 175
building, consideration 174

routing
setting up 54-56

routing engine 24

S
semantic versioning (SemVer) 169
server side rendered microfrontend

building 103
Next.js 103
Turborepo 103, 104

Server-Side-Rendered (SSR) 8, 99, 102, 123
building, approaches 103
versus Client-Side-Rendered (CSR) 100

Shared Component Code
overuse, avoiding 175

shared component library
using 50-54

Single-Page Application (SPA) 21, 176
software delivery model

foundational components 165, 166
state management 177
state management, with Module

Federation 90-94
Like button, adding on host app 94, 95
unnecessary re-rendering, avoiding 96, 97

static storage 122, 123

T
Turborepo

advantage 34
versus Next.js 105

U
Unleash

reference link 172

V
Vite

URL 183
VS Code feature

reference link 37

W
WebAssembly (Wasm) 184

module, using 184
Webpack

with ES Modules 183, 184

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com

http://packtpub.com
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

React Key Concepts

Maximilian Schwarzmüller

ISBN: 978-1-80323-450-2

•	 Build modern, user-friendly, and reactive web apps

•	 Create components and utilize props to pass data between them

•	 Handle events, perform state updates, and manage conditional content

•	 Apply styles dynamically and conditionally to create a modern UI

•	 Use advanced state management techniques such as React’s context API

•	 Utilize React router to render different pages for different URLs

•	 Understand key best practices and optimization opportunities

https://www.packtpub.com/product/react-key-concepts/9781803234502

197Other Books You May Enjoy

React 18 Design Patterns and Best Practices - Fourth Edition

Carlos Santana Roldán

ISBN: 978-1-80323-310-9

•	 Get familiar with the new React 18 and Node 19 features

•	 Explore TypeScript’s basic and advanced capabilities

•	 Make components communicate with each other by applying various patterns and techniques

•	 Dive into MonoRepo architecture

•	 Use server-side rendering to make applications load faster

•	 Write a comprehensive set of tests to create robust and maintainable code

•	 Build high-performing applications by styling and optimizing React components

https://www.packtpub.com/product/react-18-design-patterns-and-best-practices-fourth-edition/9781803233109

198

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Building Micro Frontends with React 18, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-804-61096-8
https://packt.link/r/1-804-61096-8

199

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610961

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804610961

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Introduction to Microfrontends
	Chapter 1: Introducing Microfrontends
	Technical requirements
	Defining Microfrontends
	Understanding the Microfrontend Premium
	Exploring the benefits of Microfrontends

	Understanding Microfrontend patterns
	The Multi-SPA Pattern
	The Micro Apps Pattern

	Choosing a suitable pattern
	Team Composition
	Frequency of Deployments

	Hello World with Microfrontends
	Summary

	Chapter 2: Key Principles and Components of Microfrontends
	Understanding the Key Principles
	Domain Driven Teams
	Isolating Failure
	Deploying Independently
	Preferring Runtime Integrations
	Avoiding the “Distributed Monolith” trap
	Technology agnostic
	Granular Scaling
	Culture of Automation and DevOps

	The key Components of a Microfrontend Architecture
	Routing Engine
	A global state and a Communication Channel
	Source code Version Control
	A Component Library

	Summary

	Chapter 3: Monorepos versus Polyrepos for Microfrontends
	Technical requirements
	Repo types and their nuances
	Monorepos
	Polyrepos
	Differences between Polyrepos and Monorepos

	Choosing Monorepos for Microfrontends
	Popular Monorepo tools

	Setting up our Monorepo
	Running the app locally
	Creating a new app with Nx Console
	Setting permissions in your Monorepo

	Summary

	Part 2:
Architecting Microfrontends
	Chapter 4: Implementing the Multi-SPA Pattern for Microfrontends
	Technical requirements
	Understanding the multi-SPA architecture
	Building our Multi-SPA Microfrontend
	Setting up our mini-apps
	Using a shared component library
	Setting up Routing
	Setting up a mocked product list
	Adding the product grid and checkout components
	Setting up a Global Shared State

	Summary

	Chapter 5: Implementing the Micro-Apps Pattern for Microfrontends
	Technical requirements
	Why do we need Module Federation for Microfrontends?
	What is Module Federation?
	ModuleFederationPlugin
	Host apps
	Remote Apps
	remoteEntry.js

	Setting up Microfrontends with a Host and Remote app
	Clean up
	Setting up the App-shell host app
	Setting up our Remote apps

	Extending Module Federation to a true Micro-apps Pattern
	Creating the Recommendations Remote Micro app
	Adding Recommendations as a Remote app to Catalog

	State management with Module Federation
	Adding the Like button to the host app
	Avoiding Unnecessary Re-rendering

	Summary

	Chapter 6: Server-Rendered Microfrontends
	Technical requirements
	How do Client Rendered and Server Rendered Apps differ?
	Client Side Rendered Apps (CSR)
	Server Side Rendered Apps (SSR)

	Building out our Server Rendered Microfrontend
	Getting started with Turborepo and Next.js
	Setting up our Micro Apps

	Summary

	Part 3:
Deploying Microfrontends
	Chapter 7: Deploying Microfrontends
to Static Storage
	Technical requirements
	What is Static Storage?
	Setting up Firebase
	Setting up a project with multiple sites
	Installing and configuring the Firebase CLI

	Creating the Microfrontend Production build
	Deploying our Apps to Firebase
	Fixing CORS issues
	Deploying only the selected target

	Deploying only Micro Apps that changed
	NX Affected
	Creating an Nx custom command executor to deploy

	Summary

	Chapter 8: Deploying Microfrontends
to Kubernetes
	Technical requirements
	Introduction to Kubernetes
	What is Kubernetes?
	Key concepts of Kubernetes
	Kubernetes architecture for microfrontends

	Containerizing our micro-apps with Docker
	Installing Docker
	Creating standalone app builds
	Creating a Dockerfile
	Setting up Docker Hub to store Docker images

	Creating a Kubernetes configuration file
	The structure of a Kubernetes spec file
	Creating spec files to deploy our microfrontends

	Setting up a managed Kubernetes Cluster on Azure
	Logging into the Azure portal and setting up a subscription key
	Accessing your Kubernetes cluster via the Azure CLI
	Generating credentials for your DevOps pipelines

	Setting up CI/CD with GitHub Actions
	Setting up GitHub secrets
	Getting started with GitHub Actions

	Updating the remotes
	Summary

	Part 4:
Managing Microfrontends
	Chapter 9: Managing Microfrontends
in Production
	Foundational components for a strong software delivery model
	Branching strategies
	Versioning micro apps

	Rolling back a micro app
	Deploying micro apps with feature toggles
	Summary

	Chapter 10: Common Pitfalls to avoid when Building Microfrontends
	Don’t make your micro apps too small
	Avoiding the overuse of Shared Component Code
	Avoiding using multiple frameworks in your microfrontend
	An inability to deploy an individual micro app
	Excessively relying on state
	Avoiding build-time compilation to assemble Microfrontends
	Avoiding packing your micro apps into NPM packages
	Summary

	Part 5:
Emerging Trends
	Chapter 11: Latest Trends in
Microfrontends
	Microfrontends – decoupled modular frontends
	The island pattern
	Beyond Webpack with ES Modules
	Using WebAssembly Modules
	Edge Functions or Cloud functions
	Generative AI and Microfrontends
	Summary

	Index
	Other Books You May Enjoy

