FINITE ELEMENT
ANALYSIS

A PRIMER

SECOND EDITION

SARHAN M. Musa



FINITE ELEMENT
ANALYSIS

Second Edition



LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants permission
to use the contents contained herein, but does not give you the right of ownership to any of
the textual content in the book or ownership to any of the information or products contained
in it. This license does not permit uploading of the Work onto the Internet or on a network (of
any kind) without the written consent of the Publisher. Duplication or dissemination of any
text, code, simulations, images, etc. contained herein is limited to and subject to licensing
terms for the respective products, and permission must be obtained from the Publisher or
the owner of the content, etc., in order to reproduce or network any portion of the textual
material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in
the creation, writing, or production of the companion disc, accompanying algorithms, code,
or computer programs (“the software”), and any accompanying Web site or software of the
Work, cannot and do not warrant the performance or results that might be obtained by
using the contents of the Work. The author, developers, and the Publisher have used their
best efforts to insure the accuracy and functionality of the textual material and/or programs
contained in this package; we, however, make no warranty of any kind, express or implied,
regarding the performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due to faulty
workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved
in the composition, production, and manufacturing of this work will not be liable for dam-
ages of any kind arising out of the use of (or the inability to use) the algorithms, source code,
computer programs, or textual material contained in this publication. This includes, but is not
limited to, loss of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

Images of ANSYS menus, dialog boxes and plots are copyright of ANSYS Incorporation,
United States of America and have been used with prior consent. Commercial software
name, company name, other product trademarks, registered trademark logos are the proper-
ties of the ANSYS Incorporation, U.S.A.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the
book, and only at the discretion of the Publisher. The use of “implied warranty” and certain
“exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at
info@merclearning.com.



FINITE ELEMENT
ANALYSIS

A Primer

Second Edition

SARHAN M. Musa
(Prairie View A & M University)

»

MERCURY LEARNING AND INFORMATION
Boston, Massachusetts



Copyright ©2024 by MERCURY LEARNING AND INFORMATION. An Imprint of DeGruyter Inc. All rights reserved.
Reprinted and revised with permission.

Original title and copyright: A Primer on Finite Element Analysis.
Copyright © 2011 by Laxmi Publications Pvt. Ltd. All rights reserved. ISBN : 978-93-81159-10-1

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in
a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display,
including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission
in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
121 High Street, 3" Floor

Boston, MA 02110
info@merclearning.com
www.degruyter.com

800-232-0223

S. M. Musa. FINITE ELEMENT ANALYSIS: A Primer. Second Edition.
ISBN: 978-1-68392-415-9

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products. All brand names and product names mentioned in this book are trade-
marks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks
or trademarks, etc. is not an attempt to infringe on the property of others.

Images of ANSYS menus, dialog boxes and plots are copyright of ANSYS Incorporation, United States of
America and have been used with prior consent. Commercial software name, company name, other product
trademarks, registered trademark logos are the properties of the ANSYS Incorporation, U.S.A.

Library of Congress Control Number: 2023942918
232425321  This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional
information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Com-
panion files for this title are available by contacting info@merclearning.com. The sole obligation of MERCURY
LEARNING AND INFORMATION to the purchaser is to replace the book, based on defective materials or faulty
workmanship, but not based on the operation or functionality of the product.



Dedicated to my late father, Mahmoud, my late mother,

Fatmeh, and my wife, Lama.






CONTENTS

Preface xiii
CHAPTER 1: MATHEMATICAL PRELIMINARIES 1
1.1 Introduction 1
1.2 Matrix Definition 1
1.3 Types of Matrices 3
1.4 Addition or Subtraction of Matrices 6
1.5 Multiplication of a Matrix by Scalar 7
1.6 Multiplication of a Matrix by Another Matrix 8
1.7 Rules of Matrix Multiplications 9
1.8 Transpose of a Matrix Multiplication 12
1.9 Trace of a Matrix 13
1.10 Differentiation of a Matrix 14
1.11 Integration of a Matrix 14
1.12 Equality of Matrices 15
1.13 Determinant of a Matrix 15
1.14 Direct Methods for Linear Systems 18
1.15 Gaussian Elimination Method 19
1.16 Cramer’s Rule 21
1.17 Inverse of a Matrix 24
1.18 Vector Analysis 27
1.19 Eigenvalues and Eigenvectors 36



viil ¢ CONTENTS

1.20 Using MATLAB
Exercises
References
CHAPTER 2: INTRODUCTION TO THE FINITE ELEMENT
METHOD
2.1 Introduction
2.2 Methods of Solving Engineering Problems
2.2.1 Experimental Method
2.2.2  Analytical Method
2.2.3 Numerical Method

2.3 Procedure of Finite Element Analysis
(Related to Structural Problems)

2.4 Methods of Prescribing Boundary Conditions
2.4.1 Elimination Method
2.4.2 Penalty Method
2.4.3  Multipoint Constrains Method
2.5 Practical Applications of Finite Element Analysis
2.6 Finite Element Analysis Software Package
2.7 Finite Element Analysis for Structure
2.8 Types of Elements
2.9 Direct Method for Linear Spring
Exercises
References
CHAPTER 3: FINITE ELEMENT ANALYSIS OF AXIALLY
LOADED MEMBERS
3.1 Introduction
3.1.1 Two-Node Bar Element
3.1.2 Three-Node Bar Element
3.2 Bars of Constant Cross-Section Area
3.3 Bars of Varying Cross-Section Area
3.4 Stepped Bar
Exercises

References

40
49
52

53
53
53
54
54
54

54
56
57
57
57
58
58
58
59
62
63
64

65
65
68
70
71
104
126
152
156



CONTENTS © IX

CHAPTER 4: FINITE ELEMENT ANALYSIS TRUSSES
4.1 Introduction
4.2 Truss
Exercises

References

CHAPTER 5: FINITE ELEMENT ANALYSIS OF BEAMS
5.1 Introduction
5.2 Simply Supported Beams
5.3 Cantilever Beams
Exercises
References
CHAPTER 6: STRESS ANALYSIS OF A RECTANGULAR PLATE
WITH A CIRCULAR HOLE
6.1 Introduction
6.2 A Rectangular Plate with a Circular Hole
Exercises
References
CHAPTER 7: THERMAL ANALYSIS
7.1 Introduction

7.2 Procedure of Finite Element Analysis
(Related to Thermal Problems)

7.3  Omne-Dimensional Heat Conduction

7.4 Two-Dimensional Problem with Conduction and with
Convection Boundary Conditions

Exercises

References

CHAPTER 8: FLUID FLOW ANALYSIS
8.1 Introduction

8.2 Procedure of Finite Element Analysis
(Related to Fluid Flow Problems)

8.3 Potential Flow Over a Cylinder
8.4 Potential Flow Around an Airfoil

157
157
157
183
186

189
189
190
216
247
250

253
253
253
268
272

273
273

274
274

305
307
310

311
311

312
313
316



X © CONTENTS

Exercises

References

CHAPTER 9: DYNAMIC ANALYSIS

9.1
9.2

9.3
94
9.5
9.6
9.7

Introduction

Procedure of Finite Element Analysis (Related to
Dynamic Problems)

Fixed-Fixed Beam for Natural Frequency Determination

Transverse Vibrations of a Cantilever Beam

Fixed-Fixed Beam Subjected to Forcing Function
Axial Vibrations of a Bar

Bar Subjected to Forcing Function

Exercises

References

CHAPTER 10: ENGINEERING ELECTROMAGNETICS ANALYSIS

10.1 Introduction to Electromagnetics

10.2  Maxwell's Equations and Continuity Equation

10.3
10.4
10.5
10.6

10.2.1

10.2.2

10.2.3
10.2.4

10.2.5

10.2.6

10.2.7

Maxwell’s Equations and Continuity Equation
in Differential Form

Maxwell’s Equations and Continuity Equation
in Integral Form

Divergence and Stokes Theorems

Maxwell's Equations and Continuity Equation in
Quasi-Statics Case

Maxwell’s Equations and Continuity Equation
in Statics Case

Maxwell’s Equations and Continuity Equation in
Source-Free Regions of Space Case

Maxwell’s Equations and Continuity Equation in
Time-Harmonic Fields Case

Lorentz Force Law and Continuity Equation

Constitutive Relations

Potential Equations

Boundary Conditions

322
325

327
327

328
328
340
348
362
373
375
377

379
379
379

380

381
381

382

382

383

383
385
385
390
391



CONTENTS © Xi

10.7  Laws for Static Fields in Unbounded Regions 393
10.7.1 Coulomb’s Law and Field Intensity 394
10.7.2  Bio-Savarts Law and Field Intensity 395

10.8 Electromagnetic Energy and Power Flow 395

10.9 Loss in Medium 399

10.10 Skin Depth 400

10.11 Poisson’s and Laplace’s Equations 401

10.12 Wave Equations 402

10.13 Electromagnetic Analysis 408
10.13.1 Ome-Dimensional Elements 408

10.13.1.1 The Approach to FEM Standard Steps

Procedure 408
10.13.1.2  Application to Poisson’s Equation in

One-Dimension 412
10.13.1.3 Natural Coordinates in One Dimension 417

10.13.2 Two-Dimensional Elements 418

10.13.2.1 Applications of FEM to Electrostatic

Problems 418

10.14 Automatic Mesh Generation 439
10.14.1 Rectangular Domains 439
10.14.2  Arbitrary Domains 441

10.15 Higher-Order Elements 443
10.15.1 Pascal Triangle 444
10.15.2 Local Coordinates 445
10.15.3  Shape Functions 447
10.15.4 Fundamental Matrices 450

10.16 Three-Dimensional Element 454

10.17 Finite Element Methods for External Problems 460
10.17.1 Infinite Element Method 461
10.17.2  Boundary Element Method 462

10.17.3  Absorbing Boundary Conditions 462



xii © CONTENTS

10.18 Modeling and Simulation of Shielded Microstrip Lines
with COMSOL Multiphysics

10.18.1 Rectangular Cross-Section Transmission Line
10.18.2  Square Cross-Section Transmission Line
10.18.3  Rectangular Line with Diamondwise Structure
10.18.4 A Single-Strip Shielded Transmission Line
10.19 Multistrip Transmission Lines
10.19.1 Double-Strip Shielded Transmission Line
10.19.2  Three-Strip Line
10.19.3  Six-Strip Line
10.19.4 Eight-Strip Line
10.20 Solenoid Actuator Analysis with ANSYS
Exercises
References
APPENDIX A: ANSYS
APPENDIX B: MATLAB
APPENDIX C: COMSOL MULTIPHYSICS

APPENDIX D: 4-COLOR FIGURES FROM THE TEXT
(On the companion files)

INDEX

464
467
468
469
470
473
475
478
480
482
484
505
511

525
555
575

589



PREFACE

Today, the finite element method (FEM) has become a common and a very
powerful computational tool for solving engineering problems in industries
for the obvious reasons of its versatility and affordability. To expose an under-
graduate student in engineering to this powerful method, most universities
have included this subject in the undergraduate curriculum. This book con-
tains materials applied to mechanical engineering, civil engineering, electrical
engineering, and physics. This book is written primarily to help the students
and educators as a simple introduction to the practice of FEM analysis in
engineering and physics. This book contains many 1D and 2D problems
solved by the analytical method, by FEM using hand calculations, and by
using ANSYS academic teaching software, COMSOL, and MATLAB. Results
of all the methods have been compared. This book compromises 10 chapters
and 3 appendices.

Chapter 1 contains mathematical preliminaries needed for understanding
the chapters of the book. Chapter 2 provides a brief introduction to FEA,
a theoretical background, and its applications. Chapter 3 contains the linear
static analysis of bars of constant cross-section, tapered cross-section, and
stepped bar. In each section, a different variety of exercise problems are given.
Chapter 4 contains the linear static analysis of trusses. Trusses problems are
also selected in such a way that each problem has different boundary conditions
to apply. Chapter 5 provides the linear static analysis of simply supported
and cantilever beams. In Chapters 3 to 5, all the problems are considered
as one dimensional in nature. Indeed, stress analysis of a rectangular plate
with a circular hole is covered in Chapter 6. In this chapter, emphasis is given
on the concept of exploiting symmetric geometry and symmetric loading
conditions. Also, stress and deformation plots are given. Chapter 7 introduces



Xiv © PREFACE

the thermal analysis of cylinders and plates. Here both one dimensional and
two-dimensional problems are considered. Chapter 8 contains the problems
of potential flow distribution over a cylinder and over an airfoil. Chapter 9
provides the dynamic analysis (modal and transient analysis) of bars and beams.
Chapter 10 provides the engineering electromagnetics analysis. The chapter
gives an overview of electromagnetics theory and provides the finite element
method analysis toward electromagnetics; some models are demonstrated
using COMSOL multiphysics and ANSYS.

Appendices (available on the companion files)

Appendix A contains the introduction to Classic ANSYS and the ANSYS
Workbench. Appendix B contains an overview of a computation in MATLAB.
Appendix C contains an overview of COMSOL Multiphysics. Appendix D
contains the color figures from the book.

Acknowledgments

It is my pleasure to acknowledge the outstanding help and support of the
team at Mercury Learning and Information in preparing this book, especially
from David Pallai and Jennifer Blaney.

Sarhan M. Musa
September 2023



CHAPTER

MATHEMATICAL PRELIMINARIES

1.1

INTRODUCTION

1.2

This chapter introduces matrix and vector algebra which is essential in the
formulation and solution of finite element problems. Finite element analysis
procedures are most commonly described using matrix and vector notations.
These procedures eventually lead to the solutions of a large set of simultane-
ous equations. This chapter will be a good help in understanding the remain-

ing chapters of the book.

MATRIX DEFINITION

A

A matrix is an array of numbers or mathematical terms arranged in rows
(horizontal lines) and columns (vertical lines). The numbers, or mathemati-
cal terms, in the matrix, are called the elements of the matrix. We denote the
matrix through this book, by a boldface-letter, a letter in brackets [], or a
letter in braces {}. We sometimes use {} for a column matrix. Otherwise, we
define the symbols of the matrices.

EXAMPLE 1.1
The following are matrices.
;'i
sin@ 0 O xdx
0 1 .
{3 TJ,[B]: 0 cos® 0,{C}= ﬁ ’[D]:{éf(x,y) @[(%W}, E=[e]

4
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The size (dimension or order) of the matrices varies and is described by
the number of rows (m) and the number of columns (n). Therefore, we write
the size of amatrixas m xn (m by n ). The sizes of the matrices in Example 1.1

are 2x2, 3x3, 2x1, 1x2, and 1x1, respectively.
We use a; to denote the element that occurs in row i and column j of

matrix A. In general, matrix A can be written

Gy Gy - .. Oy ,
6121 022 PN Clzj Cl2n
A=[A]= (1.1)
tlll Cliz aij Ce (lm
_aml amz o anj o amn a

EXAMPLE 1.2
Location of an element in a matrix.
Gy Gy
Let A=|a, a, ay
(3 (g Qg
Find (a) size of the matrix A
(b) location of elements a,,, a,,, a,,, and ay,
Solution:
(a) Size of the matrix A is 3x3
(b) a,, is element a at row 1 and column 1
a,, is element @ at row 1 and column 2
a,, is element @ at row 3 and column 2

a,, is element @ at row 3 and column 3
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Note that, two matrices are equal if they have the same size and their cor-
responding elements in the two matrices are equal. For example,

let, [A]=[1 3 7],[3]:{’; S}[C]:ﬁ ﬂ,then [A]#[B] since [A] and

[B] are not the same size. Also, [B] #* [C] since the corresponding elements

are not all equal.

TYPES OF MATRICES

The types of matrices are based on the number of rows (m) and the number
of columns (n) in addition to the nature of elements and the way the elements
are arranged in the matrix.

(a) Rectangular matrix is a matrix of different number of rows and col-
umns, that is, m # n . For example, the matrix

1 2
[X]=| -3 5|, is rectangular matrix.
7 0

(b) Square matrix is a matrix of equal number of rows and columns, that is,
m =n . For example, the matrix

s k] -
= kg k4 , 1S square matrix.

(c) Row matrix is a matrix that has one row and has more than one column,
that is, m =1 and n>1. For example, the matrix

[F] =|:x y z:', is row matrix.

(d) Column matrix is a matrix that has one column and has more than one
row, thatis, n=1 and m > 1. For example, the matrix

0
N ={N}=42¢, is column matrix.
4
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(e) Scalar matrix is a matrix that has the number of columns and the num-
ber of rows equal to 1, that is, m =1 and n=1. For example, the matrix

[M ] = [7] , is a scalar matrix; we can write it as 7 without bracket.

(f) Null matrix is a matrix whose elements are all zero. For example, the

matrix
0 0 0
, is a null matrix.
0 0 O

(g) Diagonal matrix is a square matrix that has zero elements everywhere
except on its main diagonal. That is, for diagonal matrix a; =0, when

i# j and not all are zero for a, when i = j. For example, the matrix

0 o0

0 0 |, is a diagonal matrix

™

Main diagonal

Main diagonal elements have equal row and column subscripts—the
main diagonal runs from the upper-left corner to the lower-right corner.
The main diagonal of the matrix here is a,,,a,,, and a.; .

(h) Identity (unit) matrix [I] or I, is a diagonal matrix whose main diagonal

elements are equal to unity (1’s) for any square matrix. That is, if the ele-
ments of an identity matrix are denoted as e then

1, L
eij:{ 1 ],- (1.2)
’ 0, i#j

For example, the matrix

[1]=

, is an identity matrix.

S o o
S O = O
S = O O
_ o O O
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(i) Banded matrix is a square matrix that has a band of nonzero elements
parallel to its main diagonal. For example, the matrix

0 ay, ay a, O |,isabanded matrix.

() Symmetric matrix is a square matrix whose elements satisfy the condi-
tion a; =a; for i# j.For example, the matrix

a, 5 8
5 a, 2 |,isasymmetric matrix.
8 2 ay
(k) Anti-symmetric (Skew-symmetric) matrix is a square matrix whose
elements a; =—a, for i# j,and a, =0. For example, the matrix

0 3 -7

-3 0 2 |,is an anti-symmetric matrix.

7 -2 0

(I) Triangular matrix is a square matrix whose elements on one side of the
main diagonal are all zero. There are two types of triangular matrices;
first, an upper triangular matrix whose elements below the main diagonal
are zero, that is, a; =0 fori> j; second, alower triangular matrix whose
elements above the main diagonal are all zero, that is a; =0 fori< j.For
example, the matrix

ay Gy Ay
0 a, ay |,is an upper triangular matrix.
0 0 ay

While the matrix

ay, a, 0 |,is alower triangular matrix.
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(m) Partitioned matrix (Super-matrix) is a matrix that can be divided into
smaller arrays (submatrices) by horizontal and vertical lines; that is, the
elements of the partitioned matrix are matrices. For example, the matrix

LD TATB] L o
Ay Qy 1 ay, |=|---F--|» is partitioned matrix with four smaller

matrices, where

Az[a11 a12:|, B=[a,], Cz{am am] and Dz[az}] For example,

a3 Ay (33
the matrix
0 | LS A B 0 15
8'3 4|= , is a partitioned matrix, where A=| |, B= ,
6iy) L€ P R

C=[6],and D=[2 9].

1.4 ADDITION OR SUBTRACTION OF MATRICES

Addition and subtraction of matrices can only be performed for matrices of
the same size; that is, the matrices must have the same number of rows and
columns. The addition is accomplished by adding corresponding elements of
each matrix. For example, for addition of two matrices A and B, can give C

matrix, that is, C=A + B implies that c;=a,;+ bij .Where ¢, a,

g> and bij are

lj >
typical elements of the C, A, and B matrices, respectively.

Now, the subtraction of matrices is accomplished by subtracting the cor-
responding elements of each matrix. For example, the subtraction of two
matrices A and B, can give you C matrix, that is, C=A—-B implies that
c; =ay _by- Note that, both A and B matrices are the same size, mxn,

then the resulting matrix C is also of size mxn .

1 2 0 6
For example, let [A]= 5 7 and [B]= 9 12 , then

warg b 20 6] [1e0 2e6) [1os]
[A*IBl= 5 21 *|g 12]7|540 7412|714 19]™
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[y S S Sl 3

Matrices addition and subtraction are associative; that is

A+B+C=(A+B)+C=A+(B+C)

1.3
A+B-C=(A+B)-C=A+(B-C) (15
For example,
1 3 2 5 9 8
let[A]z{7 8}’[13]:[3 J and [C]= { }
1+2 3+5 12 16
Then, ([A]+[Bp+[C]= {7+3 8+1} { } [14 15}
1 3 2+9 5+8 12 16
A B =
[A]+(B]+[C] {7 8} {3+4 1+6} {14 15}
Therefore, (A+B) + C=A + (B
Matrices addition and subtraction are commutative; that is
A+B=B+A (1.4)
A-B=-B+A

For example,

let[A]{g ﬂ and[B]:E ﬂ,then[A]Jr[B]:B ﬂ{i’ ﬂ{g Q

3 2 6 5 9 7
and [B]-i—[A]:[l 5}+[2 1}:{3 6}’ therefore, [A ] + [B] = [B] + [A].

1.5 MULTIPLICATION OF A MATRIX BY SCALAR

A matrix is multiplied by a scalar, ¢, by multiplying each element of the matrix

by this scalar. That is, the multiplication of a matrix [A] by a scalar ¢ is
defined as

c[A] = [caﬁ] ) (1.5)
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1.6

The scalar multiplication is commutative.

For example,

Let [A]:[_f ;]then 5[A]:[_2105 150}.

MULTIPLICATION OF A MATRIX BY ANOTHER MATRIX

The product of two matrices is C = AB , if and only if, the number of columns
in A is equal to the number of rows in B. The product of matrix A of size

mxn and matrix B of size nxr, the result in matrix C has size m xr.

Thatis, [4] _[B], =[C] - (16)

mxr

must be equal
and cy = ,Z_;aikbkj, (1.7)

where the (ij)th component of matrix C is obtained by taking the dot
product
¢; = (ithrow of A)- (jth column of B).
That is, to find the element in row i and column j of [A][B], you need
to single out row i from [A] and column j from [B], then multiply the cor-

responding elements from the row and column together and add up the
resulting products.

For example,

1 3 3 2 4
let [A],, = 7 g and [B], . = 10 6 , then
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A[3]= 1 302 4] [1x3+43x(=1) 1x2+3x0 1x4+3x6
—1 0 6| |7x3+8x(=1) 7x2+8x0 7Tx4+8x6

2 22
13 14 76
Size of [A][B]=2x3.

RULES OF MATRIX MULTIPLICATIONS

Matrix multiplication is associative; that is
ABC=(AB)C=A(BC). (1.8)
Matrix multiplication is distributive; that is
A(B+C)=AB+AC (1.9)
or
(A+B)C=AC+BC. (1.10)
Matrix multiplication is not commutative; that is

AB = BA. (1.11)

A square matrix multiplied by its identity matrix is equal to the same
matrix; that is

Al =TA = A. (1.12)
A square matrix can be raised to an integer power n ; that is
n
1
An=AA...A. (1.13)

A same square matrix multiplication with different integer power n and
m can be given as
AnAnl — A"+Nl and (A)'l )"l — Anm . (1.14>

Transpose of product of matrices rule is given as

(AB)" =(B"A"),(ABC)" =C"B"A" . (1.15)
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EXAMPLE 1.3

Given matrices

|

0
5

-1 1
=2 3 -1
4 0

AR
7

8

9 -1

4 0 -3 2

1 4

5 3 -2 6
0

o X
O < o O
S —

Il

—

[Sq

—
\|\J
N <t~ ™M
|

I

—~_~—

<

——

Find the following:

5{A}

[B]{A}

[0}

d.

show that [D][I]=[I][D]=[D]

f.

Solution:

=)
—n 23
T o w
— 10 — ©
S n 3 o
e —
Il
1
I S
~
N © -
| oo+ o+
I o = o
—~
~ A~~~
_.T_Oo
+ 4 m o T LE T
+
T
T o= o o ® 2 -
+++_
— P A =
e —L -
A~ o~~~
1%0174159
+ + + +
_6480_%\M\o(0\/ntu\_
Il Il
=)
L_l
[Sa]

4]
(1-2)
(9+4)
(7-6)

-3 2
4

-2 6
0 7

8

4 0
1

5 3
9 -1

I

(4-1) (-3-8)

-1
(3-5) (2-3)

1 2
4 -3 5 9
§ 2 6 7
0 7 -8 3

6

3
13
1
-8 —4

5
1
8

1
-11
-5

8

2

3

3
-9

}

(3-7)

)

—_~ o

2+3

5—4

6+2
(-8~

N— — —

(1-0)
(7+1)

(6-4)
(0-9)
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2) (10

e 5(a)= 51 t=1"

3] |15

d.

6 1 2 -1](2 (6x2)+(1x4)+(2x1)+(-1x3) 13
4 -3 5 9 ||4 (4%x2)+(-3x4)+(5x1)+(9%3) 28
Blial=lg 5 6 7 [1f" (8x2)+(-2x4)+(6x1)+(7x3)[ |35
0 7 -8 33| [(0x2)+(Tx4)+(-8x1)+(3x3)| |29

e.

-1 1 0}j-1 1 O
[D] =[D][D]=| 2 3 -1||2 3 -1|=
4 0 514 0 5
(-1x=1)+(1x2)+(0x4) (-Ix1)+(1x3)+(0x0) (=1x0)+(1x-1)+(0x5)
= (2><—1)+(3><2)+(—1x4) (2><1)+(3><3)+(—1><0) (2><0)+(3x—1)+(—1><5)
(4x=1)+(0x2)+(5x4) (4x1)+(0x3)+(5x0) (4x0)+(0x—-1)+(5x5)

3 2 -1
=0 10 -8
16 4 25

f.

-1 1 071 00
[D][1]=] 2 3 -1][0 1 0

4 0 5001

=1 (2x1)+(3x0)+(=1x0) (2x0)+(3x1)+(-1x0) (2x0)+(3x0)+(-1x1)
| (4x1)+(0x0)+(5%x0) (4x0)+(0x1)+(5x0) (4x0)+(0x0)+(5x1)

11 0
=2 3 -1|=[D]
4 0 5

(-1x1)+(1x0)+(0x0) (-1x0)+(1x1)+(0x0) (1><0)+(1><0)+(0><1)]

and
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1.8 TRANSPOSE OF A MATRIX MULTIPLICATION

The transpose of a matrix A = [ay] is denoted as A" = [a ji] . Itis obtained by

interchanging the rows and columns in matrix A. Thus, if a matrix A is of

order mxn , then A" will be of order nxm .

For example,
0 -1

0 13
let [A]M{_1 5 5},then [A],, =] 1 2
3 5

Note that itisvalid that, (AB)" =B"A”, (A+B)' =A” +B", (cB)" =cB’,
and (A")" =A . Also note, if A" =A , then A isa symmetric matrix.
EXAMPLE 14

1 2 -1 0 -3
Consider that matrix [A] = and [B] = )
3 4 -4 -2 5

Show that ([A][B])" =[B]'[A]".
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Solution:

([AI[B])

MATHEMATICAL PRELIMINARIES © 13

1 2][-1 0 -3
3 4][4 2 5

(Ix-1)+(2x-4) (1x0)+(2x-2) (1x=3)+(2x5)
(3x-1)+(4x—4) (3x0)+(4x-2) (3x-3)+(4x5)

-9 —4 7}

-19 -8 11
9 -19]
-4 -8
7 11

(-1x1)+(-4x2) (-1x3)+(-4x4)

[B]'[A] =] 0 -2 ! 3}: (0x1)+(-2x2)  (0x3)+(-2x4)

-3 5 |- (-3x1)+(5%x2) (-3x3)+(5x4)
-9 —19]

=—-4 -8
7 11

Therefore, ([A][B])" =[B]' [A].

TRACE OF A MATRIX

A trace of a matrix A , tr(A), is a square matrix and is defined to be the sum of

the elements on the main diagonal of matrix A.

3 5 8

For example, let,[A]=|5 7 2 |, thentr(A)=3+7+(-1)=9.

§ 2 -1
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1.10

EXAMPLE 1.5

Consider that matrix

Find the tr(A).
Solution:

tr(A) =5 +6=11.

DIFFERENTIATION OF A MATRIX

1.11

Differentiation of a matrix is the differentiation of every element of the matrix
separately. For example, if the elements of the matrix A are a function of
t, then

da,
A _| 4y | (1.16)
dt dt
EXAMPLE 1.6
3%« A
Consider the matrix [A] A , find the derivative d[ ] )
Tx 6 | dx
Solution:

d[A]__ISx4 2x
dx | 7 0

INTEGRATION OF A MATRIX

Integration of a matrix is the integration of every element of the matrix sepa-
rately. For example, if the elements of the matrix A are a function of ¢, then

[Adi=|[adt]. (1.17)
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EXAMPLE 1.7
. . 42° 2 o
Consider the matrix [A] = o 1D find the derivative J.[A]dx )
x
Solution:
2
I[A]dx = Lbcg i }
EQUALITY OF MATRICES

113

Two matrices are equal if they have the same sizes and their corresponding
elements are equal.

EXAMPLE 1.8

1 —4 2x w
Let A= and B = .
5 3 z2-2 k+1

If the matrices A and B are equal, find the value of x, w, z, and k.
Solution:

l=2x——»x=%

w=-4

2-2=5——p»z="7

3=k+1—>»k=2

DETERMINANT OF A MATRIX

The determinant of a square matrix A is a scalar number denoted by |A| or

det [A] . It is the sum of the products (—l)i” a;M where a; are the ele-

e
ments along any one row or column and M j are the deleted elements of ith

row and jth column from the matrix [A] )



16 « FiNiTE ELEMENT ANALYsIs 2/E

For example, the value of the determinant of matrix [A] is a = det[A] = |A|

and can be obtained by expanding along the first row as:

ay Gy Gz ... @4,

Qg1 Gy Qo3 ... Gy,

a=|%1 G Gz ... A,
(1.18)

anl an2 anS R ann

n+l
=a,M, —a,M, +a ;M +..+(-1)"a,M,

where the minor M, is a (n—1)x(n—1) determinant of the matrix formed
by removing the ith row and j th column.

Also, the value o can be obtained by expanding along the first column as:

a=a,M,, —ayM, +a;M, +..+(-1)"a, M, . (1.19)
Now, the value of a second-order determinant of (2x2 ) matrix is calcu-
lated by
a,, a. a,, a
a=det| ' P l=["" Pl=qa, —apa,, . (1.20)
Gy Qg Gy Qg

The value of a third-order determinate of (3 x 3 ) matrix is calculated by

4y Gy g ay G a4y

a=det| a, Gy Gy |=|ay Ay Ay =
a3 Az Az | |A3 Ay dg
5 A a,.- a a a a
2|log o3 3(@a1  Gag 4|lg Gy
=day (_1) tag, (_l) tag (_1)
Q3 Qg a3 Qg a3 A3
B Ggy Aoy (g Oo3 (I
=day — Oy tag
Q3 Qg a3 Ay a3 Ay

an ((122033 T Oy303 ) —ayp (021‘133 T Ay303, ) +a (azlasz T Q903 ) (1.21)
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EXAMPLE 1.9

Evaluate the following determinants:

2 3
a.
-1 4
1 3 4
b. -2 -1 2
5 -4 6
Solution:
2 3
a. o= =(2x4)—-(3x-1)=8+3=11
-1 4
1 3 4
2121—123—224—2—1
b. a=[-2 - —><_4 6—><5 6+ ><5 ik
5 -4 6

=1(-6+8)-3(-12—-10)+ 4(8+5) =2+ 66 + 52 =120

An alternative method of obtaining the determinant of a (3x3) matrix is

by using the sign rule of each term that is determined by the first row in the
diagram as follows:

+ - +

— + —|,or by repeating the first two rows and multiplying the terms diago-
+ - +

nally as follows:

=0y Qg9 + Qg Usp 3 + gy A19Ug3 — Q1309905 — Qg3lsolly) — Ag3ll5 Ay,
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1.14 DIRECT METHODS FOR LINEAR SYSTEMS

Many engineering problems in finite element analysis will result in a set of
simultaneous equations represented by [A]{X } = {B} )

For a set of simultaneous equations having the form
Ay X, + A%, +apx, +...+a,,x, =b,
A0y Xy + AgyXy + Ags Xy + ...+ Ay, X, = b,

Ay X, + AgyXy + Agy Xy + ...+ dy, X, =D,

(1.22)

A, % + A%, +a,3%, +...+a,x, =b

nn’'n n

where there are n unknown x,x,,x;,....x, to be determined. These equa-

tions can be written in matrix form as

ay Gy Gy an, || b,

gy gy Aoy Ay, || X b,

a3 4z dgg az, || X3 b,
_anl an2 a’nS ann a _xn a _bn a

This matrix equation can be written in a compact form as
AX=B, (1.23)

where A is a square matrix with order nxn, while X and B are column
matrices defined as
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;. Gy Ay ay, Xy b,
gy Gy g3 s, Xy b,
a3 43 dg as, X3 by
A= , X= , B=
_anl anZ anS aml _ _xn n _bn _

There are several methods for solving a set of simultaneous equations
such as by substitution, Gaussian elimination, Cramer’s rule, matrix inversion,
and numerical analysis.

GAUSSIAN ELIMINATION METHOD

In the argument matrix of a system, the variables of each equation must be on
the left side of the equal sign (vertical line) and the constants on the right side.
For example, the argument matrix of the system

2x, —3x, =—5

x, —4x, =8
|12 -3]-5
is )
1 418
The argument matrix is used in the Gaussian elimination method. The
Gaussian elimination method is summarized by the following steps:
1. Write the system of equations in the argument matrix form.
2. Perform elementary row operations to get zeros below the main diagonal.
a. interchange any two rows

b. replace a row by a nonzero multiply of that row

c. replace a row by the sum of that row and a constant nonzero multiple
of some other row

3. Use back substitution to find the solution of the system.
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We demonstrate the Gaussian elimination method in Example 1.10.

EXAMPLE 1.10

Solve the linear system using the Gaussian elimination method.
X, +x;—2=0
2x, +3x, =5=0

X, +x, +x,-3=0

Solution:

We use R, to represent the i th row. Write the argument matrix of the system as:

01 1|2
2 0 3|5].
1 1 113
2 0 315
Interchange R, and R,, this gives: [0 1 1 |2].
1 1 113
10 2|5
1 212
ERl,thisgives: 01 1]2].
1 1 1/3
1 0 313
2 |2
—-R, +R,, thisgives: |0 1 1 |2].
01 1|21
212
1 0 315
2 2
—-R, +R,, thisgives: [0 1 1 | 2
01 2|2
2 2



1 0

—%Rs,this gives: |0 1

01

3
2
1
1

— O | Ut

MATHEMATICAL PRELIMINARIES © 21

R, gives x; =1, substitute the value of x, in R, and R,, this gives x, =1,

and x, =1, respectively.

1.16 CRAMER’S RULE

Cramer’s rule can be used to solve the simultaneous equations for x,,x,,x;,...

ay
ay,

a3

nl

~

w

aﬂS

nn _|

o

anB

nn _|

(1.25)
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a, a, b ay, ay G Ay b,
ay Gy b, s, Gy Gy Gg3 b,
as a, by as, a3 43 dg b,
Q’S = ERRAE a‘n =
_anl anZ bn o aml _ _aﬂl aﬂZ anS o bn

It is worth noting that o is the determinant of matrix A and a., is the deter-

minant of the matrix formed by replacing the nth column of A by B. Also,
Cramer’s rule applies only when o # 0, but when o =0, the set of questions

has no unique solution because the equations are linearly dependent.

Summary of Cramer’s Rule

1. Form the coefficient matrix of A and column matrix B.

2. Compute the determinant of matrix of A. If det[A] = 0, then the system
has no solution; otherwise, go to the next step.

3. Compute the determinant of the new matrix [A, |, by replacing the ith
matrix with the column vector B.
4. Repeat Step 3for i=1,2,...,n.

5. Solve for the unknown variable X; using

X, =M, fori=12,...,n. (1.26)

A
EXAMPLE 1.11

Solve the simultaneous equations

2x, —5x, =13, 5x, +3x, =-14
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Solution:

The matrix form of the given equations is

o M

The determinants are calculated as

-5

o= ‘:(ZXB)—(—5><5):6+25:31

5 3

13 -5
o, =‘_14 3 ‘=(13x3)—(—5x—14)=39—70=—31

2 13
o, =‘5 _14‘:(2><—14)—(13><5)=—28—65=—93
Thus,

o 31 o 31

EXAMPLE 1.12
Solve the simultaneous equations
10x, —3x, —4x, =15, 2x, +5x, —2x, =0, —2x, +x, +6x, =0,
Solution:
In matrix form, the given set of equations becomes
10 -3 4]« ] [15
2 5 -2|x =0
2 1 6 x| |0

The determinants are calculated as
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10 -3 -4

a=2 5 -2[=10[(5x6)—(-2x1)]-(-3)[(2x6)-

-2 1 6
+(—4)[(2x1)-(5%x-2)]
=320 + 24 — 48 = 296
15 -3 —4

o,=|0 5 -2=15[(5x6)—(-2x1)]-(-3)[(0x6)

0 1 6
+(=4)[(0x1)-(5%0)]
=480+0—0=480
10 15 —4

a,=[2 0 -2/=10[(0x6)—(-2x0)]-(15)[(2x6)

-2 0 6
+(4)[(2%0) - (0x-2)]
=0-120-0=-120
10 -3 15

o;=[2 5 0[=10[(5%0)=(0x1)]-(-3)[(2x0)-

-2 1 0

+ (15)[(2 x1)—(5x —2)]

=0-0+180=180

Thus,

(—2x —2)]

~(2x0)]

—(-2x-2)]

(0%-2)]

180

v == 162, x, =22 =T g4y, =8 =2 061
o

1.17 INVERSE OF A MATRIX

296

Matrix inversion is used in many applications, including the linear system of

equations.

For the matrix equation AX =B, we can invert A to obtain X, that is,

X=A"B

(1.27)
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where A7 is the inverse matrix of A. The inverse matrix satisfies

AAT=ATA=I (1.28)
where
Al = Adj—[‘ﬂ (1.29)
A

where Adj [A] is the adjoint of matrix A. The Adj [A] is the transpose of the

cofactors of matrix A. For example, let the nxn matrix A be presented as

ay 4y a,
gy Ay ay,
A =
_anl anZ ann a

The cofactors of matrix A are written in matrix F as

F = cof [A] =

i
f21

iz
f22

][1:1 ]
f2n

(1.30)

fa fu o ful

where f; is the product of (1) and the determinant of the (n—1)x(n—1)

submatrix is obtained by removing the i throwand j th column from matrix A.
For instance, by removing the first row and the first column of matrix A, we
find the cofactor f,; as

S T B (1.31)
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Now the adjoint of matrix A can be obtained as

fu foow fu]
f21 f22 f2n

Adj [A]=[F] = (1.32)
_][nl f;12 f;'m B
So, the inverse of A matrix can be written as
F T
Al = ﬁ (1.33)

Al
A matrix that possesses an inverse is called invertible matrix (nonsingular

matrix). A matrix without an inverse is called a noninvertible matrix (singular
matrix).

Consider a 2x2 matrix, if

a b
Az[ },andad—bcio,then

c d
d -b
Ao L [d b [d b Nad—be ad=be| g
|A| [-¢ a ad—bc|—c a — a ' '
ad-bc ad-bc
The inverse of product of matrices rule can be presented as
(AB)" =(B"'A™).(ABC) =C'B'A™". (1.35)

EXAMPLE 1.13

3 ¢
Let matrix, A = {2 J , find its inverse matrix, A-1.

Solution:

11 2] 1 ]1 2] [-1 2
A_l = — = — =
|A] |-2 3| 3-4[-2 3 2 -3
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EXAMPLE 1.14

2 1
Let matrix, A ={ J , find its inverse matrix, A-1.

Solution:

Using the concept of equation (1.27), we get

L, |la b L 12 1fa b 10
A = ,then AA™ = =
c d -1 1flc¢ d 0 1

2a+¢c=1—>» 3a=1—>»a=1/3
b +d=0—»3b=-1—»b=-1/3
—a+¢c=0—>»a=c=1/3

b+d=1—>»d=1+b=2/3

Therefore,
A 1/3 -1/3
11/3 2/3 |
VECTOR ANALYSIS

A vector is a special case of a matrix with just one row or one column. A
vector is a quantity (mathematical or physical) that has both magnitude and
direction. Examples of vectors are force, momentum, acceleration, velocity,
electric field intensity, and displacement. A scalar is a quantity that has only
magnitude. Examples of scalars are mass, time, length, volume, distance, tem-
perature, and electric potential.

A vector A has both magnitude and direction. A vector A in Cartesian
A

X

A) or | A, | where

Yy

AZ-

(rectangular) coordinates can be written as (Ax,Al/,

A A, and A  are components of vector A in the x,y, andz directions,

/A
respectively. The magnitude of vector A is a scalar written as |A| or A and

given as
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A|=JAZ + A2+ A (1.36)

A unit vector a, along vector A is defined as a vector whose magnitude is

unity (i.e., 1) and its direction is along vector A, that is,

A=|A|aA, (1.37)
thus, (A,,A,,A.)=Aa, +Aa +Aa, (1.38)
Aa +Aa +Aa,
and aA—A— SMESN (1.39)

Al A2 AT A
x y z

Figure 1.1(a) illustrates the components of vector A, and Figure 1.1(b)
shows the unit vectors.

(b)

FIGURE 1.1 (a) Components of vector A. (b) Unit vectors.

(a) Vectors equality

Two vectors are equal if they are the same type (row or column) and their cor-
responding elements are equal to each other.

(b) Vector addition and subtraction

Two vectors can be added or subtracted only if they are of the same type (i.e.,
both row vectors or both column vectors) and they are of the same number of
components (elements).
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Two vectors A = (Ax,Ay,A:) and B = (BX,BIJ,B:) can be added together

to give another vector C, that is,

C=A+B (1.40)
C=(A,+B)a, +(A, +B,)a, +(A. +B.)a.. (1.41)

Vector subtraction is similarly presented as
D=A-B=A+(-B) (1.42)
D=(A,-B,)a,+(A,-B,)a,+(A -B.)a.. (1.43)

(c) Multiplication of a scalar by a vector

When a vector is multiplied by a scalar, each element is manipulated by the

scalar. Let, vector A = (Ax,Ay,AZ) and scalar &, then

kA = (kA kA, kA,) . (1.44)

There are three basic laws of algebra for given vectors A, B, and C when k and
[ are scalars, summarized in Table 1.1.

TABLE 1.1 Three basic laws of vector algebra.

Law Addition Muiltiplication

Commutative A+B=B+A kA=Ak
ssociative +C)= (A+

Associative A+(B+C)=(A+B)+C K ! A)= (kl JA

Distributive K(A + B) = kB + kA

(d) Vector multiplication

There are two types of vector multiplication:

1. Scalar (dot) product, A-B
2. Vector (cross) product, AxB



30 ° FiNniTE ELEMENT ANALYsIs 2/E

1. The dot product of two vectors A = (Ax,Ay,A:) and B= (Bx,By,B:) written
as A-B is defined as
A-B=|A||B|cosb,,, (1.45)

where 0, is the smallest angle between vectors A and B. Also, the dot prod-

uct is defined as,
A-B=AB +AB,+AB.. (1.46)

It is worth it to know that two vectors A and B are perpendicular (orthog-
onal) if and only if A-B=0. Also, two vectors A and B are parallel if and only

if B=kA.

For vectors A, B, C and k scalar, the following prosperities dot product
hold:
(a) A-B=B-A (1.47)
(b) A-(B+C)=A-B+A-C (1.48)
(c) A-A=|A] =A® (1.49)
(d) k(A-B)=(kA)-B=A-(kB) (1.50)

a.-a =a -a =a-a =0

(e) ‘ (1.51)
a -a =a -a =a -a =1

2. The cross product of two vectors A = (Al_,Ay,Az) and B = (Bx,By,B:) writ-

ten as AxB, is defined as

(1.52)

AxB=|A|B|sin6,,a,,
where a, is a unit vector normal to the plane containing vectors A and B. The
direction of a, is taken as the direction of the right thumb when the fingers

of the right-hand rotate from vector A to vector B as shown in Figure 1.2.
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A xXB

LA > A

FIGURE 1.2 Right-hand rule for the direction of A X B and a,.

Also, the cross-product is defined as,

&

.|=(A,B.—A.B,)a, —(AB.—A.B,)a, +(AB, - A,B,)a..

y

a.\‘
AxB=|A,
Bx

SSI
S

<

(1.53)

Because of the direction requirement of the cross-product, the commutative
law does not apply to the cross-product. Instead,

AxB=-BxA. (1.54)

EXAMPLE 1.15
Given A =(3,-2,5) and B=(2,4,-6), find:

a. A+B
b. A-B
c. |A]

d. 3A-B
e. |[A+B]

f. The component of B along a,
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Solution:
a. A+B=(3+2)a, +(-2+4)a,+(5-6)a,
A+B=>5a_ +2a, —a, =(5,2,-1)

b. A-B=(3-2)a +(-2-4)a, +(5+6)a,
A-B=a, —-6a +lla, =(1,-6,11)

2

c. |Al=A-B=(3-2) +(-2-4) +(5+6)
A-B=1+36+121 =158 =12.57

d. 3A-B=(9-2)a, +(-6-4)a,+(15+6)a.
3A-B=5a,~10a,+2la, =(5-10,21)

e. [A+B|=y(5) +(2) +(-1) =v/25+4+1=30

f. The component of B along a, is B, =4

EXAMPLE 1.16
Given A=3a_+2a, —a_and B=a _+a,, find:
a. A'B
b. AxB
c. The angle between A and B

Solution:

a. A-B=(3)(1)+(2)(1)+(-1)(0)=5

a, a, a
b. AxB=|3 2 —1=(2><O—(—1)x1)ax—(3><O—(—1)x1)ay
1 1 O

+(3x1-2x1)a,

AxB=a +a +a,
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AB
|Al|B]

A|= (3 +(2) +(-1)’ =9+ 4+1 =14

+( :
B)=J(1) +(1) +(0) =V1+1+0 =2
5 5 5
J1442 28 27

5
0,,=cos’| — |=19.11°
v’

(e) The Del (V) operator

c. A-B=J[A|B|cosH,, = cosb,, =

cosB,, = =0.9449

The Del (V') operator is a vector differential operator and is known as a gradi-

ent operator.
We obtain V in Cartesian coordinates (x,y,z) as,

Vza\_£+a,£+a,g. (1.55)
& ./ay ~8z

We obtain V in cylindrical coordinates (p,¢,z) as,

=ap£+a 19 +a,2. (1.56)
op

v S ——+a,
pdb om

We obtain V in spherical coordinates (r,6,¢) as,

0 10 1 0

N P S 157
"o 0100 M sin® 0 (1.57)

The Del (V) operator is useful in defining the following operations on a

scalar or a vector:

1. VA is the gradient of a scalar A (the result of this operation is a vector)

(a) For Cartesian coordinates, VA=a_ oA +a, oA +a, oA . (1.58)
o Yoy oz
(b) For cylindrical coordinates, VA=a, A +a, 1o +a. oA ) (1.59)
op pod 0Oz
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A 10A 1 0A
(c) For spherical coordinates, VA=a, oA +a 2 2

1A L A 160
o T M e g Y

Considering A and B are scalars and n is an integer, the following formulas
are true on a gradient:

= V(A+B)=VA+VB (1.61)
= V(AB)=AVB+BVA (1.62)
V(éj:BVA—ZAVB (1.63)
B B
= VA'=nA""'VA (1.64)
2. V-A is the divergence of a vector A (the result of this operation is a
scalar)
0A
(a) For Cartesian coordinates, V- A = 0A, +—L 4 GA . (1.65)
oy 0=
0A
(b) For cylindrical coordinates, V-A = li(pA )+ 1% + oA, : (1.66)
pops " pod Oz
(c) For spherical coordinates,
0A
V-A:%Q(ﬁArﬁLi(Ae sin®) + L% (1.67)
r-or rsin® 00 rsin® o¢

Considering A and B are vectors and k is a scalar, the following formulas
are true on divergence of a vector:

= V- (A+B)=V-A+V-B (1.68)
= V.(kA)=kV-A+A-Vk (1.69)

3. VxA is the curl of a vector A (the result of this operation is a vector)

a, a, a
: . 0 0 0

(a) For Cartesian coordinates, VxA=l— — — (1.70)
ox Oy Oz
A A A

or
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a, pa, a
(b) For cylindrical coordinates, Vx A = e o o
plop 0b 0Oz
A pA, A,
or
0A 0A o(pA 0A
pop ox)" oz Op pl & 8 |-
a, ra, rsinba,
(c) For spherical coordinates, Vx A = — 1 0 9 9
r-sin@|or 00 o
A, rAy rsinBA;
or
VxA= 1 6(A¢sin9)_% ar+l 1 %_6(TA¢) a0+l a(TAe)_
rsin® 00 oo r| sin® o or r\ or

(1.71)

(1.72)

(1.73)

(1.74)

0A,
—_— a¢ .
0

(1.75)

Considering A and B are vectors and k is a scalar, the following formulas

are true on curl of a vector:

= Vx(A+B)=VxA+VxB

= Vx(AxB)=A(V-B)-B(V-A)+(B-VA)—(A-V)
= Vx(kA)=kVxA+VkxA

= V. (VxA)=0

= VxVk=0

B
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4. V’A -Laplacian of a scalar A (the result of this operation is a scalar)

2 2 2
(a) For Cartesian coordinates, V>A = gx? + a@y? + 66:? . (1.81)
(b) For cylindrical coordinates, VA = 10 pa—A + %&—? + (y_{} . (1.82)
popl op) p 0" Oz

(c) For spherical coordinates,

2
VzAzioi(rzé—Aj+—21 i(sin(9a—Aj+—2 19 8_1;‘1 (1.83)
r°or or) r”sinB 00 00 ) r7sin” 0 06

The Laplacian of a vector A, can be defined as

VPA=V(V-A)-VxVxA. (1.84)

EXAMPLE 1.17
Find the gradient of the scalar field A =¢™* sin3xcoshy.
Solution:

VA =3¢ " cos3xcoshya, + ¢ sin3xsinhya, —e*sin3xcoshya,

EXAMPLE 1.18
Find the divergence (VA ) of the vector field A =xyz’a_ +yza_.
Solution:

GA, OA, A
=—>+4 +—

V. A=—x 2=
ox oy on

V-Azyz2+y=y(z2+l)

1.19 EIGENVALUES AND EIGENVECTORS

Eigenvalues problems arise from many branches of engineering, especially in
the analysis of the vibration of elastic structures and electrical systems.
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The eigenvalue problem is presented in linear equations in the form
[A]-{X}-1{X}={0}. (1.85)
where [A] is a square matrix; A is a scalar and called eigenvalue of matrix
[A]; {X} is eigenvector of matrix [A] corresponding to A .

To find the eigenvalues of a square matrix [A], we rewrite the equation
(1.55) as

[A{X} =A[I]{X} (1.86)
[AL-A]-{X}={0}. (1.87)

There must be a nonzero solution of equation (1.87) in order for A to be

an eigenvalue. However, equation (1.87) can have a nonzero solution if and
only if

A I-A|=0. (1.88)

Equation (1.88) is called the characteristic equation of matrix [A], and

the scalars satisty the equation (1.88) are the eigenvalues of matrix [A] It
matrix [A] has the form

ay Gy Gy e Gy,
gy Gy Gy s,
a3 Az dg as,
A=| . ) ) ) .|, then equation (1.88) can be written as

anl anZ anS e a

nn
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a, =i ayy 3
Qg gy = Qo3
a3 a3y Ay =M
A=
anl anQ dn.’}

a

nn

-\

(1.89)

The equation (1.89) can be expanded to a polynomial equation in A as

n n-1 _
A+ M+ 4+c, A+c,=0.

Thus, the nth-degree polynomial is

MI—A|=A"+c A" +..+c, A+c,.

(1.90)

(1.91)

Equation (1.91) is called a characteristic polynomial of nxn matrix [A] )

Indeed, the nth roots of the polynomial equation are the nth eigenvalues of
matrix [A] . The solutions of equation (1.87) with the eigenvalues substituted

on the equation are called eigenvectors.

EXAMPLE 1.19

6 -3
Find the eigenvalues and eigenvectors of the 2x2 matrix A :{ 4 5 }

Solution:

Since

[XI—A]:X{

10
0 1

H

6 -3] [A-6 3
-4 5| | 4 a-5|

the characteristic polynomial of matrix [A] is

|M_A|:‘ ) H‘

=(A=6)(AL—5)—(3x4)=21" -11A+18.
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And the characteristic equation of matrix [A] is
A*—111+18=0.
The solutions of this equation are A, =2 and A, =9; these values are the

eigenvalues of matrix [A].

The eigenvectors for each of the above eigenvalues are calculated using
equation (1.87).

For A, =2, we obtain

St

The above equation yields two simultaneous equations for x, and x,, as

follows:

3
—4x, +3x, =0 gives x, = sz

4x, —3x, =0 gives x, =%x2.

3
Thus, choosing x, =4, we obtain the eigenvector x, = k{4} , where k is

an arbitrary constant.

For A, =9, we obtain

et

The above equation yields two simultaneous equations for x, and x,, as

follows:

3x, +3x, =0 gives x; =—x,

4x, +4x, =0 gives x; =—x,.
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1.20

Thus, choosing x; =—1, we obtain the eigenvector x, = k{ )

} ,where k

is an arbitrary constant.

USING MATLAB

MATLAB is a numerical computation and simulation tool that uses matrices
and vectors. Also, MATLAB enables users to solve wide analytical problems.
The majority of engineering systems are presented by matrix and vector equa-
tions. Therefore, MATLAB becomes essential to reduce the computational
workload.

All MATLAB commands or expressions are entered in the command win-
dow at the MATLAB prompt “>>”. To execute a command or statement, we

must press return or enter at the end. If the command does not fit on one line,
we can continue the command on the next line by typing three consecutive
periods (...) at the end of the first line. A semicolon (;) at the end of a com-
mand suppresses the screen output, and the command is carried out. Typing
anything following a % is considered as comment, except when the % appears
in a quote—enclosed character string or certain I/0O format statements.
Comment statements are not executable. To get help on a topic (such as
matrix), you can type the command help matrix. Here, we introduce basic
ideas of matrix and vector operations. For more details, see Appendix B.

Elements of a matrix are enclosed in brackets, and they are row-wise. The
consecutive elements of a row are separated by a comma or a space and are
entered in rows separated by a space or a comma, and the rows are separated
by semicolons (;) or carriage returns (enter).

A vector is entered in the MATLAB environment in the same way as a
matrix.

For example, matrix A,

1 0
A= [3 2} , is typed in MATLAB as
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The basic scalar operations are shown in Table 1.2. In addition to operating
on mathematical scalar, MATLAB allows us to work easily with vectors and
matrices. Arithmetic operations can apply to matrices, and Table 1.3 shows
extra common operations that can be implemented to matrices and vectors.

TABLE 1.2 MATLAB common arithmetic operators.

Operators symbols Descriptions
+ Addition

- Subtraction

* Multiplication
/

Right division (means %)

| Left division (means é)
A Exponentiation (raisirilg to a power)
Converting to complex conjugate transpose
() Specify evaluation order
TABLE 1.3 Matrix operations.
Operations Descriptions
A Transpose of matrix A
det(A) Determinant of matrix A
inv(A) Inverse of matrix A
eig(A) Eigenvalues of matrix A
diag(A) Diagonal elements of matrix A
rank(A) Rank of matrix A
cond(A) Condition number of matrix A
eye(n) The nxn identity matrix (1’s on the main diagonal)
eye(m, n) The M X1 identity matrix (1's on the main diagonal)
trace(A) Summation of diagonal elements of matrix A
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Operations

Descriptions

zeros(m, n)
ones(m, n)
rand(m, n)
randn(m, n)
diag(A)
diag(A,1)
diag(u)
expm(A)
In(A)
svd(A)
qr(A)
min(A)
max(A)
sum(A)
std(A)
sort(A)
mean(A)
triu(A)
triu(A, I)
tril(A)
tril(A, 1)

The M X1 matrix consisting of all zeros
The 1M X 1 matrix consisting of all ones
The 1M X 1 matrix consisting of random numbers

The 1 X 11 matrix consisting of normally distributed numbers
Extraction of the diagonal matrix A as vector

Extracting of first upper off-diagonal vector of matrix A
Generating of a diagonal matrix with a vector u on the diagonal
Exponential of matrix A

LU decomposition of matrix A

Singular value decomposition of matrix A

QR decomposition of matrix A

Minimum of vector A

Maximum of vector A

Sum of elements of vector A

Standard deviation of the data collection of vector A

Sort the elements of vector A

Means value of vector A

Upper triangular of matrix A

Upper triangular with zero diagonals of matrix A

Lower triangular of matrix A

Lower triangular with zero diagonals of matrix A

EXAMPLE 1.20

Given the following matrices:

1 2 3

0 -1 0 2

[A]=|4 5 6|[B]=|2 -3 1|, and[C]=10

78 9

4 -5 3 4

Use MATLAB to perform the following operations:

[A]+[B]

[A]-[B]

c. 5[B]



T

j-

Solution:

a.

[A]+[B]

>>A=[123456:789];
>> B=[0-10;2-31;4 -5 3];
>> A+B

ans =
1 1 3
6 2 7

11 3 12

[A]-[B]

>>A=[123:456;789];
>> B=[0-10,2-31;4-53];
>> A-B

ans =
1 3 3
2 8 5

3 13 6

MATHEMATICAL PRELIMINARIES © 43
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c. 5[B]
>>B=[0-10;2-314 -5 3];
>> 5*B
ans =
0 -5 0
10 -15 5
20 -25 15
d. [A][B]

>>A=[123;456;789];
>>B=[0-10;2-314 -5 3];
>> A*B

ans =
16 22 11
34 49 23
52 -76 35

e. [A][C]

>>A=[123:456;789];
>> C=[2;0:4];
>> A*C

ans =
14
32
50




[AT

>>A=[123;456;,789];
>> AM2

ans =

30 36 42
66 81 96
102 126 150

[A]

>>A=[123:456;789];
>> A

ans =

1 4 7
2 5 8
3 6 9

(8]

>> B=[0-10;2-3 1;4 -5 3];

>> inv(B)

ans =
—2.0000 1.5000 -0.5000
—-1.0000 0 0
1.0000 -2.0000 1.0000

MATHEMATICAL PRELIMINARIES © 45



46  FiNTE ELEMENT ANALYSIS 2/E

i. tr(A)

>>A=[123;456;789];

>> trace(A)

ans =

15

i |B
>> B=[0-10;2-31:4-53];
>> det(B)

ans =

2

EXAMPLE 1.21

Solve the following system of three equations:

Sx+y+2z2=6
—x+4y+z="T
x—2y—-z=-3

using the following methods:

a. The matrix inverse

b. Gaussian elimination

c. Reverse Row Echelon Function

Solution:

a. Since we know A7A =1, we can find the solution of the system of linear
equations AX =B by using X=A"B.
Now, we write the system of equations by using the following matrices:

5 1 2 x 6
A=[-1 4 1| X=|y[B=|7
1 -2 -1 z -3
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>>A=[512;,-141;1-2-1];
>> B =[6;7;-3];
>> X=inv(A)*B

X =
0.8571
2.0000

—-0.1429

Generally, using the matrix inverse to solve linear systems of equations
should be avoided due to the excessive round-off errors.

b. We use the left division operator in MATLAB X = A\B to solve linear sys-
tems of equations using Gaussian elimination.

>>A=[512;-141;1-2-1];
>> B =[6;7;-3];
>> X=A\B

X =
0.8571
2.0000

—-0.1429

c. The reduced row echelon function use, rref, to solve the system of linear
equations. The rref function requires an expanded matrix as input, repre-
senting the coefficients and results. The last column in the output array
represents the solution of equations.

>>A=[512;-141;1-2-1];
>> B =[6;7;-3];
>> C = [A,B];

>> rref(C)

ans =
1.0000 0 0 0.8571
0 1.0000 0 2.0000
0 0 1.0000 -0.1429
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EXAMPLE 1.22
Solve the following set of equations using Cramer’s rule:
S5x, +x; +2x, =3
X +x, +3x; +x, =5
X, +x, +2x, =1
X, +a, Fa,+x, =-1

Solution:

>>A=[5012;1131;1102;1111];
>> B = [3;5;1;-1];

>> Al = [B A(;,[2:4])];

>> A2=[A(;,1) B A(;,[3:4])];

>> A3=[A(;,[1:2]) B A(:,4)];

>> A4=[A(;,[1:3]) B];
>> x1=det(Al)/det(A)

xl =
2
>> x2=det(A2)/det(A)

x2 =

-7
>> x3=det(A3)/det(A)
x3 =

3
>> x4=det(A4)/det(A)

x4 =
5

EXAMPLE 1.23

2 1 -5
Consider the matrix A=| -1 4 3 |, find the eigenvalue and eigenvector
1 2 -4

of matrix A.



MATHEMATICAL PRELIMINARIES © 49

Solution:

>> A=[2,1,-5;-1,4,3;1,2,-4];

>> y=eig(A)
y =
-3.6006
0.8831
4.7176
>> [V,D]=eig(A)
V =
-0.6724 0.9685 —0.0436
0.1935 0.0859 0.9748
-0.7145 0.2335 0.2186
D =
-3.6006 0 0
0 0.8831 0
0 0 47176
)
EXERCISES

1. Identify the size and the type of the given matrices. Identify if the matrix
is a square, column, diagonal, row, identity, banded, symmetric, or trian-

gular.
) Lo 10 2 0
a " b [7531] |2 6 4 d[OJ e.[OJ
z
] 75 2

t
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1 3 0 Lbed 23—0182
tls 64 o> T nloa s 2o
2 0 7 00 La 00 6 73
- 00 0 1 0 0 | 5
[a 0 0 0
1o b oo
"10 0 ¢ o0
100 0 d
2 1 6 5 2 4 3
2. Giventhe matricesA={0 3 5|,B=|3 1 6/|,andC =<2; find
1 -7 4 0 2 1 1
a. A+B
b. A-B
c. 4A
d. AB
e. A{C}
f. A2
g IA
h. AL
1 8 3 2 3 0
3. Given the matricesA =|5 3 1|,B=1 5 -6/, find the following:
0 -3 4 0 4 7
a. A"
b. B
c. |A|
d. [A]"

e. [B]f1
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4. What are the 3x3 null matrix and the 5x5 identity matrix?
5. Express the following systems of equations in matrix form AX = B.
a. 3x; +2x, =10, 3x, +4x, =-8

b. 2x, +3x, +5x, =20, «x, +3x, —5x,; =0, 2x;, —3x, —4x, =0,

6. Solve the system using the Gaussian elimination method.
x, +x, +2x; =8
—x; —2x, +3x; =1
3x, = 7x, +4x, =10
7. Solve the simultaneous equations using Cramer’s rule.
2x, +3x, =8
3x, +4x, —5x, =2
X, =%, +2x; =1
8. Show  that vector ~A-B=AB +AB +AB, know that
a -a =a -a =a -a =1
9. Givenvectors A=2a, +4a —5a_and B=3a -a, +a_, find:
a. A'B
b. AxB
c. 3A-5B
10. Given vectors A=a, +5a and B=4a_+3a —2a_, find 0,,.
11. Show that if vector A=5a —4a —a_ and vector B=a _+2a +2a_,
then they are perpendicular or not.
12. Given vectors A=6a, +a, —2a_ and B=3a_+ Aa, +pa
a. If A and B are parallel, find A and p
b. If A and B are perpendicular, find A and p
13. Determine the gradient of the scalar fields A =x’y +xyz .

14. Determine the gradient of the scalar fields A = pysin¢+a° cos$p+3p.
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15. Find the divergence (VeA) of the vector field
A =2psina, + pgyzza¢ +4zcosda, .

16. Given A =p’yzcos3¢, find the Laplacian V*A.

3 4
17. Find the eigenvalues and eigenvectors of the 2x2 matrix A = {2 7} )

18. Solve problem 2 using MATLAB.
19. Solve problem 3 using MATLAB.

-3 2 6
20. Consider the matrix A=| 8 5 7|, find the eigenvalue and eigenvec-
-1 3 2

tor of matrix A.
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CHAPTER

INTRODUCTION TO THE FINITE
ELEMENT METHOD

2.1

INTRODUCTION

2.2

The finite element method (FEM) is a computational method to divide the
structure, body, or region being analyzed into a large number of finite ele-
ments. These elements may be one, two, or three dimensions. The finite ele-
ment analysis (FEA) method is a numerical procedure that applies to many
areas in real-world engineering problems, including structural/stress analy-
sis, fluid flow analysis, heat transfer analysis, and electromagnetics analy-
sis. Indeed, finite element has several advantages and features such as the
capability of solving complicated and complex geometries, flexibility, strong
mathematical foundation, and high-order approximation. Therefore, FEA has
become an important method in the design and modeling of a physical event
in many engineering disciplines. The actual component in the FEA method is
placed by a simplified model that is identified by a finite number of elements
connected at common points called nodes, with an assumed response of each
element to applied loads, and then evaluating the unknown field variable (dis-
placement) at these nodes.

METHODS OF SOLVING ENGINEERING PROBLEMS

There are three common methods to solve any engineering problem:
1. Experimental method
2. Analytical method

3. Numerical method
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2.21

2.2.2

2.2.3

2.3

Experimental Method

This method involves actual measurement of the system response. This
method is time-consuming and needs expensive setup. This method is
applicable only if the physical prototype is available. The results obtained
by this method cannot be believed blindly, and a minimum of three to five
prototypes must be tested. Examples of this method are strain photo elastic-
ity, heat transfer for a gas turbine engine, static and dynamic response for
aircraft and spacecraft, amount of water that is lost for groundwater seep-
age, etc.

Analytical Method

This is a classic approach. This method gives closed-form solutions. The
results obtained with this method are accurate within the assumptions made.
This method is applicable only for solving problems of simple geometry and
loading, like cantilevers and simply supported beams, etc. Analytical methods
produce exact solutions to the problem. Examples of this method are integral
solutions (such as Laplace and Fourier transform), conformal mapping, per-
turbation methods, separation of variables, and series expansion.

Numerical Method

This approximate method is resorted to when the analytical method fails.
This method is applicable to real-life problems of a complex nature. Results
obtained by this method cannot be believed blindly and must be carefully
assessed against experience and the judgment of the analyst. Examples of this
method are FEM, finite difference method, moment method, etc.

PROCEDURE OF FINITE ELEMENT ANALYSIS (RELATED
TO STRUCTURAL PROBLEMS)

Step (i). Discretization of the structure

This first step involves dividing the structure or domain of the problem
into small divisions or elements. The analyst has to decide about the type, size,
and arrangement of the elements.

Step (ii). Selection of a proper interpolation (or displacement) model

A simple polynomial equation (linear/quadratic/cubic) describing the var-
iation of state variable (e.g., displacement) within an element is assumed. This
model generally is the interpolation/shape function type. Certain conditions
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are to be satisfied by this model so that the results are meaningful and
converging.

Step (iii). Derivation of element stiffness matrices and load vectors

Response of an element to the loads can be represented by the element
equation of the form

[k{q}={0} (2.1)
where [k]= Element stiffness matrix,

{g}= Element response matrix or element nodal displace-
ment vector, or nodal degree of freedom,

{Q}= Element load matrix or element nodal load vector.

From the assumed displacement model, the element properties, namely
stiffness matrix and the load vector are derived. Element stiffness matrix
[k] is a characteristic property of the element and depends on geometry as
well as material. There are three approaches for deriving element equations.
They are

(a) Direct approach,
(b) Variational approach,
(c) Weighted residual approach.

(a) Direct approach: In this method, direct physical reasoning is used
to establish the element properties (stiffness matrices and load vec-
tors) in terms of pertinent variables. Although this approach is lim-
ited to simple types of elements, it helps to understand the physical
interpretation of the FEM.

(b) Variational approach: This approach can be adopted when the
variational theorem (extremum principle) that governs the physics
of the problem is available. This method involves minimizing a scalar
quantity known as functional that is typical of the problem at hand
(e.g., potential energy in stress analysis problems).

(c) Weighted residual approach: This approach is more general in
that it applies to all situations where the governing differential equa-
tion of the problem is available. This method involves minimizing
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2.4

error resulting from substituting trial solution into the differential
equation.

Step (iv). Assembling of element equations to obtain the global equations

Element equations obtained in Step (iii) are assembled to form global
equations in the form of

(K] {r} = {R} (2.2)
where [K] is the global stiffness matrix,
{r} is the vector of global nodal displacements, and
{R} is the global load vector of nodal forces for the complete structure.
Equation (2.2) describes the behavior of the entire structure.

Step (v). Solution for the unknown nodal displacements

The global equations are to be modified to account for the boundary con-
ditions of the problem. After specifying the boundary conditions, the equilib-
rium equations can be expressed as

(K, ] {r]}= {R]}' (2.3)

For linear problems, the vector {r, } can be solved very easily.
Step (vi). Computation of element strains and stresses

From the known nodal displacements {r,}, the element’s strains and
stresses can be computed using predefined structural equations.

The terminology used in the previous six steps must be modified to extend
the concept to other fields. For example, put the field variable in place of dis-
placement, the characteristic matrix in place of the stiffness matrix, and the
element resultants in place of element strains.

METHODS OF PRESCRIBING BOUNDARY CONDITIONS

There are three methods of prescribing boundary conditions.
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2.4.2

2.4.3
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Elimination Method

This method is useful when performing hand calculations. It poses difficul-
ties in implementing software. This method has been used in this book for
solving the problems by FEM using hand calculations and results in reduced
sizes of matrices, thus making it suitable for hand calculations. The method is
explained below in brief. Consider the following set of global equations,

ky Ky ks Ry || P
Ky kyy kyy Koy |fuy _ F, (2.4)
Ky ks ks Ky || ug Py
R I P,

Let u, be prescribed, i.e., u, =s.

This condition is imposed as follows:

i. Eliminate the row corresponding to u, (third row).

ii. Transfer the column corresponding to u; (third column) to the right-hand
side after multiplying it by “s.” These steps result in the following set of
modified equations,

ki ko k|l P, ki,
k21 kzz k24 U, r= P2 —-S k% . <25>
k41 k42 k44 u, P 4 k o

This set of equations may now be solved for nontrivial solution.

Penalty Method

This is the method used in most commercial software because this method
facilitates prescribing boundary conditions without changing the sizes of the
matrices involved. This makes implementation easier.

Multipoint Constrains Method

This method is commonly used in functional analysis between nodes. For
example, there are many applications in trusses where the end supports are
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on an inclined plane and do not coincide with the coordinate system used to
describe the truss. Another application of the method is the functional rela-
tionship between the temperature at one node and the temperature at one or
more other nodes.

2.5 PRACTICAL APPLICATIONS OF FINITE ELEMENT ANALYSIS
There are three practical applications of FEA:
= Analysis of new design
= Optimization projects
= Failure analysis
2.6 FINITE ELEMENT ANALYSIS SOFTWARE PACKAGE
There are three main steps involved in solving an engineering problem using
any commercial software:
Step (i). Preprocessing
In this step, a CAD model of the system (component) is prepared and
meshed (discretized). Boundary conditions (support conditions and loads) are
applied to the meshed model.
Step (ii). Processing
In this step, the software internally calculates the elements stiffness
matrices, element load vectors, global stiffness matrix, global load vector, and
solves after applying boundary conditions for primary unknowns (e.g., dis-
placements/temperatures, etc.) and secondary unknowns (e.g., stress/strain/
heat flux, etc.).
Step (iii). Postprocessing
Postprocessing involves sorting and plotting the output to make the inter-
pretation of results easier.
2.7 FINITE ELEMENT ANALYSIS FOR STRUCTURE

Several common methods in FEA are used for evaluating displacements,
stresses, and strains in any structure under different boundary conditions and
loads. They are summarized below:
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1. Displacement Method:

This method is the most commonly used method. The structure is subjected
to applied loads or/and specific displacements. The primary unknowns are
displacements found by using an inversion of the stiffness matrix, and the
derived unknowns are stresses and strains. Indeed, the stiffness matrix for any
element can be calculated by the variational principle.

2. Force Method:

The structure is subjected to applied loads or/and specific displacements. The
primary unknowns are member forces, found by using an inversion of the
flexibility matrix, and the derived unknowns are stresses and strains. Indeed,
the calculation of the flexibility matrix is possible only for discrete structural
elements (e.g., piping, beams, and trusses).

3. Mixed Method:

The structure is subjected to applied loads or/and specific displacements. This
method uses very large stiffness coefficients and very small flexibility coeffi-
cients in the same matrix.

4. Hybrid Method:

The structure is subjected to applied loads and stress boundary conditions.
This hybrid method has the merit of the FEA method, i.e., the flexibility and
sparse matrix of FEM for complicated inhomogeneous scatterers.

TYPES OF ELEMENTS

In general, the region in space is considered nonregular geometric. However,
the FEA method divides the nonregular geometric region into small regular
geometric regions. There are three types of elements in finite elements.

1. One-Dimensional Elements: The objects are subdivided into short-line
segments. A one-dimensional finite element expresses the object as a
function of one independent variable such as one coordinate x. Finite ele-
ments use one-dimensional elements to solve systems that are governed
by ordinary differential equations in terms of an independent variable.
The number of node points in an element can vary from two up to any
value needed. Indeed, increasing the number of nodes for an element
increases the accuracy of the solution, but it also increases the complex-
ity of calculations. When the elements have a polynomial approximation
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higher than first order, we call them higher order elements. Figure 2.1
shows one-dimensional elements. For example, the one-dimensional ele-
ment is sufficient in dealing with heat dissipation in cooling fins.

+ +

(a) Two-node first order element (simplest)

t - +

(b) Three-node higher order element

t - -

(c) Four-node higher order element

FIGURE 2.1 One-dimensional elements.

2. Two-Dimensional Elements: The objects can be divided into triangles,
rectangles, quadrilaterals, or other suitable subregions. A two-dimensional
finite element expresses the object as a function of two variables such as
the two coordinates x and y. A finite element uses two-dimensional ele-
ments to solve systems that are governed by partial differential equations.
The simplest two-dimensional element is the triangular element. Figure
2.2 shows two-dimensional elements. For example, a two-dimensional
element is sufficient in plane stress or plane strain.

(a) Three-node triangular element (b) Four-node rectangular element
(simplest)
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(0

¢) Four-node quadrilateral element (d) Six-node curved triangular isopar-
ametric element

FIGURE 2.2 Two-dimensional elements.

3. Three-Dimensional Elements: The objects can be divided into tetrahe-
dral elements, rectangular prismatic elements, pie-shaped elements, or
other suitable shapes of elements. A three-dimensional finite element
expresses the object as a function of three variables such as the three
coordinates x, y, and z. A finite element uses three-dimensional elements
to solve systems that are governed by differential equations. The simplest
three-dimensional element is the tetrahedral element. Figure 2.3 shows
three-dimensional elements.

(a) Four-node tetrahedral element  (b) Eight-node rectangular solid

(simplest) element
(c) Eight-node hexahedral solid (d) Ten-node curved tetrahedral solid
element isoparametric element

FIGURE 2.3 Three-dimensional elements.
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2.9

These three types of elements are applied and discussed in the electromag-
netics analysis chapter of this book.

DIRECT METHOD FOR LINEAR SPRING

Here, we will use the direct method in a one-dimension domain to derive the
stiffness matrix for the linear spring element shown in Figure 2.4. Reference
points 1 and 2, located at the ends of the linear spring element, are the nodes.
The symbols f, and f, are local nodal forces (or axial loads) associated with
the local axis x. The symbols u, and u, are local nodal displacements (or
degree of freedom at each node) for the spring element. u, is the displace-
ment of the spring due to aload f;. The symbol k is the stiffness of the spring
(or spring constant). k is load required to give the spring a unit displacement.
The symbol L is the bar length. The local axis x acts in the same direction of
the spring which can lead to direct measurement of forces and displacements
along the spring.

FIGURE 2.4 Linear spring element.
The displacements can be defined as related to forces as

u=u, —u, (2.6)

fi=ku=k(u, —u,). (2.7)
The equilibrium of forces gives

f,=—1, (2.8)
Based on equation (2.7), the above equation becomes

fo=k(uy —u,). (2.9)

By combining equations (2.7) and (2.9) and writing the resulting equations in
matrix form, we get
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{J{}:[j{k _kkHZ} 2.10)

{fi}=[kHu} (2.11)

or

where

{ f, } = a vector of internal nodal forces = {fl}

2

[k]= the elemental stiffness matrix = kook
-k k

. u
{u,}=avector of nodal displacements = { ! }

Uy

For many interconnected spring elements, we can use the following:

{03 =[KHu} (2.12)

where
{Ql} = a vector of external nodal forces = 2{ f, }
[K]= the structural stiffness matrix = Z[k]

{“,-}= a vector of nodal displacements of the structure.

EXERCISES
1. Define the finite element method.
2. Define finite element analysis.
3. What are the advantages and features of finite element analysis?
4. What are the three common methods to solve any engineering problem?
5. What is the procedure of finite element analysis (related to structural

problems)?
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10.
11.

What are the two methods for prescribing boundary conditions?
Give the three practical applications of finite element analysis.

What are the three main steps involved in solving an engineering problem
using any commercial software?

What are the four common methods in finite element analysis used for
evaluating displacements, stresses, and strains in any structure under dif-
ferent boundary conditions and loads?

What is the primary variable in finite element method structural analysis?

Calculate the structural stiffness matrix of the system as shown in
Figure 2.5.

k
1 a 2 kh 3
SN SA V4 VA W VA N N X
Jiou — —
o Jastty S5t
FIGURE 2.5 Two springs in series structure.
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CHAPTER

FINITE ELEMENT ANALYSIS OF
AXIALLY LoADED MIEMBERS

3.1

INTRODUCTION

In this chapter, we will use the bar element in the analysis of rod-like axially
loaded members. We start with the two popular bar elements using a two-
node element and a three-node element as well as bars of constant cross-
section area, bars of varying cross-section area, and the stepped bar.

Stress is an internal force that has been distributed over the area of the
rod’s cross-section, and it is defined as

s=L (3.1)

where ¢ is the stress, F is the force, and A is the cross-sectional area.

Thus, stress is a measure of force per unit area. When the stress tends to
lengthen the rod, the stress is called tension, and g > 0. When the stress tends
to shortened the rod, the stress is called compression, and ¢ < 0. The orienta-
tions of forces in tension and compression are shown in Figure 3.1.

Tension
F ¢—— }—»F

Compression
L [¢———F

FIGURE 3.1 Directions of tensile and compressive forces.
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The derived unit of stress is the pascal (Pa), where pascal is equal to new-
tons per square meter (N/m?), 1 Pa = 1 N/m?, pascal is used in the ST units.
The derived unit of stress is the dimension pound-per-square-inch (psi),
where 1 psi = 1 Ib/in®. Psi is used in the USCS (U.S. Customary) units. In
stresses, calculations are generally very large; therefore, they often use the
prefixes kilo- (k), mega- (M), and giga- (G) for factors of 10%, 10°, and 10°,
respectively. Thus,

1 kPa = 10° Pa, 1 MPa = 10° Pa, 1 GPa = 10° Pa.
The numerical values for stresses unit conversion between the USCS and
SI can be presented as
1 psi = 6.895x10™> MPa.

Strain (g) is the amount of elongation that occurs per unit of the rod’s
original length and is calculated as

e=—1, (3.2)
L

where AL is the change in length of the rod (elongation).
Strain is a dimensionless quantity and is generally very small.

For each individual rod, the applied force and elongation are proportional
to each other based on the following expression.

F =kAL, (3.3)

where k is the stiffness.

Figure 3.2 shows force and elongation behaviors of rods at various cross-
sectional areas and lengths.

Shorter rods and loner

cross-sectional area

Longer rods and smaller
cross-sectional area

»

FIGURE 3.2 Force and elongation behaviors of rods at various cross-sectional areas and lengths.
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Stress and strain are useful in mechanical engineering because they are
scaled with respect to the rod’s size.

Stress and strain are proportional to each other and presented as

o :E87 <34>

where E is the elastic modulus (or Young’s modulus).

The elastic modulus has the dimensions of force per unit area. The elastic
modulus is a physical material property and is the slope of the stress-strain
curve for low strain.

By combining equations (3.1) and (3.2), we get

L (35)
EA
With the stiffness in equation (3.3), it can be written as
k=4 (3.6)
L

Each rod formed of the same material has similar stress-strain behavior as
presented in Figure 3.3.

A All rods formed of same

material

&

FIGURE 3.3 All rods formed of the same material have similar stress-strain behavior.

When a system is motionless or has constant velocity, then the system
has zero acceleration, and the system is to be in equilibrium. The static equi-
librium is used for a system at rest. For equilibrium, the resultant of all
forces and all moments acting on the system is balanced to zero resultant.
That is, the sum of all force vectors (F) acting upon a system is zero, and the
sum of all moment vectors (M) acting upon a system is zero, and they can
be written as
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3141

Y F=0 (3.7)

Y M=0. (3.8)
The total extension (or contraction) of a uniform bar in pure tension or com-

pression is defined as

5 FL

=AE (3.9)

The equation (3.9) does not apply to a long bar loaded in compression if there
is a possibility of bucking.

Two-Node Bar Element

i,

1, U,
[ ® —» X
1 2

FIGURE 3.4 Two-node bar for rod-like axially loaded members.

This element has two end nodes, and each node has 1 degree of free-
dom, namely translation along its length. Its formulation is based on linear
interpolation. It gives accurate results only if loads are applied at nodes, and
the area is constant over the element. However, required accuracy for prac-
tical purposes in other cases can be obtained by taking a larger number of
smaller elements. The interpolation equation, element stiffness matrix, strain-
displacement matrix, element strain, and element stress for a 2-node (linear)
bar element are given by

{u}=[N, N]{Z;} (3.10)

{u}=|:(x2£x) (x_xl):| (311>

L

AE| 1 -1
[k]=7[_1 1} (3.12)
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[B] :%[—1 1] (3.13)
{e}=[Bl{q} (3.14)
{0 }=E[Bl{g} (3.15)

where

u, and u, = nodal (unknown) displacements (degree of freedom) at nodes
1 and 2, respectively

{u} = displacement matrix at the nodes

A = cross-section of the area of the bar

L =x, —x, = length of the bar

E = Young’s modulus (modulus of elasticity)

E = bar constant

[k] = stiffness matrix of the element
[B] = strain-displacement matrix
{e} = strain matrix

{o } = stress matrix.

Uniformly distributed load per unit length w acting on the element can be
converted into equivalent loads using,

{Wl=wL (3.16)

DO | — bo|—

{W} = the potential energy of load system.
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Thermal loads due to a change in temperature AT can be converted into
equivalent nodal loads using

{0} ar){ |

(3.17)

where

a is the coefficient of thermal expansion.

3.1.2 Three-Node Bar Element

e B e 3 =,
L4 o ® —» X
1 3 2

g=-1 £=0 £=1

FIGURE 3.5 Three-node bar for rod-like axially loaded members.

This element has a midside node, in addition to 2 end nodes. Each node
has 1 degree of freedom, namely translation along its length. Its formulation is
based on quadratic interpolation, and this element gives accurate results even
with distributed loads and a linearly varying cross-sectional area. A coarse
mesh with fewer of these elements can give the desired accuracy as com-
pared to a fine mesh of a 2-node bar element. The interpolation equation,
element stiffness matrix, strain-displacement matrix, element strain, and ele-
ment stress for the quadratic bar element are given by,

U

[”]:[Nl N, N3] U, :|:_%+% %"‘% l_fz:| (3.18)
Uy
7 1 -8
[k]:%l 7 -8 (3.19)

-8 -8 16

Co 1-2¢ 142 ‘
[B]—L[ — 26} (3.20)
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{e}=[B]{q} (3.21)

{o}=E[B]{q}. (3.22)

Uniformly distributed load per unit length w, acting on the element, can be
converted into equivalent loads using,

1
{W}zw% 1. (3.23)
4

BARS OF CONSTANT CROSS-SECTION AREA

This section will demonstrate examples on bars of constant cross-sectional
area using FEA.

EXAMPLE 3.1

Consider a 2 m long steel bar of 50 mm?® cross-sectional areas, as shown in
Figure 3.6. Use a two-element mesh to model this problem. Find nodal dis-
placements, element stresses, and reactions.

, 10°N
Take Young’s modulus, E=2X——, P = 100 N.
mm
Y
/ e
4 2m I

FIGURE 3.6 Bar with tip load for Example 3.1.

Solution
(I) Analytical method. [Refer to Figure 3.6(a).]

X a

l}v
ANNRNANN
v

2m

a

FIGURE 3.6(a) Analytical method for bar with tip load for Example 3.1.
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Displacement calculation

Displacement at section a-a,
_ Px 100x

- = =1%107x
AE  50%2%10°

Displacement at node 2,
8. _ 10 =1x107 %1000 =0.01 mm.

Displacement at node 3,
8, _ 0 =1x107 %2000 =0.02 mm.

Stress calculation

Maximum stress in the bar = £ = 100 =2 N/mm? (Constant).

. . 50
Reaction calculation
For reaction calculation, ZFX =0
R, +100=0

R, =-100 N (Direction is leftwards).
(II) FEM by hand calculations.

Element 1 Element 2

e TN ™
Node 1 L Node 2 L, Node 3

FIGURE 3.6(B) Finite element model for Example 3.1.

L, =L, =1000 mm
A=A =A, =50 mm’
E=E, =E, =2x10°> N/mm”

Stiffness matrix for element 1 is,
1

-1 1 1000 -1 1

1 -1 ST -1 T1
[kl]:AlEl[ }250><2><10 [ }:O.lxlO"[ 1

L,
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[kz]:

2 3
1 -1 ox10°[ 1 -1 1 -17 2
AE, _50x2x10 C0.1x10°
L, |-1 1 1000 |-1 1 -1 113

Global equation is,

(3.24)
1 2 3
I J 1 o113 [ 5)
I U I ul lll
0.1x10°[ 41 141 -1|2 qu, =4 0 (3.25)
-1 1103 |uy] [100
Boundary conditions are, at node 1, u, =0-
By using the elimination method, the above matrix reduces to,
T2 17 (u) [0
0.1x10 = .
11| |uy 100
By matrix multiplication, we get
0.1x10% (2Xu, —1,) =0 (3.26)
0.1x10% (—u, +u, ) =100. (3.27)

By solving equations (3.26) and (3.27), we get

u, =0.01 mm

u; =0.02 mm.

Stress (0 ) calculation
Stress for element 1 is,

E w) _ 2x10° 0 ,
=] = - =2 .
) Ll[ ! 1]{%} To00 ! 1]{0.01} N

Stress for element 2 is,

_E uy | _2x10°- 0.01] )
{02}—L—2[—1 1]{%}_ 1000[ 1 1]{0.02}_2 N/mm?.
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Reaction calculation
From equation (3.24)

0.1x10° (u, —u,) =R,

0.1x10°(0-0.01)=R,

R, =-100 N.
(ITI) Software results.

1
NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
USUM (AVG)
RSYS = 0
DMX = .02
SMX = .02

Y

|gINx MX

T |‘
0 .004444 .008889 .013333 .017778
.002222 .006667 .011111 .015556 .02

FIGURE 3.6(c) Deflection pattern for a bar (refer to Appendix D for color figures).

Deflection values as node (Computer generated output)
The following degree of freedom results is in global coordinates:

NODE Ux uy uz USUuM
1 0.0000 0.0000 0.0000 0.0000
2 0.10000E-01 0.0000 0.0000 0.10000E-01
3 0.20000E-01 0.0000 0.0000 0.20000E-01

Maximum absolute values

NODE 3 0 0 3

VALUE 0.20000E-01 0.0000 0.0000 0.20000E-01
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1
ELEMENT SOLUTION

STEP = 1
SUB =1
TIME = 1
LSl (NOAVG)
DMX = .02
SMN = 2
SMX = 2
Y

|Z X MN

FIGURE 3.6(d) Stress pattern for a bar (refer to Appendix D for color figures).

Stress values at elements (Computer generated output)

STAT CURRENT
ELEM LS1

1 2.0000

2 2.0000

Reaction value (Computer generated output)
The following X, Y, and Z solutions are in global coordinates

NODE FX FY

1 -100.00 0.0000

ANSWERS FOR EXAMPLE 3.1

Parameter Analytical method FEM-hand calculations Software results
Displacement at node 2 0.01 mm 0.01 mm 0.01 mm
Displacement at node 3 0.02 mm 0.02 mm 0.02 mm
(Maximum displacement)

Maximum stress in element 1 2 N/mm* 2 N/mm’ 9 N/mm’®
Maximum stress in element 2 2 N/mm* 2 N/mm’ 2 N/mm?

Reaction at fixed end -100 N -100 N -100 N
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EXAMPLE 3.2

Bar under distributed and concentrated forces. Consider the bar shown in
Figure 3.7 subjected to loading as shown below. Use four-element mesh mod-
els and find nodal displacements, element stresses, and reactions at the fixed
end. Take E = 2x10° N/mm®, A = 50 mm”, P = 100 N.

w = 0.1 N'mm

y

+—> 100 N

250 mm 250 mm 250 mm 250 mm

ANNNSN\N

FIGURE 3.7 Bar under distributed and concentrated forces for Example 3.2.
Solution

(I) Analytical method [Refer to Figure 3.7(a)].

X X

®
R 4 250 mm C D E

X

FIGURE 3.7(a) Analytical method for the bar under distributed and concentrated
forces for Example 3.2.
Reaction calculation

—R+w[L,+L;]+P=0

—R+(0.1)x[250 + 250]+100=0

R=150 N
Stress calculation
AB P10 3 N/mm?
A 50
o = P10 5 N/mm?
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To find 7 ,,, consider section XX

Py 150—(x-250)x0.1 150—0.1x+25 175-0.1x

Oxx =

Agp 50 50 50
175-0.1x250
T xx les=0 |x:250:T:3 N/mm?*
175-0.1x500 0
Ty lc=0 |x:500:T:2-5 N/mm”~
_175-0.1x750

=92 N/mm?

T xx lup=0 xx - 50=

50

Displacement calculation:

Displacement at E,

515 =0+ A + A

S, :O-ABLAB " T (175_0'1x)dx+(JDELDE)

E ., AE E
2 0
p=x20, Ly gk | 2220
2x10°  50x2x10° 2 | o107

0, =0.00375+0.00625 4 0.0025 = 0.0125 mm

Displacement at B,

3%250
0, =A,, = =0.00375
P 9x10° i
Displacement at D,
S =B+ Ay =220 003754000625 =0.01 mm

2x10
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Displacement at C,

500 01 5 V00
do=Ay+ | 75=010)dx o hog754 — 17521 Z0.0072 mm
’ 250 AE 50x2x10° 2 Lo
(IT) FEM by hand calculations.
(1 @) 3) @)
1 L 2 L 3 L 4 L 5
FIGURE 3.7(b) Finite element model for Example 3.2.
L =L,=L;=L,=250 mm
A=A =A,=A,=A, =50 mm>
E=E, =E,=E,=E, =2x10> N/mm®
Stiffness matrix for elements is,
2
(1 -1 2 511 -1 1 111
[k, ]= 25 _30x2x10° =0.4x10°
L [-1 1] 250 -1 1 -1 |
2 3
(1 -1 ¢ 5[ —1] 1 -1]2
[ko]:AzEz :50x2><10 04x10°
- L, _—1 1 | 250 _—1 1 | _—1 1 _3
3 4
E[1 -1 51 -1 1 -1]3
[k,]= 2L _20x2x10° =0.4x10°
UL |1 1] 0 -1 1] -1 1 4
4 5
(1 1] 51 -1] [1 -11]4
[k4]=A4E4 :50><2><10 —0.4%10°
L, |-1 1] 250 |[-1 1] -1 15

Nodal load calculation for elements 2 and 3,
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wL, 0.1x250
12.5) 2
wL, 0.1x250 [ [12.5]3
2 2
wl, 0.1x250
12.5)3
sz 2 = 2 =
wL, 0.1x250 | |12.5[4
2 2
Global equation is,
(K] {r} = {R}
1 2 3 4 5
—H—t —0—0T—fu; Ry
-1 1+1 -1 0 0|2 |u 12.5
04x10° 0 -1 1+1 -1 0|3 Ju,;={125+125
0 0 -1 1+41 -1|4 |u, 125
0 0 0 -1 1|5 |u 100

(3.28)

(3.29)

Boundary conditions are at node 1, u, =0

By using the elimination method the above matrix reduces to,

2 -1 0 07(u,) (125
1ol -1 0 |fu,|_| 25

' 0 -1 2 —1||uf| |125[
0 0 -1 1|lu] [100

By solving the above matrix and equations, we get
u, =0.0038 mm
uy; =0.0072 mm
u, =0.01 mm

us =0.0125 mm.



80 ° FiniTE ELEMENT ANALYsIs 2/E

Stress (o ) calculation

=1 1]{

Uy

Uy

o
o]
o
&
— S — —
| Il Il
o
a
Do
Z
=
S
3
Lo

Reaction calculation: from equation (3.29)

0.4x10° (u, —u,) =R,

0.4x10%(0-0.0038) =R,

R, =-152 N

1
NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
USUM (AVG)
RSYS = 0
DMX = .0125
SMX = .0125

Y

ky x MX

0 .002778 .005556 1.008333 L011111
.001389 .004167 .006944 009722 L0125

FIGURE 3.7(c) Deflection pattern for a bar (refer to Appendix D for color figures).
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Deflection values at nodes (Computer generated output)
The following degree of freedom results are in global coordinates

NODE UXx uy uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.37500E-02 0.0000 0.0000 0.37500E-02
3 0.71875E-02 0.0000 0.0000 0.71875E-02
4 0.10000E-01 0.0000 0.0000 0.10000E-01
5 0.12500E-01 0.0000 0.0000 0.12500E-01

Maximum absolute value

NODE 5 0 0 5
VALUE 0.12500E-01  0.0000  0.0000 0.12500E-01

ELEMENT SOLUTION
STEP = 1

SUB 1

TIME = 1

LSl (NOAVG)
DMX .0125

SMN
SMX

LI I}
[N)

2 2.222 2.444 2,667 2.889
2.111 2.333 2.556 2.778 3

FIGURE 3.7(d) Stress pattern for a bar (refer to Appendix D for color figures).

Stress values at elements (Computer generated output)

STAT CURRENT
ELEM LS1
1 3.0000

2 2.7500
3 2.2500
4 2.0000
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Reaction value (Computer generated output)

The following X, Y, and Z SOLUTIONS are in global coordinates

NODE FX FY
1 -150.00 0.0000

ANSWERS TO EXAMPLE 3.2

Parameter Analytical method FEM-hand calculations Software results
Displacement at node 2 0.00375 mm 0.0038 mm 0.00375 mm
Displacement at node 3 0.0072 mm 0.0072 mm 0.00719 mm
Displacement at node 4 0.01 mm 0.01 mm 0.01 mm
Displacement at node 5 0.0125 mm 0.0125 mm 0.0125 mm
Stress in element 1 3 N/mm’ 3.04 N/mm’ 3 N/mm’
Stress in element 2 3 N/mm” to 2.5 N/mm” 2.72 N/mm® 2.75 N/mm”
Stress in element 3 2.5 N/mm” to 2 N/mm” 2.24 N/mm’ 2.25 N/mm”
Stress in element 4 2 N/mm’ 2 N/mm® 2 N/mm®
Reaction at fixed end -1.50 N -152 N -150 N

EXAMPLE 3.3

A and P = 80 kN is applied, as shown in Figure 3.8. Determine the nodal
displacements, element stresses, and support reactions in the bar. Take
E=20x10" N/mm®.

2
300 mm 1.2 mm

/]

/7 \ Wall

7 —r B¢ B

7/

; 200 mm 200 mm

FIGURE 3.8 Example 3.3.
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Solution
(I) Analytical method [Refer to Figure 3.8(a)].
1.2 mm o
. 7 N -
’—5. D EQ——> P Fe H
7 200 mm 200 mm §
/ N
FIGURE 3.8(a) Analytical method for Example 3.3.
Let R, be the reaction developed at the wall after contact.
Foels y Frls _p o
AE AE
Byx200 | (“R,)x200 (3.30)

300x20%x10°  300x20x10°

M F =0 = R, +R,=P=80x10". (3.31)

Solving equations (3.30) and (3.31)
R, =58018 N

R, =21982 N

58018 _ 193.39 N/mm?

R
Stresses are, g =_1 —
DE A

By _ 21982 oo or N/,

3
A 300

Opr =

Deflections are, 0,=0,=A,, = O—EEL = 192(’)39;0%00 =1.934 mm
<10

0,=1.2 mm.
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(II) FEM by hand calculations

Element 1 Element 2

[ . 2 ]
Node1 L1 Node2 L2 Node3s

FIGURE 3.8(b) Finite element model for Example 3.3.

L, =200 mm, L, = 200mm

First, we should check whether contact occurs between the bar and the wall.
For this, assume that the wall does not exist. The solution to the problem is as

below. (Consider the two element model.)

Stiffness matrices are,

1
1 1] 2 s 1 -1 1
[kl]zAlEl _300x20x10 30 10°
L -1 1] 200 -1 1] -1
(1 1] s[1 -1 J1
[k2]:A2E2 _ 300x20x10 —30%10°
L, -1 1] 200  |-1 1] -1
Global equation is,
[K] {r} = {R}
1 2 3
[ 1 N1 ( ] ( n ]
Bl I U I ul [11
30x10°| I 1+1 =12 Ju,=480x10°
-1 113 |u, 0

Boundary conditions are at node 1, u, =0.

By using the elimination method, the above matrix reduces to,

J 2 -1[u,] [80x10°
30x10 = :
-1 1 ||u, 0

By matrix multiplication, we get

(3.32)
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30%10° (2xu, —1xuy)=80x10° (3.33)

30x10° (—1Xu, +1Xu,)=0 (3.34)

By solving equations (3.33) and (3.34), we get, u, =2.67 mm and u, = 2.67 mm.

Since displacement at node 3 is 2.67 mm (greater than 1.2 mm), we can
say that contact does occur. The problem has to be resolved since the bound-
ary conditions are now different. The displacement at B is specified to be 1.2
mm, as shown in Figure 3.8.

Global element equation is,

(K] {r} = {R} (3.35)
1 2 3
[ 0P [ R
30x10°| 41 1+1 —1]2 {u, =480x10° (3.36)
i =13 0

Boundary conditions are at node 1, u; = 0 and at node 3, u, = 1.2.

By using the elimination method, the above matrix reduces to,

30x10°[2]{u, } ={80x10°} - 1.2[ 30x10° x—1]
30x10° x2xu, =80x10° +36x10°

u, =1.933 mm.

Stress (o) calculation: stress for element 1 is,

{al}z—[ 1 1]{ } 20;)(1)0 [-1 1]{1_;)33}=193.3 N/mm’.

Stress for element 2 is,

fos) =L 1]{ } 20007 1]{1'1?23}:_73.3 N
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Reaction calculation: from equation (3.36)

R, =-57990 N (Direction is leftwards).

We know that,

(IIT) Software results

R,+P+R, =0

-57990+80x10°> + R, =0

30x10° (u, —u,) =R,

30x10°(0-1.933)=R,

R, =—22010 N (Direction is leftwards).

1
NODAL SOLUTION
STEP = 1

SUB =1
TIME = 1
USUM (AVG)
RSYS = 0

DMX = 1.933
SMX = 1.933

.42963
.214815

MX

.859259
1.074

1.289

1.719

1.933

FIGURE 3.8(c) Deflection pattern for a bar (refer to Appendix D for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UX Uy Ux USUM
1 0.0000 0.0000 0.0000 0.0000
2 1.9333 0.0000 0.0000 1.9333
3 1.2000 0.0000 0.0000 1.2000
Maximum absolute values
NODE p) 0 0 p)
VALUE 1.9333 0.0000 0.0000 1.9333
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1ELEMENT SOLUTION
STEP = 1
SUB =1
TIME = 1
LSl (NOAVG)
DMX = 1.933
SMN = —73.333
SMX = 193.333
Y
IZN X MX
—73.333 —14.074 45.185 104.444 1
—43.704 15.556 74.815 134.074

3.704
193.333

FIGURE 3.8(d) Stress pattern for a bar (refer to Appendix D for color figures).

Stress Values at Elements

STAT CURRENT
ELEM LS1

1 193.33

2 -73.333

Reaction value

The following X, Y, and Z solutions are in global coordinates

NODE FX FY
1 -58000 0.0000
3 -22000

ANSWERS TO EXAMPLE 3.3

Parameter

Analytical method

FEM-hand calculations

Software results

Displacement at node 2
Displacement at node 3
Stress in element 1
Stress in element 2
Reaction at fixed end

Reaction at wall

1.934 mm

1.2 mm
193.39 N/mm’
-73.27 N/mm’
58.02 kN

-21.98 kN

1.933 mm
1.2 mm
193.3 N/mm”®
-73.3 N/mm’
57.94 KN

-22.01 kN

1.933 mm

1.2 mm

193.33 N/mm’
-73.333 N/mm’
-58 KN

-22 kN
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EXAMPLE 3.4

A bar is subjected to self-weight. Determine the nodal displacement for the

bar hanging under its own weight as shown in Figure 3.9. Use two equal
length elements. Let E=2x10""N/mm?®, mass density p =7800 kg/ms, Area

A =1000 mm?>. Consider length of rod L = 2 m.

rLLLLLL!

2m

FIGURE 3.9 Bar under self-weight for Example 3.4.

Solution

(I) Analytical method [Refer to Figure 3.9(a)].

y 727
1 A
£ X
B
) \
} ®
£
\ C
o

FIGURE 3.9(a) Analytical method for Example 3.4.
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_pgl? T800x9.81x(2)°

d,=0,= = ———=7.6518x10"m
2FE 2x2%10
59:53=j—dmpg =P8l | JT800x981 () ) -5 7389107 m
? ) AE E|l2 ] 2x10 2 2
(II) FEM by hand calculations
19
mlL
2
29
L
9| =
(2) >
3e

FIGURE 3.9(b) Finite element model for Example 3.4.

2
L=r1,=L-2_1y
2 2
The element stiffness matrices are,
For element 1,
1 2
1 -1 -3 I | 1 -1{1
[kl]zﬂ :1><10 x2x10 —9x10° .
L|-1 1 1 -1 1 112

For element 2,

1 -1 -3 nr1 -1 1 -1/|2
[kz]:ﬂ :1><10 x2x10 o 10° |
L,|-1 1 1 -1 1 -1 113
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Nodal load vector due to weight is,

pAgL, 7800x1x107°x9.81x1

pol 2| ) _ [38.26) 1
" pAgLy [ ] 7800x1x10° x9.81x1 [ |38.26)2
2 2

pAgL, 7800x1x107°x9.81x1

_ 2 _ p) 3 38.261 2
pAgL, 7800x1x107> x9.81x 1 38.26[3
2 2

Global equation is,

[K] {r} = {R} (3.37)

{1 2 3
| 1 14 ar)
)
.52} (3.38)

P

=t—0—fu 138
2x10°| 41 141 -1|2 3u, =476
-1 1|3 |uy| [38.26

Boundary conditions are at node 1, u, = 0.

By using the elimination method, the above matrix reduces to,

J2 17w, (7652
2x10 = .
-1 1 ||u,| |3826
By matrix multiplication, we get
2x10°% (2xu, —1Xu,)=76.52 (3.39)

2x10° (—1xu, +1xu,)=38.26. (3.40)

By solving equations (3.39) and (3.40),

we get )
u, =5.739x10™" m

u, =7.652x107" m.
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(IIT) Software results

lnom\L SOLUTION Y
STEP = 1

SUB = 1

TIME = 1

USUM (AVG)
RSYS = 0

DMX = .765E-06
SMX = .765E-06

MX

l! .170E-06 -340E-6 0.65103—06 680E-06

+850E-07 «255E-06 +425E- .595E-06 +765E-06

FIGURE 3.9(c) Deflection pattern for a bar (refer to Appendix D for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UXx uy uz USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.57389E-06 0.0000 0.57389E-06
3 0.0000 0.76518E-06 0.0000 0.76518E-06
NODE 0 3 0 3

VALUE 0.0000 0.76518E-06 0.0000 0.76518E-06

Maximum absolute values

ANSWERS TO EXAMPLE 3.4

Parameter Analytical method FEM-hand calculations  Software results

Displacement at node 2 5.7389x 10" m 5.7389x10" m 5.7389x10" m

Displacement at node 3 7.6518x10"m 7.6518x10 " m 7.6518x107m
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EXAMPLE 3.5

A rod rotating at a constant angular velocity @ = 45 rad/sec is shown in Figure
3.10. Determine the nodal displacements and stresses in the rod. Consider
only the centrifugal force. Ignore the bending of the rod. Use two quadratic
elements. Take A = 350 mm>, E = 70GPa, Mass density p =7850 kg/m’g,
Length of the rod L = 1 m.

L

© D

[/
Y

e 1000 mm

-
-

FIGURE 3.10 Rod rotation at a constant angular velocity for Example 3.5.

Solution

(I) Analytical method [Refer to Figure 3.10 (a)].

X a
A B C D E
[ ] [ ] &
1 2 3 4 5
77977 a 1m .

FIGURE 3.10(a) Analytical method for rod rotation at a constant angular velocity for Example 3.5.
L=1m
Stress calculation: Stress at section a-a,

L- ‘
, prX(L—x)(x+( x))mz X
mro 2 pw”

- - _ 2 _ 2
o= = - =5 (L x ) (3.41)

2 2\ 7850x(45)°(,. . (1)
vimo, =0 PO (g2 L] T850X(45) (1)Z—Q =7.45 MPa
N NT > 16
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0,=0,=0 =5.96 MPa

x=

Lo |~

0,=0,=0 5 =3.48 MPa

T
0,=0,=0,_,=1795MPa.

Displacement at section a-a = change in length of x,

x x 2/72 .2 2 3\*
Ax?[idx:_l.pr (L —x >dx=pw [sz—x—l

YAE T ) 2AE OF 3
5,=6,=A_,=0
P S Y 7850%(45) L I
0, =0p=NAx| 1= LPx—— e DPx=———
s 2E 3 2%x70x10 4 64x3
7850 (45)° (1) (1) ]
0, =;()9 Q—Q =2.78%10” m=0.0278 mm
2x70x10 4 192
0y=0,=2Ax| 1 =0.052 mm

9, =0, =Ax| s =0.069 mm
T4
05 =0, =AM _, =0.076 mm,
Reaction calculation
S F =0
R, +ALp %a) =0

_Alpw® _ 3.5%x107 x(1)* X 7850 % (45)°
2 2

—2781.84 N.

R, =
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(II) FEM by hand calculations.

P
— @ @
—
1 2 3 4 5
500 mm 500 mm

FIGURE 3.10(b) Finite element model for Example 3.5 (with two quadratic elements).

A finite element model of the rod, with two quadratic elements, is shown in
Figure 3.10(b). The element stiffness matrices are,

L=L =L,=05m

N B d R e ) B
k=21 7 g|=2X Z0X T 7 g
3L, 3%0.5
8 -8 16 8 -8 16
1 3 2
7 1 =871
[k]=163.33x10°| 1 7 -8|3
-8 -8 162
3 5 4
(7 1 -8]3
[k,]=163.33x10°| 1 7 -8|5.
-8 -8 164

Thus, the global stiffness matrix is,

1 2 3 4 5
7 -8 1 0 071
-8 16 -8 0 0|2
[K]=163.33x10°| 1 -8 14 -8 1 |3.
0 0 -8 16 -84
0 0 1 -8 715
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The centrifugal force or body force F. (kg/mg) is given by,

2
pro

g

F

c

(3.42)

Note that F is a function of the distance r from the pin. Taking the average
values of F over each element, we have,

b oo’ _ 7850%0.25% (45)
= -

=405103.2 kg/m’
g 9.81

5o Pne 7850%0.75% (45)
= -

=1215309.6 kg/m”’.
g 9.81

Thus, the element body force vectors are,

1 1
6 6
fl =AXL,xXF, é =3.5%x107* x0.5x405103.2 é
2 2
3 3
1
6
11.815]|1
1 Global dof
=70.89 E =<11.815;2
% 4726 |3
3
f,=AxL,xF,{—t=35x10" x0.5%1215309.6

WD |~ |~

Wl |~ |+~
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=212.68

WD D~ D~

35.45

3 Global dof
3545 +5
141.791 4

Assembling f, and f,, we obtain,

11.815 115.91
47.26 463.62
F=<4726 ;x9.81=4 463.62
141.79 1390.96
35.45 347.76
The global equation is,
[K] {r} = {R}
T =5 1 0 0 [u] (150l
8§ 16 -8 0 0 |2 U, 463.62
163.33x10°| 1 -8 14 -8 1 |3 u, 463.62
0O 0 -8 16 -84 u, 1390.96
o0 1 -8 7]5 u, 347.76

Boundary conditions are at node 1, u, = 0.

By using the elimination method, the above matrix reduces to,

16

163.33x10°|

-8 0 0

14 -8 1

-8 16 -8
1 8 7

463.62
463.62
1390.96
347.76

(3.43)

(3.44)
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By solving the above matrix and equations, we get

1, =2.661x107° mm =0.0266 mm
uy; =0.0497 mm
u, =0.0657 mm

us =0.0709 mm.

The stress at node 1 in element 1 is given by,

u, 0
o0 =215 05 2llu, | =200 5 05 9] 0.0497 0 =7.924 MPa
L 500
! u, 0.0266

The stress at node 2 in element 1 is given by,

u 0
G [05 05 0fu, %&[05 0.5 0]0.0497 t =6.972 MPa,
", 0.0266
The stress at node 3 in element 1 is given by,
2x70x1 0
s [o 5 15 -2}, %[0 5 15 -210.0497}=5992 MPa.
" 0.0266
The stress at node 1 in element 2 is given by,
0.0497

Us
21=@[—1.5 -0.5 2} u, 2X7ﬂ[ 15 -05 20.0709=5.992 MPa.
L, 500

u, 0.0657
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The stress at node 2 in element 2 is given by,

W) e 0.0497

o, s _><5—><[ 05 05 0]0.0709|=2.968 MPa.
u, 0.0657

The stress at node 3 in element 2 is given by,
) . 0.0497

7, [0 5 15 —2)u, XS—X[O 5 15 -2}0.0709t=-0.056 MPa.
u, 0.0657

(IIT) Software results.

While solving the problem using software, 4 linear bar elements are taken
instead of 2 quadratic elements.

NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
USUM (AVG)
RSYS = 0
DMX = .757E-04
SMX = .757E-04

Y

BN X MX

0 .16BE-04 +336E-04 .505E-04 .673E-04
.841E-05 .252E-04 .421E-04 .589E-04 .757E-04

FIGURE 3.10(c) Deflection pattern for a rod (refer to Appendix D for color figures).
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Deflection values at nodes (in m)

The following degree of freedom results are in global coordinates

NODE UXx uy Uz USuM
1 0.0000 0.0000 0.0000 0.0000
2 0.27795E-04 0.0000 0.0000 0.27795E-04
3 0.52041E-04 0.0000 0.0000 0.52041E-04
4 0.69191E-04 0.0000 0.0000 0.69191E-04
5 0.75696 E-04 0.0000 0.0000 0.75696E-04

Maximum absolute values

NODE 5 0 0 5
VALUE 0.75696 E-04 0.0000 0.0000 0.75696 E-04

Reaction value

The following X, Y, Z solutions are in global coordinates

NODE FX FY
1 -2781.8 -3.3691

ANSWERS OF EXAMPLE 3.5

Parameter Analytical method FEM-hand calculations Software results
Displacement at node 2 0.0278 mm 0.0266 mm 0.0278 mm
Displacement at node 3 0.052 mm 0.0497 mm 0.052 mm
Displacement at node 4 0.069 mm 0.0657 mm 0.069 mm
Displacement at node 5 0.076 mm 0.0709 mm 0.076 mm
Stress in node 1 of 7.95 MPa 7.924 MPa -
element 1

Stress in node 2 of 7.45 MPa 6.972 MPa -
element 1

Stress in node 3 of 5.96 MPa 5.992 MPa -
element 1

Stress in node 1 of 5.96 MPa 5.992 MPa -
element 2

Stress in node 2 of 3.48 MPa 2.968 MPa -
element 2

Stress in node 3 of 0 MPa -0.056 MPa -
element 2

Reaction at fixed end -2781.84 N - -2781.8 N
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Procedure for solving the problem using ANSYS® 11.0 academic
teaching software

Each problem given in this book uses a different procedure for solving using
software. For familiarizing, procedure for one problem is given from each
chapter using software. Other problems are left to the user to explore the
software for solving the problems.

For Example 3.3
Preprocessing

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Structural Link > 2D spar 1 > OK > Close

I Library of Element Types

Only structural element types are shown
Library of Element Types [Structural Mass ~
30 finkt stn 180
Beam spr 8
Pipe binear 10
Sold actuator 11
Shel
Solid-Shell
Constraint ¥l[20par 1
1

x| sooty | concel | |

FIGURE 3.11 Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > OK

I\ Real Constant Set Number 1, for LINK1

Element Type Reference No. 1
Real Constant Set No. |1
Cross-sectional area AREA |3oo
Initial strain ISTRN I
oK Apply Concel | Hep |

FIGURE 3.12 Enter the cross-sectional area.

Cross-sectional area AREA > Enter 300 > OK > Close



FINITE ELEMENT ANALYSIS OF AXIALLY LOADED MEMBERS © 101

Enter the material properties

3. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic >
Isotropic Enter EX= 2E4 and PRXY=0.3 > OK
(Close the Define Material Model Behavior window:.)

Create the nodes and elements. Create 3 nodes 2 elements.

4. Main Menu > Preprocessor > Modeling > Create > Nodes > In
Active CS

Enter the coordinates of node 1 > Apply
Enter the coordinate of node 2 > Apply
Enter the coordinates of node 3 > OK

Node locations

Node number X coordinate Y coordinate
1 0 0
2 200 0
3 400 0

FIGURE 3.13 Enter the node coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Elements >
Auto Numbered > Thru node Pick the 1st and 2nd node > Apply Pick
2nd and 3rd node > OK
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FIGURE 3.14 Pick the nodes to create elements.
Apply the displacement boundary conditions and loads.
6. Main Menu > Preprocessor > Loads > Apply > Structural > Dis-

placement > On Nodes Pick the 1st node > Apply > All DOF=0 > OK

7. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the 3rd node > Apply >
Select UX and enter displacement value = 1.2 > OK

8. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Force/Moment > On Nodes Pick the 2nd > OK > Force.

Elements from Nodes

@ pick ¢ Unpick

@ gingle € Box

€ Polygen ¢ circle
 Loop

Count = 0
Maximum = 20
Minimum = 1

Node No. =

(& List of Items

(" Min, Max, Inc

s
-

Reset Cancel

Pick A1l Help

Moment value=80e3 > OK

Y

42’(

2

FIGURE 3.15 Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the solu-

.
E

tion. First to be safe, save the model.

Solution

The interactive solution proceeds.
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9. Main Menu > Solution > Solve > Current LS > OK

The STATUS Command window displays the problem parameters and
the Solve Current Load Step window is shown. Check the solution
options in the / STATUS window and if all is OK, select File > Close

In the Solve Current Load Step WINDOW, Select OK, and the solu-

tion is complete, close the ‘Solution is Done!” window.

POSTPROCESSING
We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Postproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Displacement vector sum > OK
The result is shown in Figure 3.8(c).

To find the axial stress, the following procedure is followed.

11. Main Menu > General Postproc > Element Table > Define Table
> Add

FIGURE 3.16 Define the element table.

Select By sequence num and LS and type 1 after LS as shown in
Figure 3.17.
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'A‘ Define Additional Element Table ltems

[AVPRIN] Eff NU for EQV strain

[ETABLE] Define Additional Element Table Ttems
Lab  User label for item

Ttem,Comp Results data Rem

(For "By sequence num", enter sequence
no. in Selection bax, See Table 4.xx-3
in Elaments Manual for seq. numbers.)

x|l e | o | e |

FIGURE 3.17 Selecting options in element table.

OK >Close

12. Main Menu > General Postproc > Plot Results > Contour Plot >
Elem Table > Select > LS1 > OK

i) Contour Plot of Element Table Data
[PMETAB] Contour Element Tabls Data

Ttab Ttem to be plotted . -

Rvgiab Avarasge 3t COMMON NOdEs? Mo -do not avg =l

oK Apply cancel | nap|

FIGURE 3.18 Selecting options for finding out axial stress.

The result is shown in Figure 3.8(d).

3.3 BARS OF VARYING CROSS-SECTION AREA

This section will demonstrate thorough examples explaining FEA on bars of
varying cross-section area.

EXAMPLE 3.6

Solve for displacement and stress given in Figure 3.19 using 2 finite elements
model. Take Young’s modulus E = 200 GPa.
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03m
/20%0%0%/( _
w = 25kN/m
/
€
' jr—
01m t=0.05m
200 kN

FIGURE 3.19 Example 3.6.

Solution

(I) Analytical method [Refer to Figure 3.19(a)].

////4//{/////

a 2 ' B a
bX

&
"

3 C
FIGURE 3.19(a) Analytical method for Example 3.6.

L =2m.
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Stress calculation
b, :0.1+(0.3—0.1)§=0.1+0.1x

A, =b, xt=(0.1+0.1x)0.05

P, 200x10° +25x10° xx

x:A—x— (0.1+0.1x)0.05
3 3
0,=0,=0, ,,2:200“0 T25X107X2 o o \pa
L= (0.1+0.1x2)0.05
G,=0,= _200><103+25><103><1_225MPa
2 B tle=1 (O,1+0.1X1)0.05 .
3 3
0,=0,=0, ._()=200X10 +25x10°X0 _ o vipa.
(0.1+0.1x0)0.05

Displacement Calculation

Displacement at section a-a = change in length of (L-x)
o L
= E‘ = J_'

L[ 200x10° +25%10° xx j 200%10° +25x%10° X x
(0.1+0.1x)0.05x200x10° $1 (0.1+0.1x)0.05%200x 10°

dx = 0.2423 mm

T 200%x10° +25%10° x x
(0.1+0.1x)0.05x200x 10°

'—u

9, =0, = j 200x10° +25x10° X x j 200x10% +25x10” X x
P 0.1+0.1x)0.05%200x 10° (0.1+0.1x)0.05%200x 10°
1 1

dx =0.096 mm.
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(II) FEM by hand calculations.

Using 2 elements each of 1 m length, we obtain the finite element model
as shown in Figure 3.19(c). We can write the equivalent model as shown in
Figure 3.19(b). At the middle of the bar width is,

(0.3+0.1)
=02 m.

VIS4 447774
A

| (0.3+0.2))2=0.25m

gl | | ©1+02)2=015m

Y

FIGURE 3.19(b) Equivalent model of Finite element model for Example 3.6.
®1
Al )
¢2

Az| (@)

e3
FIGURE 3.19(c) Finite element model for Example 3.6.

A, =0.25%0.05=0.0125 m®
A, =0.15x0.05=0.0075 m”
E, =E, =200x10" N/m”

L =L,=1m.
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Stiffness matrix for element 1 is,

-1 1 1 -1

1 -1 ; i[1 -1 1
[kl]:AlE{ }:0.0125><200><10[ 1}225)(10{1

L,

Stiffness matrix for element 2 is,

[kz]:

A2E2
2

L, |-1 1 1 -1 1

Distributes load calculation for elements 1 and 2,

wxL, 25x1

. 125)1
w=, 2 =1 2 Lgp= x 10°
wxL, [ ]25x1 125(2
2 2
wXxL, 25x1
. . [125)2
w,=1 2 L= 2 Lie x 10°
wxL, 25x1 12.5]3 :
2 2
Global equation is,
[KI{r}={R}.
1 2 3
25/ 25 0 |1 (4 [125+R,
10°|-25 25+15 -1.5(2 Ju, = 25 x10°.
0| -15 153 |uy| [125+200

Boundary conditions are at node 1, u, = 0.

By using the elimination method, the above matrix reduces to,

J 4 -15]( 25 \
10° x 10
-15 15 ||2125

1 -1 91 -1 1 -1)2
[ }20.0075><200><10 { }:1_5“09[ 1 1} _

(3.45)

(3.46)
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By matrix multiplication, we get

10” (4xu, —1.5Xu, ) =25%10° (3.47)

10 (=1.5%u, +1.5xu,)=212.5%x10° (3.48)
2 3

By solving equations (3.47) and (3.48), we get

1, =9.5%107 m=0.095 mm

1y =2.37%107 m=0.237 mm.

Stress (o ) calculation
Stress in element 1,

_E_ up| _2x10° - 0 1 (
{01}_L1[ 1 1]{%}_ 500 [-1 1]{0.09 5}_19 MPa.

Stress in element 2,

E, u, | 2x10° 0.095
_Er el 11 —98.4 MPa.
{o,} Lg[ ]{u } 1000 | ]{0.237 y

3

(IIX) Software results.

1 NODAL SOLUTION Y
STEP = 1 by x
SUB =1 B
TIME = 1
USUM (AVG)
RSYS = 0
DMX = .236667
SMX = .236667
MX
0 .052593 .105185 .157778 .21037
.026296 .078889 .131481 .184074 .236667

FIGURE 3.19(d) Deflection pattern for a tapered bar (refer to Appendix D for color figures).
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Deflection values at node

The following degree of freedom results are in global coordinates

NODE Ux uy Ux USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 -0.95000E-01 0.0000 0.95000E-01
3 0.0000 -0.23667 0.0000 0.23667

Maximum absolute values

NODE 0 3 0 3
VALUE 0.0000 -0.23667 0.0000 0.23667
1
ELEMENT SOLUTION .
STEP = 1
SUB =1 t_l
TIME = 1
Ls1 (NOAVG)
DMK = .236667
SMN = 19 -
SMX = 28.333
MX
9 21.074 23.148 25.222 27.296
20.037 22.111 24.185 26.259 28.333

FIGURE 3.19(e) Stress pattern for a tapered bar (refer to Appendix D for color figures).

Stress values at elements

STAT CURRENT
ELEM LS1
3 19.000

4 28.333
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Reaction value

The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 0.0000 0.25000E+06

ANSWERS OF EXAMPLE 3.6

Parameter Analytical method FEM-hand calculations ~Software results
Displacement at node 2 0.096 mm 0.095 mm 0.095 mm
Displacement at node 3 0.2423 mm 0.237 mm 0.23667 mm
Stress in element 1 16.67 MPa to 22.5 MPa 19 MPa 19 MPa
Stress in element 2 22.5 MPa to 40 MPa 28.4 MPa 28.33 MPa

In the above example, 2 elements are used for solving the problem by hand
calculation and by software. To get the convergence of the solution with the
analytical method a higher number of elements are to be used.

EXAMPLE 3.7

Find the displacement and stress distribution in the tapered bar shown in
Figure 3.20 using 2 finite elements under an axial load of P =100 N.

Cross-sectional area at fixed end = 22 mm®
Cross-sectional are at free end =100 mm”>

Young’s modulus E = 200 GPa

P=100N

100 mm

FIGURE 3.20 Example 3.7.
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Solution

(I) Analytical method [Refer to Figure 3.20(a)].

] a b=10mm

/\

-1

-1
2, < :
o - B C [=]

M R — ——l o ————— =

N 2 31P=100N
- o
= A =

/ /

,/f a X

7

A 50 mm 50 mm

FIGURE 3.20(a) Analytical method for Example 3.7.

Assume, b= thickness = 10 mm

Area at section a-a =b x h,

h, =(h2 +(hl L }L]

20-10

Ax=bxhx=10[10+( )x]=10(10+0.1x).

Stress calculation
P 100

“TA. 10(10+0.1x)

X

100

0,=0 _ = =0.5 MPa
b 10(10+0.1x100)
0,=0, 5= 100 =0.667 MPa
10(10+0.1x50)
6y=0. =0 ] MPa

"7 10(10+0.1x0)
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Displacement calculation

PL by 100x100 20 o0+

= 7  Ip—L
Eb(hl—hz)nhg 2x10°x10(20-10) 10

0,=0,

= d00X50 20 4107 mm,
2x10°x10(20~15) ' 15

5,=0

(II) FEM by hand calculations.

Using 2 elements, each 50 mm in length, we obtain the finite element model as
shown in Figure 3.20(c). We can write the equivalent model as shown in Figure

3.20(b) in the middle, area of cross-section of bar is M =150 mm?.
2

7

7

”

A

; 1 A,

7

2

s 50 mm 50 mm

FIGURE 3.20(b) Equivalent model of finite element model for Example 3.7.

Aq Az

50 mm 50 mm

AMRRRRRRRNNY

FIGURE 3.20(c) Finite element model for Example 3.7.

(200 +150)

A =——2=175 mm’

150 +100
A, = (T) =125 mm’

L, =L, =50 mm

E, =E, =2x10° N/mm”.
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Stiffness matrix for element 1 is,

1 2
1 -1 501 -1 1 -1{1
[kl]:AlEl =0.175><2><10 7107 .
L |-1 1 50 11 112
Stiffness matrix for element 2 is, 5 3
1 -1 51 -1 1 -1(2
[k2]=A2E2 20.125><2><10 _Ex10° .
L, |-1 1 50 11 1013
Global equation is,
[K|{r}={R} (3.49)
2 3
=3 o I ( (
=T 01—, R
10° T+5 5|2 {u,p={ 0 . (3.50)

Boundary conditions are at node 1, u, = 0.
By using the elimination method, the above matrix reduces to,

12 =51(u,] (O
10° = .
-5 5 ||u, 100
By matrix multiplication, we get

10° (12X uy = 5% 1, ) =0 (3.51)

10° (=5xu, +5xu, ) =100, (3.52)

By solving equations (3.51) and (3.52), we get

u, =1.429%10™* mm

u, =3.429%10™ mm.



FINITE ELEMENT ANALYSIS OF AXIALLY LoADED MEMBERS © 115

Stress calculation

Stress in element 1,

E, u, | 2x10°
=—{-1 1 = - =0.5716 MPa.
o} Ll[ J u,[ 50 1 1k 49910+ 4
Stress in element 2,
U, 2 > 1.429%x107*
fo =21 1 =220 ] L, +=0.8 MPa,
L, Uy 50 3.429%10
(IIT) Software results.
INODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
UsuM (AVG)
RSYS = 0
DMX = .343E-03
SMX = .343E-03
Y
ZN X MX

FIGURE 3.20(d) Deflection pattern for a tapered bar (refer to Appendix D for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UX uy uz USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.14286E-03 0.0000 0.0000 0.14286E-03

3 0.34286E-03 0.0000 0.0000 0.34286E-03
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lELEMENT SOLUTION
STEP = 1

SUB 1

TIME = 1

Ls1 (NOAVG)
DMX .343E-03
SMN 571429
SMX .8

.571429 .622222

.596825 .647615673016

669841572381

774603

749206 8

FIGURE 3.20(e) Stress pattern for a tapered bar (refer to Appendix D for color figures).

Stress values at elements

STAT CURRENT
ELEM LS1

1 0.57143

2 0.80000

ANSWER FOR EXAMPLE 3.7

Parameter Analytical method FEM-hand calculations Software results

Displacementatnode 24 445107 mm 1.429%10™* mm 1.4286x10™ mm

Displacement atnode 3 3 47,10 mm 3.429%10™ mm 3.4286x10™ mm

Stress in element 1 0.5 MPato 0.667 MPa 0.5716 MPa 0.57143 MPa

Stress in element 2 0.667 MPato 1 MPa 0.8 MPa 0.8 MPa
EXAMPLE 3.8

Find the nodal displacements, element stresses, and reaction in the tapered
bar subjected to aload of 6000 N as shown in Figure 3.21. Further the member
experiences a temperature increase of 30°C. Use three equal length elements
for finite element model. Take E = 200 GPa, v = 0.3, and a =7x107° / °C.
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1500 mm

FIGURE 3.21 Example 3.8.

Solution
(I) FEM by hand calculations.

We obtain the finite element model as shown in Figure 3.21(b). We can write
the equivalent model as shown in Figure 3.21(a)

A A | A

AALAAANNANYN

FIGURE 3.21(a) Equivalent model of the finite element model for Example 3.8.

L L
® ! - 2 - Ls ]
Node 1 Node 2 Node 3 Node 4

FIGURE 3.21(b) Finite element model for Example 3.8.

L, =L,=L,=500 mm

AT =30°C
A, =2000 mm®
A, = M:BOO mm?>

A, =1000 mm”.
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Element stiffness matrices are,

[k ]

AE
LS

[ks]:

_AE|
Ll_

1_2000x2x10° [

500

1_1500x2x10°

500

1_1000x2x10%

500

Nodal loads due to thermal effect are,

-1 ; Py -1 (-1
{01} =EAa (AT) | [=2X107X2000x7x107 X301+ =84x10 5
-1 ; B -1 L [-1)2
{Ou } =EAa (AT) | (= 2X107X1500%7x107 %30 =63%x10 3

-1 ; P -1 L [-1)3
{05} =EAja (AT) | [=2X107X1000x7x107 %30 =42x10 4

12
-1 J1 -1
=8x10
1] -1 12
2 3
17 1 172
=6x10
1] -1 13
3 34
-1] J1 13
=4x10 .
1] -1 1|4

1

1
Global forced vector
—84x10° 1 [-84x10%|1
84x10* -63x10% |2 | 21x10” |2
{R}= 3 4 3(a 3 ‘
63x10° —42x10° |3 21x10° |3
42x10° 4 | 42x10° |4
Global equation is,
1 2 3 4
=80 0T fu, | {=SaxI0°FR, |1
105 8 8+6 -6 0|2 |u, 21x10° |2
-6 6+4 —-4|3 |u, 21x10° 3
0 -4 414 |u,| [42x10°+6000|4

1

1

1

(3.53)
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Using the elimination method of applying boundary conditions, i.e., u, = 0.
The equation (3.53) reduces to,

14 -6 0 ](u,|] [21x10°
10°| -6 10 —4 |Ju, p=421x10° .
0 -4 4 ||u, 48x10°

Solving the above matrix and equations, we get
u, =0.1125 mm
u, =0.2275 mm

u, =0.3475 mm.

Stress calculation

u 5
v, =L£|:—1 1]{ 1}—Ea (AT)=2;<010
1 Uy

oL 1]{0.1225}

—2x10°x7x10°%x30=3 MPa

0.1125
o 1! 1]{0.2275}

E Uy 2x10°
azzL—[—l 1]{%}—&1 (AT)=—

—2x10°x7x10°x30=4 MPa

E u 210’ 0.2275
03:1:[_1 lj{uz}_Ea(AT): 500 L1 1]{0.3475}

—2x10°x7x10°x30=6 MPa.

Reaction calculation: from equation (3.53),

8x10°u, —8x10°u, =-84x10° + R,

R, =—6000 N.



120 « FiNniTE ELEMENT ANALysis 2/E

(IIT) Software results.

1
NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
USUM (AVG)
RSYS = 0
DMX = .3475
SMX = .3475
Y
b x -
’ 077222 .154444 .231667 .308889
038611 115833 .193056 .270278 .3475

FIGURE 3.21(c) Deflection pattern for a tapered bar (refer to Appendix D for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE ux uy ux USuM
1 0.0000 0.0000 0.0000 0.0000
2 0.11250 0.0000 0.0000 0.11250
3 0.22750 0.0000 0.0000 0.22750
4 0.34750 0.0000 0.0000 0.34750

1
ELEMENT SOLUTION
STEP = 1
SUB =1
TIME = 1
LS1 (NOAVG)
DMX = .3475
SMN = 3
SMX =6
X MN MX
m—
3 3.667 4.333 5 5.667
3.333 4 4.667 5.333 6

FIGURE 3.21(d) Stress pattern for a tapered bar (refer to Appendix D for color figures).
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Stress values at elements

STAT CURRENT
ELEM LS1

1 3.0000

2 4.0000

3 6.0000

Reaction value

The following X, Y, and Z solutions are in global coordinates

NODE FX FY

1 -6000.0 0.0000

ANSWERS FOR EXAMPLE 3.8

Parameter FEM-hand calculations Software results
Displacement at node 2 0.1125 mm 0.1125 mm
Displacement at node 3 0.2275 mm 0.2275 mm
Displacement at node 4 0.3475 mm 0.3475 mm
Stress in node 1 of element 1 3 MPa 3 MPa

Stress in node 2 of element 1 4 MPa 4 MPa

Stress in node 3 of element 1 6 MPa 6 MPa

Reaction at fixed end -6000 N -6000 N

Procedure for solving the problem using ANSYS® 11.0 academic
teaching software

For Example 3.6
PROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit > Delete
> Add > Structural Link > 2D spar 1 > OK > Close
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I\ Library of Element Types

Only structural element types are shown
Library of Element Types

Element type reference number

oxl Aoply Cancel | Hop |

FIGURE 3.22 Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > OK

'A‘ Real Constant Set Number 1, for LINK1

Element Type Reference No. 1

Real Constant Set No. |1—

Cross-sectional area AREA ,r

Initial strain ISTRN [o—
o o | ool | v |

FIGURE 3.23 Enter the cross-sectional area of 1st element.

Cross-sectional area > Enter 12500 > OK > Add > OK

'ﬂ Real Constant Set Number 2, for LINK1

Element Type Reference No. 1
Real Constant Set No.

|
il

FIGURE 3.24 Enter the cross-sectional area of 2nd element.
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Cross-sectional area AREA > Enter 7500 > OK > Close
Enter the material properties.
3. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1, click Structural > Linear > Elastic >
Isotropic

Enter EX=200E3 and PRXY=0.3 > OK
(Close the Define Material Model Behavior window.)

Create the nodes and element. As stated in the example, use 2 element
model.

Hence create 3 nodes and 2 elements.

4. Main Menu > Preprocessor > Modeling > Create > Nodes > In
Active CS Enter the coordinates of node 1 > Apply Enter the coordi-
nates of node 2 > Apply Enter the coordinates of node 3 > OK.

Node locations

Node number X coordinate Y coordinate
1 0 0
2 0 -1000
3 0 -2000

I\ Create Nodes in Active Coordinate System

[N] Create Nodes in Active Coordnate System
NODE Node number F_
%,Y,Z Location inactive CS |n |u |
THXY, THYZ, THZX
Rotation angees (degrees) I I |
x| ooy _| cocel_| o |

FIGURE 3.25 Enter the node coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Elements
> Elem Attributes > OK > Auto Numbered > Thru nodes Pick
the 1st and 2nd node > OK
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Define attrbutes for slements
(V] Gt ty5m EETT—
[MAT] Materid rusber M =
[REAL] P comatant set rumber M =
(E57) umrt corts s !
[SECMUM] Secson number [
[TSHAP) Target clement shape [Sascht Ine >
= | coed | |

FIGURE 3.26 Assigning element attributes to element 1 and creating element 1.

Elem Attributes > change the Real constant set number to 2 > OK >
Auto Numbered > Thru nodes Pick the 2nd and 3rd node > OK

Define attributes for dements
[TYPE] Element type number T - | ® singie € Dox
= —_— £ rosygon ¢ Circte
[MAT] Material number | Fiass
[REAL] Real constant set number [ 2 - Cone = O
Maximum = 20
[ESYS) Element coordnate sys | 0 .| Rindeum = 1
Node No. =
[SECNUM] Section number hone defined >
o @ List of Items
uerthe z € Min, Maz, Inc
 —
x| Apply
Beset | camcer
Haip
o | Corcel | wo |

FIGURE 3.27 Assigning element attributes to element 2 and creating element 2.

Apply the displacement boundary conditions and loads.

6. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the 1st node > Apply >
All DOF=0 > OK

7. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Force/Moment > On Nodes Pick the 2nd node > OK >
Force/Moment value=-25e3 in FY direction > OK > Force/Moment
> On Nodes Pick the 1st node > OK > Force/Moment value=-12.5¢3
in FY direction > OK
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FIGURE 3.28 Model with loading and displacement boundary conditions.
The mode-building step is now complete, and we can proceed to the solution.
First to be safe, save the model.
Solution. The interactive solution proceeds.

8. Main Menu > Solution > Solve > Current LS > OK The/ STATUS
Command window displays the problem parameters and the Solve Cur-
rent Load Step window. Select OK, and when the solution is complete,
close the ‘Solution is DONE!” window.

POSTPROCESSING
We can now plot the results of this analysis and also list the computed values.

9. Main Menu > General Postproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Displacement vector sum > OK

This result is shown in Figure 3.16(d).
To find the axial stress, the following procedure is followed.

10. Main Menu > General Postproc > Element Table > Define

Table > Add
I\ Element Table Data
Curently Defined Data and Status:
Label Ttem Comp. Time Status
_add.. | todte _Dekte |
_Gose | _mo |

FIGURE 3.29 Defining the element table.
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Select By sequence num LS and type 1 after LS as shown in Figure 3.27.

VA‘ Define Additional Element Table ltems

[AVPRIN] EFf NU For EQY strain |
[ETABLE] Define Additicnal Element Table Itens
Leb  User label for item

Ttem,Comp Resuks data item

(For "By sequence num", enter sequence
no. in Selection boz. See Table 4.xx-3
in Elements Manual for seq. numbers.)

*x_| oty _| carsl_| wo |

FIGURE 3.30 Selecting options in the element table.

OK

11. Main Menu > General PostProc > Plot Results > Contour Plot >
Elem Table > Select LS1 > OK

I\ Contour Plot of Element Table Data

[PLETAB] Contour Element Table Data

Itab Item to be plotted ﬁzl

Avglab Average a common nodes? [No - do not avg ~]
x| sonty_| concel_| Hoo |

FIGURE 3.31 Selecting options for finding out axial stress.

This result is shown in Figure 3.19(e).

3.4 STEPPED BAR

This section will demonstrate examples on stepped bar using FEA.

EXAMPLE 3.9

Find the nodal displacements, stresses in each element, and reaction at the
fixed end for the Figure 3.32 shown below. Take, A, = 100 mmz, and E,| =
E, = 200 GPa.
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1
~
~

390 [ @.__

Ry 4 1000 N 500 N

-1
- B C
qA 200 mm 100 mm

FIGURE 3.32 Example 3.9.

Solution
(I) Analytical method [Refer to Figure 3.32 ].

Displacement calculation

P Py L,. -
d. =D, =D, +D, = Pwlu , Pocluc _ 500200 500x100

+ =
AGE  ARE  200x2x10°  200%2x10°
d,=-25x10"+25x107 =0

d =D :_PABLAB = 500200 :_25X10J3 mim
PO ALE S 200x2x10° ‘

Stress calculation

O, = P 500 _ —2.5 MPa (Compressive)
A, 200

Ope = By 500 5 MPa (Tensile).
A, 100

Reaction calculation
Y FE=0
R, —1000+500=0
R, =500 N.

(ITI) FEM by hand calculations.

M @
b » S L 3

FIGURE 3.32(a) Finite element model for Example 3.9.
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L, =200 mm
L, =100 mm.

Displacement calculation

Stiffness matrices for elements 1 and 2 are,

1 2
1 -1 501 =17 1 11
(k= AL _200x2x10 .
L |-1 1 200 |-1 1) -1 12
2 3
1 -1 9 51 —1] (1 -172
[k2]=A2E2 _100x2x10 —9x10° -
L, |-1 1 100 [-1 1 -1 13
Global equation is,
2 3
t+— 0o+ F&;

2x10°| 41 1+1 -1(2 {u,p=1-1000¢. (3.54)
-1 13 |u, 500

Using the elimination method and applying boundary conditions at node 1,
u, =0.

The equation (3.54) reduces to

oror] 2 71[e] _ [F1000
-1 1 ||uy| | 500 [

By solving the above matrix and equations,
we get,

u,=2.5x 10" mm
uy=0.

Stress calculations

E u | 2x10° 0 ,
o, = L_Ill:_l lj{u; } = 300 [—1 1]{—2.5x 103} =—-2.5 MPa (Compressive)
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uy | 2x10° 1] -25x107

[—1 =5 MPa (Tensile).
u, [~ 100

g, :%[—1 1]
2

Reaction calculation
From equation (i)

2x10° (u, —u,) =R,
2x10°(0—(-25x107)) =R,

R, =500 N.

(IIT) Software results.

! NoDAL SOLUTION
STEP = 1

sup =1

TIME = 1

UsuM (AVG)
RSYS
DMx
SMX

"
.
-
=
L
w

g 556E-03 -001111 .001667 .002222

. 27BE-03 +.833E-03 .001389 .001944 .0025

FIGURE 3.32(b) Deflection pattern for a stepped bar (refer to Appendix D for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE Ux uy uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 -0.25000E-02 0.0000 0.0000 0.25000E-02

3 0.0000 0.0000 0.0000 0.0000
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1ELEMENT SOLUTION
STEP = 1

suB =1

TIME = 1

Ls1 (NOAVG)
DMX = .0025

SMN = -2.5

SMX 5

Y
Px o

=2.5 T.833333
-1.667

222815

—
833333 7.5 4.167
1.667 3.333 s

FIGURE 3.32(c) Stress for a stepped bar (refer to Appendix D for color figures).

Stress value at elements

STAT CURRENT
ELEM LS1
1 -2.5000
3 5.0000

Reaction value

The following X, Y, and Z solutions are in global coordinates

NODE

FX

FY

1

500.00

0.0000

ANSWERS FOR EXAMPLE 3.9

Parameter Analytical method FEM-hand calculations  Software results
Displacement at node 2 -2.5 x 10 mm -2.5x 107 mm -2.5x 107 mm
Displacement at node 3 0 0 0

Stress in element 1 -2.5 MPa -2.5 MPa -2.5 MPa

Stress in element 2 5 MPa -5 MPa 5 MPa

Reaction at fixed end 500 N 500 N 500 N

EXAMPLE 3.10

Find the nodal displacements, stress in each element, and reaction of the
fixed end for Figure 3.33 shown below. Take E, =2x10°> N/mm® and
E, =1x10> N/mm”.
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1 mm
Wall
g Steel Cast iron S/
g £ B00KN E N
—-—t s-4+———----- StA---fe——
Ra y < > R Re
1 B C :
A 1000 mm 2000 mm N
FIGURE 3.33 Example 3.10.
Solution
(I) Analytical method [Refer to Figure 3.33].
Ay ==d? =2 (60)’ =2827.43 mm?
4 4
Ay =2 d? =Z(40)’ =1256.64 mm?.
4 4
In the absence of the right wall,
3
_ PyxL,, 800x10°x1000 — 1415 mm.

A=Ay =

AuXE,, 2827.43x2x10°

Hence, the contact does occur with the right will since u, = 1.415 mm.

Let R, and R be the reactions developed due to constraint.

R, +R.=800x10°

RA XLAB + (_RC )XLBC _
AAB X EAB ABC X EBC

R, x(1000) _ (-Rc)x(2000) _,
2827.43%2x10°  1256.64x1x10°

1.7684x10° xR, —1.5915x107° xR, = 1.

(3.55)

(3.56)
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By solving equations (3.55) and (3.56),

we get

R, =776547.49 N

R, =23452.51 N.

Displacement calculation

5 op o RuxLy _776547.49x1000
P ALXE,, 2827.43x2x10°

=1.373 mm

0. =1mm.

Stress calculation

oo Ry TIOTAY oo iy

A, 2827.43

_(-R;) -23452.51

Gy = = =-18.66 MPa.
A, 125664
(II) FEM by hand calculations.
) o @ -
1 L 2 L 3

FIGURE 3.33(a) Finite element model for Example 3.10.

L, =1000 mm

L, =2000 mm.

In this example, first determine whether contact occurs between the bar and
the wall. To do this, assume that the wall does not exist. Then the solution to
the problem is (consider the 2 element model),

Stiffness matrix for element 1 is,
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1 2
1 -1 51 -1 1 -1|1
(k= AL _ 2527.43%2x10 5 G5 10° |
L |-1 1 1000 -1 1 -1 1|2
Stiffness matrix for element 2 is,
2
1 -1 | 1 -1|2
[k9]=% :1256.64><1X10 —0.698x10° .
B L, |[-1 1 2000 -1 1 -1 1|3
Global equation is,
[K]{r}={R} (3.57)
1 2 3
5.655 —5.655 0 [T [u R
10°| —=5.655 |5.655+0.628 —0.628 (2 U, = 800x10° . (3.58)
0 —0.628 0.628 (3 |u, 0
Boundary conditions are at node 1, u, = 0.
By using the elimination method, the above matrix reduces to,
6283 —0628](u,] [S00x10°
10° = .
-0.628 0.628 ||u, 0
By matrix multiplication, we get
10%(6.283x u, —0.628X 1, ) = 800x10° (3.59)
107 (0.628 X 11, +0.628 X 11, ) = 0 (3.60)

By solving equations (3.59) and (3.60)

we get.
u,=1.415 mm and u; = 1.415 mm.

Since the displacement of node 3 is 1.415 mm, we can say that contact does
occur. The problem has to be resolved since the boundary conditions are now
different. The displacement at node 3 is given as 1 mm.
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Global equation is,
1 | 2 3
5.655 —5.655 0 I J[u R,
10°| -5.655 | 5.655+0.628 —0.628 |2 {u, +=1800x10° .  (3.61)
0 —0.628 0.628 |3 |u, 0

Boundary conditions at node 1, u, = 0 and at node 3, u, = 1 mm.

By using the elimination method, the above matrix reduces to,

10°[6.283]{u, } =[ 800x10° |- 1[10° x(~0.628) |
10°[6.283]{u,} =800x10° +0.628 x 10°

u, =1.373 mm.

Stress calculation

_E up| _2x10° - 0 |
o‘l—L[ 1 1]{ }_ 1000 [-1 1]{1.373}—274.6 MPa

) u,

_Er uy | _1x10° 1.373] |
Gz_LZ[ 1 1]{%}— 2000[ 1 1]{ | (=865 MPa.

Reaction calculation

From equation (3.60)

5.655%10° X1, —5.655%10% xu, =R,
0-5.655x10°x1.373 =R,

R, =-T76431.5 N(Direction is leftwards).
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We know that,
R,+P+R,=0
~776431.5+800x10° + R, =0

R, =-23568.5 N (Direction is leftwards).

(IIT) Software results.

150DAL SOLUTION
STEP = 1

SUB = 1

TIME = 1

USUM (AVG)
RSYS = 0

DMX = 1.373
SMX = 1,373

! 305165 +610329 . +915494 !.221

«152582 457747 762912 1.068 1.373

FIGURE 3.33(b) Deflection pattern for a stepped bar (refer to Appendix D for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE Ux uy uz UsumMm
1 0.0000 0.0000 0.0000 0.0000
2 1.3732 0.0000 0.0000 1.3732

1.0000

0.0000

0.0000

1.0000
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LlELEMENT SOLUTION

STEP = 1

SUB =1

TIME = 1

Ls1 (NOAVG)

DMX = 1.373

SMN = -—18.662

SMX = 274.648
¥

Ll MX MN

—18.662 46.518 111.69 176.878 242.05
13.928 79.108 144.288 209.468 274.648

FIGURE 3.33(c) Stress pattern for a stepped bar (refer to Appendix D for color figures).

Stress values at elements

1 247.65

2 -18.662

Reaction value

The following X, Y, Z solutions are in global coordinates

1 -0.77655E +06 0.0000

3 -23451.
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Answers for Example 3.10

Parameter Analytical method FEM-hand calculations Software results
Displacement at node 2 1.373 mm 1.373 mm 1.3732 mm
Displacement at node 3 1 mm 1 mm 1 mm

Stress in element 1 274.65 MPa 274.65 MPa -274.65 MPa
Stress in element 2 -18.66 MPa -5 MPa 5 MPa

Reaction at fixed end -776.5 kN -776.4 kN -776.55 kN
Reaction at wall -23.45 kN -23.57 kN -23.451 kN

EXAMPLE 3.11

Find the nodal displacement, stress in each element, and reaction at fixed ends
for Figure 3.34 as shown below. If the structure is subjected to an increase in
temperature, AT =75°C, P, =50 kN, P, =75 kN .

A
N
“ F’1 PZ [~
A e B e C D¢~
A N
N
] N
-1 N
“1 800 mm 600 mm 400 mm [N
FIGURE 3.34 Example 3.11.
Bronze Aluminum Steel
A = 2400 mm’ 1200 mm® 600 mm®
E =83 GPa 70 GPa 200 GPa

a =18.9%x10°/°C 23x107°/°C 11.7x107° / °C
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Solution
(I) Analytical method [Refer to Figure 3.34].

Problem can be solved by method of superposition by considering load and
temperature separately.

Step 1: Consider only the loads, P;, P, and neglect rise in temperature.

R, +R, =125x10° (R] and R, are reactions due to P, and P2) (3.62)

(=P,5) %800 s (=P, )% 600 . (P.,, )% 400
2400%x83x10°  1200x70%x10°  600%200x10°

But P, =R, ,P,=R, and P,. =R, -50x10°

! ! 3
(—Rl)xsool_(31—50><10 )x500+ (Pp)x400 0 (363)
2400x83x10° 1200x70x10° 600x200x10°

Solving equations (3.61) and (3.62)

R, =53.39 kN
R, =71.61 kN
(-53.39x10°)
O\ =—————2>=-2225MPa
2400
. —(53.39x10> -50x10%)
O = =-2.825 MPa
1200
(71.61x10°)
0 cp ZT = 11935 MPa
= 22252800 _ 45144
83x 10
_ 22825600 _ ) 1949 mm

BCT 70%10°
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A,y = 1935400 _ 9395 1,
P T200% 10

Step 2. Consider only the rise in temperature and neglect P,, and P,,.

Free expansions due to AT = 75°C are

(AL,,), =a X Lx(AT)=18.9x10" x800x 75 =1.134 mm

AL,.), =a X Lx(AT)=23x10"°x600x75=1.035 mm
BC /1

AL =a XLX(AT)=11.7x10"x400x 75 =0.351 mm
CD )1

Total (AL), =1.134+1.035+0.351 =2.52 mm.

For equilibrium

(-R,)x800  (=R;)x600  (-R,)x400
2400x83x%10° " 1200x70x10° " 600x200x%10°

=— Total (AL),
(—R,)x800 N (—R,)x600 . (—R))x400

: =—2.52.
2400x83%x10>  1200x70x10°>  600x200x10°

Solving,
R, =173.89 kN
o= 21890 _ 79 45 MPa
2400
e _ZIT80 4491 MPa
© 1200
T _ 173890 _ 999,89 MPa
‘ 600
(L), = —T245%800 _ ) coc

83x10°
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—144.91x600

(ALBC )Lmd = 70><—103 =-1.242 mm
—289.82x 400

(ALcp ), = oooxi0r - 05796 mm

A, =1.134-0.698 =0.436 mm
Ay =1.035-1.242=-0.207 mm

Ayp =0.351-0.5796 = —0.2286 mm
Step 3. Use method of superposition and combine steps (1) and (2).
Stresses are, g ,, =0 ,, +0 ,, =—22.45-72.45=-94.7 MPa.
Similarity, g ,. =0 . +0 . =—147.74 MPa
Gop =0 cp+0 o =—170.47 MPa.

Change in lengths are,

Ay =A,+A,,=-02144+0.436=0.2216 mm
Ay =Dy + Ay, =—0.0242 - 0.207 =-0.2312 mm
Acp =ADyp +Agp =0.2395-0.2286 =0.0109 mm
u, =A,; =0.2216 mm

u; =Ay, =0.0109 mm.

Reactions are,

R, =R, +R, =53.39+173.89 =227.28 kN

R,=R, +R, =71.61-173.89=-102.28 kN.
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(II) FEM by hand calculations.

(1) 2) 3)
. ° * +

1 L, 2 L 3 L, 4

FIGURE 3.34(a) Finite element model for Example 3.11.

L, =800 mm, L, =600 mm, L, =400 mm

A, =2400 mm*, A, =1200 mm®, A, =600 mm®

E, =83%x10> N/mm’, E, =70x10> N/mm®, E, =200x10°> N/mm’
a,=18.9x10° /°C, a, =23x10° /°C, a, =11.7x10"° /°C.

Element stiffness matrices are,

12
1 -1 1 1] (1 -1t
[k ]= AL _ 2400x83x10 2495 10°
L, |-1 1 800 -1 1| -1 12
(1 1] T 1] (1 172
[k, ] = A _1200x70x10 _ 140x10°
L, |-1 1 600 |-l 1| -1 13
3 4
E 1 1] ST 1] J1 -173
[k, = Aol _ 600x200x10 — 300x10° |
S E U 400  |-1 1] -

Effect of temperature and thermal loads are,

-1 . [ 3 4
{Qum | = EAo, (AT) | [=83X107x2400x189x107x 54+ =28237x10'4 "¢

-1 \ [t L2
[0s } = E, A0, (AT) | [=TOX10°X1200x23X 10 X751 1=1449%10°1

-1 \ Py -1 L[-113
{Qs } = EsAt, (AT) | [=200x10°x600x11.7x10° 751 ¢ =1053x107¢ "t .
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Global Force vector

—282.37x10° 1 [-282.37x10°|1
(R} 282.37x10° —~144.9x10° |2 | 137.47x10" |2
] 144.9%x10° =105.3x10° [3 | 39.6x10° [3
105.3x10° 4 105.3x10° |4
249 =249 0 0 T [u —982.37+R,
—249 2494140 140 0 |2 | 137.47-50
10° Y2l L (3.64)
0 140 140+300 -300(3 |u, 39.6-75
[0 0 =300 300 |4 |u, 105.3+R,

Using the elimination method and applying boundary conditions,
ie., u, =u,=0.
The equation (3.63) reduces to,

ol (i)

~140 440 ||u, -35.4

By solving the above matrix and equation,
we get uy = 0.2212 mm and u, = —0.0101 mm.

Stress calculation

E u
g, :L_l[—1 1]{111 }—Ela L (AT)
1 2

3 0 .
_83x10 [-1 1] ~83%10°x18.9x10° x 75 =-94.7 MPa
0.2212

800

E, u
g, =L_-[—1 1]{12}—152(1 , (AT)
2

3 0.2212 -
_70x10 [-1 1] —70%10° x23x10™° x 75 =—145.38 MPa
600 ~0.0101
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o, =%[_1 1]{23}—@(1 L (AT)
3 4

_200x10° 1 1]{—0.0101

—200x10°x11.7x107° x75=—-170.45 MPa.
400 0

Reaction calculation

249x10° X u, —249%10° xu, =-282.37x10° + R,
0—249x10°x0.2212 =-282.37x10° + R,
R, =227.29 kN
-300%10° X 1, +300x10° X1, =105.3x10° + R,
—-300%10” x(=0.0101)+0=105.3x10" + R,

R, =-102.27 kN.
(IIT) Software results.
1 NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
usuM (AVG)
RSYS = 0
DMX = .221226
SMX = .221226
Y
fn x =
0 .049161 .098323 +147484 196645
.024581 .073742 .122903 172065 .221226

FIGURE 3.34(b) Deflection pattern for a stepped bar (refer to Appendix D for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates



144 « FiniTeE ELEMENT ANALysis 2/E

1 0.0000 0.0000 0.0000 0.0000

2 0.22123 0.0000 0.0000 0.22123

3 -0.10064E-01 0.0000 0.0000 0.10064E-01
4 0.0000 0.0000 0.0000 0.0000

1ELEMENT SOLUTION
STEP = 1

SUB =1

TIME = 1

Ls1 (NOAVG)
DMX = .221226
SMN = —170.468
SMX = —94.7

s - .

—=170.468 153.631 =136.7 ! 19.9 -=103.119

-] 9. =1 56
—162.049 —145.212 —128.375 —111.538 —94.7

FIGURE 3.34(c) Stress pattern for a stepped bar (refer to Appendix D for color figures).

Stress values at elements

1 -94.700
2 -147.73
3 -170.47

Reaction values

The following X, Y, Z solutions are in global coordinates

1 0.22728E +06 0.0000
4 -0.10228E +06 0.0000
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Answers for Example 3.11

Parameter Analytical method FEM-hand calculations  Software results
Displacement at node 2 0.2216 mm 0.2212 mm 0.22123 mm
Displacement at node 3 -0.0109 mm -0.0101 mm -0.010064 mm
Stress in element 1 -94.7 MPa -94.7 MPa -94.7 MPa
Stress in element 2 -147.74 MPa -145.38 MPa -147.73 MPa
Stress in element 3 -170.47 MPa -170.45 MPa -170.47 MPa
Reaction at fixed end 227.28 kN 227.2912 kN 227.28 kN
Reaction at wall -102.28 kN -102.27 kN -102.28 kN

Procedure for solving the example using ANSYS® 11.0 academic
teaching software

For Example 3.11

Preprocessing

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Structural Link > 2D spar 1 > Ok > Close

I Library of Hlement Types
Only structural element types are shown
Library of Elamant Types

FIGURE 3.35 Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > OK
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r“ Real Constant Set Number 1, for LINK1

Element Type Reference No, 1

Real Constant Set No, |'1—'
2400]

Cross-sectional area  AREA

Initial strain ISTRN

x | _wow | _conad | b |

FIGURE 3.36 Enter the cross-sectional area of 1st element.

Cross-sectional area AREA >Enter 2400 > OK > Add > OK

m Real Constant Set Number 2, for LINK1

Element Type Reference No. 1
Real Constant Set No. I 2
Cross-sectional area  AREA I 1200]
Initial strain ISTRN I
oK Apply cancel | Hep |

FIGURE 3.37 Enter the cross-sectional area of 2nd element.

Cross-sectional area AREA > Enter 1200 > OK > Add > OK

I\ Real Constant Set Number 3, for LINK1

Element Type Reference No. 1
Real Constant Set No.

Cross-sectional area  AREA
Initial strain ISTRN

o« | aoply | cancel |

il

FIGURE 3.38 Enter the cross-sectional area of 3rd element.
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Cross-sectional area AREA > Enter 600 > OK > Add > OK > Close
Enter the material properties.

3. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1,

Click Structural > Linear > Elastic > Isotropic

Enter EX = 0.83E5 and PRXY = 0.34 > OK

Enter the coefficient of thermal expansion o

Click Structural > Thermal Expansion > Secant coefficient >
Isotropic

Enter ALPX - 18.9E-6 > OK

Then in the material model window click on Material menu > New
Model > OK

Material Model Number 2,

Click Structural > Linear > Elastic > Isotropic

Enter EX = 0.7E5 AND PRXY -0.35 > OK

Enter the coefficient of thermal expansion a

Click Structural > Thermal Expansion > Secant coefficient >
Isotropic

Enter ALPX = 23E-6 > OK

Then in the material model window click on Material menu > New
Model > OK

Material Model Number 3,

Click Structural > Linear > Elastic > Isotropic

Enter EX =2E5 and PRXY = 0.3 > OK

Enter the coefficient of thermal expansion

Click Structural > Thermal Expansion > Secant coefficient >
Isotropic

Enter ALPX = 11.7E-6 > OK

(Close the Define Material Model Behavior window.)

Create the nodes and elements. Use 3 element models. Hence create 4
nodes and 3 elements.

4. Main Menu > Preprocessor > Modeling > Create > Nodes > In
Active CS Enter the coordinates of node 1 > Apply Enter the coordi-
nates of node > Apply Enter the coordinates of node 3 > Apply > Enter
the coordinates of node 4 > OK.
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Node locations

Node number

X COORDINATE Y COORDINATE

1 0 0
9 800 0
3 1400 0
4 1800 0

"‘ Create Nodes in Active Coordinate System

[N] Create Nodes in Active Coordinate System

NODE Node number ]

%,Y,Z Location in active C5 Io I

THXY, THYZ, THZX

Rotation angles (degrees) I |
x| o | coest_| |

FIGURE 3.39 Enter the node coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Elements > Elem
Attributes > OK > Auto Numbered > Thru nodes Pick the 1st and

2nd node > OK

|Mumferm

| e e e e T
[MAT] Material rumber |
[REAL] Resl constant set number [+ 3
[ESVS) Elament cocrdinats sys | |
Immw [Noe defined |
| (151449 Target eement shaps Straight ne )
x| ceal_| o |

Elements from Nodes

 Uopiex
€ Hox

€ Circle

RO
8o

pick a11|  Help

FIGURE 3.40 Assigning element attributes to element 1 and creating element 1.

Elem Attributes > change the material number to 2 > change the Real
constant set number to 2 > OK > Auto Numbered > Thru nodes Pick

the 2nd and 4th node > OK
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Llements from Nodes

Define attributes for slemants

[TYPE] Blement typs number 1 UM -l

[MAT] Motsrial nuber 2 |

o pep—— — —

[ESYS) Element coordinate sys o bt 2k
Hode Wo. =

[SECNUM) Section number [Poone defined >
&

[TSHAP] Target slement shape [ Sraight ine > et
€ Min, Nax, Inc
=] _tome |

oK I Cancel I Heb I Piek AL\I Help I

FIGURE 3.41 Assigning element attributes to element 2 and creating element 2.
Elem Attributes > change the material number to 3 > change the

Real constant set number to 3 > OK > Auto Numbered > Thru
nodes Pick the 3rd and 4th node > OK

I flement Attributes

Define attriutes for elements
(1] onert e runber ET— ] A
[MAT] Material nuber —= 3 o L
[REAL] Red constart sat rumber e = CL
[ESYS) Element coodinate sys M = counc = ©
Faximam = 20
[SECNUM] Section rumber [Nore defined - Binimum = 1
Bode No. =
[TSHAP] Target element shape Straight ine ~ gt
# List of Teas
 Min, Hax, Inc
« | concel | veo |  —
(=1 s |
Reset Cancel
ton ai|  map |

FIGURE 3.42 Assigning element attributes to element 3 and creating element 3.

Apply the displacement boundary conditions, load, and temperature.

6. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the 1st and 4th node >
Apply > All DOF = 0. > OK

7. Main Menu > preprocessor > Loads > Define Loads > Apply >
Structural > Force/Moment > On Nodes Pick the 2nd node > OK
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> Force/Moment value = -50e3 in FX direction > OK > Force/
Moment > On Nodes Pick the 3rd node > OK > Force/Moment value
=-75e3 in FX direction > OK

8. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Temperature > On Elements Pick the element, 2nd ele-
ment and 3rd element > OK

Enter Temperature at location N = 75 as shown in Figure 3.38.

TN Apply TEMP on Elems

[BFE] Apply Structural Temperatures (TEMP) on Elements
STLOC Starting location N

Apply as [constant value ]
If Constant value then:
VAL1 Temperature at location N

T

VAL2 Temperature at loc N+1
VAL3 Temperature at loc N+2
VAL4 Temperature at loc N+3

111

x| oo |

L

hb |

FIGURE 3.43 Enter the rise in temperature on elements.

Y
- 2 —

FIGURE 3.44 Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the
solution. First to be safe, save the model.

Solution. The interactive solution proceeds.
9. Main Meni > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters and
the Solve Current Load Step window and if all is OK, select FILE >
CLOSE

In the Solve Current Load Step window, Select OK, and when the solution
is complete, close the ‘Solution is Done!” window.
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POSTPROCESSING
We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Postproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Displacement vector sum > OK

This result is shown in Figure 3.34(b).
To find the axial stress, the following procedure is followed.

11. Main Menu > General Postproc > Element Table > Define Table
> Add

FIGURE 3.45 Defining the element table.

Select By sequence num and LS and type 1 after LS as shown in Figure 3.43.

I\ Define Additional Flement Table ltems

[AVPRIN] EFf NU for EQY stran

[ETABLE] Define Additional Element Table Ttams:
Lb  User label for kem

Ttem,Comp Resukts data kem

(For "By sequence num”, enter sequence
no. in Selection box. See Table 4.x¢-3
In Elements Manual for saq. numbers.)

o« | Aoy | Cancel we |

FIGURE 3.46 Selecting options in element table.
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>0OK

12. Main Menu > General Postproc > Plot Results > Contour Plot >
Elem Table > Select LS1 > OK

m Contour Plot of Element Table Data
[PLETAB] Contour Element Table Data

IHab Item to be plotted Iﬁzl

Avglab Average at common nodes? IN“ - do not avg ;l

oK Apply Concel | Hep |

FIGURE 3.47 Selecting options for finding out axial stress.

This result is shown in Figure 3.34(c).

EXERCISES

1. Determine the nodal displacement and element stress for the bar
shown in Figure 3.48. Take 3 elements finite element model. Take
E =70 GPa.

25 kN/m 0.03 m2

o

AR08
1

rrrrrrrrrrz

1.5m

FIGURE 3.48 Exercise 1.

2. Determine the nodal displacements and stresses in the element for the
axial distributed loading shown in Figure 3.49. Take one element model.
Take E = 200 GPa, A=5x10"" m”.
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1m 1
1

A\

AAANAAY

FIGURE 3.49 Exercise 2.
For the bar assembly shown in Figure 3.50, determine the nodal dis-

placements, stresses in each element, and reactions. Take E = 210 GPa,
A=5x10"" m®.

L4448
2 @ ,

4m

1 @ 2 20 kN

4m
/2
ANsuant

NNNNNNNN
SIS/

Rigid bar

FIGURE 3.50 Exercise 3.

Find the deflection at the free end under its own weight for a tapered bar
shown in Figure 3.51. Use 2 element models. Take E = 200 GPa, weight
density p =7800 kg/m'g.

SQ 120 mm

VANV

1200 mm

SQ 30 mm

FIGURE 3.51 Exercise 4.
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5. Determine the displacement, element stresses, and reactions for the
tapered bar shown in Figure 3.52. Use 2 elements finite element models.
Take E = 200 GPa, A, = 2000 mm”®, A, = 4000 mm®.

FIGURE 3.52 Exercise 5.

6. Consider the bar shown in Figure 3.53. An axial load P = 500 kN is applied
as shown. Determine the

(a) Nodal displacement (b) Stresses in each material (c) Reaction forces.

-~ N
1 ~~
g N P
e ™~
~ "~
7 s
A 500 mm . 600 mm N
/ | N
FIGURE 3.53 Exercise 6.

Aluminum Steel

A, = 3000 mm” A, = 1000 mm®

E, =70 GPa E, = 200 GPa

7. In Figure 3.54, determine displacements at 2 and 3 stresses in the mem-
bers and reactions if the temperature is increased by 60°.

® @ 7

ARNRRRRRRY
17777777

90 mm B 80 mm 70 mm

- - Ea

FIGURE 3.54 Exercise 7.
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Member Aread(mm’)  poungsmodulusE Thetma epente
1 1000 70 23x10°°
2 500 100 19x107°
3 300 200 12x10°°

8. For the vertical bar shown in Figure 3.55, for the deflection at 2 and 3 and
stress distribution. Take E = 25 GPa and density, p =2100 kg/m®. Take
self-weight of the bar into consideration and solve the problem using 2
elements.

NOUONNNNN
1
Area = 0.3 m2———s €
w
g

2
Area = 0.2 Mm—y e

3

FIGURE 3.55 Exercise 8.

9. Find displacement and stresses shown in Figure 3.56. Take E = 200 GPa.

2
2 400 mm
250 mm
/ 3mm
]
7 14
47 600 kN 700 kN
5 [ o g o>
-
A
]
1
150 | 150 300 100

FIGURE 3.56 Exercise 9 (all dimensions are in mm).
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CHAPTER

FINITE ELEMENT
ANALYSIS TRUSSES

4.1 INTRODUCTION

This chapter introduces the basic concepts in finite element formulation of
trusses and provides the illustration of its ANSYS program.

4.2 TRUSS

Truss, by definition, is aload bearing structure formed by connecting members
using pin joints. Truss element is used in the analysis of 2D trusses.

V2
- u
A E 2
L
Vi
1
Uy

FIGURE 4.1 A 2-D Truss.

The element has two nodes, each having two degrees of freedom namely
translations along the x- and y-axes.
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The element stiffness matrix and element stress for a truss element are

given by,
AE
k|=—
1)=2
_AE
L

{a}zﬁ[—cosg —sinf cos0 sin@]{q},where {q}=

cos”0
cosf Xsinf
—cos0
| —cost Xsind

c cs —c

cos® 6 xsinf —cos®6 —cosf xsinf
sin®6 —cosf Xsin0 —sin®6 (4.1)
—cosf Xsinf cos’ 0 cosf X sinf
—sin?@ cosf xsinf sin6
—cs
9
—s
cs
s
U,
Uy
(4.2)
Uy
Uy

0 = angle of truss element at node 1 with positive x-axis (in degrees)

EXAMPLE 4.1

Determine the nodal displacements, element stresses, and support reactions
for the three member truss shown in Figure 4.2. Take A =800 mm® and
E = 200 GPa for all members.

2m @ 2m

FIGURE 4.2 Example 4.1.
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Solution

(1) Analytical method [Refer to Figure 4.2].

AB=AC=4/(2)°+(1.5)° =25 m

sind =§, cost =é.
2 5
Consider equilibrium of joint B,
12 kN
8 kN
0 Pgc

PAB
FIGURE 4.2(a) Analytical method for joint B in Example 4.1.

ZFx =0 and ZE/ =0

8§ =P, cosl + P, cost) =0 (4.3)
~12 P, sind — P, sinf =0- (4.4)
Solving equations (4.3) and (4.4)

P, =-5kN and P,, =-15 kN (P,; and P, are compressive).

Consider equilibrium of joint A,

Rix /

R

Pag =5

Pac

y

FIGURE 4.2(b) Analytical method for joint A in Example 4.1.
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ZFx =0 and ZE/ =0
~R,, +P,.—P,,cos0 =0 (4.5)
R, —P,;sind =0.

Consider equilibrium of joint C,

Pec

Ry

FIGURE 4.2(c) Analytical method for joint C in Example 4.1.
Y F=0and Y F,=0
4
P,. =P, cosl) = 15><g =12 kN

R, =P, sin0 = 15><§= 9 kN.
For equation (4.5)
Rlx :PA(; _PAB COSQ =12—5X%:8 kN

3
O3 =0, _ Ly _ Z5x10 =—6.25 MPa (Compressive)

A,y 800

3

Ope =04 = Fye _ Z15%10 =—18.75 MPa (Compressive)
A, 800
p 3
T\ =0, Ly _12x10 =15 MPa (Tensile)
Ay 800

3¢
A, = Luwlas _ Z5X107X2500 _ 4 176195 1ym
ALE,  800x2x10
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_ 3
A= Poelne _ Z15X107X2500 _ ) oqams o

P AE,  800x2x10°

Pl _ 12x10° x 4000 _ 0.3 mm.

U AGE,.  800x2x10°

A

Calculation of nodal displacements u,, v,, and u,

A Yo
A \CC\zq

FIGURE 4.2(d) Analytical method for Calculation of nodal displacements u,, v,, and u,
in Example 4.1.

DB, =u,, BD=v, and CC, =u,
BB; =A,;

BB, = Ay

CC,=u,=A,, =03 mm

CC, =CC, cosl) =A . coslO =O.3X§=0.24 mm.

From geometry [Refer to Figure 4.2(d)].
BB, =A,, =BDsin0 — DB, cos) = v, sin) —u, cosl (4.6)
BB, =BC-B,C =BC-(B,C,-CC,)=(BC-B,C,)+CC,
BB, =A,.+CC, =BDsin0 + DB, cost
Ay +CC, =0, sinf +u, cosO - (4.7)
Substituting in equations (4.6) and (4.7)

0.078125 = o, X%—uz x% (4.8)
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0.234375+0.24 =0, x%+ u, x%

0474375 = 0, X2 + 1y X =
5 5

Solving equations (4.8) and (4.9), we get,

v, = 0.4604 mm (since point B moves downwards). Hence, ;= -0.6404 mm.

(111) FEM by hand calculation [Refer to Figure 4.2].

Elements Node numbers 0 cos 6 sin 6 L (mm)
Local 1 Local 2
1 1 3 0 1 0 4000
2 1 2 36.87 0.8 0.6 2500
3 2 3 -36.87 0.8 -0.6 2500

Angle calculation

For element 2

sind = E =0 =36.87"-
2.5

FIGURE 4.2(e) Angle calculation for element 2 in Example 4.1.

For element 3

sin0 = E =0 =-36.87"-
2.5

FIGURE 4.2(f) Angle calculation for element 3 in Example 4.1.
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Element stiffness matrix for element 1 is,

cos> 6 cos> 6 xsinf —cos? 6 —cosf xsinf
[k ] _AE cosf xsinf sin®60 —cosf X sinf —sin®0
! L —cos’ 60 —cosf Xsinf cos> @ cosf X sinf)
—cosf X sinf —sin®0 cosf X sinf sin@
cos> 0 cos® 0xsin 0 —cos® 0 —cos0xsin0
[k ]= 800x200x10% | cos0xsin0 sin® 0 —cosOxsin0  —sin® 0
e 4000 —cos® 0 —cos0Xxsin0 cos® 0 cos0xsin0
—cos0xsin0 —sin® 0 cosOxsin0 sin? 0
u, v Uz U
0 -1 0|y
0 0 Olv
[k, ]=40x10° :
-1 0 1 O]u,
0 0 0 O]u

Element stiffness matrix for element 2 is,

2 2

—(0.6)°
0.8x0.6

(0.6’

C c§S —C —CS
AE| ¢s & —cs =5
[kz]zT ) 2 .
—C —CS C CcS
—CS —82 CS 82
(08 0.8x06 —(0.8)° —0.8%0.6]
800%x200x10° | 0.8x0.6  (0.6)° -0.8x0.6
2500 —(0.8)° -0.8x06 (0.8)
|-0.8x0.6 —(0.6)" 0.8x0.6
U Yy Uy Uy
064 048 -0.64 —0.487u,
, 048 036 -048 -0.36 |v,
[k,]=64x10 -
—0.64 048 064 048 |u,
048 -0.36 048 0.36 |v,
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Element stiffness matrix for element 3 is,

Uy Uy U U3
¢ s - —cs 0.64 —0.48 —0.64 0.48 |u,
[ks]:ﬂ csO s —Zs —s 64107 -048 036 048 -0.36 Oy
L|-c -cs ¢ cs -0.64 048 0.64 -0.48 |u,
—cs —s° ¢ s 048 -0.36 -0.48 0.36 |v,
Global stiffness matrix is,
u, v, u, 0, U, Uy
40+ 40.96 30.72 —40.96 -30.72 —40 0 Ju
30.72  23.04 -30.72 —23.04 0 0 o
5| —40.96 —=30.72 40.96+40.96 30.72-30.72 —40.96  30.72 |u,
[K]=10 -30.72 —23.04 30.72-30.72 23.04+23.04 30.72 —23.04 |v,
—40 0 —40.96 30.72 40 +40.96 =30.72 |u,
i 0 0 30.72 —23.04 -30.72  23.04 |v,
u, 0, u, 0, u, 0,
[80.96 30.72 —40.96 -30.72 —40 0 Ju
30.72  23.04 -30.72 -23.04 0 0 |y
(K]=10° —40.96 -30.72 81.92 0 —40.96  30.72 |u,
-30.72 -23.04 0 46.08 30.72 —23.04 |v,
—40 0 —40.96 30.72 80.96 —30.72 |u,
.0 0 30.72  -23.04 -30.72 23.04 o,
Global equation is,
u, o u, 0, u, U,
——860:96—30:72—40.96—30-72——46 O0—tt— 1 R
30-72—23:04—=30-72—23:64—0 O—ro— Ry
—40.96 -30.72 81.92 0 —4096 30.72 |u, |u, 8 .
[K]=10 = x10°.
-30.72 -23.04 0 46.08 30.72 -23.04 |v, |v, -12
—40 0 —4096 30.72 80.96 -30.72|u, |u, 0
0 0 30.72 -23.04 —-30.72 23.04 |v, |v, R;,
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Using the elimination method for applying boundary conditions,
U, =0, =0;= 0-
Then the above matrix reduces to,

81.92 0 —40.96 || u, 8

165 0 4608 30.72 || v, |=|-12 |x 107

—40.96 30.72 80.96 || u, 0

Solving the above matrix and equations,

we get  u, =0.2477 mm, v, =-0.4604 mm, and v, =0.3 mm.

Stress calculation

Stress in element 1 is,

u, U,
v 8 v
al=£[—cos6' —sinf cosl sin@] 1| 200x10 [—c —-s c S] !
Ll Uq 4000 Uy
U3 U3

0

3 0

o, :M[—l 010] =15 MPa.
4000 0.3
0
Stress in element 2 is,
u, U,
v v
02=£[—0059 —sinf cosl sinﬁ] ! 200X10 [—c -5 c S:I !
L, u, 2500 Uy
U, 2
0
3 0
, =200 68 06 058 0.6] =—6.249 MPa,
2 2500 0.2477

—-0.4604
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Stress in element 3 is,

u, u,
E 2 1 v
03:—[—0059 —sinf cosl sin9:| 0010 [—c —-s ¢ S:I g
L, Uy 2500 Uy
U3 U3
0.2477
8 —-0.4604
7, =M[—0.8 0.6 0.8 -0.6] =-18.752 MPa.
2500 0.3
0

Reaction Calculation
From global equation,

~40.96% 1, —30.72X v, —40Xu, =R,
~40.96%0.2477 —30.72x(—0.4604) —40x 0.3 = R,
R, =-8 kN
~30.72x 1, —23.04x0v, =R,
~30.72x0.2477 - 23.04x(-0.4604) = R,
R, =3kN

~30.72X 1, —23.04xv, —30.72x 1, = R,
~30.72x0.2477 - 23.04x(-0.4604) — 30.72x(0.3) = R,
R, =9 kN.

(111) Software results.

1
NODAL SOLUTION

STEP = 1
SUB = 1

TIME = 1

UsuUM (AVG)

RSYS = 0

DMX 522797 o

SMX = .522797
Y
X

0 .116177 .232354 .348532 464709
.058089 74266 +290443 .40662 .522797

FIGURE 4.2(g) Deflection pattern for a truss for Example 4.1 (refer to Appendix D for color figures).



Deflection value at nodes

The following degree of freedom results are in global coordinates
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NODE Ux Uy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.24766 -0.46042 0.0000 0.52280
3 0.30000 0.0000 0.0000 0.30000
Maximum absolute values
NODE 3 2 0 2
VALUE 0.30000 —0.46042 0.0000 0.52280
IELEHENT SOLUTION
STEP = 1
SUB =1
TIME = 1
LS1 (NOAVG)
DMX = .522797
SMN =-18.75
sMx =15
MN
Y
Z X MX
—18.75 _1s —11.2577.5 -3.75 0 3.75 7.5 11.25

FIGURE 4.2(h) Stress pattern for a truss for Example 4.1 (refer to Appendix D for color figures).

Stress values of elements

STAT CURRENT
ELEM LS1
1 15.000
2 -6.2500
3 -18.750

Reaction values

The following X, Y, and Z solutions are in global coordinates

NODE FX FY
1 -8000.0 3000.0
3 9000.0
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ANSWERS FOR EXAMPLE 4.1

Parameter Analytical FEM-Hand Software
method calculations results

Displacement of node 2 in

x-direction 0.2477 mm 0.2477 mm 0.24766 mm

y-direction -0.4604 mm -0.4604 mm -0.46042 mm

Displacement of node 3 in

x-direction 0.3 mm 0.3 mm 0.3 mm

Stress in

Element 1 15 MPa 15 MPa 15 MPa

Element 2 -6.25 MPa -6.248 MPa —-6.25 MPa

Element 3 -18.75 MPa -18.752 MPa -18.75 MPa

Reaction

At 1 in x-direction -8 kN -8 kN -8 kN

At 1 in y-direction 3 kN 3kN 3kN

At 3 in y-direction 9kN 9kN 9kN

EXAMPLE 4.2

For the truss shown in Figure 4.3, determine nodal displacements and stresses
in each member. All elements have E = 200 GPa and A = 500 mm”.

3
@
20N/ )

5m
1 30 kN @ 4

FIGURE 4.3 Example 4.2.
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E=2x10° N/mm?

A =500 mm®.
(1) FEM by hand calculation
Elements Node numbers 6 cos 6 sin 0 L (mm)
Local 1 Local 2
1 1 4 0 1 0 5000
2 1 3 45 0.707 0.707 5000
3 1 2 90 0 1 5000

Stiffness matrices for elements 1, 2, and 3 are,

[k ]

-
_AE| cs
L |-c

—cs

cs  —c* —cs 1 0 -1 O
s —cs —s° _500%x2x10°| 0 0 0 0O
—cs  c* cs 5000 -1 0 1 O
- s s 0O 0 0 O

U v Uy Uy

1 0 -1 0fy

0 0 0 Ojv
[k,]=20x10° !

-1 0 1 Olu,

0 0 0 0o,

Uy U Us Uy

U, v U,

0 0 0 07y

0 1 0 -l1o
[k,]=20x10 !
‘ 0 0 0 0 |u
0 -1 0 1 |u
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Global stiffness matrix is,

u, v, U, vV, Uy Uy U, U,
1405 05 0 0 -05 05 -1 0]u,
05 05+1 0 -1 -05 -05 0 0o,
0 0O 00 0 0 0 0
(K] = 2010 0 -1 01 0 0 0 0|y
05 05 0 0 05 05 0 O0lu
05 05 0 0 05 05 0 0o
-1 0 00 0 0 1 0l
0 0O 00 0 0 0 0y
u, v, U, UV, U3 Uy U, U,
15 05 0 0 -05 -05 -1 0]
05 15 0 -1 -05 05 0 0]y
0O 0 00 0 0 0 0|
o 101 0o 0o o0 oy
[KI=20x10% < 05 0 0 05 05 0 o0 u,
05 05 0 0 05 05 0 0,
-1 0 00 0 0 1 0lu
L0 0 00 0 0 0 0o
Global equation is,
ul Ul u2 ’Uz US 03 u4 1)4
(15] 05 |0 |0 |-05]-05] -1| 07w, [u] [-20
05| 15 |0 |-1{-05]-05] 0|0fv, |v,| [-30
ol olojo| o] oflololu |u]l R,
O I I Y e e
—Vo| —Uo U U U.0 U.O U U US US Ny
—05| =05[0 [0 [05 |05 0[0[e, |uvs| |BR,
1 o folo]o [ of1|o]u |u| [R.
o] ofojolo ] ololo]e, [v) [R,
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Using the elimination method for applying boundary conditions,
Then the above matrix reduces to,
15 057w, ] [-20
20 = .
0.5 15| v, | |30

Solving the above matrix and equations,

we get,
u, =—0.375 mm
v, =—0.875 mm.
Stress calculation
Stress in element 1 is,
u, u,
v > v
g, :E[—cosﬁ —sinf cosl sin9:| p|o2x10 [—c -5 c s:| '
L, u, | 5000 u,
U, Uy
—0.375
> -0.875
o, =231 01 0] —15 MPa,
5000 0
0
Stress in element 2 is,
U, Lo
v > v
g, =£[—cos€ —sinf cos0 sinﬁ] 1|o2x10 [—c —s ¢ S:I :
L, Uy 5000 Uy
0, 0,
—0.375
5 —0.875
o, = 2;)(1)?) [-0.707 =0.707 0.707 0.707 ] =35.352 MPa.
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Stress in element 3 is,

u, u,
v > v
0'3=£|:—COSH —sinf cos0 sin@] ! =&[—c -5 ¢ S:| !
L, u, 5000 Uy
Uy Uy

—0.375

5 —0.875

o, =22%r0 10 1] — 35 MPa.
© 5000
0

(I1) Software results.

NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
USuM

RSYS = 0
DMX = .951794
SMX .951794

(AVG)

21151 .423019 .63452 .846039
.105755 .317265 .528774 .740284 .951794]

FIGURE 4.3(a) Deflection pattern for a truss for Example 4.2 (refer to Appendix D for color figures).

Deflection value at nodes

The following degree of freedom results are in global coordinates system

NODE Ux uy uz Usum
1 -0.37486 -0.87486 0.0000 0.95179
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
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1
ELEMENT SOLUTION

STEP =1

SUB =1

TIME =1

LSl (NOAVG)
.951794
14.995

sMx =35.363

g

=3

14.995 19.521 24.047 28.574 33.1
17.258 21.784 26.31 30.837 35.363

FIGURE 4.3(b) Stress pattern for a truss for Example 4.2 (refer to Appendix D for color figures).

Stress values of elements

STAT CURRENT
ELEM LS1

1 14.995

2 35.363

3 34.995

ANSWERS FOR EXAMPLE 4.2

Parameter FEM- Hand calculations Software results

Displacement of node 1 in

x-direction -0.375 mm -0.37486 mm
y-direction -0.875 mm -0.87486 mm
Stress in element 1 15 MPa 14.995 MPa
Stress in element 2 35.352 MPa 35.363 MPa

Stress in element 3 35 MPa 34.995 MPa
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EXAMPLE 4.3

The bar truss shown in Figure 4.4, determine the displacement of node 1 and
the axial stress in each member. Take E =210 GPa and A = 600 mm?>. Solve the
problem if node 1 settles an amount of § =25 mm in the negative y-direction.

3000 mm

3 2000 kN
g}l\/c 1 ;
4000 mm

FIGURE 4.4 Example 4.3.

Solution
(1) FEM by hand calculation.

Elements Node numbers 6 cos 0 sin 6 L (mm)
Local 1 Local 2
1 3 1 0 1 0 4000
2 2 1 -36.87 0.8 -0.6 5000

Angle calculation
For 2nd element,

sinf = % =06=0=-36.87"-

3m 5m

4m

FIGURE 4.4(a) Angle calculation for 2nd element for Example 4.3.
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Stiffness matrices for elements 1 and 2 are,

¢ s - —cs 1 0 -1 0
[k]=£ cs 88 —cs —s =600><210><1()3 0O 0 0 O
! L|- —cs ¢ cs 4000 -1 0 1 0
—s —s° s S 0 0 0 0
Uy, vy U Y
1 0 -1 0|u,
[k,]=31.5x10° ! 0 o
-1 0 1 0]y
0 0 0 O]y
¢ s - —cs 0.64 048 -0.64 048
[k]:ﬂ cs s —cs —s’ :600><210><103 -0.48 036 048 -0.36
L= s ¢ cs 5000 -0.64 048 064 -048
-cs —-s° cs § 048 -0.36 -048 0.36
u, v, u, v,
0.64 -048 -0.64 048 |u,
-0.48 036 048 —0.36 |0,
[k,]=25.2x10 :
—0.64 048 064 -048|u,
048 -0.36 -048 0.36 |y,
Global stiffness matrix is,
u, v, u, 0, u; U,
[31.5+16.13 -12.1 -16.13 121 =315 O]u,
-12.1 9.1 121 -9.1 0 0| v,
. -16.13 121 1613 -12.1 0 0 |u,
[K]=10°
12.1 -9.1 -121 9.1 0 0 |v,
-31.5 0 0 0 31.5 0 |u,
| 0 0 0 0 0 0 v,
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U Y Uy Uy Uy Uy
4763 -12.1 -16.13 121 =315 0lu,
-12.1 9.1 12.1 -9.1 0 0o,
-16.13 121 16.13 -12.1 0 0 |u,
[K]=10"
12.1 -91 -121 9.1 0 0 |v,
-31.5 0 0 0 315 0 |uyg
0 0 0 0 0 0 v,
Global equation is,
(] U Uy Uy Us | U5
[ 47.63 —12.1|-16.13 [12.1 [-31.5{ 0w, [u, ] [—2000]
—121 91 | 121 [-91| 0 |o|s |o | | R,
-16.13 12.1 | 16.13 |-12.1| O |Of|u, |u R,
[K]ZM 121 =91 | -12.1 | 9.1 0 |0 Uj Dj B R;
315 0 | 0 | 0 |315]|0]w |u]| | R,
0 o] o |o ool [v] [B |

Using the elimination method for applying boundary conditions,

ie.,

Then the above matrix reduces to,

47.63
-12.1

-12.1 1| u
9.1 v

Uy

-2000

R,

4

:UZZU:;ZU;;:O‘

H

We know that v, =—25 mm, substitute this in the above matrix,

then,

47.63
-12.1

-12.11)| u
9.1 |[|-25

H

Solving the above matrix and equations we get,

u, =-48.34 mm.

~2000
Rl

Yy
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Stress calculation
Stress in element 1 is,

Uy Ug
v 3 v

g, =£[—cos€ —sinf@ cos0 sinH] ’ =M[—c -s c S:I N

L, u, 4000 u,
v, Uy
0
3
o, =210 101 0] =-2537.85 MPa.
4000 —48.34
-25
Stress in element 2 is,

R Uy
v

02=£|:—cosc9 —sinf cosf sinc9:| > 210X10 [—c -s c s]

L, u 5000
U U
0
3 0
o, =220 6506 0.5 -06] =-994.92 MPa.
5000 —48.34

-25

(1) Software results.

1
NODAL SOLUTION

STEP =1
SUB =1
TIME=1
USUM  (AVG)
RSYS =0
DMX =54.423
sux =54.423

b«

0 12.094 24.188 36.282 48.376
6.047 18.141 30.235 42.329 54.423

FIGURE 4.4(b) Deflection pattern for a truss for Example 4.3 (refer to Appendix D for color figures).
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Deflection value at nodes

The following degree of freedom results are in global coordinates system

NODE Ux uy uz usum
1 -48.341 -25.000 0.0000 54.423
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000

Maximum absolute values

NODE 1 1 0 1

VALUE -48.341 -25.000 0.0000 54.423

1
ELEMENT SOLUTION

STEP =1

SUB =1

TIME = 1

LSl (NOAVG)
DMX =54.423
SMN =-2538

SMX =-994.268

Y

MN LX

=2 =21 -1852 -1 -11
338 -2366 % -2023 & -1680 309 -1337 66—994.268

FIGURE 4.4(c) Stress pattern for a truss for Example 4.3 (refer to Appendix D for color figures).

Stress values of elements

STAT CURRENT
ELEM LS1
1 -2537.9

2 -994.27
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ANSWERS FOR EXAMPLE 4.2

Parameter FEM-Hand calculations Software results

Displacement of node 1 in

x-direction -48.34 mm -48.341 mm
y-direction -25 mm -25 mm

Stress in element 1 -2537.85 MPa -2537.9 MPa
Stress in element 2 -994.22 MPa -994.27 MPa

Procedure for solving the problems using ANSYS ® 12.0 academic
teaching software

For Example 4.3

PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Structural Link > 2D spar 1 > OK > Close

AL ibrary of Element Types

Only structural element types are shown
Lbrary of Element Types
Solid actuator 11
Solid-Shell .
Constraint !le—'
Element type reference number |1_
o | oy | cncal | e |

FIGURE 4.5 Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > OK

'A‘ Real Constant Set Number 1, for LINK1

Element Type Reference No. 1
Real Constant Set No.

FIGURE 4.6 Enter the cross-sectional area.

Cross-sectional area AREA > Enter 600 > OK > Close
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Enter the material properties.

3. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, Click Structural > Linear > Elastic > Isotropic
Enter EX=2.1E5 and PRXY =0.3 > OK
(Close the Define Material Model Behavior window.)

Create the nodes and elements as shown in the figure.

Main Menu > Preprocessor >
Active CS Enter the coordinates

Modeling > Create > Nodes > In
of node 1 > Apply Enter the coordi-

nates of node 2 > Apply Enter the coordinates of node 3 > OK

Node locations

Node number X-coordinate

Y-coordinate

1 0 0
2 -4000 3000
3 -4000 0

I\ Create Nodes in Active Coordinate System

[N] Create Nodes in Active Coordinate System
NODE Node number

%Y,Z Location in active C5
THXY, THYZ, THZX
Rotation angles (degrees)

FIGURE 4.7 Enter the node coordinates.

5. Main Menu > Preprocessor >

Modeling > Create > Elements >

Auto Numbered > Thru nodes Pick the 1st and 2nd node > Apply Pick

the 1st and 3rd node > OK

Elements from Nodes

@ pick

2 |

Count -
Haximum =
Mininum =
Node No. =

¢ Unpick

Cr
€ circle

(% List of Items

(" Hin, Nax, Inc

H

Apply I

Cancel

Help I

FIGURE 4.8 Pick the nodes to create elements.

Reset

L[t
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Apply the displacement boundary conditions and loads.

6. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the 2nd and 3rd node >
Apply > All DOF=0 > OK

7. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the 1st node > Apply >
UY=-25 > OK

8. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Force/Moment > On Nodes Pick the 1st node > OK >
Force/Moment value=-2000e3 > OK

2

] X
7.}

FIGURE 4.9 Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the
solution. First to be safe, save the model.

Solution

The interactive solution proceeds.

9. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and
the Solve Current Load Step window is shown. Check the solution
options in the /STATUS window and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and the solution is
complete, close the ‘Solution is Done!” window.

POSTPROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Postproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Displacement vector sum > OK
This result is shown in Figure 4.4(b).
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To find the axial stress, the following procedure is followed.

11. MAIN Menu > General Postproc > Element Table > Define Table
> Add

I} Element Table Data

Currently Defined Data and Status:

FIGURE 4.10 Defining the element table.

Select By sequence num and LS and type 1 after LS as shown in Figure
4.11.>0K

I\ Define Additional Element Table ltems

[APRIN] EFf NU fer EQY strain
[ETABLE] Define Additional Blsment Table Items
Lab  Usar label for kem

Ttem,Comp Resuts data ke

{For "By sequence num”, enter sequance
no, in Selection box, See Table 4,003
In Elements Maneal for seq, numbers.)

« | o | o | |

FIGURE 4.11 Selecting options in element table.

12. Main Menu > General Postproc > Plot Results > Contour Plot >
Elem Table > Select LS1 > OK

"‘( onfour Plot of Element Table Data

woh_|

FIGURE 4.12 Selecting options for finding out axial stress.
This result is shown in Figure 4.4(c).
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EXERCISES

1. For a5 bar truss shown in Figure 4.13, determine the following:
a. nodal displacements
b. stresses in each element

c. reaction forces.

Take E = 200 GPa and Area A = 750 mm? for all elements.

200 kN

750 mm

100 kN

1 2
| 1500 mm A\
70077

FIGURE 4.13 Exercise 1.

2. For the 3 bar truss shown in Figure 4.14, determine the displacement of
node 1 and the stresses in elements. Take A= 300 mm” and E = 210 GPa.

500 mm 500 mm 400 mm

750 mm

20 kN

FIGURE 4.14 Exercise 2.

3. Consider the truss shown in Figure 4.15, determine the nodal dis-
placements, element stresses, and reactions. Take E = 200 GPa.

A=A, =A, =500 mm?®, P, =300 kN, P, =200 kN.
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FIGURE 4.15 Exercise 3.

4. Consider the truss structure shown in Figure 4.16, determine the stresses
of the truss structure. Take all members have elastic modulus (E) of 210
GPa and cross-sectional area (A) of 250 mm®.

3 5
'y » 500N
- SV NN NG
! D 2 4 6
@
< »e > »|
3m 3m 3m !
v
1500 N

FIGURE 4.16 Exercise 4.

5. Consider the truss structure shown in Figure 4.17, derive the finite ele-
ment matrix equations using 2 elements. Determine the displacements
and the stresses in the member. Assume all members have elastic modu-
lus (E) of 200 GPa and cross-sectional area (A) of 300 mm?.

900N

300N

S

3m

FIGURE 4.17 Exercise 5.
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6. Consider the truss structure shown in Figure 4.18, determine the nodal
displacement and the element forces assuming that all elements have the

sameAE.

T s00m

[ )

St

20 ft
FIGURE 4.18 Exercise 6.

7. Determine the nodal displacements, element stresses, and support reac-
tions for the 3 member truss shown in Figure 4.19. Take A, =10 in”,

A,=15in%, A, =10

in” and E = 20 msi for all members.
15 kips

FIGURE 4.19 Exercise 7.

8. Determine the nodal displacements, element stresses and support reac-
tions for the three member truss shown in Figure 4.20. Take A, =1 in®,
A, =21in°, A, =3 in® and E =30 MIb/in® for all members.

20 ft 20 fi

FIGURE 4.20 Exercise 8.
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9. Determine the nodal displacements, element stresses, and support reac-
tions for the 3 member truss shown in Figure 4.21. Take A, =6 cm®,
A,=8 cm’, A, =8 cm”, and E =20 MN/cm® for all members.

S0 cm 100 cm
./ 2 2%

500 N
FIGURE 4.21 Exercise 9.

10. For the bar shown in Figure 4.22, determine the axial stress. Let A = 6 x
10°m?% E = 220 GPa, and L = 4 m, and let the angle between x and x be
45°. Assume the global displacements have been previously determined
to be u, = 0.46 mm, v, = 0.0, u, = 0.70 mm, and v, = 0.90 mm.

el

FIGURE 4.22 Exercise 10.
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CHAPTER

FINITE ELEMENT
ANALYSIS OF BEAMS

541

INTRODUCTION

Beam is a very common structure in many engineering applications because
of its efficient load-carrying capability. Beam, by definition, is a transversely
loaded structural member. Beam element is used in the analysis of beams.

El

~9 / 6,
| -

Wy

FIGURE 5.1 Beam element.

This element has 2 end nodes each having 2 degrees of freedom, namely
transverse displacement and slope. Beam element gives accurate results if
acted upon by nodal forces and moments. A greater number of small ele-
ments will be necessary in the case of a beam acted upon by distributed loads
in order to get good results. The interpolation equation and element stiffness
matrix for beam element are given by

w,
0
w=[N, N, N, N,] wlz (5.1)

0,
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12 6L -12 6L
EI| 6L 417 -6L 2I’
“Tla2 e 12 -eL|

6L 2I} —-6L 4I°

[K]

5.2 SIMPLY SUPPORTED BEAMS

EXAMPLE 5.1

For the beam shown in Figure 5.2, determine the nodal displacements, slope,
and reactions. Take E = 210 GPa and I =4x10™* m*.

8 kN

FIGURE 5.2 The beam for Example 5.1.

Solution
(I) Analytical method [Refer to Figure 5.2].

L=10m

P=8kN
Deflection,

PI} 8x10°x(10)’
4SEI  48%x210x10° x4x10™*

=-1.98%10"° m=-1.98 mm

C

PIZ  8x10°x(10)’

= =5.95%10"* rad
16EI  16x210x10”x4x10™*

|HC|=|HB|=

0. =0, by symmetry.

Reaction,

R,=R,=—=4kN.

Mo | oo
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(ITI) FEM by hand calculations [Refer to Figure 5.2(a)].

T ® 2 @ 3
FIGURE 5.2(a) Finite element model for Example 5.1.
Element stiffness matrices are,
12 6L -12 6L
EI| 6L 47 -6L 2I’
T2 e 12 6L
6L 2I°7 -6L 4I’
12 6(5) -12  6(5)
210x10°x4x107|6(5) 4(5)° -6(5) 2(5)
(5)° -12 -6(5) 12 —6(5)
6(5) 2(5)° —6(5) 4(5)

(K]

(k]

w0, w, 0,

12 30 -12 30 Juw,
100 —30 50 |0,

-12 =30 12 -30|w,

30 50 -30 100 |6,

[k, ]=672%x10°

Due to symmetry,

p 2 : :
12 30 -12 30 |w,

; 100 =30 50 |0,
[k,]=672x10 :

30 50 =30 100 |0,
Global equation is,

[K]{r}={R} (5.3)
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w, 0, w, 0, w, 0,

1D 272 19 2N fa) o1
e JU B W JU \% J Wl Wl
30 100 =30 50 o 016, |6,

-12° =30 12+12 -30+30 -12 30 |w, |w,

672x10° -
3 50 -30+30 100+100 -30 50 |0, |40,
0O 19 20 19 20 1,
AV B Wy JI by AV W3 W3
i 0 30 50 -30 100 |0, |0,

Using the elimination method for applying boundary conditions,

w, =w, =0.
The above matrix reduces to

0, w, 0, 0,

100 -30 50 0 (6, 0
srax10’| 20 240 30w -8x10°
50 0 200 50 |6, 0
0 30 50 100]|6, 0

By solving the above equations, we get,
w, =—0.002 m = -2 mm,
0, =—-0.0006 rad, 0, =0 rad, and 0, =0.0006 rad.
Reaction calculation
672x10° (30x0, —12xw,) =R,
672x10” (30x(—0.0006) —12x(—0.002)) =R,
R, =4.032 kN
672x10° (-12xw, —30x0,) =R,
672x10° (—12x(-0.002) —30x(0.0006)) = R,

R, =4.032 kN.
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(IIT) Software results.

1
NODAL SOLUTION

STEP = 1
SUB =1
TIME =1
USUM

RSYS =
DMX =.001984
sMx =.001984

(AVG)

Y

ZN X
W

E-03 .882E-03 .001323 001764
.66 0 .001543

.441
.220E-03 1E-03 .001102 .001984

FIGURE 5.2(b) Deflection pattern for a simply supported beam (refer to Appendix D
for color figures).

Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE Ux Uy Ux USUM
1 0.0000 0.0000 0.0000 0.0000
9 0.0000 ~0.19841E-02 0.0000 ~0.19841E-02
3 0.0000 0.0000 0.0000 0.0000
The following degree of freedom results are in global coordinates
NODE ROTZ
1 ~0.59524E-03
9 0.0000
3 0.59524E-03
Reaction values
The following X, Y, and Z solutions are in global coordinates
NODE FX FY MZ
1 0.0000 4000.0
3 0.0000 4000.0
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ANSWERS FOR EXAMPLE 5.1

Parameter Analytical FEM-Hand Software
method calculations results

Displacement at node 2 -1.98 mm -2 mm -1.9841 mm

Slope at node

1 -5.95 x 10" rad ~0.0006 rad ~0.59524 x 10~ rad

2 0 0 0

3 -5.95 x 10" rad -0.0006 rad 0.59524 x 10™° rad

Reaction at node

1 4 kN 4.032 kN 4 kN

3 4 kN 4.032 kN 4 kN
EXAMPLE 5.2

For the beam shown in Figure 5.3, determine displacements, slopes, reac-
tions, maximum bending moment, shear force, and maximum bending stress.
Take E=210 GPa and I=2x10"" m*. The beam has rectangular cross-
section of depth i =1 m.

5000 N/m

45m | 45m
o103 porees

FIGURE 5.3 The beam for Example 5.2.

Solution
(I) Analytical method [Refer to Figure 5.3].

Reaction,

~ 5000%9

R, =R, =929500 N = 225 kN

5PL' 5%5000%(9)"
38SEI  384x210x10°x2x10™
pL’ 5000%(9)°
| A| :|8B| = = ¢ 9 —4
24EI 24x210x10°x2x10
0., =0, by symmetry.

=-0.0102 m =-10.2 mm

C

=3.62x107° rad
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Maximum bending moment,

PL> 5000 (9)°

Mmux = 8 = 50625 N—m,
Shear force,
SF = % = 200929 _ 99500 N
Maximum bending stress,
M
ﬁnax =—=X ymux (54>
I Y
h 1
=—=—=05m
y]ll(‘)ﬂ 2 2
fow = 5062?4 x0.5=126.56 MPa
- 2x10
me
A Cc B

FIGURE 5.3(a) Bending moment diagram.

Shear force

O)
w

Ehear force
>
X

FIGURE 5.3(b) Shear force diagram.

(II) FEM by hand calculations [Refer to Figure 5.3(c)].

1 @ 2 @ 3

FIGURE 5.3(c) Finite element model for Example 5.2.
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Stiffness matrices are,

12 6L -12 6L
(k] EI| 6L 417 -6L 217
’-12 -6L 12 —6L
6L 2 6L 4I’

12 6(45) -12  6(45)

[kl]:210x109x2x10‘4 6(4.5) 4(45) -6(45) 2(4.5)

(4.5)° -12  -6(45) 12 -6(4.5)

6(45) 2(4.5)° —-6(4.5) 4(4.5)

w, 0, w, 0,

12 27 -12 27 Tw,

27 81 27 40.5|0,
[k, ]=460905.35 :
“12 27 12 =27 |w,

27 405 -27 81 |6,

Due to symmetry,

12 27 -12 27 Jw,
27 81 —27 4050,
[k, ]=460905.35 :
-12 27 12 -27 |w,

27 405 -27 81 |6,

Nodal force calculation

For element 1,

PL PL
2 2
i ) -
1 2
© PL’ P’
12 12

FIGURE 5.3(d) Nodal force calculation for element 1 in Example 5.2.
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Nodal forces and moments for element 1 is,

PL 5000x 4.5
Ty 2
PI? 5000%(4.5)* | [~11250] £,
Tl 1T 12 | |-84375|m, .
1= _PL[ ] 5000x45 [ |-11250( f,
2 2 8437.5 | m,
Pl 5000 (4.5)°
12 12
For element 2,
PL PL
2 2
O R
12 12

FIGURE 5.3(e) Nodal force calculation for element 2 in Example 5.2.

Due to symmetry,

{R}={R}
-11250] f,
—8437.5| m,
{Fz} = )
-11250 | f,
8437.5 | m,
Global equation is,
[K]{r}={R} 55
w, 0 w, 0, w, 0,
2 27  -I2 27 0 0 Jw, [w 11350+ R,
o7 81 -27 205 o o |o, |0 84375
12 =27 12412 27427 <12 27 |w, W, —-11250-11250| -
460905.35 =
27 405 27427 81+81 27 4050, 0, 8437.5-8437.5
0 0 -I2 27 12 27w, |w, “11250+R,,
o o 27 405 427 816, |6, 84375
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Using the elimination method for applying boundary conditions,
w, =w, =0.

The above matrix reduces to
0, W, 0, 0,

81 =27 405 0 |[[0, —8437.5
27 24 0 27 || w, —22500
460905.35 =
405 0 162 405]|0, 0

0 27 405 81 ||0, 8437.5
By solving the above equations, we get,
w, =—0.0102 m,
0, =—0.0036 rad, 0, =0 rad, and 0, =0.0036 rad.
Reactions are calculated from 1st and 5th rows of global matrix.

W,

460905.35[12 27 -12 27 0 Of “+=-11250+R,,

11615=-11250 + R,,
R,, =22865 N = 22.865 kN.

Similarly from 5th row

R,, =22.865 kN.

(IIT) Software results.

1

NODAL SOLUTION

STEP =1

SUB =1

TIME = 1

USUM  (AVG)

RSYS =0

DMX =.01017

sMx =.01017
ZN X
N/

0 00226 .00452 00678 00904
.00113 .00339 .00565 .00791 .01017

FIGURE 5.3(f) Deflection pattern for a simply supported beam (refer to Appendix D for color figures).
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Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE Ux uy Ux Usum
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 -0.10170E-01 0.0000 -0.10170E-01
3 0.0000 0.0000 0.0000 0.0000

Slope values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 -0.36161E-02
2 0.0000
3 0.36161E-02

Reaction values

The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ
1 0.0000 29500
3 0.0000 29500
Total values
VALUE 0.0000 45000 0.0000

1
LINE STRESS

STEP =1
SUB =1
TIME =1
SMIS6
MIN =0
ELEM =1
MAX =50625
ELEM =1

SMIS12

L‘_:_i-:-:_

11250

5625

22500

16875 28125

33750

4500

39375

0
50625

FIGURE 5.3(g) Bending moment diagram for a simply supported beam
(refer to Appendix D for color figures).
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1
LINE STRESS

STEP=1

SUB =1
TIME=1

SMIS2 SMIS8
MIN =-22500
ELEM = 1

MAX =22500
ELEM =2

<

=22500
=175

=2500

7500
2500 12500 22500

FIGURE 5.3(h) Shear force diagram for a simply supported beam
(refer to Appendix D for color figures).

1
LINE STRESS

STEP =1
SUB =1

TIME = 1

Ls3 LS6
MIN =0

ELEM = 1

MAX =.127E+09
ELEM =1

81E+08

.2 .562!
+141E+08 +422E+08

0 +08 . 112E;
703E+08 .984E+08

e T

+B44E:

+09
+127E+09

FIGURE 5.3(i) Bending stress for a simply supported beam (refer to Appendix D for color figures).
ANSWERS FOR EXAMPLE 5.2

Parameter Analytical FEM-Hand Software
method calculations results

Displacement at node 2 -0.0102 m -0.0102 m -0.01017 m

Slope at node

1 —3.62 x 107 rad 0.0036 rad -0.36161 x 10 rad

2 0 0 0

3 3.62 x 10 rad 0.0036 rad 0.36161 x 10 rad

Reaction at node

1 22500 N 22865 N 22500 N

3 22500 N 22865 N 22500 N

Maximum bending moment 50625 N-m | ... 50625 N-m

Shear force 22500N | 22500 N

Maximum bending stress 12656 MPa | ... 127 MPa
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EXAMPLE 5.3

For the beam shown in Figure 5.4, determine displacements, slopes, and
reactions. Take E =200 GPaand I =6.25x10™" m*

50 kN/m
A m B

C
4m | 4m

rmr i

FIGURE 5.4 The beam for Example 5.3.

Solution
(I) Analytical method [Refer to Figure 5.4].

Reaction,
_PL _50x10°x8

Ry == = 66666.67 N = 66.67 kN
3
R, =%=50X1—0X8= 133333.33 N = 133.33 kN
; 7x50%10% x(8)’
L 0B ,00398 rad
360EI  360x200x10° x6.25% 10
] 50x10% x(8)’
5 =— PL” _ 5 (8) —=0.00455 rad
A5EI 45%200%10° x6.25% 10

1(PL , p . 7Pl
c=E| =X — X" = X
EI| 36 120x L 360 ) L
T2

5 _LEXES_ P X£5_7PL3X£ _1(pL* pPL" 7PL
“ EIl 36 (2) 120xL |2 360 |2 )] EI|288 3840 720

5 _PL'(40-3-112

“ EI{ 11520

75PL 75%50x10° x(8)"
11520E]  11520%x200%10° x6.25x10™*

I[PL , P, 7PD ]

=-0.01067 m

C

¢ TEI

x x x
12 24 % L 360 | _

o |~
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g ~L[(PL (LY P (LY 7PL’ (LY|_PL'(1 1 7
“TEI 127\ 2 ) 24xL \2) 360 |2 )| EI|\48 384 360

~ -3 3 1.2153%107° x50%(8)’
0, =213 10 xPL __ . ) 5 4889x10~ rad.
EI 200x10° x 6.25x 10

(ITI) FEM by hand calculations [Refer to Figure 5.4(a)].

1 @ 2 ® 3
FIGURE 5.4(a) Finite element model for Example 5.3.

Stiffness matrices are,

12 6L -12 6L 12 6(4) -12 6(4)

(k1= EL 6L 4L' 6L 2L' | 200x10°x6.25x10™|6(4) 4(4)° -6(4) 2(4)°
YT 12 6L 12 6L (4) 12 6(4) 12 —6(4
2 _ 2 2 2

6L 2L° -GL 4L 6(4) 2(4)° -6(4) 4(4)

w, 0, w, 0,

12 24 -12 24w,
64 —24 32 |0,

-12 24 12 -24|w,

24 32 -24 64 |0,

[k, ]=195.3125% 10"

Due to symmetry,

[kl] =[k2]

12 6L -12 6L 12 6(4) -12 6(4)
[k2]=E—f 6L 417 —6L 2I :200><109><i.25><10’4 6(4) 4(4)° —6(4) 2(4)°
I2|-12 -6L 12 -6L (4) ~12 -6(4) 12 —6(4)

6L 217 —6L 4L’ (4) 2(4)" -6(4) 4(4)’

w, 0, wy; 0,

12 24 -12 24w,
64 -24 32 |0,

~12 24 12 24 |w,

24 32 -24 64 |0,

[k,]=195.3125%10"
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Global stiffness matrix is,

[K]=195.3125%10"

Load vector,

For element 1,

=5

4
20

For element 2,

w, 0, w,
12 24 -12
24 64 —24

-12 24 12+12 -24+24 -12 24 |w,
24 32 -24+24 64+64 24 32 |0,

0, Ws 3
24 0 i w,
32 0 0 (0,

0 0 -12 94 12 24 |w,
00 24 32 -24 64 |0,
7P + 3P,
L
Fl=—"
{r} 20| 3P +7P,
_%(21)1 + 3P2)
P =0, P,=-25kN/m, L=4m
-75
4 -15 kN —-15000 N
30| C1333kNam| | -1333 Nem |
175 [ | -35kN —35000 N
g (=75) 20 kN-m 2000 N-m

P, =—25 kN/m, P, =—50 kN/m, L=4 m

-175-150

4 (Z75-100)
AR -
90| -75-350

4

~2(=50-150

 (-50-150)

65000 N

46667 N-m
85000 N |
53333 N-m
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Global load vector is,

—15000
-13333
—100000
=1 6667 |
-85000
53333
Global equation is,
[K{r}={R} (5.6)
w, 0, w, 0, w, 0,
2 24 =12 24 U 0 fw, [ =I5000+ R,
P4 64 —24 32 0 0 {0, 0, -13333
JTI2 24 12+12 24424 -12 24 Jw, |w, —100000
195.3125%10 =
P4 32 —24+24 64+64 -24 32 |0, 0, —26667
0 0 12 =27 12 24w, |w, =85000 + R,
o o 24 32 -24 640, |0, 53333

Using the elimination method for applying boundary conditions,
w, =w, =0.
The above matrix reduces to

0, Wy 0, 0,

64 -24 32 0 ||0, —13333
L =24 24 0 24||w, —100000
195.3125%10 = .
32 0 128 32146, —26667
0 24 32 64]|0, 53333
By solving the above equations, we get,
0] (-0.00398 rad
w, —0.01067 m
0, [~ 1-0.00025 rad

0, 0.00455 rad
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Reaction calculation
1953125(12x w, +24x0, —12xw, +24x6, ) =-15000 + R,
R, =66796.875 N =66.79 kN

1953125 (12 (=0.01067) — 24  (=0.00025) — 24 % (0.00455)) = ~85000 + R,
R, =133515.63 N =133.52 kN.

(IIT) Software results.

1
NODAL SOLUTION

STEP =1
SUB =1
TIME =1

MX

0 .00237 .004741 .007111 .009481
.001185 .003556 .005926 .008296 .010667

FIGURE 5.4(b) Deflection pattern for a simply supported beam (refer to Appendix D for color figures).

Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE Ux uy Ux UsuMm
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 -0.10667E-01 0.0000 0.10667E-01
3 0.0000 0.0000 0.0000 0.0000

Maximum absolute values

NODE 0 2 0 2
VALUE 0.0000 -0.10667E-01 0.0000 0.10667E-01

Slope values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 -0.39822E-02
2 -0.24889E-03

3 0.45511E-02
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The following X, Y, Z solutions are in global coordinates

NODE FX FY Mz
1 0.0000 66667
3 0.0000 0.13333E +06
Total values
VALUE | 0.0000 | 0.20000E + 06 0.0000
ANSWERS FOR EXAMPLE 5.3
Parameter Analytical FEM-Hand Software
method calculations results

Displacement at node 2 -0.01067 m -0.01067 m -0.010667 m

Slope at node

1 -0.00398 rad -0.00398 rad -rad

2 ~2.4889 x 10~ rad -0.00025 rad -0.00024889 rad

3 0.00455 rad 0.00455 rad 0.0045511 rad

Reaction at node

1 66.67 kN 66.79 kN 66.667 kN

3 133.33 kN 133.52 kN 133.33 kN
EXAMPLE 5.4
Calculate the maximum deflection in the beam shown in Figure 5.5. Take E
= 200 GPa.

200N
50 mm
10 mm 10 mm _Q mg
T 1 1 l)T mm 4 10 mm
100 mm & ‘
FIGURE 5.5 The beam for Example 5.4.
Solution
(I) Analytical method [Refer to Figure 5.5(a)].
E A J c B F
10 mm 10 mm
80 mm
100 mm

FIGURE 5.5(a) Analytical method for Example 5.4.
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_bK’
12

I

0.01x(0.01)°
2 Q0IX(O01) g ana 100

_ P2 200x(0.08)"  2.133x10° _ 2.133x10°°

" 48EI 48EI EI T 200x10° x8.33%107°
5, =-1.2803x10" m=-0.0128 mm

I¢

0.=0

0,10, = PL} _ 200x(0.08)" 0.8 _ 0.08
AP 6ET 16EI EI  200x10°%8.33x107"
d,=0,=0,xBF

=4.802x10~* rad

5, =3, =4.802x 107 x 10 =4.802x 10~ mm.
(II) FEM by hand calculations [Refer to Figure 5.5(b)].

T ® 2 @

FIGURE 5.5(b) Finite element model for Example 5.4.

For beam,
3
I:bh
12
10x(10)* \
[=——"—=833.34 mm".
12
For element 1 and 2, L = 40 mm
12 6L -12 6L 12 6(40) -12 6(40)
[k]—EI 6L 4L —6L 2I' | 200x10° x833.34|6(40) 4(40)° —6(4) 2(40)°
ULl -12 6L 12 6L | (40’ ~12 -6(40) 12 —6(40)
6L 2I* -6L 4L’ 6(40) 2(40)° —6(40) 4(40)*
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w, 0, w, 0,
12 240 -12 240 |w,
240 6400 -240 3200 |6,
[k, ]=2604.1875 .
-12° =240 12 240 |w,
240 3200 —240 6400 |0,
Due to symmetry,
[kl]:[kz]
12 6L -12 6L 12 6(40) -12 6(40)
[k ]:ﬂ 6L 4L —6L 217 | 200x10° x833.34| 6(40) 4(40)° -6(4) 2(40)"
2712 —6L 12 6L (40)’ ~12 -6(40) 12 —6(40)
6L 2L’ —6L 4L 6(40) 2(40)* —6(40) 4(40)*
wy, 0, w; 0,
12 240 -12 240 |w,
240 6400 -240 3200 |0,
[k,]=2604.1875 :
-12° 240 12 240 |w,
240 3200 -240 6400 |6,
Global stiffness matrix is,
w, 0, w, 0, W, 0,
12 240 -12 240 0 0 Juw,
240 6400 —24 3200 0 0 |0,
-12° =240 12 +12 -240+240 -12 240 |w,
[K]=2604.1875
240 3200 —240+240 640046400 —240 3200 |6,
0 0 -12 —240 12 -240 |w,
| 0 0 240 3200 —240 6400 |0,
Global load vector is,
Rl
0
-200
=1,
RS
0
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Global equation is,
(K} ={R} 57
w, 0, w, 0, W, 0,
12 240 —12 240 0 0 o [ R
240 6400 —-240 3200 0 0 |0, 0, 0
—12 =240 24 0 =12 240 |, w, —-200
2604.1875 = L= .
240 3200 0 12800 —240 3200 |9, 0, 0
0 0 -12 -240 12 -240l|p, |w, R,
i 0 0 240 3200 —240 6400_ 0, 0, 0

Using the elimination method for applying boundary conditions,

w, =w, =0.
The above matrix reduces to

0, w, 0, 0,

6400 —-240 3200 0 0, 0
—240 24 0 240 || w, —200
2604.1875 = .
3200 0 12800 3200 || 0, 0
0 240 3200 6400 || 6, 0
By solving the above equations, we get,
0, —4.8%107* rad
w, | | —0.0128 mm
0, 0

0, 4.8x107" rad

At 0, =0, max deflection between supports is 0.0128 mm.
Deflection at ends (overhang) = 4.8x10™* x10=4.8x10™® mm.

(ITI) Software results.

1
NODAL SOLUTION

STEP =1
SUB =1
TIME = 1
USUM  (AVG)
RSYS =0
DMX =.0128
SMx =.0128
Y

e

.002844 .005689 008533 .011378
.001422 .004267 007111 009956 .0128

FIGURE 5.5(c) Deflection pattern for a simply supported beam (refer to Appendix D for color figures).
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Deflection values at nodes (in mm)

The following degree of freedom results are in global coordinates

NODE Ux uy Ux Usum
1 0.0000 0.48000E-02 0.0000 0.48000E-02
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 -0.12800E-01 0.0000 0.12800E-01
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.48000E-02 0.0000 0.48000E-02

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 -0.12800E-01 0.0000 0.12800E-01

Slope values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 -0.48000E-03
2 -0.48000E-03
3 0.0000
4 0.48000E-03
5 0.48000E-03

ANSWERS FOR EXAMPLE 5.4

Parameter Analytical FEM-Hand Software
method calculations results
Deflection at applied load -0.0128 mm -0.0128 mm -0.0128 mm
Deflection at ends (overhang) | 4.802 x 10° mm 4.8 x 10° mm 4.8 x 10° mm
Slope at hinged support —4.802 x 10™" rad 4.8 x 10" rad 4.8 x 107 rad
Slope at roller support 4.802 x 10~ rad 4.8 x 10 rad 4.8 x 107 rad

Procedure for solving the problems using ANSYS ® 11.0 academic
teaching software.

FOR EXAMPLE 5.2
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PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Beam> 2D elastic 3 > OK > Close

M ibraryof Flement Types

Orly structussl slement types an shown
Litvary of Elemant Typas ~
~
= Izo-nu 3

Elemont type reference number

FIGURE 5.6 Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >

Add > OK
Element Type Referance No., 1

Real Constant Set No.

Cross-sectonal area  AREA
Arsa moment of inertia 122
Tctal beam height  HEIGHT
Shear deflection constant SHEARZ

£ T

o | _ww | _cml |

FIGURE 5.7 Enter the area, moment of inertia, and height of beam.

Cross-sectional area AREA > Enter 1

Area moment of inertia IZZ > Enter 2e-4

Total beam height HEIGHT > Enter 1 > OK > Close
Enter the material properties.

3. Main Menu > Preprocessor > MATERIAL Props > Material Models
Material Model Number 1, Click Structural > Linear > Elastic >
Isotropic Enter EX = 210E9 and PRXY = 0.3 > OK
(Close the define material model behavior window.)

Create the nodes and elements as shown in the table below and Figure 5.8.
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4. Main Menu > Preprocessor > Modeling > Create > Nodes > In
Active CS Enter the coordinates of node 1 > Apply Enter the coordi-
nates of node 2 > Apply Enter the coordinates of node 3 > OK.

Node locations

Node number

X-coordinate | Y-coordinate

1 0 0
2 4.5 0
3 9 0

5. Main Menu > Preprocessor > Modeling > Create > Elements >
Auto Numbered > Thru nodes Pick the 1st and 2nd node > Apply Pick

FIGURE 5.8 Enter the node coordinates.

the 2nd and 3rd node > OK

FIGURE 5.9 Pick the nodes to create elements.

Apply the displacement boundary conditions and loads.

Elements from Nodes

 pick (" Unpick

@ Single  Box
(ad Polygon
(64 Loop

 Circle

(¢ List of Items

" Hin, Max, Inc

il

_sen |
| Cancel |
_I

Pick All Help
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6. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the 1st node and 3rd node
> Apply > Select UX and UY and Enter displacement value = 0 > OK

FiY Apply UROT on Nodes

[D] Apply Displacaments (U,ROT) on Nodes
Lab2 DOFs to be constrained

If Constank value then:
VALUE Displacement valse

FIGURE 5.10 Apply the displacement constraint.

7. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Pressure > On Beams Pick the 1st element > OK > Enter
Pressure values at node I= 5000 > OK

TV Apply PRES an Beams
[SF3EAM] Aply Pressure (PRES)on Beam Elements
LEY  Load bey

L]
VAL Pressue vahas & nods |
VALY Prossmre vehus o node 3 I:
{laarve blark for uriform presaure)

Optional offssts for pressure load
JOFFST  Offset from Inode

JOFFST  Offset from J node
LENRAT  Load offset interms of fLanghiunts ,

FIGURE 5.11 Applying loads on element 1.

8. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Pressure > On Beams Pick the 2nd element > OK >
Enter Pressure value at node I=5000 > OK

Y
BA'-ZX Y2 ._;A!S

FIGURE 5.12 Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the
solution. First, to be safe, save the model.
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Solution

The interactive solution proceeds.
9. Main Menu > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters and
the Solve Current Load Step window is shown. Check the solution
options in the /STATUS window and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the solu-
tion is complete, close the ‘Solution is Done!” window.

POSTPROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Postproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Displacement vector sum > OK

This result is shown in Figure 5.3(f).

11. Main Menu > General Postproc > List Results > Nodal Solution >
Select Rolation vector sum > OK

12. Main Menu > General Postproc > List Results > Reaction Solu > OK
To find the bending moment diagram, the following procedure is followed.

13. Main Menu > General Postproc > Element Table > Define Table >
Add as shown in Figure 5.13.

FIGURE 5.13 Define the element table.
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Select By sequence num and SMISC and type 6 after SMISC as shown in
Figure 5.14. >APPLY

[AVIRIN] EFF M For BN s
[ETALE] Oafire Addional aart Tabla Bame
Lo Lser label o Eam

T, Comp Biansks data ben

{For "Dy meguence num”, enber ssquence
e i Salnction box. See Tabled.xx-)
i Pl s Ml lor sae). Fusibers. )

x| | cweal | i

FIGURE 5.14 Selecting options in element table.

Then again select By sequence num and SMISC and type 12 after

SMISC > OK

14. Main Menu > General Postproc > Plot Results > Contour Plot >
Line Elem Res > Select SMIS 6 and SMIS 12 in the rows of Labl
and Lab] respectively as shown in Figure 5.15 > OK

[PLLS] ok Line Elament Rasuk

Labl Elees table e ok rode | [ -]
Lsh} Elem table fam ot node 1 fous: |
Pact Optional scale factor E

KUAD  Meens bo be plotted on

FIGURE 5.15 Selecting options for finding out bending moment.

This result is shown in Figure 5.3(g).

To find the shear force diagram the following procedure is followed.

15. Main Menu > General Postproc > Element Table > Define Table
> Add
Select By sequence num and SMISC and type 2 after SMISC >

APPLY
Then again select By sequence num and SMISC and type 8 after

SMISC > OK
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5.3

16. Main Menu > General Postproc > Plot Results > Contour Plot >
Lone Elem Res > Select SMIS 2 and SMIS 8 > OK

This result is shown in Figure 5.3(h).
To find the bending stress, the following procedure is followed.

17. Main Menu > General Postproc > Element Table > Define Table
> Add

Select By sequence num and LS and type 3 after LS > APPLY
Then again select By sequence num and LS and type 6 after LS > OK

18. Main Menu > General Postpro c> Plot Results > Contour Plot >
Line Elem Res > Select LS 3 and LS 6 > OK

This result is shown is Figure 5.3(i).

CANTILEVER BEAMS

EXAMPLE 5.5

Beam subjected to concentrated load. For the beam shown in Figure 5.16,
determine the deflections and reactions. Let E = 210 GPaand I =2x10™* m”.
Take 2 elements.

P=5kN

AANNAANN

2m 2m

FIGURE 5.16 Beam subjected to concentrated load for Example 5.5.

Solution
(I) Analytical method [Refer to Figure 5.16(a)].
P=5 kN P=5kN
R ] aI t
"I B c c B L AR
~ = 1 N
MC' 4. 2m | 2m om | 2m E N
- X 13

FIGURE 5.16(a) Analytical method for Example 5.5.

The solution is obtained by Macaulay’s method. The number within the brack-
ets < > is to be neglected whenever it is less than zero.
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At section a-a
Ely =-P<x-2>
02
EIy'= P<x—-2>
2
3
Ely= P<x-2>

+C,

+Cx+C,
Atx=4,y =0 = C =2P

At x=4,y=0 =>C2=_20P

3
y.:i —P<x—2>‘+2P
EI 2
_ _ 3
y:i P<x-2>" ., 20P
EI 6 3
L 1 2x5000
=y _, =—(0+2P)= =2.381x10™* rad
=Y =7 )= T T0X10° x2Zx10”
S 1 2% 5000
=y _ =—(0+2P)= =2.381x 107 rad.
Yo = Yo =7 ( )= 20X 10" x 2107 o
Similarly,
y3=yx:2=i up_ 20P)_ 2><95000 _ L5000 20%5000
EI 3 210107 x2x10 3
Yp =Y,y =—3.1746x10™" m
_ o _1( 20P)_ 2% 5000 ~ 20x5000
Yo =Y0 =1 T3 210%10° x2x10~* 3

Yo =Y,y =—7.9365x107" m

Y F =0=R, =5kN

Y M=0=M, =10 kN —m.
(II) FEM by hand calculations.

T ® 2 @ °

FIGURE 5.16(b) Finite element model.
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Element stiffness matrix for element 1 is,

12 6L -12 6L 12 6(2) -12 6(2)
Ik ]= EI| 6L 4L' —6L 2L’ | 210x10°x2x10™ |6(2) 4(2)" -6(2) 2(2)°
VT 12 6L 12 6L (2)° -12 -6(2) 12 -6(2)
6L 2L° -6L 4L 6(2) 2(2) -6(2) 4(2)
w, 0, w, 0,
12 12 -12 12w,
J12 16 -12 8 |0,
[k, ]=5.25x10 :
-12 12 12 -12 |w,
12 8 -12 16 |6,
Element stiffness matrix for element 2 is,
12 6L -12 6L 12 6(2) -12 6(2
(k= EL| O ALY 6L 217 | 210x10° x2x10™* |6(2) 4(2)° —6(2) 2(2)°
2712 6L 12 6L | (2)° -12 -6(2) 12 -6(2)
6L 2L 6L 4L 6(2) 2(2)° ~6(2) 4(2)°
w, 0, w; 0,
12 12 -12 12w,
16 -12 8 |0
[k,]=5.25%10° 2
-12 -12 12 -12 |w,
12 8 -12 16 |6,
Global stiffness matrix is,
w, 0, w, 0, w, 0,
12 12 -12 12 0 Tw,
12 16 -12 8 0 016
12 -2 12412 —12412 -12 12 |w,
[K]=5.25%10
12 8 -12+12 16+16 -12 8 |0,
0o o0 -12 -12 12 -12|w,
I 0 12 s  -12 160,




The global equations are,
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[KNr}={R} (5.8)
w, 0 w, 0, w, 0,
Hp—1——12—12—0—0Twr—frw; O+R;
P—H—1—8—0—0—10—1t; O+t
12 -12 24 0 -12 12 |w, |w, -5x10°
52510 12 ¢ 0 32 -12 8 |0, |0, 0
12 -12 12 -12|w, |w, 0
| 2‘: 12 8 -12 16 |0, |0, 0

By using the elimination method for applying boundary conditions,

w,=0,=0.

The above matrix reduces to,

5.25%x10°

-12
12 § -12 16 ||0,

Wy 0, wy 0,
24 0 -12 12 ||w,

32 -12 8 ||6,
-12 12 -12]|w,

By solving the above matrix and equations, we get,

Deflections and slopes as

Reaction calculation

w, =-0.3175x10" m

0, =-0.2381x107 rad
w, =—0.7937x10° m
0, =-0.2381x107 rad

5.25x10° (12w, +120, — 12w, +120,)=R,
5.25x10° (12x0+12x0—12(-0.3175x 107 ) +12(-0.2381x10™ )| = R,.
R, =5002.2 N =5 kN
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5.25%10° (-12w, +80,) =M,
5.25x10° (~12(0.3175x10™ ) +8(~0.238x107 )} = M, .
M, =10002.3 N-m =10 kN-m

(IIT) Software results.

1
NODAL SOLUTION

STEP =1

SUB =1

TIME =1

USUM  (AVG)
RSYS =0

DMX = .794E—03
SMX = .794E—03

Y
ZN X

.176E-03 -353E-03 .529E—-03 - 705E-03
.882E—-04 +265E-03 +441E-03 .617E-03 . 794E-03

FIGURE 5.16(c) Deflection pattern for a cantilever beam (refer to Appendix D for color figures).

Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE Ux uy uz Usum

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 -0.31746E-03 0.0000 0.31746E-03

3 0.0000 -0.79365E-03 0.0000 0.79365E-03

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 -0.79365E-03 0.0000 0.79365E-03

Rotational deflection values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 0.0000
2 -0.23810E-03

3

-0.23810E-03




Reaction values

The following X, Y, and Z solutions are in global coordinates
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NODE FX FY Mz
1 0.0000 5000.0 10000.
ANSWERS FOR EXAMPLE 5.5
Parameter Analytical FEM-Hand Software
method calculations results

Deflection at node

2

-3.1746 x 10" m

03175 x 10° m

—0.31746 x 10° m

3

~7.9365 x 10™ m

—0.7937 x 10° m

~0.79365 x 10° m

Rotational deflection at node

2 —2.381 x 10~ rad —0.2381 x 10°° rad —0.2381 x 107 rad
3 —2.381 x 107 rad —0.2381 x 107 rad —0.2381 x 10™ rad
Reaction force at node 1 5kN 5kN 5 kN

Reaction moment at node 1 10 kN-m 10 kN-m 10 kN-m

EXAMPLE 5.6

Propped cantilever beam with distributed load. Find nodal displacements and
support reactions for the beam shown in Figure 5.17. Let E = 70 GPa and

I=6x10" m".

8 kN/m

NANNNANNNNN

FIGURE 5.17 Propped cantilever beam with distributed load for Example 5.6.
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Solution

(I) Analytical method [Refer to Figure 5.17(a)].

C

1

1a

8 kN/m

R

4m 4m

ANMANANAANNDN

a

R,
FIGURE 5.17(a) Analytical method for Example 5.6.

The solution is obtained by Macaulay’s method. The number within the brack-
ets < > is to be neglected whenever it is less than zero.

Y F,=0=R, =—R, +8x10’ x4 =32000 - R,
Y M=0= M, =4R, —(8x10° x4)x 6= (4R, —192000) N-m.
At section a-a

3
8§x10 x4 ?

M =M +Rx+R,<x—4>-

EIy' = (4R, —192000) + (32000~ R, )x + R, < x— 4 >—4x10° < x —4 >*

2 2
Ely = 4R,x —192000x + [32000 x%]— (Rz x%]

R 4x10° 45 59)
22 gy BT SYTRZ Lo
2 3
,‘:2 ,VZ x3 x3
Ely=| 4R, x— |-| 192000x— [+| 32000X— |—| R, x—
: T2 2 6 T 6
3_4X103<x—4>4 (5.10)

+%<x—4> +Cx+C,

12
Boundary conditions are,
At x=0,y=0=C, =0

At x=0,y =0=C, =0
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At x=4,y=0= R, =56008 N
R, =32000 — R, =—-24008 N
M, =4R, —192000 = 32032 N-m (Clockwise), (negative).
Substituting in equations (5.9) and (5.10)
Ely' =4x56008x —192000x + (32000 X % }— (56008 X %J

56008 s 4x10° <x—4>

+ <x—4>
3

=-0.00152 rad

x=4

y

yv =-0.00355 rad

x=

and

2 9 3 3
Ely= [4><56008><%J—(192000x%]+(32000x%]—[56008x%)

56008 , 4x10° <x—4>*
<y —4>" -
6 12

Y|, =Yc =Yy; =—0.0122 m

y, =Yy, =0 and y, =y, =0 (Given boundary conditions).
(IT) FEM by hand calculations.

: @ 2 @ 3

FIGURE 5.17(b) Finite element model for Example 5.6.

E=70%x10° N/mm® and I=6x10° mm®
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Stiffness matrix for element 1 is,
12 6L -12

[K]

TP -12 —6L 12

6L

EIl 61, 41} -6L 2I’°
6L

6L, 2I} -6L 4I7

12 6(4000)  -12
k ]__70x](P><6x108 6(4000) 4(4000)° —6(4000)
ST (4000’ ~12 -6(4000) 12

6(4000) 2(4000)° —6(4000)

w,
12
24000
-12
24000

[k,]=656.25

Due to symmetry,

Wy
12
24000
-12
24000
Nodal force calculation

[k,]=656.25

For element 2,

0,
24000
64x10°

-24000

32x10°

24000

64x10°
—24000
32x10°

\ \

SO

W,y
-12
-24000
12
—24000

-24000
12
-24000

PL
2

P

12

0,
24000
32x10°
—24000
64x10°

24000
32x10°
—24000
64x10°

P’
12

6(4000)
2(4000)*
—6(4000)
4(4000)°

FIGURE 5.17(c) Nodal force calculation for element 2 in Example 5.6.
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P =8 N/mm
L= 4000 mm
Pz—L = 8x4000 _ 16000 N
PL = 5(4000) =10.667x10° N-mm.
12 12
The nodal forces and moments for element 2 is,
PL
2
L2 ~1600 1,
T ~10.667x10° | m,
[F:]= CPL[ ] 16000 |,
2 | |-10.667x10° | m,
Pr:
12
The global equations are,
[K{r}={R} (5.11)
w, 0, w, 0, w, 0,
F—1p——24p00 =12 24000 0 Oty
2400064 10° =24000 39-x 10" 0 ot
=12——=24000 212 =24000+24000 —12— 24000 1w,
656.25 24000 32x10° —24000+ 24000 64x10° +64x10° —24000 32x10° |0,
Q 0 12 -24000 12 —24000 |w,
I 24000 32x10° ~24000 64x10° |6,
w, 0+R,
0, 0+ M,
w, 16000 + R,
“ 0, [7)-10.667x10°
w, -16000
0, 10.667 % 10°

By using the elimination method for applying boundary conditions,

w, =0, =w, =0.
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The above matrix reduces to
128x10° 24000 32x10° |(0, -10.667x10°
656.25| —24000 12 =24000 |{w, ~16000
32x10°  —24000 64x10° || 0, 10.667x10°

Solving the above matrix and equations, we get,
w, =-12.19 mm=-0.01219 m
0, =-0.00355 rad
0, =—0.00152 rad.
Reaction calculation
656.25(12w, +24000x6, — 12w, +24000x6, ) =R,
656.25 (12 x0+4+24000x0—12x0+ 24000 % (—0.00152)) =R,
R, =-23.94 kN = -24 kN
656.25(24000w, +64x10° 0, —24000w, +32x10° X0, ) = M,
6536.25(24000 0+ 643 10° x 0 — 240000+ 32 10° x (~0.00152)) = M,
M, =-31.92 kN-m = —32 kN-m
656.25 (—12w, —24000%0, + 241w, +0x0, — 12w, +24000x0, ) = R, — 16000

656.25(~12x0 — 24000 X 0+ 24X 0+ 0x0, —12(~12.19) + 24000 x (~0.00355))
= R, —16000.
R, =56.08 kN =~ 56 kN

(IIX) Software results.

1
NODAL SOLUTION

STEP = 1
SUB =1
TIME = 1
UsSuUM (AVG)
RSYS =0
DMX =.01219
sMx =.01219

Y
lmx

0 .002709 .005418 127 .001083
.001354 .004063 .006772 .009481 .01219

FIGURE 5.17(d) Deflection pattern for a cantilever beam (refer to Appendix D for color figures).
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Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE

Ux

uy

uz

Usum

1 0.0000

0.0000

0.0000

0.0000

2 0.0000

0.0000

0.0000

0.31746E-03

3 0.0000

-0.12190E-01

0.0000

0.12190E-01

Rotational deflection values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 0.0000
2 -0.15238E-02
3 -0.35556E-02

Reaction values

The following X, Y, Z solutions are in global coordinates

NODE FX FY Mz
1 0.0000 -24000 -32000
2 0.0000 56000
ANSWER FOR EXAMPLE 5.6
Parameter Analytical FEM-Hand Software
method calculations results
Deflection at node 3 -0.0122 m -0.01219 m -0.01219 m
Rotational deflection at node
2 -0.00152 rad -0.00152 rad -0.001524 rad
3 -0.00355 rad -0.00355 rad -0.00355 rad
Reaction force at
1 -24 kN -24 kN -24 kN
2 56 kN 56 kN 56 kN
Reaction moment at node 1 -32 kN-m -32 kN-m -32 kN-m
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EXAMPLE 5.7

Propped cantilever beam with varying load. For the beam shown in Figure 5.18,
determine the nodal displacements, slopes, reactions, maximum bending
moment, shear force, and maximum bending stress. Take E = 200GPa.

60 kN/m

165 mm

165 mm

3m A\ 3m
s

FIGURE 5.18 Propped cantilever beam with varying load for Example 5.7.

AAANAAANY

Solution

(I) FEM-hand calculations.

SERURTRE

FIGURE 5.18(a) Finite element model for Example 5.7.

bh® 165x(165)°
12 12

=61766718.75 mm* =6.18x107° m*.

Stiffness matrices for element 1 and 2 are,

12 6L -12 6L
(k] EI| 6L 4L} -6L 2L
T I’|-12 6L 12 6L
6L 2L -6L 4L’

12 6(3) -12  6(3)

200%x10°x6.18x107 | 6(3) 4(3)" —6(3) 2(3)°

(3)° -12 -6(3) 12 —6(3)

( (

[k ]
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1218 -12 18
~200x10°x6.18x107°| 18 36 —18 18
- (3)° —12 -18 12 -18

18 18 18 36

[k ]

w, 0, w, 0,
12 18 -12 18 Juw,

36 18 18 |0,
-12 -18 12 -18|w,
18 18 -18 36 |0

[k, ]=457.78%x10°

Due to symmetry,
[kl ] = [kz]
W, 0, w; 0,
1218 -12 18 |w,
. 18 36 -18 18 |0,
[k, ]=457.78x10° ? .
-12 -18 12 -18|w,

18 18 -18 36 |0,
Nodal force calculation

] 30 kN/m
1 @ 2
FIGURE 5.18(b) Nodal force calculation for element 1 for Example 5.7.

P, =0 and P, =30 kN/m

For element 1,

L=3m

The nodal forces and moments for element 1 is,

—(7P, +3P,) —(7x0+3x30x10%)

) 3

L ‘ 3 ‘ , -13.5x10%| f;
- L —3(31{+2Pz) 3 —5(3><0+2><30><10) | Zox10 |my
" 20| (B3R +TR) | 20| —(3x0+7x30x10°) [ |-31.5x10°| f,

L 13.5%10° |m

3(2P1+3P2) %(2><0+3><30><103) ?
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For element 2,

60 kN/m
30 kN/m

2

©)

3

FIGURE 5.18(c) Nodal force calculation for element 2 for Example 5.7.

P, =30x10° N/m and P, =60x10> N/m
L=3m

The nodal forces and moments for element 2 is,

(7P, +3P)) —(7x30x10° +3x60x10°)
3
I 3 , \ -585x10%] f,
—_ -5 (3P +28) 3 —5(3x30><10 +2x60%10%) | -315x10° | m,
© 20| (3R +7B) [ 20| —(3x30x10° +7x60x10°) | |-76.5x10"[ f;
L 36x10° | m,
—5 (25 +35) %(2x30x103+3x60x103) ’
The combined nodal forces and moments matrix is,
-13.5x10° -13.5x10°| £,
-9x10° -9x10° |m,
(7] (-31.5-58.5)x10% | | -90x10* | f,
(13.5-31.5)x10° -18x10° | m,
~76.5%10° ~76.5%x10° | f;
36x10° 36x10° | m,
The global equations are,
w, 0, w, 0, W, 0,
[ 12118 12 18— 00— 13.5+R,
15136 18 OOt 9+
Ul Ul LlTLVll
=t =81+t =8+ ts =t 18w, ——1=90+R;
457.78 % ? = 10% x g
o] 18 |18 -18+18(36+236 —18 18 |60, |6, ol -18
00 -12 -18 12 -18|w, |w, -76.5
L0 |0 18 18 -18 36 |0, |0, 36
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By using the elimination method for applying boundary conditions,
w, =0, =w, =0 . The above matrix reduces to,

72 -18 18 (6, ~18
45778 -18 12 —18 [Jw, t=4-T65}-
18 -18 36 ||0, 36

By solving the above matrix and equations, we get
0, =-0.0128 rad, w, =-0.0811 m, and 8, =-0.0319 rad.
Reaction calculation
457.78%10° (12w, +180, — 12w, +180,) =-13.5%x10° + R,

457.78x10° (12x0+18x0—-12x0+18%(-0.0128)) =-13.5x10” +R,
R, =-919725 N

457.78x10° (18w, + 360, —18w, +180,) =-9x10° + M,
457.78x10° (180 +36x0—-18x0+18x(~0.0128)) =—9x10” + M,
M, =-96472.5 N-m

457.78x10° (—12w, — 180, + 24w, + 0x0, — 12w, +180,) =—90x10° + R,
457.78%10° (—12Xx0—18X0+24x 0 +0x0, —12x(-0.0811) +18x(-0.0319))

=-90x10° +R,.
R, =272654.22 N

(IT) Software results.

1
NODAL SOLUTION

STEP = 1
SUB =1

TIME =1

USUM  (AVG)
RSYS = 0

DMX =.081098
sMx =.081098

Y
lznx

MX

01802 .036044 .054066 .072087

. 2 6
.009011 .027033 .045055 .063076 .081098

FIGURE 5.18(d) Deflection pattern for a cantilever beam (refer to Appendix D for color figures).
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Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE Ux Uy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
p) 0.0000 0.0000 0.0000 0.0000
3 0.0000 ~0.8109SE-01 0.0000 0.81089SE-01
Maximum absolute values
NODE 0 3 0 3
VALUE 0.0000 ~0081098E-01 0.0000 0.81098E-01

Rotational deflection values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 0.0000
2 -0.12834E-01
3 -0.31948E-01

Reaction values

The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ
1 0.0000 ~92250 ~96750
p) 0.0000 0.27295F + 06
Total values
| VALUE 0.0000 0.18000E + 06 ~96750

1
LINE STRESS

SMIS6 SMIS12
MIN =-225000
ELEM=1

MAX =96750

ELEM =
o Y

T

—225000 —-153

—189250

500

2117750 82000

—46250

—10500

25250 01000

96750

FIGURE 5.18(e) Bending moment diagram for a propped cantilever beam
(refer to Appendix D for color figures).
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1
LINE STRESS

STEP =1
SUB =1
TIME = 1

SMIS2 SMIS8

MIN =-135000

ELEM = 2

MAX =137250
ELEM=1 v

-_—

—=135000 —=74500 —14000 46500 107000
—104750 —44250 16250 76750 137250

FIGURE 5.18(f) Shear force diagram for a propped cantilever beam
(refer to Appendix D for color figures).

1
LINE STRESS

STEP =1

SUB =1

TIME =1

Ls3 LS6

MIN =-.300E+09
ELEM=1

MAX =.129E+09 ¢
ELEM=1

—| +300E+09’ ~.205E+09 _.109B+0! .1405+0; —| +814E+08

—.253E+09 ~.157E+09 —.617E+08 -337E+08 .129B+09

FIGURE 5.18(g) Bending stress diagram for a propped cantilever beam
(refer to Appendix D for color figures).

1
LINE STRESS

STEP =1

SUB =1

TIME =1

NMIS1 NMIS3
MIN = .155E-06
ELEM = 2

MAX = .300E+09
ELEM = 1

| EEEEESSESSSSS Eaaaasa——
.155E—-06 .667E+08 .133E+09 .200E+09 .26 7E+09
.334E+08 .100E+08 .167E+09 .234E+09 .300E+09

FIGURE 5.18(h) Maximum stress diagram for a propped cantilever beam
(refer to Appendix D for color figures).
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ANSWERS FOR EXAMPLE 5.7

Parameter FEM-Hand calculations Software results
Deflection at node 3 -0.0811 m -0.081098 m
Rotational deflection at node
2 -0.0128 rad -0.012834 rad
3 -0.0319 rad -0.031948 rad
Reaction force at
1 -91.97 kN -92.25 kN

2 272.65 kN 272.25 kN
Reaction moment at node 1 -96.47 kN-m -96.75 kN-m
Maximum bending moment 96750 N-m
Shear force - 137250 N
Maximum bending stress 129 MPa
Maximum stress 300 MPa

(bending stress + direct stress)

EXAMPLE 5.8

Propped cantilever beam with stepped loading. Analyze the beam in Figure 5.19
by finite element method and determine the reactions. Also, determine the
deflections.

Given E=200 GPa and I=5x10" m"

24 kN/m

12 kN/m

' EEEREE Y ¥y

5m \ 5m
o

FIGURE 5.19 Propped cantilever beam with stepped loading for Example 5.8.

ANRARNRNNN

Solution

(I) FEM by hand calculations.

1 @ 2 @ 3

FIGURE 5.19(a) Finite element model for Example 5.8.
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Stiffness matrix for element 1 and 2 are,

12

_EI| 6L 41}

[k]=—

L’ -12

6L 21}

[k ]

_200%x10°x5x107 | 6(5) 4(5)°

[k, ]=800x10

[k, ]=800x10°

Nodal force calculation

For element 1,

(5)°

-12 6L
-6L 27
12 -6L
—6L 4L’
12 6(5)
-12 -6(5
6(5) 2(5)
W, 0, W,
12 30 -12
30 100 -30
-12 =30 12
30 50 -30
w, 0, w,
12 30 -12
30 100 —30
-12 -30 12
30 50 -30

N
i
> —
N

pL?
12

FIGURE 5.19(b) Nodal force calculation for element 1 in Example 5.8

P =12 kN/m=12x10° N/m

L=5m
PL _12x10°x5

2

PIZ  12x10°x(5)°

=30x10° N

=25%10°

12

2

N-m
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The nodal forces and moments for element 1 is,

_PL
2 -
PIZ -30x%10° fl
12 —-25%10° | m, .
[Fl ] = = 3
_2 -30x10°| f,
2 25%10° | m,
n
12
For element 2,
PL PL
2 2
\ I _
2 3
® L L
12 12

FIGURE 5.19(c) Nodal force calculation for element 2 in Example 5.8.

P =24 kKN/m=24x10° N/m

L=5m
3
PL_24x10°x5 _ o0 o5
2
2 24x10°x(5)
Pf; = (5) =50x10° N-m

The nodal forces and moments for element 2 is,

_PL

2
pr2 | [-60x10°| f;
Ty -50%10% | m,

[Fz] _ 12 _ . 2.

_PL —60x10%| f;
2 50x10° | m,

PI}

12
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The combined nodal forces and moments is,

-30%10°
—925%10°
-30x10° —=60x10°

-30x10°
-95x10°
—90x10°

fi

f

25%10° —50%10° -25%x10° | m,
—60x10° -60x10° | f,
50x10° 50%x10° | m,
The global equations are,
[K]{r}={R} (5.12)
w4 Wy 0, w; O,
1 20 10 20 0 0] _an1n3 . p
By oY 1= oY AV AV Wy wr IYU B AV A Ltl
2 10 Q =0 0O 0 ya) ya) _oc .. 103 AL
oY TUY DAV AV AV U7 U1 ) BAV A LVll
10 24 19 .10 2N 2 19 9n . EaYa WOk Wa BT 5
800 X 103 T () T T Ira JUT OU B ) DAV Wy Wy _ JUAXNTITU 7T le
30 50 —=30+30 100+100 =30 50 |0, 0, -25%x10°
o o -I2 =30 12 =30 |w, |w, -60x10°
| 0 O 3 50 =30 100 | 0, 0, 50x10°

By using the elimination method for applying boundary conditions,

w, =0, =w, =0,

the above matrix reduces to

200 -30 50 |0, —-25%10°
800x10°| =30 12 =30 |<w, r=1-60x10"
50 -30 100 ||0, 50x10°

By solving the above matrix and equations, we get

Reaction Calculation

800x10° (12w, + 300, —12w, + 300, ) =-30x10° + R,

800x10% (12x0+30x0—12x0+30x(—0.003438))

R, =-52512 N

-30x10° + R,
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800x10% (30w, +1000, —30w, +500, ) =-25x10° + M,
800x10° (30x0+100x0 —30x0+50x(-0.003438)) = —25x 10° + M,
M, =-112520 N-m

800x10° (—12w, — 300, + 24w, + 0x0, — 12w, +300,) =—90x10° + R,
457.78x10% (—12x0—30%0+24x 0+ 0x0, —12x(-0.0035938 ) + 30 x (-0.008438))
=-90x10° +R,.
R, =232492.8 N

(IT) Software results.

1
NODAL SOLUTION

STEP =1

SUB =1

TIME = 1

USUM  (AVG)
RSYS =0

DMX =.035937
sMx =.035937

MX

'
.007986 .015972 .023958 .031944
.003993 .011979 .019965 .027951 .035937

FIGURE 5.19(d) Deflection pattern for a cantilever beam (refer to Appendix D for color figures).

Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE Ux uy uz Usum
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 -0.35938E-01 0.0000 0.35938E-01

Maximum absolute values

NODE 0 3 0 3
VALUE 0.0000 -0.35938E-01 0.0000 0.35938E-01
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Rotational deflection values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 0.0000
2 -0.34375E-02
3 -0.84375E-02

Reaction values

The following X, Y, Z solutions are in global coordinates

NODE FX FY Mz
1 0.0000 -52500 -0.11250E +06
2 0.0000 0.23250E + 06

ANSWERS FOR EXAMPLE 5.8

Parameter FEM-Hand calculations Software results

Deflection at node 3 -0.035938 m -0.035938 m

Rotational deflection at node

2 -0.003438 rad -0.0034375 rad

3 -0.003438 rad -0.0034375 rad

Reaction force at

1 -52.512 kN -52.5 kN
2 232.493 kN 232.25 kN
Reaction moment at node 1 -112.52 kN-m -112.5 kN-m

Procedure for solving the problems using ANSYS ® 11.0 academic
teaching software.

FOR EXAMPLE 5.7
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PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Beam > 2D elastic 3 > OK > Close

Filtibrary of Llement Types

Oy s ol sevent ypes we thivwe
beary of Dt Types

FIGURE 5.20 Element selection.

2. Main Menu > Preprocessor > Sections > Beam > Common sec-
tions, following dialog box appears

M Beam Tool

D ,1_
Name I_
sibType [ B 3
OffsetTo |Canbnld v
Offset-Y lu_
Offset-Z |u_

B

H

1

—B
B [W
H [F
Nb [n_
Nh ln—
ok | ey |
close | Preview |
Help I Meshview |

FIGURE 5.21 Choose cross-section of the beam.

In that dialog box, select Sub-Type, choose Square Cross-Section, then
Enter value of B = 0.165 and H = 0.165 as shown in Figure 5.21.

Click on Preview > OK

The following figure appears on the screen.
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PREVIEW
X = Centroid O = Shear Center DATA SUMMARY
.0825

AREA
= .027225

Iyy
= .618E-04

Iyz o
04125 L 618z-00
Warping Constant
= .194E-08
Torsion Constant
= .106E-03
0 id ¥
= .162E-17
Centroid 2
= .348E-17
Shear Center Y
= .7298-17
Shear Center Z
= —.911E-17
Shear Corr. YY

=.842105
-1.0825 Shear Corr. YZ
—.0825 —.04125 .04125 .082 = .933E-18

Shear Corr. ZZ
= .842105

—{- 04125

w

FIGURE 5.22 Details of geometrical properties of the beam.

From Figure 5.22, note down the values of Area A = 0.027225 m® and
moment of inertia I =0.618x10™" m",

3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > OK

I\ Real Constants for BEAM3

Element Type Reference No. 1

Real Constant Set No. [
| Cross-sectionalarea  AREA [pozzs
Area moment of inertla 122 IW
Total beam height ~ HEIGHT Ir
Shear deflection constant SHEARZ l—
Tritlal strain 1STRN l_
Added massfunt length  ADDMAS |'|—

o |

oK Aoty | concl |

FIGURE 5.23 Enter the area moment of inertia.

Cross-sectional area AREA > Enter 0.027225

Area moment of inertia I,,> Enter 0.618e-4

Total beam height HEIGHT > Enter 0.165 > OK > Close
Enter the material properties.

4. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX = 200E9 and RRXY = 0.3 > OK
(Close the Define Material Model Behavior window.)

Create the nodes and elements as shown in the figure.
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5. Main Menu > Preprocessor > Modeling > Create > Nodes > In
Active CS Enter the coordinated of node 1 > Apply Enter the coordi-
nates of node 2 > Apply Enter the coordinate of node 3 > OK.

Node locations

Node number X-coordinate Y-coordinate
1 0 0
2 3 0
3 6 0
FiVCrcate Modes in Active Coordinate Sysiem
[M] Creats hodes in Active Cooednate System
NOOE  ods rumber r
%%,2 Location i active C5 [o [o [
TN, THIYZ, T
Fotation anghes (degrees) l | l
o | Aoy | concel | b

FIGURE 5.24 Enter the node coordinate.

6. Main Menu > Preprocessor > Modeling > Create > Elements >
Auto Numbered > Thru nodes Pick the 1st and 2nd node > Apply Pick

the 2nd and 3rd node > OK

Elements from Nodes

@ Pick  Unpick
@ cingle € Box

€ Polygen ¢ circie
€ Loop

Count = 0
Haximum = 20
Minimum = 1
Node No. =

(% List of Ttems

(" Min, Max, Inc

—

Apply I

Cancel

Pick All

LLH

Help

FIGURE 5.25 Pick the nodes to create elements.

Apply the displacement boundary conditions and loads.
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7. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the 1st node > Apply >
All DOF= 0 > OK

8. Main Menu > Preprocessor > loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the 2nd node > Apply >
Select UX and UY = 0 > OK

A Apply U,ROT on Nodes 1

[D] Apply Displacements (U,ROT) on Nodes
Labz DOFs to be constraned

IF Constant value then:
VALUE Displacement valus

FIGURE 5.26 Applying boundary conditions on node 2.

9. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Pressure > On Beams Pick the 1st element > OK >
Enter Pressure value at node I = 0 and Pressure value at node J =
30e3 > OK

i\ Apply PRES on Beams

[SFBEAM] Apply Pressure (PRES) on Beam Elements
LKEY Load key

VALI Pressure value & node I
VALY Pressure value at node J
(leave blank for uriform pressure)

Optional offsets for pressure load
IOFFST  Offset from 1 node

JOFFST  Offset from ) node
LENRAT Load offset in tarms of Length unts

, TO{T

o« | Ay | Cancel

FIGURE 5.27 Applying loads on element 1.
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10. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Pressure > On Beams Pick the 2nd element > OK >
Enter Pressure value at node I = 30e3 and Pressure value at node
J = 60e3 > OK

1 ]
A

Ch

FIGURE 5.28 Model with loading and displacement boundary conditions.
The model-building step is now complete, and we can proceed to the
solution. First to be safe, save the model.
Solution
The interactive solution proceeds.
11. Main Menu > Solution > Solve> Current LS > OK

The /STATUS Command window displays the problem parameters
and the Solve Control Load Step window is shown. Click the solution
options in the /STATUS window and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the solu-
tion is complete, close the “Solution is Done!” window.

POSTPROCESSING

We can now plot the results of this analysis and also list the computed values.

12. Main Menu > General Postproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Displacement vector sum > OK

This result is shown in Figure 5.18(d).

13. Main Menu > General Postproc > List Results > Nodal Solu >
Select Roatation vector sum > OK

14. Main Menu > General Postproc > List Results > Reaction Solu > PL
To find the bending moment diagram following procedure is followed.

15. Main Menu > General Postproc > Element Table > Define Table
> Add
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Add... I Lipdats I [riate

_ese | v |

FIGURE 5.29 Define the element table.

Select By sequence num and SMISC and type 6 after SMISC as
shown in Figure 5.30. >APPLY

FiDetine Additional Element Table ltems

[AVPRIN] EFFNU for EQH stran
[ETMLE] Defrie Addticres Elemest Tabke Ttems
Lsh  Liserlabel for em

Rem Comp Results dats kem

(For "By saquesce num', nber saquence.
N0, n Selaction box. Ses Table 4.0-3
In Blaments Manual for seq. rumbers. )

x| ooty | el | b |

FIGURE 5.30 Selecting options in element table.

Then again select By sequence num and SMISC and type 12 after
SMISC > OK

16. Main Menu > General Postproc > Plot Results > Contour Plot >
Line Elem Res > Select SMIS 6 and SMIS 12 in the rows of Labl
and Lab], respectively as shown in Figure 5.31 > OK
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17.

18.

19.

20.

f“ Plot Line-Element Results

[PLLS] Plct Line-Element Result

Labl Elem table tem at node I Im 'l
Lab s table e o o T ]

Fact Optional scale factor l:]

KUND Ttems to be plotted on
(& Undeformed shape
(" Deformed shape

x| oo _| canl_| no |

FIGURE 5.31 Selecting options for finding out bending moment.

This result is shown in Figure 5.18(e).
To find the shear force diagram following procedure is followed.

Main Menu > General Postproc > Element Table > Define Table
> Add

Select By sequence num and SMISC and type 2 after SMISC >
APPLY

Then again select By sequence num and SMISC and type 8 after
SMISC > OK > Close

Main Menu > General Postproc > Plot Results > Contour Plot >
Line Elem Res > Select SMIS 2 and SMIS 8 > OK

This result is shown in Figure 5.18(f).
To find the bending stress the following procedure is followed.

Main Menu > General Postproc > Element Table > Define Table
> Add

Select By sequence num and LS and type 3 after LS > APPLY
Then again select By sequence num and LS and type 6 after LS > OK

Main Menu > General Postproc > Plot Results > Contour Plot >
Line Elem Res >

Select LS 3 and LS 6 > OK
This result is shown in Figure 5.18(g).

To find the maximum stress (direct stress + bending stress) following
procedure is followed.
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21. Main Menu > General Postproc > Element Table > Define Table
> Add

Select By sequence num and NMISC and type 1 after NMISC >
APPLY

Then again select By sequence num and NMISC and type 3 after
NMISC > OK

22. Main Menu > General Postproc > Plot Results > Contour Plot >
Line Elem Res > Select NMISC 1 and NIMS 3 > OK

EXERCISES

1. For the bean shown in Figure 5.32, determine the deflection, slopes,
reactions, maximum bending moment, shear force, and maximum bend-
ing stress.

Take E = 210 GPaand I =7x107* m*.

10 kN

3m 4 m 3m

FIGURE 5.32 Exercise 1.

2. Find the deflection, slopes, reactions, maximum bending moment, shear
force, and maximum bending stress for the aluminum beam shown in
Figure 5.33.

Take E = 200 GPaand I =3x10™" m".

3 kN/m
2 KN/m

4m 4m

FIGURE 5.33 Exercise 2.
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3. Find the deflection at the load and the slopes at the end for the shaft
shown in Figure 5.34. Also find the maximum bending moment, maxi-
mum bending stress, and reactions developed in the bearings. Consider
the shaft to be simply supported at bearings A and B. Take E = 200 GPa.

kN . .
I=1x105mm4 1= 6x10° mm
A \ B
300 mm 150 mm 250 mm

FIGURE 5.34 Exercise 3.

4. Find the deflection of the bean shown in Figure 5.35 under self-weight.

Take E = 200 GPa and mass density p =7800 kg/m”’.

200 mm

FIGURE 5.35 Exercise 4.

%

£
E
o
«

5. Find the deflection and bending stress distribution for the cantilever
beam shown in Figure 5.36 under combined loading. Take E = 200 GPa.

F,=5kN

F, =20 kN

300 mm

ALLNRRRNNY

| "W =200 kN-mm

FIGURE 5.36 Exercise 5.

HINT I=

64

& 75 mm
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6. For the beam shown in Figure 5.37, determine the deflection at nodes
and reaction. Also, plot the bending moment diagram, shear force dia-
gram and find the bending stress. Take E = 200 GPaand I =8x10™ m*.

35kN
60 kN

4 605 .
. 30
4

4

4

4

4

. 3m 3m 3m

~

FIGURE 5.37 Exercise 6.

45°
55 kN

7. A cantilever beam is shown in Figure 5.38. Using 2 beam elgaments deter-
mine the nodal deflection and reaction. Take E=0.25x10° N/mm?* and

I=8x10"" m".

4m

8 m

/

max

]

[177777rirery

FIGURE 5.38 Exercise 7.

HINT P =pxgxh

max

8. Determine the deflection, reaction, and bending stress for the beam
shown in Figure 5.39. Also, plot the bending moment and shear force
diagram. Take E = 207 GPa, W = 150 N/mm, h = 800 mm, b = 400 mm,
t, =40 mm, t, =40 mm, and £, =50 mm.
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AAANANNY

300 mm

900 mm

FIGURE 5.39 Exercise 8.

Figure 5.40 presents a beam fixed at one end, supported by a cable at
the other end, subjected to a uniformly distributed load of 70 Ib/in. Take
E=30x10° psi, Beam cross-section = 4 in x4 in, and cable cross-section
= 1in®. Determine the finite element equilibrium equations of the sys-
tem by using one finite element for the beam and one finite element for
the cable, the displacement of nodes 1 and 2, and the stress distribution
in the beam and in the cable.

Lddiegiiiiiiien

Cable
15in

1HJ..HlH.J.J.J.].lllH

-

FIGURE 5.40 Exercise 9.

10. What are the differences between truss and beam elements?
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CHAPTER

STRESS ANALYSIS OF A RECTANGULAR
PiATE WitH A CIRCULAR HOLE

6.1

INTRODUCTION

Two-dimensional problems in structural analysis are dealt with in this chapter.
Hand calculations, even with two elements, become too long and hence are
not given for these problems: only analytical method solutions and software
solutions using ANSYS have been provided.

Two-dimensional problems can either be plane stress or plane strain prob-
lems. The method of analysis is the same for both, except that stress—strain
matrix is different in two cases.

Plane bodies that are flat and of constant thickness that are subjected to
in-plane loading fall under the category of plane stress problems. Stress com-
ponents 0, T , and © 4= assume zero values in these problems.

Some of the elements used in the analysis of two-dimensional problems
are constant strain triangles (CST), linear strain triangle (LST), linear quadri-
lateral, isoparametric quadrilateral, etc. Each of these elements has 2 degrees
of freedom per node, namely the translation in the x and y directions.

Stress within the element may be calculated using the equation,

{o}=[DI[Bl{q} (6.1)

6.2 A RECTANGULAR PLATE WITH A CIRCULAR HOLE

The stress analysis of a rectangular plate with a circular hole problem is
assumed as a two-dimensional plane stress problem. Plane stress is defined
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as a state of stress in which the normal stress and the shear stress directed
perpendicular to the plane are assumed to be negligible.

The above problem can be categorized into three subcases.
Subcase 1

A rectangular plate with a very small circular hole at the center with
one vertical edge fixed and the other vertical edge is acted upon by a
horizontal tensile load in the form of pressure.

|y

Ve

/1

7] —
/] I
; N X
7 C,

/] — ™ p
/ —
Ve N
o

Ve

Ve

FIGURE 6.1 Rectangular plate with a very small circular hole subjected to tensile load at one edge.

Subcase 2

A rectangular plate with a small circular hole at the center and a hori-
zontal tensile force in the form of pressure is acting on both the verti-

cal edges of the plate.
AY
] ———
f— fr—
i \ — X
P C/
e — p
—~f—— fr—
—— —

FIGURE 6.2 Rectangular plate with a hole subjected to tensile load at both the edges.

The above problem is solved by exploiting the symmetric geometry and sym-
metric loading boundary conditions. Now we can draw the above Figure 6.2
for the analysis purpose (Refer to Figure 6.3).
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Place the origin of x—y coordinates at the center of the hole and pull on
both ends of the plate. Then points on the centerlines will not move perpen-
dicular to them but move along the centerlines. This indicated the appropri-
ate displacement conditions to use, as shown in Figure 6.3.

o
)2

™ —
S .V

Displacement restrain

T

X

FIGURE 6.3 Finite element model of one-quarter of the plate.

Subcase 3

A rectangular plate with a large circular hole at the center and uniform
pressure acts on the boundary of the hole.

y

FIGURE 6.4 Rectangular plate with a hole subjected to uniform pressure at the boundary of the hole.
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The problem above can be solved by considering one-quarter of the plate
and by exploiting the symmetric geometry and loading conditions. The finite
element model is shown below.

¥
P :
Q;r'ﬁrﬁgw/ % %\

Symmetric boundary conditions

FIGURE 6.5 Finite element model of one-quarter of the plate.

EXAMPLE 6.1

A rectangular plate of size 1000 mm x 500 mm is subjected to uniform pres-
sure, as shown in Figure 6.6. The plate has a thickness of 10 mm and a central
hole of 50 mm in diameter. The material of the plate is steel with Young’s
modulus E = 210 GPa and Poisson’s ratio v=0.3. Assume a case of plane
stress. Plot the Von Mises stress distribution and compare the result with the
analytical method.

—

p=1Pa
—>

NAN NN NANNANAN

FIGURE 6.6 Rectangular plate with a very small circular hole at the center of the plate.
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Solution
(I) Analytical method.

Comparing the above case with the infinite plate with a very small circular
hole, for this, the stress concentration factor is (SCF) = 3:

SCF = Maximum stress ' 6.2)
Nominal stress

Hence,
Tensile force = Pressure x cross-sectional area (6.3)

Tensile force = 1 x 0.5 x 0.01 = 0.005 N

Nominal stress = Tensile force (6.4)

Cross-sectional area

0005 _ |\
0.5x0.01

Nominal stress =

Maximum stress = SCF x Nominal stress = 3x1 = 3 Pa.

(IT) Software results.

1
NODAL SOLUTION

STEP =1

SUB =1

TIME =1

SEQV  (AVG)
DMX =.498E-11
SMN =.006736
sMx =3.172

- , »

»

[
.006736 .710061 1.413 2.117 2.82
.358398 1.062 1.765 2.468 3.172

FIGURE 6.6(a) Von Mises stress distribution pattern (refer to Appendix D for color figures).
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From the software, we got, Maximum stress (Von Mises stress) = 3.172 Pa.

ANSWERS FOR EXAMPLE 6.1

Parameter Analytical method | Software results | Percentage of error
Maximum stress | 3 Pa 3.172 Pa 5.42
EXAMPLE 6.2

A rectangular plate with a hole at the center is subjected to uniform pressure,
as shown in Figure 6.7. The plate is under plane stress. Find the maximum
deflection and maximum stress distribution. Also, find the deformed shape of
the hole. Assume plate thickness, t = 25 mm, E = 207 GPa, and v=0.3.

p=14 MPa

/

p=14 MPa_

e

1150 mm
I

FIGURE 6.7 Rectangular plate with a hole with symmetrical loading.

Solution

(I) Analytical method.

. Diameter of hole d
Geometric factor = =— (6.5)
Width of plate  w ‘

Geometric factor =ﬂ =04.
100

From the design data handbook,

for i of 0.4, the stress concentration factor (SCF) = 2.25
w

SCF = Maximum stress

Nominal stress
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Hence,

Tensile force = Pressure x Cross-Sectional Area= 14 x 100 x 25 = 35000 N

Tensile force _ Tensile force _ 3500 — 9333 MPa

Cross-sectional area  (w-d)t (100-40)25

Nominal stress =

Maximum stress = SCF x Nominal stress = 2.25 x 23.333 = 52.5 MPa.
(IT) Software results.

For the analysis using software, one-quarter of the plate is modeled and
analyzed.

1
DISPLACEMENT

DMX = .739E-05

FIGURE 6.7(a) Deformed shape of the hole (refer to Appendix D for color figures).

1
NODAL SOLUTION
STEP= 1
SUB =1
TIME= 1
SEQV (AVG)
DMX = .739E-05
SMN =« .4B2E+07
SMX = _533E+08

.482E+07 +156E+08 .264E+08 .371E+08 .479E+08
.102E408 «210E+08 +«317E+08 +425E+08 .533E+08

FIGURE 6.7(b) Von Mises stress distribution pattern (refer to Appendix D for color figures).
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From the software, we got, maximum stress = 53.3 MPa.

STEP
SUB
TIME
USuM
RSYS
DMX
SMN
SMX

1
NODAL SOLUTION

=1
=1

=1
(AVG)
=0
= .739E-05
= .252E-05
= .739E-05
.252E-05 .360E-05 .468E—05 .576E—05 .684E-05
-306E-05 .414E-05 .522E-05 .630E-05 . 739E-05

FIGURE 6.7(c) Deflection pattern (refer to Appendix D for color figures).

ANSWERS FOR EXAMPLE 6.2

Parameter

Analytical method

Software results

Percentage of error

Maximum stress

52.5 MPa

53.3 MPa

1.5

Maximum deflection

7.39 x 10° mm

EXAMPLE 6.3

Determine the stress distribution and displacement for a rectangular plate
with a hole at the center of the plate with a uniform thickness of 10 mm. A
uniform pressure of p = 10 MPa acts on the boundary of the hole, as shown
in Figure 6.8. Assume Young’s modulus E = 120 GPa and the Poisson’s ratio is

0.28. Assume plane stress condition.

FIGURE 6.8 Rectangular plate with a hole subjected to uniform pressure at the boundary of the hole.

150imm

ZdO mm

400Imm
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Solution
(I) Software results.

For the analysis using software, one-quarter of the plate is modeled and
analyzed.

1

NODAL SOLUTION
STEP = 1

SUB =1

TIME = 1

s1 (AVG)
DMX =.036478
SMX =50.727

Z_Xx

r——

5.636

!5.091

50.727

1.273 22.545 33.818 _
1 2 39.455

6.909 8.182

FIGURE 6.8(a) First principal stress distribution pattern (refer to Appendix D for color figures).

From the software, we got maximum stress = 50.727 MPa.

1
NODAL SOLUTION
STEP =1
SUB =1
TIME = 1
UsuM (AVG)
RSYS =
DMX =.036478
SMN = .005671
sMx = .036478
.005671 .012517" .019363" 1026209 .033055
.009094 01594 .022786 .029632 .036478

FIGURE 6.8(b) Deflection pattern (refer to Appendix D for color figures).
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Validation of the results

The reactions at the supports must balance the applied forces. Therefore,
from the software, the total reaction force in the x-direction is — 7500 N.

Applied force = (pressure) x (projected distance in the
x-direction of the line along which the constant pressure acts)
x (thickness) =p xrxt (6.6)

Applied force = 10 x 75 x 10 = 7500 N in the positive x-direction.
So the reaction cancels out the applied force in the x-direction.

ANSWERS FOR EXAMPLE 6.3

Parameter Software results
Maximum stress 50.727 MPa
Maximum deflection 0.036478 mm

Procedure for solving the problem using ANSYS ® 11.0 academic
teaching software.

For Example 6.2
PREPROCESSING:

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Structural Solid > Quad 4 node 42 > OK

ﬂ‘ Library of tlement Types

Library of Element Types

Element type reference number

x| e | cmm | e |

FIGURE 6.9 Element selection.

Select the option where you define the plate thickness.
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2. Options (Element behavior K3) > Plane stress w/ thk > OK > Close

L\ PLANE42 element type options

Options for PLANE42, Element Type Ref, No. 1

Elsment coord system defined K1 Ip,,mm ;]

Extra displacemant shapes K2 Ilndude ,l
Eonetbohavir K3 Five s — 3

Extra stress output Ks Imeam _,J

Extra suface output K6 INo extra output :]
oK I Cancel | Help I

FIGURE 6.10 Element options.

3. Maun Menu > Preprocessor > Real Constants > Add/Edit/Delete
> Add > OK

T\ Reol Constants———SSSRITT,cicment 1ype for Real Constasiy

Defined Real Constant Sets Choose element type:

W_

Addl Ed.. I Eeie!ej

_cbe | _vee | | _ox | _conca |

FIGURE 6.11 Real constants.

(Enter the plate thickness of 0.025 m) > Enter 0.025 > OK > Close

"‘l\'n_-.ll Constant Set Numbes 1, for PLANLZ
Elemant Type Reference No. |

Roal Constant Set No, Ig—
Real Constant for Plane Stress with Thckness (KEYOPT(3)=3)

FIGURE 6.12 Enter the plate thickness.
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Enter the material properties.
4. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic

Enter EX = 2.07E11 and PRXY = 0.3 > OK (Close the Define Material
Model Behavior window.)

Create the geometry for the upper-right quadrant of the plate by subtract-
ing a 0.04 m diameter circle from a 0.075 x 0.05 m rectangle. Generate the
rectangle first.

5. Main Menu > Preprocessor > Modeling > Create > Areas >
Rectangle > By 2 Corners

Enter (lower left corner) WP X =0.0, WP Y = 0.0 and Width = 0.075,
Height = 0.05 > OK

6. Main Menu > Preprocessor > Modeling > Create > Areas > Circle
> Solid Circle Enter WP X = 0.0, WP Y =0.0 and Radius = 0.02 > OK

Fal Rectangle by 2 Corners
= Pick ™ Unpick @ Pick ™ Unpick

WP X - WP X -
¥ - '3 -
Global % = Global £ -
v - ¥ -

zZ- -

Apply
oX |  Apply | Reset | Cancel |
Reset I Cancel ] Help
Help I

FIGURE 6.13 Create areas.
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FIGURE 6.14 Rectangle and circle.
Now subtract the circle form the rectangle. (Read the messages in the win-
dow at the bottom of the screen as necessary.)

7. Main Menu > Preprocessor > Modeling > Operate > Booleans >
Subtract > Areas

Pick the rectangle > OK, then pick the circle > OK

Y

Z_X

FIGURE 6.15 Geometry for quadrant of plate.

Create a mesh triangular element over the quadrant area.
8. Main Menu > Preprocessor > Meshing > Mesh Tool

The Mesh Tool dialog box appears. In that dialog box, click on the Smart
Size and move the slider available below the Smart Size to 2 (i.e., toward
the Fine side). Then close the Mesh Toolbox.
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Mesh: Areas ~
Shape: € Tii & Quad
C'-'  Mapped ¢ Sweep

3 or 4 sided

{

Mesh | Clear |

Refine at:  |Elements

I

Close | Heb

FIGURE 6.16 Mesh toolbox.

9. Main Menu > Preprocessor > Meshing > Mesh > Areas > Free Pick
the quadrant > OK

FIGURE 6.17 Quad element mesh.

Apply the displacement boundary conditions and loads.
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10. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Lines Pick the left edge of the quad-
rant > OK > UX =0 > OK

11. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Lines pick the bottom edge of the
quadrant > OK > UY = 0 > OK

12. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Lines. Pick the right edge of the
quadrant > OK > Pressure = -14E6 > OK

(A positive pressure would be a compressive load, so we use a negative pres-
sure. The pressure is shown as a single arrow.)

2 0R }

£ ox Bt

FIGURE 6.18 Model with loading and displacement boundary conditions.
The model-building step is now complete, and we can proceed to the solu-
tion. First, to be safe, save the model.
Solution
The interactive solution proceeds
13. Main Menu > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters, and the
Solve Current Load Step window is shown. Check the solution options in
the /STATUS window, and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the solution
is complete close the “Solution is Done!” window
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POSTPROCESSING

We can now plot the results of this analysis and also list the computed values.
First, examine the deformed shape.

14. Main Menu > General Posrproc > Plot Results > Deformed Shape
> Def. + Undeformed > OK

This result is shown in Figure 6.7(a).

15. Main Menu > General Posrproc > Plot Results > Contour Plot >
Nodal Solu > Stress > Von Mises stress > OK

This result is shown in Figure 6.7(b).

16. Main Menu > General Posrproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Displacement vector sum > OK

This result is shown in Figure 6.7(c).

EXERCISES

1. Find the maximum stress in the aluminum plate shown in Figure 6.19.
Consider an aluminum plate 10 mm thick with a hole at the center of the
plate. Assume plane stress condition. Take E = 70 GPaand v = 0.35. Also,
calculate the maximum stress by analytical method and compare the results.

co

!

I

]

!
0'mm

p=4 MPa p=4 MPa

A

1
250:mm

1

i

Y

450;mm

FIGURE 6.19 Exercise 1.

2. Find the maximum stress for the plate shown in Figure 6.20 if the hole is
located halfway between the center line and the top edge, as shown. Take
E =70 GPaand v = 0.35. Assume plane stress condition.
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80Imm
N E
Y- twpe
p=4 MPa, S /.
Q H
& 1
1
!
!
4506 mm
1

1
FIGURE 6.20 Exercise 2.

[Hint: Model half of the plate by taking symmetry about the y-axis. ]

For the plate shown in Figure 6.21, find the maximum stress. Take Young’s
modulus E= 210 GPa, Poisson’s ratio = 0.3. Assume plane stress condition.
The thickness of the plate = 10 mm with a hole at the center of the plate.

15 MPa
15 MPa
1
!
!
40!mm
é
- b= SRR a S -
o
1
1
!
1
1
L)
150 mm
H \5 MPa
5 MPa 1

FIGURE 6.21 Exercise 3.
For the plate shown in Figure 6.22, find the maximum stress. The plate is
made up of two materials.
For Material 1, E = 210 GPaand v = 0.3.
For Material 2, E = 70 GPa and v = 0.35.
Assume plane stress condition.

The thickness of the plate = 10 mm with a hole at the center of the plate.
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‘_2/ 50: “

FIGURE 6.22 Exercise 4.

5. For the plate with a hole at the center shown in Figure 6.23, find the
maximum stress. Take E = 210 GPa and v = 0.3, the thickness of plate
t = 10 mm. Assume plane stress condition.

200 kN/m

200 kN/m -2 YPp—

200:mm

400jmm
]
FIGURE 6.23 Exercise 5.

[Hint: To find the pressure, divide the distributed load by the thickness
of the plate. ]

6. Determine the stresses in the plate with the round hole subjected to the
tensile stresses in Figure 6.24. Find the maximum stress. Take E = 210
GPaand v = 0.25, the thickness of plate ¢ = 10 mm. Assume plane stress

condition.
|
1
T
!
40:mm
€
P=2 kN/m? S " P=2 kN/m?
Ll PR =5 R S, P=
wn
N
!
]
500;mm

FIGURE 6.24 Exercise 6.
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7. For the plate with a hole at the center shown in Figure 6.25, find the
maximum stress. Take E = 210 GPa and v = 0.3, the thickness of plate
¢ = 0.375 in. Assume plane stress condition.

P=1000 psi

N

-
_—-
)
|
—i

FIGURE 6.25 Exercise 7.

P=1000 psi

8. For the plate with a hole at the center shown in Figure 6.26, find the
maximum stress. Take E = 30 x10° psi and v = 0.25, the thickness of

plate ¢ = 0.1 in. Assume plane stress condition.

P=10 ksi

P=10 ksi

FIGURE 6.26 Exercise 8.

9. Find the maximum stress for the plate shown in Figure 6.27 if the hole is
located halfway between the center line and the top edge, as shown. Take
E = 20 x10° N/em® and v = 0.25. Assume plane stress condition.

P=120000 N

N

FIGURE 6.27 Exercise 9.

P=120000 N

[Hint: Model half of the plate by taking symmetry about the y-axis. ]
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CHAPTER

THERMAL ANALYSIS

7.1

INTRODUCTION

The computation of temperature distribution within a body will be used in this
chapter due to its importance in many engineering applications. Conduction
(g) is the transfer of heat through materials without any net motion of the mass
of the material. The rate of heat flow in the x-direction by conduction (g) is

given by

G-k (7.1)

where

k is the thermal conductivity of the material, A is the area normal to the
x-direction through which heat flows, T is the temperature, and x is the length
parameter.

Convection is the process by which thermal energy is transferred between
a solid and a fluid surrounding it. The rate of heat flow by convection () is

given by
g=hA(T-T.) (7.2)

where

h is the heat transfer coefficient, A is the surface area of the body through
which heat flows, T is the temperature of the surface of the body, and T, is the
temperature of the surrounding medium.
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7.2

Thermal analysis is one of the scalar field problems. These problems have
only 1 degree of freedom per node, namely temperature. In this chapter, one-
dimensional and two-dimensional heat conduction problems are dealt with.
In these problems, a bar element with 2 end nodes, each having temperature
(T) as a sole degree of freedom, is useful. Nodal heat flow rates (Q) or heat
fluxes are analogous quantities to nodal forces, in structural bar element.

The governing equation for this element is given by,

T 4o "
L|-1 1|l 2|L] o,

g = heat generation rate per unit length

where,

Akl 1 -1
L|-1 1

} = element heat conductivity matrix.

PROCEDURE OF FINITE ELEMENT ANALYSIS (RELATED
TO THERMAL PROBLEMS)

7.3

Step 1. Select element type.
Step 2. Select temperature distribution function.

Step 3. Define the temperature gradient/temperature and heat flux/tempera-
ture gradient relationships.

Step 4. Derive the element conduction matrix and heat flux matrix.

Step 5. Assemble the element equations to obtain the global equations and
introduce boundary conditions.

Step 6. Solve for the nodal temperatures.

Step 7. Solve for the element temperature gradients and heat fluxes.

ONE-DIMENSIONAL HEAT CONDUCTION

EXAMPLE 7.1

A composite wall consists of three materials. The outer temperature is
T, = 20°C. Convection heat transfer takes place on the inner surface of the
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wall with T = 800°C and h = 25 W/m2°C. Determine the temperature
distribution in the wall. Take k, = 30 W/m°C, k, = 50 W/m°C, k, = 20 W/m°C.

To = 20°C

hT y

il ]|

<~ 03m _015m[QT5mq

FIGURE 7.1 A composite wall consists of three materials for Example 7.1.

Solution

(1) Analytical method.
Too T, T, T, LA
FIGURE 7.1(a) Analytical method for Example 7.1.

Heat flow rate per unit area,

. T-T, 800—20
0171, 7, I, 1 03 015 015
+ 1+ 245 +—

ko k k

h k k, k25 30 50 20

=12892.6 W/m?.

Now,

k T]_Tz kz Tz_T:s k3 T:s_T4
o=h(r. )= AT _h(LoL) k(-1

Ll L2
SO(Tl_Tz)_50(T2_T3)_20(T3_20)
03 015 015

12892.6 =25(800~T;) =

By solving the above, we get
T, =284.3°C
T, =155.37°C
T, =116.7°C.
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(11) FEM by calculations [Refer to Figure 7.1(b)],

[ N
[ IN]
oL

Sew

>
B—I
—_—
—
=
©)
-]

2 @ @ T,=20°C

FIGURE 7.1(b) Finite element model for Example 7.1.

+{_Ql}.
+Q,
Since there is no heat generation specified, g = 0.
K[1 -1(1)
Ll-1 1|57
1 -1}|(T —
30 Hogey @l
03[-1 1 (|1 +0,
L
1 -1{[T. 5
ks 2logl 2ty
L|-1 1]\n) "L
2
1 -1[(T, —
30 =0+ ©, .
0.15(-1 1 ||T; +Q,
L
B[ )E)_ o],
L-1 1| L
2

e R SRR
015|-1 1|1, +0,

Governing equation is,

| >
[
b
- L
1
f—/\—\
N Bl
%/_/
I
Q
PO |~ o |

For element 1,

PO | B b | 1
_+_
—
+ |
54
—_—

For element 2,

For element 3,
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Global equation after assembly,

100 100 0 o (1) (-0
—-100 100+333.33 -333.33 0 T, 3 0
0 —333.33 333.33+133.33 -133.33 || T} ] o
| 0 0 13333 13333 ||1,) |40, )
Boundary conditions are T, = 20°C and
Q=-h(T.-T))
—Q, =25(800—T,) = 20000 — 25T, .
So modified equation,
100+25  —100 0 T 20000 0
-100 43333 -333.33 |31, ;=7 0 -+ 0
0 -333.33 466.66 ||T, 0 20%133.33
125 -100 0 T, 20000 0
-100 433.33 -33333|1T,;=<5 0 ¢+ 0
0 -333.33 466.66 ||T, 0 2666.6

After solving the matrix and simultaneous equations, we get,

T, =284.3°C
T, =155.37°C
T, =116.7°C.
(IIT) Software results.
Temperature values
NODE TEMP
1 284.30
2 155.37
3 116.69
4 20.000
5 800.00
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1
NODAL SOLUTION

STEP =1

SUB =1

TIME =1

TEMP (AVG)
RSYS =0

SMN =20

sMx =800

Y

o lx N
20 193.333 !66.667 !13.333
280 800

540
106.667 453.333 626.667

FIGURE 7.1(c) Temperature distribution in a composite wall (refer to Appendix D for color figures).

ANSWERS FOR EXAMPLE 7.1

Parameter Analytical method FEM-hand calculation ~ Software results
Temperature

at node 1 284.3°C 284.3°C 284.3°C

at node 2 155.37°C 155.37°C 155.37°C

at node 3 116.7°C 116.7°C 116.69°C

Procedure for solving the problem using ANSYS ®11.0 academic
teaching software.

FOR EXAMPLE 7.1

PREPROCESSING

1. Main Menu > Preferences, then select Thermal > OK

F\Preterences for GUI Fillering

DEWILPMETH] Praferences for GUI Fltervg
Andvadual eapireds) b $how I the GLIT

et it

T~ Magratic-Model
I Magratic-Edge.
™ M Frsauercy
I S

Mote: 1f Feo dhdued deceiines are sotectes they wil o showr.

L g cptons
& hepethod
7 pethod Strec.

x| _ceen | e |

FIGURE 7.2 Selecting the preferences.
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2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add> Click on Link > then on 2d conduction 32 > OK > Add >
Click on Link > then on 3D convection 34 > OK > Close

"‘[ ibrary of Element Types

Orly tharmal alasmert types are shown
Litrary of Bement Types
Element type reference rumber [1_
o nooty | Concel | rep |

T\ Library of Flement Types

rfy thermal element types are shown
Library of Element Types

FIGURE 7.4 Selecting the element for convection.

3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > Click on Link 32 > OK

T4 Element Type for ... N=1E3

ﬂ‘ Real Constant Set Number 1, for LINK32

Element Type Reference No. 1

Real Constant Set No. [

Cross-sectional ea  AREA ll_'
x| o]

FIGURE 7.5 Enter the cross-sectional area for Link 32.
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Enter cross-sectional area AREA > Enter 1 > OK
Add > Click on Link 34 > OK

Enter cross-sectional area AREA > Enter 1 > OK > Close

Fil Real Constant Set Mumber 2, for LINK34

Element Type Reference No. 2
Raal Constant Set No.

I"_
Convection surface area  AREA F'_
Enpirical cosfficdent BN l—
I—
reo |

Input constant o]

L= o] |

FIGURE 7.6 Enter the cross-sectional area for Link 34.

Enter the material properties.

Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1,

click Thermal > Conductivity > Isotropic

Enter KXX = 30 > OK

Then in the material model window, click on Material menu > New
Model > OK

Material Model Number 2,
click Thermal > Conductivity > Isotropic
Enter KXX = 50 > OK

Then in the material model window, click on Material menu > New
Model > OK

Material Model Number 3,
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click Thermal > Conductivity > Isotropic
Enter KXX = 20 > OK

Then in the material model window, click on Material menu > New
Model > OK

Material Model Number 4,

click Thermal > Convection or Film Coef.

Enter HF = 25 > OK

(Close the Define Material Model Behavior window.)
Create the nodes and elements.

Main Menu > Preprocessor > Modeling > Create > Nodes > In
Active CS Enter the coordinates of node 1 > Apply Enter the coordi-
nates of node 2 > Apply Enter the coordinates of node 3 > Apply Enter
the coordinates of node 4 > Apply Enter the coordinates of node 5 > OK

Node Locations

Node number X coordinates Y coordinates
1 0 0
2 0.3 0
3 0.45 0
4 0.6 0
5 -0.1 0

Fi\ Create Modes in Active Coordinate System

[N] Create Nodes in Active Coordinate System

NODE Node number “1

X,Y,Z Location in active C5 Iu Io |

THRY, THYZ, THZX
Rotation angles (degrees) | | [

o | s | _cwe | web |

FIGURE 7.7 Enter the node coordinates.
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6. Main Menu > Preprocessor > Modeling > Create > Elements >
Elem Attributes > OK > Auto Numbered > Thru nodes Pick the 1st

and 2nd node > OK

F.‘ Element Attributes

Define attrbutes for elemerts

[TYPE] Element type rumber T |
(MAT) el rnber O
[REAL] Real constant et number [« =
[ESS) Element courdnate sys |g—31
[SECNUM] Section number

ok corcel | e |

Elements from Nodes

& pick ~ Unpick

= ~
c c
pu

Come = 0O
Marimm = 20
Minime = 1
Wods Wo. =

" List of Items

 Hin, Wax, Inc

FIGURE 7.8 Assigning element attributes to element 1 and creating element 1.

Elem Attributes > change the material number to 2 > OK > Auto
Numbered > Thru nodes Pick the 2nd and 3rd node > OK

r“llr-mnm Attributes

Dedine attributes for slaments

[TYPE] Element type number 1 LN -
[MAT] Material rusmber 2 =
[REAL] Redl constart st nunbar T -]
[E5¥S] Element coordinate sy [« =]
[SECNUM] Section number None defined =

o I Cancel Help

-

-
Masimam = 20
-
Wodw Mo, =

F Lise of Toems

© Rin, Wes, Tns

 E—
_sensy |
beser | Cancel

Maip

FIGURE 7.9 Assigning element attributes to element 2 and creating element 2.
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Elem Attributes > change the material number to 3 > OK > Auto
Numbered > Thru nodes Pick the 3rd and 4th node > OK

pp——— [y
% 7 picn ™ Ol
[TYE] Eloment type number [ e B e —————
: &bt £ B
[MAT] Pastarial ruambine = = € Yeipyem ciecis
Ly
[REAL] Resl constant st number | i - Comm = @
Mastem = IO
[E5rS) Element coordnats sys | Satm s 1
Heda Ba. =
[SECNLIM] Sectioe resrber T—Er— - -
 Lisk of Toams
© Min, Max, ins
=] s |
= | el | v | ] S}
Fich Adl Haly

FIGURE 7.10 Assigning element attributes to element 3 and creating element 3.

Elem Attributed > change the element type to Link 34 > change the
material number to 4 > change the Real constant set number to 2 >
OK > Auto Numbered > Thru nodes Pick the 1st and 5th node > OK

i\ Element Attributes m

7 ok " Depick
Dinfir attribited for slemants

(el bipe = =  fingie I Eex
e F Yolygen ¢ carete

[MAT] Material ruamber T = oty

[REAL] Pasdcoratank sek raamber _3 Count. - 0
Harisus = I0

[ES¥S] Element coordinate sys l " ,,] Misisum = 1

F—— Wols We. =

[SECMLIM] Section nunber 'Ew ,l

7 Lise of Items
 Min, Bax, Imc

Fick ALb Malp

FIGURE 7.11 Assigning element attributes to element 4 and creating element 4.

Apply the boundary conditions and temperature.
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7. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Thermal > Temperature > On Nodes Pick the 4th node > Apply >
Click on TEMP and Enter Value = 20 > OK

Fil Apply TEMP on Nodes

[D] Apply TEMP on Nodes
Lsb2 DOFz bo be constrained Al DOF
Apply as [constant vaiue =l
IF Constant value then:
VALUE Load TEMP value Iﬁ_
S cancel_| v |

FIGURE 7.12 Applying temperature on node 4.

8. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Thermal > Temperature > On Nodes Pick the 5th node > Apply >
Click on TEMP and Enter Value = 800 > OK

A Apply TEMP on Nodes

[D] Apply TEMP on Nodes
Lah2 DOFs to be constrained (A DOF
Apply as [corstant vaue =l
IF Constark value then:
VALLE Losd TEMP value [80
o nooty | concel | Heo |

FIGURE 7.13 Applying temperature on node 5.

Solution

The interactive solution proceeds.
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9. Main Menu > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in
the /STATUS window and if all is OK, select File> Close.

In the Solve Current Load Step window, select OK, and when the solution
is complete, close the “Solution is Done!” window.

POSTPROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Posrproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Temperature > OK

This result is shown in Figure 7.1(c).

11. Main Menu > General Postproc > List Results > Nodal Solu >
Select Temperature > OK

EXAMPLE 7.2

Heat is generated in a large plate with k = 0.75 W/m°C at the rate 6000
W/m®. The plate is 40 cm thick. The outside surfaces of the plate are exposed
to fluid at 35°C with a convective heat transfer coefficient of 15W/m”*C.
Determine temperature distribution in wall. The two element model to be
used for solution.

0.4 m

FIGURE 7.14 Example 7.2.
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Solution
(1) Analytical method.

Governing equation is,

At x =0, §=O =c =0

X
L Ll +0=-8000x (7.4)
dx 0.75
2
T=-9% 4¢ =-40002>+c, . (75)
k 2

Boundary conditions are,

Atx=1L,
dT
k& =h(T,-T
o (T, -T.)

—k(8000xx) = (T, —T..)
~0.75(8000%0.2) =15(T, —35) = T, = 115°C.

We know at x=0.2, T, =115°C .

Substituting this in equation (7.5),

115=-4000(0.2) +¢, = ¢, = 275.
Substituting ¢, in equation (7.5),

T =—-4000%x x> +275
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T,=T]|_,, =—4000(0.1)" +275=235°C

T,=T|_, =275°C.

(11) FEM by hand calculations [Refer to Figure 7.14(a)].
!
]

| 02m

® ®

0.fm | 0.1m

]
FIGURE 7.14(a) Symmetric finite element model for Example 7.2.

Given: t =40 cm=0.4 m, T. =35°C, h =15 W/m>°C, k=0.75 W/m°C

+{_Q1}.
+0Q,

Governing equation is,

e~
1
L —
|
[
1
———
=
H{_J
1l
<
S le NS gl

For element 1,
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For element 2,

Nh|l\-’»
|
gL
- L
| I
——
= =
—
Il
e
bo | I~ o | B
+
——
+ |
SIS
—

o o
o O
Ut

} { .}.
;3

1 -1 o1 (7, 0.05 -0,
Assembling = 7.5/ -1 1+1 —-1(2 {T,}=6000{0.05+0.05}+1 0
0 -1 13 |1 0.05 +0,

Boundary conditions are, Q, =0 and Q, =—h(T, - 1. ) = Q, =-15(T, —35) =
15T, +525

0.05 0
75 -1 2 -1 =60007 0.1 p+ 0
0 -1 1] (T 0.05| |-15T, +525
75 75 0 |1 300 +0
75 15 -T50T, = 600 +0

0 -75 75 ||T,] [300-15T,+525

R R

Now,
(75 75 0 T, (300
75 15 =75 [{T,{=1600¢ .
0 -75 75+15||T,| |825
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By solving the above matrix and simultaneous equations, we have temperature
distribution as,

T (275
7,t =235
T,| |115
Therefore,
T, =275°C
T, =235°C
T, =115°C.

(1I1) Software results.

Due to symmetry of the geometry, only half of the finite element model is
created for software analysis.

1
NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
TEMP (AVG)
RSYS =0
SMN =35
SMx =275

Y

lzxx MN

35 88.333 141.667 195 248.333
61.667 115 168.333 221.667 275

FIGURE 7.14(b) Temperature distribution in a large plate (refer to Appendix D for color figures).

Temperature values

NODE TEMP
1 275.00
2 235.00
3 115.00
4 35.000
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ANSWERS FOR EXAMPLE 7.2

Parameter Analytical method FEM-hand calculation Software results

Temperature

Atnode 1 275°C 275°C 275°C
At node 2 235°C 235°C 235°C
At node 3 115°C 115°C 115°C

Procedure for solving the problem using ANSYS ®11.0 academic
teaching software.

FOR EXAMPLE 7.2

PREPROCESSING

1. Main Menu > Preferences, then select Thermal > OK

Jer T S eyl o G Pl
brnbmia o e b e 1 W 2
T e
L —
™ e
™ m— o

1™ S ekl
™ S i
T igh Framumecy
I S

M [ ow bl il e s Py el ol g

T g e
L]
1 et Worit.
1 il Wi

—_ | ] =]

FIGURE 7.15 Selecting the preferences.

2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Click on Link > then on 2D conduction 32 > OK > Add >
Click on Link > then on 3D convection 34 > OK > Close
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Oy tharmsl slsvant types we shosn
Ubrary of Eeeert Types -
Thier vl Muaria. - corshcton X
wrrphinn H
Sold | rackation 31
Sl \i
Thermal fectric =
———
Infirdbeiourdany 2y conduchon 12
x| acor | el | wo |

M) titirary of Element Types
Oriy thermal siemect bypes s showr
Ubrary of Blamant: Types v vl s | [ b X
Thermal M | [0 conchution 33
Sl [T
Shel
e T
Superskermsni
Infinbeliourdany l corvedtion M
Elamant tvpe refsrence rumber [2—
o | ety | cancd | |

FIGURE 7.17 Selecting the element for convection.

3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > Click on Link 32 > OK

o= |

G |

FIGURE 7.18 Enter the cross-sectional area for Link 32.
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Enter cross-sectional area AREA > Enter 1 > OK
Add > Click on Link 34 > OK

Enter cross-sectional area AREA > Enter 1 > OK

Chooss slement Type:

!ﬂ Real Constant Set Number 2, for LINK34

S —
Element Type Reference ho. 2

Real Constank Set No. Iz_
Convection surface area  AREA F|_
Enpirical cosfficert BN [_
l—
heo |

Input constant cC

S

FIGURE 7.19 Enter the cross-sectional area for Link 34.

Enter the material properties

4. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1,
click Thermal > Conductivity > Isotropic
Enter KXX = 0.75 > OK

Then in the material model window, click on Material menu > New
Model > OK

Material Model Number 2,

Click Thermal > Convection or Film Coef.

Enter HF = 15 > OK

(Close the Define Material Model Behavior window.)

Create the nodes and elements. Due to geometric symmetry, only half of
the model is created.

5. Main Menu > Preprocessor > Modeling > Create > Nodes > In
Active CS Enter the coordinate of node 1 > Apply Enter the coordinates
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of node 2 > Apply Enter the coordinates of node 3 > Apply Enter the

coordinates of node 4 > OK

Node locations

Node number X coordinates

Y coordinates

1 0
0.1
0.0

2
3
4 0.3

0

[M] Creaste Nodes in Active Coordinate System
NODE  Node number

%Y, Location h active CS
THXY, THYZ, THZX

Rotation angles (degress)

_*x | e |

FIGURE 7.20 Enter the node coordinates.

6. Main Menu > Preprocessor > Modeling > Create > Elements >

Elem Attributes > OK > Auto Numbered >

Thru nodes Pick the 1st

and 2nd node > Apply > then Pick the 2nd and 3rd node OK

rﬂ [Hement Afirthufes

L p—

(1) ety b T—
[MAT] Msters rumber =
[REAL] Rl corstant sat mumber [ =l
[E57S] Eement coordnats 53 [ =l
(] Secton rasmbae e et -

Flemeniy lrom Made

FIGURE 7.21 Assigning element attributes to elements 1 and 2 and creating elements 1 and 2.
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Elem Attributes > change the element type to Link 34 > change the
material number to 2 > change the Real constant set number to 2 >
OK > Auto Numbered > Thru nodes Pick the 3rd and 4th node > OK

F“ Hement Atiribeles

Defire attributes for slements

[THE] Elmari type rumber

[MAT] Maberial rumber

[REAL) Raal constant set rumbes

[F5S] Flemerk coondinste oye

[SECNUM] Section number

= |

concel_|

| * pen  Dapich
2 LI vI
e 3
L r
[ = -
_:i Come - I
Martmm = 20
] -I B - 1
Wods We. = 4
o defined hd
# Liee of Toems
" Bin, Max, Ins
=] e |
Benad Cmntal
¥ I Fich ALl aip

FIGURE 7.22 Assigning elements attributes to element 3 and creating element 3.

Apply the boundary conditions and temperature.

7. Main Menu > Preprocessor > Loads > Define Loads > Apply >

Thermal > Temperature > On Nodes Pick the 4th node > Apply >
Click on TEMP and Enter Value = 35 > OK

A Apply TEMP on Nodes

[0] Apgly TEMP on Nodes
Lab2 DOFs to be constrained

FIGURE 7.23 Applying temperature on node 4.
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8. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Thermal > Heat Generat > On Nodes Pick the 1st, 2nd, and 3rd nodes
> Apply > Enter HGEN Value = 6000 > OK

f“ Apply HGEN on nodes

IF Constant value then:

x| e | e |

FIGURE 7.24 Assigning heat generation on nodes 1, 2, and 3.

Solution
The interactive solution proceeds.
9. Main Menu > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in
the /STATUS window and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the solution
is complete, close the “Solution is Done!” window.

POSTPROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Posrproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Temperature > OK

This result is shown in Figure 7.14(b).

11. Main Menu > General Postproc > List Results > Nodal Solu >
Select Temperature > OK
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EXAMPLE 7.3

Compute the temperature distribution in a long steel cylinder with an inner
radius of 125 mm and an outer radius of 250 mm. The interior of the cylinder
is kept at 300°K and heat is lost on the exterior by convection to a fluid whose
temperature is 280°K. The convection heat transfer coefficient h is 0.994
W/m>°K and the thermal conductivity for steel k is 0.031 W/m°K.

h
T,=280°K

500 mm

FIGURE 7.25 Example 7.3.

Solution
(1) Analytical method.

Here the problem is solved considering heat flow in radial direction.

FIGURE 7.25(a) Analytical method for Example 7.3.
r, =250 mm = 0.25 m and r; =125 mm = 0.125 m

Assume unit length of the cylinder

(1,-T.) (300 —280)

- 250
To Inf —
In . | n(125} . 1

omkL +ﬂ 21x0.031x1  0.994(21x0.25)

0= = 4762934 W.
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Now,

(T, -T) (300-T;)

=
250
3 [ 220)
In - " 125

omkL 2mx0.031x1

Q= =4.762934 =T, =280.51°C.

Let
T =T, at r =187.5 mm, then

(300—1T,)
250

n| =225
187.5
21x0.031x1

=4.762934 =T, =283.1"C.
|

(1) FEM by hand calculations.

125 mm ® ®

187.5 mm

250 mm

FIGURE 7.25(b) Finite element model for Example 7.3.

r, =125 mm, r, =187.5 mm, and r; =250 mm

Element matrices are,

L T
po_2nkl [ 1 =1 _2ax0031x1[ 1 ~11_ o [ 1T,
lc -1 1 -1 1| -1 1 m,

187.5
In
&=
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TZ T3
1 -1 1 -1 1 -11T,
ko = 2n kL _ 27 x0.031x1 0,68 >

) -1 1 250 \ |-1 1 -1 1|1,

In| 2 In| —— ‘
r, 187.5

Global conduction matrix is,
0.48 —-0.48 0 048 -0.48 0
[Kc] =|-048 048+0.68 -0.68|=|-048 116 -0.68].
0 —0.68 0.68 0 —-0.68 0.68

Global equation is,

048 —048 0 (1) [0,
~048 116 -068{T,t=40,".
0 -068 068 ||T,] |0,

Applying boundary conditions, T, = 300°K and Q, =—hA, (T, -T.)
A, =21r, =21x0.25=1.57 m*.

Therefore, Q, =—hA, (T, —T.) =-0.994x1.57(T, —280) = —(1.56T, — 437)

048 —0.48

-0.48 1.16 —0.68 T

. 0 -0.68 068 —(1.56T, —437)
0:48——048 o—HE o0

048 116  —068 [{T,t=1 0

| 0 —0.68 0.68+1.56 (T,

[1.16 -0.68 0 48x300) (144
|-0.68 224 HT } 437} 0 } {437}

Solving the above equation, we get T, = 283.16°K and T, = 290.13°K.



THERMAL ANALYSIS © 299

(111) Software results.

Due to the symmetry of the cylinder geometry, only a quarter of the geometry
is drawn for finite element analysis.

1

NODAL SOLUTION

STEP = 1

SUB =1

TIME = 1

TEMP (AVG)

RSYS =0

SMN =280.004

sMx =300

MN
I - — .
280.004 284.447 288.891 293.335 297.778
225 286.669 291.113 295.556 300

FIGURE 7.25(c) Temperature distribution in a long cylinder (refer to Appendix D for color figures).

The temperature in the interior is 300°K and on the outside wall, it is found
to be 280.004°K.

ANSWERS OF EXAMPLE 7.3

Parameter Analytical method FEM-hand calculation  Software results
Temperature on the interior 300°K 300°K 300°K

surface

Temperature at radius 187.5 mm  238.1°K 290.13°K 288.891°K
Temperature on the outside wall ~ 280.51°K 283.16°K 280.004°K

Procedure for solving the problem using ANSYS ®11.0 academic
teaching software.
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FOR EXAMPLE 7.3
PREPROCESSING

1. Main Menu > Preferences, then select Thermal > OK

_

Tradvaial dncpinei 3 go i the G4
I~ meanaw
.= —
™ dmed Ml
™ o oo

T et asisl
I Wagreec sdgn
I High Fraguancy
I i

Pate B o pah s i e e it Ty ol ol da

Cocxirs opaors.
1 hetted
™ pratid Sren..
1 pbiathond Mlacty

L | ] e |

FIGURE 7.26 Selecting the preferences.

2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Click on Solid > then on Quad 8 node 77 > OK > Close

F\Library of Elemem Types

Oy therms elemant types are shown
Litwary of Elemant Tyses -~
Thermal Mass
Link |
it J
pimn-l.‘&mt »
Inifr dary
Element type reference number 'I—
o aooty | Cancel | Help |

FIGURE 7.27 Selecting the element.

3. PLANE 77 does not require any real constant
Enter the material properties.

4. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1,
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Click Thermal > Conductivity > Isotropic
Enter KXX = 0.031 > OK
(Close the Define Material Model Behavior window.)

Recognize symmetry of the problem, and a quadrant of a section through
the cylinder is created.

Main Menu > Preprocessor > Modeling > Create > Areas > Circles
> Partial Annulus

Enter the data as shown below.

dert Annular Circ Area

@ Pick " Unpick
WP ¥ =
b'd -
Global X =
Y =
Z =

WP ¥ ﬁ
WP ¥ F—
Rad-1 [125—
Theta—1 h‘
Rad-2 r
Theta-2 Pa—

OK ] Apply |
Reset ] Cancel I

Help

FIGURE 7.28 Create partial annular area.

Y
X

FIGURE 7.29 Quadrant of a cylinder.
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6. Main Menu > Preprocessor > Meshing > Mesh Tool

The Mesh Tool dialog box appears. In that dialog box, click on the Smart
Size and move the slider available below the Smart Size to 2 (i.e., toward
Fine side). Then close the Mesh Tool box.

[Gicbal —1 se |
T:'ism Sizxe
T - | -
i = Coarss
Size Cortrols:
Globat Set | Cilear |
Arean Set ] Clesar l
Lines Ser | Cloar |
Cops | o |
Lasyer Set ] Clear l
Hospts s | e |
| Areas ~1
Shapes: < Tl = Quad
e — mappea T v
1 ¢ A fecd =1
Maosh | Clear |
RAeofine at: |Elements = |
R afire l
Close | Help

FIGURE 7.30 Mesh tool box.

7. Main Menu > Preprocessor > Meshing > Mesh > Areas > Free. Pick
the quadrant > OK

Zx

FIGURE 7.31 Quad element mesh.
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8. Main Menu > Preprocessor > Loads > Define loads > Apply >
Thermal > Temperatures > On Lines

Select the line on the interior and set the temperature to 300.

[04] Apoly TEMP cn Ines
Lak2 DOFs to be constrained (2l DOF
|TEW
Roply &5 [cmw\n -l
IF Constant value then:
VALLE Load TEMP vaus |m
KEPND Apply TEMP to endpaints? I No

FIGURE 7.32 Setting the temperature on the interior of the cylinder.

9. Main Menu > Preprocessor > Loads > Apply > Convection > On
Lines

Select the lines defining the outer surface and set the convection coef-
ficient to 0.994 and the fluid temp to 280.

AApplY on lnes

[SFL] Apply Film Coef on lines Constant value hd

If Constant vakue then:
VAL Film coefficient

;

[57L] Apply Bulk Tenp on ines Constant value >

IF Constant value then:
VALZT Buktempersture

1F Constant value then:
Optional CONV values at end J of ine
(leave blank for uniform CONY )
VAL Filn coeffident

VAL2)  Buktemperature

1]

x| cacel | e |

FIGURE 7.33 Setting the convection coefficient on outer surface.
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10. Main Menu > Preprocessor > Loads > Apply > Heat Flux > On
Lines

To account for symmetry, select the vertical and horizontal lines of
symmetry and set the heat flux to zero.

Fi) Apply HFLUX on lines

[SFL] Apply HFLLE: on ines as a [constan vaiue |
IF Constant valus then:
Optional HFLUX values at end J of lins
(leave blank for uniform HFLLX )
VALY Heat Fuo I
oK Cancel Help

FIGURE 7.34 Setting the heat flux.

T
T

IREREES
IR RE
T

' v v i 3 17197 i

FIGURE 7.35 Model with boundary conditions.
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Solution
The interactive solution proceeds.
11. Main Menu > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in
the /STATUS window and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the solution
is complete, close the “Solution is Done!” window.

POSTPROCESSING

7.4

We can now plot the results of this analysis and also list the computed values.

12. Main Menu > General Posrproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution > Temperature > OK

This result is shown in Figure 7.25(b).

13. Main Menu > General Postproc > List Results > Nodal Solu >
Select Temperature > OK

TWO-DIMENSIONAL PROBLEM WITH CONDUCTION
AND WITH CONVECTION BOUNDARY CONDITIONS

EXAMPLE 7.4

A body having rectangular cross-section is subjected to boundary conditions
as shown in Figure 7.36. The thermal conductivity of the body is 1.5 W/m®.
On one side of the body, it is insulated and on the other side, convection takes
place with h = 50 W/m™C and T. = 35 °C. The top and bottom sides are
maintained at a uniform temperature of 180°C. Determine the temperature
distribution in the body.
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T=180°C

h,
k=1.5 W/m°C T TToo =35°C

| 0.5m R

T=180°C
FIGURE 7.36 Example 7.4.

Solution

(1) Software resuilts.

The temperature at the top and bottom edges is found to be 180°C and at the
right edge the temperature is found to be 46.802°C.

1
NODAL SOLUTION

STEP =1

SUB =1

TIME =1

TEMP (AVG)
RSYS =0

SMN =46.802
sMx =180

46.802 76.401 106.001 135.601 165.2
61.601 91.201 120.801 150.4 180

FIGURE 7.36(a) Temperature distribution in a body of rectangular cross-section
(refer to Appendix D for color figures).
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EXERCISES

1. Define conduction and convection.

2. Write the formulas for the rate of heat flow in x-direction by conduction
and the rate of heat flow by convection.

3. Determine the temperature distribution for the two-dimensional body
shown in Figure 7.37, subjected to boundary conditions as shown in the
figure. The top and bottom edges are insulated. The left side of the body
is maintained at a temperature of 45°C. On the right side, the convection
process takes place with heat transfer coefficient h = 100 W/m>°C and
T., = 20°C. The thermal conductivity of the body is k = 45 W/m°C.

T=45°C
h=100 W/m?C
T,=20°C

750 mm

§HH1§

| 750 mm

FIGURE 7.37 Exercise 3.

4. Determine the temperature distribution for the two-dimensional body
shown in Figure 7.38. The temperature of 200°C is maintained at the top and
bottom edges. The left and right edges are insulated. Heat is generated at the
rate of g = 2000 W/m® in a body as shown in the figure. Let k= 35 W/ m°C.

T=200°C
/

3m
N
_—0 —
71N

\ 5m

T=200°C

FIGURE 7.38 Exercise 4.
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5. Determine the temperature distribution for the two-dimensional body

shown in Figure 7.39, subjected to boundary conditions as shown in the
figure. The top and bottom edges are insulated. The left side of the body
is maintained at a temperature of 50°C. On the right side, the convection
process takes place with heat transfer coefficient h = 150 W/m*C and
T, = 25°C. The thermal conductivity of the body is k = 50 W/m°C.

—

200 |, k=150 Wm*"C
—— 7, =25°C

———
—

/
T=50C _

I

800 mm

FIGURE 7.39 Exercise 5.

. Determine the temperature distribution for the two-dimensional body
shown in Figure 7.40. The temperature of 200°C is maintained at the
top and bottom edges. The left and right edges are insulated. Heat is
generated at the rate of ¢ = 2100 W/m® in a body as shown in figure. Let
k = 45W/ m°C.

T=200"C

|
4m _\q/_
/l\

7=200"C
FIGURE 7.40 Exercise 6.
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7. Determine the load matrix and the global load matrix for Figure 7.41. The
top and bottom edges are insulated.

g =120 Wicm

| 3cm

b= 60 Wim* K
7,=15C

FIGURE 7.41 Exercise 7.

8. Consider the rectangular plate shown in Figure 7.42. The outer tem-
perature is T, = 30°C. Convection heat transfer takes place on the inner
surface of the wall with T_ = 80°C and h = 50 W/m™K. Determine the
temperature distribution in the wall. Take the thermal conductivity value

k = 160 W/m°K.

0.3 m

™\

T, =30°C

FIGURE 7.42 Exercise 8.

9. Consider a composite wall consisting of two materials shown in Figure
7.43. The outer temperature is T, = 30°C. Convection heat transfer
takes place on the inner surface of the wall with T_ = 80°C and h = 50

W/m™K. Determine the temperature distribution in the wall. Take
the thermal conductivity value k, = 40 W/m°C and k, = 60 W/m°C.

0°C

=3

03m

15 m

FIGURE 7.43 Exercise 9.
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10. For the one-dimensional (1D) bar fixed at both ends and subjected to a

uniform temperature rise T = 40°C, as shown in Figure 7.44, determine
the reactions at the fixed ends and the axial stress in the bar. Let E = 250
GPa, A =28 cm’, L= 1.4 m, and o = 1.30 x 10™° (mm/mm)/°C.

3 N
=) "
3: N

L

FIGURE 7.44 Bar subjected to a uniform temperature rise.
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CHAPTER

FLuip FLow ANALYSIS

8.1

INTRODUCTION

A substance (liquid or gas) that will deform continuously by applied surface
(shearing) stresses is called a fluid. The magnitude of shear stress depends on
the magnitude of angular deformation. Indeed, different fluids have different
relations between stress and the rate of deformation. Also, fluids are classified
as compressible (usually gas) and incompressible (usually liquid).

The terms of velocities and accelerations of fluid particles at different times
and different points throughout the fluid-filled space are used to describe
the flow field. The fluid is called ideal when the fluid has zero viscosity and
is incompressible. A fluid is said to be incompressible if the volume change is
zero (i.e., p = constant)

V.v=0,

where v is the velocity vector.

Depending on the importance of the viscosity of the fluid in the analysis, a
flow can be termed as inviscid or viscous. An inviscid flow is a frictionless flow
characterized by zero viscosity, that is, there is no real fluid. In other words, a
fluid is called inviscid if the viscosity is zero (i.e., u =0).

A viscous flow is a flow in which the fluid is assumed to have nonzero vis-
cosity. An irrotational flow is a flow in which the particles of the fluid are not
rotating, and the rotation is zero. In other words, an irrotational flow is a flow
with negligible angular velocity, if

Vxv=0.
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8.2

On the other hand, a potential flow is an irrotational flow of an ideal fluid
(i.e., p = constantand p =0).

A line that connects a series of points in space at a given instant where all
particles falling on the line at that instant have velocities whose vectors are
tangent to the line is called a streamline.

The flow is steady, which means that the flow pattern or streamlines do
not change over time and the streamlines represent the trajectory of the flu-
id’s particles. But, when the flow is ideal that means that the fluid has zero
velocity.

This chapter covers the finite element solution of ideal or potential flow
(inviscid, incompressible flow) problems. Typical examples of potential flow
are flow over a cylinder, flow around an airfoil, and flow out of an orifice.

The two-dimensional potential flow (irrotational flow) problems can be
formulated in terms of a velocity potential function (¢ ) or a stream function
(¥ ). The selection between velocity and stream function formulations in the
finite element analysis depends on the ease of applying boundary conditions.
If the geometry is simple, any one function can be used.

Fluid elements (e.g., FLUID141) are used in the steady-state or transient
analysis of fluid systems. Pressure, velocity, and temperature distributions can
be obtained using these elements.

Two-dimensional fluid elements are defined using 3 (triangular element)
or 4 (quadrilateral element) nodes added by isotropic properties. Inputs to
these elements are nodal coordinates, real constants, material properties, sur-
face and body loads, etc. Outputs of interest are nodal values of pressure and
velocity.

PROCEDURE OF FINITE ELEMENT ANALYSIS (RELATED
TO FLUID FLOW PROBLEMS)

Step 1. Select element type—the basic three-node triangular element can be
used.

Step 2. Choose a potential function.
Step 3. Define the gradient/potential and velocity/gradient relationships.

Step 4. Derive the element stiffness matrix and equations.
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Step 5. Assemble the element equations to obtain the global equations and
introduce boundary conditions.

Step 6. Solve for the nodal potentials.
Step 7. Solve for the element velocities and volumetric rates.

The finite element solution using software for potential flow problems
is illustrated below. Only potential function formulation is considered. Two
cases are considered in this chapter.

8.3 POTENTIAL FLOW OVER A CYLINDER

y Plate-1
I/////////i/////////I n
| |

— 1
: .
1. S na
| |
N I
i i
| |
| |
— 1 |
| |

Cylinder Plate-2

FIGURE 8.1 Potential flow over a cylinder.

The previous figure depicts the steady-state irrotational flow of an ideal fluid
over a cylinder, confined between two parallel plates. We assume that, at the
inlet, velocity is uniform, say v, . Here, we have to determine the flow veloci-
ties near the cylinder.

Flow past a fixed circular cylinder can be obtained by combining uniform
flow with a doublet.
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FIGURE 8.2 Superposition of a uniform flow and a doublet.

The superimposed stream function and velocity potential are given by,

sind

¥Y=v +W¥ =Uxrxsind — Kx

uniform flow doublet

-
and

cosd

=] +o =UXrxcosd —Kx

, respectively, (8.2)

uniform flow doublet

r
where U is velocity.

Because the streamline that passes through the stagnation point has a
value of zero, the stream function on the surface of the cylinder of radius a is

then given by,
¥ =Uxaxsing - Kx32 — ¢ (8.3)
a
which gives the strength of the doublet as,
K=Uxa". (8.4)

The stream function and velocity potential for flow past a fixed circular cylin-
der becomes

2
Y=Uxr 1—(fj sind (8.5)

r
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and

r

o= UXr[l - (2) ]COSQ , respectively. (8.6)

The plot of the streamlines is shown in Figure 8.3.

FIGURE 8.3 Streamlines for flow past a fixed cylinder.

The velocity components can be determined by,

v, =18—T=U[1—(£]d jcos@ (8.7)
r 06 r

Uy =%—T=—U£1—(%j Jsinﬁ . (8.8)

Along the cylinder (r=a), the velocity components reduce to v, =0 and
v, =—2Usin0 .

The radial velocity component is always zero along the cylinder, while the
tangential velocity component varies from 0 at the stagnation point (§ = 7 )

to a maximum velocity of 2U at the top and bottom of the cylinder (9 -

2
/A

0r0:——).
2
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8.4 POTENTIAL FLOW AROUND AN AIRFOIL

Free T y Plate-1

steam « LSS S S S S S S S

air velocity

|

|

T
I
I
|
I
I
I
Uo— o 0
]
I
I
I
I
I
I
|

///////)j’/// N/
/r // |L1 4 |

Airfoil Plate-2
FIGURE 8.4 Potential flow around an airfoil.

The x- and y-components of fluid’s velocity, respectively, can be expressed in
a stream function ‘P(xy) as

v, =— and v =——. (8.9)

The x- and y-components of fluids velocity with irrotational flows, respec-
tively, can be expressed in a potential function ¢ (x,y) as

o) 00
v, :a and v, :a—y. (8.10)

EXAMPLE 8.1

Flow over a circular cylinder between two parallel plates is shown in Figure 8.5.
Assume unit thickness. Find the velocity distribution for the flow over a circu-
lar cylinder. Consider the flow of a liquid over a circular cylinder. Take liquid
as water. Water density = 1000 kg/m3 and viscosity = 0.001 N-s/m”.
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y

SIS LLLLLLL SIS S LSS

im

7777 777777777777,

i2m

FIGURE 8.5 Flow over a cylinder.

Solution
(I) Software results.

Procedure for solving the problem using ANSYS® 11.0 academic teaching
software.

PREPROCESSING

1. Main Menu > Preferences, then select FLOTRAN CFD > OK

™ Sructurd

™ e

I mers Pt

P hommoo ]

™ Magnetic-fodel
™ Megwec-tdon
™ vgh Fragancy
T Swux

Mote: I 00 indvibuel ducpines are selected they wil ol shom.

Cwpire aprors
S hered
" pathod Rnct.
I pMethod Dectr,

SOk Eey

FIGURE 8.6 Selecting the preferences.
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2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > FLOTRAN CFD > 2D FLOTRAN 141 > OK

| oriy FLOTRAN CFD slsment: types ars shown

| Lerary of Enmant Types rr
Sohved 0 FOTRAN 142
[

ZDROTRAN 141
Elemant typs refenencs number

x| e | _cwa | we |

FIGURE 8.7 Element selection.

3. Main Menu > Preprocessor > Modeling > Create > Areas > Rec-
tangle > By 2 Corners Enter (lower left corner) WP X = 0.0, WP Y =
0.0 and Width = 2, Height = 1 > OK

4. Main Menu > Preprocessor > Modeling > Create > Areas > Circle >
Solid Circle. Enter WP X = 1, WP Y = 0.5 and Radius = 200e-3 > OK

ro e =
v X - = Piek I~ Bapdck
¥ - WP B -
[Glalal W = ¥ -
¥ - Qlabal X =
E= ¥=
wF A F— =
L] F_ NE B h
Haight Ff— Rad fen T
o | teely | o | ewly |
Anunt Cancel | Ba st Canael l
elp | t=lp

FIGURE 8.8 Create areas.
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Y
X

FIGURE 8.9 Rectangle and circle.

Now subtract the circle from the rectangle. (Read the messages in the win-
dow at the bottom of the screen as necessary.)

5. Main Menu > Preprocessor > Modeling > Operate > Booleans >
Subtract > Areas > Pick the rectangle > OK, then pick the circle > OK

FIGURE 8.10 Geometry for the flow over a cylinder.
Create a mesh of quadrilateral elements over the area.

6. Main Menu > Preprocessor > Meshing > Mesh Tool
The Mesh Tool dialog box appears. Close the Mesh Tool box.

7. Main Menu > Preprocessor > Meshing > Mesh > Areas > Free Pick
the area > OK

FIGURE 8.11 Quadrilateral element mesh.
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Apply the velocity boundary conditions and pressure.

8. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Fluid/CFD > Velocity > On Lines Pick the left edge of the plate > OK
> Enter VX =1 > OK
(VX = 1 means an initial velocity of 1 m/s%)

9. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Fluid/CFD > Velocity > On Lines Pick the edges around the cylinder
> OK > Enter VX = 0 and VY = 0 > OK

10. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Fluid/CFD > Pressure DOF > On Lines Pick the top, bottom, and
right edges of the plate > OK > OK
Once all the boundary conditions are applied, the cylinder with the plate
will look like Figure 8.12.

—

\
—
—]
Z X
FIGURE 8.12 Model with boundary conditions.

The model-building step is now complete, and we can proceed to the
solution. First, save the model.

Solution

The interactive solution proceeds.

11.

Main Menu > Solution > FLOTRAN Set Up > Fluid Properties > A
dialog in that select against density as liquid and against viscosity as liquid
> OK

Then another dialog box appears and, in that, enter the value of density =
1000 value = 0.001 > OK
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12. Main Menu > Solution > FLOTRAN Set Up > Execution Ctrl > a
dialog in that Enter in the first row “Global iterations EXEC” = 200

13. Main Menu > Solution > Run FLOTRAN
When the solution is complete, close the “Solution is Done!” window.

POSTPROCESSING

We can now plot the results of this analysis and also list the computed values.
14. Main Menu > General Postproc > Read Results > Last Set

15. General Postproc > Plot Results > Contour Plot > Nodal Solu
Select DOF Solution and Fluid Velocity and click OK
This is what the solution should look like:

1

NODAL SOLUTION
STEP =1

SUB =1

VSUM (AVG)
TEMP

RSYS =0

SMX =1.19

+264509 .529018 .
.132254 .396763 .661272 .925781 1.19

793526 1.058

FIGURE 8.13 Velocity distribution over a cylinder (refer to Appendix D for color figures).

16. Next, go to Main Menu > General Postproc > Plot Results > Vector
Plot > Predefined. One window will appear, then click OK
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1
VECTOR
STEP =1
SUB =1
v
NODE = 14
MIN =0
MAX =1.19 I Al
/{7/:__»
—  _ N\ AN N
N 1 x by
==
¥ N~ —
Z X N

.264509 .529018 .793526 1.058
.132254 .396763 .661272 .925781 1.19

FIGURE 8.14 Vector plot of the fluid velocity (refer to Appendix D for color figures).

17. General Postproc > Plot Results > Contour Plot > Nodal Solu
Select DOF Solution and Pressure and Click OK

1
NODAL SOLUTION

PRES  (AVG)
RSYS =0

SMN =-186.377
MAX =614.282

L —
-186.377 —8.452 169.472 347.396 525.32
—97.415 80.51 258.434 436.358 614.282

FIGURE 8.15 Pressure distribution over a cylinder (refer to Appendix D for color figures).

EXERCISES

1. Define fluid, inviscid flow, viscous flow, and irrotational flow.
2. What are the two fluid classifications?

3. Define streamline in a graphic of fluid motion?

4,

What do we mean when we say the flow is steady and ideal?



FLuib FLow ANALysis © 323

5. Define irrotational flow and potential flow?

. Compute and plot velocity distribution over the airfoil, as shown in Figure
8.16. Assume unit thickness. Take density of air = 1.23 l<g/m‘3 and viscosity
=1.79 x 10° N-s/m”.

Free T y

svea (LSS

air velocity | +
1 |
| ;
1
I

|
i
I i
I ]
Up= 2.5 m/is ..+.._.._.._.._.. - .._.._.._1_15

[ 2m |

|

I

|

I £ |
I 0 |
| © I
J

.///////{///////

HERE

FIGURE 8.16 Flow over an airfoil.

. Flow over a circular cylinder between two parallel plates is as shown in
Figure 8.17. Assume unit thickness. Find the velocity distribution for the
flow over a circular cylinder. Consider the flow of a liquid over a circular
cylinder. Take liquid as water. Water density = 1000 kg/m3 and viscosity =
0.001 N-s/m”, y=u, =2 m/s*>,h =2m,and L = 4 m.

y
T/////////://////////

h
x

1
_________i_________
1
1
1
1

|//////’/ /'/L////////|

FIGURE 8.17 Flow over a circular cylinder between two parallel plates.
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8. Compute and plot velocity distribution over the airfoil, as shown in Figure
8.18. Assume unit thickness. Take density of air = 1.23 kg/m and V150051ty
=1.79x 10°N-s/m*, L = 4 m, L,=20m, hy =18 m,and u=u,=3 m/s".

Free y
:ﬁiﬁcw [////////////////.
e ]
uoﬁ_:.._ e s .._.._.._{_)).(_C"
|

1’/// ///////////

FIGURE 8.18 Flow over an airfoil.

9. Flow over an elliptical cylinder between two parallel plates is shown in
Figure 8.19. Assume unit thickness. Find the velocity distribution for the
flow over a circular cylinder. Consider the flow of a hquld over a circular
cylinder. Take hquld as water. Water density = 1000 kg/m and viscosity =
0.001 N-s/m”, u=u,=1m/s>, D=2m, b=1m,h=4m, and L = 8 m.

y Plate-1

I/////////.//////////k
— ! i
— | :

I |

Up : Il =|x

—ETI. - -!_,
— |

I |
— | |

: A /

I//////’///'///// ///l

Elllptlcal Plate-2

FIGURE 8.19 Flow over an elliptical cylinder between two parallel plates.
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10. For the smooth pipe discretized in Figure 8.20 with a uniform cross-
section of 6 cm”, find the flow velocities at the center and right end, where
the velocity at the left end is v, =6 cm/s.

[ =]
| ]
4+

v, =6 cm's ——¢ | 1

30 cm 30 cm

FIGURE 8.20 Discretized pipe for fluid flow.

11. A busbar is a rectangular conductor used in the distribution of electric
power in a distribution box. The ground and busbar are considered per-
fect insulators. Assume the potential of the busbar is 220 V. For the sys-
tem shown in Figure 8 .21, find the voltage distribution in the air (g = 1)
around the busbar and the maximum electric field intensity.

Alr
I—— 0.02 m —>|
[ | Fe— 0.008 m
'
002 m

/ / / / /

FIGURE 8.21 Exercise 8.11.
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CHAPTER

DYNAMIC ANALYSIS

9.1

INTRODUCTION

A dynamic system is a system that has mass and components, or parts, that are
capable of relative motion. Structural dynamics encompass modal analysis,
harmonic response analysis, and transient response analysis. The modal analy-
sis consists of finding natural frequencies and corresponding modal shapes
of structures. Finding the amplitude of vibration when the loads vary sinu-
soidal with time is known as harmonic response analysis. Finding the struc-
tural response to arbitrary time-dependent loading is referred to as transient
response analysis.

In this chapter, one-dimensional problems relating to these topics are
covered. In vibration analysis, mass matrix and damping matrix will also be
discussed in addition to the stiffness matrix.

Governing equation of undamped free vibration assumes the form,

([k]—w2 [m]){q}:O. (9.1)

The nontrivial solution of equation (9.1) is determinate,

([K]-* [m])|=0 9.2)
where o = radian (or natural) frequency.

The solution of equation (9.2) gives natural frequencies (w). Substituting
the value of w back into the governing equation gives modal shapes (or ampli-

tudes of the displacements) defined by {¢}.
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9.2

The governing equation for the complete structure in global coordinates is

([K]-e?[a]){g} =0.

Mass matrices for bar elements and beam elements are given by,

|iTn]Bar = pAL

D~ Wl
W~ |~
©
«

156 22L 54 —13L

pAL| 22L 4L 13L -3L’
[m]Bmm:E 54 13L 156 -22L[

-13L 31> -22L 4I’

where p = density of the element material; A = cross-sectional area; L = length.

PROCEDURE OF FINITE ELEMENT ANALYSIS (RELATED
TO DYNAMIC PROBLEMS)

9.3

Step 1. Select element type.

Step 2. Select a displacement function.

Step 3. Define the strain/displacement and stress/strain relationships.
Step 4. Derive the element stiffness and mass matrices and equations.

Step 5. Assemble the element equations to obtain the global equations and
introduce boundary conditions.

Step 6. Solve for the natural frequencies and mode shapes.

FIXED-FIXED BEAM FOR NATURAL FREQUENCY
DETERMINATION

EXAMPLE 9.1

Determine the first two natural frequencies for the fixed-fixed beam shown in
Figure 9.1. The beam is made of steel with modulus of elasticity E = 209 GPa,
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Poisson’s ratio = 0.3, length L = 0.75 m, cross-section area A = 625 mm”, mass
density p = 7800 kg/m’, moment of inertia I = 34,700 mm".

0.75 m

AVAVAVAVAVAN
777777

FIGURE 9.1 Fixed-fixed beam for Example 9.1.

Solution
(I) Analytical method.
o =224 [EL (9.5)
L \pA
9 -12
o, = 22.42 \/209><10 ><34700><_}0 —1535.95 rad/s.
(0.75) 7800%625x10™°
Frequency,
=2 (9.6)
2r
£ =155 a5 1y
2n
o, =7 |EL (9.7)
L \pA
9 —12
o, - 61.72 \/209><10 XSMOOon 535,95 radls.
- (0.75) 7800x 625x10™°
Frequency,
f,=2 9.8)
o2n
£, =220 o354y,

on
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(II) FEM by hand calculations.

L2

L2

.

[

l

@

FIGURE 9.1(a) Finite el

Mass matrices are,

156 22(%) 54 —13(
2
peact 3(5) (5] w(5) (3
[M1]=[M2]= 490 L
54 13(§J 156 —22(
2
Ja( L) (L] e L) 4L
i 2 ) 2 2
156 11L 54  —6.5L ]
2
11L I’ 6.5L —3[%]
pXAXL
M |=[M,]= .
[M,]=[M,] 840 54 13(5) 156  —11L
4
—6.5L —3[—] —11L I?
- 4 -
Stiffness matrices are,
12 6[£) -12 6(£j
2 2
. (3] (3] 3]
[kl]:[k2]: I 3 I
| - <t
2 2
Symmetric 4(%)

@

ement model.




_8EI

Global mass matrix,

840

AL| 156+156 —-11L+11L
pi1=25] }

Global stiffness matrix,

[K]_SEI[

Governing equation is,

SEI| 24
I’ 0

24 0

0 2I?

24 -312a
0

where a =

For nontrivial solution,

12 3L

| Symmetric

-11L+11L

-12

12

I>+17

12+12 3L+ —SL}

([K]-o*[M]){g}=0.

0
e . PAL
840

I’ SEI|24 O
SEI I’ 0 2L

J LAW[B” D{q} 0

oI?

840x8EI

w’pAL
6720EI

3L+-3L I}+I?

212 —2I%a D{(I} 0

([K]-eo?[M])|=0

_ SEI
U

|
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_pAL[312 0
T840 0 212
24 0
0 217/

aft -

2 pAL
840
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0 217 —2I%a

{24 -312a 0 }

Solving, we get

a=1 or a=0.076923

2 4 2 4
1 _w pAL or 0.076923 _w pAL
6720EI 6720EI
22.74 |EI 8198 |EI
0 =— |— Sy = —— [
L PA L PA
Given
E =209 GPa

A=625%x10° m?
1=34700x10" m*
p =7800 kg/m’
L=0.75 m.

Substituting, we get

=1559.26 rad/s.

2274 \/209><109><34700><1012
(0.75)" 7800% 625x10°°

W,

Frequency,

w, 1559.26
fi=g

= =248.164 Hz
on 2n

=5621.29 rad/s.

., 8198 \/209><109><34700><1012
P 075V 7800x625%107

Frequency,

w, 5621.29
on on

1= =894166 Hz.
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(IIT) Software results.

1

NODAL SOLUTION
STEP = 1

SUB =1

FREQ = 244.022
USUM  (AVG)
RSYS = 0

DMX =.830139
SMX =.830139

Y
N X

.184475 .368951 .553426 .737901
.092238 .276713 .461188 .645664 .830139

FIGURE 9.1(b) Deflection pattern for a fixed-fixed beam for mode 1 (refer to Appendix D for color
figures).

Frequency values (in Hz)

SET TIME/FREQ LOAD STEP SUB STEP CUMULATIVE
1 244.02 1 1 1
2 671.69 1 2 2

The following are the mode shapes:

1
DISPLACEMENT
STEP =1

SUB =1

FREQ = 244.022
DMX = .830139

FIGURE 9.1(c) Mode 1 for fixed-fixed beam (refer to Appendix D for color figures).
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1
DISPLACEMENT

STEP =1
SUB =2
FREQ=671.692
DMX =.786022

FIGURE 9.1(d) Mode 2 for fixed-fixed beam (refer to Appendix D for color figures).

ANSWERS FOR EXAMPLE 9.1

Analytical method FEM-hand calculation

Software results (with
10 elements)

Parameter (with 2 elements)

Natural frequency

fi 244.45 Hz 248.16 Hz 244.02 Hz
f 673.34 Hz 894.66 Hz 671.69 Hz

Procedure for solving the problem using ANSYS® 11.0 academic

teaching software

FOR EXAMPLE 9.1
PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >

Add > Beam > 2D
elastic 3 > OK > Close

"‘ Library of Element Types

Only structural element types are shown
Library of Element Types

Element type reference number

N

FIGURE 9.2 Element selection.
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2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > OK

"‘ Real Constants for BEAM3

Element Type Reference No. 1
Real Constant Set No.

Cross-sectional area  AREA
Area moment of inertla 122
Total boam height  HEIGHT
Shear deflaction constant SHEARZ
Initial strain ISTRN

Added massfunit lsngth  ADDMAS

HTH

o« | _ww | _com | v |

FIGURE 9.3 Enter the area and moment of inertia.

Cross-sectional area AREA > Enter 625e-6
Area moment of inertia IZZ > Enter 34700e-12
Total beam height HEIGHT > Enter 1 > OK > Close
Enter the material properties.
3. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1, click Structural > Linear > Elastic >
Isotropic

Enter EX = 209E9 and PRXY = 0.3 > OK

click Structural > Linear > Density

Enter DENS = 7800 > OK

(Close the Define Material Model Behavior window:.)
Create the keypoints and lines as shown in the figure.

4. Main Menu > Preprocessor > Modeling > Create > Keypoints > In
Active CS, Enter the coordinates of keypoint 1 > Apply Enter the coor-
dinates of keypoint 2 > OK
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Keypoint locations

Keypoint number X coordinate Y coordinate

1 0 0
2 0.75 0

P\ Croate Keypoints in Active Coardinate Sysiem

[K] Create Ceypoints in Active Coordinebe Systen

NET  Kypcink russber S

%,%,2 Locaton in active C5

FIGURE 9.4 Enter the keypoint coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Lines > Lines
> Straight Line, Pick

the 1st and 2nd keypoint > OK

Create Straight Line

 pick " Unpick

@ Single  Box
' i Polyyon

€ Loop

€ Cirele

Count = 0
Haximum = 2
Hinimum = 2
KeyP No.

(¥ List of Items

(™ Min, Max, Inc

Imlm.\yl

Reset I Cancal l

Pick ).ul Halp I

FIGURE 9.5 Pick the keypoints to create lines.
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6. Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize
> Lines > All

Lines > Enter NDIV No. of element divisions = 10

[i) Element Sizes on All Selected Lines

[LESIZE] Elament cres on al celacted ines

Element edge length l_

NOIV  No, of element divisions Iﬁ_
(NDIV is used only If SIZE is blank or zero)

KYNDIV SIZE,NDIV can be changed 7 Yes

SPACE Spacing ratio l_

Show more options N

FIGURE 9.6 Specify element length.

7. Main Menu > Preprocessor > Meshing > Mesh > Lines > Click

Pick All

Mesh Lines

& pick  Unpick
& gingle " Box
 Polygon (* circle
" Loop

Count =

Haximum =

Hiniwum = 1
Line No. =

# List of Items

" Min, Max, Inc

| (1.4 I Apply I

Rasst | Cancel I

Pick A.I..ll Halp I

FIGURE 9.7 Create elements by meshing.
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8. Main Menu > Solution > Analysis Type > New Analysis > Select
Modal > OK

I New Analysis

[ANTYPE] Type of analysis

" Static

= Modal |

" Harmonk

" Transient

™~ Spectrum

" Bigen Bucking
™ Substrucuring/CMS

« | o | |

FIGURE 9.8 Define the type of analysis.

9. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural >

Displacement > On Nodes Pick the left most node and right most node
> Apply >
Select All DOF > OK

,“ Apply U ROT on Nodes

[D] Apply Displacements (L,ROT) on Nodes
Lab2 DOFs to ba constraned

IF Constant value then:
VALLE Displacement value

FIGURE 9.9 Apply the displacement constraint.

10. Main Menu > Solution > Analysis Type > Analysis Options > Select
PCG Lanczos option
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Enter No. of modes to extract = 2
NMODE No. of modes to expand = 2 > OK
After OK one more window will appear, for that also click OK

EMOO0RT] Mods extraction method
 Bodk Lancao:
% P0G Lanceos
™ Reduced
™ Unpymmetric
™ Dammped
I~ G Damped
 Sewrnode
Mo of modes b extract CI
(st e speciind for o mechods sxcgt the Reduced methed)
[reram)
Expand mods shapes W
MMECE Mo of modes bo expand [:I
Clak Cakubsbe sl rozs? W
FLLMPM] Uise empeed mass appron? rw
[PSRES] Indd prestress affects? &
L= | e |

FIGURE 9.10 Select the number of modes to extract.

Solution
The interactive solution proceeds.
11. Main Menu > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters, and
the Solve Current Load Step window is shown. Check the solution
options in the /STATUS window, and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the solu-
tion is complete, close the “Solution is Done!” window.
POSTPROCESSING
12. Main Menu > General Postproc > Results Summary

This result is shown as frequency values in Hz.
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13. Main Menu > General Postproc > Read Results > First Set

14. Main Menu > General Postproc > Plot Results > Deformed Shape
> Click Def + undeformed > OK

This result is the first mode shown in Figure 9.1(c).
15. Main Menu > General Postproc > Read Results > Next Set

16. Main Menu > General Postproc > Plot Results > Deformed Shape
> Click Def + undeformed > OK

This result is the second mode as shown in Figure 9.1(d).

9.4 TRANSVERSE VIBRATIONS OF A CANTILEVER BEAM

EXAMPLE 9.2

Determine the first four natural frequencies for the cantilever beam shown
in Figure 9.11. The beam is made of steel with modulus of elasticity, E = 207
GPa, Poisson’s ratio = 0.3, length L = 0.75 m, cross-section area A = 625 mm’,
mass density p = 7800 kg/ms, moment of inertia I = 34,700 mm®.

0.75m |

FIGURE 9.11 Cantilever beam for Example 9.2.

ANAVAVAVAVAN

Solution

(I) Analytical solution.

o =352 [EL
Y2\ pA

9 —-12
0, = 3.522\/207><10 ><34700><i0 940 rads.
(0.75) 7800x625x10
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Frequency,

— wl
2

fi

fi :@:38.197 Hz

o2

22 [EI

2\ pA

w,

9 -12
oo 22 \/207><10 x34700x10™"% _ o o

* 0737\ 7800x625%10°

Frequency,

_ 1501
on

61.7 [EI
ST A

9 -12
_ 617 \/207><1o XB4700X10° 7 _ 4910 radss.

602 - 2 ¢ -6
(0.75) 7800 625% 10

=238.89 Hz

2

Frequency,

9
2

s

4210
7T

=670.04 Hz

s
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121 |EI
CO4 :—2 —_
L \pA
¢ 9 -12
0, =121 \/207><10 X000 _ o
(0.75) 7800x 625x10
Frequency,
— 94
fi=5
£ =327 51414 1z
2r
(II) FEM by hand calculations.
L/2 L/2
® @

FIGURE 9.11(a) Finite element model.

Stiffness matrices are,

2 6(%) —12
L OROIR R
-12




Global stiffness matrix,
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24 0 -12 3L
. I’
2 J— —
SEl 0 212 -3L
[Kl=— , _ ~
I} |-12 3L 12 -3L
2
3L L2y 3L I?
L 2 i
24 0 -12 2.95
0 1.125 -2.25 0.28125
=136209.07 .
-12  -2.95 12 -2.95
295 0.28125 -2.25 0.5625
Mass matrices are,
156 29 L 54 -13 L
2 2
9 9
pack| 23] 3] 3] (3)
[M1]=[M2]:T02 I I
54 13(—] 156 —22(-)
2 2
2 2
—13£ —3£ oo L 4£
i 2 ) 2 2 ) |
156 11L 54  —65L ]
2
11L I? 6.5 —3[%]
pXAXL
M |=[M,]= E2—==
(M, ] =[] 840 54 13(%) 156 -11L
L4
—6.5L —3(Z] —-11L 12
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Global mass matrix is,

312 0 54 —6.5L ]
2
0 I? 6.5L —3(%}
XAXL
[M]= L2222~ L
840 54 13 3 156 —11L
L4
—6.5L —3[—] —11L I?
. 4 -
312 0 54 —4.875
L0 1.125 4875 —0.421875
[M]=4.352676x10" .
54 4.875 156 -8.25

—-4.875 —0421875 -825  0.5625

Governing equation is,

([K]-o® [M])}{g}=1 " =0.

For a nontrivial solution
Det ([K]-w®[M])=0=[([K]-o* [M])[=0.

Substituting and solving, we get

w; 0.0006
= w; _10° 0.0230
w; 0.2630
w; 2.2159

w, =245 radis = f, = 20 =245 _ 38993 1y
2r 2m

w, =1517 rad/s = f, _ o, _1517

=241.44 Hz
o2n on
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EZL_.SIZS

w, =5128 rad/s = f, = =816.147 Hz
2n 2n
14885.9
w, =14885.9 rad/s = f, =4 ==Y ~ 9369 16 2.
2n 2n
(ITI) Software results.
1
NODAL SOLUTION
STEP = 1
SUB =1
FREQ = 38.178
USUM  (AVG)
RSYS = 0
DMX = 1.046
SMX = 1.046
. o
s -
0 .232386 .464772 -697158 .929544
.116193 .348579 .580965 .813351 1.046

FIGURE 9.11(b) Deflection pattern for a fixed-fixed beam for mode 1 (refer to Appendix D for
color figures).

Frequency values (in Hz)

SET TIME/FREQ LOAD STEP SUB STEP CUMULATIVE
1 38.178 1 1 1
2 238.94 1 2 2
3 667.71 1 3 3

4 1305.2 1 4 4
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The following are the mode shapes:

1
DISPLACEMENT
STEP = 1

SUB =1
FREQ 38.178
DMX = 1.046

FIGURE 9.11(c) Mode 1 for cantilever beam (refer to Appendix D for color figures).

1DISPLE!&CEMENT
STEP = 1

suB = 2

FREQ = 238.937

DMX = 1.044

FIGURE 9.11(d) Mode 2 for cantilever beam (refer to Appendix D for color figures).
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: DISPLACEMENT
STEP 1

SUB 3

FREQ 667.706
DMX 1.041

FIGURE 9.11(e) Mode 3 for cantilever beam (refer to Appendix D for color figures).

lDISPLACEHENT
STEP = 1
SUB = 4
FREQ = 1305

DMX = 1.038

FIGURE 9.11(f) Mode 4 for cantilever beam (refer to Appendix D for color figures).

Answers for Example 9.2

Parameter Analytical method FEM-hand calculation  Software results (with
(with 2 elements) 10 elements)

Natural frequency

fi 38.197 Hz 38.993 Hz 38.178 Hz
1 238.89 Hz 241.44 Hz 238.94 Hz
1 670.04 Hz 816.147 Hz 667.71 Hz

1y 1314.14 Hz 2369.16 Hz 1305.2 Hz
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9.5 FIXED-FIXED BEAM SUBJECTED TO FORCING FUNCTION

EXAMPLE 9.3

For the fixed-fixed beam subjected to the time-dependent forcing function
shown in Figure 9.12, determine the displacement response for 0.2 seconds.
Use time step integration of 0.01 sec. Let E = 46 GPa, Poisson’s ratio = 0.35,
length of beam L = 5 m, cross-section area A= 1 m’, mass density, p = 1750
kg/mg, moment of inertia T = 4.2 x 10° m".

F(t)

1

2

3

4

5

NANSSS

125m | 1.25m | 1.25m | 1.25m

777777

F(t)

45 kN

tin sec

FIGURE 9.12 Fixed-fixed beam subjected to the time-dependent forcing function for Example 9.3.

Solution

(I) Software results.

lposr26
Uy 2

(x10%%—2)

1.75

1.

1.

[ ~]

[

=]
(= T Y

J
)
n

I
n

06

.08

.1
TIME

.12

.14

.16

.18

.2

FIGURE 9.12(a) Displacement response for 0.2 sec for node 2 (refer to Appendix D for color figures).
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1 posT26
UY_3
(X10%*—2)
3.5
3 —_—
~
2 / N
1.5 // \\
VALU .1
s /] \
oJ/
-.5
-1 \
-1.5
0 .02.34.06.03.1 .12.14.16.18 .2
TIME

FIGURE 9.12(b) Displacement response for 0.2 sec for node 3 (refer to Appendix D for color figures).

Displacement values (in meters) for node 2

TIME 2 UY
uy_2
0.0000 0.00000
0.10000E-01 0.421220E-05
0.20000E-01 0.284618E-03

0.50000E-01

0.602161E-02

0.80000E-01 0.121677E-01
0.10000 0.153042E-01
0.12000 0.148820E-01
0.15000 0.979873E-02
0.18000 0.868368E—-04

0.20000

—0.649350E-02
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Displacement values (in meters) for node 3

TIME 3 UY
uy_3
0.0000 0.00000
0.10000E-01 0.505126E-03
0.20000E-01 0.218959E-02
0.50000E-01 0.113766E-01
0.80000E-01 0.241211E-01
0.10000 0.286233E-01
0.12000 0.292504E-01
0.15000 0.183799E-01
0.18000 —0.205644E-03
0.20000 -0.117477E-01

Procedure for solving the problem using ANSYS® 11.0 academic
teaching software.

FOR EXAMPLE 9.3
PREPROCESSING

1. Main Menu > Preferences > Select Structural > OK

DErwIPMETH] Preferences for GUI Fitering
Bradvichonl decplres(s) b show i he G

e —
™ Thaemad

™ Ansvs Fud

™ ROTRAN 0D

T~ Magnetic-fodsl
T~ Magretic-£dgn.
I~ High Frequency
I~ Dectric

& hethod
1 pethod Sruct.
€ pHethod Bectr,

B L

FIGURE 9.13 Selecting the preferences.
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2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Beam > 2D

elastic 3 > OK > Close

"‘l ibrary of Element Types

Only struciural element types are shown
Library of Element Types

Element type refersnce number

FIGURE 9.14 Element selection.

3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > OK

'A‘ Real Constants for BEAM3

Element Type Reference No. 1
Real Constant Set No.

ll_
Cross-sectional area  AREA ll_
Area moment of nertia  12Z |T
Totalbeamheight ~ HEIGHT |1—
Shear deflection constant SHEARZ |—
Initial strain ISTRN ﬁ
Added massfunit length  ADDMAS l—

ho |

FIGURE 9.15 Enter the area and moment of inertia.

Cross-sectional area AREA > Enter 1
Area moment of inertia IZZ > Enter 4.2e-5
Total beam height HEIGHT > Enter 1 > OK > Close

Enter the material properties.
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4. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1, click Structural > Linear > Elastic >
Isotropic

Enter EX = 46E9 and PRXY = 0.35 > OK

Click Structural > Linear > Density

Enter DENS = 1750 > OK

(Close the Define Material Model Behavior window.)
Create the nodes and elements as shown in the figure.

5. Main Menu > Preprocessor > Modeling > Create > Nodes > In
Active CS Enter the coordinates of node 1 > Apply > Enter the coordi-
nates of node 2 > Apply > Enter the coordinates of node 3 > Apply >
Enter the coordinates of node 4 > Apply Enter the coordinates of node
5> 0K

Node locations

Node number X coordinate Y coordinate
1 0 0
2 1.25 0
3 2.5 0
4 3.75 0
5 5 0

';‘ Create Nodes in Active Covrdinate System

[M] Create Nodes in Active Coordinate Systen
NODE  Node number [1—
X.Y.Z Location in adive CS |o ln |

THCY, THYZ, THZX
Rotation angles (degrees) | | |

FIGURE 9.16 Enter the node coordinates.

6. Main Menu > Preprocessor > Modeling > Create > Elements >
Auto Numbered > Thru

Nodes Pick the 1st and 2nd node > Apply > Pick the 2nd and 3rd node >
Apply > Pick the 3rd and 4th node > Apply > Pick the 4th and 5th node > OK
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Elements from Nodes

" Pick " Unpick

« Single € Box

€ Polygon (" Circle
P Loop
Count = 0

Maxinum = 20
Hinimum
Node No. =

"
™

(¥ List of Items

(" Hin, Max, Inc

| OK I Apply |

Reset | Clncn.l.l
|

Pick k1l

Help I

FIGURE 9.17 Pick the nodes to create elements.

7. Main Menu > Solution > Analysis Type > New Analysis > Select
Transient > OK

[ANTYPE] Type of analysis

" Bratic|

" Modal

" Harmonic

& Transient

" Spectrun

" Bigen Bucking
" Substructuring/CMS

x| e [ e |

FIGURE 9.18 Define the type of analysis.
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then select > Reduced > OK

m Transient Analysis
[TRNOPT] Solution method
C Rl
& Reduced
" Mods Superpos'n

[LUMPM] Use lumped mass approx? I No

x| e [ he |

FIGURE 9.19 Define the type of transient analysis.

8. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes > Pick the left most node and
right most node > Apply > Select All DOF > OK

"‘ Apply U RDT on Nodes

[D] Apply Displacements (U,ROT) on Nodes
La&2 DOFs to be constrained

IF Constant value then:
VALLE Displacamant valus

oK Apgly

FIGURE 9.20 Apply the displacement constraint.

9. Main Menu > Solution > Master DOFs > User Selected > Define
> Pick 2nd, 3rd, and 4th node > Apply > Select UY from Lab 1 1st
degree of freedom > OK
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'ﬂ Define Master DOFs
[M] Define User-Selectad Master DOFs

Labl  1¢t degras of freadom ﬁa
L%
LY

Leb2-6 Additional DOFs

FIGURE 9.21 Defining master DOF.

10. Main Menu > Solution > Load Step Opts > Time/Frequency >
Time-Time Step

Enter [TIME] Time at the end of load step — 0
Enter [DELTIM] Time step size - 0.01 <OK
M
[TIE] Time ot ond of koud step ,l_
[DELTIM] Tine step sza ,m_
[KBC]  Stepped or ramped buc.
+ Ramped
" Stepped
[AUTOTS] Actomatic time stepping
~oN
" OFF
 Prog Chasen
[DELTIM] Minimum time step sizs l_
Maximum time step 2o [_
Use previous step size? ¥ Yes
[TRES] Time stap raset hased on spacke bime pants
Time points from :
1 No resst
 Existing amay
™ New amay

Note: TSRES command is valld for thermal slements, therma-slectric
slements, thermal surface effect slenents and FLUIDI 15,
or any combination thersof,

S I

FIGURE 9.22 Defining time step size.
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11. Main Menu > Solution > Load Step Opts > Write LS File
Enter LSNUM Load step fine numbern = 1 > OK

I\ Write Load Step File
[LSWRITE] Write Load Step File (Jobname.Sn)

LSNUM Load step file number n Ij

FIGURE 9.23 Creating LS file.
12. Main Menu > Solution > Define Loads > Apply > Structural >

Force/Moment > On Nodes > Pick the middle or 3rd node Apply >
Enter FY = 45¢3 > OK

i\ Apply F/M on Nodes

[F]1 Apply Force/Moment on Nodes
Lab Direction of forcejmom IFY_LI
Apply as | Constant value |
IF Constant value then:
VALUE Forcs/moment value |45e3—
x| ooty | cancel_| hep |

FIGURE 9.24 Applying force on node.

13. Main Menu > Solution > Load Step Opts > Time/Frequency >
Time-Time Step

Enter [TIME] Time at the end of load step — 0.01 > OK
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Tl time and Time Step Opticns

Tima o T Sty Opione: K|
[TINE] Time at ond of load step oo —
[DELTIM] Tima stap sise o.01

[¥8C] Stepped or rampsd buc.

& Ramged
" Stepped
[ALTOTS] Autamatic time stepping
o
 OFF
& Prog Chese
[DELTEM] Miriwem time 5top size. [_'
Marrimun tins step e |'_‘
Lisa pravious stap spe? P Yes
[TSRES] Time e reset based on sseckic tie ports
Time poinks from:
& Mo resst
~ Existing
 New arrey

Nots: TSRES command s valld for thermal slements, thermal-slactric
slomants, $ermal surface sifect slesents snd RLUIDIES,
or any combination thereof

B

-

FIGURE 9.25 Defining time at the end of 1st load step.

14. Main Menu > Solution > Load Step Opts > Write LS File
Enter LSNUM Load step fine numbern = 2 > OK

F) Write Load Step File

[LSWRITE] Wrke Load Step File (Jobname. Sn)

LSNUM Load step fils number n |?_

FIGURE 9.26 Creating LS file for 1st load step.

Similarly, repeat Steps 13 and 14 for Time at the end of load step of 0.02,
0.05, 0.08, and 0.1, and each time create an LS file with the next numbers (n),
ie., 3,4,5, and 6.
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15. Main Menu > Solution > Define Loads > Delete > Structural >
Force/Moment > On Nodes > Pick the middle or 3rd node Apply > OK

16. Main Menu > Solution > Define Loads > Apply > Structural >
Force/Moment > On Nodes > Pick the middle or 3rd node Apply >
Enter FY = 36e3 > OK

n Apply FIM on Nodes

[F] Apply Force/Moment on Modes:
Lab  Diection of Forcefmon -E]
Apply a5 Constant vale »
IF Constant value then:
VALLE Forcejmoment vale [m—
o Agply cancel | o |

FIGURE 9.27 Applying force on node.

17. Main Menu > Solution > Load Step Opts > Time/Frequency >
Time-Time Step

Enter [TIME] Time at the end of load step — 0.12 > OK

Time ard Time Step Optiors. 5‘
[17E] Tame ot ond of 1oad step (3]

[DELTIM] Tine step soe [oor—

[XBC]  Seepped or ranpedb.c.

@ Ramped
 Sepped
[T e — =
Co
CoF
 Prog Chosen
[DELTIM] Mrioum time step size I'_
Maxmu teme step sze [_
Uss prvious step sze? s
[TSRES] T stop resst based on speckictime ports .
Tims points from :
& Noresst
 Existing ama

" New array
Ncte: TSRES commandis valid for thermal elements, thermal-slectric
wlements, thermal surface effect elements and FLID1 16,
‘or any combination thereof.

S |

FIGURE 9.28 Defining time at the end of 6th load step.
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Main Menu > Solution > Load Step Opts > Write LS File
Enter LSNUM Load step fine numbern = 7 > OK

I write Load Step File

[LSWRITE] Write Load Step File (Jobname.Sn)

LSNUM Load step file number n |7

FIGURE 9.29 Creating LS file for 6th load step.

Repeat Step 15 and delete the force.

Then apply the force of 22.5 kN (i.e., 22.5e3) and define the Time at the
end of the load step of 0.15 and create an LS file with number (n) = 8.

Again, repeat Step 15 and delete the force.

Then apply the force of 9 kN (i.e., 9e3) and define the Time at the end of
the load step of 0.18 and create an LS file with number (n) = 9.

Again, repeat Step 15 and delete the force.

Define the Time at the end of the load step of 0.2 and create an LS file
with the number (n) = 10.

Main Menu > Solution > Solve > From LS Files
Enter LSMIN Starting LS file number = 1

Enter LSMAX Ending LS file number = 10

LSINC File number increment = 1

I\ Solve Load Step Files

[LSSOLVE] Solve by Reading Data from Load Step (LS) Fies
LSMIN Starting LS file number

LSMAX Ending LS File number
LSINC File number increment

S - .

1]

FIGURE 9.30 Solving from LS files.
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20. Main Menu > TimeHist Postpro
The following dialog box will appear.

i @R IS8 s 3
M
ol | _-1':j
@|

= E|

v | o | 2| 1 |om|

o o [Tod) ] =

N N

v

FIGURE 9.31 Timehist dialog box.

In that dialog box click on the firsticon, i.e., on Add data, one more dialog
box will appear as shown below. Then click on DOF Solution > y-Compo-
nent of displacement > OK.

"" Add Time-History Variable

T i

o DCF Solution
@ *-Componert of displacement

@ Z-Componert of rotation
Ry Thurrr -:I

~ Result Them Propx

Variable Name ILI‘I'__Z

ok | _mob | cows | v |

FIGURE 9.32 Selecting the displacement in y-direction.
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Node for Data

F pick " Unpick

o] Single  Box

" Polygon ( circle
C Loop

Count =
HMaximum =
Minimum = 1
Node No. =

(¥ List of Iteas

" Hin, Max, Inc

| OR I Apply |

Reset I Cancel |

Pick .a,;ll Help |

FIGURE 9.33 Selecting the node.

It asks for the node to pick, so pick node 3 or the middle node < OK.

Then, in the Timehist dialog box, click on 4th icon, i.e., List Data (refer
to Figure 9.31).

This result is shown as displacement values for node 3 in the software
results of the problem. Then, in the Timehist dialog box, click on 3rd icon,
i.e., Graph Data (refer to Figure 9.31).

The result is shown in Figure 9.12(b) for node 3 in the software results of
the problem.

Maximum displacement values (in meters)

Name |Element _ |MNaode |Result Item |Minimum | Maximum |%-Aixis |
TIME Time 0 0.2 G
uvy_2 2 ¥-Component of displacement -0,0054935 0.0153042 O

Y¥-Component of displacement -0.0117477 0,0292504

FIGURE 9.34 Values of displacement.
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9.6 AXIAL VIBRATIONS OF A BAR

EXAMPLE 9.4

For the bar shown in Figure 9.35, determine the first two natural frequencies.
Let E = 207 GPa, Poisson’s ratio = 0.3, length L = 2.5 m, cross-section area
A =1m" mass density p = 7800 kg/1n3.

2.5m 1

AAANARRANANANY

FIGURE 9.35 The Bar for Example 9.4.

Solution
(I) Analytical method.
157 |E
W =—|—
L \p
9
o, = 12T 2007 o5m 17 rads.
2.5 7800
Frequency,
-
y 2n
fi= 323517 =514.89 Hz
2n
471 |E
w, =—— |[—
AR

9
W, = 4'71,/207X10 =9705.52 rad/s.
2.5 7800
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Frequency,
%
e =
£,=210552 _ 154468 Ha,
2n
(II) FEM by hand calculations.
l L/2 L/2 l
@ @

FIGURE 9.35(a) Finite element model.

Mass matrices are,

L

e S

Stiffness matrices are,

AL 2 1 0
[M]=£2211 4 1.
12
0 -1 2
Global stiffness matrix is,
- 1 -1 0
[K]=222 -1 2 -1
L
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Governing equation,

Us
R PR R
2EAL o pleerxZALy 4 =0,
L 12
0 -1 1 0 -1 2|]|u,

Boundary conditions are, 1, =0.

Applying boundary conditions and for a nontrivial solution,

2 -1 a)szz 4 -1 0
-1 1 24E |-1 2| 7
ie.,
2 -1 4a a
_ =0,
-1 1 a 2a
where
_o’pL .
24F
By solvi 2—4a -l-a 0 N
solving, =0, we ge
Y & —1-a 1-2a &
2 2 2 2
0=0.1081941 = 2 PL or 0 =13203772 = PL
24F 24F
1.61 \/E
w =—,|—
L \p
¢ 9
_161 M:BSIT(S rad/s.

W, =—
2.5 7800
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Frequency,
o
5 2n
fi= 33176 =528.01 Hz
2n
5.63 (E
w,=—— |—
R
) 2 10°
w, =283 20707 _ 11601 3 radss.
2.5 7800
Frequency,
D
£ o2n
f= 116013 =1846.4 Hz.
2r
(IIT) Software results.
1
NODAL SOLUTION
STEP = 1
SUB =1
FREQ = 515.685
USUM  (AVG)
RSYS = 0
DMX = .010148
SMX = .010148
Y
ENX MX
0 .002255 .00451 .005638 .009021
.001128 .003383 .005638 .007893 .010148

FIGURE 9.35(b) Deflection pattern for a bar (refer to Appendix D for color figures).
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Frequency values (in Hz)

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 515.68 1 1 1
2 1559.8 1 2 2

Answers for Example 9.4

Parameter Analytical method FEM-hand calculation Software results
(with 2 elements) (with 10 elements)

Natural frequency
h 514.89 Hz 528.01 Hz 515.68 Hz
fs 1544.68 Hz 1846.4 Hz 1559.8 Hz

Procedure for solving the problem using ANSYS® 11.0 academic
teaching software.

For Problem 9.4
PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete >
Add > Link > 2D spar 1 > OK > Close

AL ibrary of Element Types

Library of Element Types Shuctural Mass

Element type reference number ||

FIGURE 9.36 Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete >
Add > OK
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fﬂ Real Constant Set Number 1, for LINK1

Element Type Reference No. 1
Real Constant Sat No,

Initial strain ISTRN

[
Je—
web |

FIGURE 9.37 Enter the cross-sectional area.

Cross-sectional area AREA > Enter 1 > OK > Close
Enter the material properties.
Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1, click Structural > Linear > Elastic >
Isotropic

Enter EX = 207E9 and PRXY = 0.3 > OK

Click Structural > Linear > Density

Enter DENS = 7800

(Close the Define Material Model Behavior window:.)
Create the keypoints and lines as shown in the figure.

Main Menu > Preprocessor > Modeling > Create > Keypoints > In
Active CS Enter the coordinates of keypoint 1 > Apply Enter the coor-
dinates of keypoint 2 > OK

Keypoint locations

Keypoint number X coordinate Y coordinate

1 0 0

2 2.5 0
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m Create Keypoints in Active Coordinate System
[K] Create Keypoints in Active Coordinate System

NPT Keypoint number |1_

%,Y,Z Location in active CS [o fol |

x| e | e [ b |

FIGURE 9.38 Enter the keypoint coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Lines > Lines
> Straight Line Pick the 1st and 2nd keypoint > OK

Create Straight Line

% pick " Unpick

~ Single  Box

€ Polygon Cirele
C Loop

Count =
Haximum =
Hinimum = Z
HeyP No.

(¥ List of Itaems

" Min, Hax, Inc

OK Apply

Reset Cancel

Picle A11 Help

FIGURE 9.39 Pick the keypoints to create lines.
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6. Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize
> Lines > All Lines > Enter NDIV No. of element divisions = 10

f“ tlement Sizes on All Selected Lines

[LESIZE] Blement sizes on all selected lines
SIZE Element edge length
NOIV  No. of slement divisions

(NDIV is used only I SIZE is blank or 2em)
KYNDIV SIZE,NDIV can be changed

SPACE Spacing ratio

1

Show more options

-
g

.

!

FIGURE 9.40 Specify element length.

7. Main Menu > Preprocessor > Meshing > Mesh > Lines > Click

Pick All

Mesh Lines

& pick  Dopick

# singls (" Box

" Polygen [ gircle
T Loop

Conanis - 0
Eaximum =
Binimum =

Line No. =

* List of Iveas

 Min, Hax, Inc

[ox ] amy |

Raset | Cancel ‘[

Pick .L'I.I.I Halp J

FIGURE 9.41 Create elements by meshing.
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8. Main Menu > Solution > Analysis Type > New Analysis > Select
Modal > OK

’j‘ New Analysis

[ANTYPE] Typeof analysis
" Static

@ Modal]

" Harmonic
 Transient
 Spectrum
 ExgenBucking
" Substructuring/CMS

x| e | e |

FIGURE 9.42 Define the type of analysis.

9. Main Menu > Preprocessor > Loads > Define Loads > Apply >
Structural > Displacement > On Nodes Pick the left most node >
Apply > Select All DOF > OK

Fi\ Apply U ROT on Nodes

[0] Apply Displacements (U,ROT) on Nodes
Lab2 DOFs to be constrained

Apply as
If Constant vaiue then:
VALUE Displacement value

o sooty |

FIGURE 9.43 Apply the displacement constraint.
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10. Main Menu > Solution > Analysis Type > Analysis Options > Select
Reduced option

Enter No. of modes to extract = 2
NMODE No. of modes to expand = 2> O0K
[MODCRT] Mods sxtraction method
1 Block Lancos
T POG Lancios
& Reduced
™ Ursymmetric
™ Damped
™ QR Dampsd
™ Supsmode
ot c—
{must be spacified for 8l methods except the Raduosd method)
MeaD)
Expand mede shapes W fes
NMODE No. of modes to expand D
Ekalc Calouinte slem resulls? N
TLUMPN] oo hamped mass sppean? %
[PSTRES] Ind prestress affects? N
_x | _Gocel| _m |

FIGURE 9.44 Select the number of modes to extract.

Enter FREQE Frequency range 0 2500 > OK

I\ Reduced Modal Analysis
[MODOPT] Options For Reduced Modal Analyss

FREQE,FREQE Frequency rangs - IU Iw
= for mode extraction
PRMODE No. of modes to print Iu
Nrmkay  Normalize mode shapes [Tomussmamx ;]

T I I

FIGURE 9.45 Enter the frequency range.



372 o FiNiTe ELEMENT ANALysis 2/E

11.

12.

13.

Main Menu > Solution > Master DOFs > User Selected > Define >
Pick all nodes except left most node > OK > Select UX from Lab 1
1st degree of freedom > OK

", Define Master DOFs

[M] Define User-Selected Master DOFs

Lab1 15t degree of reedom T -
Ux
Uy

Lab2-6 Addtional DOFs

o« | oy | concl Hoo |

FIGURE 9.46 Defining the master degree of freedom.

Y
B—b> B B B B B B B B b

FIGURE 9.47 Model with master DOF applied.

Solution
The interactive solution proceeds.
Main Menu > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters and
the Solve Current Load Step window is shown. Check the solution
options in the /STATUS window and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the
solution is complete, close the “Solution is Done!” window.

POSTPROCESSING
Main Menu > General Postproc > Results Summary

This result is shown as frequency values in Hz.
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14. Main Menu > General Postproc > Read Results > First Set

15. Main Menu > General Postproc > Plot Results > Contour Plot >
Nodal Solu > DOF Solution, click on Displacement vector sum > OK

This result is shown in Figure 9.35(b).

9.7 BAR SUBJECTED TO FORCING FUNCTION

EXAMPLE 9.5

The bar shown in Figure 9.48 is subjected to a time-dependent forcing func-
tion, as shown, to determine the nodal displacements for five time steps using
two finite elements. Let E = 207 GPa, Poisson’s ratio = 0.3, length of beam
L = 5 m, cross-section area A = 625 x 10° m”, mass density p = 7800 kg/mg.
Use the time step of integration 0.00025 seconds.

F(t)

4500 N[- - -

2 33—
26m | 26m | 'O

AAMANN
=

0.001 0.002 .
tin sec

FIGURE 9.48 The bar for Example 9.5.

Solution

(I) Software results.

1
POST26
UX_2

(X10%*%—4)

S

VALU

0
-2 (x10%*-3)

FIGURE 9.48(a) Displacement response for 0.00025 sec for node 2 (refer to Appendix D for color
figures).
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1
POST26

(x10%+—4)

(X10%%-3)

FIGURE 9.48(b) Displacement response for 0.00025 sec for node 3 (refer to Appendix D for color
figures).

Displacement values (in meters) for node 2

0.0000 0.00000
0.25000E-03 —0.467370E-06
0.50000E-03 —0.821457E-06
0.75000E-03 0.396081E-05
0.10000E-02 0.210563E-04
0.12500E-02 0.535055E-04
0.15000E-02 0.950064E-04
0.17500E-02 0.128841E-03
0.20000E-02 0.138387E-03

Displacement values (in meters) for node 3

0.0000 0.00000
0.25000E-03 0.375512E-05
0.50000E-03 0.191517E-04
0.75000E-03 0.488709E-04

0.10000E-02 0.889759E-04
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0.12500E-02 0.130597E-03
0.15000E-02 0.161991E-03
0.17500E-02 0.179673E-03
0.20000E-02 0.184097E-03

Maximum displacement values (in meters)

Name |Element__|Mode |Result Item |Minimum | Maximum |%-axis
TIME Tme 0 0.002 O

ux_z 2 #-Component of displacement -5.214572-007  0.000138357 &

omponent of displacement

FIGURE 9.48(c) Values of displacement.

EXERCISES

1. What is the governing equation of undamped free vibration and its non-
trivial solution?

2. What are the mass matrices for bar elements and beam elements?

3. Determine the first five natural frequencies for the fixed-fixed beam
shown in Figure 9.49. The beam is made of steel with E = 200 GPa, Pois-
son’s ratio = 0.3, length = 2 m, cross-section area = 60 cm’, mass density
p = 7800 kg/m’, moment of inertia T = 200 mm"*.

2m

JLLLRRRANAA
TTTITTITTITT

FIGURE 9.49 Fixed-fixed beam for Exercise 3.

4. For the bar shown in Figure 9.50, determine nodal displapements for the
five time finite elements. Let E = 70 GPa, p = 2700 kg/m‘a, A = 645 mm’,
and L = 2.5 m.

F(t)
inN
9000 N

| F(t)

L | L |

AVLARNNANNY

0.5
tin seconds

FIGURE 9.50 The bar for Exercise 4.
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5. The beam shown in Figure 9.51 is subjected to the forcing functions
shown, to determine the maximum deflections. Let E = 207 GPa, p =
7800 kg/m®, A = 0.0194 m°, T = 8.2 x 10° m*, L = 6 m. Take time step of
0.05 seconds.

F(t)
F(t) inN
P 5kN
~
~]
5
3 6m |
0.5
tin seconds

FIGURE 9.51 The beam for Exercise 5.

6. Determine the natural frequencies of vibrations for the cantilever beam
shown in Figure 9.52.

AVARRRNNNY

FIGURE 9.52 Cantilever beam for Exercise 6.

Hint [K]—El[ 16 —6L} ) [M]—ﬂ[ 156 —22L}

TP -6L 42 T 420 | 921 412

7. For the bar shown in Figure 9.53, determine nodal displacements for the
five time finite elements. Let E = 210 GPa, p = 2800 kg/ms, A = 825
mm”, and LL = 3 m.

4
F(t)
inN

1000 F-----

| F(t)

L L |

AVRRRRRRRAN

0.25 0.5
tin seconds

FIGURE 9.53 The bar for Exercise 7.

8. For the beam shown in Figure 9.54, determine the mode shapes. Let
E =310 x 10° psi, p = 0.283 Ibf/in’, A = 1in®, v=0.3, and L = 30 in.
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F(t)
Ft) in Ibf

20

AVAARARNNY

30 in |

tin seconds

FIGURE 9.54 The beam for Exercise 8.

For the bar shown in Figure 9.55, subjected to the forcing functions
shown, determine the nodal displacement, velocities, acceleration, and
maximum deflections for five time steps using two finite elements. Let
E=2x10°psi, p =2Ib-s¥in’, A = 2in* I =322.83in*, L = 10 in.

F(t)
inlb
3000

| F(t)

L | L |

AVLARARANAY

0.5
tin seconds

FIGURE 9.55 The bar for Exercise 9.
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CHAPTER I O

ENGINEERING ELECTROMAGNETICS
ANALYSIS

10.1

INTRODUCTION TO ELECTROMAGNETICS

10.2

Electromagnetics (EM) governs many applications in engineering such as the
transmission lines system. Therefore, it is essential to understand the fun-
damental concepts of EM in order to properly design and model electrical
systems and devices using the finite element method (FEM). Furthermore,
EM has become more useful in designing engineering systems with recent
technologies, especially due to the increasing speeds of digital devices and the
increased use of modern electronics circuits such as printed-circuit-board and
communications systems such as cellular phones. The most important equa-
tions in EM theory are Maxwell’s equations, which are known as the founda-
tion of EM theory.

MAXWELL’S EQUATIONS AND CONTINUITY EQUATION

In electromagnetic analysis on a macroscopic level, it is based on solving
the Maxwell’s equations issue on certain boundary conditions. Also, there is
another fundamental equation that can specify the conservation (indestruct-
ibility) of electric charge known as the equation of continuity. Maxwell’s equa-
tions and continuity equation can be written in both differential and integral
forms. We choose to start here with the differential form because it leads to
differential equations that the FEM can handle.
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Maxwell’s Equations and Continuity Equation in Differential Form

Now, we can present the four Maxwell’s equations in differential form in time-
varying EM fields as:

VxH=], + aa_]t) (Ampere’s law) (10.1)
VXE= -38—1: —¥,, (Faraday’s law of induction) (10.2)
V-D=p, (Gauss’s law-for electric field) (10.3)
V-B=0 (Gauss’s law-for magnetic field) (10.4)
where

E = Electric field intensity, (in volt/meter) ~V/m”®

D = Electric flux density (or electric displacement), (in coulomb/meter’) —-C/m”

H = Magnetic field intensity, (in ampere/meter) —A/m”

B = Magnetic flux density, (in tesla or weber/meter’)-T or Wh/m®

J. = Electric Current density or charge flux (surface), (in ampere/meterz) ~A/m”

J,, = The magnetic conductive current density, (in volt/meter?) -V/m®, where
J, =0, H

a,, = The magnetic conductive resistivity (in ohm/meter) —£2/m

P. = Electric charge density (volume), (in coulomb/meter”) —C/m”.
Now, the equation of continuity can be written in differential form as

V), = —% (Continuity equation). (10.5)
There are three independent equations from the above five equations. They are
either equations 1, 2, and 3, or equations 1, 2, and 5. The other two equations 4
and 5, or equations 3 and 4 can be derived from the independent equations,
and therefore are called dependent equations. Additionally, equation 5 can be
derived the divergence of equation 1 and using equation 3.
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10.2.2 Maxwell’s Equations and Continuity Equation in Integral Form

Furthermore, let us now look to the four Maxwell’s equations and the continu-
ity equation in integral form in time-varying EM fields. The integrals are taken
over in an open surface S or its boundary contour L as shown in Figure 10.1,
where I is the electric current that flows through the path L.

L

FIGURE 10.1 The surface S and contour L for the integral form of Maxwell’s equations.

oD

%‘H. dl = L(L +§] dS (Ampere’s law) (10.6)
Cf) oB , . .

E-dl= —J —+], | dS (Faraday’s law of induction) (10.7)

L s\ ot

iD -dS = CJ-D p,dv (Gauss’s law-for electric field) (10.8)
ngB -dS =0 (Gauss’s law-for magnetic field) (10.9)
—J. J,-ds :EJ. p.dv (Continuity equation) (10.10)

S e at ° v

where the surface S encloses the volume v, while the contour L encloses the
surfaceS. 1 is the line vector over the contour L and § is the surface vector.
Note that, the direction of dl must be consistent with the direction of the dS
in agreement with the right-hand rule.

10.2.3 Divergence and Stokes Theorems

Indeed, equations 6 through 10, the integral forms can be derived from the
differential forms or vice versa. This can be done by using either divergence
(Gauss’s) theorem or Stokes” theorem,
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@gF -dS = IV Fdv (Divergence theorem) (10.11)
§ F-dl=[ VxF-dS (Stokes theorem), (10.12)

where F is any arbitrary vector field.

10.2.4 Maxwell’s Equations and Continuity Equation in Quasi-Statics Case

So far, we have done Maxwell’s equations in a fully dynamic case. Now, we can
express Maxwell’s equations in quasi-statics case in which the displacement
current (D) is neglected. That is,

VxH=],. (10.13)
Whereas equations (10.2), (10.3), and (10.4) remain the same. Also, we can
write the continuity equation (10.5) in the quasi-statics case as

V.J, =0. (10.14)

Indeed, the quasi-static approximation is mainly used for time-varying fields
in various conducting media. This is due to the fact that, for good conductors,
the conduction current greatly exceeds the displacement current, D, for the
frequencies.

10.2.5 Maxwell’s Equations and Continuity Equation in Statics Case
oD
In the statics field case, the current displacement term <¥) and the
oB
time-varying magnetic flux density term <¥ ) are neglected (the field quanti-

ties do not vary with time). Therefore, Maxwell’s equations in static form are
expressed as

VXE=0. (10.15)

Whereas equations (10.3), (10.4), and (10.13) still hold. Also, the continuity
equation (10.14) remains the same.

To emphasize, there is no interaction between the electric and the magnetic
fields. Thus, the static case can be divided into two separate cases, electro-
static case and magnetostatic case.
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In electrostatic case, it can be described by equations (10.3) and (10.15), while
for magnetostatic case, it can be described by equations (10.4) and (10.13).

10.2.6 Maxwell’s Equations and Continuity Equation in Source-Free Regions
of Space Case

The sources of the electromagnetic fields can be the volume charge density
(p, ) and the electric current density ( J, ). In fact, these densities are localized
in space. Also, these sources can make the generated electric and magnetic
fields to radiate away from them, and they can make the generated electric
and magnetic fields to propagate to larger distances to the receiving destina-
tion. Therefore, Maxwell’s equations can be written in source-free regions of
space (away from the source) as:

vy 2P (10.16)
ot

Vsz—a—B (10.17)
ot

V-D=0 (10.18)

whereas equation (10.4) remains the same. With this in mind, the continuity
equation (10.14) also remains the same.

10.2.7 Maxwell’s Equations and Continuity Equation in Time-Harmonic Fields
Case

So far, we considered the arbitrary time variation of electromagnetic fields.
Here, we consider only the steady-state (equilibrium) solution of electro-
magnetic fields when produced by sinusoidal currents. The time-harmonic
(sinusoidal steady-state) field for Maxwell’s equations exists when the field
quantities in the equations are harmonically oscillating functions with a sin-
gle sinusoidal frequency @ . The time-harmonic fields case is the most regu-
larly used in electrical engineering. Now, an arbitrary time-dependent field
F(x,y,z,t) or F(r,t) can be written as

F(r,t)= Re(Fg(r)e‘jw’ ) (10.19)

where e is the time convention, ® is the angular frequency (rad/s) of the

sinusoidal excitation, F,(r)=F,(x,y,z) is the phasor form of F(r,t), and it is
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in general complex, and Re( ) indicates taking the real part of quantity in
the parenthesis. Furthermore, the electromagnetic field quantities can be
expressed in phasor notation as

H(r,t) H(r)

E(r,t) E(r) jut

Dr.1) = D) e, (10.20)
B(r,t) B(r)

For example, the fields can be expresses in time-dependent ¢’

tion (10.20), H(r,t) = H(r)e’" and E(r,t) = E(r)e’" , etc.

, as in equa-

As a result, using the phasor representation can allow us to replace the time

derivations % by jw because

0™ _ e, (10.21)

Therefore, Maxwell’s equations can be expressed in time-harmonic as

VXH, =], + joD, (10.22)
oB
VXE =——5 ] (10.23)
s at Jms
V-D =p, (10.24)
V-B, =0. (10.25)

Now, the continuity equation can be presented as
On the other hand, a non-sinusoidal field can be presented as

F(r,t)= Re( ]i F (r,t)e’" dw } (10.27)
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Therefore, the solutions to Maxwell’s equations for a non-sinusoidal field can
be found by assuming that all the Fourier components F,(r,w) over .

10.3 LORENTZ FORCE LAW AND CONTINUITY EQUATION

The Lorentz Force F is the force on a charge ¢ with a vector velocity u in the
present electric filed E and magnetic field B and can be obtained as

F=gE+uxB). (10.28)

In addition, the volume charge p and the current distribution J can be sub-
jected to the forces in the presence of fields. Thus, Lorentz Force F per unit
volume acting on the volume charge and the current distribution can be
expressed as

F=p E+]xB, (10.29)

However, if the current distribution J occurs from the motion of the charges
g within the volume charge p , then the current distribution J can be formed
as J = p,v. This can make the Lorentz Force F as

F=p, (E+vxB). (10.30)

Moreover, the Lorentz Force law is essential to understand the interaction
between EM fields and matter. Indeed, the law is used in the design of many
electrical devices.

Furthermore, the continuity equation which expresses the conservation of
electric charge can be written as

v.y=-9 (10.31)
ot

Equation (10.31) is implicit in Maxell’s equations.

10.4 CONSTITUTIVE RELATIONS

In addition to Maxwell’s equations and the continuity equation, there are con-
stitutive relations that describe the macroscopic properties of the medium
in which the fields exist. In other words, constitutive relations describe the
relationship between the EM fields through the properties of the medium.
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Indeed, Maxwell’s equations and constitutive relations are used to obtain the
solutions of EM fields that exist in any microwave structure. The constitutive
relations can be presented in vacuum (free space) as

D=¢,E (10.32)
B=u,H (10.33)
J.=0 E (10.34)
], =0, M (10.35)

where

&, = the permittivity of vacuum

U, = the permeability of vacuum

o, = the electrical conductivity

M = magnetization field.

The numerical values of ¢, and x, are written as

e, =8.854x10"*Farad / m zﬁxm‘gF /m,

11, =12.6x107 Henry / m = 47 x10™ H / m. (10.36)

We can use these two quantities to define the speed of light ( ¢, ) and the char-
acteristic impedances in vacuum (7, ) as:

Cy =

=3x10%m /sec., 5, = |"L =377Q. (10.37)
€y

1
VEoko
To emphasis, the constitutive relations are needed to solve for EM field quan-

tities using Maxwell’s equations.
For simple homogenous isotropic dielectric and for magnetic material (linear
and isotropic media), the constitutive relations are given as

D=¢E (10.38)

B=uE (10.39)
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Whereas equations (10.34) and (10.35) remain the same.

where ¢ is the permittivity of the material, and yu is the permeability of the
material.

For inhomogeneous media, the constitutive relations are functions of the
position.

The permittivity of the material ¢ and the permeability of the material x4 can
be presented as

e=¢,(1+yx.)

w=u,I+y.) (10.40)

where , is the electric susceptibility of the material, which is the measure of
the electric polarization property of the material (dimensionless scalar), and
X, is the magnetic susceptibility of the material, which is the measure of the
magnetic polarization property of the material (dimensionless scalar).

Moreover, the speed of light in the material ¢ and the characteristic imped-
ance of the material 7 is expressed as

et = K (10.41)
&

The relative permittivity &, of a material, the relative permeability x. of a
material, and the refractive index n of a material are formed as

€, =% 15 Ao M, —H oy Yo > N=AfE 0, =0 =E . (10.42)

&y Ko
By using equations (10.41) and (10.42), we get

=2 and n /T (10.43)

n &

r

It is good to know that for nonmagnetic material x. =1 or u, =p,, and

]7:

Now, the constitutive relations for time-harmonic fields in simple media are:

n
n
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D=¢g¢, (@E=¢(@E (10.44)
B = 1,1, (0)H = 1 ()H (10.45)
J,=0,()E. (10.46)

Furthermore, both the electric polarization P (Coulomb/m?), which describes
how the material is polarized when an electric field E is present, and the mag-
netization M (Ampere/m), which describes how the material is magnetized
when a magnetic field H can be included in the constitutive relations in any
material as

D=¢ E+P (10.47)
B = 1,(H+ M) (10.48)
J.=0 E (10.49)
J,=0,M (10.50)

where P=¢, x.E and M= %, H.

Next, for nonlinear material, the constitutive relationships can be pre-

sented as
D=¢.¢, E+D, (10.51)
B=uu H+B, (10.52)
] =0 E+], (10.53)

where D, is the remanent displacement that is the displacement when the
electric field is not present, B, is the remanent magnetic flux density that is
the magnetic flux density when the magnetic field is not present, and J,, is an
externally generated current.
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It is beneficial to know that Maxwell’s equations can be expressed in an
approach that ensures the contribution of the medium in terms of the fields

E and B as

VXB=80uOE+uO(]+%+VXM)

ot
Vsz—a—B
ot
1
V-E=—(p,-V-P)
80
V-B=0

EXAMPLE 10.1

Given H=He/“"*"a_ in free space, calculate E.

Solution

We know D=¢E and VxH= %) , therefore

aD - iHej(wHﬂz)a

o oz Y
oD ot

s He](rx)t+/i~)a
a J p I

D= ﬁH ej((ut+/)’:)a

w Yy

H -
E =—ﬂ ef“””ﬁ”a,/.
e ’

(10.54)

(10.55)

(10.56)

(10.57)
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10.5 POTENTIAL EQUATIONS

Often under certain circumstances, it can be essential to formulate EM prob-
lems in terms of potential functions, that is, the scalar electric potential V,
and vector magnetic potential A. These potential functions are arbitrary, and
they are required to satisfy Maxwell’s equations. They are described by

B=VxA (10.58)
E=-VV, _A (10.59)
ot

In fact, equation (10.55) is a direct consequence of the magnetic Gauss law,
and equation (10.55) results from Faraday’s law. In the magnetostatic case
(there are no currents present), Ampere’s law reduces to

VxH=0. (10.60)

Indeed, when equation (10.57) holds, we can present the scalar magnetic
potential V by

n

H=-VV

m*

(10.61)

It is clear that equations (10.58) and (10.59) satisfy Maxwell’s equations (1.2)
and (1.4). Now, to relate the potential functions to the other two Maxwell’s
equations (1.1) and (1.3), by assuming the Lorentz condition holds, that is,

A%
V- A=— <. 10.62
m ( )
These equations can be written in the case of linear and homogenous
medium as

Vv g LV e (10.63)

ot” e
Vo A—eu——=-uJ. (10.64)
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Equations (10.63) and (10.64) as wave equations, and the integral solutions to
these equations are known as the retarded potential solutions, i.e.,

[p.]dv

V= jm (10.65)
_pu[Y]do
A= j—4nR (10.66)

where R is the distance from the source point to the field point at which the
potential is required, and the square brackets [ | denote that p, and J are
specified at a time R.Jeu earlier than for which V, or A is being formed.

10.6 BOUNDARY CONDITIONS

The material medium in which an electromagnetic field exists is usually char-
acterized by its constitutive parameters ¢,¢,and u . If ¢,e,and y¢ are inde-
pendent of E and H, the medium is linear. Also, if o ,&,and u are dependent
of E and H, the medium is nonlinear. Now, if ¢ ,¢ ,and u are functions of space
variables, the medium is inhomogeneous. But, if ¢ ,&,and u are not functions
of space variables, the medium is homogeneous. Additionally, if & ,and x are
independent of direction (scalars), the medium is isotropic. If o ,&,and u
are dependent on direction (vectors), the medium is anisotropic. Indeed,
most of substrates used in electronic circuits are homogenous, isotropic, and
linear.

The boundary conditions at the interface separating two different media 1
and 2, with parameters (&,,4,,0,) and (&,,4,,0,), respectively, as shown in
Figure 10.2.

Medium 2 (&:16.0,)

FIGURE 10.2 Interface between two media.

The boundary conditions for the EM fields across material boundaries are
derived from the integral form of Maxwell’s equations. They are given by
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nx(E, ~E,)=0 or E, —E, =0 (10.67)
n- (D, -D,)=p or D, —-D, =p, (10.68)
n><(H1 —H2)=Js or H,-H, =], (10.69)

n-(B,-B,)=0 or B, — B, =0 (10.70)

where n is a unit normal vector directed from medium 1 to medium 2, sub-
script ¢ and n denote tangent and normal components of the fields, respec-
tively, p, and J, are surface electric charge density (coulomb/m?) and surface
current density (ampere/m), respectively. Furthermore, equations (10.67) and
(10.70) state that the tangential components of E and the normal components
of B are continuous across the boundary. But, equation (10.68) states that the
discontinuity in the normal component D is the same as the surface electric
charge density p; on the boundary. However, equation (1.69) states that the
tangential component of H is discontinuous by the surface current density J,
on the boundary. In many interface problems, only two of Maxwell’s equa-
tions are used, equations (10.68) and (10.70), when a medium is source-free (
J=0,p,=0), since the other two boundary conditions are implied. In such a
case, the boundaries conditions may be written as

E, =-FE, (10.71)
D, =D, (10.72)
H, =H,, (10.73)
B, =B,, (10.74)

Moreover, Maxwell’s equations under the source-free condition are applica-
ble to passive microwave structures such as transmissions lines.

However, when one of the media is a perfect conductor, boundary condi-
tions are different. A perfect conductor has infinite electrical conductivity
and thus no internal electric field (full of free charges). Or else, it would
produce an infinite current density according to the third constitutive
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relations. When an EM field is applied to a perfect conductor medium, the
free charges which are pushed to the applied EM field, move themselves
in such a way that they produce an opposite EM field that completely can-
cels the applied EM field. Indeed, this causes the creation of the surface
charges and currents on the boundary of the perfect conductor. At an inter-
face between a dielectric and a perfect conductor, the boundary conditions
for E and D fields are simplified. Now, assume that medium 1 is a perfect
conductor, then E| = 0 and D,= 0. Also, if it is a time-varying case, then H,
= 0 and B,= 0, and, in addition, as a correspondence of Maxwell’s equations.
Therefore, the boundary conditions for the fields in the dielectric medium
for the time-varying at the surface are

—nxE, =0 (10.75)
n-D,=p, (10.76)
—nxH, =], (10.77)
“n-B,=0. (10.78)

Furthermore, we can apply the integral form of the continuity equation (10.10)
to the surface at the interface between lossy media (i.e.,a, 20,6, #0 ) or lossy
dielectric (i.e., 0, 20, and ¢, #¢, ), or perfect conductor (i.e., no fields inside
the media). Therefore, the interface condition for current density J can be
obtained as

9p,
or
Equation (10.79) states that the normal component J is continuous, except
where the time-varying surface electric charge density p, on the boundary
may exist.

n.(Jl—JZ):—% or (Jun=Jo) =~ (10.79)

LAWS FOR STATIC FIELDS IN UNBOUNDED REGIONS

Coulomb’s law and Biot-Savart’s law are the two fundamental laws governing
the static fields in unbounded regions.
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Coulomb’s Law and Field Intensity

Coulomb’s law is an experimental law that deals with the force a point charge
exerts on another point charge. In other words, Coulomb’s law states that the
force F (in newtons) between two points charges Q, (in coulombs) and Q, is

QIQZ (10.80)
47'[8 R‘

where R (in meter) is the distance between the two charges. We can define
the electrostatic field intensity E as the force F applied by 1 charge Q on a unit
positive point charge as

Qay (10.81)
4n3 R‘

Knowing that, the point at which the charge Q is located is called the source
point, and the point at which the electrostatic field intensity E is taken is
called the field point. Thus, here a, is the unite vector in the direction from
the source point toward the field point, and R is the distance between the
source point and the field point.

Now, it is possible to obtain a continuous charge along a line, on a surface, or
in a volume, respectively as

= [ L2 g (10.82)
L 4me R
_PAag

10.83

S4me 32 ( )
_P.Ag

E= 10.84

I v 47e R‘ ( )

where L is the line along which the charge is distributed, S is the surface
on which the charge is distributed, v is the volume enclosed by a surface S.
PP, and p_, are the line, surface, and volume charge density, respectively.
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10.7.2 Bio-Savart’s Law and Field Intensity

Bio-Savart’s law is a magnetostatic law used to express the static magnetic
field as a summation over elementary current sources. Now, we can obtain
the Bio-Savart law for the line current, surface current, and volume current,
respectively, in terms of the distributed current sources as

_ L”Z;jﬂ (10.85)

H=| J. Zj;j‘ﬂ (10.86)

n-| Z”;f‘ﬂ ., ).ds (10.87)
TT

where I is the line current density, J, is the surface charge density, J, is the
volume charge density, and a, is a unit vector pointing from the differential
elements of current to the point of interest. Indeed, the source elements are
related as

IdI=]J ds=] dv. (10.88)

10.8 ELECTROMAGNETIC ENERGY AND POWER FLOW

The electric energy W, is defined as

W, :L[EEdDJdu j[jE —dt] (10.89)

where D is the magnitude of electric displacement, and T is the period.

The electrostatic energy present in an assembly of charges can be written as
1 n
W= X0, (10.90)
o

where V is the potential, and Q is the point charge. Now, instead of point
charges, the region has a continuous charge distribution, and the summation
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equation (10.90) becomes integrations for line charge, surface charge, and
volume charge, respectively, as

1

W, ZEL p,Vdl (10.91)

wo=L1(,vds (10.92)
e _E‘Lps .

w=Lt j Vdv (10.93)
e 2 Cpu N M

In the meantime, p, =V-D, E=-VV  and D=¢E, and by using the iden-
tity for vector and scalar rules and applying the divergence theorem, and know-
ing that in a simple medium whose constitutive parameters (u,¢, and o ) do
not change with time, we have

oD Jd(¢E) 10(¢E-E) o9(1 _,
E-—=E- =— =—|=¢E* |
ot a2 &(28 ) (1084)
We can obtain electrostatic energy as
1% =lj D E dv:ljeoE2 dv. (10.95)
¢ 9 Jov 9 Jv

Also, the electrostatic energy density w, (in ]/mz) can be obtained as

w, =1D.E=180E2 D
2 2 2,

(10.96)

When a wave propagates in a medium, it carries the electric field and power.
However, the time derivative of equation (10.89) is the electric power which
is written as

oD
P=[E 5 (10.97)

Furthermore, the magnetic energy can be defined as
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j[jH dB]d@ J(JH —dt] (10.98)

where B is the magnitude of magnetic flux density, and T is the period.

The magnetostatic energy present in an assembly of currents k can be written
as

W =110, (10.99)
234

where I, is the kth current, and @, is kth magnetic flux.

Note, knowing that in a simple medium, whose constitutive parameters
(u,e, and ¢ ) do not change with time, we have

oB J(uH) 1d(uH-H) 9(1 _,
ot * 2 o al 2" (10.100)
We can obtain magnetostatic energy as
1% =lj B H da:lj wH? do. (10.101)
¢ 2 v 2 v

Also, the magnetostatic energy density w,, (in J/m®) can be obtained as

2
w, =~B-H=Lum =L (10.102)
2 2 o

When a wave propagates in a medium, it carries the magnetic field and power.
However, the time derivatives of equation (10.98) are the magnetic power
that is written as

jH —d (10.103)

The instantaneous power density vector associated with the electromagnetlc
field at a given point is known as the Poynting vector P, (in W/m’ %), which is
written as
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P =ExH. (10.104)

For more practical value than P, we determine the time- -average instanta-
neous Poynting vector (or power average density) (in W/m” %) over the period

T—2—n as
W
(2) j (zt)d (10.105)

(]V ave

In addition, for time-harmonic fields, we can define a phasor Poynting vector as

P, =ExH’ (10.106)

where H" is the complex conjugate of H_. Now, for a phasor Poynting
vector, we can define the time-average power, which is equivalent to equation
(10.106) as

1 .
P, ()= Re(E,xH,) (10.107)

where Re( ) stands for the real part of a complex quantity. Furthermore, the
total time-average power crossing a given surface S is given by

P

tave

—lReJ(ExH dS=|[P,_,.-ds. (10.108)

ov—ave

The electric and magnetic power quantities are related through Poynting’s
theorem as

J( D, = jd = | J-Edv+§ (ExH)-dS (10.109)-105

where

J-_]-Edv is called resistive losses, which result in heat dissipation in the
material.

qgs (ExH)-dS is called the radiative losses.

However, Poynting’s theorem as presented in equation (10.109), can be
written as
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. (ExH)-dS= J (

lp +é,uH2 ]du—ngQdu (10.110)

“otdel 2

where

Cﬁs (ExH)-dS is the total power leaving the volume.

—ai [%8 E? +é pH? |dv is the rate of decrease in energy stored in electric
t v

and magnetic fields.
—Jﬁa E*dv is the decrease in ohmic power density (dissipated).

Indeed, under the material is linear and isotropic, it holds that.

gD _p 9CE) 1J(:E E) (10.111)
ot ot 2 ot

g8 _1lpgdB_0df1 gp) (10.112)
t u ot dt| 2u

Therefore, based on equations (10.111) and (10.112), equation (10.109) can
be written as

3 (1 1
—EL(EeE-E+EB-B}h}:J‘U]-E(lv+cﬁs(E><H)'dS. (10.113)

Now, by integrating the left-hand side of equation (10.113) is the total electro-
magnetic energy density w,

1 1
w, =w, +w, =§[3E.E+—B.B} (10.114)
U

10.9 LOSS IN MEDIUM

The electronic circuits have dielectrics that are not always perfect. Thus, there
is always loss in any practical nonmagnetic dielectrics, known as dielectric loss.
This dielectric loss is due to a nonzero conductibility of the medium. Now, we
can write the time-harmonic Maxwell’s equation (10.22), making use of the
time-harmonic constitutive relations (10.44) and (10.46), as
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, , 0
VxH, = jwe (l—j—jE (10.115)
we
or
VxH, = jwe (1- jtand )E (10.116)
where
tand =2 (10.117)
we

Equation (10.117) is called the loss tangent of the medium, which is usually
used to characterize the medium’s loss. In addition, now we can define a com-
plex dielectric constant of a lossy medium ¢ as

E=¢"—je” (10.118)

where the real part ¢ " of the complex dielectric constant is the dielectric prop-
erty that contributes to the stored electric energy in the medium, and it is

defined as
¢'=¢=¢ug (10.119)

and the imaginary part ¢” contains the finite conductivity and results in loss in
the medium, which is defined as

n

g"=—=¢tand. (10.120)

ag
w

For example, the loss tangent for GaAs material is 0.006 at frequency 10 Ghz,
relative dielectric constant equal to 12.9, and temperature 25° C. Also, the loss
tangent for silicon material is 0.004 at frequency 10Ghz, relative dielectric
constant equal to 11.9, and temperature 25° C.

10.10 SKIN DEPTH

The measure of the depth to which the electromagnetic wave can penetrate
the medium is known as skin depth (or depth of penetration). Skin depth is
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one of the most important parameters of a medium because it presents the
distance from the medium surface over which the magnitude of the fields of
a wave traveling in the medium is reduced to ¢ (or 0.368) of those at the
medium’s surface. The skin depth 6 of a good conductor is approximately
written as

5= |2 =1 (10.121)

T

where w =27 f.

It is essential to know that the skin depth of good conductors is very small,
especially at high frequencies. Thus, it results in a low conduction loss.

EXAMPLE 10.2

Calculate the skin depth, ¢, for aluminum in a 1.6 x10° Hz field
(6 =38.2x10°S/m and u=1).

Solution

5= |2 -1 _ 1 — 64.4um.
oo Jnfuo  \rx1.6x10°x1x38.2 x10°

10.11 POISSON’S AND LAPLACE’S EQUATIONS

Poisson’s and Laplace’s equations are derived from Gauss’s law (for a linear,
isotropic material medium)

V~D=V~8E=pv (10.122)
and
E=-VV. (10.123)

By substituting equation (10.123) into equation (10.122), we get

V. (-VV)=p, (10.124)
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for an inhomogeneous medium. Equation (10.124) can be obtained for a
homogeneous medium as

vy=_Lv (10.125)
&

Equation (10.125) is known as Poisson’s equation.

Now, Laplace’s equation is a special case of Poisson’s equation when p, =0
(i.e., for a charge-free region), and it can be described as

V2V =0. (10.126)

Laplace’s equation is used to determine the static or quasi-static characteristic
impedance and effective relative dielectric constant of a transmission line.

10.12 WAVE EQUATIONS

We have used so far Maxwell’s equations and constitutive relations directly to
determine the EM fields. However, it can be very convenient to obtain the
EM fields by solving wave equations.

When the electromagnetic wave is in a simple (linear, isotropic, and homog-
enous) nonconducting medium (& , 4, and ¢ =0), the homogenous vector
wave equations can be presented as

V’E —Ciz%;f ~0 (10.127)
and
2
V2H—céaa;1 =0. (10.128)

On the other hand, the relation between scalar potential V and vector poten-
tial A is called the Lorentz condition (or Lorentz gauge) for potentials that is
expressed as

V-A+,ugaa—§j=0. (10.129)
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The non-homogenous wave equation for vector potential A is given by

’A

VA —ue Y J. (10.130)

But, the non-homogenous wave equation for scalar potential V is given by

. V. p
V2V - =-L 10.131
ue Ev p ( )

The time-harmonic wave equations for vector potential A and scalar potential
V equations can be obtained, respectively as

VA+KA=—u]J (10.132)
and
V2V 4KV = —g (10.133)
where
k=wJue =% (10.134)

Equation (10.134) is called wave number, and equations (10.132) and (10.133)
are known as non-homogenous Helmholtz’s equations.

However, when the EM wave in a simple, nonconducting source-free medium
(characterized by p =0,J=0,6 =0) and the time-harmonic wave equations
can be obtained as

VE+KE=0 (10.135)
and
VH+KH=0. (10.136)

Equations (10.135) and (10.136) are known as the homogenous vector
Helmholtz’s equations.
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For example, we can solve standard wave equation on the square domain with
MATLAB as:

numberOfPDE = 1;

model = createpde (numberOfPDE) ;
geometryFromEdges (model, @squareq) ;

pdegplot (model, "EdgeLabels", "on") ;
ylim([-1.1 1.17);

axis equal

title ("Geometry With Edge Labels Displayed")

xlabel ("x")

ylabel ("y")
Geometry With Edge Labels Displayed
1 I 51 I

08} 1
06} 1
04} 1
0.2} 1
= ([E4 H2
021 1
04t i
06+t _
08 i

-1 E3
-1 -65 6 65 1

X

% Specity PDE coefficients.

specifyCoefficients (model, "m",m,"d",0,"c",c,"a",a,"t", f);
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%Set zero Dirichlet boundary conditions on the left (edge 4)
and right (edge 2) and zero Neumann boundary conditions on the
top (edge 1) and bottom (edge 3).

applyBoundaryCondition (model, "dirichlet", "Edge", [2,4],"u",0);

applyBoundaryCondition (model, "neumann", "Edge", ([1 31),"g",0);

%$Create and view a finite element mesh for the problem.

generateMesh (model) ;
figure

pdemesh (model) ;
ylim([-1.1 1.171);
axis equal

xlabel x

ylabel y

06 R

04r b

02 b

021 1

04t 1

08 1
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Set the following initial conditions:

X
w(x,0)=tan™"| cos| —
. ulx0) %)

(2) . %L:O:Ssin(nx)exp sin %/)

ot
u0 = @(location) atan(cos(pi/2*location.x));
ut0 = @(location) 3*sin(pi*location.x).*exp(sin(pi/2*location.y));

setInitialConditions (model,u0,ut0);

%$This choice avoids putting energy into the higher vibration
modes and permits a reasonable time step size. Specify the
solution times as 31 equally-spaced points in time from 0 to 5.

n = 31;

tlist = linspace(0,5,n);

$Set the SolverOptions.ReportStatistics of model to 'on'.

model.SolverOptions.ReportStatistics ='on';

result = solvepde (model, tlist);

441 successful steps

34 failed attempts

952 function evaluations
1 partial derivatives
115 LU decompositions

951 solutions of linear systems

u = result.NodalSolution;
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%Create an animation to visualize the solution for all time
steps. Keep a fixed vertical scale by first calculating the maxi-
mum and minimum values of u over all times, and scale all plots
to use those z-axis limits.

figure

umax = max (max(u));
umin = min(min(u));
for i = 1:n

pdeplot (model, "XYData",u(:,1),"ZData",u(:,1),
"ZStyle","continuous", "Mesh", "off") ;

axis([-1 1 -1 1 umin umax]);

caxis ([umin umax]);

xlabel x

ylabel y

zlabel u

M(i) = getframe;

end
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10.13 ELECTROMAGNETIC ANALYSIS

Due to the cost-effectiveness of experiments and testing, the development
of transmission lines in integrated circuit systems is time-consuming. Today,
researchers, designers, and engineers used several numerical and analytical
methods to study and investigate the parameter variations and properties of
designing high-speed integrated circuits (microwave circuits) and electromag-
netic (EM) problems. The most common analytical methods used for exact
solutions in electromagnetic are conformal mapping, integral solutions, sepa-
ration of variables, and series expansion. Also, the most popular numerical
methods used for approximate solutions are methods called moment meth-
ods, methods of line, finite difference methods, and FEM.

FEM has great success in electromagnetic analysis compared to other meth-
ods. In contrast to other numerical methods, it is very useful for solving prob-
lems in complex geometries and inhomogeneous media. In this chapter, we
show an overview of the finite element method. FEM requires that any prob-
lem involved in the geometrical region to be subdivided into finite number
of smaller regions or elements. An approximate solution for the partial dif-
ferential equation can be developed for each of these elements. In addition,
the total solution is generated by assembling together the individual solutions
taking care in order to ensure continuity at the interelement boundaries.
Basically, there are four steps used in FEM: first, creating and discretizing the
solution region (domain) into a finite number of subregions or elements; that
is, divide the problem into nodes and elements and assume a shape function
to represent the physical behavior of an element; second, developing equa-
tions for an element; third, assembling all the elements to represent in solu-
tion region, constructing the global coefficient matrix and applying boundary
conditions and initial conditions; fourth, solving the system of equations to
obtain the important information of the problem.

10.13.1 One-Dimensional Elements
10.13.1.1 The Approach to FEM Standard Steps Procedure

The first step is the discretization step, that is, the solution domain is divided
into finite elements. Figure 10.3 provides an example of elements employed
in one dimension. It shows the points of intersection of the lines that make up
the sides of the elements called nodes, and the sides themselves are known as
nodal lines.
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Line element Node

FIGURE 10.3 Example of elements in one-dimensional (1D).

The second step is the development of equations to approximate the solution
for each element. It can be done by choosing an approximate function with
unknown coefficients that will be used to approximate the solution. We use a
first-order polynomial (straight line) as a linear variation of potential between
the nodes over element m, i.e.,

V" (x) = a+ bx. (10.137)
where V(x) is the dependent variable (potential function); a and bare con-
stants; x is the independent variable.

We can find the two constants @ and b by using the two nodes to satisfy the
equation at the location of the two nodes as:

V" =a+bx, (10.138)
and

V," =a+bx, (10.139)
where V" =V"™(x)) and V," =V"(x,). By using Cramer’s rule, we can

solve equations (10.138) and (10.139), i.e.,

_ V,\"x, =V, (m)x,

(10.140)
Xy =X
(m) _ (m)
p=Ye N (10.141)
Xy —X4

Equations (10.140) and (10.141) can be substituted into equation (10.137) to
give the approximate (or shape) function V(x) in terms of the interpolation
functions, H, and H, over element m, that is,

V(m) (x> =a l(m) <x>‘/1(1n) +a 2(1:1) (x>V2(m) <10 142)

where
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a, " (x) =2 (10.143)
X, =X,

a,™ () =1 (10.144)
X, — X,

Indeed, equation (10.142) is a first-order interpolating polynomial. In addi-
tion, it provides a means to calculate intermediate values between the given
values V, and V, at the nodes.

The shape function, along with the corresponding interpolation functions, is
presented in Figure 10.4. Moreover, the sum of the interpolation functions,

2
a, andaz,thatis,Zaizl.

i=1

Node 1 m Node 2
-— e —» X
(@)
V](m)

o (x) v, (m)

_yx

5 (b)

a,™ (x)

—> X
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az(”') (x)

—
x, *

" @

FIGURE 10.4 (a) a line element, (b) a linear approximation (or shape) function, (c) the corresponding

interpolation function 0 1('”)(96) for V<m) (‘C) , and (d) the corresponding interpolation function
o, ™ (x) for V" (x).

Furthermore, it follows that,

(m) (m) (m)
d‘;{ - do;llx A +—d“;x v, (10.145)
da "™ -1
d—1= (10.146)
X Xy — X
and
da,” 1
d—Zx:x — (10.147)
2 Y
Thus,
dv™ (_V(m)l + Vzm))
A = r —x . (10.148)
) X, — X
Now, the integral of v s
Xy Xy V(m) +V(m) X, —
J.V(m)dx — j(a 1(m)‘/l(m) +a2(1n)V2(m))dx — ( 1 22 )( 2 1). <10149>

Now, we evaluate the coefficients so that the function approximates the solu-
tion in a best approach. The most common methods used for this proposal are
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the variational approaches, the weighted residuals, and the direct approaches.
These methods can specify the relationships between the unknowns in
equation (10.142) that satisfy the partial differential equation in an optimal
approach. The resulting element equations can be expressed in a set of linear
equations in matrix form, i.e.,

I:C(m):l{v(ﬂl)}C :{lIJ <”l)} (10150)

c

where

[C('“)] is element property (stiffness) matrix; {VC("”} is a column vector

m

of unknowns at the nodes over element m; and {‘I’c( )} is a column vector

reflecting the effect of any external influences applied at the node over ele-
ment m.

Third, we assemble all the elements to represent the solution region. The
solutions for the closest elements are matched so that the unknown values at
their common nodes are equivalent. Therefore, the total sum will be continu-
ous. Then, the assembled system needs to be modified for its boundary condi-
tion. The system can be expressed as:

o)) 10151
where

a ac

assemblage column vector of unknowns at the nodes over element m; and
{‘PM(’”)} is the assemblage column vector reflecting the effect of any external
influences applied at the node over element m.

[C ('"g is the assemblage element property (stiffness) matrix; {V ("”} is the

Fourth, solving the system of equations (10.151) to obtain important informa-
tion on the problem can be obtained by the LU decomposition technique.

10.13.1.2 Application to Poisson’s Equation in One-Dimension

In this section, we solve the one-dimensional (1D) Poisson’s equation for the
potential distribution V(x)

d_“zv __Pe (10.152)
dx e

with boundary conditions (BCs) V(a)=v,, V(b)=v, .
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Using the same essential four steps as in the previous section with FEM, we
focus here on the source term and only the major differences.

We will use the variational principle and the weighted residuals method to
obtain the solution of the one-dimensional (1D) Poisson’s equation.
(1) Variational Approach

The deriving element governing equations step. We look for the potential dis-
tribution V(x) that can minimize an energy function F(V) as

b 2
F<V>=j(%[‘;—¥) —%V(x)]dx. (10.153)

a

Two nodal values of V(x)are required to define uniquely a line variation of
V™ (x) over an element (m). Hence, the linear variation of V" (x) can be
presented as

V(’”)(x)=a](x>V] +a2<x)v2 <10154>

where the interpolation functions o, (x)and o,(x) are presented as

Xy — X

a,(x)= ay ()= (10.155)

Xy, — X, Xy =X

The resulting element equation (10.154) can be expressed in a set of linear
equations in matrix form:

vm =[al)a2]|:V1:|=[a ]{‘/C('”)}_ <10156>

The energy function can be written as

F(V)= iF“’” (V) (10.157)

m=1

where N is the number of elements with the domain a <x<b.

Now, substituting equation (10.156) into (10.153) can give

. 2 2
(m) (m) _12 l da1 dag ‘]l _p_L ‘]l
F™(V >—J sl LAl [0,a,] » dv. (10.158)

X
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By minimizing the F m (v with respect to the nodal values of V, we obtain

the following equations for an element (m)

o da | da, da v lop,
J[ 1% d}[ }— =0 (01s9)

and

(m) da, | da da,} Vil p,

—Z2q, |dx =0.

v, J( |:dx de ||V, | & 2 * (10.160)

These equations can be expressed in matrix form as
(m) (m)] _ (m)
[c vy ={w. ) (10.161)

where

dal(m) da l(m) da l(m) da 2(m)
Xy

(m) | _ dx dx dx dx
[C ] - J. d(l :;(M) da 1(m) da 2(m) da 2(111) dx (10162)
dx  dx dx  dx

Vi
{W"”}Z[Vj (10.163)

= J dx (10.164)

‘7

&
where the elements of {‘I’ (”’)} are the nodal forcing functions. The equations
in (10.161) can give the characteristics of Poisson’s equation in 1D. Indeed, in
spite of the type of element we choose to formulate Poisson’s equation in 1D,
the element equations will have the form of equation (10.161). For the solu-
tion of Poisson’s equation in 1D, it is essential to derive the equations for all
the elements in the assemblage and then assemble these algebraic equations.
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(2) Weighted Residuals Method

In the variational approach for 1D Poisson equatlon with boundary condition,

we derive the element matrices [C“” ] and {‘I’ " } for a linear variation of
potential V(x) over element (m) with two nodes. Now, we will use Galerkin’s
method with weighting functions W, =a, to derive the element matrices. We
approximate the exact unknown solution V, (x) by

V, ()= a,(0)V, (10.165)

where

N is the number of nodes (here N=2), V . is the unknown nodal values,
i=1,2.

Note that we do not consider the fixed boundary conditions at the element
level, but these are included after the assembly process as in the previous
method.

Now, by applying Galerkin’s method, we get:

&

T dz m pt’ j y
j( i’ +_Jai<x>dx=o) i=12 (10.166)

where

x, and x, are the coordinates of the end nodes of the line element.

By using integration by parts to the term with the derivatives of V, (x), that is,

dv

m

al
dx

d‘/m dar pL _
de v +j =0, =12 (10167)

X X X

Taking the derivative of equation (2.29) as

Hl

< da da .
< dl ml _|: dl :|{‘/( >} (10168)

1

where
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{VC('”)} is the column vector of nodal unknowns for the element m.

Thus, equation (2.30) becomes

Xy Xy

Xy dal dal (m)\ _ de b _pv ‘ . .
J{E}de{vc }‘“"Efie a(x)ds, i=12 (10.169)

ol

Furthermore, the first term on the right-hand side of equation (10.169)
represents natural boundary conditions for the element m. We obtain these as

. (l.‘/nl xi d.‘]nl d.‘]nl (l‘/"l
i=1, az%ﬁ :al(x2>E<x2>_a1(x1)E<x1>:_W(xl) (10.170)
because a ,(x,)=0, a,(x,)=1,
and
; d‘/nl xz d‘])” d‘/'n d‘/”l
PR ] T gy T )= ) oA

because a,(x,)=1, a,(x,;)=0.
We use the end-point values of o, shown in Figure 10.4. Thus, the element

equations are presented as

ave

m m m x m
CFnz) C.(T“) V(m) - dV(m) lP?"l) '
21 22 2 <x2> 2
dx
where
da, da, da, da, P,
1

m _xz dx dx dx dx , m _xz £
(¢ )]_I da, da, da,da, dv g (Y. )}_;',‘ p.

dx dx dx dx e

R

The extension to an element with N nodes follows the same steps but with
i=1,2,...,N . In addition, the matrices for an element with N nodes contain
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terms similar to the equation (10.172) but with additional rows and columns
to account for N element equations.

10.13.1.3 Natural Coordinates in One Dimension

We use natural (length) coordinates in deriving interpolation functions that
can be used to evaluate the integrals in the element equations. In addition,
we use the natural coordinate system in describing the location of a point
inside an element in terms of the coordinates associated with the nodes of
the element. Let 7, be the natural coordinates, wherei=1,2,...,N ; N is the
number of external nodes of the element. Knowing that, natural coordinates
are functions of the global Cartesian coordinate system in which the element
is defined, the one coordinate is associated with node i and has a unit value
there.

Figure 10.5 shows a line element with natural coordinates #,, #7, and loca-
tion point «; .

node 1 node 2
:4— x2 _xl —»E
1 1
P T _xl_>i
¢ . . — X
X X1 X,

FIGURE 10.5 Example of two-node line element in one-dimensional (1D) with global coordinate X; .
The global coordinate x, can be expressed as
X; =10 X; 1 ,X,.
Xy =% T X (10.174)

We can interpret natural (length) coordinates #, and #, as weighting func-
tions relating the coordinates of the end modes to the coordinate of any inte-
rior point. As we know that,

7, +772 =1 (10175)

although, the weighting functions are not independent. Let us consider x;, = x
and solving for 7, and 7, from equations (10.174) and (10.175), we get

Xy —X X—Xx
7, (x)=—=——, 7,(x) =—-. (10.176)

Xy, — X, Xy, — X,
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The linear interpolation used for the potential distribution variable V(x) in the
previous section, which can be written as

V(x)=Vy, + V. (10.178)

By differential of V(x) using the chain rule, we get

dV 9oV an, 9V oy,
- = +
dx dn, ox Jn, ox (10.179)

where

J -1 on, 1
11— e/ . (10.180)
o x,—-x, O X,

Now, taking the integration of length coordinates over the length of an ele-
ment, that is,

A il i, —x;)

i _}dx — 2 1
;':771’72 (1+].+1)! (10.181)
where i and j are integer exponents.

10.13.2 Two-Dimensional Elements
10.13.2.1 Applications of FEM to Electrostatic Problems

It is often known that FEM is a numerical method used to find the approxi-
mate solutions either for partial differential equations or integral equations.
These equations are most involved in electromagnetic problems. We illustrate
the four steps above used to find the solution in FEM through three differ-
ent types of differential equations, Laplace’s equation, Poisson’s equation, and
wave equation.

10.13.2.1.1  Solution of Laplace’s Equation V*V =0 with FEM
To find the potential distribution, V(x,y), for the two-dimensional (2-D) solu-

tion region, as shown in Figure 10.6. We illustrate the following steps to get
the solution of Laplace equation, V2V =0.
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y4 —
/// TN dS = the boundary
/ S
/
/
I S = surface (domain)
0 > x

FIGURE 10.6 The solution region of the problem showing domain for the 2-D boundary value.

First step, using finite element discretization to find the potential distribution
for the two-dimensional solution, V(x,y) as shown in Figure 10.7, where the
solution region is subdivided into seven nonoverlapping finite elements of
triangles. It is always preferable in computation to have the same type of ele-
ments through the solution region which in our case is the triangle.

Approximate Boundary
3 Actually Boundary

y A
Node Number
Element Number
0 > x

FIGURE 10.7 The finite element discretization of the solution.

We look for an approximation solution for the potential V, (x,y) within an
element m and then interrelate the potential distribution in various elements
such that the potential is continuous across interelement boundaries. We can
express the approximation solution for the whole region as

Vix,y)= Z V., (x.y), (10.182)

m=1

where N is the number of triangle elements into which the solution region is

divided.
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The most common form of approximation for V, (x,y) within an element is

polynomial approximation for a triangle element, that is,

V. (x,y)=a+bx+cy, (10.183)

where the constants a, b, and ¢ are to be determined. The potential V, (x,y)
in general is nonzero within element m, but zero outside m. Furthermore,
our assumption of linear variation of potential within the triangle element as
in equation (2.46) is the same as assuming that the electric field is uniform
within the element, that is to say,

E, =-VV, =—(ba, +ca,). (10.184)

m

Second step, developing equations for the element. Let us choose a typical
triangle element shown in Figure 10.8.

y4 Vs (%35 73)

Vm2(x2’y2)
le(x19yl)

»
»

0 x

FIGURE 10.8 Typical triangle element; local node numbering 1-2-3 must proceed counterclockwise as
indicated by the arrow.

The potential V, (x,,y,).V, ,(x,,y,), and V, ;(x,,y,) at nodes 1, 2, and 3,
respectively, are obtained using equation (10.183), namely

L I x y ||a
Ve |[=|1 %y || D] (10.185)
V.3 I xy yy|lc

The coefficients a, b, and ¢ are determined from equation (10.185) as
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1

a Lox oy |
bl=1 x, y,
c I xy oy,

(10.186)

Therefore, equation (10.183) can be rewritten by substituting for a, b, and ¢,

ie.,

a 1 x
Vv, =[1 x y] b =[1 x y] 1 u,
¢

1 x

Equation (10.187) can be written as

3

‘/m (x,y) = Za i<x7y>‘]mi >

i=1

where a,(x,y) is given by
a,(x,y) zi(ai +bx+cy), where i=1,2,3
2A
and «a,, b, and ¢, are given by
a4 = XY — XY,
b=y, =~y

C, =X —X

J

-1

yl ‘]ml
Y, V.ol (10.187)
yf} ‘/mS

(10.188)

(10.189)

(10.190)

(10.191)

(10.192)

where i, | and k are cyclical, that is, (i=1,j=2, k=3), (i=2,j=3, k=1),

and (i=3,j=1, k=2).

Note that by substituting equations (10.190), (10.191), and (10.192) into

equation (10.187) gives
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(xoys = X5y5)  (x5yy —x,y5) (v, —x0y,) || Vi
V) =1 x yl—| -y  G-y) G-y ||V

2A
(x5 —x,) (x; —x3) (xy —x,) V.3
(10.193)
Also, using equations (10.190), (10.191), and (10.192) in equation (10.188)
gives
1
a1l = L lys = xy) + g =y ket (v =)y ], (10.1940)
1
a2<x>y) 2A[<x391 1y3>+<y3 _yl)x+<xl _xB)y:L (10.194b)
1
as(x, y)= [< XYY, — x2y1>+<y1 —yz)x+(x2 —xl)y], (10.194¢)
and A is given by
1 x y
1
A ) L x :_[ Yo = XaY;) + (X3 —x1y) + (xpy _xsyz>]
I ox; oy,
or
1
A= {0y = 90) = 0 =3y — )] (10.195)

where A is the area of the element m.

The value of A is positive if the nodes are numbered counterclockwise, start-
ing from any nodes, as shown by the arrow in Figure 10.5.

Furthermore, equation (10.188) gives the potential at any point (x,y) within
the element provided that the potentials at the vertices are known. In addi-
tion, a,(x,y) are linear interpolation functions. They are called the element
shape functions, and they have the following properties:
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1, i=j
(x,y) = 10.196:
a,(xy) {0, i% ] ( a)
3
Ya,xy=1 (10.196b)

i=1

The shape of functions a (x,y),a,(x,y), and a(x,y), for example, is illus-
trated in Figure 10.9.

- 3 az(x’y)
3
1 I_ a(x,y) i _
1 i 1
s 2
a}(x’y)

3

2

FIGURE 10.9 Shape functions Q. (x,y), a, (x,y), and @ 4 (x,y) for a triangle element.

The functional, W, corresponding to Laplace’s equation, which physically is
the energy per unit length associated with element m, is given by

W, =1 [e|E,[ds=1 [z vV, [ds. (10.197)
2 2
But from equation (10.188),
3
VVm = Z‘]mivai‘ (10198)
i=1

By substituting equation (10.198) into equation (10.197), gives

W, %ii% [[Va, Vads]v,,. (10.199)
i=1 j=1
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If we define the term in brackets as

¢y = [Va, Va ds. (10.200)

now, we can write equation (10.199) in matrix form as

W, =%8 v, I[c™ |{v,}, (10.201)

where the superscript ¢ denotes the transpose of the matrix,

and

[‘/m ]t = [‘]ml ‘]1712 ‘]m.'} :I’

(10.202a)
‘/nz]
V.}=| Ve | (10.202b)
‘/mS
cy ¢y oy
[ ]=|cs c oy (10.202¢)

(m) (m) (m)
C31 C‘}Z C33

The matrix [C (’"):I is usually called the element coefficient matrix (or stiffness
matrix in structural analysis). The element C f,l.'”) of the coefficient matrix may
be regarded as the coupling between nodes i and j; its value is obtained from
equations (10.194) and (10.200). For instance,

of

Similarly,

m
2

) =

(m)
C13

JVa ,-Va,
s =)~ (5, =)~ ]fds (10.20%
i (Y, =y )(y; —y,)+ (x5 —x,)(x, _x?)):l

1

=L =) =)+ G = ), =) (10.203b)
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m 1
Cy’ = alWs — 50— yo) + (r —2)(n, )] (10.203c)
m 1 2
Cit’ = —[(yo =" + (=) |, (10.203d)
4A
m 1
C' =—[(ys =y, + (v = x|, (10.203¢)
4A
m 1 2
C = —(yy =1V +(x, =3, . (10.203f)
4A
Additionally,
Cy' =Cyy, Gy =Gy, Gy =Gy, (10.204)

Now, for the third step, after having considered a typical element, the next
step is to assemble all such elements in the solution region. The energy associ-
ated with the assemblage of elements assuming that the whole solution region
is homogeneous so that ¢ is constant, i.e.,

N 1
W= W, =2 [VI [CH{V}, (10.205)
m=1
where
v
V2
Vi
{vi=| - |. (10.206)
A
where

n is the number of nodes, N is the number of elements, and [C] is called the
overall or global coefficient matrix, which is the assemblage of individual ele-
ment coefficient matrices.
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For an inhomogeneous solution region such as that shown in Figure 10.10,
the region is discretized with triangle elements such that each finite element
is homogeneous. In this case, equation (10.197) still holds; however, equation
(10.205) does not apply since ¢ (& =¢,¢,) or simply ¢, varies from element
to element. To apply equation (10.205), we need to replace ¢ by ¢, and mul-
tiply the integrand in equation (10.200) by ¢ .

YVa Medium 2

4

Medium 1

0 >y

FIGURE 10.10 Discretization of an inhomogeneous solution region with triangle elements.

We use an example to illustrate the process by which individual element coef-
ficient matrices are assembled to obtain the global coefficient matrix. In this
example, we consider the finite element mesh consisting of three finite ele-
ments, as shown in Figure 10.11. Observe the numberings of the mesh.

\ global

numbering

element
number

1-3-4

FIGURE 10.11 Assembly of three elements; i — ] -k corresponding to local numbering (1-2-3) of
the element in Figure 10.5.

The numbering of nodes 1, 2, 3, 4, and 5 is called global numbering. The
numbering i— j—k is called local numbering, and it corresponds with 1-2-3
of the element in Figure 10.5; the local numbering must be in a counter-
clockwise sequence starting from any node of the element. For element 1,
we could choose 2-1-4 instead of 1-4-2 to correspond with 1-2-3 of the ele-
ment in Figure 10.8. Thus, the numbering in Figure 10.8 is not unique. But
whichever numbering is used, the global coefficient matrix remains the same.
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Assuming the particular numbering in Figure 10.11, the global coefficient
matrix is expected to have the form

Ch, Cy Cy Cy Cy
Co Cn Cy Gy Cy
[C]=|C; C,, C, C, Cil, (10.207)
Ch Cp Cy Cy Cp
_C51 Cp, Cy Gy Cs

which is a 5x5 matrix since five nodes (n =5 ) are involved. As we know, C i
is the coupling between nodes i and j . The C;; can be obtained by using the
fact that the potential distribution must be continuous across interelement
boundaries. The contribution to the ¢, j position in [C] comes from all ele-
ments containing nodes i and j. For instance, in Figure 10.11, elements 1 and
2 have node 1 in common; therefore

c,=CcV+cC?. (10.208a)
Node 2 belongs to element 1 only; therefore
C,=C.y.. (10.0208b)
Node 4 belongs to elements 1, 2, and 3; accordingly
C,=Cl+Ccy+cCy. (10.208c)
Nodes 1 and 4 belong simultaneously to elements 1 and 2; as a result
C,=C,=C)+C?. (10.208d)
Since there is no coupling (or direct link) between nodes 2 and 3; hence

C,, =C,, =0. (10.208e)

By continuing with this approach, we can obtain all the terms in the global
coefficient matrix by inspection of Figure 10.11 as
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ci+ci cyocr o ared o
Cy Gy 0 Cy 0

[C]=] C¥ 0 cZ+c? cy+Cy) co | (10.209)
Ci+C5 Gy CI+CY Cy+Cieey Cp
o 0@ g oy

Note that element coefficient matrices overlap at nodes shared by elements,
and that are 27 terms (9 for each of the 3 elements) in the global coefficient
matrix [C]. Also note the following properties of the matrix [C]:

1. Itis symmetric (C i =C ) just as the element coefficient matrix.

2. Since C; =0 if no coupling exists between nodes i and j, it is expected
that for a large number of elements [C] becomes sparse. Matrix [C] is
also banded if the nodes are carefully numbered. It can be shown using
equation (10.203), i.e.,

Y. =O:iC,.’"). (10.210)

3. TItis singular. Although this is not obvious, it can be shown using the finite
element coefficient matrix of equation (10.202c).

Finally, fourth step, by solving the resulting equations. It can be shown that,
from variational calculus, it is known that Laplace’s (or Poisson’s) equation is
satisfied when the total energy in the solution region is minimum. Therefore,
we require that the partial derivatives of W with respect to each nodal value
of the potential be zero; that is,

W _aw_ oW
vV, 9V, v,

or
oW =0, k=12, n. (10.211)

v,
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For instance, to get B_W =0 for the finite element mesh of Figure 2.9, we
1

substitute equation (10.207) into equation (10.205) and take the partial
derivative of W with respect to V;. We obtain

0= g% =2V,C,, +V,C, +V,C ;3 +V,C, + V,C s + V.G, + ViCy +V,C, +ViCy,
1

or

0=VC,+V,C,+V,C,+V,C,+V.C. (10.212)

In general case, aﬂ =0 leads to
k

0=YVC,, (10.213)

where n is the number of nodes in the mesh. By writing equation (10.213)
for all nodesk=1,2,3,..,n, we obtain a set of simultaneous equations from
which the solution of the transpose matrix for the potential distribution,
[V] Z[Vl v, . .. Vn], can be found. This can be done in two ways:

(1) Iteration Method

Suppose node 1 in Figure 10.11, for example, is a free node. The potential at
node 1 can be obtained from equation (10.212) as

5
\Y4 :—szich.. (10.214)

11 i=2

Thus, in general case, the potential at a free node k in a mesh with n nodes is
obtained from equation (10.213) as

1 n
Vi=-— Y VG, (10.215)

kk i=1,j#k

Since C,; =0 is not directly connected to node ¢, only nodes that are directly
linked to node k contribute to V, in equation (10.215). Note equation (10.215)
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can be applied iteratively to all the free nodes. The iteration process begins
by setting the potentials of fixed nodes (where the potentials are prescribed or
known) to their prescribed values and the potentials at the free nodes (where
the potentials are known) equal to zero or to the average potential

v =fwv. v

min max

2 (10.216)

where V. and V__ are the minimum and maximum values of the prescribed

min max

potentials at the fixed nodes, V, respectively. With these initial values, the
potentials at the free nodes are calculated using equation (10.215). At the
end of the first iteration, when the new values have been calculated for all
the free nodes, they become the old values for the second iteration. Indeed,
the procedure is repeated until the change between subsequent iteration is

negligible enough.

(2) Band Matrix Method

If all free nodes are numbered first and the fixed nodes last, equation (10.205)
can be written such that

1 Cy Cyp || Vs
w :Eg [Vf Vr)]{c , C ’ v I (10.217)
P

rp P

where subscripts f and p, refer to nodes with free and fixed (or prescribed)
potentials, respectively. Since V, is constant (it consists of known, fixed
values), we only differentiate with respect to V; so that applying equations
(10.211) to (10.217) which yields to

e Cﬁ)][zf}:o

P

or

[y 1V )=-[¢ )1V, ] . (10.218)
This equation can be written as
[AllV]=[8] (10.2199)

or
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[V]=[A]"[B]. (10.219b)

where[V]= [Vf:l’ [A]= I:Cﬁ’]’ [B]= _I:CfP ][VP:I . Since, in general, nonsin-
gular, the potential at the free nodes can be found using equation (10.219).
Note we can solve for [V] in equation (10.219a) using Gaussian elimination
technique. Also, we can solve for [V] in equation (10.219b) using matrix inver-
sion if the size of the matrix to be inverted is not large.

oV
In fact, it is sometimes necessary to impose the Neumann condition (a— =0)
n

as a boundary condition or at the line of symmetry when we take advantage
of the symmetry of the problem. Indeed, suppose that for concreteness, a
solution region is symmetric along the y-axis as in Figure 10.12. We impose

condition (E;—V =0) along the y-axis by making
e

Vi=V,, V,=V,, V.=V,. (10.220)

il

v
®

FIGURE 10.12 A solution region that is symmetric along the y-axis.

With this in mind, from equation (10.197) onward, the solution has been
restricted to a two-dimensional problem involving Laplace’s equation V>V = 0.

10.13.2.1.2  Solution of Passion’s Equation Vv = —% with FEM

In this section, we solve the two-dimensional (2D) Poisson’s equations

viy=_to (10.221)
&
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using the same essential four steps as in the previous section with FEM, we
focus here on the source term and only the major differences.

The deriving element governing equations step. We divide the solution region
into triangles, and then we approximate the potential distribution V, (x,y)

and the source term p,,, over each triangle element by linear combinations of
the local interpolation polynomial a ,, namely,

3
V=2 V,a (xy), (10.292)
i=1
3
and Pom = zpmia i(x’ y> <10223>
i=1
where
V . isthe values of V at vertexi of element m; p, is the values of p, atvertex

i of element m. The values of p,,; are known since p (x,y) is prescribed, while
the values of V  are to be determined.

An energy functional which associates Euler equation with equation (10.221) is

F(V,)= é | [g Vv, [ -2V, ] ds, (10.224)
S

where

m

F(V,,) is the total energy per length within element m; és Vv, |2 is the

m

1
energy density in the electrostatic system and it is equal to ED ‘E; p,V.dS
is the work done in moving the charge p,, dS to its location at potential V, .

Now, by substituting equations (10.222) and (10.223) into equation (10.224),
we get
3

F(V,J:EES“Ze V[ [Va, -Vads]v, —ZZVM [[a.a,ds]p,,. (10225)

3
i=l j=1 i=1 j=1

—
w

Equation (10.225) can be applied to every element in the solution region.
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Also, it can be written in matrix form as
F(V,)= %g v, [c™ v, -V, ] [T ]lp..] (10.226)

where

¢, =[Va,-Va ds (10.227)

we know that equation (10.226) is already defined in equation (10.203) and

Ty = a0 dS. (10.228)
Also, 1:.;'”) can be written as
A/6, i=j
;= g (10.229)
/ A/12, i#]

where A is the area of the triangle element.

We can obtain the discredited functional for the whole solution region, with
N elements and n nodes, as the sum of the functional for the individual ele-
ments, that is, from equation (10.229),

AV)= X V)= S VT ICIVI-VI Tl 0250

where ¢ is the transposition symbol. In equation (10.230), the column matrix
[V] consists of the values of V,,, while the column matrix [ p ] contains n values

of the source function, p,, at the nodes. The functional in equation (10.230)
is now minimized by differentiating with respect to V,, and setting the result
equal to zero.

Now, we work on the solving the resulting equations step. We can solve the
resulting equations by using either the iteration method or the band matrix
method.

(1) Iteration Methods

By considering the solution region in Figure 10.8 which has five nodes, n=5
and from the equation (10.230), we can get the energy functional as
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C, Gy Cys | Vi
Cy Cy Cy | V2

F=%8[Vl vV, - - V]
_C'Sl Cs, Css _Vs
_Tn T, T15__/01_
T, T, Tys || s

—[Vl v, - - - Vs:l
_T51 T, T 1 Ps |

The energy can be minimized by applying

a—F=O, k=12, - - n.
av,

Ja
For example, from equation (10.231), we get 8_ =0, as
1

. (10.231)

(10.232)

(10.233)

oF
W=8[VICM+V2C21+~~+V5C51]—[:l]1p1+T21p2+-~+T51p5]=0
1
or
1 g 1 3
' Cné o 3C11§ lel

Therefore, in general, for a mesh with n nodes

1 n 1 n
Vi=—— VG + Tup,
‘ Cu i:]Zi;k ¢ eCy ; :

where

node k is assumed to be a free node.

(10.234)
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By fixing the potential at the prescribed nodes and setting the potential at the
free nodes initially equal to zero, we apply equation (10.234) iteratively to all
free nodes until convergence is reached.

(2) Band Matrix Method

In this method, we let the free nodes be numbered first and the prescribed
nodes last. In doing this, equation (10.230) can be written as

_1 Cyp Cp|lVy Ty Ty ||l Py )
F(V)—Ee[vf VP}{CM c HVJ—[VJ, VP]{TM ; }L}J (10.235)

rp rp

where
subscript f is the free node; subscript p is the prescribed node;

p is the submatrix containing the values of p at free node; p, is the subma-
trix containing the values of p at the prescribed node.

Minimizing F(V) with respect to v, namely,

Iy
BVf
gives
& (Cﬁ’Vf +C, Y, ) - (Tﬂ‘/’ ;e ) =0
or

[C#}[Vf]:‘[Cﬁv][vp]+§[Tﬂ][/’f]+gl[Tfp][/’p]- (10.236)

Indeed, equation (10.236) can be written.
[A][V]=[B] (10.237)
where

[A]= [Cﬂ] ,[V]= I:Vf]’ and [B] is the right-hand side of equation (10.236).

Equation (10.237) can be solved to determine [V] either by matrix inversion
or Gaussian elimination technique.
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10.13.2.1.3 Solution of Wave’s Equation V*® + k*® = g with FEM
A typical wave equation is the inhomogeneous scalar Helmholtz’s equation

V20 + kD =g (10.238)
where

® is the potential (for waveguide problem, ® =H_ for TE mode or E_ for
TM mode) to be determined, ¢ is the source function, and k= jue is the
wave number of the medium. The following three distinct special cases of
equation (10.238) should be noted:

1. k=0 and g=0; Laplace’s equation;

2. k=0; Poisson’s equation; and

3. kis an unknown, g =0: homogeneous, scalar Helmholtz’s equation.

It is known that the variational solution to the operator equation

Ld=¢g (10.239)

is obtained by examining the functional
[(®)=<L,®>-2<D,g> (10.240)

where L is an operator (differential, integral, or integrodifferential), g is the
unknown excitation or source, and ® is the unknown function to be deter-
mined (here is the potential).

Therefore, the solution of equation (10.238) is equivalent to satisfying the
boundary conditions and minimizing the functional.

1(®) :équ)F ~K®” +20g | dS. (10.241)

Note that if other than the natural boundary conditions (i.e., Dirichlet of
homogenous Neumann conditions) must be satisfied, appropriate terms must
be added to the functional. The potential ® and the source function g can be
expressed now in terms of the shape functions a, over a triangle element as

3
D, (x.y)=>ad, (10.242)

i=1

where
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¢, is the value of @ at the nodal point i of element m.
And

g, (xy) = Zalgm, (10.243)

g, is the value of g at the nodal point i of element m.

Substituting equations (10.242) and (10.243) into equation (10.241) gives

liZqzmq)wHVa Va, s-%ii@ml@,,gﬂaa ds

i=1 j=1 i=1 j=1

w

l\i)

+ 3 D9, Ha a . dS

1 k?

Lo, 1o 0,15

2 2

I\

J

[®”l ]t [T(”l> ] [in ] + [¢7” ] [T nl) ] [Gnl ]
(10.244)

where

[q)m ] = I:(I)ml (I)mZ (I)mB ]t ’[Gm ] = I:gml,gmlgmf} :r > and [CO”)] and |:T<’">] are
defined in equations (10.158) and (10.185), respectively.

The equation (10.244) is for a single element, but it can be applied for all N
elements in the solution region. Therefore,

N

(D)= 1®,). (2.108)

m=1

From equations (10.244) and (10.245), I(®) can be expressed in matrix form as
kz

I<<I>)=§[<I>]t[C][ ]——[CD][ J[@]+[@] [T][G] (10.246)

where
ol=[®, @, . .. 0], (10.247a)
Gl=[g. & - - - .a] (10.247b)

[C], and [T] are global matrices consisting of local matrices [C“'”] and
[T“"] respectively.
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Now, if free nodes are numbered first and the prescribed nodes last, and con-
sidering the source function g =0, we can write equation (2.109) as

_1 Cy Cp||Ps|_K 7 Ty || Py
I—E[CDf q]{c ol _?[q)f , | T | o . (10.248)

pf Pp P

-3

ol
By setting — =0, gives

e cﬁ)]ﬁj_kﬁrﬁ Tﬁ)][iﬂ:o. (10.249)

For TM modes, @, =0 and hence

[Cy KTy @, =0

(10.250)
Premultiplying equation (10.250) by T)ff] , gives
[1/Cp-KT]@, =0. (10.251)
By letting
T,/Cy=A, K=p,0,=X, (10.252a)
and U is a unit matrix,
we can obtain the standard eigenvalue problem
(A-pU)X=0. (10.252b)

Any standard procedure may be used to obtain some or all of the eigenvalues
BBy, B,y and eigenvectors X, X,,...,X, ., where nf is the number of free
nodes. The eigenvalues are always real since C and T are symmetric.

The solution of the algebraic eigenvalue problems in equation (10.252) fur-
nishes eigenvalues and eigenvectors, which form good approximations to the
eigenvalues and eigenfunctions of the Helmholtz problem, i.e., the cutoff
wavelengths and field distribution patterns of the various modes possible in a
given waveguide.

The solution of the problem of equation (10.238) is summarized in equa-
tion (10.251), and can be viewed as the finite element solution of homogeneous
waveguides. The idea can be extended to handle inhomogeneous waveguide
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problems. However, in applying FEM to inhomogeneous problems, a serious
difficulty is the appearance of spurious, nonphysical solutions. There are sev-
eral techniques that have been proposed to overcome the difficulty.

10.14 AUTOMATIC MESH GENERATION

It is a fact that one of the major difficulties encountered in the finite element
analysis of continuum problems is the tedious and time-consuming effort
required in data preparation. Indeed, efficient finite element programs must
have node and element generating schemes, referred to collectively as mesh
generators. Automatic mesh generation minimizes the input data required to
specify a problem. In fact, it not only reduces the time involved in data prepa-
ration, it eliminates human errors that are introduced when data preparation
is preformed manually. Furthermore, combining the automatic mesh genera-
tion program with computer graphics is particularly valuable since the output
can be monitored visually.

A number of mesh generation algorithms of varying degrees of automation
have been proposed. In this section, we focus on two types of domains, rec-
tangular domains and arbitrary domains.

10.14.1 Rectangular Domains

Since some applications of FEM to EM problems involve simple rectangular
domains, we consider the generation of simple meshes. Now, let us consider
a rectangular solution region of size axb , as shown in Figure 10.13. The goal
here is to divide the region into rectangular elements, each of which is later
divided into two triangular elements.

VA

FIGURE 10.13 Discretization of a rectangular region into a nonuniform mesh.
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Suppose n, and n, are the number of divisions in x and y directions, the total
number of elements and nodes are, respectively, given by

n, = 2nxny

n, =, +1)(n, +1). (10.253)
As a result, it is easy to figure out from Figure 10.13 a systematic way of
numbering the elements and nodes. Indeed, to obtain the global coordinates
(x, y) for each node, we need an array containing Ax,, i=1,2,...,n, and Ay,
j=12,...n,, which are, respectively, the distances between nodes in the x
and y directions. If the order of node numbering is from left to right along
horizontal rows and from bottom to top along the vertical rows, then the first
node is the origin (0,0). The next node is obtained as x — x + Ax, while y=0

remains unchanged. The following node x = x+Ax,, y=0, and so on until
Ax, are exhausted. We start the second next horizontal row by starting with
x=0, y > y+Ay, and increasing x until Ax; are exhausted. We repeat the
process until the last node (n, + 1)(11,/ + 1) is reached, i.e., when Ax, and Ay,

are exhausted simultaneously. "

The procedure presented here allows for generating uniform and nonuni-
form meshes. A mesh is uniform if all Ax, are equal and all Ay, are equal;
it is nonuniform otherwise. A nonuniform mesh is preferred if it is known in
advance that the parameter of interest varies rapidly in some parts of the solu-
tion domain. This allows a concentration of relatively small elements in the
regions where the parameter changes rapidly, particularly since these regions
are often of greatest interest in the solution. Additionally, without the pre-
knowledge of the rapid change in the unknown parameter, a uniform mesh
can be used. In that case, we set

Av,=Av,=. . .=h
Ay, =Ay,=. . .=h (10.254)

where
h,=a/n, and h =a/n,.

In some cases, we also need a list of prescribed nodes. If we assume that
all boundary points have prescribed potentials, the number n, of prescribed
nodes is given by
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n,= 20n, + ny). (10.255)

A simple way to obtain the list of boundary points is to enumerate points on
the bottom, right, top, and left of the rectangular region in that order.

10.14.2 Arbitrary Domains
The basic steps involved in mesh generation are as follows:
(A) subdivide the solution region into few quadrilateral blocks,
(B) separately subdivide each block into elements,

(C) connect individual blocks.

A. Definition of Blocks

The solution region is subdivided into quadrilateral blocks. Subdomains with
different constitutive parameters (0,4, ) must be represented by separate
blocks. As input data, we specify block topologies and the coordinates at eight
points describing each block. Each block is represented by an eight-node
quadratic isoparametric element. With natural coordinate system ( 7 ), the
x and y coordinates are represented as

()= ia (o )x; (10.256)
yCom)=2a,C.my, (10.257)

where a,({,7) is a shape function associated with node i, and (x,,y,) are
the coordinates of node i defining the boundary of the quadrilateral block as
shown in Figure 10.14.

Ne
w

T

FIGURE 10.14 Typical quadrilateral block.



442 ¢ FinTE ELEMENT ANALYSIS 2/E

The shape functions are expressed in terms of the quadratic or parabolic
isoparametric elements shown in Figure 10.15.

YV A
7= (L1
7 6 5
4
=-108 >
¢ = 3
1 2 3
(=L-D ®
n=-1
FIGURE 10.15 Eight-node serendipity element.
They are given by:

1
ai:Z(1+Cci)(1+;777i)(cci+17771.+1), i=1,3,5,7. (10.258)
For corner nodes,
a,-=ééf(1+CCi)(1—'72)+éf7f(1+'7'71+1)(1—C2), i=2.468. (10.259)

For midside nodes, note the following properties of the shape functions:

(1) They satisfy the conditions.

ia (Cm)=1 (10.260a)
i=1
L i=
ai(C,,nj)z{O, i (10.260b)

(2) They become quadratic along element edges ({ =+l ==£1).

B. Subdivision of Each Block

Furthermore, for each block, we specify N DIV X and N DIV Y, the num-
ber of element subdivisions to be made in the { and # directions, respec-
tively. In addition, we specify the weighting factors (\V( )i and (\Vn )i allow
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for graded mesh within a block. It is essential to know that, in specifying
NDIVX,NDIVY, (VVc )i, and (\Vn )i care must be taken to ensure that
the subdivision along block interfaces (for adjacent blocks) are compatible.
We initialize { and # to a value of —1 so that the natural coordinates are
incremented according to

¢, =¢ 20, ), 10.261
S TE (10.261)
n,=n 200,) 10.262
i i “/”TXF < . >
where
T N DIV X
wi= 3 (W), (10.263a)
= ‘
X N DIV X
wi= 2 (W), (10.263b)
J=1
and

{1, for linear elements

2,  for quadratic elements’

Now, there are three element types permitted: (1) linear four-node quadri-
lateral elements, (2) linear three-node triangle elements, and (3) quadratic
eight-node isoparametric elements.

C. Connection of Individual Blocks

After subdividing each block and numbering its nodal points separately, it
is necessary to connect the blocks and have each node numbered uniquely.
This is accomplished by comparing the coordinates of all nodal points and
assigning the same number to all nodes having identical coordinates. In other
words, we compare the coordinates of node 1 with all other nodes, and then
node 2 with other nodes, etc., until all repeated nodes are eliminated.

10.15 HIGHER-ORDER ELEMENTS

Finite elements use higher-order elements. The shape function or interpola-
tion polynomial of the order two or more is called a higher-order element.
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To emphasize, the accuracy of a finite element solution can be improved by
using finer mesh or using higher-order elements or both. Desai and Abel stud-
ied mesh refinement versus higher-order elements in [44]. Generally, fewer
higher-order elements are needed to achieve the same degree of accuracy in
the final results. Moreover, the higher-order elements are particularly useful
when the gradient of the field variable is expected to vary rapidly.

10.15.1 Pascal Triangle

High-order triangular elements can be systematically developed with the aid
of the so-called Pascal triangle given in Figure 10.16. The family of finite ele-
ments generated in this matter with the distribution of nodes is illustrated in
Figure 10.17. Note that in higher-order elements, some secondary (side and/
or interior) nodes are introduced in addition to the primary (corner) nodes so
as to produce exactly the right number of nodes required to define the shape
function of that order.

a Constant term, n=0

FIGURE 10.17 Pascal triangle (2D) and the associated polynomial basis functions degree n =1 to 3.

Indeed, the Pascal triangle contains terms of the basic functions of various
degrees in variable x and y. An arbitrary function ®,(x,y) can be approxi-
mated in an element in terms of a complete nth-order polynomial as
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D, (x,y) = 0P, (10.264)
where

r=%(n+l)(n+2). (10.265)

r is the number of terms in complete polynomials (also the number of nodes
in the triangle). For example, for the third-order (n=3) or cubic (ten-node)
triangular elements,

D (x,y)=a, +a,x+ay+a,x’ +axy+agy’ +ax’ +ax’y+any’ +ay’.
m\ %Y 1 T4y syray, sAY T adgYy 7 st Y T ayXYy 10Y
(10.266)

Equation (10.266) has ten coefficients, and hence the element must have ten
nodes. It is also complete through the third-order terms. A systematic deriva-
tion of the interpolation function a for the higher-order elements involves
the use of the local coordinates.

10.15.2 Local Coordinates

Now, the triangular local coordinates (i7,47,.7,) are related to Cartesian
coordinates (x,y) as

X =0 ,X, 1,0, 1 5%, (10.267a)
Y=nYy, T3y, t13Y; . (10.267b)

The local coordinates are dimensionless, with values ranging from 0 to 1.
Furthermore, by definition, #, at any point within the triangle is the ratio of
the perpendicular distance from the point to the side opposite to vertexi to the
length of the altitude drawn from vertex i. Therefore, from Figure 10.18, the
value of 7, at P, for example, is given by the ratio of the perpendicular dis-
tance d from the side opposite vertex 1 to the altitude h of that side, namely,

d
=7 (10.268)

n,=—- (10.269)
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so that
41y 15 =1 (10.270)
Since A, +A,+A,; =A. The local coordinates #, in equation (10.269) are

also called area coordinates. The variation of (17,,57,.47,) inside an element is
shown in Figure 10.19.

3
71 zxwys)
> 2
(xzaJ’z)
0 >y

FIGURE 10.19 Variation of local coordinates.

Although the coordinates 77, , 77, , and 77, are used to define a point P, only two
are independent since they must satisfy equation (10.270). The inverted form
of equations (10.267) and (10.268) is

n, zi(ci +bx+ay) (10.271)
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where

a,=x,—x;,
b, =Y~ Y

C; =X — XY,

A = area of the triangle =—(b,a, —b,a, ),

1
2

(10.272)

and (i, j,k) is an even permutation of (1,2,3). The differentiation and inte-

gration in local coordinates are carried out using [47]:
A Y
o, ox dy
g __ L
8772

o dy
F (L,
ox 2A\ 9ny, on,

-a,

LA P S
dy 2A

0

[ ds=24] Tf(m,f?z)dnljcbyz

» i1 jlk!
nink ds=| —L " Ix24
[[nin [(i+j+k+2)!}<
dS=2Ady dy,

10.15.3 Shape Functions

(10.273a)

(10.273b)

(10.273c¢)

(10.273d)

(10.273e)

(10.273f)

(10.273g)

Now, we may express the shape function for higher-order elements in terms
of local coordinates. Indeed, sometimes, it is convenient to label each point in
the finite elements in Figure 10.17 with three integers, i, j, and k from which
its local coordinates (#7172-475) can be found or vice versa. For instance, at

each point P,
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>

('71,772,'73)=(

S I~

k) (10.274)
n

3'&.

Thus, if a value of @, say @, , is prescribed at each point P, , equa-
tion (10.264) can be expressed as
D (1,751 ) Zza,,k N10505) Py (10.275)
i=1 j=1
where
a;=a, =p@)p;0,)p,y), =12, (10.276)
L 0
— 1), >
p.(n)= Al =t). e (10.277)
1, e=0
and ee (z j,k). Further, p,(7) may also be written as
—-e+1
p@<n>=%xm_l<n>, e>0 (10.278)

where p,@7)=1.

The relationships between the subscript ge{1,2,3} on 5, l€{1,2,.,r} on
a,,and ee (1]7{) on p, and P, in equations (10.276) to (10.278) are illus-

trated in Figure 10.20 for n ranging from 1 to 3. Furthermore, point Py, will

be written as P, for conciseness.

(100)
1

2 3 5 8 9
(010) (001) (020)  (011)  (002) (030) (021) (012) (003)

(@)n=1 byn=2 (c)n=3

FIGURE 10.20 Distribution of nodes over triangles for n =1 to 3. The triangles are
in standard position.
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Notice from equations (10.277) or (10.278) that

po(’?)zl

Pl(’?):m’/

Pz(ﬂ)=%(”’7 —1)my (10.279)
o) =5 1 =2)(my =)y etc.

Indeed, by substituting equation (10.279) into equation (10.276) gives the
shape functions a, for nodes [ =1,2,..,r , as shown in Table 10.1 forn = 1 to 3.
In addition, observe that each a, takes the value of 1 at node [ and value 0 at
all other nodes in the triangle. It can be verified by using equation (10.274) in
conjunction with Figure 10.20.

TABLE 10.1 Polynomial Basic Functions a, (171,172,173) for First, Second, and Third.

n=1 n=2 n=3
1

0y =m, a1:’71(2’71_1) a1:§’71(3'71_2)(3’71_1)
9

Oy =1, Gy, =441, a2=§’71(3’71_1)772
9

Oy =My Gy =41, a3=§171(3171—1)r]3

a4:’72(2772_1) a4:§’71(3’72_1)’72

as=44, a5 =21,

ag=1,(21,-1) a6:§iyl(317371)}73
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10.15.4 Fundamental Matrices

The fundamental matrices [T] and [Q] for triangle elements can be derived
using the shape functions in Table 10.1. The matrix [T] is defined as

T, =[[aa,ds. (10.280)

From Table 10.1, we substitute a, in equation (10.280) and apply equations
(10.273f) and (10.273g) to obtain elements of T. For example, forn = 1,

11,

T, =2A[ [ nn, dydy,. (10.281)
0 0

Furthermore, when i# j, T, can be written as

C2A(1)(A)(0) A

T, 0 1 (10.282a)
but, when i = j,
2A(2!
r=2AC) 4 (10.252b)
! 41 6
Thus,
2 1 1
A
T==1|1 2 1]|. (10.283)
12
112

Now, by following the same procedure, higher-order T matrices can be
obtained. The T matrices for orders up to n = 3 are tabulated in Table 10.2
where the factor A, the area of the element, has been expressed. The actual
matrix elements are obtained from Table 2.2 by multiplying the tabulated
numbers by A and dividing by the indicated common denominator. Indeed,
the following properties of the T matrix are worth knowing:

(1) T is symmetric with positive elements;

(2) elements of T all add up to the area of the triangle, thatis, ' > T, =A,
since by definition ZG , =1 at any point within the element; '’
)
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(3) elements for which the two triple subscripts from similar permutations
are equal, that is, Tz‘ik,r)eq - Tiki,iwq - Tkii,t’pq - Tkji,eqzﬂ ~ Tjkiwqer) - Tiik,qp«’f; this

should be obvious from equations (2.280) and (10.276). .

As a result, the above properties are not only useful in checking the matrix;
they have proved useful in saving computer time and storage.

TABLE 10.2 Table of T matrices forn =1 to 3.

n=1 Common denominator = 12
2 1 1
T=|1 2 1
111 2
n=2 Common denominator = 180

(6 0 0 -1 -4 -1
0 32 16 0 16 —4
0 16 32 -4 16 0

T=

-1 0 4 6 0 -1

-4 16 16 0 32 0

-1 4 0 -1 0 6

n=3 Common denominator = 6720
[76 18 18 0 36 0o 11 27 27 117
18 540 270 -189 162 -135 0 -135 -54 27
18 270 540 -135 162 -189 27 -54 -135 0
0 -189 -135 540 162 -54 18 270 -135 27
T 36 162 162 162 1944 162 36 162 162 36

0 -135 -189 -54 162 540 27 -135 270 18
11 0 27 18 36 27 76 18 0 11
27 -135 -54 270 162 -135 18 540 -189 O
27 =54 -135 -135 162 270 0 -189 540 18
11 27 0 27 36 18 11 0 18 76

In equation (10.227), elements of [C] matrix are defined by

da.. 00, Qg 00
C. = i J i J dS ¢
=l 55t o | (10.284)
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By applying equations (10.273a) to (10.273d) to equation (2.147), it can be

shown that:
3 Ba aa
C, =LZCOtQQJ.J. 9, - oa, ds
TO2A a’7q+1 877(7 1 877(7+1 a’7q 1

or

3
C,=>.Q) cotd, (10.285)

q=1

where 0, is the include angle of vertex qe {1,2,3} of the triangle and

jj da, | 9%, %, dy by, . (10.286)
’7q+1 a’?(/ 1 a’? g+l 877 q-1 ’ .

It is clear that matrix C depends on the triangle shape, whereas the matrices
Q'” do not. The Q" matrices for n = 1 to 3 are tabulated in Table 10.3.

The following properties of Q matrices should be noted as:
(1) they are symmetric;
(2) the row and column sums of any Q matrix are zero, that is,

ZQ;‘” =0= ZQ;") so that the C matrix is singular.
i=1 j=1

Q" and Q" are easily obtained from Q" by row and column permutations
so that the matrix C for any triangular element is constructed easily if Q"
known.

TABLE 10.3 Table of Q matrices forn =1 to 3.

n=1 Common denominator = 2

0 0 0
Q=0 1 -1
0 -1 1
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n=2 Common denominator = 6
[0 0 0 0 0 0
08 -8 0 0 O
0 -8 8 0 0 O
=0 0 0 3 4 1
0 0 0 4 8 -4
o0 0 1 -4 3
n=3 Common denominator = 80
[0 0 0 0 0 0 0 0 0 0
135 -135 27 0 27 3 0 0 -3
-135 135 27 0 -27 -3 0 0 3
=27 27 135 -162 27 3 0 0 -3
0 0 -162 324 -162 0 0 0 0
0 0 3

3 -3 3 0 -3 34 54 27 -
0 54 135 -108 2
0 27 -108 135 54
3 -7 27 54 34

[=R ]
(=R ]
o o
o o

0
0
0
0
O=0 o7 o7 97 162 135 -3
0
0
0
0

|
w
w

|
w
(=]

For example, for n=1, the rotation matrix is basically derived from
Figure 10.21 as

(10.287)

=)

Il
o = o
— o o
e

where R, =1 node i is replaced by node j after one counterclockwise rotation,

or Ry =0 otherwise.

(a) (b)

FIGURE 10.21 One counterclockwise rotation of the triangle in (a) gives the triangle in (b).
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Moreover, Table 10.4 presents the R matrices for n = 1 to 3. Note that each
row or column of R has only one nonzero element since R is essentially a unit
matrix with rearranged elements.

TABLE 10.4 Table of R matrices forn =1 to 3.

[0 0 1

n=1, R=|1 0 0
010
[0 0 0001
001000

- R=000010
1 00000
01 0000
000100
0000O0O0O0O0 0 1]
0000010000
00000O0O0O0T10
0010000000

s 3:0 000100000
00000O0O0TIO0O0
1000000000
01 00000000
0001000000
000000100 0

Now, once the R is known, we can obtain Q® and Q" as
Q¥ =RQ"R' (10.288a)
Q" =RQ"R' (10.288b)

where R' is the transpose of R.

10.16 THREE-DIMENSIONAL ELEMENT

In this section, we will discuss the finite element analysis of Helmholtz’s equa-
tion in three dimensions, i.e.,

p) o4
Vet+ke=g (10.289)
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First, we divide the solution region into tetrahedral or hexahedral (rectangu-
lar prism) elements as in Figure 10.22.

3
(a) (b)
FIGURE 10.22 Three-dimensional elements: (a) Four-node or linear-order tetrahedral,

(b) eight-node or linear-order hexahedral.

Now, assuming a four-node tetrahedral element, the function @ is repre-
sented within element by

® =a+bx+cey+dz. (10.290)

The same applies to the function g. Since equation (10.290) must be satisfied
at the four nodes of the tetrahedral elements,

® =a+bx,+cy +dz, i=1,2,3,4. (10.291)

mi

Therefore, we have four simultaneous equations with the potentials
ViV, V.5, and V,  atnodes 1, 2, 3, and 4, respectively, i.e.,

ml> "'m2> "' m3> m
Vo I x, y 7 |a
Ve |_|1 % e & b (10.292)
V.3 I ox; ys zf|c
V.4 I ox, oy, = d

The coefficients a,b,c, and d are determined from equation (10.291)

1 x y z Via
e gz (Ve (10.293)
1 x, y, =z \4
\4

I ox, oy, 2

o

QUL o &
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The determinant of the system of equations is

det =

— = = =

(10.294)

where v is the volume of the tetrahedron. By finding a@,b,c, and d , we can

express @, as,

(10.295)

(10.296a)

, (10.296b)

) (10.296¢)

(10.296d)

(I)m = Za i(x’ y)q)mi
i=1
where

1 x vy

_ 1 L x vy,

' 6ol X3 Ys

1 x, vy,

1 x

11 x vy
a,=—

6ol x5y,

I x, y,

I x y

1L % oy,
a,=—

6vll x y

I x, vy,

I x vy

1L x oy
a,=—

6o|l x5y,

1 x vy

Indeed, for higher-order approximation, the matrices for a s become large in
size and we resort to local coordinates. The existence of integration equations
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for local coordinates can simplify the evaluation of the fundamental matrices

Tand Q.

Now, for the tetrahedral element, the local coordinates are #,,57,.7,, and 7, ,
each perpendicular to a side. They are defined at a given point as the ratio of
the distance from that point to the appropriate apex to the perpendicular dis-
tance from the side to the opposite apex. In addition, they can be interpreted
as volume ratios, that is, at a point P

N, =— (10.297)
(¥

where v, is the volume bound by P and face i. It is evident that

4
dSni=1. (10.298)
i=1

Note that, the following properties are useful in evaluating integration involv-
ing local coordinates:

dv = 6vdy dn ,dy 5 , (10.299a)
mfduzesol[ j (_mj_m f dn, Jdnzjdng, (10.299b)
[Jnininin’ dv= IR (10.299¢)

(i+j+k+1+3)!

In terms of the local coordinates, an arbitrary function ® (x y) can be approx-
imated within an element in terms of a complete nth order polynomial as

Za %L y)®,, (10.300)

where rzl(n+1)(n+2)(n+3) is the number of nodes in the tetrahe-

dron or number of terms in the polynomial. The terms in a complete three-
dimensional polynomial may be arrayed for polynomial basic functions degree
n =1 to 3, as shown in Figure 10.23.
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FIGURE 10.23 Pascal tetrahedral (3D) and the associated polynomial basic functions degree
n="1to 3.

Each point in the tetrahedral element is represented by four inte-
gers, i, j,k, and! which can be used to determine the local coordinates

(17,15 5m,) - That is at point Py, ,

> > >

S <.

k
n

S |-
S|~

(771>772,f73>774)=[ ) (10.301)

Thus, at each node,

o, =y =p (1P, 012 O15)pi (1) (10.302)

where ¢=12,...,r and p, is defined in equation (10.277) or (10.278).
Figure 10.22 illustrates the relationship between the node numbers ¢ and
ijkl for the second-order tetrahedron (n = 2). The shape functions obtained
by substituting equation (10.277) into (10.293) are presented in Table 2.5
forn = 3.
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(2000)
1

(1010) ¢

4 (1001)

10 (0002)
9(0011)

8
(0020)

FIGURE 10.24 Numbering scheme for second-order tetrahedral.

TABLE 10.5 Polynomial Basic Functions a (17,,7,,115) forn=11to 3.

n=1 n=2 n=3
4= a1=771(2)71—1) alzéﬂl(sﬂl_z)(gﬂl_l)
a, =1, 9
a,=4nm, a2=§n](3?7]—1)7]2
Ay =13 9
ay =4, as =§7]1(3'71_1)7/3
ay =i, 9
a =4, a4:§’71(3’71_1)’74
@5 =12(21, 1) ‘Zs:%’?](&?s_l)’?z
o =415 ae =29,
@7 =491 a,=2Tny,
a5 =12 (21,-1) as:%ﬂl(&?s_l)’?x
o =441, ay =24,
aw:lh(Q}hil) ang’?l(&h_l)’h
Ay *’72(3'7?_1)(3’72_2)
@y =21, (31, = 1),
O3 *772(3’72_1)774
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n=1 n=2 n=3
9
a14:§’72(3’7371)775
=291 414
a 2(3’73_1)

9
Uy 25773(3'73_1)’74

9
09 =§’73(3’74 _1)774

@ 5 zé’h(?”h _l)(&“ _2)

The fundamental matrices [T] and [Q] are involved triple integration. For
Helmbholtz equation, for example, equation (10.250) applies, namely,

[Cy kT, @, =0 (10.303)

except that

d d da .
jVa Va, do= jaa ¢; 92,9  da, 0%, do,  (10.304)
RPN VA VLN RN

" = ja a; dv=60[[aa dydy.dy,. (10.305)

10.17 FINITE ELEMENT METHODS FOR EXTERNAL PROBLEMS

We can apply the finite element to exterior or unbounded problems such as
open-type transmission lines (e.g., microstrip). They pose certain difficulties.
In this section, we will consider three common approaches: first, the infi-
nite element method; second, the boundary element method; and third, the
absorbing boundary condition.
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10.17.1 Infinite Element Method

Let us consider the solution region shown in Figure 10.25. We can divide the
entire domain into a near-field, bounded region, and a far-field, unbounded
region. As usual, the near-field region is divided into finite triangular ele-
ments, while the far-field region is divided into infinite elements. Knowing
that, each infinite element shares two nodes with a finite element. We will
mainly be focusing on the infinite elements.

v
N |

Ground Plane

FIGURE 10.25 Division of solution region into finite and infinite elements.

Now, consider the infinite element in Figure 10.26 with nodes 1 and 2 and
radial sides intersecting at point (x,,y, ).

v

FIGURE 10.26 Typical infinite element.

We can relate triangular polar coordinates (p ., ) to the global Cartesian coor-
dinates (x,y) as:

X=X, +p((x1 —x,)+1 (xz—xl))

(10.306)
Y=Y, +,0((y1 _yo)+’7 (yz _yl))
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where 1< p <eo, 0<z <1. The potential distribution within the element is
approximated by a linear variation as

v=YayV, (10.307)
i=1

or

V=L (V) + Vi)

where V; and V, are potentials at nodes 1 and 2 of the infinite elements, a,
and a, are the interpolation or shape functions, that is,

0, =1 q =1 (10.308)
p p

Moreover, the infinite element is compatible with the ordinary first-order
finite element and satisfies the boundary condition at infinity. Indeed, with the
shape functions in equation (10.308), we can obtain the ?C“"‘)] and [T“"g
matrices. We obtain solution for the exterior problem by using a standar

finite element program with the [C “'1)] and [T("”] matrices of the infinite

elements added to the [C] and [T] matrices of the near field region.

10.17.2 Boundary Element Method

The boundary element method is a finite element approach for handling
exterior problems. It involves obtaining the integral equation formulation of
the boundary value problem, and solving this by a discretization procedure
similar to that used in regular finite element analysis. But, since the boundary
element method is based on the boundary integral equivalent to the govern-
ing differential equation, only the surface of the problem domain needs to be
modeled. Moreover, for the dimension of 2D problems, the boundary ele-
ments are taken to be straight-line segments, whereas for 3D problems, they
are taken as triangular elements.

10.17.3 Absorbing Boundary Conditions

To apply the finite element approach to open region problems, an artificial
boundary is introduced in order to bound the region and limit the number
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of unknowns to a manageable size. It can be expected that, as the boundary
approaches infinity, the approximate solution tends to be the exact one.
However, the closer the boundary to the modeled object, the less computer
memory is required. To avoid the error caused by this truncation, an absorb-
ing boundary condition (ABC) can be imposed on the artificial boundary S, as
typically portrayed in Figure 10.27.

e — Absorbing object, S

FIGURE 10.27 An object surrounded by an absorbing boundary.

Indeed, the ABC minimizes the nonphysical reflections from the boundary.
The major challenge of these ABCs is to bring the truncation boundary as
close as possible to the object without sacrificing accuracy and to absorb the
outgoing waves with little or no reflection:

]kr o

(r0.0)= Z

=0 (10.309)

Furthermore, the sequence of BGT operators can be obtained by the recur-
sion relation, i.e.,

0
B ik
! [ar J +r)

B :(i+jk+2m_l

ij_l, m=23.. (10.310)
or r

Now, since @ satisfies the higher-order radiation condition

B,o=0[—|. (10.311)
()
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By imposing the mth-order boundary condition

BM(I)ZO, on S (10312>

will compel the solution @ to match the first 2m terms of the expansion in
equation (10.309). Equation (10.312), along with other appropriate equations
is solved for @ using the FEM.

10.18 MODELING AND SIMULATION OF SHIELDED
MICROSTRIP LINES WITH COMSOL MULTIPHYSICS

In today’s fast-paced research and development culture, simulation power
gives you the competitive edge. COMSOL Multiphysics delivers the ideal tool
to build simulations that accurately replicate the important characteristics of
your designs. Its unparalleled ability to include all relevant physical effects
that exist in the real world is known as multiphysics. This approach delivers
results—tangible results that save precious development time and spark inno-
vation. COMSOL Multiphysics brings you this remarkable technology in an
easy-to-use, intuitive interface, making it accessible to all engineers including
designers, analysts, and researchers.

Today, electromagnetic propagation on multiple parallel transmission lines
has been a very attractive area in computational electromagnetics. Multiple
parallel transmission lines have been successfully applied and used by design-
ers in compact packaging, semiconductor device, high-speed interconnect-
ing buses, monolithic integrated circuits, and other applications. Microstrip
lines are the most commonly used in all planar circuits despite the frequency
ranges of the applied signals. Microstrip lines are the most commonly used
transmission lines at high frequencies. Quasi-static analysis of microstrip lines
involves evaluating them as parallel plate transmission lines, supporting a pure
“TEM” mode. Development in microwave circuits using rectangular coaxial
lines as a transmission medium has been improving over the past decades.
Reid and Webster used rectangular coaxial transmission lines to fabricate a 60
GHz branch-line coupler. The finite difference time domain method has been
used for analyzing a satellite beamforming network consisting of rectangular
coaxial lines.

Advances in microwave solid-state devices have stimulated interest in the
integration of microwave circuits. Today, microstrip transmission lines have
attracted great attention and interest in microwave-integrated circuit applica-
tions. This creates the need for accurate modeling and simulation of microstrip
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transmission lines. Due to the difficulties associated with analytical methods
for calculating the capacitance of shielded microstrip transmission lines, other
methods have been applied. Such methods include the finite difference tech-
nique, extrapolation, point-matching method, boundary element method,
spectral-space domain method, finite element method, conformal mapping
method, transverse modal analysis, and mode-matching method.

In this book, we consider systems of rectangular coaxial lines as well as sin-
gle-strip, double-strip, three-strip, six-strip, and eight-strip (multiconductor)
shielded microstrip lines. Using COMSOL, a finite element package, we per-
formed the simulation of these systems of microstrip lines. We compared the
results with other methods and found them to be in good agreement.

The rectangular coaxial line consists of a two-conductor transmission system
along which the TEM wave propagates. The characteristic impedance of such

a lossless line is given by
Z=\/Z=i (10.313)
C cC

Z = characteristic impedance of the line

where

L = inductance per unit length of the line
C = capacitance per unit length of the line
¢ = 3 x 10° m/s (the speed of light in vacuum).

As shown in Figure 10.28, a rectangular coaxial line consists of inner and outer
rectangular conductors with a dielectric material separating them.

y A
—
Ho
A Conducting material a
£, &
v b Diele:ctric material -
07 B > x

FIGURE 10.28 Cross-section of the rectangular coaxial line.
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Using COMSOL for each type of the rectangular line involves taking the fol-
lowing steps:

1. Develop the geometry of the inner and outer conductors, such as shown
in Figure 10.28.

R1

FIGURE 10.28 Geometry of the rectangular coaxial line model.

2. Select both conductors/rectangle and take the difference.

3. We select the relative permittivity as 1 for the difference in Step 2. For
the boundary, we select the outer conductor as ground and inner conduc-
tor as port.

4. We generate the finite element mesh as in Figure 10.29.

DD
XD

SOEKL

FIGURE 10.29 Mesh of the rectangular coaxial line.
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5. We solve the model and obtain the potential shown in Figure 10.30.

Surface: Electyic potential (V) Max: 100

-1 05 [ os 1 15 2 25 3 35 . o
xio? M -12%e2S

FIGURE 10.30 2D for the potential distribution of the rectangular coaxial line.

6. Aspostprocessing, we select Point Evaluation and choose capacitance ele-
ment 11 to find the capacitance per unit length of the line.

We now consider the following three models.

10.18.1 Rectangular Cross-Section Transmission Line
For COMSOL, we use the following values.
Dielectric material:

e, =1, u =1,6=0S/m (air)
Conducting material:
e, =1L u =10=58x 10° S/m (copper)

where

&, = permittivity of free space = ﬁx 10 =8.854%107" F/m
¢ = dielectric constant

u, = relative permeability

&, = permeability of free space = 47 X107 =1.257x10° H/m

o = conductivity of the conductor
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a = width of the inner conductor = 1 mm
b = height of the inner conductor = 0.8 mm
A= width of the outer conductor = 2.2 mm

B = height of the outer conductor = 2 mm

From the COMSOL model, we obtained the capacitance per unit length
(based on the dimensions given above) as 72.94 pF/m. Using the finite differ-
ence (FD) method, we obtained the capacitance per unit length of the line as
71.51 pF/m. Table 10.6 shows the comparison of the characteristic impedance
using equation (10.313) of several models. It is evident from the table that the
results are very close.

TABLE 10.6 Comparison of Characteristic Impedance Values of Rectangular Coaxial Line.

Name Z,

Zheng 45.789
Chen 45.759
Costamagna and Fanni 45.767
Lau 45.778
Finite difference (FD) 46.612
COMSOL 45.70

10.18.2 Square Cross-Section Transmission Line

This is only a special case of the rectangular line. We used the same values for
the dielectric and conducting materials. We used the following dimensions
for the line.

a = width of the inner conductor = 2 mm

b = height of the inner conductor = 2 mm

A= width of the outer conductor = 4 mm

B = height of the outer conductor = 4 mm

From the COMSOL model, we obtained the capacitance per unit length as
90.696 pF/m. Using the FD method, we obtained the capacitance per unit
length of the line as 90.714 pF/m. Table 10.7 presents the comparison of the

characteristic impedance of several models. It is evident from the table that
the results are in good agreement.
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TABLE 10.7 Comparison of Characteristic Impedance Values of Square Coaxial Line

Name Z,

Zheng 36.79
Lau 36.81
Cockeroft 36.80
Bowan 36.81
Green 36.58
Ivanov and Djankov 36.97
Costamagna and Fanni 36.81
Riblet 36.80
Finite difference (FD) 36.75
COMSOL 36.75

10.18.3 Rectangular Line with Diamondwise Structure

The geometry of the cross-section of this line is shown in Figure 10.31. The
same dielectric and conducting materials used for the rectangular line are
used for this line.

y A
N
Dielectric material
0
A gr 80
| «— B/2 —»

v o
0'S B > | X

FIGURE 10.31 Cross-Section of the Diamondwise (or Rhombus) Structure with 45° Offset Angle.

The following values are used for the COMSOL model of the line.
d=1mm
A= width of the outer conductor = 4 mm

B = height of the outer conductor = 4 mm
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For the COMSOL model, we obtained the capacitance per unit line as 57.393
pF/m.

Table 10.8 displays the comparison of the characteristic impedance of several
models. It is evident from the table that the results are in good agreement.

TABLE 10.8 Comparison of Characteristic Impedance Values of Diamondwise Structure

Name Z,

Zheng et al. 56.742
Bowan 56.745
Riblet 56.745
COMSOL 58.079

10.18.4 A Single-Strip Shielded Transmission Line

Figure 10.32 presents the cross-section of a single-strip shielded transmission
line.

air

vl

|
dielectric A £. =838

3

0|« a > | X

|
:

»

FIGURE 10.32 Cross-Section of the Single-Strip Shielded Transmission Line.

The following parameters are used in modeling the line. The characteristic
impedance of such a lossless line is given by

z-_ L (10.314)
c,/CC

0

where

Z = characteristic impedance of the line
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C, = capacitance per unit length of the line when the substrate is replaced
with air

C = capacitance per unit length of the line when the substrate is in place

¢ = 3 x 10° m/s (the speed of light in vacuum).

For COMSOL, the simulation was done twice in Figure 10.32 (to find C,
and C) using the following values.

Air:

e, =1, u, =1,6=05m

Dielectric material:

e =88 1 =1,6=08m

Conducting material:

e, =1, u =1,06=58x10"S/m (copper)

w = width of the inner conductor = 1 mm

t = height of the inner conductor = 0.1 x 10 m
h = height of dielectric material = 1 mm

a = width of the outer conductor = 19 mm

b = height of the air-filled region = 9 mm

Using COMSOL for modeling and simulation of the lines involves taking the
following steps:

1. Develop the geometry of the line, such as shown in Figure 10.33.

FIGURE 10.33 Geometry of a Single-Strip Shielded Transmission Line at Air.
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2. We take the difference between the conductor and dielectric material.
We select the relative permittivity as 1 for the difference in Step 2.

4. For the boundary, we select the outer conductor as ground and inner
conductor as port.

5. We generate the finite element mesh, and then we solve the model and
obtain the potential.

6. Aspostprocessing, we select Point Evaluation and choose capacitance ele-
ment 11 to find the capacitance per unit length of the line.

7. We add a dielectric region under the inner conductor with relative per-
mittivity as 8.8, as in Figure 10.33. Then we take the same steps from 3
to 6 to generate the mesh as in Figure 10.34 and the potential distribution
as in Figure 10.35.

FIGURE 10.34 Mesh of a Single-Strip Shielded Transmission Line.

Electric potential [V]
T T

-0.008 o 0.008 0.01 0.018 0.02 0.028
Arc-length

FIGURE 10.35 The Potential Distribution along y = 0.002.
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Table 10.9 shows the comparison between our method using COMSOL and
other methods. It is evident that the results are very close.

TABLE 10.9 Comparison of capacitance values for a single-strip shielded transmission line

Methods C,(pF/m) C(pF/m)
Finite difference method 26.79 1405.2
Extrapolation 26.88 1393.6
Analytical derivation 27.00 1400.9
COMSOL 26.87 1574.0

10.19 MULTISTRIP TRANSMISSION LINES

Recently, with the advent of integrated circuit technology, the coupled micro-
strip transmission lines consisting of multiple conductors embedded in a
multilayer dielectric medium have led to a new class of microwave networks.
Multiconductor transmission lines have been utilized as filters in the micro-
wave region, which make it interesting in various circuit components. For
coupled multiconductor microstrip lines, it is convenient to write:

m

Q=XCV, (=12 ..,m (10.315)
j=1

where Q, is the charge per unit length, V. is the voltage of jth conductor with
reference to the ground plane, C,; is the short circuit capacitance between ith
conductor and jth conductor. The short circuit capacitances can be obtained
either from measurement or from numerical computation. From the short
circuit capacitances, we obtain

m

C,=2.C, (10.316)

where C, is the capacitance per unit length between the ith conductor and
the ground plane. Also,

C,=—C,, j#i (10.317)

sij >

where Cij is the coupling capacitance per unit length between the ith con-
ductor and jth conductor. The coupling capacitances are illustrated in
Figure 10.36.
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m
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FIGURE 10.36 The Per unit Length Capacitances of a General m-conductor Transmission Line.

For m-strip line, the per unit length capacitance matrix is given by

Cu _Cm o _Clm
_CQI sz o _CQ m

C=| : ) (10.318)
_le TVm2 ”. mm

Also, we can determine the characteristic impedance matrix for m-strip line

by using
Zu le Zlm
ZZl Z22 Z2m
Z =| : : (10.319)
V4

ml m2 mm

where Z, is the characteristic impedance per unit length.

Using COMSOL for modeling and simulation of the lines involves taking the
following steps:

1. Develop the geometry of the line.

2. We take the difference between the conductor and dielectric material.

3. We select the relative permittivity as 1 for the difference in Step 2.
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4. We add a dielectric region under the inner conductors with specified rela-
tive permittivity.

5. For the boundary, we select the outer conductor as ground and the inner
conductors as ports.

6. We generate the finite element mesh, and then we solve the model.

7. As postprocessing, we select Point Evaluation and choose capacitance ele-
ments to find the coupling capacitance per unit length of the line.

These steps were taken for the following four cases.

10.19.1 Double-Strip Shielded Transmission Line

Figure 10.37 presents the cross-section of double-strip shielded transmission
line, which consists of two inner conductors.

air

dielectric £ =2

4—-»{4—@—»
=

0|« a > | X

FIGURE 10.37 Cross-section of the Double-strip Shielded Transmission Line.

For COMSOL, the simulation was done twice in Figure 10.36 (one for C, and
the other for C) using the following values.

Air:
e, =1, u, =1,6=0S/m

Dielectric material:

e, =2, u, =1,0=05m
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Conducting material:

e, =1, u =1,06=58x 10" S/m (copper)

For the geometry (see Figure 10.37), we followed the following values:

w = width of each of the inner conductors = 3 mm

t = height (or thickness) of the inner conductors = 1 mm

s = distance between the inner conductors = 2 mm

h = height of dielectric material = 1 mm

a = width of the outer conductor = 11 mm

b = height of the air-filled region = 2.7 mm

From the COMSOL model, the simulation was done twice, one for the case
in which the line is air-filled (the dielectric was replaced by air) and the other
case in which the dielectric is in place, as shown in Figure 10.37. Figure 10.38
shows the finite element mesh, while Figure 10.39 depicts the potential dis-

tribution for the dielectric case. The potential distribution for y = 1 mm is
portrayed in Figure 10.40.

FIGURE 10.38 Mesh the of Double-strip Shielded Transmission Line.

- I
SN—

FIGURE 10.39 Potential Distribution.
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Electric potential [V]

Electric potential [V]

-0.004 -0.002

0.01 0.012 0.014 0.016

FIGURE 10.40 Potential distribution aty =1 mm.

We obtained the capacitances per unit length (C, and C) by taking the steps
enumerated above for the single-strip transmission line. The results are shown
in Table 10.9. Table 10.10 is for the case in which the line is air-filled, i.e., the
dielectric in Figure 10.37 is replaced by air. Table 10.11 is for the case in
which the dielectric is in place. The results in Table 10.11 are compared with
other methods and found to be close.

TABLE 10.10 Capacitance Values for Double-strip Air-filled Shielded Transmission Line

Methods

C,, = C,,(pF/m)

C,, =C, (pF/m)

COMSOL

72.9

-4.591

TABLE 10.11 Comparison of Capacitance Values for Double-strip Shielded Transmission Line

Shown in Figure 10.36

LA G, = Cy,(pPF/m) Cyo = C,/(PF/m)
Spectral-space domain method 108.1 -4.571
Finite element method 109.1 -4.712
Point-matching method 108.8 -4.683
COMSOL 108.5 -4.618
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10.19.2 Three-Strip Line
Figure 10.40(a) shows the cross-section for three-strip transmission line. For
COMSOL, the simulation was done twice in Figure 10.40 (one for C and the
other for C) using the following values:
Air:
e, =1, u, =1,0=05m

Dielectric material:

¢, =86, 1 =1,6=05m

Conducting material:

e, =1, u, =1,0=58x 10" S/m (copper)

For the geometry (see Figure 10.40(a)), we used the following values:
a = width of the outer conductor = 13 mm

b = height of the free space region (air) = 4 mm

h = height of the dielectric region = 2 mm

w = width of each inner strip = 2 mm

t = thickness of each inner strip = 0.01 mm

D = distance between the outer conductor and the first strip = 2.5 mm

s = distance between two consecutive strips = 1 mm

y“
air T
D = wv— f— w —» «— W — D b
Cl J—s— | | |t
?_
dielectric (&=28.6) v .
0|« a > X i

FIGURE 10.40(a) Cross-section of the Three-strip Transmission Line.
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Figure 10.41 shows the finite element mesh, while Figure 10.42 illustrates the
potential distribution along the line y = h.

FIGURE 10.41 Mesh for the Three-strip Transmission Line.

o o o
.- o @

Electric potential [V]

o
M

FIGURE 10.42 Potential Distribution along the Air-dielectric Interface (y = h) for the Three-strip
Transmission Line.
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Table 10.12 shows the finite element results for the three-strip line.
Unfortunately, we could not find any work in the literature to compare our
results.

TABLE 10.12 Capacitance Values (in pF/m) for Three-strip Shielded Microstrip Line

Methods C, G, C,,
COMSOL 163.956 -27.505 -0.4301

10.19.3 Six-Strip Line

Figure 10.43 shows the cross-section for six-strip transmission line. For
COMSOL, the simulation was done twice in Figure 10.42 (one for C, and the
other for C) using the following values:

Air:

e, =1, u, =10=0Sm
Dielectric material:

e, =6, u, =1,6=05m
Conducting material:

e, =1, u =1,06=58x 10" S/m (copper)

For the geometry (see Figure 10.43), we used the following values:

a = width of the outer conductor = 15 mm

b = height of the free space region (air) = 2 mm

h = height of the dielectric region = 8§ mm

w = width of each inner strip = 1 mm

t = thickness of each inner strip = 0.01 mm

D = distance between the outer conductor and the first strip = 2 mm

s = distance between two consecutive strips = 1 mm
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FIGURE 10.43 Cross-section of the Six-strip Transmission Line.

Figure 10.44 shows the finite element mesh, while Figure 10.45 depicts the
potential distribution along line y = h.

FIGURE 10.44 Mesh for the Six-strip Transmission Line.

Electric potential [V]
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FIGURE 10.45 Potential Distribution along the Air-dielectric Interface (y = h) for the Six-strip
Transmission Line.



482 « FiNnTE ELEMENT ANALYsIs 2/E

The capacitance values for six-strip shielded microstrip line are compared with
other methods, as shown in Table 10.13, where “iterative” refers to an itera-
tive method and ABC refers to the asymptotic boundary condition. It is evi-
dent from the table that the finite element methods based closely agree. The
finite element methods seem to be more accurate than the iterative and ABC
techniques. (The negative capacitances are expected from equation (10.318).)

TABLE 10.13 Capacitance Values (in pF/m) for Six-strip Shielded Microstrip Line

Methods Gy Gy Gy Cx G Cs

Iterative 66.8 -27.9 -5.49 -2.08 -0.999 -0.704
Finite Element 84.8 -26.4 -3.71 -1.17 -0.456 -0.812
ABC 68.6 -31.5 -6.00 -2.25 -0.792 -0.602
COMSOL 80.4 -23.9 -3.61 -1.15 -0.451 -0.180

10.19.4 Eight-Strip Line

Figure 10.46 shows the cross-section for eight-strip transmission line. For
COMSOL, the simulation was done twice in Figure 10.45 (one for C, and the
other for C) using the following values:

Air:

e, =1, u, =1,6=05m

Dielectric material:

e, =129, u, =1,6=05/m

Conducting material:

e, =1, u, =1,6 =58 x 10" S/m (copper)

For the geometry (see Figure 10.46), we used the following values:

a = width of the outer conductor = 175 mm

b = height of the free space region (air) = 100 mm

h = height of the dielectric region = 16 mm

sw = width of each inner strip = 1 mm

t = thickness of each inner strip = 0.01 mm

D = distance between the outer conductor and the first strip = 80 mm

s = distance between two consecutive strips = 1 mm
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potentia

20 mm) for

the Eight-strip Transmission Line.

FIGURE 10.48 Potential Distribution along the Air-dielectric Interface (y
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The capacitance values for eight-strip shielded microstrip line are compared
with other methods, as shown in Table 10.14, where other authors used
the analytic approach and Fourier series expansion. It is evident from the
table that the results from the finite element method (COMSOL) closely

agree with the analytic approach.

TABLE 10.14 Capacitance Values (in pF/m) for Eight-strip Shielded Microstrip Line

Method G G G, (O G (o G, G
Analytic 127.776 | -58.446 | -13.024 | -5.721 -3.104 -1.892 -1.282 -1.211
Fourier 126.149 | -57.066 | -12.927 | -5.684 -3.086 -1.875 -1.264 -1.185
series

COMSOL | 128.204 | -58.759 | -13.064 | -5.739 -3.1206 | -1.902 -1.290 -1.226

10.20 SOLENOID ACTUATOR ANALYSIS WITH ANSYS

We use ANSYS to do magnetic analysis (linear static) of a solenoid actuator.
A solenoid actuator is to be analyzed as a 2D axisymmetric model as shown in
Figure 10.49. For the given current, we determine the force on the armature.

— 4

t,=0.75
v
gap =0.25

—

Axis of symmetry

t, =075 1=

Armature

(iron)

Back-iron

(iron)

Coil

(copper)
650 turns,

1 amp/turn

FIGURE 10.49 Cross-Section of the Solenoid Actuator.

The dimensions of the solenoid actuator are in centimeters. The armature is
the moving component of the actuator. The back-iron is the stationary iron
component of the actuator that completes the magnetic circuit around the
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coil. The stranded, wound coil of 650 windings with 1 amp/turn supplies
the predefined current. The current per winding is 1 amp. The air gap is the
thin rectangular region of air between the armature and the pole faces of the
back-iron.

The magnetic flux produced by the coil current is assumed to be so small that
no saturation of the iron occurs. This allows a single-iteration linear analysis.
The flux leakage out of the iron at the perimeter of the model is assumed to
be negligible. This assumption is made simple to keep the model small. The
model would normally be created with a layer of air surrounding the iron
equal to or greater than the maximum radius of the iron.

The air gap is modeled so that a quadrilateral mesh is possible. A quadrilat-
eral mesh allows for an uniform thickness of the air elements adjacent to the
armature where the virtual work force calculation is performed. This is desir-
able for an accurate force calculation. The program requires the current to be
input in the form of current density (current over the area of the coil). The
assumption of no leakage at the perimeter of the model means that the flux
will be acting parallel to this surface. This assumption is enforced by the “flux
parallel” boundary condition placed around the model. This boundary con-
dition is used for models in which the flux is contained in an iron circuit.
Forces for the virtual work calculation are stored in an element table and then
summed. The force is also calculated by the Maxwell Stress Tensor method,
and the two values are found to be relatively close. Table 10.15 summarizes
the parameters of the model for the actuator geometry.

TABLE 10.15 Parameters of the model for the actuator geometry.

Parameter Value
Number of turns in the coil; used in postprocessing n = 650
Current per turn I=10
Thickness of inner leg of magnetic circuit t,=0.75
Thickness of lower leg of magnetic circuit t,=0.75
Thickness of outer leg of magnetic circuit t,=0.50
Armature thickness t;=0.75
Width of coil w, =1
Height of coil h,=2

Air Gap gap = 0.25
Space around coil space =0.25
w, w, = w, + 2 * space
h, h,=h,+0.75




486 * FiNnTE ELEMENT ANALYsIs 2/E

Parameter Value

Total width of model w=t,+w, +1t,
h, h, =t, +h,
Total height of model h=h, +gap +1,
Coil area acoil =w, * h,
Current density of coil idens = n¥*i/acoil

The below steps are a guideline for solving the above model.

1. Input the geometry of the model

We use the information in the problem description to make Figure 10.50.

FIGURE 10.50 The 2D Geometry of the Solenoid Actuator Model.

2. Define the materials
(a) Set preferences

You will now set preferences in order to filter quantities that pertain
to this discipline only.
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Main Menu> Preferences

2. Check “Magnetic-Nodal” as in Figure 10.50a

3. OK

m Preferences for GUI Filtering

[KEYW][/PMETH] Preferences for GUI Filtering
Individual discipline(s) to show in the GUI

Electromagnetic:

[~ Structural

[~ Thermal

[~ ANSYS Fluid
[~ FLOTRAN CFD

VP
[~ Magnetic-Edge

x|

[~ High Frequency
[ Electric

Note: If no individual disciplines are selected they will all show.

Discipline options
& h-Method

(" p-Method Struct.
(" p-Method Electr.

Help

FIGURE 10.50(a) Preferences for GUI filtering.

(b) Specify material properties

Now specify the material properties for the magnetic permeability
of air, back-iron, coil, and armature. For simplicity, all material prop-
erties are assumed to be linear. (Typically, iron is input as a nonlinear
B-H curve.) Material 1 will be used for the air elements. Material 2
will be used for the back-iron elements. Material 3 will be used for
the coil elements. Material 4 will be used for the armature elements.

1. Main Menu > Preprocessor > Material Props > Material

Models

2. Double-click “Electromagnetics”, then “Relative Permeabil-

ity”, then “Constant”
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3. “‘MURX” =1
4. OK

5. Edit > Copy
6

OK to copy Material Model Number 1 to become Material
Model Number 2.

7. Double-click “Material Model Number 27, then “Permeability
(Constant)”

8. “MURX” = 1000 as shown in Figure 10.51
9. OK

10. Edit > Copy

11. “from Material Number” = 1

12. “to Material Number” = 3

13. OK

14. Edit > Copy

15. “from Material Number” = 2

16. “to Material Number” = 4

17. OK

18. Double-click “Material Model Number 47, then “Permeability
(Constant)”

19. “MURX” = 2000 as shown in Figure 10.52

20. OK

21. Material > Exit

22. Utility Menu > List > Properties > All Materials

23. Review the list of materials, then: as shown in Figure 10.53

File > Close (Windows)
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Material Models Defined Material Models Available

(83 Material Model Number 1 (&3 Favorites

@ aterial Model Number 2 @ Electromagnetics

© Permeability (constant) @ Relative Permeability

o
@ Orthotropic
BH Curve

mPermeabilily for Material Number 2 @ ¢

(& Coercive Force
(83 Relative Permittivity
(&3 Resistivity
€ Loss Tangent

Relative Permeability (Constant) for Material Number 2

Add Temperature | Delete Temperature | Graph

0K | Cancel | Help |

FIGURE 10.51 Definition of Material Model Behavior for Numbers 1 and 2.

m Define Material Model Behavior E]@
Material Edit Favorite Help

Material Models Defined Material Models Available

(&3 Material Model Number 1 _] (&3 Favorites _|

(&3 Material Model Number 2 @ Electromagnetics

(&8 Material Model Number 3 8 Relative Permeability

I Faterial Model Number 4 e m

@ Permeability (constant) @ Orthotropic
€ BH Curve

(&3 Coercive Force

(&) Relative Permittivity
(&3 Resistivity

€ Loss Tangent

7| [
il > Kl |

FIGURE 10.52 Definition of Material Model Behavior for Numbers 1, 2, 3, and 4.
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mMPLIST Command @
File
|
EVALUATE MATERIAL PROPERTIES FOR MATERIALS 1710 4 IN INCREMENTS OF 1
MATERIAL NUMBER = 1 EVALUATED AT TEMPERATURE OF 0.0000
MURX = 1.0000
MATERIAL NUMBER = 2 EVALUATED AT TEMPERATURE OF 0.0000
MURK = 1000.0
MATERIAL NUMBER = 3 EVALUATED AT TEMPERATURE OF ©.0000
MURK = 1.0000
MATERIAL NUMBER = 4 EVALUATED AT TEMPERATURE OF ©.0000
MURK = 2000.0

FIGURE 10.53 Review the List of Materials of the Model.

3. Generating the Mesh
(a) Define element types and options

In this step, you will define element types and specity options associ-
ated with these element types.

The higher-order element PLANES33 is normally preferred, but to
keep the model size small, use the lower-order element PLANE13.

1. Main Menu > Preprocessor > Element Type > Add/Edit/

Delete

2. Add...

3. “Magnetic Vector” (left column)

4. “Vect Quad 4nod13 (PLANE13” (right column)

5. OK

6. Options...

7. (drop down) “Element behavior” = Axisymmetric, as shown in
Figure 10.54

8. OK

9. Close
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m Element Types

Defined Element Types:

IA\ PLANE13 element type options

Options for PLANE13, Element Type Ref. No. 1

Element degrees of freedom K1

Extra shapes K2

Element behavior K3

Element coord system defined K4 IParaII to global

Extra element output KS

INo extra output

FIGURE 10.54 Element Type PLANE13.
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(b) Assign material properties.

Now assign material properties to air gaps, iron, coil, and armature

areas.

1. Main Menu > Preprocessor > Meshing > MeshTool

2. (drop down) “Element Attributes” = Areas; then [Set] as in
Figure 10.55

3. Pick four areas of air gaps, A13, Al4, A17, and AlS (the picking

“hot spot™ is at the area number label).

FIGURE 10.55 Element Attribute for Mesh Tool.

Element Attributes:

Areas v

MeshTool

I~ Smart Size

[ El

Fine 6 Coarse

Size Controls:

G 5% | oo
o | o]
ou_sa| o]

Mesh: Areas v

Shape: " Tii & Quad

@ Free  Mapped?
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OK
(drop down) “Material number” = 1
Apply

Pick the five back-iron areas, A7, A8, A9, All, Al2. as in
Figure 10.56

N o »n bk

FIGURE 10.56 Five Back-iron Areas, A7, A8, A9, A11, A12.

8. OK

9. (drop down) “Material number” = 2
10. Apply

11. Pick coil area, A4

12. OK

13. (drop down) “Material number” = 3
14. Apply
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(c)

(d)

15. Pick armature area, A10, A15, A16
16. OK

17. (drop down) “Material number” = 4
18. OK
19. Toolbar: SAVE_DB

Specify meshing-size controls on air gap

Adjust meshing-size controls to get two element divisions through

the air gap.

1.

LA

Main Menu > Preprocessor > Meshing > Size Cntrls > Manual-
Size > Lines > Picked Lines

Pick four vertical lines through air gap
OK
“No. of element divisions” = 2

OK

Mesh the model using the MeshTool

N o u kv bR

“Size control global” = [Set]
“Element edge length” = 0.25
OK as in Figure 10.57

(drop down) “Mesh” = Areas
Mesh

Pick All

Close
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PlotClrls WorkPlane Parameters Macro MepuCtrls Help

|22 & dzuo) [
Element Attributes:
1] powmgrer] ra— Y
®

Size Conlrols:
Global et
Areas et

Clear
s | o
o sa | o
Copy M
el N s
Keypts ﬂ Clear

Meshe [ "preas -

Shape: C Ti  © Quad

@ Free Mapped ”
T\ Global Element Sizes.

[ESIZE] Global element sizes and divisions (applies only.
to "unsized" nes) Mesh Clear
SIZE Element edge length
NDIV No. of element divisions - D
- (used only i element. edge length, SIZE, is blank or zero) Refine ot [Elements -
Refine
oK Cancel Help Close Hebp

FIGURE 10.57 Global Element Sizes.

8. Utility Menu > PlotCtrls > Numbering as in Figure 10.58

9. (drop down) “Elem / attrib numbering” = Material numbers as
in Figure 10.59

10. OK as in Figure 10.60

FIGURE 10.58 Numbering after PlotCtrls.
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AL Numbering Controls

[/PNUM] Plot Numbering Controls

KP  Keypoint numbers
LINE Line numbers
AREA Area numbers
YOLU Yolume numbers

NODE Node numbers

Elem [ Attrib numbering
TABN Table Names

SYAL Numeric contour values

[~ off
[~ off
vV On
[~ off

[~ off
=
[~ off

[~ off

[/NUM] Numbering shown with

Colors & numbers v

[/REPLOT] Replot upon OK{Apply?

Replot v

Cancel | Help |

FIGURE 10.59 Plot Numbering Control.

FIGURE 10.60 Numbering of the Model
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(e) Scale model to meters for solution

For a magnetic analysis, a consistent set of units must be used. In
this tutorial, MKS units are used, so you must scale the model from

centimeters to meters.

1. Main Menu > Preprocessor > Modeling > Operate > Scale
> Areas

2. Pick All

3. “BRX,RY,RZ Scale Factors” = 0.01, 0.01, 1

4. (drop down) “Existing areas will be” = Moved

5. OKasin Figure 10.61

6. Toolbar: SAVE_DB

m Scale Areas
[ARSCALE] Scale Areas

RX,RY,RZ Scale Factors - Io.m ”om ||1

- in the active coordinate system

K s o —
NOELEM Items to be scaled Areas and mesh 2
IMOVE Existing areas will be Moved -

oK nopty | concel | Hep |

4. Apply

FIGURE 10.61 Scale area of the model.

Loads

(a) Define the armature as a component

The armature can conveniently be defined as a component by select-
ing its elements.

1
2
3.
4

Utility Menu > Select > Entities
(first drop down) “Elements”
(second drop down) “By Attributes”
“Min, Max, Inc” = 4
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5. OKas in Figure 10.62

FIGURE 10.62 The Entities of the Model.

6. Utility Menu > Plot > Elements as in Figure 10.63

1

ELEMENTS

MAT NUM

FIGURE 10.63 The Armature as a Component of the Model.
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7. Utility Menu > Select > Comp/Assembly > Create Com-
ponent

8. “Component name” = ARM
9. (drop down) “Component is made of” = Elements
10. OK
(b) Apply force boundary conditions to armature
1. Main Menu > Preprocessor > Loads > Define Loads >
Apply > Magnetic > Flag > Comp. Force/Torq
(highlight) “Component name” = ARM
OK
Utility Menu > Select > Everything

A

Utility Menu > Plot > Elements as in Figure 10.64

1
ELEMENTS

MAT NUM

FIGURE 10.64 Plot of Apply Force Boundary Conditions to Armature.

(c) Apply the current density

The current density is defined as the number of coil windings times
the current, divided by the coil area. This equals (650)(1)/2, or 325.
To account for scaling from centimeters to meters, the calculated
value needs to be divided by .01#*2.
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(d)

o v kW

Utility Menu > Plot > Areas

Main Menu > Preprocessor > Loads > Define Loads >
Apply > Magnetic > Excitation > Curr Density > On Areas

Pick the coil area, which is the area in the center
OK

“Curr density value” = 325/.017%2

OK

Close any warning messages that appear.

Obtain a flux parallel field solution

Apply a perimeter boundary condition to obtain a “flux parallel”
field solution. This boundary condition assumes that the flux does
not leak out of the iron at the perimeter of the model. Of course, at
the centerline, this is true due to axisymmetry.

1.
2.

Utility Menu > Plot > Lines

Main Menu > Preprocessor > Loads > Define Loads >
Apply > Magnetic > Boundary > Vector Poten > Flux Par’l
> On Lines

Pick all lines around perimeter of model (14 lines) as in
Figure 10.65

1
LINES

MAT NUM

FIGURE 10.65 Plot of Lines for Flux Parallel Field of the Model.
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4. OK
5. Toolbar: SAVE_DB
5. Obtain solution
(a) Solve
1. Main Menu > Solution > Solve > Electromagnet > Static
Analysis > Opt & Solve
2. OK to initiate the solution
3. Close the information window when solution is done
6. Review results
(a) Plot the flux lines in the model
Note that a certain amount of undesirable flux leakage occurs out of
the back-iron.
1. Main Menu > General Postproc > Plot Results > Contour
Plot > 2D Flux Lines
2. OK, as in Figure 10.66

\J\I HII

FIGURE 10.66 Contour Plot for 2D Flux Lines of the Model.
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Your results may vary slightly from what is shown here due to variations in the
mesh.

(b) Summarize magnetic forces
1. Main Menu > General Postproc > Elec & Mag Calc >
Component Based > Force
2. (highlight) “Component name(s)” = ARM
OK
4. Review the information, then choose:
File > Close (Windows),
or
Close (X11/Motif) to close the window.
(c) Plot the flux density as vectors
1. Main Menu > General Postproc > Plot Results > Vector
Plot > Predefined
2. “Flux & gradient” (left column)
“Mag flux dens B” (right column)
4. OKasin Figure 10.67

"ANSY

. Noncommercial Use On.

FIGURE 10.67 Plot the Flux Density as Vectors of the Model.
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(d) Plot the magnitude of the flux density
Plot the magnitude of the flux density without averaging the results
across material discontinuities.
1. Main Menu > General Postproc > Plot Results > Contour

Plot > Nodal Solu

2. Choose “Magnetic Flux Density,” then “Magnetic flux density
vector sum”

3. OKasin Figure 10.68

=
=
-
—]
]
=
— I
=
=

FIGURE 10.68 Contour Plot of the Model.

Next, you will see how the flux density is distributed throughout the entire
actuator. Up to this point, the analysis and all associated plots have used the
2D axisymmetric model, with the axis of symmetry aligned with the left ver-
tical portion of the device. ANSYS will continue the analysis on the 2D finite
element model, but will allow you to produce a three-quarter expanded plot
representation of the flux density throughout the device, based on the defined
axisymmetry. This function is purely graphical. No changes to the database
will be made when you produce this expanded plot.

4. Utility Menu > PlotCtrls > Style > Symmetry Expansion >
2D Axi-Symmetric
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5. (check) “3/4 expansion” as in Figure 10.69
6. OK asin Figure 10.70

I\ 20 Axi-Symmetric Expansion
[/EXPAND] 2D Axi-Symmetric Expansion

Select expansion amount
(" 1/4 expansion

(" 1J2 expansion

" Full expansion

(" No Expansion

Also reflect about x-z plane [~ No

UTION

"ANSYS

Noncommercial Use Only

o
o
=

[INRRERERD :

FIGURE 10.70 2D Axi-Symmetric Plot of the Model.
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7. Utility Menu > PlotCtrls > Pan,Zoom,Rotate, as in
Figure 10.71

8. Iso
9. Close

A - [B]X]
Ele Select Lst Plot FloiChls WorkPlane Parameters Macro MenuChrls  Help

\
2R e el = Bl R

3|
save oo Resu_oe| qurt| powrGaer

Pan-Zoom Rotate

Window [1 ¥

V] | e

Check Elem Shape

FIGURE 10.71 Rotation of the Model.
(e) Exit the ANSYS program

1. Toolbar: QUIT

2. (check) “Quit - No Save!”
3. OK

EXERCISES

j(wt+2fz D
1. Given H = He' )ax in free space, known that, VxH = a— find E.

t
2. Calculate the skin depth, 0, for a copper conductor in a 50 Hz field
(6 =56x10°S/m).
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3. EM exercises and examples.

4. For the axisymmetric coaxial cable illustrated in Figure 10.71. Determine
a one-dimension finite element general solution based on the following:

a.

Obtain and solve the governing differential solution for the coaxial

cable, hint:g—i rd—¢ =—p.
rdr\ dr

Obtain the boundary conditions and continuity conditions, hint:
o,(r=a)=0,, ¢,(r=c)=0, and the electric potential and the
electric displacement are continuous at 7 =b .

Formulate the equations of part (b) as a matrix equation that can be
solved for the constants of integrations.

Determine the shape functions for a general three-node quadratic
element in terms of x,,x,, and x;.

Determine the shape functions for a general three-node quadratic
element when x, =—L,x, =0, andx, = L.

Find the local stiffness matrix for an element of length 2L with coor-
dinates (=L, 0, L).

>
s

FIGURE 10. 71(a) axisymmetric radial element.

FIGURE 10.71(b) Coaxial cable.
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0
@
@

A

A

A 4

A 4

X3

A\ 4

FIGURE 10.71(c) Three-node element.

5. Determine the variational function for two-dimensional axisym-

metric heat conduction in 7, z coordinate and formulate the
corresponding local finite stiffness matrix using three-node tri-
angular elements.

Use COMSOL in modeling the four-conductor transmission
lines with the following parameters as in Figure 10.72:

¢,, = dielectric constant of the dielectric material = 4.2

€,, = dielectric constant of the free space = 1.0

W = width of the dielectric material = 10 mm

w = width of a single conductor line = 1 mm

H, = distance of conductors 1 and 2 from the ground plane = 3 mm
H, = distance of conductor 4 from the ground plane = 1 mm
H, = distance of conductor 3 from the ground plane = 2 mm

s = distance between the two coupled conductors = 1 mm

¢ = thickness of the strips = 0.01 mm



508 « FiNniTE ELEMENT ANALYsIs 2/E

W
€ P —N S i L» i
.
) 2 A
e
W .
| —! g 4 H,
1
S
4 H3
H>
v v

@m"'

jround Plane

FIGURE 10.72 Cross-section of the four-conductor transmission lines.</FT<

The geometry is enclosed by a 10 x 10 mm shield. Find the
capacitances per unit length, C,;, C12 ,C13, C14, C22, C23,
Ch Gy, Gy and €y

Use COMSOL in modeling of the shielded two vertically cou-
pled striplines geometry is enclosed by a 3.4 x 1 mm shield with
the following parameters as in Figure 10.73:

FIGURE 10.73 Cross-section of the two shielded vertically coupled striplines embedded

in dielectric material.

¢, = dielectric constant = 1 and 7.5
W, = width of the stripline 1 = 1.4 mm
W, = width of the stripline 2 = 1 mm

H, = height from stripline 1 and stripline 2 to the upper side and
lower side of the shield, respectively = 0.4 mm

H, = distance between the two striplines = 0.2 mm

S = distance between the stripline 1 and right/left side of the
shield = Imm
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a=(W, -W,/2=0.2mm
t = thickness of the striplines = 0.01 mm
Find the capacitances per unit length, C; , C'21 , and C'22 )

8. Use ANSYS Modeling of harmonic high-frequency electromag-
netic of a coaxial waveguide as shown in Figure 10.74. The prop-
erties of the model are summarized as

Material property:
u,. =106 =1.0,

Geometric property:

r.=0.025m, r,=0.075m, 1 =0.375m,

Load used

Port voltage = 1.0
Q=0.8 GHz

Driven port

Matched port

FIGURE 10.74 Cross-section of a coaxial waveguide.

Find S11,812,Z,.,Z, ,RL

9. Use ANSYS Modeling of electrostatic of a shielded micro-

strip transmission line consisting of a substrate, microstrip,
and a shield. The strip is at potential V,, and the shield is at a
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potential V,. Find the capacitance of the transmission line as
shown in Figure 10.75.

The properties of the model is summarized as

Material property:
Air: ¢, = 1
Substrate: ¢, =12

Geometric property:

a=10cm
b=1cm

w =2 cm
Loading property:
V,=1V

V, =10V

Knowing that the electrostatic energy, W, is defined as
1
W.=2Ch=1).

Also, youneed to type the following values in scalar parameters as:

C = (w*2)/((V,=V,)"2) and C = ((C*2)*1el2.

< i >
i
]
I
v,
0 .
. I
air ! shield
I
I
! a
£, |
I strip Vo
I
L/
£, I substrate b §

vo | L]

FIGURE 10.75 Cross-section of shielded microstrip line.
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APPENDIX

ANSYS

A

ANSYS (CLASSIC OR TRADITIONAL)

ANSYS is a finite element modeling package for numerically solving variety
of engineering problems such as structural, thermal, fluid, static and dynamic,
linear and nonlinear, acoustic, electromagnetics, multiphysics, etc.

ANSYS has two methods. The graphical user interface (GUI) and the com-
mand files. The focus in this section, as in the book only on the ANSYS GUI
environment (traditional or classic ANSYS), and in the next section, we focus
on the ANSYS workbench environment.

To start ANSYS, double-click on the ANSYS icon, or you can use start >
Programs > ANSYS 11.0 > ANSYS.

f AMSYS 11.0

|@ Help 3
/@ Rrsm »
/@ Utilities

000

v A ANSYS Product Launcher
| N\ ansvs workbench
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Then the ANSYS main window will be shown with the ANSYS output window.
The ANSYS GUI environment has two windows, the main window and the
output window.

The ANSYS main window has the following components:

Utility menu

Comments input

Y ANSYS Academic Teaching Advanced Utility Menu

P Ele Select Lst Plot PlotClrls WorkPlane Parameters Macro MenuCtrls  Help

Toolbar—| 0| =| &l 3| & 2| ?| & x | =] = 8l
menu ANSYS Toolbar

ANSYS Main Menu ®

[ Preferences NODES

EAR S

eneral Postproc
imeHist Postpro
‘opological Opt
OM Tool

esign Opt

'rob Design
adiation Opt
Run-Time Stats
] Session Editor

[ Finish

Main menu

pRlbEEpREbERRERRERE

Pick a menu item or enter an ANSYS Command (BEGIN) mat=1 type=1 real=1 csys=0 secn=1

Graphics area

FIGURE A.1 ANSYS GUI main window.

1. Utility menu: contains functions that are available through out the ANSYS
sessions.

m ANSYS Academic Teaching Advanced Utility Menu:

File Select List Plot PlotCrls WorkPlane Parameters Macro MenuCtrls Help |
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(a) File menu:

A\ ANSYS Academic Teaching Advanced Utility Menu.

Ele Select List Plot PlotCtrls WorkPlane Parameters Macro MenuCtrls Help ‘

Clear & Start Mew ...
Change Jobname ...
Change Directory ...
Change Title ...

Resume Jobname.db ...
Resume from ...

Save as Jobname.db
Save as ..
‘Write DE log file ...

Read Input fram ...

Switch Qutput to 4
Lisk 4
File Operations 4

AMSYS File Options ...

Import 4
Expott ...

Report Generator ...

Exit ...

File menu contains file and database-related functions such as options to
clear the database, change, resume, and save the current model.

(b) Select menu

IA\ ANSYS Academic Teac hing Advanced Utility Menu

Fle Select Lst Plot PltCirs WorkPlane Parameters Macro MepuCtrls Help ‘

Entities ...

Component Manager ...
Caomp/assembly 4
Parts ...

Everything
Everything Below 4

Select menu provides functions that allow the user to select subsets of
entities and create components.
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(c) List menu

AV ANSYS Academic Teaching Advanced Utility Menu

Fie Select Lst Plot PlotCtls WorkPlane Pagameters Macro MepuCirs Help ‘

Files ) 4
Status 4
Keypoint 4
Lines ...

Areas

Yolumes

Nodes ...

Elements 4
Components

Parts ...

Picked Entities +

Properties
Loads
Results
Other

List menu allows the user to view any data item stored in the ANSYS
database, view log and error files, obtain listing of geometries entities and
their components, elements and their properties, nodes, and boundary
conditions and loads. You can obtain information about different areas of
the program and list the contents of files residing in the system.

(d) Plot menu

AV ANSYS Academic Teaching Advanced Utility Menu

e Select List ﬂuxnuxgns WorkPlane Parameters Macro MenuCtrls  Help ‘

Replot

Keypoints 4
Lines

Areas

Yolumes

Specified Entities 4

Modes
Elements
Layered Elements ...

Materials
Data Tables
Array Parameters ...

Results 4
Multi-Plots

Components 4
Parts

Plot menu allows you to plot various components of the model such as
keypoints, lines, areas, volumes, nodes, elements, and other data can be
plotted.
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(e) PlotCtrls menu

TAV ANSYS Academic Teaching Advanced Utility Menu

Fle Select Lst Plot PlotClls WorkPlane Patameters Macro MepuCtis Help |

Pan Zoom Rotate ...

View Settings 4
Mumbering ...

Symbols ...

Style 4
Font Contrals 4
Window Controls L4
Erase Options 4
Animate 4
Annotation L4

Device Options ...

Redirect Plots 4
Hard Copy 4
Save Plok Chrls ..,

Restore Plat Ckrls ...
Reset Plat Ctrls

Capture Image ...
Restore Image ...
Write Metafile 4

Mulki-Plot Controls ..
Multi-wWindow Layout ...

Best Quality Image 4

PlotCtrls menu includes functions to control the view and pan/zoom/
rotate the model, select numbering options, change styles, and make hard
copies of the plots.

() WorkPlane menu

NSYS Academic Teaching Advanced Utility Menu
ANSYS Academic Teaching Advanced Utility:

Fle Select Lst Plot PlotClls WorkPlane Parameters Macro MenuCtis Help |

Display Working Plane

Show WP Status

WP Settings ...

Offset WP by Increments ...
Offset WP to 4
Align WP with 4
Change Active C5to 4
Change Display C5 to 4

Local Coordinate Systems 4
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WorkPlane menu allows the user to toggle the working plane on or off
and to move and rotate, and you can create, delete, and switch coordinate
systems.

(g) Parameters menu

m ANSYS Academic Teaching Advanced Utility Menu

Fle Select Lst Plot FPlotClls WorkPlane Parameters Macro MenuChrls Help |

Scalar Parameters ...
Get Scalar Data ...

Array Parameters 4
Get Array Data

Array Operations 4
Functions 4

Angular Units

Save Parameters
Restore Parameters

Parameters menu allows the user to define, edit, and delete scalar and
array parameters.

(h) Macro menu

AV ANSYS Academic Teaching Advanced Utility Menu

File Select Lst Plot PlotCtrs WorkPlane Parameters Macro MenuCtrls Help |

Create Macro

Execute Macro
Macro Search Path
Execute Data Block ...

Edit Abbreviations
Save Abbr
Restore Abbr

Macro menu allows the user to create and execute macros and execute
data blocks. Also, the user can create, edit, and delete abbreviations.
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(i) MenuCtrls menu

FAY ANSYS Academic Teaching Advanced Utility Menu

File Select List Plot PlotCtrls WorkPlane Parameters Macro Mepuctrls Help |

Color Selection ...
Font Selection ...

Update Toaolbar
Edit Toolbar ...
Save Toolbar ...
Restore Toolbar ...

Message Controls ...
Save Menu Layout

MenuCtrls menu allows the user to create, edit, and delete abbreviations

on the ANSYS toolbar and modify the colors and fonts in the GUI display.
() Help menu

TV ANSYS Academic Teac hing Advanced Utility Menu

File Select List Plot PlotClrls WorkPlane Parameters Macro MenuClrls Help |

Help Topics
Installation and Licensing

What's New
Expert Search
AMNSYS Tutorials
ANSYS Website

Legal Motices
About ANSYS

Help menu allows the user to find all the manuals and tutorials available on
ANSYS.

2. Comments input: shows program prompt messages and allows the user to
type in commands directly.

3. Toolbar menu: contains graphics buttons that execute frequently used
ANSYS commands, that is, collects commands that are frequently used.

4. Main menu: contains primary ANSYS functions.

5. Graphics area: displays geometrics, finite elements, and simulations.
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The ANSYS output window dynamically provides important information dur-
ing the preprocessor, solution, and postprocessor. The warnings in the output
window should be considered to prevent future errors. The output window
is usually positioned behind the main window and can be put to the front, if
necessary.

ANSYS 11.0 Output Window

CUTTING PLANE SET TO THE WORKING PLANE
llelcome to ANSYS

PRODUCE NODAL PLOT IN DSY¥S= @
TURN OFF WORKING PLANE DISPLAY

=k NOTE »xx CP 3.766 TIME= 15:
DELETED BACKUP FILE NAME= file.dbbh.

#x3 NOTE s cP 3.766 TIME= 15:
NEW BACKUP FILE NAME= file.dbb.

ALL CURRENT ANSYS DATA WRITTEN TO FILE NAME= file.db
FOR POSSIBLE RESUME FROM THIS POINT
INFO LEGEND DISPLAY = 3

CONTOUR LEGEND HEADER DISPLAY = 1
CONTOUR LEGEND GRAPHICS INFOQ DISPLAY =
CONTOUR LEGEND SCALE DISPLAY =1

FRAME DISPLAY =1

TITLE DISPLAY =1

CONTOUR MIN-MAX DISPLAY =

JOBNAME DISPLAY = @

LOGO DISPLAY =1

INFO COLUMN WINDOW STRETCH =

WORKING PLANE DISPLAY = @

DATE-/TIME DISPLAY = @

AYZ TRIAD DISPLAY SET TO MODEL ORIGIN

PRODUCE NODAL PLOT IN DS¥S= @

INFO LEGEND DISPLAY = 3

CONTOUR LEGEND HEADER DISPLAY = 1
CONTOUR LEGEND GRAPHICS INFOQ DISPLAY =
CONTOUR LEGEND SCALE DISPLAY =1
FRAME DISPLAY = 1

TITLE DISPLAY =1

CONTOUR MIN-MAX DISPLAY =

JOBNAME DISPLAY = @

LOGO DISPLAY =1

INFO COLUMN WINDOW STRETCH = 1
WORKING PLANE DISPLAY = 8

DATE-TIME DISPLAY = @

AYZ TRIAD DISPLAY SET TO MODEL ORIGIN

PRODUCE NODAL PLOT IM DSY¥S= 8

PRODUCE NODAL PLOT IN DS¥S= @

FIGURE A.2 ANSYS GUI output window.



ANSYS ¢ 533

To save the model, select from ANSYS Utility Menu, File > Save as
Jobname.db.

Or you can save your model by selecting File > Save as, as shown below.

i\ ANSYS Academic Teac

File Select List Plot  Plot

Clear & Start Mew ...
Change Jobname ...
Change Directary ...
Change Title ...

Resume Jobname.db ...
Resume from ...

Save as Jobname.db

hrite DB log file ... \ Save DataBase

Read Input From ...

Switch Output to , Save Database to Directories:
oA musa

List 4 Cancel |

File Operations » file..db £ My Docgments ~

AMSYS File Options ... &3 op_admin Help |
£33 op_models

Import 4 £ Start Menu

Export ... 3 Tracing =

£ WINDOWS w
Report Generator ... o

Exit ... List Files of Type: Drives:
Database Files (“db) »| [EDc:03 >|  Metwork..

|

FIGURE A.3 Save database of the model.

To start up ANSYS, recall and continue previous job by starting ANSYS and
then select Utility Menu: File > Resume from and click on the model from
the list that appears.

To quickly save an image of the entire screen or the current Graphics window,
go to ANSYS Utility Menu > PlotCtrls > Hard copy. There are two options
to choose: To Printer and To File.
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T ANSYS Academic Teaching Advanced Utility Menu

Ele Selct Lst Blot PlotCls WorkPlane Peameters Mawo MepuCtrs el

Pan Zoom Rotate ...

View Settings 4
Numbering ...

Symbols ...

Style 4
Font: Controls 4
window Controls 4
Erase Options 4
Animate 4
Annotation 4

Device Options ...
Redirect Plats »

ToFile ...
Save Plot Ctrls ...

Restare Plot Ctrls ...
Reset Plot Ctrls

Capture Image ...
Restore Image: ...
Wite Metafile 4

Multi-Plot Controls ...
Multi-wWindow Layout ...

Best Quality Image 4

To Printer ...

General |

— Select Printer

Q Microsoft Office Document Image Writer
l;é Microsoft ¥PS Document Writer

2 Send To OneMote 2007
Q SHARP MX-M453M PCLE
2 Wondershare PDF Editor

5 | >

Status:  Ready ™ Printtafile  Preferences |

Location:

Comment: Find Printer... |
—Page Range

0+ Al Mumber of copies: |1 3:

" Selection € Curent Page

" Pages:

I~ Collate
LG

Print I

Cancel |

FIGURE A.4 Print to printer.
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Graphics Hard Copy

= Monoc
 Gray
& Color

hrome

ale

& BMP
" Postscript

 TIFF
" JPEG
" PNG

[~ TIFF compression

V¥ Reverse Video

" Landscape
& Portrait

Save to: IfileUUD.bmp

o |
Cancel | Help |

FIGURE A.5 Print to file.

To finish ANSYS, choose File > Exit command. Then Exit from ANSYS
window will show up as shown in Figure A.6. Choose a proper option and
click OK to finish the ANSYS program.

I\ Exit from ANSYS
- Exit: from &NSYS -

{~ Save Geom+Loads
{~ Save Geo+Ld+Solu

{~ Save Evervthing

FIGURE A.6 Exit from ANSYS.
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A.2 ANSYS WORKBENCH

The ANSYS workbench provides unified data sharing and project file
management across the range of ANSYS products. Workbench is not an
application on its own. It is a group of technologies for developing simulating
tools. This has been created by ANSYS incorporation to help developers
develop robust tools to meet the needs of designers and analysts. It provides a
common interface for the user to access the wealth of technology that ANSYS
has with it.

Simulation data is displayed in a hierarchical tree that separates out the various
groups of inputs and outputs. Workbench makes use of a project file storage
method to assist with the organization of data, and each can contain all types
of information. Workbench stores the model information at the highest level,
and this contains:

1. geometry that your mesh is built on,

2. contacts (which define how parts interact),
3. mesh and
4

environment.

The mesh is the core element-based representation of the parts, on which all
FEA/CFD tasks are based. Workbench allows you to intelligently refine the
mesh.

The Workbench user interface: Tabs-based user interface, that is familiar
to most users, is used in Workbench. We start with the Project Page tab, and
this provides us access to the tools we need to read geometry in, set up the
boundary conditions, create results visualization assets, and report on results.

Geometry definition: Data pertaining to geometry can be read from the
majority of leading software, including Pro/Engineer, Solid Works, NX/
Unigraphics, Catia, etc. The system reads the data into the Workbench user
interface and preserves part names and material definitions, if any.

Design Modeler: Design Modeler provides us with many tools that allow us
to take data from a variety of sources, integrate it into a single pack, and use it.

Finite Element Modeler: It allows you to read meshed, element-based data
from a wide variety of sources. It performs checks for integrity, extracts the
information, and places it into the appropriate folders of the simulation tree.
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Materials definition: ANSYS Workbench is supplied with a range of standard
materials. Materials (if present) can be extracted from the CAD file or may be
adapted or enter new materials.

Reporting: Reports can be created based on a wizard-style workflow. Various
inputs (title, description, etc.) may be defined, and the system handles the
rest of the work. Workbench allows you to create diagrams at any point, so the
graphics window and a caption is stored and then added to the report.

Design optimization-Design Xplorer: Workbench has inherent links with
the CAD system, and bi-directionality can be used to our advantage to carry
out optimization to the maximum extent.

Mechanisms: Workbench also makes it possible to carry out in-depth studies
of mechanisms intelligently. It allows us to model both rigid and flexible
bodies in one environment.

Lastly, it can be said that ANSYS provides a single unified environment where
the user has access to good functionality within the simulation arena. It helps
us to build high-quality products that cost less and serve better their intended
purpose.

The method of solving problems using workbench is illustrated using a simple
example.

EXAMPLE A.1

For the cantilever beam shown in Figure A.7, determine the total deflection,
maximum stress, reaction force, and reaction moment. Take Young’s modulus
E = 210 GPa and Poisson ratio v = 0.3. Force P = 5000 N. Assume plane
stress condition.

5000 N

H=1m

A yC \

ANANNAN

5m B=1m

FIGURE A.7 The cantilever beam for Example A.1
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Solution:
(I) Software method

Procedure for solving the problems using ANSYS® 11.0 academic teaching
software using ANSYS Workbench.

Step 1. Selecting Analysis System and Specifying Material Properties
Start ANSYS Workbench

Start > Programs > ANSYS 11.0 > Workbench
In Toolbox Customization, click Static Structural (ANSYS)

FIGURE A.8 Selecting type of analysis.
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In Toolbox, left-click (and hold) on Static Structural (ANSYS) and drag the
icon to the empty space in the Project Schematic. In Project Schematic
space, right-click on Static Structural (ANSYS) and Rename the project to
Cantilever_beam.

19 |]|E0 Transient Structursl (ANSYS)
20 {8 Transient Structural (MBD)
2t []{ Transient Theemal (ANSYS)

FIGURE A.9 Creating cantilever beam cell.

Specify Material Properties

In the cantilever beam cell, double-click on Engineering Data. A new page
will be opened. The default material given is Structural Steel. This will be
seen in the Outline of Schematic.

EXAMPLE A2: Engineering Data.

In the Properties of Outline Row 3: Structural Steel window, double
click on Isotropic Elasticity and change the Young’s Modulus value. To
change the value, double click on the numerical value and enter E = 2.1ell
Pa and Poisson ratio = 0.3.



540 ¢ FiNniTE ELEMENT ANALysis 2/E

- A [ [ -]
1
2 Engineering Data az Contents Filtered for Stath
3 |l Gorwra Materiss [ - Ganes ol Use matersl sarg
4 |l Genera Non-inear Matenals [ ]|l General use material samp
< ' — = — - >
- A B |C D
1
2
3 W Structursl Steel 0= Eﬁ:ﬁéﬁ“"m
-r‘i‘ e N

Young's Modubus: 2. 1E+11 Fa -
Poisson's Fuatio 0.3 -

| & e =

FIGURE A.10 Specifying material properties.

Next, click on Return to Project to return to Workbench Project Schematic
window.

P Returnto Project

FIGURE A.11 Return to Workbench.
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Step 2. Geometry Creation

In the Project Schematic contilever_beam cell, right-click on Geometry
and select Properties.

A window named Properties of Schematic A3: Geometry will be seen on
the right-hand side of the Workbench window.

In that window, under Basic Geometry Options, select Line bodies.

x

- A B

1

2

3 Cell ID ‘Geometry

4

5 Geometry File Name

6

7 Solid Bodies >
8 Surface Bodies M
9 Line Bodes E
10 Pararmeters E
11 Parameter ey oS

12 Attributes u
13 Named Selections ]
14 Materia Properties L]
15 =  Advanced Geometry Options

16 Analysis Type 0 v
17 Use Associativity b
18 Import Coordinate Systems ]
19 | Import WorkPonts O
20 Reader Mode Saves Lipdated Fie 0
21 Import Using Instances ~
2 Smart CAD Update []

FIGURE A.12 Selecting line bodies.
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Then in the Project Schematic window, under the cell, double left click on
Geometry to start preparing geometry. At this point, a new window ANSYS
Design Modeler will be opened. Select meter unit as desired length unit
and click OK.

Creating a Sketch

Use XY Plane for creation of sketch. On the left-hand side in Tree Outline,
click on XY Plane and then click on Sketching, next to Modeling tab.

/@ 0Parts, 0 Bodies

Slabdhg_w-,g

FIGURE A.13 Selecting XY plane for sketching.
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AACircle by 3 Tangents
~™yArc by Tangent ]
&% Arc by 3 Points
& Arc hv Center
Modify v
Dimensions
Constraints
Settings
Details View B

FIGURE A.14 Sketching toolbox.

Note: In sketching, undo features can be used.

On the right-hand side, there is a Graphics window. At the lower right-hand
corner of the Graphies window;, click on +Z axis. Then Graphics window will
appear as shown below.

FIGURE A.15 Graphics window.
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In the Sketching toolbox, select Line and, in the Graphics window, create
one rough line starting from the origin in the positive XY-direction. (The letter
P should be seen at the origin before creating the Line. The letter P indicates
geometry is constrained at the origin.)

FIGURE A.16 Creating a line.

Dimensions

Under the Sketching Toolbox, select the Dimensions tab. (Use the default
dimensioning tools.)

Then left click on the line in the Graphics window and drag the dimension
line. The dimension line shows H1.

On the lower left-hand corner, under Details View, change H1 to 5. This 5
is the length of the line drawn. Now sketching is done.

FIGURE A.17 Dimensioning the line and entering the length value.
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Surface Creation
On top menu of the Design Modeler window, click on
Concept > Lines from Sketches.

This will create a new line, Linel. In Tree Outline, double-click on XY
Plane, then select Sketch 1, and under Details View, in Base Objects,
click Apply. Finally, on the top, click Generate to generate the surface.

Create Cross-Section
Concept > Cross-Section > Rectangular

Under Details View, input B =1 mand H = 1.

=, al 1 Cross Section
o Jrecti |

=4 1 Part, 1 Body
» ™ Line Body

Sketching Modahgl

Details View o
[=l| Details of Rect1
Sketch Rect1
Show Constraints? | No
)| Dimensions: 2
|B im
CJH im
[=l|Edges: 4
Line Ln10
Line Lni1
Line Lni2
line Ini3

FIGURE A.18 Entering the breadth and height values of the beam.
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Now under Tree Outline > 1 Part, 1 Body > Line Body, attach Rectl to
Cross-Section under Details View as shown below.

B ,@ A: Cantiever_beam

= 3= XYPlane

o3 Sketchl

v ZxPlane
- o3 YZPlane

=3 Linel

3 Sketcht

=, ¢ 1 Cross Section

ol Rectl

=M 1Part, 1Body

~v ™~ Line Body

Sketching  Modelng |

=

Now geometry is done. Close the Design Modeler and

Body

Line Body

Faces

Edges

1

Vertices

Cross Section | Rect1

Offset Type | Centroid

Workbench.

FIGURE A.19 Attaching a rectangular cross-section.

go back to
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Step 3. Meshing
Save the work in the Workbench window.

In the Cantilever_beam cell, right click on Model and click Edit. A new
ANSYS Model window will open.

[ —

FIGURE A.20 ANSYS model window for meshing, for applying boundary conditions and
for the solution.

In Outline heading, right click on Mesh and click Generate Mesh. Then
Meshed model will appear in Graphics window.

Ng 13 3,000 m)

ars 1y

FIGURE A.21 Meshed model.

Step 4. Boundary Conditions
Start the setting up of boundary condition at A.

In Outline, right click Static Structural (A5) > Insert then select Remote
Displacement.
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In Graphics window right click and change Cursor Mode to Vertex.

Select point A in the Graphics window and click Apply next to Geometry
under Details of “Remote Displacement”

Details of "Remote Displacement” 9
[~ Scope A
Scoping Method | Geometry Selection
1 Vertex

Coordinate System | Global Coordinate System
X Coordinate 0. m
. |YCoordinate |0.m
| Z Coordinate (0. m
Location Click to Change

1]

FIGURE A.22 Selecting point A.

Now under the heading of Details of “Remote Displacement” and under
Definition heading change UX, UY, UZ, ROTX, ROTY, and ROTZ to zero.

|| Definition

Type Remote Displacement
% Component 0. m (ramped)

Y Comporent |0.m (ramped)

.~ ZComponent 0. m (ramped)

| RotationX |0, ° (ramped)

| Rotation Y 0. ° (ramped)

Ll

0. ° (ramped) ’
Suppressed No
Behaviour Deformable

FIGURE A.23 Applying displacement boundary conditions.
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At point C, force component needs to be applied.
In Graphics window, select point C.
Then Outline > Static Structural (A5) > Insert > Force.

Under Details of “Force”, in Definition heading, next to Define By,
change Vector to Components.

Enter—5000 for Y component.

Details of "Force”

{:;Scope
'Scoping Method  Geometry Selection
‘Geometry 1 Vertex

= Definkion
Type Force
Define By  Components
Coordinate System Global Coordinate System
- 5 ‘ 0. N (ramped)
| Il ¥ Component 5000, N (ru'nped) _Irl
' ZComponert | 0.N (ramped)
,'SLppressed ho

FIGURE A.24 Applying force.

Click on Static Structural (A5) to view the model with boundary conditions
in Graphics window shown below.

FIGURE A.25 Model with boundary conditions.
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Step 5. Solution

For finding deflection, under Outline heading, right-click Solution (A6),
Insert > Deformation > Total.

For finding Stresses in beam, Outline > Solution (A6) > Insert > Beam
Tool > Beam Tool.

For finding reaction force, Outline > Solution (A6) > Insert > Probe >
Force Reaction.

Select point A and Under Details of “Force Reaction”, in Definition
heading next to Boundary Condition, select Remote Displacement.

For finding reaction moment, Outline > Solution (A6) > Insert > Probe >
Moment Reaction.

Select point A and Under Details of “Moment Reaction”, in Definition
heading next to Boundary Condition, select Remote Displacement.

Then on top, click Solve button.
Step 6. Results

Under Outline and under Solution (A6), click on Total Deformation. The
result is shown below.

FIGURE A.26 Deflection pattern for a cantilever beam.
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Type Total Deformation

Calculate Time History | Yes

Identifier

=l Results
|| Minimum 9.2458e-011 m
|| Maximum 1.2277e-005 m

# Information

FIGURE A.27 Deflection values for a cantilever beam.

Then double-click on Beam Tool and click on Maximum combined stress.
This result is shown below.

NGeometry {777 APrintPreview hReport Preview/.

FIGURE A.28 Maximum combined stress on a cantilever beam.
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Details of “Maximum Combined Stress" 7
= Definition
Type Maximum Combined Stress
By Time
Display Time Last
Calculate Time History | Yes
Use Average Yes
Identifier
=l Results
[ | Minimum 7142.9 Pa
[ | Maximum 1.5e+00S Pa

Then click on Force Reaction, and this result is as shown below.

FIGURE A.29 Maximum combined stress values.

Details of "Force Reaction”

=

Definition

Type Force Reaction
Location Method | Boundary Condition
Boundary Condition |Remote Displacement
Orientation Global Coordinate System
Options

Result Selection All

Display Time End Time

Results

1% Axis 8.5265e-014 N

Y Axis 5000, N

1z Axis -7.9561e-013 N

.| Total 5000. N

FIGURE A.30 Values of reaction force.

S

.
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Then click on Moment Reaction; this result is shown below.

[= (Dptions
Result Selection | Al
Display Time End Time

= Results
] % Axs -2.1032e-012 N'm
[ 1W Axis -5.1150e-013 N'm
[]2Z Axis 25000 N'm
] Total 25000 N'm

FIGURE A.31 Values of reaction moment.

(IT) Analytical method (Refer Figure A.1).

Maximum bending stress occurs at the support.

Bending moment at support M =Px L =5x 10° x5 =25000 N-m

2 2
Section modulus = s = BX6H = 1x1 =0.1667 m®
2
Maximum stress = ¢ _M_ 25000 150000 Pa=0.15 MPa
s 7
3 3
Moment of inertia = [ =2 >1< 5 XU 08333 m?
3 10°x(5)°
Maximum deflection = = PL” _ 5x10°x(5) =1.2x107° m.

T 3EI 3x210x10°x0.08333
=0.012 mm
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Answers of Example A.1

Parameter Software results Analytical method
Maximum deflection 0.012277 mm 0.012 mm
Maximum stress 0.15 MPa 0.15 MPa
Reaction force 5000 N 5000 N
Reaction moment 25000 N-m 25000 N-m
REFERENCES
1. ANSYS Release 11.0 Tutorials.
2. ANSYS Tutorials of University of Alberta, http./www.mece.ualberta.ca
3. ANSYS Tutorials, http://mae.uta.edu/~lawrence
4. ANSYS Tutorials, hitp:/www.andrew.cmu.edu
5. ANSYS Tutorials, https://confluence.cornell.edu/display/SIMULATION
6. E.M. Alawadhi, “Finite Element Simulations Using ANSYS,” CRC Press,
2010.

7. Y. Nakasone, S. Yoshimoto, and T. A. Stolarski, “Engineering Analysis
with ANSYS Software,” Butterworth-Heinemann, 2006.



APPENDIX

MATLAB

B.1

MATLAB (short for Matrix Laboratory) has become a useful and dominant
tool for technical professionals around the world. MATLAB is a sophisticated
numerical computation and simulation tool that uses matrices and vectors.
Also, MATLAB enables users to solve a wide variety of analytical problems.

A copy of MATLAB software can be obtained from

The Mathworks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098

Phone: 508-647-7000

Web site: hitp:/www.mathworks.com

This brief overview of MATLAB is presented here to give a general idea about
the computation of the software. MATLAB computational applications to
engineering systems are used to solve practical problems.

GETTING STARTED AND WINDOWS OF MATLAB

When you double-click on the MATLAB icon on the desktop or use the start
menu to find the program, it opens, as shown in Figure B.1. The command
window, where the special >> prompt appears, is the main area in which the
user interacts with MATLAB. To make the Command Window active, you
need to click anywhere inside its border. The MATLAB prompt >> tells the
user that MATLAB is ready to enter a command. To quit MATLAB, you can
select EXIT MATLAB from the File menu, or by enter quit or exit at the
Command Window prompt. Note, do not click on the X (close box) in the top
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right corner of the MATLAB window, because it may cause problems with
the operating software. Figure B.1 contains four default windows: Command
Window, Workplace Window, Command History Window, and Current
Folder Window. Table B.1 shows a list of the various windows and their pur-
pose in MATLAB.

Move, minimize,
maximize, or close
workspace, undock
workplace

Menus change,
depending on the tool Get guide.
you are using.

Select the title bar for
a tool to use that tool

Change the

View the current .
current directory

dirgctory

1AB 711.0 (R2010b)

/]

Current folder

~%-- 9/7/2010 3:28 PE —-%
|~%-- 9/8/2010 7:01 PR —-%
| %-- 9/11/2010 9:27 PH =%

) Enter MATLAB View/execute
Click the Start Drag the separator - statements at the previously run
button for quick bar to resize prompt. statements are presented
access to tools and windows. in the command history.

more.

FIGURE B.1 MATALB default environment.

TABLE B.1 MATLAB Windows.

Command window Main window, enter variables, runs programs
Workplace window Gives information about the variables used
Command History window Records commands entered in the Command window
Current Folder window Shows the files in the current directory with details
Editor window Makes and debugs script and function files

Help window Gives help information

Figure window Contains output from the graphic commands

Launch Pad window Provides access to tools, demos, and documentation
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B.2 USING MATLAB IN CALCULATIONS

Table B.2 shows the MATLAB common arithmetic operators. The order of
operations is as follows: first, parentheses ( ), the innermost is executed first
for nested parentheses; second, exponentiation *; third, Multiplication * and
division / (they are equal precedence); fourth, addition + and subtraction -.

TABLE B.2 MATLAB Common Arithmetic Operators.

MATLAB Operators Symbols Descriptions
+ Addition
- Subtraction
* Multiplication
/ Right division (means %)

. b
\ Left division (means —)

a

A Exponentiation (raising to a power)

Converting to complex conjugate transpose

0) Specify evaluation order

For example,

>>a=8b=-3;¢c=2;
>>x =9%a + c"3-49

31
>>y = sqrt(x)/8
y =
0.6960
MATLAB has different displays in several formats. Table B.3 provides

common numeric display formats. You can obtain more by typing help in the
Command window (>> format).
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TABLE B.3 MATLAB Common Numeric Display Formats.

MATLAB Command Descriptions

format Default display, same as short

format short Display 4 decimal digits

format long Display 14 decimal digits

format short e Display 4 decimal digits in scientific notation

format long e Display 14 decimal digits in scientific notation

format short g Display the best short format selected by
MATLAB

format long g Display the best long format selected by
MATLAB

format rat Display fractional form

For example,
>> pi
ans =

3.1416

>> format short
>> pi

ans =
3.1416

>> format long
>> pi

ans =

3.14159265358979
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>> format short e
>> pi

ans =
3.1416e+000

>> format long e
>> pi

ans =
3.141592653589793e+000

>> format short g
>> pi

ans =

3.1416

>> format long g
>> pi

ans =
3.14159265358979

>> format rat

>> pi

ans =

355/113

Table B.4 provides common samples of MATLAB functions. You can obtain
more by typing help in the Command window (>> help).
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TABLE B.4 MATLAB Typical Elementary Math Functions.

MATLAB Function

Description

abs (x)

acos (x), acosh (x)
angle (x)

asin (x), asinh (x)
atan (x), atanh (x)
conj (x)

cos (x), cosh (x)
cot (x), coth (x)
exp (x)

fix

imag (x)

log (x)

log2 (x)

log10 (x)

real (x)

sin (x), sinh (x)
sqrt (x)

tan (x), tanh (x)

Absolute value or complex magnitude of x

Inverse cosine and inverse hyperbolic cosine of x (in radians)
Phase angle (in radians) of a complex number x

Inverse sine and inverse hyperbolic sine of x (in radians)
Inverse tangent and inverse hyperbolic tangent of x (in radians)
Complex conjugate of x (in radians)

Cosine and inverse hyperbolic cosine of x (in radians)

Inverse cotangent and inverse hyperbolic cotangent of x (in radians)
Exponential of x

Round toward zero

Imaginary part of a complex number x

Natural logarithm of x

Natural logarithm of x to base 2

Common logarithms (base 10) of x

Real part of a complex number of x

Sine and inverse hyperbolic sine of x (in radians)

Square root of x

Tangent and inverse hyperbolic tangent of x (in radians)

For example,

>> 25-37(log10(3.25))+11

ans =

34.2452

>> y=6sin(pi/6)+tan(pi/4)

y =
4.0000

>> 7 = exp(y+3)-2

7 =

1.0946e+00
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In addition to operating on mathematical functions, MATLAB allows us to
work easily with vectors and matrices. A vector (or one-dimensional array)
is a special matrix (or two-dimensional array) with one row or one column.
Arithmetic operations can apply to matrices and Table B.5 has extra common
operations that can be implemented to matrices.

TABLE B.5 MATLAB Matrix Operations.

MATLAB Operations Descriptions

A Transpose of matrix A

det (A) Determinant of matrix A

inv (A) Inverse of matrix A

eig (A) Eigenvalues of matrix A

diag (A) Diagonal elements of matrix A

rank (A) Rank of matrix A

cond (A) Condition number of matrix A

eye(n) The nXxn identity matrix (1's on the main diagonal)
eye(m, n) The mxn identity matrix (1’s on the main diagonal)
trace (A) Summation of diagonal elements of matrix A

zeros (m, n) The mxn matrix consisting of all zeros

ones (m, n) The mxn matrix consisting of all ones

rand (m, n) The mxn matrix consisting of random numbers
randn (m, n) The mxn matrix consisting of normally distributed numbers
diag (A) Extraction of the diagonal matrix A as vector

diag (A,1) Extracting of first upper off-diagonal vector of matrix A
diag (u) Generating of a diagonal matrix with a vector u on the diagonal
expm (A) Exponential of matrix A

In (A) LU decomposition of matrix A

svd (A) Singular value decomposition of matrix A

qr (A) QR decomposition of matrix A

min (A) Minimum of vector A

max (A) Maximum of vector A

sum (A) Sum of elements of vector A

std (A) Standard deviation of the data collection of vector A
sort (A) Sort the elements of vector A

mean (A) Means value of vector A

triu (A) Upper-triangular of matrix A

triu (A, T) Upper-triangular with zero diagonals of matrix A
tril (A) Lower-triangular of matrix A

tril (A, I) Lower-triangular with zero diagonals of matrix A
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A vector can be created by typing the elements inside brackets [ ] from a
known list of numbers.

Examples are shown in Table B.5.
>>A=[1-206 4 9]
A=
1 -2 0 6 4 9
>>B=[327,-4615;8516]

3 2 7

-4 6 15

8 5 16
>> diag (A)
ans =

1 0 0 0 0 O
0O -2 0 0 0 0
0O 0 0 0 0 0
0 0 0 6 00
0 0 0 0 4 0
0O O 0 0 0 9
>> det(B)
ans =

—45

>> trace(B)
ans =
25
Also, a vector can be created with constant spacing by using the command

variable-name = [a: n: b], where a is the first term of the vector; n is spacing;
b is the last term.
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For example,
>>t =[1:0.5:4]
t =

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000

In addition, a vector can be created with constant spacing by using the com-
mand variable-name = linespace (a, b, m), where a is the first element of the
vector; b is the last element; m is number of elements.
For example,

>> x=linspace (0,3%pi,6)

X =

0 1.8850 3.7699 5.6549 7.5398 9.4248

Special constants can be used in MATLAB. Table B.6 provides special con-
stants used in MATLAB.

TABLE B.6 MATLAB Named Constants.

Name Content

pi n =3.14159...

iorj Imaginary unit, \/I

eps Floating-point relative precision, 27
realmin Smallest floating-point number, g0
realmax Largest floating-point number (2—67)8).2“'23
bimax Largest positive integer, 2% —1

Inf or Inf Infinity

nan or NaN Not a number

rand Random element

eye Identity matrix

ones An array of I's

zeros An array of 0s
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For example,

>> eye(3)
ans =
1 0 O
01 0
0 0 1
>> 1/0

Warning: Divide by zero.
(Type “warning off MATLAB:divideByZero” to suppress this warning.)

ans =
Inf
>> 0/0
Warning: Divide by zero.
(Type “warning off MATLAB:divideByZero” to suppress this warning.)
ans =

NaN

Arithmetic operations on arrays are done element by element. Table B.7 pro-
vides MATLAB common arithmetic operations on arrays.

TABLE B.7 MATLAB Common Arithmetic Operations on Arrays.

MATLAB Operators Symbols on Arrays Descriptions

+ Addition same as matrices

Subtraction same as matrices
o Element-by-element multiplication
J Element-by-element right division
A Element-by-element left division

Element-by-element power

Unconjugated array transpose
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For example,

>>A=[024;135;96 3]

A =
0 2 4
1 3 5
9 6 3
>> A *A
ans =
0 4 16
1 9 25
81 36 9
>> A2
ans =
0 4 16
1 9 25
81 36 9

B.3 SYMBOLIC COMPUTATION

In this section, MATLAB can manipulate and solve symbolic expressions
that make the user compute with math symbols rather than numbers. This
process is called symbolic math. Table B.S shows some common symbolic
commands.
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TABLE B.8 Common Symbolic Commands.

MATLAB Command Description

diff Differentiate symbolic expression

int Integrate symbolic expression

Jjacobian Compute Jacobian matrix

limit Compute limit of symbolic expression

symsum Evaluate symbolic sum of series

taylor Taylor series expansion

colspace Return basis for column space of matrix

det Compute determinant of symbolic matrix

diag Create or extract diagonals of symbolic matrices

eig Compute symbolic eigenvalues and eigenvectors

expm Compute symbolic matrix exponential

inv Compute symbolic matrix inverse

jordan Compute Jordan canonical form of matrix

null Form basis for null space of matrix

poly Compute characteristic polynomial of matrix

rank Compute rank of symbolic matrix

rref Compute reduced row echelon form of matrix

sud Compute singular value decomposition of
symbolic matrix

tril Return lower-triangular part of symbolic matrix

triu Return upper-triangular part of symbolic matrix

coeffs List coefficients of multivariate polynomial

collect Collect coefficients

expand Symbolic expansion of polynomials and
elementary functions

factor Factorization

horner Horner nested polynomial representation

numden Numerator and denominator

simple Search for simplest form of symbolic expression

simplify Symbolic simplification

subexpr Rewrite symbolic expression in terms of common
subexpressions

subs Symbolic substitution in symbolic expression or
matrix

compose Functional composition
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MATLAB Command

Description

dsolve

finverse
solve
cosint
sinint
zeta
ceil
conj
eq

fix
Sfloor
frac
imag
log10
log2
mod
pretty

quorem

real
round
size
sort
sym
syms

symvar

fourier
ifourier
ilaplace
iztrans
laplace

ztrans

Symbolic solution of ordinary differential
equations

Functional inverse

Symbolic solution of algebraic equations
Cosine integral

Sine integral

Compute Riemann zeta function

Round symbolic matrix toward positive infinity
Symbolic complex conjugate

Perform symbolic equality test

Round toward zero

Round symbolic matrix toward negative infinity
Symbolic matrix elementwise fractional parts
Imaginary part of complex number

Logarithm base 10 of entries of symbolic matrix
Logarithm base 2 of entries of symbolic matrix
Symbolic matrix elementwise modulus
Pretty-print symbolic expressions

Symbolic matrix elementwise quotient and
remainder

Real part of complex symbolic number
Symbolic matrix elementwise round

Symbolic matrix dimensions

Sort symbolic vectors, matrices, or polynomials
Define symbolic objects

Shortcut for constructing symbolic objects

Find symbolic variables in symbolic expression or
matrix

Fourier integral transform
Inverse Fourier integral transform
Inverse Laplace transform
Inverse z-transform

Laplace transform

z-transform
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You can practice some of the symbolic expressions as shown below:

B.3.1 Simplifying Symbolic Expressions

Symbolic simplification is not always straightforward; there is no universal
simplification function because the meaning of the simplest representation
of a symbolic expression cannot be defined clearly. MATLAB uses the sym or
syms command to declare variables as a symbolic variable. Then, the symbolic
can be used in expressions and as arguments to many functions.

For example, to rewrite a polynomial in a standard form, use the expand

function:

>> syms x y; % creating a symbolic variables x and

<>

>>x = sym(x); y = sym(y); y = sym('y’); % or equivalently
>> expand (sin(x-y))

ans =
sin(x)*cos(y)-cos(x)*sin(y)

You can use the subs command to substitute a numeric value for a symbolic
variable or replace one with another.

For example,

>> Syms X;
>> f=5%xA3+2%x-5;
>> subs(f,3)

ans =

136

>> simplify (3#sin(x)"2 - cos(x)"2)
ans =

-4*cos(x)M2+3
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B.3.2 Differentiating Symbolic Expressions
Use diff ( ) command for differentiation.

For example,

>> Syms X;
>> f =sin(3%x)+5;
>> diff(f)

ans =

3*cos(3%x)

>> y=4#sin(x)*exp(x);

>> diff(y)
ans =

4xcos(x)*exp(x)+4*sin(x)*exp(x)

>> diff(diff(y))% second derivative of y
ans =

8:#cos(x)*exp(x)

>> syms v u;

>> f = sin(v¥u);
>> diff(f,u) % create partial derivative =——

u
>> diff(f,v) % create partial derivative =—
ans = v
cos(v¥u)#u

2

>> diff(f,u,2) % create second partial derivative —

u

ans =

-sin(v#u)*vA2
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B.3.3 Integrating Symbolic Expressions

The int(f) function is used to integrate a symbolic expression f.

For example,
z: zn;f;;tan(x)’\&
>> int(f)
ans =
-x+3*tan(x)
>> int(1/(1-x72))
ans =
atanh(x)

B.3.4 Limits Symbolic Expressions

The limit(f) command is used to calculate the limits of function f.

For example,

>> Syms Xy z;
>> limit((cos(x)/x), x, 0)

ans =
NaN

>> limit((tan(x)/x), x, 0)

ans =
1
- s .1
>> limit(1/x, x, 0, right’) % lim —=oo
=0 x
ans =
Inf

.1
>> limit(1/x, x, 0, left’) % lim — = —oo
x—0" x

ans =

-Inf
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B.3.5 Taylor Series Symbolic Expressions

Use taylor( ) function to find the Taylor series of a function with respect to
the variable given.

For example,

>> syms x; N =5;

>> taylor(exp(-x),N+1) % f(x)= 2% £"(0)

n=0 .
ans =
1-x+1/2#x"2-1/6%x"3+1/24%x"4-1/120%x"5
>> f=exp(2#x);
>> taylor(f,6)
ans =

1+2#x4+2%x"2+4/3%x"N3+2/3%x"4+4/15%x">

B.3.6 Sums Symbolic Expressions
Use symsum () function to obtain the sum of a series.

For example,

>> syms k n; n-l 1 1

>> symsum(k,0,n-1) % Zk =O+1+2+...+n—1=5n2 _En
k=0

ans =

1/2#n"2-1/2#%n

>> syms n N; N1 ox?
>> symsum(1/n”2,1,inf) % 2_2 =

n=0 1 6
ans =

1/6 #pin2
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B.3.7 Solving Equations as Symbolic Expressions

Many of MATLAB’s commands and functions are used to manipulate the vec-
tors or matrices consisting of symbolic expressions.

For example,
>>symsabcd;

>> M=[a b:c d];
>> det(M)

ans =

a*d-b *c

>> Syms X y;
>> f=solve("3#x+5%y=15"x-8#y=3");

>> x=fx
X =
135/29
>>y=fy
y =

6/29

>> Syms X;
>> solve (x*3-6%x"2+11%x-6)

ans =
1

2
3
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Use dsolve () function to solve symbolic differential equations.

For example,
>> Syms Xy t;
>> dsolve(‘Dy+2#y=12") % solve y' +2y =12
ans =

6+exp(-2#t)*C1 % C1 is undetermined constant






APPENDIX

COMSOL MuLtipHysIcs

COMSOL is a finite-element-based modeling tool that has a well-developed
graphic user interface and several modules for modeling common and advanced
types of physics involved in engineering and applied science practices.

COMSOL INTERFACE

You can set up a model guided by the Model Wizard (it will guide the users
through the steps necessary for building a model) or start from a Blank Model,
as shown in Figure C.1.

L

Home  Definitions  Geometry  Materils  Physics  Mesh  Study  Results  Developer

FIGURE C.1 New window opens when launching COMSOL.

After clicking on Model Wizard icon, a new window, Select Space
Dimension, will open, as shown in Figure C.2. Users can choose the physical
dimension of the model by clicking on the relevant icon, which includes 0D,
1D, and 2D axisymmetric cases, as well.
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P iheHER >
Home Definitions Geometry Materials Physics Mesh Study Results Developer

Select Space Dimension

|
.i === Q =
i i
2D o
=2 Axisymmetric & Axisymmetric Uz g

FIGURE C.2 Select Space Dimension window.

CREATING A MODEL GUIDED BY THE MODEL WIZARD

The Model Wizard will guide you in setting up the space dimension, physics,
and study type in a few steps:

1. Select the space dimension for your model component: 3D, 2D
Axisymmetric, 2D, 1D Axisymmetric, or 0D.

2. Add one or more physics interfaces, as shown in Figure C.3. These are
organized in a number of physics branches in order to make them easy
to locate. These branches do not directly correspond to products. When
products are added to your COMSOL Multiphysics installation, one or
more branches will be populated with additional physics interfaces.
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FIGURE C.3 Select Physics interfaces window.

3. Select the Study type that represents the solver or set of solvers that will
be used for the computation, as shown in Figure C.4.

Litilesiman - COMSEL Muliphyass 2 x
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FIGURE C.4 Select study type window.

4. Finally, click Done. The desktop is now displayed with the model tree
configured according to the choices you made in the Model Wizard.
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CREATING A BLANK MODEL

The Blank Model option will open the COMSOL interface without any
Component or Study. You can right-click the model tree to add a Component
of a certain space dimension, physics interface, or Study.

The Ribbon and Quick Access Toolbar

The ribbon tabs in the COMSOL environment reflect the modeling workflow
and give an overview of the functionality available for each modeling step,
including building simulation applications from your models. The main
toolbar items are listed according to the usual sequence used for building a
model; Model, Definitions, Geometry, Materials, Physics, Mesh, Study, and
Results, as shown in Figure C.5. The ribbon bar under the Model tab lists the
modeling sequence actions required, as well.

Unfitied.mph - COMSOL Multiphysics

= a e B
] 5 [

FIGURE C.5 Toolbar and Ribbon for selected Model tab.

The Home tab contains buttons for the most common operations for making
changes to a model, running simulations, and building and testing applications,
as shown in Figure C.6. Examples include changing model parameters for a
parameterized geometry, reviewing material properties and physics, building
the mesh, running a study, and visualizing the simulation results.

There are standard tabs for each of the main steps in the modeling process.
These are ordered from left to right according to the workflow: Definitions,
Geometry, Materials, Physics, Mesh, Study, Results, and Developer.

Contextual tabs are shown only if and when they are needed, such as the
3D Plot Group tab, which is shown when the corresponding plot group is
added or when the node is selected in the model tree.

FIGURE C.6 The home tab.

Modal tabs are used for very specific operations when other operations in the
ribbon may become temporarily irrelevant. An example is the Work Plane
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modal tab, as shown in Figure C.7. When working with work planes, other
tabs are not shown since they do not present relevant operations.
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FIGURE C.7 The Work Plane modal tab.

RIBBON VS. THE MODEL BUILDER

The ribbon gives quick access to available commands and complements the
model tree in the Model Builder window, as shown in Figure C.8. Most of
the functionality accessed from the ribbon is also accessible from contextual
menus by right-clicking nodes in the model tree. Certain operations are only
available from the ribbon, such as selecting which desktop window to display.
There are also operations that are only available from the model tree, such as
reordering and disabling nodes.
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FIGURE C.8 The Windows, toolbar, ribbon, and model tree.
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The Quick Access Toolbar

The Quick Access Toolbar contains a set of commands that are independ-
ent of the ribbon tab that is currently displayed. You can customize the Quick
Access Toolbar and add most commands available in the File menu, includ-
ing commands for undoing and redoing recent actions, as well as for copy-
ing, pasting, duplicating, and deleting nodes in the model tree. You can also
choose to position the Quick Access Toolbar above or below the ribbon.

The Model Builder and the Model Tree

Using the Model Builder, you build a model by starting with the default model
tree, adding nodes, and editing the node settings, as shown in Figure C.9.

All the nodes in the default model tree are top-level parent nodes. You
can right-click on them to see a list of child nodes, or subnodes, that you can
add beneath them. This is the means by which nodes are added to the tree.

When you click on a child node, you will see its node settings in the
Settings window. It is here that you can edit node settings.

It is worth noting that if you have the Help window open, which is
achieved either by selecting help from the File menu or by pressing the func-
tion key F1, then you will also get dynamic help when you click on a node.

Viodel Bullger v R
— ® v -1 E] v

R Untitled.mph (root)
4 ) Global Definitions
= Materials

@ Results

FIGURE C.9 The Model Builder.
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THE ROOT, GLOBAL DEFINITIONS, AND RESULTS NODES

A model tree always has a root node (initially labeled Untitled.mph), a Global
Definitions node, and a Results node. The label on the root node is the
name of the multiphysics model file, or MPH file, to which the model is saved.
The root node has settings for author name, default unit system, and more.

The Global Definitions node has a Materials subnode by default. The
Global Definitions node is where you define parameters, variables, func-
tions, and couplings that can be used throughout the model tree. They can be
used, for example, to define the values and functional dependencies of mate-
rial properties, forces, geometry, and other relevant features. The Global
Definitions node itself has no settings, but its child nodes have plenty of
them. The Materials subnode stores material properties that can be refer-
enced in the Component nodes of a model.

The Results node is where you access the solution after performing a
simulation and where you find tools for processing the data. The Results
node initially has five subnodes, as shown in Figure C.10:

= ® v =T

i
—
4

P Untitled.mph (root)

4 (7)) Global Definitions
= Materials

4 @, Results
i Data Sets
¢32 Derived Values
B Tables
= Export
EY Reports

FIGURE C.10 The Results node.
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= Data Sets, which contains a list of solutions you can work with.

= Derived Values, which defines values to be derived from the solution
using a number of postprocessing tools.

= Tables, which is a convenient destination for the Derived Values or for
Results generated by probes that monitor the solution in real-time while
the simulation is running.

= Export, which defines numerical data, images, and animations to be
exported to files.

= Reports, which contains automatically generated or custom reports about
the model in HTML or Microsoft® Word format.

The Component and Study Nodes

In addition to the three nodes just described, there are two additional top-
level node types: Component nodes and Study nodes, as shown in Figure
C.11. These are usually created by the Model Wizard when you create a
new model. After using the Model Wizard to specify what type of physics
you are modeling and what type of Study (e.g., steady-state, time-dependent,
frequency-domain, or eigenfrequency analysis) you will carry out, the Model
Wizard automatically creates one node of each type and shows you their
contents.

! ) = - » et =
|| IC1E21 Y (121 v A
L ] Nt Nl N (| W | ol s

. ® v =t E

I
4

4 & Untitled.mph (root)
() Global Definitions
W Component 1 (compl)
~0 Study 1

@, Results

FIGURE C.11 The component and study nodes.
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It is also possible to add more Component

and Study nodes as you

develop the model, as shown in Figure C.12. A model can contain multiple
Component and Study nodes, and it would be confusing if they all had the
same name. Therefore, these types of nodes can be renamed to be descriptive

of their individual purposes.

If a model has multiple Component nodes, they can be coupled to form

a more sophisticated sequence of simulation steps.

Note that each Study node may carry out a different type of computation,

so each one has a separate Compute button.

! p— p— — ’_‘I - — -
VilaTala ) ‘s ] ;
l W Ilt_.'{_) =1 DU

= ® v =T 2

4

4 & Untitled.mph (root)
) Global Definitions

% Add Physics
%, Add Multiphysics
£\ Add Mesh

|
g

Copy as Code to Clipboard

W Componentl fcompe1)

W Delete — Del

E[J Rename — R2

Settings

Properties

Help —— Fl
Keyboard Shortcuts —

FIGURE C.12 The Component and Study nodes as developing the model.
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To be more specific, suppose that you build a model that simulates a coil
assembly that is made up of two parts, a coil and a coil housing, as shown in
Figure C.12. You can create two Component nodes, one that models the coil
and the other the coil housing. You can then rename each of the nodes with
the name of the object. Similarly, you can also create two Study nodes, the
first simulating the stationary or steady-state behavior of the assembly and the
second simulating the frequency response. You can rename these two nodes
to be Stationary and Frequency Domain. When the model is complete, save it
to a file named Coil Assembly.mph. At that point, the model tree in the Model
Builder looks like Figure C.13.

- ® v =t E|

4

4 @ Coil Assembly.mph (root)
) Global Definitions
N Coil (compl)
W Coil Housing (compZ2)
~ Stationary
“ Frequency Domain
Results

FIGURE C.13 A model that simulates a coil of two parts, a coil and a coil housing.

In Figure C.13, the root node is named Coil Assembly.mph, indicating the
file in which the model is saved. The Global Definitions node and the Results
node each have their default name. Additionally, there are two Component
nodes and two Study nodes with the names chosen in the previous paragraph.
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Parameters, Variables, and Scope
Global Parameters:

Global parameters are user-defined constant scalars that are usable throughout
the model. That is to say, and they are “global” in nature. Important uses are:

= Parameterizing geometric dimensions.

= Specifying mesh element sizes.

= Defining parametric sweeps (simulations that are repeated for a variety of
different values of a parameter such as a frequency or load).

A global parameter expression can contain numbers, global parameters,
built-in constants, built-in functions with global parameter expressions as
arguments, and unary and binary operators. It is important to know that the
names of parameters are case-sensitive. You define global parameters in the
Parameters node in the model tree under Global Definitions.

Results Parameters:

For greater flexibility, it is possible to define parameters that are only
used in the Results node. Using these parameters does not require resolving
the model.

Result parameters may depend on other result parameters but not on
global parameters.

Variables:

Variables have associated Variables nodes in the model tree and can be
defined either in the Global Definitions node or in the Definitions subnode
of any Component node. Naturally, the choice of where to define the variable
depends on whether you want it to be global (that is, usable throughout
the model tree) or locally defined within a single Component node. Like
a parameter expression, a variable expression may contain numbers,
parameters, built-in constants, and unary and binary operators. However, it
may also contain variables like ¢, x, y, or z; functions with variable expressions
as arguments; and dependent variables that you are solving for in addition to
their space and time derivatives.

Variables Used in Applications:

Model parameters and variables can be used in applications. For example,
you can let the user of an application change the value of a parameter. In
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addition, variables to be used in applications can be defined in the Application
Builder, in the application tree under the Declarations node. Such variables
can also be used in model methods.

Scope:

The “scope” of a parameter or variable is a statement about where it may
be used in an expression. All global parameters are defined in the Global
Definitions node of the model tree as a Parameters subnode. This means
that they are global in scope and can be used throughout the model tree.

A variable may also be defined in the Global Definitions node, as a
Variables subnode, and have global scope, but they are subject to other
limitations. For example, variables may not be used in Geometry, Mesh,
or Study nodes (with the one exception that a variable may be used in an
expression that determines when the simulation should stop).

A variable that is instead defined under the Definitions subnode of a
Component node has local scope and is intended for use in that particular
Component (but, again, not in the Geometry or Mesh nodes). They may
be used, for example, to specify material properties in the Materials subnode
of a Component or to specify boundary conditions or interactions. It is
sometimes valuable to limit the scope of the variable to only a certain part
of the geometry, such as certain boundaries. For that purpose, provisions are
available in the settings for a variable to select whether to apply the definition
either to the entire geometry of theComponent or only to a Domain,
Boundary, Edge, or Point.

Workflow and Sequence of Operations

In the Model Builder window;, every step of the modeling process, from defining
global variables to the final report of results, is displayed in the model tree.

From top to bottom, the model tree defines an orderly sequence of
operations. In the following branches of the model tree, the node order makes
a difference, and you can change the sequence of operations by moving the
subnodes up or down the model tree:

= Geometry
Materials

= Physics
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= Mesh
= Study
= Plot Groups

In the Component > Definitions branch of the tree, the ordering of the
following node types also makes a difference:

= Perfectly Matched Layer
= Infinite Elements

Nodes may be reordered by these methods:

= Drag-and-drop
= Right-clicking the node and selecting Move Up or Move Down
= Pressing Ctrl + Up arrow or Ctrl + Down arrow

In other branches, the ordering of nodes is not significant with respect to
the sequence of operations, but some nodes can be reordered for readability.
Child nodes to Global Definitions is one such example.

You can view the sequence of operations presented as program code
statements by saving the model as a Model File for MATLAB® or as a Model
File for Java™ after having selected Compact History in the File menu. Note
that the model history keeps a complete record of the changes you make to
a model as you build it. As such, it includes all of your corrections, including
changes to parameters and boundary conditions and modifications of solver
methods. Compacting this history removes all of the overridden changes
and leaves a clean copy of the most recent form of the model steps. In the
Application Builder, you can use the Record Method option to view and edit
program code statements in the Method editor.

As you work with the COMSOL interface and the Model Builder, you will
grow to appreciate the organized and streamlined approach. However, any
description of a user interface is inadequate until you try it for yourself. In
the next chapters, you are invited to work through two examples to familiarize
yourself with the software.
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Absorbing boundary conditions (ABC), desi'gn optimization—design, 537
462-464 engineering data, 539-554

finite element modeler, 536
geometry definition, 536

graphical user interface (GUI), 525
materials definition, 537

Airfoil, potential flow
post-processing, 321-322
preprocessing, 317-321
software results, 317

Analytical method, 54 mecha.msms, 537
axial vibrations, 362 reporting, 537
cantilever beams, 216-217, 222-223 software method, 538-539
constant cross-section area, 71-72 Solenoid actuator analysis, 484-505
76—78, 83, 88—89, 92-93 ’ ’ Workbench, 536—554

workbench user interface, 536
ANSYS program, 157
Anti-symmetric (Skew-symmetric)

engineering problem, 54
natural frequency determination, 329
one-dimensional heat conduction

problems, 275 matrix, 5 '

simply supported beams, 190, Argumer?t matrix, 19 '
194-195. 201-202. 206—-207 Automatic mesh generation

stepped bar, 127, 131-132, 138-140 arbitrary domains, 441443

stress analysis, rectangular plate with .rectangular domains, 439441
circular hole, 257-259 Axially loaded members

truss. 159-162 constant cross-section area, 71-104

varying cross-section area, 105-106, stepped bar, 126-155
119-113 three-node bar element, 70-71
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two-node bar element, 68-70
varying cross-section area, 104—1126
Axial vibrations
analytical method, 362
FEM by hand calculations, 363-365
frequency values, 366
post-processing, 372-373
preprocessing, 366372
software results, 365
Axisymmetric radial element, 506

B

Banded matrix, 5
Beam

beam element, 189

cantilever beams, 216-237

definition, 189

simply supported beams, 190-216
Bio-Savart’s law and field intensity, 395
Boundary conditions, 391-393
Boundary element method, 462

C

CAD model, 58
Cantilever beams, 376
analytical method, 216-217, 222-223
bending moment diagram, 232
bending stress diagram, 233
deflection values at nodes, 220, 227,
232, 238
FEM by hand calculations, 217-220,
223-226, 228-231, 234238
maximum stress diagram, 233
nodal force calculation, 224-226,
229-231, 235-237
post-processing, 244247
preprocessing, 240-244
reaction calculation, 226, 231, 237-238

reaction values, 221, 227, 232, 239
rotational deflection values at nodes,
220, 227, 232, 239
shear force diagram, 233
software results, 220-221, 226-227,
231233
total values, 232
Cantilever beam, transverse vibrations
analytical solution, 340-342
FEM by hand calculations, 342-345
of software results, 345-347
Coaxial cable, 506
Coaxial waveguide, 509
Column matrix, 4
Compressible fluid, 311
Compressive forces, 65
COMSOL, 464-478, 480, 482, 484, 507,
508, 575-587
Conduction boundary conditions,
two-dimensional problem, 305-306
Constant cross-section area
analytical method, 71-72, 76-78, 83,
88-89, 92-93
deflection values as node, 74-75, 81,
86, 91, 99
displacement calculation, 72, 77-78
FEM by hand calculations, 72-74,
78-82, 84-86, 89-90, 94-98
post-processing, 103-104
preprocessing, 100-103
reaction calculation, 72, 76, 86, 93
reaction value, computer generated
output, 75, 82
software results, 74-76, 86-87, 91,
98-99
stress calculation, 72, 73, 7677, 80,
85, 92-93
stress values, computer generated
output, 75



Young’s modulus, 71
Constitutive relations, 385-389
Convection boundary conditions,
two-dimensional problem, 305-306
Coulomb’s law and field intensity, 394
Cramerss rule, 21-24

D

Diagonal matrix, 4
Dielectric loss, 399
Direct approach, 55
Displacement method, 59
Double-strip shielded transmission line,
475477
Dynamic analysis
bar, axial vibrations of, 362-373
cantilever beam, transverse
vibrations of, 340-347
forcing function, bar subjected,
373-375
forcing function, fixed-fixed beam
subjected to, 348-361
natural frequency determination,
fixed-fixed beam for, 328-340
procedure of finite element
analysis, 328

E

Eigenvalues, 3640

Eigenvectors, 36—40

Eight-strip Line, 482-484

Electromagnetic analysis, 408-439

Electromagnetic energy and power
flow, 395-399

Elementary row operations, 19

Element stiffness matrix, 158, 163

Element strains and stresses, 56

Elimination method, 57
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Engineering electromagnetios analysis
automatic mesh generation, 439-443
Bio-Savart’s law and field
intensity, 395

boundary conditions, 391-393

constitutive relations, 385-389

Coulomb’s law and field
intensity, 394

electromagnetic analysis, 408-439

electromagnetic energy and power
flow, 395-399

external problems, 460464

FEM by hand calculations (See Hand
calculations, FEM by)

higher order elements, 443-454

Lorentz force law and continuity
equation, 385

loss in medium, 399-400

Maxwell’s equations and continuity
equation, 379-385

multistrip transmision lines, 473-484

Poison’s and Laplace’s equations,
401-402

potential equations, 390-391

shielded microstrip lines, modeling
and simulation of, 464-473

skin depth, 400401

solenoid actuator analysis, with
ANSYS, 484-505

three-dimensional element, 454-460

wave equations, 402—-407

Engineering problem
analytical method, 54
experimental method, 54
numerical method, 54
post-processing, 58
preprocessing, 58
processing, 58

Equation of continuity, 379



592 « INDEX

Equations
of continuity, 379
Laplace’s equation, 401, 418-431
Lorentz force law and continuity
equation, 385
Maxwell’s equations and continuity
equation, 379-385
Poison’s and Laplace’s equations,
401-402
Poisson’s equation, 412—417
potential equations, 390-391
symbolic expressions, solving
equations, 572-573
wave equations, 402—407
Equilibrium, 67
Experimental method, 54

F

FEA. See Finite element method
Finite element method (FEA)
dynamic problems, procedure of, 328
fluid flow problems, procedure of,
312-313
linear spring, direct method for,
62-63
practical applications of, 58
prescribing boundary conditions,
56-58
procedure of, 54-56
software package, 58
solving engineering problems,
53-54
structural problems, procedure of,
54-56
for structure, 58-59
thermal problems, procedure of, 274
types of, 59-62
Fixed-fixed beam, 375
forcing function, 348-361

natural frequency determination,
328-340
Fluid flow analysis
airfoil, potential flow, 316-325
cylinder, potential flow, 313-315
procedure of finite element analysis,
312-313
Force and elongation behaviors, 66
Force method, 59
Forcing function, bar
displacement values, 374
maximum displacement
values, 375
software results, 373-374
Forcing function, fixed-fixed beam
maximum displacement values, 361
preprocessing, 350-361
software results, 345-347
Four-conductor transmission

lines, 508

G

Gaussian elimination method, 19-21
Gauss’s law, 401

Global stiffness matrix, 164
Gradient operator, 33

H

Hand calculations, FEM by

axial vibrations, 363-365

cantilever beams, 217-220, 223-226,
228-231, 234-238

cantilever beam, transverse
vibrations of, 342-345

constant cross-section area, 72-74,
78-82, 84-86, 89-90, 94-98

natural frequency determination,

330-332



simply supported beams, 191-192,
195-198, 202-205, 207-209
stepped bar, 127-130, 132135,

141-143
truss, 162-172, 174-177
varying cross-section area, 107-111,
113-115,117-119
Higher order elements
fundamental matrices, 450-454
local coordinates, 445447
pascal triangle, 444445
shape functions, 447-449
Homogeneous, 391
Hybrid method, 59

Identity (unit) matrix, 4-5
Incompressible fluid, 311

Infinite element method, 461-462
Inhomogeneous, 391

Integration of matrix, 14-15

Inverse of matrix, 24-27

Invertible matrix (nonsingular matrix), 26
Irrotational flow, 311

L

Laplace’s equations, 401-402

Linear spring element, 62-63

Linear systems, direct methods for, 18-19

Lorentz force law and continuity
equation, 385

Loss tangent, 400

M

Magnetostatic energy, 397

MATLAB, 4049

MATLAB (Matrix Laboratory)
calculations, 557-565
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differentiating symbolic
expressions, 569
integrating symbolic expressions, 570
limits symbolic expressions, 570
simplifying symbolic expressions, 568
sums symbolic expressions, 571
symbolic computation, 565-568
symbolic expressions, solving
equations, 572-573
Taylor series symbolic expressions, 571
windows, 555-556
Matrix
addition of, 6-7
Cramer’s rule, 21-24
definition, 1-3
determinant of, 15-17
differentiation of, 14
eigenvalues and eigenvectors, 3640
equality of, 15
Gaussian elimination method, 19-21
integration of, 14-15
inverse of, 24-27
linear systems, direct methods for,
18-19
MATLAB, 40-49
multiplication of, 8-9
multiplied by scalar, 7-8
operations, 38
rules of multiplications, 9-12
subtraction of, 6-7
trace of, 13-14
transpose of, 12-13
types of, 3-6
vector analysis, 27-36
Matrix Laboratory. See MATLAB
Matrix multiplications
by another matrix, 8-9
rules of, 9-12
by scalar, 7-8
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Maximum bending moment, 247-248
Maxwell’s equations and continuity
equation
differential form, 380
divergence and Stokes theorems,
381-382
integral form, 381
quasi-statics case, 382
space case, source-free regions of,
383
statics case, 382—-383
time-harmonic fields case, 383-385
Mixed method, 59
Multipoint constrains method, 57-58
Multistrip transmission lines, 473-484

N

Natural frequency determination
analytical method, 329
FEM by hand calculations, 330-332
post-processing, 339-340
preprocessing, 334-339
software results, 333-334
Nodal displacements, 56, 152, 153, 161,
168
Nodal lines, 408
Nodes, 53
Non-invertible matrix (singular matrix),
26
Nonsingular matrix, 26
Null matrix, 4
Numerical method, 54

o

One-dimensional elements, 59
FEM standard steps procedure,
408-412
natural coordinates, 417-418
Poisson’s equation, 412—417

variational approach, 413414
weighted residuals method, 415417
One-dimensional heat conduction
problems, 273-278

analytical method, 275

FEM by calculations, 276277

post-processing, 285-290, 295-299,
305

preprocessing, 278-285, 290-295,
300-305

software results, 277-278, 299

P

Partitioned matrix (Super-matrix), 6
Penalty method, 57
Plot velocity distribution, 324
Poison’s and Laplace’s equations,
401402
Poisson’s equation, 412—417
Post-processing
axial vibrations, 372-373
cantilever beams, 244-247
constant cross-section area, 103-104
engineering problem, solving, 58
natural frequency determination,
339-340
simply supported beams, 214216
stepped bar, 151-152
stress analysis, rectangular plate with
circular hole, 268
truss, 181-182
varying cross-section area, 125-126
Potential equations, 390-391
Poynting’s theorem, 398
Poynting vector, 397
Practical applications, 58
Preprocessing
axial vibrations, 366-372
cantilever beams, 240-244



constant cross-section area, 100-103
engineering problem, solving, 58
natural frequency determination,
334-339
simply supported beams, 211-214
stepped bar, 145-150
stress analysis, rectangular plate with
circular hole, 262-267
truss, 179-181
Prescribing boundary conditions
elimination method, 57
multipoint constrains method, 57-58
penalty method, 57
Processing
engineering problem, solving, 58
varying cross-section area, 121-125

R

Rectangular cross-section transmission
line, 467468

Rectangular line, with diamondwise
structure, 469470

Rectangular matrix, 3

Rectangular plate with circular hole.
See Stress analysis

Row matrix, 3

S

Scalar matrix, 4
Simply supported beams
analytical method, 190, 194-195,
201-202, 206207
deflection values at nodes, 193, 199,
205, 210
FEM by hand calculations, 191-192,
195-198, 202205, 207-209
nodal force calculation, 196-198
post-processing, 214-216
preprocessing, 211-214
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reaction calculation, 192, 205
reaction values, 193, 199, 206
slope values at nodes, 199,
205, 210
software results, 193, 198-200,
205-206, 209-210
total values, 199, 206
Single-strip shielded transmission
line, 470473
Singular matrix, 26
Six-strip line, 480—482
Skew-symmetric matrix, 5
Skin depth, 400401
Software package, finite element
analysis, 58
Software results
airfoil, potential flow, 317
axial vibrations, 365
cantilever beams, 220-221, 226-227,
231-233
cantilever beam, transverse
vibrations of, 345-347
constant cross-section area, 74-76,
86-87, 91, 98-99
forcing function, bar, 373-374
forcing function, fixed-fixed beam,
345-347
natural frequency determination,
333-334
one-dimensional heat conduction
problems, 277-278, 299
simply supported beams, 193,
198-200, 205-206, 209-210
stepped bar, 135-137, 143-144
stress analysis, rectangular plate with
circular hole, 257-261
truss, 172-174, 177-179
varying cross-section area, 115-116,
120-121
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Solenoid actuator analysis, with
ANSYS, 484-505
Square cross-section transmission
line, 468—469
Square matrix, 3
Static equilibrium, 67
Stepped bar
analytical method, 127, 131-132,
138-140
deflection values at nodes, 129,
135-136, 143144
displacement calculation, 127, 128,
132
FEM by hand calculations, 127-130,
132-135, 141-143
nodal displacements, 126
post-processing, 151-152
preprocessing, 145-150
reaction calculation, 127, 129,
134, 143
reaction value, 130, 136
reaction values, 144
software results, 135137, 143-144
stress calculation, 127, 128, 132, 134,
142-143
stress value at elements, 130,
136, 144
Stiffness matrix, 78, 108
Stokes theorems, 381
Strain, 66
Streamline, 312
Stress, 65
Stress analysis, rectangular plate with
circular hole
analytical method, 257-259
boundary of hole, 255
center of plate, 256
deflection pattern, 261
element options, 263

first principal stress distribution, 261
one-quarter of plate, 255, 256
plate thickness, 263
post-processing, 268
preprocessing, 262-267
real constants, 263
software results, 257-261
sub cases, 254-256
tensile load at both edges, 254
tensile load at one edge, 254
validation of results, 262
Von Mises stress distribution, 259
Stress calculation
constant cross-section area, 72, 73,
7677, 80, 85, 92-93
stepped bar, 127, 128, 132, 134,
142-143
truss, 165-166, 171-172, 177
varying cross-section area, 106, 109,
112,115,119
Stress-strain behavior, 67
Structural problems
direct approach, 55
discretization of, 54
element stiffness matrices and
load vectors, 55-56
element strains and stresses, 56
nodal displacements, 56
proper interpolation, 54-55
variational approach, 55
weighted residual approach, 55-56
Super-matrix, 6
Symbolic expressions, MATLAB
differentiating symbolic expressions,
569
integrating symbolic expressions, 570
limits symbolic expressions, 570
simplifying symbolic expressions, 568
sums symbolic expressions, 571



symbolic expressions, solving
equations, 572-573
taylor series symbolic expressions, 571
Symmetric matrix, 5

T

Temperature distribution, 306-310
Tensile forces, 65
Tension, 65
Thermal analysis
one-dimensional heat conduction
problems, 274-278
procedure of FEM, 274
two-dimensional heat conduction
problems, 274, 305-306
Three-dimensional element, 61,
454-460
Three-node bar element, 70-71
Three-node element, 507
Three-strip line, 478-480
Triangular matrix, 5-6
Truss
analytical method, 159-162
angle calculation, 162-165, 174-176
definition, 157
deflection value at nodes, 167,
172173, 178
2-D trusses, 157
element stiffness matrix, 158
element stress, 158
FEM by hand calculation, 162-172,
174-177
nodal displacements, 158
post-processing, 181-182
preprocessing, 179-181
reaction calculation, 166
software results, 172-174, 177-179
stress calculation, 165-166,
171-172, 177
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stress values of elements, 167,
173, 178-179
Two-dimensional elements, 60—61
band matrix method, 430433,
435-439
FEM to electrostatic problems,
418431
iteration method, 429, 433435
Laplace’s equation, 418-430
Two-dimensional problem, 305-306
Two-node bar element, 68-70

v

Variational approach, 55
Varying cross-section area
analytical method, 105-106,
112113
deflection values at node, 110, 115,
120-121
displacement and stress, 104
displacement calculation, 106, 113
equivalent model, 107
FEM by hand calculations, 107-111,
113-115, 117-119
post-processing, 125-126
processing, 121-125
reaction calculation, 119
reaction value, 111, 121
software results, 115-116, 120-121
stress values, 110, 116, 121
Young’s modulus, 104
Vector
addition and subtraction, 28-29
algebra, 29
components of, 28
Del (V) operator, 33-36
equality, 28
multiplication, 29-31
multiplication of scalar, 29
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right-hand rule, 31
unit, 28
Vector analysis, 27-36
Von Mises stress distribution, 259

w

Wave equations, 402—403
Weighted residual approach, 55

Y

Young’s modulus
constant cross-section
area, 71
varying cross-section
area, 104
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