

Table	of	Contents
Preface

Chapter	1	-	Introduction	to	SwiftUI

Declarative	vs	Imperative	Programming

No	more	Interface	Builder	and	Auto	Layout

The	Combine	Approach

Learn	Once,	Apply	Anywhere

Interfacing	with	UIKit/AppKit/WatchKit

Use	SwiftUI	for	Your	Next	Project

Chapter	2	-	Getting	Started	with	SwiftUI	and	Working	with	Text

Creating	a	New	Project	for	Playing	with	SwiftUI

Displaying	a	Simple	Text

Changing	the	Font	Type	and	Color

Using	Custom	Fonts

Working	with	Multiline	Text

Setting	the	Padding	and	Line	Spacing

Rotating	the	Text

Summary

Chapter	3	-	Working	with	Images

Understanding	SF	Symbols

Displaying	a	System	Image

Using	Your	Own	Images

Resizing	an	Image

Aspect	Fit	and	Aspect	Fill

Creating	a	Circular	Image

Adjusting	the	Opacity

Applying	an	Overlay	to	an	Image

Darken	an	Image	Using	Overlay

Wrap	Up

Chapter	4	-	Layout	User	Interfaces	with	Stacks

Understanding	VStack,	HStack,	and	ZStack

Creating	a	New	Project	with	SwiftUI	enabled

Using	VStack

Using	HStack

Using	ZStack

Exercise	#1

Handling	Optionals	in	SwiftUI

Using	Spacer

Exercise	#2

Chapter	5	-	Understanding	ScrollView	and	Building	a	Carousel	UI

Creating	a	Card-like	UI

Introducing	ScrollView

Exercise	#1

Creating	a	Carousel	UI	with	Horizontal	ScrollView

Hiding	the	Scroll	Indicator

Grouping	View	Content

Resize	the	Text	Automatically

Exercise	#2

Chapter	6	-	Working	with	SwiftUI	Buttons	and	Gradient

Customizing	the	Button's	Font	and	Background

Adding	Borders	to	the	Button

Creating	a	Button	with	Images	and	Text

Using	Label

Creating	a	Button	with	Gradient	Background	and	Shadow

Creating	a	Full-width	Button

Styling	Buttons	with	ButtonStyle

Exercise

Summary

Chapter	7	-	Understanding	State	and	Binding

Controlling	the	Button's	State

Exercise	#1

Working	with	Binding

Exercise	#2

Summary

Chapter	8	-	Implementing	Path	and	Shape	for	Line	Drawing	and	Pie	Charts

Understanding	Path

Using	Stroke	to	Draw	Borders

Drawing	Curves

Fill	and	Stroke

Drawing	Arcs	and	Pie	Charts

Understanding	the	Shape	Protocol

Using	the	Built-in	Shapes

Creating	a	Progress	Indicator	Using	Shapes

Drawing	a	Donut	Chart

Summary

Chapter	9	-	Basic	Animations	and	Transitions

Implicit	and	Explicit	Animations

Creating	a	Loading	Indicator	Using	RotationEffect

Creating	a	Progress	Indicator

Published: 31/10/2019 | Last updated: 4/12/2020 | AppCoda © 2020

4Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Delaying	an	Animation

Transforming	a	Rectangle	into	Circle

Understanding	Transitions

Exercise	#1:	Using	Animation	and	Transition	to	Build	a	Fancy	Button

Exercise	#2:	Animated	View	Transitions

Summary

Chapter	10	-	Understanding	Dynamic	List,	ForEach	and	Identifiable

Creating	a	Simple	List

Creating	a	List	View	with	Text	and	Images

Refactoring	the	Code

Exercise

Chapter	11	-	Working	with	Navigation	UI	and	Navigation	Bar	Customization

Implementing	a	Navigation	View

Passing	Data	to	a	Detail	View	Using	NavigationLink

Customizing	the	Navigation	Bar

Exercise

Building	the	Detail	View

Removing	the	Disclosure	Indicator

An	even	more	Elegant	UI	with	a	Custom	Back	Button

Summary

Chapter	12	-	Playing	with	Modal	Views,	Floating	Buttons	and	Alerts

Understanding	Sheet	in	SwiftUI

Implementing	the	Modal	View	Using	isPresented

Changing	the	Navigation	View	Style

Implementing	the	Modal	View	with	Optional	Binding

Creating	a	Floating	Button	for	Dismissing	the	Modal	View

Using	Alerts

5Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Displaying	a	Full	Screen	Modal	View

Summary

Chapter	13	-	Building	a	Form	with	Picker,	Toggle	and	Stepper

Building	the	Form	UI

Creating	a	Picker	View

Working	with	Toggle	Switches

Using	Steppers

Presenting	the	Form

Exercise

What's	Coming	Next

Chapter	14	-	Data	Sharing	with	Combine	and	Environment	Objects

Refactoring	the	Code	with	Enum

Saving	the	User	Preferences	in	UserDefaults

Sharing	Data	Between	Views	Using	@EnvironmentObject

Implementing	the	Filtering	Options

Implementing	the	Sort	Option

What's	Coming	Next

Chapter	15	-	Building	a	Registration	Form	with	Combine	and	View	Model

Layout	the	Form	using	SwiftUI

Understanding	Combine

Combine	and	MVVM

Summary

Chapter	16	-	Working	with	Swipe-to-Delete,	Context	Menu	and	Action	Sheets

Implementing	Swipe-to-delete

Creating	a	Context	Menu

Working	with	Action	Sheets

Exercise

6Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Chapter	17	-	Using	Gestures

Using	the	Gesture	Modifier

Using	Long	Press	Gesture

The	@GestureState	Property	Wrapper

Using	Drag	Gesture

Combining	Gestures

Refactoring	the	Code	Using	Enum

Building	a	Generic	Draggable	View

Exercise

Summary

Chapter	18	-	Building	an	Expandable	Bottom	Sheet	with	SwiftUI	Gestures	and
GeometryReader

Understanding	the	Starter	Project

Creating	the	Restaurant	Detail	View

Make	It	Scrollable

Adjusting	the	Offset

Bring	Up	the	Detail	View

Adding	Animations

Adding	Gesture	Support

Handling	the	Half-opened	State

Handling	the	Fully	Open	State

Introducing	PreferenceKey

Summary

Chapter	19	-	Creating	a	Tinder-like	UI	with	Gestures	and	Animations

Building	the	Card	Views	and	Menu	Bars

Implementing	the	Card	Deck

Implementing	the	Swiping	Motion

7Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Displaying	the	Heart	and	xMark	icons

Removing/Inserting	the	Cards

Fine	Tuning	the	Animations

Summary

Chapter	20	-	Creating	an	Apple	Wallet	like	Animation	and	View	Transition

Building	a	Card	View

Building	the	Wallet	View	and	Card	Deck

Adding	a	Slide-in	Animation

Handling	the	Tap	Gesture	and	Displaying	the	Transaction	History

Rearranging	the	Cards	Using	the	Drag	Gesture

Summary

Chapter	21	-	Working	with	JSON,	Slider	and	Data	Filtering

Understanding	JSON	and	Codable

Using	JSONDecoder	and	Codable

Working	with	Custom	Property	Names

Working	with	Nested	JSON	Objects

Working	with	Arrays

Building	the	Kiva	Loan	App

Calling	the	Web	API

Summary

Chapter	22	-	Building	a	ToDo	app	with	Core	Data

Understanding	Core	Data

Understanding	the	ToDo	App	Demo

Working	with	Core	Data

Working	with	SwiftUI	Preview

Summary

Chapter	23	-	Integrating	UIKit	with	SwiftUI	Using	UIViewRepresentable

8Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Understanding	UIViewRepresentable

Adding	a	Search	Bar

Capturing	the	Search	Text

Handling	the	Cancel	Button

Performing	the	Search

Summary

Chapter	24	-	Creating	a	Search	Bar	View	and	Working	with	Custom	Binding

Implementing	the	Search	Bar	UI

Dismissing	the	Keyboard

Working	with	Custom	Binding

Summary

Chapter	25	-	Putting	Everything	Together	to	Build	a	Real	World	App

Understanding	the	Model

Working	with	Core	Data

Implementing	the	New	Payment	View

Implementing	the	Payment	Activity	Detail	View

Walking	Through	the	Dashboard	View

Managing	Payment	Activities	with	Core	Data

Exploring	the	Extensions

Handling	the	Software	Keyboard

Summary

Chapter	26	-	Creating	an	App	Store	like	Animated	View	Transition

Introducing	the	Demo	App

Understanding	the	Card	View

Implementing	the	Card	View

Building	the	List	View

Expanding	the	Card	View	to	Full	Screen

9Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Animating	the	View	Changes

Summary

Chapter	27	-	Building	an	Image	Carousel

Introducing	the	Travel	Demo	App

The	ScrollView	Problem

Building	a	Carousel	with	HStack	and	DragGesture

Moving	the	HStack	Card	by	Card

Adding	the	Drag	Gesture

Animating	the	Card	Transition

Adding	the	Title

Exercise:	Working	on	the	Detail	View

Implementing	the	Trip	Detail	View

Bringing	up	the	Detail	View

Summary

Chapter	28	-	Building	an	Expandable	List	View	Using	OutlineGroup

The	Demo	App

Creating	the	Expandable	List

Using	Inset	Grouped	List	Style

Using	OutlineGroup	to	Customize	the	Expandable	List

Understanding	DisclosureGroup

Exercise

Summary

Chapter	29	-	Building	Grid	Layout	Using	LazyVGrid	and	LazyHGrid

The	Essential	of	Grid	Layout	in	SwiftUI

Using	LazyVGrid	to	Create	Vertical	Grids

Using	GridItem	to	Vary	the	Grid	Layout	(Flexible/Fixed/Adaptive)

Switching	Between	Different	Grid	Layouts

10Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Building	Grid	Layout	with	Multiple	Grids

Exercise

Summary

Chapter	30	-	Creating	an	Animated	Activity	Ring	with	Shape	and	Animatable

Preparing	the	Color	Extension

Implementing	the	Circular	Progress	Bar

Adding	a	Gradient

Varying	the	Progress

Animating	the	Ring	Shape	with	Animatable

The	100%	Problem

Exercise

Summary

Chapter	31	-	Working	with	AnimatableModifier	and	LibraryContentProvider

Understanding	AnimatableModifier

Animating	Text	using	AnimatableModifer

Using	LibraryContentProvider

Exercise

Summary

Chapter	32	-	Working	with	TextEditor	to	Create	Multiline	Text	Fields

Using	TextEditor

Using	the	onChange()	Modifier	to	Detect	Text	Input	Change

Summary

Chapter	33	-	Using	matchedGeometryEffect	to	Create	View	Animations

Revisiting	SwiftUI	Animation

Understanding	the	matchedGeometryEffect	Modifier

Morphing	From	a	Circle	to	a	Rounded	Rectangle

Exercise	#1

11Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Swapping	Two	Views	with	Animated	Transition

Exercise	#2

Creating	a	Basic	Hero	Animation

Passing	@Namespace	between	Views

Summary

Chapter	34	-	ScrollViewReader	and	Grid	Animation

The	Demo	App

Building	the	Photo	Grid

Adding	the	Dock

Handling	Photo	Selection

Using	MatchedGeometryEffect	to	Animate	the	Transition

Using	ScrollViewReader	to	Move	a	Scroll	View

Summary

Chapter	35	-	Working	with	Tab	View	and	Tab	Bar	Customization

Using	TabView	to	Create	the	Tab	Bar	Interface

Customizing	the	Tab	Bar	Color

Switching	Between	Tabs	Programmatically

Hiding	the	Tab	Bar	in	a	Navigation	View

12Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

13Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Copyright	©2020	by	AppCoda	Limited

All	right	reserved.	No	part	of	this	book	may	be	used	or	reproduced,	stored	or	transmitted
in	any	manner	whatsoever	without	written	permission	from	the	publisher.

Published	by	AppCoda	Limited

14Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Preface
Frankly,	I	didn't	expect	Apple	would	announce	anything	big	in	WWDC	2019	that	would
completely	change	the	way	we	build	UI	for	Apple	platforms.	A	year	ago,	Apple	released	a
brand	new	framework	called	SwiftUI,	along	with	the	release	of	Xcode	11.	The	debut	of
SwiftUI	was	huge,	really	huge	for	existing	iOS	developers	or	someone	who	is	going	to
learn	iOS	app	building.	It	was	unarguably	the	biggest	change	in	iOS	app	development	in
recent	years.

I	have	been	doing	iOS	programming	for	nearly	10	years	and	already	get	used	to
developing	UIs	with	UIKit.	I	love	to	use	a	mix	of	storyboards	and	Swift	code	for	building
UIs.	However,	whether	you	prefer	to	use	Interface	Builder	or	create	UI	entirely	using
code,	the	approach	of	UI	development	on	iOS	doesn't	change	much.	Everything	is	still
relying	on	the	UIKit	framework.

To	me,	SwiftUI	is	not	merely	a	new	framework.	It's	a	paradigm	shift	that	fundamentally
changes	the	way	you	think	about	UI	development	on	iOS	and	other	Apple	platforms.
Instead	of	using	the	imperative	programming	style,	Apple	now	advocates	the
declarative/functional	programming	style.	Instead	of	specifying	exactly	how	a	UI
component	should	be	laid	out	and	function,	you	focus	on	describing	what	elements	you
need	in	building	the	UI	and	what	the	actions	should	perform	when	programming	in
declarative	style.

If	you	have	worked	with	React	Native	or	Flutter	before,	you	will	find	some	similarities
between	the	programming	styles	and	probably	find	it	easier	to	build	UIs	in	SwiftUI.	That
said,	even	if	you	haven't	developed	in	any	functional	programming	languages	before,	it
would	just	take	you	some	time	to	get	used	to	the	syntax.	Once	you	manage	the	basics,	you
will	love	the	simplicity	of	coding	complex	layouts	and	animations	in	SwiftUI.

This	year,	Apple	has	packed	even	more	features	and	UI	components	into	the	SwiftUI
framework,	which	comes	alongside	with	Xcode	12.	It	just	takes	UI	development	on	iOS,
iPadOS,	and	macOS	to	the	next	level.	You	can	develop	some	fancy	animations	with	way

15Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

less	code,	as	compared	to	UIKit.	Most	importantly,	the	latest	version	of	the	SwiftUI
framework	makes	it	easier	for	developers	to	develop	apps	for	Apple	platforms.	You	will
understand	what	I	mean	after	you	go	through	the	book.

The	release	of	SwiftUI	doesn't	mean	that	Interface	Builder	and	UIKit	are	deprecated	right
away.	They	will	still	stay	for	many	years	to	come.	However,	SwiftUI	is	the	future	of	app
development	on	Apple's	platforms.	To	stay	at	the	forefront	of	technological	innovations,
it's	time	to	prepare	yourself	for	this	new	way	of	UI	development.	And	I	hope	this	book
will	help	you	get	started	with	SwiftUI	development	and	build	some	amazing	UIs.

Simon	Ng
Founder	of	AppCoda

16Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

What	You	Will	Learn	in	This	Book
We	will	dive	deep	into	the	SwiftUI	framework,	teaching	you	how	to	work	with	various	UI
elements,	and	build	different	types	of	UIs.	After	going	through	the	basics	and
understanding	the	usage	of	common	components,	we	will	put	together	with	all	the
materials	you've	learned	and	build	a	complete	app.

As	always,	we	will	explore	SwiftUI	with	you	by	using	the	"Learn	by	doing"	approach.	This
new	book	features	a	lot	of	hands-on	exercises	and	projects.	Don't	expect	you	can	just	read
the	book	and	understand	everything.	You	need	to	get	prepared	to	write	code	and	debug.

Audience

This	book	is	written	for	both	beginners	and	developers	with	some	iOS	programming
experience.	Even	if	you	have	developed	an	iOS	app	before,	this	book	will	help	you
understand	this	brand-new	framework	and	the	new	way	to	develop	UI.	You	will	also
learn	how	to	integrate	UIKit	with	SwiftUI.

17Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

What	You	Need	to	Develop	Apps	with
SwiftUI
Having	a	Mac	is	the	basic	requirement	for	iOS	development.	To	use	SwiftUI,	you	need	to
have	a	Mac	installed	with	macOS	Catalina	(v10.15	or	up)	and	Xcode	11	(or	up).	However,
to	properly	follow	the	content	of	this	book,	you	are	required	to	have	Xcode	12	installed.

If	you	are	new	to	iOS	app	development,	Xcode	is	an	integrated	development	environment
(IDE)	provided	by	Apple.	Xcode	provides	everything	you	need	to	kick	start	your	app
development.	It	already	bundles	the	latest	version	of	the	iOS	SDK	(short	for	Software
Development	Kit),	a	built-in	source	code	editor,	graphic	user	interface	(UI)	editor,
debugging	tools	and	much	more.	Most	importantly,	Xcode	comes	with	an	iPhone	(and
iPad)	simulator	so	you	can	test	your	app	without	the	real	devices.	With	Xcode	12,	you	can
instantly	preview	the	result	of	your	SwiftUI	code.

Installing	Xcode

To	install	Xcode	12,	go	up	to	the	Mac	App	Store	and	download	it.	Simply	search	"Xcode"
and	click	the	"Get"	button	to	download	it.	At	the	time	of	this	writing,	the	latest	official
version	of	Xcode	is	12.0.	Once	you	complete	the	installation	process,	you	will	find	Xcode
in	the	Launchpad.

18Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

19Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Frequestly	Asked	Questions	about	SwiftUI

I	got	quite	a	lot	of	questions	from	new	comers	when	the	SwiftUI	framework	was	first
announced.	These	questions	are	some	of	the	common	ones	that	I	want	to	share	with	you.
And	I	hope	the	answers	will	give	you	a	better	idea	about	SwiftUI.

1.	 Do	I	need	to	learn	Swift	before	learning	SwiftUI?

Yes,	you	still	need	to	know	the	Swift	programming	language	before	using	SwiftUI.
SwiftUI	is	just	a	UI	framework	written	in	Swift.	Here,	the	keyword	is	UI,	meaning
that	the	framework	is	designed	for	building	user	interfaces.	However,	for	a	complete
application,	other	than	UI,	there	are	many	other	components	such	as	network
components	for	connecting	to	remote	server,	data	components	for	loading	data	from
internal	database,	business	logic	component	for	handling	the	flow	of	data,	etc.	All
these	components	are	not	built	using	SwiftUI.	So,	you	should	be	knowledgeable
about	Swift	and	SwiftUI,	as	well	as,	other	built-in	frameworks	(e.g.	Map)	in	order	to
build	an	app.

2.	 Should	I	learn	SwiftUI	or	UIKit?

The	short	answer	is	Both.	That	said,	it	all	depends	on	your	goals.	If	you	target	to
become	a	professional	iOS	developer	and	apply	for	a	job	in	iOS	development,	you
better	equip	yourself	with	knowledge	of	SwiftUI	and	UIKit.	Over	99%	of	the	apps
published	on	the	App	Store	were	built	using	UIKit.	To	be	considered	for	hire,	you
should	be	very	knowledgeable	with	UIKit	because	most	companies	are	still	using	the
framework	to	build	the	app	UI.	However,	like	any	technological	advancement,
companies	will	gradually	adopt	SwiftUI	in	new	projects.	This	is	why	you	need	to
learn	both	to	increase	your	employment	opportunities.

On	the	other	hand,	if	you	just	want	to	develop	an	app	for	your	personal	or	side
project,	you	can	develop	it	entirely	using	SwiftUI.	However,	since	SwiftUI	is	very
new,	it	doesn't	cover	all	the	UI	components	that	you	can	find	in	UIKit.	In	some
cases,	you	may	also	need	to	integrate	UIKit	with	SwiftUI.

3.	 Do	I	need	to	learn	auto	layout?

20Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

This	may	be	a	good	news	to	some	of	you.	Many	beginners	find	it	hard	to	work	with
auto	layout.	With	SwiftUI,	you	no	longer	need	to	define	layout	constraints.	Instead,
you	use	stacks,	spacers,	and	padding	to	arrange	the	layout.

21Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Chapter	1
Introduction	to	SwiftUI
In	WWDC	2019,	Apple	surprised	every	developer	by	announcing	a	completely	new
framework	called	SwiftUI.	It	doesn't	just	change	the	way	you	develop	iOS	apps.	This	is
the	biggest	shift	in	the	Apple	developer's	ecosystem	(including	iPadOS,	macOS,	tvOS,	and
watchOS)	since	the	debut	of	Swift.

SwiftUI	is	an	innovative,	exceptionally	simple	way	to	build	user	interfaces	across	all
Apple	platforms	with	the	power	of	Swift.	Build	user	interfaces	for	any	Apple	device
using	just	one	set	of	tools	and	APIs.

-	Apple	(https://developer.apple.com/xcode/swiftui/)

Developers	have	been	debating	for	a	long	time	whether	we	should	use	Storyboards	or
build	the	app	UI	programmatically.	The	introduction	of	SwiftUI	is	Apple's	answer.	With
this	brand	new	framework,	Apple	offers	developers	a	new	way	to	create	user	interfaces.
Take	a	look	at	the	figure	below	and	have	a	glance	at	the	code.

22Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/xcode/swiftui/

Figure	1.	Programming	in	SwiftUI

With	the	release	of	SwiftUI,	which	is	bundled	in	Xcode	11	(or	later),	you	can	now	develop
the	app's	UI	with	a	declarative	Swift	syntax.	What	that	means	to	you	is	that	the	UI	code	is
easier	and	more	natural	to	write.	Compared	with	the	existing	UI	frameworks	like	UIKit,
you	can	create	the	same	UI	with	way	less	code.

The	preview	function	has	always	been	a	weak	point	of	Xcode.	While	you	can	preview
simple	layouts	in	Interface	Builder,	you	usually	can't	preview	the	complete	UI	until	the
app	is	loaded	onto	the	simulators.	With	SwiftUI,	you	get	immediate	feedback	of	the	UI
you	are	coding.	For	example,	you	add	a	new	record	to	a	table,	Xcode	renders	the	UI
change	on	the	fly	in	a	preview	canvas.	If	you	want	to	preview	how	your	UI	looks	in	dark
mode,	you	just	need	to	change	an	option.	This	instant	preview	feature	simply	makes	UI
development	a	breeze	and	iteration	much	faster.

Not	only	does	it	allow	you	to	preview	the	UI,	the	new	canvas	also	lets	you	design	the	user
interface	visually	using	drag	and	drop.	What's	great	is	that	Xcode	automatically	generates
the	SwiftUI	code	as	you	add	the	UI	component	visually.	The	code	and	the	UI	are	always

23Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

in	sync.	This	is	a	feature	Apple	developers	anticipated	for	a	long	time.

In	this	book,	you	will	dive	deep	into	SwiftUI,	learn	how	to	layout	the	built-in
components,	and	create	complex	UIs	with	the	framework.	I	know	some	of	you	may
already	have	experience	in	iOS	development.	Let	me	first	walk	you	through	the	major
differences	between	the	existing	framework	that	you're	using	(e.g.	UIKit)	and	SwiftUI.	If
you	are	completely	new	to	iOS	development	or	even	have	no	programming	experience,
you	can	use	the	information	as	a	reference	or	even	skip	the	following	sections.	I	don't
want	to	scare	you	away	from	learning	SwiftUI,	it	is	an	awesome	framework	for	beginners.

Declarative	vs	Imperative	Programming

Like	Java,	C++,	PHP,	and	C#,	Swift	is	an	imperative	programming	language.	SwiftUI,
however,	is	proudly	claimed	as	a	declarative	UI	framework	that	lets	developers	create	UI
in	a	declarative	way.	What	does	the	term	"declarative"	mean?	How	does	it	differ	from
imperative	programming?	Most	importantly,	how	does	this	change	affect	the	way	you
code?

If	you	are	new	to	programming,	you	probably	don't	need	to	care	about	the	difference
because	everything	is	new	to	you.	However,	if	you	have	some	experience	in	Object-
oriented	programming	or	have	developed	with	UIKit	before,	this	paradigm	shift	affects
how	you	think	about	building	user	interfaces.	You	may	need	to	unlearn	some	old
concepts	and	relearn	new	ones.

So,	what's	the	difference	between	imperative	and	declarative	programming?	If	you	go	to
Wikipedia	and	search	for	the	terms,	you	will	find	these	definitions:

In	computer	science,	imperative	programming	is	a	programming	paradigm
that	uses	statements	that	change	a	program's	state.	In	much	the	same	way	that	the
imperative	mood	in	natural	languages	expresses	commands,	an	imperative
program	consists	of	commands	for	the	computer	to	perform.

In	computer	science,	declarative	programming	is	a	programming	paradigm—a
style	of	building	the	structure	and	elements	of	computer	programs—that	expresses
the	logic	of	a	computation	without	describing	its	control	flow.

24Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

It's	pretty	hard	to	understand	the	actual	difference	if	you	haven't	studied	Computer
Science.	Let	me	explain	the	difference	this	way.

Instead	of	focusing	on	programming,	let's	talk	about	cooking	a	pizza	(or	any	dishes	you
like).	Let’s	assume	you	are	instructing	someone	else	(a	helper)	to	prepare	the	pizza,	you
can	either	do	it	imperatively	or	declaratively.	To	cook	the	pizza	imperatively,	you	tell
your	helper	each	of	the	instructions	clearly	like	a	recipe:

1.	 Heat	the	over	to	550°F	or	higher	for	at	least	30	minutes
2.	 Prepare	one-pound	of	dough
3.	 Roll	out	the	dough	to	make	a	10-inch	circle
4.	 Spoon	the	tomato	sauce	onto	the	center	of	the	pizza	and	spread	it	out	to	the	edges
5.	 Place	toppings	(including	onions,	sliced	mushrooms,	pepperoni,	cooked	sausage,

cooked	bacon,	diced	peppers	and	cheese)	on	top	of	the	sauce
6.	 Bake	the	pizza	for	5	minutes

On	the	other	hand,	if	you	cook	it	in	a	declarative	way,	you	do	not	need	to	specify	the	step
by	step	instructions	but	just	describe	how	you	would	like	the	pizza	cooked.	Thick	or	thin
crust?	Pepperoni	and	bacon,	or	just	a	classic	Margherita	with	tomato	sauce?	10-inch	or
16-inch?	The	helper	will	figure	out	the	rest	and	cook	the	pizza	for	you.

That's	the	core	difference	between	the	term	imperative	and	declarative.	Now	back	to	UI
programming.	Imperative	UI	programming	requires	developers	to	write	detailed
instructions	to	layout	the	UI	and	control	its	states.	Conversely,	declarative	UI
programming	lets	developers	describe	what	the	UI	looks	like	and	what	you	want	to
respond	when	a	state	changes.

The	declarative	way	of	coding	would	make	the	code	much	easier	to	read	and	understand.
Most	importantly,	the	SwiftUI	framework	allows	you	to	write	way	less	code	to	create	a
user	interface.	Say,	for	example,	you	are	going	to	build	a	heart	button	in	an	app.	This
button	should	be	positioned	at	the	center	of	the	screen	and	is	able	to	detect	touches.	If	a
user	taps	the	heart	button,	its	color	is	changed	from	red	to	yellow.	When	a	user	taps	and
holds	the	heart,	it	scales	up	with	an	animation.

25Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	The	implementation	of	an	interactive	heart	button

Take	a	look	at	figure	2.	That's	the	code	you	need	to	implement	the	heart	button.	In
around	20	lines	of	code,	you	create	an	interactive	button	with	a	scale	animation.	This	is
the	power	of	the	SwiftUI	declarative	UI	framework.

No	more	Interface	Builder	and	Auto	Layout

In	Xcode	11/12,	you	can	choose	between	SwiftUI	and	Storyboard	to	build	the	user
interface.	If	you	have	built	an	app	before,	you	may	use	Interface	Builder	to	layout	the	UI
on	the	storyboard.	With	SwiftUI,	Interface	Builder	and	storyboards	are	completely	gone.
It's	replaced	by	a	code	editor	and	a	preview	canvas	like	the	one	shown	in	figure	2.	You
write	the	code	in	the	code	editor.	Xcode	then	renders	the	user	interface	in	real	time	and
displays	it	in	the	canvas.

26Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	User	interface	option	in	Xcode

Auto	layout	has	always	been	one	of	the	hard	topics	when	learning	iOS	development.	With
SwiftUI,	you	no	longer	need	to	learn	how	to	define	layout	constraints	and	resolve	the
conflicts.	Now	you	compose	the	desired	UI	by	using	stacks,	spacers,	and	padding.	We	will
discuss	this	concept	in	detail	in	later	chapters.

The	Combine	Approach

Other	than	storyboards,	the	view	controller	is	gone	too.	For	new	comers,	you	can	ignore
what	a	view	controller	is.	But	if	you	are	an	experienced	developer,	you	may	find	it	strange
that	SwiftUI	doesn't	use	a	view	controller	as	a	central	building	block	for	talking	to	the
view	and	the	model.

27Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Communications	and	data	sharing	between	views	are	now	done	via	another	brand	new
framework	called	Combine.	This	new	approach	completely	replaces	the	role	of	the	view
controller	in	UIKit.	In	this	book,	we	will	also	cover	the	basics	of	Combine	and	how	to	use
it	to	handle	UI	events.

Learn	Once,	Apply	Anywhere

While	this	book	focuses	on	building	UIs	for	iOS,	everything	you	learn	here	is	applicable
to	other	Apple	platforms	such	as	watchOS.	Prior	to	the	launch	of	SwiftUI,	you	used
platform-specific	UI	frameworks	to	develop	the	user	interface.	You	used	AppKit	to	write
UIs	for	macOS	apps.	To	develop	tvOS	apps,	you	relied	on	TVUIKit.	And,	for	watchOS
apps,	you	used	WatchKit.

With	SwiftUI,	Apple	offers	developers	a	unified	UI	framework	for	building	user	interfaces
on	all	types	of	Apple	devices.	The	UI	code	written	for	iOS	can	be	easily	ported	to	your
watchOS/macOS/watchOS	app	without	modifications	or	with	very	minimal
modifications.	This	is	made	possible	thanks	to	the	declarative	UI	framework.

Your	code	describes	how	the	user	interface	looks.	Depending	on	the	platform,	the	same
piece	of	code	in	SwiftUI	can	result	in	different	UI	controls.	For	example,	the	code	below
declares	a	toggle	switch:

Toggle(isOn:	$isOn)	{

				Text("Wifi")

								.font(.system(.title))

								.bold()

}.padding()

For	iOS	and	iPadOS,	the	toggle	is	rendered	as	a	switch.	On	the	other	hand,	SwiftUI
renders	the	control	as	a	checkbox	for	macOS.

28Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Toggle	on	macOS	and	iOS

The	beauty	of	this	unified	framework	is	that	you	can	reuse	most	of	the	code	on	all	Apple
platforms	without	making	any	changes.	SwiftUI	does	the	heavy	lifting	to	render	the
corresponding	controls	and	layout.

However,	don't	consider	SwiftUI	as	a	"Write	once,	run	anywhere"	solution.	As	Apple
stressed	in	a	WWDC	talk,	that's	not	the	goal	of	SwiftUI.	So,	don't	expect	you	can	turn	a
beautiful	app	for	iOS	into	a	tvOS	app	without	any	modifications.

There	are	definitely	going	to	be	opportunities	to	share	code	along	the	way,	just
where	it	makes	sense.	And	so	we	think	it's	kind	of	important	to	think	about	SwiftUI
less	as	write	once	and	run	anywhere	and	more	like	learn	once	and	apply	anywhere.

-	WWDC	Talk	(SwiftUI	On	All	Devices)

While	the	UI	code	is	portable	across	Apple	platforms,	you	still	need	to	provide
specialization	that	targets	for	a	particular	type	of	device.	You	should	always	review	each
edition	of	your	app	to	make	sure	the	design	is	right	for	the	platform.	That	said,	SwiftUI
already	saves	you	a	lot	of	time	from	learning	another	platform-specific	framework,	plus
you	should	be	able	to	reuse	most	of	the	code.

Interfacing	with	UIKit/AppKit/WatchKit

Can	I	use	SwiftUI	on	my	existing	projects?	I	don't	want	to	rewrite	the	entire	app	which
was	built	on	UIKit.

29Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

SwiftUI	is	designed	to	work	with	the	existing	frameworks	like	UIKit	for	iOS	and	AppKit
for	macOS.	Apple	provides	several	representable	protocols	for	you	to	adopt	in	order	to
wrap	a	view	or	controller	into	SwiftUI.

Figure	5.	The	Representable	protocols	for	existing	UI	frameworks

Say,	you	have	a	custom	view	developed	using	UIKit,	you	can	adopt	the
	UIViewRepresentable		protocol	for	that	view	and	make	it	into	SwiftUI.	Figure	6	shows	the
sample	code	of	using		WKWebView		in	SwiftUI.

30Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	Porting	MKMapView	to	SwiftUI

Use	SwiftUI	for	Your	Next	Project

Every	time	when	a	new	framework	is	released,	people	usually	ask,	"Is	the	framework
ready	for	my	next	project?	Should	I	wait	a	little	bit	longer?"

Though	SwiftUI	is	still	new	to	most	developers,	Now	is	the	right	time	to	learn	and
incorporate	the	framework	into	your	new	project.	Along	with	the	release	of	Xcode	12,
Apple	has	made	the	SwiftUI	framework	more	stable	and	feature-rich.	If	you	have	some
personal	projects	or	side	projects	for	personal	use	or	at	work,	there	is	no	reason	why	you
shouldn't	try	out	SwiftUI.

Having	said	that,	you	need	to	consider	carefully	whether	you	should	apply	SwiftUI	to
your	commercial	projects.	One	major	drawback	of	SwiftUI	is	that	the	device	must	run	at
a	minimum	on	iOS	13,	macOS	10.15,	tvOS	13,	or	watchOS	6.	If	your	app	requires	support
for	lower	versions	of	the	platform	(e.g.	iOS	12),	you	may	need	to	wait	at	least	a	year
before	adopting	SwiftUI.

31Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

At	the	time	of	this	writing,	SwiftUI	has	been	officially	released	for	more	than	a	year.	The
debut	of	Xcode	12	has	brought	us	more	UI	controls	and	new	APIs	for	SwiftUI.	In	terms	of
features,	you	can't	compare	it	with	the	existing	UI	frameworks	(e.g.	UIKit),	which	has
been	available	for	years.	Some	features	(e.g.	changing	the	separator	style	in	table	views)
which	are	present	in	the	old	framework	may	not	be	available	in	SwiftUI.	You	may	need	to
develop	some	solutions	to	work	around	the	issue.	This	is	something	you	have	to	take	into
account	when	adopting	SwiftUI	in	production	projects.

SwiftUI	is	very	new.	It	will	take	time	to	grow	into	a	mature	framework,	but	what's	clear	is
that	SwiftUI	is	the	future	of	application	development	for	Apple	platforms.	Even	though	it
may	not	yet	be	applicable	to	your	production	projects,	I	recommended	you	start	a	side
project	and	explore	the	framework.	Once	you	try	out	SwiftUI	and	master	its	use,	you	will
enjoy	developing	UIs	in	a	declarative	way.

32Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Chapter	2
Getting	Started	with	SwiftUI	and
Working	with	Text
If	you've	worked	with	UIKit	before,	the		Text		control	in	SwiftUI	is	very	similar	to
	UILabel		in	UIKit.	It's	a	view	for	you	to	display	one	or	multiple	lines	of	text.	This		Text	
control	is	non-editable	but	is	useful	for	presenting	read-only	information	on	screen.	For
example,	you	want	to	present	an	on-screen	message,	you	can	use		Text		to	implement	it.

In	this	chapter,	I'll	show	you	how	to	work	with		Text		to	present	information.	You'll	also
learn	how	to	customize	the	text	with	different	colors,	fonts,	backgrounds	and	apply
rotation	effects.

Creating	a	New	Project	for	Playing	with	SwiftUI

First,	fire	up	Xcode	12	and	create	a	new	project	using	the	App	template	under	the	iOS
category.	Apple	has	revamped	some	of	the	project	templates.	If	you	have	used	the	older
version	of	Xcode	before,	the	Single	Application	template	is	now	replaced	with	the	App
template.

Choose	Next	to	proceed	to	the	next	screen	and	type	the	name	of	the	project.	I	set	it	to
SwiftUIText	but	you're	free	to	use	any	other	name.	For	the	organization	name,	you	can
set	it	to	your	company	or	organization.	The	organization	identifier	is	a	unique	identifier
of	your	app.	Here	I	use	com.appcoda	but	you	should	set	it	to	your	own	value.	If	you	have
a	website,	set	it	to	your	domain	in	reverse	domain	name	notation.

33Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Creating	a	new	project

To	use	SwiftUI,	you	have	to	choose	SwiftUI	in	the	User	Interface	option.	Xcode	12
introduces	the	Life	Cycle	option	that	you	can	choose	between	SwiftUI	App	and	UIKit	App
Delegate.	By	default,	it's	set	to	SwiftUI	App.	This	allows	you	to	build	the	entire	app	using
SwiftUI,	which	was	not	possible	in	Xcode	11.	For	this	book,	we	will	use	this	option	for	our
demo	apps.	However,	in	case	that	your	app	needs	to	support	iOS	13,	you	can	fallback	to
the	UIKit	App	Delegate.

Click	Next	and	choose	a	folder	to	create	the	project.	Once	you	save	the	project,	Xcode
should	load	the		ContentView.swift		file	and	display	a	design/preview	canvas.	If	you	can't
see	the	design	canvas,	you	can	go	up	to	the	Xcode	menu	and	choose	Editor	>	Canvas	to
enable	it.	To	give	yourself	more	space	for	writing	code,	you	can	hide	both	the	project
navigator	and	the	inspector	(see	figure	2).

34Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

By	default,	Xcode	generates	some	SwiftUI	code	for		ContentView.swift	.	However,	the
preview	canvas	doesn't	render	the	app	preview.	You	have	to	click	the	Resume	button	in
order	to	see	the	preview.	After	you	click	the	button,	Xcode	renders	the	preview	in	a
simulator	that	you	choose	in	the	simulator	selection	(e.g.	iPhone	11	Pro).

Figure	2.	The	code	editor	and	the	canvas

Displaying	Simple	Text

The	sample	code	generated	in		ContentView		already	shows	you	how	to	display	a	single	line
of	text.	You	initialize	a		Text		object	and	pass	to	it	the	text	(e.g.	Hello	World)	to	display
like	this:

Text("Hello	World")

35Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	preview	canvas	should	display	Hello	World	on	screen.	This	is	the	basic	syntax	for
creating	a	text	view.	You're	free	to	change	the	text	to	whatever	value	you	want	and	the
canvas	should	show	you	the	change	instantaneously.

Figure	3.	Changing	the	text

Changing	the	Font	Type	and	Color

In	SwiftUI,	you	can	change	the	properties	(e.g.	color,	font,	weight)	of	a	control	by	calling
methods	that	are	known	as	Modifiers.	Let's	say,	you	want	to	bold	the	text.	You	can	use
the	modifier		fontWeight		and	specify	your	preferred	font	weight	(e.g.		.bold)	like	this:

Text("Stay	Hungry.	Stay	Foolish.").fontWeight(.bold)

You	access	the	modifier	by	using	the	dot	syntax.	Whenever	you	type	a	dot,	Xcode	will
show	you	the	possible	modifiers	or	values	you	can	use.	For	example,	you	will	see	various
font	weight	options	when	you	type	a	dot	in	the		fontWeight		modifier.	You	can	choose
	bold		to	bold	the	text.	If	you	want	to	make	it	even	bolder,	use		heavy		or		black	.

36Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Choosing	your	preferred	font	weight

By	calling		fontWeight		with	the	value		.bold	,	it	actually	returns	to	you	a	new	view	that	has
the	bolded	text.	What	is	interesting	in	SwiftUI	is	that	you	can	further	chain	this	new	view
with	other	modifiers.	Say,	you	want	to	make	the	bolded	text	a	little	bit	bigger,	you	write
the	code	like	this:

Text("Stay	Hungry.	Stay	Foolish.").fontWeight(.bold).font(.title)

Since	we	may	chain	multiple	modifiers	together,	we	usually	write	the	code	above	in	the
following	format:

Text("Stay	Hungry.	Stay	Foolish.")

				.fontWeight(.bold)

				.font(.title)

The	functionality	is	the	same	but	I	believe	you'll	find	the	code	above	more	easy	to	read.
We	will	continue	to	use	this	coding	convention	for	the	rest	of	this	book.

The		font		modifier	lets	you	change	the	font	properties.	In	the	code	above,	we	specify	the
title	font	type	in	order	to	enlarge	the	text.	SwiftUI	comes	with	several	built-in	text	styles
including	title,	largeTitle,	body,	etc.	If	you	want	to	further	increase	the	font	size,	replace

37Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

	.title		with		.largeTitle	.

Note:	You	can	always	to	refer	the	documentation
(https://developer.apple.com/documentation/swiftui/font)	to	find	out	all	the	supported
values	of	the		font		modifier.

Figure	5.	Changing	the	font	type

You	can	also	use	the		font		modifier	to	specify	the	font	design.	Let's	say,	you	want	the
font	to	be	rounded.	You	can	write	the		font		modifier	like	this:

.font(.system(.title,	design:	.rounded))

Here	you	specify	to	use	the	system	font	with		title		text	style	and		rounded		design.	The
preview	canvas	should	immediately	respond	to	the	change	and	show	you	the	rounded
text.

38Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/swiftui/font

Figure	6.	Using	the	rounded	font	design

Dynamic	Type	is	a	feature	of	iOS	that	automatically	adjusts	the	font	size	in	reference	to
the	user's	setting	(Settings	>	Display	&	Brightness	>	Text	Size).	In	other	words,	when	you
use	text	styles	(e.g.		.title),	the	font	size	will	be	varied	and	your	app	will	scale	the	text
automatically,	depending	on	the	user's	preference.

To	use	a	fixed-size	font,	write	the	code	like	this:

.font(.system(size:	20))

This	tells	the	system	to	use	a	fixed	font	size	of	20	points.

You	can	chain	other	modifiers	to	further	customize	the	text.	Let's	change	the	font	color.
To	do	that,	you	use	the		foregroundColor		modifier	like	this:

.foregroundColor(.green)

The		foregroundColor		modifier	accepts	a	value	of		Color	.	Here	we	specify		.green	,	which
is	a	built-in	color.	You	may	use	other	built-in	values	like		.red	,		.purple	,	etc.

39Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Changing	the	font	color

While	I	prefer	to	customize	the	properties	of	a	control	using	code,	you	can	also	use	the
design	canvas	to	edit	them.	Hold	the	command	key	and	click	the	text	to	bring	up	a	pop-
over	menu.	Choose	Show	SwiftUI	Inspector	and	then	you	can	edit	the	text/font
properties.	What	is	great	is	that	the	code	will	update	automatically	when	you	make
changes	to	the	font	properties.

40Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Using	the	Inspect	feature	to	edit	the	properties	of	the	text

Using	Custom	Fonts

By	default,	all	text	is	displayed	using	the	system	font.	If	you	want	to	use	other	fonts,	you
can	replace	the	following	line	of	code:

.font(.system(size:	20))

With:

.font(.custom("Helvetica	Neue",	size:	25))

Instead	of	using		.system	,	the	code	above	uses		.custom		and	specifies	the	preferred	font
name.	Font	names	can	be	found	in	the	application	"Font	Book".	You	can	open	Finder	>
Application	and	click	Font	Book	to	launch	the	app.

41Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Font	Book

Working	with	Multiline	Text

	Text		supports	multiple	lines	by	default,	so	it	can	display	a	paragraph	of	text	without
using	any	additional	modifiers.	Replace	your	current	code	with	the	following:

Text("Your	time	is	limited,	so	don’t	waste	it	living	someone	else’s	life.	Don’t	be

	trapped	by	dogma—which	is	living	with	the	results	of	other	people’s	thinking.	Don

’t	let	the	noise	of	others’	opinions	drown	out	your	own	inner	voice.	And	most	impo

rtant,	have	the	courage	to	follow	your	heart	and	intuition.")

				.fontWeight(.bold)

				.font(.title)

				.foregroundColor(.gray)

You're	free	to	replace	the	paragraph	of	text	with	your	own	text.	Just	make	sure	it's	long
enough.	Once	you	have	made	the	change,	the	design	canvas	will	render	a	multiline	text
label.

42Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	Display	multiline	text

To	center	align	the	text,	insert	the		multilineTextAlignment		modifier	after	the		.foreground	
modifier	and	set	its	value	to		.center		like	this:

.multilineTextAlignment(.center)

In	some	cases,	you	may	want	to	limit	the	number	of	lines	to	a	certain	number.	You	use
the		lineLimit		modifier	to	control	it.	Here	is	an	example:

.lineLimit(3)

Another	modifier,		truncationMode		specifies	where	to	truncate	the	text	within	the	text
view.	You	can	truncate	at	the	beginning,	middle,	or	end	of	the	text	view.	By	default,	the
system	is	set	to	use	tail	truncation.	To	modify	the	truncation	mode	of	the	text,	you	use	the
	truncationMode		modifier	and	set	its	value	to		.head		or		.middle		like	this:

.truncationMode(.head)

After	the	change,	your	text	should	look	like	the	figure	below.

43Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	Using	the	.head	truncation	mode

Earlier,	I	mentioned	that	the		Text		control	displays	multiple	lines	by	default.	The	reason
is	that	the	SwiftUI	framework	has	set	a	default	value	of		nil		for	the		lineLimit		modifier.
You	can	change	the	value	of		.lineLimit		to		nil		and	see	the	result:

.lineLimit(nil)

Setting	the	Padding	and	Line	Spacing

Normally	the	default	line	spacing	is	good	enough	for	most	situations.	To	alter	the	default
setting,	you	adjust	the	line	spacing	by	using	the		lineSpacing		modifier.

.lineSpacing(10)

As	you	see,	the	text	is	too	close	to	the	left	and	right	side	of	the	edges.	To	give	it	some
more	space,	you	can	use	the		padding		modifier,	which	adds	some	extra	space	to	each	side
of	the	text.	Insert	the	following	line	of	code	after	the		lineSpacing		modifier:

.padding()

Your	design	canvas	should	now	look	like	this:

44Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Setting	the	padding	and	line	spacing	of	the	text

Rotating	the	Text

The	SwiftUI	framework	provides	a	modifier	to	let	you	easily	rotate	the	text.	You	use	the
	rotateEffect		modifier	and	pass	the	degree	of	rotation	like	this:

.rotationEffect(.degrees(45))

If	you	insert	the	above	line	of	code	after		padding()	,	you	will	see	the	text	is	rotated	by	45
degrees.

45Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	Rotate	the	text

By	default,	the	rotation	happens	around	the	center	of	the	text	view.	If	you	want	to	rotate
the	text	around	a	specific	point	(say,	the	top-left	corner),	you	write	the	code	like	this:

.rotationEffect(.degrees(20),	anchor:	UnitPoint(x:	0,	y:	0))

We	pass	an	extra	parameter		anchor		to	specify	the	point	of	the	rotation.

46Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	Rotate	the	text	around	the	top-left	of	the	text	view

Not	only	can	you	rotate	the	text	in	2D,	SwiftUI	provides	a	modifier	called
	rotation3DEffect		that	allows	you	to	create	some	amazing	3D	effects.	The	modifier	takes
two	parameters:	rotation	angle	and	the	axis	of	the	rotation.	Say,	you	want	to	create	a
perspective	text	effect,	you	write	the	code	like	this:

.rotation3DEffect(.degrees(60),	axis:	(x:	1,	y:	0,	z:	0))

With	just	a	line	of	code,	you	have	created	the	Star	Wars	perspective	text!

47Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	15.	Create	amazing	text	effect	by	using	3D	rotation

You	can	further	insert	the	following	line	of	code	to	create	a	drop	shadow	effect	for	the
perspective	text:

.shadow(color:	.gray,	radius:	2,	x:	0,	y:	15)

The		shadow		modifier	will	apply	the	shadow	effect	to	the	text.	All	you	need	to	do	is	specify
the	color	and	radius	of	the	shadow.	Optionally,	you	can	tell	the	system	the	position	of	the
shadow	by	specifying	the		x		and		y		values.

48Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	16.	Applying	the	drop	shadow	effect

Summary

Do	you	enjoy	creating	user	interfaces	with	SwiftUI?	I	hope	so.	The	declarative	syntax	of
SwiftUI	makes	the	code	more	readable	and	easier	to	understand.	As	you	have
experienced,	it	only	takes	a	few	lines	of	code	in	SwiftUI	to	create	fancy	text	in	3D	style.

For	reference,	you	can	download	the	complete	text	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIText.zip)

49Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIText.zip

Chapter	3
Working	with	Images	and	Labels
Now	that	you	have	a	basic	introduction	to	SwiftUI	and	understand	how	to	display	textual
content,	let's	learn	how	to	display	images	in	this	chapter.	We	will	also	explore	the	usage
of		Label	,	a	new	UI	component	introduced	in	iOS	14.

In	addition	to	text,	images	are	another	basic	element	that	you'll	use	in	iOS	app
development.	SwiftUI	provides	a	view	called		Image		for	developers	to	render	and	draw
images	on	screen.	Similar	to	what	we've	done	in	the	previous	chapter,	I'll	show	you	how
to	work	with		Image		by	building	a	simple	demo.	In	brief,	this	chapter	covers	the	following
topics:

What's	SF	Symbols	and	how	to	display	a	system	image
How	to	display	our	own	images
How	to	resize	an	image
How	to	display	a	full	screen	image	using		edgesIgnoringSafeArea	
How	to	create	a	circular	image
How	to	apply	an	overlay	to	an	image

Creating	a	New	Project	for	Playing	with	Images

First,	fire	up	Xcode	and	create	a	new	project	using	the	App	template	(under	iOS).	Enter
SwiftUIImage	as	the	name	of	the	project.	For	the	organization	name,	you	can	set	it	to
your	company	or	organization.	Again,	here	I	use	com.appcoda	but	you	should	set	to	your
own	value.	To	use	SwiftUI,	please	make	sure	you	select	SwiftUI	for	the	Interface	option.
Click	Next	and	choose	a	folder	to	create	the	project.

50Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Creating	a	new	project

Once	you	save	the	project,	Xcode	should	load	the		ContentView.swift		file	and	display	a
design/preview	canvas.	If	you	can't	see	the	preview,	make	sure	you	click	the	Resume
button.

51Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Previewing	the	generated	code

Understanding	SF	Symbols

With	over	2,400	configurable	symbols,	SF	Symbols	is	designed	to	integrate
seamlessly	with	San	Francisco,	the	system	font	for	Apple	platforms.	Each	symbol
comes	in	a	wide	range	of	weights	and	scales	that	automatically	align	with	text
labels,	and	supports	Dynamic	Type	and	the	Bold	Text	accessibility	feature.	You	can
also	export	symbols	and	edit	them	in	vector	graphics	editing	tools	to	create	custom
symbols	with	shared	design	characteristics	and	accessibility	features.

Before	I	show	you	how	to	display	an	image	on	screen,	let's	first	talk	about	where	the
images	I	use	come	from.	Needless	to	say,	you	can	provide	your	own	images	for	use	in	the
app.	Starting	from	iOS	13,	Apple	introduced	a	large	set	of	system	images	called	SF

52Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Symbols	that	allow	developers	to	use	them	in	any	app.	Along	with	the	release	of	iOS	14,
Apple	further	improved	the	image	set	by	releasing	SF	Symbols	2.	It	features	over	750	new
symbols	and	adds	over	150	preconfigured,	multicolor	symbols.

These	images	are	referred	as	symbols	since	it's	integrated	with	the	built-in	San	Francisco
font.	To	use	these	symbols,	no	extra	installation	is	required.	As	long	as	your	app	is
deployed	to	a	device	running	iOS	13	(or	later),	you	can	access	these	symbols	directly.

To	use	the	symbols,	all	you	need	is	the	name	of	the	symbol.	With	over	2,400	symbols
available	for	your	use,	Apple	has	released	an	app	called	SF	Symbols
(https://developer.apple.com/sf-symbols/),	so	that	you	can	easily	explore	the	symbols
and	locate	the	one	that	fits	your	need.	I	highly	recommend	you	install	the	app	before
proceeding	to	the	next	section.

Figure	3.	SF	Symbols	App

Displaying	a	System	Image

53Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/design/downloads/SF-Symbols.dmg
https://developer.apple.com/sf-symbols/

To	display	a	system	image	(symbol)	on	screen,	you	initialize	an		Image		view	with	the
	systemName		parameter	like	this:

Image(systemName:	"cloud.heavyrain")

This	will	create	an	image	view	and	load	the	specified	system	image.	As	mentioned	before,
SF	symbols	are	seamlessly	integrated	with	the	San	Francisco	font.	You	can	easily	scale
the	image	by	applying	the		font		modifier:

Image(systemName:	"cloud.heavyrain")

				.font(.system(size:	100))

Given	that	the	image	is	part	of	a	font	family,	you	can	vary	the	font	size	using	the		size	
parameter,	as	we	did	in	the	previous	chapter.

Figure	4.	Display	a	system	image

Again,	since	this	system	image	is	actually	a	font,	you	can	apply	other	modifiers	such	as
	foregroundColor		that	you	learned	in	the	previous	chapter,	to	change	its	appearance.

For	example,	to	change	the	symbol's	color	to	blue,	you	write	the	code	like	this:

Image(systemName:	"cloud.heavyrain")

				.font(.system(size:	100))

				.foregroundColor(.blue)

54Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	add	a	drop	shadow	effect,	you	use	the		shadow		modifier:

Image(systemName:	"cloud.heavyrain")

				.font(.system(size:	100))

				.foregroundColor(.blue)

				.shadow(color:	.gray,	radius:	10,	x:	0,	y:	10)

Using	Your	Own	Images

We	just	used	the	built-in	images	provided	by	Apple.	You	will	have	your	own	images	to
use	in	your	app.	Let's	see	how	can	you	load	your	images	using	the		Image		view.

Note:	You're	free	to	use	your	own	image.	In	case	you	don't	have	an	appropriate	image
to	use,	you	can	download	this	image	(https://unsplash.com/photos/Q0-fOL2nqZc)
from	unsplash.com	to	follow	the	rest	of	the	material.	After	downloading	the	photo,
please	make	sure	you	change	the	filename	to	"paris.jpg".

Before	you	can	use	an	image	in	your	project,	the	first	step	is	to	import	the	images	into	the
asset	catalog	(Assets.xcassets).	Assuming	you	already	prepared	the	image	(paris.jpg),
press	command+0	to	reveal	the	project	navigator	and	then	choose		Assets.xcassets	.
Open	Finder	and	drag	the	image	to	the	outline	view.

55Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://unsplash.com/photos/Q0-fOL2nqZc

Figure	5.	Drag	theimage	to	the	asset	catalog

If	you're	new	to	iOS	app	development,	this	asset	catalog	is	where	you	store	application
resources	like	images,	color,	and	data.	Once	you	put	the	image	in	the	asset	catalog,	you
can	load	the	image	by	referring	to	its	name.	Additionally,	you	can	configure	on	which
device	the	image	can	be	loaded	(e.g.	iPhone	only).

To	display	the	image	on	screen,	you	write	the	code	like	this	(see	figure	6):

Image("paris")

All	you	need	to	do	is	specify	the	name	of	the	image	and	you	should	see	the	image	in	the
preview	canvas.	However,	since	the	image	is	a	high	resolution	image	(4437x6656	pixels),
you	only	see	a	part	of	the	image.

56Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	Loading	a	custom	image

Resizing	an	Image

To	resize	the	image,	the		resizable		modifier	is	used:

Image("paris")

				.resizable()

By	default,	the	image	resizes	the	image	using	the	stretch	mode.	This	means	the	original
image	will	be	scaled	to	fill	the	whole	screen	(except	the	top	and	bottom	area).

57Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Resizing	the	image	with	the	resizable	modifier

Technically	speaking,	the	image	fills	the	whole	safe	area	as	defined	by	iOS.	The	concept	of
safe	area	has	been	around	for	quite	a	long	time.	The	safe	area	is	defined	as	the	view	area
that	is	safe	to	lay	out	our	UI	component.	For	example,	as	you	can	see	from	the	figure,	the
safe	area	is	the	view	area	that	excludes	the	top	bar	(i.e.	status	bar)	and	the	bottom	bar.
The	safe	area	will	prevent	you	from	accidentally	hiding	(by	over	lapping)	system	UI
components	like	the	status	bar,	navigation	bar,	and	tab	bar.

If	you	want	to	display	a	full-screen	image,	you	can	ignore	the	safe	area	by	setting	the
	edgesIgnoringSafeArea		modifier.

58Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Ignoing	the	safe	area

You	can	also	choose	to	ignore	the	safe	area	for	a	specific	edge.	To	ignore	the	safe	area	for
the	top	edge,	you	can	specify	the	parameter		.top	.	In	our	code	example,	we	specify		.all	,
which	means	to	ignore	the	safe	area	for	all	edges.

Aspect	Fit	and	Aspect	Fill

If	you	look	into	both	images	in	the	previous	section	and	compare	it	with	the	original
image,	you	will	find	that	the	aspect	ratio	is	a	bit	distorted.	The	stretch	mode	doesn't	take
into	account	the	aspect	ratio	of	the	original	image.	It	stretches	each	side	to	fit	the	view
area.	To	keep	the	original	aspect	ratio,	you	can	apply	the	modifier		scaledToFit		like	this:

Image("paris")

				.resizable()

				.scaledToFit()

59Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Scaling	the	image	and	keep	the	original	aspect	ratio

Alternatively,	you	can	use	the		aspectRatio		modifier	and	set	the	content	mode	to		.fit	.
This	will	achieve	the	same	result.

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fit)

In	some	cases	you	may	want	to	keep	the	aspect	ratio	of	the	image	but	stretch	the	image	to
as	large	as	possible,	to	do	this,	apply	the		.fill		content	mode:

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fill)

60Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	get	a	better	understanding	of	the	difference	between	these	two	modes,	Let's	limit	the
size	of	the	image.	The		frame		modifier	allows	you	to	control	the	size	of	a	view.	By	setting
the	frame's	width	to	300	points,	the	image's	width	will	be	limited	to	300	points.

Figure	10.	Scaling	down	the	image	and	keep	the	original	aspect	ratio

Now	replace	the		Image		code	with	the	following:

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fit)

				.frame(width:	300)

The	image	will	be	scaled	down	in	size	but	the	original	aspect	ratio	is	kept.	If	you	change
the	content	mode	to		.fill	,	the	image	looks	pretty	much	the	same	as	figure	7.	However,
if	you	look	at	the	image	carefully,	the	aspect	ratio	of	the	orignial	image	is	maintained.

61Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	Using	.fill	content	mode

One	thing	you	may	notice	is	that	the	image's	width	still	takes	up	the	whole	screen	width.
To	make	it	scale	correctly,	you	use	the		clipped		modifier	to	eliminate	extra	parts	of	the
view	(the	left	and	right	edges).

62Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Use	.clipped	to	clip	the	view

Creating	a	Circular	Image

In	addition	to	clipping	the	image	in	rectangle	shape,	SwiftUI	provides	other	modifiers	for
you	to	clip	the	image	into	various	shapes	(circle,	elliose,	and	capsule).	For	example,	if	you
want	to	create	a	circular	image,	you	use	the		clipShape		modifier	like	this:

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fill)

				.frame(width:	300)

				.clipShape(Circle())

Here	we	specify	to	clip	the	image	into	a	circular	shape.	You	can	pass	different	parameters
to	create	an	image	with	a	different	shape.	Figure	13	shows	you	some	examples.

63Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	Use	the	.clipShape	modifier	to	create	image	with	different	shape

Adjusting	the	Opacity

SwiftUI	comes	with	a	modifier	named		opacity		that	you	can	use	to	control	the	opacity	of
an	image	(or	any	view).	You	pass	a	value	between	0	and	1	to	indicate	the	opacity	of	the
image.	Zero	means	that	the	view	is	completely	invisible.	A	value	of	1	indicates	the	image
is	fully	opaque.

For	example,	if	you	apply	the		opacity		modifier	to	the	image	view	and	set	its	value	to	0.5,
the	image	will	become	partially	transparent.

64Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	Adjusting	the	opacity	to	50%

Applying	an	Overlay	to	an	Image

When	designing	your	app,	you	may	need	to	layer	another	image	or	text	on	top	of	an
image	view.	The	SwiftUI	framework	provides	a	modifier	named		overlay		for	developers
to	apply	an	overlay	to	an	image.	Let's	say,	you	want	to	overlay	a	system	image	(i.e.
heart.fill)	on	top	of	the	existing	image.	You	write	the	code	like	this:

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fill)

				.frame(width:	300)

				.clipShape(Circle())

				.overlay(

								Image(systemName:	"heart.fill")

												.font(.system(size:	50))

												.foregroundColor(.black)

												.opacity(0.5)

)

The		.overlay		modifier	takes	in	a		View		as	parameter.	In	the	code	above,	we	create
another	image	(i.e.	heart.fill)	and	lay	it	over	the	existing	image	(i.e.	Paris).

65Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	15.	Applying	an	overlay	to	the	existing	image

In	fact,	you	can	apply	any	view	as	an	overlay.	For	example,	you	can	overlay	a		Text		view
on	the	image,	like	this:

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fit)

				.overlay(

								Text("If	you	are	lucky	enough	to	have	lived	in	Paris	as	a	young	man,	then	

wherever	you	go	for	the	rest	of	your	life	it	stays	with	you,	for	Paris	is	a	moveab

le	feast.\n\n-	Ernest	Hemingway")

												.fontWeight(.heavy)

												.font(.system(.headline,	design:	.rounded))

												.foregroundColor(.white)

												.padding()

												.background(Color.black)

												.cornerRadius(10)

												.opacity(0.8)

												.padding(),

								alignment:	.top

)

66Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	the		overlay		modifier,	you	create	a		Text		view	and	this	text	view	will	be	applied	as	an
overlay	to	the	image.	You	should	be	familiar	with	the	modifiers	of	the		Text		view	as	we
have	discussed	in	the	previous	chapter.	To	change	the	text,	we	simply	change	the	font
and	its	color.	Aadditionly	we	can	add	some	padding	and	apply	a	background	color.	One
thing	I'd	like	to	highlight	is	the		alignment		parameter.	For	the		overlay		modifier,	you	can
provide	an	optional	value	to	adjust	the	alignment	of	the	view.	By	default,	it's	set	to	center.
In	this	case,	we	want	to	position	the	text	overlay	to	the	top	part	of	the	image.	Change	the
value	from		.center		to		.top		to	see	how	it	works.

Figure	16.	Applying	an	overlay	to	the	existing	image

Darken	an	Image	Using	Overlay

Not	only	can	you	overlay	an	image	or	text	on	another	image,	you	can	apply	an	overlay	to
darken	an	image.	Replace	the		Image		code	with	the	following	to	see	the	effect:

67Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fit)

				.overlay(

								Rectangle()

												.foregroundColor(.black)

												.opacity(0.4)

)

We	draw	a		Rectangle		over	the	image	and	set	its	foreground	color	to	black.	In	order	to
apply	a	darkening	effect,	we	set	the	opacity	to	0.4,	giving	it	a	40%	opacity.	The	image
should	now	be	darkened.

Alternatively,	you	may	rewrite	the	code	like	this	to	achieve	the	same	effect:

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fit)

				.overlay(

								Color.black

												.opacity(0.4)

)

In	SwiftUI,		Color		is	also	a	view.	This	is	why	we	can	use		Color.black		as	the	top	layer	to
darken	the	image	underneath.

This	technique	is	very	useful	if	you	want	to	over	lay	some	light-colored	text	on	a	bright
image	to	make	the	text	more	legible.	Replace	the		Image		code	like	this:

68Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Image("paris")

				.resizable()

				.aspectRatio(contentMode:	.fit)

				.frame(width:	300)

				.overlay(

								Color.black

												.opacity(0.4)

												.overlay(

																Text("Paris")

																				.font(.largeTitle)

																				.fontWeight(.black)

																				.foregroundColor(.white)

																				.frame(width:	200)

)

)

As	mentioned	before,	the		overlay		modifier	is	not	limited	to		Image	.	You	can	apply	it	to
any	other	view.	In	the	code	above,	we	use		Color.black		to	darken	the	image.	On	top	of
that,	we	apply	an	overlay	and	place	a		Text		over	it.	If	you've	made	the	change	correctly,
you	should	see	the	word	"Paris"	in	bold	white,	placed	over	the	darkened	image.

69Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	17.	Darken	an	image	and	apply	a	text	overlay

Wrap	Up

In	this	chapter,	I	showed	you	how	to	work	with	images.	SwiftUI	has	made	it	very	easy	for
developers	to	display	images	and	use	different	modifiers	to	apply	various	image	effects.	If
you're	an	indie	developer,	the	newly	introduced	SF	Symbols	will	save	you	a	lot	of	time

70Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

from	searching	third-party	icons!

For	reference,	you	can	download	the	complete	images	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIImage.zip)

71Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIImage.zip

Chapter	4
Layout	User	Interface	with	Stacks
Stacks	in	SwiftUI	is	similar	to	the	stack	views	in	UIKit.	By	combining	views	in	horizontal
and	vertical	stacks,	you	can	construct	complex	user	interfaces	for	your	apps.	For	UIKit,
it's	inevitable	to	use	auto	layout	in	order	to	build	interfaces	that	fit	all	screen	sizes.	To
some	beginners,	auto	layout	is	a	complicated	subject	and	hard	to	learn.	The	good	news	is
that	you	no	longer	need	to	use	auto	layout	in	SwiftUI.	Everything	is	stacks	including
VStack,	HStack,	and	ZStack.

In	this	chapter,	I	will	walk	you	through	all	types	of	stacks	and	build	a	grid	layout	using
stacks.	So,	what	project	will	you	work	on?	Take	a	look	at	the	figure	below.	We'll	lay	out	a
simple	grid	interfaces	step	by	step.	After	going	over	this	chapter,	you	will	be	able	to
combine	views	with	stacks	and	build	the	UI	you	want.

72Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	The	demo	app

Understanding	VStack,	HStack,	and	ZStack

SwiftUI	provides	three	different	types	of	stacks	for	developers	to	combine	views	in
various	orientations.	Depending	on	how	you're	going	to	arrange	the	views,	you	can	either
use:

HStack	-	arranges	the	views	horizontally
VStack	-	arranges	the	views	vertically
ZStack	-	overlays	one	view	on	top	of	another

The	figure	below	shows	you	how	these	stacks	can	be	used	to	organize	views.

73Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Different	types	of	stack	view

Creating	a	New	Project	with	SwiftUI	enabled

First,	fire	up	Xcode	and	create	a	new	project	using	the	App	template	under	the	iOS	tab.
In	the	next	screen,	type	the	name	of	the	project.	I	set	it	to	SwiftUIStacks	but	you're	free
to	use	any	other	name.	Be	sure	to	select	the	SwiftUI	option	for	Interface.

74Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	Creating	a	new	project

Once	you	save	the	project,	Xcode	will	load	the		ContentView.swift		file	and	display	a
preview	in	the	design	canvas.	If	the	preview	is	not	displayed,	click	the	Resume	button	in
the	canvas.

Using	VStack

We're	going	to	build	the	UI	as	displayed	in	figure	1,	but	first,	let's	break	down	the	UI	into
small	parts.	We'll	begin	with	the	heading	as	shown	below.

75Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	The	heading

Presently,	Xcode	should	have	already	generated	the	following	code	to	display	the	"Hello
World"	label:

struct	ContentView:	View	{

				var	body:	some	View	{

								Text("Hello	World")

				}

}

To	display	the	text	as	shown	in	figure	4,	we	will	combine	two		Text		views	within	a
	VStack		like	this:

struct	ContentView:	View	{

				var	body:	some	View	{

								VStack	{

												Text("Choose")

																.font(.system(.largeTitle,	design:	.rounded))

																.fontWeight(.black)

												Text("Your	Plan")

																.font(.system(.largeTitle,	design:	.rounded))

																.fontWeight(.black)

								}

				}

}

76Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

When	you	embed	views	in	a		VStack	,	the	views	will	be	arranged	vertically	like	this:

Figure	5.	Combining	two	texts	using	VStack

By	default,	the	views	embedded	in	the	stack	are	aligned	in	center	position.	To	align	both
views	to	the	left,	you	can	specify	the		alignment		parameter	and	set	its	value	to		.leading	
like	this:

VStack(alignment:	.leading,	spacing:	2)	{

				Text("Choose")

								.font(.system(.largeTitle,	design:	.rounded))

								.fontWeight(.black)

				Text("Your	Plan")

								.font(.system(.largeTitle,	design:	.rounded))

								.fontWeight(.black)

}

Additionally,	you	can	adjust	the	space	of	the	embedded	views	by	using	the		space	
parameter.	We'll	add	the	additional	parameter		spacing:	2		to	the	VStack.	The	figure
below	shows	the	resulting	view.

77Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	Changing	the	alignment	of	VStack

Using	HStack

Next,	let's	layout	the	first	two	pricing	plans.	If	you	look	at	the	Basic	and	Pro	plans,	the
look	&	feel	of	these	two	components	are	very	similar.	Let’s	take	the	Basic	plan	as	an
example,	to	achieve	the	desired	layout,	you	can	use		VStack		to	combine	three	text	views.

78Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Layout	the	pricing	plans

Both	the	Basic	and	Pro	components	are	arranged	side	by	side.	By	using		HStack	,	you	can
lay	out	views	horizontally.	Stacks	can	be	nested	meaning	that	you	can	nest	stack	views
within	other	stack	views.	Since	the	pricing	plan	block	sits	right	below	the	heading	view,
which	is	a		VStack	,	we	will	use	another		VStack		to	embed	a	vertical	stack	(i.e.	Choose
Your	Plan)	and	a	horizontal	stack	(i.e.	the	pricing	plan	block).

79Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Using	a	VStack	to	embed	other	stack	views

Now	that	you	have	some	basic	idea	how	we're	going	to	use		VStack		and		HStack		for
implementing	the	UI,	let's	jump	right	into	the	code.

To	embed	the	existing		VStack		in	another		VStack	,	you	hold	the	command	key	and	then
click	the		VStack		keyword.	This	will	bring	up	a	context	menu	showing	all	the	available
options.	Choose	Embed	in	VStack	to	embed	the		VStack	.

80Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Embed	in	VStack

Xcode	will	then	generate	the	required	code	to	embed	the	stack.	Your	code	should	look
like	the	following:

struct	ContentView:	View	{

				var	body:	some	View	{

								VStack	{

												VStack(alignment:	.leading,	spacing:	2)	{

																Text("Choose")

																				.font(.system(.largeTitle,	design:	.rounded))

																				.fontWeight(.black)

																Text("Your	Plan")

																				.font(.system(.largeTitle,	design:	.rounded))

																				.fontWeight(.black)

												}

								}				

				}

}

Extracting	a	View

81Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Before	we	continue	to	lay	out	the	UI,	let	me	show	you	a	trick	to	better	organize	the	code.
As	you're	going	to	build	a	more	complex	UI	that	involves	several	components,	the	code
inside		ContentView		will	eventually	become	a	giant	code	block	that	is	hard	to	review	and
debug.	It's	always	a	good	practice	to	break	large	blocks	of	code	into	smaller	blocks	so	the
code	is	easier	to	read	and	maintain.

Xcode	has	a	built-in	feature	to	refactor	the	SwiftUI	code.	Hold	the	command	key	and
click	the		VStack		that	holds	the	text	views.	Select	Extract	Subview	to	extract	the	code.

Figure	10.	Extract	subview

Xcode	extracts	the	code	block	and	creates	a	default	struct	named		ExtractedView	.	Rename
	ExtractedView		to		HeaderView		to	give	it	a	more	meaningful	name	(see	the	figure	below	for
details).

82Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	Extract	subview

The	UI	is	still	the	same.	However,	look	at	the	code	block	in		ContentView	.	It's	now	much
cleaner	and	easier	to	read.

Let's	continue	to	implement	the	UI	of	the	pricing	plans.	We'll	first	create	the	UI	for	the
Basic	plan.	Update		ContentView		like	this:

83Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	body:	some	View	{

								VStack	{

												HeaderView()

												VStack	{

																Text("Basic")

																				.font(.system(.title,	design:	.rounded))

																				.fontWeight(.black)

																				.foregroundColor(.white)

																Text("$9")

																				.font(.system(size:	40,	weight:	.heavy,	design:	.rounded))

																				.foregroundColor(.white)

																Text("per	month")

																				.font(.headline)

																				.foregroundColor(.white)

												}

												.padding(40)

												.background(Color.purple)

												.cornerRadius(10)

								}

				}

}

Here	we	add	another		VStack		under		HeaderView	.	This		VStack		is	used	to	hold	three	text
views	for	showing	the	Basic	plan.	I'll	not	go	into	the	details	of		padding	,		background	,
and	cornerRadius		because	we	have	already	discussed	these	modifiers	in	earlier	chapters.

84Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	The	Basic	Plan

Next,	we're	going	to	implement	the	UI	of	the	Pro	plan.	This	Pro	plan	should	be	placed
right	next	the	Basic	plan.	In	order	to	do	that,	you	need	to	embed	the		VStack		of	the	Basic
plan	in	a		HStack	.	Hold	the	command	key	and	click	the		VStack		keyword.	Choose	Embed
in	HStack.

85Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	Embed	in	HStack

Xcode	should	insert	the	code	for		HStack		and	embed	the	selected		VStack		in	the
horizontal	stack	like	this:

86Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

HStack	{

				VStack	{

								Text("Basic")

												.font(.system(.title,	design:	.rounded))

												.fontWeight(.black)

												.foregroundColor(.white)

								Text("$9")

												.font(.system(size:	40,	weight:	.heavy,	design:	.rounded))

												.foregroundColor(.white)

								Text("per	month")

												.font(.headline)

												.foregroundColor(.white)

				}

				.padding(40)

				.background(Color.purple)

				.cornerRadius(10)

}

Now	we're	ready	to	create	the	UI	of	the	Pro	plan.	The	code	is	very	similar	to	that	of	the
Basic	plan	except	for	the	background	and	text	colors.	Insert	the	following	code	right
below		cornerRadius(10)	:

VStack	{

				Text("Pro")

								.font(.system(.title,	design:	.rounded))

								.fontWeight(.black)

				Text("$19")

								.font(.system(size:	40,	weight:	.heavy,	design:	.rounded))

				Text("per	month")

								.font(.headline)

								.foregroundColor(.gray)

}

.padding(40)

.background(Color(red:	240/255,	green:	240/255,	blue:	240/255))

.cornerRadius(10)

As	soon	as	you	insert	the	code,	you	should	see	the	layout	below	in	the	canvas.

87Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	Using	HStack	to	layout	two	views	horizontally

The	current	size	of	the	pricing	blocks	look	similar,	but	actually	they	vary	depending	on
the	length	of	the	text.	Let's	say,	you	change	the	word	"Pro"	to	"Professional".	The	gray
area	will	expand	to	accomodate	the	change.	In	short,	the	view	defines	its	own	size	and	its
size	is	just	big	enough	to	fit	the	content.

88Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	15.	The	size	of	the	Pro	block	becomes	wider

If	you	refer	to	figure	1	again,	both	pricing	blocks	have	the	same	size.	To	adjust	both
blocks	to	have	the	same	size,	you	can	use	the		.frame		modifier	to	set	the		maxWidth		to
	.infinity		like	this:

.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	100)

The		.frame		modifier	allows	you	to	define	the	frame	size.	You	can	specify	the	size	as	a
fixed	value.	For	example,	in	the	code	above,	we	set	the		minHeight		to	100	points.	When
you	set	the		maxWidth		to		.infinity	,	the	view	will	adjust	itself	to	fill	the	maximum	width.
For	example,	if	there	is	only	one	pricing	block,	it	will	take	up	the	whole	screen	width.

89Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	16.	Setting	the	maxWidth	to	.infinity

For	two	pricing	blocks,	iOS	will	fill	the	block	equally	when		maxWidth		is	set	to		.infinity	.
Now	insert	the	above	line	of	code	into	each	of	the	pricing	blocks.	Your	result	should	look
like	figure	17.

90Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	17.	Arranging	both	pricing	blocks	with	equal	width

To	give	the	horizontal	stack	some	spacing,	you	can	add	a		.padding		modifier	like	this:

Figure	18.	Adding	some	paddings	for	the	stack	view

The		.horizontal		parameter	means	we	want	to	add	some	padding	for	both	leading	and
trailing	sides	of	the		HStack	.

91Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Organizing	the	Code

Again,	before	we	lay	out	the	rest	of	the	UI	components,	let's	refactor	the	current	code	to
make	it	more	organized.	If	you	look	at	both	stacks	that	are	used	to	lay	out	the	Basic	and
Pro	pricing	plan,	the	code	is	very	similar	except	the	following	items:

the	name	of	the	pricing	plan
the	price
the	text	color
the	background	color	of	the	pricing	block

To	streamline	the	code	and	improve	reusability,	we	can	extract	the		VStack		code	block
and	make	it	adaptable	to	different	values	of	the	pricing	plan.

Go	back	to	the	code	editor.	Hold	the	command	key	and	click	the		VStack		of	the	Basic
plan.	Once	Xcode	extracts	the	code,	rename	the	subview	from		ExtractedView		to
	PricingView	.

Figure	19.	Extracting	the	subview

92Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

As	we	mentioned	earlier,	the		PricingView		should	be	flexible	to	display	different	pricing
plans.	We	will	add	four	variables	in	the		PricingView		struct.	Update		PricingView		like	this:

struct	PricingView:	View	{

				var	title:	String

				var	price:	String

				var	textColor:	Color

				var	bgColor:	Color

				var	body:	some	View	{

								VStack	{

												Text(title)

																.font(.system(.title,	design:	.rounded))

																.fontWeight(.black)

																.foregroundColor(textColor)

												Text(price)

																.font(.system(size:	40,	weight:	.heavy,	design:	.rounded))

																.foregroundColor(textColor)

												Text("per	month")

																.font(.headline)

																.foregroundColor(textColor)

								}

								.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	100)

								.padding(40)

								.background(bgColor)

								.cornerRadius(10)

				}

}

We	added	variables	for	the	title,	price,	text,	and	background	color	of	the	pricing	block.
Furthermore,	we	make	use	of	these	variables	in	the	code	to	update	the	title,	price,	text
and	background	color	accordingly.

Once	you	make	the	changes,	you'll	see	an	error	telling	you	that	there	are	some	missing
arguments	for	the		PricingView	.

93Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	20.	Xcode	indicates	an	error	on	the	PricingView

Earlier,	we	introduced	four	variables	in	the	view.	When	calling		PricingView	,	we	must
now	provide	the	values	for	these	parameters.	So,	change		PricingView()		to	add	the	values:

PricingView(title:	"Basic",	price:	"$9",	textColor:	.white,	bgColor:	.purple)

Also,	you	can	replace	the		VStack		of	the	Pro	plan	using		PricingView		like	this:

PricingView(title:	"Pro",	price:	"$19",	textColor:	.black,	bgColor:	Color(red:	240/

255,	green:	240/255,	blue:	240/255))

The	layout	of	the	pricing	blocks	is	the	same	but	the	underlying	code,	as	you	can	see,	is
much	cleaner	and	easier	to	read.

94Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	21.	ContentView	after	refactoring	the	code

Using	ZStack

Now	that	you've	laid	out	the	pricing	blocks	and	refactored	the	code,	there	is	still	one
thing	missing	for	the	Pro	pricing.	We	want	to	overlay	a	message	in	yellow	on	the	pricing
block.	To	do	that,	we	can	use	the		ZStack		that	allows	you	to	overlay	a	view	on	top	of	an
existing	view.

Embed	the		PricingView		of	the	Pro	plan	within	a		ZStack		and	add	the		Text		view,	like
this:

95Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ZStack	{

				PricingView(title:	"Pro",	price:	"$19",	textColor:	.black,	bgColor:	Color(red:	

240/255,	green:	240/255,	blue:	240/255))

				Text("Best	for	designer")

								.font(.system(.caption,	design:	.rounded))

								.fontWeight(.bold)

								.foregroundColor(.white)

								.padding(5)

								.background(Color(red:	255/255,	green:	183/255,	blue:	37/255))

}

The	order	of	the	views	embedded	in	the		ZStack		determine	how	the	views	are	overlaid
with	each	other.	For	the	code	above,	the		Text		view	will	overlay	on	top	of	the	pricing
view.	In	the	canvas,	you	should	see	the	pricing	layout	like	this:

Figure	22.	ContentView	after	refactoring	the	code

96Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	adjust	the	position	of	the	text,	you	can	use	the		.offset		modifier.	Insert	the	following
line	of	code	at	the	end	of	the		Text		view:

.offset(x:	0,	y:	87)

The	Best	for	designer	label	will	move	to	the	bottom	of	the	block.	A	negative	value	of		y	
will	move	the	label	to	the	top	part	if	you	want	to	re-position	it.

Figure	23.	Position	the	text	view	using	.offset

Optionally,	if	you	want	to	adjust	the	spacing	between	the	Basic	and	Pro	pricing	block,
you	can	specify	the		spacing		parameter	within	a		HStack		like	this:

HStack(spacing:	15)	{

		...

}

97Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Exercise	#1

We	haven't	finished	yet.	I	want	to	discuss	how	we	handle	optionals	in	SwiftUI	and
introduce	another	view	component	called	Spacer.	However,	before	we	continue,	let's
have	a	simple	exercise.	Your	task	is	to	lay	out	the	Team	pricing	plan	as	shown	in	figure
24.	The	image	I	used	is	a	system	image	with	the	name	"wand.and.rays"	from	SF	Symbols.

Figure	24.	Adding	the	Team	plan

Please	don't	look	at	the	solution,	try	to	develop	your	own	solution.

98Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Handling	Optionals	in	SwiftUI

Have	you	tried	the	exercise	and	come	up	with	your	own	solution?	The	layout	of	the	Team
plan	is	very	similar	to	the	Basic	&	Pro	plans.	You	could	replicate	the		VStack		of	these	two
plans	and	create	the	Team	plan.	however,	let	me	show	you	a	more	elegant	solution.

We	can	reuse	the		PricingView		to	create	the	Team	plan.	However,	as	you	are	aware,	the
Team	plan	has	an	icon	that	sits	above	the	title.	In	order	to	lay	out	this	icon,	we	need	to
modify		PricingView		to	accomodate	an	icon.	Since	the	icon	is	not	mandatory	for	a	pricing
plan,	we	declare	an	optional	in		PricingView	:

var	icon:	String?

If	you're	new	to	Swift,	an	optional	means	that	the	variable	may	or	may	not	have	a	value.
In	the	example	above,	we	define	a	variable	named		icon		of	the	type		String	.	The	call	to
the	method	is	expected	to	pass	the	image	name	if	the	pricing	plan	is	required	to	display
an	icon.	Otherwise,	this	variable	is	set	to		nil		by	default.

So,	how	do	you	handle	an	optional	in	SwiftUI?	In	Swift,	you	usually	use		if	let		to	check
if	an	optional	has	a	value	and	unwrap	it.	If	you	are	still	using	Xcode	11,	you	can't	use		if
let		in	SwiftUI.	You	will	end	up	with	the	following	error:

Figure	25.	Using	if	let	in	Xcode	11

One	way	to	work	with	optionals	in	Xcode	11	is	to	check	if	the	optional	has	a	non-nil	value.
For	example,	we	need	to	check	if		icon		has	a	value	before	displaying	an	image.	We	can
write	the	code	like	this:

99Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

if	icon	!=	nil	{

				Image(systemName:	icon!)

								.font(.largeTitle)

								.foregroundColor(textColor)

}

In	Xcode	12,	the	SwiftUI	framework	supports	the	usage	of		if	let	.	The	code	can	be
rewritten	like	this:

if	let	icon	=	icon	{

				Image(systemName:	icon)

								.font(.largeTitle)

								.foregroundColor(textColor)

}

To	support	the	rendering	of	an	icon,	the	final	code	of		PricingView		should	be	updated	as
below:

100Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	PricingView:	View	{

				var	title:	String

				var	price:	String

				var	textColor:	Color

				var	bgColor:	Color

				var	icon:	String?

				var	body:	some	View	{

								VStack	{

												icon.map({

																Image(systemName:	$0)

																				.font(.largeTitle)

																				.foregroundColor(textColor)

												})

												Text(title)

																.font(.system(.title,	design:	.rounded))

																.fontWeight(.black)

																.foregroundColor(textColor)

												Text(price)

																.font(.system(size:	40,	weight:	.heavy,	design:	.rounded))

																.foregroundColor(textColor)

												Text("per	month")

																.font(.headline)

																.foregroundColor(textColor)

								}

								.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	100)

								.padding(40)

								.background(bgColor)

								.cornerRadius(10)

				}

}

Once	you	make	this	change,	you	can	create	the	Team	plan	by	using		ZStack		and
	PricingView	.	You	put	the	code	in		ContentView		and	insert	it	after		.padding(.horiontal)	:

101Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ZStack	{

				PricingView(title:	"Team",	price:	"$299",	textColor:	.white,	bgColor:	Color(re

d:	62/255,	green:	63/255,	blue:	70/255),	icon:	"wand.and.rays")

								.padding()

				Text("Perfect	for	teams	with	20	members")

								.font(.system(.caption,	design:	.rounded))

								.fontWeight(.bold)

								.foregroundColor(.white)

								.padding(5)

								.background(Color(red:	255/255,	green:	183/255,	blue:	37/255))

								.offset(x:	0,	y:	87)

}

Using	Spacer

When	comparing	your	current	UI	with	that	of	figure	1,	do	you	see	any	difference?	There
are	a	couple	of	differences	you	may	notice:

1.	 The	Choose	Your	Plan	label	is	not	left	aligned.
2.	 The	Choose	Your	Plan	label	and	the	pricing	plans	should	be	aligned	to	the	top	of	the

screen.

In	UIKit,	you	would	define	auto	layout	constraints	to	position	the	views.	SwiftUI	doesn't
have	auto	layout.	Instead,	it	provides	a	view	called		Spacer		for	you	to	create	complex
layouts.

A	flexible	space	that	expands	along	the	major	axis	of	its	containing	stack	layout,	or
on	both	axes	if	not	contained	in	a	stack.

-	SwiftUI	documentation
(https://developer.apple.com/documentation/swiftui/spacer)

To	fix	the	left	alignment,	let's	update	the		HeaderView		like	this:

102Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/swiftui/spacer

struct	HeaderView:	View	{

				var	body:	some	View	{

								HStack	{

												VStack(alignment:	.leading,	spacing:	2)	{

																Text("Choose")

																				.font(.system(.largeTitle,	design:	.rounded))

																				.fontWeight(.black)

																Text("Your	Plan")

																				.font(.system(.largeTitle,	design:	.rounded))

																				.fontWeight(.black)

												}

												Spacer()

								}

								.padding()

				}

}

Here	we	embed	the	original		VStack		and	a		Spacer		within	a		HStack	.	By	using	a		Spacer	,
we	push	the		VStack		to	the	left.	Figure	26	illustrates	how	the	spacer	works.

Figure	26.	Using	Spacer	in	HStack

You	may	now	know	how	to	fix	the	second	difference.	The	solution	is	to	add	a	spacer	at	the
end	of	the		VStack		of		ContentView		like	this:

103Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	body:	some	View	{

								VStack	{

												HeaderView()

												HStack(spacing:	15)	{

																...

												}

												.padding(.horizontal)

												ZStack	{

																...

												}

														//	Add	a	spacer

												Spacer()

								}

				}

}

Figure	27	illustrates	how	the	spacer	works	visually.

104Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	27.	Using	spacer	in	VStack

Exercise	#2

Now	that	you	know	how		VStack	,		HStack	,	and		ZStack		work,	your	final	exercise	is	to
create	a	layout	as	shown	in	figure	28.	For	the	icons,	I	use	system	images	from	SF
Symbols.	You're	free	to	pick	any	of	the	images	instead	of	following	mine.	As	a	hint,	you
can	use	the	modifier		.scale		to	scale	up/down	a	view.	For	example,	if	you	attach
	.scale(0.5)		to	a	view,	it	automatically	resizes	the	view	to	half	of	its	original	size.

105Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	28.	Your	exercise

For	reference,	you	can	download	the	complete	stack	projects	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIStacks.zip)
Solution	to	exercise	#2
(https://www.appcoda.com/resources/swiftui2/SwiftUIStacksExercise.zip)

106Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIStacks.zip
https://www.appcoda.com/resources/swiftui2/SwiftUIStacksExercise.zip

Chapter	5
Understanding	ScrollView	and
Building	a	Carousel	UI
After	going	through	the	previous	chapter,	I	believe	you	should	now	understand	how	to
build	a	complex	UI	using	stacks.	Of	course,	it	will	take	you	a	lot	of	practice	before	you	can
master	SwiftUI.	Therefore,	before	we	dive	deep	into	ScrollView	to	make	the	views
scrollable,	let's	begin	this	chapter	with	a	challenge.	Your	task	is	to	create	a	card	view	like
that	shown	in	figure	1.

Figure	1.	The	card	view

By	using	stacks,	image,	and	text	views,	you	should	be	able	to	create	the	UI.	While	I	will	go
through	the	implementation	step	by	step	with	you	later,	please	take	some	time	to	work
on	the	exercise	and	figure	out	your	own	solution.

107Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	you	create	the	card	view,	I	will	discuss		ScrollView		with	you	and	build	a	scrollable
interface	using	the	card	view.	Figure	2	shows	you	the	complete	UIs.

Figure	2.	Building	a	scrollable	UI	with	ScrollView

Creating	a	Card-like	UI

If	you	haven't	opened	Xcode,	fire	it	up	and	create	a	new	project	using	the	App	template
(under	iOS).	In	the	next	screen,	set	the	product	name	to		SwiftUIScrollView		(or	whatever
name	you	like)	and	fill	in	all	the	required	values.	Make	sure	you	select		SwiftUI		for	the
Interface	option.

So	far,	we	have	coded	the	user	interface	in	the		ContentView.swift		file.	It's	very	likely	you
wrote	your	solution	code	there.	That's	completely	fine,	but	I	want	to	show	you	a	better
way	to	organize	your	code.	For	the	implementation	of	the	card	view,	let's	create	a

108Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

separate	file.	In	the	project	navigator,	right	click		SwiftUIScrollView		and	choose	New
File...

Figure	3.	Creating	a	new	file

In	the	User	Interface	section,	choose	the	SwiftUI	View	template	and	click	Next	to	create
the	file.	Name	the	file		CardView		and	save	it	in	the	project	folder.

109Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Choose	the	SwiftUI	View	template

The	code	in		CardView.swift		looks	very	similar	to	that	of		ContentView.swift	.	Similarly,	you
can	preview	the	UI	in	the	canvas.

110Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Just	like	ContentView.swift,	you	can	preview	CardView.swift	in	the	canvas

Preparing	the	Image	Files

Now	we're	ready	to	code	the	card	view.	But	first,	you	need	to	prepare	the	image	files	and
import	them	in	the	asset	catalog.	If	you	don't	want	to	prepare	your	own	images,	you	can
download	the	sample	images	from
https://www.appcoda.com/resources/swiftui/SwiftUIScrollViewImages.zip.	Once	you
unzip	the	image	archive,	select		Assets.xcassets		and	drag	all	the	images	to	the	asset
catalog.

111Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui/SwiftUIScrollViewImages.zip

Figure	6.	Adding	the	image	files	to	the	asset	catalog

Implementing	the	Card	View

Now	switch	back	to	the		CardView.swift		file.	If	you	look	at	figure	1	again,	the	card	view	is
composed	of	two	parts:	the	upper	part	is	the	image	and	the	lower	part	is	the	text
description.

Let's	start	with	the	image.	I'll	make	the	image	resizable	and	scale	it	to	fit	the	screen	while
retaining	the	aspect	ratio.	You	write	the	code	like	this:

struct	CardView:	View	{

				var	body:	some	View	{

								Image("swiftui-button")

												.resizable()

												.aspectRatio(contentMode:	.fit)

				}

}

If	you	forgot	what	these	two	modifiers	do,	go	back	and	read	the	chapter	about	the		Image	
object.	Next,	let's	implement	the	text	description.	You	may	write	the	code	like	this:

112Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

VStack(alignment:	.leading)	{

				Text("SwiftUI")

								.font(.headline)

								.foregroundColor(.secondary)

				Text("Drawing	a	Border	with	Rounded	Corners")

								.font(.title)

								.fontWeight(.black)

								.foregroundColor(.primary)

								.lineLimit(3)

				Text("Written	by	Simon	Ng".uppercased())

								.font(.caption)

								.foregroundColor(.secondary)

}

You	need	to	use		Text		to	create	the	text	view.	Since	we	actually	have	three	text	views	in
the	description,	that	are	vertically	aligned,	we	use	a		VStack		to	embed	them.	For	the
	VStack	,	we	specify	the	alignment	as		.leading	.	This	will	align	the	text	view	to	the	left	of
the	stack	view.

The	modifiers	of		Text		are	all	discussed	in	the	chapter	about	the		Text		object.	You	can
refer	to	it	if	you	find	any	of	the	modifiers	are	confusing.	But	one	topic	about	the		.primary	
and		.secondary		colors	should	be	highlighted.

While	you	can	specify	a	standard	color	like		.black		and		.purple		in	the		foregroundColor	
modifier,	iOS	13	introduces	a	set	of	system	colors	that	contain	primary,	secondary,	and
tertiary	variants.	By	using	these	color	variants,	your	app	can	easily	support	both	light	and
dark	modes.	For	example,	the	primary	color	of	the	text	view	is	set	to	black	in	light	mode
by	default.	When	the	app	is	switched	over	to	dark	mode,	the	primary	color	will	be
adjusted	to	white.	This	is	automatically	arranged	by	iOS,	so	you	don't	have	to	write	extra
code	to	support	the	dark	mode.	We	will	discuss	dark	mode	in	depth	in	a	later	chapter.

To	arrange	the	image	and	these	text	views	vertically,	we	use	a		VStack		to	embed	them.
The	current	layout	is	shown	in	the	figure	below.

113Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Embed	the	image	and	text	views	in	a	VStack

We	are	not	done	yet!	There	are	still	a	couple	of	things	we	need	to	implement.	First,	the
text	description	block	should	be	left	aligned	to	the	edge	of	the	image.

How	do	you	do	that?

Based	on	what	we've	learned,	we	can	embed	the		VStack		of	the	text	views	in	a		HStack	.
And	then,	we	will	use	a		Spacer		to	push	the		VStack		to	the	left.	Let's	see	if	this	works.

If	you've	changed	the	code	to	match	the	one	shown	in	figure	8,	the		VStack		of	the	text
views	are	aligned	to	the	left	of	the	screen.

114Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Aligning	the	text	description

It	would	be	better	to	add	some	padding	around	the		HStack	.	Insert	the		padding		modifier
like	this:

115Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Adding	some	paddings	for	the	text	description

Lastly,	the	border.	We	have	discussed	how	to	draw	a	border	with	rounded	corners	in	an
earlier	chapter.	We	use	the		overlay		modifier	and	draw	the	border	using
	RoundedRectangle	.	Here	is	the	complete	code:

116Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	CardView:	View	{

				var	body:	some	View	{

								VStack	{

												Image("swiftui-button")

																.resizable()

																.aspectRatio(contentMode:	.fit)

												HStack	{

																VStack(alignment:	.leading)	{

																				Text("SwiftUI")

																								.font(.headline)

																								.foregroundColor(.secondary)

																				Text("Drawing	a	Border	with	Rounded	Corners")

																								.font(.title)

																								.fontWeight(.black)

																								.foregroundColor(.primary)

																								.lineLimit(3)

																				Text("Written	by	Simon	Ng".uppercased())

																								.font(.caption)

																								.foregroundColor(.secondary)

																}

																Spacer()

												}

												.padding()

								}

								.cornerRadius(10)

								.overlay(

												RoundedRectangle(cornerRadius:	10)

																.stroke(Color(.sRGB,	red:	150/255,	green:	150/255,	blue:	150/255,	

opacity:	0.1),	lineWidth:	1)

)

								.padding([.top,	.horizontal])

				}

}

In	addition	to	the	border,	we	also	add	some	padding	for	the	top,	left,	and	right	sides.	Now
you	have	completed	the	card	view	layout.

117Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	Adding	a	border	and	rounded	corners

Make	the	Card	View	more	Flexible

While	the	card	view	works,	we've	hard-coded	the	image	and	text.	To	make	it	more
flexible,	let's	refactor	the	code.	First,	declare	these	variables	for	the	image,	category,
heading,	and	author	in		CardView	:

var	image:	String

var	category:	String

var	heading:	String

var	author:	String

Next,	replace	the	values	of	the		Image		and		Text		views	with	our	variables	like	this:

118Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

VStack	{

				Image(image)

								.resizable()

								.aspectRatio(contentMode:	.fit)

				HStack	{

								VStack(alignment:	.leading)	{

												Text(category)

																.font(.headline)

																.foregroundColor(.secondary)

												Text(heading)

																.font(.title)

																.fontWeight(.black)

																.foregroundColor(.primary)

																.lineLimit(3)

												Text("Written	by	\(author)".uppercased())

																.font(.caption)

																.foregroundColor(.secondary)

								}

								Spacer()

				}

				.padding()

}

Once	you	made	the	changes,	you	will	see	an	error	in	the		CardView_Previews		struct.	This	is
because	we've	introduced	some	variables	in		CardView	.	We	have	to	specify	the	parameters
when	using	it.

Figure	11.	Missing	parameters	when	calling	the	CardView

119Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Modify	the	code	like	this:

struct	CardView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								CardView(image:	"swiftui-button",	category:	"SwiftUI",	heading:	"Drawing	a

	Border	with	Rounded	Corners",	author:	"Simon	Ng")

				}

}

This	will	fix	the	error.	And,	you	now	have	built	a	flexible		CardView		that	accepts	different
images	and	text.

Introducing	ScrollView

Take	a	look	at	figure	2	again.	That's	the	user	interface	we're	going	to	implement.	At	first,
you	may	think	we	can	embed	four	card	views	using	a		VStack	.	You	can	switch	over	to
	ContentView.swift		and	insert	the	following	code:

VStack	{

				CardView(image:	"swiftui-button",	category:	"SwiftUI",	heading:	"Drawing	a	Bor

der	with	Rounded	Corners",	author:	"Simon	Ng")

				CardView(image:	"macos-programming",	category:	"macOS",	heading:	"Building	a	S

imple	Editing	App",	author:	"Gabriel	Theodoropoulos")

				CardView(image:	"flutter-app",	category:	"Flutter",	heading:	"Building	a	Compl

ex	Layout	with	Flutter",	author:	"Lawrence	Tan")

				CardView(image:	"natural-language-api",	category:	"iOS",	heading:	"What's	New	

in	Natural	Language	API",	author:	"Sai	Kambampati")

}

If	you	did	that,	the	card	views	will	be	squeezed	to	fit	the	screen	because		VStack		is	non-
scrollable,	just	like	that	shown	in	figure	12.

120Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Embedding	the	card	views	in	a	VStack

To	support	scrollable	content,	SwiftUI	provides	a	view	called		ScrollView	.	When	the
content	is	embedded	in	a		ScrollView	,	it	becomes	scrollable.	What	you	need	to	do	is	to
enclose	the		VStack		within	a		ScrollView		to	make	the	views	scrollable.	In	the	preview
canvas,	you	can	click	the	Play	button	and	drag	the	views	to	scroll	the	content.

121Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	Using	ScrollView

Exercise	#1

Your	task	is	to	add	a	header	to	the	existing	scroll	view.	The	result	is	displayed	in	figure	14.
If	you	understand		VStack		and		HStack		thoroughly,	you	should	be	able	to	create	the
layout.

122Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	Exercise	#1

Creating	a	Carousel	UI	with	Horizontal	ScrollView

By	default,	the		ScrollView		allows	you	to	scroll	the	content	in	vertical	orientation.
Alternatively,	it	also	supports	scrollable	content	in	horizontal	orientation.	Let's	see	how
to	convert	the	current	layout	into	a	carousel	UI	with	a	few	changes.

Update	the		ContentView		like	this:

123Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	body:	some	View	{

								ScrollView(.horizontal)	{

												//	Your	code	for	exercise	#1

												HStack	{

																CardView(image:	"swiftui-button",	category:	"SwiftUI",	heading:	"D

rawing	a	Border	with	Rounded	Corners",	author:	"Simon	Ng")

																				.frame(width:	300)

																CardView(image:	"macos-programming",	category:	"macOS",	heading:	"

Building	a	Simple	Editing	App",	author:	"Gabriel	Theodoropoulos")

																				.frame(width:	300)

																CardView(image:	"flutter-app",	category:	"Flutter",	heading:	"Buil

ding	a	Complex	Layout	with	Flutter",	author:	"Lawrence	Tan")

																				.frame(width:	300)

																CardView(image:	"natural-language-api",	category:	"iOS",	heading:	

"What's	New	in	Natural	Language	API",	author:	"Sai	Kambampati")

																				.frame(width:	300)

												}

								}

				}

}

We've	made	three	changes	in	the	code	above:

1.	 We	specify	in		ScrollView		to	use	a	horizontal	scroll	view	by	passing	it	a		.horizontal	
value.

2.	 Since	we	use	a	horizontal	scroll	view,	we	also	need	to	change	the	stack	view	from
	VStack		to		HStack	.

3.	 For	each	card	view,	we	set	the	frame's	width	to	300	points.	This	is	required	because
the	image	is	too	wide	to	display.

After	changing	the	code,	you'll	see	the	card	views	are	arranged	horizontally	and	they	are
scrollable.

124Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	15.	Carousel	UI

Hiding	the	Scroll	Indicator

While	you're	scrolling	the	views,	did	you	notice	there	is	a	scroll	indicator	near	the	bottom
of	the	screen?	This	indicator	is	displayed	by	default.	If	you	want	to	hide	it,	you	can
change	the		ScrollView		by	adding		showsIndicators:	false		to	it:

ScrollView(.horizontal,	showsIndicators:	false)

By	setting		showIndicators		to		false	,	iOS	will	no	longer	show	the	indicator.

Grouping	View	Content

If	you	look	at	the	code	again,	you	will	see	that	all	the		CardView	s	have	a		.frame		modifier
to	limit	their	width	to	300	points.	Is	there	any	way	we	can	simplify	that	and	remove	the
duplicated	code?	The	SwiftUI	framework	provides	a		Group		view	for	developers	to	group

125Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

related	content.	More	importantly,	you	can	attach	modifiers	to	the	group	to	apply	the
changes	to	each	of	the	views	embedded	in	the	group.

For	example,	you	can	rewrite	the	code	in		HStack		like	this	to	achieve	the	same	result:

HStack	{

				Group	{

								CardView(image:	"swiftui-button",	category:	"SwiftUI",	heading:	"Drawing	a

	Border	with	Rounded	Corners",	author:	"Simon	Ng")

								CardView(image:	"macos-programming",	category:	"macOS",	heading:	"Building

	a	Simple	Editing	App",	author:	"Gabriel	Theodoropoulos")

								CardView(image:	"flutter-app",	category:	"Flutter",	heading:	"Building	a	C

omplex	Layout	with	Flutter",	author:	"Lawrence	Tan")

								CardView(image:	"natural-language-api",	category:	"iOS",	heading:	"What's	

New	in	Natural	Language	API",	author:	"Sai	Kambampati")

				}

				.frame(width:	300)

}

Resize	the	Text	Automatically

As	you	can	see	in	figure	15,	the	title	of	the	first	card	is	truncated.	How	do	you	fix	this?	In
SwiftUI,	you	can	use	the		.minimumScaleFactor		modifier	to	automatically	downscale	text.
Switch	over	to		CardView.swift		and	attach	the	following	modifier	to		Text(heading)	:

.minimumScaleFactor(0.5)

SwiftUI	will	automatically	scale	down	the	text	to	fit	the	available	space.	The	value	sets	the
minimum	amount	of	scaling	that	the	view	permits.	In	this	case,	SwiftUI	can	draw	the	text
in	a	font	size	as	small	as	50%	of	the	original	font	size.

Exercise	#2

Here	comes	to	the	final	exercise.	Modify	the	current	code	and	re-arrange	it	like	that
shown	in	figure	16.

126Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	16.	Aligning	the	views	to	the	top

For	reference,	you	can	download	the	complete	scrollview	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIScrollView.zip)
Solution	to	exercise
(https://www.appcoda.com/resources/swiftui2/SwiftUIScrollViewExercise.zip)

127Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIScrollView.zip
https://www.appcoda.com/resources/swiftui2/SwiftUIScrollViewExercise.zip

Chapter	6
Working	with	SwiftUI	Buttons,	Labels
and	Gradient

Buttons	initiate	app-specific	actions,	have	customizable	backgrounds,	and	can
include	a	title	or	an	icon.	The	system	provides	a	number	of	predefined	button	styles
for	most	use	cases.	You	can	also	design	fully	custom	buttons.

-	Apple's	documentation	(https://developer.apple.com/design/human-interface-
guidelines/ios/controls/buttons/)

I	don't	think	I	need	to	explain	what	a	button	is.	It's	a	very	basic	UI	control	that	you	can
find	in	all	apps	and	has	the	ability	to	handle	users'	touch,	and	trigger	a	certain	action.	If
you	have	learned	iOS	programming	before,		Button		in	SwiftUI	is	very	similar	to		UIButton	
in	UIKit.	It's	just	more	flexible	and	customizable.	You	will	understand	what	I	mean	in	a
while.	In	this	chapter,	I	will	go	through	this	SwiftUI	control	and	you	will	learn	the
following	techniques:

1.	 How	to	create	a	simple	button	and	handle	the	user's	selection
2.	 How	to	customize	the	button's	background,	padding	and	font
3.	 How	to	add	borders	to	a	button
4.	 How	to	create	a	button	with	both	image	and	text
5.	 How	to	create	a	button	with	a	gradient	background	and	shadows
6.	 How	to	create	a	full-width	button
7.	 How	to	create	a	reusable	button	style
8.	 How	to	add	a	tap	animation

Creating	a	New	Project	with	SwiftUI	enabled

Okay,	let's	start	with	the	basics	and	create	a	simple	button	using	SwiftUI.	First,	fire	up
Xcode	and	create	a	new	project	using	the	App	template.	In	the	next	screen,	type	the	name
of	the	project.	I	set	it	to	SwiftUIButton	but	you're	free	to	use	any	other	name.	You	need	to

128Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/design/human-interface-guidelines/ios/controls/buttons/

make	sure	you	select	SwiftUI	for	the	Interface	option.

Figure	1.	Creating	a	new	project

Once	you	save	the	project,	Xcode	should	load	the		ContentView.swift		file	and	display	a
preview	in	the	design	canvas.	In	case	the	preview	is	not	displayed,	click	the	Resume
button	in	the	canvas.

129Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Previewing	the	default	content	view

It's	very	easy	to	create	a	button	using	SwiftUI.	Basically,	you	use	the	code	snippet	below
to	create	a	button:

Button(action:	{

				//	What	to	perform

})	{

				//	How	the	button	looks	like

}

When	creating	a	button,	you	need	to	provide	two	code	blocks:

1.	What	action	to	perform	-	the	code	to	perform	after	the	button	is	tapped	or
selected	by	the	user.

2.	 How	the	button	looks	-	the	code	block	that	describes	the	look	&	feel	of	the	button.

For	example,	if	you	just	want	to	turn	the	Hello	World	label	into	a	button,	you	can	update
the	code	like	this:

130Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	body:	some	View	{

								Button(action:	{

												print("Hello	World	tapped!")

								})	{

												Text("Hello	World")

								}

				}

}

Now	the	Hello	World	text	becomes	a	tappable	button	as	you	see	it	in	the	canvas.

Figure	3.	Creating	a	simple	button

The	button	is	non-tappable	in	the	design	canvas.	To	test	it,	click	the	Play	button	to	run
the	app.	However,	in	order	to	view	the	Hello	World	tapped	message,	you	have	to	right-
click	the	Play	button	and	then	choose	Debug	Preview.	You	will	see	the	Hello	World

131Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

tapped	message	on	the	console	when	you	tap	the	button.	If	you	can't	see	the	console,	go
up	to	the	Xcode	menu	and	choose	View	>	Debug	Area	>	Activate	Console.

Figure	4.	The	console	message	can	only	be	displayed	in	debug	mode

Customizing	the	Button's	Font	and	Background

Now	that	you	know	how	to	create	a	simple	button,	let's	customize	its	look	&	feel	with	the
built-in	modifiers.	To	change	the	background	and	text	color,	you	can	use	the		background	
and		foregroundColor		modifiers	like	this:

Text("Hello	World")

				.background(Color.purple)

				.foregroundColor(.white)

If	you	want	to	change	the	font	type,	you	use	the		font		modifier	and	specify	the	font	type
(e.g.		.title)	like	this:

Text("Hello	World")

				.background(Color.purple)

				.foregroundColor(.white)

				.font(.title)

After	the	change,	your	button	should	look	like	the	figure	below.

132Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Customizing	the	background	and	foreground	color	of	a	button

As	you	can	see,	the	button	doesn't	look	very	good.	Wouldn't	it	be	great	to	add	some	space
around	the	text?	To	do	that,	you	can	use	the		padding		modifier	like	this:

Text("Hello	World")

				.padding()

				.background(Color.purple)

				.foregroundColor(.white)

				.font(.title)

After	you	make	the	change,	the	canvas	will	update	the	button	accordingly.	The	button
should	now	look	much	better.

Figure	6.	Adding	padding	to	the	button

The	Order	of	Modifiers	is	Important

133Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

One	thing	I	want	to	highlight	is	that	the		padding		modifier	should	be	placed	before	the
	background		modifier.	If	you	write	the	code	as	illustrated	below,	the	end	result	will	be
different.

Figure	7.	Placing	the	padding	modifier	after	the	background	modifier

If	you	place	the		padding		modifier	after	the		background		modifier,	you	can	still	add	some
padding	to	the	button	but	without	the	preferred	background	color.	If	you	wonder	why,
the	modifiers	like	this:

Text("Hello	World")

				.background(Color.purple)	//	1.	Change	the	background	color	to	purple

				.foregroundColor(.white)		//	2.	Set	the	foreground/font	color	to	white

				.font(.title)													//	3.	Change	the	font	type

				.padding()																//	4.	Add	the	paddings	with	the	primary	color	(i.e.	

white)

Conversely,	the	modifiers	will	work	like	this	if	the		padding		modifier	is	placed	before	the
	background		modifier:

134Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Text("Hello	World")

				.padding()																//	1.	Add	the	paddings

				.background(Color.purple)	//	2.	Change	the	background	color	to	purple	includin

g	the	padding

				.foregroundColor(.white)		//	3.	Set	the	foreground/font	color	to	white

				.font(.title)													//	4.	Change	the	font	type

Adding	Borders	to	the	Button

This	doesn't	mean	the		padding		modifier	should	always	be	placed	at	the	very	beginning.	It
just	depends	on	your	button	design.	Let's	say,	you	want	to	create	a	button	with	borders
like	this:

Figure	8.	A	button	with	borders

You	can	change	the	code	of	the		Text		control	like	below:

Text("Hello	World")

				.foregroundColor(.purple)

				.font(.title)

				.padding()

				.border(Color.purple,	width:	5)

135Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Here	we	set	the	foreground	color	to	purple	and	then	add	some	empty	padding	around	the
text.	The		border		modifier	is	used	to	define	the	border's	width	and	color.	Please	alter	the
value	of	the		width		parameter	to	see	how	it	works.

Let	me	give	you	another	example.	Let's	say,	a	designer	shows	you	the	following	button
design.	How	are	you	going	to	implement	it	with	what	you've	learned?	Before	you	read	the
next	paragraph,	Take	a	few	minutes	to	figure	out	the	solution.

Figure	9.	A	button	with	both	background	and	border

Okay,	here	is	the	solution:

Text("Hello	World")

				.fontWeight(.bold)

				.font(.title)

				.padding()

				.background(Color.purple)

				.foregroundColor(.white)

				.padding(10)

				.border(Color.purple,	width:	5)

We	use	two		padding		modifiers	to	create	the	button	design.	The	first		padding	,	together
with	the		background		modifier,	is	for	creating	a	button	with	padding	and	a	purple
background.	The		padding(10)		modifier	adds	extra	padding	around	the	button	and	the

136Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

	border		modifier	specifies	a	rounded	border	in	purple.

Let's	look	at	a	more	complex	example.	What	if	you	wanted	a	button	with	rounded	borders
like	this?

Figure	10.	A	button	with	a	rounded	border

SwiftUI	comes	with	a	modifier	named		cornerRadius		that	lets	you	easily	create	rounded
corners.	To	render	the	button's	background	with	rounded	corners,	you	simply	use	the
modifier	and	specify	the	corner	radius:

.cornerRadius(40)

For	the	border	with	rounded	corners,	it'll	take	a	little	bit	of	work	since	the		border	
modifier	doesn't	allow	you	to	create	rounded	corners.	What	we	need	to	do	is	to	draw	a
border	and	overlay	it	on	the	button.	Here	is	the	final	code:

137Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Text("Hello	World")

				.fontWeight(.bold)

				.font(.title)

				.padding()

				.background(Color.purple)

				.cornerRadius(40)

				.foregroundColor(.white)

				.padding(10)

				.overlay(

								RoundedRectangle(cornerRadius:	40)

												.stroke(Color.purple,	lineWidth:	5)

)

The		overlay		modifier	lets	you	overlay	another	view	on	top	of	the	current	view.	In	the
code,	we	draw	a	border	with	rounded	corners	using	the		stroke		modifier	of	the
	RoundedRectangle		object.	The		stroke		modifier	allows	you	to	configure	the	color	and	line
width	of	the	stroke.

Creating	a	Button	with	Images	and	Text

So	far,	we	have	only	worked	with	text	buttons.	In	a	real	world	project,	you	or	your
designer	may	want	to	display	a	button	with	an	image.	The	syntax	of	creating	an	image
button	is	exactly	the	same	except	that	you	use	the		Image		control	instead	of	the		Text	
control	like	this:

Button(action:	{

				print("Delete	button	tapped!")

})	{

				Image(systemName:	"trash")

								.font(.largeTitle)

								.foregroundColor(.red)

}

For	convenience,	we	use	the	built-in	SF	Symbols	(i.e.	trash)	to	create	the	image	button.
We	specify		.largeTitle		in	the		font		modifier	to	make	the	image	a	bit	larger.	Your	button
should	look	like	this:

138Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	An	image	button

Similarly,	if	you	want	to	create	a	circular	image	button	with	a	solid	background	color,	you
can	apply	the	modifiers	we	discussed	earlier.	Figure	12	shows	you	an	example.

Figure	12.	A	circular	image	button

You	can	use	both	text	and	image	to	create	a	button.	Say,	you	want	to	put	the	word
"Delete"	next	to	the	icon.	Replace	the	code	like	this:

139Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Button(action:	{

				print("Delete	tapped!")

})	{

				HStack	{

								Image(systemName:	"trash")

												.font(.title)

								Text("Delete")

												.fontWeight(.semibold)

												.font(.title)

				}

				.padding()

				.foregroundColor(.white)

				.background(Color.red)

				.cornerRadius(40)

}

Here	we	embed	both	the	image	and	the	text	control	in	a	horizontal	stack.	This	will	lay	out
the	trash	icon	and	the	Delete	text	side	by	side.	The	modifiers	applied	to	the		HStack		set
the	background	color,	padding,	and	round	the	button's	corners.	Figure	13	shows	the
resulting	button.

Figure	13.	A	button	with	both	image	and	text

Using	Label

140Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	iOS	14,	the	SwiftUI	framework	introduces	a	new	view	called		Label		that	lets	you	place
an	image	and	text	side	by	side.	Thus,	instead	of	using		HStack	,	you	can	use		Label		to
create	the	same	layout.

Button(action:	{

				print("Delete	tapped!")

})	{

				Label(

								title:	{	Text("Delete")

												.fontWeight(.semibold)

												.font(.title)

								},

								icon:	{	Image(systemName:	"trash")

												.font(.title)

								}

)

				.padding()

				.foregroundColor(.white)

				.background(Color.red)

				.cornerRadius(40)

}

Creating	a	Button	with	Gradient	Background	and
Shadow

With	SwiftUI,	you	can	easily	style	the	button	with	a	gradient	background.	Not	only	can
you	define	a	specific	color	to	the		background		modifier,	you	can	easily	apply	a	gradient
effect	to	any	button.	All	you	need	to	do	is	to	replace	the	following	line	of	code:

.background(Color.red)

With:

.background(LinearGradient(gradient:	Gradient(colors:	[Color.red,	Color.blue]),	st

artPoint:	.leading,	endPoint:	.trailing))

141Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	SwiftUI	framework	comes	with	several	built-in	gradient	effects.	The	code	above
applies	a	linear	gradient	from	left	(.leading)	to	right	(.trailing).	It	begins	with	red	on
the	left	and	ends	with	blue	on	the	right.

Figure	14.	A	button	with	gradient	background

If	you	want	to	apply	the	gradient	from	top	to	bottom,	you	replace	the		.leading		with
	.top		and	the		.trailing		with		.bottom		like	this:

.background(LinearGradient(gradient:	Gradient(colors:	[Color.red,	Color.blue]),	st

artPoint:	.top,	endPoint:	.bottom))

You're	free	to	use	your	own	colors	to	render	the	gradient	effect.	Let's	say,	your	designer
tells	you	to	use	the	following	gradient:

Figure	15.	A	sample	gradient	from	uigradients.com

142Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

There	are	multiple	ways	to	convert	the	color	code	from	hex	to	the	compatible	format	in
Swift.	Here	is	one	approach.	In	the	project	navigator,	choose	the	asset	catalog
(Assets.xcassets).	Right	click	the	blank	area	(under	AppIcon)	and	select	Color	Set.

Figure	16.	Define	a	new	color	set	in	the	asset	catalog

Next,	choose	the	color	well	for	Any	Appearance	and	click	the	Show	inspector	button.
Then	click	the	Attributes	inspector	icon	to	reveal	the	attributes	of	a	color	set.	In	the	name
field,	set	the	name	to	DarkGreen.	In	the	Color	section,	change	the	input	method	to	8-bit
Hexadecimal.

143Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	17.	Editing	the	attributes	of	a	color	set

Now	you	can	set	the	color	code	in	the	Hex	field.	For	this	example,	enter		#11998e		to
define	the	color.	Name	the	color	set	LightGreen.	Repeat	the	same	procedure	to	define
another	color	set.	Enter		#38ef7d		for	the	additional	color.	Name	this	color	DarkGreen.

Figure	18.	Define	two	color	sets

Now	that	you've	defined	two	color	sets,	let's	go	back	to		ContentView.swift		and	update	the
code.	To	use	the	color	set,	you	just	need	to	specify	the	name	of	the	color	set	like	this:

144Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Color("DarkGreen")

Color("LightGreen")

To	render	the	gradient	with	the	DarkGreen	and	LightGreen	color	sets,	all	you	need	is	to
update	the		background		modifier	like	this:

.background(LinearGradient(gradient:	Gradient(colors:	[Color("DarkGreen"),	Color("

LightGreen")]),	startPoint:	.leading,	endPoint:	.trailing))

If	you've	made	the	change	correctly,	your	button	should	have	a	nice	gradient	background
as	shown	in	figure	19.

Figure	19.	Generating	a	gradient	with	our	own	colors

There	is	one	more	modifier	I	want	to	show	you	in	this	section.	The		shadow		modifier
allows	you	to	draw	a	shadow	around	the	button	(or	any	view).	Just	add	this	line	of	code
after	the		cornerRadius		modifier	to	see	the	shadow:

.shadow(radius:	5.0)

Optionally,	you	can	control	the	color,	radius,	and	position	of	the	shadow.	Here	is	an
example:

145Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.shadow(color:	.gray,	radius:	20.0,	x:	20,	y:	10)

Creating	a	Full-width	Button

Bigger	buttons	usually	grab	user's	attention.	Sometimes,	you	may	need	to	create	a	full-
width	button	that	takes	up	the	width	of	the	screen.	The		frame		modifier	is	designed	to
control	the	size	of	a	view.	Whether	you	want	to	create	a	fixed	size	button	or	a	button	with
variable	width,	you	use	this	modifier.	To	create	a	full-width	button,	you	can	change	the
	Button		code	like	this:

Button(action:	{

				print("Delete	tapped!")

})	{

				HStack	{

								Image(systemName:	"trash")

												.font(.title)

								Text("Delete")

												.fontWeight(.semibold)

												.font(.title)

				}

				.frame(minWidth:	0,	maxWidth:	.infinity)

				.padding()

				.foregroundColor(.white)

				.background(LinearGradient(gradient:	Gradient(colors:	[Color("DarkGreen"),	Col

or("LightGreen")]),	startPoint:	.leading,	endPoint:	.trailing))

				.cornerRadius(40)

}

This	is	very	similar	to	the	code	we	just	wrote,	except	that	we	added	the		frame		modifier
before		padding	.	Here	we	define	a	flexible	width	for	the	button.	We	set	the		maxWidth	
parameter	to		.infinity	.	This	will	result	in	the	button	filling	the	width	of	the	container
view.	You	should	now	see	a	full-width	button	in	the	canvas.

146Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	20.	A	full-width	button

By	defining		maxWidth		to		.infinity	,	the	width	of	the	button	will	be	adjusted
automatically	depending	on	the	screen	width	of	the	device.	If	you	want	to	give	the	button
some	more	horizontal	space,	insert	a		padding		modifier	after		.cornerRadius(40)	:

.padding(.horizontal,	20)

Styling	Buttons	with	ButtonStyle

In	a	real	world	app,	the	same	button	design	will	be	utilised	in	multiple	buttons.	Let's	say,
you're	creating	three	buttons:	Delete,	Edit,	and	Share	that	all	have	the	same	button	style
like	this:

147Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	21.	A	full-width	button

You'll	probably	write	the	code	like	this:

struct	ContentView:	View	{

				var	body:	some	View	{

								VStack	{

												Button(action:	{

																print("Share	tapped!")

												})	{

																HStack	{

																				Image(systemName:	"square.and.arrow.up")

																								.font(.title)

																				Text("Share")

																								.fontWeight(.semibold)

																								.font(.title)

																}

																.frame(minWidth:	0,	maxWidth:	.infinity)

																.padding()

																.foregroundColor(.white)

148Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

																.background(LinearGradient(gradient:	Gradient(colors:	[Color("Dark

Green"),	Color("LightGreen")]),	startPoint:	.leading,	endPoint:	.trailing))

																.cornerRadius(40)

																.padding(.horizontal,	20)

												}

												Button(action:	{

																print("Edit	tapped!")

												})	{

																HStack	{

																				Image(systemName:	"square.and.pencil")

																								.font(.title)

																				Text("Edit")

																								.fontWeight(.semibold)

																								.font(.title)

																}

																.frame(minWidth:	0,	maxWidth:	.infinity)

																.padding()

																.foregroundColor(.white)

																.background(LinearGradient(gradient:	Gradient(colors:	[Color("Dark

Green"),	Color("LightGreen")]),	startPoint:	.leading,	endPoint:	.trailing))

																.cornerRadius(40)

																.padding(.horizontal,	20)

												}

												Button(action:	{

																print("Delete	tapped!")

												})	{

																HStack	{

																				Image(systemName:	"trash")

																								.font(.title)

																				Text("Delete")

																								.fontWeight(.semibold)

																								.font(.title)

																}

																.frame(minWidth:	0,	maxWidth:	.infinity)

																.padding()

																.foregroundColor(.white)

																.background(LinearGradient(gradient:	Gradient(colors:	[Color("Dark

Green"),	Color("LightGreen")]),	startPoint:	.leading,	endPoint:	.trailing))

																.cornerRadius(40)

																.padding(.horizontal,	20)

149Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

												}

								}

				}

}

As	you	can	see	from	the	code	above,	you	need	to	replicate	all	modifiers	for	each	of	the
buttons.	What	if	you	or	your	designer	want	to	modify	the	button	style?	You'll	need	to
modify	all	the	modifiers.	That's	quite	a	tedious	task	and	not	good	coding	practice.	How
can	you	generalize	the	style	and	make	it	reusable?

SwiftUI	provides	a	protocol	called		ButtonStyle		for	you	to	create	your	own	button	style.
To	create	a	reusable	style	for	our	buttons,	Create	a	new	struct	called
	GradientBackgroundStyle		that	conforms	to	the		ButtonStyle		protocol.	Insert	the	following
code	snippet	and	put	it	right	above		struct	ContentPreview_Previews	:

struct	GradientBackgroundStyle:	ButtonStyle	{

				func	makeBody(configuration:	Self.Configuration)	->	some	View	{

								configuration.label

												.frame(minWidth:	0,	maxWidth:	.infinity)

												.padding()

												.foregroundColor(.white)

												.background(LinearGradient(gradient:	Gradient(colors:	[Color("DarkGree

n"),	Color("LightGreen")]),	startPoint:	.leading,	endPoint:	.trailing))

												.cornerRadius(40)

												.padding(.horizontal,	20)

				}

}

The	protocol	requires	us	to	provide	the	implementation	of	the		makeBody		function	that
accepts	a		configuration		parameter.	The		configuration		parameter	includes	a		label	
property	applies	modifiers	to	change	the	button's	style.	In	the	code	above,	we	apply	the
same	set	of	modifiers	that	we	used	before.

So,	how	do	you	apply	the	custom	style	to	a	button?	SwiftUI	provides	a	modifier	called
	.buttonStyle		for	you	to	apply	the	button	style	like	this:

150Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Button(action:	{

				print("Delete	tapped!")

})	{

				HStack	{

								Image(systemName:	"trash")

												.font(.title)

								Text("Delete")

												.fontWeight(.semibold)

												.font(.title)

				}

}

.buttonStyle(GradientBackgroundStyle())

Cool,	right?	The	code	is	now	simplified	and	you	can	easily	apply	the	button	style	to	any
button	with	just	one	line	of	code.

Figure	22.	Applying	the	custom	style	using	.buttonStyle	modifier

151Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

You	can	also	determine	if	the	button	is	pressed	by	accessing	the		isPressed		property.	This
allows	you	to	alter	the	style	of	the	button	when	the	user	taps	on	it.	For	example,	let's	say
we	want	to	make	the	button	a	bit	smaller	when	someone	presses	the	button.	You	add	a
line	of	code	like	this:

Figure	23.	Applying	the	custom	style	using	.buttonStyle	modifier

The		scaleEffect		modifier	lets	you	scale	up	or	down	a	button	(and	any	view).	To	scale	up
the	button,	you	provide	a	value	greater	than	1.0.	To	make	the	button	smaller,	enter	a
value	less	than	1.0.

.scaleEffect(configuration.isPressed	?	0.9	:	1.0)

So,	what	the	line	of	code	does	is	scale	down	the	button	(i.e.		0.9)	when	the	button	is
pressed	and	scales	back	to	its	original	size	(i.e.		1.0)	when	the	user	lifts	their	finger.	Run
the	app,	you	should	see	a	nice	animation	when	the	button	is	scaled	up	and	down.	This	is
the	power	of	SwiftUI.	You	do	not	need	to	write	any	extra	lines	of	code	and	it	comes	with
built-in	animation.

Exercise

Your	exercise	is	to	create	an	animated	button	which	shows	a	plus	icon.	When	a	user
presses	the	button,	the	plus	icon	will	rotate	(clockwise/counterclockwise)	to	become	a
cross	icon.

152Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	24.	Rotate	the	icon	when	a	user	presses	it

As	a	hint,	the	modifier		rotationEffect		may	be	used	to	rotate	the	button	(or	other	view).

Summary

In	this	chapter,	we	covered	the	basics	of	creating	buttons	in	SwiftUI.	Buttons	play	a	key
role	in	any	application	UI.	Well	designed	buttons,	not	only	make	your	UI	more	appealing,
but	bring	the	user	experience	of	your	app	to	the	next	level.	As	you	have	learned,	by
mixing	SF	Symbols,	gradients,	and	animations	together,	you	can	easily	build	attractive
and	useful	buttons.

For	reference,	you	can	download	the	complete	button	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIButton.zip)

153Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIButton.zip

Chapter	7
Understanding	State	and	Binding
State	management	is	something	every	developer	has	to	deal	with	in	application
development.	Imagine	that	you	are	developing	a	music	player	app.	When	a	user	taps	the
Play	button,	the	button	will	change	itself	to	a	Stop	button.	In	your	implementation,	there
must	be	some	way	to	keep	track	of	the	application's	state	so	that	you	know	when	to
change	the	button's	appearance.

Figure	1.	Stop	and	Play	buttons

SwiftUI	comes	with	a	few	built-in	features	for	state	management.	In	particular,	it
introduces	a	property	wrapper	named		@State	.	When	you	annotate	a	property	with
	@State	,	SwiftUI	automatically	stores	it	somewhere	in	your	application.	What's	more,
views	that	make	use	of	that	property	automatically	listen	to	the	value	change	of	the
property.	When	the	state	changes,	SwiftUI	will	recompute	those	views	and	update	the
application's	appearance.

Doesn't	it	sound	great?	Or	are	you	a	bit	confused	with	state	management?

154Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

You	will	get	a	better	understanding	of	state	and	binding	after	going	through	the	coding
examples	in	this	chapter	and	a	couple	of	exercises	I’ve	prepared	for	you.	Please	take	some
time	to	work	on	these.	It	will	help	you	master	this	important	concept	of	SwiftUI.

Creating	a	New	Project	with	SwiftUI	enabled

Let's	start	with	a	simple	example	that	I	just	described	earlier	to	see	how	to	switch
between	a	Play	button	and	a	Stop	button,	by	keeping	track	of	the	application's	state.
First,	fire	up	Xcode	and	create	a	new	project	using	the	App	template.	Set	the	name	of	the
project	to	SwiftUIState	but	you're	free	to	use	any	other	name.	Please	make	sure	SwiftUI
is	selected	as	the	Interface	option.

Figure	2.	Creating	a	new	project

155Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	you	save	the	project,	Xcode	will	load	the		ContentView.swift		file	and	display	a
preview	in	the	design	canvas.	Create	the	Play	button	like	this:

Button(action:	{

				//	Switch	between	the	play	and	stop	button

})	{

				Image(systemName:	"play.circle.fill")

				.font(.system(size:	150))

				.foregroundColor(.green)

}

We	make	use	of	the	system	image		play.circle.fill		and	color	the	button	green.

Figure	3.	Previewing	the	play	button

Controlling	the	Button's	State

156Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	button's	action	is	empty.	We	want	to	change	its	appearance	from	Play	to	Stop	when
someone	taps	the	button.	The	color	of	the	button	should	also	be	changed	to	red	when	the
stop	button	is	displayed.

So,	how	can	we	implement	that?	Obviously,	we	need	a	variable	to	keep	track	of	the
button's	state.	Let's	name	it		isPlaying	.	It's	a	boolean	variable	indicating	whether	the	app
is	in	the	Playing	state	or	not.	If		isPlaying		is	set	to		true	,	the	app	should	show	a	Stop
button.	If		isPlaying		is	set	to		false	,	the	app	shows	a	Play	button.	The	code	is	written
like	this:

struct	ContentView:	View	{

				private	var	isPlaying	=	false

				var	body:	some	View	{

								Button(action:	{

												//	Switch	between	play	and	stop	button

								})	{

												Image(systemName:	isPlaying	?	"stop.circle.fill"	:	"play.circle.fill")

												.font(.system(size:	150))

												.foregroundColor(isPlaying	?	.red	:	.green)

								}

				}

}

We	change	the	image's	name	and	color	by	referring	the	value	of	the		isPlaying		variable.
If	you	update	the	code	in	your	project,	you	should	see	a	Play	button	in	the	preview
canvas.	However,	if	you	set	the	default	value	of		isPlaying		to		true	,	you	would	see	a	Stop
button.

Now	the	question	is	how	can	the	app	monitor	the	change	of	the	state	(i.e.		isPlaying)	and
update	the	button	automatically?	With	SwiftUI,	all	you	need	to	do	is	prefix	the		isPlaying	
property	with		@State	:

@State	private	var	isPlaying	=	false

157Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	we	declare	the	property	as	a	state	variable,	SwiftUI	manages	the	storage	of
	isPlaying		and	monitors	its	value	change.	When	the	value	of		isPlaying		changes,	SwiftUI
automatically	recomputes	the	views	that	are	referencing	the		isPlaying		state.	In	our
sample	code,	it's	the	Button	that	changes

Only	access	a	state	property	from	inside	the	view’s	body	(or	from	functions	called
by	it).	For	this	reason,	you	should	declare	your	state	properties	as		private	,	to
prevent	clients	of	your	view	from	accessing	it

-	Apple's	official	documentation
(https://developer.apple.com/documentation/swiftui/state)

We	still	haven't	implemented	the	button's	action.	So,	let's	do	that	now:

Button(action:	{

				//	Switch	between	play	and	stop	button

				self.isPlaying.toggle()

})	{

				Image(systemName:	isPlaying	?	"stop.circle.fill"	:	"play.circle.fill")

				.font(.system(size:	150))

				.foregroundColor(isPlaying	?	.red	:	.green)

}

In	the		action		closure,	we	call	the		toggle()		method	to	toggle	the	Boolean	value	from
	false		to		true		or	from		true		to		false	.	Run	the	app	by	clicking	the	play	icon	in	the
preview	canvas	and	toggle	between	the	Play	and	Stop	button.

158Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/swiftui/state

Figure	4.	Toggle	between	the	Play	and	Stop	button

Did	you	notice	that	SwiftUI	renders	a	fade	animation	when	you	toggle	between	the
buttons?	This	animation	is	built-in	and	automatically	generated	for	you.	We	will	talk
more	about	animations	in	later	chapters	of	the	book,	but	as	you	can	see,	SwiftUI	makes
UI	animation	more	approachable	for	all	developers.

Exercise	#1

Your	exercise	is	to	create	a	counter	button	which	shows	the	number	of	taps.	When	a	user
taps	the	button,	the	counter	will	increase	by	one	and	display	the	total	number	of	taps.

159Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Toggle	between	the	Play	and	Stop	button

Working	with	Binding

Were	you	successful	in	creating	the	counter	button?	Instead	of	declaring	a	boolean
variable	as	a	state,	we	use	an	integer	state	variable	to	keep	track	of	the	count.	When	the
button	is	tapped,	the	counter	will	increase	by	1.	Figure	6	shows	the	code	snippet	to
achieve	this.

160Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	A	counter	button

Now	we	will	further	modify	the	code	to	display	three	counter	buttons	(see	figure	7).	All
three	buttons	share	the	same	counter.	No	matter	which	button	is	tapped,	the	counter	will
increase	by	1	and	all	the	buttons	will	be	invalidated	to	display	the	updated	count.

161Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Three	counter	buttons

As	you	can	see,	all	the	buttons	share	the	same	look	&	feel.	As	I've	explained	in	earlier
chapters,	rather	than	duplicating	the	code,	it's	always	a	good	practice	to	extract	a
common	view	into	a	reusable	subview.	We	can	extract	the	Button	to	create	an
independent	subview	like	this:

162Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	CounterButton:	View	{

				@Binding	var	counter:	Int

				var	color:	Color

				var	body:	some	View	{

								Button(action:	{

												self.counter	+=	1

								})	{

												Circle()

																.frame(width:	200,	height:	200)

																.foregroundColor(color)

																.overlay(

																				Text("\(counter)")

																								.font(.system(size:	100,	weight:	.bold,	design:	.rounded))

																								.foregroundColor(.white)

)

								}

				}

}

The		CounterButton		view	accepts	two	parameters:	counter	and	color.	You	can	create	a
button	colored	red	like	this:

CounterButton(counter:	$counter,	color:	.red)

You	should	notice	that	the		counter		variable	is	annotated	with		@Binding	.	When	you
create	a		CounterButton		instance,	the		counter		is	prefixed	by	a	$	sign.

What	do	they	mean?

After	we	extract	the	button	into	a	separate	view,		CounterButton		becomes	a	subview	of
	ContentView	.	The	counter	increment	is	now	done	in	the		CounterButton		view	instead	of	the
	ContentView	.	The		CounterButton		must	have	a	way	to	manage	the	state	variable	in	the
	ContentView	.

163Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The		@Binding		keyword	indicates	that	the	caller	must	provide	the	binding	of	the	state
variable.	It's	just	like	creating	the	two-way	connection	between	the		counter		in	the
	ContentView		and	the		counter		in	the		CounterButton	.	Updating		counter		in	the
	CounterButton		view	propagates	its	value	back	to	the		counter		state	in	the		ContentView	.

Figure	8.	Understanding	Binding

So,	what's	the		$		sign?	In	SwiftUI,	you	use	the	$	prefix	operator	to	get	the	binding	from	a
state	variable.

Now	that	you	understand	how	binding	works,	you	can	continue	to	create	the	other	two
buttons	and	align	them	vertically	using		VStack		like	this:

164Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	counter	=	1

				var	body:	some	View	{

								VStack	{

												CounterButton(counter:	$counter,	color:	.blue)

												CounterButton(counter:	$counter,	color:	.green)

												CounterButton(counter:	$counter,	color:	.red)

								}

				}

}

After	the	changes,	Run	the	app	to	test	it.	Tapping	any	of	the	buttons	will	increase	the
count	by	one.

Figure	9.	Testing	the	three	counter	buttons

Exercise	#2

165Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Presently,	all	the	buttons	share	the	same	count.	For	this	exercise,	you	are	required	to
modify	the	code	such	that	each	of	the	button	has	its	own	counter.	When	the	user	taps	the
blue	button,	the	app	only	increases	the	counter	of	the	blue	button	by	1.	In	addition,	you
will	need	to	provide	a	master	counter	that	sums	up	the	counter	of	all	buttons.	Figure	10
shows	the	sample	layout	for	the	exercise..

Figure	10.	Each	button	has	its	own	counter

Summary

The	support	of	State	in	SwiftUI	simplifies	state	management	in	application	development.
It's	important	you	understand	what		@State		and		@Binding		mean	because	they	play	a	big
part	in	SwiftUI	for	managing	states	and	UI	updates.	This	chapter	kicks	off	the	basics	of

166Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

state	management	in	SwiftUI.	Later,	you	will	learn	more	about	how	we	can	utilize
	@State		in	view	animation	and	how	to	manage	shared	states	among	multiple	views.

For	reference,	you	can	download	the	sample	state	project	below:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUICounter.zip)
Exercise
(https://www.appcoda.com/resources/swiftui2/SwiftUIMasterCounter.zip)

167Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUICounter.zip
https://www.appcoda.com/resources/swiftui2/SwiftUIMasterCounter.zip

Chapter	8
Implementing	Path	and	Shape	for
Line	Drawing	and	Pie	Charts
For	experienced	developers,	you	probably	have	used	the	Core	Graphics	APIs	to	draw
shapes	and	objects.	It's	a	very	powerful	framework	for	you	to	create	vector-based
drawings.	SwiftUI	also	provides	several	vector	drawing	APIs	for	developers	to	draw	lines
and	shapes.

In	this	chapter,	you	will	learn	how	to	draw	lines,	arcs,	pie	charts,	and	donut	charts	using
	Path		and	the	built-in		Shape		such	as		Circle		and		RoundedRectangle	.	Here	are	the	topics
we'll	cover:

Understanding	Path	and	how	to	draw	a	line
What	is	the		Shape		protocol	and	how	to	draw	a	custom	shape	by	conforming	to	the
protocol
How	to	draw	a	pie	chart
How	to	create	a	progress	indicator	with	an	open	circle
How	to	draw	a	donut	chart

Figure	1	shows	you	some	of	the	shapes	and	charts	that	we	will	create	in	this	chapter.

168Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Sample	shapes	and	charts

Understanding	Path

In	SwiftUI,	you	draw	lines	and	shapes	using		Path	.	If	you	refer	to	Apple's	documentation
(https://developer.apple.com/documentation/swiftui/path),		Path		is	a	struct	containing
the	outline	of	a	2D	shape.	Basically,	a	path	is	the	setting	of	a	point	of	origin,	then
drawning	lines	from	point	to	point.	Let	me	give	you	an	example.	Take	a	look	at	figure	2.
We	will	walk	thorugh	how	this	rectangle	is	drawn.

169Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/swiftui/path

Figure	2.	A	rectange	with	coordinates

If	you	were	to	verbally	tell	me	how	you	would	draw	the	rectangle	step	by	step,	you	would
probably	provide	the	following	description:

1.	 Move	the	point	(20,	20)
2.	 Draw	a	line	from	(20,	20)	to	(300,	20)
3.	 Draw	a	line	from	(300,	20)	to	(300,	200)
4.	 Draw	a	line	from	(300,	200)	to	(20,	200)
5.	 Fill	the	whole	area	in	green

That's	how		Path		is	works!	Let's	write	your	verbal	description	in	code:

Path()	{	path	in

				path.move(to:	CGPoint(x:	20,	y:	20))

				path.addLine(to:	CGPoint(x:	300,	y:	20))

				path.addLine(to:	CGPoint(x:	300,	y:	200))

				path.addLine(to:	CGPoint(x:	20,	y:	200))

}

.fill(Color.green)

170Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

You	initialize	a		Path		and	provide	detailed	instructions	in	the	closure.	You	call	the
	move(to:)		method	to	move	to	a	particular	coordinate.	To	draw	a	line	from	the	current
point	to	a	specific	point,	you	call	the		addLine(to:)		method.	By	default,	iOS	fills	the	path
with	the	default	foreground	color,	which	is	black.	To	fill	it	with	a	different	color,	you	can
use	the		.fill		modifier	and	set	a	different	color.

Test	the	code	by	creating	a	new	project	using	the	App	template.	Name	the	project
	SwiftUIShape		(or	whatever	name	you	like)	and	then	type	the	above	code	snippet	in	the
	body	.	The	preview	canvas	should	display	a	rectangle	in	green.

Figure	3.	Drawing	a	rectangle	using	Path

Using	Stroke	to	Draw	Borders

You're	not	required	to	fill	the	whole	area	with	color.	If	you	just	want	to	draw	the	lines,
you	can	use	the		.stroke		modifier	and	specify	the	line	width	and	color.	Figure	4	shows
the	result.

171Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Drawing	the	lines	with	stroke

Because	we	didn't	specify	a	step	to	draw	the	line	to	the	point	of	origin,	it	shows	an	open-
ended	path.	To	close	the	path,	you	can	call	the		closeSubpath()		method	at	the	end	of	the
	Path		closure,	that	will	automatically	connect	the	current	point	with	the	point	of	origin.

172Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Closing	the	path	with	closeSubpath()

Drawing	Curves

	Path		provides	several	built-in	APIs	to	help	you	draw	different	shapes.	You	are	not
limited	to	drawing	straight	lines.	The		addQuadCurve	,		addCurve	,	and		addArc		allow	you	to
create	curves	and	arcs.	Let's	say,	you	want	to	draw	a	dome	on	top	of	a	rectangle	like	that
shown	in	figure	6.

173Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	A	dome	with	a	rectangle	bottom

You	write	the	code	like	this:

Path()	{	path	in

				path.move(to:	CGPoint(x:	20,	y:	60))

				path.addLine(to:	CGPoint(x:	40,	y:	60))

				path.addQuadCurve(to:	CGPoint(x:	210,	y:	60),	control:	CGPoint(x:	125,	y:	0))

				path.addLine(to:	CGPoint(x:	230,	y:	60))

				path.addLine(to:	CGPoint(x:	230,	y:	100))

				path.addLine(to:	CGPoint(x:	20,	y:	100))

}

.fill(Color.purple)

The		addQuadCurve		method	lets	you	draw	a	curve	by	defining	a	control	point.	Referring	to
figure	6,	(40,	60)	and	(210,	60)	are	known	as	anchor	points.	(125,	0)	is	the	control	point,
which	is	calculated	to	create	the	dome	shape.	I'm	not	going	to	discuss	the	mathematics
involved	in	drawing	the	curve,	however,	try	to	change	the	value	of	the	control	point	to	see
its	effect.	In	brief,	this	control	point	controls	how	the	curve	is	drawn.	If	it's	placed	closer
to	the	top	of	the	rectangle	(e.g.	125,	30),	you	will	create	a	less	rounded	appearance.

Fill	and	Stroke

174Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

What	if	you	want	to	draw	the	border	of	the	shape	and	fill	the	shape	with	color	at	the	same
time?	The		fill		and		stroke		modifiers	cannot	be	used	in	parallel.	You	can	make	use	of
	ZStack		to	achieve	the	same	effect.	Here	is	the	code:

ZStack	{

				Path()	{	path	in

								path.move(to:	CGPoint(x:	20,	y:	60))

								path.addLine(to:	CGPoint(x:	40,	y:	60))

								path.addQuadCurve(to:	CGPoint(x:	210,	y:	60),	control:	CGPoint(x:	125,	y:	0

))

								path.addLine(to:	CGPoint(x:	230,	y:	60))

								path.addLine(to:	CGPoint(x:	230,	y:	100))

								path.addLine(to:	CGPoint(x:	20,	y:	100))

				}

				.fill(Color.purple)

				Path()	{	path	in

								path.move(to:	CGPoint(x:	20,	y:	60))

								path.addLine(to:	CGPoint(x:	40,	y:	60))

								path.addQuadCurve(to:	CGPoint(x:	210,	y:	60),	control:	CGPoint(x:	125,	y:	0

))

								path.addLine(to:	CGPoint(x:	230,	y:	60))

								path.addLine(to:	CGPoint(x:	230,	y:	100))

								path.addLine(to:	CGPoint(x:	20,	y:	100))

								path.closeSubpath()

				}

				.stroke(Color.black,	lineWidth:	5)

}

We	create	two		Path		objects	with	the	same	path	and	overlay	one	on	top	of	the	other	using
	ZStack	.	The	one	underneath	uses		fill		to	fill	the	dome	rectangle	with	purple	color.	The
one	overlayed	on	top	only	draws	the	borders	with	black	color.	Figure	7	shows	the	result.

175Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	A	dome	rectange	with	borders

Drawing	Arcs	and	Pie	Charts

SwiftUI	provides	a	convenient	API	for	developers	to	draw	arcs.	This	API	is	incredibly
useful	to	compose	various	shapes	and	objects	including	pie	charts.	To	draw	an	arc,	you
write	the	code	like	this:

Path	{	path	in

				path.move(to:	CGPoint(x:	200,	y:	200))

				path.addArc(center:	.init(x:	200,	y:	200),	radius:	150,	startAngle:	Angle(degr

ees:	0.0),	endAngle:	Angle(degrees:	90),	clockwise:	true)

}

.fill(Color.green)

Enter	this	code	in	the	body,	you	will	see	an	arc	that	fills	with	green	color	in	the	preview
canvas.

176Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	A	sample	arc

In	the	code,	we	first	move	to	the	starting	point	(200,	200).	Then	we	call		addArc		to	create
the	arc.	The		addArc		method	accepts	several	parameters:

center	-	the	center	point	of	the	circle
radius	-	the	radius	of	the	circle	for	creating	the	arc
startAngle	-	the	starting	angle	of	the	arc
endAngle	-	the	ending	angle	of	the	arc
clockwise	-	the	direction	to	draw	the	arc

If	you	just	look	at	the	name	of	the	startAngle	and	endAngle	parameters,	you	might	be	a
bit	confused	with	their	meaning.	Figure	9	will	give	you	a	better	idea	of	how	these
parameters	work.

177Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Understanding	starting	and	end	angle

By	using		addArc	,	you	can	easily	create	a	pie	chart	with	different	colored	segments.	All
you	need	to	do	is	overlay	different	pie	segments	with		ZStack	.	Each	segment	has	different
values	for		startAngle		and		endAngle		to	compose	the	chart.	Here	is	an	example:

178Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ZStack	{

				Path	{	path	in

								path.move(to:	CGPoint(x:	187,	y:	187))

								path.addArc(center:	.init(x:	187,	y:	187),	radius:	150,	startAngle:	Angle(

degrees:	0.0),	endAngle:	Angle(degrees:	190),	clockwise:	true)

				}

				.fill(Color(.systemYellow))

				Path	{	path	in

								path.move(to:	CGPoint(x:	187,	y:	187))

								path.addArc(center:	.init(x:	187,	y:	187),	radius:	150,	startAngle:	Angle(

degrees:	190),	endAngle:	Angle(degrees:	110),	clockwise:	true)

				}

				.fill(Color(.systemTeal))

				Path	{	path	in

								path.move(to:	CGPoint(x:	187,	y:	187))

								path.addArc(center:	.init(x:	187,	y:	187),	radius:	150,	startAngle:	Angle(

degrees:	110),	endAngle:	Angle(degrees:	90),	clockwise:	true)

				}

				.fill(Color(.systemBlue))

				Path	{	path	in

								path.move(to:	CGPoint(x:	187,	y:	187))

								path.addArc(center:	.init(x:	187,	y:	187),	radius:	150,	startAngle:	Angle(

degrees:	90.0),	endAngle:	Angle(degrees:	360),	clockwise:	true)

				}

				.fill(Color(.systemPurple))

}

This	will	render	a	pie	chart	with	4	segments.	If	you	want	to	have	more	segments,	just
create	additional	path	objects	with	different	angle	values.	As	a	side	note,	the	color	I	used
comes	from	the	standard	color	objects	provided	in	iOS	13	(or	later).	You	can	check	out
the	full	set	of	color	objects	at
https://developer.apple.com/documentation/uikit/uicolor/standard_colors.

179Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/uikit/uicolor/standard_colors

Sometimes,	you	may	want	to	highlight	a	particular	segment	by	splitting	it	from	the	pie
chart.	Say,	to	highlight	the	segment	in	purple,	you	can	apply	the		offset		modifier	to	re-
position	the	segment:

Path	{	path	in

				path.move(to:	CGPoint(x:	187,	y:	187))

				path.addArc(center:	.init(x:	187,	y:	187),	radius:	150,	startAngle:	Angle(degr

ees:	90.0),	endAngle:	Angle(degrees:	360),	clockwise:	true)

}

.fill(Color(.systemPurple))

.offset(x:	20,	y:	20)

Optionally,	you	can	overlay	a	border	to	further	catch	people's	attention.	If	you	want	to
add	a	label	to	the	highlighted	segment,	you	can	also	overlay	a		Text		view	like	this:

Path	{	path	in

				path.move(to:	CGPoint(x:	187,	y:	187))

				path.addArc(center:	.init(x:	187,	y:	187),	radius:	150,	startAngle:	Angle(degr

ees:	90.0),	endAngle:	Angle(degrees:	360),	clockwise:	true)

				path.closeSubpath()

}

.stroke(Color(red:	52/255,	green:	52/255,	blue:	122/255),	lineWidth:	10)

.offset(x:	20,	y:	20)

.overlay(

				Text("25%")

								.font(.system(.largeTitle,	design:	.rounded))

								.bold()

								.foregroundColor(.white)

								.offset(x:	80,	y:	-100)

)

This	path	has	the	same	starting	and	end	angle	as	the	purple	segment,	however;	it	only
draws	the	border	and	adds	a	text	view	in	order	to	make	the	segment	stand	out.	Figure	10
shows	the	end	result.

180Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	A	pie	chart	with	a	highlighted	segment

Understanding	the	Shape	Protocol

Before	we	look	into	the		Shape		protocol,	let's	begin	with	a	simple	exercise.	Based	on	what
you	have	learned,	draw	the	following	shape	with		Path	.

Figure	11.	Your	exercise

181Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Don't	look	at	the	solution	yet.	Try	to	build	one	by	yourself.

Okay,	to	build	this	shape,	you	create	a		Path		using		addLine		and		addQuadCurve	:

Path()	{	path	in

				path.move(to:	CGPoint(x:	0,	y:	0))

				path.addQuadCurve(to:	CGPoint(x:	200,	y:	0),	control:	CGPoint(x:	100,	y:	-20))

				path.addLine(to:	CGPoint(x:	200,	y:	40))

				path.addLine(to:	CGPoint(x:	200,	y:	40))

				path.addLine(to:	CGPoint(x:	0,	y:	40))

}

.fill(Color.green)

If	you've	read	the	documentation	for		Path	,	you	may	find	another	function	called
	addRect	,	which	lets	you	draw	a	rectangle	with	a	specific	width	and	height.	Let's	use	it	to
create	the	same	shape:

Path()	{	path	in

				path.move(to:	CGPoint(x:	0,	y:	0))

				path.addQuadCurve(to:	CGPoint(x:	200,	y:	0),	control:	CGPoint(x:	100,	y:	-20))

				path.addRect(CGRect(x:	0,	y:	0,	width:	200,	height:	40))

}

.fill(Color.green)

Let's	talk	about	the		Shape		protocol.	The	protocol	is	very	simple	with	only	one
requirement.	To	adopt	it,	you	must	implement	the	following	function:

func	path(in	rect:	CGRect)	->	Path

When	is	it	useful	to	adopt	the		Shape		protocol?	To	answer	this,	let's	say	you	want	to
create	a	button	with	the	dome	shape	but	flexible	size.	Is	it	possible	to	reuse	the		Path		that
you	have	just	created?

Take	a	look	at	the	code	above	again.	You	created	a	path	with	absolute	coordinates	and
size.	In	order	to	create	the	same	shape	but	with	variable	size,	you	can	create	a	struct	to
adopt	the		Shape		protocol	and	implement	the		path(in:)		function.	When	the		path(in:)	

182Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

function	is	called	by	the	framework,	you	will	be	given	the		rect		size.	You	can	then	draw
the	path	within	that		rect	.

In	the	code	that	follows	we	create	the		Dome		shape	using	a		path(in:)		function.

struct	Dome:	Shape	{

				func	path(in	rect:	CGRect)	->	Path	{

								var	path	=	Path()

								path.move(to:	CGPoint(x:	0,	y:	0))

								path.addQuadCurve(to:	CGPoint(x:	rect.size.width,	y:	0),	control:	CGPoint(

x:	rect.size.width/2,	y:	-(rect.size.width	*	0.1)))

								path.addRect(CGRect(x:	0,	y:	0,	width:	rect.size.width,	height:	rect.size.

height))

								return	path

				}

}

By	adopting	the	protocol,	we	are	given	the	rectangular	area	for	drawing	the	path.	From
the		rect	,	we	get	the	width	and	height	of	the	rectangular	area	to	compute	the	control
point	and	draw	the	rectangle	base.

With	the	dynamic	shape,	you	can	create	various	SwiftUI	controls.	For	example,	you	can
create	a	button	with	the		Dome		shape	like	this:

Button(action:	{

				//	Action	to	perform

})	{

				Text("Test")

								.font(.system(.title,	design:	.rounded))

								.bold()

								.foregroundColor(.white)

								.frame(width:	250,	height:	50)

								.background(Dome().fill(Color.red))

}

183Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	apply	the		Dome		shape	as	the	background	of	the	button.	Its	width	and	height	are
based	on	the	specified	frame	size.

Figure	12.	Creating	a	button	with	the	Dome	shape

Using	the	Built-in	Shapes

Earlier,	we	built	a	custom	shape	by	using	the		Shape		protocol.	SwiftUI	actually	comes
with	several	built-in	shapes	including		Circle	,		Rectangle	,		RoundedRectangle	,		Ellipse	,
etc.	If	you	don't	need	anything	fancy,	these	shapes	are	good	enough	for	you	to	create
common	objects.

184Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	A	stop	button

Let's	say,	you	want	to	create	a	stop	button	like	the	one	shown	in	figure	13.	It's	composed
of	a	rounded	rectangle	and	a	circle.	You	can	write	the	code	like	this:

Circle()

				.foregroundColor(.green)

				.frame(width:	200,	height:	200)

				.overlay(

								RoundedRectangle(cornerRadius:	5)

												.frame(width:	80,	height:	80)

												.foregroundColor(.white)

)

Here,	we	initialize	a		Circle		view	and	then	overlay	a		RoundedRectangle		view	on	it.

Creating	a	Progress	Indicator	Using	Shapes

By	mixing	and	matching	the	built-in	shapes,	you	can	create	various	types	of	vector-based
UI	controls	for	your	applications.	Let	me	show	you	another	example.	Figure	14	shows	you
a	progress	indicator	that	can	be	built	by	using		Circle	.

185Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	A	progress	indicator

This	progress	indicator	is	actually	composed	of	two	circles.	We	have	a	gray	outline	of	a
circle	underneath.	On	top	of	the	grey	circle,	is	an	open	outline	of	a	circle	indicating	the
completion	progress.	In	your	project,	write	the	code	in		ContentView		like	this:

struct	ContentView:	View	{

				private	var	purpleGradient	=	LinearGradient(gradient:	Gradient(colors:	[Color

(red:	207/255,	green:	150/255,	blue:	207/255),	Color(red:	107/255,	green:	116/255,

	blue:	179/255)]),	startPoint:	.trailing,	endPoint:	.leading)

				var	body:	some	View	{

								ZStack	{

												Circle()

																.stroke(Color(.systemGray6),	lineWidth:	20)

																.frame(width:	300,	height:	300)

								}

				}

}

186Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	use	the		stroke		modifier	to	draw	the	outline	of	the	grey	circle.	You	may	adjust	the
value	of	the		lineWidth		parameter	if	you	prefer	thicker	(or	thinner)	lines.	The
	purpleGradient		property	defines	the	purple	gradient	that	we	will	use	later	in	drawing	the
open	circle.

Figure	15.	Drawing	a	gray	circle

Now,	insert	the	following	code	in		ZStack		to	create	the	open	circle:

Circle()

				.trim(from:	0,	to:	0.85)

				.stroke(purpleGradient,	lineWidth:	20)

				.frame(width:	300,	height:	300)

				.overlay(

								VStack	{

												Text("85%")

																.font(.system(size:	80,	weight:	.bold,	design:	.rounded))

																.foregroundColor(Color(.systemGray))

												Text("Complete")

												.font(.system(.body,	design:	.rounded))

												.bold()

												.foregroundColor(Color(.systemGray))

								}

)

187Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	create	an	open	circle,	add	the		trim		modifier.	You	specify	a		from		value	and	a		to	
value	to	indicate	which	segment	of	the	circle	should	be	shown.	In	this	case,	we	want	to
show	progress	of	85%.	So,	we	set	the		from		value	to	0	and	the		to		value	to	0.85.

To	display	the	completion	percentage,	we	overlay	a	text	view	in	the	middle	of	the	circle.

Figure	16.	Drawing	the	progress	view

Drawing	a	Donut	Chart

The	last	example	I	want	to	show	you	is	a	donut	chart.	If	you	fully	understand	how	the
	trim		modifier	works,	you	may	already	know	how	we	are	going	to	implement	the	donut
chart.	By	playing	around	with	the	values	of	the		trim		modifier,	we	can	break	a	circle	into
multiple	segments.

That's	the	technique	we	use	to	create	a	donut	chart	and	here	is	the	code:

188Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ZStack	{

				Circle()

								.trim(from:	0,	to:	0.4)

								.stroke(Color(.systemBlue),	lineWidth:	80)

				Circle()

								.trim(from:	0.4,	to:	0.6)

								.stroke(Color(.systemTeal),	lineWidth:	80)

				Circle()

								.trim(from:	0.6,	to:	0.75)

								.stroke(Color(.systemPurple),	lineWidth:	80)

				Circle()

								.trim(from:	0.75,	to:	1)

								.stroke(Color(.systemYellow),	lineWidth:	90)

								.overlay(

												Text("25%")

																.font(.system(.title,	design:	.rounded))

																.bold()

																.foregroundColor(.white)

																.offset(x:	80,	y:	-100)

)

}

.frame(width:	250,	height:	250)

The	first	segment	represents	40%	of	the	circle.	The	second	segment	20%	of	the	circle,	but
note	that	the		from		value	is	0.4	instead	of	0.	This	starts	the	second	segment	at	the	end	of
the	first	segment.

For	the	last	segment,	I	intentionally	set	the	line	width	to	a	larger	value	so	that	this
segment	stands	out	from	the	others.	If	you	don't	like	that,	you	can	change	the	value	of
	lineWidth		from		90		to		80	.

189Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	17.	Drawing	the	donut	chart

Summary

I	hope	you	enjoyed	reading	this	chapter	and	coding	the	demo	projects.	With	these
drawing	APIs,	provided	by	the	framework,	you	can	easily	create	custom	shapes	for	your
application.	There	is	a	lot	you	can	do	with		Path		and		Shape	.	I	have	covered	just	a	few	of
these	in	this	chapter,	try	to	apply	what	you've	learned	and	further	explore	these	powerful
APIs,	they	are	magical!

For	reference,	you	can	download	the	shapes	project	files	below:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIShape.zip)

190Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIShape.zip

Chapter	9
Basic	Animations	and	Transitions
Have	you	ever	used	the	magic	move	animation	in	Keynote?	With	magic	move,	you	can
easily	create	slick	animation	between	slides.	Keynote	automatically	analyzes	the	objects
between	slides	and	renders	the	animations	automatically.	To	me,	SwiftUI	has	brought
Magic	Move	to	app	development.	Animations	using	the	framework	are	automatic	and
magical.	You	define	two	states	of	a	view	and	SwiftUI	will	figure	out	the	rest,	animating
the	changes	between	the	two	states.

SwiftUI	empowers	you	to	animate	changes	for	individual	views	and	transitions	between
views.	The	framework	comes	with	a	number	of	built-in	animations	to	create	different
effects.

In	this	chapter,	you	will	learn	how	to	animate	views	using	implicit	and	explicit
animations,	provided	by	SwiftUI.	As	usual,	we'll	work	on	a	few	demo	projects	and	learn
the	programming	technique	along	the	way.

Implicit	and	Explicit	Animations

SwiftUI	provides	two	types	of	animations:	implicit	and	explicit.	Both	approaches	allow
you	to	animate	views	and	view	transitions.	For	implementing	implicit	animations,	the
framework	provides	a	modifier	called		animation	.	You	attach	this	modifier	to	the	views
you	want	to	animate	and	specify	your	preferred	animation	type.	Optionally,	you	can
define	the	animation	duration	and	delay.	SwiftUI	will	then	automatically	render	the
animation	based	on	the	state	changes	of	the	views.

Explicit	animations	offer	more	finite	control	over	the	animations	you	want	to	present.
Instead	of	attaching	a	modifier	to	the	view,	you	tell	SwiftUI	what	state	changes	you	want
to	animate	inside	the		withAnimation()		block.

A	bit	confused?	That's	fine.	You	will	have	a	better	idea	after	going	through	a	couple	of
examples.

191Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Implicit	Animations

Let's	begin	with	implicit	animations.	Create	a	new	project,	name	it		SwiftUIAnimation		(or
whatever	name	you	like).	Be	sure	to	select	SwiftUI	for	the	interface!

Figure	1.	Animate	a	button's	state	change

Take	a	look	at	figure	1.	It's	a	simple	tappable	view	that	is	composed	of	a	red	circle	and	a
heart.	When	a	user	taps	the	heart	or	circle,	the	circle's	color	will	be	changed	to	light	gray
and	the	heart's	color	to	red.	At	the	same	time,	the	size	of	the	heart	icon	grows	bigger.	We
have	various	state	changes	here:

1.	 The	color	of	the	circle	changes	from	red	to	light	gray.
2.	 The	color	of	the	heart	icon	changes	from	white	to	red.
3.	 The	heart	icon	doubles	its	original	size.

To	implement	the	tappable	circle	using	SwiftUI,	add	the	following	code	to
	ContentView.swift	:

192Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	circleColorChanged	=	false

				@State	private	var	heartColorChanged	=	false

				@State	private	var	heartSizeChanged	=	false

				var	body:	some	View	{

								ZStack	{

												Circle()

																.frame(width:	200,	height:	200)

																.foregroundColor(circleColorChanged	?	Color(.systemGray5)	:	.red)

												Image(systemName:	"heart.fill")

																.foregroundColor(heartColorChanged	?	.red	:	.white)

																.font(.system(size:	100))

																.scaleEffect(heartSizeChanged	?	1.0	:	0.5)

								}

								.onTapGesture	{

												self.circleColorChanged.toggle()

												self.heartColorChanged.toggle()

												self.heartSizeChanged.toggle()

								}

				}

}

We	define	three	state	variables	to	model	the	states	of	the	circle	color,	heart	color	and
heart	size,	with	the	inital	value	set	to	false.	To	create	the	circle	and	heart,	we	use		ZStack	
to	overlay	the	heart	image	on	top	of	the	circle.	SwiftUI	comes	with	the		onTapGesture	
modifier	to	detect	the	tap	gesture.	You	can	attach	it	to	any	view	to	make	it	tappable.	In
the		onTapGesture		closure,	we	toggle	the	states	to	change	the	view's	appearance.

193Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Implementing	the	circle	and	heart	views

If	you	run	the	app	in	the	canvas,	the	color	of	the	circle	and	heart	icon	change	when	you
tap	the	view.	However,	these	changes	are	not	animated.

To	animate	the	changes,	you	need	to	attach	the		animation		modifier	to	both		Circle		and
	Image		views:

Circle()

				.frame(width:	200,	height:	200)

				.foregroundColor(circleColorChanged	?	Color(.systemGray5)	:	.red)

				.animation(.default)

Image(systemName:	"heart.fill")

				.foregroundColor(heartColorChanged	?	.red	:	.white)

				.font(.system(size:	100))

				.scaleEffect(heartSizeChanged	?	1.0	:	0.5)

				.animation(.default)

194Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

SwiftUI	automatically	computes	and	renders	the	animation	that	allows	the	views	to	go
smoothly	from	one	state	to	another	state.	Tap	the	heart	again	and	you	should	see	a	slick
animation.

Not	only	can	you	apply	the		animation		modifier	to	a	single	view,	it	is	applicable	to	a	group
of	views.	For	example,	you	can	rewrite	the	code	above	by	attaching	the		animation	
modifier	to		ZStack		like	this:

ZStack	{

				Circle()

								.frame(width:	200,	height:	200)

								.foregroundColor(circleColorChanged	?	Color(.systemGray5)	:	.red)

				Image(systemName:	"heart.fill")

								.foregroundColor(heartColorChanged	?	.red	:	.white)

								.font(.system(size:	100))

								.scaleEffect(heartSizeChanged	?	1.0	:	0.5)

}

.animation(.default)

.onTapGesture	{

				self.circleColorChanged.toggle()

				self.heartColorChanged.toggle()

				self.heartSizeChanged.toggle()

}

It	works	exactly	same.	SwiftUI	looks	for	all	the	state	changes	embedded	in		ZStack		and
creates	the	animations.

In	the	example,	we	use	the	default	animation.	SwiftUI	provides	a	number	of	built-in
animations	for	you	to	choose	including		linear	,		easeIn	,		easeOut	,		easeInOut	,	and
	spring	.	The		linear		animation	animates	the	changes	in	linear	speed,	while	other	easing
animations	have	various	speed.	For	details,	you	can	check	out	www.easings.net	to	see	the
difference	between	each	of	the	easing	functions.

To	use	an	alternate	animation,	you	just	need	to	set	the	specific	animation	in	the
	animation		modifier.	Let's	say,	you	want	to	use	the		spring		animation,	you	can	change
	.default		to	the	following:

195Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.animation(.spring(response:	0.3,	dampingFraction:	0.3,	blendDuration:	0.3))

This	renders	a	spring-based	animation	that	gives	the	heart	a	bumpy	effect.	You	can
adjust	the	damping	and	blend	values	to	achieve	a	different	effect.

Explicit	Animations

That's	how	you	animate	views	using	implicit	animation.	Let's	see	how	we	can	achieve	the
same	result	using	explicit	animation.	As	explained	before,	you	need	to	wrap	the	state
changes	in	a		withAnimation		block.	To	create	the	same	animated	effect,	you	can	write	the
code	like	this:

ZStack	{

				Circle()

								.frame(width:	200,	height:	200)

								.foregroundColor(circleColorChanged	?	Color(.systemGray5)	:	.red)

				Image(systemName:	"heart.fill")

								.foregroundColor(heartColorChanged	?	.red	:	.white)

								.font(.system(size:	100))

								.scaleEffect(heartSizeChanged	?	1.0	:	0.5)

}

.onTapGesture	{

				withAnimation(.default)	{

								self.circleColorChanged.toggle()

								self.heartColorChanged.toggle()

								self.heartSizeChanged.toggle()

				}

}

We	no	longer	use	the		animation		modifier,	instead	we	wrap	the	code	in		onTapGesture		with
	withAnimation	.	The		withAnimation		call	takes	in	an	animation	parameter.	Here	we	specify
to	use	the	default	animation.

Of	course,	you	can	change	it	to	spring	animation	by	updating		withAnimation		like	this:

196Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

withAnimation(.spring(response:	0.3,	dampingFraction:	0.3,	blendDuration:	0.3))	{

				self.circleColorChanged.toggle()

				self.heartColorChanged.toggle()

				self.heartSizeChanged.toggle()

}

With	explicit	animation,	you	can	easily	control	which	state	you	want	to	animate.	For
example,	if	you	don't	want	to	animate	the	size	change	of	the	heart	icon,	you	can	exclude
that	line	of	code	from		withAnimation		like	this:

.onTapGesture	{

				withAnimation(.spring(response:	0.3,	dampingFraction:	0.3,	blendDuration:	0.3)

)	{

								self.circleColorChanged.toggle()

								self.heartColorChanged.toggle()

				}

				self.heartSizeChanged.toggle()

}

In	this	case,	SwiftUI	will	only	animate	the	color	change	of	both	circle	and	heart.	You	will
no	longer	see	the	animated	growing	effect	of	the	heart	icon.

You	may	wonder	if	we	can	disable	the	scale	animation	by	using	implicit	animation.	You
can!	You	can	reorder	the		.animation		modifier	to	prevent	SwiftUI	from	animating	a
certain	state	change.	Here	is	the	code	that	achieves	the	same	effect:

197Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ZStack	{

				Circle()

								.frame(width:	200,	height:	200)

								.foregroundColor(circleColorChanged	?	Color(.systemGray5)	:	.red)

								.animation(.spring(response:	0.3,	dampingFraction:	0.3,	blendDuration:	0.3

))

				Image(systemName:	"heart.fill")

								.foregroundColor(heartColorChanged	?	.red	:	.white)

								.font(.system(size:	100))

								.animation(.spring(response:	0.3,	dampingFraction:	0.3,	blendDuration:	0.3

))

								.scaleEffect(heartSizeChanged	?	1.0	:	0.5)

}

.onTapGesture	{

				self.circleColorChanged.toggle()

				self.heartColorChanged.toggle()

				self.heartSizeChanged.toggle()

}

For	the		Image		view,	we	place	the		animation		modifier	right	before		scaleEffect	.	This	will
cancel	the	animation.	The	state	change	of	the		scaleEffect		modifier	will	not	be	animated.

While	you	can	create	the	same	animation	using	implicit	animation,	in	my	opinion,	it's
more	convenient	to	use	explicit	animation	in	this	case.

Creating	a	Loading	Indicator	Using	RotationEffect

The	power	of	SwiftUI	animation	is	that	you	don't	need	to	care	how	the	views	are
animated.	All	you	need	is	to	provide	the	start	and	end	state.	SwiftUI	will	then	figure	out
the	rest.	Utilizing	this	concept,	you	can	create	various	types	of	animation.

198Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	A	sample	loading	indicator

For	example,	let's	create	a	simple	loading	indicator	that	you	can	commonly	find	in	a	real-
world	application	like	"Medium".	To	create	a	loading	indicator	like	that	shown	in	figure
3,	we	start	with	an	open	ended	circle	like	this:

Circle()

				.trim(from:	0,	to:	0.7)

				.stroke(Color.green,	lineWidth:	5)

				.frame(width:	100,	height:	100)

How	do	we	rotate	the	circle?	We	make	use	of	the		rotationEffect		and		animation	
modifiers.	The	trick	is	to	keep	rotating	the	circle	by	360	degrees.	Here	is	the	code:

199Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	isLoading	=	false

				var	body:	some	View	{

								Circle()

												.trim(from:	0,	to:	0.7)

												.stroke(Color.green,	lineWidth:	5)

												.frame(width:	100,	height:	100)

												.rotationEffect(Angle(degrees:	isLoading	?	360	:	0))

												.animation(Animation.default.repeatForever(autoreverses:	false))

												.onAppear()	{

																self.isLoading	=	true

												}

				}

}

The		rotationEffect		modifier	takes	in	the	rotation	degree	(360	degrees).	In	the	code
above,	we	have	a	state	variable	to	control	the	loading	status.	When	it's	set	to	true,	the
rotation	degree	will	be	set	to	360	to	rotate	the	circle.	In	the		animation		modifier,	we
specify	to	use	the		.default		animation,	but	there	is	a	difference.	We	tell	SwiftUI	to	repeat
the	same	animation	again	and	again.	This	is	the	trick	that	creates	the	loading	animation.

If	you	want	to	change	the	speed	of	the	animation,	you	can	use	the	linear	animation	and
specify	a	duration	like	this:

.animation(Animation.linear(duration:	5).repeatForever(autoreverses:	false))

The	greater	the	duration	value	the	slower	the	animation	(rotation).

The		onAppear		modifier	may	be	new	to	you.	If	you	have	some	knowledge	of	UIKit,	this
modifier	is	very	similar	to		viewDidAppear	.	It's	automatically	called	when	the	view	appears
on	screen.	In	the	code,	we	change	the	loading	status	to	true	in	order	to	start	the
animation	when	the	view	is	loaded	up.

Once	you	manage	this	technique,	you	can	tweak	the	design	and	develop	various	versions
of	loading	indicator.	For	example,	you	can	overlay	an	arc	on	a	circle	to	create	a	fancy
loading	indicator.

200Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	A	sample	loading	indicator

201Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	isLoading	=	false

				var	body:	some	View	{

								ZStack	{

												Circle()

																.stroke(Color(.systemGray5),	lineWidth:	14)

																.frame(width:	100,	height:	100)

												Circle()

																.trim(from:	0,	to:	0.2)

																.stroke(Color.green,	lineWidth:	7)

																.frame(width:	100,	height:	100)

																.rotationEffect(Angle(degrees:	isLoading	?	360	:	0))

																.animation(Animation.linear(duration:	1).repeatForever(autoreverse

s:	false))

																.onAppear()	{

																				self.isLoading	=	true

												}

								}

				}

}

The	loading	indicator	doesn't	need	to	be	circular.	You	can	also	use		Rectangle		or
	RoundedRectangle		to	create	the	indicator.	Instead	of	changing	the	rotation	angle,	you
modify	the	value	of	the	offset	to	create	an	animation	like	this.

202Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Another	example	of	the	loading	indicator

To	create	the	animation,	we	overlay	two	rounded	rectangles	together.	The	rectangle	on
top	is	much	shorter	than	the	one	below.	When	the	loading	begins,	we	update	its	offset
value	from	-110	to	110.

203Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	isLoading	=	false

				var	body:	some	View	{

								ZStack	{

												Text("Loading")

																.font(.system(.body,	design:	.rounded))

																.bold()

																.offset(x:	0,	y:	-25)

												RoundedRectangle(cornerRadius:	3)

																.stroke(Color(.systemGray5),	lineWidth:	3)

																.frame(width:	250,	height:	3)

												RoundedRectangle(cornerRadius:	3)

																.stroke(Color.green,	lineWidth:	3)

																.frame(width:	30,	height:	3)

																.offset(x:	isLoading	?	110	:	-110,	y:	0)

																.animation(Animation.linear(duration:	1).repeatForever(autoreverse

s:	false))

								}

								.onAppear()	{

												self.isLoading	=	true

								}

				}

}

This	moves	the	green	rectangle	along	the	line.	When	you	repeat	the	same	animation	over
and	over,	it	becomes	a	loading	animation.	Figure	6	illustrates	the	offset	values.

204Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	Another	example	of	the	loading	indicator

Creating	a	Progress	Indicator

The	loading	indicator	provides	feedback	to	the	user	that	the	app	is	working	on
something.	However,	it	doesn't	show	the	actual	progress.	If	you	need	to	give	users	more
information	about	the	progress	of	a	task,	you	may	want	to	build	a	progress	indicator.

Figure	7.	A	progress	indicator

205Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Building	a	progress	indicator	is	very	similar	to	that	of	the	loading	indicator.	But	you	need
a	state	variable	to	keep	track	of	the	progress.	Here	is	a	code	snippet	for	creating	the
indicator:

struct	ContentView:	View	{

				@State	private	var	progress:	CGFloat	=	0.0

				var	body:	some	View	{

								ZStack	{				

												Text("\(Int(progress	*	100))%")

																.font(.system(.title,	design:	.rounded))

																.bold()

												Circle()

																.stroke(Color(.systemGray5),	lineWidth:	10)

																.frame(width:	150,	height:	150)

												Circle()

																.trim(from:	0,	to:	progress)

																.stroke(Color.green,	lineWidth:	10)

																.frame(width:	150,	height:	150)

																.rotationEffect(Angle(degrees:	-90))

								}

								.onAppear()	{

												Timer.scheduledTimer(withTimeInterval:	0.5,	repeats:	true)	{	timer	in

																self.progress	+=	0.05

																print(self.progress)

																if	self.progress	>=	1.0	{

																				timer.invalidate()

																}

												}

								}

				}

}

Instead	of	a	boolean	state	variable,	we	use	a	floating	point	number	to	store	the	status.	To
display	progress,	we	set	the		trim		modifier	with	the	progress	value.	In	a	real	world
application,	you	can	update	the	value	of	the		progress		value	to	show	the	actual	progress

206Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

of	the	operation.	For	this	demo,	we	used	a	timer	which	updates	the	progress	every	half
second.

Delaying	an	Animation

Not	only	does	the	SwiftUI	framework	allow	you	to	control	the	duration	of	an	animation,
you	can	also	delay	an	animation	through	the		delay		function	like	this:

Animation.default.delay(1.0)

This	will	delay	the	start	of	the	animation	by	1	second.	The		delay		function	is	applicable	to
other	animations.

By	mixing	and	matching	the	values	of	duration	and	delay,	you	can	achieve	some
interesting	animations	like	the	dot	loading	indicator	below.

Figure	8.	A	dot	loading	indicator

This	indicator	is	composed	of	five	dots.	Each	dot	is	animated	to	scale	up	and	down,	but
with	different	time	delays.	Here	is	how	it's	implemented	in	code.

207Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	isLoading	=	false

				var	body:	some	View	{

								HStack	{

												ForEach(0...4,	id:	\.self)	{	index	in

																Circle()

																				.frame(width:	10,	height:	10)

																				.foregroundColor(.green)

																				.scaleEffect(self.isLoading	?	0	:	1)

																				.animation(Animation.linear(duration:	0.6).repeatForever().del

ay(0.2	*	Double(index)))

												}

								}

								.onAppear()	{

												self.isLoading	=	true

								}

				}

}

We	first	use	a		HStack		to	layout	the	circles	horizontally.	Since	all	five	circles	(dots)	are	the
same	size	and	color,	we	use		ForEach		to	create	the	circles.	The		scaleEffect		modifier	is
used	to	scale	the	circle's	size.	By	default,	it's	set	to	1,	which	is	its	original	size.	When	the
loading	starts,	the	value	is	updated	to	0.	This	will	minimize	the	dot.

The	line	of	code	for	rendering	the	animation	looks	a	bit	complicated.	Let's	break	it	down
and	look	at	it	step	by	step:

Animation.linear(duration:	0.6).repeatForever().delay(0.2	*	Double(index))

The	first	part	creates	a	linear	animation	with	a	duration	of	0.6	seconds.	This	animation	is
expected	to	run	repeatedly,	so	we	call	the		repeatForever		function.

If	you	run	the	animation	without	calling	the		delay		function,	all	the	dots	scales	up	and
down	simultaneously.	However,	this	is	not	what	we	want.	Instead	of	scaling	up/down	all
at	once,	each	dot	should	resize	itself	independently.	This	is	why	we	call	the		delay	
function	and	use	a	different	delay	value	for	each	dot	(based	on	its	order	in	the	row).

208Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

You	may	vary	the	value	of	duration	and	delay	to	tweak	the	animation.

Transforming	a	Rectangle	into	Circle

Sometimes,	you	probably	need	to	smoothly	transform	one	shape	(e.g.	rectangle)	into
another	(e.g.	circle).	With	the	built-in	shape	and	animation,	you	can	easily	create	this
transformation	as	shown	in	figure	9.

Figure	9.	Morphing	a	rectangle	into	a	circle

The	trick	of	morphing	a	rectangle	into	a	circle	is	to	use	the		RoundedRectangle		shape	and
animate	the	change	of	the	corner	radius.	Assuming	the	width	and	height	of	the	rectangle
are	the	same,	it	becomes	a	circle	when	its	corner	radius	is	set	to	half	of	its	width.	Here	is
the	implementation	of	the	morphing	button:

209Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	recordBegin	=	false

				@State	private	var	recording	=	false

				var	body:	some	View	{

								ZStack	{

												RoundedRectangle(cornerRadius:	recordBegin	?	30	:	5)

																.frame(width:	recordBegin	?	60	:	250,	height:	60)

																.foregroundColor(recordBegin	?	.red	:	.green)

																.overlay(

																				Image(systemName:	"mic.fill")

																								.font(.system(.title))

																								.foregroundColor(.white)

																								.scaleEffect(recording	?	0.7	:	1)

)

												RoundedRectangle(cornerRadius:	recordBegin	?	35	:	10)

																.trim(from:	0,	to:	recordBegin	?	0.0001	:	1)

																.stroke(lineWidth:	5)

																.frame(width:	recordBegin	?	70	:	260,	height:	70)

																.foregroundColor(.green)

								}

								.onTapGesture	{

												withAnimation(Animation.spring())	{

																self.recordBegin.toggle()

												}

												withAnimation(Animation.spring().repeatForever().delay(0.5))	{

																self.recording.toggle()

												}

								}

				}

}

We	have	two	state	variables	here:		recordBegin		and		recording		to	control	two	separate
animations.	The	first	variable	controls	the	morphing	of	the	button.	As	explained	before,
we	make	use	of	the	corner	radius	for	the	transformation.	The	width	of	the	rectangle	is

210Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

originally	set	to	250	points.	When	a	user	taps	the	rectangle	to	trigger	the	transformation,
the	frame's	width	is	changed	to	60	points.	Alongside	with	the	change,	the	corner	radius	is
changed	to	30	points,	which	is	half	of	the	width.

This	is	how	we	transform	a	rectangle	into	a	circle.	SwiftUI	automatically	renders	the
animation	of	this	transformation.

The		recording		state	variable,	handles	the	scaling	of	the	mic	image.	We	change	the
scaling	ratio	from	1	to	0.7	when	it's	in	the	recording	state.	By	running	the	same
animation	repeatedly,	it	creates	the	pulsing	animation.

Note	that	the	code	above	uses	the	explicit	approach	to	animate	the	views.	This	is	not
mandatory.	If	you	prefer,	you	can	use	the	implicit	animation	approach	to	achieve	the
same	result.

Understanding	Transitions

What	we	have	discussed	so	far	is	animating	a	view	that	already	exists	in	the	view
hierarchy.	We	animate	the	view's	size	by	scaling	it	up	and	down.

SwiftUI	allows	developers	to	do	more	than	that.	You	can	define	how	a	view	is	inserted	or
removed	from	the	view	hierarchy.	In	SwiftUI,	this	is	known	as	transition.	By	default,	the
framework	uses	fade	in	and	fade	out	transition.	However,	it	comes	with	several	ready-to-
use	transitions	such	as	slide,	move,	opacity,	etc.	Of	course,	you	are	allowed	to	develop
your	own	or	simply	mix	and	match	various	types	of	transitions	together	to	create	your
desired	transition.

211Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	A	sample	transition	created	using	SwiftUI

Building	a	Simple	Transition

Let's	take	a	look	at	a	simple	example	to	better	understand	what	a	transition	is	and	how	it
works	with	animations.	Create	a	new	project	named		SwiftUITransition		and	update	the
	ContentView		like	this:

212Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	body:	some	View	{

								VStack	{

												RoundedRectangle(cornerRadius:	10)

																.frame(width:	300,	height:	300)

																.foregroundColor(.green)

																.overlay(

																				Text("Show	details")

																								.font(.system(.largeTitle,	design:	.rounded))

																								.bold()

																								.foregroundColor(.white)

)

												RoundedRectangle(cornerRadius:	10)

																.frame(width:	300,	height:	300)

																.foregroundColor(.purple)

																.overlay(

																				Text("Well,	here	is	the	details")

																								.font(.system(.largeTitle,	design:	.rounded))

																								.bold()

																								.foregroundColor(.white)

)

								}

				}

}

In	the	code	above,	we	lay	out	two	squares	vertically	using		VStack	.	At	first,	the	purple
rectangle	should	be	hidden.	It's	displayed	only	when	a	user	taps	the	green	rectangle	(i.e.
Show	details).	In	order	to	show	the	purple	square,	we	need	to	make	the	green	square
tappable.

213Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	Layout	two	rectangles	vertically

To	do	that,	we	need	to	declare	a	state	variable	to	determine	whether	the	purple	square	is
shown	or	not.	Insert	this	line	of	code	in		ContentView	:

@State	private	var	show	=	false

Next,	to	hide	the	purple	square,	we	wrap	the	purple	square	within	a		if		clause	like	this:

214Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

if	show	{

				RoundedRectangle(cornerRadius:	10)

								.frame(width:	300,	height:	300)

								.foregroundColor(.purple)

								.overlay(

												Text("Well,	here	is	the	details")

																.font(.system(.largeTitle,	design:	.rounded))

																.bold()

																.foregroundColor(.white)

)

}

For	the		VStack	,	we	attach	the		onTapGesture		function	to	detect	a	tap	and	create	an
animation	for	the	state	change.	Note	that	the	transition	should	be	associated	with	an
animation,	otherwise,	it	won't	work	on	its	own.

.onTapGesture	{

				withAnimation(Animation.spring())	{

								self.show.toggle()

				}

}

Once	a	user	taps	the	stack,	we	toggle	the		show		variable	to	display	the	purple	square.	If
you	run	the	app	in	the	simulator	or	the	preview	canvas,	you	should	only	see	the	green
square.	Tapping	it	will	display	the	purple	rectangle	with	a	smooth	fade	in/out	transition.

215Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	The	fade	transition

As	mentioned,	if	you	do	not	specify	the	transition	you	want	to	use,	SwiftUI	renders	the
fade	in	and	out	transition.	To	use	an	alternative	transition,	attach	the		transition	
modifier	to	the	purple	square	like	this:

if	show	{

				RoundedRectangle(cornerRadius:	10)

								.frame(width:	300,	height:	300)

								.foregroundColor(.purple)

								.overlay(

												Text("Well,	here	is	the	details")

																.font(.system(.largeTitle,	design:	.rounded))

																.bold()

																.foregroundColor(.white)

)

								.transition(.scale(scale:	0,	anchor:	.bottom))

}

216Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The		transition		modifier	takes	in	a	parameter	of	the	type		AnyTransition	.	Here	we	use	the
	scale		transition	with	the	anchor	set	to		.bottom	.	That's	all	you	need	to	do	to	modify	the
transition.	Run	the	app	in	simulator.	You	should	see	a	pop	animation	when	the	app
reveals	the	purple	square.	I	suggest	testing	animations	using	the	built-in	simulator
instead	of	running	the	app	in	preview	because	the	preview	canvas	may	not	render	the
transition	correctly.

Figure	13.	Scaling	transition

In	addition	to		.scale	,	the	SwiftUI	framework	comes	with	several	built-in	transitions
including		.opaque	,		.offset	,		.move	,	and		.slide	.	Replace	the		.scale		transition	with
the		.offset		transition	like	this:

.transition(.offset(x:	-600,	y:	0))

This	time,	the	purple	square	slides	in	from	the	left	when	it's	inserted	into	the		VStack	.

217Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Combining	Transitions

You	can	combine	two	or	more	transitions	together	by	calling	the		combined(with:)		method
to	create	an	even	more	slick	transition.	For	example,	to	combine	the	offset	and	scale
animation,	you	write	the	code	like	this:

.transition(AnyTransition.offset(x:	-600,	y:	0).combined(with:	.scale))

Here	is	another	example	that	combines	three	transitions:

.transition(AnyTransition.offset(x:	-600,	y:	0).combined(with:	.scale).combined(wi

th:	.opacity))

Sometimes	you	need	to	define	a	reusable	animation.	You	can	define	an	extension	on
	AnyTransition		like	this:

extension	AnyTransition	{

				static	var	offsetScaleOpacity:	AnyTransition	{

								AnyTransition.offset(x:	-600,	y:	0).combined(with:	.scale).combined(with:	

.opacity)

				}

}

Then	you	can	use	the		offsetScaleOpacity		animation	in	the		transition		modifier	directly:

.transition(.offsetScaleOpacity)

Run	the	app	and	test	the	transition	again.	Does	it	look	great?

218Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	Combining	the	scale,	offset,	and	opacity	transition

Asymmetric	Transitions

The	transitions	that	we	just	discussed	are	all	symmetric,	meaning	that	the	insertion	and
removal	of	the	view	use	the	same	transition.	For	example,	if	you	apply	the	scale	transition
to	a	view,	SwiftUI	scales	up	the	view	when	it's	inserted	in	the	view	hierarchy.	When	it's
removed,	the	framework	scales	it	back	down	to	the	original	size.

So,	what	if	you	want	to	use	a	scale	transition	when	the	view	is	inserted	and	an	offset
transition	when	the	view	is	removed?	This	is	known	as	Assymetric	Transitions	in
SwiftUI.	It's	very	simple	to	use	this	type	of	transition.	You	just	need	to	call	the
	.assymetric		method	and	specify	both	the	insertion	&	removal	transitions.	Here	is	the
sample	code:

.transition(.asymmetric(insertion:	.scale(scale:	0,	anchor:	.bottom),	removal:	.of

fset(x:	-600,	y:	0)))

219Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Again,	if	you	need	to	reuse	the	transition,	you	can	define	an	extension	on		AnyTransition	
like	this:

extension	AnyTransition	{

				static	var	scaleAndOffset:	AnyTransition	{

								AnyTransition.asymmetric(

												insertion:	.scale(scale:	0,	anchor:	.bottom),

												removal:	.offset(x:	-600,	y:	00)

)

				}

}

Add	this	code	after	the	ContentView	block	and	before	the	ContentView_Previews	block.
Run	the	app	using	the	built-in	simulator.	You	should	see	the	scale	transition	when	the
purple	square	appears	on	screen.	When	you	tap	the	rectangles	again,	the	purple	rectangle
will	slide	off	the	screen.

Figure	15.	Assymetric	transition	demo

220Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Exercise	#1:	Using	Animation	and	Transition	to	Build	a
Fancy	Button

Now	that	you	have	learned	transitions	and	animations,	let	me	challenge	you	to	build	a
fancy	button	that	displays	the	current	state	of	an	operation.	If	you	can't	see	the	animation
below,	please	click	this	link	(https://www.appcoda.com/wp-
content/uploads/2019/10/swiftui-animation-16.gif)	to	see	the	animation.

Figure	16.	A	fancy	button

This	button	has	three	states:

The	original	state:	it	shows	a	Submit	button	in	green.
The	processing	state:	it	displays	a	rotating	circle	and	updates	its	label	to	Processing.
The	complete	state:	it	displays	the	Done	button	in	red.

It's	quite	a	challenging	project	that	will	test	your	knowledge	of	SwiftUI	animation	and
transition.	You	will	need	to	combine	everything	you've	learned	so	far	to	work	out	the
solution.

In	the	demo	button	shown	in	figure	16,	the	processing	takes	around	4	seconds.	You	do
not	need	to	perform	a	real	operation.	To	help	you	with	this	exercise,	I	use	the	following
code	to	simulate	an	operation.

221Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/wp-content/uploads/2019/10/swiftui-animation-16.gif

private	func	startProcessing()	{

				self.loading	=	true

				//	Simulate	an	operation	by	using	DispatchQueue.main.asyncAfter

				//	In	a	real	world	project,	you	will	perform	a	task	here.

				//	When	the	task	finishes,	you	set	the	completed	status	to	true

				DispatchQueue.main.asyncAfter(deadline:	.now()	+	4)	{

								self.completed	=	true

				}

}

Exercise	#2:	Animated	View	Transitions

You've	learned	how	to	implement	view	transitions.	Try	to	integrate	a	transition	with	the
card	view	project	that	you	built	in	chapter	5	and	create	a	view	transition	like	below.	When
a	user	taps	the	card,	the	current	view	will	scale	down	and	fade	away.	The	next	view	will
be	brought	to	the	front	with	a	scale-up	animation.

Figure	17.	Animated	view	transition

222Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

If	you	can't	understand	the	animation	above,	you	can	click	this	link
(https://www.appcoda.com/wp-content/uploads/2019/10/swiftui-view-animation.gif)
to	see	the	desired	result.

Summary

Animation	has	a	special	role	in	mobile	UI	design.	Well	thought	out	animation	improves
user	experience	and	brings	meaning	to	UI	interaction.	A	smooth	and	effortless	transition
between	two	views	will	delight	and	impress	your	users.	With	more	than	2	million	apps	on
the	App	Store,	it's	not	easy	to	make	your	app	stand	out.	However,	a	well-designed	UI
with	animation	will	definitely	make	a	difference!

Even	for	experienced	developers,	it's	not	an	easy	task	to	code	slick	animations.
Fortunately,	the	SwiftUI	framework	has	simplified	the	development	of	UI	animation	and
transition.	You	tell	the	framework	how	the	view	should	look	at	the	beginning	and	the
end.	SwiftUI	figures	out	the	rest,	rendering	a	smooth	and	nice	animation.

In	this	chapter,	I've	walked	you	through	the	basics.	But	as	you	can	see,	you've	already
built	some	delightful	animations	and	transitions.	Most	importantly,	it	needed	just	a	few
lines	of	code.

I	hope	you	enjoyed	reading	this	chapter	and	find	the	techniques	useful.	For	reference,
you	can	download	the	sample	projects	and	solutions	to	exercises	below:

Demo	projects	&	Exercise	#1
(https://www.appcoda.com/resources/swiftui2/SwiftUIAnimation.zip)

Exercise	#2
(https://www.appcoda.com/resources/swiftui2/SwiftUICardAnimation.zip)

223Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/wp-content/uploads/2019/10/swiftui-view-animation.gif
https://www.appcoda.com/resources/swiftui2/SwiftUIAnimation.zip
https://www.appcoda.com/resources/swiftui2/SwiftUICardAnimation.zip

Chapter	10
Understanding	List,	ForEach	and
Identifiable
In	UIKit,		UITableView		is	one	of	the	most	common	UI	controls	in	iOS.	If	you've	developed
apps	with	UIKit	before,	you	know	that	a	table	view	can	be	used	for	presenting	a	list	of
data.	This	UI	control	is	commonly	found	in	content-based	app	such	as	newspaper	apps.
Figure	1	shows	you	some	list/table	views	that	you	can	find	in	popular	apps	like
Instagram,	Twitter,	Airbnb,	and	Apple	News.

Figure	1.	Sample	list	views

Instead	of	using		UITableView	,	we	use		List		in	Swift	UI	to	present	rows	of	data.	If	you've
built	a	table	view	with	UIKit	before,	you	know	it'll	take	you	a	bit	of	work	to	implement	a
simple	table	view.	It'll	take	even	more	effort	to	build	a	table	view	with	custom	cell	layout.

224Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

SwiftUI	simplifies	this	whole	process.	With	just	a	few	lines	of	code,	you	will	be	able	to	list
data	in	table	form.	Even	if	you	need	to	customize	the	layout	of	the	rows,	it	only	requires
minimal	effort.

Feeling	confused?	No	worries.	You'll	understand	what	I	mean	in	a	while.

In	this	chapter,	we	will	start	with	a	simple	list.	Once	you	understand	the	basics,	I	will
show	you	how	to	present	a	list	of	data	with	a	more	complex	layout	as	shown	in	figure	2.

Figure	2.	Building	a	simple	and	complex	list

Creating	a	Simple	List

Let's	begin	with	a	simple	list.	First,	fire	up	Xcode	and	create	a	new	project	using	the	App
template.	In	the	next	screen,	set	the	product	name	to		SwiftUIList		(or	whatever	name	you
like)	and	fill	in	all	the	required	values.	Make	sure	you	select		SwiftUI		for	the	Interface

225Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

option.

Xcode	will	generate	the	"Hello	World"	code	in	the		ContentView.swift		file.	Replace	the
"Hello	World"	text	object	with	the	following:

struct	ContentView:	View	{

				var	body:	some	View	{

								List	{

												Text("Item	1")

												Text("Item	2")

												Text("Item	3")

												Text("Item	4")

								}

				}

}

That's	all	the	code	you	need	to	build	a	simple	list	or	table.	When	you	embed	the	text
views	in	a		List	,	the	list	view	will	present	the	data	in	rows.	Here,	each	row	shows	a	text
view	with	different	description.

Figure	3.	Creating	a	simple	list

226Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	same	code	snippet	can	be	written	like	this	using		ForEach	:

struct	ContentView:	View	{

				var	body:	some	View	{

								List	{

												ForEach(1...4,	id:	\.self)	{	index	in

																Text("Item	\(index)")

												}

								}

				}

}

Since	the	text	views	are	very	similar,	you	can	use		ForEach		in	SwiftUI	to	create	views	in	a
loop.

A	structure	that	computes	views	on	demand	from	an	underlying	collection	of	of
identified	data.

-	Apple's	official	documentation
(https://developer.apple.com/documentation/swiftui/foreach)

You	can	provide		ForEach		with	a	collection	of	data	or	a	range.	But	one	thing	you	have	to
take	note	of	is	that	you	need	to	tell		ForEach		how	to	identify	each	of	the	items	in	the
collection.	The	parameter		id		is	for	this	purpose.	Why	does		ForEach		need	to	identify	the
items	uniquely?	SwiftUI	is	powerful	enough	to	update	the	UI	automatically	when
some/all	items	in	the	collection	are	changed.	To	make	this	possible,	it	needs	an	identifier
to	uniquely	identify	the	item	when	it's	updated	or	removed.

In	the	code	above,	we	pass		ForEach		a	range	of	values	to	loop	through.	The	identifier	is	set
to	the	value	itself	(i.e.	1,	2,	3,	or	4).	The		index		parameter	stores	the	current	value	of	the
loop.	Say,	for	example,	it	starts	with	the	value	of	1.	The		index		parameter	will	have	a
value	of	1.

Within	the	closure,	is	the	code	you	need	to	render	the	views.	Here,	we	create	the	text
view.	Its	description	will	change	depending	on	the	value	of		index		in	the	loop.	That's	how
you	create	4	items	in	the	list	with	different	titles.

227Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/swiftui/foreach

Let	me	show	you	one	more	technique.	The	same	code	snippet	can	be	further	rewritten
like	this:

struct	ContentView:	View	{

				var	body:	some	View	{

								List	{

												ForEach(1...4,	id:	\.self)	{

																Text("Item	\($0)")

												}

								}

				}

}

You	can	omit	the		index		parameter	and	use	the	shorthand		$0	,	which	refers	the	first
parameter	of	the	closure.

Let's	further	rewrite	the	code	to	make	it	even	more	simple.	You	can	pass	the	collection	of
data	to	the		List		view	directly.	Here	is	the	code:

struct	ContentView:	View	{

				var	body:	some	View	{

								List(1...4,	id:	\.self)	{

												Text("Item	\($0)")

								}

				}

}

As	you	can	see,	you	only	need	a	couple	lines	of	code	to	build	a	simple	list/table.

Creating	a	List	View	with	Text	and	Images

Now	that	you	know	how	to	create	a	simple	list,	let's	see	how	to	work	with	a	more	complex
layout.	In	most	cases,	the	items	of	a	list	view	contain	both	text	and	images.	How	do	you
implement	that?	If	you	know	how		Image	,		Text	,		VStack	,	and		HStack		work,	you	should
have	some	ideas	about	how	to	create	a	complex	list.

228Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

If	you've	read	our	book,	Beginning	iOS	Programming	with	Swift,	this	example	should	be
very	familiar	to	you.	Let's	use	it	as	an	example	and	see	how	easy	it	is	to	build	the	same
table	with	SwiftUI.

Figure	4.	A	simple	table	view	showing	rows	of	restaurants

To	build	the	table	using	UIKit,	you'll	need	to	create	a	table	view	or	table	view	controller
and	then	customize	the	prototype	cell.	Furthermore,	you'll	have	to	code	the	table	view
data	source	to	provide	the	data.	That's	quite	a	lot	of	steps	to	build	a	table	UI.	Let's	see
how	the	same	table	view	is	implemented	in	SwiftUI.

First,	download	the	image	pack	from
https://www.appcoda.com/resources/swiftui/SwiftUISimpleTableImages.zip.	Unpack
the	zip	file	and	import	all	the	images	to	the	asset	catalog.

229Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/swift
https://www.appcoda.com/resources/swiftui/SwiftUISimpleTableImages.zip

Figure	5.	Import	images	to	the	asset	catalog

Now	switch	over	to		ContentView.swift		to	code	the	UI.	First,	let's	declare	two	arrays	in
	ContentView	.	These	arrays	are	for	storing	restaurant	names	and	images.	Here	is	the
complete	code:

230Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	restaurantNames	=	["Cafe	Deadend",	"Homei",	"Teakha",	"Cafe	Loisl",	"Petit

e	Oyster",	"For	Kee	Restaurant",	"Po's	Atelier",	"Bourke	Street	Bakery",	"Haigh's	

Chocolate",	"Palomino	Espresso",	"Upstate",	"Traif",	"Graham	Avenue	Meats	And	Deli"

,	"Waffle	&	Wolf",	"Five	Leaves",	"Cafe	Lore",	"Confessional",	"Barrafina",	"Donos

tia",	"Royal	Oak",	"CASK	Pub	and	Kitchen"]

				var	restaurantImages	=	["cafedeadend",	"homei",	"teakha",	"cafeloisl",	"petite

oyster",	"forkeerestaurant",	"posatelier",	"bourkestreetbakery",	"haighschocolate"

,	"palominoespresso",	"upstate",	"traif",	"grahamavenuemeats",	"wafflewolf",	"five

leaves",	"cafelore",	"confessional",	"barrafina",	"donostia",	"royaloak",	"caskpub

kitchen"]

				var	body:	some	View	{

								List(1...4,	id:	\.self)	{

												Text("Item	\($0)")

								}

				}

}

Both	arrays	have	the	same	number	of	items.	The		restaurantNames		array	stores	the	name
of	the	restaurants,	the		restaurantImages		array	stores	the	name	of	the	images	you	just
imported.	To	create	a	list	view	like	that	shown	in	figure	4,	all	you	need	to	do	is	update	the
	body		variable	like	this:

var	body:	some	View	{

				List(restaurantNames.indices,	id:	\.self)	{	index	in

								HStack	{

												Image(self.restaurantImages[index])

																.resizable()

																.frame(width:	40,	height:	40)

																.cornerRadius(5)

												Text(self.restaurantNames[index])

								}

				}

}

231Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We've	made	a	couple	of	changes.	First,	instead	of	a	fixed	range,	we	pass	the	array	of
restaurant	names	(i.e.		restaurantNames.indices)	to	the		List		view.	The		restaurantNames	
array	has	21	items	so	we'll	have	a	range	from	0	to	20	(arrays	are	0	indexed).	This	only
works	when	both	arrays	are	of	the	same	size	as	the	index	of	one	is	used	as	an	index	for
the	other	array.

In	the	closure,	the	code	was	updated	to	create	the	row	layout.	I'll	not	go	into	the	details	as
the	code	is	similar	to	previous	stack	views	we've	created.	With	less	than	10	lines	of	code,
we	have	created	a	list	(or	table)	view	with	a	custom	layout.

Figure	6.	A	list	view	with	custom	row	layout

Working	with	a	Collection	of	Data

As	mentioned	before,		List		can	take	in	a	range	or	a	collection	of	data.	You've	learned
how	to	work	with	range.	Let's	see	how	to	use		List		with	an	array	of	restaurant	objects.

232Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Instead	of	holding	the	restaurant	data	in	two	separate	arrays,	we'll	create	a		Restaurant	
struct	to	better	organize	the	data.	This	struct	has	two	properties:	name	and	image.	Insert
the	following	code	at	the	end	of	the		ContentView.swift		file:

struct	Restaurant	{

				var	name:	String

				var	image:	String

}

With	this	struct,	we	can	combine	both		restaurantNames		and		restaurantImages		arrays	into
a	single	array.	Delete	the		restaurantNames		and		restaurantImages		variables	and	replace
them	with	this	variable	in		ContentView	:

var	restaurants	=	[Restaurant(name:	"Cafe	Deadend",	image:	"cafedeadend"),

															Restaurant(name:	"Homei",	image:	"homei"),

															Restaurant(name:	"Teakha",	image:	"teakha"),

															Restaurant(name:	"Cafe	Loisl",	image:	"cafeloisl"),

															Restaurant(name:	"Petite	Oyster",	image:	"petiteoyster"),

															Restaurant(name:	"For	Kee	Restaurant",	image:	"forkeerestaurant"),

															Restaurant(name:	"Po's	Atelier",	image:	"posatelier"),

															Restaurant(name:	"Bourke	Street	Bakery",	image:	"bourkestreetbakery"

),

															Restaurant(name:	"Haigh's	Chocolate",	image:	"haighschocolate"),

															Restaurant(name:	"Palomino	Espresso",	image:	"palominoespresso"),

															Restaurant(name:	"Upstate",	image:	"upstate"),

															Restaurant(name:	"Traif",	image:	"traif"),

															Restaurant(name:	"Graham	Avenue	Meats	And	Deli",	image:	"grahamaven

uemeats"),

															Restaurant(name:	"Waffle	&	Wolf",	image:	"wafflewolf"),

															Restaurant(name:	"Five	Leaves",	image:	"fiveleaves"),

															Restaurant(name:	"Cafe	Lore",	image:	"cafelore"),

															Restaurant(name:	"Confessional",	image:	"confessional"),

															Restaurant(name:	"Barrafina",	image:	"barrafina"),

															Restaurant(name:	"Donostia",	image:	"donostia"),

															Restaurant(name:	"Royal	Oak",	image:	"royaloak"),

															Restaurant(name:	"CASK	Pub	and	Kitchen",	image:	"caskpubkitchen")

]

233Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

If	you're	new	to	Swift,	each	item	of	the	array	represents	restaurant	object	containing	both
the	name	and	image	for	each	restaruant.	Once	you	have	replaced	the	array,	you'll	see	an
error	in	Xcode,	complaining	that	the		restaurantNames		variable	is	missing.	That's	expected
because	we've	just	removed	it.

Now	update	the		body		variable	like	this:

var	body:	some	View	{

				List(restaurants,	id:	\.name)	{	restaurant	in

								HStack	{

												Image(restaurant.image)

																.resizable()

																.frame(width:	40,	height:	40)

																.cornerRadius(5)

												Text(restaurant.name)

								}

				}

}

Take	a	look	at	the	parameters	we	pass	into		List	.	Instead	of	passing	the	range,	we	pass
the		restaurants		array	and	tell	the		List		to	use	its		name		property	as	the	identifier.	The
	List		will	loop	through	the	array	and	let	us	know	the	current		restaurant		it's	handling	in
the	closure.	So,	in	the	closure,	we	tell	the	list	how	we	want	to	present	the	restaurant	row.
Here,	we	simply	present	both	the	restaurant	image	and	name	in	a		HStack	.

The	resultant	UI	is	still	the	same	but	the	underlying	code	was	modified	to	utilize		List	
with	a	collection	of	data.

234Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Same	UI	as	figure	6

Working	with	the	Identifiable	Protocol

To	help	you	better	understand	the	purpose	of	the		id		parameter	in		List	,	let's	make	a
minor	change	to	the		restaurants		array.	Currently,	we	use	the	name	of	the	restaurant	as
an	identifier.	What	happens	when	we	have	two	records	with	the	same	restaurant	name?
Change	Upstate	(the	11th	item	in	the	array)	to	Homei	in	the		restaurants		array	like	this:

Restaurant(name:	"Homei",	image:	"upstate")

Take	note	that	we	are	only	changing	the	value	of	the	name	property	and	keeping	the
image	to		upstate	.	The	preview	canvas	should	render	the	view	automatically.	If	you	see
the	message	"Automatic	preview	updating	paused",	click	the	Resume	button	to	reload	the
preview.

235Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Two	restaurants	have	the	same	name

Do	you	see	the	issue	(in	figure	8)?	We	now	have	two	records	with	the	name	Homei.	You
might	expect	the	second	Homei	record	to	show	the	upstate	image,	but	iOS	renders	two
records	with	the	same	text	and	image.	In	the	code,	we	told	the		List		to	use	the
restaurant's	name	as	the	unique	identifier.	When	two	restaurants	have	the	same	name,
iOS	considers	both	restaurants	to	be	the	same	restaurant.	Thus,	it	reuses	the	same	view
and	renders	the	same	image.

So,	how	do	you	fix	this	issue?

That's	pretty	easy.	Instead	of	using	the	name	as	the	identifier	(ID),	you	should	give	each
restaurant	a	unique	identifier.	Update	the		Restaurant		struct	like	this:

struct	Restaurant	{

				var	id	=	UUID()

				var	name:	String

				var	image:	String

}

236Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	the	code,	we	added	an		id		property	and	initialized	it	with	a	unique	identifier.	The
	UUID()		function	is	designed	to	generate	a	random	identifier	that	is	universally	unique.	A
UUID	is	composed	of	128-bit	number,	so	theoretically	the	chance	of	having	two	same
indentifers	is	almost	zero.

Now	each	restaurant	has	a	unique	ID,	but	we	still	have	to	make	one	more	change	for
things	to	work.	For	the		List	,	change	the	value	of	the		id		parameter	from		\.name		to
	\.id	:

List(restaurants,	id:	\.id)

This	tells	the		List		view	to	use	the		id		property	of	the	restaurants	as	the	unique
identifier.	Take	a	look	at	the	preview,	the	second	Homei	record	now	shows	the	upstate
image.

Figure	9.	The	bug	is	now	fixed	showing	the	correct	image

237Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	can	further	simplify	the	code	by	making	the		Restaurant		struct	conform	to	the
	Identifiable		protocol.	This	protocol	has	only	one	requirement,	that	the	type
implementing	the	protocol	should	have	some	sort	of		id		as	a	unique	identifier.	Update
	Restaurant		to	implement	the		Identifiable		protocol	like	this:

struct	Restaurant:	Identifiable	{

				var	id	=	UUID()

				var	name:	String

				var	image:	String

}

Since		Restaurant		already	provides	a	unique		id		property,	this	conforms	to	the	protocol
requirement.

What's	the	purpose	of	implementing	the		Identifiable		protocol	here?	With	the
	Restaurant		struct	conforming	to	the		Identifiable		protocol,	you	can	initialize	the		List	
without	the		id		parameter.	You	just	simplified	the	code!	Here	is	the	updated	code	for	the
list	view:

List(restaurants)	{	restaurant	in

				HStack	{

								Image(restaurant.image)

												.resizable()

												.frame(width:	40,	height:	40)

												.cornerRadius(5)

								Text(restaurant.name)

				}

}

That's	how	you	use		List		to	present	a	collection	of	data.

Refactoring	the	Code

The	code	works	but	it's	always	good	coding	practice	to	refactor	the	code	to	make	it	even
better.	You've	learned	how	to	extract	a	view.	Let's	extract	the		HStack		into	a	separate
struct.	Hold	the	command	key	and	click		HStack	.	Select	Extract	subview	to	extract	the

238Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

code.	Rename	the	struct	to		BasicImageRow	.

Figure	10.	Extracting	subview

Xcode	immediately	shows	you	an	error	once	you	made	the	change.	Since	the	extracted
subview	doesn't	have	a		restaurant		property,	update	the		BasicImageRow		struct	like	this	to
declare	the		restaurant		property:

struct	BasicImageRow:	View	{

				var	restaurant:	Restaurant

				var	body:	some	View	{

								HStack	{

												Image(restaurant.image)

																.resizable()

																.frame(width:	40,	height:	40)

																.cornerRadius(5)

												Text(restaurant.name)

								}

				}

}

239Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	update	the		List		view	to	pass	the		restaurant		parameter:

List(restaurants)	{	restaurant	in

				BasicImageRow(restaurant:	restaurant)

}

Now	everything	should	work	without	errors.	The	list	view	still	looks	the	same	but	the
underlying	code	is	more	readable	and	organized.	It's	also	more	adaptable	to	code	change.
Let's	say,	you	create	another	layout	for	the	row	like	this:

struct	FullImageRow:	View	{

				var	restaurant:	Restaurant

				var	body:	some	View	{

								ZStack	{

												Image(restaurant.image)

																.resizable()

																.aspectRatio(contentMode:	.fill)

																.frame(height:	200)

																.cornerRadius(10)

																.overlay(

																				Rectangle()

																								.foregroundColor(.black)

																								.cornerRadius(10)

																								.opacity(0.2)

)

												Text(restaurant.name)

																.font(.system(.title,	design:	.rounded))

																.fontWeight(.black)

																.foregroundColor(.white)

								}

				}

}

This	row	layout	is	designed	to	show	a	larger	restaurant	with	the	restaurant	name
overlayed	on	top.	Since	we've	refactored	our	code,	it's	very	easy	to	change	the	app	to	use
the	new	layout.	All	you	need	to	do	is	replace		BasicImageRow		with		FullImageRow		in	the

240Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

closure	of		List	:

List(restaurants)	{	restaurant	in

				FullImageRow(restaurant:	restaurant)

}

By	changing	one	line	of	code,	the	app	instantly	switches	to	another	layout.

Figure	11.	Changing	the	row	layout

You	can	further	mix	the	row	layouts	to	build	a	more	interesting	UI.	For	example,	our	list
is	to	use		FullImageRow		for	the	first	two	rows	of	data	and	the	rest	of	the	rows	will	utilize
the		BasicImageRow	.	To	do	this,	you	update		List		like	this:

241Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

List(restaurants.indices)	{	index	in

				if	(0...1).contains(index)	{

								FullImageRow(restaurant:	self.restaurants[index])

				}	else	{

								BasicImageRow(restaurant:	self.restaurants[index])

				}

}

Since	we	need	to	retrieve	the	index	of	the	rows,	we	pass	the		List		the	index	range	of	the
restaurant	data.	In	the	closure,	we	check	the	value	of		index		to	determine	which	row
layout	to	use.

Figure	12.	Building	a	list	view	with	two	different	row	layouts

Exercise

242Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Before	you	move	on	to	the	next	chapter,	challenge	yourself	by	building	the	list	view
shown	in	figure	13.	It	looks	complicated	but	if	you	fully	understand	this	chapter,	you
should	be	able	to	build	the	UI.	Take	some	time	to	work	on	this	exercise.	I	guarantee	you'll
learn	a	lot!

To	save	you	time	finding	your	own	images,	you	can	download	the	image	pack	for	this
exercise	from	https://www.appcoda.com/resources/swiftui/SwiftUIArticleImages.zip.

Figure	13.	Building	a	list	view	with	complex	row	layout

For	reference,	you	can	download	the	complete	list	project	and	solution	to	the	exercise
here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIList.zip)
Solution	to	exercise

243Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui/SwiftUIArticleImages.zip
https://www.appcoda.com/resources/swiftui2/SwiftUIList.zip

(https://www.appcoda.com/resources/swiftui2/SwiftUIListExercise.zip)

244Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIListExercise.zip

Chapter	11
Working	with	Navigation	UI	and
Navigation	Bar	Customization
In	most	apps,	you	will	have	experienced	a	navigational	interface.	This	kind	of	UI	ty[ically
has	a	navigation	bar	and	a	list	of	data.	It	allows	users	navigate	to	a	detail	view	when
tapping	the	content.

In	UIKit,	we	implement	this	type	of	interface	using	UINavigationController.	For	SwiftUI,
Apple	calls	it	NavigationView.	In	this	chapter,	I	will	walk	you	through	the
implementation	of	NavigationView	and	show	you	how	to	perform	some	customizations.
As	usual,	we	will	work	on	a	couple	of	demo	projects	so	you'll	get	some	hands	on
experience	with	NavigationView.

245Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Sample	navigation	interface	for	our	demo	projects

Preparing	the	Starter	Project

Let's	get	started	and	implement	a	demo	project	that	we	have	built	earlier	with	a
navigation	UI.	So,	first	download	the	starter	project	from
https://www.appcoda.com/resources/swiftui2/SwiftUINavigationListStarter.zip.	Once
downloaded,	open	the	project	and	check	out	the	preview.	You	should	be	very	familiar
with	this	demo	app.	It	just	displays	a	list	of	restaurants.

246Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUINavigationListStarter.zip

Figure	2.	The	starter	project	should	display	a	simple	list	view

What	we're	going	to	do	is	embed	this	list	view	in	a	navigation	view.

Implementing	a	Navigation	View

The	SwiftUI	framework	provides	a	view	called		NavigationView		for	you	to	create	a
navigation	UI.	To	embed	the	list	view	in	a		NavigationView	,	all	you	need	to	do	is	wrap	the
	List		with	a		NavigationView		like	this:

NavigationView	{

				List	{

								ForEach(restaurants)	{	restaurant	in

												BasicImageRow(restaurant:	restaurant)

								}

				}

}

247Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	you	have	made	the	change,	you	should	see	an	empty	navigation	bar.	To	assign	a
title	to	the	bar,	insert	the		navigationBarTitle		modifier	like	below:

NavigationView	{

				List	{

								ForEach(restaurants)	{	restaurant	in

												BasicImageRow(restaurant:	restaurant)

								}

				}

				.navigationBarTitle("Restaurants")

}

Now	the	app	has	a	navigation	bar	with	a	large	title.

Figure	3.	A	basic	navigation	UI

Passing	Data	to	a	Detail	View	Using	NavigationLink

248Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

So	far,	we	have	added	a	navigation	bar	to	the	list	view.	We	usually	use	a	navigation
interface	for	the	user	to	navigate	to	a	detail	view,	showing	the	details	of	the	selected	item.
For	this	demo,	we	will	build	a	simple	detail	view	showing	a	bigger	image	of	the
restaurant.

Figure	4.	The	content	view	and	detail	view

Let's	start	with	the	detail	view.	Insert	the	following	code	at	the	end	of	the
	ContentView.swift		file	to	create	the	detail	view:

249Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	RestaurantDetailView:	View	{

				var	restaurant:	Restaurant

				var	body:	some	View	{

								VStack	{

												Image(restaurant.image)

																.resizable()

																.aspectRatio(contentMode:	.fit)

												Text(restaurant.name)

																.font(.system(.title,	design:	.rounded))

																.fontWeight(.black)

												Spacer()

								}

				}

}

The	detail	view	is	just	like	other	SwiftUI	views	of	the	type		View	.	Its	layout	is	very	simple
in	that	it	only	displays	the	restaurant	image	and	name.	The		RestaurantDetailView		struct
also	takes	in	a		Restaurant		object	in	order	to	retrieve	the	image	and	name	of	the
restaurant.

With	the	detail	view	now	ready,	the	question	is	how	you	can	pass	the	selected	restaurant
in	the	content	view	to	this	detail	view?

SwiftUI	provides	a	special	button	called		NavigationLink	,	which	is	able	to	detect	users'
touches	and	triggers	the	navigation	presentation.	The	basic	usage	of		NavigationLink		is
like	this:

NavigationLink(destination:	DetailView())	{

				Text("Press	me	for	details")

}

You	specify	the	destination	view	in	the		destination		parameter	and	implement	its	look	in
the	closure.	For	the	demo	app,	it	should	navigate	to	the		RestaurantDetailView		when	any	of
the	restaurants	is	tapped.	In	this	case,	we	can	apply		NavigationLink		to	each	of	the	rows.

250Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Update	the		List		view	like	this:

List	{

				ForEach(restaurants)	{	restaurant	in

								NavigationLink(destination:	RestaurantDetailView(restaurant:	restaurant))	

{

												BasicImageRow(restaurant:	restaurant)

								}

				}

}

In	the	code	above,	we	tell		NavigationLink		to	navigate	to	the		RestaurantDetailView		when
users	select	a	restaurant.	We	also	pass	the	selected	restaurant	to	the	detail	view	for
display.	That's	all	you	need	to	build	a	navigation	interface	and	perform	data	passing.

Figure	5.	Run	the	app	to	test	the	navigation

251Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	the	canvas,	you	should	notice	that	each	row	of	data	has	been	added	with	a	disclosure
icon.	Click	the	Run	button	to	execute	the	project.	You	should	be	able	to	navigate	to	the
detail	view	after	selecting	one	of	the	restaurants.	Furthermore,	you	can	navigate	back	to
content	view	by	clicking	the	back	button.	The	whole	navigation	is	automatically	rendered
by		NavigationView	.

Customizing	the	Navigation	Bar

Starting	from	iOS	13,	Apple	added	a	new	API	called		UINavigationBarAppearance		for
navigation	bar	customization.	Its	usage	is	very	similar	to	the	old	API	but	offers	you	more
granularity.	You	are	allowed	to	configure	the	following	for	a	navigation	bar:

1.	 Standard	Appearance	(.standardAppearance)	-	the	appearance	of	a	standard-
height	navigation	bar	(e.g.	the	navigation	bar	appears	in	iPhone	portrait	mode)

2.	 Compact	Appearance	(.compactAppearance)	-	the	appearance	of	a	compact-height
navigation	bar	(e.g.	the	navigation	bar	appears	in	iPhone	landscape	mode)

3.	 Scroll	Edge	Appearance	(.scrollEdgeAppearance)	-	this	is	the	appearance	when
the	edge	of	the	scrolled	content	reaches	the	navigation	bar

In	any	given	app,	you	are	not	required	to	implement	all	three	of	these	navigation	bar
appearances.	You	can	apply	the	same	settings	for	all	instances	of	a	navigation	bar	(see
section	"Configuring	Font	and	Color".

What	customizations	can	you	apply	to	the	navigation	bar?	Actually,	quite	a	lot.	You	can
change	the	navigation	bar's	font,	color,	background,	etc.	I'll	cover	some	of	the	attributes;
However,	for	the	full	details,	you	may	refer	to	Apple's	official	documentation
(https://developer.apple.com/documentation/uikit/uinavigationbarappearance).

Display	Mode

First,	let's	talk	about	the	display	mode	of	the	navigation	bar.	By	default,	the	navigation
bar	is	set	to	appear	as	a	large	title.	But	when	you	scroll	up	the	list,	the	navigation	bar	will
become	smaller.	This	became	the	default	behaviour	when	Apple	introduced	the	"Large
Title"	navigation	bar.

252Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/uikit/uinavigationbarappearance

If	you	want	to	keep	the	navigation	bar	compact	and	disable	the	use	of	the	large	title,	you
can	change	the		navigationBarTitle		modifier	like	this:

.navigationBarTitle("Restaurants",	displayMode:	.inline)

The		displayMode		parameter	controls	the	appearance	of	the	navigation	bar,	whether	it
should	appear	as	a	large	title	bar	or	compact	title.	By	default,	it's	set	to		.automatic	,	which
means	large	title	is	used.	In	the	code	above,	we	set	it	to		.inline	.	This	instructs	iOS	to	use
a	compact	bar.

Figure	6.	Setting	the	display	mode	to	.inline	to	use	the	compact	bar

Change	the	display	mode	to		.automatic		and	the	navigation	bar	will	become	a	large	title
bar	again.

.navigationBarTitle("Restaurants",	displayMode:	.automatic)

253Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Configuring	Font	and	Color

Next,	let's	change	the	title's	font	and	color.	At	the	time	of	this	writing,	there	is	no
modifier	in	SwiftUI	for	developers	to	configure	the	navigation	bar's	font	and	color.
Instead,	we	need	to	use	the	API	named		UINavigationBarAppearance		provided	by	UIKit.

Say	we	want	to	change	the	title	color	to	red	and	the	font	to	Arial	Rounded	MT	Bold.	We
create	a		UINavigationBarAppearance		object	in	the		init()		function	and	configure	the
attributes	accordingly.	Insert	the	following	function	in		ContentView	:

init()	{

				let	navBarAppearance	=	UINavigationBarAppearance()

				navBarAppearance.largeTitleTextAttributes	=	[.foregroundColor:	UIColor.systemR

ed,	.font:	UIFont(name:	"ArialRoundedMTBold",	size:	35)!]

				navBarAppearance.titleTextAttributes	=	[.foregroundColor:	UIColor.systemRed,	.

font:	UIFont(name:	"ArialRoundedMTBold",	size:	20)!]

				UINavigationBar.appearance().standardAppearance	=	navBarAppearance

				UINavigationBar.appearance().scrollEdgeAppearance	=	navBarAppearance

				UINavigationBar.appearance().compactAppearance	=	navBarAppearance

}

The		largeTitleTextAttributes		property	is	used	to	configuring	the	text	attributes	of	the
large-size	title,	while	the		titleTextAttributes		property	is	used	for	setting	the	text
attributes	of	the	standard-size	title.	Once	we	configure	the		navBarAppearance	,	we	assign	it
to	the	three	appearance	properties	including		standardAppearance	,		scrollEdgeAppearance	,
and		compactAppearance	.	If	you	want,	you	can	create	and	assign	a	separate	appearance
object	for		scrollEdgeAppearance	,	and		compactAppearance	.

254Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Changing	the	font	type	and	color	for	both	large-size	and	standard-size	titles

Back	Button	Image	and	Color

The	back	button	of	the	navigation	view	is	set	to	blue	by	default	and	it	uses	a	chevron	icon
to	indicate	"Go	back."	By	using	the		UINavigationBarAppearance		API,	you	can	also	customize
the	color	and	even	the	indicator	image	of	the	back	button.

Figure	8.	A	standard	back	button

Let's	see	how	this	customization	works.	To	change	the	indicator	image,	you	can	call	the
	setBackIndicatorImage		method	and	provide	your	own		UIImage	.	Here	I	set	it	to	the	system
image		arrow.turn.up.left	.

255Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

navBarAppearance.setBackIndicatorImage(UIImage(systemName:	"arrow.turn.up.left"),	

transitionMaskImage:	UIImage(systemName:	"arrow.turn.up.left"))

For	the	back	button	color,	you	can	change	it	by	setting	the		tintColor		property:

UINavigationBar.appearance().tintColor	=	.black

Run	the	app.	The	back	button	should	be	like	that	shown	in	figure	9.

Figure	9.	Customizing	the	appearance	of	the	back	button

Custom	Back	Button

Instead	of	using	the	APIs	of	UIKit	to	customize	the	back	button,	an	alternative	approach
is	to	hide	the	default	back	button	and	create	our	own	back	button	in	SwiftUI.	To	hide	the
back	button,	you	can	use	the	modifier		.navigationBarBackButtonHidden		and	set	its	value	to
	true		like	this:

.navigationBarBackButtonHidden(true)

SwiftUI	also	provides	a	modifier	called		navigationBarItems		for	creating	your	own
navigation	bar	items.	For	example,	you	can	create	a	back	button	with	the	name	of	the
selected	restaurant	like	this:

256Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.navigationBarItems(leading:	Button(action	:	{

				//	action

}){

				Text("\(Image(systemName:	"chevron.left"))	\(restaurant.name)")

								.foregroundColor(.red)

})

To	put	the	following	code	into	action	and	update		RestaurantDetailView		like	below:

struct	RestaurantDetailView:	View	{

				@Environment(\.presentationMode)	var	mode

				var	restaurant:	Restaurant

				var	body:	some	View	{

								VStack	{

												Image(restaurant.image)

																.resizable()

																.aspectRatio(contentMode:	.fit)

												Text(restaurant.name)

																.font(.system(.title,	design:	.rounded))

																.fontWeight(.black)

												Spacer()

								}

								.navigationBarBackButtonHidden(true)

								.navigationBarItems(leading:	Button(action	:	{

												self.mode.wrappedValue.dismiss()

								}){

												Text("\(Image(systemName:	"chevron.left"))	\(restaurant.name)")

																.foregroundColor(.red)

								})

				}

}

257Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

SwiftUI	offers	a	wide	range	of	built-in	environment	values.	To	dismiss	the	current	view
and	go	back	to	the	previous	view,	we	retrieve	the	environment	value		.presentationMode	
and	then	call	its		dismiss()		function.	If	you	run	the	app	in	the	preview	canvas	and	select
any	of	the	restaurants,	you	will	see	a	back	button	with	the	restaurant	name.	Tapping	the
back	button	will	navigate	back	to	the	main	screen.

Exercise

To	make	sure	understand	how	to	build	a	navigation	UI,	here	is	an	exercise	for	you.	First,
download	this	starter	project	from
https://www.appcoda.com/resources/swiftui2/SwiftUINavigationStarter.zip.	Open	the
project	and	you	will	see	a	demo	app	showing	a	list	of	articles.

This	project	is	very	similar	to	the	one	you've	built	before.	The	main	difference	is	the
introduction	of		Article.swift	.	This	file	stores	the		articles		array,	which	contains	sample
data.	If	you	look	at	the		Article		struct	closely,	it	now	has	the		content		property	for
storing	a	full	article.

Your	task	is	to	embed	the	list	in	a	navigation	view	and	create	the	detail	view.	When	a	user
taps	one	of	the	articles	in	the	content	view,	it'll	navigate	to	the	detail	view	showing	the
full	article.	I'll	present	the	solution	to	you	in	the	next	section,	but	please	try	your	best	to
figure	out	your	own	solution.

258Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUINavigationStarter.zip

Figure	10.	Building	a	navigation	UI	for	a	Reading	app

Building	the	Detail	View

Have	you	completed	the	exercise?	The	detail	view	is	more	complicated	than	the	one	we
built	earlier.	Let's	see	how	to	create	it.

To	better	organize	the	code,	instead	of	creating	the	detail	view	in	the		ContentView.swift	
file,	we	will	create	a	separate	file	for	it.	In	the	project	navigator,	right-click	the
	SwiftUINavigation		folder	and	select	New	File...	Choose	the	SwiftUI	View	template	and
name	the	file	ArticleDetailView.swift.

Since	the	detail	view	is	going	to	display	the	full	article	,	we	need	to	have	this	property	for
the	caller	to	pass	the	article.	So,	declare	an		article		property	in		ArticleDetailView	:

259Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	article:	Article

Next,	update	the		body		like	this	to	lay	out	the	detail	view:

var	body:	some	View	{

				ScrollView	{

								VStack(alignment:	.leading)	{

												Image(article.image)

																.resizable()

																.aspectRatio(contentMode:	.fit)

												Group	{

																Text(article.title)

																				.font(.system(.title,	design:	.rounded))

																				.fontWeight(.black)

																				.lineLimit(3)

																Text("By	\(article.author)".uppercased())

																				.font(.subheadline)

																				.foregroundColor(.secondary)

												}

												.padding(.bottom,	0)

												.padding(.horizontal)

												Text(article.content)

																.font(.body)

																.padding()

																.lineLimit(1000)

																.multilineTextAlignment(.leading)

								}

				}

}

We	use	a		ScrollView		to	wrap	all	the	views	to	enable	scrollable	content.	I'll	not	go	over	the
code	line	by	line	as	you	understand	how		Text	,		Image	,	and		VStack		work.	But	one
modifier	that	I	want	to	highlight	is		Group	.	This	modifier	allows	you	to	group	multiple

260Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

views	together	and	apply	a	configuration	to	the	group.	In	the	code	above,	we	need	to
apply	padding	to	both		Text		views.	To	avoid	code	duplication,	we	group	both	views
together	and	apply	the	padding.

Now	that	we	have	completed	the	layout	of	the	detail	view,	you	will	see	an	error	in	Xcode
complaining	about	the		ArticleDetailView_Previews	.	The	preview	doesn't	work	because
we've	added	the	property		article		in		ArticleDetailView	.	Therefore,	you	need	to	pass	a
sample	article	in	the	preview.	Update		ArticleDetailView_Previews		like	this	to	fix	the	error:

struct	ArticleDetailView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								ArticleDetailView(article:	articles[0])

				}

}

Here	we	simply	pick	the	first	article	of	the		articles		array	for	preview.	You	can	change	it
to	a	different	value	if	you	want	to	preview	other	articles.	Once	you	have	made	this
change,	the	preview	canvas	should	render	the	detail	view	properly.

261Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	The	detail	view	for	showing	the	article

Let's	try	one	more	thing.	Since	this	view	is	going	to	be	embed	in	a		NavigationView	,	you
can	modify	the	preview	code	to	preview	how	it	looks	in	a	navigation	view:

struct	ArticleDetailView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								NavigationView	{

												ArticleDetailView(article:	articles[0])

								}

				}

}

By	updating	the	code,	you	will	see	a	blank	navigation	bar	in	the	preview	canvas.

Now	that	we've	completed	the	layout	of	the	detail	view,	it's	time	to	go	back	to
	ContentView.swift		to	implement	the	navigation.	Update	the		ContentView		struct	like	this:

262Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	body:	some	View	{

								NavigationView	{

												List(articles)	{	article	in

																NavigationLink(destination:	ArticleDetailView(article:	article))	{

																				ArticleRow(article:	article)

																}

												}

												.navigationBarTitle("Your	Reading")

								}

				}

}

In	the	code	above,	we	embed	the		List		view	in	a		NavigationView		and	apply	a
	NavigationLink		to	each	of	the	rows.	The	destination	of	the	navigation	link	is	set	to	the
detail	view	we	just	created.	In	your	preview,	you	should	be	able	to	test	the	app	by	clicking
the	Play	button	and	navigate	to	the	detail	view	when	selecting	an	article.

Removing	the	Disclosure	Indicator

The	app	works	perfectly	but	there	are	two	issues	that	you	may	want	to	fine	tune.	First,	it's
the	disclosure	indicator	in	the	content	view.	It	looks	a	bit	weird	to	display	the	disclosure
indicator.	We	will	disable	it.	The	second	issue	is	the	empty	space	appearing	right	above
the	featured	image	in	the	detail	view.	Let's	discuss	the	issues	one	at	a	time.

263Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Two	issues	in	the	current	design

SwiftUI	doesn't	provide	an	option	for	developers	to	disable	or	hide	the	disclosure
indicator.	To	work	around	the	issue,	we	are	not	going	to	apply		NavigationLink		to	the
article	row	directly.	Instead,	we	create	a		ZStack		with	two	layers.	Update	the
	NavigationView		of	the		ContentView		like	this:

264Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

NavigationView	{

				List(articles)	{	article	in

								ZStack	{

												ArticleRow(article:	article)

												NavigationLink(destination:	ArticleDetailView(article:	article))	{

																EmptyView()

												}

								}

				}

				.navigationBarTitle("Your	Reading")

}

The	lower	layer	is	the	article	row,	while	the	upper	layer	is	an	empty	view.	The
	NavigationLink		now	applies	to	the	empty	view,	preventing	iOS	from	rendering	the
disclosure	button.	Once	you	have	made	the	change,	the	disclosure	indicator	vanishes	but
you	can	still	navigate	to	the	detail	view.

Now	let's	see	the	root	cause	of	the	second	issue.

Switch	over	to		ArticleDetailView.swift	.	I	didn't	mention	the	issue	when	we	were
designing	the	detail	view.	But	actually	from	the	preview,	you	should	spot	the	issue	(see
figure	13).

265Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	Empty	space	in	the	header

The	reason	why	we	have	that	empty	space	right	above	the	image	is	due	to	the	navigation
bar.	This	empty	space	is	actually	a	large-size	navigation	bar	with	a	blank	title.	When	the
app	navigates	from	the	content	view	to	the	detail	view,	the	navigation	bar	becomes	a
standard-size	bar.	So,	to	fix	the	issue,	all	we	need	to	do	is	explicitly	specify	to	use	the
standard-size	navigation	bar.

Insert	this	line	of	code	after	the	closing	bracket	of		ScrollView	:

.navigationBarTitle("",	displayMode:	.inline)

By	setting	the	navigation	bar	to	the		inline		mode,	the	empty	space	will	be	minimized.
You	can	now	go	back	to		ContentView.swift		and	test	the	app	again.	The	detail	view	now
looks	much	better.

An	even	more	Elegant	UI	with	a	Custom	Back	Button

266Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Though	you	can	customize	the	back	button	indicator	image	using	a	built-in	property,
sometimes	you	may	want	to	build	a	custom	back	button	that	navigates	back	to	the
content	view.	The	question	is	how	can	it	be	done	programmatically?

In	this	last	section,	I	want	to	show	you	how	to	build	an	even	more	elegant	detailed	view
by	hiding	the	navigation	bar	and	building	your	own	back	button.	First,	let's	check	out	the
final	design	displayed	in	figure	14.	Doesn't	it	look	great?

Figure	14.	The	revised	design	of	the	detail	view

To	lay	out	this	screen,	we	have	to	tackle	two	issues:

1.	 Extend	the	scroll	view	to	the	very	top	of	the	screen
2.	 Create	a	custom	back	button	and	trigger	the	navigation	programmatically

267Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

iOS	has	a	concept	known	as	safe	areas	for	aiding	the	layout	of	views.	Safe	areas	help	you
place	the	views	within	the	visible	portion	of	the	interface.	For	example,	safe	areas	prevent
the	views	from	hiding	the	status	bar.	If	your	UI	has	a	navigation	bar,	the	safe	area	will
automatically	be	adjusted	to	prevent	you	from	positioning	views	that	hide	the	navigation
bar.

![Figure	15.	Safe	areas](images/navigation/swiftui-navigation-15.jpg)

To	place	content	that	extends	outside	the	safe	areas,	you	use	a	modifier	named
	edgesIgnoringSafeArea	.	For	our	project,	we	want	the	scroll	view	to	go	beyond	the	top	edge
of	the	safe	area,	To	accomplish	this,	we	write	the	modifier	like	this:

.edgesIgnoringSafeArea(.top)

268Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

This	modifiers	accepts	other	values	like		.bottom		and		.leading	.	If	you	want	to	ignore	the
whole	safe	area,	you	can	pass	it	a		.all		value.	By	attaching	this	modifier	to	the
	ScrollView	,	we	can	hide	the	navigation	bar	and	achieve	a	visually	pleasing	detail	view.

Figure	16.	Applying	the	modifiers	to	the	scroll	view

Now	comes	the	second	issue	of	creating	our	own	back	button.	This	issue	is	more	tricky
than	the	first	one.	Here	is	what	we're	going	to	implement:

1.	 Hide	the	original	back	button
2.	 Create	a	normal	button	and	then	assign	it	as	the	left	button	of	the	navigation	bar

To	hide	the	back	button,	SwiftUI	provides	a	modifier	called
	navigationBarBackButtonHidden	.	You	just	need	to	set	its	value	to		true		to	hide	the	back
button:

.navigationBarBackButtonHidden(true)

269Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	the	back	button	is	hidden,	you	can	replace	it	with	your	own	button.	The
	navigationBarItems		modifier	allows	you	to	configure	the	navigation	bar	items.	We	can
make	use	of	it	to	assign	the	button	as	the	left	button	of	the	navigation	bar.	Here	is	the
code:

.navigationBarItems(leading:

				Button(action:	{

								//	Navigate	to	the	previous	screen

				},	label:	{

								Image(systemName:	"chevron.left.circle.fill")

												.font(.largeTitle)

												.foregroundColor(.white)

				})

)

You	can	attach	the	above	modifiers	to	the		ScrollView	.	Once	the	change	is	applied,	you
should	see	our	custom	back	button	in	the	preview	canvas.

Figure	17.	Creating	our	own	back	button

You	may	have	noticed	that	the		action		closure	of	the	button	was	left	empty.	The	back
button	has	been	laid	out	nicely	but	the	problem	is	that	it	doesn't	function!

270Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	original	back	button	rendered	by		NavigationView		can	automatically	navigate	back	to
the	previous	screen.	We	need	to	programmatically	navigate	back.	Thanks	to	the
environment	values	built	into	the	SwiftUI	framework.	You	can	refer	to	an	environment
binding	named		presentationMode		to	get	the	current	presentation	mode	of	the	view.	Most
importantly,	you	can	make	use	of	it	to	dismiss	a	presented	view	(in	this	case,	the	detail
view)	to	go	back	to	the	previous	view.

Now	declare	a		presentationMode		variable	in		ArticleDetailView		to	capture	the
environment	value:

@Environment(\.presentationMode)	var	presentationMode

Next,	in	the		action		of	our	custom	back	button,	insert	this	line	of	code:

self.presentationMode.wrappedValue.dismiss()

Here	we	call	the		dismiss		method	to	dismiss	the	detail	view	when	the	back	button	is
tapped.	Run	the	app	and	test	it	again.	You	should	be	able	to	navigate	between	the	content
view	and	the	detail	view.

Summary

Navigation	UI	is	very	common	in	mobile	apps.	It's	crucial	you	understand	this	key
concept.	With	this	understanding,	you	are	capable	of	building	a	simple	content-based
app,	although	the	data	is	static.

For	reference,	you	can	download	the	complete	project	here:

Demo	project	for	the	first	project
(https://www.appcoda.com/resources/swiftui2/SwiftUINavigationList.zip)
Demo	project	for	the	second	project
(https://www.appcoda.com/resources/swiftui2/SwiftUINavigation.zip)

To	further	study	navigation	view,	you	can	also	refer	to	the	documentation	provided	by
Apple:

271Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUINavigationList.zip
https://www.appcoda.com/resources/swiftui2/SwiftUINavigation.zip

https://developer.apple.com/tutorials/swiftui/building-lists-and-navigation
https://developer.apple.com/documentation/swiftui/navigationview

272Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/tutorials/swiftui/building-lists-and-navigation
https://developer.apple.com/documentation/swiftui/navigationview

Chapter	12
Playing	with	Modal	Views,	Floating
Buttons	and	Alerts
Earlier,	we	built	a	navigation	interface	that	lets	users	navigate	from	the	content	view	to
the	detail	view.	The	view	transition	is	nicely	animated	and	completely	taken	care	by	iOS.
When	a	user	triggers	the	transition,	the	detail	view	slides	from	right	to	left	fluidly.
Navigation	UI	is	just	one	of	the	commonly-used	UI	patterns.	In	this	chapter,	I'll
introduce	to	you	another	design	technique	to	present	content	modally.

For	iPhone	users,	you	should	be	very	familiar	with	modal	views.	One	common	use	of
modal	views	is	for	presenting	a	form	for	input.	For	example,	the	Calendar	app	presents	a
modal	view	for	users	to	create	a	new	event.	The	built-in	Reminders	and	Contact	apps	also
use	modal	views	to	ask	for	user	input.

273Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Sample	modal	views	in	Calendar,	Reminders,	and	Contact	apps

From	the	user	experience	point	of	view,	a	modal	view	is	usually	triggered	by	tapping	a
button.	Again,	the	transition	animation	of	the	modal	view	is	handled	by	iOS.	When
presenting	a	full-screen	modal	view,	it	slides	up	fluidly	from	the	bottom	of	the	screen.

If	you're	a	long-time	iOS	user,	you	may	find	the	look	&	feel	of	the	modal	views	displayed
in	figure	1	are	not	the	same	as	the	traditional	ones.	Prior	to	iOS	13,	the	presentation	of
modal	views	covered	the	entire	screen.	Starting	with	iOS	13,	modal	views	are	displayed	in
card-like	format	by	default.	The	modal	view	doesn't	cover	the	whole	screen	but	partially
covers	the	underlying	content	view.	You	can	still	see	the	top	edge	of	the	content/parent
view.	On	top	of	the	visual	change,	the	modal	view	can	now	be	dismissed	by	swiping	down
from	anywhere	on	the	screen.	You	do	not	need	to	write	a	line	of	code	to	enable	this
gesture.	It's	completely	built-in	and	generated	by	iOS.	Of	course,	if	you	want	to	dismiss	a
modal	view	via	a	button,	you	can	still	do	that.

274Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Okay,	so	what	are	we	going	to	work	on	in	this	chapter?

I	will	show	you	how	to	present	the	same	detail	view	that	we	implemented	in	the	previous
chapter	using	a	modal	view.	While	modal	views	are	commonly	used	for	presenting	a
form,	it	doesn't	mean	you	can't	use	them	for	presenting	other	information.	In	addition	to
modal	views,	you	will	also	learn	how	to	create	a	floating	button	in	the	detail	view.	While
the	modal	views	can	be	dismissed	through	the	swipe	gesture,	I	want	to	provide	a	Close
button	for	users	to	dismiss	the	detail	view.	Furthermore,	we	will	also	look	into	Alerts,
which	is	another	kind	of	modal	view.

Figure	2.	Presenting	the	detail	screen	using	modal	views

We	got	a	lot	to	discuss	in	this	chapter.	Let's	get	started.

275Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Understanding	Sheet	in	SwiftUI

The	sheet	presentation	style	appears	as	a	card	that	partially	covers	the	underlying
content	and	dims	all	uncovered	areas	to	prevent	interaction	with	them.	The	top
edge	of	the	parent	view	or	a	previous	card	is	visible	behind	the	current	card	to	help
people	remember	the	task	they	suspended	when	they	opened	the	card.

-	Apple's	official	documentation	(https://developer.apple.com/design/human-
interface-guidelines/ios/app-architecture/modality/)

Before	we	dive	into	the	implementation,	let	me	give	you	a	quick	introduction	to	the	card-
like	presentation	of	modal	views.	The	card	presentation	is	achieved	in	SwiftUI	using	the
sheet	presentation	style.	It's	the	default	presentation	style	for	modal	views.

Basically,	to	present	a	modal	view,	you	apply	the		sheet		modifier	like	this:

.sheet(isPresented:	$showModal)	{

				DetailView()

}

It	takes	in	a	boolean	value	to	indicate	whether	the	modal	view	is	presented.	If
	isPresented		is	set	to		true	,	the	modal	view	will	be	automatically	presented	in	the	form	of
card.

Another	way	to	present	the	modal	view	is	like	this:

.sheet(item:	$itemToDisplay)	{

				DetailView()

}

The		sheet		modifier	also	allows	you	to	trigger	the	display	of	modal	views	by	passing	an
optional	binding.	If	the	optional	has	a	value,	iOS	will	bring	up	the	modal	view.	If	you
remember	our	discussion	on		actionSheet		in	an	earlier	chapter,	you	will	find	that	the
usage	of		sheet		is	very	similar	to		actionSheet	.

Preparing	the	Starter	Project

276Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/modality/

That's	enough	background	information.	Let's	move	onto	the	actual	implementation	of
our	demo	project.	To	begin,	please	download	the	starter	project	from
https://www.appcoda.com/resources/swiftui2/SwiftUIModalStarter.zip.	Once
downloaded,	open	the	project	and	check	out	the	preview.	You	should	be	very	familiar
with	this	demo	app.	The	app	still	has	a	navigation	bar	but	the	navigation	link	has	been
removed.

Figure	3.	Starter	project

Implementing	the	Modal	View	Using	isPresented

As	discussed	earlier,	the		sheet		modifier	provides	us	two	ways	to	present	a	modal.	I'll
show	you	how	both	approaches	work.	Let's	start	with	the		isPresented		approach.	For	this
approach,	we	need	a	state	variable	of	the	type		Bool		to	keep	track	of	the	status	of	the
modal	view.	Declare	this	variable	in		ContentView	:

@State	var	showDetailView	=	false

277Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIModalStarter.zip

By	default,	it's	set	to		false	.	The	value	of	this	variable	will	be	set	to		true		when	one	of	the
rows	is	clicked.	Later,	we	will	make	this	change	in	the	code.

When	presenting	the	detail	view,	the	view	requires	us	to	pass	the	selected	article.	So,	we
also	need	to	declare	a	state	variable	to	store	the	user's	selection.	In		ContentView	,	declare
another	state	variable	for	this	purpose:

@State	var	selectedArticle:	Article?

To	implement	the	modal	view,	we	attach	the		sheet		modifier	to	the		List		like	this:

NavigationView	{

				List(articles)	{	article	in

								ArticleRow(article:	article)

				}

				.sheet(isPresented:	self.$showDetailView)	{

								if	let	selectedArticle	=	self.selectedArticle	{

												ArticleDetailView(article:	selectedArticle)

								}

				}

				.navigationBarTitle("Your	Reading")

}

The	presentation	of	the	modal	view	depends	on	the	value	of	the		showDetailView		property.
This	is	why	we	specify	it	in	the		isPresented		parameter.	The	closure	of	the		sheet	
modifier	describes	the	layout	of	the	view	to	be	presented.	Here	we	will	present	the
	ArticleDetailView	.

The	remaining	item	is	to	detect	touch.	When	building	the	navigation	UI,	we	utilize
	NavigationLink		to	handle	touch.	However,	this	special	button	is	designed	for	the
navigation	interface.	In	SwiftUI,	there	is	a	handler	called		onTapGesture		which	can	be	used
to	recognize	a	tap	gesture.	You	can	attach	this	handler	to	each	of	the		ArticleRow		to	detect
the	users'	touch.	Modify	the		NavigationView		in	the		body		variable	like	this:

278Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

NavigationView	{

				List(articles)	{	article	in

								ArticleRow(article:	article)

								.onTapGesture	{

												self.showDetailView	=	true

												self.selectedArticle	=	article

								}

				}

				.sheet(isPresented:	self.$showDetailView)	{

								if	let	selectedArticle	=	self.selectedArticle	{

												ArticleDetailView(article:	selectedArticle)

								}

				}

				.navigationBarTitle("Your	Reading")

}

In	the	closure	of		onTapGesture	,	we	set	the		showDetailView		to		true	.	This	is	used	to	trigger
the	presentation	of	the	modal	view.	We	also	store	the	selected	article	in	the
	selectedArticle		variable.

Run	the	app	in	the	preview	canvas,	by	clicking	the	play	button.	You	should	be	able	to
bring	up	the	detail	view	modally.	Note:	It	is	better	to	run	this	demo	in	the
simulator.	If	you	run	this	in	the	preview,	you	may	get	a	blank	dialog.	Wipe
down	the	dialog	to	dismiss	it,	select	another	article	(not	the	same	article)
and	you	should	get	the	correct	rendering.

279Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Presenting	the	detail	view	modally

Changing	the	Navigation	View	Style

There	was	a	change	after	we	applied	the		.sheet		modifier	to	the		List		view.	Did	you
notice	the	change?	Look	at	the	following	figure	and	compare	it	with	the	original	list	view
shown	in	figure	3.	Do	you	see	the	difference?

280Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	The	list	view	appears	like	an	inset	grouped	list

Once	we	attach	the		.sheet		modifer	to	the		List		view,	SwiftUI	automatically	changes	the
list	style	such	that	the	list	view	appears	like	an	inset	grouped	list.	The	root	cause	for	this
is	due	to	a	change	in	the		NavigationView		style.	In	Xcode	12,	SwiftUI	changes	the
navigation	view's	style	to		DoubleColumnNavigationViewStyle		when	the		.sheet		modifier	is
used.	Run	the	app	on	iPadOS,	you	will	get	a	better	idea	how	this	style	affects	the	layout.

281Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	The	list	view	appears	like	a	sidebar	menu

To	force	the	navigation	view	to	use	the	original	non	inset	grouped	liststyle,	you	attach	the
	navigationViewStyle		modifier	to	the	navigation	view	and	set	the	style	to
	StackNavigationViewStyle	.

.navigationViewStyle(StackNavigationViewStyle())

Once	you	make	the	change,	this	will	result	a	standard	list	view	even	when	the	app	is	run
on	iPadOS.

282Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Change	the	navigation	view	to	StackNavigationViewStyle

Implementing	the	Modal	View	with	Optional	Binding

The		sheet		modifier	also	provides	another	way	for	you	to	present	the	modal	view.
Instead	of	having	a	boolean	value	to	control	the	appearance	of	the	modal	view,	the
modifier	lets	you	use	an	optional	binding	to	achieve	the	same	goal.

You	can	replace	the		sheet		modifier	like	this:

.sheet(item:	self.$selectedArticle)	{	article	in

				ArticleDetailView(article:	article)

}

In	this	case,	the		sheet		modifier	requires	you	to	pass	an	optional	binding.	Here	we
specify	the	binding	of	the		selectedArticle	.	What	this	means	is	that	iOS	will	bring	up	the
modal	view	only	if	the	selected	article	has	a	value.	The	code	in	the	closure	specifies	how
the	modal	view	looks,	but	it's	slightly	different	than	the	code	we	wrote	earlier.

283Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	this	approach,	the		sheet		modifier	will	pass	the	selected	article	in	the	closure.	The
	article		parameter	contains	the	selected	article	which	is	guaranteed	to	have	a	value.	This
is	why	we	can	use	it	to	initiate	an		ArticleDetailView		directly.

Since	we	no	longer	use	the		showDetailView		variable,	you	can	remove	this	line	of	code:

@State	var	showDetailView	=	false

And	remove	the		self.showDetailView	=	true		from	the		.onTapGesture		closure.

.onTapGesture	{

				self.showDetailView	=	true

				...

}

After	changing	the	code,	you	can	test	the	app	again.	Everything	should	work	like	the	first
version	but	the	underlying	code	is	cleaner	than	the	original	code.

Creating	a	Floating	Button	for	Dismissing	the	Modal
View

The	modal	view	has	built-in	support	for	the	swipe-down	gesture.	Currently,	you	can
swipe	down	the	modal	view	to	close	it.	I	guess	this	works	pretty	naturally	for	long-time
iPhone	users	because	apps	like	Facebook	have	used	this	type	of	gesture	for	dismissing	a
view.	However,	new	comers	may	not	know	about	this.	It's	better	for	us	to	develop	a	Close
button	as	an	alternative	way	of	dismissing	the	modal	view.

284Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	The	close	button	for	dismissing	the	modal	view

Switch	over	to		ArticleDetailView.swift	.	We'll	add	the	close	button	to	the	view	as	shown
in	figure	8.

Do	you	know	how	to	position	the	button	at	the	top-right	corner?	Try	not	to	peek	at	my
code	and	come	up	with	your	own	implementation.

Similar	to		NavigationView	,	we	can	dismiss	the	modal	view	by	using	the		presentationMode	
environment	value.	So,	first	declare	the	following	variable	in		ArticleDetailView	:

@Environment(\.presentationMode)	var	presentationMode

285Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	the	close	button,	we	can	attach	the		overlay		modifier	to	the	scroll	view	like	this:

.overlay(

				HStack	{

								Spacer()

								VStack	{

												Button(action:	{

																self.presentationMode.wrappedValue.dismiss()

												},	label:	{

																Image(systemName:	"chevron.down.circle.fill")

																				.font(.largeTitle)

																				.foregroundColor(.white)

												})

												.padding(.trailing,	20)

												.padding(.top,	40)

												Spacer()

								}

				}

)

The	button	will	be	overlayed	on	top	of	the	scroll	view	so	that	it	appears	as	a	floating
button.	Even	if	you	scroll	down	the	view,	the	button	will	be	stuck	at	the	same	position.	To
place	the	button	at	the	top-right	corner,	here	we	use	a		HStack		and	a		VStack	,	together
with	the	help	of		Spacer	.	To	dismiss	the	view,	you	call	the		dismiss()		function	of
	presentationMode	.

286Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Implementing	the	close	button

Run	the	app	in	a	simulator	or	switch	over	to		ContentView		and	run	it	in	the	canvas.	You
should	be	able	to	dismiss	the	modal	view	by	clicking	the	close	button.

Using	Alerts

In	addition	to	the	card-like	modal	views,	Alerts	are	another	kind	of	modal	view.	When	it's
presented,	the	entire	screen	is	blocked.	You	can't	dismiss	the	dialog	without	choosing	one
of	the	options.	Figure	10	shows	a	sample	alert	that	we're	going	to	implement	in	our	demo
project.	What	we're	going	to	display	an	alert	after	a	user	taps	the	close	button.

287Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	Displaying	an	alert

In	SwiftUI,	you	create	an	alert	using	the		Alert		struct.	Here	is	an	example	of		Alert	:

Alert(title:	Text("Warning"),	message:	Text("Are	you	sure	you	want	to	leave?"),	pr

imaryButton:	.default(Text("Confirm")),	secondaryButton:	.cancel())

The	sample	code	initiates	an	alert	view	with	the	title	"Warning".	The	alert	prompt	also
displays	the	message,	"Are	you	sure	you	want	to	leave"	to	the	user.	There	are	two	buttons
in	the	alert	view:	Confirm	and	Cancel.

Here	is	the	code	to	create	the	alert	as	shown	in	figure	10:

288Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Alert(title:	Text("Reminder"),	message:	Text("Are	you	sure	you	are	finished	readin

g	the	article?"),	primaryButton:	.default(Text("Yes"),	action:	{	self.presentation

Mode.wrappedValue.dismiss()	}),	secondaryButton:	.cancel(Text("No")))

It's	similar	to	the	previous	code	snippet	except	that	the	primary	button	has	the		action	
parameter.	This	alert	asks	the	user	whether	he/she	has	finished	reading	the	article.	If	the
user	chooses	Yes,	the	modal	view	will	be	closed.	Otherwise,	the	modal	view	will	stay
open.

Now	that	we	have	the	code	for	creating	the	alert,	the	question	is	how	can	we	trigger	the
display	of	the	alert?	SwiftUI	provides	the		alert		modifier	that	you	can	attach	it	to	any
view.	Again,	you	use	a	boolean	variable	to	control	the	display	of	the	alert.	So,	declare	a
state	variable	in		ArticleDetailView	:

@State	private	var	showAlert	=	false

Next,	attach	the		alert		modifier	to	the		ScrollView	:

.alert(isPresented:	$showAlert)	{

				Alert(title:	Text("Reminder"),	message:	Text("Are	you	sure	you	are	finished	re

ading	the	article?"),	primaryButton:	.default(Text("Yes"),	action:	{	self.presenta

tionMode.wrappedValue.dismiss()	}),	secondaryButton:	.cancel(Text("No")))

}

There	is	still	one	thing	left.	When	should	we	trigger	this	alert?	In	other	words,	when
should	we	set		showAlert		to		true	?

Obviously,	the	app	should	display	the	alert	when	someone	taps	the	close	button.	So,
replace	the	button's	action	like	this:

289Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Button(action:	{

				self.showAlert	=	true

},	label:	{

				Image(systemName:	"chevron.down.circle.fill")

								.font(.largeTitle)

								.foregroundColor(.white)

})

Instead	of	dismissing	the	modal	view	directly,	we	instruct	iOS	to	show	the	alert	by	setting
	showAlert		to		true	.	You're	now	ready	to	test	the	app.	When	you	tap	the	close	button,
you'll	see	the	alert.	The	modal	view	will	be	dismissed	if	you	choose	"Yes."

Figure	11.	Tapping	the	close	button	will	show	you	the	alert

Displaying	a	Full	Screen	Modal	View

Starting	with	iOS	13,	the	modal	view	doesn't	cover	the	whole	screen	by	default.	If	you
want	to	present	a	full	screen	modal	view,	you	can	use	the		.fullScreenCover		modifier
introduced	in	iOS	14.	Instead	of	using		.sheet		to	bring	up	a	modal	view,	you	can	apply

290Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

the		.fullScreenCover		modifier	like	this:

.fullScreenCover(item:	self.$selectedArticle)	{	article	in

				ArticleDetailView(article:	article)

}

Summary

You've	learned	how	to	present	a	modal	view,	implement	a	floating	button,	and	show	an
alert.	The	latest	release	of	iOS	continues	to	encourage	people	interact	with	the	device
using	gestures	and	provides	built-in	support	for	common	gestures.	Without	writing	a	line
of	code,	you	can	let	users	swipe	down	the	screen	to	dismiss	a	modal	view.

The	API	design	of	both	modal	view	and	alert	is	very	similar.	It	monitors	a	state	variable
to	determine	whether	the	modal	view	(or	alert)	should	be	triggered.	Once	you	understand
this	technique,	the	implementation	shouldn't	be	difficult	for	you.

For	reference,	you	can	download	the	complete	modal	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIModal.zip)

291Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIModal.zip

Chapter	13
Building	a	Form	with	Picker,	Toggle
and	Stepper
Mobile	apps	use	forms	to	interact	with	users	and	solicit	required	data	from	them.	Every
day,	when	using	your	iPhone,	it's	very	likely	you	will	come	across	a	mobile	form.	For
example,	a	calendar	app	may	present	you	a	form	to	fill	in	the	information	for	a	new	event.
A	shopping	app	asks	you	to	provide	the	shipping	and	payment	information	by	showing
you	a	form.	As	a	user,	I	can't	deny	that	I	hate	filling	out	forms.	That	said,	as	a	developer,
these	forms	help	us	interact	with	users	and	ask	for	information	to	complete	certain
operations.	Developing	a	form	is	definitely	an	essential	skill	you	need	to	grasp.

In	the	SwiftUI	framework,	there	is	a	special	UI	control	called	Form.	With	this	new
control,	you	can	easily	build	a	form.	I	will	show	you	how	to	build	a	form	using	this	Form
component.	While	building	out	a	form,	you	will	also	learn	how	to	work	with	common
controls	like	picker,	toggle,	and	stepper.

292Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Building	a	Setting	screen

Okay,	what	project	are	we	going	to	work	on?	Take	a	look	at	figure	1.	We're	going	to	build
a	Setting	screen	for	the	Restaurant	app	we	have	been	working	on	in	earlier	chapters.	The
screen	provides	users	with	the	options	to	configure	the	order	and	filter	preferences.	This
type	of	form	is	very	common	in	real-life	projects.	Once	you	understand	how	it	works,	you
will	be	able	to	create	your	own	form	in	your	app	projects.

In	this	chapter,	we	will	focus	on	implementing	the	form	layout.	You	will	understand	how
to	use	the	Form	component	to	lay	out	a	setting	screen.	We	will	also	implement	a	picker
for	selecting	a	sort	preference.	We'll	also	create	a	toggle	and	a	stepper	for	indicating	filter
preferences.	Once	you	understand	how	to	lay	out	a	form,	in	the	next	chapter,	I	will	show
you	how	to	make	the	app	fully	functional	by	updating	the	list	in	accordance	with	the
user's	preferences.	You'll	learn	how	to	store	user	preferences,	share	data	between	views
and	monitor	data	update	with		@EnvironmentObject	.

293Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Preparing	the	Starter	Project

To	save	you	time	from	building	the	restaurant	list	again,	I	have	created	a	starter	project
for	you.	Download	it	from
https://www.appcoda.com/resources/swiftui2/SwiftUIFormStarter.zip.	Once
downloaded,	open	the		SwiftUIForm.xcodeproj		file	with	Xcode.	Preview		ContentView.swift	
in	the	canvas	and	you'll	see	a	familiar	UI	except	that	it	incorporates	more	detailed
information	for	a	restaurant.

Figure	2.	The	restaurant	list	view

The		Restaurant		struct	now	has	three	more	properties:	type,	phone,	and	priceLevel.	I
think	both	type	and	phone	are	self	explanatory.	Price	level	stores	an	integer	of	range	1	to
5	reflecting	the	average	cost	of	the	restaurant.	The		restaurants		array	has	been
prepopulated	with	some	sample	data.	For	later	testing,	some	of	the	restaurants	have
	isFavorite		and		isCheckIn		set	to		true	.	This	is	why	you	see	some	check-in	and	favorite
indicators	displayed	in	the	preview.

294Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIFormStarter.zip

Building	the	Form	UI

As	mentioned,	SwiftUI	provides	a	UI	component	called		Form		for	building	the	form	UI.
It's	a	container	for	holding	and	grouping	controls	(e.g.	toggle)	for	data	entry.	Rather	than
explaining	its	usage	to	you,	it's	better	to	jump	right	into	the	implementation.	You	will
understand	how	to	use	the	component	along	the	way.

Since	we	will	build	a	separate	screen	for	Settings,	let's	create	a	new	file	for	the	form.	In
the	project	navigator,	right	click	the	SwiftUIForm	folder	and	choose	"New	File...."	Next,
select	to	use	SwiftUI	View	as	the	template	and	name	the	file	SettingView.swift.

Figure	3.	Creating	a	new	SwiftUI	file

Now,	let's	start	by	creating	the	form.	Replace		SettingView		with	this:

295Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	SettingView:	View	{

				var	body:	some	View	{

								NavigationView	{

												Form	{

																Section(header:	Text("SORT	PREFERENCE"))	{

																				Text("Display	Order")

																}

																Section(header:	Text("FILTER	PREFERENCE"))	{

																				Text("Filters")

																}

												}

												.navigationBarTitle("Settings")

								}								

				}

}

To	lay	out	a	form,	you	use	the		Form		container.	Inside	it,	you	add	sections	and	form
components	(text	field,	picker,	toggle	etc.).	In	the	code	above,	we	create	two	sections:
Sort	Preference	and	Filter	Preference.	For	each	section,	we	have	a	text	view.	Your	canvas
should	display	a	preview	like	that	shown	in	figure	4.

296Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Create	a	simple	form	with	two	sections

Creating	a	Picker	View

When	presenting	a	form,	you	certainly	want	to	secure	some	information.	It's	useless	if	we
just	present	a	Text	component.	In	the	actual	form,	we	use	three	types	of	UI	controls	for
user	input	including	a	picker	view,	a	toggle,	and	a	stepper.	Let's	begin	with	the	sort
preference.	For	that,	we	will	implement	a	picker	view.

For	the	sort	preference,	users	are	allowed	to	choose	the	display	order	of	the	restaurant
list,	in	which	we	offer	three	options	for	them	to	choose:

1.	 Alphabetically
2.	 Show	Favorite	First
3.	 Show	Check-in	First

A		Picker		control	is	very	suitable	for	handling	this	kind	of	input.	First,	You	represent
each	of	the	options	above	in	an	array.	Let's	declare	an	array	named		displayOrders		in
	SettingView	:

297Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	var	displayOrders	=	["Alphabetical",	"Show	Favorite	First",	"Show	Check-i

n	First"]

To	use	a	picker,	you	also	need	to	declare	a	state	variable	to	store	the	user's	selected
option.	In		SettingView	,	declare	the	variable	like	this:

@State	private	var	selectedOrder	=	0

Here,		0		means	the	first	item	of		displayOrders	.	Now	replace	the	SORT	PREFERENCE
section	like	this:

Section(header:	Text("SORT	PREFERENCE"))	{

				Picker(selection:	$selectedOrder,	label:	Text("Display	order"))	{

								ForEach(0	..<	displayOrders.count,	id:	\.self)	{

												Text(self.displayOrders[$0])

								}

				}

}

This	is	how	you	create	a	picker	container	in	SwiftUI.	You	have	to	provide	two	values;	the
binding	of	the	selection	(i.e.		$selectedOrder)	and	the	text	label	describing	what	the
option	is	for.	In	the	closure,	you	display	the	available	options	using		Text	.

In	the	canvas,	you	should	see	that	the	Display	Order	is	set	to	Alphabetical.	This	is
because		selectedOrder		is	default	to		0	.	If	you	click	the	Play	button	to	text	the	view,
tapping	the	option	will	bring	you	to	the	next	screen,	showing	you	all	the	available
options.	You	can	pick	any	of	the	options	(e.g.	Show	Favorite	First)	for	testing.	When	you
go	back	to	the	Setting	screen,	the	Display	Order	will	become	your	selection.	This	is	the
power	of	the		@State		keyword.	It	automatically	monitors	the	changes	and	helps	you	store
the	state	of	the	selection.

298Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Using	Picker	view	for	display	order	selection

Working	with	Toggle	Switches

Next,	let's	move	onto	the	input	for	setting	the	filter	preference.	First,	we	will	implement	a
toggle	(or	a	switch)	to	enable/disable	the	"Show	Check-in	Only"	filter.	A	toggle	has	only
two	states:	ON	or	OFF.	THis	control	is	useful	for	prompting	users	to	choose	between	two
mutually	exclusive	options.

Creating	a	toggle	switch	using	SwiftUI	is	quite	straightforward.	Similar	to		Picker	,	we
have	to	declare	a	state	variable	to	store	the	current	setting	of	the	toggle.	So,	declare	the
following	variable	in		SettingView	:

@State	private	var	showCheckInOnly	=	false

Then,	update	the	FILTER	PREFERENCE	section	like	this:

299Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Section(header:	Text("FILTER	PREFERENCE"))	{

				Toggle(isOn:	$showCheckInOnly)	{

								Text("Show	Check-in	Only")

				}

}

You	use		Toggle		to	create	a	toggle	switch	and	pass	it	the	current	state	of	the	toggle.	In	the
closure,	you	present	the	description	of	the	toggle.	Here,	we	simply	use	a		Text		view.

The	canvas	should	show	a	toggle	switch	under	the	Filter	Preference	section.	If	you	run
the	app,	you	can	switch	it	between	the	ON	and	OFF	states.	Similarly,	the	state	variable
	showCheckInOnly		will	always	keep	track	of	the	user	selection.

Figure	6.	Showing	a	toggle	switch

Using	Steppers

300Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	last	UI	control	in	the	setting	form	is	a	Stepper.	Again,	referring	to	figure	1,	users	can
filter	the	restaurants	by	setting	the	pricing	level.	Each	of	the	restaurants	has	a	pricing
indicator	with	a	range	of	1	to	5.	Users	can	adjust	the	price	level	to	narrow	down	the
number	of	restaurants	displayed	in	the	list	view.

In	the	setting	form,	we	will	implement	a	stepper	for	users	to	adjust	this	setting.	Basically,
a	Stepper	in	iOS	shows	a	text	field	and	plus	and	minus	buttons	to	perform	increment	and
decrement	actions	on	the	text	field.

To	implement	a	stepper	in	SwiftUI,	we	first	need	a	state	variable	to	hold	the	current	value
of	the	stepper.	In	this	case,	this	variable	stores	the	user's	price	level	filter.	Declare	the
state	variable	in		SettingView		like	this:

@State	private	var	maxPriceLevel	=	5

By	default,	we	set	the		maxPriceLevel		to		5	.	Update	the	FILTER	PREFERENCE	section
like	this:

301Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Section(header:	Text("FILTER	PREFERENCE"))	{

				Toggle(isOn:	$showCheckInOnly)	{

								Text("Show	Check-in	Only")

				}

				Stepper(onIncrement:	{

								self.maxPriceLevel	+=	1

								if	self.maxPriceLevel	>	5	{

												self.maxPriceLevel	=	5

								}

				},	onDecrement:	{

								self.maxPriceLevel	-=	1

								if	self.maxPriceLevel	<	1	{

												self.maxPriceLevel	=	1

								}

				})	{

								Text("Show	\(String(repeating:	"$",	count:	maxPriceLevel))	or	below")

				}

}

You	create	a	stepper	by	initiating	a		Stepper		component.	For	the		onIncrement		parameter,
you	specify	the	action	to	perform	when	the		+		button	is	clicked.	In	the	code,	we	simply
increase		maxPriceLevel		by	1.	Conversely,	the	code	specified	in	the		onDecrement		parameter
will	be	executed	when	the		-		button	is	clicked.

Since	the	price	level	is	in	the	range	of	1	to	5,	we	perform	a	check	to	make	sure	the	value	of
	maxPriceLevel		is	between	the	value	of	1	and	5.	In	the	closure,	we	display	the	text
description	of	the	filter	preference.	The	maximum	price	level	is	indicated	by	dollar	signs.

302Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Implementing	a	stepper

Click	the	Play	button	to	run	the	app.	The	number	of	$	signs	will	be	adjusted	when	you
click	the		+		/		-		button.

Presenting	the	Form

Now	that	you've	completed	the	form	UI,	the	next	step	is	to	present	the	form	to	users.	For
the	demo,	we	will	present	this	form	as	a	modal	view.	In	the	content	view,	we	will	add	a
Setting	button	in	the	navigation	bar	to	trigger	the	setting	view.

Switch	over	to		ContentView.swift	.	I	assume	you've	read	the	modal	view	chapter,	so	I	will
not	explain	the	code	in	depth.	First,	we	need	a	variable	to	keep	track	of	the	state	(i.e.
shown	or	not	shown)	of	the	modal	view.	Insert	the	following	line	of	code	to	declare	the
state	variable:

@State	private	var	showSettings:	Bool	=	false

303Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	insert	the	following	modifiers	to	the		NavigationView	:

.navigationBarItems(trailing:

				Button(action:	{

								self.showSettings	=	true

				},	label:	{

								Image(systemName:	"gear").font(.title)

												.foregroundColor(.black)

				})

)

.sheet(isPresented:	$showSettings)	{

				SettingView()

}

The		navigationBarItems		modifier	let	you	add	a	button	in	the	navigation	bar.	You're
allowed	to	create	a	button	at	the	leading	or	trailing	position	of	the	navigation	bar.	Since
we	want	to	display	the	button	at	the	top-right	corner,	we	use	the		trailing		parameter.
The		sheet		modifier	is	used	for	presenting	the		SettingView		as	a	modal	view.

In	the	canvas,	you	should	see	a	gear	icon	in	the	navigation	bar.	Run	the	app	and	click	the
gear	icon,	it	should	bring	up	the	Setting	view.

304Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Creating	the	navigation	bar	button

Similar	to	what	we	have	experienced	in	the	previous	chapter,	you	should	see	an	extra
padding	around	the	list	view	after	attaching	the		.sheet		modifier.	To	revert	to	the
original	style	of	the	list	view,	you	can	attach	the		.navigationViewStyle		modifier	to
	NavigationView		and	set	its	style	to		StackNavigationViewStyle		like	this:

.navigationViewStyle(StackNavigationViewStyle())

Exercise

The	only	way	to	dismiss	the	Setting	view	is	by	using	the	swipe-down	gesture.	In	the
modal	view	chapter,	you	learned	how	to	dismiss	a	modal	view	programmatically.	As	a
refresher	exercise,	please	create	two	buttons	(Save	&	Cancel)	in	the	navigation	bar.	You
are	not	required	to	implement	these	button.	When	a	user	taps	any	of	the	buttons,	just
dismiss	the	setting	view.

305Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Adding	two	buttons	(Save	&	Cancel)	in	the	navigation	bar

306Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

What's	Coming	Next

I	hope	you	understand	how	the	Form	component	works	and	that	you	know	how	to	build
a	form	UI	with	components	like	Picker	and	Stepper.	Currently,	the	app	can't	store	the
user	preferences	permanently.	Every	time	you	launch	the	app,	the	settings	are	reset	to
the	original	settings.	In	the	next	chapter,	I	will	show	you	how	to	save	these	settings	in
local	storage.	More	importantly,	we	will	update	the	list	view	in	accordance	with	the	user's
preferences.

For	reference,	you	can	download	the	complete	form	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIForm.zip)

307Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIForm.zip

Chapter	14
Data	Sharing	with	Combine	and
Environment	Objects
In	the	previous	chapter,	you	learned	how	to	lay	out	a	form	using	the	Form	component.
However,	the	form	is	not	functional	yet.	No	matter	what	options	you	select,	the	list	view
doesn't	change	to	reflect	the	user's	preference.	This	is	what	we're	going	to	discuss	and
implement	in	this	chapter.	We	will	continue	to	develop	the	settings	screen	and	make	the
app	fully	functional	by	updating	the	restaurant	list	in	reference	to	the	user's	personal
preference.

Specifically,	there	are	a	few	topics	we	will	discuss	in	later	sections:

1.	 How	to	use	enum	to	better	organize	our	code
2.	 How	to	store	the	user's	preference	permanently	using	UserDefaults
3.	 How	to	share	data	using	Combine	and	@EnvironmentObject

If	you	haven't	finished	the	exercise	in	the	previous	chapter,	I	encourage	you	to	spend
some	time	on	it.	That	said,	if	you	can't	wait	to	read	this	chapter,	you	can	download	the
project	from	https://www.appcoda.com/resources/swiftui2/SwiftUIForm.zip.

Refactoring	the	Code	with	Enum

We	currently	use	an	array	to	store	the	three	options	of	the	display	order.	It	works	but
there	is	a	better	way	to	improve	the	code.

An	enumeration	defines	a	common	type	for	a	group	of	related	values	and	enables
you	to	work	with	those	values	in	a	type-safe	way	within	your	code.

-	Apple's	official	documentation	(https://docs.swift.org/swift-
book/LanguageGuide/Enumerations.html)

308Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIForm.zip
https://docs.swift.org/swift-book/LanguageGuide/Enumerations.html

Since	this	group	of	fixed	values	is	related	to	display	order,	we	can	use	an		Enum		to	hold
them	and	each	case	can	be	assigned	with	an	integer	value	like	this:

enum	DisplayOrderType:	Int,	CaseIterable	{

				case	alphabetical	=	0

				case	favoriteFirst	=	1

				case	checkInFirst	=	2

				init(type:	Int)	{

								switch	type	{

								case	0:	self	=	.alphabetical

								case	1:	self	=	.favoriteFirst

								case	2:	self	=	.checkInFirst

								default:	self	=	.alphabetical

								}

				}

				var	text:	String	{

								switch	self	{

								case	.alphabetical:	return	"Alphabetical"

								case	.favoriteFirst:	return	"Show	Favorite	First"

								case	.checkInFirst:	return	"Show	Check-in	First"

								}

				}

}

What	makes		Enum		great	is	that	we	can	work	with	these	values	in	a	type-safe	way	within
our	code.	Additionally,		Enum		in	Swift	is	a	first-class	type	in	its	own	right.	That	means	you
can	create	instance	methods	to	provide	additional	functionality	related	to	the	values.
Later,	we	will	add	a	function	for	handling	the	filtering.	Meanwhile,	let's	create	a	new
Swift	file	named		SettingStore.swift		to	store	the		Enum	.	You	can	right	click		SwiftUIForm		in
the	project	navigation	and	choose	New	File...	to	create	the	file.

309Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Creating	a	new	Swift	file

After	creating		SettingStore.swift	,	insert	the	code	snippet	above	in	the	file.	Next,	go	back
to		SettingView.swift	.	We	will	update	the	code	to	use	the		DisplayOrder		enumeration
instead	of	the		displayOrders		array.

First,	delete	this	line	of	code	from		SettingView	:

private	var	displayOrders	=	["Alphabetical",	"Show	Favorite	First",	"Show	Check-i

n	First"]

Next,	update	the	default	value	of		selectedOrder		to		DisplayOrderType.alphabetical		like	this:

@State	private	var	selectedOrder	=	DisplayOrderType.alphabetical

Here,	we	set	the	default	display	order	to	alphabetical.	Comparing	this	to	the	previous
value,	of	0,	the	code	is	more	readable	after	switching	to	use	an	enumeration.	Next,	you
also	need	to	change	the	code	in	the	Sort	Preference	section.	Specifically,	we	update	the
code	in	the		ForEach		loop:

310Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Section(header:	Text("SORT	PREFERENCE"))	{

				Picker(selection:	$selectedOrder,	label:	Text("Display	order"))	{

								ForEach(DisplayOrderType.allCases,	id:	\.self)	{

												orderType	in

												Text(orderType.text)

								}

				}

}

Since	we	have	adopted	the		CaseIterable		protocol	in	the		DisplayOrder		enum,	we	can
obtain	all	the	display	orders	by	accessing	the		allCases		property,	which	contains	an	array
of	all	the	enum's	cases.

Now	you	can	test	the	Settings	screen	again.	It	should	work	and	look	the	same.	However,
the	underlying	code	is	more	manageable	and	readable.

Saving	the	User	Preferences	in	UserDefaults

Right	now,	the	app	can't	save	the	user's	preference	permanently.	Whenever	you	restart
the	app,	the	Settings	screen	resets	to	its	default	settings.

There	are	multiple	ways	to	store	the	settings.	For	saving	small	amounts	of	data	like	user
settings	on	iOS,	the	built-in	"defaults"	database	is	a	good	option.	This	"defaults"	system
allows	an	app	to	store	user's	preferences	in	key-value	pairs.	To	interact	with	this	defaults
database,	you	use	a	programmatic	interface	called		UserDefaults	.

In	the		SettingStore.swift		file,	we	will	create	a		SettingStore		class	to	provide	some
convenience	methods	for	saving	and	loading	the	user's	preferences.	Insert	the	following
code	snippet	in		SettingStore.swift	:

311Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

final	class	SettingStore:	ObservableObject	{

				init()	{

								UserDefaults.standard.register(defaults:	[

												"view.preferences.showCheckInOnly"	:	false,

												"view.preferences.displayOrder"	:	0,

												"view.preferences.maxPriceLevel"	:	5

])

				}

				var	showCheckInOnly:	Bool	=	UserDefaults.standard.bool(forKey:	"view.preferenc

es.showCheckInOnly")	{

								didSet	{

												UserDefaults.standard.set(showCheckInOnly,	forKey:	"view.preferences.s

howCheckInOnly")

								}

				}

				var	displayOrder:	DisplayOrderType	=	DisplayOrderType(type:	UserDefaults.stand

ard.integer(forKey:	"view.preferences.displayOrder"))	{

								didSet	{

												UserDefaults.standard.set(displayOrder.rawValue,	forKey:	"view.prefere

nces.displayOrder")

								}

				}

				var	maxPriceLevel:	Int	=	UserDefaults.standard.integer(forKey:	"view.preferenc

es.maxPriceLevel")	{

								didSet	{

												UserDefaults.standard.set(maxPriceLevel,	forKey:	"view.preferences.max

PriceLevel")

								}

				}

}

Let	me	briefly	explain	the	code.	In	the		init		method,	we	initialize	the	defaults	system
with	some	default	values.	These	values	will	only	be	used	if	the	user's	preferences	are	not
found	in	the	database.

312Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	the	code	above,	we	declare	three	properties	(showCheckInOnly,	displayOrder,	and
maxPriceLevel)	that	will	be	saved	in	key-value	pairs	with		UserDefaults	.	The	default	value
is	loaded	from	the	default	system	for	the	specific	key.	In	the		didSet	,	we	use	the		set	
method	of		UserDefaults		(UserDefaults.standard.set())	to	save	the	value	in	the	user
default.	All	the	three	properties	are	marked	with		@Published		so	that	they	will	notify	all
their	subscribers	when	its	value	is	updated.

With	the		SettingStore		ready,	let's	switch	over	to	the		SettingView.swift		file	to	implement
the	Save	operation.	First,	declare	a	property	in		SettingView		for	the		SettingStore	:

var	settingStore:	SettingStore

For	the	Save	button,	find	the	Save	button	code	(in	the	.navigationBarItems	trailing
block)	and	replace	the	existing	code	with	this:

Button(action:	{

				self.settingStore.showCheckInOnly	=	self.showCheckInOnly

				self.settingStore.displayOrder	=	self.selectedOrder

				self.settingStore.maxPriceLevel	=	self.maxPriceLevel

				self.presentationMode.wrappedValue.dismiss()

},	label:	{

				Text("Save")

								.foregroundColor(.black)

})

We	added	three	lines	of	code	to	the	exiting	save	button	to	save	the	user's	preference.	To
load	the	user's	preferences	when	the	Settings	view	is	brought	up,	you	can	add	a		onAppear	
modifier	to	the		NavigationView		like	this:

.onAppear	{												

				self.selectedOrder	=	self.settingStore.displayOrder

				self.showCheckInOnly	=	self.settingStore.showCheckInOnly

				self.maxPriceLevel	=	self.settingStore.maxPriceLevel

}

313Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The		onAppear		modifier	will	be	called	when	the	view	appears.	We	load	the	user's	settings
from	the	defaults	system	in	its	closure.

Before	you	can	test	the	changes,	you	have	to	update		SettingView_Previews		like	this:

struct	SettingView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								SettingView(settingStore:	SettingStore())

				}

}

Now,	switch	over	to		ContentView.swift		and	declare	the		settingStore		property:

var	settingStore:	SettingStore

And	then	update	the		sheet		modifier	like	this:

.sheet(isPresented:	$showSettings)	{

				SettingView(settingStore:	self.settingStore)

}

Lastly,	update		ContentView_Previews		like	this:

struct	ContentView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								ContentView(settingStore:	SettingStore())

				}

}

We	initialize	a		SettingStore		and	pass	it	to		SettingView	.	This	is	required	because	we've
added	the		settingStore		property	in		SettingView	.

If	you	compile	and	run	the	app	now,	Xcode	will	show	you	an	error.	There	is	one	more
change	we	need	to	make	before	the	app	can	run	properly.

314Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	An	error	in	SwiftUIFormApp.swift

Go	to		SwiftUIFormApp.swift		and	add	this	property	to	create	a		SettingStore		instance:

var	settingStore	=	SettingStore()

Next,	change	the	line	code	in	the	WindowGroup	block	to	the	following	to	fix	the	error:

ContentView(settingStore:	settingStore)

You	should	now	be	able	to	execute	app	and	play	around	with	the	settings.	Once	you	save
the	settings,	they	are	stored	permanently	in	the	local	defaults	system.	You	can	stop	the
app	and	launch	it	again.	The	saved	settings	should	be	loaded	in	the	Setting	screen.

315Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	The	Setting	screen	should	load	your	user	preference

Sharing	Data	Between	Views	Using
@EnvironmentObject

Now	that	the	user's	preferences	are	saved	in	the	local	defaults	system,	the	list	view
doesn't	change	in	accordance	to	the	user's	settings.	Again,	there	are	various	ways	to	solve
this	problem.

Let's	recap	what	we	have	right	now.	When	a	user	taps	the	Save	button	in	the	Setting
screen,	we	save	the	selected	options	in	the	local	defaults	system.	The	Settings	screen	is
then	dismissed	and	the	app	will	bring	the	user	back	to	the	list	view.	So,	either	we	instruct
the	list	view	to	reload	the	settings	or	the	list	view	must	be	capable	of	monitoring	the
changes	of	the	defaults	system	and	trigger	un	update	of	the	list.

316Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Along	with	the	introduction	of	SwiftUI,	Apple	also	released	a	new	framework	called
Combine.	According	to	Apple,	this	framework	provides	a	declarative	API	for	processing
values	over	time.	In	the	context	of	this	demo,	Combine	lets	you	easily	monitor	a	single
object	and	get	notified	of	changes.	Working	along	with	SwiftUI,	we	can	trigger	an	update
of	a	view	without	writing	a	line	of	code.	Everything	is	handled	behind	the	scenes	by
SwiftUI	and	Combine.

So,	how	can	the	list	view	know	the	user's	preference	is	modified	and	trigger	the	update
itself?

Let	me	introduce	three	keywords:

1.	 @EnvironmentObject	-	Technically,	this	is	known	as	a	property	wrapper,	but	you
may	consider	this	keyword	as	a	special	marker.	When	you	declare	a	property	as	an
environment	object,	SwiftUI	monitors	the	value	of	the	property	and	invalidates	the
corresponding	view	whenever	there	are	changes.	@EnvironmentObject	works	pretty
much	the	same	as	@State.	But	when	a	property	is	declared	as	an	environment	object,
it	will	be	made	accessible	to	all	views	in	the	entire	app.	For	example,	if	your	app	has
a	lot	of	views	that	share	the	same	piece	of	data	(e.g.	user	settings),	environment
objects	work	great	for	this.	You	do	not	need	to	pass	the	property	between	views	but
instead	you	can	access	it	automatically.

2.	 ObservableObject	-	this	is	a	protocol	of	the	Combine	framework.	When	you
declare	a	property	as	an	environment	object,	the	type	of	that	property	must
implement	this	protocol.	Back	to	our	question:	how	can	we	let	the	list	view	know	the
user's	preferences	are	changed?	By	implementing	this	protocol,	the	object	can	serve
as	a	publisher	that	emits	the	changed	value(s).	The	subscribers	that	monitor	the
value	change	will	get	notified.

3.	 @Published	-	is	a	property	wrapper	that	works	along	with		ObservableObject	.	When
a	property	is	prefixed	with		@Publisher	,	this	indicates	that	the	publisher	should
inform	all	subscribers	whenever	the	property's	value	is	changed.

I	know	it's	a	bit	confusing.	You	will	have	a	better	understanding	once	we	go	through	the
code.

317Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Let's	start	with		SettingStore.swift	.	Since	both	the	settings	view	and	the	list	view	need	to
monitor	the	change	of	user	preferences,		SettingStore		should	implement	the
	ObservableObject		protocol	and	announce	the	change	of	the		defaults		property.	In	the
beginning	of	the		SettingStore.swift		file,	we	have	to	first	import	the	Combine	framework:

import	Combine

The		SettingStore		class	should	adopt	the		ObservableObject		protocol.	Update	the	class
declaration	like	this:

final	class	SettingStore:	ObservableObject	{

Next,	insert	the		@Published		annotation	for	all	the	properties	like	this:

318Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

@Published	var	showCheckInOnly:	Bool	=	UserDefaults.standard.bool(forKey:	"view.pr

eferences.showCheckInOnly")	{

				didSet	{

								UserDefaults.standard.set(showCheckInOnly,	forKey:	"view.preferences.showC

heckInOnly")

				}

}

@Published	var	displayOrder:	DisplayOrderType	=	DisplayOrderType(type:	UserDefaults

.standard.integer(forKey:	"view.preferences.displayOrder"))	{

				didSet	{

								UserDefaults.standard.set(displayOrder.rawValue,	forKey:	"view.preferences

.displayOrder")

				}

}

@Published	var	maxPriceLevel:	Int	=	UserDefaults.standard.integer(forKey:	"view.pr

eferences.maxPriceLevel")	{

				didSet	{

								UserDefaults.standard.set(maxPriceLevel,	forKey:	"view.preferences.maxPric

eLevel")

				}

}

By	using	the		@Published		property	wrapper,	the	publisher	will	let	subscribers	know
whenever	there	is	a	value	change	of	the	property	(e.g.	an	update	of		displayOrder).

As	you	can	see,	it's	pretty	easy	to	inform	a	changed	value	with	Combine.	Actually	we
haven't	written	any	new	code	but	simply	adopted	a	required	protocol	and	inserted	a
marker.

Now	let's	switch	over	to		SettingView.swift	.	The		settingStore		should	now	declared	as	an
environment	object	so	that	we	share	the	data	with	other	views.	Update	the		settingStore	
variable	like	this:

@EnvironmentObject	var	settingStore:	SettingStore

319Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

You	do	not	need	to	update	any	code	related	to	the	Save	button.	However,	when	you	set	a
new	value	for	the	setting	store	(e.g.	update		showCheckInOnly		from	true	to	false),	this
update	will	be	published	and	let	all	subscribers	know.

Because	of	the	change,	we	need	to	update		SettingView_Previews		to	the	following:

struct	SettingView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								SettingView().environmentObject(SettingStore())

				}

}

Here,	we	inject	an	instance	of		SettingStore		into	the	environment	for	the	preview.

Okay,	all	our	work	has	been	on	the	Publisher	side.	What	about	the	Subscriber?	How	can
we	monitor	the	change	of		defaults		and	update	the	UI	accordingly?

In	the	demo	project,	the	list	view	is	the	Subscriber	side.	It	needs	to	monitor	the	changes
of	the	setting	store	and	re-render	the	list	view	to	reflect	the	user's	setting.	Now	let's	open
	ContentView.swift		to	make	some	changes.	Similar	to	what	we've	just	done,	the
	settingStore		should	now	declared	as	an	environment	object:

@EnvironmentObject	var	settingStore:	SettingStore

Due	to	the	change,	the	code	in	the		sheet		modifier	should	be	modified	to	grab	this
environment	object:

.sheet(isPresented:	$showSettings)	{

				SettingView().environmentObject(self.settingStore)

}

Also,	for	testing	purposes,	the	preview	code	should	be	updated	accordingly	to	inject	the
environment	object:

320Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								ContentView().environmentObject(SettingStore())

				}

}

Lastly,	open		SwiftUIFormApp.swift		and	update	the	line	of	code	inside		WindowGroup		like
this:

struct	SwiftUIFormApp:	App	{

				var	settingStore	=	SettingStore()

				var	body:	some	Scene	{

								WindowGroup	{

												ContentView().environmentObject(settingStore)

								}

				}

}

Here,	we	inject	the	setting	store	into	the	environment	by	calling	the		environmentObject	
method.	Now	the	instance	of	setting	store	is	available	to	all	views	within	the	app.	In	other
words,	both	the	Setting	and	List	views	can	access	it	automatically.

Implementing	the	Filtering	Options

Now	we	have	implemented	a	common	setting	store	that	can	be	accessed	by	all	views.
What's	great	is	that	for	any	change	in	the	setting	store,	it	automatically	notifies	the	views
that	monitor	for	updates.	Though	you	don't	experience	any	visual	difference,	the	setting
store	does	notify	the	changes	to	the	list	view	when	you	update	the	options	in	the	setting
screen.

Our	final	task	is	to	implement	the	filtering	and	sort	options	to	display	only	the
restaurants	that	match	the	user	preferences.	Let's	start	with	the	implementation	of	these
two	filtering	options:

321Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Show	check-in	only
Show	restaurants	below	a	certain	price	level

In		ContentView.swift	,	we	will	create	a	new	function	called		showShowItem		to	handle	the
filtering:

private	func	shouldShowItem(restaurant:	Restaurant)	->	Bool	{

				return	(!self.settingStore.showCheckInOnly	||	restaurant.isCheckIn)	&&	(restau

rant.priceLevel	<=	self.settingStore.maxPriceLevel)

}

This	function	takes	in	a	restaurant	object	and	tells	the	caller	if	the	restaurant	should	be
displayed.	In	the	code	above,	we	check	if	the	"Show	Check-in	Only"	option	is	selected	and
verify	the	price	level	of	the	given	restaurant.

Next,	wrap	the		BasicImageRow		with	a		if		clause	like	this:

if	self.shouldShowItem(restaurant:	restaurant)	{

								BasicImageRow(restaurant:	restaurant)

												.contextMenu	{

																	...

												}

}

Here	we	first	call	the		shouldShowItem		function	we	just	implemented	to	check	if	the
restaurant	should	be	displayed.

Now	run	the	app	and	have	a	quick	test.	In	the	setting	screen,	set	the	Show	Check-in	Only
option	to	ON	and	configure	the	price	level	option	to	show	restaurants	that	are	with	price
level	3	(i.e.	$$$)	or	below.	Once	you	tap	the	Save	button,	the	list	view	should	be
automatically	refreshed	(with	animation)	and	shows	you	the	filtered	records.

322Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	The	list	view	now	refreshes	its	items	when	you	change	the	filter	preference

Implementing	the	Sort	Option

Now	that	we've	completed	the	implementation	of	the	filtering	options,	let's	work	on	the
sort	option.	In	Swift,	you	can	sort	a	sequence	of	elements	by	using	the		sort(by:)	
method.	When	you	use	this	method,	you	need	to	provide	a	predicate	to	it	that	returns
	true		when	the	first	element	should	be	ordered	before	the	second.

For	example,	to	sort	the		restaurants		array	in	alphabetical	order.	You	can	use	the
	sort(by:)		method	like	this:

restaurants.sorted(by:	{	$0.name	<	$1.name	})

323Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Here,	$0	is	the	first	element	and	$1	is	the	second	element.	In	this	case,	a	restaurant	with
the	name	"Upstate"	is	larger	than	a	restaurant	with	the	name	"Homei".	So,	"Homei"	will
be	put	in	front	of	"Upstate"	in	the	sequence.

Conversely,	if	you	want	to	sort	the	restaurants	in	alphabetical	descending	order,	you	can
write	the	code	like	this:

restaurants.sorted(by:	{	$0.name	>	$1.name	})

How	can	we	sort	the	array	to	show	"check-in"	first	or	show	"favorite"	first?	We	can	use
the	same	method	but	provide	a	different	predictate	like	this:

restaurants.sorted(by:	{	$0.isFavorite	&&	!$1.isFavorite	})

restaurants.sorted(by:	{	$0.isCheckIn	&&	!$1.isCheckIn	})

To	better	organize	our	code,	we	can	put	these	predicates	in	the		DisplayOrderType		enum.
In		SettingStore.swift	,	add	a	new	function	in		DisplayOrderType		like	this:

func	predicate()	->	((Restaurant,	Restaurant)	->	Bool)	{

				switch	self	{

				case	.alphabetical:	return	{	$0.name	<	$1.name	}

				case	.favoriteFirst:	return	{	$0.isFavorite	&&	!$1.isFavorite	}

				case	.checkInFirst:	return	{	$0.isCheckIn	&&	!$1.isCheckIn	}

				}

}

This	function	simply	returns	the	predicate,	which	is	a	closure,	for	the	corresponding
display	order.	Now	we	are	ready	to	make	the	final	change.	Go	back	to		ContentView.swift	
and	change	the		ForEach		statement	from:

ForEach(restaurants)	{

		...

}

To:

324Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ForEach(restaurants.sorted(by:	self.settingStore.displayOrder.predicate()))	{

		...

}

That's	it!	Test	the	app	and	change	the	sort	preference.	When	you	update	the	sort	option,
the	list	view	will	get	notified	and	re-orders	the	restaurants	accordingly.

What's	Coming	Next

Are	you	aware	that	SwiftUI	and	Combine	work	together	to	help	us	write	better	code?	In
the	last	two	sections	of	this	chapter,	we	didn't	write	a	lot	of	code	to	implement	the
filtering	and	sort	options.	Combine	handles	the	heavy	lifting	of	event	processing.	When
pairing	it	with	SwiftUI,	it's	even	more	powerful	and	saves	you	from	developing	your	own
implementation	to	monitor	the	state	changes	of	objects	and	trigger	UI	updates.
Everything	is	nearly	automatic	and	taken	care	of	by	these	two	new	frameworks.

In	the	next	chapter,	we	will	continue	to	explore	Combine	by	building	a	registration
screen.	You	will	further	understand	how	Combine	can	help	you	write	cleaner	and	more
modular	code.

For	reference,	you	can	download	the	complete	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIFormData.zip)

325Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIFormData.zip

Chapter	15
Building	a	Registration	Form	with
Combine	and	View	Model
Now	that	you	have	some	basic	idea	about	Combine,	let's	explore	how	Combine	can	make
SwiftUI	really	shine.	When	developing	a	real-world	app,	it's	very	common	to	have	a	user
registration	page	for	people	to	sign	up	and	create	an	account.	In	this	chapter,	we	will
build	a	simple	registration	screen	with	three	text	fields.	Our	focus	is	on	form	validation,
so	we	will	not	perform	an	actual	sign	up.	You'll	learn	how	we	can	leverage	the	power	of
Combine	to	validate	each	of	the	input	fields	and	organize	our	code	in	a	view	model.

326Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	User	registration	demo

Before	we	dive	into	the	code,	take	a	look	at	figure	1.	That	is	the	user	registration	screen
we're	going	to	build.	Under	each	of	the	input	fields,	it	lists	out	the	requirements.	As	soon
as	the	user	fills	in	the	information,	the	app	validates	the	input	in	real-time	and	crosses
out	the	requirement	if	it's	been	fulfilled.	The	sign	up	button	is	disabled	until	all	the
requirements	are	matched.

If	you	have	experience	in	Swift	and	UIKit,	you	know	there	are	various	types	of
implementation	to	handle	the	form	validation.	In	this	chapter,	however,	we're	going	to
explore	how	you	can	utilize	the	Combine	framework	to	perform	form	validation.

Layout	the	Form	using	SwiftUI

327Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Let's	begin	this	chapter	with	an	exercise,	use	what	you've	learned	so	far	and	layout	the
form	UI	shown	in	figure	1.	To	create	a	text	field	in	SwiftUI,	you	can	use	the		TextField	
component.	For	the	password	fields,	SwiftUI	provides	a	secure	text	field	called
	SecureField	.

To	create	a	text	field,	you	initiate	a		TextField		with	a	field	name	and	a	binding.	This
renders	an	editable	text	field	with	the	user's	input	stored	in	your	given	binding.	Similar	to
other	form	fields,	you	can	modify	its	look	&	feel	by	applying	the	associated	modifiers.
Here	is	a	sample	code	snippet:

TextField("Username",	text:	$username)

				.font(.system(size:	20,	weight:	.semibold,	design:	.rounded))

				.padding(.horizontal)

The	usage	of	these	two	components	are	very	similar	except	that	the	secure	field
automatically	masks	the	user's	input:

SecureField("Password",	text:	$password)

				.font(.system(size:	20,	weight:	.semibold,	design:	.rounded))

				.padding(.horizontal)

I	know	these	two	components	are	new	to	you,	but	try	your	best	to	build	the	form	before
looking	at	the	solution.

OWre	you	able	to	create	the	form?	Even	if	you	can't	finish	the	exercise,	that's	completely
fine.	Download	this	project	from
https://www.appcoda.com/resources/swiftui2/SwiftUIFormRegistrationUI.zip.	I	will	go
through	my	solution	with	you.

328Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIFormRegistrationUI.zip

Figure	2.	The	starter	project

Open	the		ContentView.swift		file	and	preview	the	layout	in	the	canvas.	Your	rendered	view
should	look	like	that	shown	in	figure	2.	Now,	let's	briefly	go	over	the	code.	Let's	start	with
the		RequirementText		view.

329Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	RequirementText:	View	{

				var	iconName	=	"xmark.square"

				var	iconColor	=	Color(red:	251/255,	green:	128/255,	blue:	128/255)

				var	text	=	""

				var	isStrikeThrough	=	false

				var	body:	some	View	{

								HStack	{

												Image(systemName:	iconName)

																.foregroundColor(iconColor)

												Text(text)

																.font(.system(.body,	design:	.rounded))

																.foregroundColor(.secondary)

																.strikethrough(isStrikeThrough)

												Spacer()

								}

				}

}

First,	why	do	I	create	a	separate	view	for	the	requirements	text	(see	figure	3)?	If	you	look
at	all	of	the	requirements	text,	each	requirement	has	an	icon	and	a	description.	Instead	of
creating	each	of	the	requirements	text	from	scratch,	we	can	generalize	the	code	and	build
a	generic	view	for	it.

Figure	3.	A	sample	text	field	and	its	requirement	text

330Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The		RequirementText		view	has	four	properties	including		iconName	,		iconColor	,		text	,	and
	isStrikeThrough	.	It's	flexible	enough	to	support	different	styles	of	requirements	text.	If
you	accept	the	default	icon	and	color,	you	can	simply	create	a	requirement	text	like	this:

RequirementText(text:	"A	minimum	of	4	characters")

This	will	render	the	square	with	an	x	in	it	(xmark.square)	and	the	text	as	shown	in	figure
3.	In	some	cases,	the	requirement	text	should	be	crossed	out	and	display	a	different
icon/color.	The	code	can	be	written	like	this:

RequirementText(iconName:	"lock.open",	iconColor:	Color.secondary,	text:	"A	minimu

m	of	8	characters",	isStrikeThrough:	true)

You	specify	a	different	system	icon	name,	color,	and	set	the		isStrikeThrough		option	to
	true	.	This	will	allow	you	to	create	a	requirement	text	like	that	displayed	in	figure	4.

Figure	4.	The	requirement	text	is	crossed	out

Now	that	you	understand	how	the		RequirementText		view	works	and	why	I	created	that,
let's	take	a	look	at	the		FormField		view.	Again,	if	you	look	at	all	the	text	fields,	they	all
have	a	common	style	-	a	text	field	with	rounded	font	style.	This	is	the	reason	why	I
extracted	the	common	code	and	created	a		FormField		view.

331Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	FormField:	View	{

				var	fieldName	=	""

				@Binding	var	fieldValue:	String

				var	isSecure	=	false

				var	body:	some	View	{

								VStack	{

												if	isSecure	{

																SecureField(fieldName,	text:	$fieldValue)

																				.font(.system(size:	20,	weight:	.semibold,	design:	.rounded))

																				.padding(.horizontal)

												}	else	{

																TextField(fieldName,	text:	$fieldValue)																	

																				.font(.system(size:	20,	weight:	.semibold,	design:	.rounded))

																				.padding(.horizontal)

												}

												Divider()

																.frame(height:	1)

																.background(Color(red:	240/255,	green:	240/255,	blue:	240/255))

																.padding(.horizontal)

								}

				}

}

Since	this	generic		FormField		needs	to	take	care	of	both	text	fields	and	secure	fields,	it	has
a	property	named		isSecure	.	If	it's	set	to		true	,	the	form	field	will	be	created	as	a	secure
field.	In	SwiftUI,	you	can	make	use	of	the		Divider		component	to	create	a	line.	In	the
code,	we	use	the		frame		modifier	to	change	its	height	to	1	point.

To	create	the	username	field,	you	write	the	code	like	this:

FormField(fieldName:	"Username",	fieldValue:	$username)

332Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	the	password	field,	the	code	is	very	similar	except	that	the		isSecure		parameter	is	set
to	true:

FormField(fieldName:	"Password",	fieldValue:	$password,	isSecure:	true)

Okay,	let's	head	back	to	the		ContentView		struct	and	see	how	the	form	is	laid	out.

struct	ContentView:	View	{

				@State	private	var	username	=	""

				@State	private	var	password	=	""

				@State	private	var	passwordConfirm	=	""

				var	body:	some	View	{

								VStack	{

												Text("Create	an	account")

																.font(.system(.largeTitle,	design:	.rounded))

																.bold()

																.padding(.bottom,	30)

												FormField(fieldName:	"Username",	fieldValue:	$username)

												RequirementText(text:	"A	minimum	of	4	characters")

																.padding()

												FormField(fieldName:	"Password",	fieldValue:	$password,	isSecure:	true

)

												VStack	{

																RequirementText(iconName:	"lock.open",	iconColor:	Color.secondary,

	text:	"A	minimum	of	8	characters",	isStrikeThrough:	true)

																RequirementText(iconName:	"lock.open",	text:	"One	uppercase	letter"

,	isStrikeThrough:	false)

												}

												.padding()

												FormField(fieldName:	"Confirm	Password",	fieldValue:	$passwordConfirm,

	isSecure:	true)

												RequirementText(text:	"Your	confirm	password	should	be	the	same	as	the

	password",	isStrikeThrough:	false)

																.padding()

																.padding(.bottom,	50)

333Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

												Button(action:	{

																//	Proceed	to	the	next	screen

												})	{

																Text("Sign	Up")

																				.font(.system(.body,	design:	.rounded))

																				.foregroundColor(.white)

																				.bold()

																				.padding()

																				.frame(minWidth:	0,	maxWidth:	.infinity)

																				.background(LinearGradient(gradient:	Gradient(colors:	[Color(r

ed:	251/255,	green:	128/255,	blue:	128/255),	Color(red:	253/255,	green:	193/255,	b

lue:	104/255)]),	startPoint:	.leading,	endPoint:	.trailing))

																				.cornerRadius(10)

																				.padding(.horizontal)

												}

												HStack	{

																Text("Already	have	an	account?")

																				.font(.system(.body,	design:	.rounded))

																				.bold()

																Button(action:	{

																				//	Proceed	to	Sign	in	screen

																})	{

																				Text("Sign	in")

																								.font(.system(.body,	design:	.rounded))

																								.bold()

																								.foregroundColor(Color(red:	251/255,	green:	128/255,	blue:	

128/255))

																}

												}.padding(.top,	50)

												Spacer()

								}

								.padding()

				}

}

334Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

First,	we	have	a		VStack		to	hold	all	the	form	elements.	It	begins	with	the	heading,
followed	by	all	the	form	fields	and	requirement	text.	I	have	already	explained	how	the
form	fields	and	requirement	text	are	created,	so	I	will	not	go	through	them	again.	What	I
added	to	the	fields	is	the		padding		modifier.	This	is	used	to	add	some	space	between	the
text	fields.

The	Sign	up	button	is	created	using	the		Button		component	and	has	an	empty	action.	I
intend	to	leave	the	action	closure	blank	because	our	focus	is	on	form	validation.	Again,	I
believe	you	should	know	how	a	button	can	be	customized,	so	I	will	not	go	into	it	in	detail.
You	can	always	refer	to	the	Button	chapter.

Last,	is	the	description	text	Already	have	an	account.	This	text	and	the	Sign	in	button
are	completely	optional.	I'm	mimicing	the	layout	of	a	common	sign	up	form.

That's	how	I	laid	out	the	user	registration	screen.	If	you	tried	out	the	exercise,	you	may
have	come	up	with	a	different	solution.	That's	completely	fine.	Here	I	just	wanted	to
show	you	one	of	the	approaches	to	building	the	form.	You	can	use	it	as	a	reference	and
come	up	with	an	even	better	implementation.

Understanding	Combine

Before	we	dive	into	the	code	for	form	validation,	it's	better	for	me,	first,	to	give	you	some
more	background	information	of	the	Combine	framework.	As	mentioned	in	the	previous
chapter,	this	new	framework	provides	a	declarative	API	for	processing	values	over	time.

What	does	it	mean	by	"processing	values	over	time"?	What	are	these	values?

Let's	use	the	registration	form	as	an	example.	The	app	continues	to	generate	UI	events
when	it	interacts	with	users.	Each	keystroke	a	user	enters	in	the	text	field	triggers	an
event.	This	becomes	a	stream	of	values	as	illustrated	in	figure	5.

335Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	A	stream	of	data	input

These	UI	events	are	one	type	of	"values"	the	framework	refers	to.	Another	example	of
these	values	is	network	events	(e.g.	downloading	a	file	from	a	remote	server).

The	Combine	framework	provides	a	declarative	approach	for	how	your	app
processes	events.	Rather	than	potentially	implementing	multiple	delegate	callbacks
or	completion	handler	closures,	you	can	create	a	single	processing	chain	for	a	given
event	source.	Each	part	of	the	chain	is	a	Combine	operator	that	performs	a	distinct
action	on	the	elements	received	from	the	previous	step.

-	Apple's	official	documentation
(https://developer.apple.com/documentation/combine/receiving_and_handling_
events_with_combine)

Publisher	and	Subscriber	are	the	two	core	elements	of	the	framework.	With	Combine,
Publisher	sends	events	and	Subscriber	subscribes	to	receive	values	from	that	Publisher.
Again,	let's	use	the	text	field	as	an	example.	By	using	Combine,	each	keystroke	the	user
inputs	in	the	text	field	triggers	a	value	change	event.	The	subscriber,	which	is	interested
in	monitoring	these	values,	can	subscribe	to	receive	these	events	and	perform	further
operations	(e.g.	validation).

For	example,	you	are	writing	a	form	validator	which	has	a	property	to	indicate	if	the	form
is	ready	to	submit.	In	this	case,	you	can	mark	that	property	with	the		@Published	
annotation	like	this:

336Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/combine/receiving_and_handling_events_with_combine

class	FormValidator:	ObservableObject	{

				@Published	var	isReadySubmit:	Bool	=	false

}

Every	time	you	change	the	value	of		isReadySubmit	,	it	publishes	an	event	to	the	subscriber.
The	subscriber	receives	the	updated	value	and	continues	the	processing.	Let's	say,	the
subscriber	uses	that	value	to	determine	if	the	submit	button	should	be	enabled	or	not.

You	may	think		@Published		works	pretty	much	like		@State		in	SwiftUI.	While	it	works
pretty	much	the	same	for	this	example,		@State		only	applies	to	properties	that	belong	to	a
specific	SwiftUI	view.	If	you	want	to	create	a	custom	type	that	doesn't	belong	to	a	specific
view	or	that	can	be	used	among	multiple	views,	you	need	to	create	a	class	that	conforms
to		ObservableObject		and	mark	those	properties	with	the		@Published		annotation.

Combine	and	MVVM

Now	that	you	have	a	basic	concept	of	Combine,	let's	begin	to	implement	the	form
validation	using	the	framework.	Here	is	what	we	are	going	to	do:

1.	 Create	a	view	model	to	represent	the	user	registration	form
2.	 Implement	form	validation	in	the	view	model

I	know	you	may	have	a	few	questions	in	mind.	First,	why	do	we	need	to	create	a	view
model?	Can't	we	add	the	properties	of	the	form	and	perform	the	form	validation	in	the
ContentView?

Absolutely,	you	can	do	that.	But	as	your	project	grows	or	the	view	becomes	more
complex,	it's	a	good	practice	to	break	a	complex	component	into	multiple	layers.

"Separation	of	concerns"	is	a	fundamental	principle	of	writing	good	software.	Instead	of
putting	everything	in	a	single	view,	we	can	separate	a	view	into	two	components:	the	view
and	its	view	model.	The	view	itself	is	responsible	for	the	UI	layout,	while	the	view	model
holds	the	states	and	data	to	be	displayed	in	the	view.	The	view	model	also	handles	the
data	validation	and	conversion.	For	experienced	developers,	we	are	applying	a	well
known	design	pattern	called	MVVM	(short	for	Model-View-ViewModel).

337Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

So,	what	data	will	this	view	model	hold?

Take	a	look	at	the	registration	form	again.	We	have	three	text	fields	including:

Username
Password
Password	confirm

On	top	of	that,	this	view	model	will	hold	the	states	of	the	requirements	text,	indicating
whether	they	should	be	crossed	out	or	not:

A	minimum	of	4	characters	(username)
A	minimum	of	8	characters	(password)
One	uppercase	letter	(password)
Your	confirm	password	should	the	same	as	the	password	(password	confirm)

Therefore,	the	view	model	will	have	seven	properties	and	each	of	these	properties
publishes	its	value	change	to	those	which	are	interested	in	receiving	the	value.	The	basic
skeleton	of	the	view	model	can	be	defined	like	this:

class	UserRegistrationViewModel:	ObservableObject	{

				//	Input

				@Published	var	username	=	""

				@Published	var	password	=	""

				@Published	var	passwordConfirm	=	""

				//	Output

				@Published	var	isUsernameLengthValid	=	false

				@Published	var	isPasswordLengthValid	=	false

				@Published	var	isPasswordCapitalLetter	=	false

				@Published	var	isPasswordConfirmValid	=	false

}

That's	the	data	model	for	the	form	view.	The		username	,		password	,	and		passwordConfirm	
properties	hold	the	value	of	the	username,	password,	and	password	confirm	text	fields
respectively.	This	class	should	conform	to		ObservableObject	.	All	these	properties	are
annotated	with		@Published		because	we	want	to	notify	the	subscribers	whenever	there	is	a
value	change	and	perform	the	validation	accordingly.

338Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Validating	the	Username	with	Combine

Okay,	that's	the	data	model.	But	we	still	haven't	dealt	with	the	form	validation.	How	do
we	validate	the	username,	password,	and	passwordConfirm	in	accordance	to	the
requirements?

With	Combine,	you	have	to	develop	a	publisher/subscriber	mindset	to	answer	the
question.	Consider	the	username,	we	actually	have	two	publishers	here:	username	and
isUsernameLengthValid.	The		username		publisher	emits	value	changes	whenever	the	user
enters	in	a	keystroke	in	the	username	field.	The		isUsernameLengthValid		publisher	informs
the	subscriber	about	the	validation	status	of	the	user	input.	Nearly	all	controls	in	SwiftUI
are	subscribers,	so	the	requirements	text	view	will	listen	to	the	change	of	validation	result
and	update	its	style	(i.e.	strikethrough	or	not)	accordingly.	Figure	6	illustrates	how	we
use	Combine	to	validate	the	username	input.

Figure	6.	The	username	and	isUsernameValid	publishers

What's	missing	here	is	something	that	connects	between	these	two	publishers.	And,	this
"something"	should	handle	the	following	tasks:

Listen	to	the		username		change
Validate	the	username	and	return	the	validation	result	(true/false)
Assign	the	result	to		isUsernameLengthValid	

339Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

If	you	transform	the	above	requirements	into	code,	here	is	what	the	code	snippet	looks
like:

$username

				.receive(on:	RunLoop.main)

				.map	{	username	in

								return	username.count	>=	4

				}

				.assign(to:	\.isUsernameLengthValid,	on:	self)

The	Combine	framework	provides	two	built-in	subscribers:	sink	and	assign.	For		sink	,	it
creates	a	general	purpose	subscriber	to	receive	values.		assign		allows	you	to	create
another	type	of	subscriber	that	can	update	a	specific	property	of	an	object.	For	example,
it	assigns	the	validation	result	(true/false)	to		isUsernameLengthValid		directly.

Let	me	dive	deeper	through	the	code	above	line	by	line.		$username		is	the	source	of	value
change	that	we	want	to	listen	to.	Since	we're	subscribing	to	the	change	of	UI	events,	we
call	the		receive(on:)		function	to	ensure	the	subscriber	receives	values	on	the	main
thread	(i.e.		RunLoop.main).

The	value	sent	by	the	publisher	is	the	username	input	by	the	user.	But	what	the
subscriber	is	interested	in	is	whether	the	length	of	the	username	meets	the	minimum
requirement.	Here,	the		map		function	is	an	operator	in	Combine	that	takes	an	input,
processes	it,	and	transforms	the	input	into	something	that	the	subscriber	expects.	So,
what	we	did	in	the	code	above	is:

1.	 We	take	the	username	as	input.
2.	 Then	we	validate	the	username	and	verify	if	it	has	at	least	4	characters.
3.	 Lastly,	we	return	the	validation	result	as	a	boolean	(true/false)	to	the	subscriber.

With	the	validation	result,	the	subscriber	simply	sets	the	result	to	the
	isUsernameLengthValid		property.	Recall	that		isUsernameLengthValid		is	also	a	publisher,	we
can	then	update	the		RequirementText		control	like	this	to	subscribe	to	the	change	and
update	the	UI	accordingly:

340Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

RequirementText(iconColor:	userRegistrationViewModel.isUsernameLengthValid	?	Color

.secondary	:	Color(red:	251/255,	green:	128/255,	blue:	128/255),	text:	"A	minimum	

of	4	characters",	isStrikeThrough:	userRegistrationViewModel.isUsernameLengthValid

)

Both	the	icon	color	and	the	status	of	strike	through	depend	on	the	validation	result	(i.e.
	isUsernameLengthValid).

This	is	how	we	use	Combine	to	validate	a	form	field.	We	still	haven't	put	the	code	change
into	our	project,	but	I	want	you	to	understand	the	concept	of	publisher/subscriber	and
how	we	perform	validation	using	this	approach.	In	later	section,	we	will	apply	what	we
learned	and	make	the	code	change.

Validate	the	Passwords	with	Combine

Now	that	you	understand	how	the	validation	of	the	username	field	is	done,	we	will	apply
a	similar	implementation	for	the	password	and	password	confirm	validation.

The	password	field	has	two	requirements:

1.	 The	length	of	password	should	have	at	least	8	characters.
2.	 It	should	contain	at	least	one	uppercase	letter.

To	meet	these	requirements,	we	set	up	two	subscribers	like	this:

341Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

$password

				.receive(on:	RunLoop.main)

				.map	{	password	in

								return	password.count	>=	8

				}

				.assign(to:	\.isPasswordLengthValid,	on:	self)

$password

				.receive(on:	RunLoop.main)

				.map	{	password	in

								let	pattern	=	"[A-Z]"

								if	let	_	=	password.range(of:	pattern,	options:	.regularExpression)	{

												return	true

								}	else	{

												return	false

								}

				}

				.assign(to:	\.isPasswordCapitalLetter,	on:	self)

The	first	subscriber	subscribes	the	verification	result	of	password	length	and	assigns	it	to
the		isPasswordLengthValid		property.	The	second	subscriber	hands	the	validation	of	the
uppercase	letter.	We	use	the		range		method	to	test	if	the	password	has	at	least	one
uppercase	letter.	Again,	the	subscriber	assigns	the	validation	result	the
	isPasswordCapitalLetter		property	directly.

Okay,	what's	left	is	the	validation	of	the	password	confirm	field.	For	this	field,	the	input
requirement	is	that	the	password	confirm	should	be	equal	to	that	of	the	password	field.
Both		password		and		passwordConfirm		are	publishers.	To	verify	if	both	publishers	have	the
same	value,	we	use		Publisher.combineLatest		to	receive	and	combine	the	latest	values	from
the	publishers.	We	can	then	verify	if	the	two	values	are	the	same.	Here	is	the	code
snippet:

342Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Publishers.CombineLatest($password,	$passwordConfirm)

				.receive(on:	RunLoop.main)

				.map	{	(password,	passwordConfirm)	in

								return	!passwordConfirm.isEmpty	&&	(passwordConfirm	==	password)

				}

				.assign(to:	\.isPasswordConfirmValid,	on:	self)

Similarly,	we	assign	the	validation	result	to	the		isPasswordConfirmValid		property.

Implementing	the	UserRegistrationViewModel

Now	that	I've	explained	the	implementation,	let's	put	everything	together	into	the
project.	First,	create	a	new	Swift	file	named		UserRegistrationViewModel.swift		using	the
Swift	File	template.	Replace	the	whole	file's	content	with	the	following	code:

import	Foundation

import	Combine

class	UserRegistrationViewModel:	ObservableObject	{

				//	Input

				@Published	var	username	=	""

				@Published	var	password	=	""

				@Published	var	passwordConfirm	=	""

				//	Output

				@Published	var	isUsernameLengthValid	=	false

				@Published	var	isPasswordLengthValid	=	false

				@Published	var	isPasswordCapitalLetter	=	false

				@Published	var	isPasswordConfirmValid	=	false

				private	var	cancellableSet:	Set<AnyCancellable>	=	[]

				init()	{

								$username

												.receive(on:	RunLoop.main)

												.map	{	username	in

																return	username.count	>=	4

												}

												.assign(to:	\.isUsernameLengthValid,	on:	self)

343Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

												.store(in:	&cancellableSet)

								$password

												.receive(on:	RunLoop.main)

												.map	{	password	in

																return	password.count	>=	8

												}

												.assign(to:	\.isPasswordLengthValid,	on:	self)

												.store(in:	&cancellableSet)

								$password

												.receive(on:	RunLoop.main)

												.map	{	password	in

																let	pattern	=	"[A-Z]"

																if	let	_	=	password.range(of:	pattern,	options:	.regularExpression

)	{

																				return	true

																}	else	{

																				return	false

																}

												}

												.assign(to:	\.isPasswordCapitalLetter,	on:	self)

												.store(in:	&cancellableSet)

								Publishers.CombineLatest($password,	$passwordConfirm)

												.receive(on:	RunLoop.main)

												.map	{	(password,	passwordConfirm)	in

																return	!passwordConfirm.isEmpty	&&	(passwordConfirm	==	password)

												}

												.assign(to:	\.isPasswordConfirmValid,	on:	self)

												.store(in:	&cancellableSet)

				}

}

The	code	is	nearly	the	same	as	what	we	went	through	in	the	earlier	sections.	To	use
Combine,	you	first	need	to	import	the	Combine	framework.	In	the		init()		method,	we
initialize	all	the	subscribers	to	listen	to	the	value	change	of	the	text	fields	and	perform	the
corresponding	validations.

344Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	code	is	nearly	the	same	as	the	code	snippets	we	discussed	earlier.	One	thing	you	may
notice	is	the		cancellableSet		variable.	Additionally,	for	each	of	the	subscribers,	we	call	the
	store		function	at	the	very	end.

What	does	the		store		function	and		cancellableSet		variable	do?

The		assign		function,	which	creates	the	subscriber,	returns	you	with	a	cancellable
instance.	You	can	use	this	instance	to	cancel	the	subscription	at	the	appropriate	time.	The
	store		function	lets	us	save	the	cancellable	reference	into	a	set	for	later	cleanup.	If	you	do
not	store	the	reference,	the	app	may	end	up	with	memory	leak	issues.

So,	when	will	the	clean	up	happen	for	this	demo?	Because		cancellableSet		is	defined	as	a
property	of	the	class,	the	cleanup	and	cancellation	of	the	subscription	will	happen	when
the	class	is	deinitialized.

Now	switch	back	to		ContentView.swift		and	update	the	UI	controls.	First,	replace	the
following	state	variables:

@State	private	var	username	=	""

@State	private	var	password	=	""

@State	private	var	passwordConfirm	=	""

with	a	view	model	and	name	it		userRegistrationViewModel	:

@ObservedObject	private	var	userRegistrationViewModel	=	UserRegistrationViewModel(

)

Next,	update	the	text	field	and	the	requirement	text	of	username	like	this:

FormField(fieldName:	"Username",	fieldValue:	$userRegistrationViewModel.username)

RequirementText(iconColor:	userRegistrationViewModel.isUsernameLengthValid	?	Color

.secondary	:	Color(red:	251/255,	green:	128/255,	blue:	128/255),	text:	"A	minimum	

of	4	characters",	isStrikeThrough:	userRegistrationViewModel.isUsernameLengthValid

)

				.padding()

345Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The		fieldValue		parameter	is	now	changed	to		$userRegistrationViewModel.username	.	For
the	requirement	text,	SwiftUI	monitors	the
	userRegistrationViewModel.isUsernameLengthValid		property	and	updates	the	requirement
text	accordingly.

Similarly,	update	the	UI	code	for	the	password	and	password	confirm	fields	like	this:

FormField(fieldName:	"Password",	fieldValue:	$userRegistrationViewModel.password,	

isSecure:	true)

VStack	{

				RequirementText(iconName:	"lock.open",	iconColor:	userRegistrationViewModel.is

PasswordLengthValid	?	Color.secondary	:	Color(red:	251/255,	green:	128/255,	blue:	

128/255),	text:	"A	minimum	of	8	characters",	isStrikeThrough:	userRegistrationView

Model.isPasswordLengthValid)

				RequirementText(iconName:	"lock.open",	iconColor:	userRegistrationViewModel.is

PasswordCapitalLetter	?	Color.secondary	:	Color(red:	251/255,	green:	128/255,	blue

:	128/255),	text:	"One	uppercase	letter",	isStrikeThrough:	userRegistrationViewMod

el.isPasswordCapitalLetter)

}

.padding()

FormField(fieldName:	"Confirm	Password",	fieldValue:	$userRegistrationViewModel.pa

sswordConfirm,	isSecure:	true)

RequirementText(iconColor:	userRegistrationViewModel.isPasswordConfirmValid	?	Color

.secondary	:	Color(red:	251/255,	green:	128/255,	blue:	128/255),	text:	"Your	confi

rm	password	should	be	the	same	as	password",	isStrikeThrough:	userRegistrationView

Model.isPasswordConfirmValid)

				.padding()

				.padding(.bottom,	50)

That's	it!	You're	now	ready	to	test	the	app.	If	you've	made	all	the	changes	correctly,	the
app	should	now	validate	the	user	input.

346Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	The	registration	form	now	validates	the	user	input

Summary

I	hope	you	now	have	gained	some	basic	knowledge	of	the	Combine	framework.	The
introduction	of	SwiftUI	and	Combine	completely	change	the	way	you	build	apps.
Functional	Reactive	Programming	(FRP)	has	become	more	and	more	popular	in	recent
years,	This	is	the	first	time	Apple	has	released	their	own	functional	reactive	framework.
To	me,	it's	a	major	paradigm	shift.	The	company	finally	took	position	on	FRP	and
recommends	Apple	developers	embrace	this	new	programming	methodology.

Like	the	introduction	of	any	new	technology,	there	will	be	a	learning	curve.	Even	if	you've
been	programming	in	iOS,	it	will	take	some	time	to	move	from	the	programming
methodology	of	delegates	to	publishers	and	subscribers.

347Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

However,	once	you	get	comfortable	with	the	Combine	framework,	you	will	be	very	glad	as
it	will	help	you	achieve	more	maintainable	and	modular	code.	As	you	can	now	see,
together	with	SwiftUI,	communication	between	a	view	and	a	view	model	is	a	breeze.

For	reference,	you	can	download	the	complete	form	validation	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIFormRegistration.zip)

348Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIFormRegistration.zip

Chapter	16
Working	with	Swipe-to-Delete,
Context	Menu	and	Action	Sheets
Previously,	you	learned	how	to	present	rows	of	data	using	list.	In	this	chapter,	we	will
dive	a	little	bit	deeper	and	see	how	to	let	users	interact	with	the	list	view	including:

Use	swipe	to	delete	a	row
Tap	a	row	to	invoke	an	action	sheet
Touch	and	hold	a	row	to	bring	up	a	context	menu

Figure	1.	Swipe	to	delete	(left),	context	menu,	and	action	sheet	(right)

349Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Referring	to	figure	1,	I	believe	you	should	be	very	familiar	with	swipe-to-delete	and	action
sheet.	These	two	UI	elements	have	existed	in	iOS	for	several	years.	Context	menus	are
recently	introduced	in	iOS	13,	though	they	look	similar	to	peek	and	pop	of	3D	Touch.	For
any	views	(e.g.	button)	implemented	with	the	context	menu,	iOS	will	bring	up	a	popover
menu	whenever	a	user	force	touches	on	the	view.	For	developers,	it's	your	responsibility
to	configure	the	action	items	displayed	in	the	menu.

While	this	chapter	focuses	on	the	interaction	of	a	list,	the	techniques	that	I'm	going	to
show	you	can	also	be	applied	to	other	UI	controls	such	as	buttons.

Preparing	the	Starter	Project

Let's	get	started	and	create	the	demo.	We	will	build	an	interactive	list	based	on	the
restaurant	list	app.	You	can	download	the	starter	project	from
https://www.appcoda.com/resources/swiftui2/SwiftUIActionSheetStarter.zip.	Once
downloaded,	open	the	project	and	check	out	the	preview.	It	should	display	a	simple	list
with	text	and	images.	Later,	we	will	add	the	swipe-to-delete	feature,	an	action	sheet,	and
a	context	menu	to	this	demo	app.

350Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIActionSheetStarter.zip

Figure	2.	The	starter	project	should	display	a	simple	list	view

If	you	have	a	sharp	eye,	you	may	spot	that	the	starter	project	used		ForEach		to	implement
the	list.	Why	did	I	change	it	back	to		ForEach		instead	of	passing	the	collection	of	data	to
	List	?	The	main	reason	is	that	the		onDelete		handler	that	I'm	going	to	walk	you	through
only	works	with		ForEach	.

Implementing	Swipe-to-delete

Assuming	you	have	the	starter	project	ready,	let's	begin	implementing	the	swipe-to-
delete	feature.	I've	briefly	mentioned	the		onDelete		handler.	To	activate	swipe-to-delete
for	all	rows	in	a	list,	you	just	need	to	attach	this	handler	to	all	the	row	data.	So,	update
the		List		like	this:

351Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

List	{

				ForEach(restaurants)	{	restaurant	in

								BasicImageRow(restaurant:	restaurant)

				}

				.onDelete	{	(indexSet)	in

								self.restaurants.remove(atOffsets:	indexSet)

				}

}

In	the	closure	of		onDelete	,	we	pass	an		indexSet		storing	the	index	of	the	rows	to	be
deleted.	We	then	call	the		remove		method	with	the		indexSet		to	delete	the	specific	items
in	the		restaurants		array.

There	is	still	one	thing	left	before	the	swipe-to-delete	feature	works.	Whenever	a	user
removes	a	row	from	the	list,	the	UI	should	be	updated	accordingly.	As	discussed	in	earlier
chapters,	SwiftUI	has	come	with	a	very	powerful	feature	to	manage	the	application's
state.	In	our	code,	the	value	of	the		restaurants		array	will	be	changed	when	a	user
chooses	to	delete	a	record.	We	have	to	ask	SwiftUI	to	monitor	the	property	and	update
the	UI	whenever	the	value	of	the	property	changes.

To	do	that,	insert	the		@State		keyword	to	the		restaurants		variable:

@State	var	restaurants	=	[...]

Once	you	have	made	the	change,	run	the	app	(click	the	Play	button)	in	the	canvas.	Swipe
any	of	the	rows	to	the	left	to	reveal	the	Delete	button.	Tap	it	and	that	row	will	be	removed
from	the	list.	By	the	way,	do	you	notice	the	nice	animation	while	the	row	is	being
removed?	You	don't	need	to	write	any	extra	code.	This	animation	is	automatically
generated	by	SwiftUI.	Cool,	right?

352Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	Deleting	an	item	from	the	list

If	you've	written	the	same	feature	using	UIKit,	I'm	sure	you	are	amazed	by	SwiftUI.	With
just	a	few	lines	of	code	and	a	keyword,	you	implemented	the	swipe-to-delete	feature.

Creating	a	Context	Menu

Next,	let's	talk	about	context	menus,	a	new	feature	which	was	introduced	in	iOS	13.	As
said,	a	context	menu	is	similar	to	peek	and	pop	in	3D	Touch.	One	noticeable	difference	is
that	this	feature	works	on	all	devices	running	iOS	13	and	later,	even	if	the	device	doesn't
support	3D	Touch.	To	bring	up	a	context	menu,	you	use	the	touch	and	hold	gesture	or
force	touch	if	the	device	is	powered	with	3D	Touch.

SwiftUI	has	made	it	very	simple	to	implement	a	context	menu.	All	you	do	is	attach	the
	contextMenu		container	to	the	view	and	configure	its	menu	items.

For	our	demo	app,	we	want	to	trigger	the	context	menu	when	people	touch	and	hold	any
of	the	rows.	The	menu	provides	two	action	buttons	for	users	to	choose:	Delete	and
Favorite.	When	selected,	the	Delete	button	will	remove	the	row	from	the	list.	The

353Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Favorite	button	will	mark	the	selected	row	with	a	star	indicator.

To	present	these	two	items	in	the	context	menu,	we	attach	the		contextMenu		to	each	of	the
rows	in	the	list	like	this:

List	{

				ForEach(restaurants)	{	restaurant	in

								BasicImageRow(restaurant:	restaurant)

												.contextMenu	{

																Button(action:	{

																				//	delete	the	selected	restaurant

																})	{

																				HStack	{

																								Text("Delete")

																								Image(systemName:	"trash")

																				}

																}

																Button(action:	{

																				//	mark	the	selected	restaurant	as	favorite

																})	{

																				HStack	{

																								Text("Favorite")

																								Image(systemName:	"star")

																				}

																}

												}

				}

				.onDelete	{	(indexSet)	in

								self.restaurants.remove(atOffsets:	indexSet)

				}

}

We	haven't	implemented	any	of	the	button	actions	yet.	However,	if	you	execute	the	app,
the	app	will	bring	up	the	context	menu	when	you	touch	and	hold	one	of	the	rows.

354Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Deleting	an	item	from	the	list

Let's	continue	by	implementing	the	delete	action.	Unlike	the		onDelete		handler,	the
	contextMenu		doesn't	give	us	the	index	of	the	selected	restaurant.	To	figure	it	out,	it	would
require	a	little	bit	of	work.	Create	a	new	function	in		ContentView	:

private	func	delete(item	restaurant:	Restaurant)	{

				if	let	index	=	self.restaurants.firstIndex(where:	{	$0.id	==	restaurant.id	})	

{

								self.restaurants.remove(at:	index)

				}

}

This		delete		function	takes	in	a	restaurant	object	and	searches	for	its	index	in	the
	restaurants		array.	To	find	the	index,	we	call	the		firstIndex		function	and	specify	the
search	criteria.	The	function	loops	through	the	array	and	compares	the	id	of	the	given
restaurant	with	those	in	the	array.	If	there	is	a	match,	the		firstIndex		function	returns
the	index	of	the	given	restaurant.	Once	we	have	the	index,	we	can	remove	the	restaurant
from	the		restaurants		array	by	calling		remove(at:)	.

355Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	insert	the	following	line	of	code	under		//	delete	the	selected	restaurant	:

self.delete(item:	restaurant)

We	simply	call	the		delete		function	when	the	user	selects	the	Delete	button.	Now	you're
ready	to	test	the	app.	Click	the	Play	button	in	the	canvas	to	run	the	app.	Press	and	hold
one	of	the	rows	to	bring	up	the	context	menu.	Choose	Delete	and	you	should	see	your
selected	restaurant	removed	from	the	list.

Let's	move	onto	the	implementation	of	the	Favorite	button.	When	this	button	is	selected,
the	app	will	place	a	star	in	the	selected	restaurant's	row.	To	implement	this	feature,	we
first	need	to	modify	the		Restaurant		struct	and	add	a	new	property	named		isFavorite	
like	this:

struct	Restaurant:	Identifiable	{

				var	id	=	UUID()

				var	name:	String

				var	image:	String

				var	isFavorite:	Bool	=	false

}

This		isFavorite		property	indicates	whether	the	restaurant	is	marked	as	a	favorite.	By
default,	it's	set	to		false	.

Similar	to	the	Delete	feature,	we'll	create	a	separate	function	in		ContentView		for	setting	a
favorite	restaurant.	Insert	the	following	code	to	create	the	new	function:

private	func	setFavorite(item	restaurant:	Restaurant)	{

				if	let	index	=	self.restaurants.firstIndex(where:	{	$0.id	==	restaurant.id	})	

{

								self.restaurants[index].isFavorite.toggle()

				}

}

356Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	code	is	very	similar	to	that	of	the		delete		function.	We	first	find	out	the	index	of	the
given	restaurant.	Once	we	have	the	index,	we	change	the	value	of	its		isFavorite	
property.	Here	we	invoke	the		toggle		function	to	toggle	the	value.	For	example,	if	the
original	value	of		isFavorite		is	set	to		false	,	the	value	will	change	to		true		after	calling
	toggle()	.

Next,	we	have	to	handle	the	UI	for	the	row.	Whenever	the	restaurant's		isFavorite	
property	is	set	to		true	,	the	row	should	present	a	star	indicator.	Update	the
	BasicImageRow		struct	like	this:

struct	BasicImageRow:	View	{

				var	restaurant:	Restaurant

				var	body:	some	View	{

								HStack	{

												Image(restaurant.image)

																.resizable()

																.frame(width:	40,	height:	40)

																.cornerRadius(5)

												Text(restaurant.name)

												if	restaurant.isFavorite	{

																Spacer()

																Image(systemName:	"star.fill")

																				.foregroundColor(.yellow)

												}

								}

				}

}

In	the	code	above,	we	just	add	a	code	snippet	in	the		HStack	.	If	the		isFavorite		property
of	the	given	restaurant	is	set	to		true	,	we	add	a	spacer	and	a	system	image	to	the	row.

That's	how	we	implement	the	Favorite	feature.	Lastly,	insert	the	following	line	of	code
under		//	mark	the	selected	restaurant	as	favorite		to	invoke	the		setFavorite		function:

self.setFavorite(item:	restaurant)

357Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	it's	time	to	test.	Execute	the	app	in	the	canvas.	Press	and	hold	one	of	the	rows	(e.g.
Petite	Oyster),	and	then	choose	Favorite.	You	should	see	a	star	app	appeared	at	the	end
of	the	row.

Figure	5.	Using	the	Favorite	function

Working	with	Action	Sheets

That	is	how	you	implement	context	menus.	Lastly,	let's	see	how	to	create	an	action	sheet
in	SwiftUI.	The	action	sheet,	that	we	are	going	to	build,	provides	the	same	options	as	the
context	menu.	If	you	forgot	what	the	action	sheet	looks	like,	please	refer	to	figure	1	again.

The	SwiftUI	framework	comes	with	an		ActionSheet		view	for	you	to	create	an	action
sheet.	Basically,	you	can	create	an	action	sheet	like	this:

ActionSheet(title:	Text("What	do	you	want	to	do"),	message:	nil,	buttons:	[.default

(Text("Delete"))]

358Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

You	initialize	an	action	sheet	with	a	title	and	an	option	message.	The		buttons		parameter
accepts	an	array	of	buttons.	In	the	sample	code	above,	it	provides	a	default	button	titled
Delete.

To	activate	an	action	sheet,	you	attach	the		actionSheet		modifier	to	a	button	or	any	view.
If	you	look	into	SwiftUI's	documentation,	you	have	two	ways	to	bring	up	an	action	sheet.

You	can	control	the	appearance	of	an	action	sheet	by	using	the		isPresented		parameter:

func	actionSheet(isPresented:	Binding<Bool>,	content:	()	->	ActionSheet)	->	some	V

iew

Or	through	an	optional	binding:

func	actionSheet<T>(item:	Binding<T?>,	content:	(T)	->	ActionSheet)	->	some	View	w

here	T	:	Identifiable

We	will	use	both	approaches	to	present	the	action	sheet,	so	you'll	understand	when	to	use
which	approach.

For	the	first	approach,	we	need	a	Boolean	variable	to	represent	the	status	of	the	action
and	also	a	variable	of	the	type		Restaurant		to	store	the	selected	restaurant.	So,	declare
these	two	variables	in		ContentView	:

@State	private	var	showActionSheet	=	false

@State	private	var	selectedRestaurant:	Restaurant?

By	default,	the		showActionSheet		variable	is	set	to		false	,	meaning	that	the	action	sheet	is
not	shown.	We	will	toggle	this	variable	to		true		when	a	user	selects	a	row.	The
	selectedRestaurant		variable,	as	its	name	suggests,	is	designed	to	hold	the	chosen
restaurant.	Both	variables	have	the		@State		keyword	because	we	want	SwiftUI	to	monitor
their	changes	and	update	the	UI	accordingly.

Next,	add	the		onTapGesture		and		actionSheet		modifiers	to	the		List		view	like	this:

359Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

List	{

				ForEach(restaurants)	{	restaurant	in

								BasicImageRow(restaurant:	restaurant)

												.contextMenu	{

																...

												}

												.onTapGesture	{

																self.showActionSheet.toggle()

																self.selectedRestaurant	=	restaurant

												}

												.actionSheet(isPresented:	self.$showActionSheet)	{

																ActionSheet(title:	Text("What	do	you	want	to	do"),	message:	nil,	b

uttons:	[

																				.default(Text("Mark	as	Favorite"),	action:	{

																								if	let	selectedRestaurant	=	self.selectedRestaurant	{

																												self.setFavorite(item:	selectedRestaurant)

																								}

																				}),

																				.destructive(Text("Delete"),	action:	{

																								if	let	selectedRestaurant	=	self.selectedRestaurant	{

																												self.delete(item:	selectedRestaurant)

																								}

																				}),

																				.cancel()

])

												}

				}

				.onDelete	{	(indexSet)	in

								self.restaurants.remove(atOffsets:	indexSet)

				}

}

The		onTapGesture		modifier,	attached	to	each	row,	is	used	to	detect	users'	touch.	When	a
row	is	tapped,	the	block	of	code	in		onTapGesture		will	be	run.	Here,	we	toggle	the
	showActionSheet		variable	and	set	the		selectedRestaurant	.

360Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Earlier,	I	explained	the	usage	of	the		actionSheet		modifier.	In	the	code	above,	we	pass	the
	isPresented		parameter	with	the	binding	of		showActionSheet	.	When		showActionSheet		is	set
to		true	,	the	block	of	code	will	be	executed.	We	initiate	an		ActionSheet		with	three
buttons:	Mark	as	Favorite,	Delete,	and	Cancel.	Action	sheet	comes	with	three	types	of
buttons	including	default,	destructive,	and	cancel.	You	usually	use	the	default	button
type	for	ordinary	actions.	A	destructive	button	is	very	similar	to	a	default	button	but	the
font	color	is	set	to	red	to	indicate	destructive	actions	such	as	delete.	The	cancel	button	is
a	special	type	for	dismissing	the	action	sheet.

The	Mark	as	Favorite	button,	is	our	default	button.	In	the		action		closure,	we	call	the
	setFavorite		function	to	add	the	star.	For	the	destructive	button	we	used	Delete.	Similar
to	the	Delete	button	of	the	context	menu,	we	call	the		delete		function	to	remove	the
selected	restaurant.

If	you've	made	the	changes	correctly,	you	should	be	able	to	bring	up	the	action	sheet
when	you	tap	one	of	the	rows	in	the	list	view.	Selecting	the	Delete	button	will	remove	the
row.	If	you	choose	the	Mark	as	Favorite	option,	you	will	mark	the	row	with	a	yellow	star.

Figure	6.	Tapping	a	row	to	reveal	the	action	sheet

361Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Everything	works	great,	but	I	promised	you	to	walk	you	through	the	second	approach	of
using	the		actionSheet		modifier.	The	first	approach,	which	we	have	covered,	relies	on	a
Boolean	value	(i.e.		showActionSheet)	to	indicate	whether	the	action	sheet	should	be
displayed.

The	second	approach	triggers	the	action	sheet	through	an	optional	Identifiable	binding:

func	actionSheet<T>(item:	Binding<T?>,	content:	(T)	->	ActionSheet)	->	some	View	w

here	T	:	Identifiable

In	plain	English,	this	means	the	action	sheet	will	be	shown	when	the	item	you	pass	has	a
value.	For	our	case,	the		selectedRestaurant		variable	is	an	optional	that	conforms	to	the
	Identifiable		protocol.	To	use	the	second	approach,	you	just	need	to	pass	the
	selectedRestaurant		binding	to	the		actionSheet		modifier	like	this:

.actionSheet(item:	self.$selectedRestaurant)	{	restaurant	in

				ActionSheet(title:	Text("What	do	you	want	to	do"),	message:	nil,	buttons:	[

								.default(Text("Mark	as	Favorite"),	action:	{

												self.setFavorite(item:	restaurant)

								}),

								.destructive(Text("Delete"),	action:	{

												self.delete(item:	restaurant)

								}),

								.cancel()

])

}

If	the		selectedRestaurant		has	a	value,	the	app	will	bring	up	the	action	sheet.	From	the
closure's	parameter,	you	can	retrieve	the	selected	restaurant	and	perform	the	operations
accordingly.

When	you	use	this	approach,	you	no	longer	need	the	boolean	variable		shownActionSheet	.
You	can	remove	it	from	the	code:

362Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

@State	private	var	showActionSheet	=	false

Also,	in	the		tapGesture		modifier,	remove	the	line	of	the	code	that	toggles	the
	showActionSheet		variable:

self.showActionSheet.toggle()

Test	the	app	again.	The	action	sheet	looks	still	the	same,	but	you	implemented	the	action
sheet	with	a	different	approach.

363Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Exercise

Now	that	you	have	some	idea	how	to	build	a	context	menu,	let's	have	an	exercise	to	test
your	knowledge.	Your	task	is	to	add	a	Check-in	item	in	the	context	menu.	When	a	user
selects	the	option,	the	app	will	add	a	check-in	indicator	in	the	selected	restaurant.	You
can	refer	to	figure	7	for	the	sample	UI.	For	the	sample,	I	used	the	system	image	named
	checkmark.seal.fill		for	the	check-in	indicator.	However,	you	are	free	to	choose	your	own
image.

Please	take	some	time	to	work	on	the	exercise	before	checking	out	the	solution.	Have	fun!

Figure	7.	Adding	a	check-in	feature

For	reference,	you	can	download	the	complete	project	here:

364Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Demo	project	and	solution	to	exercise
(https://www.appcoda.com/resources/swiftui2/SwiftUIActionSheet.zip)

365Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIActionSheet.zip

Chapter	17
Understanding	Gestures
In	earlier	chapters,	you	got	a	taste	of	building	gestures	with	SwiftUI.	We	used	the
	onTapGesture		modifier	to	handle	a	user's	touch	and	provide	a	corresponding	response.	In
this	chapter,	let's	dive	deeper	to	see	how	we	work	with	various	types	of	gestures	in
SwiftUI.

The	framework	provides	several	built-in	gestures	such	as	the	tap	gesture	we	have	used
before.	additionally,	DragGesture,	MagnificationGesture,	and	LongPressGesture	are
some	of	the	ready-to-use	gestures.	We	will	be	looking	at	a	couple	of	them	and	seeing	how
to	work	with	gestures	in	SwiftUI.	On	top	of	that,	you	will	learn	how	to	build	a	generic
view	that	supports	the	drag	gesture.

Figure	1.	A	demo	showing	the	draggable	view

366Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Using	the	Gesture	Modifier

To	recognize	a	particular	gesture	using	the	SwiftUI	framework,	all	you	need	to	do	is
attach	a	gesture	recognizer	to	a	view	using	the		.gesture		modifier.	Here	is	a	sample	code
snippet	which	attaches	the		TapGesture		using	the		.gesture		modifier:

var	body:	some	View	{

				Image(systemName:	"star.circle.fill")

								.font(.system(size:	200))

								.foregroundColor(.green)

								.gesture(

												TapGesture()

																.onEnded({

																				print("Tapped!")

																})

)

}

If	you	want	to	try	out	the	code,	create	a	new	project	using	the	App	template	and	make
sure	you	select	SwiftUI	for	the	Interface	option.	Then	paste	the	code	in
	ContentView.swift	.

By	modifying	the	code	above	a	bit	and	introducing	a	state	variable,	we	can	create	a	simple
scale	animation	when	the	star	image	is	tapped.	Here	is	the	updated	code:

367Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	isPressed	=	false

				var	body:	some	View	{

								Image(systemName:	"star.circle.fill")

												.font(.system(size:	200))

												.scaleEffect(isPressed	?	0.5	:	1.0)

												.animation(.easeInOut)

												.foregroundColor(.green)

												.gesture(

																TapGesture()

																				.onEnded({

																								self.isPressed.toggle()

																				})

)

				}

}

When	you	run	the	code	in	the	canvas	or	simulator,	you	should	see	a	scaling	effect.	This	is
how	you	use	the		.gesture		modifier	to	detect	and	respond	to	certain	touch	events.	If	you
forget	how	animation	works,	please	go	back	to	read	chapter	9.

368Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	A	simple	scaling	effect

Using	Long	Press	Gesture

One	of	the	built-in	gesture	is		LongPressGesture	.	This	gesture	recognizer	allows	you	to
detect	a	long-press	event.	For	example,	if	you	want	to	resize	the	star	image	only	when	the
user	presses	and	holds	it	for	at	least	1	second,	you	can	use	the		LongPressGesture		to	detect
the	touch	event.

Modify	the	code	in	the		.gesture		modifier	like	this	to	implement	the		LongPressGesture	:

.gesture(

				LongPressGesture(minimumDuration:	1.0)

								.onEnded({	_	in

												self.isPressed.toggle()

								})

)

Run	the	project	in	the	preview	canvas	to	see	what	it	does.	Now	you	have	to	press	and	hold
the	star	image	for	at	least	a	second	before	it	toggles	its	size.

369Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	@GestureState	Property	Wrapper

When	you	press	and	hold	the	star	image,	the	image	doesn't	give	the	user	any	response
until	the	long	press	event	is	detected.	Obviously,	there	is	something	we	can	do	to	improve
the	user	experience.	What	I	want	to	do	is	to	give	the	user	immediate	feedback	when
he/she	taps	the	image.	Any	kind	of	feedback	will	help	to	improve	the	situation.	Let's	dim
the	image	a	bit	when	the	user	taps	it.	This	just	lets	the	user	know	that	our	app	captures
the	touch	and	is	doing	work.	Figure	3	illustrates	how	the	animation	works.

Figure	3.	Applying	a	dimming	effect	when	the	image	is	tapped

To	implement	the	animation,	you	need	to	keep	track	of	the	state	of	gestures.	During	the
performance	of	the	long	press	gesture,	we	have	to	differentiate	between	tap	and	long
press	events.	So,	how	do	we	do	that?

SwiftUI	provides	a	property	wrapper	called		@GestureState		which	conveniently	tracks	the
state	change	of	a	gesture	and	lets	developers	decide	the	corresponding	action.	To
implement	the	animation	we	just	described,	we	can	declare	a	property	using
	@GestureState		like	this:

@GestureState	private	var	longPressTap	=	false

This	gesture	state	variable	indicates	whether	a	tap	event	is	detected	during	the
performance	of	the	long	press	gesture.	Once	you	have	the	variable	defined,	you	can
modify	the	code	of	the		Image		view	like	this:

370Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Image(systemName:	"star.circle.fill")

				.font(.system(size:	200))

				.opacity(longPressTap	?	0.4	:	1.0)

				.scaleEffect(isPressed	?	0.5	:	1.0)

				.animation(.easeInOut)

				.foregroundColor(.green)

				.gesture(

								LongPressGesture(minimumDuration:	1.0)

												.updating($longPressTap,	body:	{	(currentState,	state,	transaction)	in

																state	=	currentState

												})

												.onEnded({	_	in

																self.isPressed.toggle()

												})

)

We	only	made	a	couple	of	changes	in	the	code	above.	First,	we	added	the		.opacity	
modifier.	When	the	tap	event	is	detected,	we	set	the	opacity	value	to		0.4		so	that	the
image	becomes	dimmer.

Second,	we	addded	the		updating		method	of	the		LongPressGesture	.	During	the
performance	of	the	long	press	gesture,	this	method	will	be	called.	It	accepts	three
parameters:	value,	state,	and	transaction:

The	value	parameter	is	the	current	state	of	the	gesture.	This	value	varies	from
gesture	to	gesture,	but	for	the	long	press	gesture,	a		true		value	indicates	that	a	tap	is
detected.
The	state	parameter	is	actually	an	in-out	parameter	that	lets	you	update	the	value	of
the		longPressTap		property.	In	the	code	above,	we	set	the	value	of		state		to
	currentState	.	In	other	words,	the		longPressTap		property	always	keeps	track	of	the
latest	state	of	the	long	press	gesture.
The		transaction		parameter	stores	the	context	of	the	current	state-processing
update.

After	you	make	the	code	change,	run	the	project	in	the	preview	canvas	to	test	it.	The
image	immediately	becomes	dimmer	when	you	tap	it.	Keep	holding	it	for	one	second	and
then	the	image	resizes	itself.

371Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	opacity	of	the	image	is	automatically	reset	to	normal	when	the	user	releases	the	long
press.	Do	you	wonder	why?	This	is	an	advantage	of		@GestureState	.	When	the	gesture
ends,	it	automatically	sets	the	value	of	the	gesture	state	property	to	its	initial	value,
	false		in	our	case.

Using	Drag	Gesture

Now	that	you	understand	how	to	use	the		.gesture		modifier	and		@GestureState	,	let's	look
into	another	common	gesture:	Drag.	What	we	are	going	to	do	is	modify	the	existing	code
to	support	the	drag	gesture,	allowing	a	user	to	drag	the	star	image	to	move	it	around.

Replace	the		ContentView		struct	like	this:

struct	ContentView:	View	{

				@GestureState	private	var	dragOffset	=	CGSize.zero

				var	body:	some	View	{

								Image(systemName:	"star.circle.fill")

												.font(.system(size:	100))

												.offset(x:	dragOffset.width,	y:	dragOffset.height)

												.animation(.easeInOut)

												.foregroundColor(.green)

												.gesture(

																DragGesture()

																				.updating($dragOffset,	body:	{	(value,	state,	transaction)	in

																								state	=	value.translation

																				})

)

				}

}

To	recognize	a	drag	gesture,	you	initialize	a		DragGesture		instance	and	listen	for	an
update.	In	the		update		function,	we	pass	a	gesture	state	property	to	keep	track	of	the	drag
event.	Similar	to	the	long	press	gesture,	the	closure	of	the		update		function	accepts	three

372Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

parameters.	In	this	case,	the	value	parameter	stores	the	current	data	of	the	drag
including	the	translation.	This	is	why	we	set	the		state		variable,	which	is	actually	the
	dragOffset	,	to		value.translation	.

Run	the	project	in	the	preview	canvas,	you	can	drag	the	image	around.	but,	when	you
release	it,	the	image	returns	to	its	original	position.

Do	you	know	why	the	image	returns	to	its	starting	point?	As	explained	in	the	previous
section,	one	advantage	of	using		@GestureState		is	that	it	will	reset	the	value	of	the
property	to	its	original	value	when	the	gesture	ends.	So,	when	you	end	the	drag	and
release	the	press,	the		dragOffset		is	reset	to		.zero	,	which	is	its	original	position.

But	what	if	you	want	the	image	to	stay	at	the	end	point	of	the	drag?	How	do	you	do	that?
Give	yourself	a	few	minutes	to	think	about	how	to	implement	it.

Since	the		@GestureState		property	wrapper	will	reset	the	property	to	its	original	value,	we
need	another	state	property	to	save	the	final	position.	Therefore,	let's	declare	a	new	state
property	like	this:

@State	private	var	position	=	CGSize.zero

Next,	update	the		body		variable	like	this:

373Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	body:	some	View	{

				Image(systemName:	"star.circle.fill")

								.font(.system(size:	100))

								.offset(x:	position.width	+	dragOffset.width,	y:	position.height	+	dragOff

set.height)

								.animation(.easeInOut)

								.foregroundColor(.green)

								.gesture(

												DragGesture()

																.updating($dragOffset,	body:	{	(value,	state,	transaction)	in

																				state	=	value.translation

																})

																.onEnded({	(value)	in

																				self.position.height	+=	value.translation.height

																				self.position.width	+=	value.translation.width

																})

)

}

We	have	made	a	couple	of	changes	to	the	code:

1.	 We	implemented	the		onEnded		function	which	is	called	when	the	drag	gesture	ends.
In	the	closure,	we	compute	the	new	position	of	the	image	by	adding	the	drag	offset.

2.	 The		.offset		modifier	was	also	updated,	such	that	we	take	the	current	position	into
account.

Now	when	you	run	the	project	and	drag	the	image,	the	image	stays	where	it	is	even	after
the	drag	ends.

374Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Drag	the	image	around

Combining	Gestures

In	some	cases,	you	need	to	use	multiple	gesture	recognizers	in	the	same	view.	Let's	say,
we	want	the	user	to	press	and	hold	the	image	before	starting	the	drag,	we	have	to
combine	both	long	press	and	drag	gestures.	SwiftUI	allows	you	to	easily	combine
gestures	to	perform	more	complex	interactions.	It	provides	three	gesture	composition
types	including	simultaneous,	sequenced,	and	exclusive.

When	you	need	to	detect	multiple	gestures	at	the	same	time,	you	use	the	simultaneous
composition	type.	When	you	combine	gestures	using	the	exclusive	composition	type,
SwiftUI	recognizes	all	the	gestures	you	specify	but	it	will	ignore	the	rest	when	one	of	the
gestures	is	detected.

As	the	name	suggests,	if	you	combine	multiple	gestures	using	the	sequenced	composition
type,	SwiftUI	recognizes	the	gestures	in	a	specific	order.	This	is	the	type	of	the
composition	that	we	will	use	to	sequence	the	long	press	and	drag	gestures.

375Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	work	with	multiple	gestures,	you	update	the	code	like	this:

struct	ContentView:	View	{

				//	For	long	press	gesture

				@GestureState	private	var	isPressed	=	false

				//	For	drag	gesture

				@GestureState	private	var	dragOffset	=	CGSize.zero

				@State	private	var	position	=	CGSize.zero

				var	body:	some	View	{

								Image(systemName:	"star.circle.fill")

												.font(.system(size:	100))

												.opacity(isPressed	?	0.5	:	1.0)

												.offset(x:	position.width	+	dragOffset.width,	y:	position.height	+	dra

gOffset.height)

												.animation(.easeInOut)

												.foregroundColor(.green)

												.gesture(

																LongPressGesture(minimumDuration:	1.0)

																.updating($isPressed,	body:	{	(currentState,	state,	transaction)	in

																				state	=	currentState

																})

																.sequenced(before:	DragGesture())

																.updating($dragOffset,	body:	{	(value,	state,	transaction)	in

																				switch	value	{

																				case	.first(true):

																								print("Tapping")

																				case	.second(true,	let	drag):

																								state	=	drag?.translation	??	.zero

																				default:

																								break

																				}

																})

																.onEnded({	(value)	in

																				guard	case	.second(true,	let	drag?)	=	value	else	{

																								return

376Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

																				}

																				self.position.height	+=	drag.translation.height

																				self.position.width	+=	drag.translation.width

																})

)

				}

}

You	should	be	very	familiar	with	part	of	the	code	snippet	because	we	are	combining	the
long	press	gesture	that	we	have	built	with	the	drag	gesture.

Let	me	explain	the	code	in	the		.gesture		modifier	line	by	line.	We	require	the	user	to
press	and	hold	the	image	for	at	least	one	second	before	he/she	can	begin	the	dragging.
So,	we	start	by	creating	the		LongPressGesture	.	Similar	to	what	we	have	implemented
before,	we	have	a		isPressed		gesture	state	property.	When	someone	taps	the	image,	we
will	alter	the	opacity	of	the	image.

The		sequenced		keyword	is	how	we	link	the	long	press	and	drag	gestures	together.	We	tell
SwiftUI	that	the		LongPressGesture		should	happen	before	the		DragGesture	.

The	code	in	both		updating		and		onEnded		functions	looks	pretty	similar,	but	the		value	
parameter	now	actually	contains	two	gestures	(i.e.	long	press	and	drag).	We	have	the
	switch		statement	to	differentiate	between	the	gestures.	You	can	use	the		.first		and
	.second		cases	to	find	out	which	gesture	to	handle.	Since	the	long	press	gesture	should	be
recognized	before	the	drag	gesture,	the	first	gesture	here	is	the	long	press	gesture.	In	the
code,	we	do	nothing	but	just	print	the	Tapping	message	for	your	reference.

When	the	long	press	is	confirmed,	we	will	reach	the		.second		case.	Here,	we	pick	up	the
drag	data	and	update	the		dragOffset		with	the	corresponding	translation.

When	the	drag	ends,	the		onEnded		function	will	be	called.	Similarly,	we	update	the	final
position	by	figuring	out	the	drag	data	(i.e.		.second		case).

Now	you're	ready	to	test	the	gesture	combination.	Run	the	app	in	the	preview	canvas
using	the	debug	preview,	so	you	can	see	the	message	in	the	console.	You	can't	drag	the
image	until	holding	the	star	image	for	at	least	one	second.

377Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Dragging	only	happens	when	a	user	presses	and	holds	the	image	for	at	least
one	second

Refactoring	the	Code	Using	Enum

A	better	way	to	organize	the	drag	state	is	by	using	Enum.	This	allows	you	to	combine	the
	isPressed		and		dragOffset		state	into	a	single	property.	Let's	declare	an	enumeration
called		DragState	.

378Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

enum	DragState	{

				case	inactive

				case	pressing

				case	dragging(translation:	CGSize)

				var	translation:	CGSize	{

								switch	self	{

								case	.inactive,	.pressing:

												return	.zero

								case	.dragging(let	translation):

												return	translation

								}

				}

				var	isPressing:	Bool	{

								switch	self	{

								case	.pressing,	.dragging:

												return	true

								case	.inactive:

												return	false

								}

				}

}

We	have	three	states	here:	inactive,	pressing,	and	dragging.	These	states	are	good
enough	to	represent	the	states	during	the	performance	of	the	long	press	and	drag
gestures.	For	the	dragging	state,	we	associate	it	with	the	translation	of	the	drag.

With	the		DragState		enum,	we	can	modify	the	original	code	like	this:

379Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@GestureState	private	var	dragState	=	DragState.inactive

				@State	private	var	position	=	CGSize.zero

				var	body:	some	View	{

								Image(systemName:	"star.circle.fill")

												.font(.system(size:	100))

												.opacity(dragState.isPressing	?	0.5	:	1.0)

												.offset(x:	position.width	+	dragState.translation.width,	y:	position.h

eight	+	dragState.translation.height)

												.animation(.easeInOut)

												.foregroundColor(.green)

												.gesture(

																LongPressGesture(minimumDuration:	1.0)

																.sequenced(before:	DragGesture())

																.updating($dragState,	body:	{	(value,	state,	transaction)	in

																				switch	value	{

																				case	.first(true):

																								state	=	.pressing

																				case	.second(true,	let	drag):

																								state	=	.dragging(translation:	drag?.translation	??	.zero)

																				default:

																								break

																				}

																})

																.onEnded({	(value)	in

																				guard	case	.second(true,	let	drag?)	=	value	else	{

																								return

																				}

																				self.position.height	+=	drag.translation.height

																				self.position.width	+=	drag.translation.width

																})

)

				}

}

380Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	now	declare	a		dragState		property	to	track	the	drag	state.	By	default,	it's	set	to
	DragState.inactive	.	The	code	is	nearly	the	same	as	the	previous	code	except	that	it's
modified	to	work	with		dragState		instead	of		isPressed		and		dragOffset	.	For	example,	for
the		.offset		modifier,	we	retrieve	the	drag	offset	from	the	associated	value	of	the
dragging	state.

The	result	of	the	code	is	the	same.	However,	it's	always	good	practice	to	use	Enum	to
track	complicated	states	of	gestures.

Building	a	Generic	Draggable	View

So	far,	we	have	built	a	draggable	image	view.	What	if	we	want	to	build	a	draggable	text
view?	Or	what	if	we	want	to	create	a	draggable	circle?	Should	you	copy	and	paste	all	the
code	to	create	the	text	view	or	circle?

There	is	a	better	way	to	implement	that.	Let's	see	how	we	can	build	a	generic	draggable
view.

In	the	project	navigator,	right	click	the		SwiftUIGesture		folder	and	choose	New	File....
Select	the	SwiftUI	View	template	and	name	the	file		DraggableView	.

Declare	the		DragState		enum	and	update	the		DraggableView		struct	like	this:

enum	DraggableState	{

				case	inactive

				case	pressing

				case	dragging(translation:	CGSize)

				var	translation:	CGSize	{

								switch	self	{

								case	.inactive,	.pressing:

												return	.zero

								case	.dragging(let	translation):

												return	translation

								}

				}

				var	isPressing:	Bool	{

								switch	self	{

381Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

								case	.pressing,	.dragging:

												return	true

								case	.inactive:

												return	false

								}

				}

}

struct	DraggableView<Content>:	View	where	Content:	View	{

				@GestureState	private	var	dragState	=	DraggableState.inactive

				@State	private	var	position	=	CGSize.zero

				var	content:	()	->	Content

				var	body:	some	View	{

								content()

												.opacity(dragState.isPressing	?	0.5	:	1.0)

												.offset(x:	position.width	+	dragState.translation.width,	y:	position.h

eight	+	dragState.translation.height)

												.animation(.easeInOut)

												.gesture(

																LongPressGesture(minimumDuration:	1.0)

																.sequenced(before:	DragGesture())

																.updating($dragState,	body:	{	(value,	state,	transaction)	in

																				switch	value	{

																				case	.first(true):

																								state	=	.pressing

																				case	.second(true,	let	drag):

																								state	=	.dragging(translation:	drag?.translation	??	.zero)

																				default:

																								break

																				}

																})

																.onEnded({	(value)	in

																				guard	case	.second(true,	let	drag?)	=	value	else	{

																								return

																				}

																				self.position.height	+=	drag.translation.height

382Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

																				self.position.width	+=	drag.translation.width

																})

)

				}

}

All	of	the	code	is	very	similar	to	what	you've	written	before.	The	tricks	are	to	declare	the
	DraggableView		as	a	generic	view	and	create	a		content		property.	This	property	accepts
any		View	.	We	power	this		content		view	with	the	long	press	and	drag	gestures.

Now	you	can	test	this	generic	view	by	replacing	the		DraggableView_Previews		like	this:

struct	DraggableView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								DraggableView()	{

												Image(systemName:	"star.circle.fill")

																.font(.system(size:	100))

																.foregroundColor(.green)					

								}

				}

}

In	the	code,	we	initalize	a		DraggableView		and	provide	our	own	content,	which	is	the	star
image.	In	this	case,	you	should	achieve	the	same	star	image	which	supports	the	long
press	and	drag	gestures.

So,	what	if	we	want	to	build	a	draggable	text	view?	You	can	replace	the	code	snippet	with
the	following	code:

383Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	DraggableView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								DraggableView()	{

												Text("Swift")

																.font(.system(size:	50,	weight:	.bold,	design:	.rounded))

																.bold()

																.foregroundColor(.red)

								}

				}

}

In	the	closure,	we	create	a	text	view	instead	of	the	image	view.	If	you	run	the	project	in
the	preview	canvas,	you	can	drag	the	text	view	to	move	it	around	(remember	to	long
press	for	1	second).	Isn't	it	cool?

Figure	6.	A	draggable	text	view

If	you	want	to	create	a	draggable	circle,	you	can	replace	the	code	like	this:

384Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	DraggableView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								DraggableView()	{

												Circle()

																.frame(width:	100,	height:	100)

																.foregroundColor(.purple)

								}

				}

}

That's	how	you	create	a	generic	draggable.	Try	to	replace	the	circle	with	other	views	to
make	your	own	draggable	view	and	have	fun!

Exercise

We've	explored	three	built-in	gestures	including	tap,	drag,	and	long	press	in	this	chapter.
However,	there	are	a	couple	of	them	we	haven't	checked	out.	As	an	exercise,	try	to	create
a	generic	scalable	view	that	can	recognize	the		MagnificationGesture		and	scale	any	given
view	accordingly.	Figure	7	shows	you	a	sample	result.

385Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	A	scalable	image	view

Summary

The	SwiftUI	framework	has	made	gesture	handling	very	easy.	As	you've	learned	in	this
chapter,	the	framework	has	provided	several	ready	to	use	gesture	recognizers.	To	enable
a	view	to	support	a	certain	type	of	gesture,	all	you	need	to	do	is	attach	to	it	the		.gesture	
modifier.	Composing	multiple	gestures	has	never	been	so	simple.

It's	a	growing	trend	to	build	gesture-driven	user	interfaces	for	mobile	apps.	With	the	easy
to	use	API,	try	to	power	your	apps	with	some	useful	gestures	to	delight	your	users.

For	reference,	you	can	download	the	complete	gesture	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIGesture.zip)

386Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIGesture.zip

Chapter	18
Building	an	Expandable	Bottom	Sheet
with	SwiftUI	Gestures	and
GeometryReader
Now	that	you	have	a	basic	understanding	of	SwiftUI	gestures,	let's	see	how	you	can	apply
the	technique	you	learned	to	build	a	feature	which	is	commonly	used	in	real	world	apps.

Bottom	sheets	have	increased	in	popularity	lately!	You	can	easily	find	them	in	famous
apps	like	Facebook	and	Uber.	Bottom	sheets	are	like	an	enhanced	version	of	an	action
sheet	that	slides	up	from	the	bottom	of	screen	and	overlays	on	top	of	the	original	view	to
provide	contextual	information	or	additional	user	options.	For	instance,	when	you	save	a
photo	to	a	collection	in	Instagram,	the	app	shows	you	a	bottom	sheet	to	choose	a
collection.	The	Facebook	app	displays	the	sheet	with	additonal	action	items	when	you
click	the	ellipsis	button	of	a	post.	The	Uber	app	also	makes	use	of	bottom	sheets	to
display	the	pricing	of	your	chosen	trip.

The	size	of	bottom	sheets	varies	depending	on	the	contextual	information	you	want	to
display.	In	some	cases,	bottom	sheets	tend	to	be	bigger	(which	is	also	known	as
backdrops)	and	take	up	80-90%	of	the	screen.	Usually,	users	are	allowed	to	interact	with
the	sheet	with	the	drag	gesture.	You	can	slide	it	up	to	expand	its	size	or	slide	it	down	to
minimize	or	dismiss	the	sheet.

387Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Uber,	Facebook	and	Instagram	all	use	bottom	sheets	in	their	apps

In	this	chapter,	we	will	build	a	similar	expandable	bottom	sheet	using	SwiftUI	gestures.
The	demo	app	shows	a	list	of	restaurants	in	the	main	view.	When	a	user	taps	one	of	the
restaurant	records,	the	app	brings	up	a	bottom	sheet	to	display	the	restaurant	details.
You	can	expand	the	sheet	by	sliding	it	up.	To	dismiss	the	sheet,	you	can	slide	it	down.

388Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Building	a	expandable	bottom	sheet

Understanding	the	Starter	Project

To	save	you	some	time	building	the	demo	app	from	the	ground	up,	I've	prepared	a	starter
project	for	you.	You	can	download	it	from
https://www.appcoda.com/resources/swiftui2/SwiftUIBottomSheetStarter.zip.	Unzip
the	file	and	open		SwiftUIBottomSheet.xcodeproj		to	get	started.

The	starter	project	comes	with	a	set	of	restaurant	images	and	the	restaurant	data.	If	you
look	in	the	Model	folder	in	the	project	navigator,	you	should	find	a	file	named
	Restaurant.swift	.	This	file	contains	the		Restaurant		struct	and	the	set	of	sample
restaurant	data.

389Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIBottomSheetStarter.zip

struct	Restaurant:	Identifiable	{

				var	id:	UUID	=	UUID()

				var	name:	String

				var	type:	String

				var	location:	String

				var	phone:	String

				var	description:	String

				var	image:	String

				var	isVisited:	Bool

				init(name:	String,	type:	String,	location:	String,	phone:	String,	description:	

String,	image:	String,	isVisited:	Bool)	{

								self.name	=	name

								self.type	=	type

								self.location	=	location

								self.phone	=	phone

								self.description	=	description

								self.image	=	image

								self.isVisited	=	isVisited

				}

				init()	{

								self.init(name:	"",	type:	"",	location:	"",	phone:	"",	description:	"",	im

age:	"",	isVisited:	false)

				}

}

I've	created	the	main	view	for	you	that	displays	a	list	of	restaurants.	You	can	open	the
	ContentView.swift		file	to	check	out	the	code.	I	am	not	going	to	explain	the	code	in	details
as	we	have	gone	through	the	implementation	of	list	in	chapter	10.

390Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	The	list	view

When	you	run	the	code	in	the	canvas	or	simulator,	you	should	see	a	scaling	effect.	This	is
how	you	can	use	the		.gesture		modifier	to	detect	and	respond	to	certain	touch	events.	If
you	forget	how	the	animation	works,	please	go	back	to	read	chapter	9.

Creating	the	Restaurant	Detail	View

The	bottom	sheet	will	contain	the	restaurant	details	with	a	small	handlebar.	So,	the	very
first	thing	we	have	to	do	is	to	create	the	restaurant	detail	view	like	that	shown	in	figure	4.

391Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	The	restaurant	detail	view	with	a	small	handlebar

Before	you	follow	me	to	implement	the	view,	I	suggest	you	consider	it	as	an	exercise	and
create	the	detail	view	on	your	own.	As	you	can	see,	the	detail	view	is	composed	of	UI
components	including	Image,	Text,	and	ScrollView.	We	have	already	covered	all	these
components,	so	give	it	a	try	and	provide	your	own	implementation.

Okay,	let	me	show	you	how	to	build	the	detail	view.	If	you	have	already	built	the	detail
view	on	your	own,	you	can	use	my	implementation	as	a	reference.

The	layout	of	the	detail	view	is	a	bit	complicated,	so	it's	better	to	break	it	into	multiple
parts	for	easier	implementation:

The	handlebar,	which	is	a	small	rounded	rectangle
The	title	bar	containing	the	title	of	the	detail	view
The	header	view	containing	the	featured	image,	restaurant	name,	and	type

392Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	detail	info	view	containing	the	restaurant	data,	which	includes	address,	phone,
and	description.

We	will	implement	each	of	the	above	using	a	separate		struct		to	better	organize	our
code.	Now	create	a	new	file	using	the	SwiftUI	View	template	and	name	it
	RestaurantDetailView.swift	.	All	the	code	discussed	below	will	be	put	in	this	new	file.

Handlebar

First,	the	handlebar.	The	handlebar	is	actually	a	small	rectangle	with	rounded	corners.	To
create	it,	all	we	need	to	do	is	to	create	a		Rectangle		and	give	it	rounded	corners.	In	the
	RestaurantDetailView.swift		file,	insert	the	following	code:

struct	HandleBar:	View	{

				var	body:	some	View	{

								Rectangle()

												.frame(width:	50,	height:	5)

												.foregroundColor(Color(.systemGray5))

												.cornerRadius(10)

				}

}

Title	Bar

Next,	the	title	bar.	The	implementation	is	simple	since	it's	just	a	Text	view.	Let's	create
another	struct	for	it:

393Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	TitleBar:	View	{

				var	body:	some	View	{

								HStack	{

												Text("Restaurant	Details")

																.font(.headline)

																.foregroundColor(.primary)

												Spacer()

								}

								.padding()

				}

}

The	spacer	here	is	used	to	align	the	text	to	the	left.

Header	View

The	header	view	consists	of	an	image	view	and	two	text	views.	The	text	views	are
overlayed	on	top	of	the	image	view.	Again,	we	will	use	a	separate	struct	to	implement	the
header	view:

394Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	HeaderView:	View	{

				let	restaurant:	Restaurant

				var	body:	some	View	{

								Image(restaurant.image)

												.resizable()

												.scaledToFill()

												.frame(height:	300)

												.clipped()

												.overlay(

																HStack	{

																				VStack(alignment:	.leading)	{

																								Spacer()

																								Text(restaurant.name)

																												.foregroundColor(.white)

																												.font(.system(.largeTitle,	design:	.rounded))

																												.bold()

																								Text(restaurant.type)

																												.font(.system(.headline,	design:	.rounded))

																												.padding(5)

																												.foregroundColor(.white)

																												.background(Color.red)

																												.cornerRadius(5)

																				}

																				Spacer()

																}

																.padding()

)

				}

}

Since	we	need	to	display	the	restaurant	data,	the		HeaderView		has	the		restaurant	
property.	For	the	layout,	we	created	an		Image		view	and	set	the	content	mode	to
	scaleToFill	.	The	height	of	the	image	is	fixed	at	300	points.	Since	we	use	the		scaleToFill	
mode,	we	need	to	attach	the		.clipped()		modifier	to	hide	any	content	that	extends
beyond	the	edges	of	the	image	frame.

395Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	the	two	labels,	we	use	the		.overlay		modifier	to	overlay	two		Text		views.

Detail	Info	View

Lastly,	the	information	view.	If	you	look	at	the	address,	phone,	and	description	fields
carefully,	you	should	notice	that	they	are	pretty	similar.	Both	address	and	phone	fields
have	an	icon	right	next	to	the	textual	information,	while	the	description	field	contains
text	only.

So,	wouldn't	it	be	great	to	build	a	view	which	is	flexible	to	handle	both	field	types?	Here	is
the	code	snippet:

struct	DetailInfoView:	View	{

				let	icon:	String?

				let	info:	String

				var	body:	some	View		{

								HStack	{

												if	icon	!=	nil	{

																Image(systemName:	icon!)

																				.padding(.trailing,	10)

												}

												Text(info)

																.font(.system(.body,	design:	.rounded))

												Spacer()

								}.padding(.horizontal)

				}

}

The		DetailInfoView		takes	in	two	parameters:		icon		and		info	.	The		icon		parameter	is	an
optional,	meaning	that	it	can	either	have	a	value	or	nil.

When	you	need	to	present	a	data	field	with	an	icon,	you	use	the		DetailInfoView		like	this:

DetailInfoView(icon:	"map",	info:	self.restaurant.location)

396Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Alternatively,	if	you	only	need	to	present	a	text-only	field	like	the	description	field,	you
use	the		DetailInfoView		like	this:

DetailInfoView(icon:	nil,	info:	self.restaurant.description)

As	you	can	see,	by	building	a	generic	view	to	handle	similar	layout,	you	make	the	code
more	modular	and	reusable.

Using	VStack	to	Glue	Them	All	Together

Now	that	we	have	built	all	components,	we	can	combine	them	by	using		VStack		like	this:

struct	RestaurantDetailView:	View	{

				let	restaurant:	Restaurant

				var	body:	some	View	{

								VStack	{

												Spacer()

												HandleBar()

												TitleBar()

												HeaderView(restaurant:	self.restaurant)

												DetailInfoView(icon:	"map",	info:	self.restaurant.location)

																.padding(.top)

												DetailInfoView(icon:	"phone",	info:	self.restaurant.phone)

												DetailInfoView(icon:	nil,	info:	self.restaurant.description)

																.padding(.top)

								}

								.background(Color.white)

								.cornerRadius(10,	antialiased:	true)

				}

}

397Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	code	above	is	self	explanatory.	We	use	the	components	that	were	built	in	the	earlier
sections	and	embed	them	in	a	vertical	stack.	Originally,	the		VStack		has	a	transparent
background.	To	ensure	that	the	detail	view	has	a	white	background,	we	attach	the
	background		modifier.

Before	you	can	test	the	detail	view,	you	have	to	modify	the	code	of
	RestaurantDetailView_Previews		like	this:

struct	RestaurantDetailView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								RestaurantDetailView(restaurant:	restaurants[0])

				}

}

In	the	code,	we	pass	a	sample	restaurant	(i.e.		restaurants[0])	for	testing.	If	you've
followed	everything	correctly,	Xcode	should	show	you	a	similar	detail	view	in	the	preview
canvas	to	figure	5.

Figure	5.	The	restaurant	detail	view

398Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Make	It	Scrollable

Do	you	notice	that	the	detail	view	can't	display	the	full	description?	To	fix	the	issue,	we
have	to	make	the	detail	view	scrollable	by	embedding	the	content	in	a		ScrollView		like
this:

struct	RestaurantDetailView:	View	{

				let	restaurant:	Restaurant

				var	body:	some	View	{

								VStack	{

												Spacer()

												HandleBar()

												ScrollView(.vertical)	{

																TitleBar()

																HeaderView(restaurant:	self.restaurant)

																DetailInfoView(icon:	"map",	info:	self.restaurant.location)

																				.padding(.top)

																DetailInfoView(icon:	"phone",	info:	self.restaurant.phone)

																DetailInfoView(icon:	nil,	info:	self.restaurant.description)

																				.padding(.top);

												}

												.background(Color.white)

												.cornerRadius(10,	antialiased:	true)

								}

				}

}

Except	the	handlebar,	the	rest	of	the	views	are	wrapped	within	the	scroll	view.	If	you	run
the	app	in	the	preview	canvas	again,	the	detail	view	is	now	scrollable.

Adjusting	the	Offset

399Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

A	bottom	sheet	is	overlaid	on	top	of	the	original	content	but	usually	only	covers	part	of	it.
Therefore,	we	have	to	adjust	the	detail	view's	offset	so	that	it	only	covers	part	of	the
screen.	To	achieve	that,	we	can	attach	the		offset		modifier	to	the		VStack		like	this:

.offset(y:	300)

This	moves	the	detail	view	downward	by	300	points.	If	you	test	the	code	in	the	preview
canvas,	the	detail	view	should	be	shifted	to	the	lower	part	of	the	screen.

Figure	6.	Adjusting	the	offset	of	the	detail	view

To	make	it	look	more	like	the	final	result,	you	can	also	change	the	background	color	of
	RestaurantDetailView_Previews		like	this:

400Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	RestaurantDetailView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								RestaurantDetailView(restaurant:	restaurants[0])

												.background(Color.black.opacity(0.3))

												.edgesIgnoringSafeArea(.all)

				}

}

The	detail	view	looks	pretty	good	right	now.	However,	one	problem	is	that	the	offset	is	set
to	a	fixed	value.	As	the	app	is	going	to	support	multiple	devices	or	screen	sizes,	the	offset
value	should	be	able	to	adjust	itself	automatically.

The	offset	value	should	be	set	to	half	of	the	screen	height.	So,	how	can	you	find	out	the
screen	size	of	a	device?	SwiftUI	provides	a	container	view	called	GeometryReader	that
gives	you	access	to	the	size	and	position	of	the	parent	view.	Therefore,	to	get	the	screen
height,	all	you	need	to	do	is	wrap	the		VStack		with	a		GeometryReader		like	this:

401Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	RestaurantDetailView:	View	{

				let	restaurant:	Restaurant

				var	body:	some	View	{

								GeometryReader	{	geometry	in

												VStack	{

																Spacer()

																HandleBar()

																ScrollView(.vertical)	{

																				TitleBar()

																				HeaderView(restaurant:	self.restaurant)

																				DetailInfoView(icon:	"map",	info:	self.restaurant.location)

																								.padding(.top)

																				DetailInfoView(icon:	"phone",	info:	self.restaurant.phone)

																				DetailInfoView(icon:	nil,	info:	self.restaurant.description)

																								.padding(.top)

																}

																.background(Color.white)

																.cornerRadius(10,	antialiased:	true)

												}

												.offset(y:	geometry.size.height/2)

												.edgesIgnoringSafeArea(.all)

								}

				}

}

In	the	closure,	we	can	access	the	size	of	the	parent	view	using	the		geometry		parameter.
This	is	why	we	set	the		offset		modifier	like	this:

.offset(y:	geometry.size.height/2)

To	correctly	compute	the	full	screen	size,	we	added	the		edgesIgnoringSafeArea		modifier
and	set	its	parameter	to		.all		to	completely	ignore	the	safe	area.

402Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	run	the	app	again	in	the	preview	canvas.	You	should	have	a	bottom	sheet	which
takes	up	half	of	the	screen	size.

Figure	7.	Adjusting	the	offset	of	the	detail	view

Bring	Up	the	Detail	View

Now	that	the	detail	view	is	pretty	much	done.	Let's	go	back	to	the	list	view	(i.e.
	ContentView.swift)	to	bring	it	up	whenever	a	user	selects	a	restaurant.

In	the		ContentView		struct,	declare	two	state	variables:

@State	private	var	showDetail	=	false

@State	private	var	selectedRestaurant:	Restaurant?

The		showDetail		variable	indicates	whether	the	detail	view	is	shown,	while	the
	selectedRestaurant		variable	stores	the	user's	chosen	restaurant.

403Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

As	you've	learned	in	an	earlier	chapter,	you	can	attach	the		onTapGesture		modifier	to
detect	the	tap	gesture.	So,	when	a	tap	is	recognized,	we	toggle	the	value	of		showDetail	
and	update	the	value	of		selectedRestaurant		like	this:

List	{

				ForEach(restaurants)	{	restaurant	in

								BasicImageRow(restaurant:	restaurant)

												.onTapGesture	{

																self.showDetail	=	true

																self.selectedRestaurant	=	restaurant

												}

				}

}

The	detail	view,	which	is	the	bottom	sheet,	is	expected	to	overlay	on	top	of	the	list	view.
To	achieve	that,	embed	the	navigation	view	in	a		ZStack	.	Right	below	the	navigation	view,
we	will	check	if	the	detail	view	is	enabled	and	initialize	it	like	this:

404Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	body:	some	View	{

				ZStack	{

								NavigationView	{

												List	{

																ForEach(restaurants)	{	restaurant	in

																				BasicImageRow(restaurant:	restaurant)

																								.onTapGesture	{

																												self.showDetail	=	true

																												self.selectedRestaurant	=	restaurant

																								}

																}

												}

												.navigationBarTitle("Restaurants")

								}

								if	showDetail	{

												if	let	selectedRestaurant	=	selectedRestaurant	{

																RestaurantDetailView(restaurant:	selectedRestaurant)

																				.transition(.move(edge:	.bottom))

												}

								}

				}

}

We	attach	the		transition		modifier	to	the	detail	view	such	that	it	uses	the		move	
transition	type.	The		selectedRestaurant		property	is	defined	as	an	optional.	This	means	it
can	either	have	a	value	or	nil.	Before	accessing	the	value	of	the	property,	it's	required	to
check	if		selectedRestaurant		has	a	value	or	not.	Therefore,	we	use		if	let		to	perform	the
verification.	As	a	side	note,	this		if	let		operator	is	only	supported	in	iOS	14	(or	up).

If	you	run	the	app	in	the	preview	canvas,	it	will	bring	up	the	detail	view	when	you	select	a
restaurant.	However,	the	implementation	of	the	bottom	sheet	is	far	from	completion.

First,	the	list	view	is	not	blocked	from	user	interaction	when	the	bottom	sheet	is	active.	In
fact,	the	list	view	should	be	dimmed	to	indicate	it's	the	back	layer.

405Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	implement	this,	we	create	an	empty	view	and	place	it	between	the	list	view	and	the
detail	view.	In	the		ContentView.swift		file,	insert	the	following	code	to	create	the	empty
view:

struct	BlankView	:	View	{

				var	bgColor:	Color

				var	body:	some	View	{

								VStack	{

												Spacer()

								}

								.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	0,	maxHeight:	.infinit

y)

								.background(bgColor)

								.edgesIgnoringSafeArea(.all)

				}

}

Next,	update	the		if		clause	like	this:

if	showDetail	{

				BlankView(bgColor:	.black)

												.opacity(0.5)

												.onTapGesture	{

																self.showDetail	=	false

												}

				if	let	selectedRestaurant	=	selectedRestaurant	{

								RestaurantDetailView(restaurant:	selectedRestaurant)

												.transition(.move(edge:	.bottom))

				}

}

When	the	detail	view	is	displayed,	we	place	an	empty	view	right	below	it.	The	empty	view
is	filled	in	black	and	semi	opaque.	This	will	block	users	from	interacting	with	the	list	view
but	still	keep	them	in	the	original	context.	We	also	attach	a	tap	gesture	recognizer	to	the

406Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

empty	view,	so	that	the	detail	view	will	be	dismissed	whenever	the	user	taps	the	empty
area.

Figure	8.	Dimming	the	list	view

Now	run	the	app	and	try	out	the	changes.	When	you	tap	the	dimmed	area,	you	can	close
the	detail	view.

Adding	Animations

We	are	a	little	bit	closer	to	the	final	product,	but	there	are	a	few	things	we	still	need	to
take	care	of.	Were	you	aware	that	the	transition	of	the	detail	view	was	not	animated?
While	we	have	the		.transition		modifier,	the	transition	will	only	be	animated	when	we
pair	it	with	an	animation.

So,	go	back	to		RestaurantDetailView.swift		and	attach	the		.animation		modifier	to	the
	VStack		like	this:

407Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

VStack	{

				...

}

.offset(y:	geometry.size.height/2)

.animation(.interpolatingSpring(stiffness:	200.0,	damping:	25.0,	initialVelocity:	

10.0))

.edgesIgnoringSafeArea(.all)

In	the	code,	we	use	the		interpolatingSpring		animation.	The	values	of	stiffness,	damping,
and	initialVelocity	can	be	changed.	You	can	play	around	with	the	values	to	find	out	the
best	animation	for	your	app.

I	also	want	to	add	a	subtle	animation	to	the	list	view,	such	that	it	shifts	a	little	bit	upward
when	we	bring	up	the	detail	view.	Go	back	to		ContentView.swift	.	Attach	an		.offset		and
	.animation		modifier	to	the	navigation	view:

NavigationView	{

				List	{

								...

				}

				.navigationBarTitle("Restaurants")

}

.offset(y:	showDetail	?	-100	:	0)

.animation(.easeOut(duration:	0.2))

Now	run	the	app	in	the	preview	canvas	again.	You	should	see	a	nice	animated	effect	when
the	detail	view	is	displayed.

408Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Adding	animations	to	the	bottom	sheet

Adding	Gesture	Support

Now	that	we	have	a	half-baked	bottom	sheet,	the	next	step	is	to	make	it	expandable	with
gesture	support.	As	mentioned	at	the	very	beginning	of	the	chapter,	users	can	slide	the
view	up	to	expand	its	size.	Or	slide	it	down	to	minimize	or	dismiss	it.

Since	you've	learned	how	drag	gesture	works	in	the	previous	chapter,	we	will	apply	a
similar	technique	to	create	the	expandable	detail	view.	The	implementation	of	the
dragging	gesture	of	this	expandable	bottom	sheet	is	more	complicated	than	before.

In		RestaurantDetailView.swift	,	first	define	an	Enum	to	represent	the	drag	state:

409Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

enum	DragState	{

				case	inactive

				case	pressing

				case	dragging(translation:	CGSize)

				var	translation:	CGSize	{

								switch	self	{

								case	.inactive,	.pressing:

												return	.zero

								case	.dragging(let	translation):

												return	translation

								}

				}

				var	isDragging:	Bool	{

								switch	self	{

								case	.pressing,	.dragging:

												return	true

								case	.inactive:

												return	false

								}

				}

}

Furthermore,	declare	a	gesture	state	variable	to	keep	track	of	the	drag	and	a	state
variable	to	store	the	position	offset	of	the	bottom	sheet:

@GestureState	private	var	dragState	=	DragState.inactive

@State	private	var	positionOffset:	CGFloat	=	0.0

To	recognize	the	drag,	we	can	attach	the		.gesture		modifier	to	the		VStack	:

.gesture(DragGesture()

				.updating(self.$dragState,	body:	{	(value,	state,	transaction)	in

								state	=	.dragging(translation:	value.translation)

								})

)

410Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	the		updating		function,	we	simply	update	the		dragState		property	with	the	latest	drag
data.

Finally,	modify	the		.offset		modifier	of	the		VStack		like	this	to	move	the	detail	view:

.offset(y:	geometry.size.height/2	+	self.dragState.translation.height	+	self.posit

ionOffset)

Instead	of	a	fixed	value,	the	drag's	translation	and	the	position	offset	will	be	taken	into
account	for	calculating	the	offset.	This	is	how	we	enable	the	detail	view	to	support	the
drag	gesture.

If	you	test	the	detail	view	in	the	preview	canvas,	you	should	be	able	to	slide	the	view	by
dragging	the	handlebar.	Select	the	image	(content	view)	and	drag	upwards,	it's	nearly
impossible	to	slide	up/down	the	view	by	dragging	the	content	view.

Figure	10.	Dragging	the	content	part	of	the	detail	view	won't	slide	up	the	view

Why	couldn't	we	drag	the	content	view	to	expand	the	detail	view?

411Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Don't	forget,	the	content	part	of	the	detail	view	is	embedded	in	a	scroll	view.	Therefore,
we	actually	have	two	gesture	recognizers	here:	the	one	built	into	the	scroll	view	and	the
drag	gesture	we	added.

So,	how	do	we	fix	it?	One	way	is	to	disable	the	user	interaction	with	the	scroll	view.	You
can	add	the		.disabled		modifier	to	the	scroll	view	and	set	its	value	to		true	:

.disabled(true)

Once	you	attach	this	modifier	to		ScrollView	,	you	will	be	able	to	slide	up/down	the	detail
view	by	dragging	the	content	part.

But	here	comes	to	the	next	question.	Users	can't	interact	with	the	scroll	view	when	it's
disabled.	That	means	the	user	can't	view	the	full	content	of	the	restaurant.	Therefore,	we
still	need	to	make	the	content	part	scrollable.

Obviously,	we	need	to	figure	out	a	way	to	control	the	enablement	of	the	scroll	view.	A
simple	solution	is	to	disable	the	scroll	view	when	it's	in	half	open	state.	After	the	detail
view	is	fully	opened,	we	enable	the	scrolling	again.

The	other	problem	with	the	current	implementation	is	that	the	detail	view	won't	stay
fully	open	even	if	the	user	slides	the	view	all	the	way	up	to	the	status	bar.	It	just	bounces
back	to	the	half-open	state	when	the	drag	ends.	Additionally,	you	can't	dismiss	the	detail
view	when	you	slide	it	down	to	the	end	of	the	screen.

How	do	we	tackle	these	problems?

Handling	the	Half-opened	State

Let's	first	handle	the	issue	of	the	half-opened	state.	This	is	the	default	state	when	the
detail	view	is	brought	up.	In	this	state,	there	are	two	scenarios	that	can	happen:

1.	 The	user	chooses	to	slide	up	the	view	to	make	it	fully	open.	But	the	user	may	drag	the
view	a	bit	upward	and	then	drag	it	down	to	cancel	the	action.

2.	 Alternatively,	the	user	can	choose	to	slide	the	view	down	to	dismiss	it.	Again,	the
user	may	drag	it	back	to	up	to	cancel	the	dismissal.

412Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

As	you	can	see	from	these	scenarios,	other	than	keeping	track	of	the	drag	offset,	we	need
some	kind	of	threshold	to	control	the	opening	and	dismissal	of	the	view.

Figure	11.	Adding	thresholds	to	control	the	dragging	and	view	state

The	figure	above	shows	you	the	thresholds	we	are	going	to	define	for	the	half-opened
state:

Threshold	#1	-	once	the	drag	goes	beyond	this	threshold,	the	detail	view	becomes
fully	open.
Threshold	#2	-	when	the	drag	moves	lower	than	this	threshold,	the	detail	view	will
be	dismissed.

Now	that	you	understand	how	the	half	opened	view	should	work,	let's	move	onto	the
coding	part.	First,	we	declare	another	Enum	in		RestaurantDetailView.swift		to	represent
these	two	view	states:

413Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

enum	ViewState	{

				case	full

				case	half

}

In		RestaurantDetailView	,	declare	another	state	property	to	store	the	current	view	state.	By
default,	it's	set	to	half	open:

@State	private	var	viewState	=	ViewState.half

Also,	in	order	to	dismiss	the	view	itself,	we	need	the		ContentView		to	pass	us	the	binding
of	its	state	variable.	So,	declare	the		isShow		binding	variable	like	this:

@Binding	var	isShow:	Bool

Obviously,	we	need	to	figure	out	a	way	to	control	the	enablement	of	the	scroll	view.
A	simple	solution	is	to	disable	the	scroll	view	when	it's	in	half	open	state.	After	the
detail	view	is	fully	opened,	we	enable	the	scrolling	again.

Let's	fix	the	scrolling	issue	of	the	scroll	view.	Attach	the		.disabled		modifier	to	the
	ScrollView		like	this:

.disabled(self.viewState	==	.half)

Here,	we	disable	the	user	interaction	with	the	scroll	view	when	the	detail	view	is	in	half
opened	state.

Now,	let's	implement	the	thresholds	that	we	just	discussed.	As	you've	learned	before,
when	the	drag	ends,	SwiftUI	automatically	calls	the		onEnded		function.	So,	we	will	handle
the	thresholds	in	this	function.	Now	update	the		.gesture		modifier	like	this:

414Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.gesture(DragGesture()

				.updating(self.$dragState,	body:	{	(value,	state,	transaction)	in

								state	=	.dragging(translation:	value.translation)

								})

				.onEnded({	(value)	in

								if	self.viewState	==	.half	{

												//	Threshold	#1

												//	Slide	up	and	when	it	goes	beyond	the	threshold

												//	change	the	view	state	to	fully	opened	by	updating

												//	the	position	offset

												if	value.translation.height	<	-geometry.size.height	*	0.25	{

																self.positionOffset	=	-geometry.size.height/2	+	50

																self.viewState	=	.full

												}

												//	Threshold	#2

												//	Slide	down	and	when	it	goes	pass	the	threshold

												//	dismiss	the	view	by	setting	isShow	to	false

												if	value.translation.height	>	geometry.size.height	*	0.3	{

																self.isShow	=	false

												}

								}

				})

)

I	compute	the	threshold	by	using	the	screen	height.	For	instance,	threshold	#2	is	set	to
one-third	of	the	screen	height.	This	is	just	a	sample	value.	You	may	alter	it	you	desire.

Take	a	look	at	the	code	comments	if	you	need	further	explanation	about	how	the	code
works.

Since,	we	added	a	binding	variable	in		RestaurantDetailView	,	we	have	to	update	the	code	of
	RestaurantDetailView_Previews	:

415Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	RestaurantDetailView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								RestaurantDetailView(restaurant:	restaurants[0],	isShow:	.constant(true))

												.background(Color.black.opacity(0.3))

												.edgesIgnoringSafeArea(.all)

				}

}

Similarly,	you	need	to	go	back	to		ContentView.swift		to	make	the	change	according:

if	let	selectedRestaurant	=	selectedRestaurant	{

				RestaurantDetailView(restaurant:	selectedRestaurant,	isShow:	$showDetail)

								.transition(.move(edge:	.bottom))

}

After	all	this	hard	work,	it's	time	to	test	out	the	expandable	detail	view.	Run	the	app	in
the	simulator	or	preview	canvas,	you	should	be	able	to	drag	down	the	detailed	view	to
dismiss	it.	Or	drag	it	up	to	open	it	fully.

Figure	12.	Drag	the	detail	view	upward	to	fully	open	it

416Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Handling	the	Fully	Open	State

Now	that	you	are	able	to	drag	down	the	detailed	view	to	dismiss	it	or	drag	the	view	up	to
open	it	fully.	It	works	pretty	well	but	there	is	an	issue	that	the	scroll	view	overrides	our
drag	gesture	when	the	view	is	fully	open.	In	other	words,	you	can	scroll	through	the
content	but	can't	revert	the	view	back	to	the	half	opened	state.

Before	we	fix	this	scrolling	issue,	let's	first	fix	a	minor	issue	with	the	detailed	view.	You
may	notice	that	when	the	detailed	view	is	in	the	fully	open	state,	you	can't	scroll	to	the
end	of	the	description.	To	resolve	this	issue,	open		RestaurantDetailView.swift		and	update
the		DetailInfoView		for	displaying	the	restaurant	description	like	this:

DetailInfoView(icon:	nil,	info:	self.restaurant.description)

				.padding(.top)

				.padding(.bottom,	100)

We	simply	attach	an	additional		.padding		modifier	to	increase	the	empty	space.	This	will
allow	you	to	scroll	through	the	description	properly.

Now	let's	go	back	to	the	scrolling	issue.	How	can	we	let	users	scroll	through	the	content
and	revert	the	view	to	half	open	by	using	the	drag	gesture?	The	user	drags	the	view	up	to
reveal	the	content.	Conversely,	the	user	will	drag	the	view	down	when	he/she	wants	to
dismiss	the	detailed	view.	Right	now,	you	can	drag	down	the	scroll	view	but	the	problem
is	that	it	will	bounce	back	to	the	top	when	you	release	your	finger.

417Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	Dragging	the	scroll	view	in	both	directions

Since	the	scroll	view	blocks	the	drag	gesture	we	attached,	we	have	to	find	an	alternate
way	to	detect	this	"drag	down"	gesture.	You've	learned	how	to	use		GeometryReader		to
measure	the	size	of	a	view.	It	can	also	be	used	to	find	out	the	scroll	offset	as	indicated	in
figure	13.

In		RestaurandDetailView	,	add	the	following	code	inside		ScrollView		and	place	it	right
above		TitleBar()	:

GeometryReader	{	scrollViewProxy	in

				Text("\(scrollViewProxy.frame(in:	.named("scrollview")).minY)")

}

.frame(height:	0)

418Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

This	is	not	the	final	code.	I	just	want	to	show	you	how	to	use		GeometryReader		to	read	the
scroll	offset.	In	the	closure	of		GeometryReader	,	we	use	the		scrollViewProxy		to	figure	out
the	offset	by	calling	the		frame		function	and	retrieve	the	value	of		minY	.	When	calling	the
	frame		function,	you	have	to	pass	it	your	preferred	coordinate	space.	Here,	we	define	our
own	coordinate	space,	which	is	confined	to	the	scroll	view.

In	order	to	define	our	own	coordinate	space,	attach	the		.coordinateSpace		modifer	to	the
	ScrollView	:

.coordinateSpace(name:	"scrollview")

You	may	wonder	why	we	have	to	use	our	own	coordinate	space	instead	of		.global	.	Take
a	look	at	figure	13	again.	The	dotted	red	line	is	the	reference	point,	which	should	have	an
offset	value	of	zero.	By	defining	the	coordinate	space	confined	to	the	scroll	view,	we	can
make	that	possible.

Now	run	the	app	in	a	simulator.	Bring	up	the	detail	view	and	make	it	fully	open.	When
you	drag	the	view	down,	you	should	see	the	drag	offset.	As	you	can	see	in	figure	14,	the
offset	increases	as	you	drag	farther	from	the	top	bar.

419Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	Dragging	the	scroll	view	in	both	directions

Introducing	PreferenceKey

Now	that	we	have	figured	out	a	way	to	retrieve	the	scroll	offset,	the	next	question	is	how
to	let	its	parent	views	know	about	the	offset	for	further	processing.	The	SwiftUI
framework	provides	a	protocol	called		PreferenceKey		which	allows	you	to	easily	pass	data
from	child	views	to	its	ancestors.

In	order	to	pass	the	scroll	offset	using	preferences,	we	have	to	create	a	struct	conforming
to	the		PreferenceKey		protocol	like	below.	Insert	the	following	code	snippet	in
	RestaurantDetailView.swift	:

420Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ScrollOffsetKey:	PreferenceKey	{

				typealias	Value	=	CGFloat

				static	var	defaultValue	=	CGFloat.zero

				static	func	reduce(value:	inout	Value,	nextValue:	()	->	Value)	{

								value	+=	nextValue()

				}

}

The	protocol	has	two	requirements.	First,	you	have	to	define	the	default	value,	which	is
zero	for	our	implementation.	Second,	you	need	to	implement	the		reduce		function	to
combine	the	offset	values	into	one.

Next,	modify	the		GeometryReader		created	in	the	previous	section	like	this:

GeometryReader	{	scrollViewProxy	in

				Color.clear.preference(key:	ScrollOffsetKey.self,	value:	scrollViewProxy.frame(

in:	.named("scrollview")).minY)

}

.frame(height:	0)

In	the	code,	we	retrieve	the	scroll	offset	and	save	it	into	the	preference	key.	We	use	the
	Color.clear		view	to	make	the	view	invisible	to	the	users.

The	next	question	is	how	can	you	retrieve	the	scroll	offset	from	the	preference?

One	simple	way	is	to	use	the		.onPreferenceChange		modifier	to	observe	the	value	change.
You	can	attach	the	modifier	to	the		VStack		and	place	it	under	the		.gesture		modifier	like
this:

.onPreferenceChange(ScrollOffsetKey.self)	{	value	in

				print("\(value)")

}

421Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Here	we	simply	print	the	value	of	the	offset.	When	you	run	the	app	in	a	simulator,	you
should	see	the	offset	value	in	the	console	while	dragging	the	detail	view.

Now	that	you	have	some	basic	idea	how	PreferenceKey	works,	let's	finish	the
implementation	and	make	the	detail	view	return	to	the	half	open	state.

Declare	a	new	state	variable	to	keep	track	of	the	scroll	offset:

@State	private	var	scrollOffset:	CGFloat	=	0.0

Next,	update	the		.onPreferenceChange		modifer	like	this:

.onPreferenceChange(ScrollOffsetKey.self)	{	value	in

				if	self.viewState	==	.full	{

								self.scrollOffset	=	value	>	0	?	value	:	0

								if	self.scrollOffset	>	120	{

												self.positionOffset	=	0

												self.viewState	=	.half

												self.scrollOffset	=	0

								}

				}

}

When	there	is	a	change	of	the	scroll	offset,	we	check	if	it	exceeds	our	preset	threshold	(i.e.
120).	If	it's	true,	we	set	the	view	state	back	to		.half	.	Now	attach	another		.offset	
modifier	to	the		VStack	:

.offset(y:	self.scrollOffset)

The	purpose	of	this	additional		.offset		modifier	is	to	move	the	detail	view	down.	If	you
run	the	app	on	a	simulator,	you	should	be	able	to	drag	the	fully	open	view	down	to	revert
it	back	to	the	half	open	state.

422Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	15.	Sliding	down	the	view	when	it's	in	fully	open	state

You	may	notice	that	there	is	a	minor	bounce	effect	when	you	drag	the	scroll	view	down.
To	resolve	the	issue,	you	can	wrap	the	subviews	inside	the	scroll	view	with	a	vertical	stack
and	attach	an		.offset		modifier	to	it.

VStack	{

				TitleBar()

				HeaderView(restaurant:	self.restaurant)

				DetailInfoView(icon:	"map",	info:	self.restaurant.location)

								.padding(.top)

				DetailInfoView(icon:	"phone",	info:	self.restaurant.phone)

				DetailInfoView(icon:	nil,	info:	self.restaurant.description)

								.padding(.top)

								.padding(.bottom,	100)

}

.offset(y:	-self.scrollOffset)

.animation(nil)

423Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Summary

This	is	a	huge	chapter	and	I	hope	you	enjoyed	it.	In	this	chapter,	we	utilized	everything
you	have	learned	so	far	to	build	a	expandable	bottom	sheet.	I	tried	my	best	to	document
my	thought	process	on	tackling	issues	I	discovered	when	I	built	the	sheet.	I	really	hope
this	helps	you	understand	my	solution	and	code.

One	of	the	advantages	of	SwiftUI	is	that	it	encourages	you	to	build	modular	UI
components.	We	haven't	done	it	yet.	But,	as	you	may	discover,	it	is	pretty	easy	to	turn
this	restaurant	detail	view	into	a	generic	bottom	sheet	that	supports	various	types	of
content	by	using	the	techniques	that	I	covered	in	the	previous	chapter.

Try	to	build	the	generic	bottom	sheet	by	yourself	and	make	it	a	reusable	component	for
your	projects.

For	reference,	you	can	download	the	complete	bottom	sheet	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIBottomSheet.zip)

424Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIBottomSheet.zip

Chapter	19
Creating	a	Tinder-like	UI	with
Gestures	and	Animations
Wasn't	it	fun	to	build	an	expandable	bottom	sheet?	Let's	continue	to	apply	what	we
learned	about	gestures	to	a	real-world	project.	I'm	not	sure	if	you've	used	the	Tinder	app
before.	But	you've	probably	come	across	a	Tinder-like	user	interface	in	other	apps.	The
swiping	motion	is	central	to	Tinder's	UI	design	and	has	become	one	of	the	most	popular
mobile	UI	patterns.	Users	swipe	right	to	like	a	photo	or	swipe	left	to	dislike	it.

What	we	are	going	to	do	in	this	chapter	is	to	build	a	simple	app	with	a	Tinder-like	UI.	The
app	presents	users	with	a	deck	of	travel	cards	and	allows	them	to	use	the	swipe	gesture	to
like/dislike	a	card.

425Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Building	a	tinder-like	user	interface

Note	that	we	are	not	going	to	build	a	fully	functional	app	but	focus	only	on	the	Tinder-
like	UI.

Project	Preparation

It	would	be	great	if	you	want	to	use	your	own	images.	But	to	save	you	time	preparing	trip
images,	I	have	created	a	starter	project	for	you.	You	can	download	it	from
https://www.appcoda.com/resources/swiftui2/SwiftUITinderTripStarter.zip.	This
project	comes	with	a	set	of	photos	for	the	travel	cards.

426Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUITinderTripStarter.zip

Figure	2.	Preloaded	with	a	set	of	travel	photos

I	have	also	prepared	the	test	data	for	the	demo	app	and	created	the		Trip.swift		file	to
represent	a	trip:

427Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	Trip	{

				var	destination:	String

				var	image:	String

}

#if	DEBUG

var	trips	=	[Trip(destination:	"Yosemite,	USA",	image:	"yosemite-usa"),

														Trip(destination:	"Venice,	Italy",	image:	"venice-italy"),

														Trip(destination:	"Hong	Kong",	image:	"hong-kong"),

														Trip(destination:	"Barcelona,	Spain",	image:	"barcelona-spain"),

														Trip(destination:	"Braies,	Italy",	image:	"braies-italy"),

														Trip(destination:	"Kanangra,	Australia",	image:	"kanangra-australia"

),

														Trip(destination:	"Mount	Currie,	Canada",	image:	"mount-currie-canad

a"),

														Trip(destination:	"Ohrid,	Macedonia",	image:	"ohrid-macedonia"),

														Trip(destination:	"Oia,	Greece",	image:	"oia-greece"),

														Trip(destination:	"Palawan,	Philippines",	image:	"palawan-philippine

s"),

														Trip(destination:	"Salerno,	Italy",	image:	"salerno-italy"),

														Trip(destination:	"Tokyo,	Japan",	image:	"tokyo-japan"),

														Trip(destination:	"West	Vancouver,	Canada",	image:	"west-vancouver-c

anada"),

														Trip(destination:	"Singapore",	image:	"garden-by-bay-singapore"),

														Trip(destination:	"Perhentian	Islands,	Malaysia",	image:	"perhentian

-islands-malaysia")

]

#endif

In	case	you	prefer	to	use	your	own	images	and	data,	simply	replace	the	images	in	the
asset	catalog	and	update		Trip.swift	.

Building	the	Card	Views	and	Menu	Bars

Before	implementing	the	swipe	feature,	let's	start	by	creating	the	main	UI.	I	will	break
the	main	screen	into	three	parts:

1.	 The	top	menu	bar
2.	 The	card	view

428Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

3.	 The	bottom	menu	bar

Figure	3.	The	main	screen

Card	View

First,	let's	create	a	card	view.	If	you	want	to	challenge	yourself,	I	highly	recommend	you
stop	here	and	implement	it	without	following	this	section.	Otherwise,	keep	reading.

To	better	organize	the	code,	we	will	implement	the	card	view	in	a	separate	file.	In	the
project	navigator,	create	a	new	file	using	the	SwiftUI	View	template	and	name	it
	CardView.swift	.

The		CardView		is	designed	to	display	different	photos	and	titles.	So,	declare	two	variables
for	storing	these	data:

429Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

let	image:	String

let	title:	String

The	main	screen	is	going	to	display	a	deck	of	card	views.	Later,	we	will	use		ForEach		to
loop	through	an	array	of	card	views	and	present	them.	If	you	still	remember	the	usage	of
	ForEach	,	SwiftUI	needs	to	know	how	to	uniquely	identify	each	item	in	the	array.
Therefore,	we	will	make		CardView		conform	to	the		Identifiable		protocol	and	introduce
an		id		variable	like	this:

struct	CardView:	View,	Identifiable	{

				let	id	=	UUID()

				let	image:	String

				let	title:	String

				.

				.

				.

}

In	case	you	forgot	what	the		Identifiable		protocol	is,	please	refer	to	chapter	10.

Now	let's	continue	to	implement	the	card	view	and	update	the		body		variable	like	this:

430Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	body:	some	View	{

				Image(image)

								.resizable()

								.scaledToFill()

								.frame(minWidth:	0,	maxWidth:	.infinity)

								.cornerRadius(10)

								.padding(.horizontal,	15)

								.overlay(

												VStack	{

																Text(title)

																				.font(.system(.headline,	design:	.rounded))

																				.fontWeight(.bold)

																				.padding(.horizontal,	30)

																				.padding(.vertical,	10)

																				.background(Color.white)

																				.cornerRadius(5)

												}

												.padding([.bottom],	20)

								,	alignment:	.bottom)

}

The	card	view	is	composed	of	an	image	and	a	text	component,	which	is	overlayed	on	top
of	the	image.	We	set	the	image	to	the		scaleToFill		mode	and	round	the	corners	by	using
the		cornerRadius		modifier.	The	text	component	is	used	to	display	the	destination	of	the
trip.

We	have	an	in-depth	discussion	about	a	similar	implementation	of	the	card	view	in
chapter	5.	If	you	don't	fully	understand	the	code,	please	check	out	that	chapter	again.

You	can't	preview	the	card	view	yet	because	you	have	to	provide	the	values	of	both		image	
and		title		in	the		CardView_Previews	.	Therefore,	update	the		CardView_Previews		struct	like
this:

431Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	CardView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								CardView(image:	"yosemite-usa",	title:	"Yosemite,	USA")

				}

}

I	simply	use	one	of	the	images	in	the	asset	catalog	for	preview	purposes.	You	are	free	to
alter	the	image	and	title	to	fit	your	own	needs.	In	the	preview	canvas,	you	should	now	see
the	card	view	similar	to	figure	4.

Figure	4.	Previewing	the	card	view

Menu	Bars	and	Main	UI

With	the	card	view	ready,	we	can	move	on	to	implementing	the	main	UI.	The	main	UI
has	the	card	and	two	menu	bars.	For	both	menu	bars,	I	will	create	a	separate		struct		for
each	of	them.

432Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	open		ContentView.swift		and	start	the	implementation.	For	the	top	bar	menu,	create
a	new		struct		like	this:

struct	TopBarMenu:	View	{

				var	body:	some	View	{

								HStack	{

												Image(systemName:	"line.horizontal.3")

																.font(.system(size:	30))

												Spacer()

												Image(systemName:	"mappin.and.ellipse")

												.font(.system(size:	35))

												Spacer()

												Image(systemName:	"heart.circle.fill")

												.font(.system(size:	30))

								}

								.padding()

				}

}

The	three	icons	are	arranged	using	a	horizontal	stack	with	equal	spacing.	For	the	bottom
bar	menu,	the	implementation	is	pretty	much	the	same.	Insert	the	following	code	in
	ContentView.swift		to	create	the	menu	bar:

433Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	BottomBarMenu:	View	{

				var	body:	some	View	{

								HStack	{

												Image(systemName:	"xmark")

																.font(.system(size:	30))

																.foregroundColor(.black)

												Button(action:	{

																//	Book	the	trip

												})	{

																Text("BOOK	IT	NOW")

																				.font(.system(.subheadline,	design:	.rounded))

																.bold()

																				.foregroundColor(.white)

																				.padding(.horizontal,	35)

																				.padding(.vertical,	15)

																				.background(Color.black)

																				.cornerRadius(10)

												}

												.padding(.horizontal,	20)

												Image(systemName:	"heart")

																.font(.system(size:	30))

																.foregroundColor(.black)

								}

				}

}

We	are	not	going	to	implement	the	"Book	Trip"	feature,	so	the	action	block	is	left	blank.
The	rest	of	the	code	should	be	self	explanatory	assuming	you	understand	how	stacks	and
images	work.

Before	building	the	main	UI,	let	me	show	you	a	trick	to	preview	these	two	menu	bars.	It's
not	mandatory	to	put	these	bars	in	the		ContentView		in	order	to	preview	their	look	and
feel.

Now	update	the		ContentView_Previews		struct	like	this:

434Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								Group	{

												ContentView()

												TopBarMenu().previewLayout(.sizeThatFits)

												BottomBarMenu().previewLayout(.sizeThatFits)

								}

				}

}

Here	we	use		Group		to	group	the	preview	of	multiple	components.	Without	specifying	any
preview	option	(like		ContentView),	Xcode	displays	the	preview	on	the	current	simulator.
For	both		TopBarMenu		and		BottomBarMenu	,	we	tell	Xcode	to	preview	the	layout	in	a
container	view.	Figure	5	gives	you	a	better	idea	what	the	preview	looks	like.

Figure	5.	Previewing	the	menu	bars

The		.sizeThatFits		option	instructs	Xcode	to	resize	the	container	view	to	fit	the	content.
Alternatively,	you	can	update	the	preview	code	like	below	to	create	a	fixed	size	container
view:

435Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

TopBarMenu().previewLayout(.fixed(width:	375,	height:	60))

BottomBarMenu().previewLayout(.fixed(width:	375,	height:	60))

Okay,	let's	continue	to	lay	out	the	main	UI.	Update	the		ContentView		like	this:

struct	ContentView:	View	{

				var	body:	some	View	{

								VStack	{

												TopBarMenu()

												CardView(image:	"yosemite-usa",	title:	"Yosemite,	USA")

												Spacer(minLength:	20)

												BottomBarMenu()

								}

				}

}

In	the	code,	we	simply	arrange	the	UI	components	we	have	built	using	a		VStack	.	Your
preview	should	now	show	you	the	main	screen.

436Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	Previewing	the	main	UI

Implementing	the	Card	Deck

With	all	the	preparation,	we	finally	comes	to	the	implementation	of	the	Tinder-like	UI.
For	those	who	haven't	used	the	Tinder	app	before,	let	me	first	explain	how	a	Tinder-like
UI	works.

You	can	imagine	a	Tinder-like	UI	as	a	deck	of	piled	photo	cards.	For	our	demo	app,	the
photo	is	a	destination	of	a	trip.	Swiping	the	topmost	card	(i.e.	the	first	trip)	slightly	to	the
left	or	right	unveils	the	next	card	(i.e.	the	next	trip)	underneath.	If	the	user	releases	the
card,	the	app	brings	the	card	to	the	original	position.	But,	when	the	user	swipes	hard
enough,	he/she	can	throw	away	the	card	and	the	app	will	bring	the	second	card	forward
to	become	the	topmost	card.

437Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	How	the	Tinder-like	UI	works

The	main	screen	we	have	implemented	only	contains	a	single	card	view.	So,	how	can	we
implement	the	pile	of	card	views?

The	most	straightforward	way	is	to	overlay	each	of	the	card	views	on	top	of	each	other
using	a		ZStack	.	Let's	try	to	do	this.	Update	the		ContentView		struct	like	this:

438Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	cardViews:	[CardView]	=	{

								var	views	=	[CardView]()

								for	trip	in	trips	{

												views.append(CardView(image:	trip.image,	title:	trip.destination))

								}

								return	views

				}()

				var	body:	some	View	{

								VStack	{

												TopBarMenu()

												ZStack	{

																ForEach(cardViews)	{	cardView	in

																				cardView

																}

												}

												Spacer(minLength:	20)

												BottomBarMenu()

								}

				}

}

In	the	code	above,	we	initialize	an	array	of		cardViews		containing	all	the	trips,	which	was
defined	in	the		Trip.swift		file.	In	the		body		variable,	we	loop	through	all	the	card	views
and	overlay	one	with	another	by	wrapping	them	in	a		ZStack	.

The	preview	canvas	should	show	you	the	same	UI	but	with	another	image.

439Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Building	the	deck	of	card	views

Why	did	it	display	another	image?	If	you	refer	to	the		trips		array	defined	in		Trip.swift	,
the	image	is	the	last	element	of	the	array.	In	the		ForEach		block,	the	first	trip	is	placed	at
the	lowermost	part	of	the	deck.	Thus,	the	last	trip	becomes	the	topmost	photo	of	the
deck.

How	do	you	make	sure	all	the	images	are	laid	out	since	we	can	only	see	the	last	image?
Instead	of	using	the	preview	canvas,	try	to	run	the	project	in	a	simulator.	After	the	app	is
launched,	click	the	Debug	View	Hierarchy	button.

440Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Click	the	Debug	View	Hierarchy	button

Xcode	then	shows	you	a	3D	rendering	of	the	view	hierarchy.	You	can	rotate	the	rendering
to	inspect	the	views.	As	you	can	see	in	figure	10,	you	can	reveal	all	the	layers	of	the	card
deck.

Figure	10.	Click	the	Debug	View	Hierarchy	button

441Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Our	card	deck	has	two	issues:

1.	 The	first	trip	of	the		trips		array	is	supposed	to	be	the	topmost	card,	however,	it's
now	the	lowermost	card.

2.	 We	rendered	15	card	views	for	15	trips.	What	if	we	have	10,000	trips	or	even	more	in
the	future?	Should	we	create	one	card	view	for	each	of	the	trips?	Is	there	a	resource
efficient	way	to	implement	the	card	deck?

Let's	first	fix	the	card	order	issue.	SwiftUI	provides	the		zIndex		modifier	for	you	to
indicate	the	order	of	the	views	in	a	ZStack.	A	view	with	a	higher	value	of		zIndex		is	placed
on	top	of	those	with	a	lower	value.	So,	the	topmost	card	should	have	the	largest	value	of
	zIndex	.

With	this	in	mind,	we	create	the	following	new	function	in		ContentView	:

private	func	isTopCard(cardView:	CardView)	->	Bool	{

				guard	let	index	=	cardViews.firstIndex(where:	{	$0.id	==	cardView.id	})	else	{

								return	false

				}

				return	index	==	0

}

While	looping	through	the	card	views,	we	have	to	figure	out	a	way	to	identify	the	topmost
card.	The	function	above	takes	in	a	card	view,	find	out	its	index,	and	tells	you	if	the	card
view	is	the	topmost	one.

Next,	update	the	code	block	of		ZStack		like	this:

ZStack	{

				ForEach(cardViews)	{	cardView	in

								cardView

												.zIndex(self.isTopCard(cardView:	cardView)	?	1	:	0)

				}

}

442Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	added	the		zIndex		modifier	for	each	of	the	card	views.	The	topmost	card	is	assigned	a
higher	value	of		zIndex	.	In	the	preview	canvas,	you	should	now	see	the	photo	of	the	first
trip	(i.e.	Yosemite,	USA).

For	the	second	issue,	it’s	more	complicated.	Our	goal	is	to	make	sure	the	card	deck	can
support	tens	of	thousands	of	card	views	but	without	becoming	resource	intensive.

Let’s	take	a	deeper	look	at	the	card	deck.	Do	we	actually	need	to	initiate	an	individual
card	view	for	each	trip	photo?	To	create	this	card	deck	UI,	we	can	just	create	two	card
views	and	overlay	them	with	each	other.

When	the	topmost	card	view	is	thrown	away,	the	card	view	underneath	becomes	the
topmost	card.	And,	at	the	same	time,	we	immediately	initiate	a	new	card	view	with	a
different	photo	and	put	it	behind	the	topmost	card.	No	matter	how	many	photos	you
need	to	display	in	the	card	deck,	the	app	has	only	two	card	views	at	all	times.	However,
from	a	user	point	of	view,	the	UI	is	composed	of	a	pile	of	cards.

443Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	How	we	use	two	card	views	to	create	a	deck

Now	that	you	understand	how	we	are	going	to	construct	the	card	deck,	let’s	move	onto
the	implementation.

First,	update	the		cardViews		array,	we	no	longer	need	to	initialize	all	the	trips	but	only	the
first	two.	Later,	when	the	first	trip	(i.e.	the	first	card)	is	thrown	away,	we	will	add	another
one	to	it.

444Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	cardViews:	[CardView]	=	{

				var	views	=	[CardView]()

				for	index	in	0..<2	{

								views.append(CardView(image:	trips[index].image,	title:	trips[index].desti

nation))

				}

				return	views

}()

After	the	code	change,	the	UI	should	look	exactly	the	same.	Run	it	in	a	simulator	and
debug	the	view	hierarchy.	You	should	only	see	two	card	views	in	the	deck.

Figure	12.	Using	debug	view	hierarchy	to	view	the	card	views

Implementing	the	Swiping	Motion

445Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Before	we	dynamically	create	a	new	card	view,	we	have	to	implement	the	swipe	feature
first.	If	you	forgot	how	to	work	with	gestures,	read	chapters	17	and	18	again.	We	will
reuse	some	of	the	code	discussed	before.

First,	define	the		DragState		enum	in		ContentView	,	which	represents	the	possible	drag
states:

enum	DragState	{

				case	inactive

				case	pressing

				case	dragging(translation:	CGSize)

				var	translation:	CGSize	{

								switch	self	{

								case	.inactive,	.pressing:

												return	.zero

								case	.dragging(let	translation):

												return	translation

								}

				}

				var	isDragging:	Bool	{

								switch	self	{

								case	.dragging:

												return	true

								case	.pressing,	.inactive:

												return	false

								}

				}

				var	isPressing:	Bool	{

								switch	self	{

								case	.pressing,	.dragging:

												return	true

								case	.inactive:

												return	false

								}

				}

}

446Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	again,	if	you	don't	understand	what	an	enum	is	used	for,	stop	here	and	review	the
chapters	on	gestures.	Next,	let's	define	a		@GestureState		variable	to	store	the	drag	state,
which	is	set	to	inactive	by	default:

@GestureState	private	var	dragState	=	DragState.inactive

Now,	update	the		body		part	like	this:

var	body:	some	View	{

				VStack	{

								TopBarMenu()

								ZStack	{

												ForEach(cardViews)	{	cardView	in

																cardView

																				.zIndex(self.isTopCard(cardView:	cardView)	?	1	:	0)

																				.offset(x:	self.dragState.translation.width,	y:		self.dragStat

e.translation.height)

																				.scaleEffect(self.dragState.isDragging	?	0.95	:	1.0)

																				.rotationEffect(Angle(degrees:	Double(self.dragState.translat

ion.width	/	10)))

																				.animation(.interpolatingSpring(stiffness:	180,	damping:	100))

																				.gesture(LongPressGesture(minimumDuration:	0.01)

																								.sequenced(before:	DragGesture())

																								.updating(self.$dragState,	body:	{	(value,	state,	transact

ion)	in

																												switch	value	{

																												case	.first(true):

																																state	=	.pressing

																												case	.second(true,	let	drag):

																																state	=	.dragging(translation:	drag?.translation	?

?	.zero)

																												default:

																																break

																												}

																								})

)

												}

447Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

								}

								Spacer(minLength:	20)

								BottomBarMenu()

												.opacity(dragState.isDragging	?	0.0	:	1.0)

												.animation(.default)

				}

}

Basically,	we	apply	what	we	learned	in	the	gesture	chapter	to	implement	the	dragging.
The		.gesture		modifier	has	two	gesture	recognizers:	long	press	and	drag.	When	the	drag
gesture	is	detected,	we	update	the		dragState		variable	and	store	the	translation	of	the
drag.

The	combination	of	the		offset	,		scaleEffect	,		rotationEffect	,	and		animation		modifiers
create	the	drag	effect.	The	drag	is	made	possible	by	updating	the		offset		of	the	card	view.
When	the	card	view	is	in	the	dragging	state,	we	will	scale	it	down	a	little	bit	by	using
	scaleEffect		and	rotate	it	at	a	certain	angle	by	applying	the		rotationEffect		modifier.	The
animation	is	set	to		interpolatingSpring	,	but	you	are	free	to	try	out	other	animations.

We	also	made	some	code	changes	to	the		BottomBarMenu	.	While	a	user	is	dragging	the	card
view,	I	want	to	hide	the	bottom	bar.	Thus,	we	apply	the		.opacity		modifier	and	set	its
value	to	zero	when	it's	in	the	dragging	state.

After	you	make	the	change,	run	the	project	in	the	preview	canvas	to	test	it.	You	should	be
able	to	drag	the	card	and	move	around.	And,	when	you	release	the	card,	it	returns	to	its
original	position.

448Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	Dragging	the	card	view

Do	you	notice	a	problem	here?	While	the	drag	is	working,	you're	actually	dragging	the
whole	card	deck!	It's	supposed	to	only	drag	the	topmost	card	and	the	card	underneath
should	stay	unchanged.	Also,	the	scaling	effect	should	only	apply	to	the	topmost	card.

To	fix	the	issues,	we	need	to	modify	the	code	of	the		offset	,		scaleEffect	,	and
	rotationEffect		modifiers	such	that	the	dragging	only	happens	for	the	topmost	card	view.

449Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ZStack	{

				ForEach(cardViews)	{	cardView	in

								cardView

												.zIndex(self.isTopCard(cardView:	cardView)	?	1	:	0)

												.offset(x:	self.isTopCard(cardView:	cardView)	?	self.dragState.transla

tion.width	:	0,	y:	self.isTopCard(cardView:	cardView)	?	self.dragState.translation

.height	:	0)

												.scaleEffect(self.dragState.isDragging	&&	self.isTopCard(cardView:	car

dView)	?	0.95	:	1.0)

												.rotationEffect(Angle(degrees:	self.isTopCard(cardView:	cardView)	?	Do

uble(self.dragState.translation.width	/	10)	:	0))

												.animation(.interpolatingSpring(stiffness:	180,	damping:	100))

												.gesture(LongPressGesture(minimumDuration:	0.01)

																.sequenced(before:	DragGesture())

																.updating(self.$dragState,	body:	{	(value,	state,	transaction)	in

																				switch	value	{

																				case	.first(true):

																								state	=	.pressing

																				case	.second(true,	let	drag):

																								state	=	.dragging(translation:	drag?.translation	??	.zero)

																				default:

																								break

																				}

																})

)

				}

}

Just	focus	on	the	changes	to	the		offset	,		scaleEffect	,	and		rotationEffect		modifiers.
The	rest	of	the	code	was	kept	intact.	For	those	modifiers,	we	introduce	an	additional
check	such	that	the	effects	are	only	applied	to	the	topmost	card.

Now	if	you	run	the	app	again,	you	should	see	the	card	underneath	and	drag	the	topmost
card.

450Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	The	dragging	effect	only	applies	to	the	topmost	card

Displaying	the	Heart	and	xMark	icons

Cool!	The	drag	is	now	working.	However,	it's	not	done	yet.	The	user	should	be	able	to
swipe	right/left	to	throw	away	the	topmost	card.	And,	there	should	be	an	icon	(heart	or
xmark)	shown	on	the	card	depending	on	the	swiping	direction.

First,	let's	declare	a	drag	threshold	in		ContentView	:

private	let	dragThreshold:	CGFloat	=	80.0

Once	the	translation	of	a	drag	passes	the	threshold,	we	will	overlay	an	icon	(either	heart
or	xmark)	on	the	card.	Furthermore,	if	the	user	releases	the	card,	the	app	will	remove	it
from	the	deck,	create	a	new	one,	and	place	the	new	card	to	the	back	of	the	deck.

To	overlay	the	icon,	add	an		overlay		modifier	to	the		cardViews	.	You	can	insert	the
following	code	under	the		.zIndex		modifier:

451Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.overlay(

				ZStack	{

								Image(systemName:	"x.circle")

												.foregroundColor(.white)

												.font(.system(size:	100))

												.opacity(self.dragState.translation.width	<	-self.dragThreshold	&&	self

.isTopCard(cardView:	cardView)	?	1.0	:	0)

								Image(systemName:	"heart.circle")

												.foregroundColor(.white)

												.font(.system(size:	100))

												.opacity(self.dragState.translation.width	>	self.dragThreshold		&&	self

.isTopCard(cardView:	cardView)	?	1.0	:	0.0)

				}

)

By	default,	both	images	are	hidden	by	setting	its	opacity	to	zero.	The	translation's	width
has	a	positive	value	if	the	drag	is	to	the	right.	Otherwise,	it's	a	negative	value.	Depending
on	the	drag	direction,	the	app	will	unveil	one	of	the	images	when	the	drag's	translation
exceeds	the	threshold.

You	can	run	the	project	to	have	a	quick	test.	When	your	drag	exceeds	the	threshold,	the
heart/xmark	icon	will	appear.

452Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	15.	The	heart	icon	appears

Removing/Inserting	the	Cards

Now	when	you	release	the	card,	it	will	still	return	to	its	original	position.	How	do	we
remove	the	topmost	card	and	add	a	new	card	at	the	same	time?

First,	let's	mark	the		cardViews		array	with		@State		so	that	we	can	update	its	value	and
refresh	the	UI:

@State	var	cardViews:	[CardView]	=	{

				var	views	=	[CardView]()

				for	index	in	0..<2	{

								views.append(CardView(image:	trips[index].image,	title:	trips[index].desti

nation))

				}

				return	views

}()

453Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	declare	another	state	variable	to	keep	track	of	the	last	index	of	the	trip.	Say,	when
the	card	deck	is	first	initialized,	we	display	the	first	two	trips	stored	in	the		trips		array.
The	last	index	is	set	to		1	.

@State	private	var	lastIndex	=	1

Okay,	here	comes	the	core	function	for	removing	and	inserting	the	card	views.	Define	a
new	function	called		moveCard	:

private	func	moveCard()	{

				cardViews.removeFirst()

				self.lastIndex	+=	1

				let	trip	=	trips[lastIndex	%	trips.count]

				let	newCardView	=	CardView(image:	trip.image,	title:	trip.destination)

				cardViews.append(newCardView)

}

This	function	first	removes	the	topmost	card	from	the		cardViews		array,	then	it
instantiates	a	new	card	view	with	the	subsequent	trip's	image.	Since		cardViews		is	defined
as	a	state	property,	SwiftUI	will	render	the	card	views	again	once	the	array's	value	is
changed.	This	is	how	we	remove	the	topmost	card	and	insert	a	new	one	to	the	deck.

For	this	demo,	I	want	the	card	deck	to	keep	showing	a	trip.	After	the	last	photo	of	the
	trips		array	is	displayed,	the	app	will	revert	back	to	the	first	element	(note	the	modulus
operator	%	in	the	code	above).

Next,	update	the		.gesture		modifier	and	insert	the		.onEnded		function:

454Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.gesture(LongPressGesture(minimumDuration:	0.01)

				.sequenced(before:	DragGesture())

				.updating(self.$dragState,	body:	{	(value,	state,	transaction)	in

								.

								.

								.

				})

				.onEnded({	(value)	in

								guard	case	.second(true,	let	drag?)	=	value	else	{

												return

								}

								if	drag.translation.width	<	-self.dragThreshold	||

												drag.translation.width	>	self.dragThreshold	{

												self.moveCard()

								}

				})

)

When	the	drag	gesture	ends,	we	check	if	the	drag's	translation	exceeds	the	threshold	and
call	the		moveCard()		accordingly.

Now	run	the	project	in	the	preview	canvas.	Drag	the	image	to	the	right/left	until	the	icon
appears.	Release	the	drag	and	the	topmost	card	should	be	replaced	by	the	next	card.

455Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	16.	Removing	the	topmost	card

Fine	Tuning	the	Animations

The	app	almost	works	but	the	animation	falls	short	of	expectations.	Instead	of	having	the
card	view	disappear	abruptly,	the	card	should	fall	out	of	the	screen	gradually	when	it's
thrown	away.

To	fine	tune	the	animation	effect,	we	will	attach	the		transition		modifier	and	apply	an
asymmetric	transition	to	the	card	views.

Add	the	extension,		AnyTransition		to	the	bottom	of	ContentView.swift	and	define	two
transition	effects:

456Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

extension	AnyTransition	{

				static	var	trailingBottom:	AnyTransition	{

								AnyTransition.asymmetric(

												insertion:	.identity,

												removal:	AnyTransition.move(edge:	.trailing).combined(with:	.move(edge

:	.bottom))

)

				}

				static	var	leadingBottom:	AnyTransition	{

								AnyTransition.asymmetric(

												insertion:	.identity,

												removal:	AnyTransition.move(edge:	.leading).combined(with:	.move(edge:

	.bottom))

)

				}

}

The	reason	why	we	use	asymmetric	transitions	is	that	we	only	want	to	animate	the
transition	when	the	card	view	is	removed.	When	a	new	card	view	is	inserted	in	the	deck,
there	should	be	no	animation.

The		trailingBottom		transition	is	used	when	the	card	view	is	thrown	away	to	the	right	of
the	screen,	while	we	apply	the		leadingBottom		transition	when	the	card	view	is	thrown
away	to	the	left.

Next,	declare	a	state	property	that	holds	the	transition	type.	It's	set	to		trailingBottom		by
default.

@State	private	var	removalTransition		=	AnyTransition.trailingBottom

Now	attach	the		.transition		modifier	to	the	card	view.	You	can	place	it	after	the
	.animation		modifier:

.transition(self.removalTransition)

457Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Finally,	update	the	code	of	the		.gesture		modifier	with	the		onChanged		function	like	this:

.gesture(LongPressGesture(minimumDuration:	0.01)

				.sequenced(before:	DragGesture())

				.updating(self.$dragState,	body:	{	(value,	state,	transaction)	in

								switch	value	{

								case	.first(true):

												state	=	.pressing

								case	.second(true,	let	drag):

												state	=	.dragging(translation:	drag?.translation	??	.zero)

								default:

												break

								}

				})

				.onChanged({	(value)	in

								guard	case	.second(true,	let	drag?)	=	value	else	{

												return

								}

								if	drag.translation.width	<	-self.dragThreshold	{

												self.removalTransition	=	.leadingBottom

								}

								if	drag.translation.width	>	self.dragThreshold	{

												self.removalTransition	=	.trailingBottom

								}

				})

				.onEnded({	(value)	in

								guard	case	.second(true,	let	drag?)	=	value	else	{

												return

								}

								if	drag.translation.width	<	-self.dragThreshold	||

												drag.translation.width	>	self.dragThreshold	{

												self.moveCard()

								}

				})

458Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

)

The	code	sets	the		removalTransition	.	The	transition	type	is	updated	according	to	the
swipe	direction.	Now	you're	ready	to	run	the	app	again.	You	should	now	see	an	improved
animation	when	the	card	is	thrown	away.

Summary

With	SwiftUI,	you	can	easily	build	some	cool	animations	and	mobile	UI	patterns.	This
Tinder-like	UI	is	an	examples.

I	hope	you	fully	understand	what	I	covered	in	this	chapter	so	you	can	adapt	the	code	to	fit
your	own	project.	It’s	quite	a	huge	chapter.	I	wanted	to	document	my	thought	process
instead	of	just	presenting	you	with	the	final	solution.	Just	like	you	and	many	other
developers,	I	am	still	studying	this	new	framework	and	exploring	its	best	practices.	This
is	one	of	many	approaches	to	create	this	kind	of	UI.	If	you	come	up	with	a	better
approach,	I	am	happy	to	discuss	it	with	you.	Feel	free	to	send	me	email	at
simonng@appcoda.com.

For	reference,	you	can	download	the	complete	tinder	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUITinderTrip.zip)

459Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUITinderTrip.zip

Chapter	20
Creating	an	Apple	Wallet	like
Animation	and	View	Transition
Do	you	use	Apple's	Wallet	app?	In	the	previous	chapter,	we	built	a	simple	app	with	a
Tinder-like	UI.	What	we're	going	to	do	in	this	chapter	is	to	create	an	animated	UI	similar
to	the	one	you	see	in	the	Wallet	app.	When	you	tap	and	hold	a	credit	card	in	the	wallet
app,	you	can	use	the	drag	gesture	to	rearrange	the	cards.	If	you	haven't	used	the	app,
open	Wallet	and	take	a	quick	look.	Alternatively,	you	can	visit	this	URL
(https://link.appcoda.com/swiftui-wallet)	to	check	out	the	animation	we're	going	to
build.

Figure	1.	Building	a	Wallet-like	animations	and	view	transitions

460Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://link.appcoda.com/swiftui-wallet

In	the	Wallet	app,	tapping	one	of	the	cards	will	bring	up	its	transaction	history.	We	will
also	create	a	similar	animation,	so	you'll	better	understand	view	transitions	and
horizontal	scroll	view.

Project	Preparation

To	keep	you	focused	on	learning	animations	and	view	transitions,	begin	with	this	starter
project	(https://www.appcoda.com/resources/swiftui2/SwiftUIWalletStarter.zip).	The
starter	project	already	bundles	the	required	credit	card	images	and	comes	with	a	built-in
transaction	history	view.	If	you	want	to	use	your	own	images,	please	replace	them	in	the
asset	catalog.

Figure	2.	The	starter	project	bundles	the	credit	card	images

In	the	project	navigator,	you	should	find	a	number	of		.swift		files:

Transaction.swift	-	the		Transaction		struct	represents	a	transaction	in	the	wallet
app.	Each	transaction	has	an	unique	ID,	merchant,	amount,	date,	and	icon.	In
addition	to	the		Transaction		struct,	we	also	declare	an	array	of	test	transactions	for

461Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIWalletStarter.zip

demo	purposes.
Card.swift	-	this	file	contains	the	struct	of		Card	.	A		Card		represents	the	data	of	a
credit	card	including	the	card	number,	type,	expiry	date,	image,	and	the	customer's
name.	Additionally,	there	is	an	array	of	test	credit	cards	in	the	file.	One	point	to	note
is	that	the	card	image	doesn't	include	any	personal	information,	only	the	card	brand
(e.g.	Visa).	Later,	we	will	create	a	view	for	a	credit	card.
TransactionHistoryView.swift	-	this	is	the	transaction	history	view	displayed	in
figure	1.	The	starter	project	comes	with	an	implementation	of	the	transaction	history
view.	We	display	the	transactions	in	a	horizontal	scroll	view.	You've	worked	with
vertical	scroll	views	before.	The	trick	of	creating	a	horizontal	view	is	to	pass	a	value
of		.horizontal		during	the	initialization	of	a	scroll	view.	Take	a	look	at	figure	3	or
simply	look	at	the	Swift	file	for	details.
ContentView.swift	-	this	is	the	default	SwiftUI	view	generated	by	Xcode.

Figure	3.	Using	.horizontal	to	create	a	horizontal	scroll	view

Building	a	Card	View

462Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

As	mentioned	in	the	previous	section,	all	the	card's	images	do	not	include	any	personal
information	and	card	number.	Open	the	asset	catalog	again	and	take	a	look	at	the	images.
Each	of	the	card	images	only	has	the	card	logo.	We	will	soon	create	a	card	view	to	lay	out
the	personal	information	and	card	number,	as	shown	in	figure	4.

Figure	4.	A	sample	card

To	create	the	card	view,	right	click	the		View		group	in	the	project	navigator	and	create	a
new	file.	Choose	the	SwiftUI	View	template	and	name	the	file		CardView.swift	.	Next,
update	the	code	like	this:

463Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	CardView:	View	{

				var	card:	Card

				var	body:	some	View	{

								Image(card.image)

								.resizable()

								.scaledToFit()

												.overlay(

																VStack(alignment:	.leading)	{

																				Text(card.number)

																								.bold()

																				HStack	{

																								Text(card.name)

																												.bold()

																								Text("Valid	Thru")

																												.font(.footnote)

																								Text(card.expiryDate)

																												.font(.footnote)

																				}

																}

																.foregroundColor(.white)

																.padding(.leading,	25)

																.padding(.bottom,	20)

												,	alignment:	.bottomLeading)

												.shadow(color:	.gray,	radius:	1.0,	x:	0.0,	y:	1.0)

				}

}

We	declare	a		card		property	to	take	in	the	card	data.	To	display	the	personal	information
and	card	number	on	the	card	image,	we	use	the		overlay		modifier	and	layout	the	text
components	with	a	vertical	stack	view	and	a	horizontal	stack	view.

To	preview	the	cards,	update	the		CardView_Previews		struct	like	this:

464Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	CardView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								Group	{

												ForEach(testCards)	{	card	in

																CardView(card:	card).previewLayout(.sizeThatFits)

												}

								}

				}

}

The		testCards		variable	was	defined	in		Card.swift	.	Therefore,	we	use		ForEach		to	loop
through	the	cards	and	preview	each	card	by	calling		previewLayout	.	Since	we	passed
	previewLayout		with		.sizeThatFits	,	Xcode	will	layout	the	card	like	that	shown	in	figure	5,
instead	of	displaying	it	in	a	simulated	device.

Figure	5.	Previewing	the	card	views

Building	the	Wallet	View	and	Card	Deck

465Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	that	we	have	implemented	the	card	view,	let's	start	to	build	the	wallet	view.	If	you
forgot	what	the	wallet	view	looks	like,	take	a	look	at	figure	6.	We	will	first	layout	the	card
deck	before	working	on	the	gestures	and	animations.

Figure	6.	The	wallet	view

In	the	project	navigator,	you	should	see	the		ContentView.swift		file.	Delete	it	and	then
right	click	the		View		folder	to	create	a	new	one.	In	the	dialog,	choose	SwiftUI	View	as	the
template	and	name	the	file		WalletView.swift	.

If	you	preview	the		WalletView		or	run	the	app	on	simulator,	Xcode	should	display	an	error
because	the		ContentView		is	set	to	the	initial	view	and	it	was	deleted.	To	fix	the	error,	open
	SwiftUIWalletApp.swift		and	change	the	following	line	of	code	in		WindowGroup		from:

ContentView()

466Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To:

WalletView()

Switch	back	to		WalletView.swift	.	The	compilation	error	will	be	fixed	once	you	make	the
change.	Now	let's	continue	to	layout	the	wallet	view.	First,	we'll	start	with	the	title	bar.	In
the		WalletView.swift		file,	insert	a	new	struct	for	the	bar:

struct	TopNavBar:	View	{

				var	body:	some	View	{

								HStack	{

												Text("Wallet")

																.font(.system(.largeTitle,	design:	.rounded))

																.fontWeight(.heavy)

												Spacer()

												Image(systemName:	"plus.circle.fill")

																.font(.system(.title))

								}

								.padding(.horizontal)

								.padding(.top,	20)

				}

}

The	code	is	very	straightforward.	We	laid	out	the	title	and	the	plus	image	using	a
horizontal	stack.

Next,	we	create	the	card	deck.	First,	declare	a	property	in	the		WalletView		struct	for	the
array	of	credit	cards:

var	cards:	[Card]	=	testCards

467Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	demo	purpose,	we	simply	set	the	default	value	to		testCards		which	was	defined	in	the
	Card.swift		file.	To	lay	out	the	wallet	view,	we	use	both	a		VStack		and		ZStack	.	Update	the
	body		variable	like	this:

var	body:	some	View	{

			VStack	{

								TopNavBar()

												.padding(.bottom)

								Spacer()

								ZStack	{

												ForEach(cards)	{	card	in

																CardView(card:	card)

																				.padding(.horizontal,	35)

												}

								}

								Spacer()

				}

}

If	you	run	the	app	on	simulator	or	preview	the	UI	directly,	you	should	only	see	the	last
card	in	the	card	deck	like	that	shown	in	figure	7.

468Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Trying	to	display	the	card	deck

There	are	two	issues	with	the	current	implementation:

1.	 The	cards	are	now	overlapped	with	each	other	-	we	need	to	figure	out	a	way	to
spread	out	the	deck	of	cards.

2.	 The	Discover	card	is	supposed	to	be	the	last	card	-	In	a	ZStack,	the	items	stack	on
top	of	each	other.	The	first	item	being	put	into	the	ZStack	becomes	the	lowermost
layer,	while	the	last	item	is	the	uppermost	layer.	If	you	look	at	the		testCards		array	in
	Card.swift	,	the	first	card	is	the	Visa	card,	while	the	last	card	is	the	Discover	card.

Okay,	so	how	are	we	going	to	fix	these	issues?	For	the	first	issue,	we	can	make	use	of	the
	offset		modifier	to	spread	out	the	deck	of	cards.	For	the	second	issue,	obviously	we	can
alter	the		zIndex		for	each	card	in	the		CardView		to	change	the	order	of	the	cards.	Figure	8
illustrates	how	the	solution	works.

469Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Understanding	zIndex	and	offset

Let's	first	talk	about	the	z-index.	Each	card's	z-index	is	the	negative	value	of	its	index	in
the		cards		array.	The	last	item	with	the	largest	array	index	will	have	the	smallest	z-index.
For	this	implementation,	we	will	create	an	individual	function	to	handle	the	computation
of	z-index.	In	the		WalletView	,	insert	the	following	code:

470Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	func	zIndex(for	card:	Card)	->	Double	{

				guard	let	cardIndex	=	index(for:	card)	else	{

								return	0.0

				}

				return	-Double(cardIndex)

}

private	func	index(for	card:	Card)	->	Int?	{

				guard	let	index	=	cards.firstIndex(where:	{	$0.id	==	card.id	})	else	{

								return	nil

				}

				return	index

}

Both	functions	work	together	to	figure	out	the	correct	z-index	of	a	given	card.	To
compute	a	correct	z-index,	the	first	thing	we	need	is	the	index	of	the	card	in	the		cards	
array.	The		index(for:)		function	is	designed	to	get	the	array	index	of	the	given	card.	Once
we	have	the	index,	we	can	turn	it	into	a	negative	value.	This	is	what	the		zIndex(for:)	
function	does.

Now,	you	can	attach	the		zIndex		modifier	to	the		CardView		like	this:

CardView(card:	card)

				.padding(.horizontal,	35)

				.zIndex(self.zIndex(for:	card))

Once	you	make	the	change,	the	Visa	card	should	move	to	the	top	of	the	deck.

Next,	let's	fix	the	first	issue	to	spread	out	the	cards.	Each	of	the	cards	should	be	offset	by
a	certain	vertical	distance.	That	distance	is	computed	by	using	the	card's	index.	Say,	we
set	the	default	vertical	offset	to	50	points.	The	last	card	(with	the	index	#4)	will	be	offset
by	200	points	(50*4).

Now	that	you	should	understand	how	we	are	going	to	spread	the	cards,	let's	write	the
code.	Declare	the	default	vertical	offset	in		WalletView	:

471Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	static	let	cardOffset:	CGFloat	=	50.0

Next,	create	a	new	function	called		offset(for:)		that	is	used	to	compute	the	vertical	offset
of	the	given	card:

private	func	offset(for	card:	Card)	->	CGSize	{

				guard	let	cardIndex	=	index(for:	card)	else	{

								return	CGSize()

				}

				return	CGSize(width:	0,	height:	-50	*	CGFloat(cardIndex))

}

Finally,	attach	the		offset		modifier	to	the		CardView	:

CardView(card:	card)

				.offset(self.offset(for:	card))

				.padding(.horizontal,	35)

				.zIndex(self.zIndex(for:	card))

That's	how	we	spread	the	card	using	the		offset		modifier.	If	everything	is	correct,	you
should	see	a	preview	like	that	shown	in	figure	9.

472Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Spreading	the	cards

Adding	a	Slide-in	Animation

Now	that	we	have	completed	the	layout	of	the	wallet	view,	it's	time	to	add	some
animations.	The	first	animation	I	want	to	add	is	a	slide-in	animation.	When	the	app	is
first	launched,	each	of	the	cards	slides	from	the	far	left	of	the	screen.	You	may	think	that
this	animation	is	unnecessary	but	I	want	to	take	this	opportunity	to	show	you	how	to
create	an	animation	and	view	transition	at	the	app	launch.

473Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	The	slide-in	animation

Each	of	the	cards	is	a	view.	To	implement	an	animation	like	that	displayed	in	figure	10,
we	need	to	attach	both	the		transition		and		animation		modifiers	to	the		CardView		like
this:

CardView(card:	card)

				.offset(self.offset(for:	card))

				.padding(.horizontal,	35)

				.zIndex(self.zIndex(for:	card))

				.transition(AnyTransition.slide.combined(with:	.move(edge:	.leading)).combined

(with:	.opacity))

				.animation(self.transitionAnimation(for:	card))

474Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	the	transition,	we	combine	the	default	slide	transition	with	the	move	transition.	As
mentioned	before,	the	transition	will	not	be	animated	without	the		animation		modifier.
This	is	why	we	also	attach	the		animation		modifier.	Since	each	card	has	its	own
animation,	we	create	a	function	called		transitionAnimation(for:)		to	compute	the
animation.	Insert	the	following	code	to	create	the	function:

private	func	transitionAnimation(for	card:	Card)	->	Animation	{

				var	delay	=	0.0

				if	let	index	=	index(for:	card)	{

								delay	=	Double(cards.count	-	index)	*	0.1

				}

				return	Animation.spring(response:	0.1,	dampingFraction:	0.8,	blendDuration:	0.

02).delay(delay)

}

In	fact,	all	the	cards	have	a	similar	animation,	which	is	a	spring	animation.	The	difference
is	in	the	delay.	The	last	card	of	the	deck	will	appear	first,	thus	the	value	of	the	delay
should	be	the	smallest.	The	formula	below	is	how	we	compute	the	delay	for	each	of	the
cards.	The	smaller	the	index,	the	longer	the	delay.

delay	=	Double(cards.count	-	index)	*	0.1

The	view	transition	still	doesn't	work	because	we	need	some	way	to	trigger	the	transition.
Let's	declare	a	state	variable	at	the	beginning	of		CardView	:

@State	var	isCardPresented	=	false

This	variable	indicates	whether	the	cards	should	be	presented	on	screen.	By	default,	it's
set	to		false	.	Next,	modify	the	code	of	the		ZStack		like	this:

475Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ZStack	{

				if	isCardPresented	{

								ForEach(cards)	{	card	in

												CardView(card:	card)

																.offset(self.offset(for:	card))

																.padding(.horizontal,	35)

																.zIndex(self.zIndex(for:	card))

																.transition(AnyTransition.slide.combined(with:	.move(edge:	.leadin

g)).combined(with:	.opacity))

																.animation(self.transitionAnimation(for:	card))

								}

				}

}

We	wrap	the		ForEach		loop	with	a		if		clause.	Since	the	value	of		isCardPresented		is	set	to
	false	,	all	the	card	views	are	not	displayed	by	default.

So,	how	can	we	trigger	the	view	transition	of	the	card	view	at	the	app	launch?	The	trick	is
to	use		onAppear		and	attach	it	to	the		ZStack	:

.onAppear	{

				self.isCardPresented.toggle()

}

When	the		ZStack		appears,	we	change	the	value	of		isCardPresented		from		false		to		true	.
This	will	trigger	the	view	animation	of	the	cards.	After	applying	the	changes,	hit	the	Play
button	in	the	preview	canvas	to	see	the	result.

Handling	the	Tap	Gesture	and	Displaying	the
Transaction	History

When	a	user	taps	a	card,	the	app	moves	the	selected	card	upward	and	brings	up	the
transaction	history.	For	those	non-selected	cards,	they	are	moved	off	the	screen.

To	implement	this	feature,	we	need	two	more	state	variables.	Declare	these	variables	in
	WalletView	:

476Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

@State	var	isCardPressed	=	false

@State	var	selectedCard:	Card?

The		isCardPressed		variable	indicates	if	a	card	is	selected,	while	the		selectedCard		variable
stores	the	card	selected	by	the	user.

.gesture(

				TapGesture()

								.onEnded({	_	in

												withAnimation	{

																self.isCardPressed.toggle()

																self.selectedCard	=	self.isCardPressed	?	card	:	nil

												}

								})

)

To	handle	the	tap	gesture,	we	attach	the	above		gesture		modifier	to	the		CardView		(just
below		.animation(self.transitionAnimation(for:	card)))	and	use	the	built-in		TapGesture	
to	capture	the	tap	event.	In	the	code	block,	we	simply	toggle	the	state	of		isCardPressed	
and	set	the	current	card	to	the		selectedCard		variable.

To	move	the	selected	card	(and	those	underneath)	upward	and	the	rest	of	the	cards	move
off	the	screen,	update	the		offset(for:)		function	like	this:

477Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	func	offset(for	card:	Card)	->	CGSize	{

				guard	let	cardIndex	=	index(for:	card)	else	{

								return	CGSize()

				}

				if	isCardPressed	{

								guard	let	selectedCard	=	self.selectedCard,

												let	selectedCardIndex	=	index(for:	selectedCard)	else	{

																return	.zero

								}

								if	cardIndex	>=	selectedCardIndex	{

												return	.zero

								}

								let	offset	=	CGSize(width:	0,	height:	1400)

								return	offset

				}

				return	CGSize(width:	0,	height:	-50	*	CGFloat(cardIndex))

}

We	added	an		if		clause	to	check	if	a	card	is	selected.	If	the	given	card	is	the	card	selected
by	the	user,	we	set	the	offset	to		.zero	.	For	those	cards	that	are	right	below	the	selected
card,	we	will	also	move	them	upward.	This	is	why	we	set	the	offset	to		.zero	.	For	the	rest
of	the	cards,	we	move	them	off	the	screen.	Therefore,	the	vertical	offset	is	set	to		1400	
points.

Now	we	are	ready	to	write	the	code	for	bringing	up	the	transaction	history	view.	As
mentioned	at	the	very	beginning,	the	starter	project	comes	with	this	transaction	history
view.	Therefore,	you	do	not	need	to	build	it	yourself.

We	can	use	the		isCardPressed		state	variable	to	determine	if	the	transaction	history	view
is	shown	or	not.	Insert	the	following	right	before		Spacer()	:

478Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

if	isCardPressed	{

				TransactionHistoryView(transactions:	testTransactions)

								.padding(.top,	10)

								.transition(.move(edge:	.bottom))

								.animation(Animation.easeOut(duration:	0.15).delay(0.1))

}

In	the	code	above,	we	set	the	transition	to		.move		to	bring	the	view	up	from	the	bottom	of
the	screen.	Feel	free	to	change	it	to	suit	your	preference.

The	app	should	now	work	if	you	test	it	in	the	preview	pane	or	run	it	in	a	simulator.
However,	you	may	find	the	animation	is	a	bit	laggy	after	you	tap	a	card.	This	is	due	to	the
transition	animation	that	we	set	in	the	previous	section.	For	each	of	the	cards	(except	the
first	card),	we	introduced	a	delay	to	the	animation.	So,	when	a	card	is	selected,	the	same
series	of	animations	is	executed.

To	make	the	animation	more	fluid,	update	the	modifiers	of	the		CardView		by	inserting	the
	animation		and		scaleEffect		modifiers	after		offset		like	this:

CardView(card:	card)

				.offset(self.offset(for:	card))

				.animation(.default)

				.scaleEffect(1.0)

				.padding(.horizontal,	35)

				.

				.	

				.

SwiftUI	allows	you	to	apply	more	than	one	animation	to	a	view.	In	the	code	above,	we
instruct	SwiftUI	to	use	the	default	animation	to	animate	the	change	of	an	offset.	For	the
view	transition,	we	keep	using	the	original	animation	created	earlier.

479Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	Displaying	the	transaction	history

Rearranging	the	Cards	Using	the	Drag	Gesture

Now	comes	the	core	part	of	this	chapter.	Let's	see	how	to	rearrange	the	card	deck	with
the	drag	gesture.	First,	let	me	describe	how	this	feature	works	in	detail:

1.	 To	initiate	the	dragging	action,	the	user	must	tap	and	hold	the	card.	A	simple	tap	will
only	bring	up	the	transaction	history	view.

2.	 Once	the	user	successfully	holds	a	card,	the	app	will	move	it	a	little	upward.	This	is
the	feedback	that	we	want	to	give	to	users,	telling	them	we	are	ready	to	drag	the	card
around.

3.	 As	the	user	drags	the	card,	the	user	should	be	able	to	move	it	across	the	deck.
4.	 After	the	user	releases	the	card	at	a	certain	position,	the	app	will	update	the	position

of	all	the	cards	in	the	card	deck.

480Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Moving	a	card	across	the	deck	using	the	drag	gesture

Handling	the	Long	Press	and	Drag	Gestures

Now	that	you	understand	what	we	are	going	to	do,	let's	move	onto	the	implementation.	If
you	forgot	how	SwiftUI	handles	gestures,	please	go	back	and	read	chapter	17.	Most	of	the
techniques	that	we	will	use	have	been	discussed	in	that	chapter.

To	begin,	insert	the	following	code	in		WalletView.swift		to	create	the		DragState		enum	so
that	we	can	easily	keep	track	of	the	drag	state:

481Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

enum	DragState	{

				case	inactive

				case	pressing(index:	Int?	=	nil)

				case	dragging(index:	Int?	=	nil,	translation:	CGSize)

				var	index:	Int?	{

								switch	self	{

								case	.pressing(let	index),	.dragging(let	index,	_):

												return	index

								case	.inactive:

												return	nil

								}

				}

				var	translation:	CGSize	{

								switch	self	{

								case	.inactive,	.pressing:

												return	.zero

								case	.dragging(_,	let	translation):

												return	translation

								}

				}

				var	isPressing:	Bool	{

								switch	self	{

								case	.pressing,	.dragging:

												return	true

								case	.inactive:

												return	false

								}

				}

				var	isDragging:	Bool	{

								switch	self	{

								case	.dragging:

												return	true

								case	.inactive,	.pressing:

												return	false

								}

				}

}

482Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	declare	a	state	variable	in		WalletView		to	keep	track	of	the	drag	state:

@GestureState	private	var	dragState	=	DragState.inactive

If	you've	read	the	chapter	about	SwiftUI	gestures,	you	should	already	know	how	to	detect
a	long	press	and	drag	gesture.	However,	this	time	it	will	be	a	bit	different.	We	need	to
handle	the	tap	gesture,	the	drag,	and	the	long	press	gesture	at	the	same	time.
Additionally,	the	app	should	ignore	the	tap	gesture	if	the	long	press	gesture	is	detected.

Now	update	the		gesture		modifier	of	the		CardView		like	this:

483Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.gesture(

				TapGesture()

								.onEnded({	_	in

												withAnimation(.default)	{

																self.isCardPressed.toggle()

																self.selectedCard	=	self.isCardPressed	?	card	:	nil

												}

								})

								.exclusively(before:	LongPressGesture(minimumDuration:	0.05)

								.sequenced(before:	DragGesture())

								.updating(self.$dragState,	body:	{	(value,	state,	transaction)	in

												switch	value	{

												case	.first(true):

																state	=	.pressing(index:	self.index(for:	card))

												case	.second(true,	let	drag):

																state	=	.dragging(index:	self.index(for:	card),	translation:	drag?

.translation	??	.zero)

												default:

																break

												}

								})

								.onEnded({	(value)	in

												guard	case	.second(true,	let	drag?)	=	value	else	{

																return

												}

												//	Rearrange	the	cards

								})

)

)

SwiftUI	allows	you	to	combine	multiple	gestures	exclusively.	In	the	code	above,	we	tell
SwiftUI	to	either	capture	the	tap	gesture	or	the	long	press	gesture.	In	other	words,
SwiftUI	will	ignore	the	long	press	gesture	once	the	tap	gesture	is	detected.

484Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	code	for	the	tap	gesture	is	exactly	the	same	as	our	previous	code.	The	drag	gesture	is
sequenced	after	the	long	press	gesture.	In	the		updating		function,	we	set	the	state	of	the
drag,	the	translation,	and	the	card's	index	to	the		dragState		variable	defined	earlier.	I'm
not	going	to	explain	the	code	in	detail	as	it	was	covered	in	chapter	17.

Before	you	can	drag	the	card,	you	have	to	update	the		offset(for:)		function	like	this:

private	func	offset(for	card:	Card)	->	CGSize	{

				guard	let	cardIndex	=	index(for:	card)	else	{

								return	CGSize()

				}

				if	isCardPressed	{

								guard	let	selectedCard	=	self.selectedCard,

												let	selectedCardIndex	=	index(for:	selectedCard)	else	{

																return	.zero

								}

								if	cardIndex	>=	selectedCardIndex	{

												return	.zero

								}

								let	offset	=	CGSize(width:	0,	height:	1400)

								return	offset

				}

				//	Handle	dragging

				var	pressedOffset	=	CGSize.zero

				var	dragOffsetY:	CGFloat	=	0.0

				if	let	draggingIndex	=	dragState.index,

								cardIndex	==	draggingIndex	{

								pressedOffset.height	=	dragState.isPressing	?	-20	:	0

								switch	dragState.translation.width	{

								case	let	width	where	width	<	-10:	pressedOffset.width	=	-20

								case	let	width	where	width	>	10:	pressedOffset.width	=	20

								default:	break

								}

485Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

								dragOffsetY	=	dragState.translation.height

				}

				return	CGSize(width:	0	+	pressedOffset.width,	height:	-50	*	CGFloat(cardIndex)

	+	pressedOffset.height	+	dragOffsetY)

}

We	added	a	block	of	code	to	handle	the	dragging.	Please	bear	in	the	mind	that	only	the
selected	card	is	draggable.	Therefore,	we	need	to	check	if	the	given	card	is	the	one	being
dragged	by	the	user	before	making	the	offset	change.

Earlier,	we	stored	the	card's	index	in	the		dragState		variable.	So,	we	can	easily	compare
the	given	card	index	with	the	one	stored	in		dragState		to	figure	out	which	card	to	drag.

For	the	dragging	card,	we	add	an	additional	offset	both	horizontally	and	vertically.

Run	the	app	to	test	it	out,	tap	&	hold	a	card	and	then	drag	it	around.

Figure	13.	Dragging	a	card

486Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Currently,	you	should	be	able	to	drag	the	card,	however,	the	card's	z-index	doesn't	change
accordingly.	For	example,	if	you	drag	the	Visa	card,	it	always	stays	on	the	top	of	the	deck.
Let's	fix	it	by	updating	the		zIndex(for:)		function:

private	func	zIndex(for	card:	Card)	->	Double	{

				guard	let	cardIndex	=	index(for:	card)	else	{

								return	0.0

				}

				//	The	default	z-index	of	a	card	is	set	to	a	negative	value	of	the	card's	inde

x,

				//	so	that	the	first	card	will	have	the	largest	z-index.

				let	defaultZIndex	=	-Double(cardIndex)

				//	If	it's	the	dragging	card

				if	let	draggingIndex	=	dragState.index,

								cardIndex	==	draggingIndex	{

								//	we	compute	the	new	z-index	based	on	the	translation's	height

								return	defaultZIndex	+	Double(dragState.translation.height/Self.cardOffset

)

				}

				//	Otherwise,	we	return	the	default	z-index

				return	defaultZIndex

}

The	default	z-index	is	still	set	to	the	negative	value	of	the	card's	index.	For	the	dragging
card,	we	need	to	compute	a	new	z-index	as	the	user	drags	across	the	deck.	The	updated	z-
index	is	calculated	based	on	the	translation's	height	and	the	default	offset	of	the	card	(i.e.
50	points).

Run	the	app	and	drag	the	Visa	card	again.	Now	the	z-index	is	continuously	updated	as
you	drag	the	card.

487Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	Moving	the	Visa	card	to	the	back

Updating	the	Card	Deck

When	you	release	the	card,	it	returns	to	its	original	position.	So,	how	can	we	reorder	the
cards'	after	the	drag?

The	trick	here	is	to	update	the	items	of	the		cards		array,	so	as	to	trigger	a	UI	update.
First,	we	need	to	mark	the		cards		variable	as	a	state	variable	like	this:

@State	var	cards:	[Card]	=	testCards

Next,	let's	create	another	new	function	for	rearranging	the	cards:

488Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	func	rearrangeCards(with	card:	Card,	dragOffset:	CGSize)	{

				guard	let	draggingCardIndex	=	index(for:	card)	else	{

								return

				}

				var	newIndex	=	draggingCardIndex	+	Int(-dragOffset.height	/	Self.cardOffset)

				newIndex	=	newIndex	>=	cards.count	?	cards.count	-	1	:	newIndex

				newIndex	=	newIndex	<	0	?	0	:	newIndex

				let	removedCard	=	cards.remove(at:	draggingCardIndex)

				cards.insert(removedCard,	at:	newIndex)

}

When	you	drag	the	card	over	the	adjacent	cards,	we	need	to	update	the	z-index	once	the
drag's	translation	is	greater	than	the	default	offset.	Figure	15	shows	the	expected
behaviour	of	the	drag.

Figure	15.	Dragging	the	mastercard	between	the	adjacent	cards

This	is	the	formula	we	use	to	compute	the	updated	z-index:

var	newIndex	=	draggingCardIndex	+	Int(-dragOffset.height	/	Self.cardOffset)

489Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	we	have	the	updated	index,	the	last	step	is	to	update	the	item	in	the		cards		array	by
removing	the	dragging	card	and	insert	it	into	the	new	position.	Since	the		cards		array	is
now	a	state	variable,	SwiftUI	updates	the	card	deck	and	renders	the	animation
automatically.

Lastly,	insert	the	following	line	of	code	under		//	Rearrange	the	cards		to	call	the	function:

self.rearrangeCards(with:	card,	dragOffset:	drag.translation)

After	that,	you	are	ready	to	run	the	app	to	test	it	out.	Congratulations,	You've	built	the
Wallet-like	animation.

Summary

After	going	through	this	chapter,	I	hope	you	have	a	deeper	understanding	of	SwiftUI
animation	and	view	transitions.	If	you	compare	SwiftUI	with	the	original	UIKit
framework,	SwiftUI	has	made	it	pretty	easy	to	work	with	animation.	Do	you	remember
how	you	rendered	the	card	animation	when	the	user	releases	the	dragging	card?	All	you
need	to	do	is	to	update	the	state	variable	and	SwiftUI	handles	the	heavy	lifting.	That	is
the	power	of	SwiftUI!

For	reference,	you	can	download	the	complete	wallet	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIWallet.zip)

490Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIWallet.zip

Chapter	21
Working	with	JSON,	Slider	and	Data
Filtering
JSON,	short	for	JavaScript	Object	Notation,	is	a	common	data	format	for	data
interchange	in	client-server	applications.	Even	though	we	are	mobile	app	developers,	it's
inevitable	to	work	with	JSON	since	nearly	all	web	APIs	or	backend	web	services	use
JSON	as	the	data	exchange	format.

In	this	chapter,	we	will	discuss	how	you	can	work	with	JSON	while	building	an	app	using
the	SwiftUI	framework.	If	you	have	never	worked	with	JSON,	I	would	recommend	you
read	this	free	chapter	from	our	Intermediate	programming	book.	It	will	explain	to	you,	in
detail,	the	two	different	approaches	in	handling	JSON	in	Swift.

491Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/intermediate-swift-tips/json.html
https://www.appcoda.com/intermediate-swift-programming-book/https://www.appcoda.com/intermediate-swift-programming-book/

Figure	1.	The	demo	app

As	usual,	in	order	to	learn	about	JSON	and	its	related	APIs,	you	will	build	a	simple	JSON
app	that	utilizes	a	JSON-based	API	provided	by	Kiva.org.	If	you	haven't	heard	of	Kiva,	it
is	a	non-profit	organization	with	a	mission	to	connect	people	through	lending	to	alleviate
poverty.	It	lets	individuals	lend	as	little	as	$25	to	help	create	opportunities	around	the
world.	Kiva	provides	free	web-based	APIs	for	developers	to	access	their	data.	For	our
demo	app,	we'll	call	up	a	free	Kiva	API	to	retrieve	the	most	recent	fundraising	loans	and
display	them	in	a	list	view	as	shown	in	figure	1.

Additionally,	we	will	demonstrate	the	usage	of	a	Slider,	which	is	one	of	the	many	built-in
UI	controls	provided	by	SwiftUI.	With	the	slider,	you	will	implement	a	data	filtering
option	in	the	app	so	that	users	can	filter	the	loan	data	in	the	list.

492Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

http://kiva.org

Figure	2.	A	slider	control

Understanding	JSON	and	Codable

First	things	first,	What	does	the	JSON	format	look	like?	If	you	have	no	idea	what	JSON
looks	like,	open	a	browser	and	point	it	to	the	following	web	API,	provided	by	Kiva:

https://api.kivaws.org/v1/loans/newest.json

You	should	see	something	like	this:

{

				"loans":	[

								{

												"activity":	"Fruits	&	Vegetables",

												"basket_amount":	25,

												"bonus_credit_eligibility":	false,

												"borrower_count":	1,

												"description":	{

																"languages":	[

																				"en"

]

												},

												"funded_amount":	0,

												"id":	1929744,

												"image":	{

																"id":	3384817,

493Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

																"template_id":	1

												},

												"lender_count":	0,

												"loan_amount":	250,

												"location":	{

																"country":	"Papua	New	Guinea",

																"country_code":	"PG",

																"geo":	{

																				"level":	"town",

																				"pairs":	"-9.4438	147.180267",

																				"type":	"point"

																},

																"town":	"Port	Moresby"

												},

												"name":	"Mofa",

												"partner_id":	582,

												"planned_expiration_date":	"2020-04-02T08:30:11Z",

												"posted_date":	"2020-03-03T09:30:11Z",

												"sector":	"Food",

												"status":	"fundraising",

												"tags":	[],

												"themes":	[

																"Vulnerable	Groups",

																"Rural	Exclusion",

																"Underfunded	Areas"

],

												"use":	"to	purchase	additional	vegetables	to	increase	her	currrent	sal

es."

								},

								...

								"paging":	{

								"page":	1,

								"page_size":	20,

								"pages":	284,

								"total":	5667

				}

}

494Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Your	results	may	not	be	formatted	the	same	but	this	is	what	a	JSON	response	looks	like.
If	you're	using	Chrome,	you	can	download	and	install	an	extension	called	JSON
Formatter	(http://link.appcoda.com/json-formatter)	to	beautify	the	JSON	response.

Alternatively,	you	can	format	the	JSON	data	on	Mac	by	using	the	following	command:

curl	https://api.kivaws.org/v1/loans/newest.json	|	python	-m	json.tool	>	kiva-loan

s-data.txt

This	will	format	the	response	and	save	it	to	a	text	file.

Now	that	you	have	seen	JSON,	Let's	learn	how	to	parse	JSON	data	in	Swift.	Starting	with
Swift	4,	Apple	introduced	a	new	way	to	encode	and	decode	JSON	data	by	adopting	a
protocol	called		Codable	.

	Codable		simplifies	the	whole	process	by	offering	developers	a	different	way	to	decode	(or
encode)	JSON.	As	long	as	your	type	conforms	to	the		Codable		protocol,	together	with	the
new		JSONDecoder	,	you	will	be	able	to	decode	the	JSON	data	into	your	specified	instances.

Figure	3	illustrates	the	decoding	of	sample	loan	data	into	an	instance	of		Loan		using
	JSONDecoder	.

495Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

http://link.appcoda.com/json-formatter

Figure	3.	JSONDecoder	decodes	JSON	data	and	convert	it	into	an	instance	of	Loan

Using	JSONDecoder	and	Codable

Before	building	the	demo	app,	let's	try	out	JSON	decoding	on	Playgrounds.	Fire	up
Xcode	and	open	a	new	Playground	project.	Once	you	have	created	your	Playground
project,	declare	the	following		json		variable:

496Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

let	json	=	"""

{

"name":	"John	Davis",

"country":	"Peru",

"use":	"to	buy	a	new	collection	of	clothes	to	stock	her	shop	before	the	holidays."

,

"amount":	150

}

"""

Assuming	you're	new	to	JSON	parsing,	let's	make	things	simple.	The	above	is	a	simplified
JSON	response,	similar	to	that	shown	in	the	previous	section.

To	parse	the	data,	declare	the		Loan		structure	like	this:

struct	Loan:	Codable	{

				var	name:	String

				var	country:	String

				var	use:	String

				var	amount:	Int

}

As	you	can	see,	the	structure	adopts	the		Codable		protocol.	The	variables	defined	in	the
structure	match	the	keys	of	the	JSON	response.	This	is	how	you	let	the	decoder	know
how	to	decode	the	data.

Now	let's	see	the	magic!

Continue	to	insert	the	following	code	in	your	Playground	file:

497Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

let	decoder	=	JSONDecoder()

if	let	jsonData	=	json.data(using:	.utf8)	{

				do	{

								let	loan	=	try	decoder.decode(Loan.self,	from:	jsonData)

								print(loan)

				}	catch	{

								print(error)

				}

}

If	you	run	the	project,	you	should	see	a	message	displayed	in	the	console.	That's	a		Loan	
instance,	populated	with	the	decoded	values.

Figure	4.	Display	the	decoded	loan	data	in	the	console

Let's	look	into	the	code	snippet	again.	We	instantiate	an	instance	of		JSONDecoder		and
then	convert	the	JSON	string	into		Loan	.	The	magic	happened	in	this	line	of	code:

498Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

let	loan	=	try	decoder.decode(Loan.self,	from:	jsonData)

You	just	need	to	call	the		decode		method	of	the	decoder	with	the	JSON	data	and	specify
the	type	of	value	to	decode	(i.e.		Loan.self).	The	decoder	will	automatically	parse	the
JSON	data	and	convert	them	into	a		Loan		object.

Cool,	right?

Working	with	Custom	Property	Names

Now,	let's	jump	into	something	more	complicated.	What	if	the	name	of	the	property	and
the	key	of	the	JSON	are	different?	How	can	you	define	the	mapping?

For	example,	we	modify	the		json		variable	like	this:

let	json	=	"""

{

"name":	"John	Davis",

"country":	"Peru",

"use":	"to	buy	a	new	collection	of	clothes	to	stock	her	shop	before	the	holidays."

,

"loan_amount":	150

}

"""

As	you	can	see,	the	key	amount	is	now	loan_amount.	In	order	to	decode	the	JSON	data,
you	can	modify	the	property	name	from		amount		to		loan_amount	.	However,	we	really	want
to	keep	the	name		amount	.	In	this	case,	how	can	we	define	the	mapping?

To	define	the	mapping	between	the	key	and	the	property	name,	you	are	required	to
declare	an	enum	called		CodingKeys		that	has	a	rawValue	of	type		String		and	conforms	to
the		CodingKey		protocol.

Now	update	the		Loan		structure	like	this:

499Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	Loan:	Codable	{

				var	name:	String

				var	country:	String

				var	use:	String

				var	amount:	Int

				enum	CodingKeys:	String,	CodingKey	{

								case	name

								case	country

								case	use

								case	amount	=	"loan_amount"

				}

}

In	the	enum,	you	define	all	the	property	names	of	your	model	and	their	corresponding
keys	in	the	JSON	data.	For	example,	the	case		amount		is	defined	to	map	to	the	key
	loan_amount	.	If	both	the	property	name	and	the	key	of	the	JSON	data	are	the	same,	you
can	omit	the	assignment.

Working	with	Nested	JSON	Objects

Now	that	you	understand	the	basics,	let's	dive	even	deeper	and	decode	a	more	realistic
JSON	response.	First,	update	the		json		variable	like	this:

let	json	=	"""

{

"name":	"John	Davis",

"location":	{

"country":	"Peru",

},

"use":	"to	buy	a	new	collection	of	clothes	to	stock	her	shop	before	the	holidays."

,

"loan_amount":	150

}

"""

500Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We've	added	the		location		key	that	has	a	nested	JSON	object	with	the	nested	key
	country	.	So,	how	do	we	decode	the	value	of		country		from	the	nested	object?

Let's	modify	the		Loan		structure	like	this:

struct	Loan:	Codable	{

				var	name:	String

				var	country:	String

				var	use:	String

				var	amount:	Int

				enum	CodingKeys:	String,	CodingKey	{

								case	name

								case	country	=	"location"

								case	use

								case	amount	=	"loan_amount"

				}

				enum	LocationKeys:	String,	CodingKey	{

								case	country

				}

				init(from	decoder:	Decoder)	throws	{

								let	values	=	try	decoder.container(keyedBy:	CodingKeys.self)

								name	=	try	values.decode(String.self,	forKey:	.name)

								let	location	=	try	values.nestedContainer(keyedBy:	LocationKeys.self,	forK

ey:	.country)

								country	=	try	location.decode(String.self,	forKey:	.country)

								use	=	try	values.decode(String.self,	forKey:	.use)

								amount	=	try	values.decode(Int.self,	forKey:	.amount)

				}

}

Similar	to	what	we	have	done	earlier,	we	have	to	define	an	enum		CodingKeys	.	For	the
case		country	,	we	specify	to	map	to	the	key		location	.	To	handle	the	nested	JSON	object,
we	need	to	define	an	additional	enumeration.	In	the	code	above,	we	name	it

501Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

	LocationKeys	and	declare	the	case		country		that	matches	the	key		country		of	the	nested
object.

Since	it	is	not	a	direct	mapping,	we	need	to	implement	the	initializer	of	the		Decodable	
protocol	to	handle	the	decoding	of	all	properties.	In	the		init		method,	we	first	invoke	the
	container		method	of	the	decoder	with		CodingKeys.self		to	retrieve	the	data	related	to	the
specified	coding	keys,	which	are		name	,		location	,		use		and		amount	.

To	decode	a	specific	value,	we	call	the		decode		method	with	the	specific	key	(e.g.		.name)
and	the	associated	type	(e.g.		String.self).	The	decoding	of	the		name	,		use		and		amount	
is	pretty	straightforward.	For	the		country		property,	the	decoding	is	a	little	bit	tricky.	We
have	to	call	the		nestedContainer		method	with		LocationKeys.self		to	retrieve	the	nested
JSON	object.	From	the	values	returned,	we	further	decode	the	value	of		country	.

That	is	how	you	decode	JSON	data	with	nested	objects.

Working	with	Arrays

The	JSON	data	returned	from	Kiva	API	comes	with	more	than	one	loan.	Multiple	loans
are	structured	in	the	form	of	an	array.	Let's	see	how	to	decode	an	array	of	JSON	objects
using	Codable.

First,	modify	the		json		variable	like	this:

502Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

let	json	=	"""

{

"loans":

[{

"name":	"John	Davis",

"location":	{

"country":	"Paraguay",

},

"use":	"to	buy	a	new	collection	of	clothes	to	stock	her	shop	before	the	holidays."

,

"loan_amount":	150

},

{

"name":	"Las	Margaritas	Group",

"location":	{

"country":	"Colombia",

},

"use":	"to	purchase	coal	in	large	quantities	for	resale.",

"loan_amount":	200

}]

}

"""

In	the	example	above,	there	are	two	loans	in	the		json		variable.	How	do	you	decode	it
into	an	array	of		Loan	?

To	do	that,	declare	another	struct	named		LoanStore		that	also	adopts		Codable	:

struct	LoanStore:	Codable	{

				var	loans:	[Loan]

}

This		LoanStore		only	has	a		loans		property	that	matches	the	key		loans		of	the	JSON	data.
And,	its	type	is	defined	as	an	array	of		Loan	.

To	decode	the	loans,	modify	this	line	of	code	from:

let	loan	=	try	decoder.decode(Loan.self,	from:	jsonData)

503Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

to:

let	loanStore	=	try	decoder.decode(LoanStore.self,	from:	jsonData)

The	decoder	will	automatically	decode	the		loans		JSON	objects	and	store	them	into	the
	loans		array	of		LoanStore	.	To	print	out	the	loans	replace	the	line		print(loan)		with

for	loan	in	loanStore.loans	{

				print(loan)

}

You	should	see	a	similar	message	as	shown	in	figure	5.

Figure	5.	Print	out	the	loans	array

504Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

That's	how	you	decode	JSON	using	Swift.	For	reference,	you	can	download	the
Playgrounds	project	from
https://www.appcoda.com/resources/swiftui2/SwiftUIJSONPlayground.zip.

Building	the	Kiva	Loan	App

Okay,	you	should	now	understand	how	to	handle	JSON	decoding.	Let's	begin	to	build	the
demo	app	and	see	how	you	apply	the	skills	you	just	learned.

Assuming	you	have	launched	Xcode,	go	up	to	the	menu	and	select	File	>	New	>	Projects
to	create	a	new	project.	As	usual,	use	the	App	template.	Name	the	project
SwiftUIKivaLoan	or	whatever	name	you	prefer.

We	will	start	by	building	the	model	class	that	stores	all	the	latest	loans	retrieved	from
Kiva.	We	will	handle	the	implementation	of	user	interface	later.

Retrieving	the	Latest	Loans	from	Kiva

First,	create	a	new	file	using	the	Swift	File	template	and	name	it		Loan.swift	.	This	file
stores	the		Loan		structure	that	adopts	the		Codable		protocol	for	JSON	decoding.

Insert	the	following	code	in	the	file:

struct	Loan:	Identifiable	{

				var	id	=	UUID()

				var	name:	String

				var	country:	String

				var	use:	String

				var	amount:	Int

				init(name:	String,	country:	String,	use:	String,	amount:	Int)	{

								self.name	=	name

								self.country	=	country

								self.use	=	use

								self.amount	=	amount

				}

}

505Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIJSONPlayground.zip

extension	Loan:	Codable	{

				enum	CodingKeys:	String,	CodingKey	{

								case	name

								case	country	=	"location"

								case	use

								case	amount	=	"loan_amount"

				}

				enum	LocationKeys:	String,	CodingKey	{

								case	country

				}

				init(from	decoder:	Decoder)	throws	{

								let	values	=	try	decoder.container(keyedBy:	CodingKeys.self)

								name	=	try	values.decode(String.self,	forKey:	.name)

								let	location	=	try	values.nestedContainer(keyedBy:	LocationKeys.self,	forK

ey:	.country)

								country	=	try	location.decode(String.self,	forKey:	.country)

								use	=	try	values.decode(String.self,	forKey:	.use)

								amount	=	try	values.decode(Int.self,	forKey:	.amount)

				}

}

The	code	is	almost	the	same	as	we	discussed	in	the	previous	section.	We	just	use	an
extension	to	adopt	the		Codable		protocol.	Other	than		Codable	,	this	structure	also	adopts
the		Identifiable		protocol	and	has	an		id		property	default	to		UUID()	.	Later,	we	will	use
SwiftUI's		List		control	to	present	the	loans.	This	is	why	we	make	this	structure	adopt	the
	Identifiable		protocol.

Next,	create	another	file	using	the	Swift	File	template	and	name	it		LoanStore.swift	.	This
class	is	to	connect	to	the	Kiva's	web	API,	decode	the	JSON	data,	and	store	them	locally.

Let's	write	the		LoanStore		class	step	by	step,	so	you	can	better	understand	how	I	came	up
with	the	implementation.	Insert	the	following	code	in		LoanStore.swift	:

506Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

class	LoanStore:	Decodable	{

				var	loans:	[Loan]	=	[]

}

Later	the	decoder	will	decode	the		loans		JSON	objects	and	store	them	into	the		loans	
array	of		LoanStore	.	This	is	why	we	create	the		LoanStore		like	above.	The	code	looks	very
similar	to	the		LoanStore		structure	we	created	before.	However,	it	adopts	the		Decodable	
protocol	instead	of		Codable	.

If	you	look	into	the	documentation	of		Codable	,	it	is	just	a	type	alias	of	a	protocol
composition:

typealias	Codable	=	Decodable	&	Encodable

	Decodable		and		Encodable		are	the	two	actual	protocols	you	need	to	work	with.	Since
	LoanStore		is	only	responsible	for	handling	the	JSON	decoding,	we	adopt	the		Decodable	
protocol.

As	mentioned	earlier,	we	will	display	the		loans		using	a	List	view.	So,	other	than
	Decodable	,	we	have	to	adopt	the		ObservableObject		protocol	and	mark	the		loans		variable
with	the		@Published		property	wrapper	like	this:

class	LoanStore:	Decodable,	ObservableObject	{

				@Published	var	loans:	[Loan]	=	[]

}

By	doing	so,	SwiftUI	will	manage	the	UI	update	automatically	whenever	there	is	any
change	to	the		loans		variable.	If	you	have	forgotten	what		ObservableObject		is,	please	read
chapter	14	again.

Once	you	add	the		@Published		property	wrapper,	Xcode	shows	you	an	error.	The
	Decodable		(or		Codable)	protocol	doesn't	play	well	with		@Published	.

507Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	Xcode	error	saying	that	LoanStore	doesn't	conform	to	Decodable

To	fix	the	error,	requires	some	extra	work.	When	the		@Published		property	wrapper	is
used,	we	need	to	implement	the	required	method	of		Decodable		manually.	If	you	look	into
the	documentation	(https://developer.apple.com/documentation/swift/decodable),	here
is	the	method	to	adopt:

init(from	decoder:	Decoder)	throws

Actually,	we've	implemented	the	method	before	when	decoding	the	nested	JSON	objects.
Now,	update	the	class	like	this:

class	LoanStore:	Decodable,	ObservableObject	{

				@Published	var	loans:	[Loan]	=	[]

				enum	CodingKeys:	CodingKey	{

								case	loans

				}

				required	init(from	decoder:	Decoder)	throws	{

								let	values	=	try	decoder.container(keyedBy:	CodingKeys.self)

								loans	=	try	values.decode([Loan].self,	forKey:	.loans)

				}

				init()	{

				}

}

We	added	the		CodingKeys		enum	that	explicitly	specifies	the	key	to	decode.	And	then,	we
implemented	the	custom	initializer	to	handle	the	decoding.

508Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/swift/decodable

Okay,	the	error	is	now	fixed.	What's	next?

Calling	the	Web	API

So	far,	we	just	set	up	everything	for	JSON	decoding	but	we	haven't	consumed	the	web
API.	Declare	a	new	variable	in	the	class	to	store	the	URL	of	the	Kiva's	API:

private	static	var	kivaLoanURL	=	"https://api.kivaws.org/v1/loans/newest.json"

Next,	insert	the	following	methods	in	the	class:

func	fetchLatestLoans()	{

				guard	let	loanUrl	=	URL(string:	Self.kivaLoanURL)	else	{

								return

				}

				let	request	=	URLRequest(url:	loanUrl)

				let	task	=	URLSession.shared.dataTask(with:	request,	completionHandler:	{	(dat

a,	response,	error)	->	Void	in

								if	let	error	=	error	{

												print(error)

												return

								}

								//	Parse	JSON	data

								if	let	data	=	data	{

												DispatchQueue.main.async	{

																self.loans	=	self.parseJsonData(data:	data)

												}

								}

				})

				task.resume()

}

func	parseJsonData(data:	Data)	->	[Loan]	{

509Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

				let	decoder	=	JSONDecoder()

				do	{

								let	loanStore	=	try	decoder.decode(LoanStore.self,	from:	data)

								self.loans	=	loanStore.loans

				}	catch	{

								print(error)

				}

				return	loans

}

The		fetchLatestLoans()		method	connects	to	the	web	API	by	using		URLSession	.	Once	it
receives	the	data	returned	by	the	API,	it	passes	the	data	to	the		parseJsonData		method	to
decode	the	JSON	and	convert	the	loan	data	into	an	array	of		Loan	.

You	may	wonder	why	we	need	to	wrap	the	following	line	of	code	with
	DispatchQueue.main.async	:

DispatchQueue.main.async	{

				self.loans	=	self.parseJsonData(data:	data)

}

When	calling	the	web	API,	the	operation	is	performed	in	a	background	queue.	Here,	the
	loans		variable	is	marked	as		@Published	.	That	means,	for	any	modification	of	the
variable,	SwiftUI	will	trigger	an	update	of	the	user	interface.	UI	updates	are	required	to
run	in	the	main	queue.	This	is	the	reason	why	we	wrap	it	using		DispatchQueue.main.async	.

Implementing	the	User	Interface

Now	that	we	have	created	the	classes	ready	for	retrieving	the	loan	data,	let's	move	onto
the	implementation	of	the	user	interface.	To	help	you	remember	what	the	UI	looks	like,
look	at	the	following	figure.	This	is	the	UI	we	are	going	to	build.

510Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	The	user	interface	of	our	demo	app

And,	instead	of	coding	the	UI	in	one	file,	we	will	break	it	down	into	three	views:

ContentView.swift	-	this	is	the	main	view	presenting	the	list	of	loans
LoanCellView.swift	-	this	is	the	cell	view
LoanFilterView.swift	-	this	is	the	view	showing	the	filtering	option

Let's	begin	with	the	cell	view.	In	the	project	navigator,	right	click		SwiftUIKivaLoan		and
choose	New	file....	Select	the	SwiftUI	View	template	and	name	the	file
	LoanCellView.swift	.

Update	the		LoanCellView		like	this:

511Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	LoanCellView:	View	{

				var	loan:	Loan

				var	body:	some	View	{

								HStack(alignment:	.top)	{

												VStack(alignment:	.leading)	{

																Text(loan.name)

																				.font(.system(.headline,	design:	.rounded))

																				.bold()

																Text(loan.country)

																				.font(.system(.subheadline,	design:	.rounded))

																Text(loan.use)

																				.font(.system(.body,	design:	.rounded))

												}

												Spacer()

												VStack	{

																Text("$\(loan.amount)")

																				.font(.system(.title,	design:	.rounded))

																				.bold()

												}

								}

								.frame(minWidth:	0,	maxWidth:	.infinity)

				}

}

This	view	takes	in	a		Loan		and	renders	the	cell	view.	The	code	is	self	explanatory	but	if
you	want	to	preview	the	cell	view,	you	will	need	to	modify		LoanCellView_Previews		like	this:

struct	LoanCellView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								LoanCellView(loan:	Loan(name:	"Ivan",	country:	"Uganda",	use:	"to	buy	a	pl

ot	of	land",	amount:	575)).previewLayout(.sizeThatFits)

				}

}

512Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	instantiate	a	dummy	loan	and	pass	it	to	the	cell	view	for	rendering.	Your	preview
pane	should	be	similar	to	that	shown	in	figure	8.

Figure	8.	The	loan	cell	view

Now	go	back	to		ContentView.swift		to	implement	the	list	view.	First,	declare	a	variable
named		loanStore	:

@ObservedObject	var	loanStore	=	LoanStore()

Since	we	want	to	observe	the	change	of	loan	store	and	update	the	UI,	the		loanStore		is
marked	with	the		@ObservedObject		property	wrapper.

Next,	update	the		body		variable	like	this:

513Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	body:	some	View	{

				NavigationView	{

								List(loanStore.loans)	{	loan	in

												LoanCellView(loan:	loan)

																.padding(.vertical,	5)

								}

								.navigationBarTitle("Kiva	Loan")

				}

				.onAppear()	{

								self.loanStore.fetchLatestLoans()

				}

}

If	you've	read	chapter	10	and	11,	you	should	understand	how	to	present	a	list	view	and
embed	it	in	a	navigation	view.	That's	what	the	code	above	does.	The		onAppear()		function
will	be	invoked	when	the	view	appears.	And,	we	call	up	the		fetchLatestLoans()		method	to
retrieve	the	latest	loans	from	Kiva.

Now	run	the	app	in	the	preview	(press	the	play	button)	or	on	a	simulator.	You	should	be
able	to	see	the	loan	records.

514Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Presenting	the	loans	in	a	list	view

Creating	the	Filter	View	with	a	Slider

Before	we	finish	this	chapter,	I	want	to	show	you	how	to	implement	a	filter	feature.	This
filter	function	allows	users	to	define	a	maximum	loan	amount	and	only	display	the
records	below	that	value.	Figure	7	shows	a	sample	filter	view.	Users	can	use	a	slider	to
configure	the	maximum	amount.

Again,	we	want	our	code	to	be	better	organized.	So,	create	a	new	file	for	the	filter	view
and	name	it		LoanFilterView.swift	.

Next	update	the		LoanFilterView		struct	like	this:

515Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	LoanFilterView:	View	{

				@Binding	var	amount:	Double

				var	minAmount	=	0.0

				var	maxAmount	=	10000.0

				var	body:	some	View	{

								VStack(alignment:	.leading)	{

												Text("Show	loan	amount	below	$\(Int(amount))")

																.font(.system(.headline,	design:	.rounded))

												HStack	{

																Slider(value:	$amount,	in:	minAmount...maxAmount,	step:	100)

																				.accentColor(.purple)

												}

												HStack	{

																Text("\(Int(minAmount))")

																				.font(.system(.footnote,	design:	.rounded))

																Spacer()

																Text("\(Int(maxAmount))")

																.font(.system(.footnote,	design:	.rounded))

												}

								}

								.padding(.horizontal)

								.padding(.bottom,	10)

				}

}

I	assume	you	fully	understand	stack	views.	Therefore,	I'm	not	going	to	discuss	how	they
are	used	to	create	the	layout.	But	let's	talk	a	bit	more	about	the	Slider	control.	It's	a
standard	component	provided	by	SwiftUI.	You	can	instantiate	the	slider	by	passing	it	the

516Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

binding,	range,	and	step	of	the	slider.	The	binding	holds	the	current	value	of	the	slider.
Here	is	sample	code	for	creating	a	slider:

Slider(value:	$amount,	in:	minAmount...maxAmount,	step:	100)

The	step	controls	the	amount	of	change	when	the	user	drags	the	slider.	If	you	let	the	user
have	finer	control,	set	the	step	to	a	smaller	number.	For	the	code	above,	we	set	it	to	100.

In	order	to	preview	the	filter	view,	update	the		FilterView_Previews		like	this:

struct	LoanFilterView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								LoanFilterView(amount:	.constant(10000))

				}

}

Now	your	preview	should	look	like	figure	10.

Figure	10.	The	filter	view	for	setting	the	display	criteria

517Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Okay,	we've	implemented	the	filter	view.	However,	we	haven't	implemented	the	actual
logic	for	filtering	the	records.	Let's	enhance	the		LoanStore.swift		to	power	it	with	the	filter
function.

First,	declare	the	following	variable	which	is	used	to	store	a	copy	of	the	loan	records	for
the	filter	operation:

private	var	cachedLoans:	[Loan]	=	[]

To	save	the	copy,	insert	the	following	line	of	code	after		self.loans	=
self.parseJsonData(data:	data)	:

self.cachedLoans	=	self.loans

Lastly,	create	a	new	function	for	the	filtering:

func	filterLoans(maxAmount:	Int)	{

				self.loans	=	self.cachedLoans.filter	{	$0.amount	<	maxAmount	}

}

This	function	takes	in	the	value	of	maximum	amount	and	filter	those	loan	items	that	are
below	this	limit.

Cool!	We	are	almost	done.

Let's	go	back	to		ContentView.swift		to	present	the	filter	view.	What	we	are	going	to	do	is
add	a	navigation	bar	button	at	the	top-right	corner.	When	a	user	taps	this	button,	the	app
presents	the	filter	view.

Let's	first	declare	two	state	variables:

@State	private	var	filterEnabled	=	false

@State	private	var	maximumLoanAmount	=	10000.0

518Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The		filterEnabled		variable	stores	the	current	state	of	the	filter	view.	It's	set	to		false		by
default	indicating	that	the	filter	view	is	not	shown.	The		maximumLoanAmount		stores	the
maximum	loan	amount	for	display.	Any	loan	records	with	an	amount	larger	than	this
limit	will	be	hidden.

Next,	insert	the	following	code	right	below		NavigationView	{	

if	self.filterEnabled	{

				LoanFilterView(amount:	self.$maximumLoanAmount)

								.transition(.opacity)					

}

When		filterEnabled		is	set	to		true	,	the	app	will	overlay	the	loan	filter	view	on	the	list
view.	What's	left	is	the	navigation	bar	button.	Insert	the	following	code	and	place	it	after
	.navigationBarTitle("Kiva	Loan")	:

.navigationBarItems(trailing:

				Button(action:	{

								withAnimation(.linear)	{

												self.filterEnabled.toggle()

												self.loanStore.filterLoans(maxAmount:	Int(self.maximumLoanAmount))

								}

				})	{

								Text("Filter")

												.font(.subheadline)

												.foregroundColor(.primary)

				}

)

This	adds	a	navigation	bar	button	at	the	top-right	corner.	When	the	button	is	tapped,	we
toggle	the	value	of		filterEnabled		to	show/hide	the	filter	view.	Additionally,	we	call	the
	filterLoans		function	to	filter	the	loan	item.

Lastly,	attach	the		.navigationViewStyle		modifier	to	change	the	view's	style	back	to
	StackNavigationViewStyle	.

519Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.navigationViewStyle(StackNavigationViewStyle())

Now	run	the	app	to	test	it.	You	should	see	a	filter	button	on	the	navigation	bar.	Tap	it
once	to	bring	up	the	filter	view.	You	can	then	set	a	new	limit	(e.g.	$500).	Tap	the	button
again	and	the	app	will	only	show	you	the	loan	records	that	are	below	$500.

Figure	11.	Presenting	the	filter	view

Summary

We	covered	quite	a	lot	in	this	chapter.	You	should	know	how	to	consume	web	APIs,	parse
the	JSON	content,	and	present	the	data	in	a	list	view.	We	also	briefly	covered	the	usage	of
the	Slider	control.

If	you've	developed	an	app	using	UIKit	before,	you	will	be	amazed	by	the	simplicity	of
SwiftUI.	Take	a	look	at	the	code	of	ContentView	again.	It	only	takes	around	40	lines	of
code	to	create	the	list	view.	Most	importantly,	you	don't	need	to	handle	the	UI	update
manually	and	pass	the	data	around.	Everything	just	works	behind	the	scenes.

520Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	reference,	you	can	download	the	complete	loan	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIKivaLoan.zip)

521Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIKivaLoan.zip

Chapter	22
Building	a	ToDo	App	with	Core	Data
One	common	question	of	iOS	app	development	is	how	do	we	work	with	Core	Data	and
SwiftUI	to	save	data	permanently	in	the	built-in	database.	In	this	chapter,	we	will	answer
this	question	by	building	a	ToDo	app.

Since	the	ToDo	demo	app	makes	use	of	List	and	Combine	to	handle	the	data	presentation
and	sharing,	I'll	assume	that	you've	read	the	following	chapters:

Chapter	7	-	Understanding	State	and	Binding
Chapter	10	-	Understanding	Dynamic	List,	ForEach	and	Identifiable
Chapter	14	-	Data	Sharing	with	Combine	and	Environment	Objects

If	you	haven't	done	so	or	forgot	what	Combine	and	Environment	Objects	are,	go	back	and
read	the	chapters	again.

What	are	we	going	to	do	in	this	chapter	to	understand	Core	Data?	Instead	of	building	the
ToDo	app	from	scratch,	I've	already	built	the	core	parts	of	the	app.	However,	it	can't	save
data	permanently.	To	be	more	specific,	it	can	only	save	the	to-do	items	in	an	array.
Whenever	the	user	closes	the	app	and	starts	it	again,	all	the	data	is	gone.	We	will	modify
the	app	and	convert	it	to	use	Core	Data	for	saving	the	data	permanently	to	the	local
database.	Figure	1	shows	some	sample	screenshots	of	the	ToDo	app.

522Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	The	ToDo	demo	app

Before	we	perform	the	modification,	I	will	walk	you	through	the	starter	project	so	you
fully	understand	how	the	code	works.	Other	than	Core	Data,	you	will	also	learn	how	to
customize	the	style	of	a	toggle.	Take	a	look	at	the	screenshots	above.	The	checkbox	is
actually	a	toggle	view	of	SwiftUI.	I	will	show	you	how	to	create	these	checkboxes	by
customizing	the	Toggle's	style.

We've	got	a	lot	to	cover	in	this	chapter,	so	let's	get	started!

Understanding	Core	Data

Before	we	check	out	the	starter	project	of	the	ToDo	app,	let	me	give	you	a	quick
introduction	to	Core	Data	and	how	you're	going	to	work	with	it	in	SwiftUI	projects.

What	is	Core	Data?

523Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

First	things	first,	don't	confuse	the	Core	Data	framework	with	a	database.	Core	Data	is
not	a	database.	It's	just	a	framework	for	developers	to	manage	and	interact	with	data	on	a
persistent	store.	Though	the	SQLite	database	is	the	default	persistent	store	for	Core	Data
on	iOS,	persistent	stores	are	not	limited	to	databases.	For	instance,	you	can	also	utilize
Core	Data	to	manage	data	in	a	local	file	(e.g.	XML).

The	Core	Data	framework	simply	shields	developers	from	the	inner	details	of	the
persistent	store.	Take	the	SQLite	database	as	an	example.	You	do	not	need	to	know	how
to	connect	to	the	database	nor	understand	SQL	to	retrieve	data	records.	All	you	need	to
figure	out	is	how	to	work	with	the	Core	Data	APIs	such	as		NSManagedObjectContext		and	the
Managed	Object	Model.

Feeling	confused?	No	worries.	You	will	understand	what	I	mean	after	we	convert	the
ToDo	app	from	arrays	to	Core	Data.

Using	Core	Data	in	SwiftUI	projects

If	you	start	from	a	brand	new	project,	the	easiest	way	to	use	the	Core	Data	framework	is
by	enabling	the	Core	Data	option.	You	can	give	it	a	try.	Launch	Xcode	and	create	a	new
project	using	the	App	template.	Name	it	to	whatever	name	you	like	but	please	ensure	you
check	the	Core	Data	checkbox.

524Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Creating	a	new	project	with	Core	Data	enabled

By	enabling	Core	Data,	Xcode	will	generate	all	the	required	code	and	the	managed	object
model	for	you.	Once	the	project	created,	you	should	see	a	new	file	named
	CoreDataTest.xcdatamodeld	.	In	Xcode,	the	managed	object	model	is	defined	in	a	file	with
the	extension		.xcdatamodeld	.	This	is	the	managed	object	model	generated	for	your
project	and	this	is	where	you	define	the	entities	for	interacting	with	the	persistent	store.

Take	a	look	at	the		Persistence.swift		file,	which	is	another	file	generated	by	Xcode.	This
file	contains	the	code	for	loading	the	managed	object	model	and	saving	the	data	to	the
persistent	store.

525Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	The	additional	code	for	Core	Data

If	you've	developed	apps	using	UIKit	before,	you	usually	use	the	container	to	manage	the
data	in	the	database	or	other	persistent	stores.	In	SwiftUI,	it's	a	little	bit	different.	We
seldom	use	this	container	directly.	Instead	SwiftUI	injects	the	managed	object	context
into	the	environment,	so	that	any	view	can	retrieve	the	context	and	manage	the	data.

Take	a	look	at	the		CoreDataTestApp.swift		file.	Xcode	adds	a	constant	that	holds	the
instance	of		PersistenceController		and	a	line	of	code	to	inject	the	managed	object	context
is	injected	into	the	environment.

526Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Injecting	the	managed	object	context	into	the	environment

This	is	all	the	code	and	files	generated	by	Xcode	when	enabling	the	Core	Data	option.	If
you	open		ContentView.swift	,	Xcode	also	generates	sample	code	for	loading	data	from	the
local	data	store.	Look	at	the	code	to	get	an	idea	of	how	this	works.	In	general,	to	save	and
manage	data	on	the	local	database,	the	procedures	are:

1.	 Create	an	entity	in	the	managed	object	model	(i.e.	.xcdatamodeld)

2.	 Define	a	managed	object,	which	inherits	from		NSManagedObject	,	to	associate	with	the
entity

3.	 In	the	views	that	need	to	save	and	update	the	data,	get	the	managed	object	context
from	the	environment	using		@Environment		like	this:

@Environment(\.managedObjectContext)	var	context

And	then	create	the	managed	object	and	use	the		save		method	of	the	context	to	add
the	object	to	the	database.	Here	is	a	sample	code	snippet:

527Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

let	task	=	ToDoItem(context:	context)

task.id	=	UUID()

task.name	=	name

task.priority	=	priority

task.isComplete	=	isComplete

4.	 For	data	retrieval,	Apple	introduced	a	property	wrapper	called		@FetchRequest		for	you
to	fetch	data	from	the	persistent	store.	Here	is	sample	code:

@FetchRequest(

			entity:	ToDoItem.entity(),

			sortDescriptors:	[NSSortDescriptor(keyPath:	\ToDoItem.priorityNum,	ascending:	

false)])

var	todoItems:	FetchedResults<ToDoItem>

This	property	wrapper	makes	it	very	easy	to	perform	a	fetch	request.	You	just	need
to	specify	the	entity	object	you	want	to	retrieve	and	how	the	data	is	ordered.	The
framework	will	then	use	the	environment's	managed	object	context	to	fetch	the	data.
Most	importantly,	SwiftUI	will	automatically	update	any	views	that	are	bound	to	the
fetched	results	because	the	fetch	result	is	a	collection	of		NSManagedObject	,	which
conforms	to	the		ObservableObject		protocol.

This	is	how	you	work	with	Core	Data	in	SwiftUI	projects.	I	know	you	may	be	confused	by
some	of	the	terms	and	procedures.	This	section	is	just	a	quick	introduction.	Later,	when
you	work	on	the	demo	app,	we	will	go	through	these	procedures	in	detail.

Understanding	the	ToDo	App	Demo

Now	that	you	have	a	basic	understanding	of	Core	Data,	let	me	go	through	the	app	demo
with	you.	Later,	we	will	convert	this	ToDo	demo,	allowing	it	to	save	the	to-do	items
permanently.	Right	now,	as	mentioned	before,	all	the	data	is	stored	in	memory	and	will
vanish	when	the	app	restarts.

528Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

First,	please	download	the	starter	project	from
https://www.appcoda.com/resources/swiftui2/SwiftUIToDoListStarter.zip.	Unzip	the
file	and	open		ToDoList.xcodeproj		in	Xcode.	Select	the		ContentView.swift		file	and	preview
the	UI.	You	should	see	a	screen	like	that	shown	in	figure	5.

Figure	5.	Previewing	the	demo	app

Run	the	app	in	the	preview	canvas	or	a	simulator.	Tap	the	+	button	to	add	a	to-do	item.
Repeat	the	procedure	to	add	a	few	more	items.	The	app	then	lists	the	to-do	items.
Tapping	the	checkbox	of	a	to-do	item	will	cross	out	that	item.

529Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIToDoListStarter.zip

Figure	6.	Adding	a	new	task

How	to	present	the	list	of	Todo	Items

Now	let	us	walk	through	the	code,	so	you	understand	how	the	code	works.	First,	we	start
with	the	model	class.	Open		ToDoItem.swift		in	the	Model	folder.

530Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

enum	Priority:	Int	{

				case	low	=	0

				case	normal	=	1

				case	high	=	2

}

class	ToDoItem:	ObservableObject,	Identifiable	{

				var	id	=	UUID()

				@Published	var	name:	String	=	""

				@Published	var	priority:	Priority	=	.normal

				@Published	var	isComplete:	Bool	=	false

				init(name:	String,	priority:	Priority	=	.normal,	isComplete:	Bool	=	false)	{

								self.name	=	name

								self.priority	=	priority

								self.isComplete	=	isComplete

				}

}

The	ToDo	app	demo	is	a	simplified	version	of	an	ordinary	ToDo	app.	Each	to-do	item	(or
task),	has	three	properties:	name,	priority,	and	isComplete	(i.e.	the	status	of	the	task).
This	class	adopts	the		ObservableObject		protocol.	The	three	properties	are	marked	with
@Published	so	that	the	subscribers	are	informed	whenever	there	are	any	changes	of	the
values.	Later,	in	the	implementation	of		ContentView	,	SwiftUI	listens	for	value	changes
and	updates	the	views	accordingly.	For	example,	when	the	value	of		isComplete		changes,
it	toggles	the	checkbox.

This	class	also	conforms	to	the		Identifiable		protocol	such	that	each	instance	of
	ToDoItem		has	an	unique	identifier.	Later,	we	will	use	the		ForEach		and		List		to	display
the	to-do	items.	This	is	why	we	need	to	adopt	the	protocol	and	create	the		id		property.

Now	let's	move	onto	the	views	and	begin	with	the		ContentView.swift		file.	Assuming
you've	read	chapter	10,	you	should	understand	most	of	the	code.	The	content	view	has
three	main	parts,	which	are	embedded	in	a		ZStack	:

1.	 The	list	view	that	presents	all	the	to-do	items.
2.	 The	empty	view	(NoDataView)	that	is	displayed	when	there	are	no	to-do	items	.
3.	 The	"Add	a	new	task"	view	that	is	shown	when	a	user	taps	the	+	button.

531Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Take	a	look	at	the	first		VStack	:

VStack	{

				HStack	{

								Text("ToDo	List")

												.font(.system(size:	40,	weight:	.black,	design:	.rounded))

								Spacer()

								Button(action:	{

												self.showNewTask	=	true

								})	{

												Image(systemName:	"plus.circle.fill")

																.font(.largeTitle)

																.foregroundColor(.purple)

								}

				}

				.padding()

				List	{

								ForEach(todoItems)	{	todoItem	in

												ToDoListRow(todoItem:	todoItem)

								}

				}

}

.rotation3DEffect(Angle(degrees:	showNewTask	?	5	:	0),	axis:	(x:	1,	y:	0,	z:	0))

.offset(y:	showNewTask	?	-50	:	0)

.animation(.easeOut)

I	declared	a	state	variable	named		todoItems		to	hold	all	the	to-do	items.	It's	marked	with
	@State		so	that	the	list	will	be	refreshed	whenever	there	are	any	changes.	In	the		List	
view,	we	use		ForEach		to	loop	through	the	items	in	the	array.

We	handle	the	rows	of	the	list,	by	a	separate	view	named		ToDoListRow	:

532Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ToDoListRow:	View	{

				@ObservedObject	var	todoItem:	ToDoItem

				var	body:	some	View	{

								Toggle(isOn:	self.$todoItem.isComplete)	{

												HStack	{

																Text(self.todoItem.name)

																				.strikethrough(self.todoItem.isComplete,	color:	.black)

																				.bold()

																				.animation(.default)

																Spacer()

																Circle()

																				.frame(width:	10,	height:	10)

																				.foregroundColor(self.color(for:	self.todoItem.priority))

												}

								}.toggleStyle(CheckboxStyle())

				}

				private	func	color(for	priority:	Priority)	->	Color	{

								switch	priority	{

								case	.high:	return	.red

								case	.normal:	return	.orange

								case	.low:	return	.green

								}

				}

}

This	view	takes	in	a	to-do	item,	which	is	a		ObservableObject	.	This	means	for	any	changes
of	that	to-do	item,	the	view	that	subscribes	to	the	item	will	be	invalidated	automatically.

For	each	row	of	the	to-do	item,	consists	of	three	parts:

1.	 A	toggle	/	checkbox	-	indicates	whether	the	task	is	complete	or	not.
2.	 A	text	label	-	shows	the	name	of	the	task
3.	 A	dot	/	circle	-	shows	the	priority	of	the	task

533Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	second	and	third	parts	are	pretty	straightforward.	For	the	checkbox,	it's	worth
having	a	deeper	discussion.	SwiftUI	comes	with	a	standard	control	called		Toggle	.	In	an
earlier	chapter,	we	used	it	to	create	a	Settings	screen.	The	presentation	of	the	toggle	is
more	like	a	switch	that	lets	you	flip	between	on	and	off.	In	the	ToDo	app,	we	want	to
make	the	toggle	look	like	a	checkbox.

Customizing	the	look	&	feel	of	a	Toggle

Similar	to		Button		which	we	discussed	in	chapter	6,		Toggle		also	lets	developers
customize	its	style.	All	you	need	to	do	is	to	implement	the		ToggleStyle		protocol	and
provide	the	customizations.	In	the	project	navigator,	open	the		CheckBoxStyle.swift		file	to
take	a	look:

struct	CheckboxStyle:	ToggleStyle	{

				func	makeBody(configuration:	Self.Configuration)	->	some	View	{

								return	HStack	{

												Image(systemName:	configuration.isOn	?	"checkmark.circle.fill"	:	"circ

le")

																.resizable()

																.frame(width:	24,	height:	24)

																.foregroundColor(configuration.isOn	?	.purple	:	.gray)

																.font(.system(size:	20,	weight:	.bold,	design:	.default))

																.onTapGesture	{

																				configuration.isOn.toggle()

																}

												configuration.label

								}

				}

}

534Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	the	code,	we	implement	the		makeBody		method,	which	is	the	requirement	of	the
protocol.	We	create	an	image	view	which	displays	a	checkmark	image	or	a	circle	image,
depending	on	the	status	of	the	toggle	(i.e.		configuration.isOn).	This	is	how	you	customize
the	style	of	a	toggle.

To	use	the		CheckboxStyle	,	attach	the		toggleStyle		modifier	to	the		Toggle		and	specify	the
checkbox	style	like	this:

.toggleStyle(CheckboxStyle())

Handling	the	empty	list	view

When	there	are	no	items	in	the	array,	we	present	an	image	view	instead	of	showing	an
empty	list	view.	This	is	completely	optional.	However,	I	think	it	makes	the	app	look
better	and	let	users	know	what	to	do	when	the	app	is	first	started.

//	If	there	is	no	data,	show	an	empty	view

if	todoItems.count	==	0	{

				NoDataView()

}

Since	we	have	a		ZStack		to	embed	the	views,	it's	pretty	easy	to	control	the	appearance	of
this	empty	view,	which	is	only	displayed	when	the	array	is	empty.

Displaying	the	Add	Task	view

When	a	user	taps	the	+	button	at	the	top-right	corner,	the	app	displays	the		NewToDoView	,
which	I	will	go	through	with	you	shortly.	This	view	overlays	on	top	of	the	list	view	and
appears	like	a	bottom	sheet.	We	also	add	a	blank	view	for	darkening	the	list	view.

Here	is	the	code	for	reference:

535Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

if	showNewTask	{

				BlankView(bgColor:	.black)

								.opacity(0.5)

								.onTapGesture	{

												self.showNewTask	=	false

								}

				NewToDoView(isShow:	$showNewTask,	todoItems:	$todoItems,	name:	"",	priority:	.

normal)

								.transition(.move(edge:	.bottom))

								.animation(.interpolatingSpring(stiffness:	200.0,	damping:	25.0,	initialVe

locity:	10.0))

}

Understanding	the	Add	Task	view

Now	let	me	walk	you	through	the	code	in		NewToDoView.swift	,	which	is	for	users	to	add	a
new	task	or	to-do	item.	You	can	refer	to	figure	6	or	simply	open	the	file	to	preview	it	see
what	this	view	looks	like.

The		NewToDoView		takes	in	two	bindings:	isShow	and	todoItems.	The		isShow		parameter
controls	whether	this	Add	New	Task	view	should	appear	on	screen.	The		todoItems	
variable	holds	a	reference	to	the	array	of	to-do	items.	We	need	the	caller	to	pass	us	the
binding	to		todoItems		so	that	we	can	update	the	array	with	the	new	task.

@Binding	var	isShow:	Bool

@Binding	var	todoItems:	[ToDoItem]

@State	var	name:	String

@State	var	priority:	Priority

@State	var	isEditing	=	false

In	the	view,	we	let	users	input	the	name	of	the	task	and	set	its	priority
(low/normal/high).	The	state	variable		isEditing		indicates	whether	the	user	is	editing
the	task	name.	To	avoid	the	software	keyboard	from	obscuring	the	editing	view,	the	app
will	shift	the	view	upward	while	the	user	is	editing	the	text	field.

536Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

TextField("Enter	the	task	description",	text:	$name,	onEditingChanged:	{	(editingC

hanged)	in

				self.isEditing	=	editingChanged

})

...

.offset(y:	isEditing	?	-320	:	0)

After	the	Save	button	is	tapped,	we	verify	if	the	text	field	is	empty.	If	not,	we	create	a	new
	ToDoItem		and	call	the		addTask		function	to	append	it	to	the		todoItems		array,	otherwise
we	do	nothing.

//	Save	button	for	adding	the	todo	item

Button(action:	{

				if	self.name.trimmingCharacters(in:	.whitespaces)	==	""	{

								return

				}

				self.isShow	=	false

				self.addTask(name:	self.name,	priority:	self.priority)

})	{

				Text("Save")

								.font(.system(.headline,	design:	.rounded))

								.frame(minWidth:	0,	maxWidth:	.infinity)

								.padding()

								.foregroundColor(.white)

								.background(Color.purple)

								.cornerRadius(10)

}

.padding(.bottom)

537Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Since	the		todoItems		array	is	a	state	variable,	the	list	view	will	be	automatically	refreshed
and	display	the	new	task.	This	is	how	the	code	works.	If	you	don't	understand	how	the
Add	task	view	is	displayed	at	the	bottom	of	the	screen,	please	refer	to	chapter	18	on
building	an	Expandable	Bottom	Sheet.

Working	with	Core	Data

Now	that	I've	walked	you	through	the	starter	project,	it's	time	to	convert	the	app	to	use
Core	Data	for	storing	the	to-do	items	in	the	database.	In	the	very	beginning,	we	created	a
blank	project	with	Core	Data	enabled.	By	checking	the	Core	Data	checkbox,	Xcode
automatically	generated	the	basic	skeleton	of	a	Core	Data	project.	This	time,	I	will	show
you	how	to	transform	the	project	to	use	Core	Data	manually.

Creating	the	Persistent	Controller

Let's	first	create	a	new	file	called	the		Persistence.swift		file.	In	the	project	navigator,	right
click		Model		and	use	the	Swift	file	template.	Name	the	file		Persistence.swift		and	insert
the	following	code	in	the	file:

538Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

import	CoreData

struct	PersistenceController	{

				static	let	shared	=	PersistenceController()

				let	container:	NSPersistentContainer

				init(inMemory:	Bool	=	false)	{

								container	=	NSPersistentContainer(name:	"ToDoList")

								if	inMemory	{

												container.persistentStoreDescriptions.first!.url	=	URL(fileURLWithPath

:	"/dev/null")

								}

								container.loadPersistentStores(completionHandler:	{	(storeDescription,	err

or)	in

												if	let	error	=	error	as	NSError?	{

																//	Replace	this	implementation	with	code	to	handle	the	error	appro

priately.

																//	fatalError()	causes	the	application	to	generate	a	crash	log	and

	terminate.	You	should	not	use	this	function	in	a	shipping	application,	although	i

t	may	be	useful	during	development.

																/*

																Typical	reasons	for	an	error	here	include:

																*	The	parent	directory	does	not	exist,	cannot	be	created,	or	disal

lows	writing.

																*	The	persistent	store	is	not	accessible,	due	to	permissions	or	da

ta	protection	when	the	device	is	locked.

																*	The	device	is	out	of	space.

																*	The	store	could	not	be	migrated	to	the	current	model	version.

																Check	the	error	message	to	determine	what	the	actual	problem	was.

																*/

																fatalError("Unresolved	error	\(error),	\(error.userInfo)")

												}

								})

				}

}

You	should	be	familar	with	the	code	because	it	is	the	same	as	the	code	generated	by
Xcode,	except	that	the	name	of	the	container	is	changed	to	ToDoList.

539Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Injecting	the	managed	object	context

Now	open		ToDoListApp.swift		and	inject	the	managed	object	context	into	the
environment.	In	the		ToDoListApp		struct,	declare	the	following	variable	to	hold	the
	PersistenceController	:

let	persistenceController	=	PersistenceController.shared

Next,	in	the	same	file,	attach	the		environment		modifier	to		ContentView()		like	this:

ContentView()

				.environment(\.managedObjectContext,	persistenceController.container.viewConte

xt)

In	the	code	above,	we	inject	the	managed	object	context	into	the	environment	of
	ContentView	.	This	allows	us	to	easily	access	the	context	in	the	content	view	for	managing
the	data	in	the	database.

Creating	the	managed	object	model

Next,	we	need	to	manually	create	the	managed	object	model.	In	the	project	navigator,
right	click	the	ToDoList	folder	and	select	New	file....	Choose	Data	Model	and	name	the
file		ToDoList.xcdatamodeld	.	Please	make	sure	you	name	the	file	correctly	because	it	should
match	the	name	for	initializing	the		NSPersistentContainer	.

540Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Choosing	the	Data	Model	template

Once	created,	select	the	model	file	and	click	the	Add	Entity	button	to	create	a	new	entity.
Change	the	name	of	the	entity	from	Entity	to	ToDoItem.	You	can	think	of	this	entity	as	a
record	in	the	database	table.	Therefore,	this	entity	should	store	the	properties	of	a
	ToDoItem	.	We	need	to	add	4	attributes	for	the	entity	including	(see	figure	8):

id	with	the	type	UUID
name	with	the	type	String
priorityNum	with	the	type	Integer	32
isComplete	with	the	type	Boolean

541Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	types	of		id	,		name	,	and		isComplete		are	exactly	the	same	as	that	of	the		ToDoItem	
class.	But	why	does	the	priority	is	set	to	the	type	Integer	32?	If	you	take	a	look	at	the	code
in		ToDoItem.swift	,	you	see	that	the	priority	property	is	an	Enum:

enum	Priority:	Int	{

				case	low	=	0

				case	normal	=	1

				case	high	=	2

}

To	save	this	enum	into	the	database,	we	have	to	store	its	raw	value	which	is	an	integer.
This	is	why	we	use	the	type	Integer	32	and	name	the	attribute	priorityNum	to	avoid
naming	conflicts.

By	default,	Xcode	automatically	generates	the	model	class	of	this		ToDoItem		entity.
However,	I	prefer	to	create	this	class	manually	in	order	to	have	better	control.	So,	select
the		ToDoItem		entity	and	open	the	Data	Model	Inspector.	If	you	can't	see	the	inspector,	go
up	to	the	menu	and	select	View	>	Inspectors	>	Show	Data	Model	Inspector.	In	the	Class
section,	set	the	Module	to	Current	Product	Module	and	Codegen	to	Manual/None.	This
disables	the	code	generation.

542Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Disable	code	generation

As	you	can	see,	everything	we've	developed	so	far	does	not	require	you	have	the
knowledge	of	database	programming.	No	SQL,	no	database	tables.	All	the	things	you	deal
with	are	object	based.	This	is	the	beauty	of	Core	Data.

Defining	the	model	class

In	Core	Data,	every	entity	should	be	paired	with	a	model	class.	By	default,	this	model
class	is	generated	by	Xcode.	Previously,	we	changed	the	setting	from	code	gen	to	manual.
So,	we	need	to	implement	the	model	class		ToDoItem		manually.	Switch	over	to
	ToDoItem.swift		and	import	the	CoreData	package:

import	CoreData

Replace	the		ToDoItem		class	like	this:

543Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

public	class	ToDoItem:	NSManagedObject	{

				@NSManaged	public	var	id:	UUID

				@NSManaged	public	var	name:	String

				@NSManaged	public	var	priorityNum:	Int32

				@NSManaged	public	var	isComplete:	Bool

}

extension	ToDoItem:	Identifiable	{

				var	priority:	Priority	{

								get	{

												return	Priority(rawValue:	Int(priorityNum))	??	.normal

								}

								set	{

												self.priorityNum	=	Int32(newValue.rawValue)

								}

				}

}

The	model	class	of	Core	Data	should	be	inherited	from		NSManagedObject	.	Each	property	is
annotated	with		@NSManaged		and	corresponds	to	the	attribute	of	the	Core	Data	model	we
created	earlier.	By	using		@NSManaged	,	this	tells	the	compiler	that	the	property	is	taken
care	by	Core	Data.

In	the	original	version	of		ToDoItem	,	we	have	the		priority		property	which	has	a	type	of
Enum.	For	the	Core	Data	version,	we	have	to	create	a	computed	property	for		priority	.
This	computed	property	transforms	the	priority	number	into	an	Enum	and	vice	versa.

Using	@FetchRequest	to	fetch	records

Now	that	we've	prepared	the	model	class,	let's	see	how	easy	it	is	to	fetch	records	from
database.	Switch	over	to		ContentView.swift	.	Originally,	we	have	an	array	variable	holding
all	to-do	items,	which	is	also	marked	with		@State	:

@State	var	todoItems:	[ToDoItem]	=	[]

544Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Since	we	are	moving	to	store	the	items	in	database,	we	need	to	modify	this	line	of	code
and	fetch	the	data	from	it.	Apple	introduced	a	new	property	wrapper	called
	@FetchRequest	.	This	makes	it	very	easy	to	load	data	from	the	database.

Replace	the	line	of	code	above	with		@FetchRequest		like	this:

@FetchRequest(

				entity:	ToDoItem.entity(),

				sortDescriptors:	[NSSortDescriptor(keyPath:	\ToDoItem.priorityNum,	ascending:	

false)])

var	todoItems:	FetchedResults<ToDoItem>

Recall	that	we've	injected	the	managed	object	context	in	the	environment,	this	fetch
request	automatically	utilizes	the	context	and	fetches	the	required	data	for	you.	In	the
code	above,	we	specify	to	fetch	the		ToDoItem		entity	and	how	the	results	should	be
ordered.	Here,	we	would	like	to	sort	the	items	based	on	priority.

Once	the	fetch	completes,	you	will	have	a	collection	of		ToDoItem		managed	objects,	these
are	based	on	the		ToDoItem		class	we	defined	earlier	in	the	model	layer.

This	is	how	you	perform	a	fetch	request	and	retrieve	data	from	database.	And,	since	the
properties	of		ToDoItem		are	kept	intact,	we	DO	NOT	need	to	make	any	code	change	for	the
list	view.	We	can	use	the	fetch	result	directly	in		ForEach	:

List	{

				ForEach(todoItems)	{	todoItem	in

								ToDoListRow(todoItem:	todoItem)

				}

}

On	top	of	that,	you	can	directly	pass	the		todoItem	,	which	is	a		NSManageObject		to	create	a
	ToDoListRow	.	Do	you	know	why	we	do	not	need	to	make	any	changes?

545Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Take	a	look	at	the	documation	of		NSManagedObject	.	It	conforms	to		ObservableObject	.	This
is	why	we	can	directly	pass	a		todoItem		to		ToDoListRow	.

Figure	9.	NSManagedObject	documentation

One	more	thing.	You	may	also	wonder	if	we	need	to	manually	perform	a	fetch	request
when	there	are	changes	to		todoItems		(say,	we	add	a	new	item).	This	is	another	advantage
of	using		@FetchRequest	.	SwiftUI	automatically	manages	the	changes	and	refreshes	the	UI
accordingly.

Adding	data	to	the	persistent	store

Now,	let's	continue	to	do	the	Core	Data	migration	and	update	the	code	for
	NewToDoView.swift	.	To	save	a	new	task	in	the	database,	you	need	to	first	obtain	the
managed	object	context	from	the	environment:

@Environment(\.managedObjectContext)	var	context

Since	we	no	longer	use	an	array	to	hold	the	to-do	items,	you	can	remove	this	line	of	code:

546Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

@Binding	var	todoItems:	[ToDoItem]

Next,	let's	update	the		addTask		function	like	this:

private	func	addTask(name:	String,	priority:	Priority,	isComplete:	Bool	=	false)	{

				let	task	=	ToDoItem(context:	context)

				task.id	=	UUID()

				task.name	=	name

				task.priority	=	priority

				task.isComplete	=	isComplete

				do	{

								try	context.save()

				}	catch	{

								print(error)

				}

}

To	insert	a	new	record	into	the	database,	you	create	a		ToDoItem		with	the	managed
context	and	then	call	the		save()		function	of	the	context	to	commit	the	changes.

Since	we	removed	the		todoItems		binding,	we	need	to	update	the	preview	code:

struct	NewToDoView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								NewToDoView(isShow:	.constant(true),	name:	"",	priority:	.normal)

				}

}

Now	let's	move	back	to		ContentView.swift	.	Similarly,	you	should	see	an	error	in	the
	ContentView		(see	figure	10).

547Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	Xcode	shows	you	an	error	in	ContentView

Change	the	line	of	code	like	this	to	fix	the	error:

NewToDoView(isShow:	$showNewTask,	name:	"",	priority:	.normal)

We	simply	remove	the		todoItems		parameter.	This	is	how	we	convert	the	demo	app	from
using	an	in-memory	array	as	storage	to	a	persistent	store.

Updating	an	existing	item

When	you	mark	an	item	as	complete,	the	app	should	store	the	change	in	the	database.	In
	ContentView.swift	,	locate	the		ToDoListRow		struct	and	declare	the	following	variable:

@Environment(\.managedObjectContext)	var	context

Similar	to	adding	a	new	record,	we	also	need	to	obtain	the	managed	object	context	for
record	update.	For	the		Toggle		view,	attach	the		onReceive		modifier	and	place	it	right
after		.toggleStyle(CheckboxStyle())		like	this:

548Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	body:	some	View	{

				Toggle(isOn:	self.$todoItem.isComplete)	{

							.

							.

							.

				}

				.toggleStyle(CheckboxStyle())

				//	Add	the	following	code

				.onReceive(todoItem.objectWillChange,	perform:	{	_	in

								if	self.context.hasChanges	{

												try?	self.context.save()

								}

				})

}

Whenever	there	is	a	change	to	the	toggle,	the		isComplete		property	of	a		todoItem		will	be
updated.	But,	how	we	can	save	it	to	the	persistent	store?	Recall	that	the		todoItem	
conforms	to		ObservableObject	,	this	implies	that	it	has	a	publisher	that	transmits	changes
in	values.

Here,	the		onReceive		modifier	listens	for	these	changes	(say,	the	change	of		isComplete)
and	saves	them	to	the	persistent	store	by	calling	the		save()		function	of	the	context.

Now	you	can	run	the	app	in	a	simulator	to	try	it	out.	You	should	be	able	to	add	new	tasks
to	the	app.	Once	the	new	tasks	are	added,	they	should	appear	in	the	list	view
immediately.	The	checkbox	should	work	too.	Most	importantly,	all	the	changes	are	now
saved	permanently	in	the	device's	database.	After	you	restart	the	app,	all	the	items	are
still	there.

549Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	Your	ToDo	app	now	supports	Core	Data

Deleting	an	item	from	database

Now	that	I	have	shown	you	how	to	perform	fetch,	update,	and	insert,	how	about	data
deletion?	We	will	add	a	feature	to	the	app	for	removing	a	to-do	item.

In	the		ContentView		struct,	declare	a		context		variable:

@Environment(\.managedObjectContext)	var	context

Then	add	a	new	function	called		deleteTask		like	this:

550Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	func	deleteTask(indexSet:	IndexSet)	{

				for	index	in	indexSet	{

								let	itemToDelete	=	todoItems[index]

								context.delete(itemToDelete)

				}

				DispatchQueue.main.async	{

								do	{

												try	context.save()

								}	catch	{

												print(error)

								}

				}

}

This	function	takes	in	an	index	set	which	stores	the	index	of	the	items	for	deletion.	To
delete	an	item	from	the	persistent	store,	you	can	call	the		delete		function	of	the	context
and	specify	the	item	to	delete.	Lastly,	call		save()		to	commit	the	change.

Now	that	we	have	prepared	the	delete	function,	where	should	we	invoke	it?	Attach	the
	onDelete		modifier	to		ForEach		of	the	list	view	like	this:

List	{

				ForEach(todoItems)	{	todoItem	in

								ToDoListRow(todoItem:	todoItem)

				}

				.onDelete(perform:	deleteTask)

}

The		onDelete		modifier	automatically	enables	the	swipe-to-delete	feature	in	the	list	view.
When	the	user	deletes	an	item,	we	call	the		deleteTask		function	to	remove	the	item	from
the	database.

Run	the	app	and	swipe	to	delete	an	item.	This	will	completely	remove	it	from	the
database.

551Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Deleting	an	item

Working	with	SwiftUI	Preview

You	should	aware	that	the	preview	of	your	app	doesn't	work	since	we	changed	the	app	to
use	Core	Data.	This	is	understandable	because	we	haven't	injected	the	managed	object
context	in	the		ContentView_Previews		struct.	So,	how	do	we	fix	the	issue	and	make	the
preview	work.

First,	we	need	to	create	an	in-memory	data	store	and	populate	it	with	some	test	data.
Open		Persistence.swift		and	declare	a	static	variable	like	this:

552Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

static	var	preview:	PersistenceController	=	{

				let	result	=	PersistenceController(inMemory:	true)

				let	viewContext	=	result.container.viewContext

				for	index	in	0..<10	{

								let	newItem	=	ToDoItem(context:	viewContext)

								newItem.id	=	UUID()

								newItem.name	=	"To	do	item	#\(index)"

								newItem.priority	=	.normal

								newItem.isComplete	=	false

				}

				do	{

								try	viewContext.save()

				}	catch	{

								//	Replace	this	implementation	with	code	to	handle	the	error	appropriately.

								//	fatalError()	causes	the	application	to	generate	a	crash	log	and	termina

te.	You	should	not	use	this	function	in	a	shipping	application,	although	it	may	be

	useful	during	development.

								let	nsError	=	error	as	NSError

								fatalError("Unresolved	error	\(nsError),	\(nsError.userInfo)")

				}

				return	result

}()

In	the	code	above,	we	create	an	instance	of		PersistenceController		with	the		inMemory	
parameter	set	to		true	.	Then	we	add	10	sample	to-do	items	and	save	them	to	the	data
store.

Now	let's	switch	over	to	the		ContentView.swift		and	update	the	preview	code	like	this:

struct	ContentView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								ContentView().environment(\.managedObjectContext,	PersistenceController.pr

eview.container.viewContext)

				}

}

553Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	inject	the	context	of	the	in-memory	container	to	the	environment	of	the	content	view.
By	doing	so,	the	content	view	can	now	load	the	sample	to-do	items	and	display	them	in
the	preview	canvas.

Summary

In	this	chapter,	we	converted	a	Todo	list	app	from	storing	data	in	memory	to	a	persistent
store.	I	hope	you	now	understand	how	to	integrate	Core	Data	in	a	SwiftUI	project	and
know	how	to	perform	all	basic	CRUD	(create,	read,	update	&	delete)	operations.	The
introduction	of	the		@FetchRequest		property	wrapper	and	the	injection	of	the	managed
object	context	have	made	it	very	easy	to	manage	data	in	a	persistent	store.

For	reference,	you	can	download	the	complete	ToDoList	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIToDoList.zip)

554Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIToDoList.zip

Chapter	23
Integrating	UIKit	with	SwiftUI	Using
UIViewRepresentable
There	are	two	common	questions	developers	ask	about	SwiftUI.	First	is	the	question	of
how	to	implement	Core	Data	and	SwiftUI.	The	other	common	question	is	how	to	work
with	UIKit	views	in	SwiftUI	projects.	In	this	chapter,	you	will	learn	this	technique	by
integrating	a	UISearchBar	in	the	Todo	app.

If	you	are	new	to	UIKit,	UISearchBar	is	a	built-in	component	of	the	framework	that
allows	developers	to	present	a	search	bar	for	data	search.	Figure	1	shows	you	the
standard	search	bar	in	iOS.	SwiftUI,	however,	doesn't	come	with	this	standard	UI
component.	To	implement	a	search	bar	in	a	SwiftUI	project	(say,	our	ToDo	app),	one
approach	is	to	make	use	of	the		UISearchBar		component	in	UIKit.

So,	how	do	we	interface	with	UIKit	views	or	controllers	in	SwiftUI?

For	the	purpose	of	backward	compatibility,	Apple	introduced	a	couple	of	new	protocols,
namely		UIViewRepresentable		and		UIViewControllerRepresentable		in	the	iOS	SDK.	With
these	protocols,	you	can	wrap	a	UIKit	view	(or	view	controller)	and	make	it	available	to
your	SwiftUI	project.

To	see	how	it	works,	we	will	enhance	our	Todo	app	with	a	search	function.	We	will	add	a
search	bar	right	below	the	app	title	and	let	users	filter	the	to-do	items	by	entering	a
search	term.

555Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Adding	a	search	bar	in	the	ToDo	app

To	get	started,	download	the	ToDo	project	at
https://www.appcoda.com/resources/swiftui2/SwiftUIToDoList.zip.	We	will	build	on
top	of	the	ToDoList	project.	In	case	you	haven't	read	chapter	22,	I	recommend	you	read	it
first.	This	will	help	you	better	understand	the	topics	we	are	going	to	discuss	below,
especially	if	you	have	no	experience	with	Core	Data.

Understanding	UIViewRepresentable

To	use	a	UIKit	view	in	SwiftUI,	you	wrap	the	view	with	the		UIViewRepresentable		protocol.
Basically,	you	just	need	to	create	a		struct		in	SwiftUI	that	adopts	the	protocol	to	create
and	manage	a		UIView		object.	Here	is	the	skeleton	of	the	custom	wrapper	for	a	UIKit
view:

556Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIToDoList.zip

struct	CustomView:	UIViewRepresentable	{

				func	makeUIView(context:	Context)	->	some	UIView	{

								//	Return	the	UIView	object

				}

				func	updateUIView(_	uiView:	some	UIView,	context:	Context)	{

								//	Update	the	view

				}

}

In	the	actual	implementation,	you	replace		some	UIView		with	the	UIKit	view	you	want	to
wrap.	Let's	say,	we	want	to	use		UISearchBar		in	UIKit.	The	code	can	be	written	like	this:

struct	SearchBar:	UIViewRepresentable	{

				func	makeUIView(context:	Context)	->	UISearchBar	{

								return	UISearchBar()

				}

				func	updateUIView(_	uiView:	UISearchBar,	context:	Context)	{

								//	Update	the	view

				}

}

In	the		makeUIView		method,	we	return	an	instance	of		UISearchBar	.	This	is	how	you	wrap	a
UIKit	view	and	make	it	available	to	SwiftUI.	To	use	the		SearchBar	,	you	can	treat	it	like
any	SwiftUI	view	and	create	it	like	this:

struct	ContentView:	View	{

				var	body:	some	View	{

								SearchBar()

				}

}

557Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Adding	a	Search	Bar

Now	back	to	the	ToDoList	project	to	add	the	search	bar	to	the	app.	First,	we	will	create	a
new	file	for	the	search	bar.	In	the	project	navigator,	right	click	the	View	folder	and
choose	New	File....	Select	the	SwiftUI	View	template	and	name	the	file		SearchBar.swift	.

Replace	the	content	with	the	following	code:

import	SwiftUI

struct	SearchBar:	UIViewRepresentable	{

				@Binding	var	text:	String

				func	makeUIView(context:	Context)	->	UISearchBar	{

								let	searchBar	=	UISearchBar()

								searchBar.searchBarStyle	=	.minimal

								searchBar.autocapitalizationType	=	.none

								searchBar.placeholder	=	"Search..."

								return	searchBar

				}

				func	updateUIView(_	uiView:	UISearchBar,	context:	Context)	{

								uiView.text	=	text

				}

}

The	code	is	similar	to	the	code	shown	in	the	previous	section	but	with	the	following
differences:

1.	 Instead	of	creating	a		UISearchBar		with	the	default	appearance,	we	initialize	it	with	a
minimal	style,	disable	auto	capitalization,	and	update	its	placeholder	value.

2.	 We	have	added	a	binding	to	hold	the	search	term.	While	the		makeUIView		method	is
responsible	for	creating	and	initializing	the	view	object,	the		updateUIView		method	is
responsible	for	updating	the	state	of	the	UIKit	view.	Whenever	there	is	a	state

558Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

change	in	SwiftUI,	the	framework	automatically	calls	the		updateUIView		method	to
update	the	configuration	of	the	view.	In	this	case,	whenever	you	update	the	search
term	in	SwiftUI,	the	method	will	be	called	and	we	will	update	the		text		of
	UISearchBar	.

Now	switch	over	to		ContentView.swift	.	Declare	a	state	variable	to	hold	the	search	text:

@State	private	var	searchText	=	""

To	present	the	search	bar,	insert	the	following	code	before	the		List	:

SearchBar(text:	$searchText)

				.padding(.top,	-20)

The		SearchBar		is	just	like	any	other	SwiftUI	views.	You	can	apply	modifiers	like	padding
to	adjust	the	layout.	If	you	run	the	app	in	a	simulator,	you	should	see	a	search	bar,
though	it	doesn't	function	yet.

559Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	The	ToDo	app	now	has	a	search	bar

Capturing	the	Search	Text

It's	pretty	easy	to	present	a	UIKit	view	in	a	SwiftUI	app.	That	said,	making	the	search	bar
work	is	another	story.	For	now,	you	can	type	in	the	search	field	but	the	app	doesn't
perform	the	query	yet.	What	we	expect	is	that	the	app	should	search	the	to-do	items	on
the	fly	as	the	user	keys	in	the	search	term.

So,	how	do	we	detect	the	user	is	entering	a	search	term?

The	search	bar	has	a	companion	protocol	named		UISearchBarDelegate	.	This	protocol
provides	several	methods	for	managing	the	search	text.	In	particular,	the	following
method	is	called	whenever	the	user	changes	the	search	text:

optional	func	searchBar(_	searchBar:	UISearchBar,	textDidChange	searchText:	String)

560Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	make	the	search	bar	functional,	we	have	to	adopt	the		UISearchBarDelegate		protocol.
This	is	where	things	become	more	complex.

So	far,	we	have	only	discussed	a	couple	of	the	methods	in	the		UIViewRepresentable	
protocol.	If	you	need	to	work	with	a	delegate	in	UIKit	and	communicate	back	to	SwiftUI,
you	have	to	implement	the		makeCoordinator		method	and	provide	a		Coordinator		instance.
This		Coordinator		acts	as	a	bridge	between	UIView's	delegate	and	SwiftUI.	Let's	have	a
look	at	the	code,	so	you	will	understand	what	it	means.

In	the		SearchBar		struct	(SearchBar.swift	file),	create	a		Coordinator		class	and	implement
the		makeCoordinator		method	like	this:

func	makeCoordinator()	->	Coordinator	{

				Coordinator($text)

}

class	Coordinator:	NSObject,	UISearchBarDelegate	{

				@Binding	var	text:	String

				init(_	text:	Binding<String>)	{

								self._text	=	text

				}

				func	searchBar(_	searchBar:	UISearchBar,	textDidChange	searchText:	String)	{

								searchBar.showsCancelButton	=	true

								text	=	searchText

								print("textDidChange:	\(text)")

				}

}

The		makeCoordinator		method	simply	returns	an	instance	of		Coordinator	.	The
	Coordinator	,	adopts	the		UISearchBarDelegate		protocol	and	implements	the
	searchBar(_:textDidChange:)		method.	As	mentioned,	this	method	is	called	every	time	a
user	changes	the	search	text.	Therefore,	we	capture	the	updated	search	text	and	pass	it
back	to	SwiftUI	by	updating	the		text		binding.	I	intentionally	added	a	print	statement	in
the	method,	so	that	you	can	see	the	changes	when	we	test	the	app	later.

561Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	that	we	have	a		Coordinator		that	adopts	the		UISearchBarDelegate		protocol,	we	need
to	make	one	more	change.	In	the		makeUIView		method,	insert	the	following	line	of	code	to
assign	the	coordinator	to	the	search	bar:

searchBar.delegate	=	context.coordinator

That's	it!	Run	the	app	again	and	type	in	the	search	field.	You	should	see	the
"textDidChange:"	message	in	the	console.

Figure	3.	The	console	displays	the	message	as	you	type

Handling	the	Cancel	Button

Did	you	tap	the	Cancel	button?	If	you've	tried	that,	you	know	it	is	not	functional.	To
make	it	work,	we	have	to	implement	the	following	methods	in	the		Coordinator	:

562Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

func	searchBarCancelButtonClicked(_	searchBar:	UISearchBar)	{

				text	=	""

				searchBar.resignFirstResponder()

				searchBar.showsCancelButton	=	false

				searchBar.endEditing(true)

}

func	searchBarShouldBeginEditing(_	searchBar:	UISearchBar)	->	Bool	{

				searchBar.showsCancelButton	=	true

				return	true

}

The	first	method	is	triggered	when	the	cancel	button	is	clicked.	In	the	code,	we	call
	resignFirstResponder()		to	dismiss	the	keyboard	and	tell	the	search	bar	to	end	the	editing.
The	second	method	ensures	that	the	Cancel	button	appears	when	the	user	taps	the	search
field.

You	can	perform	a	quick	test	by	running	the	app	in	a	simulator.	Tapping	the	Cancel
button	while	editing	should	dismiss	the	software	keyboard.

Performing	the	Search

We	can	now	retrieve	the	search	text	and	handle	the	cancel	button.	Unfortunately,	the
search	bar	is	still	not	working	yet.	This	is	what	we	are	going	to	implement	in	this	section.
For	this	app,	there	are	a	couple	of	ways	to	perform	the	search:

1.	 Perform	the	search	on	the		todoItems		using	the		filter		function
2.	 Perform	the	search	on	the		FetchRequest		by	providing	a	predicate

Basically	the	first	approach	is	good	enough	for	this	app	because	the		todoItems		is	in	sync
with	the	to-do	item	stored	in	the	database.	I	also	want	to	show	you	how	to	perform	the
search	using		FetchRequest	.	So,	we	will	look	into	both	approaches.

Using	the	filter	function

563Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	Swift,	you	can	use	the		filter		function	to	loop	over	a	collection	and	get	an	array	of
items	that	matches	the	filter	criteria.	Here	is	an	example:

todoItems.filter({	$0.name.contains("Buy")	})

The		filter		function	takes	a	closure	as	an	argument	that	specifies	the	filter	criteria.	For
example,	the	code	above	will	return	those	items	that	contain	the	keyword	"Buy"	in	its
name	field.

To	implement	the	search,	we	can	replace	the		ForEach		loop	of	the		List		like	this:

ForEach(todoItems.filter({	searchText.isEmpty	?	true	:	$0.name.contains(searchText

)	}))	{	todoItem	in

				ToDoListRow(todoItem:	todoItem)

}

.onDelete(perform:	deleteTask)

In	the	closure	of	the		filter		function,	we	first	check	if	the	search	text	has	a	value.	If	not,
we	simply	return		true	,	which	means	that	it	returns	all	the	items.	Otherwise,	we	check	if
the	name	field	contains	the	search	term.

That's	it.	You	can	now	run	the	app	to	test	it	out.	Type	in	the	search	field	and	the	app	will
filter	those	records	that	match	the	search	term.

564Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Filtering	the	todo	items

Using	FetchRequest

The	filter	approach	performs	the	search	on	the	existing	fetch	results.	The	other	approach
is	to	perform	the	search	directly	using	Core	Data.	When	we	fetch	the	data	from	database,
we	specify	clearly	the	todo	items	to	retrieve.

The		@FetchRequest		property	wrapper	allows	you	to	pass	a	predicate,	which	we	haven’t
discussed	before,	to	specify	the	filter	criteria.

Here	is	an	example:

@FetchRequest(

				entity:	ToDoItem.entity(),

				sortDescriptors:	[NSSortDescriptor(keyPath:	\ToDoItem.priorityNum,	ascending:	

false)],

				predicate:	NSPredicate(format:	"name	CONTAINS[c]	%@",	"Buy")

)

565Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

By	providing	the	predicate	property,	the	fetch	request	will	only	fetch	the	to-do	items
who's	name	field	contains	the	search	term	"buy".	The		[c]		following		CONTAINS		means
that	the	search	is	case	insensitive.	If	you	want	to	test	it,	please	make	sure	you	revert	the
	ForEach		to	the	original	code	(without	the	filter	function).	And	then	replace	the
	@FetchRequest		with	the	code	above.

Assuming	you’ve	added	some	todo	items	with	"Buy"	in	the	item	name,	you	should	only
see	the	to-do	items	with	the	search	term	"buy"	after	the	code	change.

Figure	5.	The	app	only	displays	the	to-do	items	containing	the	keyword	"buy"

It	looks	simple,	right?	But	when	you	need	to	create	a	fetch	request	with	a	dynamic
predicate,	then	it	is	not	that	simple.	Once	the	fetch	request	is	initialized	with	a	specific
predicate,	you	can't	change	it.	The	same	goes	for	the	sort	descriptor.

So,	how	do	we	build	a	fetch	request	that	supports	different	predicates?

The	trick	is	not	to	use	the		@FetchRequest		property	wrapper.	Instead,	we	create	the	fetch
request	manually.	In	order	to	do	that,	we	will	create	a	separate	view	called		FilteredList	
which	accepts	the	search	text	as	an	argument.	This		FilteredList		is	responsible	to	create
the	fetch	request,	search	for	the	related	to-do	items,	and	present	them	in	a	list	view.

In		ContentView.swift	,	insert	the	following	code	to	create	the		FilteredList	:

struct	FilteredList:	View	{

				@Environment(\.managedObjectContext)	var	context

566Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

				@Binding	var	searchText:	String

				var	fetchRequest:	FetchRequest<ToDoItem>

				var	todoItems:	FetchedResults<ToDoItem>	{

								fetchRequest.wrappedValue

				}				

				init(_	searchText:	Binding<String>)	{

								self._searchText	=	searchText

								let	predicate	=	searchText.wrappedValue.isEmpty	?	NSPredicate(value:	true)

	:	NSPredicate(format:	"name	CONTAINS[c]	%@",	searchText.wrappedValue)

								self.fetchRequest	=	FetchRequest(entity:	ToDoItem.entity(),

																																									sortDescriptors:	[NSSortDescriptor(keyPa

th:	\ToDoItem.priorityNum,	ascending:	false)],

																																									predicate:	predicate,

																																									animation:	.default)

				}

				var	body:	some	View	{

								ZStack	{

												List	{

																ForEach(todoItems)	{	todoItem	in

																				ToDoListRow(todoItem:	todoItem)

																}

																.onDelete(perform:	deleteTask)

												}

												if	todoItems.count	==	0	{

																NoDataView()

												}

								}

				}

				private	func	deleteTask(indexSet:	IndexSet)	{

567Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

								for	index	in	indexSet	{

												let	itemToDelete	=	todoItems[index]

												context.delete(itemToDelete)

								}

								do	{

												try	context.save()

								}	catch	{

												print(error)

								}

				}

}

Take	a	look	at	the		body		and		deleteTask	.	Both	are	exactly	the	same	as	before.	We	just
extract	the	code	and	put	them	in	the		FilteredList	.	The	core	changes	are	in	the		init	
method	and	the	fetch	request.

We	declare	a	variable	named		fetchRequest		to	hold	the	fetch	request	and	another	variable
named		todoItems		to	store	the	fetched	results.	The	fetched	results	can	actually	be
retrieved	from	the		wrappedValue		property	of	the	fetch	request.

Now	let's	dive	into	the		init		method.	This	custom		init		method	accepts	the	search	text
as	an	argument.	To	be	clear,	it's	the	binding	for	the	search	text.	The	reason	why	we	need
to	create	a	custom		init		is	that	we	are	creating	a	dynamic	fetch	request	based	on	the
given	search	text.

The	first	line	of	the		init		method	is	to	store	the	binding	of	the	search	text.	To	assign	a
binding,	you	use	the	underscore	like	this:

self._searchText	=	searchText

Next,	we	check	if	the	search	text	is	empty	(or	not)	and	build	the	predicate	accordingly:

let	predicate	=	searchText.wrappedValue.isEmpty	?	NSPredicate(value:	true)	:	NSPre

dicate(format:	"name	CONTAINS[c]	%@",	searchText.wrappedValue)

Once	the	predicate	is	ready,	we	create	the	fetch	request	like	this:

568Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

self.fetchRequest	=	FetchRequest(entity:	ToDoItem.entity(),

																																	sortDescriptors:	[NSSortDescriptor(keyPath:	\ToD

oItem.priorityNum,	ascending:	false)],

																																	predicate:	predicate,

																																	animation:	.default)

As	you	can	see,	the	usage	is	very	similar	to	that	of	the		@FetchRequest		property	wrapper.

This	is	it!	We	now	have	a		FilteredList		that	can	handle	a	fetch	request	with	different
predicates.	Now	let's	modify	the		ContentView		struct	to	make	use	of	this	new
	FilteredList	.

Since	we've	moved	the	fetch	request	to		FilteredList	,	we	can	delete	the	following
variables:

@Environment(\.managedObjectContext)	var	context

@FetchRequest(

				entity:	ToDoItem.entity(),

				sortDescriptors:	[NSSortDescriptor(keyPath:	\ToDoItem.priorityNum,	ascending:	

false)],

				predicate:	NSPredicate(format:	"name	CONTAINS[c]	%@",	"buy")

)

var	todoItems:	FetchedResults<ToDoItem>

Next,	replace	the	following	code:

List	{

				ForEach(todoItems.filter({	searchText.isEmpty	?	true	:	$0.name.contains(search

Text)	}))	{	todoItem	in

								ToDoListRow(todoItem:	todoItem)

				}

				.onDelete(perform:	deleteTask)

}

569Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

With:

FilteredList($searchText)

Here	we	use	the		FilteredList		to	render	the	list	view.	We	pass	the	binding	of		searchText	
for	performing	the	search.	Since		searchText		is	a	state	variable,	any	change	on	the	search
text	will	trigger	the	update	of	the		FilteredList	.	In	reality,	the	app	creates	a	different
predicate	and	fetches	a	new	set	of	to-do	items	as	the	user	types	in	the	search	field.

Next,	remove	the	following	code	because	it's	in	the		FilteredList		also:

//	If	there	is	no	data,	show	an	empty	view

if	todoItems.count	==	0	{

				NoDataView()

}

Finally,	delete	the	following	code	from	the		deleteTask		method:

private	func	deleteTask(indexSet:	IndexSet)	{

				for	index	in	indexSet	{

								let	itemToDelete	=	todoItems[index]

								context.delete(itemToDelete)

				}

				do	{

								try	context.save()

				}	catch	{

								print(error)

				}

}

Now	you're	ready	to	test!	If	you've	made	all	the	code	changes	correctly,	the	app	should
filter	the	to-do	items	as	you	type	in	the	search	term.

Summary

570Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	this	chapter,	you've	learned	how	to	use	the		UIViewRepresentable		protocol	to	integrate
UIKit	views	with	SwiftUI.	While	SwiftUI	is	still	very	new	and	doesn't	come	with	all	the
standard	UI	components,	this	backward	compatibility	allows	you	to	tap	into	the	old
framework	and	utilize	any	views	you	need.

We	also	explored	a	couple	of	approaches	for	performing	data	search.	You	should	now
know	how	to	use	the		filter		function	and	understand	how	to	create	a	dynamic	fetch
request.

For	reference,	you	can	download	the	complete	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIToDoListUISearchBar.zip)

571Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIToDoListUISearchBar.zip

Chapter	24
Creating	a	Search	Bar	View	and
Working	with	Custom	Binding
Previously,	we	showed	you	how	to	implement	a	search	bar	by	reusing	the		UISearchBar	
component	of	the	old	UIKit	framework.	Have	you	ever	thought	of	building	one	from
scratch?	If	you	look	at	the	search	bar	carefully,	it's	not	too	difficult	to	implement.	So,	let's
try	to	build	a	SwiftUI	version	of	a	search	bar	in	this	chapter.

Not	only	will	you	learn	how	to	create	the	search	bar	view,	we	will	show	you	how	to	work
with	custom	bindings.	We've	discussed	bindings	before,	but	haven't	showed	you	how	to
create	a	custom	binding.	Custom	binding	is	particularly	useful	when	you	need	to	insert
additional	program	logic	while	it's	being	read	and	written.	In	addition	to	all	that,	you	will
learn	how	to	dismiss	the	software	keyboard	in	SwiftUI.

Figure	1	shows	you	the	search	bar	we're	going	to	build.	The	look	&	feel	is	the	same	as	that
of		UISearchBar		in	UIKit.	We	will	also	implement	the	Cancel	button	which	only	appears
when	the	user	starts	typing	in	the	search	field.

572Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Building	a	search	bar	view	entirely	using	SwiftUI

Implementing	the	Search	Bar	UI

We	will	convert	the	previous	project	from		UISearchBar		to	our	own	implementation	of
search	bar.	To	get	started,	please	download	the	starter	project	from
https://www.appcoda.com/resources/swiftui2/SwiftUIToDoListUISearchBar.zip.	Once
you	download	it,	compile	it	to	make	sure	it	works.	The	app	should	show	you	a	search	bar,
however,	this	bar	is	from	UIKit.	We	are	going	to	convert	it	to	a	search	bar	view	built
entirely	using	SwiftUI.

Open		SearchBar.swift	,	which	is	the	file	we	will	focus	on.	We	will	rewrite	the	whole	code
but	keep	its	struct	name	intact.	We	still	call	it		SearchBar	,	which	still	accepts	a	binding	of
search	text	as	an	argument.	To	the	caller	(i.e.	ContentView),	there	is	nothing	to	change.
The	usage	is	still	like	this:

SearchBar(text:	$searchText)

573Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIToDoListUISearchBar.zip

Now,	let's	begin	with	the	UI	implementation.	If	you	want	to	challenge	yourself,	stop
reading	here	and	try	to	implement	the	search	bar	UI	on	your	own.	This	UI	is	quite
simple.	It's	composed	of	a	text	field,	a	couple	of	icons,	and	the	cancel	button.

If	you	have	no	idea	how	the	UI	is	built,	let's	create	it	together.	Replace	the		SearchBar	
struct	in		SearchBar.swift		like	this:

struct	SearchBar:	View	{

				@Binding	var	text:	String

				@State	private	var	isEditing	=	false

				var	body:	some	View	{

								HStack	{

												TextField("Search	...",	text:	$text)

																.padding(7)

																.padding(.horizontal,	25)

																.background(Color(.systemGray6))

																.cornerRadius(8)

																.overlay(

																				HStack	{

																								Image(systemName:	"magnifyingglass")

																												.foregroundColor(.gray)

																												.frame(minWidth:	0,	maxWidth:	.infinity,	alignment:	.l

eading)

																												.padding(.leading,	8)

																								if	isEditing	{

																												Button(action:	{

																																self.text	=	""

																												})	{

																																Image(systemName:	"multiply.circle.fill")

																																				.foregroundColor(.gray)

																																				.padding(.trailing,	8)

																												}

																								}

																				}

)

																.padding(.horizontal,	10)

																.onTapGesture	{

574Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

																				self.isEditing	=	true

																}

												if	isEditing	{

																Button(action:	{

																				self.isEditing	=	false

																				self.text	=	""

																})	{

																				Text("Cancel")

																}

																.padding(.trailing,	10)

																.transition(.move(edge:	.trailing))

																.animation(.default)

												}

								}

				}

}

First,	we	declare	two	variables:	one	is	the	binding	of	the	search	text	and	the	other	one	is	a
variable	for	storing	the	state	of	the	search	field	(editing	or	not).

We	used	a		HStack		to	layout	the	text	field	and	the	Cancel	button.	For	the	text	field,	we
overlay	a	magnifying	glass	icon	and	the	cross	icon	(i.e.	multiply.circle.fill),	which	is	only
displayed	when	the	search	field	is	in	editing	mode.	The	same	goes	for	the	Cancel	button,
which	appears	when	the	user	taps	the	search	field.

In	order	to	preview	the	search	bar,	please	also	insert	the	following	code:

struct	SearchBar_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								SearchBar(text:	.constant(""))

				}

}

575Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	you	have	added	the	code,	you	should	be	able	to	preview	the	search	field.	Click	the
play	button	to	test	the	search	field.	When	you	select	the	text	field,	the	Cancel	button
should	appear.

Figure	2.	Previewing	the	search	bar

What's	more	is	that	the	search	bar	already	works!	Run	the	app	on	a	simulator	and
perform	a	search.	It	should	filter	the	result	based	on	the	search	term.

576Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	The	search	bar	is	already	functional

Dismissing	the	Keyboard

As	you	can	see,	it's	not	hard	to	create	our	own	search	bar	entirely	using	SwiftUI.	While
the	search	bar	is	working,	there	is	a	minor	issue	we	have	to	fix.	Have	you	tried	to	tap	the
cancel	button?	It	does	clear	the	search	field.	However,	the	software	keyboard	is	not
dismissed.

To	fix	that,	we	need	to	add	a	line	of	code	in	the		action		block	of	the	Cancel	button	in
	SearchBar.swift	:

//	Dismiss	the	keyboard

UIApplication.shared.sendAction(#selector(UIResponder.resignFirstResponder),	to:	n

il,	from:	nil,	for:	nil)

In	the	code,	we	call	the		sendAction		method	to	resign	the	first	responder	and	dismiss	the
keyboard.	You	can	now	run	the	app	using	a	simulator.	When	you	tap	the	cancel	button,	it
should	clear	the	search	field	and	dismiss	the	software	keyboard.

577Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Working	with	Custom	Binding

The	SwiftUI	version	of	search	bar	already	functions	properly,	but	I	want	to	take	this
opportunity	to	discuss	custom	binding	with	you.	In		SearchBar.swift	,	we	declare	a
binding	of	the	search	text	like	this:

@Binding	var	text:	String

It	works	great	for	our	current	implementation.	But	let	me	ask	you.	What	if	we	needed	to
add	extra	logic	when	reading	or	writing	this	binding?	For	example,	how	can	you
capitalize	each	word	in	the	search	field?

Swift	has	a	built-in	feature	to	capitalize	a	string.	You	can	use	the		capitalized		property	of
the	text	and	retrieve	the	capitalized	text.	The	question	is	how	do	we	update	the	binding	of
	text	?

In	this	case,	you	will	need	to	create	a	custom	binding	in		SearchBar.swift		like	this:

private	var	searchText:	Binding<String>	{

				return	Binding<String>(

								get:	{

												self.text.capitalized

								},	set:	{

												self.text	=	$0

								}

)

}

In	the	code	above,	we	create	a	custom	binding	named		searchText		with	closures	that	read
(get)	and	write	(set)	the	binding	value.	For	the		get		part,	we	customize	the	binding	value
of		text		by	accessing	the		capitalized		property.	This	is	how	we	capitalize	each	word	the
user	types	in	the	search	field.	For	the		set		part,	we	do	not	make	any	changes	and	set	it	to
the	original	value.	However,	if	you	need	to	add	extra	logic	when	setting	the	binding,	you
can	modify	the	code	in		set	.

578Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

As	a	side	note,	you	can	omit	the		return		keyword	and	write	the	binding	like	this:

private	var	searchText:	Binding<String>	{

				Binding<String>(

								get:	{

												self.text.capitalized

								},	set:	{

												self.text	=	$0

								}

)

}

This	is	a	new	feature	in	Swift	5.1,	in	case	you	are	not	aware.

We	are	still	passing	the		text		binding	to		TextField	.	Before	the	custom	binding	change
takes	effect,	we	will	need	to	make	one	more	change.	Modify	the	parameter	in		TextField	
and	make	sure	you	pass	the		searchText		as	the	binding:

TextField("Search	...",	text:	searchText)

Now	run	the	app	on	a	simulator.	Type	a	few	words	into	the	search	field.	The	app	should
automatically	capitalize	each	word	as	you	type.

579Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	The	search	field	automatically	capitalizes	each	word	as	you	type

Summary

In	this	chapter,	we	showed	you	another	approach	to	implementing	a	search	bar.	As	you
can	see,	it's	not	difficult	to	build	one	entirely	using	SwiftUI.	You've	also	learned	how	to
create	a	custom	binding.	This	is	very	useful	when	you	need	to	add	extra	program	logic
when	setting	or	retrieving	the	binding	value.

For	reference,	you	can	download	the	complete	search	bar	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIToDoListSearchBarView.zip
)

580Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIToDoListSearchBarView.zip

Chapter	25
Putting	Everything	Together	to	Build
a	Personal	Finance	App
By	now,	you	should	have	a	good	understanding	of	SwiftUI	and	have	built	some	simple
apps	using	this	new	framework.	In	this	chapter,	you	are	going	to	use	what	you've	learned
so	far	to	develop	a	personal	finance	app,	allowing	users	to	keep	track	of	their	income	and
expenses.

Figure	1.	The	Personal	Finance	App

581Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

This	app	is	not	too	complicated	to	build	but	you	will	learn	quite	a	lot	about	SwiftUI	and
understand	how	to	apply	the	techniques	you	learned	in	developing	this	real	world	app.	In
brief,	here	is	some	of	the	stuff	we	will	go	through	with	you:

1.	 How	to	build	a	form	and	perform	validation
2.	 How	to	filter	records	and	refresh	the	list	view
3.	 How	to	use	bottom	sheet	to	display	record	details
4.	 How	to	use	MVVM	(Model-View-ViewModel)	in	SwiftUI
5.	 How	to	save	and	manage	data	in	a	database	using	Core	Data
6.	 How	to	use	DatePicker	for	date	selection
7.	 How	to	handle	keyboard	notification	and	adjust	the	form	position

Let	me	stress	this	once	again.	This	app	is	the	result	of	what	you	learned	so	far.	Therefore,
I	assume	you	have	already	read	the	book	from	chapter	1	to	chapter	24.	You	should
understand	how	a	bottom	sheet	is	built	(chapter	18),	how	form	validation	with	Combine
works	(chapter	14	&	15),	and	how	to	persist	data	using	Core	Data	(chapter	22).	If	you
haven't	read	these	chapters,	I	suggest	you	go	read	them	first.	In	this	chapter,	we	will
mostly	focus	on	techniques	that	haven't	been	discussed	before.

Downloading	the	Complete	Project

Normally,	we	build	a	demo	app	from	scratch.	This	time	is	a	bit	different.	I've	already	built
the	Personal	Finance	app	for	you.	You	can	download	the	full	source	code	of	the	project
from	https://www.appcoda.com/resources/swiftui2/SwiftUIPFinance.zip	to	take	a	look.
Unzip	the	project	and	run	the	app	on	a	simulator	to	try	it	out.	When	the	app	is	first
launched,	it	looks	different	from	the	one	shown	in	figure	1	because	there	are	no	records.
You	can	tap	the	+	button	to	add	a	new	record.	After	you	go	back	to	the	main	view,	you
will	see	the	new	record	in	the	Recent	Transactions	section.	And,	the	total	balance	is
automatically	calculated.

The	app	uses	Core	Data	for	data	management.	The	records	are	persisted	locally	in	the
built-in	database,	so	you	should	see	the	records	even	after	restarting	the	app.

For	the	rest	of	the	chapter,	I	will	explain	how	the	code	works	in	detail.	But	I	encourage
you	to	take	a	look	at	the	code	first	to	see	how	much	you	understand.

582Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIPFinance.zip

Understanding	the	Model

As	you	can	see	in	the	project	navigator,	the	app	is	broken	into	three	main	parts:	model,
view	model	and	view.	Let's	begin	with	the	model	layer	and	Core	Data	model.	Open	the
	PaymentActivity.swift		file	to	take	a	look:

enum	PaymentCategory:	Int	{

				case	income	=	0

				case	expense	=	1

}

public	class	PaymentActivity:	NSManagedObject	{

				@NSManaged	public	var	paymentId:	UUID

				@NSManaged	public	var	date:	Date

				@NSManaged	public	var	name:	String

				@NSManaged	public	var	address:	String?

				@NSManaged	public	var	amount:	Double

				@NSManaged	public	var	memo:	String?

				@NSManaged	public	var	typeNum:	Int32

}

extension	PaymentActivity:	Identifiable	{

				var	type:	PaymentCategory	{

								get	{

												return	PaymentCategory(rawValue:	Int(typeNum))	??	.expense

								}

								set	{

												self.typeNum	=	Int32(newValue.rawValue)

								}

				}

}

The		PaymentActivity		class	represents	a	payment	record	which	can	either	be	an	expense	or
income.	In	the	code	above,	we	use	an		enum		to	differentiate	the	payment	types.	Each
payment	has	the	following	properties:

paymentId	-	an	unique	ID	for	the	payment	record

583Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

date	-	the	date	of	the	transaction
name	-	the	name	of	the	transaction
address	-	where	you	spend	/	where	the	income	comes	from
amount	-	the	amount	of	the	transaction
memo	-	additional	notes	for	the	payment
typeNum	-	the	payment	type	(income	/	expense)

Since	we	use	Core	Data	to	persist	the	payment	activity,	this		PaymentActivity		class	inherits
from		NSManagedObject	.	Later,	you	will	see	in	the	Core	Data	model	that	this	class	is	set	as	a
custom	class	of	the	managed	object.	Again,	if	you	don't	understand	Core	Data,	please
refer	to	chapter	22.

The	payment	type	(i.e.		typeNum),	is	saved	as	an	integer	in	the	database.	Therefore,	we
need	a	conversion	between	the	integer	and	the	actual	enumeration.	This	is	one	approach
to	save	an	enum	in	a	persistent	storage.

Lastly,	we	adopt	the		Identifiable		protocol.	Why	do	we	need	to	adopt	it?	We	will	use	the
	List		view	to	present	all	the	payment	activities.	This	is	why	the		PaymentActivity		class
adopts	the	protocol.	If	you	forget	what	the		Identifiable		protocol	is,	you	can	read	about	it
in	chapter	10.

Working	with	Core	Data

Now,	open		PFinanceStore.xcdatamodeld		to	have	a	look	at	the	managed	data	model.	In	the
model,	we	only	have	one	entity,	PaymentActivity.

584Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	The	PaymentActivity	entity

This	class,	as	we	discussed	earlier,	is	the	custom	class	of	this	entity.	You	can	click	the
Data	Model	inspector	to	reveal	the	settings.	As	mentioned	before,	I	prefer	to	create	the
custom	class	manually	(instead	of	codegen).	This	gives	me	more	flexiblity	to	customize
the	class.

Next,	let's	head	over	to		Persistence.swift		(inside	the	Model	group)	to	see	how	this	data
model	is	loaded.	In	the		PersistenceController		struct,	you	should	see	the	following	code:

585Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	PersistenceController	{

				static	let	shared	=	PersistenceController()

				let	container:	NSPersistentContainer

				.

				.

				.

				init(inMemory:	Bool	=	false)	{

								container	=	NSPersistentContainer(name:	"PFinanceStore")

								if	inMemory	{

												container.persistentStoreDescriptions.first!.url	=	URL(fileURLWithPath

:	"/dev/null")

								}

								container.loadPersistentStores(completionHandler:	{	(storeDescription,	err

or)	in

												if	let	error	=	error	as	NSError?	{

																fatalError("Unresolved	error	\(error),	\(error.userInfo)")

												}

								})

				}

}

When	the	app	starts,	we	load	the		PFinanceStore.xcdatamodeld		using		NSPersistentContainer	.
Now,	switch	over	to		PFinanceApp.swift		and	check	out	the	code:

struct	PFinanceApp:	App	{

				let	persistenceController	=	PersistenceController.shared

				var	body:	some	Scene	{

								WindowGroup	{

												DashboardView().environment(\.managedObjectContext,	persistenceControl

ler.container.viewContext)

								}

				}

}

586Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	trick	to	using	Core	Data	in	SwiftUI,	is	to	inject	the	managed	object	context	into	the
environment.	Later,	in	the	SwiftUI	views,	we	can	easily	grab	the	context	from	the
environment	for	further	operations.

Implementing	the	New	Payment	View

Now	that	we	have	completed	the	walkthrough	of	the	model	layer,	let's	see	how	we
implement	each	of	the	views.	The	New	Payment	view	is	designed	for	users	to	create	a
new	payment	activity.	Open	the		PaymentFormView.swift		file	to	take	a	look.	You	should	be
able	to	preview	the	input	form.

Figure	3.	The	Payment	Form	View

The	Form	Layout

Let	me	first	walk	you	through	how	the	form	is	laid	out.	It's	always	good	practice	to	extract
common	views	to	create	a	more	generic	version.	Since	most	of	the	form	fields	are	very
similar,	we	created	a	generic	text	field	(i.e.		FormTextField)	to	render	the	field	name	and

587Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

the	placeholder	using	a		VStack	:

struct	FormTextField:	View	{

				let	name:	String

				var	placeHolder:	String

				@Binding	var	value:	String

				var	body:	some	View	{

								VStack(alignment:	.leading)	{

												Text(name.uppercased())

																.font(.system(.subheadline,	design:	.rounded))

																.fontWeight(.bold)

																.foregroundColor(.primary)

												TextField(placeHolder,	text:	$value)

																.font(.headline)

																.foregroundColor(.primary)

																.padding()

																.border(Color("Border"),	width:	1.0)

								}

				}

}

Do	you	notice	the	two	validation	errors	under	the	form	title?	Since	these	validation
messages	have	a	similar	format,	we	also	create	a	generic	view	for	this	kind	of	message:

588Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ValidationErrorText:	View	{

				var	iconName	=	"info.circle"

				var	iconColor	=	Color(red:	251/255,	green:	128/255,	blue:	128/255)

				var	text	=	""

				var	body:	some	View	{

								HStack	{

												Image(systemName:	iconName)

																.foregroundColor(iconColor)

												Text(text)

																.font(.system(.body,	design:	.rounded))

																.foregroundColor(.secondary)

												Spacer()

								}

				}

}

With	these	two	common	views	created,	it's	very	straightforward	to	layout	the	form.	We
use	a		ScrollView	,	together	with	a		VStack		to	arrange	the	form	fields.	The	validation	error
messages	are	only	displayed	when	an	error	is	detected:

Group	{

				if	!paymentFormViewModel.isNameValid	{

								ValidationErrorText(text:	"Please	enter	the	payment	name")

				}

				if	!paymentFormViewModel.isAmountValid	{

								ValidationErrorText(text:	"Please	enter	a	valid	amount")

				}

				if	!paymentFormViewModel.isMemoValid	{

								ValidationErrorText(text:	"Your	memo	should	not	exceed	300	characters")

				}

}

589Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	type	field	is	a	bit	different	because	it's	not	a	text	field.	The	user	can	either	select
income	or	expense.	In	this	case,	we	created	two	buttons

VStack(alignment:	.leading)	{

				Text("TYPE")

								.font(.system(.subheadline,	design:	.rounded))

								.fontWeight(.bold)

								.foregroundColor(.primary)

								.padding(.vertical,	10)

				HStack(spacing:	0)	{

								Button(action:	{

												self.paymentFormViewModel.type	=	.income

								})	{

												Text("Income")

																.font(.headline)

																.foregroundColor(self.paymentFormViewModel.type	==	.income	?	Color

.white	:	Color.primary)

								}

								.frame(minWidth:	0.0,	maxWidth:	.infinity)

								.padding()

								.background(self.paymentFormViewModel.type	==	.income	?	Color("IncomeCard"

)	:	Color.white)

								Button(action:	{

												self.paymentFormViewModel.type	=	.expense

								})	{

												Text("Expense")

																.font(.headline)

																.foregroundColor(self.paymentFormViewModel.type	==	.expense	?	Color

.white	:	Color.primary)

								}

								.frame(minWidth:	0.0,	maxWidth:	.infinity)

								.padding()

								.background(self.paymentFormViewModel.type	==	.expense	?	Color("ExpenseCar

d")	:	Color.white)

				}

				.border(Color("Border"),	width:	1.0)

}

590Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	background	color	of	the	button	varies	depending	on	the	type	of	the	payment	activity.

The	date	field	is	implemented	using	the		DatePicker		component.	It's	very	easy	to	use	the
	DatePicker	.	All	you	need	is	to	provide	the	label,	the	binding	to	the	date	value,	and	the
display	components	of	the	date.

struct	FormDateField:	View	{

				let	name:	String

				@Binding	var	value:	Date

				var	body:	some	View	{

								VStack(alignment:	.leading)	{

												Text(name.uppercased())

																.font(.system(.subheadline,	design:	.rounded))

																.fontWeight(.bold)

																.foregroundColor(.primary)

												DatePicker("",	selection:	$value,	displayedComponents:	.date)

																.accentColor(.primary)

																.padding(10)

																.border(Color("Border"),	width:	1.0)

																.labelsHidden()

								}

				}

}

In	iOS	14,	the	built-in		DatePicker		has	been	improved	with	better	UI	and	more	styles.	If
you	run	the	view	and	tap	the	date	field,	the	app	displays	a	full	calendar	view	for	users	to
pick	the	date.	The	user	interface	is	much	much	better	than	the	old	version	of	date	picker.

591Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Tapping	the	date	field	shows	you	a	full	calendar

The	memo	field	is	not	a	text	field	but	a	text	editor.	In	iOS	13,	SwiftUI	doesn't	come	with	a
multiline	text	field.	To	support	multiline	text	editing,	you	will	need	to	tap	into	the	UIKit
framework	and	wrap		UITextView		into	a	SwiftUI	component.	Starting	with	iOS	14,	Swift
introduced	a	new	component	called		TextEditor		for	displaying	and	editing	long-form	text.
In		PaymentFormView.swift	,	you	should	find	the	following	struct:

592Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	FormTextEditor:	View	{

				let	name:	String

				var	height:	CGFloat	=	80.0

				@Binding	var	value:	String

				var	body:	some	View	{

								VStack(alignment:	.leading)	{

												Text(name.uppercased())

																.font(.system(.subheadline,	design:	.rounded))

																.fontWeight(.bold)

																.foregroundColor(.primary)

												TextEditor(text:	$value)

																.frame(minHeight:	height)

																.font(.headline)

																.foregroundColor(.primary)

																.padding()

																.border(Color("Border"),	width:	1.0)

								}

				}

}

The	usage	of		TextEditor		is	very	similar	to		TextField	.	All	you	need	is	to	pass	it	the
binding	to	a	String	variable.	Just	like	any	other	SwiftUI	view,	you	apply	view	modifiers	to
style	its	appearance.	This	is	how	we	created	the	Memo	field	for	users	to	type	long	form
text.

At	the	end	of	the	form,	is	the	Save	button.	This	button	is	disabled	by	default.	It's	only
enabled	when	all	the	required	fields	are	filled.	The		disabled		modifier	is	used	to	control
the	button's	state.

593Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Button(action:	{

				self.save()

				self.presentationMode.wrappedValue.dismiss()

})	{

				Text("Save")

								.opacity(paymentFormViewModel.isFormInputValid	?	1.0	:	0.5)

								.font(.headline)

								.foregroundColor(.white)

								.padding()

								.frame(minWidth:	0,	maxWidth:	.infinity)

								.background(Color("IncomeCard"))

								.cornerRadius(10)

}

.padding()

.disabled(!paymentFormViewModel.isFormInputValid)

When	the	button	is	tapped,	it	calls	the		save()		method	to	save	the	payment	activity
permanently	into	the	database.	And	then,	it	invokes	the		dismiss()		method	to	dismiss	the
view.	If	you	are	not	familiar	with	the	environment	value		presentationMode	,	please	read
chapter	12.

Form	Validation

That's	pretty	much	how	we	layout	the	form	UI.	Let's	talk	about	how	the	form	validation	is
implemented.	Basically,	we	followed	what's	discussed	in	chapter	15	to	perform	the	form
validation	using	Combine.	Here	is	what	we	have	done:

1.	 Create	a	view	model	to	represent	the	payment	activity	form.
2.	 Implement	form	validation	in	the	view	model	and	publish	the	validation	results

using	Combine.

We	created	a	view	model	class	to	hold	the	values	of	the	form	fields.	You	can	switch	over
to		PaymentFormViewModel.swift		to	view	the	code:

class	PaymentFormViewModel:	ObservableObject	{

594Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

				//	Input

				@Published	var	name	=	""

				@Published	var	location	=	""

				@Published	var	amount	=	""

				@Published	var	type	=	PaymentCategory.expense

				@Published	var	date	=	Date.today

				@Published	var	memo	=	""

				//	Output

				@Published	var	isNameValid	=	false

				@Published	var	isAmountValid	=	true

				@Published	var	isMemoValid	=	true

				@Published	var	isFormInputValid	=	false

				private	var	cancellableSet:	Set<AnyCancellable>	=	[]

				init(paymentActivity:	PaymentActivity?)	{

								self.name	=	paymentActivity?.name	??	""

								self.location	=	paymentActivity?.address	??	""

								self.amount	=	"\(paymentActivity?.amount	??	0.0)"

								self.memo	=	paymentActivity?.memo	??	""

								self.type	=	paymentActivity?.type	??	.expense

								self.date	=	paymentActivity?.date	??	Date.today

								$name

												.receive(on:	RunLoop.main)

												.map	{	name	in

																return	name.count	>	0

												}

												.assign(to:	\.isNameValid,	on:	self)

												.store(in:	&cancellableSet)

								$amount

												.receive(on:	RunLoop.main)

												.map	{	amount	in

																guard	let	validAmount	=	Double(amount)	else	{

																				return	false

																}

																return	validAmount	>	0

												}

												.assign(to:	\.isAmountValid,	on:	self)

595Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

												.store(in:	&cancellableSet)

								$memo

												.receive(on:	RunLoop.main)

												.map	{	memo	in

																return	memo.count	<	300

												}

												.assign(to:	\.isMemoValid,	on:	self)

												.store(in:	&cancellableSet)

								Publishers.CombineLatest3($isNameValid,	$isAmountValid,	$isMemoValid)

												.receive(on:	RunLoop.main)

												.map	{	(isNameValid,	isAmountValid,	isMemoValid)	in

																return	isNameValid	&&	isAmountValid	&&	isMemoValid

												}

												.assign(to:	\.isFormInputValid,	on:	self)

												.store(in:	&cancellableSet)

				}

}

This	class	conforms	to		ObservableObject	.	All	the	properties	are	annotated	with
	@Published		because	we	want	to	notify	the	subscribers	whenever	there	is	a	value	change
and	perform	the	validation	accordingly.

Whenever	there	are	any	changes	to	the	form's	input	values,	this	view	model	will	execute
the	validation	code,	update	the	results,	and	notify	the	subscribers.

So,	who	is	the	subscriber?

If	you	go	back	to		PaymentFormView.swift	,	you	should	notice	that	we	have	declared	a
variable	named		paymentFormViewModel		with	the		@ObservedObject		wrapper:

@ObservedObject	private	var	paymentFormViewModel:	PaymentFormViewModel

The		PaymentFormView		subscribes	to	the	changes	of	the	view	model.	When	any	of	the
validation	variables	(e.g.		isNameValid)	are	updated,		PaymentFormView		will	be	notified	and
the	view	itself	will	refresh	to	display	the	validation	error	on	screen.

596Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

if	!paymentFormViewModel.isNameValid	{

				ValidationErrorText(text:	"Please	enter	the	payment	name")

}

Form	Initialization

Do	you	notice	the	initialization	method?	It	accepts	a		PaymentActivity		object	and
initializes	the	view	model.

var	payment:	PaymentActivity?

init(payment:	PaymentActivity?	=	nil)	{

				self.payment	=	payment

				self.paymentFormViewModel	=	PaymentFormViewModel(paymentActivity:	payment)

}

The		PaymentFormView		allows	the	user	to	create	a	new	payment	activity	and	edit	an	existing
activity.	This	is	why	the	init	method	takes	in	an	optional	payment	activity	object.	If	the
object	is		nil	,	we	display	an	empty	form.	Otherwise,	we	fill	the	form	fields	with	the	given
values	of	the		PaymentActivity		object.

Previewing	the	form

The	instant	preview	feature	is	one	of	the	many	things	I	really	enjoy	when	programming
with	SwiftUI.	However,	if	your	SwiftUI	project	integrates	with	Core	Data,	it	will	require
some	extra	code	to	make	the	preview	work.	Here	is	the	code	for	the	preview:

597Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	PaymentFormView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								let	context	=	PersistenceController.shared.container.viewContext

								let	testTrans	=	PaymentActivity(context:	context)

								testTrans.paymentId	=	UUID()

								testTrans.name	=	""

								testTrans.amount	=	0.0

								testTrans.date	=	.today

								testTrans.type	=	.expense

								return	Group	{

												PaymentFormView(payment:	testTrans)

												PaymentFormView(payment:	testTrans)

																.preferredColorScheme(.dark)

												FormTextField(name:	"NAME",	placeHolder:	"Enter	your	payment",	value:	

.constant("")).previewLayout(.sizeThatFits)

												ValidationErrorText(text:	"Please	enter	the	payment	name").previewLayo

ut(.sizeThatFits)

								}

				}

}

To	instantiate	the		PaymentFormView	,	you	have	to	provide	a		PaymentActivity		object.	Since
	PaymentActivity		is	a	managed	object,	we	need	to	retrieve	the	context	from
	PersistenceController		to	create	one.	Once	we	create	the		PaymentActivity		object,	we	can
initialize	it	with	a	test	item	and	use	it	to	preview	the		PaymentFormView	.	This	is	how	you	can
preview	a	view	that	integrates	with	Core	Data.

Implementing	the	Payment	Activity	Detail	View

Now	let's	move	onto	the	next	view	and	discuss	how	the	payment	activity	detail	view	is
implemented.	This	view	is	activated	when	a	user	selects	one	of	the	payment	activities	in
the	Recent	Transactions	section.	It	displays	the	details	of	the	activity	such	as	amount	and

598Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

location.	You	can	open		PaymentDetailView.swift		to	see	what	the	UI	looks	like.	This	will
give	you	a	better	idea	of	the	detail	view.

Figure	5.	The	payment	activity	detail	view

The	User	Interface

The	detail	view	is	quite	simple.	I	believe	you	know	how	to	layout	the	components,	so	I
will	not	explain	the	code	line	by	line.	One	thing	I	want	to	highlight	is	the	following	lines
of	code:

599Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

@Binding	var	isShow:	Bool

...

init(isShow:	Binding<Bool>,	payment:	PaymentActivity)	{

				self._isShow	=	isShow

				self.payment	=	payment

				self.viewModel	=	PaymentDetailViewModel(payment:	payment)

}

This	detail	view	is	triggered	when		isShow		is	set	to		true	.	Since	we	need	to	perform	some
initialization	to	create	the	view	model,	we	implement	a	custom		init		method.

The	View	Model

Instead	of	putting	everything	in	a	single	view,	we	can	separate	a	view	into	two
components:	the	view	and	its	view	model.	The	view	itself	is	responsible	for	the	UI
layout,	while	the	view	model	holds	the	state	and	data	to	be	displayed	in	the	view.
The	view	model	also	handles	the	data	validation	and	conversion.	For	experienced
developers,	we	are	applying	a	well	known	design	pattern	called	MVVM	(short	for
Model-View-ViewModel).

-	See	Building	a	Registration	Form	with	Combine	and	View	Model	(Chapter	15)

To	separate	the	actual	view	data	from	the	view	UI,	we	have	created	a	view	model	named
	PaymentDetailViewModel	:

private	let	viewModel:	PaymentDetailViewModel

Why	do	we	need	to	create	an	extra	view	model	to	hold	the	view's	data?	Take	a	look	at	the
icon	right	next	to	the	title	Payment	Details.	This	is	a	dynamic	icon	that	changes	in
reference	to	the	payment	type.	Additionally,	do	you	notice	the	format	of	the	amount?	A

600Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

requirement	for	our	app	is	to	format	the	amount	with	only	two	decimal	places.	We	can
implement	all	this	logic	in	the	view,	but	if	you	keep	adding	all	the	logic	in	the	view,	the
view	will	become	too	complex	to	maintain.

One	well	known	computer	programming	principle	is	the	single	responsibility	principle
(SRP).	It	states	that	every	class	or	module	in	a	program	should	have	responsibility	for
just	a	single	piece	of	that	program’s	functionality.	SRP	is	one	of	the	keys	to	writing	good
code,	making	your	code	easier	to	maintain	and	read.

This	is	why	we	separate	the	view	into	two	components:

1.	 	PaymentDetailView		is	only	responsible	for	the	UI	layout.
2.	 	PaymentDetailViewModel		is	responsible	for	converting	the	view's	data	into	the	expected

presentation	format.

Open		PaymentDetailViewModel		and	take	a	look:

struct	PaymentDetailViewModel	{

				var	payment:	PaymentActivity

				var	name:	String	{

								return	payment.name

				}

				var	date:	String	{

								return	payment.date.string()

				}

				var	address:	String	{

								return	payment.address	??	""

				}

				var	typeIcon:	String	{

								let	icon:	String

								switch	payment.type	{

								case	.income:	icon	=	"arrowtriangle.up.circle.fill"

								case	.expense:	icon	=	"arrowtriangle.down.circle.fill"

601Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

								}

								return	icon

				}

				var	image:	String	=	"payment-detail"

				var	amount:	String	{

								let	formatter	=	NumberFormatter()

								formatter.numberStyle	=	.decimal

								formatter.minimumFractionDigits	=	2

								let	formattedValue	=	formatter.string(from:	NSNumber(value:	payment.amount

))	??	""

								let	formattedAmount	=	((payment.type	==	.income)	?	"+"	:	"-")	+	"$"	+	form

attedValue

								return	formattedAmount

				}

				var	memo:	String	{

								return	payment.memo	??	""

				}

				init(payment:	PaymentActivity)	{

								self.payment	=	payment

				}

}

As	you	can	see,	we	implement	all	the	conversion	logic	in	this	view	model.	Can	we	put	this
logic	back	into	the	view?	Yes,	of	course.	However,	I	believe	the	code	is	much	cleaner
when	breaking	the	view	into	two	parts.

The	Bottom	Sheet

602Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	payment	activity	detail	view	is	displayed	as	an	overlay	using	a		BottomSheet	.	When	a
user	taps	a	payment	record,	the	app	brings	up	the	bottom	sheet	and	displays	the	payment
details.	This	bottom	sheet	is	expandable,	so	the	user	can	drag	the	detail	view	up	to
expand	it.	Alternatively,	the	user	can	drag	the	view	down	to	dismiss	it.

var	body:	some	View	{

				BottomSheet(isShow:	$isShow)	{

								VStack	{

												TitleBar(viewModel:	self.viewModel)

				...

}

We	have	implemented	a	similar	bottom	sheet	in	chapter	18.	Therefore,	we	reuse	most	of
the	code	as	discussed	in	that	chapter.	If	you	want	to	learn	more	about	how	the
	BottomSheet		is	built,	you	can	re-read	the	chapter.	However,	there	is	one	thing	I	want	to
highlight.	In	chapter	18,	the	bottom	sheet	is	specifically	designed	for	displaying	the
restaurant	details.	For	this	app,	we	converted	it	to	a	generic	bottom	sheet	which	can
display	any	content.

The	trick	is	to	take	in	a		Content		view	as	a	parameter.	If	you	compare	the	code	with	the
code	used	in	chapter	18,	it	is	exactly	the	same,	except	that	the	content	inside	the	scroll
view	can	be	varied.

603Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	BottomSheet<Content>:	View	where	Content:	View		{

				.

				.

				.

				let	content:	()	->	Content

				var	body:	some	View	{

								GeometryReader	{	geometry	in

												VStack	{	

																Spacer()

																HandleBar()

																ScrollView(.vertical)	{

																				.

																				.

																				.

																				self.content()

																}

															.

															.

															.

												}

					.

					.

					.

}

Walking	Through	the	Dashboard	View

Now	it's	time	to	walk	you	through	the	dashboard	view.	Among	all	the	views	in	the
personal	finance	app,	this	view	is	the	most	complicated	one.

604Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	The	dashboard	view

The	Menu	Bar

Open		Dashboard.swift		and	let's	start	with	the	menu	bar:

605Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	MenuBar<Content>:	View	where	Content:	View	{

				@State	private	var	showPaymentForm	=	false

				let	modalContent:	()	->	Content

				var	body:	some	View	{

								ZStack(alignment:	.trailing)	{

												HStack(alignment:	.center)	{

																Spacer()

																VStack(alignment:	.center)	{

																				Text(Date.today.string(with:	"EEEE,	MMM	d,	yyyy"))

																								.font(.caption)

																								.foregroundColor(.gray)

																				Text("Personal	Finance")

																								.font(.title)

																								.fontWeight(.black)

																}

																Spacer()

												}

												Button(action:	{

																self.showPaymentForm	=	true

												})	{

																Image(systemName:	"plus.circle")

																				.font(.title)

																				.foregroundColor(.primary)

												}

												.sheet(isPresented:	self.$showPaymentForm,	onDismiss:	{

																self.showPaymentForm	=	false

												})	{

																self.modalContent()

												}

								}

				}

}

606Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	layout	of	the	menu	bar	is	simple.	It	shows	the	app's	title,	today's	date,	and	the	plus
button.	This	menu	bar	view	is	designed	to	take	in	any	modal	view	(i.e.		modalContent).
When	the	plus	button	is	tapped,	the	modal	view	will	be	displayed.	If	you	don't	know	how
to	create	a	generic	view	in	SwiftUI,	you	can	refer	to	chapter	17	on	building	a	generic
draggable	view.

Income,	Expense	and	Total	Balance

Next,	we	have	three	card	views	to	show	the	total	balance,	income,	and	expenses.	Here	is
the	code	for	the	income	card	view:

struct	IncomeCard:	View	{

				var	income	=	0.0

				var	body:	some	View	{

								ZStack	{

												Rectangle()

																.foregroundColor(Color("IncomeCard"))

																.cornerRadius(15.0)

												VStack	{

																Text("Income")

																				.font(.system(.title,	design:	.rounded))

																				.fontWeight(.black)

																				.foregroundColor(.white)

																Text(NumberFormatter.currency(from:	income))

																				.font(.system(.title,	design:	.rounded))

																				.fontWeight(.bold)

																				.foregroundColor(.white)

																				.minimumScaleFactor(0.1)

												}

								}

								.frame(height:	150)

				}

}

607Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	simply	use	a		ZStack		to	overlay	the	text	on	a	colored	rectangle.	We	use	a	similar
technique	to	layout	both		TotalBalanceCard		and		ExpenseCard	.	So,	how	do	we	compute	the
income,	expense,	and	total	balance?	We	have	three	computed	properties	declared	at	the
beginning	of		DashboardView	:

private	var	totalIncome:	Double	{

				let	total	=	paymentActivities

								.filter	{

												$0.type	==	.income

								}.reduce(0)	{

												$0	+	$1.amount

								}

				return	total

}

private	var	totalExpense:	Double	{

				let	total	=	paymentActivities

								.filter	{

												$0.type	==	.expense

								}.reduce(0)	{

												$0	+	$1.amount

								}

				return	total

}

private	var	totalBalance:	Double	{

				return	totalIncome	-	totalExpense

}

The		paymentActivities		variable	stores	the	collection	of	payment	activities.	So,	to	calculate
the	total	income,	we	first	use	the		filter		function	to	filter	those	activities	with	type
	.income		and	then	use	the		reduce		function	to	compute	the	total	amount.	The	same
technique	was	applied	to	calculate	the	total	expense.	Higher	order	functions	in	Swift	are
very	useful.	If	you	don't	know	how	to	use	filter	and	reduce,	you	can	further	check	out	this
tutorial	(https://www.appcoda.com/higher-order-functions-swift/).

608Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/higher-order-functions-swift/

Recent	Transactions

The	last	part	of	the	UI	is	the	list	of	recent	transactions.	As	all	the	rows	share	the	same
layout	(except	the	icon	of	the	payment	type),	we	create	a	generic	view	for	the	transaction
row	like	this:

609Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	TransactionCellView:	View	{

				@ObservedObject	var	transaction:	PaymentActivity

				var	body:	some	View	{

								HStack(spacing:	20)	{

												if	transaction.isFault	{

																EmptyView()

												}		else	{

																Image(systemName:	transaction.type	==	.income	?	"arrowtriangle.up.

circle.fill"	:	"arrowtriangle.down.circle.fill")

																				.font(.title)

																				.foregroundColor(Color(transaction.type	==	.income	?	"IncomeCa

rd"	:	"ExpenseCard"))

																VStack(alignment:	.leading)	{

																				Text(transaction.name)

																								.font(.system(.body,	design:	.rounded))

																				Text(transaction.date.string())

																								.font(.system(.caption,	design:	.rounded))

																								.foregroundColor(.gray)

																}

																Spacer()

																Text((transaction.type	==	.income	?	"+"	:	"-")	+	NumberFormatter.c

urrency(from:	transaction.amount))

																				.font(.system(.headline,	design:	.rounded))

												}

								}

								.padding(.vertical,	5)

				}

}

610Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

This	cell	view	takes	in	a		PaymentActivity		object	which	is	a	managed	object	and	then
presents	its	content.	To	ensure	the	given	managed	object	(i.e.		transaction)	is	valid,	we
place	a	check	inside	the		HStack		by	accessing	the		isFault		property.

To	list	the	transaction,	we	use		ForEach		to	loop	through	the	payment	activities	and	create
a		TransactionCellView		for	each	activity:

611Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ForEach(paymentDataForView)	{	transaction	in

				TransactionCellView(transaction:	transaction)

								.onTapGesture	{

												self.showPaymentDetails	=	true

												self.selectedPaymentActivity	=	transaction

								}

								.contextMenu	{

												Button(action:	{

																//	Edit	payment	details

																self.editPaymentDetails	=	true

																self.selectedPaymentActivity	=	transaction

												})	{

																HStack	{

																				Text("Edit")

																				Image(systemName:	"pencil")

																}

												}

												Button(action:	{

																//	Delete	the	selected	payment

																self.delete(payment:	transaction)

												})	{

																HStack	{

																				Text("Delete")

																				Image(systemName:	"trash")

																}

												}

								}

}

.sheet(isPresented:	self.$editPaymentDetails)	{

				PaymentFormView(payment:	self.selectedPaymentActivity).environment(\.managedOb

jectContext,	self.context)

}

When	a	user	taps	and	holds	a	row,	it	displays	a	context	menu	with	both	the	delete	and
edit	options.	When	selecting	the	edit	option,	the	app	will	create	the		PaymentFormView		with
the	selected	payment	activity.	For	the	delete	operation,	the	app	will	completely	remove
the	activity	from	the	database	using	Core	Data.

612Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	The	context	menu	for	the	payment	activity	row

Do	you	notice	the		paymentDataForView		variable?	Instead	of	using		paymentActivities	,	the
list	view	presents	items	stored	in		paymentDataForView	.	Why	is	that?

In	the	Recent	Transactions	section,	the	app	provides	three	options	for	the	user	to	filter
the	payment	activities	including	all,	income,	and	expense.	For	example,	if	the	expense
option	is	selected,	the	app	only	shows	those	activities	related	to	expenses.

613Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	var	paymentDataForView:	[PaymentActivity]	{

				switch	listType	{

				case	.all:

								return	paymentActivities

												.sorted(by:	{	$0.date.compare($1.date)	==	.orderedDescending	})

				case	.income:

								return	paymentActivities

												.filter	{	$0.type	==	.income	}

												.sorted(by:	{	$0.date.compare($1.date)	==	.orderedDescending	})

				case	.expense:

								return	paymentActivities

												.filter	{	$0.type	==	.expense	}

												.sorted(by:	{	$0.date.compare($1.date)	==	.orderedDescending	})

				}

}

The		paymentDataForView		is	another	computed	property	which	returns	a	collection	of
payment	activities	that	match	the	list	type.	In	the	code,	we	use	the		filter		function	to
filter	the	payment	activities	and	call	the		sort		function	to	sort	the	activities	in	reverse
chronological	order.

Managing	Payment	Activities	with	Core	Data

As	mentioned	before,	all	the	payment	activities	are	saved	in	the	local	database	and
managed	using	Core	Data.	In	the	code,	we	use	the		@FetchRequest		property	wrapper	to
fetch	the	payment	activities	like	this:

@FetchRequest(

				entity:	PaymentActivity.entity(),

				sortDescriptors:	[NSSortDescriptor(keyPath:	\PaymentActivity.date,	ascending:	

false)])

var	paymentActivities:	FetchedResults<PaymentActivity>

614Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

This	property	wrapper	makes	it	very	easy	to	perform	a	fetch	request.	We	simply	specify
the	entity,	which	is	the		PaymentActivity	,	and	the	sort	descriptor	describing	how	the	data
should	be	ordered.	The	Core	Data	framework	will	then	use	the	environment's	managed
object	context	to	fetch	the	data.	Most	importantly,	SwiftUI	will	automatically	update	the
list	views	or	any	other	views	that	are	bound	to	the	fetched	results.

Deleting	an	activity	from	the	database	is	also	very	straightforward.	We	call	the		delete	
function	of	the	context	and	pass	it	with	the	activity	object	to	remove:

private	func	delete(payment:	PaymentActivity)	{

				self.context.delete(payment)

				do	{

								try	self.context.save()

				}	catch	{

								print("Failed	to	save	the	context:	\(error.localizedDescription)")

				}

}

FAdding	a	new	activity	or	updating	an	existing	activity	happens	in	the		PaymentFormView	.	If
you	look	at	the		PaymentFormView.swift		file	again,	you	will	find	the		save()		function:

615Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	func	save()	{

				let	newPayment	=	payment	??	PaymentActivity(context:	context)

				newPayment.paymentId	=	UUID()

				newPayment.name	=	paymentFormViewModel.name

				newPayment.type	=	paymentFormViewModel.type

				newPayment.date	=	paymentFormViewModel.date

				newPayment.amount	=	Double(paymentFormViewModel.amount)!

				newPayment.address	=	paymentFormViewModel.location

				newPayment.memo	=	paymentFormViewModel.memo

				do	{

								try	context.save()

				}	catch	{

								print("Failed	to	save	the	record...")

								print(error.localizedDescription)

				}

}

The	first	line	of	the	code	checks	if	we	have	any	existing	activity.	If	not,	we	will	instantiate
a	new	one.	We	then	assign	the	form	values	to	the	payment	object	and	call	the		save	
function	of	the	managed	object	context	to	add/update	the	record	in	the	database.

Exploring	the	Extensions

For	convenience	purposes,	we	have	built	two	extensions	for	formatting	the	date	and
number.	In	the	project	navigator,	you	should	find	two	files	under	the	Extension	folder.
Let's	take	a	look	at	the		Date+Ext.swift		file	first:

616Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

extension	Date	{

				static	var	today:	Date	{

								return	Date()

				}

				static	var	yesterday:	Date	{

								return	Calendar.current.date(byAdding:	.day,	value:	-1,	to:	Date())!

				}

				static	var	tomorrow:	Date	{

								return	Calendar.current.date(byAdding:	.day,	value:	1,	to:	Date())!

				}

				var	month:	Int	{

								return	Calendar.current.component(.month,	from:	self)

				}

				static	func	fromString(string:	String,	with	format:	String	=	"yyyy-MM-dd")	->	

Date?	{

								let	dateFormatter	=	DateFormatter()

								dateFormatter.dateFormat	=	format

								return	dateFormatter.date(from:	string)

				}

				func	string(with	format:	String	=	"dd	MMM	yyyy")	->	String	{

								let	dateFormatter	=	DateFormatter()

								dateFormatter.dateFormat	=	format

								return	dateFormatter.string(from:	self)

				}

}

In	the	code	above,	we	extend		Date		to	provide	additional	functionality	including:

Get	today's	date
Get	tomorrow's	date
Get	yesterday's	date
Get	the	month	of	the	date
Convert	the	current	date	to	a	string	or	vice	versa

617Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	formatting	the	amount,	we	extend		NumberFormatter		to	provide	an	additional	function:

extension	NumberFormatter	{

				static	func	currency(from	value:	Double)	->	String	{

								let	formatter	=	NumberFormatter()

								formatter.numberStyle	=	.decimal

								let	formattedValue	=	formatter.string(from:	NSNumber(value:	value))	??	""

								return	"$"	+	formattedValue

				}

}

This	function	takes	in	a	value,	converts	it	to	a	string	and	prepends	it	with	the	dollar	sign
($).

Handling	the	Software	Keyboard

In	the		PaymentFormView.swift		file,	we	added	the	following	modifier:

.keyboardAdaptive()

This	is	a	custom	view	modifier,	developed	for	handling	the	software	keyboard.	For	iOS
14,	this	modifier	is	no	longer	required	but	I	intentionally	added	it	because	you	may	need
it	if	your	app	supports	iOS	13.

On	iOS	13,	the	software	keyboard	blocks	parts	of	the	form	when	it's	brought	up	without
applying	the	modifier.	For	example,	if	you	try	to	tap	the	memo	field,	it's	completely
hidden	behind	the	keyboard.	Conversely,	if	you	attach	the	modifier	to	the	scroll	view,	the
form	will	move	up	automatically	when	the	keyboard	appears.	On	iOS	14,	the	mobile
operating	system	itself	automatically	handles	the	appearance	of	the	software	keyboard,
preventing	it	from	blocking	the	input	field.

618Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	8.	Without	using	keyboardAdaptive	(left),	Using	keyboardAdaptive

Now	let's	check	out	the	code	(KeyboardAdaptive.swift)	and	see	how	we	handle	keyboard
events:

619Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	KeyboardAdaptive:	ViewModifier	{

				@State	var	currentHeight:	CGFloat	=	0

				func	body(content:	Content)	->	some	View	{

								content

												.padding(.bottom,	currentHeight)

												.onAppear(perform:	handleKeyboardEvents)

				}

				private	func	handleKeyboardEvents()	{

								NotificationCenter.default.publisher(for:	UIResponder.keyboardWillShowNoti

fication

).compactMap	{	(notification)	in

												notification.userInfo?["UIKeyboardFrameEndUserInfoKey"]	as?	CGRect

								}.map	{	rect	in

												rect.height

								}.subscribe(Subscribers.Assign(object:	self,	keyPath:	\.currentHeight))

								NotificationCenter.default.publisher(for:	UIResponder.keyboardWillHideNoti

fication

).compactMap	{	_	in

												CGFloat.zero

								}.subscribe(Subscribers.Assign(object:	self,	keyPath:	\.currentHeight))

				}

}

extension	View	{

				func	keyboardAdaptive()	->	some	View	{

								ModifiedContent(content:	self,	modifier:	KeyboardAdaptive())

				}

}

Whenever	the	keyboard	appears	(or	disappears),	iOS	sends	a	notification	to	the	app:

keyboardWillShowNotification	-	this	notification	is	sent	when	the	keyboard	is	about
to	appear
keyboardWillHideNotification	-	this	notification	is	sent	when	the	keyboard	is	going

620Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

to	disappear

So,	how	do	we	make	use	of	these	notifications	to	scroll	up	the	form?	When	the	app
receives	the	keyboardWillShowNotification,	it	adds	padding	to	the	form	to	move	it	up.
Conversely,	we	set	the	padding	to	zero	when	the	keyboardWillHideNotification	is
received.

In	the	code	above,	we	have	a	state	variable	to	store	the	height	of	the	keyboard.	By	using
the	Combine	framework,	we	have	a	publisher	that	captures	the
keyboardWillShowNotification	and	emits	the	current	height	of	the	keyboard.
Additionally,	we	have	another	publisher	which	listens	to	the
keyboardWillHideNotification	and	emits	a	value	of	zero.	For	both	publishers,	we	use	the
built-in		assign		subscriber	to	assign	the	value	emitted	by	these	publishers	to	the
	currentHeight		variable.

This	is	how	we	detect	the	keyboard	appearance,	capture	its	height,	and	add	the	bottom
padding.	But	why	do	we	need	to	have	the		View		extension?

The	code	works	without	the	extension.	You	write	the	code	like	this	to	detect	the	keyboard
events:

.modifier(KeyboardAdaptive())

To	make	the	code	cleaner,	we	create	the	extension	and	add	the		keyboardAdaptive()	
function.	After	that,	we	can	attach	the	modifier	to	any	view	like	this:

.keyboardAdaptive()

Since	this	view	modifier	is	only	applicable	to	iOS	13,	we	use	the		#available		check	to
verify	the	OS	version	in	the		keyboardAdaptive()		function:

621Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

extension	View	{

				func	keyboardAdaptive()	->	some	View	{

								if	#available(iOS	14.0,	*)	{

												return	AnyView(self)

								}	else	{

												return	AnyView(ModifiedContent(content:	self,	modifier:	KeyboardAdapti

ve()))

								}

				}

}

Summary

This	is	how	we	built	the	personal	finance	app	from	the	ground	up.	Most	of	the	techniques
we	used	shouldn't	be	new	to	you.	You	combine	what	you	learned	in	the	earlier	chapters	to
build	the	app.

SwiftUI	is	a	very	powerful	and	promising	framework,	allowing	you	to	build	the	same	app
with	less	code	than	UIKit.	If	you	have	some	programming	experience	with	UIKit,	you
know	it	would	take	you	more	time	and	lines	of	code	to	create	the	personal	finance	app.	I
really	hope	you	enjoy	learning	SwiftUI	and	building	UIs	with	this	new	framework.
However,	one	thing	I	have	to	point	out	again	is	that	SwiftUI	only	works	on	iOS	13	(or	up).
If	you	need	to	support	older	versions	of	iOS,	you	will	need	to	use	UIKit.

622Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Chapter	26
Creating	an	App	Store	like	Animated
View	Transition
You	probably	have	used	Apple's	the	built-in	App	Store	app.	In	the	Today	section,	it
presents	users	with	a	headline,	various	articles	and	app	recommendations.	What
interests	me	and	many	of	you	is	the	animated	view	transition.	As	you	can	see	in	figure	1,
the	articles	are	listed	in	a	card	like	format.	When	you	tap	it,	the	card	pops	out	to	reveal
the	full	content.	To	dismiss	the	article	view	and	return	to	the	list	view,	you	simply	tap	the
close	button	.	If	you	don't	understand	what	I	mean,	the	best	way	to	understand	these
views	is	to	open	the	App	Store	app	on	your	iPhone	to	try	it	out.

623Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	Apple's	App	Store	app

In	this	chapter,	we	will	build	a	similar	list	view	and	implement	the	animated	transition
using	SwiftUI.	In	particular,	you	will	learn	the	following	techniques:

How	to	use	GeometryReader	to	detect	screen	sizes
How	to	create	a	variable-sized	card	view
How	to	implement	an	App	Store	like	animated	view	transition

Let's	get	started.

Introducing	the	Demo	App

As	usual,	we	will	build	a	demo	app	together.	The	app	looks	very	similar	to	the	App	Store
app	but	without	the	tab	bar.	It	only	has	a	list	view	showing	all	the	articles	in	card	format.
When	a	user	taps	any	of	the	articles,	the	card	expands	to	full	screen	and	displays	the

624Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

article	details.	To	return	to	the	list	view,	the	user	can	either	tap	the	close	button	or	drag
down	the	article	view	to	collapse	it.

Figure	2.	The	demo	app

We	will	build	the	app	from	scratch.	But	to	save	you	time	from	typing	some	of	the	code,	I
have	prepared	a	starter	project	for	you.	You	can	download	it	from
https://www.appcoda.com/resources/swiftui2/SwiftUIAppStoreStarter.zip.	After
downloading	the	project,	unzip	it	and	open		SwiftUIAppStore.xcodeproj		to	take	a	look.

625Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIAppStoreStarter.zip

Figure	3.	The	starter	project

The	starter	projects	comes	with	the	following	implementation:

1.	 It	already	bundles	the	required	images	in	the	asset	catalog.
2.	 The		ContentView.swift		file	is	the	default	SwiftUI	view	generated	by	Xcode.
3.	 The		Article.swift		file	contains	the		Article		struct,	which	represents	an	article	in

the	app.	For	testing	purposes,	this	file	also	creates	the		sampleArticles		array	which
includes	some	test	data.	You	may	modify	its	content	if	you	want	to	change	the	article
data.

Understanding	the	Card	View

You've	learned	how	to	create	a	card-like	UI	before.	This	card	view	is	very	similar	to	that
implemented	in	chapter	5,	but	it	will	be	more	flexible	to	support	scrollable	content.	In
other	words,	it	has	two	modes:	excerpt	and	full	content.	In	the	excerpt	mode,	it	only
displays	the	image,	category,	headline	and	sub-headline	of	the	article.	As	its	name
suggests,	the	full	content	will	display	the	article	details	as	shown	in	figure	2.

626Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	The	sample	card	views

If	you	look	a	bit	closer	into	the	card	views	shown	in	figure	4,	you	will	find	that	the	size	of
card	views	varies	according	to	the	height	of	the	image.	However,	the	height	of	the	card
will	not	exceed	500	points.

627Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	The	components	of	a	card	view	in	excerpt	mode

Let's	also	look	at	how	the	card	view	looks	in	full	content	mode.	As	you	can	see	in	the
figure	below,	the	card	view	expands	to	a	full	screen	that	displays	the	content.	Other	than
that,	the	image	is	a	little	bit	bigger	and	the	sub-headline	is	hidden.	Furthermore,	the
close	button	appears	on	screen	for	users	to	dismiss	the	view.	Please	also	take	note	that
this	is	a	scrollable	view.

628Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	The	components	of	a	card	view	in	full	content	mode

Implementing	the	Card	View

Now	that	you	understand	the	requirements	of	this	card	view,	let's	see	how	to	create	it.	We
will	use	a	separate	file	for	implementing	the	card	view.	In	the	project	navigator,	right
click	the	View	folder	and	choose	New	file....	Select	the	SwiftUI	View	template	and	name
the	file		ArticleCardView.swift	.

First,	let's	begin	with	the	excerpt	view,	which	is	the	view	overlayed	on	top	of	the	image
(see	figure	5).	Insert	the	following	code	in	the	file:

struct	ArticleExcerptView:	View	{

				let	category:	String

629Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

				let	headline:	String

				let	subHeadline:	String

				@Binding	var	isShowContent:	Bool

				var	body:	some	View	{

								VStack(alignment:	.leading)	{

												Spacer()

												Rectangle()

																.frame(minHeight:	100,	maxHeight:	150)

																.overlay(

																				HStack	{

																								VStack(alignment:	.leading)	{

																												Text(self.category.uppercased())

																																.font(.subheadline)

																																.fontWeight(.bold)

																																.foregroundColor(.secondary)

																												Text(self.headline)

																																.font(.title)

																																.fontWeight(.bold)

																																.foregroundColor(.primary)

																																.minimumScaleFactor(0.1)

																																.lineLimit(2)

																																.padding(.bottom,	5)

																												if	!self.isShowContent	{

																																Text(self.subHeadline)

																																				.font(.subheadline)

																																				.foregroundColor(.secondary)

																																				.minimumScaleFactor(0.1)

																																				.lineLimit(3)

																												}

																								}

																								.padding()

																								Spacer()

																				}

)

								}

630Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

								.foregroundColor(.white)

				}

}

The		ArticleExcerptView		should	be	flexible	to	support	different	content.	Therefore,	we
define	the	variables	above.	As	previously	mentioned,	the	card	view	should	be	able	to
switch	between	excerpt	and	full	content	mode.	This	binding	variable	is	declared	for
controlling	the	display	of	the	content.	When	its	value	is	set	to	false,	it's	in	excerpt	mode.
Conversely,	it's	in	full	content	mode	when	true.	The	sub-headline	is	displayed	only	when
the	value	of		isShowContent		is	set	to		true	.

There	are	various	ways	to	layout	the	excerpt	view.	In	the	code	above,	we	create	a
	Rectangle		view	and	overlay	it	with	the	headline	and	sub-headline.	You	should	be	familiar
with	most	of	the	modifiers	attached	to	the		Text		view.	But	the		minimumScaleFactor	
modifier	is	worth	a	mention.	By	applying	the	modifier,	the	system	automatically	shrinks
the	font	size	of	the	text	to	fit	the	available	space.	For	example,	if	the	headline	contains	too
much	text,	iOS	will	scale	it	down	to	10%	of	its	original	size	before	it	truncates.

Previewing	the	UI

To	preview	the	excerpt	view,	you	can	modify	the	preview	code	like	this:

struct	ArticleCardView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								Group	{

												ArticleExcerptView(category:	sampleArticles[0].category,	headline:	sam

pleArticles[0].headline,	subHeadline:	sampleArticles[0].subHeadline,	isShowContent

:	.constant(false)).previewLayout(.fixed(width:	380,	height:	500))

												ArticleExcerptView(category:	sampleArticles[0].category,	headline:	sam

pleArticles[0].headline,	subHeadline:	sampleArticles[0].subHeadline,	isShowContent

:	.constant(true)).previewLayout(.fixed(width:	380,	height:	500))

								}

				}

}

631Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Here,	we	instantiate	two	excerpt	views	such	that	one	has	the		isShowContent		binding	set	to
	false		and	the	other	one	set	to		true	.	The		sampleArticles		array	is	the	test	data	which
comes	with	the	starter	project.

Instead	of	previewing	using	a	device,	we	preview	the	UI	in	a	fixed	size	rectangle.	If
everything	works	perfectly,	you	should	see	the	excerpt	view	in	the	preview	canvas.

Figure	7.	Previewing	the	excerpt	view

With	the	excerpt	view	ready,	let's	implement	the	article	card	view.	Update	the
	ArticleCardView		struct	like	this:

struct	ArticleCardView:	View	{

				let	category:	String

				let	headline:	String

				let	subHeadline:	String

				let	image:	UIImage

				var	content:	String	=	""

632Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

				@Binding	var	isShowContent:	Bool

				var	body:	some	View	{

								ScrollView	{

												VStack(alignment:	.leading)	{

																Image(uiImage:	self.image)

																				.resizable()

																				.scaledToFill()

																				.frame(height:	min(self.image.size.height/3,	500))

																				.border(Color(.sRGB,	red:	150/255,	green:	150/255,	blue:	150/2

55,	opacity:	0.1),	width:	self.isShowContent	?	0	:	1)

																				.cornerRadius(15)

																				.overlay(

																								ArticleExcerptView(category:	self.category,	headline:	self

.headline,	subHeadline:	self.subHeadline,	isShowContent:	self.$isShowContent)

																												.cornerRadius(self.isShowContent	?	0	:	15)

)

																//	Content

																if	self.isShowContent	{

																				Text(self.content)

																								.foregroundColor(Color(.darkGray))

																								.font(.system(.body,	design:	.rounded))

																								.padding(.horizontal)

																								.padding(.bottom,	50)

																								.transition(.move(edge:	.top))

																								.animation(.linear)

																}

												}

								}

								.shadow(color:	Color(.sRGB,	red:	64/255,	green:	64/255,	blue:	64/255,	opac

ity:	0.3),	radius:	self.isShowContent	?	0	:	15)

				}

}

To	arrange	the	layout	of	the	card	view,	we	overlay	the		ArticleExcerptView		on	top	of	an
	Image		view.	The	image	view	is	set	to		.scaledToFill		with	the	height	not	exceeding	500
points.	The		content		is	only	displayed	when	the		isShowContent		binding	is	set	to		true	.

633Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	order	to	make	the	view	scrollable,	we	embed	the		VStack		in	a	vertical	scroll	view.	The
	shadow		modifier	is	used	to	add	a	shadow	to	the	card	view.

To	preview	the	article	card	view,	you	can	insert	the	following	code	within	the		Group	
section	of		ArticleCardView_Previews	:

ArticleCardView(category:	sampleArticles[0].category,	headline:	sampleArticles[0].

headline,	subHeadline:	sampleArticles[0].subHeadline,	image:	sampleArticles[0].ima

ge,	content:	sampleArticles[0].content,	isShowContent:	.constant(false))

ArticleCardView(category:	sampleArticles[0].category,	headline:	sampleArticles[0].

headline,	subHeadline:	sampleArticles[0].subHeadline,	image:	sampleArticles[0].ima

ge,	content:	sampleArticles[0].content,	isShowContent:	.constant(true))

Once	you	have	made	the	changes,	you	should	be	able	to	see	the	card	UI	in	the	preview
canvas.	Additionally,	you	should	see	two	simulators	such	that	one	displays	the	excerpt
view	and	the	other	displays	the	full	content.

Figure	8.	Previewing	the	article	card	view

634Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Using	GeometryReader

It	seems	everything	works	great.	But	if	you	try	to	preview	the	card	view	with	another
sample	article	(say,		sampleArticles[1]),	the	UI	doesn't	look	good.	Both	the	featured
image	and	the	content	go	beyond	the	screen	edge.

Figure	9.	The	card	view	doesn't	fit	the	content

Let's	look	at	our	code	again.	For	the		Image		view,	we	only	limited	the	height	of	the	image,
we	don't	have	any	limits	on	its	width:

.frame(height:	min(self.image.size.height/3,	500))

To	fix	the	issue,	we	have	to	set	the	frame's	width	and	ensure	it	doesn't	exceed	the	width	of
the	screen.	The	question	is	how	do	you	find	out	the	screen	width?	SwiftUI	provides	a
container	view	called		GeometryReader		which	lets	you	access	the	size	of	its	parent	view.
Therefore,	we	need	to	embed	the		ScrollView		within	a		GeometryReader		like	this:

635Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	body:	some	View	{

				GeometryReader	{	geometry	in	

								ScrollView	{

												VStack(alignment:	.leading)	{

																.

																.

																.

												}

								}

								.shadow(color:	Color(.sRGB,	red:	64/255,	green:	64/255,	blue:	64/255,	opac

ity:	0.3),	radius:	self.isShowContent	?	0	:	15)

				}

}

Within	the	closure	of		GeometryReader	,	it	has	a	parameter	that	provides	you	with	extra
information	about	the	view	such	as	size	and	position.	So,	to	limit	the	width	of	the	frame
to	the	size	of	the	screen,	you	can	modify	the		.frame		modifier	like	this:

.frame(width:	geometry.size.width,	height:	min(self.image.size.height/3,	500))

In	the	code,	we	set	the	width	equal	to	that	of	the	screen.	Once	you	complete	the	change,
the	card	view	should	look	great.

636Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	The	width	of	the	image	is	now	equal	to	that	of	the	screen

Adding	the	close	button

The	card	view	is	almost	done,	but	there	is	still	one	thing	left.	We	haven't	implemented	the
close	button	yet.	To	overlay	the	button	on	top	of	the	image,	we	will	embed	the	scroll	view
in	a		ZStack	.	You	can	modify	the	code	directly	to	add	the		ZStack		or	let's	show	you
another	way	to	do	that.

Hold	the	command	key	and	click	on		ScrollView	,	you	should	then	see	a	context	menu.
Since	there	is	no	option	for		ZStack	,	choose	Embed	in	VStack	to	embed	the	scroll	view	in
a		VStack	.

637Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	Embed	the	scroll	view	in	a	VStack

Xcode	will	automatically	indent	the	code	and	embed	the	scroll	view	in	the		VStack	.	Now
change		VStack		to		ZStack		and	set	its		alignment		to		.topTrailing		because	we	want	to
place	the	close	button	near	the	top-right	corner.	Your	code	should	look	like	this:

var	body:	some	View	{

				GeometryReader	{	geometry	in

								ZStack(alignment:	.topTrailing)	{

												ScrollView	{

																VStack(alignment:	.leading)	{

																				.

																				.

																				.

																}

												}

												.shadow(color:	Color(.sRGB,	red:	64/255,	green:	64/255,	blue:	64/255,	

opacity:	0.3),	radius:	self.isShowContent	?	0	:	15)

								}

				}

}

638Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	insert	the	following	code	right	below	the		.shadow		modifier	to	add	the	close	button:

if	self.isShowContent	{

				HStack	{

								Spacer()

								Button(action:	{

												self.isShowContent	=	false

								})	{

												Image(systemName:	"xmark.circle.fill")

																.font(.system(size:	26))

																.foregroundColor(.white)

																.opacity(0.7)

								}

				}

				.padding(.top,	50)

				.padding(.trailing)

}

After	the	modification,	the	preview	should	display	the	close	button	when	the	value	of
	isShowContent		is	set	to		true	.

639Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Adding	the	close	button

Building	the	List	View

Now	that	we've	implemented	the	layout	of	the	card	view,	let's	switch	over	to
	ContentView.swift		and	create	the	list	view.	At	the	very	top	of	the	list	view,	is	the	top	bar
with	a	heading	and	a	profile	photo.

Figure	13.	The	top	bar

640Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

I	believe	you	should	know	how	to	create	the	layout	by	using		VStack		and		HStack	.	To
better	organize	the	code,	I	will	create	the	top	bar	and	the	avatar	in	two	separate	structs.
Insert	the	following	code	in		ContentView.swift	:

641Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	TopBarView	:	View	{

				var	body:	some	View	{

								HStack(alignment:	.lastTextBaseline)	{

												VStack(alignment:	.leading)	{

																Text(getCurrentDate().uppercased())

																				.font(.caption)

																				.foregroundColor(.secondary)

																Text("Today")

																				.font(.largeTitle)

																				.fontWeight(.heavy)

												}

												Spacer()

												AvatarView(image:	"profile",	width:	40,	height:	40)

								}

				}

				func	getCurrentDate(with	format:	String	=	"EEEE,	MMM	d")	->	String	{

								let	dateFormatter	=	DateFormatter()

								dateFormatter.dateFormat	=	format

								return	dateFormatter.string(from:	Date())

				}

}

struct	AvatarView:	View	{

				let	image:	String

				let	width:	CGFloat

				let	height:	CGFloat

				var	body:	some	View	{

								Image(image)

												.resizable()

												.frame(width:	width,	height:	height)

												.clipShape(Circle())

												.overlay(Circle().stroke(Color.gray,	lineWidth:	1))

				}

}

642Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	update	the	code	of		ContentView		like	this:

struct	ContentView:	View	{

				var	body:	some	View	{

								ScrollView	{

												VStack(spacing:	40)	{

																TopBarView()

																				.padding(.horizontal,	20)

																ForEach(sampleArticles.indices)	{	index	in

																				GeometryReader	{	inner	in

																								ArticleCardView(category:	sampleArticles[index].category,	

headline:	sampleArticles[index].headline,	subHeadline:	sampleArticles[index].subHe

adline,	image:	sampleArticles[index].image,	content:	sampleArticles[index].content

,	isShowContent:	.constant(false))

																												.padding(.horizontal,	20)

																				}

																				.frame(height:	min(sampleArticles[index].image.size.height/3,	

500))

																}

												}

								}

				}

}

We	embed	a		VStack		in	a		ScrollView		to	create	the	vertical	scroll	view.	In	the	code	block,
we	loop	through	all	the		sampleArticles		using		ForEach		and	create	an		ArticleCardView		for
each	article.	If	your	code	works	properly,	the	preview	canvas	should	show	you	a	list	of
articles.

643Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	The	list	view	showing	a	list	of	card	views

You	may	wonder	why	we	need	to	wrap	each	of	the		ArticleCardView		with	a
	GeometryReader	.	I	will	explain	its	purpose	in	a	later	section.

Expanding	the	Card	View	to	Full	Screen

Now	it	comes	to	the	hard	part.	How	do	you	switch	the	card	view	from	excerpt	mode	to
full	content	mode?	Right	now,	we	set	the		isShowContent		parameter	to		.constant(false)	.
To	switch	between	these	two	modes,	each	of	the	card	views	should	have	a	variable	to	keep
track	of	its	state.

Therefore,	declare	the	following	state	variable	in		ContentView	:

@State	private	var	showContents:	[Bool]	=	Array(repeating:	false,	count:	sampleArt

icles.count)

644Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	need	a	variable	to	store	the	state	of	each	card	view.	This	is	why	we	declare	the
	showContents		array	and	mark	it	as	a	state	variable.	By	default,	all	card	views	are	in	the
excerpt	state.	Thus,	the	values	of	the		showContents		array	are	all	set	to		false	.	Later,	when
a	card	is	tapped,	we	will	change	the	state	of	that	particular	card	view	from		false		to
	true	.

Furthermore,	we	also	need	to	have	a	handy	way	to	find	out	the	current	content	mode.
Continue	to	insert	the	following	code:

enum	ContentMode	{

				case	list

				case	content

}

private	var	contentMode:	ContentMode	{

				self.showContents.contains(true)	?	.content	:	.list

}

The		ContentView		can	either	display	a	list	of	articles	or	an	article	in	full	content	mode.	So,
in	the	code	above,	we	declare	a		ContentMode		enum	to	represent	these	states.	The
	contentMode		variable	is	a	computed	property	that	computes	the	current	mode	of	the	view.
When	one	of	the	items	in	the		showContents		array	is	set	to		true	,	we	know	it's	in	the
content	mode.	Otherwise,	it's	in	the	list	mode.

Now,	modify	the	initialization	of		ArticleCardView	.	Instead	of	using		.constant(false)	,
pass	it	the	binding	of	the	state	variable	(i.e.		self.$showContents[index]):

ArticleCardView(category:	sampleArticles[index].category,	headline:	sampleArticles

[index].headline,	subHeadline:	sampleArticles[index].subHeadline,	image:	sampleArt

icles[index].image,	content:	sampleArticles[index].content,	isShowContent:	self.$s

howContents[index])

Handling	the	Tap	Gesture

645Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

When	the	user	taps	one	of	the	card	views,	the	selected	card	will	be	changed	to	full	screen
mode.	To	capture	the	tap	gesture,	attach	the		.onTapGesture		modifier	below	the	code	you
just	added:

.onTapGesture	{

				self.showContents[index]	=	true

}

Let's	have	a	quick	test	to	see	how	the	app	functions	after	making	the	changes.	When	you
run	the	app	in	the	preview	canvas,	tap	any	of	the	card	views	to	see	the	result.	Though	it
doesn't	work	as	expected,	the	card	view	should	show	the	content	of	the	article	and	hide
the	sub-headline.	Additionally,	you	should	be	able	to	tap	the	close	button	to	return	to	the
excerpt	mode.	If	you	can't	see	the	content,	drag	up	the	card	view	to	reveal	it.

Figure	15.	Testing	the	tap	gesture

Controlling	the	Padding	and	Opacity

646Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

There	is	still	a	lot	of	work	to	do.	Let's	fix	the	issues	one	by	one.	First,	the	padding.	When
the	card	view	is	in	full	content	mode,	there	should	be	no	padding.	So,	in
	ContentView.swift	,	change	the		.padding		modifier	of		ArticleCardView		like	this:

.padding(.horizontal,	self.showContents[index]	?	0	:	20)

When	one	of	the	card	views	is	in	full	content	mode,	the	rest	of	the	card	views	should	be
hidden.	To	do	that,	we	can	vary	the	opacity	of	the	card	views	to	control	their	appearance.
Insert	the	following	code	after	the		.padding		modifier:

.opacity(

				self.contentMode	==	.list	||

				self.contentMode	==	.content	&&	self.showContents[index]	?	1	:	0

)

When	the	content	view	is	in	list	mode,	all	card	views	should	be	visible.	But	when	the
content	view	is	switched	to	content	mode,	only	the	selected	card	should	be	visible.	The
rest	of	the	card	views	are	set	to	be	invisible.

Now	let's	test	the	app	again.	This	time,	when	you	tap	any	of	the	card	views,	only	the
selected	view	appears	on	the	screen.	The	rest	are	temporarily	hidden.

647Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	16.	The	card	view	in	full	content	mode

You	may	want	to	hide	the	top	bar	when	the	content	view	is	in	content	mode.	Similarly,
you	can	attach	an		.opacity		modifier	to	the		TopBarView		to	control	its	appearance:

.opacity(self.contentMode	==	.content	?	0	:	1)

Adjusting	the	Height	of	the	Card	View

Right	now,	one	of	the	major	issues	is	that	the	card	view	doesn't	expand	to	fit	the	whole
screen.	Its	height	doesn't	change	when	the	card	view	is	switched	to	full	content	mode.
The	following	line	of	code	(attached	to		GeometryReader)	is	the	reason	why	the	card	view
doesn't	expand:

.frame(height:	min(sampleArticles[index].image.size.height/3,	500))

648Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	height	of	the	card	view	is	defined	not	to	exceed	500	points.	To	adjust	the	view	to	take
up	the	whole	screen,	we	need	to	alter	the	frame's	height	and	make	it	equal	to	the	height
of	the	screen.

To	detect	the	screen	height,	we	need	to	add	another		GeometryReader		and	wrap	it	around
the		ScrollView		in		ContentView		like	this:

var	body:	some	View	{

				GeometryReader	{	fullView	in

								ScrollView	{

												VStack(spacing:	40)	{

																.

																.

																.

												}

								}

				}

}

The	parameter		fullView		allows	you	to	access	the	full	size	of	the	screen	because	the
parent	of		GeometryReader		is	the	whole	screen.

Next,	modify	the		frame		modifier	like	this:

.frame(height:	self.showContents[index]	?	fullView.size.height	+	fullView.safeArea

Insets.top	+	fullView.safeAreaInsets.bottom	:	min(sampleArticles[index].image.size

.height/3,	500))

For	the	selected	card	view,	we	adjust	its	height	to	take	up	the	whole	screen.	By	default,
the		height		property	only	gives	us	the	height	of	the	safe	area.	To	calculate	the	height	of
the	actual	screen,	we	need	to	include	the	top	and	bottom	parts	of	the	safe	area	insets.

649Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	17.	Understanding	the	safe	area	insets

Run	the	app	in	the	preview	canvas	again	and	see	the	changes.	Now	the	height	of	the
selected	card	view	will	be	adjusted	automatically.

650Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	18.	Adjusting	the	height	of	the	card	in	full	content	mode

Enlarging	the	Image

We	haven't	finished	the	implementation	yet.	Even	though	we	fixed	one	of	the	major
issues,	there	are	still	a	few	issues	waiting	for	us.	Next	up	is	the	featured	image.	In	full
content	mode,	I	want	to	make	the	image	a	bit	larger.	This	is	an	easy	fix.	Just	switch	over
to		ArticleCardView.swift		and	change	the		.frame		modifier	of	the		Image		view	like	this:

.frame(width:	geometry.size.width,	height:	self.isShowContent	?	geometry.size.heig

ht	*	0.7	:	min(self.image.size.height/3,	500))

When	the	card	view	is	displaying	the	article	content,	the	height	of	the	image	is	now
adjusted	to	70%	of	the	screen	height.	You	may	alter	the	value	to	suit	your	preference.
Now	go	back	to		ContentView.swift		and	test	the	change.	The	featured	image	becomes
larger	in	full	content	mode.

651Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	19.	The	featured	image	becomes	larger	in	full	content	mode

Adjusting	the	Offset

Next,	the	view's	offset.	When	the	card	view	is	in	full	content	mode,	we	expect	it	to	take	up
the	whole	screen.	The	card	view	does	extend	its	height	but	it	doesn't	shift	its	position	to
cover	the	screen,	as	you	can	see	in	figure	18	and	19.

You	probably	know	that	we	can	adjust	the	view's	offset	by	attaching	an		.offset		modifier.
However,	the	question	is	what	value	of	offset	should	we	pass	to	the	modifier?	In	other
words,	how	can	we	find	out	the	offset	value	between	the	top	edge	of	the	card	view	and	the
top	edge	of	the	screen?

Notice	that	we	have	wrapped	each	of	the		ArticleCardView		with	a		GeometryReader	.	I
haven't	explained	why	we	implemented	this.	We	also	haven't	made	use	of	the		inner	
parameter.

Now	it's	time	for	the		inner		parameter	to	come	into	play.	In	addition	to	giving	us	the	size
of	a	view,	the		inner		parameter,	which	is	a		GeometryProxy	,	also	allows	us	to	access	the
frame	of	the	view	and	its	values	(like	position).	By	using	the	following	line	of	code,	we	can

652Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

find	out	the	distance	between	the	top	edge	of	the	card	view	and	the	screen:

inner.frame(in:	.global).minY)

The		.global		value	indicates	that	we	want	to	find	out	the	frame's	values	using	the	global
coordinate	space.	In	other	words,	the	values	are	relative	to	the	whole	screen.	The		minY	
property	gives	you	the	distance	between	the	top	edge	of	the	card	view	and	the	screen.
Figure	20	illustrates	the	values	of		minY		for	a	couple	of	the	card	views.	Please	note	that
the	value	of		minY		changes	accordingly	as	you	scroll	through	the	list.

Figure	20.	Understanding	the	minY	value	of	the	frame

Now	that	we	have	figured	out	the	offset	value,	all	we	need	to	do	is	attach	the		.offset	
modifier	to		ArticleCardView		in		ContentView.swift		like	this:

653Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.offset(y:	self.showContents[index]	?	-inner.frame(in:	.global).minY	:	0)

The	line	of	code	above	adjusts	the	offset	of	the	card	view	only	when	it's	in	full	content
mode.	By	setting	a	negative	value	of		inner.frame(in:	.global).minY	,	this	will	shift	the	card
view	up.	If	you	try	to	test	the	app	again	and	tap	any	of	the	card	views,	the	selected	card
should	take	up	the	whole	screen.

Figure	21.	The	card	view	now	takes	up	the	whole	screen

Animating	the	View	Changes

The	transition	of	a	card	view	from	excerpt	mode	to	full	content	mode	is	not	animated.	To
animate	the	transition,	you	can	attach	an		.animation		modifier	to	the		GeometryReader		of
	ArticleCardView	.	Place	the	following	line	of	code	after	the		.frame		modifier:

.animation(.interactiveSpring(response:	0.55,	dampingFraction:	0.65,	blendDuration

:	0.1))

654Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

With	just	a	line	of	code,	SwiftUI	automatically	animates	the	view	transition.	Run	the	app
in	the	simulator	or	in	the	preview	canvas.	You	will	see	a	slick	animation	when	the	card
view	expands	to	full	screen.

There	is	a	minor	issue	after	adding	the	animation	modifier.	When	the	app	is	first	started,
it	also	animates	the	population	of	the	card	views.	To	resolve	the	issue,	you	can	fix	the
width	of	the		VStack	.	Attach	the	following	line	of	code	to	the		VStack	:

.frame(width:	fullView.size.width)

Figure	22	shows	you	where	the	code	above	is	added.

Figure	22.	Attaching	the	animation	modifier	to	animate	the	view	transition

Summary

655Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Congratulations!	You've	built	an	App	Store	like	animation	using	SwiftUI.	After
implementing	this	demo	project,	I	hope	you	understand	how	to	create	complex	view
animations	and	understand	how	to	use	GeometryReader	to	perfect	your	UI.

Animation	is	an	essential	part	of	the	UI	these	days.	As	you	can	see,	SwiftUI	has	made	it
very	easy	for	developers	to	build	some	beautiful	animations	and	screen	transitions.	In
your	next	app	project,	don't	forget	to	apply	the	techniques	you	learned	in	this	chapter	to
improve	the	user	experience	of	your	app.

For	reference,	you	can	download	the	complete	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUIAppStore.zip)

656Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIAppStore.zip

Chapter	27
Building	an	Image	Carousel
Carousel	is	one	of	the	common	UI	patterns	that	you	see	in	most	mobile	and	web	apps.
Some	people	refer	it	as	an	image	slider	or	rotator.	However,	whatever	name	you	call	it,	a
carousel	is	designed	to	display	a	set	of	data	in	finite	screen	space.	For	example,	an	image
carousel	may	show	a	single	image	from	its	collection	with	a	navigation	control	suggesting
additional	content.	Users	can	swipe	the	screen	to	navigate	through	the	image	set.	This	is
how	Instagram	presents	multiple	images	to	users.	You	can	also	find	similar	carousels	in
many	other	iOS	apps	such	as	Apple's	Music	and	App	Store.

Figure	1.	Sample	carousel	in	the	Music,	App	Store,	and	Instagram	app

657Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	this	chapter,	you	will	learn	how	to	build	an	image	carousel	entirely	in	SwiftUI.	There
are	various	ways	to	implement	a	carousel.	One	approach	is	to	integrate	with	the	UIKit
component		UIPageViewController		and	use	it	to	create	the	carousel.	However,	we	will
explore	an	alternative	approach	and	create	the	carousel	completely	in	SwiftUI.

Let's	get	started.

Introducing	the	Travel	Demo	App

Likes	other	chapters,	I	walk	you	through	the	implementation	by	building	a	demo	app.
The	app	displays	a	collection	of	travel	destinations	in	the	form	of	a	carousel.	To	browse
through	the	trips,	the	user	can	swipe	right	to	view	the	subsequent	destination	or	swipe
left	to	check	out	the	previous	trip.	To	make	this	demo	app	more	engaging,	the	user	can
tap	a	destination	to	see	its	detail.	So,	in	addition	to	the	implementation	of	a	carousel,	you
will	also	learn	some	animation	techniques	that	can	be	applied	in	your	own	apps.	Figure	2
shows	you	some	sample	screenshots	of	the	demo	app.	To	see	it	in	action,	you	can	check
out	the	video	at	https://link.appcoda.com/carousel-demo.

658Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://link.appcoda.com/carousel-demo

Figure	2.	The	demo	app

To	save	you	time	from	building	the	app	from	scratch	and	to	focus	on	developing	the
carousel,	I've	created	a	starter	project	for	you.	Please	download	it	from
https://www.appcoda.com/resources/swiftui2/SwiftUICarouselStarter.zip	and	unzip	the
package.

659Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUICarouselStarter.zip

Figure	3.	The	starter	project

The	starter	project	comes	with	the	following	features:

1.	 It	bundles	the	required	images	in	the	asset	catalog.
2.	 The		ContentView.swift		file	is	the	default	SwiftUI	view	generated	by	Xcode.
3.	 The		Trip.swift		file	contains	the		Trip		struct,	which	represents	a	travel	destination

in	the	app.	For	testing	purposes,	this	file	also	creates	the		sampleTrips		array	which
includes	some	test	data.	You	may	modify	its	content.

4.	 The		TripCardView.swift		file	implements	the	UI	of	a	card	view.	Each	card	view	is
designed	to	display	the	destination's	image.	The		isShowDetails		binding	controls	the
appearance	of	the	text	label.	When		isShowDetails		is	set	to	true,	the	label	will	be
hidden.

The	ScrollView	Problem

So,	how	would	you	implement	the	carousel	in	SwiftUI?	At	first	thought,	you	may	want	to
create	the	carousel	by	using	a	scroll	view.	Probably	you	will	write	the	code	in
	ContentView.swift		like	this:

660Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	isCardTapped	=	false

				var	body:	some	View	{

								GeometryReader	{	outerView	in

												ScrollView(.horizontal,	showsIndicators:	false)	{

																HStack(alignment:	.center)	{

																				ForEach(sampleTrips.indices)	{	index	in

																								GeometryReader	{	innerView	in

																												TripCardView(destination:	sampleTrips[index].destinati

on,	imageName:	sampleTrips[index].image,	isShowDetails:	self.$isCardTapped)

																								}

																								.padding(.horizontal,	20)

																								.frame(width:	outerView.size.width,	height:	450)

																				}

																}

												}

												.frame(width:	outerView.size.width,	height:	outerView.size.height,	ali

gnment:	.leading)

								}

				}

}

In	the	code	above,	we	embed	an		HStack		with	a	horizontal		ScrollView		to	create	the	image
slider.	In	the		HStack	,	we	loop	through	the		sampleTrips		array	and	create	a		TripCardView	
for	each	trip.	To	have	better	control	of	the	card	size,	we	have	two	GeometryReaders:
outerView	and	innerView,	where	the	outer	view	represents	the	size	of	the	device's	screen
and	the	inner	view	wraps	around	the	card	view	to	control	its	size.	If	you	haven't	read	the
previous	chapter	and	don't	understand	what		GeometryReader		is	,	please	refer	to	chapter
26.

This	looks	simple,	right?	If	you	run	the	code	in	the	preview	canvas,	it	should	result	in	a
horizontal	scroll	view.	You	can	swipe	the	screen	to	scroll	through	all	the	card	views.

661Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Testing	the	horizontal	scroll	view

Does	this	mean	we	have	completed	the	carousel?	Not	yet.	There	are	a	couple	of	major
issues:

1.	 The	current	implementation	doesn't	support	paging.	In	other	words,	you	can	swipe
the	screen	to	continuously	scroll	through	the	content.	The	scroll	view	can	stop	at	any
location.	For	instance,	take	a	look	at	figure	4.	The	scroll	stops	in	between	two	card
views.	This	is	not	our	desired	behavior.	We	expect	the	scrolling	will	stop	on	paging
boundaries	of	the	content	view.

2.	 When	a	card	view	is	tapped,	we	need	to	find	out	its	index	and	display	its	details	in	a
separate	view.	The	problem	is	that	it	is	not	easy	to	figure	out	which	card	view	the
user	has	tapped	with	the	current	implementation.

Both	issues	are	related	to	the	built-in		ScrollView	.	The	UIKit	version	of	the	scroll	view
supports	paging.	However,	Apple	didn't	bring	that	feature	to	the	SwiftUI	framework.	To
resolve	the	issue,	We	need	to	build	our	own	horizontal	scroll	view	with	paging	support.

662Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

At	first,	you	may	think	it's	hard	to	develop	our	own	scroll	view.	But	in	reality,	it	is	not	that
hard.	If	you	understand	the	usage	of		HStack		and		DragGesture	,	you	can	build	a	horizontal
scroll	view	with	paging	support.

Building	a	Carousel	with	HStack	and	DragGesture

The	idea	is	to	layout	all	of	the	card	views	(i.e.	trips)	in	a	horizontal	stack	(HStack).	The
	HStack		should	be	long	enough	to	accomodate	all	the	card	views	but	only	display	a	single
card	view	at	any	time.	By	default,	the	horizontal	stack	is	non-scrollable.	Therefore,	we
need	to	attach	a	drag	gesture	recognizer	to	the	stack	view	and	handle	the	drag	on	our
own.	Figure	5	illustrates	our	implementation	of	the	horizontal	scroll	view.

Figure	5.	Understanding	how	to	create	a	horizontal	scroll	view	using	HStack	and
DragGesture

Implementing	the	horizontal	stack

Now	let's	see	how	we	turn	this	idea	into	code.	Please	bear	with	me	in	that	you	will	need	to
update	the	code	several	times.	I	want	to	show	you	the	implementation	step	by	step.	Open
	Content.swift		and	update	the		body		like	this:

663Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	body:	some	View	{

				HStack	{

								ForEach(sampleTrips.indices)	{	index	in

												TripCardView(destination:	sampleTrips[index].destination,	imageName:	s

ampleTrips[index].image,	isShowDetails:	self.$isCardTapped)

								}

				}

}

In	the	code	above,	we	start	by	laying	out	all	card	views	within	an		HStack	.	By	default,	the
horizontal	stack	tries	its	best	to	fit	all	the	card	views	in	the	available	screen	space.	You
should	see	something	like	figure	6	in	the	preview	canvas.

Figure	6.	Squeezing	all	card	views	to	fit	the	screen

Obviously,	this	isn't	the	horizontal	stack	we	want	to	build.	We	expect	each	card	view	to
takes	up	the	width	of	the	screen.	To	do	so,	we	have	to	wrap	the	HStack	in	a
GeometryReader	to	retrieve	the	screen	size.	Update	the	code	in	the		body		like	this:

664Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	body:	some	View	{

				GeometryReader	{	outerView	in

								HStack	{

												ForEach(sampleTrips.indices)	{	index	in

																GeometryReader	{	innerView	in

																				TripCardView(destination:	sampleTrips[index].destination,	imag

eName:	sampleTrips[index].image,	isShowDetails:	self.$isCardTapped)

																}

																.frame(width:	outerView.size.width,	height:	500)

												}

								}

								.frame(width:	outerView.size.width,	height:	outerView.size.height)

				}

}

The		outerView		parameter	provides	us	the	screen	width	and	height,	while	the		innerView	
parameter	allows	us	to	have	better	control	of	the	size	and	position	of	the	card	view.

In	the	code	above,	we	attach	the		.frame		modifier	to	the	card	view	and	set	its	width	to	the
screen	width	(i.e.		outerView.size.width).	This	ensures	that	each	card	view	takes	up	the
whole	screen	width.	For	the	height	of	the	card	view,	we	set	it	to	500	points	to	make	it	a
bit	smaller.	After	making	the	changes,	you	should	see	the	card	view	showing	the
"London"	image.

665Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	The	horizontal	stack	now	shows	only	a	single	card	view

Why	the	"London"	card	view?	If	you	place	the	cursor	on	the	line	of	the		.frame		modifier,
the	preview	canvas	should	display	something	like	that	shown	in	figure	8.	We	have	13
items	in	the		sampleTrips		array.	Since	each	of	the	card	views	has	a	width	equal	to	the
screen	width,	the	horizontal	stack	view	has	to	expand	beyond	the	screen.	It	happens	that
the	"London"	card	view	is	the	center	(7th)	item	of	the	array.	This	is	why	you	see	the
"London"	card	view.

Figure	8.	The	horizontal	stack	view	has	13	card	views

666Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Changing	the	alignment

So,	how	can	we	display	the	first	item	of	the	array	instead	of	the	center	(7th)	item?	The
trick	is	to	attach	a		.frame		modifier	to	the		HStack		with	the	alignment	set	to		.leading		like
this:

.frame(width:	outerView.size.width,	height:	outerView.size.height,	alignment:	.lea

ding)

The	default	alignment	is	set	to		.center	.	This	is	why	the	7th	element	of	the	horizontal
view	is	shown	on	screen.	Once	you	change	the	alignment	to		.leading	,	you	should	see	the
first	element.

Figure	9.	The	horizontal	stack	view	shows	the	first	card	view

If	you	want	to	understand	how	the	alignment	affects	the	horizontal	stack	view,	you	can
change	its	value	to		.center		or		.trailing		to	see	its	effect.	Figure	10	shows	what	the	stack
view	looks	likes	with	different	alignment	settings.

667Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	The	horizontal	stack	view	with	different	alignment	settings

Did	you	notice	the	gap	between	each	of	the	card	views?	This	is	also	related	to	the	default
setting	of		HStack	.	To	eliminate	the	spacing,	you	can	update	the		HStack		and	set	its
spacing	to	zero	like	this:

HStack(spacing:	0)

Adding	padding

Optionally,	you	can	add	horizontal	padding	to	the	image.	I	think	this	will	make	the	card
view	look	better.	Insert	the	following	line	of	code	and	attach	it	to	the	GeometryReader
that	wraps	the	card	view	(before		.frame(width:	outerView.size.width,	height:	500)):

.padding(.horizontal,	self.isCardTapped	?	0	:	20)

668Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

While	it's	too	early	for	us	to	talk	about	the	implementation	of	the	detailed	view,	we	added
a	condition	for	the	padding.	The	horizontal	padding	will	be	removed	when	the	user	taps
the	card	view.

Figure	11.	Adding	the	horizontal	padding

Moving	the	HStack	Card	by	Card

Now	that	we	have	created	a	horizontal	stack	that	defaults	to	show	the	first	card	view,	the
next	question	is	how	do	we	move	the	stack	to	display	a	particular	card?

It's	just	simple	math!	The	card	view's	width	equals	the	width	of	the	screen.	Suppose	the
screen	width	is	300	points	and	we	want	to	display	the	third	card	view,	we	can	shift	the
horizontal	stack	to	the	left	by	600	points	(300	x	2).	Figure	12	shows	the	result.

669Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Moving	the	stack	view	to	the	left

To	translate	the	description	above	into	code,	we	first	declare	a	state	variable	to	keep	track
of	the	index	of	the	visible	card	view:

@State	private	var	currentTripIndex	=	2

By	default,	I	want	to	display	the	third	card	view.	This	is	why	I	set	the		currentTripIndex	
variable	to	2.	You	can	change	it	to	other	values.

To	move	the	horizontal	stack	to	the	left,	we	can	attach	the		.offset		modifier	to	the
	HStack		like	this:

.offset(x:	-CGFloat(self.currentTripIndex)	*	outerView.size.width)

The		outerView	's	width	is	actually	the	width	of	the	screen.	In	order	to	display	the	third
card	view,	as	explained	before,	we	need	to	move	the	stack	by	2	x	screen	width.	This	is	why
we	multiply	the		currentTripIndex		with	the		outerView	's	width.	A	negative	value	for	the
horizontal	offset	will	shift	the	stack	view	to	the	left.

Once	you	have	made	the	change,	you	should	see	the	"Amsterdam"	card	view	in	your
preview	canvas.

670Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	The	stack	now	shows	the	Amsterdam	card	view

Adding	the	Drag	Gesture

With	the	current	implementation,	we	can	change	the	visible	card	view	by	altering	the
value	of		currentTripIndex	.	Remember,	the	horizontal	stack	doesn't	allow	users	to	drag
the	view.	This	is	what	we	are	going	to	implement	in	this	section.	I	assume	you	already
understand	how	gestures	work	in	SwiftUI.	If	you	don't	understand	gestures	or
	@GestureState	,	please	read	chapter	17	first.

The	drag	gesture	of	the	horizontal	stack	is	expected	work	like	this:

1.	 The	user	can	tap	the	image	and	start	dragging.
2.	 The	drag	can	be	in	both	directions.
3.	 When	the	drag's	distance	exceeds	a	certain	threshold,	the	horizontal	stack	will	move

to	the	next	or	previous	card	view	depending	on	the	drag	direction.
4.	 Otherwise,	the	stack	view	returns	to	the	original	position	and	displays	the	current

card	view.

671Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	translate	the	description	above	into	code,	we	first	declare	a	variable	to	hold	the	drag
offset:

@GestureState	private	var	dragOffset:	CGFloat	=	0

Next,	we	attach	the		.gesture		modifier	to	the		HStack		and	initialize	a		DragGesture		like
this:

.gesture(

				!self.isCardTapped	?

				DragGesture()

								.updating(self.$dragOffset,	body:	{	(value,	state,	transaction)	in

												state	=	value.translation.width

								})

								.onEnded({	(value)	in

												let	threshold	=	outerView.size.width	*	0.65

												var	newIndex	=	Int(-value.translation.width	/	threshold)	+	self.curren

tTripIndex

												newIndex	=	min(max(newIndex,	0),	sampleTrips.count	-	1)

												self.currentTripIndex	=	newIndex

								})

				:	nil

)

As	you	drag	the	horizontal	stack,	the		updating		function	is	called.	We	save	the	horizontal
drag	distance	to	the		dragOffset		variable.	When	the	drag	ends,	we	check	if	the	drag
distance	exceeds	the	threshold,	which	is	set	to	65%	of	the	screen	width,	and	computes	the
new	index.	Once	we	have	the		newIndex		computed,	we	verify	if	it	is	within	the	range	of	the
	sampleTrips		array.	Lastly,	we	assign	the	value	of		newIndex		to		currentTripIndex	.	SwiftUI
will	then	update	the	UI	and	display	the	corresponding	card	view	automatically.

Please	take	note	that	we	have	a	condition	for	enabling	the	drag	gesture.	When	the	card
view	is	tapped,	there	is	no	gesture	recognizer.

672Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	move	the	stack	view	during	the	drag,	we	have	to	make	one	more	change.	Attach	an
additional		.offset		modifier	to	the		HStack		(right	after	the	previous	.offset)	like	this:

.offset(x:	self.dragOffset)

Here,	we	update	the	horizontal	offset	of	the	stack	view	to	the	drag	offset.	Now	you	are
ready	to	test	the	changes.	Run	the	app	in	a	simulator	or	in	the	preview	canvas.	You
should	be	able	to	drag	the	stack	view.	When	your	drag	exceeds	the	threshold,	the	stack
view	shows	you	the	next	trip.

Figure	14.	Dragging	the	horizontal	stack	view

Animating	the	Card	Transition

To	improve	the	user	experience,	I	want	to	add	a	nice	animation	when	the	app	moves	from
one	card	view	to	another.	First,	modify	the	following	line	of	code	from:

.frame(width:	outerView.size.width,	height:	500)

673Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To:

.frame(width:	outerView.size.width,	height:	self.currentTripIndex	==	index	?	(self

.isCardTapped	?	outerView.size.height	:	450)	:	400)

By	updating	the	code,	we	make	the	visible	card	view	a	little	bit	larger	than	the	rest.	On
top	of	that,	attach	the		.opacity		modifier	to	the	card	view	like	this:

.opacity(self.currentTripIndex	==	index	?	1.0	:	0.7)

Other	than	the	card	view's	height,	we	also	want	to	set	a	different	opacity	value	for	the
visible	and	invisible	card	views.	All	these	changes	are	not	animated	yet.	Now	insert	the
following	line	of	code	to	the	outer	view's	GeometryReader:

.animation(.interpolatingSpring(mass:	0.6,	stiffness:	100,	damping:	10,	initialVel

ocity:	0.3))

SwiftUI	will	then	animate	the	size	and	opacity	changes	of	the	card	views	automatically.
Run	the	app	in	the	preview	canvas	to	test	out	the	changes.	This	is	how	we	implement	a
scroll	view	with	HStack	and	add	paging	support.

674Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	15.	Adding	the	card	transition	animation

Adding	the	Title

Now	that	we	have	built	the	image	carousel,	wouldn't	it	be	great	if	we	implement	the	detail
view	to	make	the	demo	app	more	complete?	Let's	start	by	adding	a	title	for	the	app.

Command-click	the		GeometryReader		of	the	outer	view	and	choose	embed	in	VStack.
Actually,	I'm	not	going	to	use	a	vertical	stack	to	layout	the	title.	Instead,	we	will	use	a
ZStack.	Therefore,	change		VStack		to		ZStack	.

675Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	16.	Embed	the	outer	view	in	a	VStack

Next,	insert	the	following	code	at	the	beginning	of		ZStack	:

VStack(alignment:	.leading)	{

				Text("Discover")

								.font(.system(.largeTitle,	design:	.rounded))

								.fontWeight(.black)

				Text("Explore	your	next	destination")

								.font(.system(.headline,	design:	.rounded))

}

.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	0,	maxHeight:	.infinity,	align

ment:	.topLeading)

.padding(.top,	25)

.padding(.leading,	20)

.opacity(self.isCardTapped	?	0.1	:	1.0)

.offset(y:	self.isCardTapped	?	-100	:	0)

The	code	above	is	self	explanatory	but	I'd	like	to	highlight	two	lines	of	code.	Both
	.opacity		and		.offset		are	optional.	The	purpose	of	the		.opacity		modifier	is	to	hide	the
title	when	the	card	is	tapped.	The	change	to	the	vertical	offset	will	add	a	nice	touch	to	the
user	experience.

676Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	17.	Adding	the	title	bar

Exercise:	Working	on	the	Detail	View

Let's	begin	the	implementation	of	the	detail	view	with	an	exercise.	I	assume	you	have
some	experience	with	SwiftUI	and	should	be	able	to	create	the	detail	view	shown	in
figure	18.	You	can	create	a	separate	file	named		TripDetailView.swift		and	write	the	code
there.

677Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	18.	The	detail	view	of	a	trip

To	keep	things	simple,	the	rating	and	description	are	just	dummy	data.	The	same	goes	for
the	Book	Now	button,	which	is	not	functional.	This	detail	view	only	takes	in	a	destination
like	this:

struct	TripDetailView:	View	{

				let	destination:	String

				var	body:	some	View	{

								.

								.

								.

				}

}

Please	take	some	time	to	create	the	detail	view.	I	will	walk	you	through	my	solution	in	a
later	section.

678Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Implementing	the	Trip	Detail	View

Were	you	able	to	develop	the	detail	view?	I	hope	you	tried	to	complete	the	exercise.	Let
me	show	you	my	solution.	First,	create	a	new	file	named		TripDetailView.swift		using	the
SwiftUI	View	template.

Next,	replace	the		TripDetailView		struct	like	this:

struct	TripDetailView:	View	{

				let	destination:	String

				var	body:	some	View	{

								GeometryReader	{	geometry	in

												ScrollView	{

																ZStack	{

																				VStack(alignment:	.leading,	spacing:	5)	{

																								VStack(alignment:	.leading,	spacing:	5)	{

																												Text(self.destination)

																																.font(.system(.title,	design:	.rounded))

																																.fontWeight(.heavy)

																												HStack(spacing:	3)	{

																																ForEach(1...5,	id:	\.self)	{	_	in

																																				Image(systemName:	"star.fill")

																																								.foregroundColor(.yellow)

																																								.font(.system(size:	15))

																																}

																																Text("5.0")

																																				.font(.system(.headline))

																																				.padding(.leading,	10)

																												}

																								}

																								.padding(.bottom,	30)

																								Text("Description")

																												.font(.system(.headline))

																												.fontWeight(.medium)

679Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

																								Text("Growing	up	in	Michigan,	I	was	lucky	enough	to	experi

ence	one	part	of	the	Great	Lakes.	And	let	me	assure	you,	they	are	great.	As	a	phot

ojournalist,	I	have	had	endless	opportunities	to	travel	the	world	and	to	see	a	var

iety	of	lakes	as	well	as	each	of	the	major	oceans.	And	let	me	tell	you,	you	will	b

e	hard	pressed	to	find	water	as	beautiful	as	the	Great	Lakes.")

																												.padding(.bottom,	40)

																								Button(action:	{

																												//	tap	me

																								})	{

																												Text("Book	Now")

																																.font(.system(.headline,	design:	.rounded))

																																.fontWeight(.heavy)

																																.foregroundColor(.white)

																																.padding()

																																.frame(minWidth:	0,	maxWidth:	.infinity)

																																.background(Color(red:	0.97,	green:	0.369,	blue:	0

.212))

																																.cornerRadius(20)

																								}

																				}

																				.padding()

																				.frame(width:	geometry.size.width,	height:	geometry.size.heigh

t,	alignment:	.topLeading)

																				.background(Color.white)

																				.cornerRadius(15)

																				Image(systemName:	"bookmark.fill")

																								.font(.system(size:	40))

																								.foregroundColor(Color(red:	0.97,	green:	0.369,	blue:	0.212

))

																								.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	0,	max

Height:	.infinity,	alignment:	.topTrailing)

																								.offset(x:	-15,	y:	-5)

																}

																.offset(y:	15)

												}

								}

				}

}

680Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Basically,	we	embed	the	whole	content	in	a	scroll	view.	Inside	the	scroll	view,	we	use	a
ZStack	to	layout	the	content	and	the	bookmark	image.	Since	the		TripDetailView		requires
a	valid	destination	in	order	to	work	properly,	you	need	to	update	the	preview	code	like
this:

struct	TripDetailView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								TripDetailView(destination:	"London").background(Color.black)

				}

}

I	also	changed	the	background	color	to	black,	so	that	we	can	see	the	rounded	corners	of
the	detail	view.

Figure	19.	Previewing	the	detail	view

Bringing	up	the	Detail	View

681Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	let's	go	back	to		ContentView.swift		to	bring	up	the	detail	view.	When	a	user	taps	a
card	view,	we	will	bring	up	the	detail	view	with	an	animated	transition.	Since	the	content
view	has	a	ZStack	which	wraps	its	core	content,	it's	very	easy	for	us	to	integrate	with	the
detail	view.

Insert	the	following	code	snippet	in	the		ZStack	:

if	self.isCardTapped	{

				TripDetailView(destination:	sampleTrips[currentTripIndex].destination)

								.offset(y:	200)

								.transition(.move(edge:	.bottom))

								.animation(.interpolatingSpring(mass:	0.5,	stiffness:	100,	damping:	10,	in

itialVelocity:	0.3))

				Button(action:	{

								self.isCardTapped	=	false

				})	{

								Image(systemName:	"xmark.circle.fill")

												.font(.system(size:	30))

												.foregroundColor(.black)

												.opacity(0.7)

												.contentShape(Rectangle())

				}

				.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	0,	maxHeight:	.infinity,	a

lignment:	.topTrailing)

				.padding(.trailing)

}

The		TripDetailView		is	only	brought	up	when	the	card	view	is	tapped.	It's	expected	that
the	detail	view	will	appear	from	the	bottom	of	the	screen	and	move	upward	with	an
animation.	This	is	why	we	attach	both	the		.transition		and		.animation		modifiers	to	the
detail	view.	To	let	users	dismiss	the	detail	view,	we	also	add	a	close	button,	which	appears
at	the	top-right	corner	of	the	screen.	In	case	you	are	not	sure	where	to	insert	the	code
above,	please	refer	to	figure	20.

682Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	20.	The	code	snippet	for	bringing	up	the	detail	view

The	code	won't	work	yet	because	we	haven't	captured	the	tap	gesture.	Thus,	attach	the
	.onTapGesture		function	to	the	card	view	like	this:

.onTapGesture	{

				self.isCardTapped	=	true

}

When	someone	taps	the	card	view,	we	simply	change	the		isCardTapped		state	variable	to
	true	.	Run	the	app	and	tap	any	of	the	card	views.	The	app	should	bring	up	the	detail
view.

683Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	21.	The	code	snippet	for	bringing	up	the	detail	view

The	detail	view	works!	However,	the	animation	doesn't	work	well.	When	the	detail	view
is	brought	up,	the	card	view	grows	a	little	bit	bigger,	which	is	achieved	by	the	following
line	of	code:

.frame(width:	outerView.size.width,	height:	self.currentTripIndex	==	index	?	(self

.isCardTapped	?	outerView.size.height	:	450)	:	400)

To	make	the	animation	look	better,	let's	move	the	image	upward	when	the	detail	view
appears.	Attach	the		.offset		modifier	to		TripCardView	:

.offset(y:	self.isCardTapped	?	-innerView.size.height	*	0.3	:	0)

I	set	the	vertical	offset	to	30%	of	the	card	view's	height.	You	are	free	to	change	the	value.
Now	run	the	app	again	and	you	should	see	a	more	slick	animation.

684Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	22.	Adding	an	offset	modifier	to	TripCardView

Summary

Great!	You've	built	a	custom	scroll	view	with	paging	support	and	learned	how	to	bring	up
a	detail	view	with	animated	transition.	This	technique	is	not	limited	to	to	an	image
carousel.	In	fact,	you	can	modify	the	code	to	create	a	set	of	onboarding	screens.	I	hope
you	love	what	you	learned	in	this	chapter	and	will	apply	it	to	your	next	app	project.

For	reference,	you	can	download	the	complete	carousel	project	here:

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUICarousel.zip)

685Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUICarousel.zip

Chapter	28
Building	an	Expandable	List	View
Using	OutlineGroup
SwiftUI	list	is	very	similar	to	UITableView	in	UIKit.	In	the	first	release	of	SwiftUI,	Apple's
engineers	made	list	view	construction	a	breeze.	You	do	not	need	to	create	a	prototype	cell
and	there	is	no	delegate/data	source	protocol.	With	just	a	few	lines	of	code,	you	can	build
a	list	view	with	custom	cells.	In	iOS	14,	Apple	continued	to	improve	the		List		view	and
introduced	several	new	features.	In	this	chapter,	we	will	show	you	how	to	build	an
expandable	list	/	outline	view	and	explore	the	inset	grouped	list	style.

The	Demo	App

First,	let's	take	a	look	at	the	final	deliverable.	I'm	a	big	fan	of	La	Marzocco,	so	I	used	the
navigation	menu	on	its	website	as	an	example.	The	list	view	below	shows	an	outline	of
the	menu.	Users	can	tap	the	disclosure	button	to	expand	the	list.

686Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://international.lamarzocco.com/en/

Figure	1.	The	expandable	list	view

Of	course,	you	can	build	this	outline	view	using	your	own	implementation.	Starting	from
iOS	14,	Apple	made	it	simpler	for	developers	to	build	this	kind	of	outline	view,	which
automatially	works	on	iOS,	iPadOS,	and	macOS.

Creating	the	Expandable	List

In	order	to	follow	this	chapter,	please	download	these	image	assets	from
https://www.appcoda.com/resources/swiftui/expandablelist-images.zip.	Then	create	a
new	SwiftUI	project	using	the	App	template.	I	named	the	project	SwiftUIExpandableList
but	you	are	free	to	set	the	name	to	whatever	you	want.

Once	the	project	is	created,	unzip	the	image	archive	and	add	the	images	to	the	asset
catalog.

687Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui/expandablelist-images.zip

In	the	project	navigator,	right	click	SwiftUIExpandableList	and	choose	to	create	a	new
file.	Select	the	Swift	File	template	and	name	it	MenuItem.swift.

Setting	up	the	data	model

To	make	the	list	view	expandable,	all	you	need	to	do	is	create	a	data	model	like	this.
Insert	the	following	code	in	the	file:

struct	MenuItem:	Identifiable	{

				var	id	=	UUID()

				var	name:	String

				var	image:	String

				var	subMenuItems:	[MenuItem]?

}

In	the	code	above,	we	have	a	struct	that	models	a	menu	item.	The	key	to	making	a	nested
list	is	to	include	a	property	that	contains	an	optional	array	of	child	menu	items	(i.e.
	subMenuItems).	Note	that	the	children	are	of	the	same	type	(MenuItem)	as	their	parent.

For	the	top	level	menu	items,	we	create	an	array	of		MenuItem		like	this:

//	Main	menu	items

let	sampleMenuItems	=	[MenuItem(name:	"Espresso	Machines",	image:	"linea-mini",	s

ubMenuItems:	espressoMachineMenuItems),

																								MenuItem(name:	"Grinders",	image:	"swift-mini",	subMenuIte

ms:	grinderMenuItems),

																								MenuItem(name:	"Other	Equipment",	image:	"espresso-ep",	su

bMenuItems:	otherMenuItems)

]

For	each	of	the	menu	item,	we	specify	the	array	of	the	sub-menu	items.	If	there	are	no
sub-menu	items,	you	can	omit	the		subMenuItems		parameter	or	pass	it	a		nil		value.	We
define	the	sub-menu	items	like	this:

688Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

//	Sub-menu	items	for	Espressco	Machines

let	espressoMachineMenuItems	=	[MenuItem(name:	"Leva",	image:	"leva-x",	subMenuIt

ems:	[MenuItem(name:	"Leva	X",	image:	"leva-x"),	MenuItem(name:	"Leva	S",	image:	

"leva-s")]),

																																	MenuItem(name:	"Strada",	image:	"strada-ep",	subM

enuItems:	[MenuItem(name:	"Strada	EP",	image:	"strada-ep"),	MenuItem(name:	"Strad

a	AV",	image:	"strada-av"),	MenuItem(name:	"Strada	MP",	image:	"strada-mp"),	MenuI

tem(name:	"Strada	EE",	image:	"strada-ee")]),

																																	MenuItem(name:	"KB90",	image:	"kb90"),

																																	MenuItem(name:	"Linea",	image:	"linea-pb-x",	subM

enuItems:	[MenuItem(name:	"Linea	PB	X",	image:	"linea-pb-x"),	MenuItem(name:	"Lin

ea	PB",	image:	"linea-pb"),	MenuItem(name:	"Linea	Classic",	image:	"linea-classic"

)]),

																																	MenuItem(name:	"GB5",	image:	"gb5"),

																																	MenuItem(name:	"Home",	image:	"gs3",	subMenuItems

:	[MenuItem(name:	"GS3",	image:	"gs3"),	MenuItem(name:	"Linea	Mini",	image:	"line

a-mini")])

]

//	Sub-menu	items	for	Grinder

let	grinderMenuItems	=	[MenuItem(name:	"Swift",	image:	"swift"),

																									MenuItem(name:	"Vulcano",	image:	"vulcano"),

																									MenuItem(name:	"Swift	Mini",	image:	"swift-mini"),

																									MenuItem(name:	"Lux	D",	image:	"lux-d")

]

//	Sub-menu	items	for	other	equipment

let	otherMenuItems	=	[MenuItem(name:	"Espresso	AV",	image:	"espresso-av"),

																									MenuItem(name:	"Espresso	EP",	image:	"espresso-ep"),

																									MenuItem(name:	"Pour	Over",	image:	"pourover"),

																									MenuItem(name:	"Steam",	image:	"steam")

]

Presenting	the	List

With	the	data	model	prepared,	we	can	now	present	the	list	view.	The		List		view	has	an
optional		children		parameter.	If	you	have	any	sub	items,	you	can	provide	their	key	path.
SwiftUI	will	then	look	up	the	sub	menu	items	recursively	and	present	them	in	outline
form.	Open		ContentView.swift		and	insert	the	following	code	in		body	:

689Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

List(sampleMenuItems,	children:	\.subMenuItems)	{	item	in

				HStack	{

								Image(item.image)

												.resizable()

												.scaledToFit()

												.frame(width:	50,	height:	50)

								Text(item.name)

												.font(.system(.title3,	design:	.rounded))

												.bold()

				}

}

In	the	closure	of	the		List		view,	you	describe	how	each	row	looks.	In	the	code	above,	we
layout	an	image	and	a	text	description	using		HStack	.	If	you've	added	the	code	in
	ContentView		correctly,	SwiftUI	should	render	the	outline	view	as	shown	in	figure	2.

Figure	2.	The	expandable	list	view

690Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	test	the	app,	run	it	in	a	simulator	or	the	preview	canvas.	You	can	tap	the	disclosure
indicator	to	access	the	submenu.

Using	Inset	Grouped	List	Style

In	iOS	13,	Apple	brought	a	new	style	to	the	UITableView	called	Inset	Grouped,	where	the
grouped	sections	are	inset	with	rounded	corners.	However,	this	style	was	not	available	to
the		List		view	in	SwiftUI.	With	the	release	of	iOS	14,	Apple	added	this	new	style	to
SwiftUI	list.

To	use	this	new	list	style,	you	can	attach	the		.listStyle		modifier	to	the		List		view	and
pass	it	the	instance	of		InsetGroupedListStyle		like	this:

List	{

		...

}

.listStyle(InsetGroupedListStyle())

If	you've	followed	me,	the	list	view	should	now	change	to	the	inset	grouped	style.

691Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	Using	inset	grouped	list	style

Using	OutlineGroup	to	Customize	the	Expandable	List

As	you	can	see	in	the	earlier	example,	it	is	pretty	easy	to	create	an	outline	view	using	the
	List		view.	However,	if	you	want	to	have	a	better	control	of	the	appearance	of	the	outline
view	(e.g.	adding	a	section	header),	you	will	need	to	use		OutlineGroup	.	This	new	view	is
introduced	in	iOS	14	for	you	to	present	a	hierarchy	of	data.

If	you	understand	how	to	build	an	expandable	list	view,	the	usage	of		OutlineGroup		is	very
similar.	For	example,	the	following	code	allows	you	to	build	the	same	expandable	list
view	like	the	one	shown	in	figure	1:

692Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

List	{

				OutlineGroup(sampleMenuItems,	children:	\.subMenuItems)	{		item	in

								HStack	{

												Image(item.image)

																.resizable()

																.scaledToFit()

																.frame(width:	50,	height:	50)

												Text(item.name)

																.font(.system(.title3,	design:	.rounded))

																.bold()

								}

				}

}

Similar	to	the		List		view,	you	just	need	to	pass		OutlineGroup		the	array	of	items	and
specify	the	key	path	for	the	sub	menu	items	(or	children).

With		OutlineGroup	,	you	have	better	control	on	the	appearance	of	the	outline	view.	For
example,	we	want	to	display	the	top-level	menu	items	as	the	section	header.	You	can
write	the	code	like	this:

693Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

List	{

				ForEach(sampleMenuItems)	{	menuItem	in

								Section(header:

												HStack	{

																Text(menuItem.name)

																				.font(.title3)

																				.fontWeight(.heavy)

																Image(menuItem.image)

																				.resizable()

																				.scaledToFit()

																				.frame(width:	30,	height:	30)

												}

												.padding(.vertical)

)	{

												OutlineGroup(menuItem.subMenuItems	??	[MenuItem](),	children:	\.subMen

uItems)	{		item	in

																HStack	{

																				Image(item.image)

																								.resizable()

																								.scaledToFit()

																								.frame(width:	50,	height:	50)

																				Text(item.name)

																								.font(.system(.title3,	design:	.rounded))

																								.bold()

																}

												}

								}

				}

}

In	the	code	above,	we	use		ForEach		to	loop	through	the	menu	items.	We	present	the	top-
level	items	as	section	headers.	For	the	rest	of	the	sub	menu	items,	we	rely	on
	OutlineGroup		to	create	the	hierachy	of	data.	If	you've	made	the	change	in
	ContentView.swift	,	you	should	see	an	outline	view	like	that	shown	in	figure	4.

694Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Building	the	outline	view	using	OutlineGroup

Similarly,	if	you	prefer	to	use	the	inset	group	list	style,	you	can	attach	the		listStyle	
modifier	to	the		List		view:

.listStyle(InsetGroupedListStyle())

You	then	achieve	an	outline	view	like	figure	5.

695Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Applying	the	inset	grouped	list	style

Understanding	DisclosureGroup

In	the	outline	view,	you	can	show/hide	the	sub	menu	items	by	tapping	the	disclosure
indicator.	Whether	you	use		List		or		OutlineGroup		to	implement	the	expandable	list,	this
"expand	&	collapse"	feature	is	supported	by	a	new	view	called		DisclosureGroup	,
introduced	in	iOS	14.

The	disclosure	group	view	is	designed	to	show	or	hide	another	content	view.	While
	DisclosureGroup		is	automatically	embedded	in		OutlineGroup	,	you	can	use	this	view
independently.	For	example,	you	can	use	the	following	code	to	show	&	hide	a	question
and	an	answer:

696Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

DisclosureGroup(

				content:	{

								Text("Absolutely!	You	are	allowed	to	reuse	the	source	code	in	your	own	pro

jects	(personal/commercial).	However,	you're	not	allowed	to	distribute	or	sell	the

	source	code	without	prior	authorization.")

												.font(.body)

												.fontWeight(.light)

				},

				label:	{

								Text("1.	Can	I	reuse	the	source	code?")

												.font(.body)

												.bold()

				}

)

The	disclosure	group	view	takes	in	two	parameters:	label	and	content.	In	the	code	above,
we	specify	the	question	in	the		label		parameter	and	the	answer	in	the		content	
parameter.	Figure	6	shows	you	the	result.

Figure	6.	Using	DisclosureGroup	for	showing	and	hiding	content

By	default,	the	disclosure	group	view	is	in	hidden	mode.	To	reveal	the	content	view,	you
tap	the	disclosure	indicator	to	switch	the	disclosure	group	view	to	the	"expand"	state.

Optionally,	you	can	control	the	state	of		DisclosureGroup		by	passing	it	a	binding	which
specifies	the	state	of	the	disclosure	indicator	(expanded	or	collapsed)	like	this:

697Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	FaqView:	View	{

				@State	var	showContent	=	true

				var	body:	some	View	{

								DisclosureGroup(

												isExpanded:	$showContent,

												content:	{

																...

												},

												label:	{

																...

												}

)

								.padding()

				}

}

Exercise

The		DisclosureGroup		view	allows	you	to	have	finer	control	over	the	state	of	the	disclosure
indicator.	Your	exercise	is	to	create	a	FAQ	screen	similar	to	the	one	shown	in	figure	7.

698Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Your	exercise

Users	can	tap	the	disclosure	indicator	to	show	or	hide	an	individual	question.
Additionally,	the	app	provides	a	"Show	All"	button	to	expand	all	questions	and	reveal	the
answers	at	once.

Summary

In	this	chapter,	I've	introduced	a	couple	of	new	features	of	SwiftUI.	As	you	can	see	in	the
demo,	it	is	very	easy	to	build	an	outline	view	or	expandable	list	view.	All	you	need	to	do	is
define	a	correct	data	model.	The	List	view	handles	the	rest,	traverses	the	data	structure,
and	renders	the	outline	view.	On	top	of	that,	the	new	update	provides		OutlineGroup		and
	DisclosureGroup		for	you	to	further	customize	the	outline	view.

For	reference,	you	can	download	the	complete	expandable	list	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIExpandableList.zip)

699Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIExpandableList.zip

Please	note	that	you	can	refer	to		FaqView.swift		for	the	solution	to	the	exercise.

700Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Chapter	29
Building	Grid	Layouts	Using
LazyVGrid	and	LazyHGrid
The	initial	release	of	SwiftUI	didn't	come	with	a	native	collection	view.	You	can	either
build	your	own	solution	or	use	third	party	libraries.	In	WWDC	2020,	Apple	introduced
tons	of	new	features	for	the	SwiftUI	framework.	One	of	them	is	to	address	the	need	for
grid	views.	SwiftUI	now	provides	developers	two	new	UI	components	called	LazyVGrid
and	LazyHGrid.	One	is	for	creating	vertical	grids	and	the	other	is	for	horizontal	grids.
The	word	Lazy,	as	mentioned	by	Apple,	refers	to	the	grid	view	not	creating	items	until
they	are	needed.	What	this	means	to	you	is	that	the	performance	of	these	grid	views	are
already	optimized	by	default.

In	this	chapter,	I	will	walk	you	through	how	to	create	both	horizontal	and	vertical	views.
Both	LazyVGrid	and	LazyHGrid	are	designed	to	be	flexible,	so	that	developers	can	easily
create	various	types	of	grid	layouts.	We	will	also	look	into	how	to	vary	the	size	of	grid
items	to	achieve	different	layouts.	After	you	manage	the	basics,	we	will	dive	a	little	bit
deeper	and	create	complex	layouts	like	that	shown	in	figure	1.

701Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://github.com/apptekstudios/ASCollectionView

Figure	1.	Sample	grid	layouts

The	Essential	of	Grid	Layout	in	SwiftUI

To	create	a	grid	layout,	whether	it's	horizontal	or	vertical,	here	are	the	steps	you	follow:

1.	 First,	you	need	to	prepare	the	raw	data	for	presentation	in	the	grid.	For	example,
here	is	an	array	of	SF	symbols	that	we	are	going	to	present	in	the	demo	app:

private	var	symbols	=	["keyboard",	"hifispeaker.fill",	"printer.fill",	"tv.fill",	

"desktopcomputer",	"headphones",	"tv.music.note",	"mic",	"plus.bubble",	"video"]

2.	 Create	an	array	of	type		GridItem		that	describes	what	the	grid	will	look	like.
Including,	how	many	columns	the	grid	should	have.	Here	is	a	code	snippet	for
describing	a	3-column	grid:

702Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	var	threeColumnGrid	=	[GridItem(.flexible()),	GridItem(.flexible()),	GridI

tem(.flexible())]

3.	 Next,	you	layout	the	grid	by	using		LazyVGrid		and		ScrollView	.	Here	is	an	example:

ScrollView	{

				LazyVGrid(columns:	threeColumnGrid)	{

								//	Display	the	item

				}

}

4.	 Alternatively,	if	you	want	to	build	a	horizontal	grid,	you	use		LazyHGrid		like	this:

ScrollView(.horizontal)	{

				LazyHGrid(rows:	threeColumnGrid)	{

								//	Display	the	item

				}

}

Using	LazyVGrid	to	Create	Vertical	Grids

With	a	basic	understanding	of	the	grid	layout,	let's	put	the	code	to	work.	We	will	start
with	something	simple	by	building	a	3-column	grid.	Open	Xcode	12	(or	greater)	and
create	a	new	project	with	the	App	template.	Please	make	sure	you	select	SwiftUI	for	the
Interface	option.	Name	the	project	SwiftUIGridLayout	or	whatever	name	you	prefer.

703Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Creating	a	new	project	using	the	App	template

Once	the	project	is	created,	choose		ContentView.swift	.	In		ContentView	,	declare	the
following	variables:

private	var	symbols	=	["keyboard",	"hifispeaker.fill",	"printer.fill",	"tv.fill",	

"desktopcomputer",	"headphones",	"tv.music.note",	"mic",	"plus.bubble",	"video"]

private	var	colors:	[Color]	=	[.yellow,	.purple,	.green]

private	var	gridItemLayout	=	[GridItem(.flexible()),	GridItem(.flexible()),	GridIt

em(.flexible())]

704Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	are	going	to	display	a	set	of	SF	symbols	in	a	3-column	grid.	To	present	the	grid,
update	the		body		variable	like	this:

var	body:	some	View	{

				ScrollView	{

								LazyVGrid(columns:	gridItemLayout,	spacing:	20)	{

												ForEach((0...9999),	id:	\.self)	{

																Image(systemName:	symbols[$0	%	symbols.count])

																				.font(.system(size:	30))

																				.frame(width:	50,	height:	50)

																				.background(colors[$0	%	colors.count])

																				.cornerRadius(10)

												}

								}

				}

}

We	use		LazyVGrid		and	tell	the	vertical	grid	to	use	a	3-column	layout.	We	also	specify	that
there	is	a	20	point	space	between	rows.	In	the	code	block,	we	have	a		ForEach		loop	to
present	a	total	of	10,000	image	views.	If	you've	made	the	change	correctly,	you	should
see	a	three	column	grid	in	the	preview.

705Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	Displaying	a	3-column	grid

This	is	how	we	create	a	vertical	grid	with	three	columns.	The	frame	size	of	the	image	is
fixed	to	50	by	50	points,	which	is	controlled	by	the		.frame		modifier.	If	you	want	to	make
a	grid	item	wider,	you	can	alter	the	frame	modifier	like	this:

.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	50)

The	image's	width	will	expand	to	take	up	the	column's	width	like	that	shown	in	figure	4.

706Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Changing	the	frame	size	of	the	grid	items

Note	that	there	is	a	space	between	the	columns	and	rows.	Sometimes,	you	may	want	to
create	a	grid	without	any	spaces.	How	can	you	achieve	that?	The	space	between	rows	is
controlled	by	the		spacing		parameter	of		LazyVGrid	.	We	have	set	its	value	to		20		points.
You	can	simply	change	it	to		0		such	that	there	is	no	space	between	rows.

The	spacing	between	grid	items	is	controlled	by	the	instances	of		GridItem		initialized	in
	gridItemLayout	.	You	can	set	the	spacing	between	items	by	passing	a	value	to	the		spacing	
parameter.	Therefore,	to	remove	the	spacing	between	rows,	you	can	initialize	the
	gridLayout		variable	like	this:

private	var	gridItemLayout	=	[GridItem(.flexible(),	spacing:	0),	GridItem(.flexibl

e(),	spacing:	0),	GridItem(.flexible(),	spacing:	0)]

For	each		GridItem	,	we	specify	to	use	a	spacing	of	zero.	For	simplicity,	the	code	above	can
be	rewritten	like	this:

707Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	var	gridItemLayout	=	Array(repeating:	GridItem(.flexible(),	spacing:	0),	c

ount:	3)

If	you've	made	both	changes,	your	preview	canvas	should	show	you	a	grid	view	without
any	spacing.

Figure	5.	Removing	the	spacing	between	columns	and	rows

Using	GridItem	to	Vary	the	Grid	Layout
(Flexible/Fixed/Adaptive)
Let's	take	a	further	look	at		GridItem	.	You	use		GridItem		instances	to	configure	the	layout
of	items	in		LazyHGrid		and		LazyVGrid		views.	Earlier,	we	defined	an	array	of	three
	GridItem		instances,	each	of	which	uses	the	size	type		.flexible()	.	The	flexible	size	type

708Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

enables	you	to	create	three	columns	with	equal	size.	If	you	want	to	describe	a	6-column
grid,	you	can	create	the	array	of		GridItem		like	this:

private	var	sixColumnGrid:	[GridItem]	=	Array(repeating:	.init(.flexible()),	count

:	6)

	.flexible()		is	just	one	of	the	size	types	for	controlling	the	grid	layout.	If	you	want	to
place	as	many	items	as	possible	in	a	row,	you	can	use	the	adaptive	size	type:

private	var	gridItemLayout	=	[GridItem(.adaptive(minimum:	50))]

The	adaptive	size	type	requires	you	to	specify	the	minimize	size	for	a	grid	item.	In	the
code	above,	each	grid	item	has	a	minimum	size	of	50.	If	you	modify	the		gridItemLayout	
variable	as	above	and	set	the	spacing	of		LazyVGrid		back	to		20	,	you	should	achieve	a	grid
layout	similar	to	the	one	shown	in	figure	6.

Figure	6.	Using	adaptive	size	to	create	the	grid

709Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

By	using		.adaptive(minimum:	50)	,	you	instruct		LazyVGrid		to	fill	as	many	images	as
possible	in	a	row	such	that	each	item	has	a	minimum	size	of	50	points.

Note:	I	used	iPhone	11	Pro	as	the	simulator.	If	you	use	other	iOS	simulators	with
different	screen	sizes,	you	may	achieve	a	different	result.

In	addition	to		.flexible		and		.adaptive	,	you	can	also	use		.fixed		if	you	want	to	create
fixed	width	columns.	For	example,	you	want	to	layout	the	image	in	two	columns	such
that	the	first	column	has	a	width	of	100	points	and	the	second	one	has	a	width	of	150
points.	You	write	the	code	like	this:

private	var	gridItemLayout	=	[GridItem(.fixed(100)),	GridItem(.fixed(150))]

Update	the		gridItemLayout		variable	as	shown	above,	this	will	result	in	a	two-column	grid
with	different	sizes.

Figure	7.	A	grid	with	fixed-size	items

710Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

You	are	allowed	to	mix	different	size	types	to	create	more	complex	grid	layouts.	For
example,	you	can	define	a	fixed	size		GridItem	,	followed	by	a		GridItem		with	an	adaptive
size	like	this:

private	var	gridItemLayout	=	[GridItem(.fixed(150)),	GridItem(.adaptive(minimum:	50

))]

In	this	case,		LazyVGrid		creates	a	fixed	size	column	of	100	point	width.	And	then,	it	tries
to	fill	as	many	items	as	possible	within	the	remaining	space.

Figure	8.	Mixing	a	fixed-size	item	with	adaptive	size	items

Using	LazyHGrid	to	Create	Horizontal	Grids

711Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	that	you've	created	a	vertical	grid,		LazyHGrid		has	made	it	so	easy	to	convert	a
vertical	grid	to	a	horizontal	one.	The	usage	of	horizontal	grid	is	nearly	the	same	as
	LazyVGrid		except	that	you	embed	it	in	a	horizontal	scroll	view.	Furthermore,		LazyHGrid	
takes	in	a	parameter	named		rows		instead	of		columns	.

Therefore,	you	can	rewrite	a	couple	lines	of	code	to	transform	a	grid	view	from	vertical
orientation	to	horizontal:

ScrollView(.horizontal)	{

				LazyHGrid(rows:	gridItemLayout,	spacing:	20)	{

								ForEach((0...9999),	id:	\.self)	{

												Image(systemName:	symbols[$0	%	symbols.count])

																.font(.system(size:	30))

																.frame(minWidth:	0,	maxWidth:	.infinity,	minHeight:	50,	maxHeight:

	.infinity)

																.background(colors[$0	%	colors.count])

																.cornerRadius(10)

								}

				}

}

Run	the	demo	in	the	preview	or	test	it	on	a	simulator.	You	should	see	a	horizontal	grid.

712Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	9.	Creating	a	horizontal	grid	with	LazyHGrid

Switching	Between	Different	Grid	Layouts

Now	that	you	have	some	experience	with	LazyVGrid	and	LazyHGrid,	let's	create
something	more	complicated.	Imagine	you	are	going	to	build	a	photo	app	that	displays	a
collection	of	coffee	photos.	In	the	app,	it	provides	a	feature	for	users	to	change	the	layout.
By	default,	it	shows	the	list	of	photos	in	a	single	column.	The	user	can	tap	a	Grid	button
to	change	the	list	view	to	a	grid	view	with	2	columns.	Tap	the	same	button	again	for	a	3-
column	layout,	followed	by	a	4-column	layout.

713Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	10.	Creating	a	horizontal	grid	with	LazyHGrid

Create	a	new	project	for	this	demo	app.	Again,	choose	the	App	template	and	name	the
project	SwiftUIPhotoGrid.	Next,	download	the	image	pack	at
https://www.appcoda.com/resources/swiftui/coffeeimages.zip.	Unzip	the	images	and
add	them	to	the	asset	catalog.

Before	creating	the	grid	view,	we	will	create	the	data	model	for	the	collection	of	photos.
In	the	project	navigator,	right	click	SwiftUIGridView	and	choose	New	file...	to	create	a
new	file.	Select	the	Swift	File	template	and	name	the	file	Photo.swift.

Insert	the	following	code	in	the		Photo.swift		file	to	create	the		Photo		struct:

struct	Photo:	Identifiable	{

				var	id	=	UUID()

				var	name:	String

}

let	samplePhotos	=	(1...20).map	{	Photo(name:	"coffee-\($0)")	}

714Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui/coffeeimages.zip

We	have	20	coffee	photos	in	the	image	pack,	so	we	initialize	an	array	of	20		Photo	
instances.	With	the	data	model	ready,	let's	switch	over	to		ContentView.swift		to	build	the
grid.

First,	declare	a		gridLayout		variable	to	define	our	preferred	grid	layout:

@State	var	gridLayout:	[GridItem]	=	[GridItem()]

By	default,	we	want	to	display	a	list	view.	Other	than	using		List	,	you	can	actually	use
	LazyVGrid		to	build	a	list	view.	We	do	this	by	defining	the		gridLayout		with	one	grid	item.
By	telling		LazyVGrid		to	use	a	single	column	grid	layout,	it	will	arrange	the	items	like	a	list
view.	Insert	the	following	code	in		body		to	create	the	grid	view:

NavigationView	{

				ScrollView	{

								LazyVGrid(columns:	gridLayout,	alignment:	.center,	spacing:	10)	{

												ForEach(samplePhotos.indices)	{	index	in

																Image(samplePhotos[index].name)

																				.resizable()

																				.scaledToFill()

																				.frame(minWidth:	0,	maxWidth:	.infinity)

																				.frame(height:	200)

																				.cornerRadius(10)

																				.shadow(color:	Color.primary.opacity(0.3),	radius:	1)

												}

								}

								.padding(.all,	10)

				}

				.navigationTitle("Coffee	Feed")

}

715Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	use		LazyVGrid		to	create	a	vertical	grid	with	a	spacing	of	10	points	between	rows.	The
grid	is	used	to	display	coffee	photos,	so	we	use		ForEach		to	loop	through	the		samplePhotos	
array.	We	embed	the	grid	in	a	scroll	view	to	make	it	scrollable	and	wrap	it	with	a
navigation	view.	Once	you	have	made	the	change,	you	should	see	a	list	of	photos	in	the
preview	canvas.

Figure	11.	Creating	a	list	view	with	LazyVGrid

Now	we	need	to	a	button	for	users	to	switch	between	different	layouts.	We	will	add	the
button	to	the	navigation	bar.	In	iOS	14,	Apple	introduced	a	new	modifier	called		.toolbar	
for	you	to	populate	items	within	the	navigation	bar.	Right	after		.navigationTitle	,	insert
the	following	code	to	create	the	bar	button:

716Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

.toolbar	{

				ToolbarItem(placement:	.navigationBarTrailing)	{

								Button(action:	{

												self.gridLayout	=	Array(repeating:	.init(.flexible()),	count:	self.gri

dLayout.count	%	4	+	1)

								})	{

												Image(systemName:	"square.grid.2x2")

																.font(.title)

																.foregroundColor(.primary)

								}

				}

}

In	the	code	above,	we	update	the		gridLayout		variable	and	initialize	the	array	of
	GridItem	.	Let's	say	the	current	item	count	is	one,	we	will	create	an	array	of	two
	GridItem	s	to	change	to	a	2-column	grid.	Since	we've	marked		gridLayout		as	a	state
variable,	SwiftUI	will	render	the	grid	view	every	time	we	update	the	variable.

717Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	Adding	a	bar	button	for	switching	the	grid	layout

You	can	run	the	app	to	have	a	quick	test.	Tapping	the	grid	button	will	switch	to	another
grid	layout.

There	are	couple	of	things	we	want	to	improve.	First,	the	height	of	the	grid	item	should
be	adjusted	to	100	points	for	grids	with	two	or	more	columns.	Update	the		.frame	
modifier	with	the		height		parameter	like	this:

.frame(height:	gridLayout.count	==	1	?	200	:	100)

Second,	when	you	switch	from	one	grid	layout	to	another,	SwiftUI	simply	redraws	the
grid	view	without	any	animation.	Wouldn't	it	be	great	if	we	added	a	nice	transition
between	layout	changes?	To	do	that,	you	just	add	a	single	line	of	code.	Insert	the
following	code	after		.padding(.all,	10)	:

.animation(.interactiveSpring())

718Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

This	is	the	power	of	SwiftUI.	By	telling	SwiftUI	that	you	want	to	animate	changes,	the
framework	handles	the	rest	and	you	will	see	a	nice	transition	between	the	layout	changes.

Figure	13.	SwiftUI	automatically	animates	the	transition

Building	Grid	Layout	with	Multiple	Grids

You	are	not	limited	to	using	a	single		LazyVGrid		or		LazyHGrid		in	your	app.	By	combining
more	than	one		LazyVGrid	,	you	are	able	to	build	some	interesting	layouts.	Take	a	look	at
figure	14.	We	are	going	to	create	this	kind	of	grid	layout.	The	grid	displays	a	list	of	cafe
photos.	Under	each	cafe	photo,	it	shows	a	list	of	coffee	photos.	When	the	device	is	in
landscape	orientation,	the	cafe	photo	and	the	list	of	coffee	photos	will	be	arranged	side	by
side.

719Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	Building	complex	grid	layout	with	two	grids

Let's	go	back	to	our	Xcode	project	and	create	the	data	model	first.	The	image	pack	you
downloaded	earlier	comes	a	set	of	cafe	photos.	So,	create	a	new	Swift	file	and	name	it
Cafe.swift.	In	the	file,	insert	the	following	code:

720Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	Cafe:	Identifiable	{

				var	id	=	UUID()

				var	image:	String

				var	coffeePhotos:	[Photo]	=	[]

}

let	sampleCafes:	[Cafe]	=	{

				var	cafes	=	(1...18).map	{	Cafe(image:	"cafe-\($0)")	}

				for	index	in	cafes.indices	{

								let	randomNumber	=	Int.random(in:	(2...12))

								cafes[index].coffeePhotos	=	(1...randomNumber).map	{	Photo(name:	"coffee-\

($0)")	}

				}

				return	cafes

}()

The		Cafe		struct	is	self	explanatory.	It	has	an		image		property	for	storing	the	cafe	photo
and	the		coffeePhotos		property	for	storing	a	list	of	coffee	photos.	In	the	code	above,	we
also	create	an	array	of		Cafe		for	demo	purposes.	For	each	cafe,	we	randomly	pick	some
coffee	photos.	Please	feel	free	to	modify	the	code	if	you	have	other	images	you	prefer.

Instead	of	modifying	the		ContentView.swift		file,	let's	create	a	new	file	for	implementing
this	grid	view.	Right	click	SwiftUIPhotoGrid	and	choose	New	File....	Select	the	SwiftUI
View	template	and	name	the	file	MultiGridView.

Similar	to	the	earlier	implementation,	let's	declare	a		gridLayout		variable	to	store	the
current	grid	layout:

@State	var	gridLayout	=	[GridItem()]

By	default,	our	grid	is	initialized	with	one		GridItem	.	Next,	insert	the	following	code	in
	body		to	create	a	vertical	grid	with	a	single	column:

721Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

NavigationView	{

				ScrollView	{

								LazyVGrid(columns:	gridLayout,	alignment:	.center,	spacing:	10)	{

												ForEach(sampleCafes)	{	cafe	in

																Image(cafe.image)

																				.resizable()

																				.scaledToFill()

																				.frame(minWidth:	0,	maxWidth:	.infinity)

																				.frame(maxHeight:	150)

																				.cornerRadius(10)

																				.shadow(color:	Color.primary.opacity(0.3),	radius:	1)

												}

								}

								.padding(.all,	10)

								.animation(.interactiveSpring())

				}

				.navigationTitle("Coffee	Feed")

}

I	don't	think	we	need	to	go	through	the	code	again	because	it's	almost	the	same	as	the
code	we	wrote	earlier.	If	your	code	works	properly,	you	should	see	a	list	view	that	shows
the	collection	of	cafe	photos.

722Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	15.	A	list	of	cafe	photos

Adding	an	Additional	Grid

How	do	we	display	another	grid	under	each	of	the	cafe	photos?	All	you	need	to	do	is	add
another		LazyVGrid		inside	the		ForEach		loop.	Insert	the	following	code	after	the		Image	
view	of	the	loop:

723Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

LazyVGrid(columns:	[GridItem(.adaptive(minimum:	50))])	{

				ForEach(cafe.coffeePhotos)	{	photo	in

								Image(photo.name)

												.resizable()

												.scaledToFill()

												.frame(minWidth:	0,	maxWidth:	.infinity)

												.frame(height:	50)

												.cornerRadius(10)

				}

}

.frame(minHeight:	0,	maxHeight:	.infinity,	alignment:	.top)

.animation(.easeIn)

Here	we	create	another	vertical	grid	for	the	coffee	photos.	By	using	the	adaptive	size
type,	this	grid	will	fill	as	many	photos	as	possible	in	a	row.	Once	you	make	the	code
change,	the	app	UI	will	look	like	that	shown	in	figure	16.

Figure	16.	Adding	another	grid	for	the	coffee	photos

724Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

If	you	prefer	to	arrange	the	cafe	and	coffee	photos	side	by	side,	you	can	modify	the
	gridLayout		variable	like	this:

@State	var	gridLayout	=	[GridItem(.adaptive(minimum:	100)),	GridItem(.flexible())

]

As	soon	as	you	change	the		gridLayout		variable,	your	preview	will	be	updated	to	display
the	cafe	and	coffee	photos	side	by	side.

Figure	17.	Arrange	the	cafe	and	coffee	photos	side	by	side

Handling	Landscape	Orientation

To	test	the	app	in	landscape	orientation,	you	need	to	run	it	on	a	simulator.	The	preview
canvas	doesn't	allow	you	to	rotate	the	device	yet.

725Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Before	you	run	the	app,	you	will	need	to	perform	a	simple	modification	in
	SwiftUIPhotoGridApp.swift	.	Since	we	have	created	a	new	file	for	implementing	this	multi-
grid,	modify	the	view	in		WindowGroup		from		ContentView()		to		MultiGridView()		like	below:

struct	SwiftUIPhotoGridApp:	App	{

				var	body:	some	Scene	{

								WindowGroup	{

												MultiGridView()

								}

				}

}

Now	you're	ready	to	run	the	app	in	an	iPhone	simulator.	It	works	great	in	the	portrait
orientation	just	like	the	preview	canvas.	However,	if	you	rotate	the	simulator	sideways	by
pressing	command-left	(or	right),	the	grid	layout	doesn't	look	as	expected.	What	we
expect	is	that	it	should	look	pretty	much	the	same	as	that	in	portrait	mode.

Figure	18.	The	app	UI	in	landscape	mode

726Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	fix	the	issue,	we	can	adjust	the	minimum	width	of	the	adaptive	grid	item	and	make	it	a
bit	wider	when	the	device	is	in	landscape	orientation.	The	question	is	how	can	you	detect
the	orientation	changes?

In	SwiftUI,	every	view	comes	with	a	set	of	environment	variables.	You	can	find	out	the
current	device	orientation	by	accessing	both	the	horizontal	and	vertical	size	class
variables	like	this:

@Environment(\.horizontalSizeClass)	var	horizontalSizeClass:	UserInterfaceSizeClass

?

@Environment(\.verticalSizeClass)	var	verticalSizeClass:	UserInterfaceSizeClass?

The		@Environment		property	wrapper	allows	you	to	access	the	environment	values.	In	the
code	above,	we	tell	SwiftUI	that	we	want	to	read	both	the	horizontal	and	vertical	size
classes,	and	subscribe	to	their	changes.	In	other	words,	we	will	be	notified	whenever	the
device's	orientation	changes.

If	you	haven't	done	so,	please	make	sure	you	insert	the	code	above	in		MultiGridView	.

The	next	question	is	how	do	we	capture	the	notification	and	respond	to	the	changes?	In
iOS	14,	Apple	introduced	a	new	modifier	called		.onChange()	.	You	can	attach	this	modifier
to	any	view	to	monitor	any	state	changes.	In	this	case,	we	can	attach	the	modifier	to
	NavigationView		like	this:

.onChange(of:	verticalSizeClass)	{	value	in

				self.gridLayout	=	[GridItem(.adaptive(minimum:		verticalSizeClass	==	.compact

		?	250	:	100)),	GridItem(.flexible())]

}

We	monitor	the	change	of	both		horizontalSizeClass		and		verticalSizeClass		variables.
Whenever	there	is	a	change,	we	will	update	the		gridLayout		variable	with	a	new	grid
configuration.	The	iPhone	has	a	compact	height	in	landscape	orientation.	Therefore,	if
the	value	of		verticalSizeClass		equals		.compact	,	we	alter	the	minimum	size	of	the	grid
item	to	250	points.

727Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	run	the	app	on	an	iPhone	simulator	again.	When	you	turn	the	device	sideways,	it
now	shows	the	cafe	photo	and	coffee	photos	side	by	side.

Figure	19.	The	app	UI	in	landscape	mode	now	looks	better

Understanding	Navigation	View	Style

Earlier,	I	used	the	iPhone	11	Pro	as	the	simulator.	The	app	works	perfectly	in	both
portrait	and	landscape	mode.	But	when	you	run	the	app	on	iPhone	Max	models,	it	looks	a
bit	weird	in	landscape	orientation.	iOS	automatically	turns	the	view	into	a	primary	detail
split	view.	You	can	only	access	the	grid	view	by	tapping	a	navigation	button	at	the	top-left
corner	of	the	screen.

728Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	20.	Split	view	on	iPhone	11	Max

This	is	a	default	behavior	of		NavigationView		on	large	devices	like	the	iPhone	11	Pro	Max.
To	solve	the	issue	and	disable	the	split-view	behavior	on	iPhone	Max	models,	you	can
attach	the	following	modifier	to	the	navigation	view:

.navigationViewStyle(StackNavigationViewStyle())

By	using	the		.navigationViewStyle		modifier,	we	explicitly	instruct		NavigationView		to	use
the	stack	navigation	view	style,	regardless	of	the	screen	size.	Now	test	the	app	again	on
iPhone	11	Max	Pro.	The	app	UI	should	look	well	even	in	landscape	orientation	just	like
that	shown	in	figure	19.

Exercise

I	have	a	couple	of	exercises	for	you.	First,	the	app	UI	doesn't	look	good	on	iPad.	Modify
the	code	and	fix	the	issue	such	that	it	only	shows	two	columns:	one	for	the	cafe	photo	and
the	other	for	the	coffee	photos.

729Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	21.	App	UI	on	iPad

The	next	exercise	is	more	complicated	with	a	number	of	requirements:

1.	 Different	default	grid	layout	for	iPhone	and	iPad	-	When	the	app	is	first
loaded	up,	it	displays	a	single	column	grid	for	iPhone	in	portrait	mode.	For	iPad	and
iPhone	landscape,	the	app	shows	the	cafe	photos	in	a	2-column	grid.

2.	 Show/hide	button	for	the	coffee	photos	-	Add	a	new	button	in	the	navigation
bar	for	toggling	the	display	of	coffee	photos.	By	default,	the	app	only	shows	the	list	of
cafe	photos.	When	this	button	is	tapped,	it	shows	the	coffee	photo	grid.

3.	 Another	button	for	switching	grid	layout	-	Add	another	bar	button	for	toggling
the	grid	layout	between	one	and	two	columns.

730Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	22.	Enhancing	the	app	to	support	both	iPhone	and	iPad

To	help	you	better	understand	what	the	final	deliverable	looks	like,	please	check	out	this
video	demo	at	https://link.appcoda.com/multigrid-demo.

Summary

The	missing	collection	view	in	the	first	release	of	SwiftUI	is	now	here.	The	introduction	of
	LazyVGrid		and		LazyHGrid		in	SwiftUI	lets	developers	create	different	types	of	grid	layouts
with	a	few	lines	of	code.	This	tutorial	is	just	a	quick	overview	of	these	two	new	UI
components.	I	encourage	you	to	try	out	different	configurations	of		GridItem		to	see	what
grid	layouts	you	can	achieve.

For	reference,	you	can	download	the	complete	grid	project	and	the	solution	to	the
exercise	here:

Grid	Layout	Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIGridLayout.zip)

731Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://link.appcoda.com/multigrid-demo
https://www.appcoda.com/resources/swiftui2/SwiftUIGridLayout.zip

PhotoGrid	Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIPhotoGrid.zip)

732Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIPhotoGrid.zip

Chapter	30
Creating	an	Animated	Activity	Ring
with	Shape	and	Animatable
The	built-in	Activity	app	uses	three	circular	progress	bars	to	show	your	progress	of	Move,
Exercise,	and	Stand.	This	kind	of	progress	bar	is	known	as	an	activity	ring.	Take	a	look	at
figure	1	if	you	haven't	used	the	Activity	app	or	you	don't	know	what	an	activity	ring	is.
Apple	Watch	has	played	a	big	part	in	making	this	round	progress	bar	a	popular	UI
pattern.

Figure	1.	A	sample	activity	ring

733Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	this	chapter,	we	will	look	into	its	implementation	and	build	a	similar	activity	ring	in
SwiftUI.	Our	goal	is	not	just	to	create	a	static	activity	ring.	It	will	be	an	animated	one	that
shows	progress	changes	like	that	shown	in	figure	2.	Or	you	can	check	out	the	demo	video
at	https://link.appcoda.com/progressring.

Figure	2.	Animated	progress	ring

Creating	a	New	Project

Let's	create	a	new	project	to	build	the	progress	indicator.	As	usual,	you	use	the	App
template	for	the	project.	Name	it	SwiftUIProgressRing	or	whatever	name	you	like.

Make	sure	you	use	SwiftUI	for	the	Interface	option	and	SwiftUI	App	for	the	Life	Cycle
option.

734Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://link.appcoda.com/progressring

Figure	3.	Creating	a	new	project	with	the	App	template

To	organize	our	code	better,	create	a	new	file	named		ProgressRingView.swift		by	using	the
SwiftUI	View	template.	Xcode	should	generate	the	following	code	after	the	file	creation:

735Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

import	SwiftUI

struct	ProgressRingView:	View	{

				var	body:	some	View	{

								Text("Hello,	World!")

				}

}

struct	ProgressRingView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								ProgressRingView()

				}

}

Dissecting	the	Activity	Ring

Before	we	dive	into	the	implementation,	take	a	look	at	figures	1	and	2	again.	You	should
find	that	an	activity	ring	is	actually	composed	of	two	or	more	circular	progress	bars.	So,
what	we	need	to	build	is	a	circular	progress	bar	view	and	that	should	be	flexible	enough
to	display	a	certain	percentage	value	and	allow	the	user	to	adjust	the	bar	width	and	color.

For	example,	if	you	tell	the	bar	view	to	display	60%	progress	in	red	and	set	its	width	to
250	points.	The	circular	progress	view	should	show	something	like	this:

736Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	A	sample	circular	progress	bar

By	building	a	flexible	circular	progress	bar	view,	it	is	very	easy	to	create	an	activity	ring.
For	example,	we	can	overlay	another	circular	progress	bar	with	bigger	size	&	different
color	on	top	of	the	one	shown	in	figure	4	to	become	an	activity	ring.

737Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	A	sample	circular	progress	bar

That's	how	we	are	going	to	build	the	activity	ring.	Now	let's	begin	to	implement	the
circular	progress	bar.

Preparing	the	Color	Extension

As	mentioned,	the	circular	progress	bar	that	we	are	going	to	implement	can	support
multiple	colors	and	gradients.	For	demo	and	convenience	purposes,	we	will	prepare	a	set
of	default	colors	by	using	a		Color		extension.	In	the	project	navigator,	right	click
SwiftUIProgressRing	and	choose	New	file....	Select	the	Swift	file	template	and	name	the
file		Color+Ext.swift	.	Replace	the	file	content	with	the	following	code:

738Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

import	SwiftUI

extension	Color	{

				public	init(red:	Int,	green:	Int,	blue:	Int,	opacity:	Double	=	1.0)	{

								let	redValue	=	Double(red)	/	255.0

								let	greenValue	=	Double(green)	/	255.0

								let	blueValue	=	Double(blue)	/	255.0

								self.init(red:	redValue,	green:	greenValue,	blue:	blueValue,	opacity:	opac

ity)

				}

				public	static	let	lightRed	=	Color(red:	231,	green:	76,	blue:	60)

				public	static	let	darkRed	=	Color(red:	192,	green:	57,	blue:	43)

				public	static	let	lightGreen	=	Color(red:	46,	green:	204,	blue:	113)

				public	static	let	darkGreen	=	Color(red:	39,	green:	174,	blue:	96)

				public	static	let	lightPurple	=	Color(red:	155,	green:	89,	blue:	182)

				public	static	let	darkPurple	=	Color(red:	142,	green:	68,	blue:	173)

				public	static	let	lightBlue	=	Color(red:	52,	green:	152,	blue:	219)

				public	static	let	darkBlue	=	Color(red:	41,	green:	128,	blue:	185)

				public	static	let	lightYellow	=	Color(red:	241,	green:	196,	blue:	15)

				public	static	let	darkYellow	=	Color(red:	243,	green:	156,	blue:	18)

				public	static	let	lightOrange	=	Color(red:	230,	green:	126,	blue:	34)

				public	static	let	darkOrange	=	Color(red:	211,	green:	84,	blue:	0)

				public	static	let	purpleBg	=	Color(red:	69,	green:	51,	blue:	201)

}

In	the	code	above,	we	create	an		init		method	which	takes	in	the	values	of		red	,		green	,
and		blue	.	This	makes	it	easier	to	initialize	an	instance	of	Color	with	an	RGB	color	code.
All	the	colors	are	derived	from	the	flat	color	palette
(https://flatuicolors.com/palette/defo).	If	you	prefer	to	use	other	colors,	you	can	simply
modify	the	color	values	or	create	your	own	color	constants.

Implementing	the	Circular	Progress	Bar

739Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://flatuicolors.com/palette/defo

Referring	to	figure	4,	a	circular	progress	bar	literally	consists	of	two	circles:	a	full	circle	in
gray	underneath	and	another	partial	(or	full)	circle	in	gradient	color	on	top.	Thus,	to
implement	the	progress	bar,	we	need	a		ZStack		to	overlay	two	views:

1.	 A	circle	view	in	gray
2.	 A	ring	shape	in	gradient	color	sitting	on	top	of	#1

Now	open		ProgressRingView.swift		and	declare	the	following	variables:

var	thickness:	CGFloat	=	30.0

var	width:	CGFloat	=	250.0

Since	this	circular	progress	bar	should	support	various	sizes,	we	declare	the	variables
above	with	default	values.	As	the	name	suggests,	the		thickness		variable	controls	the
thickness	of	the	progress	bar.	The		width		variable	stores	the	diameter	of	the	circle.

You	can	create	the	circle	view	using	the	built-in		Circle		shape	like	this:

Figure	6.	Drawing	the	Circle	view

We	use	the		stroke		modifier	to	draw	the	outline	of	the	circle	in	gray.	As	you	can	see	in	the
figure,	the		thickness		property	is	used	to	control	the	width	of	the	outline.	The		width	
property	is	the	diameter	of	the	circle.	I	intentionally	highlight	the	frame,	so	that	you	can
see	the	thickness	and	width.

740Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	we	are	going	to	implement	the	ring	shape.	One	way	to	create	this	ring	shape	is	by
using		Circle	.	We	have	discussed	drawing	circles	in	chapter	8.	This	time,	let	me	show
you	an	alternate	implementation.	We	will	use	the		Shape		protocol	to	create	a	custom	Ring
shape.

In	the	same	file,	insert	the	following	code:

struct	RingShape:	Shape	{

				var	progress:	Double	=	0.0

				var	thickness:	CGFloat	=	30.0

				func	path(in	rect:	CGRect)	->	Path	{

								var	path	=	Path()

								path.addArc(center:	CGPoint(x:	rect.width	/	2.0,	y:	rect.height	/	2.0),

																				radius:	min(rect.width,	rect.height)	/	2.0,

																				startAngle:	.degrees(0),

																				endAngle:	.degrees(360	*	progress),	clockwise:	false)

								return	path.strokedPath(.init(lineWidth:	thickness,	lineCap:	.round))

				}

}

We	create	a		RingShape		struct	by	adopting	the		Shape		protocol.	We	declare	two	properties
in	the	struct.	The		progress		property	allows	the	user	to	specify	the	percentage	of	progress.
The		thickness		property,	similar	to	that	in		ProgressRingView	,	lets	you	control	the	width	of
the	ring.

To	draw	the	ring,	we	use	the		addArc		method,	followed	by		strokedPath	.	The	radius	of	the
arc	can	be	calculated	by	dividing	the	frame's	width	(or	height)	by	2.	The	starting	angle	is
currently	set	to	zero	degrees.	We	calculate	the	ending	angle	by	multiplying	360	with	the
progress	value.	For	example,	if	we	set	the		progress		to	0.5,	we	draw	a	half	ring	(from	0	to
180	degrees).

To	use	the		RingShape	,	you	can	update	the		body		variable	like	this:

741Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ZStack	{

				Circle()

								.stroke(Color(.systemGray6),	lineWidth:	thickness)

				RingShape(progress:	0.5,	thickness:	thickness)

	}

.frame(width:	width,	height:	width,	alignment:	.center)

Once	you	make	the	changes,	you	should	see	a	partial	ring	overlay	on	top	of	the	gray
circle.	Note	that	it	has	round	cap	at	both	ends	since	we	set	the		lineCap		parameter	of
	strokedPath		to		.round	.

Figure	7.	Displaying	the	RingShape

Other	than	the	ring's	color,	you	may	also	notice	something	that	we	need	to	tweak.	The
start	point	of	the	arc	is	not	the	same	as	that	in	figure	4.	To	fix	the	issue,	you	need	change
the		startAngle		from	zero	to	-90.

Declare	the	following	property	in		RingShape	:

742Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

var	startAngle:	Double	=	-90.0

Then	update	the		addArc		method	like	this:

path.addArc(center:	CGPoint(x:	rect.width	/	2.0,	y:	rect.height	/	2.0),

												radius:	min(rect.width,	rect.height)	/	2.0,

												startAngle:	.degrees(startAngle),

												endAngle:	.degrees(360	*	progress	+	startAngle),	clockwise:	false)

We	change	the		startAngle		parameter	to		-90		degree.	we	also	need	to	alter	the		endAngle	
parameter,	because	the	starting	angle	is	changed.	With	the	modification,	the	arc	now
rotates	by	90	degrees	anticlockwise.

Figure	8.	The	partial	ring	after	changing	the	start	angle

Adding	a	Gradient

743Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	that	you	have	a	ring	shape	that	is	adjustable	by	passing	different		progress		values	to
it,	wouldn't	it	be	great	if	we	add	a	gradient	color	to	the	bar?	SwiftUI	provides	three	types
of	gradients	including	linear	gradient,	angular	gradient,	and	radial	gradient.	Apple	uses
the	angular	gradient	to	fill	the	progress	bar.

Here	is	an	example	using		AngularGradient	:

AngularGradient(gradient:	Gradient(colors:	[.darkPurple,	.lightYellow]),	center:	.

center,	startAngle:	.degrees(0),	endAngle:	.degrees(180))

The	angular	gradient	applies	the	gradient	color	as	the	angle	changes.	In	the	code	above,
we	render	the	gradient	from	0	degrees	to	180	degrees.	Figure	9	shows	you	the	result	of
two	different	angular	gradients.

Figure	9.	Angular	gradient	with	different	start	and	end	angles

Since	the	starting	angle	of	the	ring	shape	is	set	to	-90	degrees,	we	will	apply	the	angular
gradient	like	this	(assuming	the	progress	is	set	to	0.5):

744Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

AngularGradient(gradient:	Gradient(colors:	[.darkPurple,	.lightYellow]),	center:	.

center,	startAngle:	.degrees(startAngle),	endAngle:	.degrees(360	*	0.5	+	startAngl

e))

Now	let's	modify	the	code	to	apply	the	gradient	to	the		RingShape	.	First,	declare	the
following	properties	in		ProgressRingView	:

var	gradient	=	Gradient(colors:	[.darkPurple,	.lightYellow])

var	startAngle	=	-90.0

Then	fill	the		RingShape		with	the	angular	gradient	by	attaching	the		.fill		modifier	like
below:

RingShape(progress:	0.5,	thickness:	thickness)

				.fill(AngularGradient(gradient:	gradient,	center:	.center,	startAngle:	.degree

s(startAngle),	endAngle:	.degrees(360	*	0.5	+	startAngle)))

As	soon	as	you	complete	the	modification,	the	circular	progress	bar	should	be	filled	with
the	specified	gradient.

Figure	10.	A	circular	progress	bar	with	gradient

Varying	Progress

745Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	percentage	of	progress	is	now	fixed	at	0.5.	Obviously,	we	need	to	create	a	variable	for
that	to	make	it	adjustable.	In		ProgressRingView	,	declare	a	variable	named		progress		like
this:

@Binding	var	progress:	Double

We	are	developing	a	flexible		ProgressRingView		and	want	to	let	the	caller	control	the
percentage	of	progress.	Therefore,	the	source	of	truth	(i.e.	progress)	should	be	provided
by	the	caller.	This	is	the	reason	why		progress		is	marked	as	a	binding	variable.

With	the	variable,	we	can	update	the	following	line	of	code	accordingly:

RingShape(progress:	progress,	thickness:	thickness)

				.fill(AngularGradient(gradient:	gradient,	center:	.center,	startAngle:	.degree

s(startAngle),	endAngle:	.degrees(360	*	progress	+	startAngle)))

Xcode	should	now	indicate	an	error	in		ProgressRingView_Previews		because	we	have	to	pass
	ProgressRingView		the		progress		parameter.	Therefore,	update	the
	ProgressRingView_Previews		like	this:

struct	ProgressRingView_Previews:	PreviewProvider	{

				static	var	previews:	some	View	{

								Group	{

												ProgressRingView(progress:	.constant(0.5)).previewLayout(.fixed(width:	

300,	height:	300))

												ProgressRingView(progress:	.constant(0.9)).previewLayout(.fixed(width:	

300,	height:	300))

								}

				}

}

I	want	to	see	the	end	result	of	two	different	values	of	progress,	so	we	create	two	instances
of		ProgressRingView		in	the	preview.	Instead	of	previewing	the	progress	ring	on	a
simulator,	we	use		previewLayout		to	preview	it	in	a	fixed	size	canvas.	This	allows	us	to
easily	see	both	results	all	at	once.

746Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	11.	A	circular	progress	bar	with	gradient

Animating	the	Ring	Shape	with	Animatable

The	circular	progress	bar	looks	pretty	good.	Let's	put	it	into	practice	and	create	a	simple
demo	like	figure	12.	This	demo	has	three	buttons	for	adjusting	the	progress.	We	expect
that	the	progress	bar	will	gradually	increase	(or	decrease)	to	the	chosen	percentage	when
any	of	the	buttons	is	tapped.	For	example,	the	current	progress	is	set	to	0.	When	the
"50%"	button	is	tapped,	the	progress	bar	will	gradually	goes	up	from	0%	to	50%.

747Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	12.	A	quick	demo

Now	let's	switch	over	to		ContentView.swift		to	create	this	demo.	First,	declare	a	state
variable	to	keep	track	of	the	progress	like	this:

@State	var	progress	=	0.0

Then	insert	the	following	code	in	the		body		variable	to	create	the	UI:

748Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

VStack	{

				ProgressRingView(progress:	$progress)

				HStack	{

								Group	{

												Text("0%")

																.font(.system(.headline,	design:	.rounded))

																.onTapGesture	{

																				self.progress	=	0.0

																}

												Text("50%")

																.font(.system(.headline,	design:	.rounded))

																.onTapGesture	{

																				self.progress	=	0.5

																}

												Text("100%")

																.font(.system(.headline,	design:	.rounded))

																.onTapGesture	{

																				self.progress	=	1.0

																}

								}

								.padding()

								.background(Color(.systemGray6))

								.clipShape(RoundedRectangle(cornerRadius:	15.0,	style:	.continuous))

								.padding()

				}

				.padding()

}

In	your	preview	canvas,	you	should	have	something	like	below.	The	progress	bar	only
shows	the	gray	circle	underneath	because	the	progress	is	defaulted	to	zero.	Click	the	Play
button	to	run	the	demo.	Try	tapping	different	buttons	to	see	how	the	progress	bar
responds.

749Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	13.	The	demo	UI

Does	it	work	up	to	your	expections?	I	think	not.	When	you	tap	the	50%	button,	the
progress	bar	instantly	fills	half	of	the	ring	without	any	animation.	This	isn't	what	we
expect.

750Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	14.	The	progress	bar	doesn't	animate	its	change

I	guess	you	may	know	why	the	view	is	not	animated.	We	haven't	attached	an		.animation	
modifier	to	the	ring	shape.	Switch	back	to		ProgressRingView.swift		and	attach	the
	.animation		modifier	to	the		ZStack		of		ProgressRingView	.	You	can	insert	the	code	after	the
	.frame		modifier:

.animation(Animation.easeInOut(duration:	1.0))

Okay,	it	seems	like	we've	figured	out	the	solution.	Let's	go	back	to		ContentView.swift		and
test	the	demo	again.	Run	the	demo	and	tap	any	of	the	buttons	to	try	it	out.

What's	your	result?	Does	the	fix	work?

Unfortunately,	the	ring	still	doesn't	animate	the	progress	change,	but	it	does	animate	the
gradient	change.

What's	the	root	cause?

751Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Before	solving	the	issue,	let	me	further	explain	how	the		.animation		modifier	works.	In
the	official	documentation)	for	the		.animation		modifier,	it	mentions	that	the	modifier
applies	the	given	animation	to	all	animatable	values	within	the	view.	The	keyword	here
is	animatable.	When	you	use	the		.animation		modifier	on	a	view,	SwiftUI	automatically
animates	any	changes	to	animatable	properties	of	the	view.

SwiftUI	comes	with	a	protocol	called		Animatable	.	For	a	view	that	supports	animation,
you	can	adopt	the	protocol	and	provide	the		animatableData		property.	This	property	tells
SwiftUI	what	data	the	view	can	animate.

In	chapter	9,	I	introduced	you	the	basics	of	SwiftUI	animation.	You	can	easily	animate
the	size	change	of	a	view	using		.scaleEffect		or	the	position	change	by	using		.offset	.	It
may	seem	to	you	that	all	these	animations	work	automatically.	Behind	the	scenes,	Apple's
engineers	actually	adopted	the	protocol	and	provided	the	animatable	data	for		CGSize	
and		CGPoint	.

So,	why	can't		RingShape		animate	its	progress	change?

The		RingShape		struct	conforms	to	the		Shape		protocol.	If	you	look	at	its	documentation,
	Shape		adopts	the		Animatable		protocol	and	provides	the	default	implementation.
However,	the	default	implementation	of	the		animatableData		property	is	to	return	an
instance	of		EmptyAnimatableData	,	which	means	no	animatable	data.	This	is	why
	ProgressRingView		cannot	animate	the	progress	change.

To	fix	the	issue	and	make	the	progress	animatable,	all	you	need	to	do	is	to	override	the
default	implementation	and	provide	the	animatable	values.	In	the		RingShape		struct,
insert	the	following	code	before	the		path		function:

var	animatableData:	Double	{

				get	{	progress	}

				set	{	progress	=	newValue	}

}

The	implementation	is	very	simple.	We	just	tell	SwiftUI	to	animate	the		progress		value.
That's	it!

752Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://developer.apple.com/documentation/swiftui/view/animation(_:

Now	go	back	to		ContentView.swift		and	play	the	demo	app	to	have	another	test.	This	time
the	progress	bar	should	animate	the	progress	change.

Figure	15.	The	progress	bar	doesn't	animate	its	change

The	100%	Problem

With	the	animation,	this	circular	progress	bar	is	now	even	better.	However,	there	is	a
little	issue	that	you	may	notice.	When	the	percentage	is	set	to	100%,	the	arc	becomes	a
full	circle,	hiding	the	round	caps.	To	highlight	where	the	arc	ends,	it's	better	to	add	the
round	cap	with	a	drop	shadow	like	the	activity	ring	in	figure	1.

To	resolve	the	issue,	my	idea	is	to	overlay	a	little	circle,	who's	size	is	based	on	the
thickness	of	the	ring,	at	the	end	of	the	arc.	Additionally,	we	will	add	a	drop	shadow	for
that	little	circle.	Figure	16	illustrates	this	solution.	Please	note	that	for	the	final	solution,
the	circle	should	have	the	same	color	as	the	arc's	end.	I	just	highlighted	it	using	red
color	for	purpose	of	illustration.

753Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	16.	Overlaying	a	little	circle

The	question	is	how	do	you	calculate	the	position	of	this	little	circle	or	the	end	position	of
the	arc?	This	requires	some	mathematical	knowledge.	Figure	17	shows	you	how	we
calculate	the	position	of	the	little	circle.

754Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	17.	Overlaying	a	little	circle

Now,	let's	dive	into	the	implementation	and	create	the	little	circle.	Let's	call	it		RingTip	
and	implement	it	in	the		ProgressRingView.swift		file	like	this:

755Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	RingTip:	Shape	{

				var	progress:	Double	=	0.0

				var	startAngle:	Double	=	-90.0

				var	ringRadius:	Double

				private	var	position:	CGPoint	{

								let	angle	=	360	*	progress	+	startAngle

								let	angleInRadian	=	angle	*	.pi	/	180

								return	CGPoint(x:	ringRadius	*	cos(angleInRadian),	y:	ringRadius	*	sin(ang

leInRadian))

				}

				var	animatableData:	Double	{

								get	{	progress	}

								set	{	progress	=	newValue	}

				}

				func	path(in	rect:	CGRect)	->	Path	{

								var	path	=	Path()

								guard	progress	>	0.0	else	{

												return	path

								}

								let	frame	=	CGRect(x:	position.x,	y:	position.y,	width:	rect.size.width,	h

eight:	rect.size.height)

								path.addRoundedRect(in:	frame,	cornerSize:	frame.size)

								return	path

				}

}

The		RingTip		struct	takes	in	three	parameters:		progress	,		startAngle	,	and		ringRadius		for
the	calculation	of	the	circle's	position.	Once	we	figure	out	the	position,	we	can	draw	the
path	of	the	circle	by	using		addRoundedRect	.

756Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Now	go	back	to		ProgressRingView		and	declare	the	following	computed	property	to
calculate	the	ring's	radius:

private	var	radius:	Double	{

				Double(width	/	2)

}

Next,	create		RingTip		by	inserting	the	following	code	after		RingShape		in	the		ZStack	:

RingTip(progress:	progress,	startAngle:	startAngle,	ringRadius:	radius)

				.frame(width:	thickness,	height:	thickness)

				.foregroundColor(progress	>	0.96	?	gradient.stops[1].color	:	Color.clear)

We	instantiate		RingTip		by	passing	the	current	progress,	start	angle,	and	the	radius	of	the
ring.	The	foreground	color	is	set	to	the	ending	gradient	color.	You	may	wonder	why	we
only	display	the	gradient	color	when	the	progress	is	greater	than	0.96.	Take	a	look	at
figure	18	and	you	will	understand	why	I	come	up	with	this	decision.

Figure	18.	Need	to	overlay	the	circle	only	when	the	progress	is	greater	than	0.96

After	adding	the	instance	of		RingTip		in	the		ZStack	,	run	the	program	in	the	preview.
Click	the	100%	button.	The	progress	bar	should	now	have	a	round	cap.

757Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	19.	Overlaying	a	little	circle	at	the	ring	end

You've	already	built	a	pretty	nice	circular	progress	bar.	But	we	can	make	it	even	better	by
adding	a	drop	shadow	at	the	arc	end.	In	SwiftUI,	you	can	simply	attach	the		.shadow	
modifier	to	add	a	drop	shadow.	In	this	case,	we	can	attach	the	modifier	to		RingTip	.	The
hard	part	is	that	we	need	to	figure	out	where	we	add	the	drop	shadow.

The	calculation	of	the	shadow	position	is	very	similar	to	that	of	the	ring	tip.	So,	in
	ProgressRingView.swift	,	insert	a	function	for	computing	the	position	of	the	ring	tip:

private	func	ringTipPosition(progress:	Double)	->	CGPoint	{

				let	angle	=	360	*	progress	+	startAngle

				let	angleInRadian	=	angle	*	.pi	/	180

				return	CGPoint(x:	radius	*	cos(angleInRadian),	y:	radius	*	sin(angleInRadian))

}

Then	add	a	new	computed	property	for	calculating	the	shadow	offset	of	the	ring	tip	like
this:

758Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

private	var	ringTipShadowOffset:	CGPoint	{

				let	shadowPosition	=	ringTipPosition(progress:	progress	+	0.01)

				let	circlePosition	=	ringTipPosition(progress:	progress)

				return	CGPoint(x:	shadowPosition.x	-	circlePosition.x,	y:	shadowPosition.y	-	c

irclePosition.y)

}

By	adding	0.01	to	the	current	progress,	we	can	compute	the	shadow	position.	This	is	my
solution	for	finding	the	shadow	position.	You	may	come	up	with	an	alternative	solution.

With	the	shadow	offset,	we	can	attach	the		.shadow		modifier	to		RingTip	:

.shadow(color:	progress	>	0.96	?	Color.black.opacity(0.15)	:	Color.clear,	radius:	2

,	x:	ringTipShadowOffset.x,	y:	ringTipShadowOffset.y)

I	just	want	to	add	a	light	shadow,	so	the	opacity	is	set	to	0.15.	If	you	prefer	to	have	a
darker	shadow,	increase	the	opacity	value	(say,	1.0).	After	the	code	change,	you	should
see	a	drop	shadow	at	the	end	of	the	ring,	provided	that	the	progress	is	greater	than	0.96.
You	can	also	try	to	set	the	progress	value	to	a	value	larger	than	1.0	and	see	how	the
progress	bar	looks.

759Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	20.	The	ring	end	now	has	a	drop	shadow

Exercise

Now	that	you've	created	a	flexible	circular	progress	bar,	it's	time	to	have	an	exercise.	Your
task	is	to	make	use	of	what	you've	built	and	create	an	activity	ring.	The	app	also	needs	to
provide	four	buttons	for	adjusting	the	activity	ring	like	you	see	in	figure	21.

760Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	21.	A	sample	activity	ring

Summary

By	building	an	activity	ring,	we	covered	a	number	of	SwiftUI	features	in	this	chapter.	You
should	now	have	a	better	idea	of	implementing	your	custom	shape	and	how	to	animate	a
shape	using	the	Animatable	protocol.

For	reference,	you	can	download	the	complete	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIProgressRing.zip)

761Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIProgressRing.zip

Chapter	31
Working	with	AnimatableModifier
and	LibraryContentProvider
Earlier,	you	learned	how	to	animate	a	shape	by	using		Animatable		and		AnimatableData	.	In
this	chapter,	we	will	take	this	further	and	show	you	how	to	animate	a	view	using	another
protocol	called		AnimatableModifier	.	Additionally,	I	will	walk	you	through	a	new	feature	of
SwiftUI	introduced	in	Xcode	12	that	will	allow	developers	to	easily	share	a	custom	view	to
the	View	library	and	make	it	easier	for	reuse.	Later,	I	will	show	you	how	to	take	the
progress	ring	view	to	the	View	library	for	reuse.	As	a	sneak	peek,	you	can	take	a	look	at
figure	1	or	check	out	this	demo	video	(https://link.appcoda.com/librarycontentprovider)
to	see	how	it	works.

Figure	1.	Using	a	custom	view	in	the	View	library

762Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://link.appcoda.com/librarycontentprovider

Understanding	AnimatableModifier

Let's	first	look	at	the		AnimatableModifier		protocol.	As	its	name	suggests,
	AnimatableModifier		is	a	view	modifier	and	it	conforms	to	the		Animatable		protocol.	This
makes	it	very	powerful	to	animate	value	changes	for	different	types	of	views.

protocol	AnimatableModifier	:	Animatable,	ViewModifier

So,	what	are	we	going	to	animate?	We	will	build	on	top	of	what	we've	implemented	in	the
previous	chapter	and	add	a	text	label	at	the	center	of	the	progress	ring.	The	label	will
show	the	current	percentage	of	progress.	As	the	progress	bar	moves,	the	label	will	be
updated	accordingly.	Figure	2	shows	you	what	the	label	looks	like.

Figure	2.	Animating	the	progress	label

Animating	Text	using	AnimatableModifer

763Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

I	highly	recommend	you	read	chapter	30	first	as	this	demo	project	is	built	on	top	of	the
previous	one.	In	case	you	haven't	worked	on	the	project,	you	can	download	it	at
https://www.appcoda.com/resources/swiftui2/SwiftUIProgressRing.zip	to	get	started.

Before	we	dive	into	the		AnimatableModifier		protocol,	let	me	ask	you.	How	are	you	going	to
layout	the	progress	label	and	animate	its	change?	Actually,	we've	built	a	similar	progress
indicator	in	chapter	9.	So,	base	on	what	you	learned,	you	may	layout	the	progress	label
(in	the		ProgressRingView.swift		file)	like	this:

ZStack	{

				Circle()

								.stroke(Color(.systemGray6),	lineWidth:	thickness)

				Text(progressText)

								.font(.system(.largeTitle,	design:	.rounded))

								.fontWeight(.bold)

								.foregroundColor(.black)

				...

}

You	add	a		Text		view	in	the		ZStack		and	display	the	current	progress	in	a	formatted	text
using	the	below	conversion:

private	var	progressText:	String	{

				let	formatter	=	NumberFormatter()

				formatter.numberStyle	=	.percent

				formatter.percentSymbol	=	"%"

				return	formatter.string(from:	NSNumber(value:	progress))	??	""

}

Since	the		progress		variable	is	a	state	variable,	the		progressText		will	be	automatically
updated	whenever	the	value	of		progress		changes.	This	is	a	very	straightforward
implementation.	However,	there	is	an	issue	with	the	solution.	The	text	animation	doesn't
work	so	well.

764Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIProgressRing.zip

If	you've	made	the	above	changes	in		ProgressRingView.swift	,	you	can	go	back	to
	ContentView.swift		to	see	the	result.	The	app	does	display	the	progress	label,	but	when
you	change	the	progress	from	one	value	to	another,	the	progress	label	immediately	shows
the	new	value	using	the	fade	animation.

This	is	not	what	we	expect.	The	progress	label	shouldn't	jump	from	one	value	(e.g.	100%)
to	another	value	(e.g.	50%)	directly.	We	expect	the	progress	label	follows	the	animation
of	the	progress	bar	and	updates	its	value	step	by	step	like	this:

100	->	99	->	98	->	97	->	96	53	->	52	->	51	->	50

The	current	implementation	doesn't	allow	you	to	animate	the	text	change.	This	is	why	I
have	to	introduce	you	the		AnimatableModifier		protocol.

To	animate	the	progress	text,	we	will	create	a	new	struct	called		ProgressTextModifier	,
which	adopts		AnimatableModifier	:

765Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ProgressTextModifier:	AnimatableModifier	{

				var	progress:	Double	=	0.0

				var	textColor:	Color	=	.primary

				private	var	progressText:	String	{

								let	formatter	=	NumberFormatter()

								formatter.numberStyle	=	.percent

								formatter.percentSymbol	=	"%"

								return	formatter.string(from:	NSNumber(value:	progress))	??	""

				}

				var	animatableData:	Double	{

								get	{	progress	}

								set	{	progress	=	newValue	}

				}

				func	body(content:	Content)	->	some	View	{

								content

												.overlay(

																Text(progressText)

																				.font(.system(.largeTitle,	design:	.rounded))

																				.fontWeight(.bold)

																				.foregroundColor(textColor)

																				.animation(nil)

)

				}

}

Does	the	code	look	familiar	to	you?	As	mentioned	earlier,	the		AnimatableModifier	
protocol	conforms	to	both		Animatable		and		ViewModifier	.	Therefore,	we	specify	in	the
	animatableData		property	what	values	to	animate.	Here,	it's		progress	.	To	conform	with
the	requirements	of		ViewModifier	,	we	implement	the		body		function	and	add	the		Text	
view.

This	is	how	we	animate	the	text	using		AnimatableModifier	.	For	convenience	purposes,
insert	the	following	code,	at	the	end	of		ProgressRingView	,	to	create	an	extension	for
applying	the		ProgressTextModifier	:

766Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

extension	View	{

				func	animatableProgressText(progress:	Double,	textColor:	Color	=	Color.primary)

	->	some	View	{

								self.modifier(ProgressTextModifier(progress:	progress,	textColor:	textColo

r))

				}

}

Now	you	can	attach	the		animatableProgressText		modifier	to		RingShape		like	this:

RingShape(progress:	progress,	thickness:	thickness)

				.fill(AngularGradient(gradient:	gradient,	center:	.center,	startAngle:	.degree

s(startAngle),	endAngle:	.degrees(360	*	progress	+	startAngle)))

				.animatableProgressText(progress:	progress)

Once	you	have	made	the	change,	you	should	see	the	progress	label	in	the	preview	canvas.
To	test	the	animation,	run	the	app	on	an	iPhone	simulator	or	play	the	app	in
	ContentView.swift	.	When	you	change	the	progress,	the	progress	text	now	animates.

767Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	Displaying	the	progress	label	by	applying	the	custom	modifier

Using	LibraryContentProvider

In	Xcode	12,	Apple	introduced	a	new	feature	in	the	SwiftUI	framework,	allowing
developers	to	take	any	custom	views	to	the	View	library.	If	you	forget	what	the	View
library	is,	just	press	command-shift-L	to	bring	it	up.	The	library	lets	you	easily	access	all
the	available	UI	controls	in	SwiftUI.	You	can	drag	a	control	from	the	library	and	add	it	to
the	user	interface	directly.

768Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Displaying	the	progress	label	by	applying	the	custom	modifier

The	new	version	of	Xcode	12	now	makes	it	possible	to	add	your	custom	views	the	library
by	using	a	new	protocol	called		LibraryContentProvider	.	To	add	a	custom	view	to	the	View
library,	all	you	need	to	do	is	to	create	a	new	struct	that	conforms	to	the
	LibraryContentProvider		protocol.

For	example,	to	share	the	progress	ring	view	to	the	View	library,	we	can	create	a	struct
called		ProgressBar_Library		like	this:

struct	ProgressBar_Library:	LibraryContentProvider	{

				@LibraryContentBuilder	var	views:	[LibraryItem]	{

								LibraryItem(ProgressRingView(progress:	.constant(1.0),	thickness:	12.0,	wi

dth:	130.0,	gradient:	Gradient(colors:	[.darkYellow,	.lightYellow])),	title:	"Prog

ress	Ring",	category:	.control)

				}

}

769Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	way	to	add	a	view	to	the	View	library	is	very	simple.	You	create	a	struct	that
conforms	to		LibraryContentProvider		and	override	the		views		property	to	return	an	array
of	custom	views.	In	the	code	above,	we	return	the	progress	ring	view	with	some	default
values,	name	it	"Progress	Ring",	and	put	it	into	the	control	category.

Optionally,	if	you	want	to	add	more	than	one	library	item,	you	can	write	the	code	like
this:

struct	ProgressBar_Library:	LibraryContentProvider	{

				@LibraryContentBuilder	var	views:	[LibraryItem]	{

								LibraryItem(ProgressRingView(progress:	.constant(1.0),	thickness:	12.0,	wi

dth:	130.0,	gradient:	Gradient(colors:	[.darkYellow,	.lightYellow])),	title:	"Prog

ress	Ring",	category:	.control)

								LibraryItem(ProgressRingView(progress:	.constant(1.0),	thickness:	30.0,	wi

dth:	250.0,	gradient:	Gradient(colors:	[.darkPurple,	.lightYellow])),	title:	"Prog

ress	Ring	-	Bigger",	category:	.control)

				}

}

As	a	side	note,	there	are	four	possible	values	that	can	be	given	to	item's	category,
depending	on	what	the	library	item	is	supposed	to	represent:

	control	

	effect	

	layout	

	other	

You	may	also	wonder	what	the		@LibraryContentBuilder		property	wrapper	is.	It	just	saves
you	from	writing	the	code	for	creating	the	array	of		LibraryItem		instances.	The	code	above
can	be	rewritten	like	this:

770Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ProgressBar_Library:	LibraryContentProvider	{

				var	views:	[LibraryItem]	{

								return	[LibraryItem(ProgressRingView(progress:	.constant(1.0),	thickness:	

12.0,	width:	130.0,	gradient:	Gradient(colors:	[.darkYellow,	.lightYellow])),	titl

e:	"Progress	Ring",	category:	.control),

																LibraryItem(ProgressRingView(progress:	.constant(1.0),	thickness:	

30.0,	width:	250.0,	gradient:	Gradient(colors:	[.darkPurple,	.lightYellow])),	titl

e:	"Progress	Ring	-	Bigger",	category:	.control)

				}

}

Once	you	create	the	struct,	Xcode	automatically	discovers	the	implementation	of	the
	LibraryContentProvider		protocol	in	your	project	and	adds	the	progress	ring	view	to	the
View	library.	You	can	now	add	the	progress	ring	view	to	your	UI	by	using	drag	and	drop.
Note	that	at	the	time	of	this	writing,	you	can't	add	documentation	for	your	custom
control.

771Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	The	progress	ring	view	is	added	to	the	View	library

Not	only	can	you	add	a	custom	view	to	the	Xcode	library,	you	can	also	add	your	own
modifiers	by	implementing	the		modifiers		method	and	return	the	array	of	library	items.
You	can	add	the		animatableProgressText		modifier	to	the	View	library	by	implementing	the
method	like	this:

772Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ProgressBar_Library:	LibraryContentProvider	{

				.

				.

				.

				@LibraryContentBuilder

				func	modifiers(base:	Circle)	->	[LibraryItem]	{

								LibraryItem(base.animatableProgressText(progress:	1.0),	title:	"Progress	I

ndicator",	category:	.control)

				}

}

The		base		parameter	lets	you	specify	the	type	of	control	that	can	be	modified	by	the
modifier.	In	the	code	above,	it's	the		Circle		view.	Again,	once	you	insert	the	code
in	ProgressBar_Library	,	Xcode	will	scan	the	library	item	and	add	it	to	the	Modifier	library.

773Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	The	progress	indicator	is	added	to	the	Modifier	library

Exercise

The	progress	ring	is	now	incorporated	in	the	View	library.	Try	to	use	it	and	build	an	app
like	below.	The	app	has	4	sliders	for	adjusting	the	progress	of	different	tasks.	The	overall
progress	is	calculated	by	averaging	the	progress	values	of	all	tasks.

774Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	The	progress	ring	view	is	added	to	the	View	library

Summary

The		AnimatableModifier		protocol	is	a	very	powerful	protocol	for	animating	changes	of	any
views.	In	this	chapter,	we	showed	you	how	to	animate	the	text	change	of	a	label.	You	can
apply	this	technique	to	animate	other	values	such	as	color	and	size.

The	introduction	of		LibraryContentProvider		makes	it	very	easy	for	developers	to	share
custom	views	and	encourages	code	reuse.	Imagine	that	you	can	build	a	library	of	custom
components	and	put	them	into	the	View/Modifier	library,	every	member	in	your	team
can	easily	access	the	controls	and	use	them	by	drag	&	drop.	Right	now,	you	can	only	use
the	controls	within	the	same	Xcode	project.	We	will	discuss	how	you	can	make	this
possible	by	using	Swift	Package	in	the	next	chapter.

775Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	reference,	you	can	download	the	complete	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUITextAnimation.zip)

The	solution	of	the	exercise	is	also	included	in	the	demo	project.	Please	refer	to	the
	TaskGridView.swift		file.

776Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUITextAnimation.zip

Chapter	32
Working	with	TextEditor	to	Create
Multiline	Text	Fields
The	first	version	of	SwiftUI,	released	along	with	iOS	13,	didn't	come	with	a	native	UI
component	for	a	multiline	text	field.	To	support	multiline	input,	you	still	need	to	wrap	a
	UITextView		from	the	UIKit	framework	and	make	it	available	to	your	SwiftUI	project	by
adopting	the		UIViewRepresentable		protocol.	In	iOS	14,	Apple	introduced	a	new	component
called		TextEditor		for	the	SwiftUI	framework.	This		TextEditor		enables	developers	to
display	and	edit	multiline	text	in	your	apps.	In	this	chapter,	we	will	show	you	how	to	use
	TextEditor		for	multiline	input.

Using	TextEditor

It	is	very	easy	to	use		TextEditor	.	You	just	need	to	have	a	state	variable	to	hold	the	input
text.	Then	create	a		TextEditor		instance	in	the	body	of	your	view	like	this:

struct	ContentView:	View	{

				@State	private	var	inputText	=	""

				var	body:	some	View	{

								TextEditor(text:	$inputText)

				}

}

To	instantiate	the	text	editor,	you	pass	the	binding	of		inputText		so	that	the	state	variable
can	store	the	user	input.

You	can	customize	the	editor	like	any	SwiftUI	view.	For	example,	the	below	code	changes
the	font	type	and	adjust	the	line	spacing	of	the	text	editor:

777Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

TextEditor(text:	$inputText)

				.font(.title)

				.lineSpacing(20)

				.autocapitalization(.words)

				.disableAutocorrection(true)

				.padding()

Optionally,	you	can	enable/disable	the	auto-capitalization	and	auto-correction	features.

Figure	1.	Using	TextEditor

Using	the	onChange()	Modifier	to	Detect	Text	Input
Change

	UITextView		of	the	UIKit	framework,	works	with	the		UITextViewDelegate		protocol	to
handle	editing	changes.	So,	how	about		TextEditor	?	How	do	we	detect	the	change	of	user
input	and	perform	further	processing?

778Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

The	new	version	of	SwiftUI	introduces	an		onChange()		modifier	which	can	be	attached	to
	TextEditor		or	any	other	view.	Let's	say	you	are	building	a	note	application	using
	TextEditor		and	need	to	display	a	word	count	in	real	time,	you	can	attach	the		onChange()	
modifier	to		TextEditor		like	this:

struct	ContentView:	View	{

				@State	private	var	inputText	=	""

				@State	private	var	wordCount:	Int	=	0

				var	body:	some	View	{

								ZStack(alignment:	.topTrailing)	{

												TextEditor(text:	$inputText)

																.font(.body)

																.padding()

																.padding(.top,	20)

																.onChange(of:	inputText)	{	value	in

																				let	words	=	inputText.split	{	$0	==	"	"	||	$0.isNewline	}

																				self.wordCount	=	words.count

																}

												Text("\(wordCount)	words")

																.font(.headline)

																.foregroundColor(.secondary)

																.padding(.trailing)

								}

				}

}

In	the	code	above,	we	declare	a	state	property	to	store	the	word	count.	And,	we	specify	in
the		onChange()		modifier	to	monitor	the	change	of		inputText	.	Whenever	a	user	types	a
character,	the	code	inside	the		onChange()		modifier	will	be	invoked.	In	the	closure,	we
compute	the	total	number	of	words	in		inputText		and	update	the		wordCount		variable
accordingly.

If	you	run	the	code	in	a	simulator,	you	should	see	a	plain	text	editor	that	also	displays	the
word	count	in	real	time.

779Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Using	onChange()	to	detect	text	input	and	display	the	word	count

Summary

Since	the	initial	release	of	SwiftUI,		TextEditor		has	been	one	of	the	most	anticipated	UI
components.	You	can	now	use	this	native	component	to	handle	multiline	input	on	iOS	14.
However,	if	you	still	need	to	support	older	versions	of	iOS,	you	will	need	to	use	UIKit	and
implement		UITextView		in	your	SwiftUI	project	using	the		UIViewRepresentable		protocol.

For	reference,	you	can	download	the	complete	text	editor	project	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUITextEditor.zip)

780Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUITextEditor.zip

Chapter	33
Using	matchedGeometryEffect	to
Create	View	Animations
In	iOS	14,	Apple	introduced	a	lot	of	new	additions	to	the	SwiftUI	framework	like
LazyVGrid	and	LazyHGrid.	But		matchedGeometryEffect		is	a	new	one	that	really	caught	my
attention	because	it	allows	developers	to	create	some	amazing	view	animations	with	just
a	few	lines	of	code.	In	earlier	chapters,	you	learned	how	to	create	view	animations.
	matchedGeometryEffect		takes	the	implementation	of	view	animations	to	the	next	level.

For	any	mobile	apps,	it	is	very	common	that	you	need	to	move	from	one	view	to	another.
Creating	a	delightful	transition	between	views	will	definitely	improve	the	user
experience.	With	the		matchedGeometryEffect		modifier,	you	describe	the	appearance	of	two
views.	The	modifier	will	then	compute	the	difference	between	those	two	views	and
automatically	animate	the	size/position	change.

Feeling	confused?	No	worries.	You	will	understand	what	I	mean	after	going	through	the
demo	apps.

Revisiting	SwiftUI	Animation

Before	I	walk	you	through	the	usage	of		matchedGeometryEffect	,	let's	take	a	look	at	how	we
implement	animation	using	SwiftUI.	Figure	1	shows	the	beginning	and	final	states	of	a
view.	When	you	tap	the	circle	view	on	your	left,	it	should	grow	bigger	and	move	upward.
Conversely,	if	you	tap	the	one	on	the	right,	it	returns	to	the	original	size	and	position.

781Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	The	Circle	view	at	the	start	state	(left),	The	Circle	view	at	the	end	state	(right)

The	implementation	of	this	tappable	circle	is	very	straightforward.	Assuming	you've
created	a	new	SwiftUI	project,	you	can	update	the		ContentView		struct	like	this:

struct	ContentView:	View	{

				@State	private	var	expand	=	false

				var	body:	some	View	{

								Circle()

												.fill(Color.green)

												.frame(width:	expand	?	300	:	150,	height:	expand	?	300	:	150)

												.offset(y:	expand	?	-200	:	0)

												.animation(.default)

												.onTapGesture	{

																self.expand.toggle()

												}

				}

}

782Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	have	a	state	variable		expand		to	keep	track	of	the	current	state	of	the		Circle		view.	In
both	the		.frame		and		.offset		modifiers,	we	vary	the	frame	size	and	offset	when	the	state
changes.	If	you	run	the	app	in	the	preview	canvas,	you	should	see	the	animation	when
you	tap	the	circle.

Figure	2.	The	Circle	view	animation

Understanding	the	matchedGeometryEffect	Modifier

So,	what	is		matchedGeometryEffect	?	How	does	it	simplify	the	implementation	of	the	view
animation?	Take	a	look	at	figure	1	and	the	code	of	the	circle	animation	again.	We	have	to
figure	out	the	exact	value	change	between	the	start	and	the	final	state.	In	the	example,
they	are	the	frame	size	and	the	offset.

With	the		matchedGeometryEffect		modifier,	you	no	longer	need	to	figure	out	these
differences.	All	you	need	to	do	is	describe	two	views:	one	represents	the	start	state	and
the	other	is	for	the	final	state.		matchedGeometryEffect		will	automatically	interpolate	the
size	and	position	between	the	views.

783Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

To	create	the	same	animation	as	shown	in	figure	2	with		matchedGeometryEffect	,	you	first
declare	a	namespace	variable:

@Namespace	private	var	shapeTransition

And	then,	rewrite	the		body		part	like	this:

var	body:	some	View	{

				if	expand	{

								//	Final	State

								Circle()

												.fill(Color.green)

												.matchedGeometryEffect(id:	"circle",	in:	shapeTransition)

												.frame(width:	300,	height:	300)

												.offset(y:	-200)

												.animation(.default)

												.onTapGesture	{

																self.expand.toggle()

												}

				}	else	{

								//	Start	State

								Circle()

												.fill(Color.green)

												.matchedGeometryEffect(id:	"circle",	in:	shapeTransition)

												.frame(width:	150,	height:	150)

												.offset(y:	0)

												.animation(.default)

												.onTapGesture	{

																self.expand.toggle()

												}

				}

}

784Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

In	the	code,	we	created	two	circle	views:	one	is	for	the	start	state	and	the	other	is	for	the
final	state.	When	our	app	first	initialized,	we	present	a		Circle		view	which	is	centered
and	has	a	width	of	150	points.	When	the		expand		state	variable	is	changed	from		false		to
	true	,	the	app	displays	another		Circle		view	which	is	positioned	200	points	from	the
center	of	the	screen	and	has	a	width	of	300	points.

For	both		Circle		views,	we	attach	the		matchedGeometryEffect		modifier	and	specify	the
same	ID	&	namespace.	By	doing	so,	SwiftUI	computes	the	size	&	position	difference
between	these	two	views	and	interpolates	the	transition.	Along	with	the		animation	
modifier,	the	framework	will	automatically	animate	the	transition.

The	ID	and	namespace	are	used	for	identifying	which	views	are	part	of	the	same
transition.	This	is	why	both		Circle		views	use	the	same	ID	and	namespace.

This	is	how	you	use		matchedGeometryEffect		to	animate	transition	between	two	views.	If
you've	used	Magic	Move	in	Keynote	before,	this	new	modifier	is	very	much	like	Magic
Move.	To	test	the	animation,	I	suggest	you	run	the	app	in	an	iPhone	simulator.	At	the
time	of	this	writing,	there	is	a	bug	in	Xcode	12	that	you	can't	test	the	animation	in	the
preview	canvas.

Morphing	From	a	Circle	to	a	Rounded	Rectangle

Let's	try	to	implement	another	animated	view	transition.	This	time,	we	will	morph	a
circle	into	a	rounded	rectangle.	The	circle	is	positioned	at	the	top	of	the	screen,	while	the
rounded	rectangle	is	close	to	the	bottom	part	of	the	screen.

785Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	The	Circle	view	at	the	start	state	(left),	The	Rounded	Rectangle	view	at	the	end
state	(right)

Using	the	same	technique	you	just	learned,	you	need	to	prepare	two	views:	the	circle	view
and	the	rounded	rectangle	view.	The		matchedGeometryEffect		modifier	will	then	handle	the
transformation.	Replace	the		body		variable	of	the		ContentView		struct	like	this:

786Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

VStack	{

				if	expand	{

								//	Rounded	Rectangle

								Spacer()

								RoundedRectangle(cornerRadius:	50.0)

												.matchedGeometryEffect(id:	"circle",	in:	shapeTransition)

												.frame(minWidth:	0,	maxWidth:	.infinity,	maxHeight:	300)

												.padding()

												.foregroundColor(Color(.systemGreen))

												.animation(.easeIn)

												.onTapGesture	{

																expand.toggle()

												}

				}	else	{

								//	Circle

								RoundedRectangle(cornerRadius:	50.0)

												.matchedGeometryEffect(id:	"circle",	in:	shapeTransition)

												.frame(width:	100,	height:	100)

												.foregroundColor(Color(.systemOrange))

												.animation(.easeIn)

												.onTapGesture	{

																expand.toggle()

												}

								Spacer()

				}

}

We	still	make	use	of	the		expand		state	variable	to	toggle	between	the	circle	view	and	the
rounded	rectangle	view.	The	code	is	very	similar	to	the	previous	example,	except	that	we
use	a		VStack		and	a		Spacer		to	position	the	view.	You	may	wonder	why	we	used
	RoundedRectangle		to	create	the	circle.	The	main	reason	is	that	it	gives	you	a	more	smooth
transition.

787Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

For	both	views,	we	attach	the		matchedGeometryEffect		modifier	and	specify	the	same	ID	&
namespace.	That's	all	we	need	to	do.	The	modifier	will	compare	the	difference	between
these	two	views	and	animate	the	changes.	If	you	run	the	app	in	the	preview	canvas	or	on
an	iPhone	simulator,	you	will	see	a	nice	transition	between	the	circle	and	the	rounded
rectangle	views.	This	is	the	magic	of		matchedGeometryEffect	.

Figure	4.	The	Circle	view	animation

However,	you	may	notice	that	the	modifier	doesn't	animate	the	color	change.	This	is
right.		matchedGeometryEffect		only	handles	position	and	size	changes.

Exercise	#1

Let's	have	a	simple	exercise	to	test	your	understanding	of		matchedGeometryEffect	.	Your
task	is	to	create	the	animated	transition	as	shown	in	figure	5.	It	starts	with	an	orange
circle	view.	When	the	circle	is	tapped,	it	will	transform	into	a	full	screen	background.	You

788Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

can	find	the	solution	in	the	final	project.

Figure	5.	Transforming	a	circle	button	to	a	full	screen	background

Swapping	Two	Views	with	Animated	Transition

Now	that	you	have	some	basic	knowledge	of		matchedGeometryEffect	,	let's	continue	to	see
how	it	can	help	us	create	some	nice	animations.	In	this	example,	we	will	swap	the
position	of	two	circle	views	and	apply	a	modifier	to	create	a	smooth	transition.

789Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	6.	Swapping	the	position	of	two	circles

We	will	use	a	state	variable	to	store	the	state	of	the	swap	and	create	a	namespace	variable
for		matchedGeometryEffect	.	Declare	the	following	variable	in		ContentView	:

@State	private	var	swap	=	false

@Namespace	private	var	dotTransition

By	default,	the	orange	circle	is	on	the	left	side	of	the	screen,	while	the	green	circle	is
positioned	on	the	right.	When	the	user	taps	any	of	the	circles,	it	will	trigger	the	swap.	You
don't	need	to	figure	out	how	the	swap	is	done	when	using		matchedGeometryEffect	.	To
create	the	transition,	all	you	need	to	do	is:

1.	 Create	the	layout	of	the	orange	and	green	circles	before	the	swap
2.	 Create	the	layout	of	the	two	circles	after	the	swap

To	translate	the	layout	into	code,	you	write	the		body		variable	like	this:

if	swap	{

790Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

				//	After	swap

				//	Green	dot	on	the	left,	Orange	dot	on	the	right

				HStack	{

								Circle()

												.fill(Color.green)

												.frame(width:	30,	height:	30)

												.matchedGeometryEffect(id:	"greenCircle",	in:	dotTransition)

								Spacer()

								Circle()

												.fill(Color.orange)

												.frame(width:	30,	height:	30)

												.matchedGeometryEffect(id:	"orangeCircle",	in:	dotTransition)

				}

				.frame(width:	100)

				.animation(.linear)

				.onTapGesture	{

								swap.toggle()

				}

}	else	{

				//	Start	state

				//	Orange	dot	on	the	left,	Green	dot	on	the	right

				HStack	{

								Circle()

												.fill(Color.orange)

												.frame(width:	30,	height:	30)

												.matchedGeometryEffect(id:	"orangeCircle",	in:	dotTransition)

								Spacer()

								Circle()

												.fill(Color.green)

												.frame(width:	30,	height:	30)

												.matchedGeometryEffect(id:	"greenCircle",	in:	dotTransition)

				}

				.frame(width:	100)

				.animation(.linear)

791Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

				.onTapGesture	{

								swap.toggle()

				}

}

We	use	a		HStack		to	layout	the	two	circles	horizontally	and	have	a		Spacer		in	between
them	to	create	some	separation.	When	the		swap		variable	is	set	to		true	,	the	green	circle
is	placed	to	the	left	of	the	orange	circle.	When		false	,	the	green	circle	is	positioned	to	the
right	of	the	orange	circle.

As	you	can	see,	we	just	describe	the	layout	of	the	circle	views	in	difference	states	and	let
	matchedGeometryEffect		handle	the	rest.	We	attach	the	modifier	to	each	of	the		Circle	
views.	However,	this	time	is	a	bit	different.	Since	we	have	two	different		Circle		views	to
match,	we	use	two	distinct	IDs	for	the		matchedGeometryEffect		modifier.	For	the	orange
circles,	we	set	the	identifier	to		orangeCircle	,	while	the	green	circles	uses	the	identifier
	greenCircle	.

Run	the	app	on	a	simulator,	you	should	see	the	swap	animation	when	you	tap	any	of	the
circles.

Exercise	#2

Earlier,	we	used	the		matchedGeometryEffect		on	two	circles	and	swap	their	position.	Your
exercise	is	to	apply	the	same	technique	but	on	two	images.	Figure	6	shows	you	the
sample	UI.	When	the	swap	button	is	tapped,	the	app	swaps	the	two	photos	with	a	nice
animation.

792Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	7.	Swapping	the	position	of	two	photos

You	are	free	to	use	your	own	photos.	For	my	demo,	I	used	these	free	photos	from
Unsplash.com:

https://unsplash.com/photos/pMW4jzELQCw
https://unsplash.com/photos/PM4Vu1B0gxk

Creating	a	Basic	Hero	Animation

Other	than	transforming	from	one	shape	to	another,	you	can	use	the
	matchedGeometryEffect		modifier	to	create	a	basic	hero	animation.	Figure	8	shows	you	a
sample	stack	view	of	an	image	and	text.	When	the	view	is	tapped,	both	the	image	and	text
will	be	expanded	to	take	up	the	full	screen.	This	type	of	animation	is	usually	known	as	a
Hero	Animation.

793Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://unsplash.com/photos/pMW4jzELQCw
https://unsplash.com/photos/PM4Vu1B0gxk

Figure	8.	Expanding	a	stack	view	into	a	full	screen

Again,	we	apply	the		matchedGeometryEffect		technique	to	create	this	type	of	animated
transition.	If	you	refer	to	figure	8,	there	are	two	views	in	the	view	transition:

1.	 One	is	the	view	showing	a	smaller	image	and	an	excerpt	for	the	article.
2.	 The	other	one	is	the	view	expanded	into	full	screen	showing	a	featured	photo	and	the

full	article.

To	begin,	first	declare	a	state	variable	to	control	the	status	of	the	view	mode:

@State	private	var	showDetail	=	false

When		showDetail		is	set	to	false,	the	article	view	with	a	smaller	image	is	displayed.	when
true,	a	full	screen	article	view	will	be	shown.	Again,	to	use	the		matchedGeometryEffect	
modifier,	we	have	to	declare	a	namespace	variable:

@Namespace	private	var	articleTransition

794Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	update	the		body		variable	like	this:

//	Display	an	article	view	with	smaller	image

if	!showDetail	{

				VStack	{

								Spacer()

								VStack	{

												Image("latte")

																.resizable()

																.scaledToFill()

																.frame(minWidth:	0,	maxWidth:	.infinity)

																.frame(height:	200)

																.matchedGeometryEffect(id:	"image",	in:	articleTransition)

																.cornerRadius(10)

																.animation(.interactiveSpring())

																.padding()

																.onTapGesture	{

																				showDetail.toggle()

																}

												Text("The	Watertower	is	a	full-service	restaurant/cafe	located	in	the	

Sweet	Auburn	District	of	Atlanta.")

																.matchedGeometryEffect(id:	"text",	in:	articleTransition)

																.animation(nil)

																.padding(.horizontal)

								}

				}

}

//	Display	the	article	view	in	a	full	screen

if	showDetail	{

				ScrollView	{

								VStack	{

												Image("latte")

																.resizable()

																.scaledToFill()

																.frame(minWidth:	0,	maxWidth:	.infinity)

																.frame(height:	400)

																.clipped()

795Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

																.matchedGeometryEffect(id:	"image",	in:	articleTransition)

																.animation(.interactiveSpring())

																.onTapGesture	{

																				showDetail.toggle()

																}

												Text("The	Watertower	is	a	full-service	restaurant/cafe	located	in	the	

Sweet	Auburn	District	of	Atlanta.	The	restaurant	features	a	full	menu	of	moderatel

y	priced	\"comfort\"	food	influenced	by	African	and	French	cooking	traditions,	but

	based	upon	time	honored	recipes	from	around	the	world.	The	cafe	section	of	The	Wa

tertower	features	a	coffeehouse	with	a	dessert	bar,	magazines,	and	space	for	live	

performers.\n\nThe	Watertower	will	be	owned	and	operated	by	The	Watertower	LLC,	a	

Georgia	limited	liability	corporation	managed	by	David	N.	Patton	IV,	a	resident	of

	the	Empowerment	Zone.	The	members	of	the	LLC	are	David	N.	Patton	IV	(80%)	and	the

	Historic	District	Development	Corporation	(20%).\n\nThis	business	plan	offers	fin

ancial	institutions	an	opportunity	to	review	our	vision	and	strategic	focus.	It	al

so	provides	a	step-by-step	plan	for	the	business	start-up,	establishing	favorable	

sales	numbers,	gross	margin,	and	profitability.\n\nThis	plan	includes	chapters	on	

the	company,	products	and	services,	market	focus,	action	plans	and	forecasts,	mana

gement	team,	and	financial	plan.")

																.matchedGeometryEffect(id:	"text",	in:	articleTransition)

																.animation(.easeOut)

																.padding(.all,	20)

												Spacer()

								}

				}

				.edgesIgnoringSafeArea(.all)

}

In	the	code	above,	we	layout	the	views	in	different	states.	When		showDetail		is	set	to
	false	,	we	use	a		VStack		to	layout	the	article	image	and	the	excerpt.	The	height	of	the
image	is	set	to	200	points	to	make	it	smaller.

The	layout	of	the	article	view	is	very	similar	in	full	screen	mode.	The	main	difference	is
that	the		VStack		view	is	embedded	in	a		ScrollView		to	make	the	content	scrollable.	The
image's	height	is	set	to	400	points,	so	that	the	image	is	a	little	bit	bigger.	In	order	to
extend	the	image	and	text	views	outside	of	the	screen's	safe	area,	we	attach	the
	.edgesIgnoringSafeArea		modifier	to	the	scroll	view	and	set	its	value	to		.all	.

796Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Since	we	have	two	different	views	in	the	transition,	we	use	two	different	IDs	for	the
	matchedGeometryEffect		modifier.	For	the	image,	we	set	the	ID	to		image	:

.matchedGeometryEffect(id:	"image",	in:	articleTransition)

On	the	other	hand,	we	set	the	ID	of	the	text	view	to		text	:

.matchedGeometryEffect(id:	"text",	in:	articleTransition)

Furthermore,	we	use	two	different	animations	for	the	text	and	image	views.	We	apply	the
	.interactiveSpring		animation	for	the	image	view,	while	for	the	text	view,	we	use	the
	.easeOut		animation.

The	implementation	is	very	straightforward,	similar	to	what	we	have	done	in	the	earlier
examples.	Run	the	app	in	a	simulator	to	try	it	out.	When	you	tap	the	image	view,	the	app
renders	a	nice	animation	and	shows	the	article	in	full	screen.

Figure	9.	A	basic	hero	animation

Passing	@Namespace	between	Views

797Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Referring	to	the	previous	example,	we	can	better	organize	the	code	by	breaking	the	two
different	stack	views	into	subviews.	But	the	problem	is	how	we	can	pass	the		@Namespace	
variable	between	views.	Let's	see	how	it	can	be	done.

First,	hold	the	command	key	and	click	on	the		VStack		keyword	of	the	first	stack	view.
Choose	Extract	Subview	from	the	context	menu	and	name	the	subview
	ArticleExcerptView	.

Figure	10.	Extracting	the	stack	view	into	a	subview

You	should	see	quite	a	number	of	errors	in	the		ArticleExcerptView		struct,	complaining
about	the	missing	of	the	namespace	and	the		showDetail		variable.	To	fix	the	error	of	the
	showDetail		variable,	you	can	declare	a	binding	in		ArticleExcerptView		like	this:

@Binding	var	showDetail:	Bool

To	accept	a	namespace	from	another	view,	the	trick	is	to	declare	a	variable	with	the	type
	Namespace.ID		like	this:

var	articleTransition:	Namespace.ID

798Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

This	should	now	fix	all	the	errors	in		ArticleExcerptView	.	Now	go	back	to		ContentView		and
replace		ArticleExcerptView()		with:

ArticleExcerptView(showDetail:	$showDetail,	articleTransition:	articleTransition)

We	pass	the	binding	to		showDetail		and	the	namespace	variable	to	the	subview.	This	is
how	you	share	a	namespace	across	different	views.	Repeat	the	same	procedure	to	extract
the		ScrollView		into	another	subview.	Name	the	subview		ArticleDetailView	.

Again,	you	need	to	declare	the	following	variable	and	binding	in		ArticleDetailView		to
resolve	all	the	errors:

@Binding	var	showDetail:	Bool

var	articleTransition:	Namespace.ID

You	should	also	update	the	instantiation	of		ArticleDetailView()		like	this:

ArticleDetailView(showDetail:	$showDetail,	articleTransition:	articleTransition)

After	all	these	changes,	the		ContentView		struct	is	now	simplified	like	this:

799Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				@State	private	var	showDetail	=	false

				@Namespace	private	var	articleTransition

				var	body:	some	View	{

								//	Display	an	article	view	with	smaller	image

								if	!showDetail	{

												ArticleExcerptView(showDetail:	$showDetail,	articleTransition:	article

Transition)

								}

								//	Display	the	article	view	in	a	full	screen

								if	showDetail	{

												ArticleDetailView(showDetail:	$showDetail,	articleTransition:	articleT

ransition)

								}

				}

}

Everything	works	the	same	but	the	code	is	now	more	readable	and	organized.

Summary

The	introduction	of	the		matchedGeometryEffect		modifier	takes	the	implementation	of	view
animation	to	the	next	level.	You	can	create	some	nice	view	transitions	with	much	less
code.	Even	if	you	are	a	beginner	to	SwiftUI,	you	can	take	advantage	of	this	new	modifier
to	make	your	app	more	awesome.

For	reference,	you	can	download	the	complete	matched	geometry	project,	with	the
solutions	to	the	exercises,	here:

Demo	project
(https://www.appcoda.com/resources/swiftui2/SwiftUIMatchedGeometry.zip)

800Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIMatchedGeometry.zip

Chapter	34
ScrollViewReader	and	Grid
Animation
Earlier,	I	introduced	you	to	the	new		matchedGeometryEffect		modifier	and	showed	you	how
to	create	some	basic	view	animations.	In	this	chapter,	let's	see	how	to	use	the	modifier
and	animate	item	selection	in	a	grid	view.	Additionally,	you	will	learn	another	brand	new
UI	component	called		ScrollViewReader	.

The	Demo	App

Before	we	step	into	the	implementation,	let	me	show	you	the	final	deliverable.	This
should	give	you	an	idea	of	what	you	are	going	to	build.	When	developing	real	world	apps,
you	may	need	to	display	a	grid	of	photo	items	and	let	users	select	some	of	the	items.

One	way	of	presenting	the	item	selection	is	to	have	a	dock	at	the	bottom	of	the	screen.
When	an	item	is	selected,	it	is	removed	from	the	grid	and	inserted	into	the	dock.	As	you
select	more	items,	the	dock	will	hold	more	items.	You	can	swipe	horizontally	to	navigate
through	the	items	in	the	dock.	If	you	tap	an	item	in	the	dock,	that	item	will	be	removed
and	inserted	back	into	the	grid.	Figure	1	illustrates	how	the	insertion	and	removal	of	an
item	works.

801Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	1.	The	demo	app

We	will	implement	the	grid	view	and	the	item	selection.	We	will	use	the
	matchedGeometryEffect		modifier	to	animate	the	selection.	To	get	started,	please	first
download	the	starter	project	at
https://www.appcoda.com/resources/swiftui2/SwiftUIGridViewAnimationStarter.zip.
This	project	includes	sample	data	and	images.

Building	the	Photo	Grid

First,	let's	create	the	photo	grid.	In	the		ContentView		struct,	declare	a	state	variable	like
this:

@State	private	var	photoSet	=	samplePhotos

The		samplePhotos		constant	is	predefined	in	the	starter	project	and	stores	the	array	of
photos.	The	reason	why		photoSet		is	declared	as	a	state	variable	is	that	we	will	change	its
content	for	photo	selection.

802Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIGridViewAnimationStarter.zip

To	present	the	photos	in	a	grid,	we	use	the	built-in		LazyVGrid		component.	Insert	the
following	code	in		body	:

VStack	{

				ScrollView	{

								HStack	{

												Text("Photos")

																.font(.system(.title,	design:	.rounded))

																.fontWeight(.heavy)

												Spacer()

								}

								LazyVGrid(columns:	[GridItem(.adaptive(minimum:	50))])	{

												ForEach(photoSet)	{	photo	in

																Image(photo.name)

																				.resizable()

																				.scaledToFill()

																				.frame(minWidth:	0,	maxWidth:	.infinity)

																				.frame(height:	60)

																				.cornerRadius(3.0)

												}

								}

				}

}

.padding()

Assuming	you	have	read	the	earlier	chapter	about	grid	view,	the	code	is	self	explanatory.
We	simply	use	the	adaptive	layout	to	arrange	the	set	of	photos	in	a	grid.

803Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	Presenting	the	photo	set	in	a	grid

Adding	the	Dock

For	photo	selection,	we	will	create	a	dock	to	hold	the	selected	photos.	Insert	the	following
code	inside	the		VStack	:

ScrollView(.horizontal,	showsIndicators:	false)	{

}

.frame(height:	100)

.padding()

.background(Color(.systemGray6))

.cornerRadius(5)

This	creates	a	scrollable	rectangle	area	for	holding	the	selected	photos.	Right	now,	it's
just	blank.

804Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	3.	Adding	a	gray	area

Handling	Photo	Selection

When	a	photo	is	selected,	we	will	remove	it	from	the	photo	grid	and	insert	it	into	the
dock.	To	handle	photo	selection,	we	will	create	a	state	variable	to	hold	the	selected
photos.	Insert	the	following	code	in		ContentView		to	declare	the	variable:

@State	private	var	selectedPhotos:	[Photo]	=	[]

Each	photo	in	the		photoSet		has	its	own	ID	of	the	type		UUID	.	To	store	the	current
selected	photo,	declare	another	state	variable	of	the	type		UUID	:

@State	private	var	selectedPhotoId:	UUID?

To	handle	the	photo	selection,	attach	a		onTapGesture		function	to	the		Image		component
of		LazyVGrid		like	this:

805Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Image(photo.name)

				.resizable()

				.scaledToFill()

				.frame(minWidth:	0,	maxWidth:	.infinity)

				.frame(height:	60)

				.cornerRadius(3.0)

				.onTapGesture	{

								selectedPhotos.append(photo)

								selectedPhotoId	=	photo.id

								if	let	index	=	photoSet.firstIndex(where:	{	$0.id	==	photo.id	})	{

												photoSet.remove(at:	index)

								}

				}

In	the	block		onTapGesture	,	we	add	the	selected	photo	to	the		selectedPhotos		array	and
update	the		selectedPhotoId	.	Additionally,	we	remove	the	selected	photo	from		photoSet	.
Since		photoSet		is	a	state	variable,	the	selected	photo	will	be	removed	from	the	grid	once
it's	removed	from	the	array.

The	selected	photo	should	be	added	to	the	dock.	So,	update	the	empty		ScrollView		of	the
dock	like	this:

806Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

ScrollView(.horizontal,	showsIndicators:	false)	{

				LazyHGrid(rows:	[GridItem()])	{

								ForEach(selectedPhotos)	{	photo	in

												Image(photo.name)

																.resizable()

																.scaledToFill()

																.frame(minWidth:	0,	maxWidth:	.infinity)

																.frame(height:	100)

																.cornerRadius(3.0)

																.onTapGesture	{

																				photoSet.append(photo)

																				if	let	index	=	selectedPhotos.firstIndex(where:	{	$0.id	==	pho

to.id	})	{

																								selectedPhotos.remove(at:	index)

																				}

																}

								}

				}

}

We	create	a	horizontal	grid	to	present	the	selected	photos.	For	each	photo,	we	attach	the
	onTapGesture		function	to	it.	When	someone	taps	a	photo	in	the	dock,	it	will	be	added
back	to	the	photo	grid	and	removed	from		selectedPhotos	.	In	other	words,	the	photo	will
be	deleted	from	the	dock.

If	you	run	the	app	in	the	preview	canvas,	you	should	be	able	to	select	any	of	the	photos	in
the	grid.	When	you	tap	a	photo,	it	will	be	automatically	added	to	the	dock	and	that	photo
will	be	removed	from	the	grid.	Conversely,	you	can	tap	a	photo	in	the	dock	to	move	it
back	to	the	photo	grid.

807Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	The	selected	photos	are	added	to	the	dock

Using	MatchedGeometryEffect	to	Animate	the
Transition

The	photo	selection	works	pretty	well	but	we	can	make	it	even	better	by	animating	the
transition	of	the	photo	selection.	Currently,	the	selected	photo	immediately	appears	in
the	dock.	What	I	want	to	do	is	to	animate	the	transition	of	the	photo	selection.	Once
selected,	the	photo	should	look	like	it	flies	from	the	photo	grid	to	the	dock.

With	the		matchedGeometryEffect		modifier,	it	is	very	easy	to	implement	this	type	of
animation.	First,	declare	the	namespace	variable	for	this	transition	in		ContentView	:

@Namespace	private	var	photoTransition

808Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Next,	attach	the		.matchedGeometryEffect		modifer	to	both		Image		objects:

.matchedGeometryEffect(id:	photo.id,	in:	photoTransition)

The	trick	here	is	to	assign	each	image	a	distinct	ID,	so	that	the	app	will	only	animate	the
change	of	the	selected	photo.

To	enable	the	animation,	attach	the		.animation		modifier	to	the		VStack		and	insert	the
following	line	of	code	under		.padding()	:

.animation(.interactiveSpring())

This	is	the	code	you	need	to	create	the	animated	transtion.	Run	the	app	on	a	simulator	or
in	the	preview	canvas.	When	you	tap	a	photo	in	the	grid,	you	can	see	a	beautiful
transition	before	it's	added	to	the	dock.

Figure	5.	The	selected	photos	are	added	to	the	dock	with	animation

809Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Using	ScrollViewReader	to	Move	a	Scroll	View

The	animated	transition	works	great.	But	did	you	notice	a	bug	in	the	app?	The	dock
doesn't	scroll	automatically	to	display	the	most	recent	selected	photo.	If	you	select	more
than	4	photos,	you	will	need	to	manually	scroll	the	dock	to	reveal	other	selected	photos.

How	can	we	fix	this	bug?	In	iOS	14,	Apple	introduced	a	new	component	called
	ScrollViewReader	.	As	its	name	suggests,	this	reader	is	designed	to	work	with		ScrollView	.
It	allows	developers	to	programmatically	move	a	scroll	view	to	a	specific	location.	To	use
	ScrollViewReader	,	you	wrap	it	around	a		ScrollView	.	Each	of	the	child	views	should	be
given	their	own	identifier.	You	can	then	call	the		scrollTo		function	of	the
	ScrollViewProxy		with	the	specific	ID	to	move	the	scroll	view	to	that	particular	location.

Figure	6.	Understanding	ScrollViewReader

Now	let's	get	back	to	our	demo	app.	To	programmatically	scroll	the		ScrollView		of	the
dock,	we	need	to	first	give	each	photo	an	identifier.	The		scrollTo		function	requires	us	to
provide	an	identifier	of	the	view	to	scroll	to.	Since	each	photo	already	has	its	unique
identifier,	we	can	use	the	photo	ID	as	the	view's	identifier.

To	set	the	identifier	of	the		Image		views	in	the	dock,	attach	the		.id		modifier	to	it:

.id(photo.id)

810Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Once	we	assign	each		Image		view	an	identifier,	attach	the		.onChange		function	to	the
	ScrollView		of	the	dock	like	this:

.onChange(of:	selectedPhotoId,	perform:	{	id	in

				guard	id	!=	nil	else	{	return	}

				scrollProxy.scrollTo(id)

})

We	use		.onChange		to	listen	for	the	update	of	the		selectedPhotoId	.	Whenever	the	selected
photo	ID	is	changed,	we	call		scrollTo		with	that	photo	ID	to	scroll	the	scroll	view	to	that
particular	location.	This	ensures	the	dock	always	shows	the	most	recent	selected	photo.
You	can	run	the	app	again	to	try	it	out.

Figure	7.	Scrolling	the	dock	automatically

Summary

In	this	chapter,	we	continue	to	explore	the	usage	of		matchedGeometryEffect		and	use	this
modifier	to	create	an	amazing	view	transition.	The	modifier	opens	up	a	lot	of
opportunities	for	developers	to	improve	the	user	experience	of	their	iOS	apps.	We	also
experimented	with	the	new		ScrollViewReader		to	see	how	to	use	it	to	scroll	a	scroll	view
programatically.

For	reference,	you	can	download	the	complete	project	here:

Demo	project

811Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

(https://www.appcoda.com/resources/swiftui2/SwiftUIGridViewAnimation.zip)

812Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUIGridViewAnimation.zip

Chapter	35
Working	with	Tab	View	and	Tab	Bar
Customization
The	tab	bar	interface	appears	in	some	of	the	most	popular	mobile	apps	such	as	Facebook,
Instagram,	and	Twitter.	A	tab	bar	appears	at	the	bottom	of	an	app	screen	and	let	users
quickly	switch	between	different	functions	of	an	app.	In	UIKit,	you	use	the
	UITabBarController		to	create	the	tab	bar	interface.	The	SwiftUI	framework	provides	a	UI
component	called		TabView		for	developers	to	display	tabs	in	the	app.

In	this	chapter,	we	will	show	you	how	to	create	a	tab	bar	interface	using		TabView	,	handle
the	tab	selection,	and	customize	the	appearance	of	the	tab	bar.

Using	TabView	to	Create	the	Tab	Bar	Interface

Assuming	you've	created	a	SwiftUI	project	using	Xcode	12,	let's	start	with	a	simple	text
view	like	this:

struct	ContentView:	View	{

				var	body:	some	View	{

								Text("Home	Tab")

												.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

				}

}

To	embed	this	text	view	in	a	tab	bar,	all	you	need	to	do	is	wrap	it	with	the		TabView	
component	and	set	the	tab	item	description	by	attaching	the		.tabItem		modifier	like	this:

813Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

struct	ContentView:	View	{

				var	body:	some	View	{

								TabView	{

												Text("Home	Tab")

																.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

																.tabItem	{

																				Image(systemName:	"house.fill")

																				Text("Home")

																}

								}

				}

}

This	will	create	a	tab	bar	with	a	single	tab	item.	In	the	sample	code,	the	tab	item	has	both
image	and	text,	but	you	are	free	to	remove	either	one	of	the	those.

Figure	1.	Tab	bar	with	a	single	tab	item

To	display	more	tabs,	you	just	need	to	add	child	views	inside	the		TabView		like	this:

814Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

TabView	{

				Text("Home	Tab")

								.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

								.tabItem	{

												Image(systemName:	"house.fill")

												Text("Home")

								}

				Text("Bookmark	Tab")

								.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

								.tabItem	{

												Image(systemName:	"bookmark.circle.fill")

												Text("Bookmark")

								}

				Text("Video	Tab")

								.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

								.tabItem	{

												Image(systemName:	"video.circle.fill")

												Text("Video")

								}

				Text("Profile	Tab")

								.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

								.tabItem	{

												Image(systemName:	"person.crop.circle")

												Text("Profile")

								}

}

This	gives	you	a	tab	bar	interface	with	4	tab	items.

815Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	2.	4	Adding	tab	items	in	the	tab	bar

Customizing	the	Tab	Bar	Color

By	default,	the	color	of	the	tab	bar	item	is	set	to	blue.	You	can	change	its	color	by
attaching	the		.accentColor		modifier	to		TabView		like	this:

TabView	{

}

.accentColor(.red)

Yet	the	SwiftUI	framework	doesn't	have	a	built-in	modifier	for	changing	the	tab	bar's
color.	If	you	want	to	change	that,	you	may	use	the	appearance	API	of	UIKit	like	below:

.onAppear()	{

				UITabBar.appearance().barTintColor	=	.white

}

816Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

If	you	attach	the	call	to		TabView	,	the	color	of	the	tab	bar	should	be	changed	to	white.

Figure	3.	Changing	the	color	of	the	tab	bar

Switching	Between	Tabs	Programmatically

Users	tap	the	tab	bar	items	to	switch	between	tabs,	which	is	automatically	handled	the
	TabView	.	In	some	use	cases,	you	may	want	to	switch	to	a	specific	tab	programmatically.
The		TabView		has	another		init		method	for	this	purpose.	The	method	requires	a	state
variable	which	contains	the	tag	value	of	the	tab.

TabView(selection:	$selection)

As	an	example,	declare	the	following	state	variable	in		ContentView	:

@State	private	var	selection	=	0

817Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Here	we	initialize	the		selection		variable	with	a	value	of		0	,	which	is	the	tag	value	of	the
first	tab	item.	We	haven't	defined	the	tag	value	for	the	tab	items	yet.	Therefore,	update
the	code	like	this	and	attach	the		tag		modifier	for	each	of	the	tab	items:

TabView(selection:	$selection)	{

				Text("Home	Tab")

								.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

								.tabItem	{

												Image(systemName:	"house.fill")

												Text("Home")

								}

								.tag(0)

				Text("Bookmark	Tab")

								.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

								.tabItem	{

												Image(systemName:	"bookmark.circle.fill")

												Text("Bookmark")

								}

								.tag(1)

				Text("Video	Tab")

								.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

								.tabItem	{

												Image(systemName:	"video.circle.fill")

												Text("Video")

								}

								.tag(2)

				Text("Profile	Tab")

								.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

								.tabItem	{

												Image(systemName:	"person.crop.circle")

												Text("Profile")

								}

								.tag(3)

}

818Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

We	give	each	tab	item	a	unique	index	by	attaching	the		tag		modifier.	The		TabView		is	also
bound	to	the		selection		value.	To	switch	to	your	preferred	tab	programmatically,	update
the	value	of	the		selection		variable.

You	can	create	a	Next	button	that	switches	to	the	next	tab	like	this:

ZStack(alignment:	.topTrailing)	{

				TabView(selection:	$selection)	{

								.

								.

								.

				}

				.accentColor(.red)

				.onAppear()	{

								UITabBar.appearance().barTintColor	=	.white

				}

				Button(action:	{

								selection	=	(selection	+	1)	%	4

				})	{

								Text("Next")

												.font(.system(.headline,	design:	.rounded))

												.padding()

												.foregroundColor(.white)

												.background(Color.red)

												.cornerRadius(10.0)

												.padding()

				}

}

After	making	the	changes,	run	the	app	in	the	preview	canvas,	you	step	through	the	tabs
by	tapping	the	Next	button.

819Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	4.	Using	the	Next	button	to	switch	the	tab

Hiding	the	Tab	Bar	in	a	Navigation	View

You	can	embed	a	tab	view	in	a	navigation	view	by	wrapping	the		TabView		component	with
	NavigationView		like	this:

820Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

NavigationView	{

				TabView(selection:	$selection)	{

								.

								.

								.

				}

				.navigationTitle("TabView	Demo")

}

In	UIKit,	there	is	another	option	called		hidesBottomBarWhenPushed	,	which	allows	you	to
hide	the	tab	bar	when	the	UI	is	changed	to	the	detail	view	in	a	navigation	interface.
SwiftUI	also	has	this	feature	built-in.	You	can	modify	the	code	like	this	to	see	it	in	action:

NavigationView	{

				TabView(selection:	$selection)	{

								List(1...10,	id:	\.self)	{	index	in

												NavigationLink(

																destination:	Text("Item	#\(index)	Details"),

																label:	{

																				Text("Item	#\(index)")

																								.font(.system(size:	20,	weight:	.bold,	design:	.rounded))

																})

								}

								.tabItem	{

												Image(systemName:	"house.fill")

												Text("Home")

								}

								.tag(0)

								Text("Bookmark	Tab")

												.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

												.tabItem	{

																Image(systemName:	"bookmark.circle.fill")

																Text("Bookmark")

												}

												.tag(1)

821Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

								Text("Video	Tab")

												.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

												.tabItem	{

																Image(systemName:	"video.circle.fill")

																Text("Video")

												}

												.tag(2)

								Text("Profile	Tab")

												.font(.system(size:	30,	weight:	.bold,	design:	.rounded))

												.tabItem	{

																Image(systemName:	"person.crop.circle")

																Text("Profile")

												}

												.tag(3)

				}

				.accentColor(.red)

				.onAppear()	{

								UITabBar.appearance().barTintColor	=	.white

				}

				.navigationTitle("TabView	Demo")

}

We	just	altered	the	code	of	the	Home	tab	to	display	a	list	of	items.	We	wrap	each	list	item
with	a		NavigationLink	,	so	that	it	will	navigate	to	the	detail	view	when	the	item	is	tapped.
If	you	run	the	app	using	a	simulator	or	in	the	preview	canvas,	you	should	see	that	the	tab
bar	is	hidden	when	we	navigate	to	the	detail	view.

822Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Figure	5.	Hiding	the	tab	bar	in	the	detailed	view

For	some	scenarios,	you	probably	don't	want	the	tab	bar	to	be	hidden.	In	these	cases,	you
can	create	the	navigation	interface	the	other	way	round.	Instead	of	wrapping	the	tab	view
in	a	navigation	view,	you	embed	the	navigation	view	in	a	tab	view	like	this:

823Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

TabView(selection:	$selection)	{

				NavigationView	{

								List(1...10,	id:	\.self)	{	index	in

												NavigationLink(

																destination:	Text("Item	#\(index)	Details"),

																label:	{

																				Text("Item	#\(index)")

																								.font(.system(size:	20,	weight:	.bold,	design:	.rounded))

																})

								}

								.navigationTitle("TabView	Demo")

				}

				.tabItem	{

								Image(systemName:	"house.fill")

								Text("Home")

				}

				.tag(0)

				.

				.

				.

}

Now	when	you	navigate	to	the	detail	view	of	the	item,	the	tab	bar	is	still	there.

Summary
In	this	chapter,	we	walked	you	through	the	basics	of		TabView	,	which	is	the	UI	component
in	SwiftUI	for	building	a	tab	view	interface.	The	framework	doesn't	provide	you	with
many	options	for	customizing	the	tab	bar.	However,	you	may	still	rely	on	the	APIs	of
UIKit	to	customize	its	appearance.	This	chapter	only	shows	you	how	to	work	with	the
built-in	tab	bar.	You	can	actually	create	your	own	tab	bar	if	you	need	full	customization.
We	will	discuss	it	in	the	future	chapters.

For	reference,	you	can	download	the	complete	project	here:

824Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

Demo	project	(https://www.appcoda.com/resources/swiftui2/SwiftUITabView.zip)

825Mastering SwiftUI (Supports iOS 14 and Xcode 12) | AppCoda © 2020

https://www.appcoda.com/resources/swiftui2/SwiftUITabView.zip

	Preface
	Chapter 1 - Introduction to SwiftUI
	Chapter 2 - Getting Started with SwiftUI and Working with Text
	Chapter 3 - Working with Images
	Chapter 4 - Layout User Interfaces with Stacks
	Chapter 5 - Understanding ScrollView and Building a Carousel UI
	Chapter 6 - Working with SwiftUI Buttons and Gradient
	Chapter 7 - Understanding State and Binding
	Chapter 8 - Implementing Path and Shape for Line Drawing and Pie Charts
	Chapter 9 - Basic Animations and Transitions
	Chapter 10 - Understanding Dynamic List, ForEach and Identifiable
	Chapter 11 - Working with Navigation UI and Navigation Bar Customization
	Chapter 12 - Playing with Modal Views, Floating Buttons and Alerts
	Chapter 13 - Building a Form with Picker, Toggle and Stepper
	Chapter 14 - Data Sharing with Combine and Environment Objects
	Chapter 15 - Building a Registration Form with Combine and View Model
	Chapter 16 - Working with Swipe-to-Delete, Context Menu and Action Sheets
	Chapter 17 - Using Gestures
	Chapter 18 - Building an Expandable Bottom Sheet with SwiftUI Gestures and GeometryReader
	Chapter 19 - Creating a Tinder-like UI with Gestures and Animations
	Chapter 20 - Creating an Apple Wallet like Animation and View Transition
	Chapter 21 - Working with JSON, Slider and Data Filtering
	Chapter 22 - Building a ToDo app with Core Data
	Chapter 23 - Integrating UIKit with SwiftUI Using UIViewRepresentable
	Chapter 24 - Creating a Search Bar View and Working with Custom Binding
	Chapter 25 - Putting Everything Together to Build a Real World App
	Chapter 26 - Creating an App Store like Animated View Transition
	Chapter 27 - Building an Image Carousel
	Chapter 28 - Building an Expandable List View Using OutlineGroup
	Chapter 29 - Building Grid Layout Using LazyVGrid and LazyHGrid
	Chapter 30 - Creating an Animated Activity Ring with Shape and Animatable
	Chapter 31 - Working with AnimatableModifier and LibraryContentProvider
	Chapter 32 - Working with TextEditor to Create Multiline Text Fields
	Chapter 33 - Using matchedGeometryEffect to Create View Animations
	Chapter 34 - ScrollViewReader and Grid Animation
	Chapter 35 - Working with Tab View and Tab Bar Customization

