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It is shown that gravity in 2⫹1 dimensions coupled to point particles provides a nontrivial example of doubly special relativity 共DSR兲. This result is obtained by interpretation of previous results in the field and by exhibiting an explicit transformation between the phase space algebra for one particle in 2⫹1 gravity found by Matschull and Welling and the corresponding DSR algebra. The identification of 2⫹1 gravity as a DSR system answers a number of questions concerning the latter, and resolves the ambiguity of the basis of the algebra of observables. Based on this observation a heuristic argument is made that the algebra of symmetries of ultra high energy particle kinematics in 3⫹1 dimensions is described by some DSR theory. 
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共4兲 Modifications in the commutators of coordinates and momentum and/or non-commutativity of space-time co-Recently a proposal has been much discussed concerning ordinates. 

how quantum theories of gravity may be tested experimen-Theories with these characteristics are invariant under tally. The  doubly  or  deformed special relativity  proposal modifications of the Poincareálgebra, called generically 共DSR兲1 is that quantum gravity effects may lead in the limit

␬-Poincareálgebras, where ␬ is a dimensional parameter of weak fields to modifications in the kinematics of elemen-that measures the deformations, usually taken to be propor-tary particles characterized by 关5–9兴

tional to the Planck mass. 

In a recent paper 关10兴, it was argued that quantum gravity 共1兲 Preservation of the relativity of inertial frames. 

in 2⫹1 dimensions 关11,12兴 with vanishing cosmological con-共2兲 Nonlinear modifications of the action of Lorentz boosts stant must be invariant under some version of a ␬-Poincareón energy-momentum vectors, preserving a preferred en-symmetry. The argument there depends only on the assump-ergy scale, which is naturally taken to be the Planck tion that quantum gravity in 2⫹1 dimensions with the cos-energy,  E p . In some cases  Ep  is a maximum mass and/or mological constant ⌳⫽0 must be derivable from the ⌳ → 0

momentum that a single elementary particle can attain. 

limit of 2⫹1 quantum gravity with nonzero cosmological 共3兲 Nonlinear modifications of the energy-momentum rela-constant. The argument is simple and algebraic, the point is tions, because the function of  E  and  p ជ that is preserved

that the symmetry which characterizes quantum gravity in under the exact action of the Lorentz group is no longer 2⫹1 dimensions with ⌳⬎0 is actually quantum deformed de quadratic. This could result in Planck scale effects such Sitter to  SOq(3,1), with the quantum deformation parameter as an energy-dependent speed of light and modifications q  given by 关14,15,17兴

of thresholds for scattering, that may be observable in 冑⌳

present and near future experiments. 

 z⫽ln共 q 兲⬇ lPlanck

. 

共1兲

The limit ⌳ → 0 then affects both the scaling of the translation generators as the de Sitter group is contracted to the
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1

ton’s constant in 2⫹1 dimensions, is held fixed, the limit Aspects of DSR theories have been proposed or studied more gives the ␬-deformed symmetry group in 2⫹1 dimensions. 

than once in the past, only to be forgotten and then rediscovered The conclusion is that the symmetry algebra of again. Early formulations were by Snyder 共2⫹1兲-关1兴 and Fock 关2兴. During

dimensional quantum gravity with

the 1990s the mathematical side of the subject was developed under

⌳⫽0 is not Poincare´, it is

the name of

a

␬-Poincareśymmetry 关3,4兴. The recent interest is due

␬-deformed Poincareálgebra. This means that the theory to the proposal that the effects of such theories may be both testable must be a DSR theory. 

and derivable from some versions of quantum gravity, see for ex-Quantum gravity in 2⫹1 dimensions has been the subject ample 关5–9兴. 

of much study in both the classical and quantum domain, 0556-2821/2004/69共4兲/044001共7兲/$22.50
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beginning with the work of Deser, Jackiw and ’t Hooft 关12–

mass 共with only  c⫽1 and no ប involved兲.2 Thus, if the 23兴. If that theory is a DSR theory than the features just asymptotic symmetry group knows about gravity, it will have listed above must be present, and this could not have been to preserve the scale  G⫺1. Of course, in theories with suffi-easily missed by investigators. 

ciently short range interactions the asymptotic symmetry Indeed,  all of the listed features have been seen in the group does not depend on the coupling constants. But in 2⫹1

 literature on  2⫹1  gravity.  In the next section we review gravity the presence of matter causes the geometry of space-some of the long standing results in 2⫹1 gravity and show time to become conical and this deforms the asymptotic con-how they may be understood using the language of DSR

ditions in a way that depends on  G. Further, since ប is not theories. To clinch the relation, in section III we exhibit an involved in the definition of the mass scale,  G⫺1, the defor-explicit mapping between the phase space of quantum grav-mation affects also the algebra of the classical phase space. 

ity in 2⫹1 dimensions coupled to a single point particle, This is the main reason why 2⫹1 gravity is a DSR theory. 

studied in 关21兴, and the algebra of symmetry generators of a In 2⫹1 gravity coupled to point particles, the Hamil-DSR theory. 

tonian,  H, whose value is equal to the ADM mass, and hence The observation that 2⫹1 gravity provides examples of is measured by a surface term, is bounded from both above DSR theories can help the study of both sides of the relation. 

and below 关21,23兴, 

The language of DSR theories and their foundations in terms of general principles can unify and explain some results in 1

the literature of 共2⫹1兲-dimensional gravity that, when first 0⭐ H⭐

. 

共2兲

4 G

discovered, seemed strange and unintuitive. We can now see that some of the features of 2⫹1 gravity are neither strange nor necessarily unique to 2⫹1 dimensions, because they fol-This can be understood in the following way. In 2⫹1 dimen-low only from the general requirement that the transforma-sions the spacetime is flat, except where matter is present. A tions between different inertial frames preserve an energy particle, or in fact any compactly supported distribution of scale. 

matter, is surrounded by an asymptotic region, which is lo-Furthermore, what one has in the 2⫹1 gravity models, cally flat, and whose geometry is thus characterized by a such as those with gravity coupled to  N  point particles, is a deficit angle ␣. A standard result is that 关12,16 –18,21,23兴, class of nontrivial DSR theories that are completely explicit and solvable, both classically and quantum mechanically. 

␣⫽8␲ GH. 

共3兲

The existence of these examples answers a number of questions and challenges that have been raised concerning DSR

theories. Some authors have argued 关24兴 that DSR theories But a deficit angle ␣ must be less than or equal to 2␲. Hence are just ordinary special relativistic theories rewritten in there is an upper limit on the mass of any system, as mea-terms of some nonlinear combinations of energy and mo-sured by the Hamiltonian. The upper limit holds for all sys-mentum, while, conversely, others have argued that they tems, regardless of how many particles there are and what must be trivial because interactions cannot be consistently their relative positions or motions are. 

included. Both criticisms are shown wrong by the existence This upper mass limit must be preserved by the of an explicit and solvable class of DSR theories, with inter-asymptotic symmetry group. Hence the asymptotic symme-actions, given by quantum gravity in 2⫹1 dimensions try group cannot be the ordinary Poincare´ group, if it include coupled to point particles and fields. 

boosts it must be a DSR theory with a maximum energy.3

Furthermore, we see that in 2⫹1 dimensions the apparent It has further been shown that the spatial components of problem of the freedom to choose the basis of the symmetry momentum of a particle in 2⫹1 gravity are unbounded 关21兴. 

algebra of a DSR theory is resolved by the fact that the This, together, with a bounded energy, implies a modified choice of the coupling of matter to the gravitational field energy-momentum relation. 

picks out the physical energy and momentum. We see in Sec. 

The phase space of a single point particle in 2⫹1 gravity III below that for the case of minimal coupling of gravity to was constructed by Matschull and Welling in 关21兴 and it was a single point particle the basis picked out is the classical found that a classical solution is labeled by a three dimen-basis. 

sional position  Y␮ , ␮⫽0,1,2 and momentum  p␮ . They find Finally, one can ask whether the fact that 2⫹1 gravity is a explicitly that the energy momentum relations and the action DSR theory has any implications for real physics in 3⫹1

of the Poincareśymmetry are deformed, in a way that pre-dimensions. In the final section of the paper we present a heuristic argument that it may. 

2 G  is identified with inverse of the ␬ deformation parameter of

␬-Poincareálgebra. 

3

II. SIGNS OF DSR IN 2¿1 GRAVITY

Note that in the approach of Matschull and Louko 关22,23兴 which anchor the reference frame to the conical infinity, the asymptotic In this section we point out where effects characteristic of symmetry group is the two dimensional group of isometry of a DSR have been discovered already in the literature on 共2

conical space time and it does not contain boosts. However the

⫹1兲-dimensional gravity. We consider only the case ⌳⫽0. 

results concerning the phase space structure of the relative motion It is important first to note that Newton’s constant in 2⫹1

of particles, like noncommutativity of positions and curved and dimensions, denoted here by  G, has dimensions of inverse unbounded space of momenta still hold in this approach. 
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serves a fixed energy scale. They indeed make explicit refer-terms of the zeroth component of the energy-momentum vec-ence to the work of Snyder 关1兴, which was an early proposal tor by the same equation, they coincide on the subset of for DSR. 

solutions on which they are both defined, which are the ro-Furthermore, Matschull and Welling find that the spacetationally invariant solutions. This appears to be a direct time coordinates  Y␮ of a particle are noncommutative under demonstration of the equality of inertial and gravitational the classical Poisson brackets, 

mass, within this context. 

Indeed, this observation suggests that the Ashtekar-关 Y␮ ,  Y␯兴⫽⫺2 G⑀␮␯␳ Y␳ . 

共4兲

Varadarajan form of the ADM mass is more general than their calculation shows. Indeed it is not hard to see that this This property was found in 关23兴 to extend to systems of  N

is the case. Let us study the free scalar field in 共2⫹1兲-particles. 

dimensional Minkowski spacetime, with no condition of ro-Matschull and Welling also find that the components of tational symmetry. This system is  not  a dimensional reduc-the energy-momentum vector for a point particle in 2⫹1

tion of general relativity, only a subspace of solutions, those gravity live on a curved manifold, which is 共2⫹1兲-with rotational symmetry, are related to general relativity. 

dimensional anti–de Sitter spacetime. This was shown in But it still may serve as a useful example of a DSR theory. 

关29,31兴 to be a feature of DSR theories.4

Of course the theory has full Poincareínvariance, with mo-Ashtekar and Varadarajan 关16兴 found a relationship be-mentum generators  P

tween two definitions of energy relevant for 2⫹1 gravity, i  and boost generators  K i  satisfying the usual Poincareálgebra. But Eq. 共6兲 implies that they form which is reminiscent of nonlinear redefinitions of the energy with  H  a DSR algebra

used in changing bases between different realizations of DSR

theories. The case they studied has to do with 3⫹1 gravity, 兵 Ki ,  H 其⫽共1⫺4 GH 兲 Pi with two Killing fields, one rotational and one axial. One first dimensionally reduces to 2⫹1 dimensions, in which 1

case the dynamics of GR in 3⫹1 is expressed as a scalar field 兵 K

其⫽⫺

␦

 i ,  P j

4 G i j ln关 1⫺4 GH  兴

共8兲

coupled to 共2⫹1兲-dimensional GR. The ADM Hamiltonian  H

still exists and still is bounded from above as in Eq. 共2兲. But with the other commutators undeformed. The physical en-in the presence of the additional, rotational Killing field, the ergy momentum relations are deformed to theory can be represented by a scalar field evolving in a flat reference Minkowski spacetime, with the ordinary Hamil-1

tonian

 P 2⫹ m 2⫽

关ln共1⫺4 GH 兲兴2. 

共9兲

 i

16 G 2

1

⬁

 H

⫽ 冕

␾兲2兴

 f lat

 drr 关␾ ˙ 2⫹共⳵

. 

共5兲

Recent calculations 关26兴 indicate that quantum deforma-2

 r

0

tions of symmetries play a role in gravitational scattering of particles in 2⫹1 dimensions. 

 H flat  is of course unbounded above. They find the rela-All of these pieces of evidence show that 2⫹1 gravity tionship between them is

coupled to matter can be understood as a DSR system. 

1

Of course, the 共2⫹1兲-dimensional model system is not H⫽

共1⫺ e⫺4 GHflat 兲. 

共6兲

completely analogous to real physics in 3⫹1 dimensions. 

4 G

But this result answers cleanly several queries and criticisms that have been levied against the DSR proposal. 

This exact relation is in fact present in the literature on DSR

关

First, some authors have suggested that DSR theories are 29兴. It holds in the a presentation of the ␬-Poincareálgebra physically indistinguishable from ordinary special relativity known as the ‘‘bicrossproduct’’ basis. In that case  H

⫽

 f lat

 E

关24兴. They argue that in some cases, one can arrive at a DSR

is, as in the present case, the zeroth component of an energy system from a nonlinear mapping of energy-momentum momentum vector and  H  is the ‘‘physical rest mass,  m 0 de-space to itself. These results show that argument fails, for fined by

there is no doubt that the model system of point particles in 1

1  dE

2⫹1 gravity is physically distinguishable from the model

⫽ lim

冏 . 

共7兲

system of free particles in flat 共2⫹1兲-dimensional spacetime. 

 m 0

 p d p

 p→ 0

 E⫽ p

This is here a clean result, with no quantization ambiguities, 0

because the deformation parameter ␬⫽1/4 G  is entirely clas-It is intriguing that this is the inertial mass, while, for the sical and the modification is of the structure of the classical solutions with rotational symmetry, the ADM energy is the phase space. The two phase spaces are not isomorphic, when active gravitational mass. Since they are both expressed in gravity is turned on, the phase space is curved and the mass as a maximum, but when  G⫽0 the phase space is flat and the mass has no bound. 

4Although in Refs. 

This is clear also for the multiparticle system, where there 关29,31兴 the momentum space for a class of DSR theories was shown to be de Sitter spacetime. We discuss are nontrivial interactions, depending on  G, which make the below the difference between positively and negatively curved mo-system measurably distinct from the free particle case with mentum spaces. 

 G⫽0. 
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The multiparticle system in 2⫹1 gravity also serves as an entz algebra generators  J␮⫽( M ,  Ni) boosts. Taking the co-example of a counterintuitive property of some DSR models algebra of the ␬-Poincare´ quantum algebra and using the in 3⫹1 gravity. This is that the upper mass limit  M upper so-called ‘‘Heisenberg-double construction’’ 关27–29兴 it is

⫽1/4 G  is independent of the number of particles in the sys-possible to derive the position variables, conjugate to mo-tem. This of course cannot be the case in the real world, so it menta,  x␮ , as well as the brackets between them and the is good to know that there are implementations of DSR in

␬-Poincareálgebra generators. 

3⫹1 dimensions that do not have an upper mass limit for This 共quantum兲 algebraic construction has a geometrical systems of many particles, or where the upper mass limit counterpart, described in 关30,31兴. Here the manifold on grows with the number of particles or the mass of the total which momenta live is de Sitter space 共in the case at hand system, in such a way as to not violate experience 关25兴. 

the 3 dimensional one兲. The positions and the Lorentz trans-However, it is also good to know that there is a model formations are symmetries acting on the space of momenta. 

system, which is sensible physically, in which this nonintui-Thus they form the three dimensional de Sitter algebra tive feature is completely realized. Moreover it suggests the SO(3,1). It is convenient to define the de Sitter space of start of a physical answer to one of the puzzling questions momenta as a three dimensional surface about DSR models. This is that the addition of energy and 2

2

2

2

momentum in DSR theories is nonlinear. This can be under-

⫺␩ ⫹␩ ⫹␩ ⫹␩ ⫽␬2

共10兲

0

1

2

3

stood as a consequence of the nonlinear action of the Lorentz group, for example it follows from the fact that the energy-in the four dimensional Minkowski space with coordinates momentum space has nonzero curvature. It appears to remain (␩0 , . . . ␩3). The physical momenta  p␮ are then the coordi-even in realizations of DSR that remove the mass limit for nates on the surface 共10兲. This means that we can think of

␩

composite systems. 

⫽␩

 A

 A(  p ␮) as of the given functions of momenta, for Some physicists have criticized the DSR proposal by which Eq. 共10兲 is identically satisfied. In the DSR terminol-pointing out that the nonlinear corrections to addition of ogy, the choice of a particular coordinate system on de Sitter energy-momentum vectors for a system of two particles can space corresponds to a choice of the so called DSR basis 共see be interpreted by saying that there is a binding energy be-关29,31兴兲. It turns out that in order to relate DSR to the 2⫹1

tween pairs of particles that does not depend on the distance gravity one has to choose the so called classical basis, char-between them, but depends only on the individual energies acterized by ␩␮⫽ p␮ . This choice will be implicit below, and momenta. 

however we find it more convenient to write down the for-This may be counter-intuitive, but it is precisely the what mulas below in terms of the variables ␩ A . 

happens in 2⫹1 dimensions. Because spacetime is locally The algebra of symmetries of the de Sitter space of mo-flat, each particle contributes a deficit angle to the overall menta 共10兲 can be most easily read off by writing down the geometry that affects all the other particles’ motions, no mat-action

of

these

symmetries

on

the

four-dimensional

ter how far away. The result is that there is a binding energy Minkowski space with coordinates ␩ A  and then pulling them that is independent of distance. 

down to the surface 共10兲. Let us note however that while it is This suggests a speculative remark: might there be even easy to identify the Lorentz generators  J␮⫽( M ,  Ni) as the in 3⫹1 dimensions a small component of the binding energy elements of the  SO(2,1) subalgebra of the  SO(3,1), it is a of pairs of particles, of order  l matter of convenience which linearly independent combina-p M  1  M  2, which is independent of distance? Might this be interpreted as a kind of quantum tion of generators is to be identified with positions 共i.e. the gravity effect? 

generators of translation in momentum space兲. Technically In the last section we make some speculative remarks speaking we are free to choose the decomposition of concerning the question of whether these results have any SO(3,1) into the sum of  SO(2,1) and its remainder. 

bearing on real physics in 3⫹1 dimensions. 

In the case of the DSR phase space, the action of the symmetries is given by

III. PHASE SPACE OF DSR IN 2¿1 DIMENSIONS

关 M,␩ 兴⫽⑀ ␩

兴⫽␦ ␩

兴⫽␩

 i

 i j

 j , 

关 Ni ,␩ j

 i j

0 , 

关 Ni ,␩0

 i ,共11兲

In this section we will compare the phase space of 共2⫹1兲-dimensional DSR with that of 共2⫹1兲-dimensional gravity 关 J␮ ,␩ 兴⫽

3

0, 

共12兲

with one particle. Let us start with the former. 

with  J␮ satisfying the algebra A. Phase spaces of DSR

关 M,  N  兴⫽⑀

兴⫽⫺⑀

 i

 i jN j , 

关 Ni ,  Nj

 i j M

共13兲

As in 3⫹1 dimensions, the starting point to find the phase space of DSR theory in the 共2⫹1兲-dimensional case is the 1

1

共

关 x

兴⫽

兴⫽

兴⫽0, 

2⫹1兲-dimensional ␬-Poincareálgebra 关4兴, the quantum al-0 , ␩ 3

␬ ␩0 , 关 x 0 ,␩0

␬ ␩3 , 关 x 0 ,␩ i

gebra whose generators are momenta5  p␮⫽( p 共14兲

0 ,  p i) and Lor-

1

1

5

关 x

兴⫽关

兴⫽

兴⫽

共␩ ⫺␩ 兲

 i , ␩ 3

 xi ,␩0

The Greek indices run from 1 to 3, the Latin ones from 1 to 2, 

␬ ␩ i , 关 xi ,␩ j

␬ ␦ ij  0

3 . 

while the capital ones from 0 to 3. 

共15兲

044001-4

2⫹1 GRAVITY AND DOUBLY SPECIAL RELATIVITY

PHYSICAL REVIEW D 69, 044001 共2004兲

Note that it follows from these equations that position of the  SO(3,1) algebra, in which the positions  Y␮

act on momenta as right multiplication and have the follow-1

关 x

兴⫽⫺

兴⫽

ing brackets with ␩ A :

0 ,  x i

␬  xi , 关 xi ,  xj 0. 

共16兲

1

1

关 Y

兴⫽⫺

兴⫽

It is worth mentioning also that such a decomposition is 0 , ␩ 3

␬ ␩0 , 关 Y 0 ,␩0

␬ ␩3 , 

possible in any dimension. In particular in the 3⫹1 case the bracket 共16兲 describes the so-called ␬-Minkowski type of 1

non-commutativity. 

关 Y

兴⫽⫺

␩

0 , ␩  i

␬ ⑀ ij j, 

共21兲

One can repeat this geometric construction in the case when the momenta manifold is the anti–de Sitter space 1

1

关 Y

兴⫽⫺

兴⫽

␩

⫺␩2⫹␩2⫹␩2⫺␩2⫽␬

 i , ␩ 3

 j , 

2. 

共17兲

␬ ␩ i , 关 Yi ,␩0

␬ ⑀ ij

0

1

2

3

Now the symmetry algebra is  SO(2,2), having again the 1

关 Y

兴⫽

␩ ⫺␦ ␩ 兲. 

共22兲

three dimensional Lorentz algebra  SO(2,1) described by i , ␩  j

␬ 共⑀ ij  0

 i j

3

Eqs. 共11兲, 共12兲 as its subalgebra. The algebra of positions, which we denote  y ␮ 共i.e. translations of momenta兲 changes Comparing the expressions 共18兲, 共19兲 with Eqs. 共21兲, 共22兲

only slightly and now reads

we easily find that these decompositions are related by 1

1

1

1

关 y

兴⫽⫺

兴⫽

兴⫽

 Y ⫽ y ⫺

⫽ y ⫺

⫺⑀

兲. 

共23兲

0 , ␩ 3

␬ ␩0 , 关 y 0 ,␩0

␬ ␩3 , 关 y 0 ,␩ i

0, 

0

0

␬  M,  Yi

 i

␬ 共 Ni

 i jN j

共18兲

It can be also easily checked that 1

1

关 y

兴⫽⫺

兴⫽

2

 i , ␩ 3

␬ ␩ i , 关 yi ,␩0

␬ ␩ i , 

关 Y␮ ,  Y␯兴⫽⫺ ␬ ⑀␮␯␳ Y␳. 

共24兲

1

关

Thus the DSR anti–de Sitter phase space is 共up to a trivial y

兴⫽

共␩ ⫺␩ 兲

 i , ␩  j

␬ ␦ ij  0

3 , 

共19兲

reshuffling of the generators兲 equivalent to the phase space of a single particle in 2⫹1 gravity. 

From Eqs. 共18兲, 共19兲 it follows that It is an open problem whether one can get de Sitter space as a manifold of momenta from 2⫹1 quantum gravity. It 1

1

2

would be interesting to see if this is the case. If so, there exist 关 y

兴⫽⫺

⫹

兴⫽⫺

⑀

0 ,  y i

␬  yi

 N

␬

two kinds of phase spaces of a particle in a 共2⫹1兲-2

 i , 

关 yi ,  y j

␬2  ijM. 共20兲

gravitational field corresponding to two DSR phase space algebras presented above. 

We see that the bracket 共20兲 does not describe the

␬-Minkowski type of noncommutativity. Since the noncommutativity type is related to the co-algebra structure of the IV. IMPLICATIONS FOR PHYSICS IN 3¿1 DIMENSIONS

quantum Poincareálgebra, this result indicates that along We present here an argument that suggests that the results with the ␬-Poincareálgebra there exists another quantum of this paper, and of those we reference, concerning 共2⫹1兲-Poincareálgebra with the same algebra, but different co-dimensional quantum gravity coupled to point particles may algebra, which we expect to be related to the former by a have implications for real physics in 3⫹1 dimensions. 

twist.6

The main idea is to construct an experimental situation that forces a dimensional reduction to the 共2⫹1兲-dimensional B. Phase space of 2¿1 gravity

theory. It is interesting that this can be done in quantum theory, using the uncertainty principle as an essential element The phase space algebra of one particle in 共2⫹1兲-of the argument. 

dimensional gravity is the algebra of asymptotic charges. 

Let us consider a system of two relativistic interacting This algebra has been carefully analyzed by Matschull and elementary particles in 3⫹1 dimensions, whose masses are Welling in 关21兴. They find that the physical momentum less than  G⫺1. In the center of mass frame the motion will manifold is anti–de Sitter space and that ␩␮⫽ p␮ , as stated be planar. Let us consider the system as described by an above. This means that 2⫹1 gravity seems to pick the clas-inertial observer who travels perpendicular to the plane of sical basis of DSR as the one having physical relevance. 

the system’s motion, which we will call the  z  direction. From Further, Matschull and Welling employ a particular decom-the point of view of that observer, the system is in an eigenstate of total longitudinal momentum,  P

 ˆ total , with some ei-

 z

6This expectation is based on the classification of Poisson struc-genvalue  P

 total

 z . Since the system is in an eigenstate of  P

 ˆ z

tures on Poincare´ group presented in 关32兴. 

the wavefunction of the center of mass will be uniform in  z. 

044001-5

FREIDEL, KOWALSKI-GLIKMAN, AND SMOLIN

PHYSICAL REVIEW D 69, 044001 共2004兲

Further, since there was initially zero relative momentum Thus, in the analogous 共2⫹1兲-dimensional system, which between the particles in the  z  direction it is also true in the is equivalent to the original system as seen from the point of observers frame that

view of the boosted observer, the Newton’s constant depends on the longitudinal momenta. 

 Prel⫽  P 1⫺  P 2⫽0. 

共25兲

Of course, in general there will be an additional scalar z

 z

 z

field, corresponding to the dynamical degrees of freedom of This implies of course  P 1⫽  P 2⫽  Ptotal/2. Then the above the gravitational field. We will for the moment assume that z

 z

 z

applies as well to each particle, i.e. their wave functions are these are unexcited, but exciting them will not affect the analysis so long as the gravitational excitations are invariant uniform in the  zˆ  direction as their wave functions have wave-also under the killing field and are of compact support. 

length 2 L  where

Now we note that, if there are no other particles or excited ប

degrees of freedom, the energy of the system can to a good L⫽

. 

共26兲

approximation be described by the Hamiltonian  H  of the two Ptotal

 z

dimensional dimensionally reduced system. This is described by a boundary integral, which may be taken over any circle At the same time, we assume that the uncertainties in the that encloses the two particles. But this is bounded from transverse positions are bounded a scale  r, such that  r above, by Eq. 共2兲. This may seem strange, but it is easy to Ⰶ2 L. 

see that it has a natural four-dimensional interpretation. 

Then the wave functions for the two particles have sup-The bound is given by

port on narrow cylinders of radius  r  which extend uniformly in the  z  direction. 

1

2 L

Finally, we assume that the state of the gravitational field M ⬍

⫽

共29兲

4 G 2⫹1

4 G 3⫹1

is semiclassical, so that to a good approximation, within  C

the semiclassical Einstein equations hold where  M  is the value of the ADM Hamiltonian,  H. But this G ⫽

典

 ab

8␲ G 具 Tâb . 

共27兲

just implies that

 L⬎2 G 3⫹1 M ⫽ R

共30兲

Note that we do not have to assume that the semiclassical Sch

approximation holds for all states. We assume something much weaker, which is that there are subspaces of states in i.e. this has to be true, otherwise the dynamics of the gravi-which it holds. 

tational field in 3⫹1 dimensions would have collapsed the Since the wave functions are uniform in  z, and since we system to a black hole. Thus, we see that the total bound are interested in the particle kinematics in flat space we as-from above of the energy in 2⫹1 dimensions is necessary so sume that the dynamical degrees of freedom of the gravita-that one cannot violate the condition in 3⫹1 dimensions that tional field are switched off, this implies that the gravita-a system be larger than its Schwarzschild radius. 

tional field seen by our observer will have a spacelike Killing Note that we also must have

field  ka⫽(⳵/⳵ z) a. 

ប

Thus, if there are no forces other than the gravitational M ⬎  Ptot⫽ . 

共31兲

 z

 L

field, the scattering of the two particles described semiclassically by Eq. 共27兲 must be the same as that of two parallel cosmic strings. This is known to be described by an equiva-Together with Eq. 共30兲 this implies  L⬎ lPlanck , which is of lent 共2⫹1兲-dimensional problem in which the gravitational course necessary if the semiclassical argument we are giving field is dimensionally reduced along the  z  direction so that is to hold. 

the two ‘‘cosmic strings’’ which are the sources of the gravi-Now, we have put no restriction on any components of tational field, are replaced by two punctures. 

momentum or position in the transverse directions. So the The dimensional reduction is governed by a length  d, system still has symmetries in the transverse directions. Fur-which is the extent in  z  that the system extends. We cannot thermore, the argument extends to any number of particles, take  d⬍ L  without violating the uncertainty principle. It is so long as their relative momenta are coplanar. Thus, we then convenient to take  d⫽ L. Further, since the system con-learn the following. 

sists of elementary particles, they have no intrinsic extent, so Let  H QG  be the full Hilbert space of the quantum theory there is no other scale associated with their extent in the  z of gravity, coupled to some appropriate matter fields, with direction. We can then identify  z⫽0 and  z⫽ L  to make an

⌳⫽0. Let us consider a subspace of states  H weak  which are equivalent toroidal system, and then dimensionally reduce relevant in the low energy limit in which all energies are along  z. The relationship between the four dimensional New-small in Planck units. We expect that this will have a sym-ton’s constant  G 3⫹1 and the three-dimensional Newton’s metry algebra which is related to the Poincareálgebra  P  3⫹1

constant  G 2⫹1⫽ G, which played a role so far in this paper is in 3⫹1 dimensions, by some possible small deformations given by

parameterized by  G 3⫹1 and ប. Let us call this low energy symmetry group  P  3⫹1 . 

 G

 G 3⫹1

 G 3⫹1 Ptot

 z

Let us now consider the subspace of  H weak  which is de-G 2⫹1⫽

⫽

2 L

2ប

. 

共28兲

scribed by the system we have just constructed. It contains 044001-6
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two particles, and is an eigenstate of  P

 ˆ tot  with large  Ptot  and M  2

 z

 z

 total

 Planck

vanishing relative longitudinal momenta. Let us call this sub-M P

⬍

共34兲

 z

4

space of Hilbert space  HP . 

 z

The conditions that define this subspace break the genera-which is compatible with the previous conditions. Thus, when all the conditions are satisfied, the deformed symmetry tors of the 共possibly modified兲 Poincareálgebra that involve 2⫹1

the  z  direction. But they leave unbroken the symmetry in the algebra must be identified with  P

. 

 G

共

3⫹1

2⫹1兲-dimensional transverse space. Thus, a subgroup of Now we can note the following. Whatever  P

is, it

 G

 P  3⫹1 acts on this space, which we will call  P  2⫹1傺 P  3⫹1 . 

must have the following properties: G

 G

 G

We have argued that the physics in  H

It depends on  G 3⫹1 and ប, so that its action on  each P

is to good ap-

 z

subspace  H , for each choice of  P

proximation described by an analogue system in of two par-P

 z , is the ␬ deformed 2⫹1

 z

ticles in 2⫹1 gravity. However, we know from the results Poincareálgebra, with ␬ as above. 

cited in the previous sections that the symmetry algebra act-It does not satisfy the rule that momenta and energy add, ing there is not by the ordinary 共2⫹1兲-dimensional Poincareón all states in  H, since they are not satisfied in these subalgebra, but by the ␬-Poincareálgebra in 2⫹1 dimensions, spaces. 

3⫹1

with

Therefore, whatever  P

is, it is not the classical Poin-

 G

care´ group. 

4 G 3⫹1 Ptot

␬⫺1⫽

 z

Thus the theory of particle kinematics at ultra high ener-ប

. 

共32兲

gies is not special relativity, and the arguments presented above suggest that it might be doubly special relativity. 
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It is shown that gravity in 2+1 dimensions coupled to point particles provides a nontrivial example of
doubly special relativity (DSR). This result is obtained by interpretation of previous results in the field and by
exhibiting an explicit transformation between the phase space algebra for one particle in 2+1 gravity found by
Matschull and Welling and the corresponding DSR algebra. The identification of 2-+1 gravity as a DSR system
answers a number of questions concering the latter, and resolves the ambiguity of the basis of the algebra of
observables. Based on this observation a heuristic argument is made that the algebra of symmetries of ultra

high energy particle kinematics in 3+1 dimensions is described by some DSR theory.
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1. INTRODUCTION

Recently a proposal has been much discussed concerning
how quantum theories of gravity may be tested experimen-
tally. The doubly or deformed special relativity proposal
(DSR)" is that quantum gravity effects may lead in the limit
of weak fields to modifications in the kinematics of elemen-
tary particles characterized by [5-9]

(1) Preservation of the relativity of inertial frames.

(2) Nonlinear modifications of the action of Lorentz boosts
on energy-momentum vectors, preserving a preferred en-
ergy scale, which is naturally taken to be the Planck
energy, E, . In some cases E, is a maximum mass and/or
momentum that a single elementary particle can attain.
Nonlinear modifications of the energy-momentum rela-
tions, because the function of E and p that is preserved
under the exact action of the Lorentz group is no longer
quadratic. This could result in Planck scale effects such
as an energy-dependent speed of light and modifications
of thresholds for scattering, that may be observable in
present and near future experiments.

@
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TAspects of DSR theories have been proposed or studied more
than once in the past, only to be forgotten and then rediscovered
again. Early formulations were by Snyder [1] and Fock [2]. During
the 1990s the mathematical side of the subject was developed under
the name of «-Poincaré symmetry [3,4]. The recent interest is due
to the proposal that the effects of such theories may be both testable
and derivable from some versions of quantum gravity, see for ex-
ample [5-9].
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(4) Modifications in the commutators of coordinates and
momentum and/or non-commutativity of space-time co-
ordinates.

Theories with these characteristics are invariant under
modifications of the Poincaré algebra, called generically
«-Poincare algebras, where « is a dimensional parameter
that measures the deformations, usually taken to be propor-
tional to the Planck mass.

In a recent paper [10], it was argued that quantum gravity
in 2+1 dimensions [11,12] with vanishing cosmological con-
stant must be invariant under some version of a «-Poincaré
symmetry. The argument there depends only on the assump-
tion that quantum gravity in 2+1 dimensions with the cos-
mological constant A =0 must be derivable from the A—0
limit of 2+1 quantum gravity with nonzero cosmological
constant. The argument is simple and algebraic, the point is
that the symmetry which characterizes quantum gravity in
2+1 dimensions with A >0 is actually quantum deformed de
Sitter to SO 46 3,1), with the quantum deformation parameter
q given by [14,15,17]

2=In(q) ~lpjanex VA (65}

The limit A—0 then affects both the scaling of the transla-
tion generators as the de Sitter group is contracted to the
Poincaré group, and the limit of q— 1. It is easy to see that
because the ratio «=7%\A/z=G;};, where G2*! is New-
ton’s constant in 2+1 dimensions, is held fixed, the limit
gives the «-deformed symmetry group in 2+1 dimensions.
The conclusion is that the symmetry algebra of (2+1)-
dimensional quantum gravity with A =0 is not Poincars, it is
a «-deformed Poincare algebra. This means that the theory
must be a DSR theory.

Quantum gravity in 2+1 dimensions has been the subject
of much study in both the classical and quantum domain,

©2004 The American Physical Society





