

Mastering
KVM Virtualization
Second Edition

Design expert data center virtualization solutions
with the power of Linux KVM

Vedran Dakic

Humble Devassy Chirammal

Prasad Mukhedkar

Anil Vettathu

BIRMINGHAM—MUMBAI

Mastering KVM Virtualization
Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Senior Editor: Arun Nadar
Content Development Editor: Nihar Kapadia
Technical Editor: Soham Amburle
Copy Editor: Safis Editing
Project Coordinator: Neil D'mello
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Aparna Bhagat

First published: June 2019
Second edition: October 2020

Production reference: 2250920

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-871-4
www.packt.com

http://www.packt.com

25 years ago, a colleague suggested that I should write what he called "a
Linux book". I liked the idea and I promised I would. Years rolled by, and
here I am, a quarter of a century later, acting on a promise. As Steve Jobs

once said, 'Ideas without action aren't ideas. They're regrets.'

To my family – my mother, father, and brother, for putting up with me over
the course of the last 25 years – which led to writing this book. To my TA,
Jasmin, for both helping me to improve and offering insights into various

topics covered in this book.

To my son, Luka, for showing me how young people can be both
talented and focused, especially when faced with problems that require

innovative solutions.

To my partner, Sanja, for driving me on in everything that I do.

Here's to not having any regrets.

– Vedran Dakic

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the authors
Vedran Dakic has a master's in electrical engineering and computing and is an IT trainer,
covering system administration, cloud, automatization, and orchestration courses. He is
a certified Red Hat, VMware, and Microsoft trainer. He is currently employed as the head
of department of operating systems at Algebra University College in Zagreb. As part of
his job, he lectures in relation to 3- and 5-year study programs in systems engineering,
programming, and multimedia tracks. He also does a lot of consulting and systems
integration in relation to his clients' projects – something he has been doing for the past
20 years. His approach is simple – bring real-world experience to all of the courses that he
is involved with as this will provide added value for his students and customers.

Humble Devassy Chirammal is a senior software engineer in the Storage Engineering
team at Red Hat. He has more than 15 years of IT experience, and his area of expertise is
in understanding the full stack in an ecosystem, with emphasis on architecting solutions
based on demand. These days he primarily concentrates on Ceph and GlusterFS and
its integration to container orchestrator systems like Kubernetes. He has hands-on
experience of emerging technologies, such as IaaS and PaaS solutions in Cloud and
Containers. In the past, he has worked on intrusion detection systems, Clustering
solutions, and Virtualization. As an open source advocate, he is a core contributor to
many open source projects like Kubernetes. He actively organizes meetups on Openshift/
Kubernetes, Virtualization, GlusterFS, CentOS. His twitter handle is @hchiramm and his
website is https://www.humblec.com.

https://www.humblec.com

This book is dedicated to the loving memory of my parents, C.O. Devassy
and Elsy Devassy, whose steady, balanced, and loving guidance has given
me the strength and determination to be the person I am today. I would

like to thank my wife, Anitha, for standing beside me throughout my career,
and for the effort she put into taking care of our son, Heaven, and our

daughters, Hail Mariya and Hanna Mariya, while I was writing this book.
I would like to thank my brothers, Sible and Fr. Able Chirammal, as well,
without whose constant support this book would not have been possible.

Finally, a special thanks to Ulrich Obergfell for being an inspiration that
helped me enrich my knowledge in Virtualization.

Prasad Mukhedkar is a specialist cloud solution architect at Red Hat India with over 10
years of experience in helping customers in their journey to Virtualization and Cloud
adoption. He is a Red Hat Certified Architect and has extensive experience in designing
and implementing high performing cloud infrastructure. His areas of expertise are Red
Hat Enterprise Linux 7/8 performance tuning, KVM virtualization, Ansible Automation,
and Red Hat OpenStack. He is a huge fan of the Linux "GNU screen" utility.

Anil Vettathu began his association with Linux while in college and began his career as a
Linux System Administrator soon after. He is a generalist, with an interest in open source
technologies. He has hands-on experience in designing and implementing large scale
virtualization environments using open source technologies and has extensive knowledge
in libvirt and KVM. These days he primarily works on Red Hat Enterprise Virtualization,
containers, and real time performance tuning. Currently, he is working as a Technical
Account Manager for Red Hat. His website is http://anilv.in.

I'd like to thank my wife, Chandni, for her unconditional support. She took
on the pain of looking after our two naughtiest kids, while I enjoyed writing
this book. I'd like like to thank my parents, Dr. Annieamma and Dr. George

Vettathu, for their guidance and for pushing me hard to study something
new. Finally, I would like to thank my sister, Dr. Wilma, for her guidance,

and my brother, Vimal.

http://anilv.in

About the reviewer
Ranjith Rajaram is employed as a senior principle technical support engineer at a
leading open source Enterprise Linux company. He began his career by providing support
to web hosting companies and managing servers remotely. Ranjith has also provided
technical support to end customers. Early in his career, he worked on Linux, Unix, and
FreeBSD platforms.

For the past 15 years, he has been continuously learning something new. This is what he
likes and admires about technical support. As a mark of respect to all his fellow technical
support engineers, he has included "developing software is humane, but supporting it is
divine" in his email signature.

At his current organization, he is involved in implementing, installing, and
troubleshooting Linux environment networks. Aside from this, he is also an active
contributor to the Linux container space (Docker, Podman), Kubernetes, and OpenShift.

Apart from this book, he has reviewed the first editions of Mastering KVM Virtualization
and Learning RHEL Networking, both available from Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents
Preface

Section 1:
KVM Virtualization Basics

1
Understanding Linux Virtualization

Linux virtualization and how it
all started 4
Types of virtualization 6
Using the hypervisor/virtual
machine manager 9
Type 1 and type 2 hypervisors 10

Open source virtualization
projects 11

Xen 12
KVM 13

What Linux virtualization offers
you in the cloud 14
Summary 15
Questions 16
Further reading 16

2
KVM as a Virtualization Solution

Virtualization as a concept 18
Virtualized versus physical environments 18
Why is virtualization so important? 20
Hardware requirements for
virtualization 21
Software requirements for virtualization 24

The internal workings of libvirt,
QEMU, and KVM 30
libvirt 30
QEMU 38
QEMU – KVM internals 41
Data structures 42
Threading models in QEMU 48

ii Table of Contents

KVM 49
Data structures 55

Execution flow of vCPU 59

Summary 64
Questions 64
Further reading 65

Section 2:
libvirt and ovirt for Virtual Machine
Management

3
Installing KVM Hypervisor, libvirt, and oVirt

Getting acquainted with QEMU
and libvirt 70
Getting acquainted with oVirt 71
Installing QEMU, libvirt, and
oVirt 73
Installing the first virtual machine in
KVM 76

Automating virtual machine installation 77
Installing oVirt 80

Starting a virtual machine using
QEMU and libvirt 83
Summary 87
Questions 87
Further reading 87

4
Libvirt Networking

Understanding physical and
virtual networking 90
Virtual networking 91
Libvirt NAT network 93
Libvirt routed network 94
Libvirt isolated network 95

Using userspace networking
with TAP and TUN devices 101
Implementing Linux bridging 103

Configuring Open vSwitch 105
Other Open vSwitch use cases 113

Understanding and using SR-
IOV 114
Understanding macvtap 118
Summary 121
Questions 121
Further reading 122

Table of Contents iii

5
Libvirt Storage

Introduction to storage 124
Storage pools 126
Local storage pools 128
Libvirt storage pools 130

NFS storage pool 131
iSCSI and SAN storage 136
Storage redundancy and
multipathing 146
Gluster and Ceph as a storage
backend for KVM 150
Gluster 150
Ceph 155

Virtual disk images and
formats and basic KVM storage
operations 162

Getting image information 164
Attaching a disk using virt-manager 164
Attaching a disk using virsh 166
Creating an ISO image library 167
Deleting a storage pool 169
Creating storage volumes 170
Creating volumes using the virsh
command 171
Deleting a volume using the virsh
command 171

The latest developments in
storage – NVMe and NVMeOF 172
Summary 176
Questions 176
Further reading 177

6
Virtual Display Devices and Protocols

Using virtual machine display
devices 180
Physical and virtual graphics cards in
VDI scenarios 185
GPU PCI passthrough 189

Discussing remote display
protocols 193
Remote display protocols history 193
Types of remote display protocols 195

Using the VNC display protocol 196
Why VNC? 197

Using the SPICE display protocol 198
Adding a SPICE graphics server 198

Methods to access a virtual
machine console 200
Getting display portability with
noVNC 202
Summary 206
Questions 206
Further reading 207

iv Table of Contents

7
Virtual Machines: Installation, Configuration, and Life Cycle
Management

Creating a new VM using virt-
manager 210
Using virt-manager 210
Using virt-* commands 217
Creating a new VM using Cockpit 223

Creating a new VM using oVirt 226
Configuring your VM 230
Adding and removing virtual
hardware from your VM 236

Migrating VMs 238
Benefits of VM migration 239
Setting up the environment 240
Offline migration 243
Live or online migration 247

Summary 252
Questions 252
Further reading 253

8
Creating and Modifying VM Disks, Templates, and Snapshots

Modifying VM images using
libguestfs tools 256
virt-v2v 257
virt-p2v 259
guestfish 259

VM templating 263
Working with templates 266
Deploying VMs from a template 275

virt-builder and virt-builder
repos 281
virt-builder repositories 283

Snapshots 285
Working with internal snapshots 286
Managing snapshots using virt-manager 291
Working with external disk snapshots 292

Use cases and best practices
while using snapshots 305
Summary 306
Questions 306
Further reading 306

Table of Contents v

Section 3:
Automation, Customization, and
Orchestration for KVM VMs

9
Customizing a Virtual Machine with cloud-init

What is the need for virtual
machine customization? 312
Understanding cloud-init 314
Understanding cloud-init
architecture 315
Installing and configuring
cloud-init at boot time 318
Cloud-init images 319
Cloud-init data sources 320

Passing metadata and user
data to cloud-init 321

Using cloud-init modules 322

Examples on how to use a
cloud-config script with cloud-
init 323
The first deployment 329
The second deployment 332
The third deployment 334

Summary 342
Questions 342
Further reading 343

10
Automated Windows Guest Deployment and Customization

The prerequisites to creating
Windows VMs on KVM 346
Creating Windows VMs using
the virt-install utility 347
Customizing Windows VMs
using cloudbase-init 350

cloudbase-init customization
examples 353
Troubleshooting common
cloudbase-init customization
issues 361
Summary 364
Questions 364
Further reading 364

vi Table of Contents

11
Ansible and Scripting for Orchestration and Automation

Understanding Ansible 366
Automation approaches 367
Introduction to Ansible 369
Deploying and using AWX 372
Deploying Ansible 382

Provisioning a virtual machine
using the kvm_libvirt module 383
Working with playbooks 387
Installing KVM 393
Using Ansible and cloud-init for

automation and orchestration 399

Orchestrating multi-tier
application deployment on
KVM VM 406
Learning by example – various
examples of using Ansible with
KVM 409
Summary 410
Questions 410
Further reading 411

Section 4:
Scalability, Monitoring, Performance
Tuning, and Troubleshooting

12
Scaling Out KVM with OpenStack

Introduction to OpenStack 416
Software-defined networking 418
Understanding VXLAN 420
Understanding GENEVE 425

OpenStack components 426
Swift 427
Nova 430
Glance 434
Horizon 435
Designate 436
Keystone 436
Neutron 437

Additional OpenStack
use cases 439
Creating a Packstack demo
environment for OpenStack 441

Provisioning the OpenStack
environment 443
Installing OpenStack step by step 445
OpenStack administration 449
Day-to-day administration 457
Identity management 460

Integrating OpenStack with
Ansible 462
Installing an Ansible deployment server 464

Table of Contents vii

Configuring the Ansible inventory 466
Running Ansible playbooks 467

Summary 467
Questions 468
Further reading 468

13
Scaling out KVM with AWS

Introduction to AWS 470
Approaching the cloud 470
Multi-cloud 472
Shadow IT 473
Market share 474
Big infrastructure but no services 474
Pricing 475
Data centers 477
Placement is the key 478
AWS services 480

Preparing and converting
virtual machines for AWS 483

What do we want to do? 484
Uploading an image to EC2 498

Building hybrid KVM clouds
with Eucalyptus 507
How do you install it? 509
Using Eucalyptus for AWS control 518

Summary 521
Questions 521
Further reading 522

14
Monitoring the KVM Virtualization Platform

Monitoring the KVM
virtualization platform 524
Introduction to the open source
ELK solution 526
Elasticsearch 526
Logstash 527
Kibana 528

Setting up and integrating the
ELK stack 528

Workflow 533

Configuring data collector and
aggregator 536
Creating charts in Kibana 537
Creating custom utilization reports 538
ELK and KVM 549

Summary 557
Questions 557
Further reading 557

viii Table of Contents

15
Performance Tuning and Optimization for KVM VMs

It's all about design 560
General hardware design 561
VM design 565

Tuning the VM CPU and
memory performance 565
CPU pinning 568
Working with memory 572

Getting acquainted with KSM 580
Tuning the CPU and memory
with NUMA 585
NUMA memory allocation policies 586
Understanding emulatorpin 589
KSM and NUMA 591

Automatic NUMA balancing 592
The numactl command 593
Understanding numad and numastat 594

Virtio device tuning 596
Block I/O tuning 597
Network I/O tuning 601
How to turn it on 602
KVM guest time-keeping best practices 604
Software-based design 606

Summary 609
Questions 610
Further reading 610

16
Troubleshooting Guidelines for the KVM Platform

Verifying the KVM service status 614
KVM services logging 617
Enabling debug mode logging 618
Advanced troubleshooting tools 621
oVirt 622
oVirt and KVM storage problems 623
Problems with snapshots and
templates – virtual machine
customization 624
Problems working with Ansible and
OpenStack 627
Dependencies 628

Troubleshooting Eucalyptus 629
AWS and its verbosity, which doesn't
help 637
Paying attention to details 638
Troubleshooting problems with the
ELK stack 639

Best practices for
troubleshooting KVM issues 640
Summary 641
Questions 641
Further reading 642

Other Books You May Enjoy
Index

Preface
Mastering KVM Virtualization is a book that should get you "from zero to hero" status
in the time it takes for you to go through this book. This book is a large collection of
everything that KVM has to offer, both for a DevOps and regular system administration
audience, and developers. It is our hope that, by going through this book, you'll be able to
understand everything about the inner workings of KVM, as well as the more advanced
concepts and everything in between. It doesn't matter if you're just barely starting with
KVM virtualization or if you're already well on the way – you should find some valuable
information on the pages of this book.

Who this book is for
This book is for Linux beginners and professionals alike, as it doesn't necessarily require
an advanced knowledge of Linux beforehand. We'll get you there as you go through
the book – it's an integral part of the learning process. If you're interested in KVM,
OpenStack, the ELK Stack, Eucalyptus, or AWS – we've got you covered.

What this book covers
Chapter 1, Understanding Linux Virtualization, discusses different types of virtualization,
hypervisor types, and Linux virtualization concepts (Xen and KVM). In this chapter,
we try to explain some basics of Linux virtualization and how it fits into the cloud
environment from a high-level perspective.

Chapter 2, KVM as a Virtualization Solution, starts with a discussion of virtualization
concepts and the need to virtualize our environments, explains the basic hardware and
software aspects of virtualization, and the various approaches to virtualization. In this
chapter, we start discussing KVM and libvirt, concepts that we'll use throughout this book.

x Preface

Chapter 3, Installing KVM Hypervisor, libvirt, and oVirt, expands on Chapter 2 by
introducing some new concepts including oVirt, a GUI that can be used to manage our
virtualized Linux infrastructure. We take you through the process of checking whether
the hardware used is compatible with KVM, introduce some basic commands for virtual
machine deployment, and then move on to explain how we'd use oVirt in the same scenario.

Chapter 4, Libvirt Networking, explains how libvirt interacts with various networking
concepts – virtual switches in different modes, how to use CLI tools to manage libvirt
networking, TAP and TUN devices, Linux bridging, and Open vSwitch. After that, we
discuss more extreme examples of networking by using SR-IOV, a concept that should
get us the lowest latency and highest throughput and is used in cases where every single
millisecond counts.

Chapter 5, Libvirt Storage, is a big one, as storage concepts are extremely important
when building virtualized and cloud environments. We discuss every type of storage that
KVM supports – local storage pools, NFS, iSCSI, SAN, Ceph, Gluster, multipathing and
redundancy, virtual disk types, and so on. We also offer you a glimpse into the future of
storage – with NVMe and NVMeoF being some of the technologies discussed.

Chapter 6, Virtual Display Devices and Protocols, talks about various virtual machine
display types, remote protocols including VNC and Spice, as well as NoVNC, which
ensures display portability as we can use a virtual machine console inside a web browser
by using NoVNC.

Chapter 7, Virtual Machines: Installation, Configuration, and Life Cycle Management,
introduces additional ways of deploying and configuring KVM virtual machines, as well
as migration processes, which are very important for any kind of production environment.

Chapter 8, Creating and Modifying VM Disks, Templates, and Snapshots, discusses various
virtual machine image types, virtual machine templating processes, the use of snapshots,
and some of the use cases and best practices while using snapshots. It also serves as an
introduction to the next chapter, where we will be using templating and virtual machine
disks in a much more streamlined fashion to customize virtual machines post-boot by
using cloud-init and cloudbase-init.

Chapter 9, Customize a Virtual Machine with cloud-init, discusses one of the most
fundamental concepts in cloud environments – how to customize a virtual machine
image/template post-boot. Cloud-init is used in almost all of the cloud environments
to do post-boot Linux virtual machine configuration, and we explain how it works
and how to make it work in your environment.

Preface xi

Chapter 10, Automated Windows Guest Deployment and Customization, is a continuation of
Chapter 9, with a razor-sharp focus on Microsoft Windows virtual machine templatization
and post-boot customization. For that, we use cloudbase-init, a concept that's basically the
same as cloud-init, but which is suited for Microsoft-based operating systems only.

Chapter 11, Ansible and Scripting for Orchestration and Automation, takes us on the first
part of the Ansible journey – deploying AWX and Ansible, and describes how to use these
concepts in our KVM-based environments. This is just one of the Ansible usage models
that is employed in modern-day IT, as the whole DevOps and infrastructure-as-a-code
story gets much more exposure in IT infrastructure all over the world.

Chapter 12, Scaling Out KVM with OpenStack, discusses the process of building cloud
environments based on KVM. OpenStack is the standard approach to delivering just
that when using KVM. In this chapter, we talk about all of the OpenStack building
blocks and services, how to deploy it from scratch, and describe how to use it in
production environments.

Chapter 13, Scaling Out KVM with AWS, takes us on a journey toward using public and
hybrid cloud concepts by using Amazon Web Services (AWS). Like almost all the other
chapters, this is a heavily hands-on chapter that you can also use to get your feet wet in
terms of getting to know AWS as a concept, which will be key to deploying a hybrid-cloud
infrastructure using Eucalyptus at the end of the chapter.

Chapter 14, Monitoring the KVM Virtualization Platform, introduces a very popular
concept of monitoring via the Elasticsearch, Logstash, Kibana (ELK) stack. It also takes
you through the whole process of setting up and integrating the ELK stack with your
KVM infrastructure, all the way through to the end result – using dashboards and UIs
to monitor your KVM-based environment.

Chapter 15, Performance Tuning and Optimization for KVM VMs, talks about various
approaches to tuning and optimization in KVM-based environments by deconstructing
all of the infrastructure design principles and putting them to (correct) use. We cover a
number of advanced topics here – NUMA, KSM, CPU and memory performance, CPU
pinning, the tuning of VirtIO, and block and network devices.

Chapter 16, Troubleshooting Guidelines for the KVM Platform, starts with the basics
– troubleshooting KVM services and logging, and explains various troubleshooting
methodologies for KVM and oVirt, Ansible and OpenStack, Eucalyptus, and AWS. These
are the real-life problems that we've also encountered in our production environments
while writing this book. In this chapter, we basically discuss problems related to every
single chapter of this book, including problems associated with snapshots and templating.

xii Preface

To get the most out of this book
We're assuming at least a basic knowledge of Linux and prior experience with installing
virtual machines as prerequisites for this book.

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/32IHMdO.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781838828714_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "What we need to do is just uncomment the one pipeline that is
defined in the configuration file, located in the /etc/logstash folder."

A block of code is set as follows:

<memoryBacking>

 <locked/>

</memoryBacking>

https://bit.ly/32IHMdO
http://www.packtpub.com/sites/default/files/downloads/9781838828714_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828714_ColorImages.pdf

Preface xiii

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

POWER TTWU_QUEUE NO_FORCE_SD_OVERLAP RT_RUNTIME_SHARE NO_LB_MIN
NUMA

NUMA_FAVOUR_HIGHER NO_NUMA_RESIST_LOWER

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"After you push the Refresh button, new data should appear on the page."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in, and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

Section 1:
KVM Virtualization

Basics

Part 1 provides you with an insight into the prevailing technologies in Linux virtualization
and its advantages over other virtualization solutions. We will discuss the important data
structures and the internal implementation of libvirt, QEMU, and KVM.

This part of the book comprises the following chapters:

• Chapter 1, Understanding Linux Virtualization

• Chapter 2, KVM as a Virtualization Solution

1
Understanding

Linux Virtualization
Virtualization is the technology that started a big technology shift toward IT
consolidation, which provides more efficient use of resources and the cloud as a more
integrated, automated, and orchestrated version of virtualization with a focus on not
only virtual machines but also additional services. There are a total of 16 chapters in this
book, all of which have been lined up to cover all the important aspects of Kernel-based
Virtual Machine (KVM) virtualization. We will start with basic KVM topics such as the
history of virtualization concepts and Linux virtualization and then move on and look at
advanced topics in KVM such as automation, orchestration, virtual networking, storage,
and troubleshooting. This chapter will provide you with an insight into the prevailing
technologies in Linux virtualization and their advantages over others.

In this chapter, we will cover the following topics:

• Linux virtualization and its basic concepts

• Types of virtualization

• Hypervisor/VMM

• Open source virtualization projects

• What Linux virtualization offers you in the cloud

4 Understanding Linux Virtualization

Linux virtualization and how it all started
Virtualization is a concept that creates virtualized resources and maps them to physical
resources. This process can be done using specific hardware functionality (partitioning,
via some kind of partition controller) or software functionality (hypervisor). So, as an
example, if you have a physical PC-based server with 16 cores running a hypervisor,
you can easily create one or more virtual machines with two cores each and start them
up. Limits regarding how many virtual machines you can start is something that's
vendor-based. For example, if you're running Red Hat Enterprise Virtualization v4.x
(a KVM-based bare-metal hypervisor), you can use up to 768 logical CPU cores or
threads (you can read more information about this at https://access.redhat.
com/articles/906543). In any case, hypervisor is going to be the go-to guy that's
going to try to manage that as efficiently as possible so that all of the virtual machine
workloads get as much time on the CPU as possible.

I vividly remember writing my first article about virtualization in 2004. AMD just came
out with its first consumer 64-bit CPUs in 2003 (Athlon 64, Opteron) and it just threw
me for a loop a bit. Intel was still a bit hesitant to introduce a 64-bit CPU – a lack of a
64-bit Microsoft Windows OS might have had something to do with that as well. Linux
was already out with 64-bit support, but it was a dawn of many new things to come to the
PC-based market. Virtualization as such wasn't something revolutionary as an idea since
other companies already had non-x86 products that could do virtualization for decades
(for example, IBM CP-40 and its S/360-40, from 1967). But it sure was a new idea for a
PC market, which was in a weird phase with many things happening at the same time.
Switching to 64-bit CPUs with multi-core CPUs appearing on the market, then switching
from DDR1 to DDR2, and then from PCI/ISA/AGP to PCI Express, as you might
imagine, was a challenging time.

Specifically, I remember thinking about the possibilities – how cool it would be to run an
OS, and then another couple of OSes on top of that. Working in the publishing industry,
you might imagine how many advantages that would offer to anyone's workflow, and I
remember really getting excited about it.

15 or so years of development later, we now have a competitive market in terms of
virtualization solutions – Red Hat with KVM, Microsoft with Hyper-V, VMware with
ESXi, Oracle with Oracle VM, and Google and other key players duking it out for users
and market dominance. This led to the development of various cloud solutions such as
EC2, AWS, Office 365, Azure, vCloud Director, and vRealize Automation for various types
of cloud services. All in all, it was a very productive 15 years for IT, wouldn't you say?

https://access.redhat.com/articles/906543
https://access.redhat.com/articles/906543

Linux virtualization and how it all started 5

But, going back to October 2003, with all of the changes that were happening in the IT
industry, there was one that was really important for this book and virtualization for
Linux in general: the introduction of the first open source Hypervisor for x86 architecture,
called Xen. It supports various CPU architectures (Itanium, x86, x86_64, and ARM), and
it can run various OSes – Windows, Linux, Solaris, and some flavors of BSD – and it's still
alive and kicking as a virtualization solution of choice for some vendors, such as Citrix
(XenServer) and Oracle (Oracle VM). We'll get into more technical details about Xen a
little bit later in this chapter.

The biggest corporate player in the open source market, Red Hat, included Xen
virtualization in initial releases of its Red Hat Enterprise Linux 5, which was released in
2007. But Xen and Red Hat weren't exactly a match made in heaven and although Red
Hat shipped Xen with its Red Hat Enterprise Linux 5 distribution, Red Hat switched to
KVM in Red Hat Enterprise Linux 6 in 2010, which was – at the time – a very risky move.
Actually, the whole process of migrating from Xen to KVM began in the previous version,
with 5.3/5.4 releases, both of which came out in 2009. To put things into context, KVM
was a pretty young project back then, just a couple of years old. But there were more than
a few valid reasons why that happened, varying from Xen is not in the mainline kernel,
KVM is, to political reasons (Red Hat wanted more influence over Xen development, and
that influence was fading with time).

Technically speaking, KVM uses a different, modular approach that transforms Linux
kernels into fully functional hypervisors for supported CPU architectures. When we
say supported CPU architectures, we're talking about the basic requirement for KVM
virtualization – CPUs need to support hardware virtualization extensions, known as
AMD-V or Intel VT. To make things a bit easier, let's just say that you're really going to
have to try very hard to find a modern CPU that doesn't support these extensions. For
example, if you're using an Intel CPU on your server or desktop PC, the first CPUs that
supported hardware virtualization extensions date all the way back to 2006 (Xeon LV) and
2008 (Core i7 920). Again, we'll get into more technical details about KVM and provide a
comparison between KVM and Xen a little bit later in this chapter and in the next.

6 Understanding Linux Virtualization

Types of virtualization
There are various types of virtualization solutions, all of which are aimed at different
use cases and are dependent on the fact that we're virtualizing a different piece of the
hardware or software stack, that is, what you're virtualizing. It's also worth noting
that there are different types of virtualization in terms of how you're virtualizing – by
partitioning, full virtualization, paravirtualization, hybrid virtualization, or container-
based virtualization.

So, let's first cover the five different types of virtualization in today's IT based on what
you're virtualizing:

• Desktop virtualization (Virtual Desktop Infrastructuree (VDI)): This is used
by a lot of enterprise companies and offers huge advantages for a lot of scenarios
because of the fact that users aren't dependent on a specific device that they're
using to access their desktop system. They can connect from a mobile phone, tablet,
or a computer, and they can usually connect to their virtualized desktop from
anywhere as if they're sitting at their workplace and using a hardware computer.
Benefits include easier, centralized management and monitoring, much more
simplified update workflows (you can update the base image for hundreds of virtual
machines in a VDI solution and re-link that to hundreds of virtual machines
during maintenance hours), simplified deployment processes (no more physical
installations on desktops, workstations, or laptops, as well as the possibility of
centralized application management), and easier management of compliance and
security-related options.

• Server virtualization: This is used by a vast majority of IT companies today. It
offers good consolidation of server virtual machines versus physical servers, while
offering many other operational advantages over regular, physical servers – easier
to backup, more energy efficient, more freedom in terms of moving workloads
from server to server, and more.

• Application virtualization: This is usually implemented using some kind of
streaming/remote protocol technology such as Microsoft App-V, or some solution
that can package applications into volumes that can be mounted to the virtual
machine and profiled for consistent settings and delivery options, such as VMware
App Volumes.

Types of virtualization 7

• Network virtualization (and a more broader, cloud-based concept called Software-
Defined Networking (SDN)): This is a technology that creates virtual networks that
are independent of the physical networking devices, such as switches. On a much
bigger scale, SDN is an extension of the network virtualization idea that can span
across multiple sites, locations, or data centers. In terms of the concept of SDN,
entire network configuration is done in software, without you necessarily needing
a specific physical networking configuration. The biggest advantage of network
virtualization is how easy it is for you to manage complex networks that span
multiple locations without having to do massive, physical network reconfiguration
for all the physical devices on the network data path. This concept will be explained
in Chapter 4, libvirt Networking, and Chapter 12, Scaling Out KVM with OpenStack.

• Storage virtualization (and a newer concept Software-Defined Storage (SDS)):
This is a technology that creates virtual storage devices out of pooled, physical
storage devices that we can centrally manage as a single storage device. This means
that we're creating some sort of abstraction layer that's going to isolate the internal
functionality of storage devices from computers, applications, and other types of
resources. SDS, as an extension of that, decouples the storage software stack from
the hardware it's running on by abstracting control and management planes from
the underlying hardware, as well as offering different types of storage resources to
virtual machines and applications (block, file, and object-based resources).

If you take a look at these virtualization solutions and scale them up massively (hint: the
cloud), that's when you realize that you're going to need various tools and solutions to
effectively manage the ever-growing infrastructure, hence the development of various
automatization and orchestration tools. Some of these tools will be covered later in this
book, such as Ansible in Chapter 11, Ansible for Orchestration and Automation. For
the time being, let's just say that you just can't manage an environment that contains
thousands of virtual machines by relying on standard utilities only (scripts, commands,
and even GUI tools). You're definitely going to need a more programmatic, API-driven
approach that's tightly integrated with the virtualization solution, hence the development
of OpenStack, OpenShift, Ansible, and the Elasticsearch, Logstash, Kibana (ELK) stack,
which we'll cover in Chapter 14, Monitoring the KVM Virtualization Platform Using the
ELK Stack.

8 Understanding Linux Virtualization

If we're talking about how we're virtualizing a virtual machine as an object, there are
different types of virtualization:

• Partitioning: This is a type of virtualization in which a CPU is divided into different
parts, and each part works as an individual system. This type of virtualization
solution isolates a server into partitions, each of which can run a separate OS
(for example, IBM Logical Partitions (LPARs)).

• Full virtualization: In full virtualization, a virtual machine is used to simulate
regular hardware while not being aware of the fact that it's virtualized. This is done
for compatibility reasons – we don't have to modify the guest OS that we're going
to run in a virtual machine. We can use a software- and hardware-based approach
for this.

Software-based: Uses binary translation to virtualize the execution of sensitive
instruction sets while emulating hardware using software, which increases overhead
and impacts scalability.

Hardware-based: Removes binary translation from the equation while interfacing
with a CPU's virtualization features (AMD-V, Intel VT), which, in turn, means that
instruction sets are being executed directly on the host CPU. This is what KVM
does (as well as other popular hypervisors, such as ESXi, Hyper-V, and Xen).

• Paravirtualization: This is a type of virtualization in which the guest OS
understands the fact that it's being virtualized and needs to be modified, along with
its drivers, so that it can run on top of the virtualization solution. At the same time,
it doesn't need CPU virtualization extensions to be able to run a virtual machine.
For example, Xen can work as a paravirtualized solution.

• Hybrid virtualization: This is a type of virtualization that uses full virtualization
and paravirtualization's biggest virtues – the fact that the guest OS can be run
unmodified (full), and the fact that we can insert additional paravirtualized
drivers into the virtual machine to work with some specific aspects of virtual
machine work (most often, I/O-intensive memory workloads). Xen and ESXi can
also work in hybrid virtualization mode.

Using the hypervisor/virtual machine manager 9

• Container-based virtualization: This is a type of application virtualization that
uses containers. A container is an object that packages an application and all its
dependencies so that the application can be scaled out and rapidly deployed without
needing a virtual machine or a hypervisor. Keep in mind that there are technologies
that can operate as both a hypervisor and a container host at the same time. Some
examples of this type of technology include Docker and Podman (a replacement for
Docker in Red Hat Enterprise Linux 8).

Next, we're going to learn how to use hypervisors.

Using the hypervisor/virtual machine
manager
As its name suggests, the Virtual Machine Manager (VMM) or hypervisor is a piece
of software that is responsible for monitoring and controlling virtual machines or
guest OSes. The hypervisor/VMM is responsible for ensuring different virtualization
management tasks, such as providing virtual hardware, virtual machine life cycle
management, migrating virtual machines, allocating resources in real time, defining
policies for virtual machine management, and so on. The VMM/hypervisor is also
responsible for efficiently controlling physical platform resources, such as memory
translation and I/O mapping. One of the main advantages of virtualization software is
its capability to run multiple guests operating on the same physical system or hardware.
These multiple guest systems can be on the same OS or different ones. For example, there
can be multiple Linux guest systems running as guests on the same physical system.
The VMM is responsible for allocating the resources requested by these guest OSes. The
system hardware, such as the processor, memory, and so on, must be allocated to these
guest OSes according to their configuration, and the VMM can take care of this task. Due
to this, the VMM is a critical component in a virtualization environment.

In terms of types, we can categorize hypervisors as either type 1 or type 2.

10 Understanding Linux Virtualization

Type 1 and type 2 hypervisors
Hypervisors are mainly categorized as either type 1 or type 2 hypervisors, based on where
they reside in the system or, in other terms, whether the underlying OS is present in the
system or not. But there is no clear or standard definition of type 1 and type 2 hypervisors.
If the VMM/hypervisor runs directly on top of the hardware, its generally considered to
be a type 1 hypervisor. If there is an OS present, and if the VMM/hypervisor operates as a
separate layer, it will be considered as a type 2 hypervisor. Once again, this concept is open
to debate and there is no standard definition for this. A type 1 hypervisor directly interacts
with the system hardware; it does not need any host OS. You can directly install it on a
bare-metal system and make it ready to host virtual machines. Type 1 hypervisors are also
called bare-metal, embedded, or native hypervisors. oVirt-node, VMware ESXi/vSphere,
and Red Hat Enterprise Virtualization Hypervisor (RHEV-H) are examples of a type 1
Linux hypervisor. The following diagram provides an illustration of the type 1 hypervisor
design concept:

Figure 1.1 – Type 1 hypervisor design

Here are the advantages of type 1 hypervisors:

• Easy to install and configure

• Small in size; optimized to give most of the physical resources to the hosted guest
(virtual machines)

• Generates less overhead as it comes with only the applications needed to run virtual
machines

• More secure, because problems in one guest system do not affect the other guest
systems running on the hypervisor

However, a type 1 hypervisor doesn't favor customization. Generally, there will be some
restrictions when you try to install any third-party applications or drivers on it.

Open source virtualization projects 11

On the other hand, a type 2 hypervisor resides on top of the OS, allowing you to do
numerous customizations. Type 2 hypervisors are also known as hosted hypervisors
that are dependent on the host OS for their operations. The main advantage of type
2 hypervisors is the wide range of hardware support, because the underlying host OS
controls hardware access. The following diagram provides an illustration of the type 2
hypervisor design concept:

Figure 1.2 – Type 2 hypervisor design

When do we use type 1 versus type 2 hypervisors? It primarily depends on whether we
already have an OS running on a server where we want to deploy virtual machines. For
example, if we're already running a Linux desktop on our workstation, we're probably not
going to format our workstation and install a hypervisor – it just wouldn't make any sense.
That's a good example of a type 2 hypervisor use case. Well-known type 2 hypervisors
include VMware Player, Workstation, Fusion, and Oracle VirtualBox. On the other
hand, if we're specifically aiming to create a server that we're going to use to host virtual
machines, then that's type 1 hypervisor territory.

Open source virtualization projects
The following table is a list of open source virtualization projects in Linux:

Figure 1.3 – Open source virtualization projects in Linux

12 Understanding Linux Virtualization

In the upcoming sections, we will discuss Xen and KVM, which are the leading open
source virtualization solutions in Linux.

Xen
Xen originated at the University of Cambridge as a research project. The first public
release of Xen was in 2003. Later, the leader of this project at the University of Cambridge,
Ian Pratt, co-founded a company called XenSource with Simon Crosby (also from the
University of Cambridge). This company started to develop the project in an open
source fashion. On 15 April 2013, the Xen project was moved to the Linux Foundation
as a collaborative project. The Linux Foundation launched a new trademark for the Xen
Project to differentiate the project from any commercial use of the older Xen trademark.
More details about this can be found at https://xenproject.org/.

The Xen hypervisor has been ported to a number of processor families, such as Intel
IA-32/64, x86_64, PowerPC, ARM, MIPS, and so on.

The core concept of Xen has four main building blocks:

• Xen hypervisor: The integral part of Xen that handles intercommunication between
the physical hardware and virtual machine(s). It handles all interrupts, times, CPU
and memory requests, and hardware interaction.

• Dom0: Xen's control domain, which controls a virtual machine's environment. The
main part of it is called QEMU, a piece of software that emulates a regular computer
system by doing binary translation to emulate a CPU.

• Management utilities: Command-line utilities and GUI utilities that we use
to manage the overall Xen environment.

• Virtual machines (unprivileged domains, DomU): Guests that we're running
on Xen.

As shown in the following diagram, Dom0 is a completely separate entity that controls the
other virtual machines, while all the other are happily stacked next to each other using
system resources provided by the hypervisor:

https://xenproject.org/

Open source virtualization projects 13

Figure 1.4 – Xen

Some management tools that we're going to mention a bit later in this book are actually
capable of working with Xen virtual machines as well. For example, the virsh command
can be easily used to connect to and manage Xen hosts. On the other hand, oVirt was
designed around KVM virtualization and that would definitely not be the preferred
solution to manage your Xen-based environment.

KVM
KVM represents the latest generation of open source virtualization. The goal of the project
was to create a modern hypervisor that builds on the experience of previous generations
of technologies and leverages the modern hardware available today (VT-x, AMD-V, and
so on).

KVM simply turns the Linux kernel into a hypervisor when you install the KVM kernel
module. However, as the standard Linux kernel is the hypervisor, it benefits from the
changes that were made to the standard kernel (memory support, scheduler, and so
on). Optimizations for these Linux components, such as the scheduler in the 3.1 kernel,
improvement to nested virtualization in 4.20+ kernels, new features for mitigation
of Spectre attacks, support for AMD Secure Encrypted Virtualization, Intel iGPU
passthrough in 4/5.x kernels, and so on benefit both the hypervisor (the host OS) and the
Linux guest OSes. For I/O emulations, KVM uses a userland software, QEMU; this is a
userland program that does hardware emulation.

QEMU emulates the processor and a long list of peripheral devices such as the disk,
network, VGA, PCI, USB, serial/parallel ports, and so on to build a complete piece of
virtual hardware that the guest OS can be installed on. This emulation is powered by KVM.

14 Understanding Linux Virtualization

What Linux virtualization offers you in
the cloud
The cloud is the buzzword that's been a part of almost all IT-related discussions in the past
10 or so years. If we take a look at the history of cloud, we'll probably realize the fact that
Amazon was the first key player in the cloud market, with the release of Amazon Web
Services (AWS) and Amazon Elastic Compute Cloud (EC2) in 2006. Google Cloud
Platform was released in 2008, and Microsoft Azure was released in 2010. In terms of
the Infrastructure-as-a-Service (IaaS) cloud models, these are the biggest IaaS cloud
providers now, although there are others (IBM Cloud, VMware Cloud on AWS, Oracle
Cloud, and Alibaba Cloud, to name a few). If you go through this list, you'll soon realize
that most of these cloud platforms are based on Linux (just as an example, Amazon uses
Xen and KVM, while Google Cloud uses KVM virtualization).

Currently, there are three main open source cloud projects that use Linux virtualization to
build IaaS solutions for the private and/or hybrid cloud:

• OpenStack: A fully open source cloud OS that consists of several open source sub
projects that provide all the building blocks to create an IaaS cloud. KVM (Linux
virtualization) is the most used (and best-supported) hypervisor in OpenStack
deployments. It's governed by the vendor-agnostic OpenStack Foundation. How
to build an OpenStack cloud using KVM will be explained in detail in Chapter 12,
Scaling out KVM with OpenStack

• CloudStack This is another open source Apache Software Foundation (ASF)-
controlled cloud project used to build and manage highly scalable multitenant IaaS
clouds and is fully compatible with EC2/S3 APIs. Although it supports all top-level
Linux hypervisors, most CloudStack users choose Xen as it is tightly integrated
with CloudStack.

• Eucalyptus: This is an AWS-compatible private cloud software for organizations to
use in order to reduce their public cloud cost and regain control over security and
performance. It supports both Xen and KVM as a computing resources provider.

Summary 15

There are other important questions to consider when discussing OpenStack beyond
the technical bits and pieces that we've discussed so far in this chapter. One of the most
important concepts in IT today is actually being able to run an environment (purely
virtualized one, or a cloud environment) that includes various types of solutions (such
as virtualization solutions) by using some kind of management layer that's capable of
working with different solutions at the same time. Let's take OpenStack as an example of
this. If you go through the OpenStack documentation, you'll soon realize that OpenStack
supports 10+ different virtualization solutions, including the following:

• KVM

• Xen (via libvirt)

• LXC (Linux containers)

• Microsoft Hyper-V

• VMware ESXi

• Citrix XenServer

• User Mode Linux (UML)

• PowerVM (IBM Power 5-9 platform)

• Virtuozzo (hyperconverged solution that can use virtual machines, storage, and
containers)

• z/VM (virtualization solution for IBM Z and IBM LinuxONE servers)

That brings us to the multi-cloud environments that could span different CPU
architectures, different hypervisors, and other technologies such as hypervisors – all under
the same management toolset. This is just one thing that you can do with OpenStack.
We'll get back to the subject of OpenStack later in this book, specifically in Chapter 12,
Scaling Out KVM with OpenStack.

Summary
In this chapter, we covered the basics of virtualization and its different types. Keeping in
mind the importance of virtualization in today's large-scale IT world is beneficial as it's
good to know how these concepts can be tied together to create a bigger picture – large,
virtualized environments and cloud environments. Cloud-based technologies will be
covered later in much greater detail – treat what we've mentioned so far as a starter; the
main course is still to come. But the next chapter belongs to the main star of our book –
the KVM hypervisor and its related utilities.

16 Understanding Linux Virtualization

Questions
1. Which types of hypervisors exist?

2. What are containers?

3. What is container-based virtualization?

4. What is OpenStack?

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• What is KVM?: https://www.redhat.com/en/topics/
virtualization/what-is-KVM

• KVM hypervisors: https://www.linux-kvm.org/page/Main_Page

• OpenStack Platform: https://www.openstack.org

• Xen Project: https://xenproject.org/

https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.linux-kvm.org/page/Main_Page
https://www.openstack.org
https://xenproject.org/

2
KVM as a

Virtualization
Solution

In this chapter, we will discuss virtualization as a concept and its implementation
via libvirt, Quick Emulator (QEMU), and KVM. Realistically, if we want to explain
how virtualization works and why KVM virtualization is such a fundamental part of
21st-century IT, we must start by explaining the technical background of multi-core CPUs
and virtualization; and that's impossible to do without delving deep into the theory of
CPUs and OSes so that we can get to what we're really after – what hypervisors are and
how virtualization actually works.

In this chapter, we will cover the following topics:

• Virtualization as a concept

• The internal workings of libvirt, QEMU, and KVM

• How all these communicate with each other to provide virtualization

18 KVM as a Virtualization Solution

Virtualization as a concept
Virtualization is a computing approach that decouples hardware from software. It provides
a better, more efficient, and programmatic approach to resource splitting and sharing
between various workloads – virtual machines running OSes, and applications on top
of them.

If we were to compare traditional, physical computing of the past with virtualization, we
can say that by virtualizing, we get the possibility to run multiple guest OSes (multiple
virtual servers) on the same piece of hardware (same physical server). If we're using a type
1 hypervisor (explained in Chapter 1, Understanding Linux Virtualization), this means
that the hypervisor is going to be in charge of letting the virtual servers access physical
hardware. This is because there is more than one virtual server using the same hardware
as the other virtual servers on the same physical server. This is usually supported by some
kind of scheduling algorithm that's implemented programmatically in hypervisors so that
we can get more efficiency from the same physical server.

Virtualized versus physical environments
Let's try to visualize these two approaches – physical and virtual. In a physical server,
we're installing an OS right on top of the server hardware and running applications
on top of that OS. The following diagram shows us how this approach works:

Figure 2.1 – Physical server

Virtualization as a concept 19

In a virtualized world, we're running a hypervisor (such as KVM), and virtual machines
on top of that hypervisor. Inside these virtual machines, we're running the same OS and
application, just like in the physical server. The virtualized approach is shown in the
following diagram:

Figure 2.2 – Hypervisor and two virtual machines

There are still various scenarios in which the physical approach is going to be needed. For
example, there are still thousands of applications on physical servers all over the world
because these servers can't be virtualized. There are different reasons why they can't be
virtualized. For example, the most common reason is actually the simplest reason – maybe
these applications are being run on an OS that's not on the supported OS list by the
virtualization software vendor. That can mean that you can't virtualize that OS/application
combination because that OS doesn't support some virtualized hardware, most commonly
a network or a storage adapter. The same general idea applies to the cloud as well –
moving things to the cloud isn't always the best idea, as we will describe later in this book.

20 KVM as a Virtualization Solution

Why is virtualization so important?
A lot of applications that we run today don't scale up well (adding more CPU, memory, or
other resources) – they just aren't programmed that way or can't be seriously parallelized.
That means that if an application can't use all the resources at its disposal, a server is going
to have a lot of slack space – and this time, we're not talking about disk slack space; we're
actually referring to compute slack space, so slack space at the CPU and memory levels.
This means that we're underutilizing the capabilities of the server that we paid for – with
the intention for it to be used fully, not partially.

There are other reasons why efficiency and programmatic approaches are so important.
The fact of the matter is that beyond their war of press releases in the 2003–2005
timeframe when it was all about the CPU frequency bragging rights (which equals
CPU speed), Intel and AMD hit a wall in terms of the development of the single-core
CPU as a concept. They just couldn't cram as many additional elements on the CPU
(be it for execution or the cache) and/or bump the single core's speed without seriously
compromising the way CPUs were being fed with electrical current. This meant that, at
the end of the day, this approach compromised the reliability of the CPU and the whole
system that it was running. If you want to learn more about that, we suggest that you look
for articles about Intel's NetBurst architecture CPUs (for example, the Prescott core)
and their younger brother, Pentium D (the Smithfield core), which was basically two
Prescott cores glued together so that the end result was a dual-core CPU. A very, very
hot dual-core CPU.

A couple of generations before that, there were other techniques that Intel and AMD
tried and tested in terms of the let's have multiple execution units per system principle.
For example, we had Intel Pentium Pro dual-socket systems and AMD Opteron
dual- and quad-socket systems. We'll come back to these later in this book when we start
discussing some very important aspects of virtualization (for example, Non-Unified
Memory Access (NUMA)).

So, whichever way you look at it, when PC CPUs started getting multiple cores in 2005
(AMD being the first to the market with a server multi-core CPU, and Intel being the first
to the market with a desktop multi-core CPU), it was the only rational way to go forward.
These cores were smaller, more efficient (drawing less power), and were generally a better
long-term approach. Of course, that meant that OSes and applications had to be reworked
heavily if companies such as Microsoft and Oracle wanted to use their applications and
reap the benefits of a multi-core server.

Virtualization as a concept 21

In conclusion, for PC-based servers, looking from the CPU perspective, switching to
multi-core CPUs was an opportune moment to start working toward virtualization as
the concept that we know and love today.

In parallel with these developments, CPUs got other additions – for example, additional
CPU registers that can handle specific types of operations. A lot of people heard about
instruction sets such as MMX, SSE, SSE2, SSE3, SSE4.x, AVX, AVX2, AES, and so on.
These are all very important today as well because they give us a possibility of offloading
certain instruction types to a specific CPU register. This means that these instructions
don't have to be run on a CPU as a general serial device, which executes these tasks
slower. Instead, these instructions can be sent to a specific CPU register that's specialized
for these instructions. Think of it as having separate mini accelerators on a CPU die
that could run some pieces of the software stack without hogging the general CPU
pipeline. One of these additions was Virtual Machine Extensions (VMX) for Intel, or
AMD Virtualization (AMD-V), both of which enable us to have full, hardware-based
virtualization support for their respective platforms.

Hardware requirements for virtualization
After the introduction of software-based virtualization on PCs, a lot of development was
made, both on the hardware and software sides. The end result – as we mentioned in the
previous chapter – was a CPU that had an awful lot more features and power. This led
to a big push toward hardware-assisted virtualization, which – on paper – looked like
the faster and more advanced way to go. Just as an example, there were a whole bunch of
CPUs that didn't support hardware-assisted virtualization in the 2003–2006 timeframe,
such as the Intel Pentium 4, Pentium D, the initial AMD Athlons, Turions, Durons, and
so on. It took both Intel and AMD until 2006 to have hardware-assisted virtualization as a
feature that's more widely available on their respective CPUs. Furthermore, it took some
time to have 64-bit CPUs, and there was little or no interest in running hardware-assisted
virtualization on 32-bit architectures. The primary reason for this was the fact that you
couldn't allocate more than 4 GB of memory, which severely limited the scope of using
virtualization as a concept.

22 KVM as a Virtualization Solution

Keeping all of this in mind, these are the requirements that we have to comply with
today so that we can run modern-day hypervisors with full hardware-assisted
virtualization support:

• Second-Level Address Translation, Rapid Virtualization Indexing, Extended
Page Tables (SLAT/RVI/EPT) support: This is the CPU technology that a
hypervisor uses so that it can have a map of virtual-to-physical memory addresses.
Virtual machines operate in a virtual memory space that can be scattered all
over the physical memory, so by using an additional map such as SLAT/EPT,
(implemented via an additional Translation Lookaside Buffer, or TLB), you're
reducing latency for memory access. If we didn't have a technology like this, we'd
have to have physical memory access to the computer memory's physical addresses,
which would be messy, insecure, and latency-prone. To avoid any confusion, EPT is
Intel's name for SLAT technology in their CPUs (AMD uses RVI terminology, while
Intel uses EPT terminology).

• Intel VT or AMD-V support: If an Intel CPU has VT (or an AMD CPU has
AMD-V), that means that it supports hardware virtualization extensions and
full virtualization.

• Long mode support, which means that the CPU has 64-bit support. Without a
64-bit architecture, virtualization would be basically useless because you'd have
only 4 GB of memory to give to virtual machines (which is a limitation of the 32-bit
architecture). By using a 64-bit architecture, we can allocate much more memory
(depending on the CPU that we're using), which means more opportunities to feed
virtual machines with memory, without which the whole virtualization concept
wouldn't make any sense in the 21st-century IT space.

• The possibility of having Input/Output Memory Management Unit (IOMMU)
virtualization (such as AMD-Vi, Intel VT-d, and stage 2 tables on ARM), which
means that we allow virtual machines to access peripheral hardware directly
(graphics cards, storage controllers, network devices, and so on). This functionality
must be enabled both on the CPU and motherboard chipset/firmware side.

• The possibility to do Single Root Input Output Virtualization (SR/IOV), which
allows us to directly forward a PCI Express device (for example, an Ethernet port)
to multiple virtual machines. The key aspect of SR-IOV is its ability to share one
physical device with multiple virtual machines via functionality called Virtual
Functions (VFs). This functionality requires hardware and driver support.

Virtualization as a concept 23

• The possibility to do PCI passthrough, which means we can take a PCI Express
connected card (for example, a video card) connected to a server motherboard and
present it to a virtual machine as if that card was directly connected to the virtual
machine via functionality called Physical Functions (PFs). This means bypassing
various hypervisor levels that the connection would ordinarily take place through.

• Trusted Platform Module (TPM) support, which is usually implemented as an
additional motherboard chip. Using TPM can have a lot of advantages in terms of
security because it can be used to provide cryptographic support (that is, to create,
save, and secure the use of cryptographic keys). There was quite a bit of buzz in the
Linux world around the use of TPM with KVM virtualization, which led to Intel's
open sourcing of the TPM2 stack in the summer of 2018.

When discussing SR-IOV and PCI passthrough, make sure that you take note of the core
functionalities, called PF and VF. These two keywords will make it easier to remember
where (on a physical or virtual level) and how (directly or via a hypervisor) devices are
forwarded to their respective virtual machines. These capabilities are very important for
the enterprise space and quite a few specific scenarios. Just as an example, there's literally
no way to have a virtual desktop infrastructure (VDI) solution with workstation-grade
virtual machines that you can use to run AutoCAD and similar applications without
these capabilities. This is because integrated graphics on CPUs are just too slow to do
that properly. That's when you start adding GPUs to your servers – so that you can use
a hypervisor to forward the whole GPU or parts of it to a virtual machine or multiple
virtual machines.

In terms of system memory, there are also various subjects to consider. AMD started
integrating memory controllers into CPUs in Athlon 64, which was years before Intel
did that (Intel did that first with the Nehalem CPU core, which was introduced in 2008).
Integrating a memory controller into a CPU meant that your system had less latency when
CPU accessed memory for memory I/O operations. Before this, the memory controller was
integrated into what was called a NorthBridge chip, which was a separate chip on a system
motherboard that was in charge of all fast buses and memory. But that means additional
latency, especially when you try to scale out that principle to multi-socket, multi-core
CPUs. Also, with the introduction of Athlon 64 on Socket 939, AMD switched to a dual-
channel memory architecture, which is now a familiar theme in the desktop and server
market. Triple and quad-channel memory controllers are de facto standards in servers.
Some of the latest Intel Xeon CPUs support six-channel memory controllers, and AMD
EPYC CPUs support eight-channel memory controllers as well. This has huge implications
for the overall memory bandwidth and latency, which – in turn – has huge implications for
the speed of memory-sensitive applications, both on physical and virtual servers.

24 KVM as a Virtualization Solution

Why is this important? The more channels you have and the lower the latency is, the more
bandwidth you have from CPU to memory. And that is very, very desirable for a lot of
workloads in today's IT space (for example, databases).

Software requirements for virtualization
Now that we've covered the basic hardware aspects of virtualization, let's move on to the
software aspect of virtualization. To do that, we must cover some jargon in computer
science. That being said, let's start with something called protection rings. In computer
science, various hierarchical protection domains/privileged rings exist. These are the
mechanisms that protect data or faults based on the security that's enforced when
accessing the resources in a computer system. These protection domains contribute to the
security of a computer system. By imagining these protection rings as instruction zones,
we can represent them via the following diagram:

Figure 2.3 – Protection rings (source: https://en.wikipedia.org/wiki/
Protection_ring)

https://en.wikipedia.org/wiki/Protection_ring
https://en.wikipedia.org/wiki/Protection_ring

Virtualization as a concept 25

As shown in the preceding diagram, the protection rings are numbered from the most
privileged to the least privileged. Ring 0 is the level with the most privilege and interacts
directly with physical hardware, such as the CPU and memory. The resources, such as
memory, I/O ports, and CPU instructions, are protected via these privileged rings. Rings
1 and 2 are mostly unused. Most general-purpose systems use only two rings, even if the
hardware they run on provides more CPU modes than that. The two main CPU modes
are the kernel mode and the user mode, which are also related to the way processes are
executed. You can read more about it at this link: https://access.redhat.com/
sites/default/files/attachments/processstates_20120831.pdf. From
an OS's point of view, ring 0 is called the kernel mode/supervisor mode and ring 3 is the
user mode. As you may have assumed, applications run in ring 3.

OSes such as Linux and Windows use supervisor/kernel and user mode. This mode can do
almost nothing to the outside world without calling on the kernel or without its help due
to its restricted access to memory, CPU, and I/O ports. The kernels can run in privileged
mode, which means that they can run on ring 0. To perform specialized functions, the
user-mode code (all the applications that run in ring 3) must perform a system call to
the supervisor mode or even to the kernel space, where the trusted code of the OS will
perform the needed task and return the execution back to the userspace. In short, the OS
runs in ring 0 in a normal environment. It needs the most privileged level to do resource
management and provide access to the hardware. The following diagram explains this:

Figure 2.4 – System call to supervisor mode

https://access.redhat.com/sites/default/files/attachments/processstates_20120831.pdf
https://access.redhat.com/sites/default/files/attachments/processstates_20120831.pdf

26 KVM as a Virtualization Solution

The rings above 0 run instructions in a processor mode called unprotected. The
hypervisor/Virtual Machine Monitor (VMM) needs to access the memory, CPU, and
I/O devices of the host. Since only the code running in ring 0 is allowed to perform these
operations, it needs to run in the most privileged ring, which is ring 0, and has to be
placed next to the kernel. Without specific hardware virtualization support, the hypervisor
or VMM runs in ring 0; this basically blocks the virtual machine's OS in ring 0. So, the
virtual machine's OS must reside in ring 1. An OS installed in a virtual machine is also
expected to access all the resources as it's unaware of the virtualization layer; to achieve
this, it has to run in ring 0, similar to the VMM. Due to the fact that only one kernel can
run in ring 0 at a time, the guest OSes have to run in another ring with fewer privileges or
have to be modified to run in user mode.

This has resulted in the introduction of a couple of virtualization methods called full
virtualization and paravirtualization, which we mentioned earlier. Now, let's try to
explain them in a more technical way.

Full virtualization
In full virtualization, privileged instructions are emulated to overcome the limitations
that arise from the guest OS running in ring 1 and the VMM running in ring 0. Full
virtualization was implemented in first-generation x86 VMMs. It relies on techniques
such as binary translation to trap and virtualize the execution of certain sensitive and
non-virtualizable instructions. This being said, in binary translation, some system calls are
interpreted and dynamically rewritten. The following diagram depicts how the guest OS
accesses the host computer hardware through ring 1 for privileged instructions and how
unprivileged instructions are executed without the involvement of ring 1:

Figure 2.5 – Binary translation

With this approach, the critical instructions are discovered (statically or dynamically at
runtime) and replaced with traps in the VMM that are to be emulated in software. A binary
translation can incur a large performance overhead in comparison to a virtual machine
running on natively virtualized architectures. This can be seen in the following diagram:

Virtualization as a concept 27

Figure 2.6 – Full virtualization

However, as shown in the preceding diagram, when we use full virtualization, we can
use the unmodified guest OSes. This means that we don't have to alter the guest kernel
so that it runs on a VMM. When the guest kernel executes privileged operations, the
VMM provides the CPU emulation to handle and modify the protected CPU operations.
However, as we mentioned earlier, this causes performance overhead compared to the
other mode of virtualization, called paravirtualization.

Paravirtualization
In paravirtualization, the guest OS needs to be modified to allow those instructions to
access ring 0. In other words, the OS needs to be modified to communicate between the
VMM/hypervisor and the guest through the backend (hypercalls) path:

Figure 2.7 – Paravirtualization

28 KVM as a Virtualization Solution

Paravirtualization (https://en.wikipedia.org/wiki/Paravirtualization)
is a technique in which the hypervisor provides an API, and the OS of the guest virtual
machine calls that API, which requires host OS modifications. Privileged instruction calls
are exchanged with the API functions provided by the VMM. In this case, the modified
guest OS can run in ring 0.

As you can see, under this technique, the guest kernel is modified to run on the VMM. In
other words, the guest kernel knows that it's been virtualized. The privileged instructions/
operations that are supposed to run in ring 0 have been replaced with calls known as
hypercalls, which talk to the VMM. These hypercalls invoke the VMM so that it performs
the task on behalf of the guest kernel. Since the guest kernel can communicate directly
with the VMM via hypercalls, this technique results in greater performance compared
to full virtualization. However, this requires a specialized guest kernel that is aware of
paravirtualization and comes with needed software support.

The concepts of paravirtualization and full virtualization used to be a common way to do
virtualization but not in the best possible, manageable way. That's where hardware-assisted
virtualization comes into play, as we will describe in the following section.

Hardware-assisted virtualization
Intel and AMD realized that full virtualization and paravirtualization are the major
challenges of virtualization on the x86 architecture (since the scope of this book is limited
to x86 architecture, we will mainly discuss the evolution of this architecture here) due to
the performance overhead and complexity of designing and maintaining the solution.
Intel and AMD independently created new processor extensions of the x86 architecture,
called Intel VT-x and AMD-V, respectively. On the Itanium architecture, hardware-
assisted virtualization is known as VT-i. Hardware-assisted virtualization is a platform
virtualization method designed to efficiently use full virtualization with the hardware
capabilities. Various vendors call this technology by different names, including accelerated
virtualization, hardware virtual machine, and native virtualization.

https://en.wikipedia.org/wiki/Paravirtualization

Virtualization as a concept 29

For better support for virtualization, Intel and AMD introduced Virtualization
Technology (VT) and Secure Virtual Machine (SVM), respectively, as extensions of the
IA-32 instruction set. These extensions allow the VMM/hypervisor to run a guest OS that
expects to run in kernel mode, in lower privileged rings. Hardware-assisted virtualization
not only proposes new instructions but also introduces a new privileged access level,
called ring -1, where the hypervisor/VMM can run. Hence, guest virtual machines can
run in ring 0. With hardware-assisted virtualization, the OS has direct access to resources
without any emulation or OS modification. The hypervisor or VMM can now run at
the newly introduced privilege level, ring -1, with the guest OSes running on ring 0.
Also, with hardware-assisted virtualization, the VMM/hypervisor is relaxed and needs
to perform less work compared to the other techniques mentioned, which reduces the
performance overhead. This capability to run directly in ring -1 can be described with the
following diagram:

Figure 2.8 – Hardware-assisted virtualization

In simple terms, this virtualization-aware hardware provides us with support to build
the VMM and also ensures the isolation of a guest OS. This helps us achieve better
performance and avoid the complexity of designing a virtualization solution. Modern
virtualization techniques make use of this feature to provide virtualization. One example
is KVM, which we are going to discuss in detail throughout this book.

Now that we've covered the hardware and software aspects of virtualization, let's see how
all of this applies to KVM as a virtualization technology.

30 KVM as a Virtualization Solution

The internal workings of libvirt, QEMU, and
KVM
The interaction of libvirt, QEMU, and KVM is something that gives us the full
virtualization capabilities that are covered in this book. They are the most important
pieces in the Linux virtualization puzzle, as each has a role to play. Let's describe what
they do and how they interact with each other.

libvirt
When working with KVM, you're most likely to first interface with its main Application
Programming Interface (API), called libvirt (https://libvirt.org). But libvirt has
other functionalities – it's also a daemon and a management tool for different hypervisors,
some of which we mentioned earlier. One of the most common tools used to interface
with libvirt is called virt-manager (http://virt-manager.org), a Gnome-based
graphical utility that you can use to manage various aspects of your local and remote
hypervisors, if you so choose. libvirt's CLI utility is called virsh. Keep in mind that you
can manage remote hypervisors via libvirt, so you're not restricted to a local hypervisor
only. That's why virt-manager has an additional parameter called --connect. libvirt
is also part of various other KVM management tools, such as oVirt (http://www.
ovirt.org), which we will discuss in the next chapter.

The goal of the libvirt library is to provide a common and stable layer for managing virtual
machines running on a hypervisor. In short, as a management layer, it is responsible for
providing the API that performs management tasks such as virtual machine provision,
creation, modification, monitoring, control, migration, and so on. In Linux, you will have
noticed that some of the processes are daemonized. The libvirt process is also daemonized,
and it is called libvirtd. As with any other daemon process, libvirtd provides services
to its clients upon request. Let's try to understand what exactly happens when a libvirt
client such as virsh or virt-manager requests a service from libvirtd. Based on the
connection URI (discussed in the following section) that's passed by the client, libvirtd
opens a connection to the hypervisor. This is how the client's virsh or virt-manager asks
libvirtd to start talking to the hypervisor. In the scope of this book, we are aiming to
look at KVM virtualization technology. So, it would be better to think about it in terms of
a QEMU/KVM hypervisor instead of discussing some other hypervisor communication
from libvirtd. You may be a bit confused when you see QEMU/KVM as the underlying
hypervisor name instead of either QEMU or KVM. But don't worry – all will become clear
in due course. The connection between QEMU and KVM will be discussed in the following
chapters. For now, just know that there is a hypervisor that uses both the QEMU and
KVM technologies.

https://libvirt.org
http://virt-manager.org
http://www.ovirt.org
http://www.ovirt.org

The internal workings of libvirt, QEMU, and KVM 31

Connecting to a remote system via virsh
A simple command-line example of a virsh binary for a remote connection would be
as follows:

virsh --connect qemu+ssh://root@remoteserver.yourdomain.com/
system list ––all

Let's take a look at the source code now. We can get the libvirt source code from the libvirt
Git repository:

[root@kvmsource]# yum -y install git-core

[root@kvmsource]# git clone git://libvirt.org/libvirt.git

Once you clone the repo, you can see the following hierarchy of files in the repo:

Figure 2.9 – QEMU source content, downloaded via Git

libvirt code is based on the C programming language; however, libvirt has language
bindings in different languages, such as C#, Java, OCaml, Perl, PHP, Python, Ruby,
and so on. For more details on these bindings, please refer to https://libvirt.org/
bindings.html. The main (and few) directories in the source code are docs, daemon,
src, and so on. The libvirt project is well documented and the documentation is available
in the source code repo and also at http://libvirt.org.

https://libvirt.org/bindings.html
https://libvirt.org/bindings.html
http://libvirt.org

32 KVM as a Virtualization Solution

libvirt uses a driver-based architecture, which enables libvirt to communicate with
various external hypervisors. This means that libvirt has internal drivers that are used to
interface with other hypervisors and solutions, such as LXC, Xen, QEMU, VirtualBox,
Microsoft Hyper-V, bhyve (BSD hypervisor), IBM PowerVM, OpenVZ (open Virtuozzo
container-based solution), and others, as shown in the following diagram:

Figure 2.10 – Driver-based architecture

The ability to connect to various virtualization solutions gets us much more usability out
of the virsh command. This might come in very handy in mixed environments, such as
if you're connecting to both KVM and XEN hypervisors from the same system.

As in the preceding figure, there is a public API that is exposed to the outside world.
Depending on the connection URI (for example, virsh --connect QEMU://xxxx/
system) passed by the clients, when initializing the library, this public API uses internal
drivers in the background. Yes, there are different categories of driver implementations
in libvirt. For example, there are hypervisor, interface, network, nodeDevice,
nwfilter, secret, storage, and so on. Refer to driver.h inside the libvirt source
code to learn about the driver data structures and other functions associated with the
different drivers.

Take the following example:

struct _virConnectDriver {

 virHypervisorDriverPtr hypervisorDriver;

 virInterfaceDriverPtr interfaceDriver;

 virNetworkDriverPtr networkDriver;

 virNodeDeviceDriverPtr nodeDeviceDriver;

The internal workings of libvirt, QEMU, and KVM 33

 virNWFilterDriverPtr nwfilterDriver;

 virSecretDriverPtr secretDriver;

 virStorageDriverPtr storageDriver;

 };

The struct fields are self-explanatory and convey which type of driver is represented
by each of the field members. As you might have assumed, one of the important or
main drivers is the hypervisor driver, which is the driver implementation of different
hypervisors supported by libvirt. The drivers are categorized as primary and secondary
drivers. The hypervisor driver is an example of a primary driver. The following list gives
us some idea about the hypervisors supported by libvirt. In other words, hypervisor-level
driver implementations exist for the following hypervisors (check the README and the
libvirt source code):

• bhyve: The BSD hypervisor

• esx/: VMware ESX and GSX support using vSphere API over SOAP

• hyperv/: Microsoft Hyper-V support using WinRM

• lxc/: Linux native containers

• openvz/: OpenVZ containers using CLI tools

• phyp/: IBM Power Hypervisor using CLI tools over SSH

• qemu/: QEMU/KVM using the QEMU CLI/monitor

• remote/: Generic libvirt native RPC client

• test/: A mock driver for testing

• uml/: User-mode Linux

• vbox/: VirtualBox using the native API

• vmware/: VMware Workstation and Player using the vmrun tool

• xen/: Xen using hypercalls, XenD SEXPR, and XenStore

• xenapi: Xen using libxenserver

34 KVM as a Virtualization Solution

Previously, we mentioned that there are secondary-level drivers as well. Not all, but
some secondary drivers (see the following) are shared by several hypervisors. That said,
currently, these secondary drivers are used by hypervisors such as the LXC, OpenVZ,
QEMU, UML, and Xen drivers. The ESX, Hyper-V, Power Hypervisor, Remote, Test, and
VirtualBox drivers all implement secondary drivers directly.

Examples of secondary-level drivers include the following:

• cpu/: CPU feature management

• interface/: Host network interface management

• network/: Virtual NAT networking

• nwfilter/: Network traffic filtering rules

• node_device/: Host device enumeration

• secret/: Secret management

• security/: Mandatory access control drivers

• storage/: Storage management drivers

libvirt is heavily involved in regular management operations, such as the creating
and managing of virtual machines (guest domains). Additional secondary drivers
are consumed to perform these operations, such as interface setup, firewall rules,
storage management, and general provisioning of APIs. The following is from
https://libvirt.org/api.html:

"OnDevice the application obtains a virConnectPtr connection to the
hypervisor it can then use to manage the hypervisor's available domains
and related virtualization resources, such as storage and networking. All
those are exposed as first class objects and connected to the hypervisor

connection (and the node or cluster where it is available)."
The following figure shows the five main objects exported by the API and the connections
between them:

https://libvirt.org/api.html

The internal workings of libvirt, QEMU, and KVM 35

Figure 2.11 – Exported API objects and their communication

Let's give some details about the main objects available in the libvirt code. Most functions
inside libvirt make use of these objects for their operations:

• virConnectPtr: As we discussed earlier, libvirt has to connect to a hypervisor
and act. The connection to the hypervisor has been represented as this object. This
object is one of the core objects in libvirt's API.

• virDomainPtr: Virtual machines or guest systems are generally referred to as
domains in libvirt code. virDomainPtr represents an object to an active/defined
domain/virtual machine.

• virStorageVolPtr: There are different storage volumes, exposed to the
domains/guest systems. virStorageVolPtr generally represents one
of the volumes.

• virStoragePoolPtr: The exported storage volumes are part of one of the
storage pools. This object represents one of the storage pools.

• virNetworkPtr: In libvirt, we can define different networks. A single virtual
network (active/defined status) is represented by the virNetworkPtr object.

36 KVM as a Virtualization Solution

You should now have some idea about the internal structure of libvirt implementations;
this can be expanded further:

Figure 2.12 – libvirt source code

Our area of interest is QEMU/KVM. So, let's explore it further. Inside the src directory
of the libvirt source code repository, there is a directory for QEMU hypervisor driver
implementation code. Pay some attention to the source files, such as qemu_driver.c,
which carries core driver methods for managing QEMU guests.

See the following example:

static virDrvOpenStatus qemuConnectOpen(virConnectPtr conn,

 virConnectAuthPtr auth
ATTRIBUTE_UNUSED,

 unsigned int flags)

libvirt makes use of different driver codes to probe the underlying hypervisor/emulator. In
the context of this book, the component of libvirt responsible for finding out the QEMU/
KVM presence is the QEMU driver code. This driver probes for the qemu-kvm binary
and the /dev/kvm device node to confirm that the KVM fully virtualized hardware-
accelerated guests are available. If these are not available, the possibility of a QEMU
emulator (without KVM) is verified with the presence of binaries such as qemu, qemu-
system-x86_64, qemu-system-mips, qemu-system-microblaze, and so on.

The internal workings of libvirt, QEMU, and KVM 37

The validation can be seen in qemu_capabilities.c:

from (qemu_capabilities.c)

static int virQEMUCapsInitGuest (.., .. , virArch hostarch,
virArch guestarch)

{

...

binary = virQEMUCapsFindBinaryForArch (hostarch, guestarch);

...

native_kvm = (hostarch == guestarch);

x86_32on64_kvm = (hostarch == VIR_ARCH_X86_64 && guestarch ==
VIR_ARCH_I686);

...

if (native_kvm || x86_32on64_kvm || arm_32on64_kvm || ppc64_
kvm) {

 const char *kvmbins[] = {

 "/usr/libexec/qemu-kvm", /* RHEL */

 "qemu-kvm", /* Fedora */

 "kvm", /* Debian/Ubuntu */ …};

...

kvmbin = virFindFileInPath(kvmbins[i]);

...

virQEMUCapsInitGuestFromBinary (caps, binary, qemubinCaps,
kvmbin, kvmbinCaps,guestarch);

...

}

Then, KVM enablement is performed as shown in the following code snippet:

int virQEMUCapsInitGuestFromBinary(..., *binary, qemubinCaps,
*kvmbin, kvmbinCaps, guestarch)

{

……...

 if (virFileExists("/dev/kvm") && (virQEMUCapsGet(qemubinCaps,
QEMU_CAPS_KVM) ||

 virQEMUCapsGet(qemubinCaps, QEMU_CAPS_ENABLE_KVM) ||
kvmbin))

 haskvm = true;

38 KVM as a Virtualization Solution

Basically, libvirt's QEMU driver is looking for different binaries in different distributions and
different paths – for example, qemu-kvm in RHEL/Fedora. Also, it finds a suitable QEMU
binary based on the architecture combination of both host and guest. If both the QEMU
binary and KVM are found, then KVM is fully virtualized and hardware-accelerated guests
will be available. It's also libvirt's responsibility to form the entire command-line argument
for the QEMU-KVM process. Finally, after forming the entire command-line (qemu_
command.c) arguments and inputs, libvirt calls exec() to create a QEMU-KVM process:

util/vircommand.c

static int virExec(virCommandPtr cmd) {

…...

 if (cmd->env)

 execve(binary, cmd->args, cmd->env);

 else

 execv(binary, cmd->args);

In KVMland, there is a misconception that libvirt directly uses the device file (/dev/
kvm) exposed by KVM kernel modules, and instructs KVM to do the virtualization via
the different ioctl() function calls available with KVM. This is indeed a misconception!
As mentioned earlier, libvirt spawns the QEMU-KVM process and QEMU talks to the
KVM kernel modules. In short, QEMU talks to KVM via different ioctl() to the
/dev/kvm device file exposed by the KVM kernel module. To create a virtual machine
(for example, virsh create), all libvirt does is spawn a QEMU process, which in turn
creates the virtual machine. Please note that a separate QEMU-KVM process is launched
for each virtual machine by libvirtd. Properties of virtual machines (the number
of CPUs, memory size, I/O device configuration, and so on) are defined in separate
XML files that are located in the /etc/libvirt/qemu directory. These XML files
contain all of the necessary settings that QEMU-KVM processes need to start running
virtual machines. libvirt clients issue requests via the AF_UNIX socket /var/run/
libvirt/libvirt-sock that libvirtd is listening on.

The next topic on our list is QEMU – what it is, how it works, and how it interacts
with KVM.

QEMU
QEMU was written by Fabrice Bellard (creator of FFmpeg). It's a free piece of software
and mainly licensed under GNU's General Public License (GPL). QEMU is a generic and
open source machine emulator and virtualizer. When used as a machine emulator, QEMU
can run OSes and programs made for one machine (such as an ARM board) on a different
machine (such as your own PC).

The internal workings of libvirt, QEMU, and KVM 39

By using dynamic translation, it achieves very good performance (see https://
www.qemu.org/). Let me rephrase the preceding paragraph and give a more specific
explanation. QEMU is actually a hosted hypervisor/VMM that performs hardware
virtualization. Are you confused? If so, don't worry. You will get a better picture by the
end of this chapter, especially when you go through each of the interrelated components
and correlate the entire path used here to perform virtualization. QEMU can act as an
emulator or virtualizer.

QEMU as an emulator
In the previous chapter, we discussed binary translation. When QEMU operates as
an emulator, it is capable of running OSes/programs made for one machine type on a
different machine type. How is this possible? It just uses binary translation methods. In
this mode, QEMU emulates CPUs through dynamic binary translation techniques and
provides a set of device models. Thus, it is enabled to run different unmodified guest OSes
with different architectures. Binary translation is needed here because the guest code has
to be executed in the host CPU. The binary translator that does this job is known as a Tiny
Code Generator (TCG); it's a Just-In-Time (JIT) compiler. It transforms the binary code
written for a given processor into another form of binary code (such as ARM in X86),
as shown in the following diagram (TCG information from Wikipedia at https://
en.wikipedia.org/wiki/QEMU#Tiny_Code_Generator):

Figure 2.13 – TCG in QEMU

By using this approach, QEMU can sacrifice a bit of execution speed for much broader
compatibility. Keeping in mind that most environments nowadays are based around
different OSes, this seems like a sensible trade-off.

https://www.qemu.org/
https://www.qemu.org/
https://en.wikipedia.org/wiki/QEMU#Tiny_Code_Generator
https://en.wikipedia.org/wiki/QEMU#Tiny_Code_Generator

40 KVM as a Virtualization Solution

QEMU as a virtualizer
This is the mode where QEMU executes the guest code directly on the host CPU, thus
achieving native performance. For example, when working under Xen/KVM hypervisors,
QEMU can operate in this mode. If KVM is the underlying hypervisor, QEMU can
virtualize embedded guests such as Power PC, S390, x86, and so on. In short, QEMU is
capable of running without KVM using the aforementioned binary translation method.
This execution will be slower compared to the hardware-accelerated virtualization enabled
by KVM. In any mode, either as a virtualizer or emulator, QEMU not only emulates the
processor; it also emulates different peripherals, such as disks, networks, VGA, PCI,
serial and parallel ports, USB, and so on. Apart from this I/O device emulation, when
working with KVM, QEMU-KVM creates and initializes virtual machines. As shown
in the following diagram, it also initializes different POSIX threads for each virtual
CPU (vCPU) of a guest. It also provides a framework that's used to emulate the virtual
machine's physical address space within the user-mode address space of QEMU-KVM:

Figure 2.14 – QEMU as a virtualizer

The internal workings of libvirt, QEMU, and KVM 41

To execute the guest code in the physical CPU, QEMU makes use of POSIX threads. That
being said, the guest vCPUs are executed in the host kernel as POSIX threads. This itself
brings lots of advantages, as these are just some processes for the host kernel at a high-
level view. From another angle, the user-space part of the KVM hypervisor is provided
by QEMU. QEMU runs the guest code via the KVM kernel module. When working with
KVM, QEMU also does I/O emulation, I/O device setup, live migration, and so on.

QEMU opens the device file (/dev/kvm) that's exposed by the KVM kernel module and
executes ioctl() function calls on it. Please refer to the next section on KVM to find
out more about these ioctl()function calls. To conclude, KVM makes use of QEMU
to become a complete hypervisor. KVM is an accelerator or enabler of the hardware
virtualization extensions (VMX or SVM) provided by the processor so that they're tightly
coupled with the CPU architecture. Indirectly, this conveys that virtual systems must also
use the same architecture to make use of hardware virtualization extensions/capabilities.
Once it is enabled, it will definitely give better performance than other techniques, such as
binary translation.

Our next step is to check how QEMU fits into the whole KVM story.

QEMU – KVM internals
Before we start looking into QEMU internals, let's clone the QEMU Git repository:

git clone git://git.qemu-project.org/qemu.git

42 KVM as a Virtualization Solution

Once it's cloned, you can see a hierarchy of files inside the repo, as shown in the
following screenshot:

Figure 2.15 – QEMU source code

Some important data structures and ioctl() function calls make up the QEMU
userspace and KVM kernel space. Some of the important data structures are KVMState,
CPU{X86}State, MachineState, and so on. Before we further explore the internals,
I would like to point out that covering them in detail is beyond the scope of this book;
however, I will give enough pointers to understand what is happening under the hood
and give additional references for further explanation.

Data structures
In this section, we will discuss some of the important data structures of QEMU. The
KVMState structure contains important file descriptors of virtual machine representation
in QEMU. For example, it contains the virtual machine file descriptor, as shown in the
following code:

struct KVMState (kvm-all.c)

{ …..

 int fd;

The internal workings of libvirt, QEMU, and KVM 43

 int vmfd;

 int coalesced_mmio;

 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; ….}

QEMU-KVM maintains a list of CPUX86State structures, one structure for each
vCPU. The content of general-purpose registers (as well as RSP and RIP) is part of
CPUX86State:

struct CPUState {

…..

 int nr_cores;

 int nr_threads;

 …

 int kvm_fd;

 ….

 struct KVMState *kvm_state;

 struct kvm_run *kvm_run

}

Also, CPUX86State looks into the standard registers for exception and interrupt
handling:

typedef struct CPUX86State (target/i386/cpu.h)

 {

 /* standard registers */

 target_ulong regs[CPU_NB_REGS];

….

 uint64_t system_time_msr;

 uint64_t wall_clock_msr;

…….

 /* exception/interrupt handling */

 int error_code;

 int exception_is_int;

…...

}

44 KVM as a Virtualization Solution

Various ioctl() function calls exist: kvm_ioctl(), kvm_vm_ioctl(), kvm_
vcpu_ioctl(), kvm_device_ioctl(), and so on. For function definitions, please
visit KVM-all.c inside the QEMU source code repo. These ioctl() function calls
fundamentally map to the system KVM, virtual machine, and vCPU levels. These
ioctl() function calls are analogous to the ioctl()function calls categorized by
KVM. We will discuss this when we dig further into KVM internals. To get access to these
ioctl() function calls exposed by the KVM kernel module, QEMU-KVM has to open
/dev/kvm, and the resulting file descriptor is stored in KVMState->fd:

• kvm_ioctl(): These ioctl() function calls mainly execute on the KVMState-
>fd parameter, where KVMState->fd carries the file descriptor obtained by
opening /dev/kvm – as in the following example:

kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);

kvm_ioctl(s, KVM_CREATE_VM, type);

• kvm_vm_ioctl(): These ioctl() function calls mainly execute on the
KVMState->vmfd parameter – as in the following example:

kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);

kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);

• kvm_vcpu_ioctl(): These ioctl() function calls mainly execute on the
CPUState->kvm_fd parameter, which is a vCPU file descriptor for KVM – as in
the following example:

kvm_vcpu_ioctl(cpu, KVM_RUN, 0);

• kvm_device_ioctl(): These ioctl() function calls mainly execute on the
device fd parameter – as in the following example:

kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute)
? 0 : 1;

kvm-all.c is one of the important source files when considering QEMU
KVM communication.

Now, let's move on and see how a virtual machine and vCPUs are created and initialized
by QEMU in the context of KVM virtualization.

The internal workings of libvirt, QEMU, and KVM 45

kvm_init() is the function that opens the KVM device file, as shown in the following
code, and it also fills fd [1] and vmfd [2] of KVMState:

static int kvm_init(MachineState *ms)

{

…..

KVMState *s;

 s = KVM_STATE(ms->accelerator);

 …

 s->vmfd = -1;

 s->fd = qemu_open("/dev/kvm", O_RDWR); ----> [1]

 ..

 do {

 ret = kvm_ioctl(s, KVM_CREATE_VM, type); --->[2]

 } while (ret == -EINTR);

 s->vmfd = ret;

….

 ret = kvm_arch_init(ms, s); ---> (target-i386/kvm.c:)

.....

 }

As you can see in the preceding code, the ioctl() function call with the KVM_CREATE_
VM argument will return vmfd. Once QEMU has fd and vmfd, one more file descriptor
has to be filled, which is just kvm_fd or vcpu fd. Let's see how this is filled by QEMU:

main() ->

 -> cpu_init(cpu_model); [#define cpu_
init(cpu_model) CPU(cpu_x86_init(cpu_model))]

 ->cpu_x86_create()

 ->qemu_init_vcpu

 ->qemu_kvm_start_vcpu()

 ->qemu_thread_create

 ->qemu_kvm_cpu_thread_fn()

 -> kvm_init_vcpu(CPUState *cpu)

int kvm_init_vcpu(CPUState *cpu)

{

46 KVM as a Virtualization Solution

 KVMState *s = kvm_state;

 ...

 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_
arch_vcpu_id(cpu));

 cpu->kvm_fd = ret; ---> [vCPU fd]

 ..

 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);

cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE,
MAP_SHARED, cpu->kvm_fd, 0); [3]

...

 ret = kvm_arch_init_vcpu(cpu); [target-i386/kvm.c]

 …..

}

Some of the memory pages are shared between the QEMU-KVM process and the KVM
kernel modules. You can see such a mapping in the kvm_init_vcpu() function. That
said, two host memory pages per vCPU make a channel for communication between the
QEMU user-space process and the KVM kernel modules: kvm_run and pio_data. Also
understand that, during the execution of these ioctl() function calls that return the
preceding fds, the Linux kernel allocates a file structure and related anonymous nodes.
We will discuss the kernel part later when discussing KVM.

We have seen that vCPUs are posix threads created by QEMU-KVM. To run guest code,
these vCPU threads execute an ioctl() function call with KVM_RUN as its argument, as
shown in the following code:

int kvm_cpu_exec(CPUState *cpu) {

 struct kvm_run *run = cpu->kvm_run;

 ..

 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);

 ...

}

The internal workings of libvirt, QEMU, and KVM 47

The same function, kvm_cpu_exec(), also defines the actions that need to be taken
when the control comes back to the QEMU-KVM userspace from KVM with VM exit.
Even though we will discuss later on how KVM and QEMU communicate with each
other to perform an operation on behalf of the guest, let me touch upon this here. KVM
is an enabler of hardware extensions provided by vendors such as Intel and AMD with
their virtualization extensions such as SVM and VMX. These extensions are used by
KVM to directly execute the guest code on host CPUs. However, if there is an event – for
example, as part of an operation, guest kernel code access hardware device register, which
is emulated by the QEMU – then KVM has to exit back to QEMU and pass control. Then,
QEMU can emulate the outcome of the operation. There are different exit reasons, as
shown in the following code:

 switch (run->exit_reason) {

 case KVM_EXIT_IO:

 DPRINTF("handle_io\n");

 case KVM_EXIT_MMIO:

 DPRINTF("handle_mmio\n");

 case KVM_EXIT_IRQ_WINDOW_OPEN:

 DPRINTF("irq_window_open\n");

 case KVM_EXIT_SHUTDOWN:

 DPRINTF("shutdown\n");

 case KVM_EXIT_UNKNOWN:

 ...

 case KVM_EXIT_INTERNAL_ERROR:

 …

 case KVM_EXIT_SYSTEM_EVENT:

 switch (run->system_event.type) {

 case KVM_SYSTEM_EVENT_SHUTDOWN:

 case KVM_SYSTEM_EVENT_RESET:

case KVM_SYSTEM_EVENT_CRASH:

Now that we know about QEMU-KVM internals, let's discuss the threading models in
QEMU.

48 KVM as a Virtualization Solution

Threading models in QEMU
QEMU-KVM is a multithreaded, event-driven (with a big lock) application. The
important threads are as follows:

• Main thread

• Worker threads for the virtual disk I/O backend

• One thread for each vCPU

For each and every virtual machine, there is a QEMU process running in the host system.
If the guest system is shut down, this process will be destroyed/exited. Apart from vCPU
threads, there are dedicated I/O threads running a select (2) event loop to process I/O,
such as network packets and disk I/O completion. I/O threads are also spawned by
QEMU. In short, the situation will look like this:

Figure 2.16 – KVM guest

Before we discuss this further, there is always a question about the physical memory of
guest systems: where is it located? Here is the deal: the guest RAM is assigned inside the
QEMU process's virtual address space, as shown in the preceding figure. That said, the
physical RAM of the guest is inside the QEMU process address space.

The internal workings of libvirt, QEMU, and KVM 49

Important note
More details about threading can be fetched from the threading model at
blog.vmsplice.net/2011/03/qemu-internals-overall-
architecutre-and-html?m=1.

The event loop thread is also called iothread. Event loops are used for timers, file
descriptor monitoring, and so on. main_loop_wait() is the QEMU main event loop
thread. This main event loop thread is responsible for main loop services, including file
descriptor callbacks, bottom halves, and timers (defined in qemu-timer.h). Bottom
halves are similar to timers that execute immediately but have lower overhead, and
scheduling them is wait-free, thread-safe, and signal-safe.

Before we leave the QEMU code base, I would like to point out that there are mainly two
parts to device codes. For example, the directory block contains the host side of the block
device code, and hw/block/ contains the code for device emulation.

KVM
There is a common kernel module called kvm.ko and also hardware-based kernel
modules such as kvm-intel.ko (Intel-based systems) and kvm-amd.ko (AMD-based
systems). Accordingly, KVM will load the kvm-intel.ko (if the vmx flag is present)
or kvm-amd.ko (if the svm flag is present) modules. This turns the Linux kernel into
a hypervisor, thus achieving virtualization.

KVM exposes a device file called /dev/kvm to applications so that they can make use of
the ioctl() function calls system calls provided. QEMU makes use of this device file
to talk with KVM and create, initialize, and manage the kernel-mode context of virtual
machines.

Previously, we mentioned that the QEMU-KVM userspace hosts the virtual machine's
physical address space within the user-mode address space of QEMU/KVM, which
includes memory-mapped I/O. KVM helps us achieve that. There are more things that can
be achieved with the help of KVM. The following are some examples:

• Emulation of certain I/O devices; for example, (via MMIO) the per-CPU local APIC
and the system-wide IOAPIC.

• Emulation of certain privileged (R/W of system registers CR0, CR3, and CR4)
instructions.

http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecutre-and-html?m=1
http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecutre-and-html?m=1

50 KVM as a Virtualization Solution

• The facilitation to run guest code via VMENTRY and handling intercepted events
at VMEXIT.

• Injecting events, such as virtual interrupts and page faults, into the flow of the
execution of the virtual machine and so on. This is also achieved with the help
of KVM.

KVM is not a full hypervisor; however, with the help of QEMU and emulators (a slightly
modified QEMU for I/O device emulation and BIOS), it can become one. KVM needs
hardware virtualization-capable processors to operate. Using these capabilities, KVM
turns the standard Linux kernel into a hypervisor. When KVM runs virtual machines,
every virtual machine is a normal Linux process, which can obviously be scheduled to
run on a CPU by the host kernel, as with any other process present in the host kernel.
In Chapter 1, Understanding Linux Virtualization, we discussed different CPU modes of
execution. As you may recall, there is mainly a user mode and a kernel/supervisor mode.
KVM is a virtualization feature in the Linux kernel that lets a program such as QEMU
safely execute guest code directly on the host CPU. This is only possible when the target
architecture is supported by the host CPU.

However, KVM introduced one more mode called guest mode. In a nutshell, guest mode
allows us to execute guest system code. It can either run the guest user or the kernel code.
With the support of virtualization-aware hardware, KVM virtualizes the process states,
memory management, and so on.

Virtualization from a CPU perspective
With its hardware virtualization capabilities, the processor manages the processor states
by using Virtual Machine Control Structure (VMCS) and Virtual Machine Control
Block (VMCB) for the host and guest OSes, and it also manages the I/O and interrupts
on behalf of the virtualized OS. That being said, with the introduction of this type of
hardware, tasks such as CPU instruction interception, register read/write support,
memory management support (Extended Page Tables (EPTs) and Nested Paging Table
(NPT)), interrupt handling support (APICv), IOMMU, and so on came into the picture.
KVM uses the standard Linux scheduler, memory management, and other services. In
short, what KVM does is help the userspace program make use of hardware virtualization
capabilities. Here, you can treat QEMU as a userspace program as it's well integrated for
different use cases. When I say hardware-accelerated virtualization, I am mainly referring
to Intel VT-X and AMD-Vs SVM. Introducing virtualization technology processors
brought about an extra instruction set called VMX.

The internal workings of libvirt, QEMU, and KVM 51

With Intel's VT-X, the VMM runs in VMX root operation mode, while the guests (which
are unmodified OSes) run in VMX non-root operation mode. This VMX brings additional
virtualization-specific instructions to the CPU, such as VMPTRLD, VMPTRST, VMCLEAR,
VMREAD, VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, and VMXON. The
virtualization mode (VMX) is turned on by VMXON and can be disabled by VMXOFF.
To execute the guest code, we have to use VMLAUNCH/VMRESUME instructions and leave
VMEXIT. But wait, leave what? It's a transition from non-root operation to root operation.
Obviously, when we do this transition, some information needs to be saved so that it
can be fetched later. Intel provides a structure to facilitate this transition called VMCS; it
handles much of the virtualization management functionality. For example, in the case of
VMEXIT, the exit reason will be recorded inside this structure. Now, how do we read or
write from this structure? VMREAD and VMWRITE instructions are used to read or write to
the respective fields.

Previously, we discussed SLAT/EPT/AMD-Vi. Without EPT, the hypervisor must exit
the virtual machine to perform address translations, which reduces performance. As we
noticed in Intel's virtualization-based processors' operating modes, AMD's SVM also
has a couple of operating modes, which are nothing but host mode and guest mode. As
you may have assumed, the hypervisor runs in host mode and the guests run in guest
mode. Obviously, when in guest mode, some instructions can cause VMEXIT exceptions,
which are handled in a manner that is specific to the way guest mode is entered. There
should be an equivalent structure of VMCS here, and it is called VMCB; as discussed
earlier, it contains the reason for VMEXIT. AMD added eight new instruction opcodes
to support SVMs. For example, the VMRUN instruction starts the operation of a guest
OS, the VMLOAD instruction loads the processor state from the VMCB, and the VMSAVE
instruction saves the processor state to the VMCB. That's why AMD introduced nested
paging, which is similar to EPT in Intel.

When we discussed hardware virtualization extensions, we touched upon VMCS and
VMCB. These are important data structures when we think about hardware-accelerated
virtualization. These control blocks especially help in VMEXIT scenarios. Not every
operation can be allowed for guests; at the same time, it's also difficult if the hypervisor
does everything on behalf of the guest. Virtual machine control structures, such as VMCS
or VMCB, control this behavior. Some operations are allowed for guests, such as changing
some bits in shadowed control registers, but others are not. This clearly provides fine-
grained control over what guests are allowed to do and not do. VMCS control structures
also provide control over interrupt delivery and exceptions. Previously, we said the exit
reason of VMEXIT is recorded inside the VMCS; it also contains some data about it. For
example, if write access to a control register caused the exit, information about the source
and destination registers is recorded there.

52 KVM as a Virtualization Solution

Please take note of the VMCS or VMCB store guest configuration specifics, such
as machine control bits and processor register settings. I suggest that you examine
the structure definitions from the source. These data structures are also used by the
hypervisor to define events to monitor while the guest is executing. These events can
be intercepted. Note that these structures are in the host memory. At the time of using
VMEXIT, the guest state is saved in VMCS. As mentioned earlier, the VMREAD instruction
reads the specified field from the VMCS, while the VMWRITE instruction writes the
specified field to the VMCS. Also, note that there is one VMCS or VMCB per vCPU.
These control structures are part of the host memory. The vCPU state is recorded in these
control structures.

KVM APIs
As mentioned earlier, there are three main types of ioctl() function calls. The kernel
docs says the following (you can check it at https://www.kernel.org/doc/
Documentation/virtual/kvm/api.txt):

Three sets of ioctl make up the KVM API. The KVM API is a set of ioctls
that are issued to control various aspects of a virtual machine. These ioctls

belong to three classes:

- System ioctls: These query and set global attributes, which affect
the whole KVM subsystem. In addition, a system ioctl is used to create

virtual machines.

- Device ioctls: Used for device control, executed from the same context that
spawned the VM creation.

- VM ioctls: These query and set attributes that affect an entire virtual
machine—for example, memory layout. In addition, a VM ioctl is used

to create virtual CPUs (vCPUs). It runs VM ioctls from the same process
(address space) that was used to create the VM.

- vCPU ioctls: These query and set attributes that control the operation of
a single virtual CPU. They run vCPU ioctls from the same thread that was

used to create the vCPU.
To find out more about the ioctl() function calls exposed by KVM and the ioctl()
function calls that belong to a particular group of fd, please refer to KVM.h.

https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt

The internal workings of libvirt, QEMU, and KVM 53

See the following example:

/* ioctls for /dev/kvm fds: */

#define KVM_GET_API_VERSION _IO(KVMIO, 0x00)

#define KVM_CREATE_VM _IO(KVMIO, 0x01) /* returns a
VM fd */

…..

/* ioctls for VM fds */

#define KVM_SET_MEMORY_REGION _IOW(KVMIO, 0x40, struct kvm_
memory_region)

#define KVM_CREATE_VCPU _IO(KVMIO, 0x41)

…

/* ioctls for vcpu fds */

#define KVM_RUN _IO(KVMIO, 0x80)

#define KVM_GET_REGS _IOR(KVMIO, 0x81, struct kvm_
regs)

#define KVM_SET_REGS _IOW(KVMIO, 0x82, struct kvm_
regs)

Let's now discuss anonymous inodes and file structures.

Anonymous inodes and file structures
Previously, when we discussed QEMU, we said the Linux kernel allocates
file structures and sets its f_ops and anonymous inodes. Let's look at the
kvm_main.c file:

static struct file_operations kvm_chardev_ops = {

 .unlocked_ioctl = kvm_dev_ioctl,

 .llseek = noop_llseek,

 KVM_COMPAT(kvm_dev_ioctl),

};

 kvm_dev_ioctl ()

 switch (ioctl) {

 case KVM_GET_API_VERSION:

 if (arg)

 goto out;

54 KVM as a Virtualization Solution

 r = KVM_API_VERSION;

 break;

 case KVM_CREATE_VM:

 r = kvm_dev_ioctl_create_vm(arg);

 break;

 case KVM_CHECK_EXTENSION:

 r = kvm_vm_ioctl_check_extension_generic(NULL,
arg);

 break;

 case KVM_GET_VCPU_MMAP_SIZE:

 . …..

}

Like kvm_chardev_fops, there are kvm_vm_fops and kvm_vcpu_fops:

static struct file_operations kvm_vm_fops = {

 .release = kvm_vm_release,

 .unlocked_ioctl = kvm_vm_ioctl,

…..

 .llseek = noop_llseek,

};

static struct file_operations kvm_vcpu_fops = {

 .release = kvm_vcpu_release,

 .unlocked_ioctl = kvm_vcpu_ioctl,

….

 .mmap = kvm_vcpu_mmap,

 .llseek = noop_llseek,

};

An inode allocation may be seen as follows:

 anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_
CLOEXEC);

Let's have a look at the data structures now.

The internal workings of libvirt, QEMU, and KVM 55

Data structures
From the perspective of the KVM kernel modules, each virtual machine is represented by
a kvm structure:

include/linux/kvm_host.h :

struct kvm {

 ...

 struct mm_struct *mm; /* userspace tied to this vm */

 ...

 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];

 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];

….

 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;

 …..

}

As you can see in the preceding code, the kvm structure contains an array of pointers to
kvm_vcpu structures, which are the counterparts of the CPUX86State structures in the
QEMU-KVM userspace. A kvm_vcpu structure consists of a common part and an x86
architecture-specific part, which includes the register content:

struct kvm_vcpu {

 ...

 struct kvm *kvm;

 int cpu;

…..

 int vcpu_id;

 …..

 struct kvm_run *run;

 …...

 struct kvm_vcpu_arch arch;

 …

}

56 KVM as a Virtualization Solution

The x86 architecture-specific part of the kvm_vcpu structure contains fields to which
the guest register state can be saved after a virtual machine exit and from which the guest
register state can be loaded before a virtual machine entry:

arch/x86/include/asm/kvm_host.h

struct kvm_vcpu_arch {

..

 unsigned long regs[NR_VCPU_REGS];

 unsigned long cr0;

 unsigned long cr0_guest_owned_bits;

 …..

 struct kvm_lapic *apic; /* kernel irqchip context */

 ..

struct kvm_mmu mmu;

..

struct kvm_pio_request pio;

void *pio_data;

..

 /* emulate context */

 struct x86_emulate_ctxt emulate_ctxt;

 ...

 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);

 ….

}

As you can see in the preceding code, kvm_vcpu has an associated kvm_run structure
used for the communication (with pio_data) between the QEMU userspace and the
KVM kernel module, as mentioned earlier. For example, in the context of VMEXIT,
to satisfy the emulation of virtual hardware access, KVM has to return to the QEMU
userspace process; KVM stores the information in the kvm_run structure for QEMU
to fetch it:

/include/uapi/linux/kvm.h:

/* for KVM_RUN, returned by mmap(vcpu_fd, offset=0) */

struct kvm_run {

 /* in */

...

 /* out */

The internal workings of libvirt, QEMU, and KVM 57

...

 /* in (pre_kvm_run), out (post_kvm_run) */

...

 union {

 /* KVM_EXIT_UNKNOWN */

...

 /* KVM_EXIT_FAIL_ENTRY */

...

 /* KVM_EXIT_EXCEPTION */

...

 /* KVM_EXIT_IO */

struct {

#define KVM_EXIT_IO_IN 0

#define KVM_EXIT_IO_OUT 1

...

 } io;

...

}

The kvm_run struct is an important data structure; as you can see in the preceding code,
union contains many exit reasons, such as KVM_EXIT_FAIL_ENTRY, KVM_EXIT_IO,
and so on.

When we discussed hardware virtualization extensions, we touched upon VMCS and
VMCB. These are important data structures when we think about hardware-accelerated
virtualization. These control blocks especially help in VMEXIT scenarios. Not every
operation can be allowed for guests; at the same time, it's also difficult if the hypervisor
does everything on behalf of the guest. Virtual machine control structures, such as VMCS
or VMCB, control the behavior. Some operations are allowed for guests, such as changing
some bits in shadowed control registers, but others are not. This clearly provides fine-
grained control over what guests are allowed to do and not do. VMCS control structures
also provide control over interrupt delivery and exceptions. Previously, we said the exit
reason of VMEXIT is recorded inside the VMCS; it also contains some data about it. For
example, if write access to a control register caused the exit, information about the source
and destination registers is recorded there.

Let's look at some of the important data structures before we dive into the vCPU
execution flow.

58 KVM as a Virtualization Solution

The Intel-specific implementation is in vmx.c and the AMD-specific implementation
is in svm.c, depending on the hardware we have. As you can see, the following
kvm_vcpu is part of vcpu_vmx. The kvm_vcpu structure is mainly categorized as a
common part and an architecture-specific part. The common part contains the data that is
common to all supported architectures and is architecture-specific – for example, the x86
architecture-specific (guest's saved general-purpose registers) part contains the data that
is specific to a particular architecture. As discussed earlier, kvm_vCPUs, kvm_run, and
pio_data are shared with the userspace.

The vcpu_vmx and vcpu_svm structures (mentioned next) have a kvm_vcpu structure,
which consists of an x86-architecture-specific part (struct 'kvm_vcpu_arch') and a
common part and also, it points to the vmcs and vmcb structures accordingly. Let's check
the Intel (vmx) structure first:

vcpu_vmx structure

struct vcpu_vmx {

 struct kvm_vcpu *vcpu;

 ...

 struct loaded_vmcs vmcs01;

 struct loaded_vmcs *loaded_vmcs;

 ….

 }

Similarly, let's check the AMD (svm) structure next:

vcpu_svm structure

struct vcpu_svm {

 struct kvm_vcpu *vcpu;

 …

struct vmcb *vmcb;

….

 }

The vcpu_vmx or vcpu_svm structures are allocated by the following code path:

kvm_arch_vcpu_create()

 ->kvm_x86_ops->vcpu_create

 ->vcpu_create() [.vcpu_create = svm_create_
vcpu, .vcpu_create = vmx_create_vcpu,]

Execution flow of vCPU 59

Please note that the VMCS or VMCB store guest configuration specifics such as machine
control bits and processor register settings. I would suggest you examine the structure
definitions from the source. These data structures are also used by the hypervisor to
define events to monitor while the guest is executing. These events can be intercepted and
these structures are in the host memory. At the time of VMEXIT, the guest state is saved
in VMCS. As mentioned earlier, the VMREAD instruction reads a field from the VMCS,
whereas the VMWRITE instruction writes the field to it. Also, note that there is one VMCS
or VMCB per vCPU. These control structures are part of the host memory. The vCPU
state is recorded in these control structures.

Execution flow of vCPU
Finally, we are into the vCPU execution flow, which helps us put everything together and
understand what happens under the hood.

I hope you didn't forget that the QEMU creates a POSIX thread for a vCPU of the
guest and ioctl(), which is responsible for running a CPU and has KVM_RUN arg
(#define KVM_RUN _IO(KVMIO, 0x80)). The vCPU thread executes
ioctl(.., KVM_RUN, ...) to run the guest code. As these are POSIX threads, the
Linux kernel can schedule these threads as with any other process/thread in the system.

Let's see how it all works:

Qemu-kvm User Space:

kvm_init_vcpu ()

 kvm_arch_init_vcpu()

 qemu_init_vcpu()

 qemu_kvm_start_vcpu()

 qemu_kvm_cpu_thread_fn()

 while (1) {

 if (cpu_can_run(cpu)) {

 r = kvm_cpu_exec(cpu);

 }

 }

kvm_cpu_exec (CPUState *cpu)

 -> run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);

60 KVM as a Virtualization Solution

According to the underlying architecture and hardware, different structures are initialized
by the KVM kernel modules and one among them is vmx_x86_ops/svm_x86_ops
(owned by either the kvm-intel or kvm-amd module). It defines different operations
that need to be performed when the vCPU is in context. KVM makes use of the
kvm_x86_ops vector to point either of these vectors according to the KVM module
(kvm-intel or kvm-amd) loaded for the hardware. The run pointer defines the
function that needs to be executed when the guest vCPU run is in action, and handle_
exit defines the actions needed to be performed at the time of VMEXIT. Let's check the
Intel (vmx) structure for that:

static struct kvm_x86_ops vmx_x86_ops = {

 ...

 .vcpu_create = vmx_create_vcpu,

 .run = vmx_vcpu_run,

 .handle_exit = vmx_handle_exit,

…

}

Now, let's see the AMD (svm) structure for that:

static struct kvm_x86_ops svm_x86_ops = {

 .vcpu_create = svm_create_vcpu,

 .run = svm_vcpu_run,

 .handle_exit = handle_exit,

..

}

The run pointer points to vmx_vcpu_run or svm_vcpu_run accordingly. The
svm_vcpu_run or vmx_vcpu_run functions do the job of saving KVM host registers,
loading guest OS registers, and SVM_VMLOAD instructions. We walked through the QEMU
KVM userspace code execution at the time of vcpu run, once it enters the kernel via
syscall. Then, following the file operations structures, it calls kvm_vcpu_ioctl();
this defines the action to be taken according to the ioctl() function call it defines:

static long kvm_vcpu_ioctl(struct file *file,

 unsigned int ioctl, unsigned long arg)
{

 switch (ioctl) {

Execution flow of vCPU 61

 case KVM_RUN:

 ….

 kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);

 ->vcpu_load

 -> vmx_vcpu_load

 ->vcpu_run(vcpu);

 ->vcpu_enter_guest

 ->vmx_vcpu_run

 ….

}

We will go through vcpu_run() to understand how it reaches vmx_vcpu_run or
svm_vcpu_run:

static int vcpu_run(struct kvm_vcpu *vcpu) {

….

 for (;;) {

 if (kvm_vcpu_running(vcpu)) {

 r = vcpu_enter_guest(vcpu);

 } else {

 r = vcpu_block(kvm, vcpu);

 }

Once it's in vcpu_enter_guest(), you can see some of the important calls happening
when it enters guest mode in KVM:

static int vcpu_enter_guest(struct kvm_vcpu *vcpu) {

...

 kvm_x86_ops.prepare_guest_switch(vcpu);

 vcpu->mode = IN_GUEST_MODE;

 __kvm_guest_enter();

 kvm_x86_ops->run(vcpu);

 [vmx_vcpu_run or svm_vcpu_run]

 vcpu->mode = OUTSIDE_GUEST_MODE;

 kvm_guest_exit();

62 KVM as a Virtualization Solution

 r = kvm_x86_ops->handle_exit(vcpu);

 [vmx_handle_exit or handle_exit]

…

}

You can see a high-level picture of VMENTRY and VMEXIT from the vcpu_enter_
guest() function. That said, VMENTRY ([vmx_vcpu_run or svm_vcpu_run])
is just a guest OS executing in the CPU; different intercepted events can occur at this
stage, causing VMEXIT. If this happens, any vmx_handle_exit or handle_exit
function call will start looking into this exit cause. We have already discussed the reasons
for VMEXIT in previous sections. Once there is VMEXIT, the exit reason is analyzed and
action is taken accordingly.

vmx_handle_exit() is the function responsible for handling the exit reason:

static int vmx_handle_exit(struct kvm_vcpu *vcpu, , fastpath_t
exit_fastpath)

{

….. }

static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu
*vcpu) = {

 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,

 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_
interrupt,

 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_
fault,

 [EXIT_REASON_IO_INSTRUCTION] = handle_io,

 [EXIT_REASON_CR_ACCESS] = handle_cr,

 [EXIT_REASON_VMCALL] = handle_vmcall,

 [EXIT_REASON_VMCLEAR] = handle_vmclear,

 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,

…

}

Execution flow of vCPU 63

kvm_vmx_exit_handlers[] is the table of virtual machine exit handlers, indexed by
exit reason. Similar to Intel, the svm code has handle_exit():

static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_
fastpath)

{

 struct vcpu_svm *svm = to_svm(vcpu);

 struct kvm_run *kvm_run = vcpu->run;

 u32 exit_code = svm->vmcb->control.exit_code;

….

 return svm_exit_handlers[exit_code](svm);

}

handle_exit() has the svm_exit_handler array, as shown in the following
section.

If needed, KVM has to fall back to the userspace (QEMU) to perform the emulation
as some of the instructions have to be performed on the QEMU emulated devices. For
example, to emulate I/O port access, the control goes to the userspace (QEMU):

kvm-all.c:

static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) =
{

 [SVM_EXIT_READ_CR0] = cr_interception,

 [SVM_EXIT_READ_CR3] = cr_interception,

 [SVM_EXIT_READ_CR4] = cr_interception,

….

}

switch (run->exit_reason) {

 case KVM_EXIT_IO:

 DPRINTF("handle_io\n");

 /* Called outside BQL */

 kvm_handle_io(run->io.port, attrs,

 (uint8_t *)run + run->io.data_
offset,

 run->io.direction,

 run->io.size,

64 KVM as a Virtualization Solution

 run->io.count);

 ret = 0;

 break;

This chapter was a bit source code-heavy. Sometimes, digging in and checking the source
code is just about the only way to understand how something works. Hopefully, this
chapter managed to do just that.

Summary
In this chapter, we covered the inner workings of KVM and its main partners in Linux
virtualization – libvirt and QEMU. We discussed various types of virtualization – binary
translation, full, paravirtualization, and hardware-assisted virtualization. We checked a
bit of kernel, QEMU, and libvirt source code to learn about their interaction from inside.
This gave us the necessary technical know-how to understand the topics that will follow in
this book – everything ranging from how to create virtual machines and virtual networks
to scaling the virtualization idea to a cloud concept. Understanding these concepts
will also make it much easier for you to understand the key goal of virtualization from
an enterprise company's perspective – how to properly design a physical and virtual
infrastructure, which will slowly but surely be introduced as a concept throughout this
book. Now that we've covered the basics about how virtualization works, it's time to move
on to a more practical subject – how to deploy the KVM hypervisor, management tools,
and oVirt. We'll do this in the next chapter.

Questions
1. What is paravirtualization?

2. What is full virtualization?

3. What is hardware-assisted virtualization?

4. What is the primary goal of libvirt?

5. What does KVM do? What about QEMU?

Further reading 65

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• Binary translation: https://pdfs.semanticscholar.org/
d6a5/1a7e73f747b309ef5d44b98318065d5267cf.pdf

• Virtualization basics: http://dsc.soic.indiana.edu/publications/
virtualization.pdf

• KVM: https://www.redhat.com/en/topics/virtualization/what-
is-KVM

• QEMU: https://www.qemu.org/

• Understanding full virtualization, paravirtualization, and hardware assist:
https://www.vmware.com/content/dam/digitalmarketing/
vmware/en/pdf/techpaper/VMware_paravirtualization.pdf

https://pdfs.semanticscholar.org/d6a5/1a7e73f747b309ef5d44b98318065d5267cf.pdf
https://pdfs.semanticscholar.org/d6a5/1a7e73f747b309ef5d44b98318065d5267cf.pdf
http://dsc.soic.indiana.edu/publications/virtualization.pdf
http://dsc.soic.indiana.edu/publications/virtualization.pdf
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.qemu.org/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf

Section 2:
libvirt and ovirt for

Virtual Machine
Management

In this part of the book, you will get a complete understanding of how to install, configure,
and manage a KVM hypervisor using libvirt. You will get advanced knowledge of
KVM infrastructure components, such as networking, storage, and virtual hardware
configuration. As part of the learning process, you will also get a thorough knowledge of
virtual machine life cycle management and virtual machine migration techniques, as well
as virtual machine disk management. At the end of part 2, you will be well acquainted with
the libvirt command-line management tool virsh and the GUI tool virt-manager.

This part of the book comprises the following chapters:

• Chapter 3, Installing KVM Hypervisor, libvirt, and ovirt

• Chapter 4, Libvirt Networking

• Chapter 5, Libvirt Storage

• Chapter 6, Virtual Display Devices and Protocols

• Chapter 7, Virtual Machines Installation, Configuration, and Life Cycle Management

• Chapter 8, Creating and Modifying VM Disks, Templates, and Snapshots

3
Installing KVM

Hypervisor, libvirt,
and oVirt

This chapter provides you with an insight into the main topic of our book, which is the
Kernel Virtual Machine (KVM) and its management tools, libvirt and oVirt. We will
also learn how to do a complete installation of these tools from scratch using a basic
deployment of CentOS 8. You'll find this to be a very important topic as there will be
situations where you just don't have all of the necessary utilities installed – especially
oVirt, as this is a completely separate part of the overall software stack, and a free
management platform for KVM. As oVirt has a lot of moving parts – Python-based
daemons and supporting utilities, libraries, and a GUI frontend – we will include a
step-by-step guide to make sure that you can install oVirt with ease.

70 Installing KVM Hypervisor, libvirt, and oVirt

In this chapter, we will cover the following topics:

• Getting acquainted with QEMU and libvirt

• Getting acquainted with oVirt

• Installing QEMU, libvirt, and oVirt

• Starting a virtual machine using QEMU and libvirt

Let's get started!

Getting acquainted with QEMU and libvirt
In Chapter 2, KVM as a Virtualization Solution, we started discussing KVM, QEMU,
and various additional utilities that we can use to manage our KVM-based virtualization
platform. As a machine emulator, QEMU will be used so that we can create and run our
virtual machines on any supported platform – be it as an emulator or virtualizer. We're
going to focus our time on the second paradigm, which is using QEMU as a virtualizer.
This means that we will be able to execute our virtual machine code directly on a hardware
CPU below it, which means native or near-native performance and less overhead.

Bearing in mind that the overall KVM stack is built as a module, it shouldn't come as
a surprise that QEMU also uses a modular approach. This has been a core principle in
the Linux world for many years, which further boosts the efficiency of how we use our
physical resources.

When we add libvirt as a management platform on top of QEMU, we get access to some
cool new utilities such as the virsh command, which we can use to do virtual machine
administration, virtual network administration, and a whole lot more. Some of the
utilities that we're going to discuss later on in this book (for example, oVirt) use libvirt as
a standardized set of libraries and utilities to make their GUI-magic possible – basically,
they use libvirt as an API. There are other commands that we get access to for a variety of
purposes. For example, we're going to use a command called virt-host-validate to
check whether our server is compatible with KVM or not.

Getting acquainted with oVirt 71

Getting acquainted with oVirt
Bear in mind that most of the work that a sizeable percentage of Linux system
administrators do is done via command-line utilities, libvirt, and KVM. They offer us a
good set of tools to do everything that we need from the command line, as we're going
to see in next part of this chapter. But also, we will get a hint as to what GUI-based
administration can be like, as we're briefly going to discuss Virtual Machine Manager
later in this chapter.

However, that still doesn't cover a situation in which you have loads of KVM-based hosts,
hundreds of virtual machines, dozens of virtual networks interconnecting them, and
a rack full of storage devices that you need to integrate with your KVM environment.
Using the aforementioned utilities is just going to introduce you to a world of pain as
you scale your environment out. The primary reason for this is rather simple – we still
haven't introduced any kind of centralized software package for managing KVM-based
environments. When we say centralized, we mean that in a literal sense – we need some
kind of software solution that can connect to multiple hypervisors and manage all of their
capabilities, including network, storage, memory, and CPU or, what we sometimes refer to
as the four pillars of virtualization. This kind of software would preferably have some kind
of GUI interface from which we can centrally manage all of our KVM resources, because
– well – we're all human. Quite a few of us prefer pictures to text, and interactivity to
text-administration only, especially at scale.

This is where the oVirt project comes in. oVirt is an open source platform for the
management of our KVM environment. It's a GUI-based tool that has a lot of moving
parts in the background – the engine runs on a Java-based WildFly server (what used
to be known as JBoss), the frontend uses a GWT toolkit, and so on. But all of them are
there to make one thing possible – for us to manage a KVM-based environment from
a centralized, web-based administration console.

From an administration standpoint, oVirt has two main building blocks – the engine
(which we can connect to by using a GUI interface) and its agents (which are used to
communicate with hosts). Let's describe their functionalities in brief.

72 Installing KVM Hypervisor, libvirt, and oVirt

The oVirt engine is the centralized service that can be used to perform anything that we
need in a virtualized environment – manage virtual machines, move them, create images,
storage administration, virtual network administration, and so on. This service is used to
manage oVirt hosts and to do that, it needs to talk to something on those hosts. This is
where the oVirt agent (vdsm) comes into play.

Some of the available advanced functionalities of the oVirt engine include the following:

• Live migration of virtual machines

• Image management

• Export and import of virtual machines (OVF format)

• Virtual-to-virtual conversion (V2V)

• High availability (restart virtual machines from failed hosts on remaining hosts in
the cluster)

• Resource monitoring

Obviously, we need to deploy an oVirt agent and related utilities to our hosts, which are
going to be the main part of our environment and a place where we will host everything
– virtual machines, templates, virtual networks, and so on. For that purpose, oVirt uses
a specific agent-based mechanism, via an agent called vdsm. This is an agent that we will
deploy to our CentOS 8 hosts so that we can add them to oVirt's inventory, which, in turn,
means that we can manage them by using the oVirt engine GUI. Vdsm is a Python-based
agent that the oVirt engine uses so that it can directly communicate with a KVM host, and
vdsm can then talk to the locally installed libvirt engine to do all the necessary operations.
It's also used for configuration purposes as hosts need to be configured to be used in
the oVirt environment in order to configure virtual networks, storage management
and access, and so on. Also, vdsm has Memory Overcommitment Manager (MOM)
integration so that it can efficiently manage memory on our virtualization hosts.

Installing QEMU, libvirt, and oVirt 73

In graphical terms, this is what the architecture of oVirt looks like:

Figure 3.1 – The oVirt architecture (source: http://ovirt.org)

We will take care of how to install oVirt in the next chapter. If you've ever heard or used
a product called Red Hat Enterprise Virtualization, it might look very, very familiar.

Installing QEMU, libvirt, and oVirt
Let's start our discussion about installing QEMU, libvirt, and oVirt with some basic
information:

• We're going to use CentOS 8 for everything in this book (apart from some bits and
pieces that only support CentOS 7 as the last supported version at the time of writing).

• Our default installation profile is always going to be Server with GUI, with the
premise being that we're going to cover both GUI and text-mode utilities to do
almost everything that we're going to do in this book.

• Everything that we need to install on top of our default Server with GUI installation
is going to be installed manually so that we have a complete, step-by-step guide for
everything that we do.

74 Installing KVM Hypervisor, libvirt, and oVirt

• All the examples that we're going to cover in this book can be installed on a single
physical server with 16 physical cores and 64 GB of memory. If you modify some
numbers (number of cores assigned to virtual machines, amount of memory
assigned to some virtual machines, and so on), you could do this with a 6-core
laptop and 16 GB of memory, provided that you're not running all the virtual
machines all the time. If you shut the virtual machines down after you've completed
this chapter and start the necessary ones in the next chapter, you'll be fine with that.
In our case, we used a HP ProLiant DL380p Gen8, an easy-to-find, second-hand
server – and a quite cheap one at that.

After going through a basic installation of our server – selecting the installation profile,
assigning network configuration and root password, and adding additional users (if we need
them) – we're faced with a system that we can't do virtualization with because it doesn't
have all of the necessary utilities to run KVM virtual machines. So, the first thing that we're
going to do is a simple installation of the necessary modules and base applications so that
we can check whether our server is compatible with KVM. So, log into your server as an
administrative user and issue the following command:

yum module install virt

dnf install qemu-img qemu-kvm libvirt libvirt-client virt-
manager virt-install virt-viewer -y

We also need to tell the kernel that we're going to use IOMMU. This is achieved by
editing /etc/default/grub file, finding the GRUB_CMDLINE_LINUX and adding
a statement at the end of this line:

intel_iommu=on

Don't forget to add a single space before adding the line. Next step is reboot, so, we need
to do:

systemctl reboot

By issuing these commands, we're installing all the necessary libraries and binaries to
run our KVM-based virtual machines, as well as to use virt-manager (the GUI libvirt
management utility) to manage our KVM virtualization server.

Also, by adding the IOMMU configuration, we're making sure that our host sees the
IOMMU and doesn't throw us an error when we use virt-host-validate command

Installing QEMU, libvirt, and oVirt 75

After that, let's check whether our host is compatible with all the necessary KVM
requirements by issuing the following command:

virt-host-validate

This command goes through multiple tests to determine whether our server is compatible
or not. We should get an output like this:

Figure 3.2 – virt-host-validate output

This shows that our server is ready for KVM. So, the next step, now that all the necessary
QEMU/libvirt utilities are installed, is to do some pre-flight checks to see whether
everything that we installed was deployed correctly and works like it should. We will
run the virsh net-list and virsh list commands to do this, as shown in the
following screenshot:

Figure 3.3 – Testing KVM virtual networks and listing the available virtual machines

By using these two commands, we checked whether our virtualization host has a correctly
configured default virtual network switch/bridge (more about this in the next chapter), as
well as whether we have any virtual machines running. We have the default bridge and no
virtual machines, so everything is as it should be.

76 Installing KVM Hypervisor, libvirt, and oVirt

Installing the first virtual machine in KVM
We can now start using our KVM virtualization server for its primary purpose – to run
virtual machines. Let's start by deploying a virtual machine on our host. For this purpose,
we copied a CentOS 8.0 ISO file to our local folder called /var/lib/libvirt/
images, which we're going to use to create our first virtual machine. We can do that
from the command line by using the following command:

virt-install --virt-type=kvm --name MasteringKVM01 --vcpus
2 --ram 4096 --os-variant=rhel8.0 --cdrom=/var/lib/libvirt/
images/ CentOS-8-x86_64-1905-dvd1.iso --network=default
--graphics vnc --disk size=16

There are some parameters here that might be a bit confusing. Let's start with the
--os-variant parameter, which describes which guest operating system you want
to install by using the virt-install command. If you want to get a list of supported
guest operating systems, run the following command:

osinfo-query os

The --network parameter is related to our default virtual bridge (we mentioned this
earlier). We definitely want our virtual machine to be network-connected, so we picked
this parameter to make sure that it's network-connected out of the box.

After starting the virt-install command, we should be presented with a VNC
console window to follow along with the installation procedure. We can then select
the language used, keyboard, time and date, and installation destination (click on the
selected disk and press Done in the top-left corner). We can also activate the network
by going to Network & Host Name, clicking on the OFF button, selecting Done
(which will then switch to the ON position), and connecting our virtual machine to the
underlying network bridge (default). After that, we can press Begin Installation and let
the installation process finish. While waiting for that to happen, we can click on Root
Password and assign a root password for our administrative user.

If all of this seems a bit like manual labor to you, we feel your pain. Imagine having
to deploy dozens of virtual machines and clicking on all these settings. We're not in
the 19th century anymore, so there must be an easier way to do this.

Installing QEMU, libvirt, and oVirt 77

Automating virtual machine installation
By far, the simplest and the easiest way to do these things in a more automatic fashion
would be to create and use something called a kickstart file. A kickstart file is basically
a text configuration file that we can use to configure all the deployment settings of our
server, regardless of whether we're talking about a physical or a virtual server. The only
caveat is that kickstart files need to be pre-prepared and widely available – either on the
network (web) or on a local disk. There are other options that are supported, but these
are the most commonly used ones.

For our purpose, we're going to use a kickstart file that's available on the network (via
the web server), but we're going to edit it a little bit so that it's usable, and leave it on our
network where virt-install can use it.

When we installed our physical server, as part of the installation process (called
anaconda), a file was saved in our /root directory called anaconda-ks.cfg. This is
a kickstart file that contains the complete deployment configuration of our physical server,
which we can then use as a basis to create a new kickstart file for our virtual machines.

The simplest way to do that in CentOS 7 was to deploy a utility called system-config-
kickstart, which is not available anymore in CentOS 8. There's a replacement online
utility at https://access.redhat.com/labs/kickstartconfig/ called
Kickstart Generator, but you need to have a Red Hat Customer Portal account for that
one. So, if you don't have that, you're stuck with text-editing an existing kickstart file.
It's not very difficult, but it might take a bit of effort. The most important setting that we
need to configure correctly is related to the location that we're going to install our virtual
machine from – on a network or from a local directory (as we did in our first virt-
install example, by using a CentOS ISO from local disk). If we're going to use an ISO
file locally stored on the server, then it's an easy configuration. First, we're going to deploy
the Apache web server so that we can host our kickstart file online (which will come in
handy later). So, we need the following commands:

dnf install httpd

systemctl start httpd

systemctl enable httpd

cp /root/anaconda-ks.cfg /var/www/html/ks.cfg

chmod 644 /var/www/html/ks.cfg

https://access.redhat.com/labs/kickstartconfig/

78 Installing KVM Hypervisor, libvirt, and oVirt

Before we start the deployment process, use the vi editor (or any other editor you prefer)
to edit the first configuration line in our kickstart file (/var/www/html/ks.cfg),
which says something like ignoredisk --only-use=sda, to ignoredisk
--only-use=vda. This is because virtual KVM machines don't use sd* naming for
devices, but vd naming. This makes it easier for any administrator to figure out if they
are administering a physical or a virtual server after connecting to it.

By editing the kickstart file and using these commands, we installed and started httpd
(Apache web server). Then, we permanently started it so that it gets started after every
next server reboot. Then, we copied our default kickstart file (anaconda-ks.cfg) to
Apache's DocumentRoot directory (the directory that Apache serves its files from) and
changed permissions so that Apache can actually read that file when a client requests it. In
our example, the client that's going to use it is going to be the virt-install command.
The server that we're using to illustrate this feature has an IP address of 10.10.48.1,
which is what we're going to use for our kickstart URL. Bear in mind that the default
KVM bridge uses IP address 192.168.122.1, which you can easily check with the
ip command:

ip addr show virbr0

Also, there might be some firewall settings that will need to be changed on the physical
server (accepting HTTP connections) so that the installer can successfully get the
kickstart file. So, let's try that. In this and the following examples, pay close attention to
the --vcpus parameter (the number of virtual CPU cores for our virtual machine) as
you might want to change that to your environment. In other words, if you don't have 4
cores, make sure that you lower the core count. We are just using this as an example:

virt-install --virt-type=kvm --name=MasteringKVM02 --ram=4096
--vcpus=4 --os-variant=rhel8.0 --location=/var/lib/libvirt/
images/ CentOS-8-x86_64-1905-dvd1.iso --network=default
--graphics vnc --disk size=16 -x "ks=http://10.10.48.1/ks.cfg"

Installing QEMU, libvirt, and oVirt 79

Important note
Please take note of the parameter that we changed. Here, we must use the
--location parameter, not the --cdrom parameter, as we're injecting a
kickstart configuration into the boot process (it's mandatory to do it this way).

After the deployment process is done, we should have two fully functional virtual
machines called MasteringKVM01 and MasteringKVM02 on our server, ready to be
used for our future demonstrations. The second virtual machine (MasteringKVM02)
will have the same root password as the first one because we didn't change anything in
the kickstart file except for the virtual disk option. So, after deployment, we can log into
our MasteringKVM02 machine by using the root username and password from the
MasteringKVM01 machine.

If we wanted to take this a step further, we could create a shell script with a loop that's
going to automatically give unique names to virtual machines by using indexing. We can
easily implement this by using a for loop and its counter:

#!/bin/bash

for counter in {1..5}

do

 echo "deploying VM $counter"

virt-install --virt-type=kvm --name=LoopVM$counter --ram=4096
--vcpus=4 --os-variant=rhel8.0 --location=/var/lib/libvirt/
images/CentOS-8-x86_64-1905-dvd1.iso --network=default
--graphics vnc --disk size=16 -x "ks=http://10.10.48.1/ks.cfg"

done

When we execute this script (don't forget to chmod it to 755!), we should get 10 virtual
machines named LoopVM1-LoopVM5, all with the same settings, which includes the
same root password.

80 Installing KVM Hypervisor, libvirt, and oVirt

If we're using a GUI server installation, we can use GUI utilities to administer our KVM
server. One of these utilities is called Virtual Machine Manager, and it's a graphical utility
that enables you to do pretty much everything you need for your basic administration
needs: manipulate virtual networks and virtual machines, open a virtual machine console,
and so on. This utility is accessible from GNOME desktop – you can use the Windows
search key on your desktop and type in virtual, click on Virtual Machine Manager,
and start using it. This is what Virtual Machine Manager looks like:

Figure 3.4 – Virtual Machine Manager

Now that we've covered the basic command-line utilities (virsh and virt-install)
and have a very simple-to-use GUI application (Virtual Machine Manager), let's move
away from that perspective a bit and think about what we said about oVirt and managing
a lot of hosts, virtual machines, networks, and storage devices. So, now, let's discuss how
to install oVirt, which we will then use to manage our KVM-based environments in a
much more centralized fashion.

Installing oVirt
There are different methods of installing oVirt. We can either deploy it as a self-hosted
engine (via the Cockpit web interface or CLI) or as a standalone application via package-
based installation. Let's use the second way for this example – a standalone installation in
a virtual machine. We're going to split the installation into two parts:

1. Installing the oVirt engine for centralized management

2. Deploying oVirt agents on our CentOS 8-based hosts

Installing QEMU, libvirt, and oVirt 81

First, let's deal with oVirt engine deployment. Deployment is simple enough, and people
usually use one virtual machine for this purpose. Keeping in mind that CentOS 8 is not
supported for oVirt, in our CentOS 8 virtual machine, we need to punch in a couple
of commands:

yum install https://resources.ovirt.org/pub/yum-repo/ovirt-
release44.rpm

yum -y module enable javapackages-tools pki-deps postgresql:12

yum -y update

yum -y install ovirt-engine

Again, this is just the installation part; we haven't done any configuration as of yet. So,
that's our logical next step. We need to start a shell application called engine-setup,
which is going to ask us 20 or so questions. They're rather descriptive and explanations are
actually provided by the engine setup directly, so these are the settings that we've used for
our testing environment (FQDN will be different in your environment):

Figure 3.5 – oVirt configuration settings

82 Installing KVM Hypervisor, libvirt, and oVirt

After typing in OK, the engine setup will start. The end result should look something
like this:

Figure 3.6 – oVirt engine setup summary

Now, we should be able to log into our oVirt engine by using a web browser and pointing
it to the URL mentioned in the installation summary. During the installation process,
we're asked to provide a password for the admin@internal user – this is the oVirt
administrative user that we're going to use to manage our environment. The oVirt web
interface is simple enough to use, and for the time being, we just need to log into the
Administration Portal (a link is directly available on the oVirt engine web GUI before
you try to log in). After logging in, we should be greeted with the oVirt GUI:

Figure 3.7 – oVirt Engine Administration Portal

Starting a virtual machine using QEMU and libvirt 83

We have various tabs on the left-hand side of the screen – Dashboard, Compute,
Network, Storage, and Administration – and each and every one of these has a
specific purpose:

• Dashboard: The default landing page. It contains the most important information,
a visual representation of the state of the health of our environment, and some basic
information, including the amount of virtual data centers that we're managing,
clusters, hosts, data storage domains, and so on.

• Compute: We go to this page to manage hosts, virtual machines, templates, pools,
data centers, and clusters.

• Network: We go to this page to manage our virtualized networks and profiles.

• Storage: We go to this page to manage storage resources, including disks, volumes,
domains, and data centers.

• Administration: For the administration of users, quotas, and so on.

We will deal with many more oVirt-related operations in Chapter 7, Virtual Machine
– Installation, Configuration, and Life Cycle Management, which is all about oVirt. But
for the time being, let's keep the oVirt engine up and running so that we can come back
to it later and use it for all of our day-to-day operations in our KVM-based virtualized
environment.

Starting a virtual machine using QEMU
and libvirt
After the deployment process, we can start managing our virtual machines. We will use
MasteringKVM01 and MasteringKVM02 as an example. Let's start them by using the
virsh command, along with the start keyword:

Figure 3.8 – Using the virsh start command

84 Installing KVM Hypervisor, libvirt, and oVirt

Let's say that we created all five of our virtual machines from the shell script example and
that we left them powered on. We can easily check their status by issuing a simple virsh
list command:

Figure 3.9 – Using the virsh list command

If we want to gracefully shut down the MasteringKVM01 virtual machine, we can do so
by using the virsh shutdown command:

Figure 3.10 – Using the virsh shutdown command

If we want to forcefully shut down the MasteringKVM02 virtual machine, we can do so
by using the virsh destroy command:

Figure 3.11 – Using the virsh destroy command

If we want to completely remove a virtual machine (for example, MasteringKVM02),
you'd normally shut it down first (gracefully or forcefully) and then use the virsh
undefine command:

Starting a virtual machine using QEMU and libvirt 85

Figure 3.12 – Using the virsh destroy and undefine commands

Bear in mind that you can actually do virsh undefine first, and then destroy, and
that the end result is going to be the same. However, that may go against the expected
behavior in which you first shut down an object before you actually remove it.

We just learned how to use the virsh command to manage a virtual machine – start it
and stop it – forcefully and gracefully. This will come in handy when we start extending
our knowledge of using the virsh command in the following chapters, in which we're
going to learn how to manage KVM networking and storage.

We could do all these things from the GUI as well. As you may recall, earlier in this
chapter, we installed a package called virt-manager. That's actually a GUI application
for managing your KVM host. Let's use that to play with our virtual machines some more.
This is the basic GUI interface of virt-manager:

Figure 3.13 – The virt-manager GUI – we can see the list of registered
virtual machines and start managing them

86 Installing KVM Hypervisor, libvirt, and oVirt

If we want to do our regular operations on a virtual machine – start, restart, shut down,
turn off – we just need to right-click it and select that option from the menu. For all
the operations to become visible, first, we must start a virtual machine; otherwise, only
four actions are usable out of the available seven – Run, Clone, Delete, and Open.
The Pause, Shut Down sub-menu, and Migrate options will be grayed-out as they can
only be used on a virtual machine that's powered on. So, after we – for example – start
MasteringKVM01, the list of available options is going to get quite a bit bigger:

Figure 3.14 – The virt-manager options – after powering the virtual machine on,
we can now use many more options

We will use virt-manager for various operations throughout this book, so make sure
that you familiarize yourself with it. It is going to make our administrative jobs quite a bit
easier in many situations.

Summary 87

Summary
In this chapter, we laid some basic groundwork and prerequisites for practically
everything that we're going to do in the remaining chapters of this book. We learned how
to install KVM and a libvirt stack. We also learned how to deploy oVirt as a GUI tool to
manage our KVM hosts.

The next few chapters will take us in a more technical direction as we will cover
networking and storage concepts. In order to do that, we will have to take a step back
and learn or review our previous knowledge about networking and storage as these are
extremely important concepts for virtualization, and especially the cloud.

Questions
1. How can we validate whether our host is compatible with the KVM requirements?

2. What's the name of oVirt's default landing page?

3. Which command can we use to manage virtual machines from the command line?

4. Which command can we use to deploy virtual machines from the command line?

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• Kickstart Generator: https://access.redhat.com/labs/
kickstartconfig/. Just to remind you, you need to have a RedHat support
account to access this link.

• oVirt: https://www.ovirt.org/.

https://access.redhat.com/labs/kickstartconfig/
https://access.redhat.com/labs/kickstartconfig/
https://www.ovirt.org/

4
Libvirt Networking

Understanding how virtual networking works is really essential for virtualization. It would
be very hard to justify the costs associated with a scenario in which we didn't have virtual
networking. Just imagine having multiple virtual machines on a virtualization host and
buying network cards so that every single one of those virtual machines can have their
own dedicated, physical network port. By implementing virtual networking, we're also
consolidating networking in a much more manageable way, both from an administration
and cost perspective.

This chapter provides you with an insight into the overall concept of virtualized networking
and Linux-based networking concepts. We will also discuss physical and virtual networking
concepts, try to compare them, and find similarities and differences between them. Also
covered in this chapter is the concept of virtual switching for a per-host concept and
spanned-across-hosts concept, as well as some more advanced topics. These topics include
single-root input/output virtualization, which allows for a much more direct approach to
hardware for certain scenarios. We will come back to some of the networking concepts
later in this book as we start discussing cloud overlay networks. This is because the basic
networking concepts aren't scalable enough for large cloud environments.

In this chapter, we will cover the following topics:

• Understanding physical and virtual networking

• Using TAP/TUN

• Implementing Linux bridging

90 Libvirt Networking

• Configuring Open vSwitch

• Understanding and configuring SR-IOV

• Understanding macvtap

• Let's get started!

Understanding physical and virtual networking
Let's think about networking for a second. This is a subject that most system
administrators nowadays understand pretty well. This might not up to the level many
of us think we do, but still – if we were to try to find an area of system administration
where we'd find the biggest common level of knowledge, it would be networking.

So, what's the problem with that?

Actually, nothing much. If we really understand physical networking, virtual networking
is going to be a piece of cake for us. Spoiler alert: it's the same thing. If we don't, it's going
to be exposed rather quickly, because there's no way around it. And the problems are
going to get bigger and bigger as time goes by because environments evolve and – usually
– grow. The bigger they are, the more problems they're going to create, and the more time
you're going to spend in debugging mode.

That being said, if you have a firm grasp of VMware or Microsoft-based virtual
networking purely at a technological level, you're in the clear here as all of these
concepts are very similar.

With that out of the way, what's the whole hoopla about virtual networking? It's actually
about understanding where things happen, how, and why. This is because, physically
speaking, virtual networking is literally the same as physical networking. Logically
speaking, there are some differences that relate more to the topology of things than to the
principle or engineering side of things. And that's what usually throws people off a little
bit – the fact that there are some weird, software-based objects that do the same job as the
physical objects that most of us have grown used to managing via our favorite CLI-based
or GUI-based utilities.

First, let's introduce the basic building block of virtualized networking – a virtual switch.
A virtual switch is basically a software-based Layer 2 switch that you use to do two things:

• Hook up your virtual machines to it.

• Use its uplinks to connect them to physical server cards so that you can hook these
physical network cards to a physical switch.

Virtual networking 91

So, let's deal with why we need these virtual switches from the virtual machine
perspective. As we mentioned earlier, we use a virtual switch to connect virtual machines
to it. Why? Well, if we didn't have some kind of software object that sits in-between our
physical network card and our virtual machine, we'd have a big problem – we could
only connect virtual machines for which we have physical network ports to our physical
network, and that would be intolerable. First, it goes against some of the basic principles
of virtualization, such as efficiency and consolidation, and secondly, it would cost a lot.
Imagine having 20 virtual machines on your server. This means that, without a virtual
switch, you'd have to have at least 20 physical network ports to connect to the physical
network. On top of that, you'd actually use 20 physical ports on your physical switch as
well, which would be a disaster.

So, by introducing a virtual switch between a virtual machine and a physical network
port, we're solving two problems at the same time – we're reducing the number of physical
network adapters that we need per server, and we're reducing the number of physical
switch ports that we need to use to connect our virtual machines to the network. We
can actually argue that we're solving a third problem as well – efficiency – as there are
many scenarios where one physical network card can handle being an uplink for 20
virtual machines connected to a virtual switch. Specifically, there are large parts of our
environments that don't consume a lot of network traffic and for those scenarios, virtual
networking is just amazingly efficient.

Virtual networking
Now, in order for that virtual switch to be able to connect to something on a virtual
machine, we have to have an object to connect to – and that object is called a virtual
network interface card, often referred to as a vNIC. Every time you configure a virtual
machine with a virtual network card, you're giving it the ability to connect to a virtual
switch that uses a physical network card as an uplink to a physical switch.

Of course, there are some potential drawbacks to this approach. For example, if you have
50 virtual machines connected to the same virtual switch that uses the same physical
network card as an uplink and that uplink fails (due to a network card issue, cable issue,
switch port issue, or switch issue), your 50 virtual machines won't have access to the
physical network. How do we get around this problem? By implementing a better design
and following the basic design principles that we'd use on a physical network as well.
Specifically, we'd use more than one physical uplink to the same virtual switch.

92 Libvirt Networking

Linux has a lot of different types of networking interfaces, something like 20 different
types, some of which are as follows:

• Bridge: Layer 2 interface for (virtual machine) networking.

• Bond: For combining network interfaces to a single interface (for balancing and
failover reasons) into one logical interface.

• Team: Different to bonding, teaming doesn't create one logical interface, but can
still do balancing and failover.

• MACVLAN: Creates multiple MAC addresses on a single physical interface
(creates subinterfaces) on Layer 2.

• IPVLAN: Unlike MACVLAN, IPVLAN uses the same MAC address and
multiplexes on Layer 3.

• MACVTAP/IPVTAP: Newer drivers that should simplify virtual networking by
combining TUN, TAP, and bridge as a single module.

• VXLAN: A commonly used cloud overlay network concept that we will describe in
detail in Chapter 12, Scaling Out KVM with OpenStack.

• VETH: A virtual Ethernet interface that can be used in a variety of ways for
local tunneling.

• IPOIB: IP over Infiniband. As Infiniband gains traction in HPC/low latency
networks, this type of networking is also supported by the Linux kernel.

There are a whole host of others. Then, on top of these network interface types, there are
some 10 types of tunneling interfaces, some of which are as follows:

• GRETAP, GRE: Generic Routing Encapsulation protocols for encapsulating Layer 2
and Layer 3 protocols, respectively.

• GENEVE: A convergence protocol for cloud overlay networking that's meant to
fuse VXLAN, GRE, and others into one. This is why it's supported in Open vSwitch,
VMware NSX, and other products.

• IPIP: IP over IP tunnel for connecting internal IPv4 subnets via a public network.

• SIT: Simple Internet Translation for interconnecting isolated IPv6 networks
over IPv4.

• ip6tnl: IPv4/6 tunnel over IPv6 tunnel interface.

• IP6GRE, IP6GRETAP, and others.

Virtual networking 93

Getting your head around all of them is quite a complex and tedious process, so, in this
book, we're only going to focus on the types of interfaces that are really important to us
for virtualization and (later in this book) the cloud. This is why we will discuss VXLAN
and GENEVE overlay networks in Chapter 12, Scaling Out KVM with OpenStack, as we
need to have a firm grip on Software-Defined Networking (SDN) as well.

So, specifically, as part of this chapter, we're going to cover TAP/TUN, bridging,
Open vSwitch, and macvtap interfaces as these are fundamentally the most important
networking concepts for KVM virtualization.

But before we dig deep into that, let's explain a couple of basic virtual network concepts
that apply to KVM/libvirt networking and other virtualization products (for example,
VMware's hosted virtualization products such as Workstation or Player use the same
concept). When you start configuring libvirt networking, you can choose between three
basic types: NAT, routed, and isolated. Let's discuss what these networking modes do.

Libvirt NAT network
In a NAT libvirt network (and just to make sure that we mention this, the default
network is configured like this), our virtual machine is behind a libvirt switch in NAT
mode. Think of your I have an internet connection @home scenario – that's exactly what
most of us have: our own private network behind a public IP address. This means that
our device for accessing the internet (for example, DSL modem) connects to the public
network (internet) and gets a public IP address as a part of that process. On our side of
the network, we have our own subnet (for example, 192.168.0.0/24 or something like
that) for all the devices that we want to connect to the internet.

Now, let's convert that into a virtualized network example. In our virtual machine
scenario, this means that our virtual machine can communicate with anything that's
connected to the physical network via host's IP address, but not the other way around.
For something to communicate to our virtual machine behind a NAT'd switch, our virtual
machine has to initiate that communication (or we have to set up some kind of port
forwarding, but that's beside the point).

94 Libvirt Networking

The following diagram might explain what we're talking about a bit better:

Figure 4.1 – libvirt networking in NAT mode

From the virtual machine perspective, it's happily sitting in a completely separate network
segment (hence the 192.168.122.210 and 220 IP addresses) and using a virtual
network switch as its gateway to access external networks. It doesn't have to be concerned
with any kind of additional routing as that's one of the reasons why we use NAT – to
simplify endpoint routing.

Libvirt routed network
The second network type is a routed network, which basically means that our virtual
machine is directly connected to the physical network via a virtual switch. This means that
our virtual machine is in the same Layer 2/3 network as the physical host. This type of
network connection is used very often as, oftentimes, there is no need to have a separate
NAT network to access your virtual machines in your environments. In a way, it just
makes everything more complicated, especially because you have to configure routing to
be aware of the NAT network that you're using for your virtual machines. When using
routed mode, the virtual machine sits in the same network segment as the next physical
device. The following diagram tells a thousand words about routed networks:

Virtual networking 95

Figure 4.2 – libvirt networking in routed mode

Now that we've covered the two most commonly used types of virtual machine
networking scenarios, it's time for the third one, which will seem a bit obscure. If we
configure a virtual switch without any uplinks (which means it has no physical network
cards attached to it), then that virtual switch can't send traffic to the physical network
at all. All that's left is communication within the limits of that switch itself, hence the
name isolated. Let's create that elusive isolated network now.

Libvirt isolated network
In this scenario, virtual machines attached to the same isolated switch can communicate
with each other, but they cannot communicate with anything outside the host that they're
running on. We used the word obscure to describe this scenario earlier, but it really
isn't – in some ways, it's actually an ideal way of isolating specific types of traffic so
that it doesn't even get to the physical network.

Think of it this way – let's say that you have a virtual machine that hosts a web server,
for example, running WordPress. You create two virtual switches: one running routed
network (direct connection to the physical network) and another that's isolated. Then,
you can configure your WordPress virtual machine with two virtual network cards, with
the first one connected to the routed virtual switch and the second one connected to the
isolated virtual switch. WordPress needs a database, so you create another virtual machine
and configure it to use an internal virtual switch only. Then, you use that isolated virtual
switch to isolate traffic between the web server and the database server so that WordPress
connects to the database server via that switch. What did you get by configuring your
virtual machine infrastructure like this? You have a two-tier application, and the most
important part of that web application (database) is inaccessible from the outside world.
Doesn't seem like that bad of an idea, right?

96 Libvirt Networking

Isolated virtual networks are used in many other security-related scenarios, but this is just
an example scenario that we can easily identify with.

Let's describe our isolated network with a diagram:

Figure 4.3 – libvirt networking in isolated mode

The previous chapter (Chapter 3, Installing KVM Hypervisor, libvirt, and ovirt) of this book
mentioned the default network, and we said that we're going to talk about that a bit later.
This seems like an opportune moment to do so because now, we have more than enough
information to describe what the default network configuration is.

When we install all the necessary KVM libraries and utilities like we did in Chapter 3,
Installing KVM Hypervisor, libvirt, and oVirt, a default virtual switch gets configured
out of the box. The reason for this is simple – it's more user-friendly to pre-configure
something so that users can just start creating virtual machines and connecting them
to the default network than expect users to configure that as well. VMware's vSphere
hypervisor does the same thing (the default switch is called vSwitch0), and Hyper-V asks
us during the deployment process to configure the first virtual switch (which we can
actually skip and configure later). So, this is just a well-known, standardized, established
scenario that enables us to start creating our virtual machines faster.

Virtual networking 97

The default virtual switch works in NAT mode with the DHCP server active, and again,
there's a simple reason for that – guest operating systems are, by default pre-configured
with DHCP networking configuration, which means that the virtual machine that we just
created is going to poll the network for necessary IP configuration. This way, the VM gets
all the necessary network configuration and we can start using it right away.

The following diagram shows what the default KVM network does:

Figure 4.4 – libvirt default network in NAT mode

98 Libvirt Networking

Now, let's learn how to configure these types of virtual networking concepts from the
shell and from the GUI. We will treat this procedure as a procedure that needs to be
done sequentially:

1. Let's start by exporting the default network configuration to XML so that we can use
it as a template to create a new network:

Figure 4.5 – Exporting the default virtual network configuration

2. Now, let's copy that file to a new file called packtnat.xml, edit it, and then use
it to create a new NAT virtual network. Before we do that, however, we need to
generate two things – a new object UUID (for our new network) and a unique
MAC address. A new UUID can be generated from the shell by using the uuidgen
command, but generating a MAC address is a bit trickier. So, we can use the
standard Red Hat-proposed method available on the Red Hat website: https://
access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/6/html/virtualization_administration_guide/sect-
virtualization-tips_and_tricks-generating_a_new_unique_
mac_address. By using the first snippet of code available at that URL, create a
new MAC address (for example, 00:16:3e:27:21:c1).

By using yum command, install python2:
yum -y install python2

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/sect-virtualization-tips_and_tricks-generating_a_new_unique_mac_address
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/sect-virtualization-tips_and_tricks-generating_a_new_unique_mac_address
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/sect-virtualization-tips_and_tricks-generating_a_new_unique_mac_address
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/sect-virtualization-tips_and_tricks-generating_a_new_unique_mac_address
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/sect-virtualization-tips_and_tricks-generating_a_new_unique_mac_address

Virtual networking 99

Make sure that you change the XML file so that it reflects the fact that we are
configuring a new bridge (virbr1). Now, we can complete the configuration
of our new virtual machine network XML file:

Figure 4.6 – New NAT network configuration
The next step is importing this configuration.

3. We can now use the virsh command to import that configuration and create our
new virtual network, start that network and make it available permanently, and
check if everything loaded correctly:

virsh net-define packtnat.xml

virsh net-start packtnat

virsh net-autostart packtnat

virsh net-list

Given that we didn't delete our default virtual network, the last command should give us
the following output:

Figure 4.7 – Using virsh net-list to check which virtual networks we have on the KVM host

100 Libvirt Networking

Now, let's create two more virtual networks – a bridged network and an isolated network.
Again, let's use files as templates to create both of these networks. Keep in mind that, in
order to be able to create a bridged network, we are going to need a physical network
adapter, so we need to have an available physical adapter in the server for that purpose.
On our server, that interface is called ens224, while the interface called ens192 is
being used by the default libvirt network. So, let's create two configuration files called
packtro.xml (for our routed network) and packtiso.xml (for our isolated network):

Figure 4.8 – libvirt routed network definition

In this specific configuration, we're using ens224 as an uplink to the routed virtual
network, which would use the same subnet (192.168.2.0/24) as the physical
network that ens224 is connected to:

Figure 4.9 – libvirt isolated network definition

Just to cover our bases, we could have easily configured all of this by using the Virtual
Machine Manager GUI, as that application has a wizard for creating virtual networks
as well. But when we're talking about larger environments, importing XML is a much
simpler process, even when we forget about the fact that a lot of KVM virtualization
hosts don't have a GUI installed at all.

Using userspace networking with TAP and TUN devices 101

So far, we've discussed virtual networking from an overall host-level. However, there's
also a different approach to the subject – using a virtual machine as an object to which
we can add a virtual network card and connect it to a virtual network. We can use virsh
for that purpose. So, just as an example, we can connect our virtual machine called
MasteringKVM01 to an isolated virtual network:

virsh attach-interface --domain MasteringKVM01 --source
isolated --type network --model virtio --config --live

There are other concepts that allow virtual machine connectivity to a physical network,
and some of them we will discuss later in this chapter (such as SR-IOV). However, now
that we've covered the basic approaches to connecting virtual machines to a physical
network by using a virtual switch/bridge, we need to get a bit more technical. The thing is,
there are more concepts involved in connecting a virtual machine to a virtual switch, such
as TAP and TUN, which we will be covering in the following section.

Using userspace networking with TAP and
TUN devices
In Chapter 1, Understanding Linux Virtualization, we used the virt-host-validate
command to do some pre-flight checks in terms of the host's preparedness for KVM
virtualization. As a part of that process, some of the checks include checking if the
following devices exist:

• /dev/kvm: The KVM drivers create a /dev/kvm character device on the host to
facilitate direct hardware access for virtual machines. Not having this device means
that the VMs won't be able to access physical hardware, although it's enabled in the
BIOS and this will reduce the VM's performance significantly.

• /dev/vhost-net: The /dev/vhost-net character device will be created
on the host. This device serves as the interface for configuring the vhost-net
instance. Not having this device significantly reduces the virtual machine's
network performance.

• /dev/net/tun: This is another character special device used for creating TUN/
TAP devices to facilitate network connectivity for a virtual machine. The TUN/TAP
device will be explained in detail in future chapters. For now, just understand that
having a character device is important for KVM virtualization to work properly.

Let's focus on the last device, the TUN device, which is usually accompanied by a
TAP device.

102 Libvirt Networking

So far, all the concepts that we've covered include some kind of connectivity to a physical
network card, with isolated virtual networks being an exception. But even an isolated
virtual network is just a virtual network for our virtual machines. What happens when
we have a situation where we need our communication to happen in the user space,
such as between applications running on a server? It would be useless to patch them
through some kind of virtual switch concept, or a regular bridge, as that would just bring
additional overhead. This is where TUN/TAP devices come in, providing packet flow for
user space programs. Easily enough, an application can open /dev/net/tun and use
an ioctl() function to register a network device in the kernel, which, in turn, presents
itself as a tunXX or tapXX device. When the application closes the file, the network
devices and routes created by it disappear (as described in the kernel tuntap.txt
documentation). So, it's just a type of virtual network interface for the Linux operating
system supported by the Linux kernel – you can add an IP address and routes to it so that
traffic from your application can route through it, and not via a regular network device.

TUN emulates an L3 device by creating a communication tunnel, something like a point-
to-point tunnel. It gets activated when the tuntap driver gets configured in tun mode.
When you activate it, any data that you receive from a descriptor (the application that
configured it) will be data in the form of regular IP packages (as the most commonly used
case). Also, when you send data, it gets written to the TUN device as regular IP packages.
This type of interface is sometimes used in testing, development, and debugging for
simulation purposes.

The TAP interface basically emulates an L2 Ethernet device. It gets activated when the
tuntap driver gets configured in tap mode. When you activate it, unlike what happens
with the TUN interface (Layer 3), you get Layer 2 raw Ethernet packages, including ARP/
RARP packages and everything else. Basically, we're talking about a virtualized Layer 2
Ethernet connection.

These concepts (especially TAP) are usable on libvirt/QEMU as well because by using
these types of configurations, we can create connections from the host to a virtual
machine – without the libvirt bridge/switch, just as an example. We can actually configure
all of the necessary details for the TUN/TAP interface and then start deploying virtual
machines that are hooked up directly to those interfaces by using kvm-qemu options. So,
it's a rather interesting concept that has its place in the virtualization world as well. This is
especially interesting when we start creating Linux bridges.

Implementing Linux bridging 103

Implementing Linux bridging
Let's create a bridge and then add a TAP device to it. Before we do that, we must make
sure the bridge module is loaded into the kernel. Let's get started:

1. If it is not loaded, use modprobe bridge to load the module:

lsmod | grep bridge

Run the following command to create a bridge called tester:
brctl addbr tester

Let's see if the bridge has been created:
brctl show

bridge name bridge id STP enabled interfaces

tester 8000.460a80dd627d no

The # brctl show command will list all the available bridges on the server, along
with some basic information, such as the ID of the bridge, Spanning Tree Protocol
(STP) status, and the interfaces attached to it. Here, the tester bridge does not have
any interfaces attached to its virtual ports.

2. A Linux bridge will also be shown as a network device. To see the network details of
the bridge tester, use the ip command:

ip link show tester

6: tester: <BROADCAST,MULTICAST>mtu 1500 qdiscnoop state
DOWN mode

DEFAULT group default link/ether 26:84:f2:f8:09:e0
brdff:ff:ff:ff:ff:ff

You can also use ifconfig to check and configure the network settings for a Linux
bridge; ifconfig is relatively easy to read and understand but not as feature-rich
as the ip command:

ifconfig tester

tester: flags=4098<BROADCAST,MULTICAST>mtu 1500

ether26:84:f2:f8:09:e0txqueuelen 1000 (Ethernet)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

The Linux bridge tester is now ready. Let's create and add a TAP device to it.

104 Libvirt Networking

3. First, check if the TUN/TAP device module is loaded into the kernel. If not, you
already know the drill:

lsmod | greptun

tun 28672 1

Run the following command to create a tap device named vm-vnic:
ip tuntap add dev vm-vnic mode tap

ip link show vm-vnic

7: vm-vnic: <BROADCAST,MULTICAST>mtu 1500 qdiscnoop state
DOWN

mode DEFAULT group default qlen 500 link/ether
46:0a:80:dd:62:7d

brdff:ff:ff:ff:ff:ff

We now have a bridge named tester and a tap device named vm-vnic. Let's add
vm-vnic to tester:

brctl addif tester vm-vnic

brctl show

bridge name bridge id STP enabled interfaces

tester 8000.460a80dd627d no vm-vnic

Here, you can see that vm-vnic is an interface that was added to the tester bridge.
Now, vm-vnic can act as the interface between your virtual machine and the tester
bridge, which, in turn, enables the virtual machine to communicate with other virtual
machines that are added to this bridge:

Figure 4.10 – Virtual machines connected to a virtual switch (bridge)

Configuring Open vSwitch 105

You might also need to remove all the objects and configurations that were created in the
previous procedure. Let's do this step by step via the command line:

1. First, we need to remove the vm-vnic tap device from the tester bridge:

brctl delif tester vm-vnic

brctl show tester

bridge name bridge id STP enabled interfaces

tester 8000.460a80dd627d no

Once the vm-vnic has been removed from the bridge, remove the tap device using
the ip command:

ip tuntap del dev vm-vnic mode tap

2. Then, remove the tester bridge:

brctl delbr tester

These are the same steps that libvirt carried out in the backend while enabling or disabling
networking for a virtual machine. We want you to understand this procedure thoroughly
before moving ahead. Now that we've covered Linux bridging, it's time to move on to a
more advanced concept called Open vSwitch.

Configuring Open vSwitch
Imagine for a second that you're working for a small company that has three to four KVM
hosts, a couple of network-attached storage devices to host their 15 virtual machines, and
that you've been employed by the company from the very start. So, you've seen it all – the
company buying some servers, network switches, cables, and storage devices, and you
were a part of a small team of people that built that environment. After 2 years of that
process, you're aware of the fact that everything works, it's simple to maintain, and doesn't
give you an awful lot of grief.

Now, imagine the life of a friend of yours working for a bigger enterprise company that
has 400 KVM hosts and close to 2,000 virtual machines to manage, doing the same job
as you're doing in a comfy chair of your office in your small company.

Do you think that your friend can manage his or her environment by using the very same
tools that you're using? XML files for network switch configuration, deploying servers
from a bootable USB drive, manually configuring everything, and having the time to do
so? Does that seem like a possibility to you?

106 Libvirt Networking

There are two basic problems in this second situation:

• The scale of the environment: This one is more obvious. Because of the environment
size, you need some kind of concept that's going to be managed centrally, instead of
on a host-per-host level, such as the virtual switches we've discussed so far.

• Company policies: These usually dictate some kind of compliance that comes from
configuration standardization as much as possible. Now, we can agree that we could
script some configuration updates via Ansible, Puppet, or something like that,
but what's the use? We're going to have to create new config files, new procedures,
and new workbooks every single time we need to introduce a change to KVM
networking. And big companies frown upon that.

So, what we need is a centralized networking object that can span across multiple hosts and
offer configuration consistency. In this context, configuration consistency offers us a huge
advantage – every change that we introduce in this type of object will be replicated to all the
hosts that are members of this centralized networking object. In other words, what we need
is Open vSwitch (OVS). For those who are more versed in VMware-based networking, we
can use an approximate metaphor – Open vSwitch is for KVM-based environments similar
to what vSphere Distributed Switch is for VMware-based environments.

In terms of technology, OVS supports the following:

• VLAN isolation (IEEE 802.1Q)

• Traffic filtering

• NIC bonding with or without LACP

• Various overlay networks – VXLAN, GENEVE, GRE, STT, and so on

• 802.1ag support

• Netflow, sFlow, and so on

• (R)SPAN

• OpenFlow

• OVSDB

• Traffic queuing and shaping

• Linux, FreeBSD, NetBSD, Windows, and Citrix support (and a host of others)

Now that we've listed some of the supported technologies, let's discuss the way in which
Open vSwitch works.

Configuring Open vSwitch 107

First, let's talk about the Open vSwitch architecture. The implementation of Open vSwitch
is broken down into two parts: the Open vSwitch kernel module (the data plane) and the
user space tools (the control pane). Since the incoming data packets must be processed as
fast as possible, the data plane of Open vSwitch was pushed to the kernel space:

Figure 4.11 – Open vSwitch architecture

The data path (OVS kernel module) uses the netlink socket to interact with the vswitchd
daemon, which implements and manages any number of OVS switches on the local system.

Open vSwitch doesn't have a specific SDN controller that it uses for management purposes,
in a similar fashion to VMware's vSphere distributed switch and NSX, which have vCenter
and various NSX components to manage their capabilities. In OVS, the point is to use
someone else's SDN controller, which then interacts with ovs-vswitchd using the OpenFlow
protocol. The ovsdb-server maintains the switch table database and external clients can
talk to the ovsdb-server using JSON-RPC; JSON is the data format. The ovsdb database
currently contains around 13 tables and this database is persistent across restarts.

108 Libvirt Networking

Open vSwitch works in two modes: normal and flow mode. This chapter will primarily
concentrate on how to bring up a KVM VM connected to Open vSwitch's bridge in
standalone/normal mode and will a give brief introduction to flow mode using the
OpenDaylight controller:

• Normal Mode: Switching and forwarding are handled by OVS bridge. In this
modem OVS acts as an L2 learning switch. This mode is specifically useful when
configuring several overlay networks for your target rather than manipulating the
switch's flow.

• Flow Mode: In flow mode, the Open vSwitch bridge flow table is used to decide on
which port the receiving packets should be forwarded to. All the flows are managed
by an external SDN controller. Adding or removing the control flow requires using
an SDN controller that's managing the bridge or using the ctl command. This
mode allows a greater level of abstraction and automation; the SDN controller
exposes the REST API. Our applications can make use of this API to directly
manipulate the bridge's flows to meet network needs.

Let's move on to the practical aspect and learn how to install Open vSwitch on CentOS 8:

1. The first thing that we must do is tell our system to use the appropriate repositories.
In this case, we need to enable the repositories called epel and centos-
release-openstack-train. We can do that by using a couple of yum
commands:

yum -y install epel-release

yum -y install centos-release-openstack-train

2. The next step will be installing openvswitch from Red Hat's repository:

dnf install openvswitch -y

3. After the installation process, we need to check if everything is working by
starting and enabling the Open vSwitch service and running the ovs-vsctl -V
command:

systemctl start openvswitch

systemctl enable openvswitch

ovs-vsctl -V

The last command should throw you some output specifying the version of
Open vSwitch and its DB schema. In our case, it's Open vSwitch 2.11.0 and
DB schema 7.16.1.

Configuring Open vSwitch 109

4. Now that we've successfully installed and started Open vSwitch, it's time to configure
it. Let's choose a deployment scenario in which we're going to use Open vSwitch as a
new virtual switch for our virtual machines. In our server, we have another physical
interface called ens256, which we're going to use as an uplink for our Open vSwitch
virtual switch. We're also going to clear ens256 configuration, configure an IP address
for our OVS, and start the OVS by using the following commands:

ovs-vsctl add-br ovs-br0

ip addr flush dev ens256

ip addr add 10.10.10.1/24 dev ovs-br0

ovs-vsctl add-port ovs-br0 ens256

ip link set dev ovs-br0 up

5. Now that everything has been configured but not persistently, we need to make
the configuration persistent. This means configuring some network interface
configuration files. So, go to /etc/sysconfig/network-scripts and
create two files. Call one of them ifcfg-ens256 (for our uplink interface):

DEVICE=ens256

TYPE=OVSPort

DEVICETYPE=ovs

OVS_BRIDGE=ovs-br0

ONBOOT=yes

Call the other file ifcfg-ovs-br0 (for our OVS):
DEVICE=ovs-br0

DEVICETYPE=ovs

TYPE=OVSBridge

BOOTPROTO=static

IPADDR=10.10.10.1

NETMASK=255.255.255.0

GATEWAY=10.10.10.254

ONBOOT=yes

110 Libvirt Networking

6. We didn't configure all of this just for show, so we need to make sure that our
KVM virtual machines are also able to use it. This means – again – that we need
to create a KVM virtual network that's going to use OVS. Luckily, we've dealt with
KVM virtual network XML files before (check the Libvirt isolated network section),
so this one isn't going to be a problem. Let's call our network packtovs and its
corresponding XML file packtovs.xml. It should contain the following content:

<network>

<name>packtovs</name>

<forward mode='bridge'/>

<bridge name='ovs-br0'/>

<virtualport type='openvswitch'/>

</network>

So, now, we can perform our usual operations when we have a virtual network definition
in an XML file, which is to define, start, and autostart the network:

virsh net-define packtovs.xml

virsh net-start packtovs

virsh net-autostart packtovs

If we left everything as it was when we created our virtual networks, the output from
virsh net-list should look something like this:

Figure 4.12 – Successful OVS configuration, and OVS+KVM configuration

So, all that's left now is to hook up a VM to our newly defined OVS-based network
called packtovs and we're home free. Alternatively, we could just create a new one
and pre-connect it to that specific interface using the knowledge we gained in Chapter 3,
Installing KVM Hypervisor, libvirt, and oVirt. So, let's issue the following command, which
has just two changed parameters (--name and --network):

virt-install --virt-type=kvm --name MasteringKVM03 --vcpus
2 --ram 4096 --os-variant=rhel8.0 --cdrom=/var/lib/libvirt/
images/CentOS-8-x86_64-1905-dvd1.iso --network network:packtovs
--graphics vnc --disk size=16

Configuring Open vSwitch 111

After the virtual machine installation completes, we're connected to the OVS-based
packtovs virtual network, and our virtual machine can use it. Let's say that additional
configuration is needed and that we got a request to tag traffic coming from this virtual
machine with VLAN ID 5. Start your virtual machine and use the following set
of commands:

ovs-vsctl list-ports ovs-br0

ens256

vnet0

This command tells us that we're using the ens256 port as an uplink and that our virtual
machine, MasteringKVM03, is using the virtual vnet0 network port. We can apply
VLAN tagging to that port by using the following command:

ovs-vsctl set port vnet0 tag=5

We need to take note of some additional commands related to OVS administration and
management since this is done via the CLI. So, here are some commonly used OVS CLI
administration commands:

• #ovs-vsctl show: A very handy and frequently used command. It tells us what
the current running configuration of the switch is.

• #ovs-vsctl list-br: Lists bridges that were configured on Open vSwitch.

• #ovs-vsctl list-ports <bridge>: Shows the names of all the ports
on BRIDGE.

• #ovs-vsctl list interface <bridge>: Shows the names of all the
interfaces on BRIDGE.

• #ovs-vsctl add-br <bridge>: Creates a bridge in the switch database.

• #ovs-vsctl add-port <bridge> : <interface>: Binds an interface
(physical or virtual) to the Open vSwitch bridge.

• #ovs-ofctl and ovs-dpctl: These two commands are used for administering
and monitoring flow entries. You learned that OVS manages two kinds of flows:
OpenFlows and Datapath. The first is managed in the control plane, while the
second one is a kernel-based flow.

• #ovs-ofctl: This speaks to the OpenFlow module, whereas ovs-dpctl speaks
to the Kernel module.

112 Libvirt Networking

The following examples are the most used options for each of these commands:

• #ovs-ofctl show <BRIDGE>: Shows brief information about the switch,
including the port number to port name mapping.

• #ovs-ofctl dump-flows <Bridge>: Examines OpenFlow tables.

• #ovs-dpctl show: Prints basic information about all the logical datapaths,
referred to as bridges, present on the switch.

• #ovs-dpctl dump-flows: It shows the flow cached in datapath.

• ovs-appctl: This command offers a way to send commands to a running Open
vSwitch and gathers information that is not directly exposed to the ovs-ofctl
command. This is the Swiss Army knife of OpenFlow troubleshooting.

• #ovs-appctl bridge/dumpflows
: Examines flow tables and offers
direct connectivity for VMs on the same hosts.

• #ovs-appctl fdb/show
: Lists MAC/VLAN pairs learned.

Also, you can always use the ovs-vsctl show command to get information about the
configuration of your OVS switch:

Figure 4.13 – ovs-vsctl show output

We are going to come back to the subject of Open vSwitch in Chapter 12, Scaling Out
KVM with OpenStack , as we go deeper into our discussion about spanning Open vSwitch
across multiple hosts, especially while keeping in mind the fact that we want to be able to
span our cloud overlay networks (based on GENEVE, VXLAN, GRE, or similar protocols)
across multiple hosts and sites.

Configuring Open vSwitch 113

Other Open vSwitch use cases
As you might imagine, Open vSwitch isn't just a handy concept for libvirt or OpenStack – it
can be used for a variety of other scenarios as well. Let's describe one of them as it might be
important for people looking into VMware NSX or NSX-T integration.

Let's just describe a few basic terms and relationships here. VMware's NSX is an
SDN-based technology that can be used for a variety of use cases:

• Connecting data centers and extending cloud overlay networks across data
center boundaries.

• A variety of disaster recover scenarios. NSX can be a big help for disaster recover,
for multi-site environments, and for integration with a variety of external services
and devices that can be a part of the scenario (Palo Alto PANs).

• Consistent micro-segmentation, across sites, done the right way on the virtual
machine network card level.

• For security purposes, varying from different types of supported VPN technologies
to connect sites and end users, to distributed firewalls, guest introspection options
(antivirus and anti-malware), network introspection options (IDS/IPS), and more.

• For load balancing, up to Layer 7, with SSL offload, session persistence, high
availablity, application rules, and more.

Yes, VMware's take on SDN (NSX) and Open vSwitch seem like competing technologies on
the market, but realistically, there are loads of clients who want to use both. This is where
VMware's integration with OpenStack and NSX's integration with Linux-based KVM
hosts (by using Open vSwitch and additional agents) comes in really handy. Just to further
explain these points – there are things that NSX does that take extensive usage of Open
vSwitch-based technologies – hardware VTEP integration via Open vSwitch Database,
extending GENEVE networks to KVM hosts by using Open vSwitch/NSX integration,
and much more.

Imagine that you're working for a service provider – a cloud service provider, an ISP;
basically, any type of company that has large networks with a lot of network segmentation.
There are loads of service providers using VMware's vCloud Director to provide
cloud services to end users and companies. However, because of market needs, these
environments often need to be extended to include AWS (for additional infrastructure
growth scenarios via the public cloud) or OpenStack (to create hybrid cloud scenarios). If
we didn't have a possibility to have interoperability between these solutions, there would be
no way to use both of these offerings at the same time. But from a networking perspective,
the network background for that is NSX or NSX-T (which actually uses Open vSwitch).

114 Libvirt Networking

It's been clear for years that the future is all about multi-cloud environments, and these
types of integrations will bring in more customers; they will want to take advantage of
these options in their cloud service design. Future developments will also most probably
include (and already partially include) integration with Docker, Kubernetes, and/or
OpenShift to be able to manage containers in the same environment.

There are also some more extreme examples of using hardware – in our example, we are
talking about network cards on a PCI Express bus – in a partitioned way. For the time
being, our explanation of this concept, called SR-IOV, is going to be limited to network
cards, but we will expand on the same concept in Chapter 6, Virtual Display Devices and
Protocols, when we start talking about partitioning GPUs for use in virtual machines. So,
let's discuss a practical example of using SR-IOV on an Intel network card that supports it.

Understanding and using SR-IOV
The SR-IOV concept is something that we already mentioned in Chapter 2, KVM as a
Virtualization Solution. By utilizing SR-IOV, we can partition PCI resources (for example,
network cards) into virtual PCI functions and inject them into a virtual machine. If we're
using this concept for network cards, we're usually doing this with a single purpose – so
that we can avoid using the operating system kernel and network stack while accessing a
network interface card from our virtual machine. In order for us to be able to do this, we
need to have hardware support, so we need to check if our network card actually supports
it. On a physical server, we could use the lspci command to extract attribute information
about our PCI devices and then grep out Single Root I/O Virtualization as a string to try to
see if we have a device that's compatible. Here's an example from our server:

Figure 4.14 – Checking if our system is SR-IOV compatible

Important Note
Be careful when configuring SR-IOV. You need to have a server that supports
it, a device that supports it, and you must make sure that you turn on SR-IOV
functionality in BIOS. Then, you need to keep in mind that there are servers
that only have specific slots assigned for SR-IOV. The server that we used (HP
Proliant DL380p G8) has three PCI-Express slots assigned to CPU1, but SR-
IOV worked only in slot #1. When we connected our card to slot #2 or #3, we
got a BIOS message that SR-IOV will not work in that slot and that we should
move our card to a slot that supports SR-IOV. So, please, make sure that you
read the documentation of your server thoroughly and connect a SR-IOV
compatible device to a correct PCI-Express slot.

Understanding and using SR-IOV 115

In this specific case, it's an Intel 10 Gigabit network adapter with two ports, which
we could use to do SR-IOV. The procedure isn't all that difficult, and it requires us to
complete the following steps:

1. Unbind from the previous module.

2. Register it to the vfio-pci module, which is available in the Linux kernel stack.

3. Configure a guest that's going to use it.

So, what you would do is unload the module that the network card is currently using
by using modprobe -r. Then, you would load it again, but by assigning an additional
parameter. On our specific server, the Intel dual-port adapter that we're using (X540-AT2)
was assigned to the ens1f0 and ens1f1 network devices. So, let's use ens1f0 as an
example for SR-IOV configuration at boot time:

1. The first thing that we need to do (as a general concept) is find out which
kernel module our network card is using. To do that, we need to issue the
following command:

ethtool -i ens1f0 | grep ^driver

In our case, this is the output that we got:
driver: ixgbe

We need to find additional available options for that module. To do that, we can use
the modinfo command (we're only interested in the parm part of the output):

modinfo ixgbe

…..

Parm: max_vfs (Maximum number of virtual functions
to allocate per physical function – default iz zero and
maximum value is 63.

For example, we're using the ixgbe module here, and we can do the following:
modprobe -r ixgbe

modprobe ixgbe max_vfs=4

2. Then, we can use the modprobe system to make these changes permanent across
reboots by creating a file in /etc/modprobe.d called (for example) ixgbe.conf
and adding the following line to it:

options ixgbe max_vfs=4

116 Libvirt Networking

This would give us up to four virtual functions that we can use inside our virtual
machines. Now, the next issue that we need to solve is how to boot our server with
SR-IOV active at boot time. There are quite a few steps involved here, so, let's get started:

1. We need to add the iommu and vfs parameters to the default kernel boot line and
the default kernel configuration. So, first, open /etc/default/grub and edit the
GRUB_CMDLINE_LINUX line and add intel_iommu=on (or amd_iommu=on if
you're using an AMD system) and ixgbe.max_vfs=4 to it.

2. We need to reconfigure grub to use this change, so we need to use the following
command:

grub2-mkconfig -o /boot/grub2/grub.cfg

3. Sometimes, even that isn't enough, so we need to configure the necessary kernel
parameters, such as the maximum number of virtual functions and the iommu
parameter to be used on the server. That leads us to the following command:

grubby --update-kernel=ALL --args="intel_iommu=on ixgbe.
max_vfs=4"

After reboot, we should be able to see our virtual functions. Type in the following command:

lspci -nn | grep "Virtual Function"

We should get an output that looks like this:

Figure 4.15 – Checking for virtual function visibility

We should be able to see these virtual functions from libvirt, and we can check that via
the virsh command. Let's try this (we're using grep 04 because our device IDs start
with 04, which is visible from the preceding image; we'll shrink the output to important
entries only):

virsh nodedev-list | grep 04

……

pci_0000_04_00_0

pci_0000_04_00_1

pci_0000_04_10_0

Understanding and using SR-IOV 117

pci_0000_04_10_1

pci_0000_04_10_2

pci_0000_04_10_3

pci_0000_04_10_4

pci_0000_04_10_5

pci_0000_04_10_6

pci_0000_04_10_7

The first two devices are our physical functions. The remaining eight devices (two
ports times four functions) are our virtual devices (from pci_0000_04_10_0 to
pci_0000_04_10_7). Now, let's dump that device's information by using the virsh
nodedev-dumpxml pci_0000_04_10_0 command:

Figure 4.16 – Virtual function information from the perspective of virsh

So, if we have a running virtual machine that we'd like to reconfigure to use this, we'd
have to create an XML file with definition that looks something like this (let's call it
packtsriov.xml):

<interface type='hostdev' managed='yes' >

 <source>

118 Libvirt Networking

 <address type='pci' domain='0x0000' bus='0x04' slot='0x10'
function='0x0'>

 </address>

 </source>

</interface>

Of course, the domain, bus, slot, and function need to point exactly to our VF. Then, we
can use the virsh command to attach that device to our virtual machine (for example,
MasteringKVM03):

virsh attach-device MasteringKVM03 packtsriov.xml --config

When we use virsh dumpxml, we should now see a part of the output that starts with
<driver name='vfio'/>, along with all the information that we configured in the
previous step (address type, domain, bus, slot, function). Our virtual machine should
have no problems using this virtual function as a network card.

Now, it's time to cover another concept that's very much useful in KVM networking:
macvtap. It's a newer driver that should simplify our virtualized networking by completely
removing tun/tap and bridge drivers with a single module.

Understanding macvtap
This module works like a combination of the tap and macvlan modules. We already
explained what the tap module does. The macvlan module enables us to create virtual
networks that are pinned to a physical network interface (usually, we call this interface a
lower interface or device). Combining tap and macvlan enables us to choose between four
different modes of operation, called Virtual Ethernet Port Aggregator (VEPA), bridge,
private, and passthru.

If we're using the VEPA mode (default mode), the physical switch has to support VEPA
by supporting hairpin mode (also called reflective relay). When a lower device receives
data from a VEPA mode macvlan, this traffic is always sent out to the upstream device,
which means that traffic is always going through an external switch. The advantage of this
mode is the fact that network traffic between virtual machines becomes visible on the
external network, which can be useful for a variety of reasons. You can check how network
flow works in the following sequence of diagrams:

Understanding macvtap 119

Figure 4.17 – macvtap VEPA mode, where traffic is forced to the external network

In private mode, it's similar to VEPA in that everything goes to an external switch, but
unlike VEPA, traffic only gets delivered if it's sent via an external router or switch. You can
use this mode if you want to isolate virtual machines connected to the endpoints from one
another, but not from the external network. If this sounds very much like a private VLAN
scenario, you're completely correct:

Figure 4.18 – macvtap in private mode, using it for internal network isolation

120 Libvirt Networking

In bridge mode, data received on your macvlan that's supposed to go to another macvlan
on the same lower device is sent directly to the target, not externally, and then routed
back. This is very similar to what VMware NSX does when communication is supposed to
happen between virtual machines on different VXLAN networks, but on the same host:

Figure 4.19 – macvtap in bridge mode, providing a kind of internal routing

In passthrough mode, we're basically talking about the SR-IOV scenario, where we're
using a VF or a physical device directly to the macvtap interface. The key difference is
that a single network interface can only be passed to a single guest (1:1 relationship):

Figure 4.20 – macvtap in passthrough mode

Summary 121

In Chapter 12, Scaling Out KVM with OpenStack and Chapter 13, Scaling Out KVM with
AWS, we'll describe why virtualized and overlay networking (VXLAN, GRE, GENEVE)
is even more important for cloud networking as we extend our local KVM-based
environment to the cloud either via OpenStack or AWS.

Summary
In this chapter, we covered the basics of virtualized networking in KVM and explained
why virtualized networking is such a huge part of virtualization. We went knee-deep into
configuration files and their options as this will be the preferred method for administration
in larger environments, especially when talking about virtualized networks.

Pay close attention to all the configuration steps that we discussed through this chapter,
especially the part related to using virsh commands to manipulate network configuration
and to configure Open vSwitch and SR-IOV. SR-IOV-based concepts are heavily used in
latency-sensitive environments to provide networking services with the lowest possible
overhead and latency, which is why this principle is very important for various enterprise
environments related to the financial and banking sector.

Now that we've covered all the necessary networking scenarios (some of which will be
revisited later in this book), it's time to start thinking about the next big topic of the
virtualized world. We've already talked about CPU and memory, as well as networks,
which means we're left with the fourth pillar of virtualization: storage. We will tackle
that subject in the next chapter.

Questions
1. Why is it important that virtual switches accept connectivity from multiple virtual

machines at the same time?

2. How does a virtual switch work in NAT mode?

3. How does a virtual switch work in routed mode?

4. What is Open vSwitch and for what purpose can we use it in virtualized and
cloud environments?

5. Describe the differences between TAP and TUN interfaces.

122 Libvirt Networking

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• Libvirt networking: https://wiki.libvirt.org/page/
VirtualNetworking

• Network XML format: https://libvirt.org/formatnetwork.html

• Open vSwitch: https://www.openvswitch.org/

• Open vSwitch and libvirt: http://docs.openvswitch.org/en/latest/
howto/libvirt/

• Open vSwitch Cheat Sheet: https://adhioutlined.github.io/virtual/
Openvswitch-Cheat-Sheet/

https://wiki.libvirt.org/page/VirtualNetworking
https://wiki.libvirt.org/page/VirtualNetworking
https://libvirt.org/formatnetwork.html
https://www.openvswitch.org/
http://docs.openvswitch.org/en/latest/howto/libvirt/
http://docs.openvswitch.org/en/latest/howto/libvirt/
https://adhioutlined.github.io/virtual/Openvswitch-Cheat-Sheet/
https://adhioutlined.github.io/virtual/Openvswitch-Cheat-Sheet/

5
Libvirt Storage

This chapter provides you with an insight into the way that KVM uses storage. Specifically,
we will cover both storage that's internal to the host where we're running virtual machines
and shared storage. Don't let the terminology confuse you here – in virtualization and
cloud technologies, the term shared storage means storage space that multiple hypervisors
can have access to. As we will explain a bit later, the three most common ways of achieving
this are by using block-level, share-level, or object-level storage. We will use NFS as an
example of share-level storage, and Internet Small Computer System Interface (iSCSI)
and Fiber Channel (FC) as examples of block-level storage. In terms of object-based
storage, we will use Ceph. GlusterFS is also commonly used nowadays, so we'll make sure
that we cover that, too. To wrap everything up in an easy-to-use and easy-to-manage box,
we will discuss some open source projects that might help you while practicing with and
creating testing environments.

In this chapter, we will cover the following topics:

• Introduction to storage

• Storage pools

• NFS storage

• iSCSI and SAN storage

• Storage redundancy and multipathing

124 Libvirt Storage

• Gluster and Ceph as a storage backend for KVM

• Virtual disk images and formats and basic KVM storage operations

• The latest developments in storage – NVMe and NVMeOF

Introduction to storage
Unlike networking, which is something that most IT people have at least a basic
understanding of, storage tends to be quite different. In short, yes, it tends to be a bit more
complex. There are loads of parameters involved, different technologies, and…let's be
honest, loads of different types of configuration options and people enforcing them.
And a lot of questions. Here are some of them:

• Should we configure one NFS share per storage device or two?

• Should we create one iSCSI target per storage device or two?

• Should we create one FC target or two?

• How many Logical Unit Numbers (LUNs) per target?

• What kind of cluster size should we use?

• How should we carry out multipathing?

• Should we use block-level or share-level storage?

• Should we use block-level or object-level storage?

• Which technology or solution should we choose?

• How should we configure caching?

• How should we configure zoning or masking?

• How many switches should we use?

• Should we use some kind of clustering technology on a storage level?

As you can see, the questions just keep piling up, and we've barely touched the surface,
because there are also questions about which filesystem to use, which physical controller
we will use to access storage, and what type of cabling—it just becomes a big mashup of
variables that has many potential answers. What makes it worse is the fact that many of
those answers can be correct—not just one of them.

Introduction to storage 125

Let's get the basic-level mathematics out of the way. In an enterprise-level environment,
shared storage is usually the most expensive part of the environment and can also have the
most significant negative impact on virtual machine performance, while at the same time
being the most oversubscribed resource in that environment. Let's think about this for a
second—every powered-on virtual machine is constantly going to hammer our storage
device with I/O operations. If we have 500 virtual machines running on a single storage
device, aren't we asking a bit too much from that storage device?

At the same time, some kind of shared storage concept is a key pillar of virtualized
environments. The basic principle is very simple – there are loads of advanced
functionalities that will work so much better with shared storage. Also, many operations
are much faster if shared storage is available. Even more so, there are so many simple
options for high availability when we don't have our virtual machines stored in the same
place where they are being executed.

As a bonus, we can easily avoid Single Point Of Failure (SPOF) scenarios if we design
our shared storage environment correctly. In an enterprise-level environment, avoiding
SPOF is one of the key design principles. But when we start adding switches and adapters
and controllers to the to buy list, our managers' or clients' heads usually starts to hurt. We
talk about performance and risk management, while they talk about price. We talk about
the fact that their databases and applications need to be properly fed in terms of I/O and
bandwidth, and they feel that you can produce that out of thin air. Just wave your magic
wand and there we are: unlimited storage performance.

But the best, and our all-time favorite, apples-to-oranges comparison that your clients
are surely going to try to enforce on you goes something like this…"the shiny new 1 TB
NVMe SSD in my laptop has more than 1,000 times more IOPS and more than 5 times more
performance than your $50,000 storage device, while costing 100 times less! You have no idea
what you're doing!"

If you've been there, we feel for you. Rarely will you see so many discussions and fights
about a piece of hardware in a box. But it's such an essential piece of hardware in a box
that it's a good fight to have. So, let's explain some key concepts that libvirt uses in terms
of storage access and how to work with it. Then, let's use our knowledge to extract as
much performance as possible out of our storage system and libvirt using it.

In this chapter, we're basically going to cover almost all of these storage types via installation
and configuration examples. Each and every one of these has its own use case, but generally,
it's going to be up to you to choose what you're going to use.

126 Libvirt Storage

So, let's start our journey through these supported protocols and learn how to configure
them. After we cover storage pools, we are going to discuss NFS, a typical share-level
protocol for virtual machine storage. Then, we're going to move to block-level protocols
such as iSCSI and FC. Then, we will move to redundancy and multipathing to increase
the availability and bandwidth of our storage devices. We're also going to cover various
use cases for not-so-common filesystems (such as Ceph, Gluster, and GFS) for KVM
virtualization. We're also going to discuss the new developments that are de facto trends
right now.

Storage pools
When you first start using storage devices—even if they're cheaper boxes—you're faced
with some choices. They will ask you to do a bit of configuration—select the RAID level,
configure hot-spares, SSD caching...it's a process. The same process applies to a situation
in which you're building a data center from scratch or extending an existing one. You have
to configure the storage to be able to use it.

Hypervisors are a bit picky when it comes to storage, as there are storage types that they
support and storage types that they don't support. For example, Microsoft's Hyper-V
supports SMB shares for virtual machine storage, but it doesn't really support NFS storage
for virtual machine storage. VMware's vSphere Hypervisor supports NFS, but it doesn't
support SMB. The reason is simple—a company developing a hypervisor chooses and
qualifies technologies that its hypervisor is going to support. Then, it's up to various
HBA/controller vendors (Intel, Mellanox, QLogic, and so on) to develop drivers for that
hypervisor, and it's up to storage vendor to decide which types of storage protocols they're
going to support on their storage device.

From a CentOS perspective, there are many different storage pool types that are
supported. Here are some of them:

• Logical Volume Manager (LVM)-based storage pools

• Directory-based storage pools

• Partition-based storage pools

• GlusterFS-based storage pools

• iSCSI-based storage pools

• Disk-based storage pools

• HBA-based storage pools, which use SCSI devices

Storage pools 127

From the perspective of libvirt, a storage pool can be a directory, a storage device, or a
file that libvirt manages. That leads us to 10+ different storage pool types, as you're going
to see in the next section. From a virtual machine perspective, libvirt manages virtual
machine storage, which virtual machines use so that they have the capacity to store data.

oVirt, on the other hand, sees things a bit differently, as it has its own service that works
with libvirt to provide centralized storage management from a data center perspective.
Data center perspective might seem like a term that's a bit odd. But think about it—a
datacenter is some kind of higher-level object in which you can see all of your resources.
A data center uses storage and hypervisors to provide us with all of the services that we
need in virtualization—virtual machines, virtual networks, storage domains, and so on.
Basically, from a data center perspective, you can see what's happening on all of your
hosts that are members of that datacenter. However, from a host level, you can't see
what's happening on another host. It's a hierarchy that's completely logical from both
a management and a security perspective.

oVirt can centrally manage these different types of storage pools (and the list can get
bigger or smaller as the years go by):

• Network File System (NFS)

• Parallel NFS (pNFS)

• iSCSI

• FC

• Local storage (attached directly to KVM hosts)

• GlusterFS exports

• POSIX-compliant file systems

Let's take care of some terminology first:

• Brtfs is a type of filesystem that supports snapshots, RAID and LVM-like
functionality, compression, defragmentation, online resizing, and many other
advanced features. It was deprecated after it was discovered that its RAID5/6
can easily lead to a loss of data.

• ZFS is a type of filesystem that supports everything that Brtfs does, plus read and
write caching.

128 Libvirt Storage

CentOS has a new way of dealing with storage pools. Although still in technology preview
state, it's worth going through the complete configuration via this new tool, called Stratis.
Basically, a couple of years ago, Red Hat finally deprecated the idea of pushing Brtfs for
future releases and started working on Stratis. If you've ever used ZFS, that's where this is
probably going—an easy-to-manage, ZFS-like, volume-managing set of utilities that Red
Hat can stand behind in their future releases. Also, just like ZFS, a Stratis-based pool can
use cache; so, if you have an SSD that you'd like to dedicate to pool cache, you can actually
do that, as well. If you have been expecting Red Hat to support ZFS, there's a fundamental
Red Hat policy that stands in the way. Specifically, ZFS is not a part of the Linux kernel,
mostly because of licensing reasons. Red Hat has a policy for these situations—if it's not
a part of the kernel (upstream), then they don't provide nor support it. As it stands, that's
not going to happen anytime soon. These policies are also reflected in CentOS.

Local storage pools
On the other hand, Stratis is available right now. We're going to use it to manage our local
storage by creating storage pools. Creating a pool requires us to set up partitions or disks
beforehand. After we create a pool, we can create a volume on top of it. We only have to be
very careful about one thing—although Stratis can manage XFS filesystems, we shouldn't
make changes to Stratis-managed XFS filesystems directly from the filesystem level. For
example, do not reconfigure or reformat a Stratis-based XFS filesystem directly from
XFS-based commands because you'll create havoc on your system.

Stratis supports various different types of block storage devices:

• Hard disks and SSDs

• iSCSI LUNs

• LVM

• LUKS

• MD RAID

• A device mapper multipath

• NVMe devices

Let's start from scratch and install Stratis so that we can use it. Let's use the following
command:

yum -y install stratisd stratis-cli

systemctl enable --now stratisd

Storage pools 129

The first command installs the Stratis service and the corresponding command-line
utilities. The second one will start and enable the Stratis service.

Now, we are going to go through a complete example of how to use Stratis to configure
your storage devices. We're going to cover an example of this layered approach. So, what
we are going to do is as follows:

• Create a software RAID10 + spare by using MD RAID.

• Create a Stratis pool out of that MD RAID device.

• Add a cache device to the pool to use Stratis' cache capability.

• Create a Stratis filesystem and mount it on our local server.

The premise here is simple—the software RAID10+ spare via MD RAID is going to
approximate the regular production approach, in which you'd have some kind of a
hardware RAID controller presenting a single block device to the system. We're going to
add a cache device to the pool to verify the caching functionality, as this is something that
we would most probably do if we were using ZFS, as well. Then, we are going to create
a filesystem on top of that pool and mount it to a local directory with the help of the
following commands:

mdadm --create /dev/md0 --verbose --level=10 --raid-devices=4 /
dev/sdb /dev/sdc /dev/sdd /dev/sde --spare-devices=1 /dev/sdf2

stratis pool create PacktStratisPool01 /dev/md0

stratis pool add-cache PacktStratisPool01 /dev/sdg

stratis pool add-cache PacktStratisPool01 /dev/sdg

stratis fs create PackStratisPool01 PacktStratisXFS01

mkdir /mnt/packtStratisXFS01

mount /stratis/PacktStratisPool01/PacktStratisXFS01 /mnt/
packtStratisXFS01

This mounted filesystem is XFS-formatted. We could then easily use this filesystem via
NFS export, which is exactly what we're going to do in the NFS storage lesson. But for
now, this was just an example of how to create a pool by using Stratis.

We've covered some basics of local storage pools, which brings us closer to our next subject,
which is how to use pools from a libvirt perspective. So, that will be our next topic.

130 Libvirt Storage

Libvirt storage pools
Libvirt manages its own storage pools, which is done with one thing in mind—to provide
different pools for virtual machine disks and related data. Keeping in mind that libvirt
uses what the underlying operating system supports, it's no wonder that it supports loads
of different storage pool types. A picture is worth a thousand words, so here's a screenshot
of creating a libvirt storage pool from virt-manager:

Figure 5.1 – Different storage pool types supported by libvirt

Out of the box, libvirt already has a predefined default storage pool, which is a directory
storage pool on the local server. This default pool is located in the /var/lib/libvirt/
images directory. This represents our default location where we'll save all the data from
locally installed virtual machines.

NFS storage pool 131

We're going to create various different types of storage pools in the following sections—an
NFS-based pool, an iSCSI and FC pool, and Gluster and Ceph pools: the whole nine yards.
We're also going to explain when to use each and every one of them as there will be different
usage models involved.

NFS storage pool
As a protocol, NFS has been around since the mid-80s. It was originally developed by Sun
Microsystems as a protocol for sharing files, which is what it's been used for up to this day.
Actually, it's still being developed, which is quite surprising for a technology that's so old.
For example, NFS version 4.2 came out in 2016. In this version, NFS received a very big
update, such as the following:

• Server-side copy: A feature that significantly enhances the speed of cloning
operations between NFS servers by carrying out cloning directly between
NFS servers

• Sparse files and space reservation: Features that enhance the way NFS works with
files that have unallocated blocks, while keeping an eye on capacity so that we can
guarantee space availability when we need to write data

• Application data block support: A feature that helps applications that work with
files as block devices (disks)

• Better pNFS implementation

There are other bits and pieces that were enhanced in v4.2, but for now, this is more than
enough. You can find even more information about this in IETF's RFC 7862 document
(https://tools.ietf.org/html/rfc7862). We're going to focus our attention on
the implementation of NFS v4.2 specifically, as it's the best that NFS currently has to offer.
It also happens to be the default NFS version that CentOS 8 supports.

The first thing that we have to do is install the necessary packages. We're going to achieve
that by using the following commands:

yum -y install nfs-utils

systemctl enable --now nfs-server

The first command installs the necessary utilities to run the NFS server. The second one is
going to start it and permanently enable it so that the NFS service is available after reboot.

https://tools.ietf.org/html/rfc7862

132 Libvirt Storage

Our next task is to configure what we're going to share via the NFS server. For that,
we need to export a directory and make it available to our clients over the network.
NFS uses a configuration file, /etc/exports, for that purpose. Let's say that we
want to create a directory called /exports, and then share it to our clients in the
192.168.159.0/255.255.255.0 network, and we want to allow them to write
data on that share. Our /etc/exports file should look like this:

/mnt/packtStratisXFS01 192.168.159.0/24(rw)

exportfs -r

These configuration options tell our NFS server which directory to export (/exports),
to which clients (192.168.159.0/24), and what options to use (rw means read-write).

Some other available options include the following:

• ro: Read-only mode.

• sync: Synchronous I/O operations.

• root_squash: All I/O operations from UID 0 and GID 0 are mapped to
configurable anonymous UIDs and GIDs (the anonuid and anongid options).

• all_squash: All I/O operations from any UIDs and GIDs are mapped to
anonymous UIDs and GIDs (anonuid and anongid options).

• no_root_squash: All I/O operations from UID 0 and GID 0 are mapped to
UID 0 and GID 0.

If you need to apply multiple options to the exported directory, you add them with a
comma between them, as follows:

/mnt/packtStratisXFS01 192.168.159.0/24(rw,sync,root_squash)

You can use fully qualified domain names or short hostnames (if they're resolvable by
DNS or any other mechanism). Also, if you don't like using prefixes (24), you can use
regular netmasks, as follows:

/mnt/packtStratisXFS01 192.168.159.0/255.255.255.0(rw,root_
squash)

Now that we have configured the NFS server, let's see how we're going to configure libvirt
to use that server as a storage pool. As always, there are a couple of ways to do this. We
could just create an XML file with the pool definition and import it to our KVM host
by using the virsh pool-define --file command. Here's an example of that
configuration file:

NFS storage pool 133

Figure 5.2 – Example XML configuration file for NFS pool

Let's explain these configuration options:

• pool type: netfs means that we are going to use an NFS file share.

• name: The pool name, as libvirt uses pools as named objects, just like
virtual networks.

• host : The address of the NFS server that we are connecting to.

• dir path: The NFS export path that we configured on the NFS server via
/etc/exports.

• path: The local directory on our KVM host where that NFS share is going to be
mounted to.

• permissions: The permissions used for mounting this filesystem.

• owner and group: The UID and GID used for mounting purposes (that's why we
exported the folder earlier with the no_root_squash option).

• label: The SELinux label for this folder—we're going to discuss this in Chapter 16,
Troubleshooting Guideline for the KVM Platform.

134 Libvirt Storage

If we wanted, we could've easily done the same thing via the Virtual Machine Manager
GUI. First, we would have to select the correct type (the NFS pool) and give it a name:

Figure 5.3 – Selecting the NFS pool type and giving it a name

After we click Forward, we can move to the final configuration step, where we need to tell
the wizard which server we're mounting our NFS share from:

Figure 5.4 – Configuring NFS server options

NFS storage pool 135

When we finish typing in these configuration options (Host Name and Source Path),
we can press Finish, which will mean exiting the wizard. Also, our previous configuration
screen, which only contained the default storage pool, now has our newly configured
pool listed as well:

Figure 5.5 – Newly configured NFS pool visible on the list

When would we use NFS-based storage pools in libvirt, and for what? Basically, we can
use them nicely for anything related to the storage of installation images—ISO files,
virtual floppy disk files, virtual machine files, and so on.

Please remember that even though it seemed that NFS is almost gone from enterprise
environments just a while ago, NFS is still around. Actually, with the introduction of NFS
4.1, 4.2, and pNFS, its future on the market actually looks even better than a couple of years
ago. It's such a familiar protocol with a very long history, and it's still quite competitive
in many scenarios. If you're familiar with VMware virtualization technology, VMware
introduced a technology called Virtual Volumes in ESXi 6.0. This is an object-based storage
technology that can use both block- and NFS-based protocols for its basis, which is a
really compelling use case for some scenarios. But for now, let's move on to block-level
technologies, such as iSCSI and FC.

136 Libvirt Storage

iSCSI and SAN storage
Using iSCSI for virtual machine storage has long been the regular thing to do. Even if
you take into account the fact that iSCSI isn't the most efficient way to approach storage,
it's still so widely accepted that you'll find it everywhere. Efficiency is compromised for
two reasons:

• iSCSI encapsulates SCSI commands into regular IP packages, which means
segmentation and overhead as IP packages have a pretty large header, which
means less efficiency.

• Even worse, it's TCP-based, which means that there are sequence numbers and
retransmissions, which can lead to queueing and latency, and the bigger the
environment is, the more you usually feel these effects affect your virtual
machine performance.

That being said, the fact that it's based on an Ethernet stack makes it easier to deploy
iSCSI-based solutions, while at the same time offering some unique challenges. For
example, sometimes it's difficult to explain to a customer that using the same network
switch(es) for virtual machine traffic and iSCSI traffic is not the best idea. What makes it
even worse is the fact that clients are sometimes so blinded by their desire to save money
that they don't understand that they're working against their own best interest. Especially
when it comes to network bandwidth. Most of us have been there, trying to work with
clients' questions such as "but we already have a Gigabit Ethernet switch, why would you
need anything faster than that?"

The fact of the matter is, with iSCSI's intricacies, more is just – more. The more speed
you have on the disk/cache/controller side and the more bandwidth you have on the
networking side, the more chance you have of creating a storage system that's faster. All
of that can have a big impact on our virtual machine performance. As you'll see in the
Storage redundancy and multipathing section, you can actually build a very good storage
system yourself—both for iSCSI and FC. This might come in real handy when you try
to create some kind of a testing lab/environment to play with as you develop your KVM
virtualization skills. You can apply that knowledge to other virtualized environments,
as well.

The iSCSI and FC architectures are very similar—they both need a target (an iSCSI
target and an FC target) and an initiator (an iSCS initiator and an FC initiator). In this
terminology, the target is a server component, and the initiator is a client component.
To put it simply, the initiator connects to a target to get access to block storage that's
presented via that target. Then, we can use the initiator's identity to limit what the initiator
is able to see on the target. This is where the terminology starts to get a bit different when
comparing iSCSI and FC.

iSCSI and SAN storage 137

In iSCSI, the initiator's identity can be defined by four different properties. They are
as follows:

• iSCSI Qualified Name (IQN): This is a unique name that all initiators and targets
have in iSCSI communication. We can compare this to a MAC or IP address in
regular Ethernet-based networks. You can think of it this way—an IQN is for iSCSI
what a MAC or IP address is for Ethernet-based networks.

• IP address: Every initiator will have a different IP address that it uses to connect
to the target.

• MAC address: Every initiator has a different MAC address on Layer 2.

• Fully Qualified Domain Name (FQDN): This represents the name of the server
as it's resolved by a DNS service.

From the iSCSI target perspective—depending on its implementation—you can use any
one of these properties to create a configuration that's going to tell the iSCSI target which
IQNs, IP addresses, MAC addresses, or FQDNs can be used to connect to it. This is what's
called masking, as we can mask what an initiator can see on the iSCSI target by using
these identities and pairing them with LUNs. LUNs are just raw, block capacities that
we export via an iSCSI target toward initiators. LUNs are indexed, or numbered, usually
from 0 onward. Every LUN number represents a different storage capacity that an initiator
can connect to.

For example, we can have an iSCSI target with three different LUNs—LUN0 with 20 GB,
LUN1 with 40 GB, and LUN2 with 60 GB. These will all be hosted on the same storage
system's iSCSI target. We can then configure the iSCSI target to accept an IQN to see all
the LUNs, another IQN to only see LUN1, and another IQN to only see LUN1 and LUN2.
This is actually what we are going to configure right now.

Let's start by configuring the iSCSI target service. For that, we need to install the
targetcli package, and configure the service (called target) to run:

yum -y install targetcli

systemctl enable --now target

138 Libvirt Storage

Be careful about the firewall configuration; you might need to configure it to allow
connectivity on port 3260/tcp, which is the port that the iSCSI target portal uses.
So, if your firewall has started, type in the following command:

firewall-cmd --permanent --add-port=3260/tcp ; firewall-cmd
--reload

There are three possibilities for iSCSI on Linux in terms of what storage backend to use.
We could use a regular filesystem (such as XFS), a block device (a hard drive), or LVM.
So, that's exactly what we're going to do. Our scenario is going to be as follows:

• LUN0 (20 GB): XFS-based filesystem, on the /dev/sdb device

• LUN1 (40 GB): Hard drive, on the /dev/sdc device

• LUN2 (60 GB): LVM, on the /dev/sdd device

So, after we install the necessary packages and configure the target service and firewall, we
should start with configuring our iSCSI target. We'll just start the targetcli command
and check the state, which should be a blank slate as we're just beginning the process:

Figure 5.6 – The targetcli starting point – empty configuration

iSCSI and SAN storage 139

Let's start with the step-by-step procedure:

1. So, let's configure the XFS-based filesystem and configure the LUN0 file image to be
saved there. First, we need to partition the disk (in our case, /dev/sdb):

Figure 5.7 – Partitioning /dev/sdb for the XFS filesystem

2. The next step is to format this partition, create and use a directory called /LUN0 to
mount this filesystem, and serve our LUN0 image, which we're going to configure in
the next steps:

Figure 5.8 – Formatting the XFS filesystem, creating a directory, and mounting it to that directory

140 Libvirt Storage

3. The next step is configuring targetcli so that it creates LUN0 and assigns an
image file for LUN0, which will be saved in the /LUN0 directory. First, we need
to start the targetcli command:

Figure 5.9 – Creating an iSCSI target, LUN0, and hosting it as a file

4. Next, let's configure a block device-based LUN backend— LUN2—which is going
to use /dev/sdc1 (create the partition using the previous example) and check
the current state:

Figure 5.10 – Creating LUN1, hosting it directly from a block device

iSCSI and SAN storage 141

So, LUN0 and LUN1 and their respective backends are now configured. Let's finish things
off by configuring LVM:

1. First, we are going to prepare the physical volume for LVM, create a volume group
out of that volume, and display all the information about that volume group so that
we can see how much space we have for LUN2:

Figure 5.11 – Configuring the physical volume for LVM, building a volume group,
and displaying information about that volume group

142 Libvirt Storage

2. The next step is to actually create the logical volume, which is going to be our
block storage device backend for LUN2 in the iSCSI target. We can see from the
vgdisplay output that we have 15,359 4 MB blocks available, so let's use that
to create our logical volume, called LUN2. Go to targetcli and configure the
necessary settings for LUN2:

Figure 5.12 – Configuring LUN2 with the LVM backend

3. Let's stop here for a second and switch to the KVM host (the iSCSI initiator)
configuration. First, we need to install the iSCSI initiator, which is part of a package
called iscsi-initiator-utils. So, let's use the yum command to install that:

yum -y install iscsi-initiator-utils

iSCSI and SAN storage 143

4. Next, we need to configure the IQN of our initiator. We usually want this
name to be reminiscent of the hostname, so, seeing that our host's FQDN is
PacktStratis01, we'll use that to configure the IQN. To do that, we need
to edit the /etc/iscsi/initiatorname.iscsi file and configure
the InitiatorName option. For example, let's set it to iqn.2019-12.
com.packt:PacktStratis01. The content of the /etc/iscsi/
initiatorname.iscsi file should be as follows:

InitiatorName=iqn.2019-12.com.packt:PacktStratis01

5. Now that this is configured, let's go back to the iSCSI target and create an Access
Control List (ACL). The ACL is going to allow our KVM host's initiator to connect
to the iSCSI target portal:

Figure 5.13 – Creating an ACL so that the KVM host's initiator can connect to the iSCSI target

6. Next, we need to publish our pre-created file-based and block-based devices to the
iSCSI target LUNs. So, we need to do this:

Figure 5.14 – Adding our file-based and block-based devices to the iSCSI target LUNs 0, 1, and 2

144 Libvirt Storage

The end result should look like this:

Figure 5.15 – The end result

At this point, everything is configured. We need to go back to our KVM host and define a
storage pool that will use these LUNs. The easiest way to do that would be to use an XML
configuration file for the pool. So, here's our sample configuration XML file; we'll call it
iSCSIPool.xml:

<pool type='iscsi'>

 <name>MyiSCSIPool</name>

 <source>

 <host name='192.168.159.145'/>

 <device path='iqn.2003-01.org.linux-iscsi.packtiscsi01.
x8664:sn.7b3c2efdbb11'/>

 </source>

 <initiator>

 <iqn name='iqn.2019-12.com.packt:PacktStratis01' />

</initiator>

 <target>

iSCSI and SAN storage 145

 <path>/dev/disk/by-path</path>

 </target>

</pool>

Let's explain the file step by step:

• pool type= 'iscsi': We're telling libvirt that this is an iSCSI pool.

• name : The pool name.

• host name: The IP address of the iSCSI target.

• device path: The IQN of the iSCSI target.

• The IQN name in the initiator section: The IQN of the initiator.

• target path: The location where iSCSI target's LUNs will be mounted.

Now, all that's left for us to do is to define, start, and autostart our new iSCSI-backed KVM
storage pool:

virsh pool-define --file iSCSIPool.xml

virsh pool-start --pool MyiSCSIPool

virsh pool-autostart --pool MyiSCSIPool

The target path part of the configuration can be easily checked via virsh. If we type the
following command into the KVM host, we will get the list of available LUNs from the
MyiSCSIPool pool that we just configured:

virsh vol-list --pool MyiSCSIPool

We get the following result for this command:

Figure 5.16 – Runtime names for our iSCSI pool LUNs

146 Libvirt Storage

If this output reminds you a bit of the VMware vSphere Hypervisor storage runtime
names, you are definitely on the right track. We will be able to use these storage pools
in Chapter 7, Virtual Machine – Installation, Configuration, and Life-Cycle Management,
when we start deploying our virtual machines.

Storage redundancy and multipathing
Redundancy is one of the keywords of IT, where any single component failure could mean
big problems for a company or its customers. The general design principle of avoiding
SPOF is something that we should always stick to. At the end of the day, no network
adapter, cable, switch, router, or storage controller is going to work forever. So, calculating
redundancy into our designs helps our IT environment during its normal life cycle.

At the same time, redundancy can be combined with multipathing to also ensure higher
throughput. For example, when we connect our physical host to FC storage with two
controllers with four FC ports each, we can use four paths (if the storage is active-passive)
or eight paths (if it's active-active) to the same LUN(s) exported from this storage device
to a host. This gives us multiple additional options for LUN access, on top of the fact that
it gives us more availability, even in the case of failure.

Getting a regular KVM host to do, for example, iSCSI multipathing is quite a bit complex.
There are multiple configuration issues and blank spots in terms of documentation, and
supportability of such a configuration is questionable. However, there are products that
use KVM that support it out of the box, such as oVirt (which we covered before) and Red
Hat Enterprise Virtualization Hypervisor (RHEV-H). So, let's use oVirt for this example
on iSCSI.

Before you do this, make sure that you have done the following:

• Your Hypervisor host is added to the oVirt inventory.

• Your Hypervisor host has two additional network cards, independent of the
management network.

• The iSCSI storage has two additional network cards in the same L2 networks as the
two additional hypervisor network cards.

• The iSCSI storage is configured so that it has at least a target and a LUN already
configured in a way that will enable the hypervisor host to connect to it.

Storage redundancy and multipathing 147

So, as we're doing this in oVirt, there are a couple of things that we need to do. First, from
a networking perspective, it would be a good idea to create some storage networks. In our
case, we're going to assign two networks for iSCSI, and we will call them iSCSI01 and
iSCSI02. We need to open the oVirt administration panel, hover over Network, and
select Networks from the menu. This will open a pop-up window for the New Logical
Network wizard. So, we just need to name the network iSCSI01 (for the first one),
uncheck the VM network checkbox (as this isn't a virtual machine network), and go to
the Cluster tab, where we deselect the Require all checkbox. Repeat the whole process
again for the iSCSI02 network:

Figure 5.17 – Configuring networks for iSCSI bond

148 Libvirt Storage

The next step is assigning these networks to host network adapters. Go to compute/
hosts, double-click on the host that you added to oVirt's inventory, select the Network
interfaces tab, and click on the Setup Host Networks icon in the top-right corner. In that
UI, drag and drop iSCSI01 on the second network interface and iSCSI02 on the third
network interface. The first network interface is already taken by the oVirt management
network. It should look something like this:

Figure 5.18 – Assigning virtual networks to the hypervisor's physical adapters

Before you close the window down, make sure that you click on the pencil sign on
both iSCSI01 and iSCSI02 to set up IP addresses for these two virtual networks.
Assign network configuration that can connect you to your iSCSI storage on the same
or different subnets:

Storage redundancy and multipathing 149

Figure 5.19 – Creating an iSCSI bond on the data center level

There you go, you have just configured an iSCSI bond. The last part of our configuration
is enabling it. Again, in the oVirt GUI, go to Compute | Data Centers, select your
datacenter with a double-click, and go to the iSCSI Multipathing tab:

Figure 5.20 – Configuring iSCSI multipathing on the data center level

Click on the Add button at the top-right side and go through the wizard. Specifically,
select both the iSCSI01 and iSCSI02 networks in the top part of the pop-up window,
and the iSCSI target on the lower side.

150 Libvirt Storage

Now that we have covered the basics of storage pools, NFS, and iSCSI, we can move
on to a standard open source way of deploying storage infrastructure, which would be
to use Gluster and/or Ceph.

Gluster and Ceph as a storage backend
for KVM
There are other advanced types of filesystems that can be used as the libvirt storage
backend. So, let's now discuss two of them—Gluster and Ceph. Later, we'll also check
how libvirt works with GFS2.

Gluster
Gluster is a distributed filesystem that's often used for high-availability scenarios. Its main
advantages over other filesystems are the fact that it's scalable, it can use replication and
snapshots, it can work on any server, and it's usable as a basis for shared storage—for
example, via NFS and SMB. It was developed by a company called Gluster Inc., which
was acquired by RedHat in 2011. However, unlike Ceph, it's a file storage service, while
Ceph offers block and object-based storage. Object-based storage for block-based devices
means direct, binary storage, directly to a LUN. There are no filesystems involved, which
theoretically means less overhead as there's no filesystem, filesystem tables, and other
constructs that might slow the I/O process down.

Let's first configure Gluster to show its use case with libvirt. In production, that means
installing at least three Gluster servers so that we can make high availability possible.
Gluster configuration is really straightforward, and in our example, we are going to create
three CentOS 7 machines that we will use to host the Gluster filesystem. Then, we will
mount that filesystem on our hypervisor host and use it as a local directory. We can use
GlusterFS directly from libvirt, but the implementation is just not as refined as using it
via the gluster client service, mounting it as a local directory, and using it directly as a
directory pool in libvirt.

Our configuration will look like this:

Figure 5.21 – Basic settings for our Gluster cluster

Gluster and Ceph as a storage backend for KVM 151

So, let's put that into production. We have to issue a large sequence of commands on all
of the servers before we configure Gluster and expose it to our KVM host. Let's start with
gluster1. First, we are going to do a system-wide update and reboot to prepare the core
operating system for Gluster installation. Type the following commands into all three
CentOS 7 servers:

yum -y install epel-release*

yum -y install centos-release-gluster7.noarch

yum -y update

yum -y install glusterfs-server

systemctl reboot

Then, we can start deploying the necessary repositories and packages, format disks,
configure the firewall, and so on. Type the following commands into all the servers:

mkfs.xfs /dev/sdb

mkdir /gluster/bricks/1 -p

echo '/dev/sdb /gluster/bricks/1 xfs defaults 0 0' >> /etc/
fstab

mount -a

mkdir /gluster/bricks/1/brick

systemctl disable firewalld

systemctl stop firewalld

systemctl start glusterd

systemctl enable glusterd

We need to do a bit of networking configuration as well. It would be good if these three
servers can resolve each other, which means either configuring a DNS server or adding
a couple of lines to our /etc/hosts file. Let's do the latter. Add the following lines to
your /etc/hosts file:

192.168.159.147 gluster1

192.168.159.148 gluster2

192.168.159.149 gluster3

For the next part of the configuration, we can just log in to the first server and use
it as the de facto management server for our Gluster infrastructure. Type in the
following commands:

gluster peer probe gluster1

gluster peer probe gluster2

152 Libvirt Storage

gluster peer probe gluster3

gluster peer status

The first three commands should get you the peer probe: success status. The third
one should return an output similar to this:

Figure 5.22 – Confirmation that the Gluster servers peered successfully

Now that this part of the configuration is done, we can create a Gluster-distributed
filesystem. We can do this by typing the following sequence of commands:

gluster volume create kvmgluster replica 3 \ gluster1:/gluster/
bricks/1/brick gluster2:/gluster/bricks/1/brick \ gluster3:/
gluster/bricks/1/brick

gluster volume start kvmgluster

gluster volume set kvmgluster auth.allow 192.168.159.0/24

gluster volume set kvmgluster allow-insecure on

gluster volume set kvmgluster storage.owner-uid 107

gluster volume set kvmgluster storage.owner-gid 107

Then, we could mount Gluster as an NFS directory for testing purposes. For example,
we can create a distributed namespace called kvmgluster to all of the member hosts
(gluster1, gluster2, and gluster3). We can do this by using the following
commands:

echo 'localhost:/kvmgluster /mnt glusterfs \ defaults,_
netdev,backupvolfile-server=localhost 0 0' >> /etc/fstab

mount.glusterfs localhost:/kvmgluster /mnt

Gluster and Ceph as a storage backend for KVM 153

The Gluster part is now ready, so we need to go back to our KVM host and mount the
Gluster filesystem to it by typing in the following commands:

wget \ https://download.gluster.org/pub/gluster/glusterfs/6/
LATEST/CentOS/gl\ usterfs-rhel8.repo -P /etc/yum.repos.d

yum install glusterfs glusterfs-fuse attr -y

mount -t glusterfs -o context="system_u:object_r:virt_
image_t:s0" \ gluster1:/kvmgluster /var/lib/libvirt/images/
GlusterFS

We have to pay close attention to Gluster releases on the server and client, which is why
we downloaded the Gluster repository information for CentOS 8 (we're using it on the
KVM server) and installed the necessary Gluster client packages. That enabled us to
mount the filesystem with the last command.

Now that we've finished our configuration, we just need to add this directory as a libvirt
storage pool. Let's do that by using an XML file with the storage pool definition, which
contains the following entries:

<pool type='dir'>

 <name>glusterfs-pool</name>

 <target>

 <path>/var/lib/libvirt/images/GlusterFS</path>

 <permissions>

 <mode>0755</mode>

 <owner>107</owner>

 <group>107</group>

 <label>system_u:object_r:virt_image_t:s0</label>

 </permissions>

 </target>

</pool>

Let's say that we saved this file in the current directory, and that the file is called
gluster.xml. We can import and start it in libvirt by using the following
virsh commands:

virsh pool-define --file gluster.xml

virsh pool-start --pool glusterfs-pool

virsh pool-autostart --pool glusterfs-pool

154 Libvirt Storage

We should mount this pool automatically on boot so that libvirt can use it. Therefore,
we need to add the following line to /etc/fstab:

gluster1:/kvmgluster /var/lib/libvirt/images/GlusterFS \
glusterfs defaults,_netdev 0 0

Using a directory-based approach enables us to avoid two problems that libvirt
(and its GUI interface, virt-manager) has with Gluster storage pools:

• We can use Gluster's failover capability, which will be managed automatically by the
Gluster utilities that we installed directly, as libvirt doesn't support them yet.

• We will avoid creating virtual machine disks manually, which is another limitation
of libvirt's implementation of Gluster support, while directory-based storage pools
support it without any issues.

It seems weird that we're mentioning failover, as it seems as though we didn't configure
it as a part of any of the previous steps. Actually, we have. When we issued the last mount
command, we used Gluster's built-in modules to establish connectivity to the first Gluster
server. That, in turn, means that after this connection, we got all of the details about the
whole Gluster pool, which we configured so that it's hosted on three servers. If any kind
of failure happens—which we can easily simulate—this connection will continue working.
We can simulate this scenario by turning off any of the Gluster servers, for example—
gluster1. You'll see that the local directory where we mounted Gluster directory still
works, even though gluster1 is down. Let's see that in action (the default timeout
period is 42 seconds):

Figure 5.23 – Gluster failover working; the first node is down, but we're still able to get our files

If we want to be more aggressive, we can shorten this timeout period to—for
example—2 seconds by issuing the following command on any of our Gluster servers:

gluster volume set kvmgluster network.ping-timeout number

Gluster and Ceph as a storage backend for KVM 155

The number part is in seconds, and by assigning it a lower number, we can directly
influence how aggressive the failover process is.

So, now that everything is configured, we can start using the Gluster pool to deploy virtual
machines, which we will discuss further in Chapter 7, Virtual Machine – Installation,
Configuration, and Life-Cycle Management.

Seeing as Gluster is a file-based backend that can be used for libvirt, it's only natural to
describe how to use an advanced block-level and object-level storage backend. That's
where Ceph comes in, so let's work on that now.

Ceph
Ceph can act as file-, block-, and object-based storage. But for the most part, we're usually
using it as either block- or object-based storage. Again, this is a piece of open source
software that's designed to work on any server (or a virtual machine). In its core, Ceph
runs an algorithm called Controlled Replication Under Scalable Hashing (CRUSH).
This algorithm tries to distribute data across object devices in a pseudo-random manner,
and in Ceph, it's managed by a cluster map (a CRUSH map). We can easily scale Ceph out
by adding more nodes, which will redistribute data in a minimum fashion to ensure as
small amount of replication as possible.

An internal Ceph component called Reliable Autonomic Distributed Object Store
(RADOS) is used for snapshots, replication, and thin provisioning. It's an open source
project that was developed by the University of California.

Architecture-wise, Ceph has three main services:

• ceph-mon : Used for cluster monitoring, CRUSH maps, and Object Storage
Daemon (OSD) maps.

• ceph-osd: This handles actual data storage, replication, and recovery. It requires at
least two nodes; we'll use three for clustering reasons.

• ceph-mds: Metadata server, used when Ceph needs filesystem access.

In accordance with best practices, make sure that you always design your Ceph
environments with the key principles in mind—all of the data nodes need to have the
same configuration. That means the same amount of memory, the same storage controllers
(don't use RAID controllers, just plain HBAs without RAID firmware if possible), the
same disks, and so on. That's the only way to ensure a constant level of Ceph performance
in your environments.

156 Libvirt Storage

One very important aspect of Ceph is data placement and how placement groups work.
Placement groups offer us a chance to split the objects that we create and place them in
OSDs in an optimal fashion. Translation: the bigger the number of placement groups we
configure, the better balance we're going to get.

So, let's configure Ceph from scratch. We're going to follow the best practices again
and deploy Ceph by using five servers—one for administration, one for monitoring,
and three OSDs.

Our configuration will look like this:

Figure 5.24 – Basic Ceph configuration for our infrastructure

Make sure that these hosts can resolve each other via DNS or /etc/hosts, and that you
configure all of them to use the same NTP source. Make sure that you update all of the
hosts by using the following:

yum -y update; reboot

Also, make sure that you type the following commands into all of the hosts as the root
user. Let's start by deploying packages, creating an admin user, and giving them rights
to sudo:

rpm -Uhv http://download.ceph.com/rpm-jewel/el7/noarch/ceph-
release-1-1.el7.noarch.rpm

yum -y install ceph-deploy ceph ceph-radosgw

useradd cephadmin

echo "cephadmin:ceph123" | chpasswd

echo "cephadmin ALL = (root) NOPASSWD:ALL" | sudo tee /etc/
sudoers.d/cephadmin

chmod 0440 /etc/sudoers.d/cephadmin

Disabling SELinux will make our life easier for this demonstration, as will getting rid of
the firewall:

sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/
config

systemctl stop firewalld

Gluster and Ceph as a storage backend for KVM 157

systemctl disable firewalld

systemctl mask firewalld

Let's add hostnames to /etc/hosts so that administration is easier for us:

echo "192.168.159.150 ceph-admin" >> /etc/hosts

echo "192.168.159.151 ceph-monitor" >> /etc/hosts

echo "192.168.159.152 ceph-osd1" >> /etc/hosts

echo "192.168.159.153 ceph-osd2" >> /etc/hosts

echo "192.168.159.154 ceph-osd3" >> /etc/hosts

Change the last echo part to suit your environment—hostnames and IP addresses. We're
just using this as an example from our environment. The next step is making sure that we
can use our admin host to connect to all of the hosts. The easiest way to do that is by using
SSH keys. So, on ceph-admin, log in as root and type in the ssh-keygen command,
and then press the Enter key all the way through. It should look something like this:

Figure 5.25 – Generating an SSH key for root for Ceph setup purposes

158 Libvirt Storage

We also need to copy this key to all of the hosts. So, again, on ceph-admin, use
ssh-copy-id to copy the keys to all of the hosts:

ssh-copy-id cephadmin@ceph-admin

ssh-copy-id cephadmin@ceph-monitor

ssh-copy-id cephadmin@ceph-osd1

ssh-copy-id cephadmin@ceph-osd2

ssh-copy-id cephadmin@ceph-osd3

Accept all of the keys when SSH asks you, and use ceph123 as the password, which we
selected in one of the earlier steps. After all of this is done, there's one last step that we
need to do on ceph-admin before we start deploying Ceph—we have to configure SSH
to use the cephadmin user as a default user to log in to all of the hosts. We will do this by
going to the .ssh directory as root on ceph-admin, and creating a file called config
with the following content:

Host ceph-admin

 Hostname ceph-admin

 User cephadmin

Host ceph-monitor

 Hostname ceph-monitor

 User cephadmin

Host ceph-osd1

 Hostname ceph-osd1

 User cephadmin

Host ceph-osd2

 Hostname ceph-osd2

 User cephadmin

Host ceph-osd3

 Hostname ceph-osd3

 User cephadmin

Gluster and Ceph as a storage backend for KVM 159

That was a long pre-configuration, wasn't it? Now it's time to actually start deploying
Ceph. The first step is to configure ceph-monitor. So, on ceph-admin, type in the
following commands:

cd /root

mkdir cluster

cd cluster

ceph-deploy new ceph-monitor

Because of the fact that we selected a configuration in which we have three OSDs, we need
to configure Ceph so that it uses these additional two hosts. So, in the cluster directory,
edit the file called ceph.conf and add the following two lines at the end:

public network = 192.168.159.0/24

osd pool default size = 2

This will make sure that we can only use our example network (192.168.159.0/24)
for Ceph, and that we have two additional OSDs on top of the original one.

Now that everything's ready, we have to issue a sequence of commands to configure Ceph.
So, again, on ceph-admin, type in the following commands:

ceph-deploy install ceph-admin ceph-monitor ceph-osd1 ceph-osd2
ceph-osd3

ceph-deploy mon create-initial

ceph-deploy gatherkeys ceph-monitor

ceph-deploy disk list ceph-osd1 ceph-osd2 ceph-osd3

ceph-deploy disk zap ceph-osd1:/dev/sdb ceph-osd2:/dev/sdb
ceph-osd3:/dev/sdb

ceph-deploy osd prepare ceph-osd1:/dev/sdb ceph-osd2:/dev/sdb
ceph-osd3:/dev/sdb

ceph-deploy osd activate ceph-osd1:/dev/sdb1 ceph-osd2:/dev/
sdb1 ceph-osd3:/dev/sdb1

Let's describe these commands one by one:

• The first command starts the actual deployment process—for the admin, monitor,
and OSD nodes, with the installation of all the necessary packages.

• The second and third commands configure the monitor host so that it's ready to
accept external connections.

160 Libvirt Storage

• The two disk commands are all about disk preparation—Ceph will clear the disks
that we assigned to it (/dev/sdb per OSD host) and create two partitions on them,
one for Ceph data and one for the Ceph journal.

• The last two commands prepare these filesystems for use and activate Ceph. If at
any time your ceph-deploy script stops, check your DNS and /etc/hosts
and firewalld configuration, as that's where the problems usually are.

We need to expose Ceph to our KVM host, which means that we have to do a bit of extra
configuration. We're going to expose Ceph as an object pool to our KVM host, so we
need to create a pool. Let's call it KVMpool. Connect to ceph-admin, and issue the
following commands:

ceph osd pool create KVMpool 128 128

This command will create a pool called KVMpool, with 128 placement groups.

The next step involves approaching Ceph from a security perspective. We don't want
anyone connecting to this pool, so we're going to create a key for authentication to Ceph,
which we're going to use on the KVM host for authentication purposes. We do that by
typing the following command:

ceph auth get-or-create client.KVMpool mon 'allow r' osd 'allow
rwx pool=KVMpool'

It's going to throw us a status message, something like this:

key = AQB9p8RdqS09CBAA1DHsiZJbehb7ZBffhfmFJQ==

We can then switch to the KVM host, where we need to do two things:

• Define a secret—an object that's going to link libvirt to a Ceph user—and by
doing that, we're going to create a secret object with its Universally Unique
Identifier (UUID).

• Use that secret's UUID to link it to the Ceph key when we define the Ceph
storage pool.

The easiest way to do these two steps would be by using two XML configuration files for
libvirt. So, let's create those two files. Let's call the first one, secret.xml, and here are
its contents:

 <secret ephemeral='no' private='no'>

 <usage type='ceph'>

Gluster and Ceph as a storage backend for KVM 161

 <name>client.KVMpool secret</name>

 </usage>

</secret>

Make sure that you save and import this XML file by typing in the following command:

virsh secret-define --file secret.xml

After you press the Enter key, this command is going to throw out a UUID. Please copy
and paste that UUID someplace safe, as we're going to need it for the pool XML file. In
our environment, this first virsh command threw out the following output:

Secret 95b1ed29-16aa-4e95-9917-c2cd4f3b2791 created

We need to assign a value to this secret so that when libvirt tries to use this secret, it
knows which password to use. That's actually the password that we created on the Ceph
level, when we used ceph auth get-create, which threw us the key. So, now that we
have both the secret UUID and the Ceph key, we can combine them to create a complete
authentication object. On the KVM host, we need to type in the following command:

virsh secret-set-value 95b1ed29-16aa-4e95-9917-c2cd4f3b2791
AQB9p8RdqS09CBAA1DHsiZJbehb7ZBffhfmFJQ==

Now, we can create the Ceph pool file. Let's call the config file ceph.xml, and here are
its contents:

 <pool type="rbd">

 <source>

 <name>KVMpool</name>

 <host name='192.168.159.151' port='6789'/>

 <auth username='KVMpool' type='ceph'>

 <secret uuid='95b1ed29-16aa-4e95-9917-c2cd4f3b2791'/>

 </auth>

 </source>

 </pool>

162 Libvirt Storage

So, the UUID from the previous step was used in this file to reference which secret
(identity) is going to be used for Ceph pool access. Now we need to do the standard
procedure—import the pool, start it, and autostart it—if we want to use it permanently
(after the KVM host reboot). So, let's do that with the following sequence of commands
on the KVM host:

virsh pool-define --file ceph.xml

virsh pool-start KVMpool

virsh pool-autostart KVMpool

virsh pool-list --details

The last command should produce an output similar to this:

Figure 5.26 – Checking the state of our pools; the Ceph pool is configured and ready to be used

Now that the Ceph object pool is available for our KVM host, we could install a
virtual machine on it. We're going to work on that – again – in Chapter 7, Virtual
Machine – Installation, Configuration, and Life-Cycle Management.

Virtual disk images and formats and basic
KVM storage operations
Disk images are standard files stored on the host's filesystem. They are large and act
as virtualized hard drives for guests. You can create such files using the dd command,
as shown:

dd if=/dev/zero of=/vms/dbvm_disk2.img bs=1G count=10

Here is the translation of this command for you:

Duplicate data (dd) from the input file (if) of /dev/zero (virtually limitless supply of
zeros) into the output file (of) of /vms/dbvm_disk2.img (disk image) using blocks
of 1 G size (bs = block size) and repeat this (count) just once (10).

Virtual disk images and formats and basic KVM storage operations 163

Important note:
dd is known to be a resource-hungry command. It may cause I/O problems on
the host system, so it's good to first check the available free memory and I/O
state of the host system, and only then run it. If the system is already loaded,
lower the block size to MB and increase the count to match the size of the file
you wanted (use bs=1M, count=10000 instead of bs=1G, count=10).

/vms/dbvm_disk2.img is the result of the preceding command. The image now
has 10 GB preallocated and ready to use with guests either as the boot disk or second
disk. Similarly, you can also create thin-provisioned disk images. Preallocated and
thin-provisioned (sparse) are disk allocation methods, or you may also call it the format:

• Preallocated: A preallocated virtual disk allocates the space right away at the time
of creation. This usually means faster write speeds than a thin-provisioned virtual
disk.

• Thin-provisioned: In this method, space will be allocated for the volume as
needed—for example, if you create a 10 GB virtual disk (disk image) with sparse
allocation. Initially, it would just take a couple of MB of space from your storage
and grow as it receives write from the virtual machine up to 10 GB size. This
allows storage over-commitment, which means faking the available capacity from
a storage perspective. Furthermore, this can lead to problems later, when storage
space gets filled. To create a thin-provisioned disk, use the seek option with the
dd command, as shown in the following command:

dd if=/dev/zero of=/vms/dbvm_disk2_seek.imgbs=1G seek=10
count=0

Each comes with its own advantages and disadvantages. If you are looking for I/O
performance, go for a preallocated format, but if you have a non-IO-intensive load,
choose thin-provisioned.

Now, you might be wondering how you can identify what disk allocation method a certain
virtual disk uses. There is a good utility for finding this out: qemu-img. This command
allows you to read the metadata of a virtual image. It also supports creating a new disk
and performing low-level format conversion.

164 Libvirt Storage

Getting image information
The info parameter of the qemu-img command displays information about a disk
image, including the absolute path of the image, the file format, and the virtual and disk
size. By looking at the virtual disk size from a QEMU perspective and comparing that to
the image file size on the disk, you can easily identify what disk allocation policy is in use.
As an example, let's look at two of the disk images we created:

qemu-img info /vms/dbvm_disk2.img

image: /vms/dbvm_disk2.img

file format: raw

virtual size: 10G (10737418240 bytes)

disk size: 10G

qemu-img info /vms/dbvm_disk2_seek.img

image: /vms/dbvm_disk2_seek.img

file format: raw

virtual size: 10G (10737418240 bytes)

disk size: 10M

See the disk size line of both the disks. It's showing 10G for /vms/dbvm_disk2.img,
whereas for /vms/dbvm_disk2_seek.img, it's showing 10M MiB. This difference is
because the second disk uses a thin-provisioning format. The virtual size is what guests see
and the disk size is what space the disk reserved on the host. If both the sizes are the same,
it means the disk is preallocated. A difference means that the disk uses the thin-provisioning
format. Now, let's attach the disk image to a virtual machine; you can attach it using
virt-manager or the CLI alternative, virsh.

Attaching a disk using virt-manager
Start virt-manager from the host system's graphical desktop environment. It can also be
started remotely using SSH, as demonstrated in the following command:

ssh -X host's address

[remotehost]# virt-manager

So, let's use the Virtual Machine Manager to attach the disk to the virtual machine:

1. In the Virtual Machine Manager main window, select the virtual machine to which
you want to add the secondary disk.

2. Go to the virtual hardware details window and click on the Add Hardware button
located at the bottom-left side of the dialog box.

Virtual disk images and formats and basic KVM storage operations 165

3. In Add New Virtual Hardware, select Storage and select the Create a disk image
for the virtual machine button and virtual disk size, as in the following screenshot:

Figure 5.27 – Adding a virtual disk in virt-manager

4. If you want to attach the previously created dbvm_disk2.img image, choose
Select or create custom storage, click on Manage, and either browse and point to
the dbvm_disk2.img file from the /vms directory or find it in the local storage
pool, then select it and click Finish.

Important note:
Here, we used a disk image, but you are free to use any storage device that is
present on the host system, such as a LUN, an entire physical disk (/dev/
sdb) or disk partition (/dev/sdb1), or LVM logical volume. We could
have used any of the previously configured storage pools for storing this image
either as a file or object or directly to a block device.

166 Libvirt Storage

5. Clicking on the Finish button will attach the selected disk image (file) as a second
disk to the virtual machine using the default configuration. The same operation can
be quickly performed using the virsh command.

Using virt-manager to create a virtual disk was easy enough—just a couple of clicks
of a mouse and a bit of typing. Now, let's see how we can do that via the command
line—namely, by using virsh.

Attaching a disk using virsh
virsh is a very powerful command-line alternative to virt-manager. You can perform an
action in a second that would take minutes to perform through a graphical interface such
as virt-manager. It provides an attach-disk option to attach a new disk device to a
virtual machine. There are lots of switches provided with attach-disk:

attach-disk domain source target [[[--live] [--config] |
[--current]] | [--persistent]] [--targetbusbus] [--driver
driver] [--subdriversubdriver] [--iothreadiothread] [--cache
cache] [--type type] [--mode mode] [--sourcetypesourcetype]
[--serial serial] [--wwnwwn] [--rawio] [--address address]
[--multifunction] [--print-xml]

However, in a normal scenario, the following are sufficient to perform hot-add disk
attachment to a virtual machine:

virsh attach-disk CentOS8 /vms/dbvm_disk2.img vdb --live
--config

Here, CentOS8 is the virtual machine to which a disk attachment is executed. Then, there
is the path of the disk image. vdb is the target disk name that would be visible inside the
guest operating system. --live means performing the action while the virtual machine
is running, and --config means attaching it persistently across reboot. Not adding a
--config switch will keep the disk attached only until reboot.

Important note:
Hot plugging support: The acpiphp kernel module should be loaded
in a Linux guest operating system in order to recognize a hot-added disk;
acpiphp provides legacy hot plugging support, whereas pciehp provides
native hot plugging support . pciehp is dependent on acpiphp. Loading
acpiphp will automatically load pciehp as a dependency.

Virtual disk images and formats and basic KVM storage operations 167

You can use the virsh domblklist <vm_name> command to quickly identify how
many vDisks are attached to a virtual machine. Here is an example:

virsh domblklist CentOS8 --details

Type Device Target Source

--

file disk vda /var/lib/libvirt/images/fedora21.qcow2

file disk vdb /vms/dbvm_disk2_seek.img

This clearly indicates that the two vDisks connected to the virtual machine are both
file images. They are visible to the guest operating system as vda and vdb, respectively,
and in the last column of the disk images path on the host system.

Next, we are going to see how to create an ISO library.

Creating an ISO image library
Although a guest operating system on the virtual machine can be installed from physical
media by carrying out a passthrough the host's CD/DVD drive to the virtual machine,
it's not the most efficient way. Reading from a DVD drive is slow compared to reading
ISO from a hard disk, so a better way is to store ISO files (or logical CDs) used to install
operating systems and applications for the virtual machines in a file-based storage pool
and create an ISO image library.

To create an ISO image library, you can either use virt-manager or a virsh command.
Let's see how to create an ISO image library using the virsh command:

1. First, create a directory on the host system to store the .iso images:

mkdir /iso

2. Set the correct permissions. It should be owned by a root user with permission set
to 700. If SELinux is in enforcing mode, the following context needs to be set:

chmod 700 /iso

semanage fcontext -a -t virt_image_t "/iso(/.*)?"

3. Define the ISO image library using the virsh command, as shown in the following
code block:

virsh pool-define-as iso_library dir - - - - "/iso"

virsh pool-build iso_library

virsh pool-start iso_library

168 Libvirt Storage

In the preceding example, we used the name iso_library to demonstrate how
to create a storage pool that will hold ISO images, but you are free to use any name
you wish.

4. Verify that the pool (ISO image library) was created:

virsh pool-info iso_library

Name: iso_library

UUID: 959309c8-846d-41dd-80db-7a6e204f320e

State: running

Persistent: yes

Autostart: no

Capacity: 49.09 GiB

Allocation: 8.45 GiB

Available: 40.64 GiB

5. Now you can copy or move the .iso images to the /iso_lib directory.

6. Upon copying the .iso files into the /iso_lib directory, refresh the pool and
then check its contents:

virsh pool-refresh iso_library

Pool iso_library refreshed

virsh vol-list iso_library

Name Path

CentOS8-Everything.iso /iso/CentOS8-Everything.iso

CentOS7-EVerything.iso /iso/CentOS7-Everything.iso

RHEL8.iso /iso/RHEL8.iso

Win8.iso /iso/Win8.iso

7. This will list all the ISO images stored in the directory, along with their path. These
ISO images can now be used directly with a virtual machine for guest operating
system installation, software installation, or upgrades.

Creating an ISO image library is the de facto norm in today's enterprises. It's better to
have a centralized place where all your ISO images are, and it makes it easier to implement
some kind of synchronization method (for example, rsync) if you need to synchronize
across different locations.

Virtual disk images and formats and basic KVM storage operations 169

Deleting a storage pool
Deleting a storage pool is fairly easy. Please note that deleting a storage domain will not
remove any file/block devices. It just disconnects the storage from virt-manager. The
file/block device has to be removed manually.

We can delete a storage pool via virt-manager or by using the virsh command. Let's first
check how to do it via virt-manager:

Figure 5.28 – Deleting a pool

First, select the red stop button to stop the pool, and then click on the red circle with
an X to delete the pool.

If you want to use virsh, it's even simpler. Let's say that we want to delete the storage
pool called MyNFSpool in the previous screenshot. Just type in the following commands:

virsh pool-destroy MyNFSpool

virsh pool-undefine MyNFSpool

The next logical step after creating a storage pool is to create a storage volume. From a
logical standpoint, the storage volume slices a storage pool into smaller parts. Let's learn
how to do that now.

170 Libvirt Storage

Creating storage volumes
Storage volumes are created on top of storage pools and attached as virtual disks to
virtual machines. In order to create a storage volume, start the Storage Management
console, navigate to virt-manager, then click Edit | Connection Details | Storage and
select the storage pool where you want to create a new volume. Click on the create new
volume button (+):

Figure 5.29 – Creating a storage volume for the virtual machine

Next, provide the name of the new volume, choose the disk allocation format for it,
and click on the Finish button to build the volume and get it ready to attach to a virtual
machine. You can attach it using the usual virt-manager or the virsh command. There
are several disk formats that are supported by libvirt (raw, cow, qcow, qcow2, qed, and
vmdk). Use the disk format that suits your environment and set the proper size in the Max
Capacity and Allocation fields to decide whether you wish to go with preallocated
disk allocation or thin-provisioned. If you keep the disk size the same in Max Capacity
and Allocation, it will be preallocated rather than thin-provisioned. Note that the qcow2
format does not support the thick disk allocation method.

Virtual disk images and formats and basic KVM storage operations 171

In Chapter 8, Creating and Modifying VM Disks, Templates, and Snapshots, all the disk
formats are explained in detail. For now, just understand that qcow2 is a specially
designed disk format for KVM virtualization. It supports the advanced features needed
for creating internal snapshots.

Creating volumes using the virsh command
The syntax to create a volume using the virsh command is as follows:

virsh vol-create-as dedicated_storage vm_vol1 10G

Here, dedicated_storage is the storage pool, vm_vol1 is the volume name, and
10 GB is the size:

virsh vol-info --pool dedicated_storage vm_vol1

Name: vm_vol1

Type: file

Capacity: 1.00 GiB

Allocation: 1.00 GiB

The virsh command and arguments to create a storage volume are almost the same
regardless of the type of storage pool it is created on. Just enter the appropriate input for
a --pool switch. Now, let's see how to delete a volume using the virsh command.

Deleting a volume using the virsh command
The syntax to delete a volume using the virsh command is as follows:

virsh vol-delete dedicated_storage vm_vol2

Executing this command will remove the vm_vol2 volume from the dedicated_
storage storage pool.

The next step in our storage journey is about looking a bit into the future as all of the
concepts that we mentioned in this chapter have been well known for years, some even for
decades. The world of storage is changing and moving into new and interesting directions,
so let's discuss that for a bit next.

172 Libvirt Storage

The latest developments in storage – NVMe
and NVMeOF
In the past 20 or so years, by far the biggest disruption in the storage world in terms of
technology has been the introduction of Solid State Drives (SSDs). Now, we know that a lot
of people have gotten quite used to having them in their computers—laptops, workstations,
whichever type of device we use. But again, we're discussing storage for virtualization, and
enterprise storage concepts overall, and that means that our regular SATA SSDs aren't going
to make the cut. Although a lot of people use them in mid-range storage devices and/or
handmade storage devices that host ZFS pools (for cache), some of these concepts have a
life of their own in the latest generations of storage devices. These devices are fundamentally
changing the way technology is working and redoing parts of modern IT history in terms of
which protocols are used, how fast they are, how much lower latencies they have, and how
they approach storage tiering—tiering being a concept that differentiates different storage
devices or their storage pools based on a capability, usually speed.

Let's briefly explain what we're discussing here by using an example of where the storage
world is heading. Along with that, the storage world is taking the virtualization, cloud, and
HPC world along for the ride, so these concepts are not outlandish. They already exist, in
readily available storage devices that you can buy today.

The introduction of SSDs brought a significant change in the way we access our storage
devices. It's all about performance and latency, and older concepts such as Advanced Host
Controller Interface (AHCI), which we're still actively using with many SSDs on the
market today, are just not good enough to handle the performance that SSDs have. AHCI
is a standard way in which a regular hard disk (mechanical disk or regular spindle) talks
via software to SATA devices. However, the key part of that is hard disk, which means
cylinders, heads sectors—things that SSDs just don't have, as they don't spin around and
don't need that kind of paradigm. That meant that another standard had to be created so
that we can use SSDs in a more native fashion. That's what Non-Volatile Memory Express
(NVMe) is all about—bridging the gap between what SSDs are capable of doing and what
they can actually do, without using translations from SATA to AHCI to PCI Express
(and so on).

The fast development pace of SSDs and the integration of NVMe made huge
advancements in enterprise storage possible. That means that new controllers, new
software, and completely new architectures had to be invented to support this paradigm
shift. As more and more storage devices integrate NVMe for various purposes—primarily
for caching, then for storage capacity as well—it's becoming clear that there are other
problems that need to be solved as well. The first of which is the way in which we're
going to connect storage devices offering such a tremendous amount of capability to
our virtualized, cloud, or HPC environments.

The latest developments in storage – NVMe and NVMeOF 173

In the past 10 or so years, many people argued that FC is going to disappear from the
market, and a lot of companies hedged their bets on different standards—iSCSI, iSCSI over
RDMA, NFS over RDMA, and so on. The reasoning behind that seemed solid enough:

• FC is expensive—it requires separate physical switches, separate cabling, and
separate controllers, all of which cost a lot of money.

• There's licensing involved—when you buy, for example, a Brocade switch that has
40 FC ports, that doesn't mean that you can use all of them out of the box, as there
are licenses to get more ports (8-port, 16-port, and so on).

• FC storage devices are expensive and often require more expensive disks
(with FC connectors).

• Configuring FC requires extensive knowledge and/or training, as you can't simply
go and configure a stack of FC switches for an enterprise-level company without
knowing the concepts, and the CLI from the switch vendor, on top of knowing
what that enterprise's needs are.

• The ability of FC as a protocol to speed up its development to reach new speeds has
been really bad. In simple terms, during the time it took FC to go from 8 Gbit/s
to 32 Gbit/s, Ethernet went from 1 Gbit/s to 25, 40, 50, and 100 Gbit/s bandwidth.
There's already talk about 400 Gbit/s Ethernet, and there are the first devices that
support that standard as well. That usually makes customers concerned as higher
numbers mean better throughput, at least in most people's minds.

But what's happening on the market now tells us a completely different story—not just
that FC is back, but that it's back with a mission. The enterprise storage companies have
embraced that and started introducing storage devices with insane levels of performance
(with the aid of NVMe SSDs, as a first phase). That performance needs to be transferred
to our virtualized, cloud, and HPC environments, and that requires the best possible
protocol, in terms of lowest latency, its design, and the quality and reliability, and FC has
all of that.

That leads to the second phase, where NVMe SSDs aren't just being used as cache devices,
but as capacity devices as well.

174 Libvirt Storage

Take note of the fact that, right now, there's a big fight brewing on the storage memory/
storage interconnects market. There are multiple different standards trying to compete
with Intel's Quick Path Interconnect (QPI), a technology that's been used in Intel CPUs
for more than a decade. If this is a subject that's interesting to you, there is a link at the
end of this chapter, in the Further reading section, where you can find more information.
Essentially, QPI is a point-to-point interconnection technology with low latency and high
bandwidth that's at the core of today's servers. Specifically, it handles communication
between CPUs, CPUs and memory, CPUs and chipsets, and so on. It's a technology that
Intel developed after it got rid of the Front Side Bus (FSB) and chipset-integrated memory
controllers. FSB was a shared bus that was shared between memory and I/O requests.
That approach had much higher latency, didn't scale well, and had lower bandwidth and
problems with situations in which there's a large amount of I/O happening on the memory
and I/O side. After switching to an architecture where the memory controller was a part
of the CPU (therefore, memory directly connects to it), it was essential for Intel to finally
move to this kind of concept.

If you're more familiar with AMD CPUs, QPI is to Intel what HyperTransport bus on
a CPU with built-in memory controller is to AMD CPUs.

As NVMe SSDs became faster, the PCI Express standard also needed to be updated, which
is the reason why the latest version (PCIe 4.0 – the first products started shipping recently)
was so eagerly anticipated. But now, the focus has switched to two other problems that
need resolving for storage systems to work. Let's describe them briefly:

• Problem number one is simple. For a regular computer user, one or two NVMe
SSDs will be enough in 99% of scenarios or more. Realistically, the only real reason
why regular computer users need a faster PCIe bus is for a faster graphics cards.
But for storage manufacturers, it's completely different. They want to produce
enterprise storage devices that will have 20, 30, 50, 100, 500 NVMe SSDs in a single
storage system—and they want that now, as SSDs are mature as a technology and
are widely available.

• Problem number two is more complex. To add insult to injury, the latest generation
of SSDs (for example, based on Intel Optane) can offer even lower latency and
higher throughput. That's only going to get worse (even lower latencies, higher
throughput) as technology evolves. For today's services—virtualization, cloud, and
HPC—it's essential that the storage system is able to handle any load that we can
throw at it. These technologies are a real game-changer in terms of how much faster
storage devices can become, only if interconnects can handle it (QPI, FC, and many
more). Two of these concepts derived from Intel Optane—Storage Class Memory
(SCM) and Persistent Memory (PM) are the latest technologies that storage
companies and customers want adopted into their storage systems, and fast.

The latest developments in storage – NVMe and NVMeOF 175

• The third problem is how to transfer all of that bandwidth and I/O capability to
the servers and infrastructures using them. This is why the concept of NVMe over
Fabrics (NVMe-OF) was created, to try to work on the storage infrastructure stack
to make NVMe much more efficient and faster for its consumers.

If you take a look at these advancements from a conceptual point of view, it was clear
for decades that RAM-like memory is the fastest, lowest latency technology that we've
had for the past couple of decades. It's also logical that we're moving workloads to RAM,
as much as possible. Think of in-memory databases (such as Microsoft SQL, SAP Hana,
and Oracle). They've been around the block for years.

These technologies fundamentally change the way we think about storage. Basically, no
longer are we discussing storage tiering based on technology (SSD versus SAS versus
SATA), or outright speed, as the speed is unquestionable. The latest storage technologies
discuss storage tiering in terms of latency. The reason is very simple—let's say that you're a
storage company and that you build a storage system that uses 50 SCM SSDs for capacity.
For cache, the only reasonable technology would be RAM, hundreds of gigabytes of it.
The only way you'd be able to work with storage tiering on a device like that is by basically
emulating it in software, by creating additional technologies that will produce tiering-like
services based on queueing, handling priority in cache (RAM), and similar concepts.
Why? Because if you're using the same SCM SSDs for capacity, and they offer the same
speed and I/O, you just don't have a way of tiering based on technology or capability.

Let's further describe this by using an available storage system to explain. The best device
to make our point is Dell/EMC's PowerMax series of storage devices. If you load them with
NVMe and SCM SSDs, the biggest model (8000) can scale to 15 million IOPS(!), 350 GB/s
throughput at lower than 100 microseconds latency and up to 4 PB capacity. Think about
those numbers for a second. Then add another number—on the frontend, it can have up to
256 FC/FICON/iSCSI ports. Just recently, Dell/EMC released new 32 Gbit/s FC modules
for it. The smaller PowerMax model (2000) can do 7.5 million IOPS, sub-100 microsecond
latency, and scale to 1 PB. It can also do all of the usual EMC stuff—replication, compression,
deduplication, snapshots, NAS features, and so on. So, this is not just marketing talk; these
devices are already out there, being used by enterprise customers:

Figure 3.30 – PowerMax 2000 – it seems small, but it packs a lot of punch

176 Libvirt Storage

These are very important concepts for the future, as more and more manufacturers
produce similar devices (and they are on the way). We fully expect the KVM-based world
to embrace these concepts in large-scale environments, especially for infrastructures with
OpenStack and OpenShift.

Summary
In this chapter, we introduced and configured various Open Source storage concepts for
libvirt. We also discussed industry-standard approaches, such as iSCSI and NFS, as they are
often used in infrastructures that are not based on KVM. For example, VMware vSphere-
based environments can use FC, iSCSI, and NFS, while Microsoft-based environments can
only use FC and iSCSI, from the list of subjects we covered in this chapter.

The next chapter will cover subjects related to virtual display devices and protocols. We'll
provide an in-depth introduction to VNC and SPICE protocols. We will also provide a
description of other protocols that are used for virtual machine connection. All that will
help us to understand the complete stack of fundamentals that we need to work with our
virtual machines, which we covered in the past three chapters.

Questions
1. What is a storage pool?

2. How does NFS storage work with libvirt?

3. How does iSCSI work with libvirt?

4. How do we achieve redundancy on storage connections?

5. What can we use for virtual machine storage except NFS and iSCSI?

6. Which storage backend can we use for object-based storage with libvirt?

7. How can we create a virtual disk image to use with a KVM virtual machine?

8. How does using NVMe SSDs and SCM devices change the way that we create
storage tiers?

9. What are the fundamental problems of delivering tier-0 storage services for
virtualization, cloud, and HPC environments?

Further reading 177

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• What's new with RHEL8 file systems and storage: https://www.redhat.com/
en/blog/whats-new-rhel-8-file-systems-and-storage

• oVirt storage: https://www.ovirt.org/documentation/
administration_guide/#chap-Storage

• RHEL 7 storage administration guide: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/7/html/
storage_administration_guide/index

• RHEL 8 managing storage devices: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/8/html/
managing_storage_devices/index

• OpenFabrics CCIX, Gen-Z, OpenCAPI (overview and comparison): https://www.
openfabrics.org/images/eventpresos/2017presentations/213_
CCIXGen-Z_BBenton.pdf

https://www.redhat.com/en/blog/whats-new-rhel-8-file-systems-and-storage
https://www.redhat.com/en/blog/whats-new-rhel-8-file-systems-and-storage
https://www.ovirt.org/documentation/administration_guide/#chap-Storage
https://www.ovirt.org/documentation/administration_guide/#chap-Storage
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/index
https://www.openfabrics.org/images/eventpresos/2017presentations/213_CCIXGen-Z_BBenton.pdf
https://www.openfabrics.org/images/eventpresos/2017presentations/213_CCIXGen-Z_BBenton.pdf
https://www.openfabrics.org/images/eventpresos/2017presentations/213_CCIXGen-Z_BBenton.pdf

6
Virtual Display

Devices and
Protocols

In this chapter, we will discuss the way in which we access our virtual machines by using
virtual graphic cards and protocols. There are almost 10 available virtual display adapters
that we can use in our virtual machines, and there are multiple available protocols and
applications that we can use to access our virtual machines. If we forget about SSH for
a second and any kind of console-based access in general, there are various protocols
available on the market that we can use to access the console of our virtual machine,
such as VNC, SPICE, and noVNC.

In Microsoft-based environments, we tend to use a remote desktop protocol (RDP). If
we are talking about Virtual Desktop Infrastructure (VDI), then there are even more
protocols available – PC over IP (PCoIP), VMware Blast, and so on. Some of these
technologies offer additional functionality, such as greater color depth, encryption, audio
and filesystem redirection, printer redirection, bandwidth management, and USB and
other port redirection. These are key technologies for your remote desktop experience
in today's cloud-based world.

180 Virtual Display Devices and Protocols

All of this means that we must put a bit more time and effort into getting to know various
display devices and protocols, as well as how to configure and use them. We don't want
to end up in situations in which we can't see the display of a virtual machine because we
selected the wrong virtual display device, or in a situation where we try to open a console
to see the content of a virtual machine and the console doesn't open.

In this chapter, we will cover the following topics:

• Using virtual machine display devices

• Discussing remote display protocols

• Using the VNC display protocol

• Using the SPICE display protocol

• Getting display portability with NoVNC

• Let's get started!

Using virtual machine display devices
To make the graphics work on virtual machines, QEMU needs to provide two
components to its virtual machines: a virtual graphic adapter and a method or protocol to
access the graphics from the client. Let's discuss these two concepts, starting with a virtual
graphic adapter. The latest version of QEMU has eight different types of virtual/emulated
graphics adapters. All of these have some similarities and differences, all of which can be
in terms of features and/or resolutions supported or other, more technical details. So,
let's describe them and see which use cases we are going to favor a specific virtual
graphic card for:

• tcx: A SUN TCX virtual graphics card that can be used with old SUN OSes.

• cirrus: A virtual graphic card that's based on an old Cirrus Logic GD5446 VGA
chip. It can be used with any guest OS after Windows 95.

• std: A standard VGA card that can be used with high-resolution modes for guest
OSes after Windows XP.

• vmware: VMware's SVGA graphics adapter, which requires additional drivers in
Linux guest OSes and VMware Tools installation for Windows OSes.

• QXL: The de facto standard paravirtual graphics card that we need to use when
we use SPICE remote display protocol, which we will cover in detail a bit later in
this chapter. There's an older version of this virtual graphics card called QXL VGA,
which lacks some more advanced features, while offering lower overhead (it uses
less memory).

Using virtual machine display devices 181

• Virtio: A paravirtual 3D virtual graphics card that is based on the virgl project,
which provides 3D acceleration for QEMU guest OSes. It has two different types
(VGA and gpu). virtio-vga is commonly used for situations where we need
multi-monitor support and OpenGL hardware acceleration. The virtio-gpu
version doesn't have a built-in standard VGA compatibility mode.

• cg3: A virtual graphics card that we can use with older SPARC-based guest OSes.

• none: Disables the graphics card in the guest OS.

When configuring your virtual machine, you can select these options at startup or virtual
machine creation. In CentOS 8, the default virtual graphics card that gets assigned to
a newly created virtual machine is QXL, as shown in the following screenshot of the
configuration for a new virtual machine:

Figure 6.1 – Default virtual graphics card for a guest OS – QXL

182 Virtual Display Devices and Protocols

Also, by default, we can select three of these types of virtual graphics cards for any
given virtual machine, as these are usually pre-installed for us on any Linux server
that's configured for virtualization:

• QXL

• VGA

• Virtio

Some of the new OSes running in KVM virtualization shouldn't use older graphics card
adapters for a variety of reasons. For example, ever since Red Hat Enterprise Linux/
CentOS 7, there's an advisory not to use the cirrus virtual graphics card for Windows 10
and Windows Server 2016. The reason for this is related to the instability of the virtual
machine, as well as the fact that – for example – you can't use a full HD resolution display
with the cirrus virtual graphics card. Just in case you start installing these guest OSes,
make sure that you're using a QXL video graphics card as it offers the best performance
and compatibility with the SPICE remote display protocol.

Theoretically, you could still use cirrus virtual graphics card for some of the really old
guest OSes (older Windows NTs such as 4.0 and older client guest OSes such as Windows
XP), but that's about it. For everything else, it's much better to either use a std or QXL
driver as they offer the best performance and acceleration support. Furthermore, these
virtual graphics cards also offer higher display resolutions.

There are some other virtual graphics cards available for QEMU, such as embedded
drivers for various System on a Chip (SoC) devices, ati vga, bochs, and so on. Some of
these are often used, such as SoCs – just remember all of the world's Raspberry Pis, and
BBC Micro:bits. These new virtual graphics options are further expanded by Internet of
Things (IoT). So, there are loads of good reasons why we should pay close attention to
what's happening in this market space.

Using virtual machine display devices 183

Let's show this via an example. Let's say that we want to create a new virtual machine
that is going to have a set of custom parameters assigned to it in terms of how we access
its virtual display. If you remember in Chapter 3, Installing KVM Hypervisor, libvirt, and
ovirt, we discussed various libvirt management commands (virsh, virt-install)
and we also created some virtual machines by using virt-install and some custom
parameters. Let's add to those and use a similar example:

virt-install --virt-type=kvm --name MasteringKVM01 --vcpus 2
 --ram 4096 --os-variant=rhel8.0 --/iso/CentOS-8-x86_64-
1905-dvd1.iso --network=default --video=vga --graphics
vnc,password=Packt123 --disk size=16

Here's what's going to happen:

Figure 6.2 – KVM virtual machine with a VGA virtual graphics card is created.
Here, VNC is asking for a password to be specified

184 Virtual Display Devices and Protocols

After we type in the password (Packt123, as specified in the virt-install configuration
option), we're faced with this screen:

Figure 6.3 – VGA display adapter and its low default (640x480) initial resolution - a familiar resolution
for all of us who grew up in the 80s

That being said, we just used this as an example of how to add an advanced option to the
virt-install command – specifically, how to install a virtual machine with a specific
virtual graphics card.

Using virtual machine display devices 185

There are other, more advanced concepts of using real graphics cards that we installed in
our computers or servers to forward their capabilities directly to virtual machines. This
is very important for concepts such as VDI, as we mentioned earlier. Let's discuss these
concepts for a second and use some real-word examples and comparisons to understand
the complexity of VDI solutions on a larger scale.

Physical and virtual graphics cards in VDI scenarios
As we discussed in Chapter 1, Understanding Linux Virtualization, VDI is a concept that
uses virtualization paradigm for client OSes. This means that end users connect directly to
their virtual machines by running a client OS (for example, Windows 8.1, Windows 10,
or Linux Mint) that is either reserved for them or pooled, which means that multiple
users can access the same virtual machines and get access to their data via additional
VDI capabilities.

Now, if we're talking about most business users, they just need something that we jokingly
call a typewriter. This usage model relates to a scenario in which the user uses a client OS
for reading and writing documents, email, and browsing the internet. And for these use
cases, if we were to use any vendor-based solution out there (VMware's Horizon, Citrix
Xen Desktop, or Microsoft's Remote Desktop Services-based VDI solutions), we could
do so with any one of them.

However, there's a big but. What happens if the scenario includes hundreds of users who
need access to 2D and/or 3D video acceleration? What happens if we are designing a VDI
solution for a company creating designs – architecture, plumbing, oil and gas, and video
production? Running VDI solutions based on CPU and software-based virtual graphics
cards will get us nowhere, especially at scale. This is where Xen Desktop and Horizon will
be much more feature-packed if we're talking about the technology level. And – to be
quite honest – KVM-based methods aren't all that far behind in terms of display options,
it's just that they lag in some other enterprise-class features, which we will discuss in later
chapters, such as Chapter 12, Scaling Out KVM with OpenStack.

Basically, there are three concepts we can use to obtain graphics card performance for a
virtual machine:

• We can use a software renderer that's CPU-based.

• We can reserve a GPU for a specific virtual machine (PCI passthrough).

• We can partition a GPU so that we can use it in multiple virtual machines.

186 Virtual Display Devices and Protocols

Just to use the VMware Horizon solution as a metaphor, these solutions would be called
CPU rendering, Virtual Direct Graphics Acceleration (vDGA), and Virtual Shared
Graphics Acceleration (vSGA). Or, in Citrix, we'd be talking about HDX 3D Pro. In
CentOS 8, we are talking about mediated devices in the shared graphics card scenario.

If we're talking about PCI passthrough, it definitely delivers the best performance as you
can use a PCI-Express graphics card, forward it directly to a virtual machine, install a
native driver inside the guest OS, and have the complete graphics card all for yourself.
But that creates four problems:

• You can only have that PCI-Express graphics card forwarded to one virtual machine.

• As servers can be limited in terms of upgradeability, for example, you can't run
50 virtual machines like that on one physical server as you can't fit 50 graphics cards
on a single server – physically or in terms of PCI-Express slots, where you usually
have up to six in a typical 2U rack server.

• If you're using Blade servers (for example, HP c7000), it's going to be even worse as
you're going to use half of the server density per blade chassis if you're going to use
additional graphics cards as these cards can only be fitted to double-height blades.

• You're going to spend an awful lot of money scaling any kind of solution like this
to hundreds of virtual desktops, or – even worse – thousands of virtual desktops.

If we're talking about a shared approach in which you partition a physical graphics
card so that you can use it in multiple virtual machines, that's going to create another
set of problems:

• You're much more limited in terms of which graphics card to use as there are maybe
20 graphics cards that support this usage model (some include NVIDIA GRID,
Quadro, Tesla cards, and a couple of AMD and Intel cards).

• If you share the same graphics card with four, eight, 16, or 32 virtual machines, you
have to be aware of the fact that you'll get less performance, as you're sharing the
same GPU with multiple virtual machines.

• Compatibility with DirectX, OpenGL, CUDA, and video encoding offload
won't be as good as you might expect, and you might be forced to use older
versions of these standards.

• There might be additional licensing involved, depending on the vendor and solution.

Using virtual machine display devices 187

The next topic on our list is how to use a GPU in a more advanced way – by using the
GPU partitioning concept to provide parts of a GPU to multiple virtual machines. Let's
explain how that works and gets configured by using an NVIDIA GPU as an example.

GPU partitioning using an NVIDIA vGPU as an example
Let's use an example to see how we can use the scenario in which we partition our GPU
(NVIDIA vGPU) with our KVM-based virtual machine. This procedure is very similar
to the SR-IOV procedure we discussed in Chapter 4, Libvirt Networking, where we used
a supported Intel network card to present virtual functions to our CentOS host, which
we then presented to our virtual machines by using them as uplinks for the KVM
virtual bridge.

First, we need to check which kind of graphic cards we have, and it must be a supported
one (in our case, we're using a Tesla P4). Let's use the lshw command to check our
display devices, which should look similar to this:

yum -y install lshw

lshw -C display

*-display

 description: 3D controller

 product: GP104GL [Tesla P4]

 vendor: NVIDIA Corporation

 physical id: 0

 bus info: pci@0000:01:00.0

 version: a0

 width: 64 bits

 clock: 33MHz

 capabilities: pm msi pciexpress cap_list

 configuration: driver=vfio-pci latency=0

 resources: irq:15 memory:f6000000-f6ffffff
memory:e0000000-efffffff memory:f0000000-f1ffffff

The output of this command tells us that we have a 3D-capable GPU – specifically,
a NVIDIA GP104GL-based product. It tells us that this device is already using the
vfio-pci driver. This driver is the native SR-IOV driver for Virtualized Functions
(VF). These functions are the core of SR-IOV functionality. We will describe this by
using this SR-IOV-capable GPU.

188 Virtual Display Devices and Protocols

The first thing that we need to do – which all of us NVIDIA GPU users have been doing
for years – is to blacklist the nouveau driver, which gets in the way. And if we are going
to use GPU partitioning on a permanent basis, we need to do this permanently so that it
doesn't get loaded when our server starts. But be warned – this can lead to unexpected
behavior at times, such as the server booting and not showing any output without any
real reason. So, we need to create a configuration file for modprobe that will blacklist the
nouveau driver. Let's create a file called nouveauoff.conf in the /etc/modprobe.d
directory with the following content:

blacklist nouveau

options nouveau modeset 0

Then, we need to force our server to recreate the initrd image that gets loaded as our
server starts and reboot the server to make that change is active. We are going to do that
with the dracut command, followed by a regular reboot command:

dracut –-regenerate-all –force

systemctl reboot

After the reboot, let's check if our vfio driver for the NVIDIA graphics card has loaded
and, if it has, check the vGPU manager service:

lsmod | grep nvidia | grep vfio

nvidia_vgpu_vfio 45011 0

nvidia 14248203 10 nvidia_vgpu_vfio

mdev 22078 2 vfio_mdev,nvidia_vgpu_vfio

vfio 34373 3 vfio_mdev,nvidia_vgpu_vfio,vfio_iommu_type1

systemctl status nvidia-vgpu-mgr

vidia-vgpu-mgr.service - NVIDIA vGPU Manager Daemon

 Loaded: loaded (/usr/lib/systemd/system/nvidia-vgpu-mgr.
service; enabled; vendor preset: disabled)

 Active: active (running) since Thu 2019-12-12 20:17:36 CET;
0h 3min ago

 Main PID: 1327 (nvidia-vgpu-mgr)

We need to create a UUID that we will use to present our virtual function to a KVM
virtual machine. We will use the uuidgen command for that:

uuidgen

c7802054-3b97-4e18-86a7-3d68dff2594d

Using virtual machine display devices 189

Now, let's use this UUID for the virtual machines that will share our GPU. For that, we
need to create an XML template file that we will add to the existing XML files for our
virtual machines in a copy-paste fashion. Let's call this vsga.xml:

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-
pci'>

 <source>

 <address uuid='c7802054-3b97-4e18-86a7-3d68dff2594d'/>

 </source>

</hostdev>

Use these settings as a template and just copy-paste the complete content to any virtual
machine's XML file where you want to have access to our shared GPU.

The next concept that we need to discuss is the complete opposite of SR-IOV, where
we're slicing a device into multiple pieces to present these pieces to virtual machines. In
GPU passthrough, we're taking the whole device and presenting it directly to one object,
meaning one virtual machine. Let's learn how to configure that.

GPU PCI passthrough
As with every advanced feature, enabling GPU PCI passthrough requires multiple
steps to be done in sequence. By doing these steps in the correct order, we're directly
presenting this hardware device to a virtual machine. Let's explain these configuration
steps and do them:

1. To enable GPU PCI passthrough, we need to configure and enable IOMMU – first
in our server's BIOS, then in our Linux distribution. We're using Intel-based servers,
so we need to add iommu options to our /etc/default/grub file, as shown in
the following screenshot:

Figure 6.4 – Adding intel_iommu iommu=pt options to a GRUB file

190 Virtual Display Devices and Protocols

2. The next step is to reconfigure the GRUB configuration and reboot it, which can be
achieved by typing in the following commands:

grub2-mkconfig -o /etc/grub2.cfg

systemctl reboot

3. After rebooting the host, we need to acquire some information – specifically, ID
information about the GPU device that we want to forward to our virtual machine.
Let's do that:

Figure 6.5 – Using lspci to display relevant configuration information
In our use case, we want to forward the Quadro 2000 card to our virtual machine
as we're using the GT740 to hook up our monitors and the Quadro card is currently
free of any workloads or connections. So, we need to take note of two numbers;
that is, 0000:05:00.0 and 10de:0dd8.

We will need both IDs going forward, with each one for defining which device we
want to use and where.

4. The next step is to explain to our host OS that it will not be using this PCI
express device (Quadro card) for itself. In order to do that, we need to change the
GRUB configuration again and add another parameter to the same file (/etc/
defaults/grub):

Figure 6.6 – Adding the pci-stub.ids option to GRUB so that it ignores this device when booting the OS

Using virtual machine display devices 191

Again, we need to reconfigure GRUB and reboot the server after this, so type in the
following commands:

grub2-mkconfig -o /etc/grub2.cfg

systemctl reboot

This step marks the end of the physical server configuration. Now, we can move on
to the next stage of the process, which is how to use the now fully configured PCI
passthrough device in our virtual machine.

5. Let's check if everything was done correctly by using the virsh nodedev-
dumpxml command on the PCI device ID:

Figure 6.7 – Checking if the KVM stack can see our PCIe device

192 Virtual Display Devices and Protocols

Here, we can see that QEMU sees two functions: 0x1 and 0x0. The 0x1 function
is actually the GPU device's audio chip, which we won't be using for our procedure.
We just need the 0x0 function, which is the GPU itself. This means that we need to
mask it. We can do that by using the following command:

Figure 6.8 – Detaching the 0x1 device so that it can't be used for passthrough

6. Now, let's add the GPU via PCI passthrough to our virtual machine. For this
purpose, we're using a freshly installed virtual machine called MasteringKVM03,
but you can use any virtual machine you want. We need to create an XML file that
QEMU will use to know which device to add to a virtual machine. After that, we
need to shut down the machine and import that XML file into our virtual machine.
In our case, the XML file will look like this:

Figure 6.9 – The XML file with our GPU PCI passthrough definition for KVM

7. The next step is to attach this XML file to the MasteringKVM03 virtual machine.
We can do this by using the virsh attach-device command:

Figure 6.10 – Importing the XML file into a domain/virtual machine

Discussing remote display protocols 193

8. After the previous step, we can start our virtual machine, log in, and check if the
virtual machine sees our GPU:

Figure 6.11 – Checking GPU visibility in our virtual machine

The next logical step would be to install the NVIDIA driver for this card for Linux so that
we can freely use it as our discrete GPU.

Now, let's move on to another important subject that is related to remote display
protocols. We kind of danced around this subject in the previous part of this chapter
as well, but now we are going to tackle it head-on.

Discussing remote display protocols
As we mentioned previously, there are different virtualization solutions, so it's only
normal that there are different methods to access virtual machines. If you take a look at
the history of virtual machines, we had a number of different display protocols taking
care of this particular problem. So, let's discuss this history a bit.

Remote display protocols history
There will be people disputing this premise, but remote protocols started as text-only
protocols. Whichever way you look at it, serial, text-mode terminals were here before
we had X Windows or anything remotely resembling a GUI in the Microsoft, Apple,
and UNIX-based worlds. Also, you can't dispute the fact that the telnet and rlogin
protocols are also used to access remote display. It just so happens that the remote display
that we're accessing by using telnet and rlogin is a text-based display. By extension, the
same thing applies to SSH. And serial terminals, text consoles, and text-based protocols
such as telnet and rlogin were some of the most commonly used starting points that go
way back to the 1970s.

194 Virtual Display Devices and Protocols

The end of the 1970s was an important time in computer history as there were numerous
attempts to start mass-producing a personal computer for large amounts of people (for
example, Apple II from 1977). In the 1980s, people started using personal computers
more, as any Amiga, Commodore, Atari, Spectrum, or Amstrad fan will tell you. Keep
in mind that the first real, publicly available GUI-based OSes didn't start appearing until
Xerox Star (1981) and Apple Lisa (1983). The first widely available Apple-based GUI OS
was Mac OS System 1.0 in 1984. Most of the other previously mentioned computers were
all using a text-based OS. Even games from that era (and for many years to come) looked
like they were drawn by hand while you were playing them. Amiga's Workbench 1.0 was
released in 1985 and with its GUI and color usage model, it was miles ahead of its time.
However, 1985 is probably going to be remembered for something else – this is the year
that the first Microsoft Windows OS (v1.0) was released. Later, that became Windows 2.0
(1987), Windows 3.0 (1990), Windows 3.1 (1992), by which time Microsoft was already
taking the OS world by storm. Yes, there were other OSes by other manufacturers too:

• Apple: Mac OS System 7 (1991)

• IBM: OS/2 v1 (1988), v1.2 (1989), v2.0 (1992), Warp 4 (1996)

All of these were just a tiny dot on the horizon compared to the big storm that happened
in 1995, when Microsoft introduced Windows 95. It was the first Microsoft client OS
that was able to boot to GUI by default since the previous versions were started from a
command line. Then came Windows 98 and XP, which meant even more market share
for Microsoft. The rest of that story is probably very familiar, with Vista, Windows 7,
Windows 8, and Windows 10.

The point of this story is not to teach you about OS history per se. It's about noticing
the trend, which is simple enough. We started with text interfaces in the command line
(for example, IBM and MS DOS, early versions of Windows, Linux, UNIX, Amiga,
Atari, and so on). Then, we slowly moved toward more visual interfaces (GUI). With
advancements in networking, GPU, CPU, and monitoring technologies, we've reached
a phase in which we want a shiny, 4K-resolution monitor with 4-megapixel resolutions,
low latency, huge CPU power, fantastic colors, and a specific user experience. That user
experience needs to be immediate, and it shouldn't really matter that we're using a local
OS or a remote one (VDI, the cloud, or whatever the background technology is).

This means that along with all the hardware components that we just mentioned, other
(software) components needed to be developed as well. Specifically, what needed to be
developed were high-quality remote display protocols, which nowadays must be able to be
extended to a browser-based usage model, as well. People don't want to be forced to install
additional applications (clients) to access their remote resources.

Discussing remote display protocols 195

Types of remote display protocols
Let's just mention some protocols that are very active on the market now:

• Microsoft Remote Desktop Protocol/Remote FX: Used by Remote Desktop
Connection, this multi-channel protocol allows us to connect to Microsoft-based
virtual machines.

• VNC: Short for Virtual Network Computing, this is a remote desktop sharing
system that transmits mouse and keyboard events to access remote machines.

• SPICE: Short for Simple Protocol for Independent Computing Environments, this is
another remote display protocol that can be used to access remote machines. It was
developed by Qumranet, which was bought by Red Hat.

If we further expand our list to protocols that are being used for VDI, then the list
increases further:

• Teradici PCoIP (PC over IP): A UDP-based VDI protocol that we can use to access
virtual machines on VMware, Citrix and Microsoft-based VDI solutions

• VMware Blast Extreme: VMware's answer to PcoIP for VMware Horizon-based
VDI solution

• Citrix HDX: Citrix's protocol for virtual desktops.

Of course, there are others that are available but not used as much and are way less
important, such as the following:

• Colorado CodeCraft

• OpenText Exceed TurboX

• NoMachine

• FreeNX

• Apache Guacamole

• Chrome Remote Desktop

• Miranex

The major differences between regular remote protocols and fully featured VDI protocols
are related to additional functionalities. For example, on PCoIP, Blast Extreme, and HDX,
you can fine-tune bandwidth settings, control USB and printer redirection (manually
or centrally via policies), use multimedia redirection (to offload media decoding), Flash
redirection (to offload Flash), client drive redirection, serial port redirection, and dozens of
other features. You can't do some of these things on VNC or Remote Desktop, for example.

196 Virtual Display Devices and Protocols

Having said that, let's discuss two of the most common ones in the open source world:
VNC and SPICE.

Using the VNC display protocol
When the VNC graphics server is enabled through libvirt, QEMU will redirect the
graphics output to its inbuilt VNC server implementation. The VNC server will listen to a
network port where the VNC clients can connect.

The following screenshot shows how to add a VNC graphics server. Just go to Virtual
Machine Manager, open the settings of your virtual machine, and go to the Display Spice
tab on the left-hand side:

Figure 6.12 – VNC configuration for a KVM virtual machine

Using the VNC display protocol 197

When adding VNC graphics, you will be presented with the options shown in the
preceding screenshot:

• Type: The type of the graphics server. Here, it is VNC server.

• Address: VNC server listening address. It can be all, localhost, or an IP address.
By default, it is Localhost only.

• Port: VNC server listening port. You can either choose auto, where libvirt defines
the port based on the availability, or you can define one yourself. Make sure it does
not create a conflict.

• Password: The password protecting VNC access.

• Keymap: If you want to use a specific keyboard layout instead of an auto detected
one, you can do the same using the virt-xml command-line tool.

For example, let's add VNC graphics to a virtual machine called PacktGPUPass and
then modify its VNC listening IP to 192.168.122.1:

virt-xml MasteringKVM03 --add-device --graphics type=vnc

virt-xml MasteringKVM03 --edit --graphics
listen=192.168.122.1

This is how it looks in the PacktVM01 XML configuration file:

<graphics type='vnc' port='-1' autoport='yes'
listen='192.168.122.1'>

 <listen type='address' address='192.168.122.1'/>

</graphics>

You can also use virsh to edit PacktGPUPass and change the parameters individually.

Why VNC?
You can use VNC when you access virtual machines on LAN or to access the VMs
directly from the console. It is not a good idea to expose virtual machines over a public
network using VNC as the connection is not encrypted. VNC is a good option if the
virtual machines are servers with no GUI installed. Another point that is in favor of VNC
is the availability of clients. You can access a virtual machine from any operating system
platform as there will be a VNC viewer available for that platform.

198 Virtual Display Devices and Protocols

Using the SPICE display protocol
Like KVM, a Simple Protocol for Independent Computing Environments (SPICE)
is one of the best innovations that came into open source virtualization technologies. It
propelled the open source virtualization to a large Virtual Desktop Infrastructure (VDI)
implementation.

Important Note
Qumranet originally developed SPICE as a closed source code base in 2007.
Red Hat, Inc. acquired Qumranet in 2008, and in December 2009, they decided
to release the code under an open source license and treat the protocol as an
open standard.

SPICE is the only open source solution available on Linux that gives two-way audio. It
has high-quality 2D rendering capabilities that can make use of a client system's video
card. SPICE also supports multiple HD monitors, encryption, smart card authentication,
compression, and USB passthrough over the network. For a complete list of features, you
can visit http://www.spice-space.org/features.html. If you are a developer
and want to know about the internals of SPICE, visit http://www.spice-space.
org/documentation.html. If you are planning for VDI or installing virtual machines
that need GUIs, SPICE is the best option for you.

SPICE may not be compatible with some older virtual machines as they do not have
support for QXL. In those cases, you can use SPICE along with other video generic
virtual video cards.

Now, let's learn how to add a SPICE graphics server to our virtual machine. This can be
considered the best-performing virtual display protocol in the open source world.

Adding a SPICE graphics server
Libvirt now selects SPICE as the default graphics server for most virtual machine
installations. You must follow the same procedures that we mentioned earlier for VNC to
add the SPICE graphics server. Just change the VNC to SPICE in the dropdown. Here, you
will get an additional option to select a TLS port since SPICE supports encryption:

http://www.spice-space.org/features.html
http://www.spice-space.org/documentation.html
http://www.spice-space.org/documentation.html

Using the SPICE display protocol 199

Figure 6.13 – SPICE configuration for a KVM virtual machine

To get to this configuration window, just edit the settings of your virtual machine. Go to
the Display Spice options and select Spice server from the pull-down menu. All the other
options are optional, so you don't necessarily have to do any additional configuration.

With this previous procedure completed, we've covered all the necessary topics regarding
display protocols. Let's now discuss the various methods we can use to access the virtual
machine console.

200 Virtual Display Devices and Protocols

Methods to access a virtual machine console
There are multiple ways to connect to a virtual machine console. If your environment
has full GUI access, then the easiest method is to use the virt-manager console itself.
virt-viewer is another tool that can give you access to your virtual machine console.
This tool is very helpful if you are trying to access a virtual machine console from a
remote location. In the following example, we are going to make a connection to a remote
hypervisor that has an IP of 192.168.122.1. The connection is tunneled through an
SSH session and is secure.

The first step is to set up an authentication system without a password between your client
system and the hypervisor:

1. On the client machine, use the following code:

ssh-keygen

ssh-copy-id root@192.168.122.1

virt-viewer -c qemu+ssh://root@192.168.122.1/system

You will be presented with a list of virtual machines available on the hypervisor.
Select the one you have to access, as shown in the following screenshot:

Figure 6.14 – virt-viewer selection menu for virtual machine access

2. To connect to a VM's console directly, use the following command:

virt-viewer -c qemu+ssh://root@192.168.122.1/system
MasteringKVM03

If your environment is restricted to only a text console, then you must rely on
your favorite virsh – to be more specific, virsh console vm_name. This
needs some additional configuration inside the virtual machine OS, as described
in the following steps.

Methods to access a virtual machine console 201

3. If your Linux distro is using GRUB (not GRUB2), append the following line to
your existing boot Kernel line in /boot/grub/grub.conf and shut down the
virtual machine:

console=tty0 console=ttyS0,115200

If your Linux distro is using GRUB2, then the steps become a little complicated.
Note that the following command has been tested on a Fedora 22 virtual machine.
For other distros, the steps to configure GRUB2 might be different, though the
changes that are required for GRUB configuration file should remain the same:

cat /etc/default/grub (only relevant variables are
shown)

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="rd.lvm.lv=fedora/swap rd.lvm.
lv=fedora/root rhgb quiet"

The changed configuration is as follows:
cat /etc/default/grub (only relevant variables are
shown)

GRUB_TERMINAL_OUTPUT="serial console"

GRUB_CMDLINE_LINUX="rd.lvm.lv=fedora/swap rd.lvm.
lv=fedora/root console=tty0 console=ttyS0"

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Now, shut down the virtual machine. Then, start it again using virsh:

virsh shutdown PacktGPUPass

virsh start PacktGPUPass --console

5. Run the following command to connect to a virtual machine console that has
already started:

virsh console PacktGPUPass

You can also do this from a remote client, as follows:
virsh -c qemu+ssh://root@192.168.122.1/system console
PacktGPUPass

Connected to domain PacktGPUPass:

Escape character is ^]

202 Virtual Display Devices and Protocols

In some cases, we have seen a console command stuck at ^]. To work around this, press
the Enter key multiple times to see the login prompt. Sometimes, configuring a text
console is very useful when you want to capture the boot messages for troubleshooting
purposes. Use ctrl +] to exit from the console.

Our next topic takes us to the world of noVNC, another VNC-based protocol that has a
couple of major advantages over the regular VNC. Let's discuss these advantages and the
implementation of noVNC now.

Getting display portability with noVNC
All these display protocols rely on having access to some type of client application and/or
additional software support that will enable us to access the virtual machine console. But
what happens when we just don't have access to all of these additional capabilities? What
happens if we only have text mode access to our environment, but we still want to have
GUI-based management of connections to our virtual machines?

Enter noVNC, a HTML5-based VNC client that you can use via a HTML5-compatible
web browser, which is just fancy talk for practically every web browser on the market.
It supports all the most popular browsers, including mobile ones, and loads of other
features, such as the following:

• Clipboard copy-paste

• Supports resolution scaling and resizing

• It's free under the MPL 2.0 license

• It's rather easy to install and supports authentication and can easily be implemented
securely via HTTPS

If you want to make noVNC work, you need two things:

• Virtual machine(s) that are configured to accept VNC connections, preferably with
a bit of configuration done – a password and a correctly set up network interface
to connect to the virtual machine, for instance. You can freely use tigervnc-
server, configure it to accept connections on – for example – port 5901 for a
specific user, and use that port and server's IP address for client connections.

Getting display portability with noVNC 203

• noVNC installation on a client computer, which you can either download from
EPEL repositories or as a zip/tar.gz package and run directly from your web
browser. To install it, we need to type in the following sequence of commands:

yum -y install novnc

cd /etc/pki/tls/certs

openssl req -x509 -nodes -newkey rsa:2048 -keyout /etc/
pki/tls/certs/nv.pem -out /etc/pki/tls/certs/nv.pem -days
365

websockify -D --web=/usr/share/novnc --cert=/etc/pki/tls/
certs/nv.pem 6080 localhost:5901

The end result will look something like this:

Figure 6.15 – noVNC console configuration screen

204 Virtual Display Devices and Protocols

Here, we can use our VNC server password for that specific console. After typing in the
password, we get this:

Figure 6.16 – noVNC console in action – we can see the virtual machine console and use
it to work with our virtual machine

We can also use all these options in oVirt. During the installtion of oVirt, we just need to
select one additional option during the engine-setup phase:

--otopi-environment="OVESETUP_CONFIG/
websocketProxyConfig=bool:True"

This option will enable oVirt to use noVNC as a remote display client, on top of the
existing SPICE and VNC.

Getting display portability with noVNC 205

Let's take a look at an example of configuring a virtual machine in oVirt with pretty much
all of the options that we've discussed in this chapter. Pay close attention to the Monitors
configuration option:

Figure 6.17 – oVirt also supports all the devices we discussed in this chapter

If we click on the Graphics protocol submenu, we will get the option to use SPICE, VNC,
noVNC, and various combinations thereof. Also, at the bottom of the screen, we have
available options for a number of monitors that we want to see in our remote display. This
can be very useful if we want to have a high-performance multi-display remote console.

206 Virtual Display Devices and Protocols

Seeing that noVNC has been integrated to noVNC as well, you can treat this as a sign of
things to come. Think about it from this perspective – everything related to management
applications in IT has steadily been moving to web-based applications for years now. It's
only logical that the same things happen to virtual machine consoles. This has also been
implemented in other vendors' solutions, so seeing noVNC being used here shouldn't be
a big surprise.

Summary
In this chapter, we covered virtual display devices and protocols used to display virtual
machine data. We also did some digging into the world of GPU sharing and GPU
passthrough, which are important concepts for large-scale virtualized environments
running VDI. We discussed some benefits and drawbacks to these scenarios as they tend
to be rather complex to implement and require a lot of resources – financial resources
included. Imagine having to do PCI passthrough for 2D/3D acceleration for 100 virtual
machines. That would actually require buying 100 graphic cards, which is a big, big
ask financially. Among the other topics we discussed, we went through various display
protocols and options that can be used for console access to our virtual machines.

In the next chapter, we will take you through some regular virtual machine operations –
installation, configuration, and life cycle management, including discussing snapshots and
virtual machine migration.

Questions
1. Which types of virtual machine display devices can we use?

2. What are the main benefits of using a QXL virtual display device versus VGA?

3. What are the benefits and drawbacks of GPU sharing?

4. What are the benefits of GPU PCI passthrough?

5. What are the main advantages of SPICE versus VNC?

6. Why would you use noVNC?

Further reading 207

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• Configuring and managing virtualization: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/8/html/
configuring_and_managing_virtualization/index

• QEMU documentation: https://www.qemu.org/documentation/

• NVIDIA virtual GPU software documentation:
https://docs.nvidia.com/grid/latest/grid-vgpu-release-
notes-red-hat-el-kvm/index.html

• Working with IOMMU groups: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/7/html/
virtualization_deployment_and_administration_guide/
app-iommu

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/index
https://www.qemu.org/documentation/
https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-red-hat-el-kvm/index.html
https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-red-hat-el-kvm/index.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/app-iommu
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/app-iommu
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/app-iommu
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/app-iommu

7
Virtual Machines:

Installation,
Configuration,
and Life Cycle
Management

In this chapter, we will discuss different ways of installing and configuring virtual machines
(VMs)—from Command Prompt and/or a graphical user interface (GUI). We will
delve deeper into some tools and utilities that we have already used (virt-manager,
virt-install, oVirt) and build upon our knowledge gained from previous chapters.
Then, we will have a lengthy discussion about VM migration, one of the most fundamental
aspects of virtualization, as it's pretty much unimaginable to use virtualization without
migration options. To be able to configure our environment for VM migration, we will also
use topics discussed in Chapter 4, Libvirt Networking, and Chapter 5, Libvirt Storage, as there
are pre-requisites that need to be met for VM migration to work.

210 Virtual Machines: Installation, Configuration, and Life Cycle Management

In this chapter, we will cover the following topics:

• Creating a new VM using virt-manager, using virt commands

• Creating a new VM using oVirt

• Configuring your VM

• Adding and removing virtual hardware from your VM

• Migrating VMs

Creating a new VM using virt-manager
virt-manager (a GUI tool for managing VMs) and virt-install (a command-line
utility for managing VMs) are two of the most commonly used utilities in Kernel-based
VM (KVM) virtualization. By using them, we can do practically everything to our
VMs—create, start, stop, delete, and much more. We already had a chance to work with
these two utilities in previous chapters, but we need to take a more structured approach
to the subject as they offer loads of additional options that we haven't have a chance to
discuss yet. We'll also add some other utilities that are a part of the virt-* command
stack that are very, very useful.

Let's start with virt-manager and its familiar GUI.

Using virt-manager
virt-manager is the go-to GUI utility to manage KVM VMs. It's very intuitive and
easy to use, albeit lacking in functionality a bit, as we will describe a bit later. This is the
main virt-manager window:

Creating a new VM using virt-manager 211

 Figure 7.1 – Main virt-manager window

From this screenshot, we can already see that there are three VMs installed on this server.
We can use the top-level menus (File, Edit, View, and Help) to further configure our
KVM server and/or VMs, as well as to connect to other KVM hosts on the network, as
you can see in the following screenshot:

Figure 7.2 – Connecting to other KVM hosts by using the Add Connection… option

212 Virtual Machines: Installation, Configuration, and Life Cycle Management

After we select the Add Connection… option, we will be greeted by a wizard to connect
to the external host, and we just need to punch in some basic information—the username
(it has to be a user that has administrative rights) and hostname or Internet Protocol (IP)
address of the remote server. Before we do that, we also need to configure Secure Shell
(SSH) keys on our local machine and copy our key to that remote machine, as this is
the default authentication method for virt-manager. The process is shown in the
following screenshot:

Figure 7.3 – Connecting to remote KVM host

At this point, you can start freely installing the VM on that remote KVM host, should you
choose to do so, by right-clicking on the hostname and selecting New, as illustrated in the
following screenshot:

Figure 7.4 – Creating a new VM on a remote KVM host

Creating a new VM using virt-manager 213

As this wizard is the same as the wizard for installing VMs on your local server, we'll cover
both of these scenarios in one go. The first step in the New VM wizard is selecting where
you're installing your VM from. As you can see in the following screenshot, there are four
available options:

Figure 7.5 – Selecting boot media

The choices are as follows:

• If you already have an International Organization for Standardization (ISO) file
available on your local machine (or as a physical device), select the first option.

• If you want to install from the network, select the second option.

• If you have a Preboot eXecution Environment (PXE) boot set up in your
environment and you can boot your VM installation from the network, select the
third option.

• If you have a VM disk and you just want to underlay that to a VM you're defining,
select the fourth option.

Commonly, we're talking about network installations (second option) or PXE-booted
network installations (third option), as these are the most popular use cases in production.
The reason for this is very simple—there's absolutely no reason to waste local disk space
on ISO files, which are quite big nowadays. For example, a CentOS 8 v1905 ISO file is
roughly 8 gigabytes (GB) in size. If you need to be able to install multiple operating
systems, or even multiple versions of these operating systems, you're better off with
some sort of centralized storage space for ISO files only.

214 Virtual Machines: Installation, Configuration, and Life Cycle Management

In VMware ESX integrated (ESXi)-based infrastructures, people often use ISO datastores
or content libraries for this functionality. In Microsoft Hyper-V-based infrastructures,
people usually have a Server Message Block (SMB) file share with ISO files needed for
a VM installation. It would be quite pointless to have a copy of an operating system ISO
per host, so some kind of a shared approach is much more convenient and is a good
space-saving mechanism.

Let's say that we're installing a VM from a network (HyperText Transfer Protocol
(HTTP), HyperText Transfer Protocol Secure (HTTPS), or File Transfer Protocol
(FTP)). We're going to need a couple of things to proceed, as follows:

• A Uniform Resource Locator (URL) from which we can complete our
installation—in our example, we are going to use http://mirror.linux.
duke.edu/pub/centos. From this link choose the latest 8.x.x directory,
and then go to BaseOS/x86_64/os.

• Obviously, a functional internet connection—as fast as possible, as we are going to
download all the necessary installation packages from the preceding URL.

• Optionally, we can open the URL options triangle and use additional options
for the kernel line—most commonly, kickstart options with something such as
the following:

ks=http://kickstart_file_url/file.ks

So, let's type that in, as follows:

Figure 7.6 – URL and guest operating system selection

http://mirror.linux.duke.edu/pub/centos
http://mirror.linux.duke.edu/pub/centos

Creating a new VM using virt-manager 215

Note that we manually selected Red Hat Enterprise Linux 8.0 as the target guest
operating system as virt-manager doesn't currently recognize CentOS 8 (1905) as
the guest operating system from the URL that we specified. If the operating system had
been on the list of currently recognized operating systems, we could've just selected the
Automatically detect from installation media / source checkbox, which you sometimes
need to re-check and uncheck a couple of times before it works.

After clicking on the Forward button, we're faced with memory and central processing
unit (CPU) settings for this VM. Again, you can go in two different directions here,
as follows:

• Select the bare minimum of resources (for example, 1 virtual CPU (vCPU) and 1
GB of memory), and then change that afterward if you need more CPU horsepower
and/or more memory.

• Select a decent amount of resources (for example, 2 vCPU and 4 GB of memory)
with a specific usage in mind. For example, if the intended use case for this VM
is a file server, you won't get an awful lot of performance if you add 16 vCPUs
and 64 GB of memory to it, but there might be other use cases in which this
will be appropriate.

The next step is configuring the VM storage. There are two available options, as we can see
in the following screenshot:

Figure 7.7 – Configuring VM storage

216 Virtual Machines: Installation, Configuration, and Life Cycle Management

It's very important that you select a proper storage device for the VM, as you might have
various problems in the future if you don't. For example, if you put your VM on the wrong
storage device in a production environment, you'll have to migrate storage of that VM
to another storage device, which is a tedious and time-consuming process that will have
some nasty side effects if you have loads of VMs running on the source or destination
storage device. For starters, it will seriously impact their performance. Then, if you have
some dynamic workload management mechanism in your environment, it could trigger
additional VM or VM storage movement in your infrastructure. Features such as VMware's
Distributed Resource Scheduler (DRS)/Storage DRS, Hyper-V performance and resource
optimization (with System Center Operations Manager (SCOM) integration), and oVirt/
Red Hat Enterprise Virtualization cluster scheduling policies do things such as that. So,
adopting the think twice, do once strategy might be the correct approach here.

If you select the first available option, Create a disk image for the virtual machine,
virt-manager will create a VM hard disk in its default location—for Red Hat
Enterprise Linux (RHEL) and CentOS, that's in the /var/lib/libvirt/images
directory. Make sure that you have enough space for your VM hard disk. Let's say that
we have 8 GB of space available in the /var/lib/libvirt/images directory and its
underlying partition. If we leave everything as-is from the previous screenshot, we'd get
an error message because we tried to create a 10 GB file on a local disk where only 8 GB
is available.

After we click the Forward button again, we're at the final step of the VM creation
process, where we can select the VM name (as it will appear in virt-manager),
customize the configuration before the installation process, and select which virtual
network the VM will use. We will cover the hardware customization of the VM a bit later
in the chapter. After you click Finish, as shown in the following screenshot, your VM will
be ready for deployment and—after we install the operating system—use:

Creating a new VM using virt-manager 217

Figure 7.8 – Final virt-manager configuration step

Using virt-manager to create some VMs definitely wasn't a difficult task, but in
real-life production environments, you won't necessarily find a GUI installed on a server.
Therefore, our logical next task is to get to know command-line utilities to manage
VMs—specifically, virt-* commands. Let's do that next.

Using virt-* commands
As previously mentioned, we need to learn some new commands to master the task of
basic VM administration. For this specific purpose, we have stack of virt-* commands.
Let's briefly go over some of the most important ones and learn how to use them.

218 Virtual Machines: Installation, Configuration, and Life Cycle Management

virt-viewer
As we've already used the virt-install command heavily before (check out
Chapter 3, Installing a Kernel-based Virtual Machine (KVM) Hypervisor, libvirt, and ovirt,
where we installed quite a few VMs by using this command), we're going to cover the
remaining commands.

Let's start with virt-viewer, as we've used this application before. Every time we
double-click on a VM in virt-viewer, we open a VM console, and that happens
to be virt-viewer in the background of this procedure. But if we wanted to use
virt-viewer from a shell—as people often do—we need some more information
about it. So, let's use a couple of examples.

First, let's connect to a local KVM called MasteringKVM01, which resides on the host
that we're currently connected to as root , by running the following command:

virt-viewer --connect qemu:///system MasteringKVM01

We could also connect to the VM in kiosk mode, which means that virt-viewer
will close when we shut down the VM that we connect to. To do this, we would run the
following command:

virt-viewer --connect qemu:///system MasteringKVM01 --kiosk
--kiosk-quit on-disconnect

If we need to connect to a remote host, we can also use virt-viewer, but we need a
couple of additional options. The most common way to authenticate to a remote system
is through SSH, so we can do the following:

virt-viewer --connect qemu+ssh://username@remote-host/system
VirtualMachineName

If we configured SSH keys and copied them to username@remote-host, this
previous command wouldn't ask us for a password. But if we didn't, it is going to ask us
for a password twice—to establish connection to the hypervisor and then to establish
connection to the VM Virtual Network Computing (VNC) session.

Creating a new VM using virt-manager 219

virt-xml
The next command-line utility on our list is virt-xml. We can use it with virt-
install command-line options to change the VM configuration. Let's start with
a basic example—let's just enable the boot menu for the VM, as follows:

virt-xml MasgteringKVM04 --edit --boot bootmenu=on

Then, let's add a thin-provisioned disk to the VM, in three steps— first, create the disk
itself, and then attach it to the VM and check that everything worked properly. The output
can be seen in the following screenshot:

Figure 7.9 – Adding a thin-provision QEMU copy-on-write (qcow2) format virtual disk to a VM

As we can see, virt-xml is quite useful. By using it, we added another virtual disk to
our VM, and that's one of the simplest things that it can do. We can use it to deploy any
additional piece of VM hardware to an existing VM. We can also use it to edit a VM
configuration, which is really handy in larger environments, especially when you have
to script and automate such procedures.

220 Virtual Machines: Installation, Configuration, and Life Cycle Management

virt-clone
Let's now check virt-clone by using a couple of examples. Let's say we just want a
quick and easy way to clone an existing VM without any additional hassle. We can do
the following:

virt-clone --original VirtualMachineName --auto-clone

As a result, this will produce a VM named VirtualMachineName-clone that we can
start using right away. Let's see this in action, as follows:

Figure 7.10 – Creating a VM clone with virt-clone

Creating a new VM using virt-manager 221

Let's see how this could be a bit more customized. By using virt-clone, we are going
to create a VM named MasteringKVM05, by cloning a VM named MasteringKVM04,
and we are going to customize virtual disk names as well, as illustrated in the following
screenshot:

Figure 7.11 – Customized VM creation: customizing VM names and virtual hard disk filenames

There are situations in real life that require you to convert VMs from one virtualization
technology to another. The bulk of that work is actually converting the VM disk format
from one format to another. That's what virt-convert is all about. Let's learn how it
does its job.

222 Virtual Machines: Installation, Configuration, and Life Cycle Management

qemu-img
Let's now check how we will convert a virtual disk to another format, and how we will
convert a VM configuration file from one virtualization method to another. We will use an
empty VMware VM as a source and convert its vmdk virtual disk and .vmx file to a new
format, as illustrated in the following screenshot:

Figure 7.12 – Converting VMware virtual disk to qcow2 format for KVM

If we are faced with projects that involve moving or converting VMs between these
platforms, we need to make sure that we use these utilities as they are easy to use and
understand and only require one thing—a bit of time. For example, if we have a 1 terabyte
(TB) VMware virtual disk (VM Disk (VMDK) and flat VMDK file), it might take hours
for that file to be converted to qcow2 format, so we have to be patient. Also, we need to be
prepared to edit vmx configuration files from time to time as the conversion process from
vmx to kvm format isn't 100% smooth, as we might expect it to be. During the course
of this process, a new configuration file is created. The default directory for KVM VM
configuration files is /etc/libvirt/qemu, and we can easily see Extensible Markup
Language (XML) files in that directory—these are our KVM VM configuration files.
Filenames represent VM names from the virsh list output.

There are also some new utilities in CentOS 8 that will make it easier for us to manage
not only the local server but also VMs. The Cockpit web interface is one of those—it has
the capability to do basic VM management on a KVM host. All we need to do is connect
to it via a web browser, and we mentioned this web application in Chapter 3, Installing a
Kernel-based VM (KVM) Hypervisor, libvirt, and ovirt, when discussing the deployment
of oVirt appliances. So, let's familiarize ourselves with VM management by using Cockpit.

Creating a new VM using virt-manager 223

Creating a new VM using Cockpit
To use Cockpit for the management of our server and its VMs, we need to install and start
Cockpit and its additional packages. Let's start with that, as follows:

yum -y install cockpit*

systemctl enable --now cockpit.socket

After this, we can start Firefox and point it to https://kvm-host:9090/, as this is
the default port where Cockpit can be reached, and log in as root with the root password,
which will give us the following user interface (UI):

Figure 7.14 – Cockpit web console, which we can use to deploy VMs

224 Virtual Machines: Installation, Configuration, and Life Cycle Management

In the previous step, when we installed cockpit*, we also installed cockpit-machines,
which is a plugin for the Cockpit web console that enables us to manage libvirt VMs in
the Cockpit web console. So, after we click on VMs, we can easily see all of our previously
installed VMs, open their configuration, and install new VMs via a simple wizard,
as illustrated in the following screenshot:

Figure 7.15 – Cockpit VM management

The wizard for VM installation is really simple—we just need to configure basic settings
for our new VM and we can start installing, as follows:

Creating a new VM using virt-manager 225

Figure 7.16 – Installing KVM VM from Cockpit web console

Now that we covered how we can install VMs locally—meaning without some sort of
centralized management application—let's go back and check how we can install VMs
via oVirt.

226 Virtual Machines: Installation, Configuration, and Life Cycle Management

Creating a new VM using oVirt
If we added a host to oVirt, when we log in to it, we can go to Compute-VMs and start
deploying VMs by using a simple wizard. So, after clicking on the New button in that
menu, we can do just that, and we will be taken to the following screen:

Figure 7.17 – New VM wizard in oVirt

Having in mind that oVirt is a centralized management solution for KVM hosts, we
have loads of additional options when compared to local VM installation on a KVM
host—we can select a cluster that will host this VM; we can use a template, configure the
optimization and instance type, configure high availability (HA), resource allocation,
boot options... basically, it's what we jokingly refer to as option paralysis, although it's for
our own benefit, as centralized solutions will always be a bit different than any kind of
local solution.

Creating a new VM using oVirt 227

At a minimum, we will have to configure general VM properties—name, operating
system, and VM network interface. Then, we will move to the System tab, where we will
configure memory size and virtual CPU count, as illustrated in the following screenshot:

Figure 7.18 – Selecting VM configuration: virtual CPUs and memory

228 Virtual Machines: Installation, Configuration, and Life Cycle Management

We will definitely want to configure boot options—attach a CD/ISO, add a virtual hard
disk, and configure the boot order, as illustrated in the following screenshot:

Figure 7.19 – Configuring VM boot options in oVirt

We can customize our VM post-installation by using sysprep or cloud-init,
which we will discuss in Chapter 9, Customizing a VM with cloud-init.

Creating a new VM using oVirt 229

Here's what the basic configuration in oVirt looks like:

Figure 7.20 – Installing KVM VM from oVirt: make sure that you select correct boot options

Realistically, if you're managing an environment that has more than two to three KVM
hosts, you'll want to use some kind of centralized utility to manage them. oVirt is really
good for that, so don't skip it.

Now that we have done the whole deployment procedure in a variety of different ways, it's
time to think about the VM configuration. Keeping in mind that a VM is an object that
has many important attributes—such as the number of virtual CPUs, amount of memory,
virtual network cards, and so on—it's very important that we learn how to customize the
VM settings. So, let's make that our next topic.

230 Virtual Machines: Installation, Configuration, and Life Cycle Management

Configuring your VM
When we were using virt-manager, if you go all the way to the last step, there's an
interesting option that you could've selected, which is the Customize configuration
before install option. The same configuration window can be accessed if you check the
VM configuration post-install. So, whichever way we go, we'll be faced with the full scale
of configuration options for every VM hardware device that was assigned to the VM we
just created, as can be seen in the following screenshot:

Figure 7.21 – VM configuration options

Configuring your VM 231

For example, if we click on the CPUs option on the left-hand side, you will see the number
of available CPUs (current and maximum allocation), and we'll also see some pretty
advanced options such as CPU topology (Sockets/Cores/Threads), which enables us to
configure specific non-uniform memory access (NUMA) configuration options. Here's
what that configuration window looks like:

Figure 7.22 – VM CPU configuration

This is a very important part of VM configuration, especially if you're designing an
environment that hosts loads of virtualized servers. Furthermore, it becomes even more
important if virtualized servers host input/output (I/O)-intensive applications such as
databases. If you want to learn more about this, you can check a link at the end of this
chapter, in the Further reading section, as it will give you loads of additional information
about VM design.

232 Virtual Machines: Installation, Configuration, and Life Cycle Management

Then, if we open the Memory option, we can change memory allocation—again, in
floating terms (current and maximum allocation). We'll discuss these options a bit
later when we start working with virt-* commands. This is what a virt-manager
Memory configuration option looks like:

Figure 7.23 – VM memory configuration

One of the most important configuration option sets available in virt-manager is
located in the Boot Options sub-menu, which is shown in the following screenshot:

Configuring your VM 233

Figure 7.24 – VM boot configuration options

There, you can do two very important things, as follows:

• Select this VM to be auto-started with the host

• Enable the boot menu and select a boot device and boot device priorities

234 Virtual Machines: Installation, Configuration, and Life Cycle Management

In terms of configuration options, by far the most feature-rich configuration menu for
virt-manager is the virtual storage menu—in our case, VirtIO Disk 1. If we click
on that, we're going to get the following selection of configuration options:

Figure 7.25 – Configuring VM hard disk and storage controller options

Let's see what the significance of some of these configuration options is, as follows:

• Disk bus—There are usually five options here, VirtIO being the default (and the
best) one. Just as with Vmware, ESXi, and Hyper-V, KVM has different virtual
storage controllers available. For example, VMware has BusLogic, LSI Logic,
Paravirtual, and other types of virtual storage controllers, while Hyper-V has the
integrated drive electronics (IDE) and small computer system interface (SCSI)
controllers. This option defines the storage controller that the VM is going to see
inside its guest operating system.

Configuring your VM 235

• Storage format—There are two formats: qcow2 and raw (dd type format).
The most common option is qcow2 as it offers the most flexibility for VM
management—for example, it supports thin provisioning and snapshots.

• Cache mode—There are six types: writethrough, writeback, directsync,
unsafe, none, and default. These modes explain how data gets written from
an I/O that originated from the VM to the storage underlay below the VM. For
example, if we're using writethrough, the I/O gets cached on the KVM host and
is written through to the VM disk as well. On the other hand, if we're using none,
there's no caching on the host (except for the disk writeback cache), and data
gets written to the VM disk directly. Different modes have different pros and cons,
but generally, none is the best option for VM management. You can read more
about them in the Further reading section.

• IO mode—There are two modes: native and threads. Depending on this
setting, the VM I/O will be either written via kernel asynchronous I/O or via pool
of threads in the user space (which is the default value, as well). When working
with qcow2 format, it's generally accepted that threads mode is better as qcow2
format first allocates sectors and then writes to them, which will hog vCPUs
allocated to the VM and have direct influence on I/O performance.

• Discard mode—There are two available modes here, called ignore and unmap.
If you select unmap, when you delete files from your VM (which translates to
free space in your qcow2 VM disk file), the qcow2 VM disk file will shrink to
reflect the newly freed capacity. Depending on which Linux distribution, kernel,
and kernel patches you have applied and the Quick Emulator (QEMU) version,
this function might only be available on a SCSI disk bus. It's supported for QEMU
version 4.0+.

• Detect zeroes—There are three modes available: off, on, and unmap. If you
select unmap, zero write will be translated as an unmapping operation (as explained
in discard mode). If you set it to on, zero writes by the operating system will be
translated to specific zero write commands.

During the lifespan of any given VM, there's a significant chance that we will reconfigure
it. Whether that means adding or removing virtual hardware (of course, usually, it's
adding), it's an important aspect of a VM's life cycle. So, let's learn how to manage that.

236 Virtual Machines: Installation, Configuration, and Life Cycle Management

Adding and removing virtual hardware from
your VM
By using the VM configuration screen, we can easily add additional hardware, or remove
hardware as well. For example, if we click on the Add Hardware button in the bottom-
left corner, we can easily add a device—let's say, a virtual network card. The following
screenshot illustrates this process:

Figure 7.26 – After clicking on Add Hardware, we can select which
virtual hardware device we want to add to our VM

On the other hand, if we select a virtual hardware device (for example, Sound ich6) and
press the Remove button that will then appear, we can also remove this virtual hardware
device, after confirming that we want to do so, as illustrated in the following screenshot:

Adding and removing virtual hardware from your VM 237

Figure 7.27 – Process for removing a VM hardware device: select it on the
left-hand side and click Remove

As you can see, adding and removing VM hardware is as easy as one-two-three. We
actually touched on the subject before, when we were working with virtual networking
and storage (Chapter 4, Libvirt Networking), but there, we used shell commands and XML
file definitions. Check out those examples if you want to learn more about that.

Virtualization is all about flexibility, and being able to place VMs on any given host in
our environment is a huge part of that. Having that in mind, VM migration is one of the
features in virtualization that can be used as a marketing poster for virtualization and its
many advantages. What is VM migration all about? That's what we're going to learn next.

238 Virtual Machines: Installation, Configuration, and Life Cycle Management

Migrating VMs
In simple terms, migration enables you to move your VM from one physical machine to
another physical machine, with a very minimal downtime or no downtime. We can also
move VM storage, which is a resource-hog type of operation that needs to be carefully
planned and—if possible —executed after hours so that it doesn't affect other VMs'
performance as much as it could.

There are various different types of migration, as follows:

• Offline (cold)

• Online (live)

• Suspended migration

There are also various different types of online migrations, depending on what you're
moving, as follows:

• The compute part of the VM (moving the VM from one KVM host to another
KVM host)

• The storage part of the VM (moving VM files from one storage pool to another
storage pool)

• Both (moving the VM from host to host and storage pool to storage pool at the
same time)

There are some differences in terms of which migration scenarios are supported if you're
using just a plain KVM host versus oVirt or Red Hat Enterprise Virtualization. If you want
to do a live storage migration, you can't do it on a KVM host directly, but you can easily
do it if the VM is shut down. If you need a live storage migration, you will have to use
oVirt or Red Hat Enterprise Virtualization.

We discussed single-root input-output virtualization (SR-IOV), Peripheral Component
Interconnect (PCI) device passthrough, virtual graphics processing units (vGPUs), and
similar concepts as well (in Chapter 2, KVM as a Virtualization Solution, and Chapter 4,
Libvirt Networking). In CentOS 8, you can't live-migrate a VM that has either one of these
options assigned to a running VM.

Whatever the use case is, we need to be aware of the fact that migration needs to be
performed either as the root user or as a user that belongs to the libvirt user
group (what Red Hat refers to as system versus user libvirt session).

Migrating VMs 239

There are different reasons why VM migration is a valuable tool to have in your arsenal.
Some of these reasons are obvious; others, less so. Let's try to explain different use cases
for VM migration and its benefits.

Benefits of VM migration
The most important benefits of VM live migration are listed as follows:

• Increased uptime and reduced downtime—A carefully designed virtualized
environment will give you the maximum uptime for your application.

• Saving energy and going green—You can easily consolidate your VMs based on
their load and usage to a smaller number of hypervisors during off hours. Once
the VMs are migrated, you can power off the unused hypervisors.

• Easy hardware/software upgrade process by moving your VM between different
hypervisors—Once you have the capability to move your VMs freely between
different physical servers, the benefits are countless.

VM migration needs proper planning to be put in place. There are some basic
requirements the migration looks for. Let's see them one by one.

The migration requirements for production environments are the following:

• The VM should be using a storage pool that is created on a shared storage.

• The name of the storage pool and the virtual disk's path should remain the same on
both hypervisors (source and destination hypervisors).

Check out Chapter 4, Libvirt Networking, and Chapter 5, Libvirt Storage, to remind
yourself how to create a storage pool using shared storage.

There are, as always, some rules that apply here. These are rather simple, so we need to
learn them before starting migration processes. They are as follows:

• It is possible to do a live storage migration using a storage pool that is created on
non-shared storage. You only need to maintain the same storage pool name and file
location, but shared storage is still recommended in a production environment.

• If there is an unmanaged virtual disk attached to a VM that uses a Fiber Channel
(FC), an Internet Small Computer Systems Interface (iSCSI), Logical Volume
Manager (LVM), and so on, the same storage should be available on both hypervisors.

• The virtual networks used by the VMs should be available on both hypervisors.

240 Virtual Machines: Installation, Configuration, and Life Cycle Management

• A bridge that is configured for a networking communication should be available
on both the hypervisors.

• Migration may fail if the major versions of libvirt and qemu-kvm on the
hypervisors are different, but you should be able to migrate the VMs running on
a hypervisor that has a lower version of libvirt or qemu-kvm to a hypervisor
that has higher versions of those packages, without any issues.

• The time on both the source and destination hypervisors should be synced. It is
highly recommended that you sync the hypervisors using the same Network Time
Protocol (NTP) or Precision Time Protocol (PTP) servers.

• It is important that the systems use a Domain Name System (DNS) server for name
resolution. Adding the host details on /etc/hosts will not work. You should be
able to resolve the hostnames using the host command.

There are some pre-requisites that we need to have in mind when planning our
environment for VM migration. For the most part, these pre-requisites are mostly the
same for all virtualization solutions. Let's discuss these pre-requisites and, in general,
how to set up our environment for VM migration next.

Setting up the environment
Let's build the environment to do VM migration—both offline and live migrations. The
following diagram depicts two standard KVM virtualization hosts running VMs with
a shared storage:

Figure 7.28 – VMs on shared storage

We start this by setting up a shared storage. In this example, we are using Network File
System (NFS) for the shared storage. We are going to use NFS because it is simple to set
up, thus helping you to follow the migration examples easily. In actual production, it is
recommended to use iSCSI-based or FC-based storage pools. NFS is not a good choice when
the files are large and the VM performs heavy I/O operations. Gluster is a good alternative
to NFS, and we would recommend that you try it. Gluster is well integrated in libvirt.

Migrating VMs 241

We're going to create a NFS share on CentOS 8 server. It's going to be hosted in /testvms
directory, which we're going to export via NFS. The name of the server is nfs-01. (in our
case, IP address of nfs-01 is 192.168.159.134)

1. The first step is creating and exporting the /testvms directory from nfs-01 and
turning off SELinux (check Chapter 5, Libvirt Storage, Ceph section to see how):

mkdir /testvms

echo '/testvms *(rw,sync,no_root_squash)' >> /etc/
exports

2. Then, allow the NFS service in the firewall by executing the following code:

firewall-cmd --get-active-zones

public

interfaces: ens33

firewall-cmd --zone=public --add-service=nfs

firewall-cmd --zone=public --list-all

3. Start the NFS service, as follows:

systemctl start rpcbind nfs-server

systemctl enable rpcbind nfs-server

showmount -e

4. Confirm that the share is accessible from your KVM hypervisors. In our case, it is
PacktPhy01 and PacktPhy02. Run the following code:

mount 192.168.159.134:/testvms /mnt

5. If mounting fails, reconfigure the firewall on the NFS server and recheck the mount.
This can be done by using the following commands:

firewall-cmd --permanent --zone=public --add-service=nfs

firewall-cmd --permanent --zone=public
--add-service=mountd

firewall-cmd --permanent --zone=public --add-service=rpc-
bind

firewall-cmd -- reload

6. Unmount the volume once you have verified the NFS mount point from both
hypervisors, as follows:

umount /mnt

242 Virtual Machines: Installation, Configuration, and Life Cycle Management

7. On PacktPhy01 and PacktPhy02, create a storage pool named testvms,
as follows:

mkdir -p /var/lib/libvirt/images/testvms/

virsh pool-define-as --name testvms --type netfs
--source-host 192.168.159.134 --source-path /testvms
--target /var/lib/libvirt/images/testvms/

virsh pool-start testvms

virsh pool-autostart testvms

The testvms storage pool is now created and started on two hypervisors.

In this next example, we are going to isolate the migration and VM traffic. It is highly
recommended that you do this isolation in your production environment, especially if
you do a lot of migrations, as it will offload that demanding process to a separate network
interface, thus freeing other congested network interfaces. So, there are two main reasons
for this, as follows:

• Network performance: The migration of a VM uses the full bandwidth of the
network. If you use the same network for the VM traffic network and the migration
network, the migration will choke that network, thus affecting the servicing
capability of the VM. You can control the migration bandwidth, but it will
increase the migration time.

Here is how we create the isolation:
PacktPhy01 -- ens36 (192.168.0.5) <--switch------> ens36
(192.168.0.6) -- PacktPhy02

 ens37 -> br1 <-----switch------> ens37 -> br1

ens192 interfaces on PacktPhy01 and PacktPhy02 are used for migration
as well as administrative tasks. They have an IP assigned and connected to a
network switch. A br1 bridge is created using ens224 on both PacktPhy01 and
PacktPhy02. br1 does not have an IP address assigned and is used exclusively
for VM traffic (uplink for the switch that the VMs are connected to). It is also
connected to a (physical) network switch.

• Security reasons: It is always recommended that you keep your management
network and virtual network isolated for security reasons, as well. You don't
want your users to mess with your management network, where you access
your hypervisors and do the administration.

We will discuss three of the most important scenarios— offline migration, non-live
migration (suspended), and live migration (online). Then, we will discuss storage
migration as a separate scenario that requires additional planning and forethought.

Migrating VMs 243

Offline migration
As the name suggests, during offline migration, the state of the VM will be either shut
down or suspended. The VM will be then resumed or started at the destination host. In
this migration model, libvirt will just copy the VM's XML configuration file from the
source to the destination KVM host. It also assumes that you have the same shared storage
pool created and ready to use at the destination. As the first step in the migration process,
you need to set up two-way passwordless SSH authentication on the participating KVM
hypervisors. In our example, they are called PacktPhy01 and PacktPhy02.

For the following exercises, disable Security-Enhanced Linux (SELinux) temporarily.

In /etc/sysconfig/selinux, use your favorite editor to modify the following line
of code:

SELINUX=enforcing

This needs to be modified as follows:

SELINUX=permissive

Also, in the command line, as root, we need to temporarily set SELinux mode to
permissive, as follows:

setenforce 0

On PacktPhy01, as root, run the following command:

ssh-keygen

ssh-copy-id root@PacktPhy02

On PacktPhy02, as root, run the following commands:

ssh-keygen

ssh-copy-id root@PacktPhy01

You should now be able to log in to both of these hypervisors as root without typing
a password.

Let's do an offline migration of MasteringKVM01, which is already installed, from
PacktPhy01 to PacktPhy02. The general format of the migration command looks
similar to the following:

virsh migrate migration-type options name-of-the-vm-
destination-uri

244 Virtual Machines: Installation, Configuration, and Life Cycle Management

On PacktPhy01, run the following code:

[PacktPhy01] # virsh migrate --offline --verbose –-persistent
MasteringKVM01 qemu+ssh://PacktPhy02/system

Migration: [100 %]

On PacktPhy02, run the following code:

[PacktPhy02] # virsh list --all

virsh list --all

Id Name State

--

- MasteringKVM01 shut off

[PacktPhy02] # virsh start MasteringKVM01

Domain MasteringKVM01 started

When a VM is on shared storage and you have some kind of issue with one of the hosts,
you could also manually register a VM on another host. That means that you might end
up in a situation where the same VM is registered on two hypervisors, after you repair
the issue on your host that had an initial problem. It's something that happens when
you're manually managing KVM hosts without a centralized management platform such
as oVirt, which wouldn't allow such a scenario. So, what happens if you're in that kind of
situation? Let's discuss this scenario.

What if I start the VM accidently on both the hypervisors?
Accidently starting the VM on both the hypervisors can be a sysadmin's nightmare. It
can lead to VM filesystem corruption, especially when the filesystem inside the VM is not
cluster-aware. Developers of libvirt thought about this and came up with a locking
mechanism. In fact, they came up with two locking mechanisms. When enabled, these
will prevent the VMs from starting at the same time on two hypervisors.

The two locking mechanisms are as follows:

• lockd: lockd makes use of the POSIX fcntl() advisory locking capability.
It was started by the virtlockd daemon. It requires a shared filesystem
(preferably NFS), accessible to all the hosts that share the same storage pool.

• sanlock: This is used by oVirt projects. It uses a disk paxos algorithm for
maintaining continuously renewed leases.

For libvirt-only implementations, we prefer lockd over sanlock. It is best to use
sanlock for oVirt.

Migrating VMs 245

Enabling lockd
For image-based storage pools that are POSIX-compliant, you can enable lockd easily
by uncommenting the following command in /etc/libvirt/qemu.conf or on
both hypervisors:

lock_manager = "lockd"

Now, enable and start the virtlockd service on both the hypervisors. Also, restart
libvirtd on both the hypervisors, as follows:

systemctl enable virtlockd; systemctl start virtlockd

systemctl restart libvirtd

systemctl status virtlockd

Start MasteringKVM01 on PacktPhy02, as follows:

[root@PacktPhy02] # virsh start MasteringKVM01

Domain MasteringKVM01 started

Start the same MasteringKVM01 VM on PacktPhy01, as follows:

[root@PacktPhy01] # virsh start MasteringKVM01

error: Failed to start domain MasteringKVM01

error: resource busy: Lockspace resource '/var/lib/libvirt/
images/ testvms/MasteringKVM01.qcow2' is locked

Another method to enable lockd is to use a hash of the disk's file path. Locks are saved
in a shared directory that is exported through NFS, or similar sharing, to the hypervisors.
This is very useful when you have virtual disks that are created and attached using a
multipath logical unit number (LUN). fcntl() cannot be used in such cases. We
recommend that you use the methods detailed next to enable the locking.

On the NFS server, run the following code (make sure that you're not running any virtual
machines from this NFS server first!):

mkdir /flockd

echo "/flockd *(rw,no_root_squash)" >> /etc/exports

systemctl restart nfs-server

showmount -e

Export list for :

/flockd *

/testvms *

246 Virtual Machines: Installation, Configuration, and Life Cycle Management

Add the following code to both the hypervisors in /etc/fstab and type in the rest of
these commands:

echo "192.168.159.134:/flockd /var/lib/libvirt/lockd/flockd
nfs rsize=8192,wsize=8192,timeo=14,intr,sync" >> /etc/fstab

mkdir -p /var/lib/libvirt/lockd/flockd

mount -a

echo 'file_lockspace_dir = "/var/lib/libvirt/lockd/flockd"'
>> /etc/libvirt/qemu-lockd.conf

Reboot both hypervisors, and, once rebooted, verify that the libvirtd and virtlockd
daemons started correctly on both the hypervisors, as follows:

[root@PacktPhy01 ~]# virsh start MasteringKVM01

Domain MasteringKVM01 started

[root@PacktPhy02 flockd]# ls

36b8377a5b0cc272a5b4e50929623191c027543c4facb1c6f3c35bacaa745
5ef

51e3ed692fdf92ad54c6f234f742bb00d4787912a8a674fb5550b1b826343
dd6

MasteringKVM01 has two virtual disks, one created from an NFS storage pool and the
other created directly from a LUN. If we try to power it on the PacktPhy02 hypervisor
host, MasteringKVM01 fails to start, as can be seen in the following code snippet:

[root@PacktPhy02 ~]# virsh start MasteringKVM01

error: Failed to start domain MasteringKVM01

error: resource busy: Lockspace resource
'51e3ed692fdf92ad54c6f234f742bb00d4787912a8a674fb5550b1b82634
3dd6' is locked

When using LVM volumes that can be visible across multiple host systems, it is desirable
to do the locking based on the universally unique identifier (UUID) associated with
each volume, instead of their paths. Setting the following path causes libvirt to do
UUID-based locking for LVM:

lvm_lockspace_dir = "/var/lib/libvirt/lockd/lvmvolumes"

Migrating VMs 247

When using SCSI volumes that can be visible across multiple host systems, it is desirable
to do locking based on the UUID associated with each volume, instead of their paths.
Setting the following path causes libvirt to do UUID-based locking for SCSI:

scsi_lockspace_dir = "/var/lib/libvirt/lockd/scsivolumes"

As with file_lockspace_dir, the preceding directories should also be shared with
the hypervisors.

Important note
If you are not able to start VMs due to locking errors, just make sure that they
are not running anywhere and then delete the lock files. Start the VM again. We
deviated a little from migration for the lockd topic. Let's get back to migration.

Live or online migration
In this type of migration, the VM is migrated to the destination host while it's running on
the source host. The process is invisible to the users who are using the VMs. They won't
even know that the VM they are using has been transferred to another host while they are
working on it. Live migration is one of the main features that have made virtualization
so popular.

Migration implementation in KVM does not need any support from the VM. It means
that you can live-migrate any VMs, irrespective of the operating system they are using.
A unique feature of KVM live migration is that it is almost completely hardware-
independent. You should ideally be able to live-migrate a VM running on a hypervisor
that has an Advanced Micro Devices (AMD) processor to an Intel-based hypervisor.

We are not saying that this will work in 100% of the cases or that we in any way recommend
having this type of mixed environment, but in most of the cases, it should be possible.

Before we start the process, let's go a little deeper to understand what happens under the
hood. When we do a live migration, we are moving a live VM while users are accessing
it. This means that users shouldn't feel any disruption in VM availability when you do
a live migration.

248 Virtual Machines: Installation, Configuration, and Life Cycle Management

Live migration is a five-stage, complex process, even though none of these processes are
exposed to the sysadmins. libvirt will do the necessary work once the VM migration
action is issued. The stages through which a VM migration goes are explained in the
following list:

1. Preparing the destination: When you initiate a live migration, the source
libvirt (SLibvirt) will contact the destination libvirt (DLibvirt) with
the details of the VM that is going to be transferred live. DLibvirt will pass
this information to the underlying QEMU, with relevant options to enable live
migration. QEMU will start the actual live migration process by starting the VM
in pause mode and will start listening on a Transmission Control Protocol
(TCP) port for VM data. Once the destination is ready, DLibvirt will inform
SLibvirt, with the details of QEMU. By this time, QEMU, at the source, is ready
to transfer the VM and connects to the destination TCP port.

2. Transferring the VM: When we say transferring the VM, we are not transferring
the whole VM; only the parts that are missing at the destination are transferred—for
example, the memory and the state of the virtual devices (VM state). Other than the
memory and the VM state, all other virtual hardware (virtual network, virtual disks,
and virtual devices) is available at the destination itself. Here is how QEMU moves
the memory to the destination:

a) The VM will continue running at the source, and the same VM is started in
pause mode at the destination.

b) In one go, it will transfer all the memory used by the VM to the destination. The
speed of transfer depends upon the network bandwidth. Suppose the VM is using
10 gibibytes (GiB); it will take the same time to transfer 10 GiB of data using the
Secure Copy Protocol (SCP) to the destination. In default mode, it will make use of
the full bandwidth. That is the reason we are separating the administration network
from the VM traffic network.

c) Once the whole memory is at the destination, QEMU starts transferring the dirty
pages (pages that are not yet written to the disk). If it is a busy VM, the number of
dirty pages will be high and it will take time to move them. Remember, dirty pages
will always be there and there is no state of zero dirty pages on a running VM.
Hence, QEMU will stop transferring the dirty pages when it reaches a low threshold
(50 or fewer pages).

QEMU will also consider other factors, such as iterations, the number of dirty pages
generated, and so on. This can also be determined by migrate-setmaxdowntime,
which is in milliseconds.

Migrating VMs 249

3. Stopping the VM on the source host: Once the number of dirty pages reaches
the said threshold, QEMU will stop the VM on the source host. It will also sync
the virtual disks.

4. Transferring the VM state: At this stage, QEMU will transfer the state of the VM's
virtual devices and remaining dirty pages to the destination as quickly as possible.
We cannot limit the bandwidth at this stage.

5. Continuing the VM: At the destination, the VM will be resumed from the paused
state. Virtual network interface controllers (NICs) become active, and the bridge
will send out gratuitous Address Resolution Protocols (ARPs) to announce the
change. After receiving the announcement from the bridge, the network switches
will update their respective ARP cache and start forwarding the data for the VM
to the new hypervisors.

Note that Steps 3, 4, and 5 will be completed in milliseconds. If some errors happen,
QEMU will abort the migration and the VM will continue running on the source
hypervisor. All through the migration process, libvirt services from both participating
hypervisors will be monitoring the migration process.

Our VM called MasteringKVM01 is now running on PacktPhy01 safely, with lockd
enabled. We are going to live-migrate MasteringKVM01 to PacktPhy02.

We need to open the necessary TCP ports used for migration. You only need to do that
at the destination server, but it's a good practice to do this in your whole environment
so that you don't have to micro-manage these configuration changes as you need them
in the future, one by one. Basically, you have to open the ports on all the participating
hypervisors by using the following firewall-cmd command for the default zone
(in our case, the public zone):

firewall-cmd --zone=public --add-port=49152-49216/tcp
--permanent

Check the name resolution on both the servers, as follows:

[root@PacktPhy01 ~] # host PacktPhy01

PacktPhy01 has address 192.168.159.136

[root@PacktPhy01 ~] # host PacktPhy02

PacktPhy02 has address 192.168.159.135

[root@PacktPhy02 ~] # host PacktPhy01

PacktPhy01 has address 192.168.159.136

[root@PacktPhy02 ~] # host PacktPhy02

PacktPhy02 has address 192.168.159.135

250 Virtual Machines: Installation, Configuration, and Life Cycle Management

Check and verify all the virtual disks attached are available at the destination, on the
same path, with the same storage pool name. This is applicable to attached unmanaged
(iSCSI and FC LUNs, and so on) virtual disks also.

Check and verify all the network bridges and virtual networks used by the VM available at
the destination. After that, we can start the migration process by running the following code:

virsh migrate --live MasteringKVM01 qemu+ssh://PacktPhy02/
system --verbose --persistent

Migration: [100 %]

Our VM is using only 4,096 megabytes (MB) of memory, so all five stages completed
in a couple of seconds. The --persistent option is optional, but we recommend
adding this.

This is the output of ping during the migration process (10.10.48.24 is the IP address
of MasteringKVM01):

ping 10.10.48.24

PING 10.10.48.24 (10.10.48.24) 56(84) bytes of data.

64 bytes from 10.10.48.24: icmp_seq=12 ttl=64 time=0.338 ms

64 bytes from 10.10.48.24: icmp_seq=13 ttl=64 time=3.10 ms

64 bytes from 10.10.48.24: icmp_seq=14 ttl=64 time=0.574 ms

64 bytes from 10.10.48.24: icmp_seq=15 ttl=64 time=2.73 ms

64 bytes from 10.10.48.24: icmp_seq=16 ttl=64 time=0.612 ms

--- 10.10.48.24 ping statistics ---

17 packets transmitted, 17 received, 0% packet loss, time
16003ms

rtt min/avg/max/mdev = 0.338/0.828/3.101/0.777 ms

If you get the following error message, change cache to none on the virtual disk attached:

virsh migrate --live MasteringKVM01 qemu+ssh://PacktPhy02/
system --verbose

error: Unsafe migration: Migration may lead to data corruption
if disks use cache != none

virt-xml MasteringKVM01 --edit --disk target=vda,cache=none

Migrating VMs 251

target is the disk to change the cache. You can find the target name by running the
following command:

virsh dumpxml MasteringKVM01

You can try a few more options while performing a live migration, as follows:

• --undefine domain: Option used to remove a KVM domain from a KVM host.

• --suspend domain: Suspends a KVM domain—that is, pauses a KVM domain
until we unsuspend it.

• --compressed: When we do a VM migration, this option enables us to compress
memory. That will mean a faster migration process, based on the –comp-methods
parameter.

• --abort-on-error: If the migration process throws an error, it is automatically
stopped. This is a safe default option as it will help in situations where any kind of
corruption might happen during the migration process.

• --unsafe: Kind of like the polar opposite of the –abort-on-error option. This
option forces migration at all costs, even in the case of error, data corruption, or any
other unforeseen scenario. Be very careful with this option—don't use it often, or
in any situation where you want to be 100% sure that VM data consistency is a key
pre-requisite.

You can read more about these options in the RHEL 7—Virtualization Deployment and
Administration guide (you can find the link in the Further reading section at the end of
this chapter). Additionally, the virsh command also supports the following options:

• virsh migrate-setmaxdowntime <domain>: When migrating a VM,
it's inevitable that, at times, a VM is going to be unavailable for a short period of
time. This might happen—for example—because of the hand-off process, when we
migrate a VM from one host to the other, and we're just coming to the point of state
equilibrium (that is, when the source and destination host have the same VM content
and are ready to remove the source VM from the source host inventory and make it
run on the destination host). Basically, a small pause happens as the source VM gets
paused and killed, and the destination host VM gets unpaused and continues. By
using this command, the KVM stack is trying to estimate how long this stopped phase
will last. It's a viable option, especially for VMs that are really busy and are therefore
changing their memory content a lot while we're migrating them.

252 Virtual Machines: Installation, Configuration, and Life Cycle Management

• virsh migrate-setspeed <domain> bandwidth: We can treat this as
a quasi-Quality of Service (QoS) option. By using it, we can set the amount of
bandwidth in MiB/s that we're giving to the migration process. This is a very good
option to use if our network is busy (for example, if we have multiple virtual local
area networks (VLANs) going across the same physical network and we have
bandwidth limitations because of it. Lower numbers will slow the migration process.

• virsh migrate-getspeed <domain>: We can treat this as a get information
option to the migrate-setspeed command, to check which settings we assigned
to the virsh migrate-setspeed command.

As you can see, migration is a complex process from a technical standpoint, and has
multiple different types and loads of additional configuration options that you can use
for management purposes. That being said, it's still such an important capability of a
virtualized environment that it's very difficult to imagine working without it.

Summary
In this chapter, we covered different ways of creating VMs and configuring VM hardware.
We also covered VM migration in detail, and live and offline VM migration. In the next
chapter, we will work with VM disks, VM templates, and snapshots. These concepts are
very important to understand as they will make your life administering a virtualized
environment a lot easier.

Questions
1. Which command-line tools can we use to deploy VMs in libvirt?

2. Which GUI tools can we use to deploy VMs in libvirt?

3. When configuring our VMs, which configuration aspects should we be careful with?

4. What's the difference between online and offline VM migration?

5. What's the difference between VM migration and VM storage migration?

6. How can we configure bandwidth for the migration process?

Further reading 253

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• Managing VMs with virt-manager: https://virt-manager.org/

• oVirt—Installing Linux VMs: https://www.ovirt.org/documentation/
vmm-guide/chap-Installing_Linux_Virtual_Machines.html

• Cloning VMs: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/8/html/configuring_and_managing_
virtualization/cloning-virtual-machines_configuring-and-
managing-virtualization

• Migrating VMs: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/8/html/configuring_and_managing_
virtualization/migrating-virtual-machines_configuring-and-
managing-virtualization

• Caching: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/7/html/virtualization_tuning_
and_optimization_guide/sect-virtualization_tuning_
optimization_guide-blockio-caching

• Influence of NUMA and memory locality on Microsoft SQL Server 2019
performance: https://www.daaam.info/Downloads/Pdfs/
proceedings/proceedings_2019/049.pdf

• Virtualization deployment and administration guide: https://access.redhat.
com/documentation/en-us/red_hat_enterprise_linux/7/html/
virtualization_deployment_and_administration_guide/index

https://virt-manager.org/
https://www.ovirt.org/documentation/vmm-guide/chap-Installing_Linux_Virtual_Machines.html
https://www.ovirt.org/documentation/vmm-guide/chap-Installing_Linux_Virtual_Machines.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/cloning-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/cloning-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/cloning-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/cloning-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/migrating-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/migrating-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/migrating-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/migrating-virtual-machines_configuring-and-managing-virtualization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-blockio-caching
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-blockio-caching
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-blockio-caching
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-blockio-caching
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2019/049.pdf
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2019/049.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index

8
Creating and

Modifying VM Disks,
Templates, and

Snapshots
This chapter represents the end of second part of the book, in which we focused on
various libvirt features—installing Kernel-based Virtual Machine (KVM) as
a solution, libvirt networking and storage, virtual devices and display protocols,
installing virtual machines (VMs) and configuring them… and all of that as a preparation
for things that are coming in the next part of the book, which is about automation,
customization, and orchestration. In order for us to be able to learn about those concepts,
we must now switch our focus to VMs and their advanced operations—modifying,
templating, using snapshots, and so on. Some of these topics will often be referenced later
in the book, and some of these topics will be even more valuable for various business
reasons in a production environment. Let's dive in and cover them.

256 Creating and Modifying VM Disks, Templates, and Snapshots

In this chapter, we will cover the following topics:

• Modifying VM images using libguestfs tools

• VM templating

• virt-builder and virt-builder repos

• Snapshots

• Use cases and best practices while using snapshots

Modifying VM images using libguestfs tools
As our focus in this book shifts more toward scaling things out, we have to end this part
of the book by introducing a stack of commands that will come in handy as we start to
build bigger environments. For bigger environments, we really need various automation,
customization, and orchestration tools that we will start discussing in our next chapter.
But first, we have to focus on various customization utilities that we already have at our
disposal. These command-line utilities will be really helpful for many different types
of operations, varying from guestfish (for accessing and modifying VM files) to
virt-p2v (physical-to-virtual (P2V) conversion) and virt-sysprep (to sysprep a
VM before templating and cloning). So, let's approach the subject of these utilities in an
engineering fashion—step by step.

libguestfs is a command-line library of utilities for working with VM disks. This
library consists of roughly 30 different commands, some of which are included in the
following list:

• guestfish

• virt-builder

• virt-builder-repository

• virt-copy-in

• virt-copy-out

• virt-customize

• virt-df

Modifying VM images using libguestfs tools 257

• virt-edit

• virt-filesystems

• virt-rescue

• virt-sparsify

• virt-sysprep

• virt-v2v

• virt-p2v

We'll start with five of the most important commands—virt-v2v, virt-p2v, virt-
copy-in, virt-customize, and guestfish. We will cover virt-sysprep when
we cover VM templating, and we have a separate part of this chapter dedicated to virt-
builder, so we'll skip these commands for the time being.

virt-v2v
Let's say that you have a Hyper-V-, Xen-, or VMware-based VM and you want to convert
them to KVM, oVirt, Red Hat Enterprise Virtualization, or OpenStack. We'll just use a
VMware-based VM as an example here and convert it to a KVM VM that is going to be
managed by libvirt utilities. Because of some changes that were introduced in 6.0+
revisions of VMware platforms (both on the ESX integrated (ESXi) hypervisor side
and on the vCenter server side and plugin side), it is going to be rather time-consuming
to export a VM and convert it to a KVM machine—either by using a vCenter server or
a ESXi host as a source. So, the simplest way to convert a VMware VM to a KVM VM
would be the following:

1. Shut down the VM in the vCenter or ESXi host.

2. Export the VM as an Open Virtualization Format (OVF) template (which
downloads VM files to your Downloads directory).

3. Install the VMware OVFtool utility from https://code.vmware.com/web/
tool/4.3.0/ovf.

4. Move the exported VM files to the OVFtool installation folder.

5. Convert the VM in OVF format to Open Virtualization Appliance (OVA) format.

https://code.vmware.com/web/tool/4.3.0/ovf
https://code.vmware.com/web/tool/4.3.0/ovf

258 Creating and Modifying VM Disks, Templates, and Snapshots

The reason why we need OVFtool for this is rather disappointing—it seems that
VMware removed the option to export the OVA file directly. Luckily, OVFtool exists for
Windows-, Linux-, and OS X-based platforms, so you'll have no trouble using it. Here's
the last step of the process:

Figure 8.1 – Using OVFtool to convert OVF to OVA template format

After doing this, we can easily upload the v2v.ova file to our KVM host and type the
following command into the ova file directory:

virt-v2v -i ova v2v.ova -of qcow2 -o libvirt -n default

The -of and -o options specify the output format (qcow2 libvirt image), and -n makes
sure that the VM gets connected to the default virtual network.

If you need to convert a Hyper-V VM to KVM, you can do this:

virt-v2v -i disk /location/of/virtualmachinedisk.vhdx -o local
-of qcow2 -os /var/lib/libvirt/images

Make sure that you specify the VM disk location correctly. The -o local and -os /
var/lib/libvirt/images options make sure that the converted disk image gets
saved locally, in the specified directory (the KVM default image directory).

There are other types of VM conversion processes, such as converting a physical machine
to a virtual one. Let's cover that now.

Modifying VM images using libguestfs tools 259

virt-p2v
Now that we've covered virt-v2v, let's switch to virt-p2v. Basically, virt-v2v and
virt-p2v perform a job that seems similar, but the aim of virt-p2v is to convert a
physical machine to VM. Technically speaking, this is quite a bit different, as with
virt-v2v we can either access a management server and hypervisor directly and
convert the VM on the fly (or via an OVA template). With a physical machine, there's
no management machine that can provide some kind of support or application
programming interface (API) to do the conversion process. We have to attack the
physical machine directly. In the real world of IT, this is usually done via some kind
of agent or additional application.

Just as an example, if you want to convert a physical Windows machine to a VMware-based
VM, you'll have to do it by installing a VMware vCenter Converter Standalone on a system
that needs to be converted. Then, you'll have to select a correct mode of operation and
stream the complete conversion process to vCenter/ESXi. It does work rather well, but—for
example—RedHat's approach is a bit different. It uses a boot media to convert a physical
server. So, before using this conversion process, you have to log in to the Customer Portal
(located at https://access.redhat.com/downloads/content/479/ver=/
rhel---8/8.0/x86_64/product-software for Red Hat Enterprise Linux (RHEL)
8.0, and you can switch versions from the menu). Then, you will have to download a correct
image and use the virt-p2v and virt-p2v-make-disk utilities to create an image.
But—lo and behold—the virt-p2v-make-disk utility uses virt-builder, which we
will cover just a bit later in a separate part of this chapter. So, let's table this discussion for
just a short while, as we will come back to it soon with full force.

As a side note, on the list of supported destinations of this command, we can use Red
Hat Enterprise Virtualization, OpenStack, or KVM/libvirt. In terms of supported
architectures, virt-p2v is only supported for x86_64-based platforms, and only if it
is used on RHEL/CentOS 7 and 8. Keep that in mind when planning to do your P2V
conversions.

guestfish
The last utility that we want to discuss in this intro part of the chapter is called
guestfish. This is a very, very important utility that enables you to do all sorts of
advanced things with actual VM filesystems. We can also use it to do different types of
conversion—for example, convert an International Organization for Standardization
(ISO) image to tar.gz; convert a virtual disk image from an ext4 filesystem to a Logical
Volume Management (LVM)-backed ext4 filesystem; and much more. We will show you
a couple of examples of how to use it to open a VM image file and root around a bit.

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.0/x86_64/product-software
https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.0/x86_64/product-software

260 Creating and Modifying VM Disks, Templates, and Snapshots

The first example is a really common one—you have prepared a qcow2 image with a
complete VM; the guest operating system is installed; everything is configured; you're
ready to copy that VM file somewhere to be reused; and... you remember that you
didn't configure a root password according to some specification. Let's say that this was
something that you had to do for a client, and that client has specific root password
requirements for the initial root password. This makes it easier for the client—they
don't need to have a password sent by you in an email; they have only one password to
remember; and, after receiving the image, it will be used to create the VM. After the VM
has been created and run, the root password will be changed to something—according
to security practices—used by a client.

So, basically, the first example is an example of what it means to be human—forgetting
to do something, and then wanting to repair that, but (in this case) without actually
running the VM as that can change quite a few settings, especially if your qcow2 image
was created with VM templating in mind, in which case you definitely don't want to start
that VM to repair something. More about that in the next part of this chapter.

This is an ideal use case for guestfish. Let's say that our qcow2 image is called
template.qcow2. Let's change the root password to something else—for example,
packt123. First, we need a hash for that password. The easiest way to do that would be
to use openssl with the -6 option (which equals SHA512 encryption), as illustrated in
the following screenshot:

Figure 8.2 – Using openssl to create an SHA512-based password hash

Modifying VM images using libguestfs tools 261

Now that we have our hash, we can mount and edit our image, as follows:

Figure 8.3 – Using guestfish to edit the root password inside our qcow2 VM image

Shell commands that we typed in were used to get direct access to the image (without
libvirt involvement) and to mount our image in read-write mode. Then, we started
our session (guestfish run command), checked which filesystems are present in the
image (list-filesystems), and mounted the filesystem on the root folder. In the
second-to-last step, we changed the root's password hash to the hash created by openssl.
The exit command closes our guestfish session and saves changes.

You could use a similar principle to—for example—remove forgotten sshd keys from the
/etc/ssh directory, remove user ssh directories, and so on. The process can be seen in
the following screenshot:

Figure 8.4 – Using virt-customize to execute command inside a qcow2 image

262 Creating and Modifying VM Disks, Templates, and Snapshots

The second example is also rather useful, as it involves a topic covered in the next chapter
(cloud-init), which is often used to configure cloud VMs by manipulating the early
initialization of the VM instance. Also, taking a broader view of the subject, you can use
this guestfish example to manipulate the service configuration inside VM images. So,
let's say that our VM image was configured so that the cloud-init service is started
automatically. We want that service to be disabled for whatever reason—for example,
to debug an error in the cloud-init configuration. If we didn't have the capability to
manipulate qcow image content, we'd have to start that VM, use systemctl to disable
the service, and—perhaps—do the whole procedure to reseal that VM if this was a VM
template. So, let's use guestfish for the same purpose, as follows:

Figure 8.5 – Using guestfish to disable the cloud-init service on VM startup

Important note
Be careful in this example, as normally we'd use ln -sf with a space
character between the command and options. Not so in our guestfish
example—it needs to be used without a space.

And lastly, let's say that we need to copy a file to our image. For example, we need to copy
our local /etc/resolv.conf file to the image as we forgot to configure our Domain
Name System (DNS) servers properly. We can use the virt-copy-in command for
that purpose, as illustrated in the following screenshot:

Figure 8.6 – Using virt-copy-in to copy a file to our image

Topics that we covered in this part of our chapter are very important for what follows
next, which is a discussion about creating VM templates.

VM templating 263

VM templating
One of the most common use cases for VMs is creating VM templates. So, let's say that we
need to create a VM that is going to be used as a template. We use the term template here
literally, in the same manner in which we can use templates for Word, Excel, PowerPoint,
and so on, as VM templates exist for the very same reason—to have a familiar working
environment preconfigured for us so that we don't need to start from scratch. In the case of
VM templates, we're talking about not installing a VM guest operating system from scratch,
which is a huge time-saver. Imagine getting a task to deploy 500 VMs for some kind of
testing environment to test how something works when scaled out. You'd lose weeks doing
that from scratch, even allowing for the fact that you can do installations in parallel.

VMs need to be looked at as objects, and they have certain properties or attributes. From
the outside perspective (meaning, from the perspective of libvirt), a VM has a name,
a virtual disk, a virtual central processing unit (CPU) and memory configuration,
connectivity to a virtual switch, and so on. We covered this subject in Chapter 7, VM:
Installation, Configuration, and Life Cycle Management. That being said, we didn't touch
the subject of inside a VM. From that perspective (basically, from the guest operating
system perspective), a VM also has certain properties—installed guest operating system
version, Internet Protocol (IP) configuration, virtual local area network (VLAN)
configuration… After that, it depends on which operating system the family VM is based.
We thus need to consider the following:

• If we're talking about Microsoft Windows-based VMs, we have to consider service
and software configuration, registry configuration, and license configuration.

• If we're talking about Linux-based VMs, we have to consider service and software
configuration, Secure Shell (SSH) key configuration, license configuration, and
so on.

It can be even more specific than that. For example, preparing a template for Ubuntu-
based VMs is different from preparing a template for CentOS 8-based VMs. And to create
these templates properly, we need to learn some basic procedures that we can then use
repetitively every single time when creating a VM template.

264 Creating and Modifying VM Disks, Templates, and Snapshots

Consider this example: suppose you wish to create four Apache web servers to host your
web applications. Normally, with the traditional manual installation method, you would
first have to create four VMs with specific hardware configurations, install an operating
system on each of them one by one, and then download and install the required Apache
packages using yum or some other software installation method. This is a time-consuming
job, as you will be mostly doing repetitive work. But with a template approach, it can be
done in considerably less time. How? Because you will bypass operating system installation
and other configuration tasks and directly spawn VMs from a template that consists of a
preconfigured operating system image, containing all the required web server packages
ready for use.

The following screenshot shows the steps involved in the manual installation method. You
can clearly see that Steps 2-5 are just repetitive tasks performed across all four VMs, and
they would have taken up most of the time required to get your Apache web servers ready:

Figure 8.7 – Installing four Apache web servers without VM templates

VM templating 265

Now, see how the number of steps is drastically reduced by simply following Steps 1-5
once, creating a template, and then using it to deploy four identical VMs. This will save
you a lot of time. You can see the difference in the following diagram:

Figure 8.8 – Installing four Apache web servers by using VM templates

This isn't the whole story, though. There are different ways of actually going from Step 3
to Step 4 (from Create a Template to deployment of VM1-4), which either includes a full
cloning process or a linked cloning process, detailed here:

• Full clone: A VM deployed using the full cloning mechanism creates a complete
copy of the VM, the problem being that it's going to use the same amount of
capacity as the original VM.

• Linked clone: A VM deployed using the thin cloning mechanism uses the template
image as a base image in read-only mode and links an additional copy-on-write
(COW) image to store newly generated data. This provisioning method is heavily
used in cloud and Virtual Desktop Infrastructure (VDI) environments as it saves
a lot of disk space. Remember that fast storage capacity is something that's really
expensive, so any kind of optimization in this respect will be a big money saver.
Linked clones will also have an impact on performance, as we will discuss a bit later.

Now, let's see how the templates work.

266 Creating and Modifying VM Disks, Templates, and Snapshots

Working with templates
In this section, you will learn how to create templates of Windows and Linux VMs using
the virt-clone option available in virt-manager. Although the virt-clone
utility was not originally intended for creating templates, when used with virt-
sysprep and other operating system sealing utilities, it serves that purpose. Be aware
that there is a difference between a clone and a master image. A clone image is just a
VM, and a master image is a VM copy that can be used for deployment of hundreds and
thousands of new VMs.

Creating templates
Templates are created by converting a VM into a template. This is actually a three-step
procedure that includes the following:

1. Installing and customizing the VM, with all the desired software, which will become
the template or base image.

2. Removing all system-specific properties to ensure VM uniqueness—we need to take
care of SSH host keys, network configuration, user accounts, media access control
(MAC) address, license information, and so on.

3. Mark the VM as a template by renaming it with a template as a prefix. Some
virtualization technologies have special VM file types for this (for example, a
VMware .vmtx file), which effectively means that you don't have to rename a VM
to mark it as a template.

To understand the actual procedure, let's create two templates and deploy a VM from
them. Our two templates are going to be the following:

• A CentOS 8 VM with a complete Linux, Apache, MySQL, and PHP (LAMP) stack

• A Windows Server 2019 VM with SQL Server Express

Let's go ahead and create these templates.

Example 1 – Preparing a CentOS 8 template with a complete LAMP stack
Installation of CentOS should be a familiar theme to us by now, so we're just going to
focus on the AMP part of the LAMP stack and the templating part. So, our procedure is
going to look like this:

1. Create a VM and install CentOS 8 on it, using the installation method that you
prefer. Keep it minimal as this VM will be used as the base for the template that is
being created for this example.

VM templating 267

2. SSH into or take control of the VM and install the LAMP stack. Here's a script for
you to install everything needed for a LAMP stack on CentOS 8, after the operating
system installation has been done. Let's start with the package installation, as
follows:

yum -y update

yum -y install httpd httpd-tools mod_ssl

systemctl start httpd

systemctl enable httpd

yum -y install mariadb-server mariadb

yum install -y php php-fpm php-mysqlnd php-opcache php-gd
php-xml php-mbstring libguestfs*

After we're done with the software installation, let's do a bit of service
configuration—start all the necessary services and enable them, and reconfigure the
firewall to allow connections, as follows:

systemctl start mariadb

systemctl enable mariadb

systemctl start php-fpm

systemctl enable php-fpm

firewall-cmd --permanent --zone=public --add-service=http

firewall-cmd --permanent --zone=public
--add-service=https

systemctl reload firewalld

We also need to configure some security settings related to directory ownership—
for example, Security-Enhanced Linux (SELinux) configuration for the Apache
web server. Let's do that next, like this:

chown apache:apache /var/www/html -R

semanage fcontext -a -t httpd_sys_content_t "/var/www/
html(/.*)?"

restorecon -vvFR /var/www/html

setsebool -P httpd_execmem 1

268 Creating and Modifying VM Disks, Templates, and Snapshots

3. After this has been done, we need to configure MariaDB, as we have to set some
kind of MariaDB root password for the database administrative user and configure
basic settings. This is usually done via a mysql_secure_installation script
provided by MariaDB packages. So, that is our next step, as illustrated in the
following code snippet:

mysql_secure_installation

After we start the mysql_secure_installation script, it is going to ask us a
series of questions, as illustrated in the following screenshot:

Figure 8.9 – First part of MariaDB setup: assigning a root password that is empty after installation

VM templating 269

After assigning a root password for the MariaDB database, the next steps are more
related to housekeeping—removing anonymous users, disallowing remote login,
and so on. Here's what that part of wizard looks like:

Figure 8.10 – Housekeeping: anonymous users, root login setup, test database data removal
We installed all the necessary services—Apache, MariaDB—and all the necessary
additional packages (PHP, FastCGI Process Manager (FPM)), so this VM is ready
for templating. We could also introduce some kind of content to the Apache web
server (create a sample index.html file and place it in /var/www/html), but
we're not going to do that right now. In production environments, we'd just copy
web page contents to that directory and be done with it.

270 Creating and Modifying VM Disks, Templates, and Snapshots

4. Now that the required LAMP settings are configured the way we want them, shut
down the VM and run the virt-sysprep command to seal it. If you want to
expire the root password (translation—force a change of the root password on the
next login), type in the following command:

passwd --expire root

Our test VM is called LAMP and the host is called PacktTemplate, so here are the
necessary steps, presented via a one-line command:

virsh shutdown LAMP; sleep 10; virsh list

Our LAMP VM is now ready to be reconfigured as template. For that, we will use the
virt-sysprep command.

What is virt-sysprep?
This is a command-line utility provided by the libguestfs-tools-c package to ease
the sealing and generalizing procedure of Linux VM. It prepares a Linux VM to become
a template or clone by removing system-specific information automatically so that clones
can be made from it. virt-sysprep can be used to add some additional configuration
bits and pieces—such as users, groups, SSH keys, and so on.

There are two ways to invoke virt-sysprep against a Linux VM: using the -d or -a
option. The first option points to the intended guest using its name or universally unique
identifier (UUID), and the second one points to a particular disk image. This gives us
the flexibility to use the virt-sysprep command even if the guest is not defined in
libvirt.

Once the virt-sysprep command is executed, it performs a bunch of sysprep
operations that make the VM image clean by removing system-specific information from
it. Add the --verbose option to the command if you are interested in knowing how this
command works in the background. The process can be seen in the following screenshot:

VM templating 271

Figure 8.11 – virt-sysprep works its magic on the VM

272 Creating and Modifying VM Disks, Templates, and Snapshots

By default, virt-sysprep performs more than 30 operations. You can also choose
which specific sysprep operations you want to use. To get a list of all the available
operations, run the virt-sysprep --list-operation command. The default
operations are marked with an asterisk. You can change the default operations using the
--operations switch, followed by a comma-separated list of operations that you want
to use. See the following example:

Figure 8.12 – Using virt-sysprep to customize operations to be done on a template VM

Notice that this time, it only performed the ssh-hostkeys and udev-
persistentnet operations instead of the typical operations. It's up to you how much
cleaning you would like to undertake in the template.

Now, we can mark this VM as a template by adding the word template as a prefix in
its name. You can even undefine the VM from libvirt after taking a backup of its
Extensible Markup Language (XML) file.

Important note
Make sure that from now on, this VM is never started; otherwise, it will lose all
sysprep operations and can even cause problems with VMs deployed using the
thin method.

In order to rename a VM, use virsh domrename as root, like this:

virsh domrename LAMP LAMP-Template

LAMP-Template, our template, is now ready to be used for future cloning processes. You
can check its settings by using the following command:

virsh dominfo LAMP-Template

VM templating 273

The end result should be something like this:

Figure 8.13 – virsh dominfo on our template VM

The next example is going to be about preparing a Windows Server 2019 template with
a pre-installed Microsoft Structured Query Language (SQL) database—a common use
case that many of us will need to use in our environments. Let's see how we can do that.

Example 2 – Preparing a Windows Server 2019 template with a Microsoft
SQL database
virt-sysprep does not work for Windows guests, and there is little chance support
will be added any time soon. So, in order to generalize a Windows machine, we would
have to access the Windows system and directly run sysprep.

The System Preparation (sysprep) tool is a native Windows utility for removing system-
specific data from Windows images. To know more about this utility, refer to this article:
https://docs.microsoft.com/en-us/windows-hardware/manufacture/
desktop/sysprep--generalize--a-windows-installation.

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--generalize--a-windows-installation
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--generalize--a-windows-installation

274 Creating and Modifying VM Disks, Templates, and Snapshots

Our template preparation process is going to work like this:

1. Create a VM and install the Windows Server 2019 operating system on it. Our VM
is going to be called WS2019SQL.

2. Install the Microsoft SQL Express software and, once it's configured the way you want,
restart the VM and launch the sysprep application. The .exe file of sysprep is
present in the C:\Windows\System32\sysprep directory. Navigate there by
entering sysprep in the run box and double-click on sysprep.exe.

3. Under System Cleanup Action, select Enter System Out-of-Box Experience
(OOBE) and click on the Generalize checkbox if you want to do system
identification number (SID) regeneration, as illustrated in the following screenshot:

Figure 8.14 – Be careful with sysprep options; OOBE, generalize,
and shutdown options are highly recommended

VM templating 275

4. Under Shutdown Options, select Shutdown and click on the OK button. The
sysprep process will start after that, and when it's done, it will be shut down.

5. Rename the VM using the same procedure we used on the LAMP template,
as follows:

virsh domrename WS2019SQL WS2019SQL-Template

Again, we can use the dominfo option to check basic information about our newly
created template, as follows:

virsh dominfo WS2019SQL-Template

Important note
Be careful when updating templates in the future—you need to run them,
update them, and reseal them. With Linux distributions, you won't have
many issues doing that. But serializing Microsoft Windows sysprep (start
template VM, update, sysprep, and repeating that in the future) will get you
to a situation in which sysprep will throw you an error. So, there's another
school of thought that you can use here. You can do the whole procedure as
we did it in this part of our chapter, but don't sysprep it. That way, you can
easily update the VM, then clone it, and then sysprep it. It will save you a lot
of time.

Next, we will see how to deploy VMs from a template.

Deploying VMs from a template
In the previous section, we created two template images; the first template image is still
defined in libvirt as VM and named LAMP-Template, and the second is called
WS2019SQL-Template. We will now use these two VM templates to deploy new VMs
from them.

276 Creating and Modifying VM Disks, Templates, and Snapshots

Deploying VMs using full cloning
Perform the following steps to deploy the VM using clone provisioning:

1. Open the VM Manager (virt-manager), and then select the LAMP-Template
VM. Right-click on it and select the Clone option, which will open the Clone
Virtual Machine window, as illustrated in the following screenshot:

Figure 8.15 – Cloning a VM from VM Manager

VM templating 277

2. Provide a name for the resulting VM and skip all other options. Click on the Clone
button to start the deployment. Wait till the cloning operation finishes.

3. Once it's finished, your newly deployed VM is ready to use and you can start using
it. You can see the output from the process in the following screenshot:

Figure 8.16 – Full clone (LAMP01) has been created

As a result of our previous operation, the LAMP01 VM was deployed from LAMP-
Template, but as we used the full cloning method, they are independent, and even
if you remove LAMP-Template, they will operate just fine.

We can also use linked cloning, which will save us a whole lot of disk space by creating
a VM that's anchored to a base image. Let's do that next.

Deploying VMs using linked cloning
Perform the following steps to get started with VM deployment using the linked
cloning method:

1. Create two new qcow2 images using /var/lib/libvirt/images/
WS2019SQL.qcow2 as the backing file, like this:

qemu-img create -b /var/lib/libvirt/images/WS2019SQL.
qcow2 -f qcow2 /var/lib/libvirt/images/LinkedVM1.qcow2

qemu-img create -b /var/lib/libvirt/images/WS2019SQL.
qcow2 -f qcow2 /var/lib/libvirt/images/LinkedVM2.qcow2

278 Creating and Modifying VM Disks, Templates, and Snapshots

2. Verify that the backing file attribute for the newly created qcow2 images is pointing
correctly to the /var/lib/libvirt/images/WS2019SQL.qcow2 image,
using the qemu-img command. The end result of these three procedures should
look like this:

Figure 8.17 – Creating a linked clone image

3. Let's now dump the template VM configuration to two XML files by using the
virsh command. We're doing this twice so that we have two VM definitions.
We will import them as two new VMs after we change a couple of parameters,
as follows:

virsh dumpxml WS2019SQL-Template > /root/SQL1.xml

virsh dumpxml WS2019SQL-Template > /root/SQL2.xml

4. By using the uuidgen -r command, generate two random UUIDs. We will need
them for our VMs. The process can be seen in the following screenshot:

Figure 8.18 – Generating two new UUIDs for our VMs

VM templating 279

5. Edit the SQL1.xml and SQL2.xml files by assigning them new VM names and
UUIDs. This step is mandatory as VMs have to have unique names and UUIDs.
Let's change the name in the first XML file to SQL1, and the name in the second
XML file to SQL2. We can achieve that by changing the <name></name>
statement. Then, copy and paste the UUIDs that we created with the uuidgen
command in the SQL1.xml and SQL2.xml <uuid></uuid> statement. So,
relevant entries for those two lines in our configuration files should look like this:

Figure 8.19 – Changing the VM name and UUID in their respective XML configuration files

6. We need to change the virtual disk location in our SQL1 and SQL2 image files. Find
entries for .qcow2 files later in these configuration files and change them so that
they use the absolute path of files that we created in Step 1, as follows:

Figure 8.20 – Changing the VM image location so that it points to newly created linked clone images

7. Now, import these two XML files as VM definitions by using the virsh create
command, as follows:

Figure 8.21 – Creating two new VMs from XML definition files

280 Creating and Modifying VM Disks, Templates, and Snapshots

8. Use the virsh command to verify if they are defined and running, as follows:

Figure 8.22 – Two new VMs up and running

9. The VMs are already started, so we can now check the end result of our linked
cloning process. Our two virtual disks for these two VMs should be rather small,
as they're both using the same base image. Let's check the guest disk image
size—notice in the following screenshot that both LinkedVM1.qcow and
LinkedVM2.qcow files are roughly 50 times smaller than their base image:

Figure 8.23 – Result of linked clone deployment: base image, small delta images

This should provide plenty of examples and info about using the linked cloning process.
Don't take it too far (many linked clones on a single base image) and you should be
fine. But now, it's time to move to our next topic, which is about virt-builder. The
virt-builder concept is very important if you want to deploy your VMs quickly – that
is, without actually installing them. We can use virt-builder repos for that. Let's learn
how to do that next.

virt-builder and virt-builder repos 281

virt-builder and virt-builder repos
One of the most essential tools in the libguestfs package is virt-builder. Let's say
that you really don't want to build a VM from scratch, either because you don't have the
time or you just cannot be bothered. We will use CentOS 8 for this example, although the
list of supported distributions is now roughly 50 (distributions and their sub-versions), as
you can see in the following screenshot:

Figure 8.24 – virt-builder supported OSes, and CentOS distributions

In our test scenario, we need to create a CentOS 8 image as soon as possible, and create
a VM out of that image. All of the ways of deploying VMs so far have been based on
the idea of installing them from scratch, or cloning, or templating. These are either start-
from-zero or deploy-first-template-or-template-second-provision-later types of mechanisms.
What if there's another way?

282 Creating and Modifying VM Disks, Templates, and Snapshots

virt-builder provides us with a way of doing just that. By issuing a couple of simple
commands, we can import a CentOS 8 image, import it to KVM, and start it. Let's
proceed, as follows:

1. First, let's use virt-builder to download a CentOS 8 image with specified
parameters, as follows:

Figure 8.25 – Using virt-builder to grab a CentOS 8.0 image and check its size

2. A logical next step is to do virt-install—so, here we go:

Figure 8.26 – New VM configured, deployed, and added to our local KVM hypervisor

virt-builder and virt-builder repos 283

3. If this seems cool to you, let's expand on that. Let's say that we want to take
a virt-builder image, add a yum package group called Virtualization
Host to that image, and, while we're at it, add the root's SSH key. This is what
we'd do:

Figure 8.27 – Adding Virtualization Host

In all reality, this is really, really cool—it makes our life much easier, does quite a bit of
work for us, and does it in a pretty simple way, and it works with Microsoft Windows
operating systems as well. Also, we can use custom virt-builder repositories to
download specific VMs that are tailored to our own needs, as we're going to learn next.

virt-builder repositories
Obviously, there are some pre-defined virt-builder repositories (http://
libguestfs.org/ is one of them), but we can also create our own. If we go to
the /etc/virt-builder/repos.d directory, we'll see a couple of files there
(libguestfs.conf and its key, and so on). We can easily create our own additional
configuration file that will reflect our local or remote virt-builder repository. Let's
say that we want to create a local virt-builder repository. Let's create a config file
called local.conf in the /etc/virt-builder/repos.d directory, with the
following content:

[local]

uri=file:///root/virt-builder/index

http://libguestfs.org/
http://libguestfs.org/

284 Creating and Modifying VM Disks, Templates, and Snapshots

Then, copy or move an image to the /root/virt-builder directory (we will use our
centos-8.0.img file created in the previous step, which we will convert to xz format
by using the xz command), and create a file called index in that directory, with the
following content:

[Packt01]
name=PacktCentOS8
osinfo=centos8.0
arch=x86_64
file=centos-8.0.img.xz
checksum=ccb4d840f5eb77d7d0ffbc4241fbf4d21fcc1acdd3679
c13174194810b17dc472566f6a29dba3a8992c1958b4698b6197e6a1689882
b67c1bc4d7de6738e947f
format=raw
size=8589934592
compressed_size=1220175252
notes=CentOS8 with KVM and SSH

A couple of explanations. checksum was calculated by using the sha512sum command
on the centos-8.0.img.xz. size and compressed_size are real sizes of the
original and XZd file. After this, if we issue the virt-builder --list |more
command, we should get something like this:

Figure 8.28 – We successfully added an image to our local virt-builder repository

Snapshots 285

You can clearly see that our Packt01 image is at the top of our list, and we can easily
use it to deploy new VMs. By using additional repositories, we can greatly enhance our
workflow and reuse our existing VMs and templates to deploy as many VMs as we want
to. Imagine what this, combined with virt-builder's customization options, does for
cloud services on OpenStack, Amazon Web Services (AWS), and so on.

The next topic on our list is related to snapshots, a hugely valuable and misused VM
concept. Sometimes, you have concepts in IT that can be equally good and bad, and
snapshots are the usual suspect in that regard. Let's explain what snapshots are all about.

Snapshots
A VM snapshot is a file-based representation of the system state at a particular point in
time. The snapshot includes configuration and disk data. With a snapshot, you can revert
a VM to a point in time, which means by taking a snapshot of a VM, you preserve its state
and can easily revert to it in the future if needed.

Snapshots have many use cases, such as saving a VM's state before a potentially
destructive operation. For example, suppose you want to make some changes on your
existing web server VM, which is running fine at the moment, but you are not certain if
the changes you are planning to make are going to work or will break something. In that
case, you can take a snapshot of the VM before doing the intended configuration changes,
and if something goes wrong, you can easily revert to the previous working state of the
VM by restoring the snapshot.

libvirt supports taking live snapshots. You can take a snapshot of a VM while the guest
is running. However, if there are any input/output (I/O)-intensive applications running
on the VM, it is recommended to shut down or suspend the guest first to guarantee a
clean snapshot.

There are mainly two classes of snapshots for libvirt guests: internal and external; each
has its own benefits and limitations, as detailed here:

• Internal snapshot: Internal snapshots are based on qcow2 files. Before-snapshot
and after-snapshot bits are stored in a single disk, allowing greater flexibility.
virt-manager provides a graphical management utility to manage internal
snapshots. The following are the limitations of an internal snapshot:

a) Supported only with the qcow2 format

b) VM is paused while taking the snapshot

c) Doesn't work with LVM storage pools

286 Creating and Modifying VM Disks, Templates, and Snapshots

• External snapshot: External snapshots are based on a COW concept. When a
snapshot is taken, the original disk image becomes read-only, and a new overlay disk
image is created to accommodate guest writes, as illustrated in the following diagram:

Figure 8.29 – Snapshot concept

The overlay disk image is initially created as 0 bytes in length, and it can grow to the size
of the original disk. The overlay disk image is always qcow2. However, external snapshots
work with any base disk image. You can take external snapshots of raw disk images,
qcow2, or any other libvirt-supported disk image format. However, there is no
graphical user interface (GUI) support available yet for external snapshots, so they
are more expensive to manage when compared to internal snapshots.

Working with internal snapshots
In this section, you'll learn how to create, delete, and restore internal snapshots (offline/
online) for a VM. You'll also learn how to use virt-manager to manage internal
snapshots.

Internal snapshots work only with qcow2 disk images, so first make sure that the VM
for which you want to take a snapshot uses the qcow2 format for the base disk image. If
not, convert it to qcow2 format using the qemu-img command. An internal snapshot is
a combination of disk snapshots and the VM memory state—it's a kind of checkpoint to
which you can revert easily when needed.

I am using a LAMP01 VM here as an example to demonstrate internal snapshots. The
LAMP01 VM is residing on a local filesystem-backed storage pool and has a qcow2 image
acting as a virtual disk. The following command lists the snapshot associated with the VM:

virsh snapshot-list LAMP01

Name Creation Time State

Snapshots 287

As can be seen, currently, there are no existing snapshots associated with the VM; the
LAMP01 virsh snapshot-list command lists all of the available snapshots for
the given VM. The default information includes the snapshot name, creation time, and
domain state. There is a lot of other snapshot-related information that can be listed by
passing additional options to the snapshot-list command.

Creating the first internal snapshot
The easiest and preferred way to create internal snapshots for a VM on a KVM host
is through the virsh command. virsh has a series of options to create and manage
snapshots, listed as follows:

• snapshot-create: Use XML file to create a snapshot

• snapshot-create-as: Use list of arguments to create a snapshot

• snapshot-current: Get or set the current snapshot

• snapshot-delete: Delete a VM snapshot

• snapshot-dumpxml: Dump snapshot configuration in XML format

• snapshot-edit: Edit XML for a snapshot

• snapshot-info: Get snapshot information

• snapshot-list: List VM snapshots

• snapshot-parent: Get the snapshot parent name

• snapshot-revert: Revert a VM to a specific snapshot

The following is a simple example of creating a snapshot. Running the following command
will create an internal snapshot for the LAMP01 VM:

virsh snapshot-create LAMP01

Domain snapshot 1439949985 created

By default, a newly created snapshot gets a unique number as its name. To create a
snapshot with a custom name and description, use the snapshot-create-as
command. The difference between these two commands is that the latter one allows
configuration parameters to be passed as an argument, whereas the former one does not.
It only accepts XML files as the input. We are using snapshot-create-as in this
chapter as it's more convenient and easy to use.

288 Creating and Modifying VM Disks, Templates, and Snapshots

Creating an internal snapshot with a custom name and description
To create an internal snapshot for the LAMP01 VM with the name Snapshot 1 and the
description First snapshot, type the following command:

virsh snapshot-create-as LAMP01 --name "Snapshot 1"
--description "First snapshot" --atomic

With the --atomic option specified, libvirt will make sure that no changes happen
if the snapshot operation is successful or fails. It's always recommended to use the
--atomic option to avoid any corruption while taking the snapshot. Now, check the
snapshot-list output here:

virsh snapshot-list LAMP01

Name Creation Time State

--

Snapshot1 2020-02-05 09:00:13 +0230 running

Our first snapshot is ready to use and we can now use it to revert the VM's state if
something goes wrong in the future. This snapshot was taken while the VM was in a
running state. The time to complete snapshot creation depends on how much memory
the VM has and how actively the guest is modifying that memory at the time.

Note that the VM goes into paused mode while snapshot creation is in progress; therefore,
it is always recommended you take the snapshot while the VM is not running. Taking a
snapshot from a guest that is shut down ensures data integrity.

Creating multiple snapshots
We can keep creating more snapshots as required. For example, if we create two more
snapshots so that we have a total of three, the output of snapshot-list will look
like this:

virsh snapshot-list LAMP01 --parent

Name Creation Time State Parent

--

Snapshot1 2020-02-05 09:00:13 +0230 running (null)

Snapshot2 2020-02-05 09:00:43 +0230 running Snapshot1

Snapshot3 2020-02-05 09:01:00 +0230 shutoff Snapshot2

Snapshots 289

Here, we used the --parent switch, which prints the parent-children relation of
snapshots. The first snapshot's parent is (null), which means it was created directly on
the disk image, and Snapshot1 is the parent of Snapshot2 and Snapshot2 is the
parent of Snapshot3. This helps us know the sequence of snapshots. A tree-like view
of snapshots can also be obtained using the --tree option, as follows:

virsh snapshot-list LAMP01 --tree

Snapshot1

 |

 +- Snapshot2

 |

 +- Snapshot3

Now, check the state column, which tells us whether the particular snapshot is live
or offline. In the preceding example, the first and second snapshots were taken while the
VM was running, whereas the third was taken when the VM was shut down.

Restoring to a shutoff-state snapshot will cause the VM to shut down. You can also use
the qemu-img command utility to get more information about internal snapshots—for
example, the snapshot size, snapshot tag, and so on. In the following example output, you
can see that the disk named as LAMP01.qcow2 has three snapshots with different tags.
This also shows you when a particular snapshot was taken, with its date and time:

qemu-img info /var/lib/libvirt/qemu/LAMP01.qcow2

image: /var/lib/libvirt/qemu/LAMP01.qcow2

file format: qcow2

virtual size: 8.0G (8589934592 bytes)

disk size: 1.6G

cluster_size: 65536

Snapshot list:

ID TAG VM SIZE DATE VM CLOCK

1 1439951249 220M 2020-02-05 09:57:29 00:09:36.885

2 Snapshot1 204M 2020-02-05 09:00:13 00:01:21.284

3 Snapshot2 204M 2020-02-05 09:00:43 00:01:47.308

4 Snapshot3 0 2020-02-05 09:01:00 00:00:00.000

290 Creating and Modifying VM Disks, Templates, and Snapshots

This can also be used to check the integrity of the qcow2 image using the check switch,
as follows:

qemu-img check /var/lib/libvirt/qemu/LAMP01.qcow2

No errors were found on the image.

If any corruption occurred in the image, the preceding command will throw an error. A
backup from the VM should be immediately taken as soon as an error is detected in the
qcow2 image.

Reverting to internal snapshots
The main purpose of taking snapshots is to revert to a clean/working state of the VM
when needed. Let's take an example. Suppose, after taking Snapshot3 of your VM, you
installed an application that messed up the whole configuration of the system. In such a
situation, the VM can easily revert to the state it was in when Snapshot3 was created.
To revert to a snapshot, use the snapshot-revert command, as follows:

virsh snapshot-revert <vm-name> --snapshotname "Snapshot1"

If you are reverting to a shutdown snapshot, then you will have to start the VM manually.
Use the --running switch with virsh snapshot-revert to get it started
automatically.

Deleting internal snapshots
Once you are certain that you no longer need a snapshot, you can—and should—delete
it to save space. To delete a snapshot of a VM, use the snapshot-delete command.
From our previous example, let's remove the second snapshot, as follows:

virsh snapshot-list LAMP01

Name Creation Time State

--

Snapshot1 2020-02-05 09:00:13 +0230 running

Snapshot2 2020-02-05 09:00:43 +0230 running

Snapshot3 2020-02-05 09:01:00 +0230 shutoff

Snapshot4 2020-02-18 03:28:36 +0230 shutoff

virsh snapshot-delete LAMP01 Snapshot 2

Domain snapshot Snapshot2 deleted

virsh snapshot-list LAMP01

Name Creation Time State

Snapshots 291

--

Snapshot1 2020-02-05 09:00:13 +0230 running

Snapshot3 2020-02-05 09:00:43 +0230 running

Snapshot4 2020-02-05 10:17:00 +0230 shutoff

Let's now check how to do these procedures by using virt-manager, our GUI utility
for VM management.

Managing snapshots using virt-manager
As you might expect, virt-manager has a user-interface for creating and managing
VM snapshots. At present, it works only with qcow2 images, but soon, there will be
support for raw images as well. Taking a snapshot with virt-manager is actually very
easy; to get started, open VM Manager and click on the VM for which you would like
to take a snapshot.

The snapshot user interface button (marked on the following screenshot in red) is present
on the toolbar; this button gets activated only when the VM uses a qcow2 disk:

Figure 8.30 – Working with snapshots from virt-manager

292 Creating and Modifying VM Disks, Templates, and Snapshots

Then, if we want to take a snapshot, just use the + button, which will open a simple wizard
so that we can give the snapshot a name and description, as illustrated in the following
screenshot:

Figure 8.31 – Create snapshot wizard

Let's check how to work with external disk snapshots next, a faster and more modern
(albeit not as mature) concept for KVM/VM snapshotting. Bear in mind that external
snapshots are here to stay as they have much more capability that's really important for
modern production environments.

Working with external disk snapshots
You learned about internal snapshots in the previous section. Internal snapshots are pretty
simple to create and manage. Now, let's explore external snapshots. External snapshotting
is all about overlay_image and backing_file. Basically, it turns backing_file
into the read-only state and starts writing on overlay_image. These two images are
described as follows:

• backing_file: The original disk image of a VM (read-only)

• overlay_image: The snapshot image (writable)

If something goes wrong, you can simply discard the overlay_image image and you
are back to the original state.

Snapshots 293

With external disk snapshots, the backing_file image can be any disk image (raw;
qcow; even vmdk) unlike internal snapshots, which only support the qcow2 image format.

Creating an external disk snapshot
We are using a WS2019SQL-Template VM here as an example to demonstrate external
snapshots. This VM resided in a filesystem storage pool named vmstore1 and has a raw
image acting as a virtual disk. The following code snippet provides details of this VM:

virsh domblklist WS2019SQL-Template --details

Type Device Target Source

--

file disk vda /var/lib/libvirt/images/WS2019SQL-Template.img

Let's see how to create an external snapshot of this VM, as follows:

1. Check if the VM you want to take a snapshot of is running, by executing the
following code:

virsh list

Id Name State

4 WS2019SQL-Template running

You can take an external snapshot while a VM is running or when it is shut down.
Both live and offline snapshot methods are supported.

2. Create a VM snapshot via virsh, as follows:

virsh snapshot-create-as WS2019SQL-Template snapshot1
"My First Snapshot" --disk-only --atomic

The --disk-only parameter creates a disk snapshot. This is used for integrity
and to avoid any possible corruption.

3. Now, check the snapshot-list output, as follows:

virsh snapshot-list WS2019SQL-Template

Name Creation Time State

--
--

snapshot1 2020-02-10 10:21:38 +0230 disk-snapshot

294 Creating and Modifying VM Disks, Templates, and Snapshots

4. Now, the snapshot has been taken, but it is only a snapshot of the disk's state; the
contents of memory have not been stored, as illustrated in the following screenshot:

virsh snapshot-info WS2019SQL-Template snapshot1

Name: snapshot1

Domain: WS2019SQL-Template

Current: no

State: disk-snapshot

Location: external <<

Parent: -

Children: 1

Descendants: 1

Metadata: yes

5. Now, list all the block devices associated with the VM once again, as follows:

virsh domblklist WS2019SQL-Template

Target Source

vda /var/lib/libvirt/images/WS2019SQL-Template.snapshot1

Notice that the source got changed after taking the snapshot. Let's gather some
more information about this new image /var/lib/libvirt/images/
WS2019SQL-Template.snapshot1 snapshot, as follows:

qemu-img info /var/lib/libvirt/images/WS2019SQL-
Template.snapshot1

image: /var/lib/libvirt/images/WS2019SQL-Template.
snapshot1

file format: qcow2

virtual size: 19G (20401094656 bytes)

disk size: 1.6M

cluster_size: 65536

backing file: /var/lib/libvirt/images/WS2019SQL-Template.
img

backing file format: raw

Note that the backing file field is pointing to /var/lib/libvirt/images/
WS2019SQL-Template.img.

Snapshots 295

6. This indicates that the new image /var/lib/libvirt/images/
WS2019SQL-Template.snapshot1 snapshot is now a read/write snapshot of
the original image, /var/lib/libvirt/images/WS2019SQL-Template.
img; any changes made to WS2019SQL-Template.snapshot1 will not be
reflected in WS2019SQL-Template.img.

Important note
/var/lib/libvirt/images/WS2019SQL-Template.img is the
backing file (original disk).

/var/lib/libvirt/images/WS2019SQL-Template.
snapshot1 is the newly created overlay image, where all the writes are now
happening.

7. Now, let's create one more snapshot:

virsh snapshot-create-as WS2019SQL-Template snapshot2
--description "Second Snapshot" --disk-only --atomic

Domain snapshot snapshot2 created

virsh domblklist WS2019SQL-Template --details

Type Device Target Source

--

file disk vda /snapshot_store/WS2019SQL-Template.
snapshot2

Here, we used the --diskspec option to create a snapshot in the desired location. The
option needs to be formatted in the disk[,snapshot=type][,driver=type]
[,file=name] format. This is what the parameters used signify:

• disk: The target disk shown in virsh domblklist <vm_name>.

• snapshot: Internal or external.

• driver: libvirt.

• file: The path of the location where you want to create the resulting snapshot disk.
You can use any location; just make sure the appropriate permissions have been set.

296 Creating and Modifying VM Disks, Templates, and Snapshots

Let's create one more snapshot, as follows:

virsh snapshot-create-as WS2019SQL-Template snapshot3
--description "Third Snapshot" --disk-only --quiesce

Domain snapshot snapshot3 created

Notice that this time, I added one more option: --quiesce. Let's discuss this in the
next section.

What is quiesce?
Quiesce is a filesystem freeze (fsfreeze/fsthaw) mechanism. This puts the guest
filesystems into a consistent state. If this step is not taken, anything waiting to be written
to disk will not be included in the snapshot. Also, any changes made during the snapshot
process may corrupt the image. To work around this, the qemu-guest agent needs to be
installed on—and running inside—the guest. The snapshot creation will fail with an error,
as illustrated here:

error: Guest agent is not responding: Guest agent not available
for now

Always use this option to be on the safe side while taking a snapshot. Guest tool
installation is covered in Chapter 5, Libvirt Storage; you might want to revisit this
and install the guest agent in your VM if it's not already installed.

We have created three snapshots so far. Let's see how they are connected with each other
to understand how an external snapshot chain is formed, as follows:

1. List all the snapshots associated with the VM, like this:

virsh snapshot-list WS2019SQL-Template

Name Creation Time State

--
--

snapshot1 2020-02-10 10:21:38 +0230 disk-snapshot

snapshot2 2020-02-10 11:51:04 +0230 disk-snapshot

snapshot3 2020-02-10 11:55:23 +0230 disk-snapshot

Snapshots 297

2. Check which is the current active (read/write) disk/snapshot for the VM by running
the following code:

virsh domblklist WS2019SQL-Template

Target Source

--

vda /snapshot_store/WS2019SQL-Template.snapshot3

3. You can enumerate the backing file chain of the current active (read/write) snapshot
using the --backing-chain option provided with qemu-img. --backing-
chain will show us the whole tree of parent-child relationships in a disk image
chain. Refer to the following code snippet for a further description:

qemu-img info --backing-chain /snapshot_store/
WS2019SQL-Template.snapshot3|grep backing

backing file: /snapshot_store/WS2019SQL-Template.
snapshot2

backing file format: qcow2

backing file: /var/lib/libvirt/images/WS2019SQL-Template.
snapshot1

backing file format: qcow2

backing file: /var/lib/libvirt/images/WS2019SQL-Template.
img

backing file format: raw

From the preceding details, we can see the chain is formed in the following manner:

Figure 8.32 – Snapshot chain for our example VM

So, it has to be read as follows: snapshot3 has snapshot2 as its backing file;
snapshot2 has snapshot1 as its backing file; and snapshot1 has the base image as
its backing file. Currently, snapshot3 is the current active snapshot, where live guest
writes happen.

298 Creating and Modifying VM Disks, Templates, and Snapshots

Reverting to external snapshots
External snapshot support in libvirt was incomplete in some older RHEL/CentOS
versions, even as recently as RHEL/CentOS 7.5. Snapshots can be created online or
offline, and with RHEL/CentOS 8.0 there has been a significant change in terms of how
snapshots are treated. For starters, Red Hat recommends using external snapshots now.
Furthermore, to quote Red Hat:

Creating or loading a snapshot of a running VM, also referred to as a
live snapshot, is not supported in RHEL 8. In addition, note that non-live
VM snapshots are deprecated in RHEL 8. Therefore, creating or loading a
snapshot of a shut-down VM is supported, but Red Hat recommends not

using it.
A caveat to this is the fact that virt-manager still doesn't support external snapshots,
as evident by the following screenshot and the fact that when we created these snapshots
just a couple of pages ago, we never got an option to select external snapshot as the
snapshot type:

Figure 8.33 – All snapshots made from virt-manager and libvirt commands
without additional options are internal snapshots

Snapshots 299

Now, we also worked with the WS2019SQL-Template VM and created external
snapshots on it, so the situation is different. Let's check it, as follows:

Figure 8.34 – WS2019SQL-Template has external snapshots

The next step that we could take is to revert to a previous state—for example,
snapshot3. We can easily do that from the shell, by using the virsh snapshot-
revert command, as follows:

virsh snapshot-revert WS2019SQL-Template --snapshotname
"snapshot3"

error: unsupported configuration: revert to external snapshot
not supported yet

Does that mean that, once an external disk snapshot is taken for a VM, there is no way to
revert to that snapshot? No—it's not like that; you can definitely revert to a snapshot but
there is no libvirt support to accomplish this. You will have to revert manually by
manipulating the domain XML file.

300 Creating and Modifying VM Disks, Templates, and Snapshots

Take as an example a WS2019SQL-Template VM that has three snapshots associated
with it, as follows:

virsh snapshot-list WS2019SQL-Template

Name Creation Time State

--

snapshot1 2020-02-10 10:21:38 +0230 disk-snapshot

snapshot2 2020-02-10 11:51:04 +0230 disk-snapshot

snapshot3 2020-02-10 11:55:23 +0230 disk-snapshot

Suppose you want to revert to snapshot2. The solution is to shut down the VM (yes—a
shutdown/power-off is mandatory) and edit its XML file to point to the snapshot2 disk
image as the boot image, as follows:

1. Locate the disk image associated with snapshot2. We need the absolute path
of the image. You can simply look into the storage pool and get the path, but the
best option is to check the snapshot XML file. How? Get help from the virsh
command, as follows:

virsh snapshot-dumpxml WS2019SQL-Template
--snapshotname snapshot2 | grep

'source file' | head -1

<source file='/snapshot_store/WS2019SQL-Template.
snapshot2'/>

2. /snapshot_store/WS2019SQL-Template.snapshot2 is the file associated
with snapshot2. Verify that it's intact and properly connected to the backing_
file, as follows:

qemu-img check /snapshot_store/WS2019SQL-Template.
snapshot2

No errors were found on the image.

46/311296 = 0.01% allocated, 32.61% fragmented, 0.00%
compressed

clusters

Image end offset: 3670016

If checking against the image produces no errors, this means backing_file
is correctly pointing to the snapshot1 disk. All good. If an error is detected
in the qcow2 image, use the -r leaks/all parameter. It may help repair the
inconsistencies, but this isn't guaranteed. Check this excerpt from the qemu-img
man page:

Snapshots 301

3. The -r switch with qemu-img tries to repair any inconsistencies that are found

4. During the check. -r leaks repairs only cluster leaks, whereas –r all fixes all

5. Kinds of errors, with a higher risk of choosing the wrong fix or hiding

6. Corruption that has already occurred.

Let's check the information about this snapshot, as follows:
qemu-img info /snapshot_store/WS2019SQL-Template.
snapshot2 | grep backing

backing file: /var/lib/libvirt/images/WS2019SQL-Template.
snapshot1

backing file format: qcow2

7. It is time to manipulate the XML file. You can remove the currently attached
disk from the VM and add /snapshot_store/WS2019SQL-Template.
snapshot2. Alternatively, edit the VM's XML file by hand and modify the disk
path. One of the better options is to use the virt-xml command, as follows:

virt-xml WS2019SQL-Template --remove-device --disk
target=vda

virt-xml --add-device --disk /snapshot_store/WS2019SQL-
Template.snapshot2,fo

rmat=qcow2,bus=virtio

This should add WS2019SQL-Template.snapshot2 as the boot disk for the
VM; you can verify that by executing the following command:

virsh domblklist WS2019SQL-Template

Target Source

--

vda /snapshot_store/WS2019SQL-Template.snapshot2

There are many options to manipulate a VM XML file with the virt-xml
command. Refer to its man page to get acquainted with it. It can also be used
in scripts.

8. Start the VM, and you are back to the state when snapshot2 was taken. Similarly,
you can revert to snapshot1 or the base image when required.

The next topic on our list is about deleting external disk snapshot which—as we
mentioned—is a bit complicated. Let's check how we can do that next.

302 Creating and Modifying VM Disks, Templates, and Snapshots

Deleting external disk snapshots
Deleting external snapshots is somewhat tricky. An external snapshot cannot be deleted
directly, unlike an internal snapshot. It first needs to be manually merged with the base
layer or toward the active layer; only then can you remove it. There are two live block
operations available for merging online snapshots, as follows:

• blockcommit: Merges data with the base layer. Using this merging mechanism,
you can merge overlay images into backing files. This is the fastest method of
snapshot merging because overlay images are likely to be smaller than backing
images.

• blockpull: Merges data toward the active layer. Using this merging mechanism,
you can merge data from backing_file to overlay images. The resulting file will
always be in qcow2 format.

Next, we are going to read about merging external snapshots using blockcommit.

Merging external snapshots using blockcommit
We created a new VM named VM1, which has a base image (raw) called vm1.img with
a chain of four external snapshots. /var/lib/libvirt/images/vm1.snap4 is the
active snapshot image where live writes happen; the rest are in read-only mode. Our target
is to remove all the snapshots associated with this VM, as follows:

1. List the current active disk image in use, like this:

virsh domblklist VM1

Target Source

hda /var/lib/libvirt/images/vm1.snap4

Here, we can verify that the /var/lib/libvirt/images/vm1.snap4 image
is the currently active image on which all writes are occurring.

2. Now, enumerate the backing file chain of /var/lib/libvirt/images/vm1.
snap4, as follows:

qemu-img info --backing-chain /var/lib/libvirt/images/
vm1.snap4 | grep backing

backing file: /var/lib/libvirt/images/vm1.snap3

backing file format: qcow2

backing file: /var/lib/libvirt/images/vm1.snap2

backing file format: qcow2

Snapshots 303

backing file: /var/lib/libvirt/images/vm1.snap1

backing file format: qcow2

backing file: /var/lib/libvirt/images/vm1.img

backing file format: raw

3. Time to merge all the snapshot images into the base image, like this:

virsh blockcommit VM1 hda --verbose --pivot --active

Block Commit: [100 %]

Successfully pivoted

4. Now, check the current active block device in use:

virsh domblklist VM1

Target Source

hda /var/lib/libvirt/images/vm1.img

Notice that now, the current active block device is the base image and all writes are
switched to it, which means we successfully merged the snapshot images into the base
image. But the snapshot-list output in the following code snippet shows that there
are still snapshots associated with the VM:

virsh snapshot-list VM1

Name Creation Time State

snap1 2020-02-12 09:10:56 +0230 shutoff

snap2 2020-02-12 09:11:03 +0230 shutoff

snap3 2020-02-12 09:11:09 +0230 shutoff

snap4 2020-02-12 09:11:17 +0230 shutoff

If you want to get rid of this, you will need to remove the appropriate metadata and delete
the snapshot images. As mentioned earlier, libvirt does not have complete support for
external snapshots. Currently, it can just merge the images, but no support is available for
automatically removing snapshot metadata and overlaying image files. This has to be done
manually. To remove snapshot metadata, run the following code:

virsh snapshot-delete VM1 snap1 --children --metadata

virsh snapshot-list VM1

Name Creation Time State

304 Creating and Modifying VM Disks, Templates, and Snapshots

In this example, we learned how to merge external snapshots by using the blockcommit
method. Let's learn how to merge external snapshot using the blockpull method next.

Merging external snapshots using blockpull
We created a new VM named VM2, which has a base image (raw) called vm2.img with
only one external snapshot. The snapshot disk is the active image where live writes happen
and the base image is in read-only mode. Our target is to remove snapshots associated
with this VM. Proceed as follows:

1. List the current active disk image in use, like this:

virsh domblklist VM2

Target Source

hda /var/lib/libvirt/images/vm2.snap1

Here, we can verify that the /var/lib/libvirt/images/vm2.snap1 image
is the currently active image on which all writes are occurring.

2. Now, enumerate the backing file chain of /var/lib/libvirt/imagesvar/
lib/libvirt/images/vm2.snap1, as follows:

qemu-img info --backing-chain /var/lib/libvirt/images/
vm2.snap1 | grep backing

backing file: /var/lib/libvirt/images/vm1.img

backing file format: raw

3. Merge the base image into the snapshot image (base to overlay image merging),
like this:

virsh blockpull VM2 --path /var/lib/libvirt/images/vm2.
snap1 --wait --verbose

Block Pull: [100 %]

Pull complete

Now, check the size of /var/lib/libvirt/images/vm2.snap1. It got
considerably larger because we pulled the base_image and merged it into the
snapshot image to get a single file.

4. Now, you can remove the base_image and snapshot metadata, as follows:

virsh snapshot-delete VM2 snap1 --metadata

Use cases and best practices while using snapshots 305

We ran the merge and snapshot deletion tasks while the VM is in the running state,
without any downtime. blockcommit and blockpull can also be used to remove
a specific snapshot from the snapshot chain. See the man page for virsh to get more
information and try it yourself. You will also find some additional links in the Further
reading section of this chapter, so make sure that you go through them.

Use cases and best practices while using
snapshots
We mentioned that there's a big love-hate relationship in the IT world with regard to
snapshots. Let's discuss the reasons and some common-sense best practices when using
snapshots, as follows:

• When you take a VM snapshot, you are creating new delta copy of the VM disk,
qemu2, or a raw file, and then you are writing to that delta. So, the more data you
write, the longer it's going to take to commit and consolidate it back into the parent.
Yes—you will eventually need to commit snapshots, but it is not recommended you
go into production with a snapshot attached to the VM.

• Snapshots are not backups; they are just a picture of a state, taken at a specific point
in time, to which you can revert when required. Therefore, do not rely on it as a
direct backup process. For that, you should implement a backup infrastructure
and strategy.

• Don't keep a VM with a snapshot associated with it for long time. As soon as you
verify that reverting to the state at the time a snapshot was taken is no longer
required, merge and delete the snapshot immediately.

• Use external snapshots whenever possible. The chances of corruption are much
lower in external snapshots when compared to internal snapshots.

• Limit the snapshot count. Taking several snapshots in a row without any cleanup
can hit VM and host performance, as qemu will have to trawl through each image
in the snapshot chain to read a new file from base_image.

• Have Guest Agent installed in the VM before taking snapshots. Certain operations
in the snapshot process can be improved through support from within the guest.

• Always use the --quiesce and --atomic options while taking snapshots.

If you're using these best practices, we are comfortable recommending using snapshots
for your benefit. They will make your life much easier and give you a point you can come
back to, without all the problems and hoopla that comes with them.

306 Creating and Modifying VM Disks, Templates, and Snapshots

Summary
In this chapter, you learned how to work with libguestfs utilities to modify VM
disks, create templates, and manage snapshots. We also looked into virt-builder and
various provisioning methodologies for our VMs, as these are some of the most common
scenarios used in the real world. We will learn even more about the concept of deploying
VMs in large numbers (hint: cloud services) in the next chapter, which is all about
cloud-init.

Questions
1. Why would we need to modify VM disks?

2. How can we convert a VM to KVM?

3. Why do we use VM templates?

4. How do we create a Linux-based template?

5. How do we create a Microsoft Windows-based template?

6. Which cloning mechanisms for deploying from template do you know of? What are
the differences between them?

7. Why do we use virt-builder?

8. Why do we use snapshots?

9. What are the best practices of using snapshots?

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• libguesfs documentation: http://libguestfs.org/

• virt-builder: http://libguestfs.org/virt-builder.1.html

• Managing snapshots: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/7/html/virtualization_
deployment_and_administration_guide/sect-managing_guests_
with_the_virtual_machine_manager_virt_manager-managing_
snapshots

http://libguestfs.org/
http://libguestfs.org/virt-builder.1.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-managing_guests_with_the_virtual_machine_manager_virt_manager-managing_snapshots
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-managing_guests_with_the_virtual_machine_manager_virt_manager-managing_snapshots
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-managing_guests_with_the_virtual_machine_manager_virt_manager-managing_snapshots
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-managing_guests_with_the_virtual_machine_manager_virt_manager-managing_snapshots
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-managing_guests_with_the_virtual_machine_manager_virt_manager-managing_snapshots

Further reading 307

• Generate VM Images with virt-builder: http://www.admin-magazine.
com/Articles/Generate-VM-Images-with-virt-builder

• QEMU snapshot documentation: http://wiki.qemu.org/Features/
Snapshots

• libvirt—Snapshot XML format: https://libvirt.org/
formatsnapshot.html

http://www.admin-magazine.com/Articles/Generate-VM-Images-with-virt-builder
http://www.admin-magazine.com/Articles/Generate-VM-Images-with-virt-builder
http://wiki.qemu.org/Features/Snapshots
http://wiki.qemu.org/Features/Snapshots
https://libvirt.org/formatsnapshot.html
https://libvirt.org/formatsnapshot.html

Section 3:
Automation,

Customization, and
Orchestration for

KVM VMs
In this part of the book, you will get a complete understanding of how to customize
KVM virtual machines by using cloud-init and cloudbase-init. This part also
covers how to leverage the automation capabilities of Ansible to manage and orchestrate
the KVM infrastructure.

This part of the book comprises the following chapters:

• Chapter 9, Customizing a Virtual Machine with cloud-init

• Chapter 10, Automated Windows Guest Deployment and Customization

• Chapter 11, Ansible and Scripting for Orchestration and Automation

9
Customizing a

Virtual Machine
with cloud-init

Customizing a virtual machine often seems simple enough – clone it from a template;
start; click a couple of Next buttons (or text tabs); create some users, passwords, and
groups; configure network settings... That might work for a virtual machine or two. But
what happens if we have to deploy two or three hundred virtual machines and configure
them? All of a sudden, we're faced with a mammoth task – and it's a task that will be
prone to errors if we do everything manually. We're wasting precious time while doing
that instead of configuring them in a much more streamlined, automated fashion. That's
where cloud-init comes in handy, as it can customize our virtual machines, install software
on them, and it can do it on first and subsequent virtual machine boots. So, let's discuss
cloud-init and how it can bring value to your large-scale configuration nightmares.

In this chapter, we will cover the following topics:

• What is the need for virtual machine customization?

• Understanding cloud-init

• cloud-init architecture

312 Customizing a Virtual Machine with cloud-init

• How to install and configure cloud-init at boot time

• cloud-init images

• cloud-init data sources

• Passing metadata and user data to cloud-init

• Examples on how to use the cloud-config script with cloud-init

What is the need for virtual machine
customization?
Once you really start using virtual machines and learn how to master them, you will
notice that one thing seems to be happening a lot: virtual machine deployment. Since
everything is so easy to configure and deploy, you will start to create new instances of
virtual machines for almost anything, sometimes even to just check whether a particular
application works on a particular version of the operating system. This makes your life as
a developer and system administrator a lot easier, but creates its own set of problems. One
of the most difficult ones is template management. Even if you have a small set of different
servers and a relatively modest number of different configurations, things will start to add
up, and if you decide to manage templates the normal way through the KVM, the sheer
number of combinations will soon be too big.

Another problem that you will soon face is compatibility. When you step out of your
Linux distribution of choice, and you have to deploy another Linux distribution that has
its own rules and deployment strategies, things will start to get complicated. Usually,
the biggest problem is system customization. When it comes to network settings and
hostnames, every computer on the network should have its own unique identity. Having
a template that uses DHCP network configuration can solve one of these problems, but
it is not nearly enough to make things simpler. For example, we could use Kickstart for
CentOS / RHEL and compatible Linux distributions. Kickstart is a way to configure
systems while they are being deployed, and if you are using these specific distributions,
this is probably the best way to quickly deploy physical or virtual machines. On the other
hand, Kickstart will make your deployments slower than they should be, as it uses a
configuration file that enables us to add software and configuration to a clean installation.

What is the need for virtual machine customization? 313

Basically, it fills up additional configuration prompts with settings we defined earlier. This
means that we are basically doing a full installation and creating a complete system from
scratch every time we need to deploy a new virtual machine.

The main problem is other distributions do not use Kickstart. There are similar systems
that enable unattended installations. Debian and Ubuntu use a tool/system called preseed
and are able to support Kickstart in some parts, SuSe uses AutoYaST, and there are
even a couple of tools that offer some sort of cross-platform functionality. One of them,
called Fully Automated Install (FAI) is able to automate installing and even the online
reconfiguration of different Linux distributions. But that still doesn't solve all of the
problems that we have. In a dynamic world of virtualization, the main goal is to deploy
as quickly as possible and to automate as much as possible, since we tend to use the same
agility when it comes to removing virtual machines from production.

Imagine this: you need to create a single application deployment to test your new
application with different Linux distributions. All of your future virtual machines will
need to have a unique identifier in the form of a hostname, a deployed SSH identity that
will enable remote management through Ansible, and of course, your application. Your
application has three dependencies – two in the form of packages that can be deployed
through Ansible, but one depends on the Linux distribution being used and has to be
tailored for that particular Linux distribution. To make things even more realistic, you
expect that you will have to periodically repeat this test, and every time you will need to
rebuild your dependencies.

There are a couple of ways you can create this environment. One is to simply manually
install all the servers and create templates out of them. This means manually configuring
everything and then creating a virtual machine template that will be deployed. If we
intend to deploy to more than a couple of Linux distributions this is a lot of work. It
becomes even more work once the distributions get upgraded since all the templates we
are deploying from must be upgraded, often at different points in time. This means we
can either manually update all the virtual machine templates, or perform a post-install
upgrade on each of them. This is a lot of work and it is extremely slow. Add to that the
fact that a test like this will probably involve running your test application on both new
and old versions of virtual machine templates. In addition to all that, we need to solve the
problem of customizing our network settings for each and every Linux distribution we are
deploying. Of course, this also means that our virtual machine templates become far from
generic. After a while, we are going to end up with tens of virtual machine templates for
each test cycle.

314 Customizing a Virtual Machine with cloud-init

Another approach to this problem can be using a system like Ansible – we deploy all the
systems from virtual machine templates, and then do the customization from Ansible.
This is better – Ansible is designed for a scenario just like this, but this means that we
must first create virtual machine templates that are able to support Ansible deployment,
with implemented SSH keys and everything else Ansible needs to function.

There is one problem neither of these approaches can solve, and that is the mass
deployment of machines. This is why a framework called cloud-init was designed.

Understanding cloud-init
We need to get a bit more technical in order to understand what cloud-init is and to
understand what its limitations are. Since we are talking about a way to fully automatically
reconfigure a system using simple configuration files, it means that some things need to be
prepared in advance to make this complex process user friendly.

We already mentioned virtual machine templates in Chapter 8, Creating and Modifying VM
Disks, Templates, and Snapshots. Here, we are talking about a specially configured template
that has all the elements needed to read, understand, and deploy the configuration that we
are going to provide in our files. This means that this particular image has to be prepared in
advance, and is the most complicated part of the whole system.

Luckily, cloud-init images can be downloaded already pre-configured, and the only thing
that we need to know is which distribution we want to use. All the distributions we have
mentioned throughout this book (CentOS 7 or 8, Debian, Ubuntu, and Red Hat Enterprise
Linux 7 and 8) have images we can use. Some of them even have different versions of the
base operating system available, so we can use those if we need to. Be aware that there may
be differences between installed versions of cloud-init, especially on older images.

Why is this image important? Because it is prepared so that it can detect the cloud
system it is running under, it determines whether cloud-init should be used or should be
disabled, and after that, it reads and performs the configuration of the system itself.

Understanding cloud-init architecture 315

Understanding cloud-init architecture
Cloud-init works with the concept of boot stages because it needs fine and granular
control over what happens to the system during boot. The prerequisite for cloud-init
would, of course, be a cloud-init image. From the documentation available at
https://cloudinit.readthedocs.io, we can learn that there are five
stages to a cloud-init boot:

• The generator is the first one, and the simplest one: it will determine whether we are
even trying to run cloud-init, and based on that, whether it should enable or disable
the processing of data files. Cloud-init will not run if there are kernel command-line
directives to disable it, or if a file called /etc/cloud/cloud-init.diabled
exists. For more information on this and all the other things in this chapter, please
read the documentation (start at https://cloudinit.readthedocs.io/
en/latest/topics/boot.html) since it contains much more detail about
switches and different options that cloud-init supports and that make it tick.

• The local phase tries to find the data that we included for the boot itself, and then
it tries to create a running network configuration. This is a relatively simple task
performed by a systemd service called cloud-init-local.service, which
will run as soon as possible and will block the network until it's done. The concept
of blocking services and targets is used a lot in cloud-init initialization; the reason is
simple – to ensure system stability. Since cloud-init procedures modify a lot of core
settings for a system, we cannot afford to let the usual startup scripts run and create
a parallel configuration that could overrun the one created by cloud-init.

• The network phase is the next one, and it uses a separate service called
cloud-init.service. This is the main service that will bring up the previously
configured network and try to configure everything we scheduled in the data files.
This will typically include grabbing all the files specified in our configuration,
extracting them, and executing other preparation tasks. Disks will also be formatted
and partitioned in this stage if such a configuration change is specified. Mount
points will also get created, including those that are dynamic and specific to a
particular cloud platform.

https://cloudinit.readthedocs.io
https://cloudinit.readthedocs.io/en/latest/topics/boot.html
https://cloudinit.readthedocs.io/en/latest/topics/boot.html

316 Customizing a Virtual Machine with cloud-init

• The config stage follows, and it will configure the rest of the system, applying
different parts of our configuration. It uses cloud-init modules to further configure
our template. Now that the network is configured, it can be used to add repositories
(the yum_repos or apt modules), add an SSH key (the ssh-import-id
module), and perform similar tasks in preparation for the next phase, in which
we can actually use the configuration done in this phase.

• The final stage is the part of the system boot that runs things that would probably
belong in userland – installing the packages, the configuration management plugin
deployment, and executing possible user scripts.

After all this has been done, the system will be completely configured and up and running.

The main advantage of this approach, although it seems complicated, is to have only one
image stored in the cloud, and then to create simple configuration files that will only
cover the differences between the vanilla default configuration, and the one that we need.
Images can also be relatively small since they do not contain too many packages geared
toward an end user.

Cloud-init is often used as the first stage in deploying a lot of machines that are going to
be managed by orchestration systems such as Puppet or Ansible since it provides a way to
create working configurations that include ways of connecting to each instance separately.
Every stage uses YAML as its primary data syntax, and almost everything is simply a
list of different options and variables that get translated into configuration information.
Since we are configuring a system, we can also include almost any other type of file in the
configuration – once we can run a shell script while configuring the system, everything
is possible.

Why is all of this so important?

Cloud-init stems from a simple idea: create a single template that will define the base
content of the operating system you plan to use. Then, we create a separate, specially
formatted data file that will hold the customization data, and then combine those two
at runtime to create a new instance when you need one. You can even improve things a
bit by using a template as a base image and then create different systems as differencing
images. Trading speed for convenience in this way can mean deploying in minutes instead
of hours.

Understanding cloud-init architecture 317

The way cloud-init was conceived was to be as multiplatform as possible and to
encompass as many operating systems as can reasonably be done. Currently, it supports
the following:

• Ubuntu

• SLES/openSUSE

• RHEL/CentOS

• Fedora

• Gentoo Linux

• Debian

• Arch Linux

• FreeBSD

We enumerated all the distributions, but cloud-init, as its name suggests is also
cloud-aware, which means that cloud-init is able to automatically detect and use almost
any cloud environment. Running any distribution on any hardware or cloud is always
a possibility, even without something like cloud-init, but since the idea is to create a
platform-independent configuration that will be deployable on any cloud without any
reconfiguration, our system needs to automatically account for any differences between
different cloud infrastructures. On top of that, cloud-init can be used for bare-metal
deployment, even if it isn't specifically designed for it, or to be more precise, even if it
is designed for a lot more than that.

Important note
Being cloud-aware means that cloud-init gives us tools to do post-deployment
checks and configuration changes, another extremely useful option.

This all sounds a lot more theoretical than it should be. In practice, once you start
using cloud-init and learn how to configure it, you will start to create a virtual machine
infrastructure that will be almost completely independent of the cloud infrastructure you
are using. In this book, we are using KVM as the main virtualization infrastructure, but
cloud-init works with any other cloud environment, usually without any modification.
Cloud-init was initially designed to enable easy deployment on Amazon AWS but it has
long since transcended that limitation.

318 Customizing a Virtual Machine with cloud-init

Also, cloud-init is aware of all the small differences between different distributions, so all
the things you put in your configuration file will be translated into whatever a particular
distribution uses to accomplish a particular task. In that sense, cloud-init behaves a lot like
Ansible – in essence, you define what needs to be done, not how to do it, and cloud-init
takes that and makes it happen.

Installing and configuring cloud-init at boot
time
The main thing that we are covering in this chapter is how to get cloud-init to run, and
how to get all of its parts in the right place when the machine is being deployed, but this
only scratches the surface of how cloud-init actually works. What you need to understand
is that cloud-init runs as a service, configures the system, and follows what we told it to do
in a certain way. After the system has booted, we can connect to it and see what was done,
how, and analyze the logs. This could seem contrary to the idea of completely automatic
deployment but it is there for a reason – whatever we do, there is always the possibility
that we will need to debug the system or do some post-installation tasks that can also
be automated.

Using cloud-init is not specifically confined to just debugging. After the system has
booted, there is a large amount of data created by the system about how the boot was
done, what actual cloud configuration the system is running on, and what was done in
regard to customization. Any of your applications and scripts can then rely on this data
and use it to run and detect certain configuration and deployment parameters. Check
out this example, taken from a virtual machine in Microsoft Azure, running Ubuntu:

 Figure 9.1 – A part of cloud-init output at boot time

Cloud-init actually displays this at boot time (and much more, depending on the
cloud-init configuration file), and then puts all of this output into its log files, as well.
So, we're really well covered in terms of the additional information that it produces.

The next step in our cloud-init journey is discussing cloud-init images, as these are what
we need to make cloud-init work. Let's do that now.

Installing and configuring cloud-init at boot time 319

Cloud-init images
In order to use cloud-init at boot time, we first need a cloud image. At its core, it is
basically a semi-installed system that contains specially designed scripts that support
cloud-init installation. On all distributions, these scripts are part of a package called
cloud-init, but images are usually more prepared than that since they try to negotiate
a fine line between size and convenience of installation.

In our examples, we are going to use the ones available at the following URLs:

• https://cloud.centos.org/

• https://cloud-images.ubuntu.com/

In all the examples we are going to work with, the main intention is to show how the
system works on two completely different architectures with minimal to no modifications.

Under normal circumstances, getting the image is all you need to be able to run
cloud-init. Everything else is handled by the data files.

For example, these are some of the available images for the CentOS distribution:

 Figure 9.2 – A wealth of available cloud-init images for CentOS

https://cloud.centos.org/
https://cloud-images.ubuntu.com/

320 Customizing a Virtual Machine with cloud-init

Notice that images cover almost all of the releases of the distribution, so we can simply
test our systems not only on the latest version but on all the other versions available. We
can freely use all of these images, which is exactly what we are going to do a bit later
when we start with our examples.

Cloud-init data sources
Let's talk a little about data files. Up to now, we have referred to them generically, and
we had a big reason to do so. One of the things that make cloud-init stand out from
other utilities is its ability to support different ways of getting the information on what
to install and how to install it. We call these configuration files data sources, and they
can be separated into two broad categories – user data and metadata. We will talk a
lot more about each of those in this chapter, but as an early introduction, let's say that
everything that a user creates as part of the configuration, including YAML files, scripts,
configuration files, and possibly other files to be put on a system, such as applications and
dependencies that are part of user data. Metadata usually comes directly from the cloud
provider or serves the purpose of identifying machines.

It contains instance data, hostnames, network name, and other cloud-specific details
that can prove useful when deploying. We can use both these types of data during boot
and will be doing so. Everything we put in will be stored in a large JSON store in /run/
cloud-init/instance-data.json at runtime, or as part of the actual machine
configuration. A good example of this is the hostname, part of the metadata that will end
up as the actual hostname on the individual machine. This file is populated by cloud-init
and can be accessed through the command line or directly.

When creating any file in the configuration, we can use any file format available, and we
are able to compress the files if needed – cloud-init will decompress them before it runs. If
we need to pass the actual files into the configuration, there is a limitation though – files
need to be encoded as text and put into variables in a YAML file, to be used and written
later on the system we are configuring. Just like cloud-init, YAML syntax is declarative –
this is an important thing to remember.

Now, let's learn how we pass metadata and user data to cloud-init.

Passing metadata and user data to cloud-init 321

Passing metadata and user data to cloud-init
In our examples, we are going to create a file that will essentially be an .iso image and
behave like a CD-ROM connected to the booting machine. Cloud-init knows how to
handle a situation like this, and will mount the file, extract all the scripts, and run them in a
predetermined order, as we already mentioned when we explained how the boot sequence
works (check the Understanding cloud-init architecture section earlier in this chapter).

In essence, what we have to do to get the whole thing running is to create an image that
will get connected to the cloud template, and that will provide all the data files to the
cloud-init scripts inside the template. This is a three-step process:

1. We have to create the files that hold the configuration information.

2. We have to create an image that contains the file data in the right place.

3. We need to associate the image with the template at boot time.

The most complicated part is defining how and what we need to configure when booting.
All of this is accomplished on a machine that is running the cloud-utils package for a
given distribution.

At this point, we need to make a point about the two different packages that are used in all
the distributions to enable cloud-init support:

• cloud-init – Contains all that is necessary to enable a computer to reconfigure
itself during boot if it encounters a cloud-init configuration

• cloud-utils – Is used to create a configuration that is to be applied to a
cloud image

The main difference between these packages is the computer we are installing them on.
cloud-init is to be installed on the computer we are configuring and is part of the
deployment image. cloud-utils is the package intended to be used on the computer
that will create the configuration.

In all the examples and all the configuration steps in this chapter, we are in fact referring
to two different computers/servers: one that can be considered primary, and the one that
we are using in this chapter – unless we state otherwise – is the computer that we use to
create the configuration for cloud-init deployment. This is not the computer that is going
to be configured using this configuration, just a computer that we use as a workstation
to prepare our files.

322 Customizing a Virtual Machine with cloud-init

In this simplified environment, this is the same computer that runs the entire KVM
virtualization and is used both to create and deploy virtual machines. In a normal setup,
we would probably create our configuration on a workstation that we work on and deploy
to some kind of KVM-based host or cluster. In that case, every step that we present in this
chapter basically remains the same; the only difference is the place that we deploy to, and
the way that the virtual machine is invoked for the first boot.

We will also note that some virtualization environments, such as OpenStack, oVirt, or
RHEV-M, have direct ways to communicate with a cloud-init enabled template. Some of
them even permit you to directly reconfigure the machine on first boot from a GUI, but
that falls way out of the scope of this book.

The next topic on our list is cloud-init modules. Cloud-init uses modules for
a reason – to extend its range of available actions it can take in the virtual machine
boot phase. There are dozens of cloud-init modules available – SSH, yum, apt, setting
hostname, password, locale, and creating users and groups, to name a few. Let's
check how we can use them.

Using cloud-init modules
When creating a configuration file, in cloud-init, pretty much like in any other software
abstraction layer, we are dealing with modules that are going to translate our more-or-less
universal configuration demands, such as this package needs to be installed into actual shell
commands on a particular system. The way this is done is through modules. Modules are
logical units that break down different functionalities into smaller groups and enable us
to use different commands. You can check the list of all available modules at the following
link: https://cloudinit.readthedocs.io/en/latest/topics/modules.
html. It's quite a list, which will just further show you how well developed cloud-init is.

As we can see from the list, some of the modules, such as, for example, Disk setup or
Locale, are completely platform-independent while some, for example, Puppet, are
designed to be used with a specific software solution and its configuration, and some are
specific to a particular distribution or a group of distributions, like Yum Add Repo or
Apt Configure.

This can seem to break the idea of a completely distribution-agnostic way to deploy
everything, but you must remember two things – cloud-init is first and foremost
cloud-agnostic, not distribution-agnostic, and distributions sometimes have things that
are way too different to be solved with any simple solution. So, instead of trying to be
everything at once, cloud-init solves enough problems to be useful, and at the same time
tries not to create new ones.

https://cloudinit.readthedocs.io/en/latest/topics/modules.html
https://cloudinit.readthedocs.io/en/latest/topics/modules.html

Examples on how to use a cloud-config script with cloud-init 323

Important note
We are not going to deal with particular modules one by one since it would
make this chapter too long and possibly turn it into a book on its own. If you
plan on working with cloud-init, consult the module documentation since it
will provide all the up-to-date information you need.

Examples on how to use a cloud-config script
with cloud-init
First, you need to download the cloud images and resize them in order to make sure that
the disk size after everything is installed is large enough to accommodate all the files you
plan to put in the machine you created. In these examples, we are going to use two images,
one for CentOS, and another for Ubuntu Server. We can see that the CentOS image we are
using is 8 GB in size, and we will enlarge it to 10 GB. Note that the actual size on the disk
is not going to be 10 GB; we are just allowing the image to grow to this size.

We are going to do the same with the Ubuntu image, after we get it from the internet.
Ubuntu also publishes cloud versions of their distribution daily, for all supported versions.
The main difference is that Ubuntu creates images that are designed to be 2.2 GB when
full. We downloaded an image from https://cloud.centos.org; let's now get
some information about it:

 Figure 9.3 – Cloud-init image sizes

https://cloud.centos.org

324 Customizing a Virtual Machine with cloud-init

Note that the actual size on the disk is different – qemu-img gives us 679 MB and 2.2 GB
versus roughly 330 MB and 680 MB of actual disk usage:

 Figure 9.4 – Image size via qemu-img differs from the real virtual image size

We can now do a couple of everyday administration tasks on these images – grow
them, move them to the correct directory for KVM, use them as a base image, and
then customize them via cloud-init:

1. Let's make these images bigger, just so that we can have them ready for future
capacity needs (and practice):

Figure 9.5 – Growing the Ubuntu and CentOS maximum image size to 10 GB via qemu-img
After growing our images, note that the size on the disk hasn't changed much:

 Figure 9.6 – The real disk usage has changed only slightly

Examples on how to use a cloud-config script with cloud-init 325

The next step is to prepare our environment for the cloud-image procedure so that
we can enable cloud-init to do its magic.

2. The images that we are going to use are going to be stored in /var/lib/
libvirt/images:

 Figure 9.7 – Moving images to the KVM default system directory
We are going to create our first cloud-enabled deployment in the simplest way
possible, by only repartitioning the disk and creating a single user with a single SSH
key. The key belongs to the root of the host machine, so we can directly log in to the
deployed machine after cloud-init is done.

Also, we are going to use our images as base images by running the following
command:

Figure 9.8 – Creating an image disk for deployment
The images are now ready. The next step is to start the cloud-init configuration.

3. First, create a local metadata file and put the new virtual machine name in it.

4. The file will be named meta-data and we are going to use local-hostname to
set the name:

 Figure 9.9 – Simple meta-data file with only one option

326 Customizing a Virtual Machine with cloud-init

This file is all it takes to name the machine the way we want and is written in a
normal YAML notation. We do not need anything else, so this file essentially
becomes a one-liner. Then we need an SSH key pair and we need to get it into the
configuration. We need to create a file called user-data that will look like this:

#cloud-config

users:

 - name: cloud

 ssh-authorized-keys:

 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCZh6
6Gf1lNuMeenGywifUSW1T16uKW0IXnucNwoIynhymSm1fkTCqyxLk
ImWbyd/tDFkbgTlei3qa245Xwt//5ny2fGitcSa7jWvkKvTLiPvxLP
0CvcvGR4aiV/2TuxA1em3JweqpNppyuapH7u9q0SdxaG2gh3uViYl
/+8uuzJLJJbxb/a8EK+szpdZq7bpLOvigOTgMan+LGNlsZc6lqE
VDlj40tG3YNtk5lxfKBLxwLpFq7JPfAv8DTMcdYqqqc5PhRnnKLak
SUQ6OW0nv4fpa0MKuha1nrO72Zyur7FRf9XFvD+Uc7ABNpeyUTZVI
j2dr5hjjFTPfZWUC96FEh root@localhost.localdomain

 sudo: ['ALL=(ALL) NOPASSWD:ALL']

 groups: users

 shell: /bin/bash

runcmd:

 - echo "AllowUsers cloud" >> /etc/ssh/sshd_config

 - restart ssh

Note that the file must follow the way YAML defines everything including the
variables. Pay attention to the spaces and newlines, as the biggest problems with
deployment come from misplaced newlines in the configuration.

There is a lot to parse here. We are creating a user that uses the username cloud.
This user will not be able to log in using a password since we are not creating one,
but we will enable login using SSH keys associated with the local root account,
which we will create by using the ssh-keygen command. This is just an example
SSH key, and SSH key that you're going to use might be different. So, as root, go
through the following procedure:

Examples on how to use a cloud-config script with cloud-init 327

Figure 9.10 – SSH keygen procedure done, SSH keys are present and accounted for
Keys are stored in the local .ssh directory, so we just need to copy them. When
we are doing cloud deployments, we usually use this method of authentication, but
cloud-init enables us to define any method of user authentication. It all depends
on what we are trying to do and whether there are security policies in place that
enforce one authentication method over another.

In the cloud environments, we will rarely define users that are able to log in
with a password, but for example, if we are deploying bare-metal machines for
workstations, we will probably create users that use normal passwords. When we
create a configuration file like this, it is standard practice to use hashes of passwords
instead of literal cleartext passwords. The directive you are looking for is probably
passwd: followed by a string containing the hash of a password.

328 Customizing a Virtual Machine with cloud-init

Next, we configured sudo. Our user needs to have root permissions since there are
no other users defined for this machine. This means they need to be a member of
the sudo group and have to have the right permissions defined in the sudoers
file. Since this is a common setting, we only need to declare the variables, and
cloud-init is going to put the settings in the right files. We will also define a
user shell.

In this file, we can also define all the other users' settings available on Linux, a
feature that is intended to help deploy user computers. If you need any of those
features, check the documentation available here: https://cloudinit.
readthedocs.io/en/latest/topics/modules.html#users-and-
groups. All the extended user information fields are supported.

The last thing we are doing is using the runcmd directive to define what will
happen after the installation finishes, in the last stage. In order to permit the user to
log in, we need to put them on the list of allowed users in the sshd and we need to
restart the service.

Now we are ready for our first deployment.

5. We have three files in our directory: a hard disk that uses a base file with the cloud
template, a meta-data file that contains just minimal information that is essential
for our deployment, and user-data, which contains our definitions for our user.
We didn't even try to install or copy anything; this install is as minimal as it gets, but
in a normal environment this is a regular starting point, as a lot of deployments are
intended only to bring our machine online, and then do the rest of the installation
by using other tools. Let's move to the next step.

We need a way to connect the files we just created, the configuration, with the
virtual machine. Usually, this is done in a couple of ways. The simplest way is
usually to generate a .iso file that contains the files. Then we just mount the file as
a virtual CD-ROM when we create the machine. On boot, cloud-init will look for
the files automatically.

Another way is to host the files somewhere on the network and grab them when we
need them. It is also possible to combine these two strategies. We will discuss this
a little bit later, but let's finish our deployment first. The local .iso image is the
way we are going to go on this deployment. There is a tool called genisoimage
(provided by the package with the same name) that is extremely useful for this (the
following command is a one-line command):

genisoimage -output deploy-1-cidata.iso -volid cidata
-joliet -rock user-data meta-data

https://cloudinit.readthedocs.io/en/latest/topics/modules.html#users-and-groups
https://cloudinit.readthedocs.io/en/latest/topics/modules.html#users-and-groups
https://cloudinit.readthedocs.io/en/latest/topics/modules.html#users-and-groups

Examples on how to use a cloud-config script with cloud-init 329

What we are doing here is creating an emulated CD-ROM image that will follow the
ISO9660/Joliet standard with Rock Ridge extensions. If you have no idea what we
just said, ignore all this and think about it this way – we are creating a file that will
hold our metadata and user data and present itself as a CD-ROM:

 Figure 9.11 – Creating an ISO image
In the end, we are going to get something like this:

Figure 9.12 – ISO is created and we are ready to start a cloud-init deployment
Please note that images are taken post deployment, so the size of disk can vary
wildly based on your configuration. This was all that was needed in the form of
preparations. All that's left is to spin up our virtual machine.

Now, let's start with our deployments.

The first deployment
We are going to deploy our virtual machine by using a command line:

virt-install --connect qemu:///system --virt-type kvm
--name deploy-1 --ram 2048 --vcpus=1 --os-type linux --os-
variant generic --disk path=/var/lib/libvirt/images/deploy-1/
centos1.qcow2,format=qcow2 --disk /var/lib/libvirt/images/
deploy-1/deploy-1-cidata.iso,device=cdrom --import --network
network=default --noautoconsole

330 Customizing a Virtual Machine with cloud-init

Although it may look complicated, if you came to this part of the book after reading its
previous chapters, there should be nothing you haven't seen yet. We are using KVM,
creating a name for our domain (virtual machine), we are going to give it 1 CPU and
2 GB of RAM. We are also telling KVM we are installing a generic Linux system. We
already created our hard disk, so we are mounting it as our primary drive, and we are
also mounting our .iso file to serve as a CD-ROM. Lastly, we will connect our virtual
machine to the default network:

Figure 9.13 – Deploying and testing a cloud-init customized virtual machine

The deployment will probably take a minute or two. As soon as the machine boots, it will
get the IP address and we can SSH to it using our predefined key. The only thing that was
not automated is accepting the fingerprint of the newly booted machine automatically.

Now, the time has come to see what happened when we booted the machine. Cloud-init
generated a log at /var/log named cloud-init.log. The file will be fairly large, and
the first thing you will notice is that the log is set to provide debug information, so almost
everything will be logged:

Examples on how to use a cloud-config script with cloud-init 331

Figure 9.14 – The cloud-init.log file, used to check what cloud-init did to the operating system

Another thing is how much actually happens below the surface completely automatically.
Since this is CentOS, cloud-init has to deal with the SELinux security contexts in real
time, so a lot of the information is simply that. There are also a lot of probes and tests
going on. Cloud-init has to establish what the running environment is and what type of
cloud it is running under. If something happens during the boot process and it in any way
involves cloud-init, this is the first place to look.

Let's now deploy our second virtual machine by using a second (Ubuntu) image. This is
where cloud-init really shines – it works with various Linux (and *BSD) distributions,
whatever they might be. We can put that to the test now.

332 Customizing a Virtual Machine with cloud-init

The second deployment
The next obvious step is to create another virtual machine, but to prove a point, we are
going to use Ubuntu Server (Bionic) as our image:

 Figure 9.15 – Preparing our environment for another cloud-init-based virtual machine deployment

What do we need to do? We need to copy both meta-data and user-data to the
new folder. We need to edit the metadata file since it has the hostname inside it, and we
want our new machine to have a different hostname. As for user-data, it is going to be
completely the same as on our first virtual machine. Then we need to create a new disk
and resize it:

 Figure 9.16 – Growing our virtual machine image for deployment purposes

We are creating a virtual machine from our downloaded image, and just allowing for more
space as the image is run. The last step is to start the machine:

Figure 9.17 – Deploying our second virtual machine with cloud-init

Examples on how to use a cloud-config script with cloud-init 333

The command line is almost exactly the same, only the names change:

virt-install --connect qemu:///system --virt-type kvm
--name deploy-2 --ram 2048 --vcpus=1 --os-type linux --os-
variant generic --disk path=/var/lib/libvirt/images/deploy-2/
bionic.qcow2,format=qcow2 --disk /var/lib/libvirt/images/
deploy-2/deploy-2-cidata.iso,device=cdrom --import --network
network=default –noautoconsole

Now let's check the IP addresses:

Figure 9.18 – Check the virtual machine IP addresses

We can see both of the machines are up and running. Now for the big test – can we
connect? Let's use the SSH command to try:

 Figure 9.19 – Using SSH to verify whether we can connect to our virtual machine

334 Customizing a Virtual Machine with cloud-init

As we can see, the connection to our virtual machine works without any problems.

One more thing is to check the deployment log. Note that there is no mention of
configuring SELinux since we are running on Ubuntu:

 Figure 9.20 – The Ubuntu cloud-init log file has no mention of SELinux

Just for fun, let's do another deployment with a twist – let's use a module to deploy a
software package.

The third deployment
Let's deploy another image. In this instance, we are creating another CentOS 7 but this
time we are installing (not starting) httpd in order to show how this type of configuration
works. Once again, the steps are simple enough: create a directory, copy the metadata and
user data files, modify the files, create the .iso file, create the disk, and run the machine.

Examples on how to use a cloud-config script with cloud-init 335

This time we are adding another section (packages) to the configuration, so that we can
tell cloud-init that we need a package to be installed (httpd):

 Figure 9.21 – Cloud-init configuration file for the third virtual machine deployment

Since all the steps are more or less the same, we get the same result – success:

 Figure 9.22 – Repeating the deployment process for the third virtual machine

We should wait for a while so that the VM gets deployed. After that, let's log in and check
whether the image deployed correctly. We asked for httpd to be installed during the
deployment. Was it?

 Figure 9.23 – Checking whether httpd is installed but not started

We can see that everything was done as expected. We haven't asked for the service to start,
so it is installed with the default settings and is disabled and stopped by default.

336 Customizing a Virtual Machine with cloud-init

After the installation
The intended use of cloud-init is to configure machines and create an environment that
will enable further configuration or straight deployment into production. But to enable
that, cloud-init has a lot of options that we haven't even mentioned yet. Since we have an
instance running, we can go through the most important and the most useful things you
can find in the newly booted virtual machine.

The first thing to check is the /run/cloud-init folder:

 Figure 9.24 – /run/cloud-init folder contents

Everything that is created at runtime is written here, and available for users. Our demo
machine was run under the local KVM hypervisor so cloud-init is not detecting a cloud,
and consequently is unable to provide more data about the cloud, but we can see some
interesting details. The first one is two files named enabled and network-config-
ready. Both of them are empty but very important. The fact that they exist signifies that
cloud-init is enabled, and that network has been configured and is working. If the files
are not there, something went wrong and we need to go back and debug. More about
debugging can be found at https://cloudinit.readthedocs.io/en/latest/
topics/debugging.html.

The results.json file holds this particular instance metadata. status.json is more
concentrated on what happened when the whole process was running, and it provides info
on possible errors, the time it took to configure different parts of the system, and whether
everything was done.

Both those files are intended to help with the configuration and orchestration, and, while
some things inside these files are important only to cloud-init, the ability to detect and
interact with different cloud environments is something that other orchestration tools
can use. Files are just a part of it.

Another big part of this scheme is the command-line utility called cloud-init. To get
information from it, we first need to log in to the machine that we created. We are going to
show the differences between machines that were created by the same file, and at the same
time demonstrate similarities and differences between distributions.

https://cloudinit.readthedocs.io/en/latest/topics/debugging.html
https://cloudinit.readthedocs.io/en/latest/topics/debugging.html

Examples on how to use a cloud-config script with cloud-init 337

Before we start talking about this, be aware that cloud-init, as with all Linux software,
comes in different versions. CentOS 7 images use an old version, 0.7.9:

Figure 9.25 – CentOS cloud-init version – quite old

Ubuntu comes with a much fresher version, 19.3:

Figure 9.26 – Ubuntu cloud-init version – up to date

Before you freak out, this is not as bad as it seems. Cloud-init decided to switch its
versioning system a couple of years ago, so after 0.7.9 came 17.1. There were many changes
and most of them are directly connected to the cloud-init command and configuration
files. This means that the deployment will work, but a lot of things after we deploy will not.
Probably the most visible difference is when we run cloud-init --help. For Ubuntu,
this is what it looks like:

Figure 2.27 – Cloud-init features on Ubuntu

338 Customizing a Virtual Machine with cloud-init

Realistically, a lot of things are missing for CentOS, some of them completely:

 Figure 9.28 – Cloud-init features on CentOS

Since our example has a total of three running instances – one Ubuntu and two CentOS
virtual machines – let's try to manually upgrade to the latest stable version of cloud-init
available on CentOS. We can use our regular yum update command to achieve that,
and the result will be as follows:

 Figure 9.29 – After a bit of yum update, an up-to-date list of cloud-init features

As we can see, this will make things a lot easier to work with.

Examples on how to use a cloud-config script with cloud-init 339

We are not going to go into too much detail about the cloud-init CLI tool, since there
is simply too much information available for a book like this, and as we can see, new
features are being added quickly. You can freely check additional options by browsing at
https://cloudinit.readthedocs.io/en/latest/topics/cli.html. In
fact, they are being added so quickly that there is a devel option that holds new features
while they are in active development. Once they are finished, they become commands of
their own.

There are two commands that you need to know about, both of which give an enormous
amount of information about the boot process and the state of the booted system. The
first one is cloud-init analyze. It has two extremely useful subcommands: blame
and show.

The aptly named blame is actually a tool that returns how much time was spent on things
that happened during different procedures cloud-init did during boot. For example, we
can see that configuring grub and working with the filesystem was the slowest operation
on Ubuntu:

 Figure 9.30 – Checking time consumption for cloud-init procedures

https://cloudinit.readthedocs.io/en/latest/topics/cli.html

340 Customizing a Virtual Machine with cloud-init

The third virtual machine that we deployed uses CentOS image and we added httpd
to it. By extension, it was by far the slowest thing that happened during the cloud-init
process:

 Figure 9.31 – Checking time consumption – it took quite a bit of time for
cloud-init to deploy the necessary httpd packages

Examples on how to use a cloud-config script with cloud-init 341

A tool like this makes it easier to optimize deployments. In our particular case, almost
none of this makes sense, since we deployed simple machines with almost no changes to
the default configuration, but being able to understand why the deployment is slow is a
useful, if not essential, thing.

Another useful thing is being able to see how much time it took to actually boot the
virtual machine:

 Figure 9.32 – Checking the boot time

We are going to end this part with a query – cloud-init query enables you to request
information from the service, and get it in a useable structured format that you can
then parse:

Figure 9.33 – Querying cloud-init for information

342 Customizing a Virtual Machine with cloud-init

After working with it for even a few hours, cloud-init becomes one of those indispensable
tools for a system administrator. Of course, its very essence means it will be much more
suited to those of us who have to work in the cloud environment, because the thing it
does best is the quick and painless deployment of machines from scripts. But even if you
are not working with cloud technologies, the ability to quickly create instances that you
can use for testing, and then to remove them without any pain, is something that every
administrator needs.

Summary
In this chapter, we covered cloud-init, its architecture, and the benefits in larger deployment
scenarios, where configuration consistency and agility are of utmost importance. Pair that
with the paradigm change in which we don't do everything manually – we have a tool that
does it for us – and it's an excellent addition to our deployment processes. Make sure that
you try to use it as it will make your life a lot easier, while preparing you for using cloud
virtual machines, where cloud-init is extensively used.

In the next chapter, we're going to learn how to expand this usage model to Windows
virtual machines by using cloudbase-init.

Questions
1. Recreate our setup using CentOS 7 and Ubuntu base cloud-init images.

2. Create one Ubuntu and two CentOS instances using the same base image.

3. Add a fourth virtual machine using Ubuntu as a base image.

4. Try using some other distribution as a base image without changing any of the
configuration files. Give FreeBSD a try.

5. Instead of using SSH keys, use predefined passwords. Is this more or less secure?

6. Create a script that will create 10 identical instances of a machine using cloud-init
and a base image.

7. Can you find any reason why it would be more beneficial to use
a distribution-native way of installing machines instead of using cloud-init?

Further reading 343

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• Cloud-init documentation hub: https://cloudinit.readthedocs.io/en/
latest/

• Project home page for cloud-init: https://cloud-init.io/

• Source code: https://code.launchpad.net/cloud-init

• Particularly good examples of config files: https://cloudinit.
readthedocs.io/en/latest/topics/examples.html

https://cloudinit.readthedocs.io/en/latest/
https://cloudinit.readthedocs.io/en/latest/
https://cloud-init.io/
https://code.launchpad.net/cloud-init
https://cloudinit.readthedocs.io/en/latest/topics/examples.html
https://cloudinit.readthedocs.io/en/latest/topics/examples.html

10
Automated Windows

Guest Deployment
and Customization

Now that we have covered the different ways of deploying Linux-based Virtual Machines
(VMs) in KVM, it's time to switch our focus to Microsoft Windows. Specifically, we'll
work on Windows Server 2019 machines running on KVM, and cover prerequisites and
different scenarios for the deployment and customization of Windows Server 2019 VMs.
This book isn't based on the idea of Virtual desktop infrastructure (VDI) and desktop
operating systems, which require a completely different scenario, approach, and technical
implementation than virtualizing server operating systems.

In this chapter, we will cover the following topics:

• The prerequisites to creating Windows VMs on KVM

• Creating Windows VMs using the virt-install utility

• The customization of Windows VMs using cloudbase-init

• cloudbase-init customization examples

• Troubleshooting common cloudbase-init customization issues

346 Automated Windows Guest Deployment and Customization

The prerequisites to creating Windows VMs
on KVM
When starting the installation of a guest operating system on KVM virtualization, we
always have the same starting points. We need either of the following:

• An ISO file with operating system installation

• An image with a VM template

• An existing VM to clone and reconfigure

Let's start from scratch. We are going to create a Windows Server 2019 VM in this chapter.
Version selection was made to keep in touch with the most recent release of Microsoft
server operating systems on the market. Our goal will be to deploy a Windows Server
2019 VM template that we can use later for more deployments and cloudbase-init,
and the tool of choice for this installation process is going to be virt-install. If you
need to install an older version (2016 or 2012), you need to know two facts:

• They are supported on CentOS 8 out of the box.

• The installation procedure is the same as it will be with our Windows Server
2019 VM.

If you want to use Virtual Machine Manager to deploy Windows Server 2019, make
sure that you configure the VM properly. That includes selecting the correct ISO file
for the guest operating system installation, and connecting another virtual CD-ROM
for virtio-win drivers so that you can install them during the installation process.
Make sure that your VM has enough disk space on the local KVM host (60 GB+ is
recommended), and that it has enough horsepower to run. Start with two virtual CPUs
and 4 GB of memory, as this can easily be changed later.

The next step in our scenario is to create a Windows VM that we'll use throughout this
chapter to customize via cloudbase-init. In a real production environment, we need
to do as much configuration in it as possible – driver installation, Windows updates,
commonly used applications, and so on. So, let's do that first.

Creating Windows VMs using the virt-install utility 347

Creating Windows VMs using the
virt-install utility
The first thing that we need to do is to make sure we have the virtio-win drivers ready
for installation – the VM will not work properly without them installed. So, let's first
install that and the libguestfs packages, in case you don't have them already installed
on your server:

yum –y install virtio-win libguestfs*

Then, it's time to start deploying our VM. Here are our settings:

• The Windows Server 2019 ISO is located at /iso/windows-server-2019.
iso.

• The virtio-win ISO file is located in the default system folder, /usr/share/
virtio-win/virtio-win.iso.

• We are going to create a 60 GB virtual disk, located at the default system folder, /
var/lib/libvirt/images.

Now, let's start the installation process:

virt-install --name WS2019 --memory=4096 --vcpus 2 --cpu
host --video qxl --features=hyperv_relaxed=on,hyperv_
spinlocks=on,hyperv_vapic=on --clock hypervclock_
present=yes --disk /var/lib/libvirt/images/WS2019.
qcow2,format=qcow2,bus=virtio,cache=none,size=60 --cdrom /
iso/windows-server-2019.iso --disk /usr/share/virtio-win/
virtio-win.iso,device=cdrom --vnc --os-type=windows --os-
variant=win2k19 --accelerate --noapic

348 Automated Windows Guest Deployment and Customization

When the installation process starts, we have to click Next a couple of times before we
reach the configuration screen where we can select the disk where we want to install our
guest operating system. On the bottom of that screen to the left, there's a button called
Load driver, which we can now use, repeatedly, to install all of the necessary virtio-
win drivers. Make sure that you untick the Hide drivers that aren't compatible with
this computer's hardware checkbox. Then, add the following drivers one by one, from a
specified directory, and select them with your mouse:

• AMD64\2k19: Red Hat VirtIO SCSI controller.

• Balloon\2k19\amd64: VirtIO balloon driver.

• NetKVM\2k19\AMD64: Red Hat VirtIO Ethernet adapter.

• qemufwcfg\2k19\amd64: QEMU FWCfg device.

• qemupciserial\2k19\amd64: QEMU Serial PCI card.

• vioinput\2k19\amd64: VirtIO input driver and VirtIO input driver helper;
select both of them.

• viorng\2k19\amd64: VirtIO RNG device.

• vioscsi\2k19\amd64: Red Hat VirtIO SCSI pass-through controller.

• vioserial\2k19\amd64: VirtIO serial driver.

• viostor\2k19\amd64: Red Hat VirtIO SCSI controller.

After that, click Next and wait for the installation process to finish.

You might be asking yourself: why did we micro-manage this so early in the installation
process, when we could've done this later? The answer is two-fold – if we did it later, we'd
have the following problems:

• There's a chance – at least for some operating systems – that we won't have all the
necessary drivers loaded before the installation starts, which might mean that the
installation will crash.

• We'd have loads of yellow exclamation marks in Device Manager, which is usually
annoying to people.

Creating Windows VMs using the virt-install utility 349

Being as it is after deployment, our device manager is happy and the installation was
a success:

Figure 10.1 – The operating system and all drivers installed from the get-go

The only thing that's highly recommended post installation is that we install the guest
agent from virtio-win.iso after we boot our VM. You will find an .exe file on the
virtual CD-ROM, in guest-agent directory, and you just need to click the Next button
until the installation is complete.

Now that our VM is ready, we need to start thinking about customization. Specifically,
large-scale customization, which is a normal usage model for VM deployments in the
cloud. This is why we need to use cloudbase-init, which is our next step.

350 Automated Windows Guest Deployment and Customization

Customizing Windows VMs using
cloudbase-init
If you had the chance to go through Chapter 9, Customizing a Virtual Machine with cloud-
init, we discussed a tool called cloud-init. What we used it for was guest operating
system customization, specifically for Linux machines. cloud-init is heavily used in
Linux-based environments, specifically in Linux-based clouds, to perform initialization
and configuration of cloud VMs.

The idea behind cloudbase-init is the same, but it's aimed at Windows guest
operating systems. Its base services start up when we boot a Windows guest operating
system instance, as well as read through the configuration information and configure/
initialize it. We are going to show a couple of examples of cloudbase-init operations
a bit later in this chapter.

What can cloudbase-init do? The list of features is quite long, as cloudbase-init
has a modular approach at its core, so it offers many plugins and interpreters, which can
be used to further its reach:

• It can execute custom commands and scripts, most commonly coded in PowerShell,
although regular CMD scripts are also supported.

• It can work with PowerShell remoting and the Windows Remote Management
(WinRM) service.

• It can manage and configure disks, for example, to do a volume expansion.

• It can do basic administration, including the following:

a) Creating users and passwords

b) Setting up a hostname

c) Configuring static networking

d) Configuring MTU size

e) Assigning a license

f) Working with public keys

g) Synchronizing clocks

Customizing Windows VMs using cloudbase-init 351

We mentioned earlier that our Windows Server 2019 VM is going to be used for
cloudbase-init customization, so that's our next subject. Let's prepare our VM for
cloudbase-init. We are going to achieve that by downloading the cloudbase-
init installer and installing it. We can find the cloudbase-init installer by pointing
our internet browser at https://cloudbase-init.readthedocs.io/en/
latest/intro.html#download. The installation is simple enough, and it can work
both in a regular, GUI fashion and silently. If you're used to using Windows Server Core
or prefer silent installation, you can use the MSI installer for silent installation by using
the following command:

msiexec /i CloudbaseInitSetup.msi /qn /l*v log.txt

Make sure that you check the cloudbase-init documentation for further
configuration options as the installer supports additional runtime options. It's located at
https://cloudbase-init.readthedocs.io/en/latest/.

Let's stick with the GUI installer as it's simpler to use, especially for a first-time user. First,
the installer is going to ask about the license agreement and installation location – just the
usual stuff. Then, we're going to get the following options screen:

Figure 10.2 – Basic configuration screen

https://cloudbase-init.readthedocs.io/en/latest/intro.html#download
https://cloudbase-init.readthedocs.io/en/latest/intro.html#download
https://cloudbase-init.readthedocs.io/en/latest/

352 Automated Windows Guest Deployment and Customization

What it's asking us to do is to give permission to create the cloudbase-init
configuration files (both cloudbase-init-unattend.conf and cloudbase-
init.conf) with this specific future user in mind. This user will be a member of the
local Administrators group and will be used for logging in when we start using the
new image. This will be reflected in both of our configuration files, so if we select Admin
here, that's the user that's going to get created. It's also asking us whether we want the
cloudbase-init service to be run as a LocalSystem service, which we selected
to make the whole process easier. The reason is really simple – this is the highest level
of permission that we can give to our cloudbase-init services so that they can
execute its operations. Translation: the cloudbase-init service will then be run as a
LocalSystem service account, which has unlimited access to all local system resources.

The last configuration screen is going to ask us about running sysprep. Usually, we don't
check the Run sysprep to create a generalized image box here, as we first need to create
a cloudbase-init customization file and run sysprep after that. So, leave the following
window open:

Figure 10.3 – The cloudbase-init installation wizard finishing up

Now that the cloudbase-init services are installed and configured, let's create a
customization file that's going to configure this VM by using cloudbase-init.
Again, make sure that this configuration screen is left open (with the completed setup
wizard) so that we can easily start the whole process when we finish creating our
cloudbase-init configuration.

cloudbase-init customization examples 353

cloudbase-init customization examples
After we finish the installation process, a directory with a set of files gets created in our
installation location. For example, in our VM, a directory called c:\Program Files\
Cloudbase Solutions\Cloudbase-init\ was created, and it has the following set
of subdirectories:

• bin: The location where some of the binary files are installed, such as elevate,
bsdtar, mcopy, mdir, and so on.

• conf: The location of three main configuration files that we're going to work with,
which is discussed a bit later.

• LocalScripts: The default location for PowerShell and similar scripts that we
want to run post-boot.

• Log: The location where we'll store the cloudbase-init log files by default so
that we can debug any issues.

• Python: The location where local installation of Python is deployed so that we can
also use Python for scripting.

Let's focus on the conf directory, which contains our configuration files:

• cloudbase-init.conf

• cloudbase-init-unattend.conf

• unattend.xml

The way that cloudbase-init works is rather simple – it uses the unattend.
xml file during the Windows sysprep phase to execute cloudbase-init with the
cloudbase-init-unattend.conf configuration file. The default cloudbase-
init-unattend.conf configuration file is easily readable, and we can use the example
provided by the cloudbase-init project with the default configuration file explained
step by step:

[DEFAULT]

Name of the user that will get created, group for that user

username=Admin

groups=Administrators

firstlogonbehaviour=no

inject_user_password=true # Use password from the metadata
(not random).

354 Automated Windows Guest Deployment and Customization

The next part of the config file is about devices – specifically, which devices to inspect
for a possible configuration drive (metadata):

config_drive_raw_hhd=true

config_drive_cdrom=true

Path to tar implementation from Ubuntu.

bsdtar_path=C:\Program Files\Cloudbase Solutions\Cloudbase-
Init\bin\bsdtar.exe

mtools_path= C:\Program Files\Cloudbase Solutions\Cloudbase-
Init\bin\

We need to configure some settings for logging purposes as well:

Logging level

verbose=true

debug=true

Where to store logs

logdir=C:\Program Files (x86)\Cloudbase Solutions\Cloudbase-
Init\log\

logfile=cloudbase-init-unattend.log

default_log_levels=comtypes=INFO,suds=INFO,iso8601=WARN

logging_serial_port_settings=

The next part of the configuration file is about networking, so we'll use DHCP to get all
the networking settings in our example:

Use DHCP to get all network and NTP settings

mtu_use_dhcp_config=true

ntp_use_dhcp_config=true

We need to configure the location where the scripts are residing, the same scripts that we
can use as a part of the cloudbase-init process:

Location of scripts to be started during the process

local_scripts_path=C:\Program Files\Cloudbase Solutions\
Cloudbase-Init\LocalScripts\

cloudbase-init customization examples 355

The last part of the configuration file is about the services and plugins to be loaded, along
with some global settings, such as whether to allow the cloudbase-init service
to reboot the system or not and how we're going to approach the cloudbase-init
shutdown process (false=graceful service shutdown):

Services for loading

metadata_services=cloudbaseinit.metadata.services.configdrive.
ConfigDriveService, cloudbaseinit.metadata.services.
httpservice.HttpService,

cloudbaseinit.metadata.services.ec2service.EC2Service,

cloudbaseinit.metadata.services.maasservice.MaaSHttpService

Plugins to load

plugins=cloudbaseinit.plugins.common.mtu.MTUPlugin,

 cloudbaseinit.plugins.common.sethostname.
SetHostNamePlugin

Miscellaneous.

allow_reboot=false # allow the service to reboot the system

stop_service_on_exit=false

Let's just get a couple of things out of the way from the get-go. Default configuration
files already contain some settings that were deprecated, as you're going to find out
soon enough. Specifically, settings such as verbose, logdir and logfile are
already deprecated in this release, as you can see from the following screenshot, where
cloudbase-init is complaining about those very options:

Figure 10.4 – cloudbase-init complaining about its own default configuration file options

356 Automated Windows Guest Deployment and Customization

If we want to start sysprepping with cloudbase-init by using the default
configuration files, we are actually going to get a pretty nicely configured VM – it's going
to be sysprepped, it's going to reset the administrator password and ask us to change it
with the first login, and remove the existing administrator user and its directories. So,
before we do this, we need to make sure that we save all of our administrator user settings
and data (documents, installers, downloads, and so on) someplace safe. Also, the default
configuration files will not reboot the VM by default, which might confuse you. We need
to do a manual restart of the VM so that the whole process can start.

The easiest way to work with both cloud-init and cloudbase-init is by writing
down a scenario of what needs to be done to the VM as it gets through the initialization
process. So, we'll do just that – pick a load of settings that we want to be configured and
create a customization file accordingly. Here are our settings:

• We want our VM to ask us to change the password post-sysprep and after the
cloudbase-init process.

• We want our VM to take all of its network settings (the IP address, netmask,
gateway, DNS servers, and NTP) from DHCP.

• We want to sysprep the VM so that it's unique to each scenario and policy.

So, let's create a cloudbase-init-unattend.conf config file that will do this for us.
The first part of the configuration file was taken from the default config file:

[DEFAULT]

username=Admin

groups=Administrators

inject_user_password=true

config_drive_raw_hhd=true

config_drive_cdrom=true

config_drive_vfat=true

bsdtar_path=C:\Program Files\Cloudbase Solutions\Cloudbase-
Init\bin\bsdtar.exe

mtools_path= C:\Program Files\Cloudbase Solutions\Cloudbase-
Init\bin\

debug=true

default_log_levels=comtypes=INFO,suds=INFO,iso8601=WARN

logging_serial_port_settings=

mtu_use_dhcp_config=true

ntp_use_dhcp_config=true

cloudbase-init customization examples 357

As we decided to use PowerShell for all of the scripting, we created a separate directory for
our PowerShell scripts:

local_scripts_path=C:\PS1

The rest of the file was also just copied from the default configuration file:

metadata_services=cloudbaseinit.metadata.services.base.
EmptyMetadataService

plugins=cloudbaseinit.plugins.common.mtu.MTUPlugin,

 cloudbaseinit.plugins.common.sethostname.
SetHostNamePlugin, cloudbaseinit.plugins.common.localscripts.
LocalScriptsPlugin,cloudbaseinit.plugins.common.userdata.
UserDataPlugin

allow_reboot=false

stop_service_on_exit=false

As for the cloudbase-init.conf file, the only change that we made was selecting the
correct local script path (reasons to be mentioned shortly), as we will use this path in our
next example:

[DEFAULT]

username=Admin

groups=Administrators

inject_user_password=true

config_drive_raw_hhd=true

config_drive_cdrom=true

config_drive_vfat=true

Also, part of our default config file contained paths for tar, mtools, and debugging:

bsdtar_path=C:\Program Files\Cloudbase Solutions\Cloudbase-
Init\bin\bsdtar.exe

mtools_path= C:\Program Files\Cloudbase Solutions\Cloudbase-
Init\bin\

debug=true

358 Automated Windows Guest Deployment and Customization

This part of the config file was also taken from the default config file, and we only changed
local_scripts_path so that it's set to the directory that we're using to populate with
PowerShell scripts:

first_logon_behaviour=no

default_log_levels=comtypes=INFO,suds=INFO,iso8601=WARN

logging_serial_port_settings=

mtu_use_dhcp_config=true

ntp_use_dhcp_config=true

local_scripts_path=C:\PS1

We can then go back to the cloudbase-init installation screen, check the sysprep
option, and click Finish. After starting the sysprep process and going through with it,
this is the end result:

Figure 10.5 – When we press Sign in, we are going to be asked to change the administrator's password

cloudbase-init customization examples 359

Now, let's take this a step further and complicate things a bit. Let's say that you want to
do the same process, but with additional PowerShell code that should do some additional
configuration. Consider the following example:

• It should create another two local users called packt1 and packt2, with a
predefined password set to Pa$$w0rd.

• It should create a new local group called students, and add packt1 and packt2
to this group as members.

• It should set the hostname to Server1.

The PowerShell code that enables us to do this should have the following content:

Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force

$password = "Pa$$w0rd" | ConvertTo-SecureString -AsPlainText
-Force

New-LocalUser -name "packt1" -Password $password

New-LocalUser -name "packt2" -Password $password

New-LocalGroup -name "Students"

Add-LocalGroupMember -group "Students" -Member
"packt1","packt2"

Rename-Computer -NewName "Server1" -Restart

Taking a look at the script itself, this is what it does:

• Sets the PowerShell execution policy to unrestricted so that our host doesn't stop
our script execution, which it would do by default.

• Creates a password variable from a plaintext string (Pa$$w0rd), which gets
converted to a secure string that we can use with the New-LocalUser PowerShell
cmdlet to create a local user.

• New-LocalUser is a PowerShell cmdlet that creates a local user. Mandatory
parameters include a username and password, which is why we created a
secure string.

• New-LocalGroup is a PowerShell cmdlet that creates a local group.

• Add-LocalGroupMember is a PowerShell cmdlet that allows us to create a new
local group and add members to it.

• Rename-Computer is a PowerShell cmdlet that changes the hostname of
a Windows computer.

360 Automated Windows Guest Deployment and Customization

We also need to call this code from cloudbase-init somehow, so we need to add
this code as script. Most commonly, we'll use a directory called LocalScripts in the
cloudbase-init installation folder for that. Let's call this script userdata.ps1,
save the content mentioned previously to it in the folder, as defined in the .conf file
(c:\PS1), and add a cloudbase-init parameter at the top of the file:

ps1

$password = "Pa$$w0rd" | ConvertTo-SecureString -AsPlainText
-Force

New-LocalUser -name "packt1" -Password $password

New-LocalUser -name "packt2" -Password $password

New-LocalGroup -name "Students"

Add-LocalGroupMember -group "Students" -Member
"packt1","packt2"

Rename-Computer -NewName "Server1" –Restart

After starting the cloudbase-init procedure again, which can be achieved by starting
the cloudbase-init installation wizard and going through it as we did in the previous
example, here's the end result in terms of users:

Figure 10.6 – The packt1 and packt2 users were created, and added to the group created
by our PowerShell script

We can clearly see that the packt1 and packt2 users were created, along with a group
called Students. We can then see that the Students group has two members –
packt1 and packt2. Also, in terms of setting the server name, we have the following:

Troubleshooting common cloudbase-init customization issues 361

Figure 10.7 – Slika 1. Changing the server name via PowerShell script also works

Using cloudbase-init really isn't simple, and requires a bit of investment in terms of
time and tinkering. But afterward, it will make our job much easier – not being forced to
do pedestrian tasks such as these over and over again should be a reward enough, which is
why we need to talk a little bit about troubleshooting. We're sure that you'll run into these
issues as you ramp up your cloudbase-init usage.

Troubleshooting common cloudbase-init
customization issues
In all honesty, you can freely say that the cloudbase-init documentation is not all
that good. Finding examples of how to execute PowerShell or Python code is difficult at
best, while the official page doesn't really offer any help in that respect. So, let's discuss
some of the most common errors that happen while using cloudbase-init.

362 Automated Windows Guest Deployment and Customization

Although this seems counter-intuitive, we had much more success getting cloudbase-
init to work with the latest development version instead of the latest stable one. We're
not exactly sure what the problem is, but the latest development version (at the time of
writing, this is version 0.9.12.dev125) worked for us right out of the gate. With version
0.9.11., we had massive issues with getting the PowerShell script to even start.

Apart from these issues, there are other issues that you will surely encounter as you get
to know cloudbase-init. The first one is the reboot loop. This problem is really
common, and it almost always happens because of two reasons:

• A mistake in the configuration file – a wrongly typed name of a module or an
option, or something like that

• A mistake in some external file (location or syntax) that's being called as an external
script to be executed in the cloudbase-init process

Making a mistake in configuration files is something that happens often, which throws
cloudbase-init into a weird state that ends up like this:

Figure 10.8 – Error in configuration

Troubleshooting common cloudbase-init customization issues 363

We've seen this situation multiple times. The real problem is the fact that sometimes
it takes hours and hours of waiting, sometimes cycling through numerous reboots,
but it's not just a regular reboot loop. It really seems that cloudbase-init is doing
something – the CMD is started, you get no errors in it or on the screen, but it keeps
doing something and then finishes like this.

Other issues that you might encounter are even more picky – for example, when
cloudbase-init fails to reset the password during the sysprep/cloudbase-init
process. This can happen if you manually change the account password that's being used
by the cloudbase-init service (hence, why using LocalSystem is a better idea).
That will lead to the failure of the whole cloudbase-init procedure, a part of which
can be a failure to reset the password.

There's an even more obscure reason why this might happen – sometimes we manually
manage system services by using the services.msc console and we deliberately disable
services that we don't immediately recognize. If you set the cloudbase-init service to
be disabled, it will fail in its process, as well. These services need to have automatic startup
priority and shouldn't be manually reconfigured to be disabled.

A failure to reset the password can also happen because of some security policies – for
example, if the password isn't complex enough. That's why we used a bit more of a
complex password in our PowerShell script, as most of us system engineers learned that
lesson a long time ago.

Also, sometimes companies have different security policies in place, which can lead to
a situation in which some management application that takes care of – for example,
software inventory – stops the cloudbase-init service or completely uninstalls it.

The most frustrating error that we can encounter is an error where the cloudbase-
init process doesn't start scripts from its designated folder. After spending hours
perfecting your Python, bash, cmd, or PowerShell script that needs to be added to the
customization process, it's always maddening to see this happen. In order for us to be able
to use these scripts, we need to use a specific plugin that is able to call the external script
and execute it. That's why we usually use UserDataPlugin – both for executing and
debugging reasons – as it can execute all of these script types and give us an error value,
which we can then use for debugging purposes.

One last thing – make sure that you don't insert PowerShell code directly into the
cloudbase-init configuration files in the conf folder. You'll only get a reboot loop
as a reward, so be careful about that.

364 Automated Windows Guest Deployment and Customization

Summary
In this chapter, we worked with Windows VM customization, a topic that's equally as
important as Linux VM customization. Maybe even more so, keeping in mind the market
share numbers and the fact that a lot of people are using Windows in cloud environments,
as well.

Now that we have covered all the bases in terms of working with VMs, templating, and
customization, it's time to introduce a different approach to additional customization
that's complementary to cloud-init and cloudbase-init. So, the next chapter
is about that approach, which is based around Ansible.

Questions
1. Which drivers do we need to install onto Windows guest operating systems so that

we can make a Windows template on the KVM hypervisor?

2. Which agent do we need to install onto Windows guest operating systems to have
better visibility into the VM's performance data?

3. What is sysprep?

4. What is cloudbase-init used for?

5. What are the regular use cases for cloudbase-init?

Further reading
Please refer to the following links for more information:

• Microsoft LocalSystem account documentation: https://docs.
microsoft.com/en-us/windows/win32/ad/the-localsystem-
account

• cloudbase-init documentation: https://cloudbase-init.
readthedocs.io/en/latest/intro.html

• The cloudbase-init plugin documentation: https://cloudbase-init.
readthedocs.io/en/latest/plugins.html

• The cloudbase-init services documentation: https://cloudbase-init.
readthedocs.io/en/latest/services.html

https://docs.microsoft.com/en-us/windows/win32/ad/the-localsystem-account
https://docs.microsoft.com/en-us/windows/win32/ad/the-localsystem-account
https://docs.microsoft.com/en-us/windows/win32/ad/the-localsystem-account
https://cloudbase-init.readthedocs.io/en/latest/intro.html
https://cloudbase-init.readthedocs.io/en/latest/intro.html
https://cloudbase-init.readthedocs.io/en/latest/plugins.html
https://cloudbase-init.readthedocs.io/en/latest/plugins.html
https://cloudbase-init.readthedocs.io/en/latest/services.html
https://cloudbase-init.readthedocs.io/en/latest/services.html

11
Ansible and

Scripting for
Orchestration and

Automation
Ansible has become the de facto standard in today's open source community because it
offers so much while asking so little of you and your infrastructure. Using Ansible with
Kernel-based Virtual Machine (KVM) also makes a lot of sense, especially when you
think about larger environments. It doesn't really matter if it's just a simple provisioning
of KVM hosts that you want to do (install libvirt and related software), or if you want to
uniformly configure KVM networking on hosts – Ansible can be invaluable for both. For
example, in this chapter, we will use Ansible to deploy a virtual machine and multi-tier
application that's hosted inside KVM virtual machines, which is a very common use case
in larger environments. Then, we'll move to more pedantic subjects of combining Ansible
and cloud-init since they differ in terms of timeline when they're applied and a way in
which things get done. Cloud-init is an ideal automatic way for initial virtual machine
configuration (hostname, network, and SSH keys). Then, we usually move to Ansible so
that we can perform additional orchestration post-initial configuration – add software
packages, make bigger changes to the system, and so on. Let's see how we can use Ansible
and cloud-init with KVM.

366 Ansible and Scripting for Orchestration and Automation

In this chapter, we will cover the following topics:

• Understanding Ansible

• Provisioning a virtual machine using the kvm_libvirt module

• Using Ansible and cloud-init for automation and orchestration

• Orchestrating multi-tier application deployment on KVM VMs

• Learning by example, including various examples on how to use Ansible with KVM

Let's get started!

Understanding Ansible
One of the primary roles of a competent administrator is to try and automate themselves
out of everything they possibly can. There is a saying that you must do everything
manually at least once. If you must do it again, you will probably be annoyed by it, and the
third time you must do it, you will automate the process. When we talk about automation,
it can mean a lot of different things.

Let's try to explain this with an example as this is the most convenient way of describing
the problem and solution. Let's say that you're working for a company that needs to
deploy 50 web servers to host a web application, with standard configuration. Standard
configuration includes the software packages that you need to install, the services and
network settings that need to be configured, the firewall rules that need to be configured,
and the files that need to be copied from a network share to a local disk inside a virtual
machine so that we can serve these files via a web server. How are you going to make
that happen?

There are three basic approaches that come to mind:

• Do everything manually. This will cost a lot of time and there will be ample
opportunity to do something wrong as we're humans, after all, and we make
mistakes (pun intended).

• Try to automate the process by deploying 50 virtual machines and then throwing
the whole configuration aspect into a script, which can be a part of the automated
installation procedure (for example, kickstart).

• Try to automate the process by deploying a single virtual machine template that
will contain all the moving parts already installed. This means we just need to
deploy these 50 virtual machines from a virtual machine template and do a bit
of customization to make sure that our virtual machines are ready to be used.

Understanding Ansible 367

There are different kinds of automation available. Pure scripting is one of them, and
it involves creating a script out of everything that needs to run more than once. An
administrator that has been doing a job for years usually has a batch of useful scripts.
Good administrators also know at least one programming language, even when they hate
to admit it, since being an administrator means having to fix things after others break
them, and it sometimes involves quite a bit of programming.

So, if you're considering doing automation via a script, we absolutely agree with you that
it's doable. But the question remains regarding how much time you'll spend covering
every single aspect of that script to get everything right so that the script always works
properly. Furthermore, if it doesn't, you're going to have to do a lot of manual labor to
make it right, without any real way of amending an additional configuration on top of
the previous, unsuccessful one.

This is where procedure-based tools such as Ansible come in handy. Ansible produces
modules that get pushed to endpoints (in our example, virtual machines) that bring
our object to a desired state. If you're coming from the Microsoft PowerShell world, yes,
Ansible and PowerShell Desired State Configuration (DSC) are essentially trying to do
the same thing. They just go about it in a different way. So, let's discuss these different
automatization processes to see where Ansible fits into that world.

Automation approaches
In general, all of this applies to administering systems and their parts, installing
applications, and generally taking care of things inside the installed system. This can be
considered an old approach to administration since it generally deals with services, not
servers. At the same time, this kind of automation is decidedly focused on a single server
or a small number of servers since it doesn't scale well. If we need to work on multiple
servers, using regular scripts creates new problems. We need to take a lot of additional
variables into account (different SSH keys, hostnames, and IP addresses) since scripts
are more difficult to expand to work on multiple servers (which is easy in Ansible).

If one script isn't enough, then we have to move to multiple scripts, which creates a new
problem, one of which is script management. Think about it – what happens when we need
to change something in a script? How do we make sure that all the instances on all the
servers are using the same version, especially if the server IP addresses aren't sequential?
So, to conclude, while old and tested, this kind of automation has serious drawbacks.

368 Ansible and Scripting for Orchestration and Automation

There's another kind of automation that is gathering traction in the DevOps
community – Automation with a capital A. This is a way to automate systems operation
across different machines – even across different operating systems. There are a couple
of automation systems that enable this, and they can basically be divided into two groups:
systems that use agents and agentless systems.

Systems that use agents
Systems that use agents are more common since they have a few advantages over agentless
systems. The first and foremost advantage is their ability to track not only changes that
need to be done, but also changes that the user makes to the system. This change tracking
means that we can track what is happening across systems and take appropriate actions.

Almost all of them work in the same way. A small application – called an agent – is
installed on the system that we need to monitor. After the application has been installed,
it connects, or permits connections, from the central server, which handles everything
regarding automation. Since you are reading this, you are probably familiar with systems
like this. There are quite a few of them around, and chances are you've already run into
one of them. To understand this principle, take a look at the following diagram:

Figure 11.1 – The management platform needs an agent to connect to objects
that need orchestration and automation

In these systems, agents have a dual purpose. They are here to run whatever needs to run
locally, and to constantly monitor the system for changes. This change-tracking ability can
be accomplished in different ways, but the result is similar – the central system will know
what has changed and in what way. Change-tracking is an important thing in deployment
since it enables compliance checking in real-time and prevents a lot of problems that arise
from unauthorized changes.

Understanding Ansible 369

Agentless systems
Agentless systems behave differently. Nothing is installed on the system that has to be
managed; instead, the central server (or servers) does everything using some kind of
command and control channel. On Windows, this may be PowerShell, WinRM, or
something similar, while on Linux, this usually SSH or some other remote execution
framework. The central server creates a task that then gets executed through the remote
channel, usually in the form of a script that is copied and then started on the target
system. This is what this principle would look like:

Figure 11.2 – The management platform doesn't need an agent to connect to objects that need
orchestration and automation

Regardless of their type, these systems are usually called either automation or
configuration management systems, and although these are two de facto standards yet
completely different things, in reality, they are used indiscriminately. At the time of
writing, two of the most popular are Puppet and Ansible, although there are others
(Chef, SaltStack, and so on).

In this chapter, we will cover Ansible since it is easy to learn, agentless, and has a big pool
of users on the internet.

Introduction to Ansible
Ansible is an IT automation engine – some call it an automation framework – that enables
administrators to automate provisioning, configuration management, and many everyday
tasks a system administrator may need to accomplish.

The easiest (and way too simplified) way of thinking about Ansible is that it is
a complicated set of scripts that are intended to accomplish administration tasks on
a large scale, both in terms of complexity and the sheer number of systems it can control.
Ansible runs on a simple server that has all the parts of the Ansible system installed. It
requires nothing to be installed on the machines it controls. It is safe to say that Ansible
is completely agentless and that in order to accomplish its goal, it uses different ways to
connect to remote systems and push small scripts to them.

370 Ansible and Scripting for Orchestration and Automation

This also means that Ansible has no way of detecting changes on the systems it controls;
it is completely up to the configuration script we create to control what happens if
something is not as we expect it to be.

There are a couple of things that we need to define before doing everything else – things
that we can think of as building blocks or modules. Ansible likes to call itself a radically
simple IT engine, and it only has a couple of these building blocks that enable it to work.

First, it has inventories – lists of hosts that define what hosts a certain task will be
performed on. Hosts are defined in a simple text file and can be as simple as a straight list
that contains one host per line, or as complicated as a dynamic inventory that is created as
Ansible is performing a task. We will cover these in more detail as we show how they are
used. The thing to remember is that hosts are defined in text files as there are no databases
involved (although there can be) and that hosts can be grouped, a feature that you will
use extensively.

Secondly, there's a concept called play, which we will define as a set of different tasks run
by Ansible on target hosts. We usually use a playbook to start a play, which is another type
of object in the Ansible hierarchy.

In terms of playbooks, think of them as a policy or a set of tasks/plays that are required
to do something or achieve a certain state on a particular system. Playbooks are also text
files and are specifically designed to be readable by humans and are created by humans.
Playbooks are used to define a configuration or, to be more precise, declare it. They can
contain steps that start different tasks in an ordered manner. These steps are called plays,
hence the name playbook. The Ansible documentation is helpful in explaining this as
thinking about plays in sports where list of tasks that may be performed are provided and
need to be documented, but at the same time may not be called. The important thing to
understand here is that our playbooks can have decision-making logic inside them.

The fourth big part of the Ansible puzzle are its modules. Think of modules as small
programs that are executed on the machines you are trying to control in order to
accomplish something. There are literally hundreds of modules included with the
Ansible package, and they can be used individually or inside your playbooks.

Modules allow us to accomplish tasks, and some of them are strictly declarative. Others
return data, either as the results of the tasks the modules did, or explicit data that the
module got from a running system through a process called fact gathering. This process is
based on a module called gather_facts. Gathering correct facts about the system is one
of the most important things we can do once we've started to develop our own playbooks.

Understanding Ansible 371

The following architecture shows all of these parts working together:

Figure 11.3 – Ansible architecture – Python API and SSH connections

The general consensus among the people working in IT is that management via Ansible
is easier to do than via other tools as it doesn't require you to waste days on setup or
on playbook development. Make no mistake, however: you will have to learn your way
around YAML syntax to use Ansible extensively. That being said, if you're interested
in a more GUI-based approach, you can always consider buying Red Hat Ansible Tower.

Ansible Tower is a GUI-based utility that you can use to manage your Ansible-based
environments. This started as a project called AWX, which is still very much alive today.
But there are some key differences in the way in which AWX gets released versus how
Ansible Tower gets released. The main one is the fact that Ansible Tower uses specific
release versions while AWX takes a more what OpenStack used to be approach – a project
that's moving forward rather quickly and has new releases very often.

As Red Hat clearly states on https://www.ansible.com/products/
awx-project/faq, that:

"Ansible Tower is produced by taking selected releases of AWX, hardening them for long-term
supportability, and making them available to customers as Ansible Tower offerings."

https://www.ansible.com/products/awx-project/faq
https://www.ansible.com/products/awx-project/faq

372 Ansible and Scripting for Orchestration and Automation

Basically, AWX is a community-supported project, while Red Hat directly supports
Ansible Tower. Here's a screenshot from Ansible AWX so that you can see what the
GUI looks like:

Figure 11.4 – Ansible AWX GUI for Ansible

There are other GUIs available for Ansible, such as Rundeck, Semaphore, and more.
But somehow, AWX seems like the most logical choice for users who don't way to pay
additional money for Ansible Tower. Let's spend a bit of time working on AWX before
moving on to regular Ansible deployment and usage.

Deploying and using AWX
AWX was announced as an open source project that offers developers access to the
Ansible Tower, without need for a license. As with almost all other Red Hat projects, this
one also aims to bridge the gap between a paid product that is production hardened and
ready for corporate use, and a community-driven project that has almost all the required
functionality, but on a smaller scale and without all the bells and whistles available to
corporate customers. But this does not mean that AWX is in any way a small project.
It builds up the functionality of Ansible and enables a simple GUI that helps you run
everything inside your Ansible deployments.

Understanding Ansible 373

We don't nearly have enough space here to demonstrate how it looks and what it can be
used for, so we are just going to go through the basics of installing it and deploying the
simplest scenario.

The single-most important address we need to know about when we are talking about
AWX is https://github.com/ansible/awx. This is the place where the project
resides. The most up-to-date information is here, in readme.md, a file that is shown on
the GitHub page. If you are unfamiliar with cloning from GitHub, do not worry – we are
basically just copying from a special source that will enable you to copy only the things that
have changed since you last got your version of the files. This means that in order to update
to a new version, you only need to clone once more using the same exact command.

On the GitHub page, there is a direct link to the install instructions we are going to
follow. Remember, this deployment is from scratch, so we will need to build up our
demo machine once again and install everything that is missing.

The first thing we need to do is get the necessary AWX files. Let's clone the GitHub
repository to our local disk:

Figure 11.5 – Git cloning the AWX files

Note that we are using 13.0.0 as the version number as this is the current version of AWX
at the time of writing.

Then, we need to sort out some dependencies. AWX obviously needs Ansible, Python,
and Git, but other than that, we need to be able to support Docker, and we need GNU
Make to be able to prepare some files later. We also need an environment to run our
VMs. In this tutorial, we opted for Docker, so we will be using Docker Compose.

https://github.com/ansible/awx

374 Ansible and Scripting for Orchestration and Automation

Also, this is a good place to mention that we need at least 4 GB of RAM and 20 GB of
space on our machine in order to run AWX. This differs to the low footprint that we are
used to using with Ansible, but this makes sense since AWX is much more than just
a bunch of scripts. Let's start by installing the prerequisites.

Docker is the first one we will install. We are using CentOS 8 for this, so Docker is no
longer part of the default set of packages. Therefore, we need to add the repository and
then install the Docker engine. We are going to use the -ce package, which stands for
Community Edition. We will also use the --nobest option to install Docker – without
this option, CentOS will report that we are missing some dependencies:

Figure 11.6 – Deploying docker-ce package on CentOS 8

After that, we need to run the following command:

dnf install docker-ce -y --nobest

The overall result should look something like this. Note that the versions of every package
on your particular installations will probably be different. This is normal as packages
change all the time:

Figure 11.7 – Starting and enabling the Docker service

Then, we will install Ansible itself using the following command:

dnf install ansible

If you are running on a completely clean CentOS 8 installation, you might have to install
epel-release before Ansible is available.

Understanding Ansible 375

Next on our list is Python. Just using the dnf command is not going to get Python
installed as we're going to have to supply the Python version we want. For this, we would
do something like this:

Figure 11.8 – Installing Python; in this case, version 3.8

After that, we will use pip to install the Docker component for Python. Simply type pip3
install docker and everything you need will be installed.

We also need to install the make package:

Figure 11.9 – Deploying GNU Make

Now, it's time for the Docker Compose part. We need to run the pip3 install
docker-compose command to install the Python part and the following command
to install docker-compose:

curl -L https://github.com/docker/compose/releases/
download/1.25.0/docker-compose-`uname -s`-`uname -m` -o /usr/
local/bin/docker-compose

This command will get the necessary install file from GitHub and use the necessary
input parameters (by executing uname commands) to start the installation process for
docker-compose.

376 Ansible and Scripting for Orchestration and Automation

We know this is a lot of dependencies, but AWX is a pretty complex system under the
hood. On the surface, however, things are not so complicated. Before we do the final
install part, we need to verify that our firewall has stopped and that it is disabled. We
are creating a demo environment, and firewalld will block communication between
containers. We can fix that later, once we have the system running.

Once we have everything running, installing AWX is simple. Just go to the
awx/installer directory and run the following:

ansible-playbook -i inventory -e docker_registry_
password=password install.yml

The installation should take a couple of minutes. The result should be a long listing that
ends with the following:

PLAY RECAP **

localhost : ok=16 changed=8 unreachable=0 failed=0
skipped=86 rescued=0 ignored=0

This means that the local AWX environment has been deployed successfully.

Now, the fun part starts. AWX is comprised of four small Docker images. For it to work,
all of them need to be configured and running. You can check them out by using docker
ps and docker logs -t awx_task.

The first command lists all the images that got deployed, as well as their status:

Figure 11.10 – Checking the pulled and started docker images

Understanding Ansible 377

The second command shows us all the logs that the awx_task machine is creating.
These are the main logs for the whole system. After a while, the initial configuration
will complete:

Figure 11.11 – Checking the awx_task logs

There will be a lot of logging going on, and you will have to interrupt this command by
using Ctrl + C.

After this whole process, we can point our web browser to http://localhost. We
should be greeted by a screen that looks like this:

Figure 11.12 – AWX default login screen

378 Ansible and Scripting for Orchestration and Automation

The default username is admin, while the password is password. After logging in
successfully, we should be faced with the following UI:

Figure 11.13 – Initial AWX dashboard after logging in

There is a lot to learn here, so we are just going to go through the basics. Basically, what
AWX represents is a smart GUI for Ansible. We can see this quickly if we open Templates
(on the left-hand side of the window) and take a look at the Demo template:

Understanding Ansible 379

Figure 11.14 – Using a demo template in AWX

What we can see here will become much more familiar to us in the next part of this
chapter, when we deploy Ansible. All these attributes are different parts of an Ansible
playbook, including the playbook itself, the inventory, the credentials used, and a couple
of other things that make using Ansible easier. If we scroll down a bit, there should be
three buttons there. Press the LAUNCH button. This will play the template and turn it
into a job:

Figure 11.15 – By clicking on the Launch button, we can start our template job

380 Ansible and Scripting for Orchestration and Automation

The idea is that we can create templates and run them at will. Once you've run them, the
results of the runs will end up under Jobs (find it as the second item on the left-hand side
of the window):

Figure 11.16 – Template job details

The details of the job are basically a summary of what happened, when, and which Ansible
elements were used. We can also see the actual result of the playbook we just ran:

Understanding Ansible 381

Figure 11.17 – Checking the demo job template's text output

What AWX really does is automate the automation. It enables you to be much more
efficient while using Ansible simply because it offers a much more intuitive interface to
the different files Ansible uses. It also gives you the ability to track what has been done
and when, as well as what the results were. All of this is possible using the Ansible CLI,
but AWX saves us a lot of effort while we're keeping control of the whole process.

Of course, because the goal of this chapter is to use Ansible, this means that we need to
deploy all of the necessary software packages so that we can use it. Therefore, let's move
on to the next phase in our Ansible process and deploy Ansible.

382 Ansible and Scripting for Orchestration and Automation

Deploying Ansible
Out of all the similar applications designed for orchestration and systems management,
Ansible is probably the simplest one to install. Since it requires no agents on the systems
it manages, installation is limited to only one machine – the one that will run all the
scripts and playbooks. By default, Ansible uses SSH to connect to machines, so the only
prerequisite for its use is that our remote systems have an SSH server up and running.

Other than that, there are no databases (Ansible uses text files), no daemons (Ansible
runs on demand), and no management of Ansible itself to speak of. Since nothing is
running in the background, Ansible is easily upgraded – the only thing that can change
is the way playbooks are structured, and that can easily be fixed. Ansible is based on the
Python programming language, but its structure is simpler than that of a standard Python
program. Configuration files and playbooks are either simple text files or YAML formatted
text files, with YAML being a file format used to define data structures. Learning YAML is
outside the scope of this chapter, so we will just presume that you understand simple data
structures. The YAML files we'll be using as examples are simple enough to warrant almost
no explanation, but if one is needed, it will be provided.

The installation can be as simple as running the following:

yum install ansible

You can run this command as the root user or use the following command:

apt install ansible

The choice depends on your distribution (Red Hat/CentOS or Ubuntu/Debian). More
information can be found on the Ansible website at https://docs.ansible.com/.

RHEL8 users will have to enable the repo containing Ansible RPMs first. At the time
of writing, this can be accomplished by running the following:

sudo subscription-manager repos --enable ansible-2.8-for-rhel-
8-x86_64-rpms

After running the preceding command, use the following code:

dnf install ansible

This is all it takes to install Ansible.

One thing that can surprise you is the size of the installation: it really is that small
(around 20 MB) and will install Python dependencies as needed.

https://docs.ansible.com/

Provisioning a virtual machine using the kvm_libvirt module 383

The machine that Ansible is installed in is also called the control node. It must be installed
on a Linux host as Windows is not supported in this role. Ansible control nodes can be
run inside virtual machines.

Machines that we control are called managed nodes, and by default, they are Linux
boxes controlled through the SSH protocol. There are modules and plugins that enable
extending this to Windows and macOS operating systems, as well as other communication
channels. When you start reading the Ansible documentation, you will notice that most
of the modules that support more than one architecture have clear instructions regarding
how to accomplish the same tasks on different operating systems.

We can configure Ansible's settings using /etc/ansible/ansible. This file contains
parameters that define the defaults, and by itself contains a lot of lines that are commented
out but contain default values for all the things Ansible uses to work. Unless we change
something, these are the values that Ansible is going to use to run. Let's use Ansible in
a practical sense to see how all of this fits together. In our scenario, we are going to use
Ansible to provision a virtual machine by using its built-in module.

Provisioning a virtual machine using the
kvm_libvirt module
One thing that you may or may not include is a setting that defines how SSH is used to
connect to machines Ansible is going to configure. Before we do that, we need to spend
a bit of time talking about security and Ansible. Like almost all things related to Linux
(or *nix in general), Ansible is not an integrated system, instead relying on different
services that already exist. To connect to systems it manages and to execute commands,
Ansible relies on SSH (in Linux) or other systems such as WinRM or PowerShell
on Windows. We are going to focus on Linux here, but remember that quite a bit of
information about Ansible is completely system-independent.

SSH is a simple but extremely robust protocol that allows us to transfer data (Secure
FTP, SFTP, and so on) and execute commands (SSH) on remote hosts through a secure
channel. Ansible uses SSH directly by connecting and then executing commands and
transferring files. This, of course, means that in order for Ansible to work, it is crucial
that SSH works.

384 Ansible and Scripting for Orchestration and Automation

There are a couple of things that you need to remember when using SSH to connect:

• The first is a key fingerprint, as seen from the Ansible control node (server). When
establishing a connection for the first time, SSH requires the user to verify and
accept keys that the remote system presents. This is designed to prevent MITM
attacks and is a good tactic in everyday use. But if we are in the position of having
to configure freshly installed systems, all of them will require for us to accept their
keys. This is time-consuming and complicated to do once we start using playbooks,
so the first playbook you will start is probably going to disable key checks and
logging into machines. Of course, this should only be used in a controlled
environment since this lowers the security of the whole Ansible system.

• The second thing you need to know is that Ansible runs as a normal user. Having
said that, maybe we do not want to connect to the remote systems as the current
user. Ansible solves that by having a variable that can be set on individual
computers or groups that indicates what username the system is going to use to
connect to this particular computer. After connecting, Ansible allows us to execute
commands on the remote system as a different user entirely. This is something that
is commonly used since it enables us to reconfigure the machine completely and
change users as if we were at the console.

• The third thing that we need to remember are the keys – SSH can log in by using
interactive authentication, meaning via password or by using pre-shared keys that
are exchanged once and then reused to establish the SSH session. There is also
ssh-agent, which can be used to authenticate sessions.

Although we can use fixed passwords inside inventory files (or special key vaults), this
is a bad idea. Luckily, Ansible enables us to script a lot of things, including copying keys
to remote systems. This means that we are going to have some playbooks that are going
to automate deployment of new systems, and these will enable us to take control of them
for further configuration.

To sum this up, the Ansible steps for deploying a system will probably start like this:

1. Install the core system and make sure that SSHD is running.

2. Define a user that has admin rights on the system.

3. From the control node, run a playlist that will establish the initial connection and
copy the local SSH key to a remote location.

4. Use the appropriate playbooks to reconfigure the system securely, and without the
need to store passwords locally.

Now, let's dig deeper.

Provisioning a virtual machine using the kvm_libvirt module 385

Every reasonable manager will tell you that in order to do anything, you need to define
the scope of the problem. In automation, this means defining systems that Ansible is
going to work on. This is done through an inventory file, located in /etc/Ansible,
called hosts.

Hosts can be grouped or individually named. In text format, that can look like this:

[servers]

srv1.local

srv2.local

srv3.local

[workstations]

wrk1.local

wrk2.local

wrk3.local

Computers can be part of multiple groups simultaneously, and groups can be nested.

The format we used here is straight text. Let's rewrite this in YAML:

All:

 Servers:

 Hosts:

 Srv1.local:

Srv2.local:

Srv3.local:

 Workstations:

 Hosts:

 Wrk1.local:

Wrk2.local:

Wrk3.local:

Production:

 Hosts:

 Srv1.local:

 Workstations:

386 Ansible and Scripting for Orchestration and Automation

Important Note
We created another group called Production that contains all the workstations
and one server.

Anything that is not part of the default or standard configuration can be included
individually in the host definition or in the group definition as variables. Every Ansible
command has some way of giving you flexibility in terms of partially or completely
overriding all the items in the configuration or inventory.

The inventory supports ranges in host definitions. Our previous example can be written
as follows:

[servers]

Srv[1:3].local

[workstations]

Wrk[1:3].local

This also works for characters, so if we need to define servers named srva, srvb, srvc,
and srvd, we can do that by stating the following:

srv[a:d]

IP ranges can also be used. So, for instance, 10.0.0.0/24 would be written down
as follows:

10.0.0.[1:254]

There are two predefined default groups that can also be used: all and ungrouped.
As their names suggest, if we reference all in a playbook, it will be run on every server
we have in our inventory. Ungrouped will reference only those systems that are not part
of any group.

Ungrouped references are especially useful when setting up new computers – if they
are not in any group, we can consider them new and set them up to be joined to
a specific group.

These groups are defined implicitly and there is no need to reconfigure them or even
mention them in the inventory file.

Provisioning a virtual machine using the kvm_libvirt module 387

We mentioned that the inventory file can contain variables. Variables are useful when we
need to have a property that is defined inside a group of computers, a user, password, or
a setting specific to that group. Let's say that we want to define a user that is going to be
using on the servers group:

1. First, we define a group:

[servers]

srv[1:3].local

2. Then, we define the variables that are going to be used for the whole group:

[servers:vars]

ansible_user=Ansibleuser

ansible_connection=ssh

This will use the user named Ansibleuser to connect using SSH when asked
to perform a playbook.

Important Note
Note that the password is not present and that this playbook will fail
if either the password is not separately mentioned or the keys are not
exchanged beforehand. For more on variables and their use, consult Ansible
documentation.

Now that we've created our first practical Ansible task, it's time to talk about how to make
Ansible do many things at once while using a more objective approach. It's important to
be able to create a single task or a couple of tasks that we can combine through a concept
called a playbook, which can include multiple tasks/plays.

Working with playbooks
Once we've decided how to connect to the machines we plan to administer, and once we
have created the inventory, we can start actually using Ansible to do something useful.
This is where playbooks start to make sense.

388 Ansible and Scripting for Orchestration and Automation

In our examples, we've configured four CentOS7 systems, gave them consecutive
addresses in the range of 10.0.0.1 to 10.0.0.4, and used them for everything.

Ansible is installed on the system with the IP address 10.0.0.1, but as we already said,
this is completely arbitrary. Ansible has a minimal footprint on the system that is used
as a control node and can be installed on any system as long as it has connectivity to the
rest of the network we are going to manage. We simply chose the first computer in our
small network. One more thing to note is that the control node can be controlled by itself
through Ansible. This is useful, but at the same time not a good thing to do. Depending
on your setup, you will want to test not only playbooks, but individual commands before
they are deployed to other machines – doing that on your control server is not a wise
thing to do.

Now that Ansible is installed, we can try and do something with it. There are two distinct
ways that Ansible can be run. One is by running a playbook, a file that contains tasks that
are to be performed. The other way is by using a single task, sometimes called ad hoc
execution. There are reasons to use Ansible either way – playbooks are our main tool, and
you will probably use them most of the time. But ad hoc execution also has its advantages,
especially if we are interested in doing something that we need done once, but across
multiple servers. A typical example is using a simple command to check the version of
an installed application or application state. If we need it to check something, we are not
going to write a playbook.

To see if everything works, we are going to start by simply using ping to check if the
machines are online.

Ansible likes to call itself radically simple automation, and the first thing we are going
to do proves that.

We are going to use a module named ping that tries to connect to a host, verifies that it
can run on local Python environment, and returns a message if everything is ok. Do not
confuse this module with the ping command in Linux; we are not pinging through a
network; we are only pinging from the control node to the server we are trying to control.
We will use a simple ansible command to ping all the defined hosts by issuing the
following command:

ansible all -m ping

Provisioning a virtual machine using the kvm_libvirt module 389

The following is the result of running the preceding command:

Figure 11.18 – Our first Ansible module – ping, checks for Python and reports its state

What we did here is run a single command called ansible all -m ping.

ansible is the simplest command available and runs a single task. The all parameter
means run it on all the hosts in the inventory, and -m is used to call a module that will
be run.

This particular module has no parameters or options, so we just need to run it in order to
get a result. The result itself is interesting; it is in YAML format and contains a few things
other than just the result of the command.

If we take a closer look at this, we will see that Ansible returned one result for each host
in the inventory. The first thing we can see is the final result of the command – SUCCESS
means that the task itself ran without a problem. After that, we can see data in form of an
array – ansible_facts contains information that the module returns, and it is used
extensively when writing playbooks. Data that is returned this way can vary. In the next
section, we will show a much bigger dataset, but in this particular case, the only thing
that is shown is the location of the Python interpreter. After that, we have the changed
variable, which is an interesting one.

390 Ansible and Scripting for Orchestration and Automation

When Ansible runs, it tries to detect whether it ran correctly and whether it has changed
the system state. In this particular task, the command that ran is just informative and does
not change anything on the system, so the system state was unchanged.

In other words, this means that whatever was run did not install or change anything on
the system. States will make more sense later when we need to check if something was
installed or not, such as a service.

The last variable we can see is the return of the ping command. It simply states pong
since this is the correct answer that the module gives if everything was set up correctly.

Let's do something similar, but this time with an argument, such as an ad hoc command
that we want to be executed on remote hosts. So, type in the following command:

ansible all -m shell -a "hostname"

The following is the output:

Figure 11.19 – Using Ansible to explicitly execute a specific command on Ansible targets

Here, we called another module called shell. It simply runs whatever is given as
a parameter as a shell command. What is returned is the local hostname. This is
functionally the same as what would happen if we connected to each host in our
inventory using SSH, executed the command, and then logged out.

For a simple demonstration of what Ansible can do, this is OK, but let's do something
more complex. We are going to use a module called yum that is specific to CentOS/Red
Hat to check if there is a web server installed on our hosts. The web server we are going
to check for is going to be lighttpd since we want something lightweight.

Provisioning a virtual machine using the kvm_libvirt module 391

When we talked about states, we touched on a concept that is both a little confusing at
first and extremely useful once we start using it. When calling a command like this, we are
declaring a desired state, so the system itself will change if the state is not the one we are
demanding. This means that, in this example, we are not actually testing if lighttpd is
installed – we are telling Ansible to check it and that if it's not installed to install it. Even
this is not completely true – the module takes two arguments: the name of the service and
the state it should be in. If the state on the system we are checking is the same as the state
we sent when invoking the module, we are going to get changed: false since nothing
changed. But if the state of the system is not the same, Ansible will make the current state
of the system the same as the state we requested.

To prove this, we are going to see if the service is not installed or absent in Ansible
terms. Remember that if the service was installed, this will uninstall it. Type in the
following command:

ansible all -m yum -a "name=lighttpd state=absent"

This is what you should get as the result of running the preceding command:

Figure 11.20 – Using Ansible to check the state of a service

392 Ansible and Scripting for Orchestration and Automation

Then, we can say that we want it present on the system. Ansible is going to install the
services as needed:

Figure 11.21 – Using the yum install command on all Ansible targets

Here, we can see that Ansible simply checked and installed the service since it wasn't
there. It also provided us with other useful information, such as what changes were done
on the system and the output of the command it performed. Information was provided
as an array of variables; this usually means that we will have to do some string
manipulation in order to make it look nicer.

Now, let's run the command again:

ansible all -m yum -a "name=lighttpd state=absent"

Provisioning a virtual machine using the kvm_libvirt module 393

This should be the result:

Figure 11.22 – Using Ansible to check the service state after service installation

As we can see, there were no changes here since the service is installed.

These were all just starting examples so that we could get to know Ansible a little bit. Now,
let's expand on this and create an Ansible playbook that's going to install KVM on our
predefined set of hosts.

Installing KVM
Now, let's create our first playbook and use it to install KVM on all of our hosts. For
our playbook, we used an excellent example from the GitHub repository, created by
Jared Bloomer, that we changed a bit since we already have our options and inventory
configured. The original files are available at https://github.com/jbloomer/
Ansible---Install-KVM-on-CentOS-7.git.

https://github.com/jbloomer/Ansible---Install-KVM-on-CentOS-7.git
https://github.com/jbloomer/Ansible---Install-KVM-on-CentOS-7.git

394 Ansible and Scripting for Orchestration and Automation

This playbook will show everything that we need to know about automating simple tasks.
We chose this particular example because it shows not only how automation works, but
also how to create separate tasks and reuse them in different playbooks. Using a public
repository has an added benefit that you will always get the latest version, but it may differ
significantly than the one presented here:

1. First, we created our main playbook – the one that will get called – and named it
installkvm.yaml:

Figure 11.23 – The main Ansible playbook, which checks for virtualization support and installs KVM
As we can see, this is simple declaration, so let's analyze it line by line. First, we have
the playbook name, a string that can contain whatever we want:

The hosts variable defines what part of the inventory this playbook is going to be
performed on – in our case, all the hosts. We can override this (and all the other
variables) at runtime, but it helps to limit the playbook to just the hosts we need to
control. In our particular case, this is actually all the hosts in our inventory, but in
production, we will probably have more than one group of hosts.

The next variable is the name of the user that is going to perform the task. What we
did here is not recommended in production since we are using a superuser account
to perform tasks. Ansible is completely capable of working with non-privileged
accounts and elevating rights when needed, but as in all demonstrations, we are
going to make mistakes so that you don't have to and all in order to make things
easier to understand.

Now comes the part that is actually performing our tasks. In Ansible, we declare
roles for the system. In our example, there are two of them. Roles are really just
tasks to be performed, and that will result in a system that will be in a certain state.
In our first role, we are going to check if the system supports virtualization, and
then in the second one, we will install KVM services on all the systems that do.

Provisioning a virtual machine using the kvm_libvirt module 395

2. When we downloaded the script from the GitHub, it created a few folders. In the
one named roles, there are two subfolders that each contain a file; one is called
checkVirtualization and the other is called installKVM.

You can probably already see where this is heading. First, let's see what
checkVirtualization contains:

Figure 11.24 – Checking for CPU virtualization via the lscpu command
This tasks simply calls a shell command and tries to grep for the lines containing
virtualization parameters for the CPU. If it finds none, it fails.

3. Now, let's see the other task:

Figure 11.25 – Ansible task for installing the necessary libvirt packages
The first part is a simple loop that will just install five different packages if they are not
present. We are using the package module here, which is a different approach than
the one we used in our first demonstration regarding how to install packages. The
module that we used earlier in this chapter is called yum and is specific to CentOS as a
distribution. The package module is a generic module that will translate to whatever
package manager a specific distribution is using. Once we've installed all the packages
we need, we need to make sure that libvirtd is enabled and started.

396 Ansible and Scripting for Orchestration and Automation

We are using a simple loop to go through all the packages that we are installing.
This is not necessary, but it is a better way to do things than copying and pasting
individual commands since it makes the list of packages that we need much
more readable.

Then, as the last part of the task, we verify if the KVM has loaded.

As we can see, the syntax for the playbook is a simple one. It is easily readable, even
by somebody who has only minor knowledge of scripting or programming. We
could even say that having a firm understanding of how the Linux command line
works is more important.

4. In order to run a playbook, we use the ansible-playbook command, followed
by the name of the playbook. In our case, we're going to use the ansible-
playbook main.yaml command. Here are the results:

Figure 11.26 – Interactive Ansible playbook monitoring

Provisioning a virtual machine using the kvm_libvirt module 397

5. Here, we can see that Ansible breaks down everything it did on every host, change
by change. The end result is a success:

Figure 11.27 – Ansible playbook report
Now, let's check if our freshly installed KVM cluster is working.

6. We are going to start virsh and list the active VMs on all the parts of the cluster:

Figure 11.28 – Using Ansible to check all the virtual machines on Ansible targets

Having finished this simple exercise, we have a running KVM on four machines and the
ability to control them from one place. But we still have no VMs running on the hosts.
Next, we are going to show you how to create a CentOS installation inside the KVM
environment, but we are going to use the most basic method to do so – virsh.

398 Ansible and Scripting for Orchestration and Automation

We are going to do two things: first, we are going to download a minimal ISO image
for CentOS from the internet. Then, we are going to call virsh. This book will show you
different ways to accomplish this task; downloading from the internet is one of
the slowest:

1. As always, Ansible has a module dedicated to downloading files. The parameters
it expects are the URL where the file is located and the location of the saved file:

Figure 11.29 – Downloading files in Ansible playbooks

2. After running the playbook, we need to check if the files have been downloaded:

Figure 11.30 – Status check – checking if the files have been downloaded to our targets

3. Since we are not automating this and instead creating a single task, we are going
to run it in a local shell. The command to run for this would be something like
the following:

ansible all -m shell -a "virt-install --name=COS7Core
--ram=2048 --vcpus=4 --cdrom=/var/lib/libvirt/boot/
CentOS-7-x86_64-Minimal-1810.iso --os-type=linux

Provisioning a virtual machine using the kvm_libvirt module 399

--os-variant=rhel7 --disk path=/var/lib/libvirt/images/
cos7vm.dsk,size=6"

4. Without a kickstart file or some other kind of preconfiguration, this VM makes no
sense since we will not be able to connect to it or even finish the installation. In the
next task, we will remedy that using cloud-init.

Now, we can check if everything worked:

Figure 11.31 – Using Ansible to check if all our VMs are running

Here, we can see that all the KVMs are running and that each of them has its own virtual
machine online and running.

Now, we are going to wipe our KVM cluster and start again, but this time with a different
configuration: we are going to deploy the cloud version of CentOS and reconfigure it
using cloud-init.

Using Ansible and cloud-init for automation and
orchestration
Cloud-init is one of the more popular ways of machine deployment in private and hybrid
cloud environments. This is because it enables machines to be quickly reconfigured in
a way that enables just enough functionality to get them connected to an orchestration
environment such as Ansible.

400 Ansible and Scripting for Orchestration and Automation

More details can be found at cloud-init.io, but in a nutshell, cloud-init is a tool that
enables the creation of special files that can be combined with VM templates in order to
rapidly deploy them. The main difference between cloud-init and unattended installation
scripts is that cloud-init is more or less distribution-agnostic and much easier to change
with scripting tools. This means less work during deployment, and less time from start
of deployment until machines are online and working. On CentOS, this can be
accomplished with kickstart files, but this not nearly as flexible as cloud-init.

Cloud-init works using two separate parts: one is the distribution file for the operating
system we are deploying. This is not the usual OS installation file, but a specially
configured machine template intended to be used as a cloud-init image.

The other part of the system is the configuration file, which is compiled–or to be more
precise, packed – from a special YAML text file that contains configuration for the
machine. This configuration is small and ideal for network transmission.

These two parts are intended to be used as a whole to create multiple instances of identical
virtual machines.

The way this works is simple:

1. First, we distribute a machine template that is completely identical for all the
machines that we are going to create. This means having one master copy and
creating all the instances out of it.

2. Then, we pair the template with a specially crafted file that is created using
cloud-init. Our template, regardless of the OS it uses, is capable of understanding
different directives that we can set in the cloud-init file and will be reconfigured.
This can be repeated as needed.

Let's simplify this even more: if we need to create 100 servers that will have four different
roles using the unattended installation files, we would have to boot 100 images and wait
for them to go through all the installation steps one by one. Then, we would need to
reconfigure them for the task we need. Using cloud-init, we are booting one image in
100 instances, but the system takes only a couple of seconds to boot since it is already
installed. Only critical information is needed to put it online, after which we can take
over and completely configure it using Ansible.

We are not going to dwell too much on cloud-init's configuration; everything we need is
in this example:

http://cloud-init.io

Provisioning a virtual machine using the kvm_libvirt module 401

Figure 11.32 – Using cloud-init for additional configuration

As always, we will explain what's going on step by step. One thing we can see from the
start is that it uses straight YAML notation, the same as Ansible. The first directive is
here to make sure that our machine is updated as it enables automatically updating the
packages on the cloud instance.

Then, we are configuring users. We are going to create one user named ansible who will
belong to group wheel.

Lock_passwd means that we are going to permit using the password to log in. If nothing
is configured, then the default is to permit logging in only using SSH keys and disabling
password login completely.

Then, we have the password in hash format. Depending on the distribution, this hash can
be created in different ways. Do not put a plaintext password here.

Then, we have a shell that this user will be able to use if something needs to be added to
the /etc/sudoers file. In this particular case, we are giving this user complete control
over the system.

The last thing is probably the most important. This is the public SSH key that we have on
our system. It's used to authorize the user when they're logging in. There can be multiple
keys here, and they are going to end up in the SSHD configuration to enable users to
perform a passwordless login.

There are plenty more variables and directives we can use here, so consult the
cloud-config documentation for more information.

After we have created this file, we need to convert it into an .iso file that is going to be
used for installation. The command to do this is cloud-localds. We are using our
YAML file as one parameter and the .iso file as another.

After running cloud-localds config.iso config.yaml, we are ready to begin
our deployment.

The next thing we need is the cloud image for CentOS. As we mentioned previously, this
is a special image that is designed to be used for this particular purpose.

402 Ansible and Scripting for Orchestration and Automation

We are going to get it from https://cloud.centos.org/centos/7/images.

There are quite a few files here denoting all the available versions of the CentOS image.
If you need a specific version, pay attention to the numbers denoting the month/year
of the image release. Also, note that images come in two flavors – compressed and
uncompressed.

Images are in qcow2 format and intended to be used in the cloud as a disk.

In our example, on the Ansible machine, we created a new directory called /
clouddeploy and saved two file into it: one that contains the OS cloud image and
config.iso, which we created using cloud-init:

Figure 11.33 – Checking the content of a directory

All that remains now is to create a playbook to deploy these. Let's go through the steps:

1. First, we are going to copy the cloud image and our configuration onto our KVM
hosts. After that, we are going to create a machine out of these and start it:

Figure 11.34 – The playbook that will download the required image, configure cloud-init,
and start the VM deployment process

https://cloud.centos.org/centos/7/images

Provisioning a virtual machine using the kvm_libvirt module 403

Since this is our first complicated playbook, we need to explain a few things. In every
play or task, there are some things that are important. A name is used to simplify
running the playbook; this is what is going to be displayed when the playbook
runs. This name should be explanatory enough to help, but not too long in order
to avoid clutter.

After the name, we have the business part of each task – the name of the module
being called. In our example, we are using three distinct ones: copy, command, and
virt. copy is used to copy files between hosts, command executes commands on
the remote machine, and virt contains commands and states needed to control
the virtual environment.

You will notice when reading this that copy looks strange; src denotes a local
directory, while dest denotes a remote one. This is by design. To simplify things,
copy works between the local machine (the control node running Ansible) and the
remote machine (the one being configured). Directories will get created if they do
not exist, and copy will apply the appropriate permissions.

After that, we are running a command that will work on local files and create
a virtual machine. One important thing here is that we are basically running the
image we copied; the template is on the control node. At the same time, this saves
disk space and deployment time – there is no need to copy the machine from local
to remote disk and then duplicate it on the remote machine once again; as soon as
the image is there, we can run it.

Back to the important part – the local installation. We are creating a machine with
1 GB of RAM and one CPU using the disk image we just copied. We're also
attaching our config.iso file as a virtual CD/DVD. We are then importing
this image and using no graphic terminal.

2. The last task is starting the VM on the remote KVM host. We will use the following
command to do so:

ansible-playbook installvms.yaml

404 Ansible and Scripting for Orchestration and Automation

If everything ran OK, we should see something like this:

Figure 11.35 – Checking our installation process
We can also check this using the command line:

ansible cloudhosts -m shell -a "virsh list –all"

The output of this command should look something like this:

Figure 11.36 – Checking our VMs

Provisioning a virtual machine using the kvm_libvirt module 405

Let's check two more things – networking and the machine state. Type in the
following command:

ansible cloudhosts -m shell -a "virsh net-dhcp-leases –-network
default"

We should get something like this:

Figure 11.37 – Checking our VM network connectivity and network configuration

This verifies that our machines are running correctly and that they are connected to their
local network on the local KVM instance. Elsewhere in this book, we will deal with KVM
networking in more detail, so it should be easy to reconfigure machines to use a common
network, either by bridging adapters on the KVMs or by creating a separate virtual
network that will span across hosts.

Another thing we wanted to show is the machine status for all the hosts. The point is that
we are not using the shell module this time; instead, we are relying on the virt module
to show us how to use it from the command line. There is only one subtle difference here.
When we are calling shell (or command) modules, we are calling parameters that are
going to get called. These modules basically just spawn another process on the remote
machine and run it with the parameters we provided.

In contrast, the virt module takes the variable declaration as its parameter since we
are running virt with command=info. When using Ansible, you will notice that,
sometimes, variables are just states. If we wanted to start a particular instance, we would
just add state=running, along with an appropriate name, and Ansible would make
sure that the VM is running. Let's type in the following command:

ansible cloudhosts -m virt -a "command=info"

406 Ansible and Scripting for Orchestration and Automation

The following is the expected output:

Figure 11.38 – Using the virt module with Ansible

There is only one thing that we haven't covered yet – how to install multi-tiered
applications. Pushing the definition to its smallest extreme, we are going to install
a LAMP server using a simple playbook.

Orchestrating multi-tier application
deployment on KVM VM
Now, let's learn how to install multi-tiered applications. Pushing the definition to its
smallest extreme, we are going to install a LAMP server using a simple Ansible playbook.

The tasks that need to be done are simple enough – we need to install Apache, MySQL,
and PHP. The L part of LAMP is already installed, so we are not going to go through
that again.

Orchestrating multi-tier application deployment on KVM VM 407

The difficult part is the package names: in our demonstration machine, we are using
CentOS7 as the operating system and its package names are a little different. Apache is
called httpd and mysql is replaced with mariaDB, another engine that is compatible
with MySQL. PHP is luckily the same as on other distributions. We also need another
package named python2-PyMySQL (the name is case sensitive) in order to get our
playbook to work.

The next thing we are going to do is test the installation by starting all the services and
creating the simplest .php script possible. After that, we are going to create a database
and a user that is going to use it. As a warning, in this chapter, we are concentrating
on Ansible basics, since Ansible is far too complex to be covered in one chapter of a
book. Also, we are presuming a lot of things, and our biggest assumption is that we are
creating demo systems that are not in any way intended for production. This playbook in
particular lacks one important step: creating a root password. Do not go into production
with your SQL password not set.

One more thing: our script presumes that there is a file named index.php in the
directory our playbook runs from, and that file will get copied to the remote system:

Figure 11.39 – Ansible LAMP playbook

408 Ansible and Scripting for Orchestration and Automation

As we can see, there is nothing complicated going on, just a simple sequence of steps.
Our .php file looks like this:

Figure 11.40 – Testing if PHP works

Things can't get any simpler than that. In a normal deployment scenario, we would have
something more complicated in the web server directory, such as a WordPress or Joomla
installation, or even a custom application. The only thing that needs to change is the
file that is copied (or a set of files) and the location of the database. Our file just prints
information about the local .php installation:

Figure 11.41 – Checking if PHP works on Apache using a web browser
and a previously configured PHP file

Learning by example – various examples of using Ansible with KVM 409

Ansible is much more complex than what we showed you here in this chapter, so we
strongly suggest you do some further reading and learning. What we did here was just
the simplest example of how we can install KVM on multiple hosts and control all of
them at once using the command line. What Ansible does best is save us time – imagine
having a couple of hundred hypervisors and having to deploy thousands of servers.
Using playbooks and a couple of preconfigured images, we can not only configure
KVM to run our machines, but reconfigure anything on the machines themselves. The
only real prerequisites are a running SSH server and an inventory that will enable us
to group machines.

Learning by example – various examples of
using Ansible with KVM
Now that we've covered simple and more complex Ansible tasks, let's think about how to
use Ansible to further our configuration skills and overall compliance based on some kind
of policy. The following are some things that we are going to leave as exercises for you:

• Task 1:

We configured and ran one machine per KVM host. Create a playbook that will
form a pair of hosts – one running a website and another running a database.
You can use any open source CMS for this.

• Task 2:

Use Ansible and the virt-net module to reconfigure the network so that the
entire cluster can communicate. KVM accepts .xml configuration for networking,
and virt-net can both read and write XML. Hint: If you get confused, use
a separate RHEL8 machine to create a virtual network in the GUI and then use
the virsh net-dumpxml syntax to output a virtual network configuration to
standard output, which you can then use as a template.

• Task 3:

Use ansible and virsh to auto-start a specific VM that you created/imported
on the host.

410 Ansible and Scripting for Orchestration and Automation

• Task 4:

Based on our LAMP deployment playbook, improve on it by doing the following:

a) Create a playbook that will run on a remote machine.

b) Create a playbook that will install different roles on different servers.

c) Create a playbook that will deploy a more complex application, such as WordPress.
If you managed to solve these five tasks, then congratulations – you're en route to
becoming an administrator who can use Automation, with a capital A.

Summary
In this chapter, we discussed Ansible – a simple tool for orchestration and automation.
It can be used both in open source and Microsoft-based environments as it supports both
natively. Open source systems can be accessed via SSH keys, while Microsoft operating
systems can be accessed by using WinRM and PowerShell. We learned a lot about simple
Ansible tasks and more complex ones since deploying a multi-tier application that's hosted
on multiple virtual machines isn't an easy task to do – especially if you're approaching the
problem manually. Even deploying a KVM hypervisor on multiple hosts can take quite a
bit of time, but we managed to solve that with one simple Ansible playbook. Mind you, we
only needed some 20 configuration lines to do that, and the upshot of that is that we can
easily add hundreds of more hosts as targets for this Ansible playbook.

The next chapter takes us to a world of cloud services – specifically OpenStack – where
our Ansible knowledge is going to be very useful for large-scale virtual machine
configuration as it's impossible to configure all of our cloud virtual machines by using
any kind of manual utilities. Apart from that, we'll extend our knowledge of Ansible by
integrating OpenStack and Ansible so that we can use both of these platforms to do what
they do really well – manage cloud environments and configure their consumables.

Questions
1. What is Ansible?

2. What does an Ansible playbook do?

3. Which communication protocol does Ansible use to connect to its targets?

4. What is AWX?

5. What is Ansible Tower?

Further reading 411

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• What is Ansible?: https://www.ansible.com/

• Ansible documentation: https://docs.ansible.com/

• Ansible overview: https://www.ansible.com/overview/
it-automation

• Ansible use cases: https://www.ansible.com/use-cases

• Ansible for continuous delivery: https://www.ansible.com/use-cases/
continuous-delivery

• Integrating Ansible with Jenkins: https://www.redhat.com/en/blog/
integrating-ansible-jenkins-cicd-process

https://www.ansible.com/
https://docs.ansible.com/
https://www.ansible.com/overview/it-automation
https://www.ansible.com/overview/it-automation
https://www.ansible.com/use-cases
https://www.ansible.com/use-cases/continuous-delivery
https://www.ansible.com/use-cases/continuous-delivery
https://www.redhat.com/en/blog/integrating-ansible-jenkins-cicd-process
https://www.redhat.com/en/blog/integrating-ansible-jenkins-cicd-process

Section 4:
 Scalability, Monitoring,

Performance Tuning,
and Troubleshooting

In this part of the book, you will learn about the scalability, monitoring, advanced
performance tuning, and troubleshooting of KVM-based virtual machines and hypervisors.

This part of the book comprises the following chapters:

• Chapter 12, Scaling out KVM with OpenStack

• Chapter 13, Scaling out KVM with AWS

• Chapter 14, Monitoring the KVM Virtualization Platform

• Chapter 15, Performance Tuning and Optimization for KVM VMs

• Chapter 16, Troubleshooting Guidelines for the KVM Platform

12
Scaling Out KVM
with OpenStack

Being able to virtualize a machine is a big thing, but sometimes, just virtualization is
not enough. The problem is how to give individual users tools so that they can virtualize
whatever they need, when they need it. If we combine that user-centric approach with
virtualization, we are going to end up with a system that needs to be able to do two things:
it should be able to connect to KVM as a virtualization mechanism (and not only KVM)
and enable users to get their virtual machines running and automatically configured
in a self-provisioning environment that's available through a web browser. OpenStack
adds one more thing to this since it is completely free and based entirely on open source
technologies. Provisioning such a system is a big problem due to its complexity, and in
this chapter, we are going to show you – or to be more precise, point you – in the right
direction regarding whether you need a system like this.

In this chapter, we will cover the following topics:

• Introduction to OpenStack

• Software-defined networking

• OpenStack components

• Additional OpenStack use cases

416 Scaling Out KVM with OpenStack

• Provisioning the OpenStack environment

• Integrating OpenStack with Ansible

• Let's get started!

Introduction to OpenStack
In its own words, OpenStack is a cloud operating system that is used to control
a large number of different resources in order to provide all the essential services for
Infrastructure-as-a-Service (IaaS) and orchestration.

But what does this mean? OpenStack is designed to completely control all the resources
that are in the data center, and to provide both central management and direct control
over anything that can be used to deploy both its own and third-party services. Basically,
for every service that we mention in this book, there is a place in the whole OpenStack
landscape where that service is or can be used.

OpenStack itself consists of several different interconnected services or service parts,
each with its own set of functionalities, and each with its own API that enables full
control of the service. In this part of this book, we will try to explain what different
parts of OpenStack do, how they interconnect, what services they provide, and how
to use those services to our advantage.

The reason OpenStack exists is because there was the need for an open source cloud
computing platform that would enable creating public and private clouds that are
independent of any commercial cloud platform. All parts of OpenStack are open source
and were released under the Apache License 2.0. The software was created by a large,
mixed group of individuals and large cloud providers. Interestingly, the first major release
was the result of NASA (a US government agency) and Rackspace Technology (a large US
hosting company) joining their internal storage and computing infrastructure solutions.
These releases were later designated with the names Nova and Swift, and we will cover
them in more detail later.

The first thing you will notice about OpenStack is its services since there is no single
OpenStack service but an actual stack of services. The name OpenStack comes directly
from this concept because it correctly identifies OpenStack as an open source component
that acts as services that are, in turn, grouped into functional sets.

Introduction to OpenStack 417

Once we understand that we are talking about autonomous services, we also need to
understand that services in OpenStack are grouped by their function, and that some
functions have more than one specialized service under them. We will try to cover as
much as possible about different services in this chapter, but there are simply too many
of them to even mention all of them here. All the documentation and all the whitepapers
can be found at http://openstack.org, and we strongly suggest that you consult it
for anything not mentioned here, and even for things that we mention but that could have
changed by the time you read this.

The last thing we need to clarify is the naming – every service in OpenStack has its project
name and is referred to by that name in the documentation. This might, at first glance,
look confusing since some of the names are completely unrelated to the specific function
a particular service has in the whole project, but using names instead of official
designators for a function is far easier once you start using OpenStack. Take, for example,
Swift. Swift's full name is OpenStack Object Store, but this is rarely mentioned in the
documentation or its implementation. The same goes for other services or projects under
OpenStack, such as Nova, Ironic, Neutron, Keystone, and over 20 other different services.

If you step away from OpenStack for a second, then you need to consider what cloud
services are all about. The cloud is all about scaling – in terms of compute resources,
storage, network, APIs – whatever. But, as always in life, as you scale things, you're going
to run into problems. And these problems have their own names and solutions. So, let's
discuss these problems for a minute.

The basic problems for cloud provider scalability can be divided into three groups of
problems that need to be solved at scale:

• Compute problems (Compute = CPU + memory power): These problems are
pretty straightforward to solve – if you need more CPU and memory power, you
buy more servers, which, by design, means more CPU and memory. If you need a
quality of service/service-level agreement (SLA) type of concept, we can introduce
a concept such as compute resource pools so that we can slice the compute pie
according to our needs and divide those resources between our clients. It doesn't
matter whether our client is just a private person or a company buying into cloud
services. In cloud technologies, we call our clients tenants.

http://openstack.org

418 Scaling Out KVM with OpenStack

• Storage problems: As you scale your cloud environments, things become
really messy in terms of storage capacity, management, monitoring
and – especially – performance. The performance side of that problem has a couple
of most commonly used variables – read and write throughput and read and write
IOPS. When you grow your environment from 100 hosts to 1,000 hosts or more,
performance bottlenecks are going to become a major issue that will be difficult to
tackle without proper concepts. So, the storage problem can be solved by adding
additional storage devices and capacity, but it's much more involved than the
compute problem as it needs much more configuration and money. Remember,
every virtual machine has a statistical influence on other virtual machines'
performance, and the more virtual machines you have, the greater this entropy is.
This is the most difficult process to manage in storage infrastructure.

• Network problems: As the cloud infrastructure grows, you need thousands
and thousands of isolated networks so that the network traffic of tenant A can't
communicate with the network traffic of tenant B. At the same time, you still need
to offer a capability where you can have multiple networks (usually implemented
via VLANs in non-cloud infrastructures) per tenant and routing between these
networks, if that's what the tenant needs.

This network problem is a scalability problem based on technology, as the technology
behind VLAN was standardized years before the number of VLANs could become
a scalability problem.

Let's continue our journey through OpenStack by explaining the most fundamental
subject of cloud environments, which is scaling cloud networking via software-defined
networking (SDN). The reason for this is really simple – without SDN concepts, the cloud
wouldn't really be scalable enough for customers to be happy, and that would be
a complete showstopper. So, buckle up your seatbelts and let's do an SDN primer.

Software-defined networking
One of the straightforward stories about the cloud – at least on the face of it – should
have been the story about cloud networking. In order to understand how simple this
story should've been, we only need to look at one number, and that number is the virtual
LAN (VLAN ID) number. As you might already be aware, by using VLANs, network
administrators have a chance to divide a physical network into separate logical networks.
Bearing in mind that the VLAN part of the Ethernet header can have up to 12 bits, the
maximum number of these logically isolated networks is 4,096. Usually, the first and last
VLANs are reserved (0 and 4095), as is VLAN 1.

Software-defined networking 419

So, basically, we're left with 4,093 separate logical networks in a real-life scenario, which
is probably more than enough for the internal infrastructure of any given company.
However, this is nowhere near enough for public cloud providers. The same problem
applies to public cloud providers that use hybrid-cloud types of services to – for
example – extend their compute power to the cloud.

So, let's focus on this network problem for a bit. Realistically, if we look at this problem
from the cloud user perspective, data privacy is of utmost importance to us. If we look
at this problem from the cloud provider perspective, then we want our network isolation
problem to be a non-issue for our tenants. This is what cloud services are all about at
a more basic level – no matter what the background complexity in terms of technology
is, users have to be able to access all of the necessary services in as user-friendly a way as
possible. Let's explain this by using an example.

What happens if we have 5,000 different clients (tenants) in our public cloud
environment? What happens if every tenant needs to have five or more logical networks?
We quickly realize that we have a big problem as cloud environments need to be
separated, isolated, and fenced. They need to be separated from one another at a network
level for security and privacy reasons. However, they also need to be routable, if a tenant
needs that kind of service. On top of that, we need the ability to scale so that situations in
which we need more than 5,000 or 50,000 isolated networks don't bother us. And, going
back to our previous point – roughly 4,000 VLANs just isn't going to cut it.

There's a reason why we said that this should have been a straightforward story. The
engineers among us see these situations in black and white – we focus on a problem and
try to come to a solution. And the solution seems rather simple – we need to extend the
12-bit VLAN ID field so that we can have more available logical networks. How difficult
can that be?

As it turns out, very difficult. If history teaches us anything, it's that various different
interests, companies, and technologies compete for years for that top dog status in
anything in terms of IT technology. Just think of the good old days of DVD+R, DVD-R,
DVD+RW, DVD-RW, DVD-RAM, and so on. To simplify things a bit, the same thing
happened here when the initial standards for cloud networking were introduced. We
usually call these network technologies cloud overlay network technologies. These
technologies are the basis for SDN, the principle that describes the way cloud networking
works at a global, centralized management level. There are multiple standards on the
market to solve this problem – VXLAN, GRE, STT, NVGRE, NVO3, and more.

420 Scaling Out KVM with OpenStack

Realistically, there's no need to break them all down one by one. We are going to take
a simpler route – we're going to describe one of them that's the most valuable for us in
the context of today (VXLAN) and then move on to something that's considered to be
a unified standard of tomorrow (GENEVE).

First, let's define what an overlay network is. When we're talking about overlay networks,
we're talking about networks that are built on top of another network in the same
infrastructure. The idea behind an overlay network is simple – we need to disentangle the
physical part of the network from the logical part of the network. If we want to do that
in absolute terms (configure everything without spending massive amounts of time in
the CLI to configure physical switches, routers, and so on), we can do that as well. If we
don't want to do it that way and we still want to work directly with our physical network
environment, we need to add a layer of programmability to the overall scheme. Then, if
we want to, we can interact with our physical devices and push network configuration to
them for a more top-to-bottom approach. If we do things this way, we'll need a bit more
support from our hardware devices in terms of capability and compatibility.

Now that we've described what network overlay is, let's talk about VXLAN, one of the
most prominent overlay network standards. It also serves as a basis for developing some
other network overlay standards (such as GENEVE), so – as you might imagine – it's very
important to understand how it works.

Understanding VXLAN
Let's start with the confusing part. VXLAN (IETF RFC 7348) is an extensible overlay
network standard that enables us to aggregate and tunnel multiple Layer 2 networks
across Layer 3 networks. How does it do that? By encapsulating a Layer 2 packet inside a
Layer 3 packet. In terms of transport protocol, it uses UDP, by default on port 4789 (more
about that in just a bit). In terms of special requests for VXLAN implementation – as long
as your physical network supports MTU 1600, you can implement VXLAN as a cloud
overlay solution easily. Almost all the switches you can buy (except for the cheap home
switches, but we're talking about enterprises here) support jumbo frames, which means
that we can use MTU 9000 and be done with it.

Software-defined networking 421

From the standpoint of encapsulation, let's see what it looks like:

Figure 12.1 – VXLAN frame encapsulation

In more simplistic terms, VXLANs use tunneling between two VXLAN endpoints (called
VTEPs; that is, VXLAN tunneling endpoints) that check VXLAN network identifiers
(VNIs) so that they can decide which packets go where.

If this seems complicated, then don't worry – we can simplify this. From the perspective
of VXLAN, a VNI is the same thing as a VLAN ID is to VLAN. It's a unique network
identifier. The difference is just the size – the VNI field has 24 bits, compared to VLAN's
12. That means that we have 2^24 VNIs compared to VLAN's 2^12. So, VXLANs – in
terms of network isolation – are VLANs squared.

Why does VXLAN use UDP?
When designing overlay networks, what you usually want to do is reduce
latency as much as possible. Also, you don't want to introduce any kind of
overhead. When you consider these two basic design principles and couple
that with the fact that VXLAN tunnels Layer 2 traffic inside Layer 3 (whatever
the traffic is – unicast, multicast, broadcast), that literally means we should
use UDP. There's no way around the fact that TCP's two methods – three-way
handshakes and retransmissions – would get in the way of these basic design
principles. In the simplest of terms, TCP would be too complicated for VXLAN
as it would mean too much overhead and latency at scale.

422 Scaling Out KVM with OpenStack

In terms of VTEPs, just imagine them as two interfaces (implemented in software
or hardware) that can encapsulate and decapsulate traffic based on VNIs. From a
technology standpoint, VTEPs map various tenant's virtual machines and devices to
VXLAN segments (VXLAN-backed isolated networks), perform package inspection, and
encapsulate/decapsulate network traffic based on VNIs. Let's describe this communication
with the help of the following diagram:

Figure 12.2 – VTEPs in unicast mode

In our open source-based cloud infrastructure, we're going to implement cloud overlay
networks by using OpenStack Neutron or Open vSwitch, a free, open source distributed
switch that supports almost all network protocols that you could possibly think of,
including the already mentioned VXLAN, STT, GENEVE, and GRE overlay networks.

Also, there's a kind of gentleman's agreement in place in cloud networking regarding not
using VXLANs from 1-4999 in most use cases. The reason for this is simple – because
we still want to have our VLANs with their reserved range of 0-4095 in a way that is
simple and not error-prone. In other words, by design, we leave network IDs 0-4095 for
VLANs and start VXLANs with VNI 5000 so that it's really easy to differentiate between
the two. Not using 5,000 VXLAN-backed networks out of 16.7 million VXLAN-backed
networks isn't that much of a sacrifice for good engineering practices.

Software-defined networking 423

The simplicity, scalability, and extensibility of VXLAN also means more really useful usage
models, such as the following:

• Stretching Layer 2 across sites: This is one of the most common problems
regarding cloud networking, as we will describe shortly.

• Layer 2 bridging: Bridging a VLAN to a cloud overlay network (such as VXLAN)
is very useful when onboarding our users to our cloud services as they can then just
connect to our cloud network directly. Also, this usage model is heavily used when
we want to physically insert a hardware device (for example, a physical database
server or a physical appliance) into a VXLAN. If we didn't have Layer 2 bridging,
imagine all the pain that we would have. All our customers running the Oracle
Database Appliance would have no way to connect their physical servers to our
cloud-based infrastructure.

• Various offloading technologies: These include load balancing, antivirus,
vulnerability and antimalware scanning, firewall, IDS, IPS integration, and so on.
All of these technologies enable us to have useful, secure environments with simple
management concepts.

We mentioned that stretching Layer 2 across sites is a fundamental problem, so it's
obvious that we need to discuss it. We'll do that next. Without a solution to this problem,
you'd have very little chance of creating multiple data center cloud infrastructures
efficiently.

Stretching Layer 2 across sites
One of the most common sets of problems that cloud providers face is how to stretch their
environment across sites or continents. In the past, when we didn't have concepts such
as VXLAN, we were forced to use some kind of Layer 2 VPN or MPLS-based technologies.
These types of services are really expensive, and sometimes, our service providers aren't
exactly happy with our give me MPLS or give me Layer 2 access requests. They would be
even less happy if we mentioned the word multicast in the same sentence, and this was a set
of technical criteria that was often used in the past. So, having the capability to deliver Layer
2 over Layer 3 fundamentally changes that conversation. Basically, if you have the capability
to create a Layer 3-based VPN between sites (which you can almost always do), you don't
have to be bothered with that discussion at all. Also, that significantly reduces the price of
these types of infrastructure connections.

424 Scaling Out KVM with OpenStack

Consider the following multicast-based example:

Figure 12.3 – Extending VXLAN segments across sites in multicast mode

Let's say that the left-hand side of this diagram is the first site and that the right-hand side
of this diagram is the second site. From the perspective of VM1, it doesn't really matter that
VM4 is in some other remote site as its segment (VXLAN 5001) spans across those sites.
How? As long as the underlying hosts can communicate with each other over the VXLAN
transport network (usually via the management network as well), the VTEPs from the
first site can talk to the VTEPs from the second site. This means that virtual machines that
are backed by VXLAN segments in one site can talk to the same VXLAN segments in the
other site by using the aforementioned Layer 2-to-Layer 3 encapsulation. This is a really
simple and elegant way to solve a complex and costly problem.

We mentioned that VXLAN, as a technology, served as a basis for developing some other
standards, with the most important being GENEVE. As most manufacturers work toward
GENEVE compatibility, VXLAN will slowly but surely disappear. Let's discuss what the
purpose of the GENEVE protocol is and how it aims to become the standard for cloud
overlay networking.

Software-defined networking 425

Understanding GENEVE
The basic problem that we touched upon earlier is the fact that history kind of repeated
itself in cloud overlay networks, as it did many times before. Different standards, different
firmwares, and different manufacturers supporting one standard over another, where all
of the standards are incredibly similar but still not compatible with each other. That's why
VMware, Microsoft, Red Hat, and Intel proposed GENEVE, a new cloud overlay standard
that only defines the encapsulation data format, without interfering with the control
planes of these technologies, which are fundamentally different. For example, VXLAN
uses a 24-bit field width for VNI, while STT uses 64-bit. So, the GENEVE standard
proposes no fixed field size as you can't possibly know what the future brings. Also, taking
a look at the existing user base, we can still happily use our VXLANs as we don't believe
that they will be influenced by future GENEVE deployments.

Let's see what the GENEVE header looks like:

Figure 12.4 – GENEVE cloud overlay network header

The authors of GENEVE learned from some other standards (BGP, IS-IS, and LLDP)
and decided that the key to doing things right is extensibility. This is why it was
embraced by the Linux community in Open vSwitch and VMware in NSX-T. VXLAN
is supported as the network overlay technology for Hyper-V Network Virtualization
(HNV) since Windows Server 2016 as well. Overall, GENEVE and VXLAN seem to be
two technologies that are surely here to stay – and both are supported nicely from the
perspective of OpenStack.

Now that we've covered the most basic problem regarding the cloud – cloud
networking – we can go back and discuss OpenStack. Specifically, our next subject
is related to OpenStack components – from Nova through to Glance and then to Swift,
and others. So, let's get started.

426 Scaling Out KVM with OpenStack

OpenStack components
When OpenStack was first formed as a project, it was designed from two different
services:

• A computing service that was designed to manage and run virtual machines
themselves

• A storage service that was designed for large-scale object storage

These services are now called OpenStack Compute or Nova, and OpenStack Object
Store or Swift. These services were later joined by Glance or the OpenStack Image service,
which was designed to simplify working with disk images. Also, after our SDN primer,
we need to discuss OpenStack Neutron, the Network-as-a-Service (NaaS) component
of OpenStack.

The following diagram shows the components of OpenStack:

Figure 12.5 – Conceptual architecture of OpenStack (source: https://docs.openstack.org/)

OpenStack components 427

We'll go through these in no particular order and will include additional services that are
important. Let's start with Swift.

Swift
The first service we need to talk about is Swift. For that purpose, we are going to grab the
project's own definition from the OpenStack official documentation and parse it to try
and explain what services are fulfilled by this project, and what is it used for. The Swift
website (https://docs.openstack.org/swift/latest/) states the following:

"Swift is a highly available, distributed, eventually consistent object/blob store. Organizations
can use Swift to store lots of data efficiently, safely, and cheaply. It's built for scale and
optimized for durability, availability, and concurrency across the entire dataset. Swift is ideal
for storing unstructured data that can grow without bounds."

Having read that, we need to point out quite a few things that may be completely new to
you. First and foremost, we are talking about storing data in a particular way that is not
common in computing unless you have used unstructured data stores. Unstructured does
not mean that this way of storing data is lacking structure; in this context, it means that
we are the ones that are defining the structure of the data, but the service itself does not
care about our structure, instead relying on the concept of objects to store our data. One
result of this is something that may also sound unusual at first, and that is that the data
we store in Swift is not directly accessible through any filesystem, or any other way we are
used to manipulating files through our machines. Instead, we are manipulating data as
objects and we must use the API that is provided as part of Swift to get the data objects.
Our data is stored in blobs, or objects, that the system itself just labels and stores to take
care of availability and access speed. We are supposed to know what the internal structure
of our data is and how to parse it. On the other hand, because of this approach, Swift can
be amazingly fast with any amount of data and scales horizontally in a way that is almost
impossible to achieve using normal, classic databases.

https://docs.openstack.org/swift/latest/
https://docs.openstack.org/swift/latest/
https://docs.openstack.org/swift/latest/

428 Scaling Out KVM with OpenStack

Another thing worth mentioning is that this service offers highly available, distributed,
and eventually consistent storage. This means that, first and foremost, the priority is for
the data to be distributed and highly available, which are two things that are important
in the cloud. Consistency comes after that but is eventually achieved. Once you come to
use this service, you will understand what that means. In almost all usual scenarios where
data is read and rarely written, it is nothing to even think about, but there are some cases
where this can change the way we need to think about the way we go about delivering the
service. The documentation states the following:

"Because each replica in Object Storage functions independently and clients generally require
only a simple majority of nodes to respond to consider an operation successful, transient
failures such as network partitions can quickly cause replicas to diverge. These differences
are eventually reconciled by asynchronous, peer-to-peer replicator processes. The replicator
processes traverse their local filesystems and concurrently perform operations in a manner
that balances load across physical disks."

We can roughly translate this. Let's say that you have a three-node Swift cluster. In such
a scenario, a Swift object will become available to clients after the PUT operation has been
confirmed to have been completed on at least two nodes. So, if your goal is to create a
low-latency, synchronous storage replication with Swift, there are other solutions available
for that.

Having put aside all the abstract promises regarding what Swift offers, let's go into more
details. High availability and distribution are the direct result of using a concept of zones
and having multiple copies of the same data written onto multiple storage servers. Zones
are nothing but a simple way of logically dividing the storage resources we have at our
disposal and deciding on what kind of isolation we are ready to provide, as well as what
kind of redundancy we need. We can group servers by the server itself, by the rack, by
sets of servers across a Datacenter, in groups across different Datacenters, and in any
combination of those. Everything really depends on the amount of available resources and
the data redundancy and availability we need and want, as well as, of course, the cost that
will accompany our configuration.

OpenStack components 429

Based on the resources we have, we are supposed to configure our storage system in terms
of how many copies it will hold and how many zones we are prepared to use. A copy of
a particular data object in Swift is referred to as a replica, and currently, the best practices
call for at least three replicas across no less than five zones.

A zone can be a server or a set of servers, and if we configure everything correctly, losing
any one zone should have no impact on the availability or distribution of data. Since
a zone can be as small as a server and as big as any number of data centers, the way we
structure our zones has a huge impact on the way the system reacts to any failures and
changes. The same goes for replicas. In the recommended scenario, configuration has a
smaller number of replicas than the number of zones, so only some of the zones will hold
some of these replicas. This means the system must balance the way data is written in order
to evenly distribute both the data and the load, including both the writing and the reading
load for the data. At the same time, the way we structure the zones will have an enormous
impact on the cost – redundancy has a real cost in terms of server and storage hardware,
and multiplying replicas and zones creates additional demands in regard to how much
storage and computing power we need to allocate for our OpenStack installation. Being
able to do this correctly is the biggest problem that a Datacenter architect has to solve.

Now, we need to go back to the concept of eventual consistency. Eventual consistency in
this context means that data is going to be written to the Swift store and that objects are
going to get updated, but the system will not be able to do a completely simultaneous
write of all the data into all the copies (replicas) of the data across all zones. Swift will try
to reconcile the differences as soon as possible and will be aware of these changes, so it
serves new versions of the objects to whoever tries to read them. Scenarios where data is
inconsistent due to a failure of some part of the system exist, but they are to be considered
abnormal states of the system and need to be repaired rather than the system being
designed to ignore them.

Swift daemons
Next, we need to talk about the way Swift is designed in regard to its architecture. Data is
managed through three separate logical daemons:

• Swift-account is used to manage a SQL database that contains all the accounts
defined with the object storage service. Its main task is to read and write the data
that all the other services need, primarily in order to validate and find appropriate
authentication and other data.

430 Scaling Out KVM with OpenStack

• Swift-container is another database process, but it is used strictly to map data into
containers, a logical structure similar to AWS buckets. This can include any number
of objects that are grouped together.

• Swift-object manages mapping to actual objects, and it keeps track of the location
and availability of the objects themselves.

All these daemons are just in charge of data and make sure that everything is both
mapped and replicated correctly. Data is used by another layer in the architecture: the
presentation layer.

When a user wants to use any data object, it first needs to authenticate via a token that
can be either externally provided or created by an authentication system inside Swift.
After that, the main process that orchestrates data retrieval is Swift-proxy, which handles
communication with three daemons that deal with the data. Provided that the user
presented a valid token, it gets the data object delivered to the user request.

This is just the briefest of overviews regarding how Swift works. In order to understand
this, you need to not only read the documentation but also use some kind of system that
will perform low-level object retrieval and storage into and out of Swift.

Cloud services can't be scaled or used efficiently if we don't have orchestration services,
which is why we need to discuss the next service on our list – Nova.

Nova
Another important service or project is Nova – an orchestration service that is used for
providing both provisioning and management for computing instances at a large scale.
What it basically does is allow us to use an API structure to directly allocate, create,
reconfigure, and delete or destroy virtual servers. The following is a diagram of a logical
Nova service structure:

OpenStack components 431

Figure 12.6 – Logical structure of the Nova service (openstack.org)

Most of Nova is a very complex distributed system written almost entirely in Python
that consists of a number of working scripts that do the orchestration part and a gateway
service that receives and carries through API calls. The API is also based on Python; it's
a Web Server Gateway Interface (WSGI)-compatible application that handles calls.
WSGI, in turn, is a standard that defines how a web application and a server should
exchange data and commands. This means that, in theory, any system capable of using
the WSGI standard can also establish communication with this service.

Aside from this multifaceted orchestration solution, there are two more services that are at
the heart of Nova – the database and messaging queue. Neither of these is Python-based.
We'll talk about messaging and databases first.

432 Scaling Out KVM with OpenStack

Almost all distributed systems must rely on queues to be able to perform their tasks.
Messages need to be forwarded to a central place that will enable all daemons to do their
tasks, and using the right messaging and queueing system is crucial for system speed and
reliance. Nova currently uses RabbitMQ, a highly scalable and available system by itself.
Using a production-ready system like this means that not only are there tools to debug
the system itself, but there are a lot of reporting tools available for directly querying the
messaging queue.

The main purpose of using a messaging queue is to completely decouple any clients from
servers, and to provide asynchronous communication between different clients. There
is a lot to be said on how the actual messaging works, but for this chapter, we will just
refer you to the official documentation at https://docs.openstack.org/nova/
latest/, since we are not talking about a couple of functions on a server but an entirely
independent software stack.

The database is in charge of holding all the state data for the tasks currently being
performed, as well as enabling the API to return information about the current state
of different parts of Nova.

All in all, the system consists of the following:

• nova-api: The daemon that is directly facing the user and is responsible for
accepting, parsing, and working through all the user API requests. Almost all
the documentation that refers to nova-api is actually referring to this daemon,
sometimes calling it just API, controller, or cloud controller. We need to explain a
little bit more about Nova in order to understand that calling nova-api a controller is
wrong, but since there exists a class inside a daemon named CloudController,
a lot of users confuse this daemon for the whole distributed system.

nova-api is a powerful system since it can, by itself, process and sort out some API
calls, getting the data from the database and working out what needs to be done.
In a more common case, nova-api will just initiate a task and forward it in the form
of messages to other daemons inside Nova.

• Another important daemon is the scheduler. Its main function is to go through the
queue and determine when and where a particular request should run. This sounds
simple enough, but given the possible complexity of the system, this where and
when can lead to extreme gains or losses in performance. In order to solve this, we
can choose how the scheduler makes decisions regarding choosing the right place
to perform requests. Users can choose either to write their own request or to use
one of the predetermined ones.

https://docs.openstack.org/nova/latest/
https://docs.openstack.org/nova/latest/

OpenStack components 433

If we are choosing the ones provided by Nova, we have three choices:

a) Simple scheduler determines where the request will be run based on the load
on the hosts – it will monitor all the hosts and try to allocate the one that has
the least load in a particular slice of time.

b) Chance is the default way of scheduling. As its name suggests, it's the simplest
algorithm – a host is randomly chosen from the list and given the request.

c) Zone scheduling will also randomly choose a host but will do so from within
a zone.

Now, we will look at workers, daemons that actually perform requests. There are three of
these – network, volume, and compute:

• nova-network is in charge of the network. It will perform whatever is given to it
from the queue that is related to anything on the network and will create interfaces
and rules as needed. It is also in charge of IP address allocation; it will allocate
both fixed and dynamically assigned addresses and take care of both the external
and internal networks. Instances usually use one or more fixed IPs to enable
management and connectivity, and these are usually local addresses. There are also
floating addresses to enable connecting from the outside. This service has been
obsolete since the OpenStack Newton release from 2016, although you can still
use it in some legacy configurations.

• nova-volume handles storage volumes or, to be more precise, all the ways data
storage can be connected to any instance. This includes standards such as iSCSI and
AoE, which are targeted at encapsulating known common protocols, and providers
such as Sheepdog, LeftHand, and RBD, which cover connections to open source and
closed source storage systems such as CEPH or HP LeftHand.

• nova-compute is probably the easiest to describe – it is used to create and destroy
new instances of virtual machines, as well as to update information about them
in the database. Since this is a heavily distributed system, this also means that
nova-compute must adapt itself to using different virtualization technologies and
to completely different platforms. It also needs to be able to dynamically allocate and
free resources. Primarily, it uses libvirt for its VM management, directly supporting
KVM for creating and deleting new instances. This is the reason this chapter exists,
since nova-compute using libvirt to start KVM machines is by far the most common
way of configuring OpenStack, but support for different technologies extends a lot
further. The libvirt interface also supports Xen, QEMU, LXC, and user mode Linux
(UML), and through different APIs, nova-compute can support Citrix, XCP, VMware
ESX/ESXi vSphere, and Microsoft Hyper-V. This enables Nova to control all the
currently used enterprise virtualization solutions from one central API.

434 Scaling Out KVM with OpenStack

As a side note, nova-conductor is there to process requests that require any conversion
regarding objects, resizing, and database/proxy access.

The next service on our list is Glance – a service that is very important for virtual machine
deployment as we want to do this from images. Let's discuss Glance now.

Glance
At first, having a separate service for cloud disk image management makes little sense, but
when scaling any infrastructure, image management will become a problem that needs
an API to be solved. Glance basically has this dual identity – it can be used to directly
manipulate VM images and store them inside blobs of data, but at the same time it can
be used to completely automatically orchestrate a lot of tasks when dealing with a huge
number of images.

Glance is relatively simple in terms of its internal structure as it consists of an image
information database, an image store that uses Swift (or a similar service), and an API
that glues everything together. Database is sometimes called Registry, and it basically gives
information about a given image. Images themselves can be stored on different types of
stores, either from Swift (as blobs) on HTTP servers or on a filesystem (such as NFS).

Glance is completely nonspecific about the type of image store it uses, so NFS is perfectly
okay and makes implementing OpenStack a little bit easier, but when scaling OpenStack,
both Swift and Amazon S3 can be used.

When thinking about the place in the big OpenStack puzzle that Glance belongs to, we
could describe it as being the service that Nova uses to find and instantiate images. Glance
itself uses Swift (or any other storage) to store images. Since we are dealing with multiple
architectures, we need a lot of different supported file formats for images, and Glance does
not disappoint. Every disk format that is supported by different virtualization engines is
supported by Glance. This includes both unstructured formats such as raw and structured
formats such as VHD, VMDK, qcow2, VDI ISO, and AMI. OVF – as an example of an
image container – is also supported.

Glance probably has the simplest API of them all, enabling it to be used even from the
command line using curl to query the server and JSON as the format of the messages.

OpenStack components 435

We'll finish this section with a small note directly from the Nova documentation: it
explicitly states that everything in OpenStack is designed to be horizontally scalable but
that, at any time, there should be significantly more computing nodes than any other type.
This actually makes a lot of sense – computing nodes are the ones in charge of actually
accepting and working on requests. The amount of storage nodes you'll need will depend
on your usage scenario, and Glance's will inevitably depend on the capabilities and
resources available to Swift.

The next service in line is Horizon – a human-readable GUI dashboard of OpenStack
where we consume a lot of OpenStack visual information.

Horizon
Having explained the core services that enable OpenStack to do what it does the way it
does in some detail, we need to address the user interaction. In almost every paragraph
in this chapter, we refer to APIs and scripting interfaces as a way to communicate and
orchestrate OpenStack. While this is completely true and is the usual way of managing
large-scale deployments, OpenStack also has a pretty useful interface that is available as
a web service in a browser. The name of this project is Horizon, and its sole purpose is
to provide a user with a way of interacting with all the services from one place, called
the dashboard. Users can also reconfigure most, if not all, the things in the OpenStack
installation, including security, networking, access rights, users, containers, volumes, and
everything else that exists in the OpenStack installation.

Horizon also supports plugins and pluggable panels. There is an active plugin marketplace
for Horizon that aims at extending its functionality even further than it already has. If
that's still not enough for your particular scenario, you can create your own plugins in
Angular and get them to run in Horizon.

Pluggable panels are also a nice idea – without changing any defaults, a user or a group
of users can change the way the dashboard looks and get more (or less) information
presented to them. All of this requires a little bit of coding; changes are made in the config
files, but the main thing is that the Horizon system itself supports such a customization
model. You can find out more about the interface itself and the functions that are available
to the user when we cover installing OpenStack and creating OpenStack instances in the
Provisioning the OpenStack environment section.

As you are aware, networks don't really work all that well without name resolution, which
is why OpenStack has a service called Designate. We'll briefly discuss Designate next.

436 Scaling Out KVM with OpenStack

Designate
Every system that uses any kind of network must have at least some kind of name
resolution service in the form of a local or remote DNS or a similar mechanism.

Designate is a service that tries to integrate the DNSaaS concept in OpenStack in one
place. When connected to Nova and Neutron, it will try to keep up-to-date records in
regards to all the hosts and infrastructure details.

Another very important aspect of the cloud is how we manage identities. For that specific
purpose, OpenStack has a service called Keystone. We'll discuss what it does next.

Keystone
Identity management is a big thing in cloud computing, simply because when deploying
a large-scale infrastructure, not only do you need a way to scale your resources, but
you also need a way to scale user management. A simple list of users that can access a
resource is not an option anymore, mainly because we are not talking about simple users
anymore. Instead, we are talking about domains containing thousands of users separated
by groups and by roles – we are talking about multiple ways of logging in and providing
authentication and authorization. Of course, this also can span multiple standards for
authentication, as well as multiple specialized systems.

For these reasons, user management is a separate project/service in OpenStack named
Keystone.

Keystone supports simple user management and the creation of users, groups, and
roles, but it also supports LDAP, Oauth, OpenID Connect, SAML, and SQL database
authentication and has its own API that can support every possible scenario for user
management. Keystone is in a world by itself, and in this book, we will treat it as a simple
user provider. However, it can be much more and can require a lot of configuration,
depending on the case. The good thing is that, once installed, you will rarely need to
think about this part of OpenStack.

The next service on our list is Neutron, the API/backend for (cloud) networking in
OpenStack.

OpenStack components 437

Neutron
OpenStack Neutron is an API-based service that aims to provide a simple and extensible
cloud network concept as a development of what used to be called a Quantum service
in older releases of OpenStack. Before this service, networking was managed by
nova-network, which, as we mentioned, is a solution that's obsolete, with Neutron being
the reason for this. Neutron integrates with some of the services that we've already
discussed – Nova, Horizon, and Keystone. As a standalone concept, we can deploy
Neutron to a separate server, which will then give us the ability to use the Neutron API.
This is reminiscent of what VMware does in NSX with the NSX Controller concept.

When we deploy neutron-server, a web-based service that hosts the API connects to the
Neutron plugin in the background so that we can introduce networking changes to our
Neutron-managed cloud network. In terms of architecture, it has the following services:

• Database for persistent storage

• neutron-server

• External agents (plugins) and drivers

In terms of plugins, it has a lot of them, but here's a short list:

• Open vSwitch

• Cisco UCS/Nexus

• The Brocade Neutron plugin

• IBM SDN-VE

• VMware NSX

• Juniper OpenContrail

• Linux bridging

• ML2

• Many others

Most of these plugin names are logical, so you won't have any problems understanding
what they do. But we'd like to mention one of these plugins specifically, which is the
Modular Layer 2 (ML2) plugin.

438 Scaling Out KVM with OpenStack

By using the ML2 plugin, OpenStack Neutron can connect to various Layer 2 backends
– VLAN, GRE, VXLAN, and so on. It also enables Neutron to go away from the Open
vSwitch and Linux bridge plugins as its basic plugins (which are now obsolete). These
plugins are considered to be too monolithic for Neutron's modular architecture, and ML2
has replaced them completely since the release of Havana (2013). ML2 today has many
vendor-based plugins for integration. As shown by the preceding list, Arista, Cisco, Avaya,
HP, IBM, Mellanox, and VMware all have ML2-based plugins for OpenStack.

In terms of network categories, Neutron supports two:

• Provider networks: Created by an OpenStack administrator, these are used for
external connections on a physical level, which are usually backed by flat (untagged)
or VLAN (802.1q tagged) concepts. These networks are shared since tenants use
them to access their private infrastructure in hybrid cloud models or to access the
internet. Also, these networks describe the way underlay and overlay networks
interact, as well as their mappings.

• Tenant networks, self-service networks, project networks: These networks
are created by users/tenants and their administrators so that they can connect
their virtual resources and networks in whatever shape or form they need. These
networks are isolated and usually backed by a network overlay such as GRE or
VXLAN, as that's the whole purpose of tenant networks.

Tenant networks usually use some kind of SNAT mechanism to access external
networks, and this service is usually implemented via virtual routers. The same
concept is used in other cloud technologies such as VMware NSX-v and NSX-t,
as well as Microsoft Hyper-V SDN technologies backed by Network Controller.

In terms of network types, Neutron supports multiple types:

• Local: Allows us to communicate within the same host.

• Flat: An untagged virtual network.

• VLAN: An 802.1Q VLAN tagged virtual network.

• GRE, VXLAN, GENEVE: Depending on the network overlay technologies,
we select these network backends.

Now that we've covered OpenStack's usage models, ideas, and services, let's
discuss additional ways in which OpenStack can be used. As you might imagine,
OpenStack – being what it is – is highly capable of being used in many non-standard
scenarios. We'll discuss these non-obvious scenarios next.

Additional OpenStack use cases 439

Additional OpenStack use cases
OpenStack has a lot of really detailed documentation available at https://docs.
openstack.org. One of the more useful topics is the architecture and design examples,
which both explain the usage scenarios and the ideas behind how a particular scenario
can be solved using the OpenStack infrastructure. We are going to talk a lot about two
different edge cases when we deploy our test OpenStack, but some things need to be said
about configuring and running an OpenStack installation.

OpenStack is a complex system that encompasses not only computing and storage but
also a lot of networking and supporting infrastructure. You will first notice that when you
realize that even the documentation is neatly divided into an administration, architecture,
operations, security, and virtual machine image guide. Each of these subjects is practically
a topic for a single book, and a lot of things that guides cover are part experience, part best
practice advice, and part assumptions based on best guesses.

There are a couple of things that are more or less common to all these use cases. First,
when designing a cloud, you must try and get all the information about possible loads and
your clients as soon as possible, even before a first server is booted. This will enable you
to plan not only how many servers you need, but their location, the ratio of computing to
storage nodes, the network topology, energy requirements, and all the other things that
need to be thought through in order to create a working solution.

When deploying OpenStack, we are talking about a large-scale enterprise solution that is
usually deployed for one of three reasons:

• Testing and learning: Maybe we need to learn how to configure a new installation, or
we need to test a new computing node before we even go near production systems.
For that reason, we need a small OpenStack environment, perhaps a single server
that we can expand if there is a need for that. In practice, this system should be able
to support probably a single user with a couple of instances. Those instances will
usually not be the focus of your attention; they are going to be there just to enable
you to explore all the other functionalities of the system. Deploying such a system
is usually done the way we described in this chapter – using a readymade script that
installs and configures everything so that we can focus on the part we are actually
working on.

• We have a need for a staging or pre-production environment: Usually, this means that
we need to either support the production team so they have a safe environment
to work in, or we are trying to keep a separate test environment for storing and
running instances before they are pushed into production.

https://docs.openstack.org
https://docs.openstack.org

440 Scaling Out KVM with OpenStack

Having such an environment is definitively recommended, even if you haven't had
it yet, since it enables you and your team to experiment without fear of breaking
the production environment. The downside is that this installation requires an
environment that has to have some resources available for the users and their
instances. This means we are not going to be able to get away with using a single
server. Instead, we will have to create a cloud that will be, at least in some parts, as
powerful as the production environment. Deploying such an installation is basically
the same as production deployment since once it comes online, this environment
will, from your perspective, be just another system in production. Even if we
are calling it pre-production or test, if the system goes down, your users will
inevitably call and complain. This is the same as what happens with the production
environment; you will have to plan downtime, schedule upgrades, and try to keep it
running as best as you can.

• For production: This one is demanding in another way – maintenance. When
creating an actual production cloud environment, you will need to design it well,
and then carefully monitor the system to be able to respond to problems. Clouds
are a flexible thing from the user's perspective since they offer scaling and easy
configuration, but being a cloud administrator means that you need to enable these
configuration changes by having spare resources ready. At the same time, you need
to pay attention to your equipment, servers, storage, networking, and everything
else to be able to spot problems before the users see them. Has a switch failed
over? Are the computing nodes all running correctly? Have the disks degraded in
performance due to a failure? Each of these things, in a carefully configured system,
will have minimal to no impact on the users, but if we are not proactive in our
approach, compounding errors can quickly bring the system down.

Having distinguished between a single server and a full install in two different scenarios,
we are going to go through both. The single server will be done manually using scripts,
while the multi-server will be done using Ansible playbooks.

Now that we've covered OpenStack in quite a bit of detail, it's time to start using it. Let's
start with some small things (a small environment to test) in order to provision a regular
OpenStack environment for production, and then discuss integrating OpenStack with
Ansible. We'll revisit OpenStack in the next chapter, when we start discussing scaling
out KVM to Amazon AWS.

Additional OpenStack use cases 441

Creating a Packstack demo environment for
OpenStack
If you just need a Proof of Concept (POC), there's a very easy way to install OpenStack.
We are going to use Packstack as it's the simplest way to do this. By using Packstack
installation on CentOS 7, you'll be able to configure OpenStack in 15 minutes or so.
It all starts with a simple sequence of commands:

yum update -y

yum install -y centos-release-openstack-train

yum update -y

yum install -y openstack-packstack

packstack --allinone

As the process goes through its various phases, you'll see various messages, such as the
following, which are quite nice as you get to see what's happening in real time with
a decent verbosity level:

Figure 12.7 – Appreciating Packstack's installation verbosity

442 Scaling Out KVM with OpenStack

After the installation is finished, you will get a report screen that looks similar to this:

Figure 12.8 – Successful Packstack installation

The installer has finished successfully, and it gives us a warning about NetworkManager
and a kernel update, which means we need to restart our system. After the restart and
checking the /root/keystonerc_admin file for our username and password,
Packstack is alive and kicking and we can log in by using the URL mentioned in the
previous screen's output (http://IP_or_hostname_where_PackStack_is_
deployed/dashboard):

Provisioning the OpenStack environment 443

Figure 12.9 – Packstack UI

There's a bit of additional configuration that needs to be done, as noted in the Packstack
documentation at https://wiki.openstack.org/wiki/Packstack.
If you're going to use an external network, you need a static IP address without
NetworkManager, and you probably want to either configure firewalld or stop it
altogether. Other than that, you can start using this as your demo environment.

Provisioning the OpenStack environment
One of the tasks that is going to be the simplest and, at the same time, the hardest when
you need to create your first OpenStack configuration is going to be provisioning. There
are basically two ways you can go with this: one is to install services one at a time in
a carefully prepared hardware configuration, while the other is to just use a single server
install guide from the OpenStack site and create a single machine that will serve as your
test bed. In this chapter, everything we do is created in such an instance, but before we
learn how to install the system, we need to understand the differences.

https://wiki.openstack.org/wiki/Packstack

444 Scaling Out KVM with OpenStack

OpenStack is a cloud operating system, and its main idea is to enable us to use multiple
servers and other devices to create a coherent, easily configured cloud that can be
managed from a central point, either through an API or through a web server. The size
and type of the OpenStack deployment can be from one server running everything, to
thousands of servers and storage units integrated across several Datacenters. OpenStack
does not have a problem with large-scale deployment; the only real limiting factor is
usually the cost and other requirements for the environment we are trying to create.

We mentioned scalability a few times, and this is where OpenStack shines in both ways.
The amazing thing is that not only does it scale up easily but that it also scales down.
An installation that will work perfectly fine for a single user can be done on a single
machine – even on a single VM inside a single machine – so you will be able to have your
own cloud within a virtual environment on your laptop. This is great for testing things but
nothing else.

Having a bare-metal install that will follow the guidelines and recommended
configuration requirements for particular roles and services is the only way to go forward
when creating a working, scalable cloud, and obviously this is the way to go if you need
to create a production environment. Having said that, between a single machine and
a thousand server installs, there are a lot of ways that your infrastructure can be shaped
and redesigned to support your particular use case scenario.

Let's first quickly go through an installation inside another VM, a task that can be
accomplished in under 10 minutes on a faster host machine. For our platform, we
decided on installing Ubuntu 18.04.3 LTS in order to be able to keep the host system to
a minimum. The entire guide for Ubuntu regarding what we are trying to do is available
at https://docs.openstack.org/devstack/latest/guides/single-
machine.html.

One thing that we must point out is that the OpenStack site has a guide for a number
of different install scenarios, both on virtual and bare-metal hardware, and they are
all extremely easy to follow, simply because the documentation is straight to the point.
There's also a simple install script that takes care of everything once a few steps are done
manually by you.

Be careful with hardware requirements. There are some good sources available to cover
this subject. Start here: https://docs.openstack.org/newton/install-
guide-rdo/overview.html#figure-hwreqs.

https://docs.openstack.org/devstack/latest/guides/single-machine.html
https://docs.openstack.org/devstack/latest/guides/single-machine.html
https://docs.openstack.org/newton/install-guide-rdo/overview.html#figure-hwreqs
https://docs.openstack.org/newton/install-guide-rdo/overview.html#figure-hwreqs

Provisioning the OpenStack environment 445

Installing OpenStack step by step
The first thing we need to do is create a user that is going to install the entire system. This
user needs to have sudo privileges since a lot of things require system-wide permissions.

Create a user either as root or through sudo:

useradd -s /bin/bash -d /opt/stack -m stack

chmod 755 /opt/stack

The next thing we need to do is allow this user to use sudo:

echo "stack ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

We also need to install git and switch to our newly created user:

Figure 12.10 – Installing git, the first step in deploying OpenStack

446 Scaling Out KVM with OpenStack

Now for the fun part. We are going to clone (copy the latest version of) devstack,
the installation script that will provide everything we need to be able to run and use
OpenStack on this machine:

Figure 12.11 – Cloning devstack by using git

A little bit of configuration is now needed. Inside the samples directory, in the directory
we just cloned, there is a file called local.conf. Use it to configure all the things the
installer needs. Networking is one thing that has to be configured manually – not just
the local network, which is the one that connects you to the rest of the internet, but also
the internal network address space, which is going to get used for everything OpenStack
needs to do between instances. Different passwords for different services also need to be
set. All of this can be read in the sample file. Directions on how to exactly configure this
are both on the web at the address we gave you earlier, and inside the file itself:

Figure 12.12 – Installer configuration

Provisioning the OpenStack environment 447

There will be some issues with this installation process, and as a result, installation might
break twice because of the following reasons:

• Ownership of /opt/stack/.cache is root:root, instead of stack:stack.
Please correct this ownership before running the installer;

• An installer problem (a known one), as it fails to install a component and then
fails. Solution is rather simple - there's a line that needs to be changed in a file in
inc directory, called python. At time of writing, line 192 of that file needs to be
changed from $cmd_pip $upgrade \ to $cmd_pip $upgrade --ignore-
installed \

In the end, after we collected all the data and modified the file, we settled on this
configuration:

Figure 12.13 – Example configuration

Most of these parameters are understandable, but let's cover two of them first:
FLOATING_RANGE and FIXED_RANGE. The FLOATING_RANGE parameter tells our
OpenStack installation which network scope will be used for private networks. On
the other hand, FIXED_RANGE is the network scope that will be used by OpenStack-
provisioned virtual machines. Basically, virtual machines provisioned in OpenStack
environments will be given internal addresses from FIXED_RANGE. If a virtual machine
needs to be available from the outside world as well, we will assign a network address from
FLOATING_RANGE. Be careful with FIXED_RANGE as it shouldn't match an existing
network range in your environment.

One thing we changed from what is given in the guide is that we reduced the number of
replicas in the Swift installation to one. This gives us no redundancy, but reduces the space
used for storage and speeds things up a little. Do not do this in the production environment.

Depending on your configuration, you may also need to set the HOST_IP address variable
in the file. Here, set it to your current IP address.

Then, run ./stack.sh.

448 Scaling Out KVM with OpenStack

Once you've run the script, a really verbose installation should start and dump a lot of
lines on your screen. Wait for it to finish – it is going to take a while and download a lot
of files from the internet. At the end, it is going to give you an installation summary that
looks something like this:

Figure 12.14 – Installation summary

Once this is done, if everything is okay, you should have a complete running version of
OpenStack on your local machine. In order to verify that, connect to your machine using
a web browser; a welcome screen should appear:

Figure 12.15 – OpenStack login screen

Provisioning the OpenStack environment 449

After logging in with the credentials that are written on your machine, after the
installation (the default administrator name is admin and the password is the one you set
in local.conf when installing the service), you are going to be welcomed by a screen
showing you the stats for your cloud. The screen you are looking at is actually a Horizon
dashboard and is the main screen that provides you with all you need to know about your
cloud at a glance.

OpenStack administration
Looking at the top-left corner of Horizon, we can see that there are three distinct sections
that are configured by default. The first one – Project – covers everything about our
default instance and its performance. This is where you can create new instances, manage
images, and work on server groups. Our cloud is just a core installation, so we only have
one server and two defined zones, which means that we have no server groups installed:

Figure 12.16 – Basic Horizon dashboard

450 Scaling Out KVM with OpenStack

First, let's create a quick instance to show how this is done:

Figure 12.17 – Creating an instance

Follow these steps to create an instance:

1. Go to Launch Instance in the far-right part of the screen. A window will open
that will enable you to give OpenStack all the information it needs to create a
new VM instance:

Figure 12.18 – Launch Instance wizard

Provisioning the OpenStack environment 451

2. On the next screen, you need to supply the system with the image source. We
already mentioned glances – these images are taken from the Glance store and can
be either an image snapshot, a ready-made volume, or a volume snapshot. We can
also create a persistent image if we want to. One thing that you'll notice is that there
are two differences when comparing this process to almost any other deployment.
The first is that we are using a ready-made image by default as one was provided
for us. Another big thing is the ability to create a new persistent volume to store
our data in, or to have it deleted when we are done with the image, or have it not
be created at all.

Choose the one image you have allocated in the public repository; it should be called
something similar to the one shown in the following screenshot. CirrOS is a test
image provided with OpenStack. It's a minimal Linux distribution that is designed to
be as small as possible and enable easy testing of the whole cloud infrastructure but
to be as unobtrusive as possible. CirrOS is basically an OS placeholder. Of course,
we need to click on the Launch Instance button to go to the next step:

Figure 12.19 – Selecting an instance source

452 Scaling Out KVM with OpenStack

3. The next important part of creating a new image is choosing a flavor. This is another
one of those peculiarly named things in OpenStack. A flavor is a combination of
certain resources that basically creates a computing, memory, and storage template
for new instances. We can choose from instances that have as little as 64 MB of
RAM and 1 vCPU and go as far as our infrastructure can provide:

Figure 12.20 – Selecting an instance flavor

In this particular example, we are going to choose cirros256, a flavor that is
basically designed to provide our test system with as few resources as is feasible.

Provisioning the OpenStack environment 453

4. The last thing we actually need to choose is the network connectivity. We need to set
all the adapters our instance will be able to use while running. Since this is a simple
test, we are going to use both adapters we have, both the internal and external one.
They are called public and shared:

Figure 12.21 – Instance network configuration
Now, we can launch our instance and it will be able to boot. Once you click on
the Launch Instance button, it is going to take probably under a minute to create
a new instance. The screen showing its current progress and instance status will
auto update while the instance is being deployed.

Once this is done, our instance will be ready:

Figure 12.22 – The instance is ready

454 Scaling Out KVM with OpenStack

We'll quickly create another instance, and then create a snapshot so that we can
show you how image management works. If you click on the Create snapshot
button on the right-hand side of the instance list, Horizon will create a snapshot
and immediately put you in the interface meant for image administration:

Figure 12.23 – Images
Now, we have two different snapshots: one that is the start image and another that is
an actual snapshot of the image that is running. So far, everything has been simple.
What about creating an instance out of a snapshot? It's just a click away! What you
need to do is just click on the Launch Instance button on the right and go through
the wizard for creating new instances.

The end result of our short example of instance creation should be something
like this:

Figure 12.24 – New instance creation finished

Provisioning the OpenStack environment 455

What we can see is all the information we need on our instances, what their
IP addresses are, their flavor (which translates into what amount of resources are
allocated for a particular instance), the availability zone that the image is running
in, and information on the current instance state. The next thing we are going to
check out is the Volumes tab on the left. When we created our instances, we told
OpenStack to create one permanent volume for the first instance. If we now click
on Volumes, we should see the volume under a numeric name:

Figure 12.25 – Volumes

From this screen, we can now snapshot the volume, reattach it to a different
instance, and even upload it as an image to the repository.

The third tab on the left-hand side, named Network, contains even more
information about our currently configured setup.

456 Scaling Out KVM with OpenStack

If we click on the Network Topology tab, we will get the whole network topology of
our currently running network, shown in a simple graphical display. We can choose
from Topology and Graph, both of which basically represent the same thing:

Figure 12.26 – Network topology

If we need to create another network or change anything in the network matrix, we
can do so here. We consider this to be really administrator-friendly, on top of being
documentation-friendly. Both of these points make our next topic – day-to-day
administration – much easier.

Provisioning the OpenStack environment 457

Day-to-day administration
We are more or less finished with the most important options that are in any way
connected to the administration of our day-to-day tasks in the Project Datacenter. If we
click on the tab named Admin, we will notice that the menu structure we've opened looks
a lot like the one under Project. This is because, now, we are looking at administration
tasks that have something to do with the infrastructure of the cloud, not the infrastructure
of our particular logical Datacenter, but the same building blocks exist in both of these.
However, if we – for example – open Compute, a completely different set of options exist:

Figure 12.27 – Different available configuration options

This part of the interface is used to completely administer parts that form our infrastructure
and those that define different things we can use while working in our Datacenter. When
logged in as a user, we can add and remove virtual machines, configure networks, and
use resources, but to put resources online, add new hypervisors, define flavors, and do
these kinds of tasks that completely change the infrastructure, we need to be assigned the
administrative role. Some of the functions overlap, such as both the administrative part
of the interface and the user-specific part, which have control over instances. However,
the administrative part has all these functions, and users can have their set of commands
tweaked so that they are, for instance, unable to delete or create new instances.

458 Scaling Out KVM with OpenStack

The adminsitrative view enables us to monitor our nodes on a more direct level, not only
through the services they provide, but also through raw data about a particular host and
the resources utilized on it:

Figure 12.28 – Available hypervisors in our Datacenter

Our Datacenter has only one hypervisor, but we can see the amount of resources
physically available on it, and the share of those resources the current setup is using
at this particular moment.

Flavors are also one important part of the whole of OpenStack. We already mentioned
them as a predefined sets of resource presets that form a platform that the instance is
going to run on. Our test setup has a few of them defined, but we can delete the ones
that are shipped in this setup and create new ones tailored to our needs.

Since the point of the cloud is to optimize resource management, flavors play a big part
in this concept. Creating flavors is not an easy task in terms of planning and design.
First and foremost, it requires deep knowledge of what is possible on a given hardware
platform, how much and what computing resources even exist, and how to utilize it to
the full extent possible. So, it is essential that we plan and design things properly. The
other thing is that we actually need to understand what kind of load we are preparing
for. Is it memory-intensive? Do we have many small services that require a lot of nodes
with a simple configuration? Are we going to need a lot of computing power and/or a
lot of storage? The answers to those questions are something that will not only enable us
to create what our clients want, but also create flavors that will have users utilizing our
infrastructure in full.

Provisioning the OpenStack environment 459

The basic idea is to create flavors that will give individual users just enough resources to
get their job done in a satisfactory way. This is not obvious in a deployment that has 10
instances, but once we run into thousands, a flavor that always leaves 10 percent of the
storage unused is quickly going to eat into our resources and limit our ability to serve
more users. Striking this balance between what we have and what we give users to use in a
particular way is probably the hardest task in planning and designing our environments:

Figure 12.29 – Create Flavor wizard

Creating a flavor is a simple task. We need to do the following:

1. Give it a name; an ID will be assigned automatically.

2. Set the number of vCPUs and RAM for our flavor.

460 Scaling Out KVM with OpenStack

3. Select the size of a base disk, and an ephemeral disk that doesn't get included in any
of the snapshots and gets deleted when a virtual machine is terminated.

4. Select the amount of swap space.

5. Select the RX/TX factor so that we can create a bit of QoS on the network level.
Some flavors will need to have more network traffic priority than others.

OpenStack allows a particular project to have more than one flavor, and for a single
flavor to belong to different projects. Now that we've learned that, let's work with our
user identities and assign them some objects.

Identity management
The last tab on the left-hand side is Identity, which is responsible for handling users, roles,
and projects. This is where we are going to configure not only our usernames, but the user
roles, groups, and projects a particular user can use:

Figure 12.30 – Users, Groups, and Roles management

We are not going to go too much into how users are managed and installed, but just cover
the basics of user management. As always, the original documentation on the OpenStack
site is the place to go to learn more. Make sure that you check out this link: https://
docs.openstack.org/keystone/pike/admin/cli-manage-projects-
users-and-roles.html.

In short, once you create a project, you need to define which users are going to be able to
see and work on a particular project. In order to ease administration, users can also be
part of groups, and you can then assign whole groups to a project.

https://docs.openstack.org/keystone/pike/admin/cli-manage-projects-users-and-roles.html
https://docs.openstack.org/keystone/pike/admin/cli-manage-projects-users-and-roles.html
https://docs.openstack.org/keystone/pike/admin/cli-manage-projects-users-and-roles.html

Provisioning the OpenStack environment 461

The point of this structure is to enable the administrator to limit the users not only to
what they can administer, but also to how many of the available resources are available for
a particular project. Let's use an example for this. If we go to Projects and edit an existing
project (or create a new one), we'll see a tab called Quota in the configuration menu,
which looks like this:

Figure 12.31 – Quotas on the default project

Once you create a project, you can assign all the resources in the form of quotas. This
assignment limits the maximum available resources for a particular group of instances.
The user has no overview of the whole system; they can only see and utilize resources
available through the project. If a user is part of multiple projects, they can create, delete,
and manage instances based on their role in the project, and the resources available to
them are specific to a project.

We'll discuss OpenStack/Ansible integration next, as well as some potential use cases
for these two concepts to work together. Keep in mind that the larger the OpenStack
environment is, the more use cases we will find for them.

462 Scaling Out KVM with OpenStack

Integrating OpenStack with Ansible
Dealing with any large-scale application is not easy, and not having the right tool can
make it impossible. OpenStack provides a lot of ways for us to directly orchestrate and
manage a huge horizontal deployment, but sometimes, this is not enough. Luckily, in our
arsenal of tools, we have another one – Ansible. In Chapter 11, Ansible for Orchestration
and Automation, we covered some other, smaller ways to use Ansible to deploy and
configure individual machines, so we are not going to go back to that. Instead, we are
going to focus on things that Ansible is good for in the OpenStack environment.

One thing that we must make clear, though, is that using Ansible in an OpenStack
environment can be based on two very distinct scenarios. One is using Ansible to handle
deployed instances, in a way that would pretty much look the same across all the other
cloud or bare-metal deployments. You, as an administrator of a large number of instances,
create a management node that is nothing more than a Python-enabled server with
added Ansible packages and playbooks. After that, you sort out the inventory for your
deployment and are ready to manage your instances. This scenario is not what this part
of this chapter is about.

What we are talking about here is using Ansible to manage the cloud itself. This means
we are not deploying instances inside the OpenStack cloud; we are deploying compute
and storage nodes for OpenStack itself.

The environment we are talking about is sometimes referred to as OpenStack-Ansible
(OSA) and is common enough to have its own deployment guide, located at the following
URL: https://docs.openstack.org/project-deploy-guide/openstack-
ansible/latest/.

The requirements for a minimal installation in OpenStack-Ansible are considerably
greater than those in a single VM or on a single machine. The reason for this is not
just that the system needs all the resources; it's the tools that need to be used and the
philosophy behind it all.

Let's quickly go through what Ansible means in terms of OpenStack:

• Once configured, it enables the quick deployment of any kind of resource, be it
storage or computing.

• It makes sure you are not forgetting to configure something in the process. When
deploying a single server, you will have to make sure that everything works and that
errors in configuration are easy to spot, but when deploying multiple nodes, errors
can creep in and degrade the performance of part of the system without anyone
noticing. The normal deployment practice to avoid this is an installation checklist,
but Ansible is a much better solution than that.

https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/
https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/

Integrating OpenStack with Ansible 463

• More streamlined configuration changes. Sometimes, we need to apply
a configuration change across the whole system or some part of it. This can be
frustrating if not scripted.

So, having said all that, let's quickly go through https://docs.openstack.org/
openstack-ansible/latest/ and see what the official documentation says about
how to deploy and use Ansible and OpenStack.

What exactly does OpenStack offer to the administrator in regard to Ansible? The simplest
answer is playbooks and roles.

To use Ansible to deploy OpenStack, you basically need to create a deployment host
and then use Ansible to deploy the whole OpenStack system. The whole workflow goes
something like this:

1. Prepare the deployment host

2. Prepare the target hosts

3. Configure Ansible for deployment

4. Run playbooks and let them install everything

5. Check whether OpenStack is correctly installed

When we are talking about deployment and target hosts, we need to make a clear
distinction: the deployment host is a single entity holding Ansible, scripts, playbooks,
roles, and all the supporting bits. The target hosts are the actual servers that are going
to be part of the OpenStack cloud.

The requirements for installation are straightforward:

• The operating system should be a minimal installation of Debian, Ubuntu CentOS,
or openSUSE (experimental) with the latest kernel and full updates applied.

• Systems should also run Python 2.7, have SSH access enabled with public key
authentication, and have NTP time sync enabled. This covers the deployment host.

• There are also usual recommendations for different types of nodes. Computing nodes
must support hardware-assisted virtualization, but that's an obvious requirement.

• There is a requirement that should go without saying, and that is to use multicore
processors, with as many cores as possible, to enable some services to run much faster.

https://docs.openstack.org/openstack-ansible/latest/
https://docs.openstack.org/openstack-ansible/latest/
https://docs.openstack.org/openstack-ansible/latest/

464 Scaling Out KVM with OpenStack

Disk requirements are really up to you. OpenStack suggests using fast disks if possible,
recommending SSD drives in a RAID, and large pools of disks available for block storage.

• Infrastructure nodes have requirements that are different than the other types
of nodes since they are running a few databases that grow over time and need at
least 100 GB of space. The infrastructure also runs its services as containers, so
it will consume resources in a particular way that will be different than the other
compute nodes.

The deployment guide also suggests running a logging host since all the services create
logs. The recommended disk space is at least 50 GB for logs, but in production, this will
quickly grow in orders of magnitude.

OpenStack needs a fast, stable network to work with. Since everything in OpenStack
will depend on the network, every possible solution that will speed up network access
is recommended, including using 10G and bonded interfaces. Installing a deployment
server is the first step in the overall process, which is why we'll do that next.

Installing an Ansible deployment server
Our deployment server needs to be up to date with all the upgrades and have Python,
git, ntp, sudo, and ssh support installed. After you've installed the required packages,
you need to configure the ssh keys to be able to log into the target hosts. This is an
Ansible requirement and is also a best practice that leverages security and ease of access.

The network is simple – our deployment host must have connectivity to all the other
hosts. The deployment host should also be installed on the L2 of the network, which
is designed for container management.

Then, the repository should be cloned:

git clone -b 20.0.0 https://opendev.org/openstack/openstack-
ansible /opt/openstack-ansible

Next, an Ansible bootstrap script needs to be run:

scripts/bootstrap-ansible.sh

Integrating OpenStack with Ansible 465

This concludes preparing the Ansible deployment server. Now, we need to prepare the
target computers we are going to use for OpenStack. Target computers are currently
supported on Ubuntu Server (18.04) LTS, CentOS 7, and openSUSE 42.x (at the time of
writing, there still isn't CentOS 8 support). You can use any of these systems. For each of
them, there is a helpful guide that will get you up and running quickly: https://docs.
openstack.org/project-deploy-guide/openstack-ansible/latest/
deploymenthost.html. We'll just explain the general steps to ease you into installing
it, but in all truth, just copy and paste the commands that have been published for your
operating system from https://www.openstack.org/.

No matter which system you decide to run on, you have to be completely up to date
with system updates. After that, install the linux-image-extra package (if it exists
for your kernel) and install the bridge-utils, debootstrap, ifenslave, lsof,
lvm2, chrony, openssh-server, sudo, tcpdump, vlan, and Python packages. Also,
enable bonding and VLAN interfacing. All these things may or may not be available for
your system, so if something is already installed or configured, just skip over it.

Configure the NTP time sync in chrony.conf to synchronize time across the whole
deployment. You can use any time source you like, but for the system to work, time must
be in sync.

Now, configure the ssh keys. Ansible is going to deploy using ssh and key-based
authentication. Just copy the public keys from the appropriate user on your deployment
machine to /root/.ssh/authorized_keys. Test this setup by simply logging in
from the deployment host to the target machine. If everything is okay, you should be able
to log in without any password or any other prompt. Also, note that the root user on the
deployment host is the default user for managing everything and that they have to have
their ssh keys generated in advance since they are used not only on the target hosts but
also in all the containers for different services running across the system. These keys must
exist when you start to configure the system.

For storage nodes, please note that LVM volumes will be created on the local disks,
thus overwriting any existing configuration. Network configuration is going to be done
automatically; you just need to ensure that Ansible is able to connect to the target machines.

The next step is configuring our Ansible inventory so that we can use it. Let's do that now.

https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/deploymenthost.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/deploymenthost.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/deploymenthost.html
https://www.openstack.org/

466 Scaling Out KVM with OpenStack

Configuring the Ansible inventory
Before we can run the Ansible playbooks, we need to finish configuring the Ansible
inventory so that it points the system to the hosts it should install on. We are going
to quote the verbatim, available at https://docs.openstack.org/project-
deploy-guide/openstack-ansible/queens/configure.html:

1. Copy the contents of the /opt/openstack-ansible/etc/openstack_deploy
directory to

 the /etc/openstack_deploy directory.

2. Change to the /etc/openstack_deploy directory.

3. Copy the openstack_user_config.yml.example file to

 /etc/openstack_deploy/openstack_user_config.yml.

4. Review the openstack_user_config.yml file and make changes to the
deployment

 of your OpenStack environment.
Once inside the configuration file, review all the options. Openstack_user_config.
yml defines which hosts run which services and nodes. Before committing to installing,
please review the documentation mentioned in the previous paragraph.

One thing that stands out on the web is install_method. You can choose either source
or distro. Each has its pros and cons:

• Source is the simplest installation as it's done directly from the sources on the
OpenStack official site and contains an environment that's compatible with
all systems.

• The distro method is customized for the particular distribution you are installing
on by using specific packages known to work and known as being stable. The
major drawback of this is that updates are going to be much slower since not only
OpenStack needs to be deployed but also information about all the packages on
distributions, and that setup needs to be verified. As a result, expect long waits
between when the upgrade reaches the source and gets to your distro installation.
After installing, you must go with your primary choice; there is no mechanism
for switching from one to the other.

The last thing you need to do is open the user_secrets.yml file and assign passwords
for all the services. You can either create your own passwords or use a script provided just
for this purpose.

https://docs.openstack.org/project-deploy-guide/openstack-ansible/queens/configure.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/queens/configure.html

Summary 467

Running Ansible playbooks
As we go through the deployment process, we will need to start a couple of Ansible
playbooks. We need to use these three provided playbooks in this order:

• setup-hosts.yml : The initial Ansible playbook that we use to provision the
necessary services on our OpenStack hosts.

• setup-infrastructure.yml: The Ansible playbook that deploys some more
services, such as RabbitMQ, repository server, Memcached, and so on.

• setup-openstack.yml: The Ansible playbook that deploys the remaining
services – Glance, Cinder, Nova, Keystone, Heat, Neutron, Horizon, and so on.

All of these Ansible playbooks need to be finished successfully so that we can integrate
Ansible with Openstack. So, the only thing left is to run the Ansible playbooks. We need
to start with the following command:

openstack-ansible setup-hosts.yml

You can find the appropriate files in /opt/openstack-ansible/playbooks. Now,
run the remaining setups:

openstack-ansible setup-infrastructure.yml

openstack-ansible setup-openstack.yml

All the playbooks should finish without unreachable or failed plays. And with
that – congratulations! You have just installed OpenStack.

Summary
In this chapter, we spent a lot of time describing the architecture and inner workings
of OpenStack. We discussed software-defined networking and its challenges, as well as
different OpenStack services such as Nova, Swift, Glance, and so on. Then, we moved
on to practical issues, such as deploying Packstack (let's just call that OpenStack for
proof of concept), and full OpenStack. In the last part of this chapter, we discussed
OpenStack-Ansible integration and what it might mean for us in larger environments.

Now that we've covered the private cloud aspect, it's time to grow our environment
and expand it to a more public or hybrid-based approach. In KVM-based infrastructures,
this usually means connecting to AWS to convert your workloads and transfer them there
(public cloud). If we're discussing the hybrid type of cloud functionality, then we have
to introduce an application called Eucalyptus. For the hows and whys, check out the
next chapter.

468 Scaling Out KVM with OpenStack

Questions
1. What is the main problem with VLAN as a cloud overlay technology?

2. Which types of cloud overlay networks are being used on the cloud market today?

3. How does VXLAN work?

4. What are some of the most common problems with stretching Layer 2 networks
across multiple sites?

5. What is OpenStack?

6. What are the architectural components of OpenStack?

7. What is OpenStack Nova?

8. What is OpenStack Swift?

9. What is OpenStack Glance?

10. What is OpenStack Horizon?

11. What are OpenStack flavors?

12. What is OpenStack Neutron?

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• OpenStack documentation: https://docs.openstack.org

• Arista VXLAN overview: https://www.arista.com/assets/data/pdf/
Whitepapers/Arista_Networks_VXLAN_White_Paper.pdf

• Red Hat – What is GENEVE?: https://www.redhat.com/en/blog/what-
geneve

• Cisco – Configuring Virtual Networks Using OpenStack: https://www.cisco.
com/c/en/us/td/docs/switches/datacenter/nexus1000/kvm/
config_guide/network/5x/b_Cisco_N1KV_KVM_Virtual_Network_
Config_5x/configuring_virtual_networks_using_openstack.pdf

• Packstack: http://rdoproject.org

https://docs.openstack.org
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_Networks_VXLAN_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_Networks_VXLAN_White_Paper.pdf
https://www.redhat.com/en/blog/what-geneve
https://www.redhat.com/en/blog/what-geneve
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/kvm/config_guide/network/5x/b_Cisco_N1KV_KVM_Virtual_Network_Config_5x/configuring_virtual_networks_using_openstack.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/kvm/config_guide/network/5x/b_Cisco_N1KV_KVM_Virtual_Network_Config_5x/configuring_virtual_networks_using_openstack.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/kvm/config_guide/network/5x/b_Cisco_N1KV_KVM_Virtual_Network_Config_5x/configuring_virtual_networks_using_openstack.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/kvm/config_guide/network/5x/b_Cisco_N1KV_KVM_Virtual_Network_Config_5x/configuring_virtual_networks_using_openstack.pdf
http://rdoproject.org

13
Scaling out KVM

with AWS
Virtualization is a hard problem if you take a look at it up close – it is complicated to
emulate complete computers in order to be able to run operating systems on them. For
obvious reasons, getting those virtual machines into a cloud is even harder. After that,
things really start to get messy. Conceptually, creating clusters of machines that can run
on demand is even more complicated, based on the sheer number of machines that must
run at the same time. Also, there's a need to create not only emulated computers but also
all the networking and infrastructure to support larger deployments. Creating a global
cloud – one that not only runs millions of machines but is also almost omnipresent in
even the most remote parts of the globe – is a task that few companies have ever tried, and
only a couple have succeeded. This chapter will cover those big cloud providers in general,
and then Amazon, as the biggest of them all. Our main idea is to present what makes
Amazon tick, how it relates to the rest of the topics covered in this book, and how to use
the services Amazon enables in the real world on real machines.

Amazon Web Services (AWS) is a unique set of tools, services, and infrastructure that
enable cloud services on a really massive scale, a scale that is so huge that it becomes hardly
comprehensible. When we are talking about thousands of sites using millions of servers
to run billions of applications, even enumerating these things becomes a big problem,
and management is something that can easily span not only a single chapter, but probably
multiple books. We are going to try to introduce you to the most important services and
parts of the AWS cloud, and try to explain what they can be used for and when.

470 Scaling out KVM with AWS

In this chapter, we will cover the following topics:

• Introduction to AWS
• Preparing and converting virtual machines for AWS
• Building hybrid KVM clouds with Eucalyptus

Introduction to AWS
While talking about cloud services, AWS is one that needs almost no introduction,
although few people actually understand how big and complex a system the whole
Amazon cloud is. What is completely certain is that, at this time, it is unquestionably
the biggest and most used service on the planet.

Before we do anything else, we need to talk about how and why AWS is so important,
not only in regard to its impact on the internet but also on any task that even remotely
tries to provide some kind of scaling.

As we already have done a couple of times in this book, we will start with the basic
premise of the AWS cloud – to provide a broadly scalable and distributed solution that
will encompass all possible scenarios for performing any type of workload on the internet.

In almost every other place in this book where we mentioned the cloud, we talked about
scaling up, but when we try to describe AWS as being able to scale, we are talking about
probably one of the largest providers of capacity and scalability on the planet.

Right now, there are more or less four really big cloud providers on the internet: AWS,
Microsoft Azure, Google Cloud Platform, and Alibaba. Since all the numbers are
confidential for business reasons, the number of servers and sheer capacity they can
provide is something analysts try to estimate, or more frequently guess, but it has to
be in the millions.

Approaching the cloud
Although on the surface they are now competing for the same cloud market, all the
players came from different backgrounds, and the way they use their infrastructure even
now is vastly different. In this market, Amazon was first, and it got a head start that in
IT seems almost unbelievable – roughly 6 years. Amazon introduced its Amazon Web
Services in 2006 but it started the development of the service a couple of years earlier.
There is even a blog post that mentions the service published back in 2004. The idea for
AWS was basically conceived once Amazon realized it had a vast infrastructure that was
unmatched in the market, and that by expanding it and offering it as a service, it could
make a profit. At that point in time, the infrastructure they had was used to provide the
Amazon.com service.

Introduction to AWS 471

This idea was different from anything on the market. People were used to having
collocated computers in data centers, and being able to rent a server in the cloud, but the
concept of renting just the part of the stack they needed instead of the entire hardware
infrastructure was something new. The first big service AWS offered was simple, and
was even named like that – Simple Storage Service (S3), along with Elastic Compute
Cloud (EC2). S3 was basically cloud-backed storage that offered almost unlimited storage
resources for those who could pay for them in pretty much the same way it is available
even today. EC2 offered computing resources.

Offerings expanded to a Content Delivery Network (CDN) and much more during the
next 6 years, while the competition was still trying to get to grips with what the cloud
actually meant.

We'll come back to the services AWS offers in a moment, but only after we mention the
competition they eventually got in what has become a market worth hundreds of billions
of dollars yearly.

Microsoft realized it would need to build up an infrastructure to support itself and its
customers sometime in the late 2000s. Microsoft had its own business support infrastructure
in place to run the company, but there were no public services offered to the general public
at that time. That changed once Microsoft Azure was introduced in 2010. Initially, it was
called Windows Azure, and it was mainly created to run services for both Microsoft and its
partners, mainly on Windows. Very quickly, Microsoft realized that offering just a Microsoft
operating system in the cloud was going to cost them a lot of customers, so Linux was also
offered as an operating system than could be installed and used.

Azure now runs as a publicly available cloud, but a large portion of it is still used by
Microsoft and its services, most notably Office 365 and a myriad of Microsoft training
and marketing solutions.

Google, on the other hand, came to the market in a different way. They also realized the
need for a cloud offering but limited their first engagement with the cloud to offering a
single service called App Engine, in 2008. It was a service targeted at the web developer
community, and Google even gave 10,000 free licenses for the usage of the service in a
limited way. At its core, this service and almost all the services that came after it came out
with the premise that the web needs services that will enable developers to quickly deploy
something that may or may not scale and that may or may not work. Therefore, giving it for
free meant that a lot of developers were inclined to use the service just for simple testing.

Google now also has a vast number of services offered, but when you take a look from
outside at the actual services and the pricing, it seems that Google has created its cloud
as a way to lease out extra capacity it has available in its data centers.

472 Scaling out KVM with AWS

Multi-cloud
Looking a few years back, both Azure and Google Cloud Platform had a viable cloud
service, but compared to what AWS was offering, their services were simply not up to par.
AWS was the biggest player, both in terms of market share, but also in people's minds.
Azure was considered as being more Microsoft oriented, although more than half of the
servers running on it are Linux-based, and Google just wasn't perceived as a competitor;
their cloud looked more like a side business than a viable proposal to run a cloud.

Then came multi-cloud. The idea is simple – do not use a single cloud to deploy your
services; use multiple cloud providers to provide both data redundancy, availability, and
failover, and most important – cost reduction and agility. It may sound strange, but one of
the biggest costs when using a cloud service is getting data out of it. Usually, getting data
into the cloud, be it the user uploading data, or you deploying data on a server, is either
free or has an extremely low cost, which makes sense, since you are more likely to use
more services on this particular cloud if you have a lot of data online. Once you need to
extract your data, it becomes expensive. This is intentional, and it keeps users locked into
the cloud provider. Once you upload your data, it is much cheaper to just keep it on the
servers and not try to work with it offline. But the data is not the only thing that has to be
considered when talking about multi-cloud; services are also part of the equation.

Why multi-cloud?
Many companies (and we must stress that multi-cloud users are mostly big companies
because of the costs involved) are scared of being locked into a particular platform
or technology. One of the biggest questions is what happens if a platform changes
so much that the company has to redo part of its infrastructure? Imagine that you
are a multibillion-dollar company running an enterprise application for hundreds of
thousands of your own users. You chose the cloud for the usual reasons – to keep capital
expenditures down and to be able to scale your services. You decided to go with one
of the big providers. Suddenly, your provider decides it is going to change technologies
and will phase out some part of the infrastructure. When it comes to shifts like that it
usually means that your current setup will slowly become much more expensive, or you
are going to lose some part of the available functionalities. Thankfully, these things also
typically stretch into years, as no sane cloud provider is going to go through a strategic
change overnight.

But a change is a change, and you as a corporation have a choice – stay with the provider
and face the consequences in the form of a much higher price for your systems – or
redesign the systems, which will also cost money, and may take years to finish – sometimes
decades.

Introduction to AWS 473

So, a lot of companies decided on a very conservative strategy – to design a system that
could run on any cloud, and that means using the lowest common denominator of all
available technologies. This also means that the system can be migrated from cloud to
cloud in a matter of days. Some of them then decided to even run the system on different
clouds at the same time. This is an extremely conservative approach, but it works.

Another big reason to use a multi-cloud strategy is the complete opposite of the one that
we just mentioned. Sometimes, the idea is to use a particular cloud service or services
that are the best in a very specialized task. This means choosing different services from
different providers to perform separate tasks but to do it as efficiently as possible. In the
long run, it will also mean having to change providers and systems from time to time, but
if the core system that the company uses is designed with that in mind, this approach can
have its benefits.

Shadow IT
There is another way that a company can become a multi-cloud environment without even
knowing it, this is usually called Shadow IT. If a company does not have a strict security
policy and rules, some of the workers might start using services that are not part of the
services that they are provided with by the company. It could be a cloud storage container,
a videoconferencing system, or a mailing list provider. In bigger companies, it could even
be that entire departments start using something from different cloud providers without
even realizing it. All of a sudden, there is company data on a server that is outside of the
scope that company's IT covers or is able to cover.

One of the better examples of this particular phenomenon was how the usage of video
conferencing services changed during the COVID-19 virus worldwide pandemic. Almost
all companies had an established communication system, usually a messaging system that
covered the whole company. And then, literally overnight, the pandemic put all workers
in their homes. Since communication is the crucial thing in running a company, everyone
decided to switch to video and audio conferencing in the span of a week, globally. What
happened next can and probably will become a bestselling book theme one day. Most
companies tried to stick with their solution but almost universally that attempt failed on
the first day, either because the service was too basic or too outdated to be used as both
an audio and video conferencing solution, or because the service was not designed for
the sheer volume of calls and requests and crashed.

People wanted to coordinate, so suddenly nothing was off the table. Every single video
conferencing solution suddenly became a candidate. Companies, departments, and teams
started experimenting with different conferencing systems, and cloud providers soon
realized the opportunity – almost all the services instantly became free for even sizeable
departments, allowing, in some cases, up to 150 people to participate in conferences.

474 Scaling out KVM with AWS

A lot of services crashed due to demand, but big providers mostly were able to scale up to
the volume required to keep everything running.

Since the pandemic was global, a lot of people decided they also needed a way to talk to
their family. So individual users started using different services at home, and when they
decided something worked, they used it at work. In a matter of days, companies became
a multi-cloud environment with people using one provider for communication, another
for email, a third for storage, and a fourth for backups. The change was so quick that
sometimes IT was informed of the change a couple of days after the systems went online
and the people were already using them.

This change was so enormous that at the time we are writing this book, we cannot even try
to predict how many of these services are going to become a regular part of the company
toolset, once users realize something works better than the company-provided software.
These services further prove this point by being able to work continuously through a
major disaster like this, so there is only so much a company-wide software usage policy
can do to stop this chaotic multi-cloud approach.

Market share
One of the first things everyone mentions as soon as cloud computing companies and
services are mentioned is the market share each one of them has. We also need to address
this point, since we said that we are talking about the biggest one or the second one. Before
multi-cloud became a thing, market share was divided basically between AWS, with the
biggest market share; Azure as a distant second; followed by Google and a big group of
small providers, such as Alibaba, Oracle, IBM, and such.

Once multi-cloud became a thing, the biggest problem became how to establish who
had the biggest actual market share. All the big companies started using different cloud
providers and just simply trying to add up the market share of the providers became
difficult. From different polls, it is clear that Amazon is still the leading provider but that
companies are slowly starting to use other providers together with Amazon services.

What this means is that, right now, AWS is still by far the cloud provider of choice but the
choice itself is no longer about a single provider. People are using other providers as well.

Big infrastructure but no services
Sometimes, trying to divide the market share also has another point of view that must be
considered. If we are talking about cloud providers, we usually think that we are talking
about companies that have the biggest infrastructure created to support cloud services.
Sometimes, in reality, we are actually comparing those companies that have the biggest
portfolio of the services on the market. What do we mean by this?

Introduction to AWS 475

There is a distinct company that has a big cloud presence but uses its own infrastructure
almost exclusively to deliver its own content – Facebook. Although it's hard to compare
infrastructure sizes in terms of the number of servers, data centers, or any other metric,
since those numbers are a closely guarded secret, Facebook has an infrastructure that is in
the same order of magnitude in size as AWS. The real difference is that this infrastructure
is not going to serve services for third parties, and in reality, it was never meant to do so;
everything that Facebook created was tailor-made to support itself, including choosing
locations for the data centers, configuring and deploying hardware, and creating software.
Facebook is not going to suddenly turn into another AWS; it's too big to do that. Available
infrastructure does not always correlate with cloud market share.

Pricing
Another topic we have to cover, if just to mention it, is the one of pricing. Almost every
mention of the cloud in this book is technical. We compared probably every possible
metric that made any sense, from IOPS, through GHz, to PPS on the network side, but
the cloud is not only a technical problem – when you have to put it in use, someone has
to pay for it.

Pricing is a hot topic in the cloud world since the competition is fierce. All the cloud
providers have their pricing strategies, and rebates and special deals are almost the norm,
and all that turns understanding pricing into a nightmare, especially if you are new to all
the different models. One thing is certain, all the providers will say that they are going to
charge you only for what you use but defining what they actually mean by that can be
a big problem.

When starting to plan the costs of deployment, you should first stop and try to define
what you need, how much of it you need, and whether you are using the cloud in the way
it is meant to be used. By far the most common mistake is to think that the cloud is in
any form similar to using a normal server. The first thing people notice is the price of a
particular instance, in a particular data center, running a particular configuration. The
price will usually be either the monthly cost of the instance, and will usually be prorated,
so you will pay only for the part that you use, or the price will be given for a different time
unit – per day, per hour, or maybe even per second. This should be your first clue: you
pay for using the instance, so in order to keep the costs down, do not keep your instances
running all the time. This also means that your instances must be designed to be quickly
brought up and down on demand so using the standard approach of installing a single or
multiple servers and running them all the time is not necessarily a good option here.

476 Scaling out KVM with AWS

When choosing instances, the options are literally too numerous to name here. All the
cloud providers have their own idea of what people need, so you can not only choose
simple things such as the number of processors or the amount of memory but also get an
OS preinstalled, and get wildly varied types of storage and networking options. Storage
is an especially complicated topic we are just going to quickly scratch the surface of here
and only mention later. All the cloud providers offer two things – some sort of storage
meant to be attached to instances, and some sort of storage that is meant to be used as a
service. What a given provider offers can depend on the instance you are trying to request,
the data center you are trying to request it in, and a number of other factors. Expect that
you will have to balance three things: capacity, pricing, and speed. Of course, here, we are
talking about instance storage. Storage as a service is even more complicated and with
that, you have to think about pricing and capacity, but also about other factors like latency,
bandwidth, and so on.

For example, AWS enables you to choose from a variety of services that go from database
storage, file storage, and long-term backup storage, to different types of block and object
storage. In order to use these services optimally, you need to first understand what is being
offered, how it's being offered, what the different costs involved are, and how to use them
to your advantage.

Another thing that you will notice quickly is that when the cloud providers said that
everything is a service, they really meant it. It is completely possible to have a running
application without having a single server instance. Tasks can be accomplished by
stitching different services together, and this is by design. This creates an enormously
flexible infrastructure, one that scales quickly and easily, but requires not only a different
way of writing code but a completely different mindset when designing the solution you
need. If you have no experience, find an expert, since this is the fundamental problem
with your solution. It has to run on the cloud, not be running on your virtual machines
that happen to be in the cloud.

Our advice to you is simple – read a lot of documentation. All the providers have excellent
resources that will enable you to understand what their service provides, and how, but
what the thousands of pages will not tell you is how it compares to the competition, and
more importantly, what is the optimal way of connecting the services together. When
paying for cloud services, expect that you will make a mistake once in a while and pay for
it. This is why it's useful to use a pay-as-you-go option when getting services deployed – if
you make a mistake, you will not run up a huge bill; your infrastructure will simply stop.

Introduction to AWS 477

The other thing to mention when talking about pricing is that everything costs a little, but
the composite price for a given configuration can be huge. Any additional resource will
cost money. An internal link between servers, external IP address, firewall, load balancer,
virtual switch, these are all the things that we usually don't even think about when
designing infrastructure, but once we need them in the cloud, they can become expensive.
Another thing to expect is that some of the services have different contexts – for example,
network bandwidth can have a different price if you are transferring data between
instances or to the outside world. The same goes for storage – as we mentioned earlier in
this chapter, most providers will charge you different prices when storing and getting data
out of the cloud.

Data centers
A couple of times in this chapter, we have mentioned data centers, and it is important that
we talk a little bit about them. Data centers are at the core of the cloud infrastructure, and
in more ways than you may think of. When we talked about a lot of servers, we mentioned
that we usually group them into racks, and put the racks into data centers. As you are
probably aware, a data center is in its essence a group of racks with all the infrastructure
that servers need to function optimally, both in terms of power and data, but also when it
comes to cooling, securing, and all the other things required to keep the servers running.
They also need to be logically divided into risk zones that we usually call fault domains,
so that we can avert various risks associated with the we deployed everything on one rack
or we deployed everything on one physical server scenarios.

A data center is a complex infrastructure element in any scenario since it requires a
combination of things to be efficient, secure, and redundant. Putting a group of servers
in a rack is easy enough, but providing cooling and power is not a simple task. Add to
that the fact that the cooling, power, and data all have to be redundant if you want your
servers to work, and that all that needs to be secure, both from fires, floods, earthquakes
and people, and the cost of running a real data center can be high. Of course, a data center
running a couple of hundred servers is not as complex as the one running thousands or
even tens of thousands, and the prices rise with the size of the facility. Add to that that
having multiple data centers creates additional infrastructure challenges in connecting
them so costs add up.

478 Scaling out KVM with AWS

Now multiply that cost by a hundred since this is the number of data centers each of the
cloud providers keep around the world. Some of the centers are small, some are huge
but the name of the game is simple – networking. In order to be a truly global provider,
all of them have to have a data center, or a couple of servers at least, as close to you as
possible. If you are reading this in one of the bigger cities in almost any big country in the
world, chances are there is an AWS, Microsoft, or Google-owned server in a radius of 100
miles from you. All the providers try to have at least one data center in every big city in
every country since that can enable them to offer a range of services extremely quickly.
This concept is called Point of Contact (POC) and means that when connecting to the
provider's cloud, you just need to get to the nearest server, and after that, the cloud will
make sure your services are as quick as possible.

But when we are talking about data centers that actually belong to Amazon or the others,
we are still dealing with a large-scale operation. Here, numbers are in the hundreds, and
their location is also a secret, mainly for security reasons. They all have a few things in
common. They are a highly automated operation situated somewhere in the vicinity of
a major power source, a major source of cooling, or a major data hub. Ideally, they would
be placed in a spot that has all those three things, but that is usually not possible.

Placement is the key
Different companies have different strategies since choosing a good place to build a data
center can mean a lot of cost savings. Some even go to extremes. Microsoft, for instance,
has a data center completely submerged in the ocean to facilitate cooling.

When providing a service for a particular user, your main concern is usually speed and
latency, and that in turn means that you want your server or your service to run in the
data center that is closest to the user. For that purpose, all cloud providers divide their
data centers geographically, which in turn enables administrators to deploy their services
in the optimal part of the internet. But at the same time, this creates a typical problem
with resources – there are places on the planet that have a small number of available data
centers but are heavily populated, and there are places that are quite the opposite. This in
turn has a direct influence on the price of resources. When we talked about pricing, we
mentioned different criteria; now we can add another one – location. The location of a
data center is usually given as a region. This means that AWS, or any other provider for
that matter, is not going to give you the location of their data center, but instead will say
users in this region would be best served by this group of servers. As a user, you have no idea
where the particular servers are, but instead, you only care about the region as given to
you by the provider. You can find the names of service regions and their codes here:

Introduction to AWS 479

Figure 13.1 – Service regions on AWS with the names used in the configuration

Choosing a service provided by a region that is in heavy demand can be expensive, and
that same service can be much cheaper if you choose a server that is somewhere else. This
is the beauty of the cloud – you can use the services that suit you and your budget.

Sometimes price and speed are not the most important things. For example, legal
frameworks such as GDPR, a European regulation on personal data collection,
processing, and movement, basically states that companies from Europe must use a data
center in Europe since they are covered by the regulation. Using a US region in this case
could mean that a company could be legally liable (unless the company running this cloud
service is a part of some other framework that allows this – such as Privacy Shield).

480 Scaling out KVM with AWS

AWS services
We need to talk a little bit about what AWS offers in terms of services since understanding
services is one thing that will enable you to use the cloud appropriately. On AWS, all the
available services are sorted into groups by their purpose. Since AWS has hundreds of
services, the AWS management console, the first page you will see once you log in, will
at first be a daunting place.

You will probably be using the AWS Free Tier for learning purposes, so the first step is to
actually open an AWS Free account. Personally, I used my own personal account. For the
Free account, we need to use the following URL: https://aws.amazon.com/free/,
and follow along with the procedure. It just asks for a couple of pieces of information,
such as email address, password, and AWS account name. It will ask you for credit card
info as well, to make sure that you don't abuse the AWS account.

After signing up, we can log in and get to the AWS dashboard. Take a look at this screenshot:

Figure 13.2 – Amazon services

https://aws.amazon.com/free/

Introduction to AWS 481

Every single thing here is a link, and they all point to different services or pages with
subservices. Moreover, this screenshot shows only about a third of all available services.
There is no point in covering them all in this book; we are just going to use three of all
these to show how AWS connects to our KVM infrastructure, but once you get the hang
of it, you will slowly begin to understand how everything connects and what to use in
a particular moment. What really helps is that AWS has great documentation, and that
all the different services have provisioning wizards that help you find the thing you are
looking for.

In this particular chapter, we are going to use these three services: IAM, EC2, and S3.

All of these are of course abbreviations, but other services just use project names, such as
CloudFront or Global Accelerator. In any case, your first point of order should be to start
using them, not just read about them; it is much easier to understand the structure once
you put it to good use.

In this chapter, we used a Free account, and almost everything we did was free, so there
is no reason for you not to try to use the AWS infrastructure yourself. AWS tries to be
helpful there as much as it can, so if you scroll down on the console page, you will find
these helpful icons:

Figure 13.3 – Some AWS wizards, documentation, and videos – all very helpful

482 Scaling out KVM with AWS

All of these are simple scenarios that will get you up and running in a couple of minutes,
for free. Amazon realizes that first-time users of the cloud are overwhelmed with all the
choices, so they try to get your first machine running in a couple of minutes to show you
how easy it is.

Let's get you acquainted with the services we are going to use, which we're going to do
by using a scenario. We want to migrate a machine that was running in our local KVM
installation into Amazon AWS. We are going to go through the whole process step by step,
but we first need to understand what we need. The first thing, obviously, is the ability to
run virtual machines in the cloud. In the AWS universe, this is EC2 or Amazon Elastic
Compute Cloud in full.

EC2
EC2 is one of the few real core services that basically runs everything there is to run in
the AWS cloud. It is a scalable computing capacity provider for the whole infrastructure.
It enables running different instances or virtual computing environments, using various
configurations of storage, memory, CPU, and networking, and it also provides everything
else those instances need, including security, storage volumes, zones, IP addresses, and
virtual networks. Some of these services are also available separately in case you need
more complex scenarios, for example, a lot of different storage options exist, but the core
functionality for the instances is provided by EC2.

S3
The full name of this service is actually Amazon Simple Storage Service, hence the name
Amazon S3. The idea is to give you the ability to store and retrieve any amount of data,
anytime you need it, using one or more of the methods offered. The most important
concept we are going to use is an S3 bucket. A bucket is a logical storage element that
enables you to group objects you store. Think of it as a name for a storage container you
will later use to store things, whatever those things may be. You can name your buckets
however you want, but there is a thing we must point out – the names of buckets have to
be globally unique. This means that when you name a bucket, it must have a name that is
not repeated anywhere else in any of the regions. This makes sure that your bucket will
have a unique name, but it also means that trying to create a generic-sounding name
such as bucket1 or storage is probably not going to work.

Preparing and converting virtual machines for AWS 483

Once you create a bucket, you can upload and download data from it using the web, a
CLI, or an API. Since we are talking about a global system, we must also point out that
data is stored in the region you specify when creating the bucket, and is kept there unless
you specify you want some form of multi-region redundancy. Have that in mind when
deploying buckets, since once you start using the data in the bucket, your users or your
instances need to get the data, and latency can become a problem. Due to legal and privacy
concerns, data never leaves your dedicated region unless you explicitly specify otherwise.

A bucket can store any number of objects, but there is a limit of 100 buckets per account.
If that is not enough, you can request (and pay) to have that limit raised to 1,000 buckets.

Also, take a close look at other different options for storing and moving data – there are
different types of storage that may or may not fit your needs and budget, such as, for
example, S3 Glacier, which offers much cheaper options for storing large amounts of
data, but is expensive if you need to get the data out.

IAM
AWS Identity and Access Management (IAM) is the service we need to use since it enables
access management and permissions for all the objects and services. In our example, we are
going to use it to create policies, users, and roles necessary to accomplish our task.

Other services
There is simply no way to mention all the services AWS offers in simple form. We
mentioned only the ones that were necessary and tried to point you in the right direction.
It is up to you to try and see what your usage scenario is, and how to configure whatever
satisfies your particular needs.

So far, we have explained what AWS is and how complex it can become. We have also
mentioned the most commonly used parts of the platform and started explaining what
their functions are. We are going to expand on that as we actually migrate a machine
from our local environment into AWS. This is going to be our next task.

Preparing and converting virtual machines for
AWS
If you search for it on Google, migrating machines from KVM to AWS is easy, and all that
is required is to follow the instructions at this link: https://docs.amazonaws.cn/
en_us/vm-import/latest/userguide/vm-import-ug.pdf

https://docs.amazonaws.cn/en_us/vm-import/latest/userguide/vm-import-ug.pdf
https://docs.amazonaws.cn/en_us/vm-import/latest/userguide/vm-import-ug.pdf

484 Scaling out KVM with AWS

If you actually try to do it, you will quickly understand that, given basic knowledge of
the way AWS works, you will not be able to follow the instructions. This is why we choose
to do this simple task as an example of using AWS to quickly create a working VM in
the cloud.

What do we want to do?
Let's define what we are doing – we decided to migrate one of our machines into the
AWS cloud. Right now, our machine is running on our local KVM server, and we want
it running on AWS as soon as possible.

The first thing we must emphasize is that there is no live migration option for this. There
is no simple tool that you can point to the KVM machine and move it to AWS. We
need to do it step by step, and the machine needs to be off. After quickly consulting the
documentation, we created a plan. Basically, what we need to do is the following:

1. Stop our virtual machine.

2. Convert the machine to a format that is compatible with the import tool used
in AWS.

3. Install the required AWS tools.

4. Create an account that will be able to do the migration.

5. Check whether our tools are working.

6. Create an S3 bucket.

7. Upload the file containing our machine into the bucket.

8. Import the machine to EC2.

9. Wait for the conversion to finish.

10. Prepare the machine to start.

11. Start the machine in the cloud.

So, let's start working on that:

1. A good place to start is by taking a look at our machines on our workstation. We
will be migrating the machine named deploy-1 to test our AWS migration. It's
a core installation of CentOS 7 and is running on a host using the same Linux
distribution. For that, we obviously need to have privileges:

Preparing and converting virtual machines for AWS 485

Figure 13.4 – Selecting a VM for our migration process
The next thing to do is to stop the machine – we cannot migrate machines that are
running since we need to convert the volume that the machine is using in order to
make it compatible with the import tool on EC2.

2. The documentation available at https://docs.aws.amazon.com/
vm-import/latest/userguide/vmimport-image-import.html
states that:

"When importing a VM as an image, you can import disks in the
following formats: Open Virtualization Archive (OVA), Virtual Machine
Disk (VMDK), Virtual Hard Disk (VHD/VHDX), and raw. With some
virtualization environments, you would export to Open Virtualization
Format (OVF), which typically includes one or more VMDK, VHD, or

VHDX files, and then package the files into an OVA file."

In our particular case, we are going to use the .raw format, since it is compatible
with the import tool, and is fairly simple to convert from the .qcow2 format KVM
uses, into this format.

Once our machine has been stopped, we need to do the conversion. Find the image
on disk and use qemu-img to do the conversion. The only parameter is the files;
the converter understands what it needs to do by detecting the extensions:

Figure 13.5 – Converting a qcow2 image to raw image format

https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html
https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html

486 Scaling out KVM with AWS

We only need to convert the image file, containing the disk image for the system;
other data was left out of the installation of the VM. We need to have in mind
that we are converting to a format that has no compression so your file size can
significantly increase:

Figure 13.6 – The conversion process and the corresponding capacity change
We can see that our file increased from 42 MB to 8 GB just because we had to remove
the advanced features qcow2 offers for data storage. The free tier offers only 5 GB of
storage, so please make sure to configure the raw image size correspondingly.

Our next obvious step is to upload this image to the cloud since the conversion is
done there. Here, you can use different methods, either GUI or CLI (API is also a
possibility but is way too complicated for this simple task).

3. AWS has a CLI tool that facilitates working with services. It's a simple command-
line tool compatible with most, if not all, the operating systems you can think of:

Figure 13.7 – Downloading and uncompressing AWS CLI
We're using curl to download a file, and its -o option to say what the name of the
output file is going to be. Obviously, we need to unzip the ZIP file so that we can use
it. The installation process of the tool is also referenced in the documentation. We
are talking about a simple download, after which we have to extract the tool. Since
there is no installer, the tool will not be in our path, so from now on, we need to
reference it by the absolute path.

Preparing and converting virtual machines for AWS 487

Before we can use the AWS CLI, we need to configure it. This tool has to know how
it is going to connect to the cloud, which user it's going to use, and has to have all
the permissions granted in order for the tool to be able to get the data uploaded to
AWS, and then imported and converted into the EC2 image. Since we do not have
that configured, let's switch to the GUI on AWS and configure the things we need.

Important note
From now on, if something looks edited in the screenshots, it probably is. To
enable things to work seamlessly, AWS has a lot of personal and account data
on the screen.

4. We will go into Identity and Access Management or IAM, which looks like the
following screenshot. Go to Services | Security, click on Identity & Compliance,
and click on IAM. This is what you should see:

Figure 13.8 – IAM console

488 Scaling out KVM with AWS

We need to choose users on the left side of the screen. This will give us access to
the user console. We will create a user named Administrator, a group named
administrators, and apply appropriate permissions to them. Then we are going
to join the user to the group. On the first screen, you can choose both options,
Programmatic access and AWS Management Console access. The first one enables
you to use the AWS CLI, and the second one enables the user to log in to the
management console if we need this account to configure something. We choose
only the first one but will add the API key later:

Figure 13.9 – Configuring user permissions

After clicking on the appropriate option, we can set the initial password for the user.
This user will have to change it as soon as they log in:

Preparing and converting virtual machines for AWS 489

Figure 13.10 – Setting an initial password to be changed later
We will also create a group for this user. Do that by choosing the appropriate button
in the upper part of the screen:

Figure 13.11 – Creating a group for our user

490 Scaling out KVM with AWS

We can assign appropriate policies directly to the user, but having policies assigned
to groups, and then assigning users to appropriate groups is a better option, saving
a lot of time when we need to remove some permissions from users. Once you
click the Create group button on the left, you will be able to name and create
the group. Below the name box are a lot of predefined policies that we can use to
configure a strict user policy. We can also create custom policies, but we are not
going to do that:

Figure 13.12 – Create a group wizard and policies
For this to work, we are going to create a group with permissions that are way over
the top for this task. We are essentially giving the user all the permissions across the
cloud. Filter the policies by AWS managed – job function:

Preparing and converting virtual machines for AWS 491

Figure 13.13 – Filtering policies
We are going to use the AdministratorAccess policy for this example. This
policy is very important, as it allows us to give all available permissions to the
Administrators group that we're creating. Now select AdministratorAccess
and click Create group in the lower right of the screen:

Figure 13.14 – Selecting a policy for our group

492 Scaling out KVM with AWS

The next step is the tags: you can create different attributes or tags that can be used
later for identity management.

5. Tagging can be done by using almost anything – name, email, job title, or whatever
you need. We are going to leave this empty:

Figure 13.15 – Adding tags
Let's review what we have configured so far. Our user is a member of the group we
just created, and they have to reset the password as soon as they log in:

Figure 13.16 – Reviewing the user configuration with group, policy, and tag options

Preparing and converting virtual machines for AWS 493

Accept these and add the user. You should be greeted with a reassuring green
message box that will give you all the relevant details about what just happened.
There is also a direct link to the console for management access, so you can share
that with your new user:

Figure 13.17 – User creation was successful

Once the user has been created, we need to enable their Access Key. This is a normal
concept in using different command-line utilities. It enables us to provide a way for an
application to do something as a given user, and not give the application the username
or the password. At the same time, we can give each application its own key, so when we
want to revoke access, we can simply disable the key.

Click on Create access key in the middle of the screen:

Figure 13.18 – Creating an access key

494 Scaling out KVM with AWS

A couple of things need to be said about this key. There are two fields – one is the key
itself, which is Access key ID, the other is the secret part of the key, which is Secret
access key. In regard to security, this is completely the same as having a username and
password for a particular user. You are given only one opportunity to see and download
the key, and after that, it is gone. This is because we are dealing with hashed information
here, and AWS is not storing your keys, but hashes of them. This means there is no way
to retrieve a key if you didn't save it. It also means if somebody grabs a key, let's say
by reading it off a screenshot, they can identify themselves as the user that has the key
assigned. The good thing is that you can create as many keys as you want and revoking
them is only a question of deleting them here. So, save the key somewhere safe:

Figure 13.19 – Access key was created successfully

Preparing and converting virtual machines for AWS 495

We are finished with the GUI for now. Let's go back and install the AWS CLI:

1. We just need to start the installation script and let it finish its job. This is done by
starting the file called install in the aws directory:

Figure 13.20 – Installing AWS CLI
Remember what we said about absolute paths? The aws command is not in the
user path; we need to call it directly. Use configure as a parameter. Then, use
the two parts of the key we saved in the previous step. From now on, every
command we give using the AWS CLI is interpreted as having been run as the
user Administrator that we just created on the cloud.

The next step is to create a bucket on S3. This can be done in one of two ways. We
can do it through our newly configured CLI, or we can use the GUI. We are going
to take the "pretty" way and use the GUI in order to show how it looks and behaves.

496 Scaling out KVM with AWS

2. Select S3 as the service in the console. There is a button at the top right labeled
Create bucket – click it. The following screen will appear. Now create a bucket that
is going to store your virtual machine in its raw format. In our case, we labeled the
bucket importkvm but choose a different name. Make sure that you take note of
the region pull-down menu – this is the AWS location where your resource will
be created. Remember that the name has to be unique; if everybody who bought
this book tried to use this name, only the first one would succeed. Fun fact: if by
the time you read this, we haven't deleted this bucket, nobody will be able to create
another with the same name, and only those of you reading this exact sentence will
understand why. This wizard is quite big in terms of screen estate and might not fit
on a single book page, so let's split it into two parts:

Figure 13.21 – Wizard for creating an S3 bucket – selecting bucket name and region

Preparing and converting virtual machines for AWS 497

The second part of this wizard is related to settings:

Figure 13.22 – Bucket settings
Do not change the access to public – there is really no need to; nobody but you is
ever going to need to access this particular bucket and the file in it. By default, this
option is pre-selected, and we should leave it as it is. This should be the end result:

Figure 13.23 – S3 bucket created successfully

498 Scaling out KVM with AWS

OK, having done that, it's time for some waiting on the next command to finish. In the
next step, we are going to use our AWS CLI to copy the .raw file onto S3.

Important note
Depending on the type of account, from this point on, it is possible that we will
have to pay for some of the services that we create since they may overdraft the
free tier enabled on your account. If you do not enable anything expensive, you
should be fine, but always take look at your Cost management dashboard, and
check that you are still in the black.

Uploading an image to EC2
The next step is to upload an image to EC2 so that we can actually run that image as a
virtual machine. Let's start the upload process – this is why we installed the AWS CLI
utility in the first place:

1. Use the AWS CLI with the following parameters:

Figure 13.24 – Using the AWS CLI to copy a virtual machine raw image to an S3 bucket
That's the end result. Since we are talking about 8 GB of data, you will have to wait
for some time, depending on your upload speed. The syntax for the AWS CLI is
pretty straightforward. You can use most Unix commands that you know, both
ls and cp do their job. The only thing to remember is to give your bucket name
in the following format as the destination: s3://<bucketname>.

2. After that, we do an ls – it will return the bucket names, but we can list their contents
by using the bucket name. In this example, you can also see it took us something like
15 minutes to transfer the file from the moment we created the bucket:

Figure 13.25 – Transferring the file

Preparing and converting virtual machines for AWS 499

And now starts the fun part. We need to import the machine into EC2. To do that,
we need to do a few things before we will be able to do the conversion. The problem
is related to permissions – AWS services are unable to talk to each other by default.
Therefore, you have to give explicit permission to each of them to do the importing.
In essence, you have to let EC2 talk to S3 and get the file from the bucket.

3. For upload purposes, we will introduce another AWS concept – .json files. A lot
of things in AWS are stored in .json format, including all the settings. Since the
GUI is rarely used, this is the quickest way to communicate data and settings, so
we must also use it. The first file we need is trust-policy.json, which we are
using to create a role that will enable the data to be read from the S3 bucket:

{

 "Version":"2012-10-17",

 "Statement":[

 {

 "Effect":"Allow",

 "Principal":{

 "Service":"vmie.amazonaws.com"

 },

 "Action":"sts:AssumeRole",

 "Condition":{

 "StringEquals":{

 "sts:ExternalId":"vmimport"

 }

 }

 }

]

}

Just create a file with the name trust-policy.json, and get the preceding
code typed in. Do not change anything. The next one up is the file named
role-policy.json. This one has some changes that you have to make. Take
a closer look inside the file and find the lines where we mention our bucket name
(importkvm). Delete our name and put the name of your bucket instead:

{

 "Version":"2012-10-17",

 "Statement":[

 {

500 Scaling out KVM with AWS

 "Effect":"Allow",

 "Action":[

 "s3:GetBucketLocation",

 "s3:ListBucket",

 "s3:GetObject"

],

 "Resource":[

 "arn:aws:s3:::importkvm"

 "arn:aws:s3:::importkvm/*"

],

 },

 {

 "Effect":"Allow",

 "Action":[

 "s3:GetObject",

 "s3:GetBucketLocation",

 "s3:ListBucket",

 "s3:GetBucketAcl",

 "s3:PutObject"

],

 "Resource":[

 "arn:aws:s3:::importkvm"

 "arn:aws:s3:::importkvm/*"

],

 },

 {

 "Effect":"Allow",

 "Action":[

 "ec2:ModifySnapshotAttribute",

 "ec2:CopySnapshot",

 "ec2:RegisterImage",

 "ec2:Describe*"

],

 "Resource":"*"

 }

]

}

Preparing and converting virtual machines for AWS 501

Now it's time to put it all together and finally upload our virtual machine to AWS.

4. Execute these two commands, disregard whatever happens in the formatting – both
of them are one-liners, and the filename is the last part of the command:

/usr/local/bin/aws iam create-role --role-name vmimport
--assume-role-policy-document file://trust-policy.json

/usr/local/bin/aws iam put-role-policy --role-name
vmimport --policy-name vmimport --policy-document file://
role-policy.json

You should get a result something like this:

Figure 13.26 – Result of createrole
This confirms that the role was given the permissions it needs. The second
command should not return any output.

We're almost done. The last step is to create yet another .json file that will describe
to EC2 what we are actually importing and what to do with it.

5. The file we're creating needs to look like this:

[

 {

 "Description": "Test deployment",

 "Format": "raw",

502 Scaling out KVM with AWS

 "Userbucket": {

 "S3Bucket": "importkvm",

 "S3Key": "deploy1.raw"

 }

]

As you can see, there is nothing special in the file, but when you create your own
version, pay attention to use your name for the bucket and the disk image that
is stored inside the bucket. Name the file whatever you want, and use that name
to call the import process:

Figure 13.27 – Final step – virtual machine deployment to AWS

Now you wait for the process to finish. What happens in this step is both the import
and conversion of the image and the operating system you uploaded. AWS is not going
to run your image as is; the system is going to change quite a few things to make sure your
image can run on the infrastructure. Some users will also receive some changes, but more
on that later.

The task will run in the background, and will not notify you when it completes; it is up
to you to check on it. Luckily, there is a command that can be used in the AWS CLI called
describe-import-image-tasks and this is the output:

Preparing and converting virtual machines for AWS 503

Figure 13.28 – Checking the status of our upload process

What this means is that we successfully imported our machine. Great! But the machine
is still not running. Now it has become something called an Amazon Machine Image
(AMI). Let's check how to use that:

1. Go to your EC2 console. You should be able to find the image under AMIs on the
left side:

Figure 13.29 – Our AMI has been uploaded successfully and we can see it in the EC2 console

Now click the big blue Launch button. There are a couple of steps you need to
finish before your instance is running, but we are almost there. First, you need to
choose your instance type. This means choosing what configuration fits your needs,
according to how much of everything (CPU, memory, and storage) you need.

504 Scaling out KVM with AWS

2. If you are using a region that is not overcrowded, you should be able to spin a free
tier instance type that is usually called t2.micro and is clearly marked. In your
free part of the account, you have enough processing credits to enable you to run
this machine completely free:

Figure 13.30 – Selecting an instance type
And now for some security. Amazon changed your machine and has implemented
passwordless login to the administrator account using a key pair. Since we don't
have a key yet, we will also need to create the key pair.

Preparing and converting virtual machines for AWS 505

3. EC2 is going to put this key into the appropriate accounts on the machine you
are just creating (all of them), so you can log in without using the password. A key
pair is generated if you choose to do so, but Amazon will not store it – you have
to do that:

Figure 13.31 – Selecting an existing key or creating a new one

That's it, your VM should now take a couple of minutes to launch. Just wait for the
confirmation window. Once it is ready, connect to it using the context menu. You
will get to the list of instances by clicking View Instances at the bottom right.

506 Scaling out KVM with AWS

To connect, you need to use the key pair provided to you, and you need an ssh client.
Alternatively, you can use the embedded ssh that AWS provides. In any case, you need the
outside address of the machine, and AWS also provides that, along with simple instructions:

Figure 13.32 – Connect to your instance instructions

So, going back to our workstation, we can use the ssh command mentioned in the
previous screenshot to connect to our newly started instance:

Figure 13.33 – Connecting to our instance via SSH

Building hybrid KVM clouds with Eucalyptus 507

That's it. You have successfully connected to your machine. You can even keep it running.
But be aware, if you have accounts or services that are on by default or have no password –
you have, after all, pulled a VM out of your safe, home sandbox and stuck it on the big, bad
internet. And one last thing: after you have your VM running, delete the file in the bucket to
save you some resources (and money). After conversion, this file is no longer needed.

The next topic on our list is how to extend our local cloud environments into hybrid
cloud environments by using an application called Eucalyptus. This is a hugely popular
process that a lot of enterprise companies go through as they scale their infrastructure
beyond their local infrastructure. Also, this offers benefits in terms of scalability when
needed – for example, when a company needs to scale its testing environment so an
application that its employees are working on can be load-tested. Let's see how it's done
via Eucalyptus and AWS.

Building hybrid KVM clouds with Eucalyptus
Eucalyptus is a strange beast, and by that, we do not mean the plant. Created as a project
to bridge the gap between private cloud services and AWS, Eucalyptus tries to recreate
almost all AWS functionalities in a local environment. Running it is almost like having
a small local cloud that is compatible with AWS, and that in turn uses almost the same
commands as AWS. It even uses the same names for things as AWS does, so it works
with buckets and all of that. This is on purpose, and with consent from Amazon. Having
an environment like this is a great thing for everybody since it creates a safe space for
developers and companies to deploy and test their instances.

Eucalyptus consists of several parts:

Figure 13.34 – Eucalyptus architecture (http://eucalyptus.cloud, official documentation)

508 Scaling out KVM with AWS

As can be seen from the diagram, Eucalyptus is highly scalable.

An availability zone is one segment that can hold multiple nodes controlled by a cluster
controller. Zones are then combined into the cloud itself, and this is controlled by the
Cloud Controller. Connected to all this is the user services part that enables interaction
between the user and the whole Eucalyptus stack.

All in all, Eucalyptus uses five components that are sometimes referred to by their names
from the diagram, and sometimes by their project names, much like OpenStack does:

• Cloud Controller (CLC) is the central point of the system. It provides both the
EC2 and the web interfaces and routes every task to itself. It is there to provide
scheduling, allocation of resources, and accounting. There is one of these per cloud.

• Cluster Controller (CC) is the part that manages each individual node and controls
VMs and their execution. One is running in each availability zone.

• Storage Controller (SC) is there to provide block-level storage, and to provide
support for instances and snapshots but within the cluster. It is similar to EBS
storage from AWS.

• Node Controller (NC) hosts instances and their endpoints. One is running for
each node.

• eucanetd is a service Eucalyptus uses to manage cloud networking, as we are talking
about extending your local networks to the AWS cloud, at the end of the day.

When you get to know Eucalyptus, you'll notice that it has a vast array of capabilities. It
can do the following:

• Work with volumes, instances, key pairs, snapshots, buckets, images, network
objects, tags, and IAM.

• Work with load balancers.

• Work with AWS as an AWS integration tool.

These are just some of the features worth mentioning at the start of your Eucalyptus journey.
Eucalyptus has an additional command-line interface called Euca2ools, available as a
package for all the major Linux distributions. Euca2ools is an additional tool that provides
full API and CLI compatibility between AWS and Eucalyptus. This means that you can use
a single tool to manage both and to perform hybrid cloud migrations. The tool is written
in Python, so it is more or less platform-independent. If you want to learn more about this
interface, make sure that you visit https://wiki.debian.org/euca2ools.

https://wiki.debian.org/euca2ools

Building hybrid KVM clouds with Eucalyptus 509

How do you install it?
Installing Eucalyptus is easy, if you are installing a test machine and following the
instructions, as we'll describe in the last chapter of the book, Chapter 16, Troubleshooting
Guideline for the KVM Platform, which deals with KVM troubleshooting. We are going
to do just that – install a single machine that will hold all the nodes and part of the whole
cloud. This is, of course, not even close to what is needed for a production environment,
so on the Eucalyptus website, there are separate guides for this single-machine-does-
all situation, and for installing production-level clouds. Make sure that you check the
following link: https://docs.eucalyptus.cloud/eucalyptus/4.4.5/
install-guide-4.4.5.pdf.

Installation is simple – just provide a minimally installed CentOS 7 system that has at least
120 GB of disk space and 16 GB of RAM. These are the minimums. If you go below them,
you will have two kinds of problems:

• If you try to install on a machine that has less than 16 GB of RAM, the installation
will probably fail.

• The installation will, however, succeed on a machine with a smaller disk size than
the minimum recommended, but you will almost immediately run out of disk space
as soon as you start getting the deployment images installed.

For production, everything changes – the minimums are 160 GB for the storage, or 500 GB
of storage for nodes that are going to run Walrus and SC services. Nodes must run on bare
metal; nested virtualization is not supported. Or, to be more precise, it will work but will
negate any positive effect that the cloud can provide.

Having said all that, we have another point to make before you start installing – check for
the availability of a new version, and have in mind that it is quite possible that there is a
newer release than the one that we are working on in this book.

Important note
At the time of writing, the current version was 4.4.5, with version 5 being
actively worked on and close to being released.

Having installed your base operating system – and it has to be a core system without
a GUI, it's time to do the actual Eucalyptus installation. The whole system is installed
using FastStart, so the only thing we have to do is to run the installer from the internet.
The link is helpfully given on the front page of the following URL for the project –
https://eucalyptus.cloud.

https://docs.eucalyptus.cloud/eucalyptus/4.4.5/install-guide-4.4.5.pdf
https://docs.eucalyptus.cloud/eucalyptus/4.4.5/install-guide-4.4.5.pdf
https://eucalyptus.cloud

510 Scaling out KVM with AWS

There are some prerequisites for successful Eucalyptus installation:

• You have to be connected to the internet. There is no way to do a local installation
this way, because everything is downloaded on the fly.

• You also have to have some IP addresses available for the system to use when
installed. The minimum is 10, and they will get installed along with the cloud. The
installer will ask for the range and will try to do everything without intervention.

• The only other prerequisites are a working DNS and some time.

Let's start the installation by using the following command:

bash <(curl -Ls https://eucalyptus.cloud/install)

The installation looks strange if you're seeing it for the first time. It kind of reminds us
of some text-based games and services that we used in the 1990s (MUD, IRC):

Figure 13.35 – Eucalyptus text-mode installation

The information on the screen will tell you which log to follow if you want to see what
is actually happening; otherwise, you can look at the installer and wait for the tea on the
screen to get cold. In all honesty, on a decent machine, the installation will probably take
around 15 minutes, or 10 minutes more if you install all the packages.

Building hybrid KVM clouds with Eucalyptus 511

Once installed, Eucalyptus will provide you with a default set of credentials:

• Account name: eucalyptus

• Username: admin

• Password: password

Important note
In the event that the current installer breaks, the solutions to the subsequent
problems are in the CiA video here: <video_URL>. There are known bugs,
and may or may not be solved before this book hits the stores. Make sure that
you check https://eucalyptus.cloud and documentation before
installation.

The information is case sensitive. Having finished the installation, you can connect to
the machine using a web browser and log in. The IP address you are going to use is the
IP address of the machine you just installed:

Figure 13.36 – Eucalyptus login screen

Once the system has finished installing, on the console of the newly installed system, you
are going to be met with an instruction that will say to run the master tutorial contained
on the system. The tutorial itself is a great way to get to know how the system looks, what
the key concepts are, and how to use the command line. The only problem you may have
is that the tutorial is a set of scripts that have some information hardcoded. One of the
things you will notice straight away is that the links to the cloud versions of the image
templates will not work unless you fix them – the links point to expired addresses.
This is easy to solve but will catch you off guard.

http://<video_URL>
https://eucalyptus.cloud

512 Scaling out KVM with AWS

On the other hand, by the time you read this, maybe the problem will be fixed. The
tutorial on how to do this and all of its parts is offered in plain text mode on the machine
Eucalyptus is running on. It's not available in the GUI:

Figure 13.37 – Starting a text-mode Eucalyptus master tutorial

The tutorial is extremely rudimentary in its appearance, but we liked it because it gave
us a short but important overview of everything that Eucalyptus offers:

Figure 13.38 – Using the master tutorial to learn how to configure Eucalyptus

Building hybrid KVM clouds with Eucalyptus 513

As you can see, everything is explained in detail, so you can really learn key concepts in a
short amount of time. Go through the tutorial – it is well worth it. Another thing you can
do from the command line as soon as you start up the system is to download a couple of
new template images. The script for this is also started from the web, and is written in big
letters on the official site, literally on the landing page located at the following URL (make
sure that you scroll down a bit) – https://www.eucalyptus.cloud/:

Figure 13.39 – Downloading images to our Eucalyptus cloud

Copy-paste this into the root prompt and, shortly, there will be a menu that will enable
you to download images you may use. This is one of the simplest and most bullet-proof
installations of templates we have ever seen, short of them being included in the initial
download:

Figure 13.40 – Simple menu asking us to select which image we want to install

https://www.eucalyptus.cloud/

514 Scaling out KVM with AWS

Choose one at a time, and they will get included in the image list.

Now let's switch to the web interface to see how it works. Log in using the credentials
written above. You will be greeted with a well-designed dashboard. On the right, there
are groups of functionalities that are most commonly used. The left part is reserved for
the menu that holds links to all the services. The menu will autohide as soon as you move
your mouse away from it, leaving only the most essential icons:

Figure 13.41 – Eucalyptus management console

We already discussed most of the things on this page – just check the content in this
chapter related to AWS and you'll be in very familiar territory. Let's try using this console.
We are going to launch a new instance, just to get a feel for how Eucalyptus works:

1. In the left part of the stack of services, there is an inviting green button labeled
Launch instance – click on it. A list of the images that are available on the system
will appear. We already used the script to grab some cloud images, so we have
something to choose from:

Building hybrid KVM clouds with Eucalyptus 515

Figure 13.42 – Selecting an image to run in the Eucalyptus cloud
We chose to run Ubuntu from the cloud image. Choose Launch from the drop-
down menu after you have selected the image you want. A new window opens,
permitting you to create your virtual machine. In the dropdown or the instance
type, we chose a machine that looked powerful enough to run our Ubuntu, but
basically, any instance with over 1 GB of RAM will do fine. There is not much to
change since we are preparing just one instance:

Figure 13.43 – Launch a new instance wizard

516 Scaling out KVM with AWS

The next configuration screen is related to security.

2. We have a choice of using the default key pair that was created on the Eucalyptus
cloud or creating a new one. Only the public part of the key is stored in Eucalyptus,
so we can use this key pair for authentication only if we downloaded the keys when
we installed them. The process of creating keys is completely identical to the one
used for AWS:

Figure 13.44 – Security configuration – selecting keys and an IAM role

Building hybrid KVM clouds with Eucalyptus 517

After clicking the LAUNCH INSTANCE button, your machine should boot. For
testing purposes, we already started another machine earlier, so right now we have
two of them running:

Figure 13.45 – A couple of launched instances in the Eucalyptus cloud
The next step is trying to create a storage bucket.

3. Creating a storage bucket is easy, and looks very similar to what AWS enables you
to do since Eucalyptus tries to be as similar to AWS as possible:

Figure 13.46 – Creating a bucket

518 Scaling out KVM with AWS

Since Eucalyptus is not as complex as AWS, especially in regard to policy and
security, the security tab for the bucket is smaller, but has some very powerful
tools, as you can see in the following screenshot:

Figure 13.47 – Bucket security configuration

Now that we have installed, configured, and used Eucalyptus, it's time to move on to the
next topic of our chapter, which is scaling out our Eucalyptus-based cloud to AWS.

Using Eucalyptus for AWS control
Do you remember the initial screen that showed you the login credentials, and we
mentioned that you can also log in to AWS? Log out of your Eucalyptus console and get to
the login screen. Click on LOG IN TO AWS this time:

Building hybrid KVM clouds with Eucalyptus 519

Figure 13.48 – Log on to AWS via Eucalyptus

Try and use the auth key we created in the Uploading an image to EC2 section, or create
a new one for the Administrator user in AWS IAM. Copy and paste it into the AWS
credentials, and you will have a fully working interface connected to your AWS account.
Your dashboard will look almost the same, but will show the status of your AWS account:

Figure 13.49 – Eucalyptus Management Console for AWS

520 Scaling out KVM with AWS

Let's check we can see our buckets:

Figure 13.50 – Checking our AWS buckets

Notice that we not only see the bucket we used to test the AWS KVM import, but we
also see the region we are running in, in the upper-right corner. Your account is given
by its key name, not the actual user; this is simply because we are in fact logged in
programmatically. Everything we click gets translated to API calls, and the returned data is
then parsed and displayed to the user.

Our currently stopped instance is also here, but keep in mind that you will see it only if
you choose the region you initially imported your instance into. In our case, it was US
West, so our instance is there:

Figure 13.51 – Checking our AWS instances

As you have probably noticed, Eucalyptus is a multi-faceted tool that's able to provide us
with hybrid-cloud services. Basically, one of the key points of Eucalyptus is the fact that
it gets you to an AWS-compatible level. So, if you start using it as a private solution and
sometime in the future start thinking about moving to AWS, Eucalyptus has you covered.
It's a de-facto standard solution for KVM-based virtual machines for that purpose.

Summary 521

We will stop here with the AWS integration. The point of this chapter was, after all, to
get you to see how Eucalyptus connects to AWS. You might see that this interface lacks
functionality that AWS has, but can at the same time be more than enough to control a
basic mid-size infrastructure – buckets, images, and instances from one place. Having
tested the 5.0 beta 1 version, we can definitely tell you that the full 5.0 version should
be quite a substantial upgrade when it comes out. The beta version already has many
additional options and we're rather excited to see when the full release comes out.

Summary
In this chapter, we covered a lot of topics. We introduced AWS as a cloud solution and did
some cool things with it – we converted our virtual machine so that we can run in it, and
made sure that everything works. Then we moved to Eucalyptus, to check how we can
use it as a management application for our local cloud environment, and how to use it
to extend our existing environment to AWS.

The next chapter takes us into the world of monitoring KVM virtualization by using
the ELK stack. It's a hugely important topic, especially as companies and infrastructures
grow in size – you just can't keep up with the organic growth of IT services by manually
monitoring all possible services. The ELK stack will help you with that – just how much,
you'll learn in the next chapter.

Questions
1. What is AWS?

2. What are EC2, S3, and IAM?

3. What is an S3 bucket?

4. How do we migrate a virtual machine to AWS?

5. Which tool do we use to upload a raw image to AWS?

6. How do we authenticate ourselves to AWS as a user?

7. What is Eucalyptus?

8. What are the key services in Eucalyptus?

9. What are availability zones? What are fault domains?

10. What are the fundamental problems of delivering Tier-0 storage services for
virtualization, cloud, and HPC environments?

522 Scaling out KVM with AWS

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• Amazon AWS documentation: https://docs.aws.amazon.com/

• Amazon EC2 documentation: https://docs.aws.amazon.com/
ec2/?id=docs_gateway

• Amazon S3 documentation: https://docs.aws.amazon.com/
s3/?id=docs_gateway

• Amazon IAM documentation: https://docs.aws.amazon.com/
iam/?id=docs_gateway

• Eucalyptus installation guide: https://docs.eucalyptus.cloud/
eucalyptus/4.4.5/install-guide/index.html

• Eucalyptus administration guide: https://docs.eucalyptus.cloud/
eucalyptus/4.4.5/admin-guide/index.html

• Eucalyptus console guide: https://docs.eucalyptus.cloud/
eucalyptus/4.4.5/console-guide/index.html

• Euca2ools guide: https://docs.eucalyptus.cloud/eucalyptus/4.4.5/
euca2ools-guide/index.html

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/ec2/?id=docs_gateway
https://docs.aws.amazon.com/ec2/?id=docs_gateway
https://docs.aws.amazon.com/s3/?id=docs_gateway
https://docs.aws.amazon.com/s3/?id=docs_gateway
https://docs.aws.amazon.com/iam/?id=docs_gateway
https://docs.aws.amazon.com/iam/?id=docs_gateway
https://docs.eucalyptus.cloud/eucalyptus/4.4.5/install-guide/index.html
https://docs.eucalyptus.cloud/eucalyptus/4.4.5/install-guide/index.html
ps://docs.eucalyptus.cloud/eucalyptus/4.4.5/admin-guide/index.html
ps://docs.eucalyptus.cloud/eucalyptus/4.4.5/admin-guide/index.html
https://docs.eucalyptus.cloud/eucalyptus/4.4.5/console-guide/index.html
https://docs.eucalyptus.cloud/eucalyptus/4.4.5/console-guide/index.html
https://docs.eucalyptus.cloud/eucalyptus/4.4.5/euca2ools-guide/index.html
https://docs.eucalyptus.cloud/eucalyptus/4.4.5/euca2ools-guide/index.html

14
Monitoring the

KVM Virtualization
Platform

When you move away from an environment that only has a couple of objects to manage
(for example, KVM hosts) to an environment that has hundreds of objects to manage, you
start asking yourself very important questions. One of the most prominent questions is,
How am I going to monitor my hundreds of objects without doing a lot of manual work and
with some GUI reporting options? And the answer to that question is the Elasticsearch,
Logstash, Kibana (ELK) stack. In this chapter, we'll see what these software solutions can
do for you and your KVM-based environment.

Behind those cryptic names are technologies that are here to solve a lot of problems you
might have when running more than one server. Although you can run the ELK stack
to monitor one service, it makes no sense to do so. The advice and solutions provided in
this chapter are applicable to all projects involving multiple devices and servers, not only
those running on KVM but, in essence, anything that is capable of producing any kind of
logging. We will start with the basics of how to monitor KVM as a virtualization platform
in general. Then, we'll move on to the ELK stack, including its building blocks and
installation, before moving on to its advanced configuration and customization.

524 Monitoring the KVM Virtualization Platform

In this chapter, we will cover the following topics:

• Monitoring the KVM virtualization platform

• Introduction to the open source ELK solution

• Setting up and integrating the ELK stack

• Configuring the data collector and aggregator

• Creating custom utilization reports

• Let's get started!

Monitoring the KVM virtualization platform
When we talk about running a system that is performing any kind of processing,
we quickly come to the problem of monitoring and making sure that our system
runs inside a given set of parameters.

When we create a system that is running a workload, it will inevitably produce some kind
of data on everything that is happening. This data can be almost infinite in its scope – a
server that is just online, without a single useful task running will create some kind of log
or service data, such as the amount of used memory, services that are starting or stopping,
the amount of disk space left, devices that are connecting and disconnecting, and more.

When we start running any useful task, the logs will only get larger.

Having a good and verbose log means that we can find what is going on at this instant
with the system; is it running correctly and do we need to do something to make it run
better? If something unexpected happens, logs can help us determine what is actually
wrong and point us in the direction of the solution. Correctly configured logs can even
help us spot errors before they start to create problems.

Suppose you have a system that is getting slower and slower week after week. Let's
further suppose that our problem is with the memory allocation of an app we installed
on the system. But let's also suppose that this memory allocation is not constant, and
instead varies with the number of users using the system. If you take a look at any point
in time, you may notice the number of users and memory allocated. But if you just take
measurements at different times, you will have a hard time understanding what kind of
correlation there is between the memory and the number of users – will the amount of
memory allocated be linear to the number of users or will it behave exponentially? If we
can see that 100 users are using 100 MB of memory, does that mean that 1,000 users will
use 1,000 MB?

Monitoring the KVM virtualization platform 525

But let's suppose that we are logging the amount of memory and the number of users at
equally spaced intervals.

We are not doing anything complicated; every couple of seconds, we are writing down
the time of the measurement, the amount of memory allocated, and the number of users
using the system. We are creating something called a dataset, consisting of data points.
Using data points is no different than what we did in the preceding example, but once
we have a dataset, we can do trend analysis. Basically, instead of looking at a slice of the
problem, we can analyze different time segments and compare the number of users and
what the amount of memory they were using actually was. That will give us important
information about how our system is actually using our memory and at what point we
had a problem, even if we don't have a problem right now.

This approach can even help us find and troubleshoot problems that are non-obvious,
such as a backup that is taking too long to finish once a month and works normally the
rest of the time. This kind of capability that enables us to spot trends and analyze data
and system performance is what logging is all about.

Put simply, any kind of monitoring boils down to two things: collecting data from the
thing we are trying to monitor and analyzing that data.

Monitoring can be either online or offline. Online monitoring is useful when we are trying
to create some sort of alerting system or when we are trying to establish the self-correcting
system that will be able to respond to changes in the process. Then, we can either try to
correct problems or shut down or restart the system. Online monitoring is usually used by
the operations team in order to make sure that everything is running smoothly and that
the problems the system may have are logged.

Offline monitoring is much more complicated. Offline monitoring enables us to gather all
the data into logs, analyze these logs later, and extrapolate trends and figure out what can
be done to the system to make it better. But the fact of the matter is that it's always delayed
in terms of real-time activity since the offline methodology requires us to download and
then analyze the logs. That's why we prefer real-time log ingestion, which is something
that needs to be done online. That's why learning about the ELK stack is so important.

By fitting all these small pieces – real-time log ingestion, search, analytics, and reports –
into one larger stack, ELK makes it easier for us to monitor our environment in real time.
Let's learn how.

526 Monitoring the KVM Virtualization Platform

Introduction to the open source ELK solution
We mentioned previously that ELK stands for Elasticsearch, Logstash, and Kibana because
these three applications or systems are the building blocks of a complete monitoring and
reporting solution. Each part has its own purpose and functions it performs – Logstash
gathers all the data into a consistent database, Elasticsearch is able to quickly go through
all the data that Logstash stored, and Kibana is here to turn search results into something
that is both informational and visually appealing. Having said all this, ELK recently
changed its name. Although it is still referred to as the ELK Stack, and almost the entirety
of the internet will call it that, the ELK stack is now named the Elastic Stack, for the sole
reason that, at the time of writing, there is another fourth component included in the
stack. This component is called Beats, and it represents a significant addition to the
whole system.

But let's start from the beginning and try to describe the whole system the way its creators
describe it.

Elasticsearch
The first component that was created and that got traction in the community was
Elasticsearch, created to be a flexible, scalable system for indexing and searching large
datasets. Elasticsearch was used for thousands of different purposes, including searching
for specific content in documents, websites, or logs. Its main selling point and the reason
a lot of people started using it is that it is both flexible and scalable, and at the same time
extremely fast.

When we think of searching, we usually think about creating some kind of query and
then waiting for the database to give us back some form of answer. In complex searches,
the problem is usually the waiting since it is exhausting having to tweak our queries and
wait for them to produce results. Since a lot of modern data science relies on the concept
of non-structured data, meaning that a lot of data that we need to search has no fixed
structure, or no structure at all, creating a fast way to search inside this pool of data is
a tough problem.

Imagine you need to find a certain book in a library. Also, imagine you do not have a
database of all the books, authors, publishing information, and everything else that a
normal library has; you are only allowed to search through all the books themselves.

Introduction to the open source ELK solution 527

Having a tool that is able to recognize patterns in those books and that can tell you the
answer to questions such as who wrote this book? or how many times is KVM mentioned
in all the books that are longer than 200 pages? is a really useful thing. This is what a good
search solution does.

Being able to search for a machine that is running the Apache web server and has
problems with a certain page requested by a certain IP address is essential if we want
to quickly and efficiently administer a cluster or a multitude of clusters of physical and
virtual servers.

The same goes for system information when we are monitoring even a single point of
data, such as memory allocation across hundreds of hosts. Even presenting that data is
a problem and searching for it in real time is almost impossible without the right tool.

Elasticsearch does exactly that: it creates a way for us to quickly go through enormous
amounts of barely structured data and then comes up with results that make sense. What
makes Elasticsearch different is its ability to scale, which means you can use it to create
search queries on your laptop, and later just run them on a multi-node instance that
searches through a petabyte of data.

Elasticsearch is also fast, and this is not something that only saves time. Having the ability
to get search results faster gives you a way to learn more about your data by creating and
modifying queries and then understanding their results.

Since this is just a simple introduction to what ELK actually does, we will switch to the
next component, Logstash, and come back to searching a bit later.

Logstash
Logstash has a simple purpose. It is designed to be able to digest any number of logs and
events that generate data and store them for future use. After storing them, it can export
them in multiple formats such as email, files, HTTP, and others.

What is important about how Logstash works is its versatility in accepting different input
streams. It is not limited to using only logs; it can even accept things such as Twitter feeds.

528 Monitoring the KVM Virtualization Platform

Kibana
The last part of the old ELK stack is Kibana. If Logstash is storage and Elasticsearch is
for computing, then Kibana is the output engine. Simply put, Kibana is a way to use the
results of Elasticsearch queries to create visually impressive and highly customizable
layouts. Although the output of Kibana is usually some kind of a dashboard, its output
can be many things, depending on the user's ability to create new layouts and visualize
data. Having said all this, don't be afraid – the internet offers at least a partial, if not full
solution, to almost every imaginable scenario.

Next, what we will do is go through the basic installation of the ELK stack, show what
it can do, point you in the right direction, and demonstrate one of the most popular
beats – metricbeat.

Using the ELK stack is, in many ways, identical to running a server – what you need to do
depends on what you actually want to accomplish; it takes only a couple of minutes to get
the ELK stack running, but the real effort only starts there.

Of course, for us to fully understand how the ELK stack is used in a live environment,
we need to deploy it and set it up first. We'll do that next.

Setting up and integrating the ELK stack
Thankfully, almost everything that we need to install is already prepared by the Elasticsearch
team. Aside from Java, everything is nicely sorted and documented on their site.

The first thing you need to do is install Java – ELK depends on Java to run, so we need to
have it installed. Java has two different install candidates: the official one from Oracle and
the open source OpenJDK. Since we are trying to stay in the open source ecosystem, we'll
install OpenJDK. In this book, we are using CentOS 8 as our platform, so the yum package
manager will be used extensively.

Let's start with the prerequisite packages. The only prerequisite package we need in order
to install Java is the java-11-OpenJDK-devel package (substitute "11" with the
current version of OpenJDK). So, here, we need to run the following command:

yum install java-11-openjdk-devel

Setting up and integrating the ELK stack 529

After issuing that command, you should get a result like this:

Figure 14.1 – Installing one of the main prerequisites – Java

Once installed, we can verify whether the setup was successful and whether Java is
working properly by running the following command:

java -version

This is the expected output:

Figure 14.2 – Checking Java's version

530 Monitoring the KVM Virtualization Platform

The output should be the current version of Java and no errors. Other than verifying
whether Java works, this step is important in order to verify that the path to Java is correctly
set – if you are running on some other distributions, you may have to set the path manually.

Now that java is installed and ready to go, we can continue with the installation of the ELK
stack. The next step is to configure the install source for Elasticsearch and other services:

1. We need to create a file in /etc/yum.repos.d/ named elasticsearch.
repo that will contain all the information about our repository:

[Elasticsearch-7.x]

name=Elasticsearch repository for 7.x packages

baseurl=https://artifacts.elastic.co/packages/7.x/yum

gpgcheck=1

gpgkey=https://artifacts.elastic.co/GPG-KEY-Elasticsearch

enabled=1

autorefresh=1

type=rpm-md

Save the file. The important thing here is that the repository is GPG-signed,
so we need to import its key and apply it so that the packages can be verified
when they're downloaded.

The files that you are going to install are not free software. Elasticsearch has two
distinct free versions and a paid subscription model. What you are going to get
using the files in this repository is the subscription-based install that is going to run
in basic mode, which is free. At the time of writing, Elastic has four subscription
models – one is open source, based on the Apache License 2.0, and free; the rest
of them are closed source but offer additional functionalities. Currently, these
subscriptions are named Basic, Gold, and Platinum. Basic is free, while the other
models require a monthly paid subscription.

You will inevitably ask why you should choose open source over Basic, or vice
versa since they are both free. While both of them have the same core, Basic is more
advanced as it offers core security features and more things that can be important
in everyday use, especially if you are after Kibana visualizations.

2. Let's continue with the installation and import the necessary GPG key:

rpm --import https://artifacts.elastic.co/GPG-KEY-
elasticsearch

Setting up and integrating the ELK stack 531

3. Now, we are ready to do some housekeeping on the system side and grab all the
changes in the repository system:

sudo yum clean all

sudo yum makecache

If everything is okay, we can now install elasticsearch by running
this command:

sudo yum install elasticsearch

Neither elasticsearch nor any of the other services are going to be started or
enabled automatically. We must do this manually for each of them. Let's do that now.

4. The procedure to start and enable services is standard and is the same for all
three services:

sudo systemctl daemon-reload

sudo systemctl enable elasticsearch.service

sudo systemctl start elasticsearch.service

sudo systemctl status elasticsearch.service

sudo yum install kibana

sudo systemctl status kibana.service

sudo systemctl enable kibana.service

sudo systemctl start kibana.service

sudo yum install logstash

sudo systemctl start logstash.service

sudo systemctl enable logstash.service

The last thing to do is installing beats, which are services that are usually installed
on the monitored servers, and which can be configured to create and send
important metrics on the system. Let's do that now.

5. For the purpose of this demonstration, we will install them all, although we are not
going to use all of them:

sudo yum install filebeat metricbeat packetbeat
heartbeat-elastic auditbeat

After this, we should have a functional system. Let's have a quick overview.

532 Monitoring the KVM Virtualization Platform

Kibana and Elasticsearch are both running as web services, on different ports. We are going
to interact with Kibana via the web browser (using the URLs http://localhost:9200
and http://localhost:5601) since this is where the visualization happens:

Figure 14.3 – Checking the Elasticsearch service

Now, we can connect to Kibana on port 5601:

Figure 14.4 – Successful connection to Kibana

Setting up and integrating the ELK stack 533

With that, the deployment process was finished successfully. Our logical next step would
be to create a workflow. Let's do that now.

Workflow
In this section, we are going to establish a workflow – we are going to create logs and
metrics that are going to be ingested into Logstash, queried via Elasticsearch, and then
visually represented in Kibana.

By default, Kibana runs on port 5601, which can be changed in the configuration.

But what does this mean for me? What does this mean for KVM?

The biggest selling point for using Elastic stack is flexibility and ease of presentation.
It doesn't matter if we are running one, 10, or 1,000 machines inside dozens of KVM
hosts; we can treat them the same in production and establish a stable monitoring
workflow. Using extremely simple scripts, we can create completely custom metrics and
quickly display them, we can watch for trends, and we can even create a near-real-time
monitoring system. All this, essentially for free.

Let's create a simple monitor that is going to dump system metrics for the host system that
is running ELK. We've already installed Metricbeat, so the only thing left is to configure
the service to send the data to Elasticsearch. Data is sent to Elasticsearch, not Logstash,
and this is simply because of the way that the services interoperate. It is possible to send
both to Logstash and Elasticsearch, so we need to do a quick bit of explaining here.

Logstash is, by definition, a service that stores data that's sent to it. Elasticsearch searches
that data and communicates with Logstash. If we send the data to Logstash, we are
not doing anything wrong; we are just dumping data for later analysis. But sending to
Elasticsearch gives us one more feature – we can send not only data but also information
about the data in the form of templates.

On the other hand, Logstash has the ability to perform data transformation right after
it receives it and before data is stored, so if we need to do things such as parse GeoIP
information, change the names of hosts, and so on, we will probably use Logstash as our
primary destination. Keeping that in mind, do not set Metricbeat so that it sends data
both to Elasticsearch and Logstash; you will only get duplicate data stored in the database.

Using ELK is simple, and we've got this far into the installation without any real effort.
When we start analyzing the data is when the real problems start. Even simple and
perfectly formatted data that comes out of Metricbeat can be complex to visualize,
especially if we are doing it for the first time. Having premade templates both for
Elasticsearch and Kibana saves a lot of time.

534 Monitoring the KVM Virtualization Platform

Take a look at the following screenshot:

Figure 14.5 – Metricbeat dashboard

It takes no more than 10 minutes of setup to get a complete dashboard like this one. Let's
go through this step by step.

We already have Metricbeat installed and only need to configure it, but before that, we
need to configure Logstash. We only need to define one pipeline.

So, how can data be transformed?

Up until now, we did not go into details regarding how Logstash functions, but to create
our first set of data, we need to know some of the inner workings of Logstash. Logstash
uses a concept of a pipeline to define what happens to data once it's received, and before
that data is sent to Elasticsearch.

Each pipeline has two required, and one optional, elements:

• The input is always the first in the pipeline and is designed to receive data from
the source.

• The output is the last element in the pipeline, and it outputs the data.

• The filter is an optional element and stands between the input and output in order
to modify the data in accordance with the rules that we can define.

Setting up and integrating the ELK stack 535

All these elements can be chosen from a list of plugins in order for us to create an optimal
pipeline adjusted for a specific purpose. Let's go through this step by step.

What we need to do is just uncomment the one pipeline that is defined in the configuration
file, located in the /etc/logstash folder.

The whole stack uses YAML as the standard for the configuration file structure, so every
configuration file ends with the .yml extension. This is important in order to understand
that all the files that do not have this extension are here as either a sample or some kind
of template for the configuration; only files with the .yml extension will get parsed.

To configure Logstash, just open logstash.yml and uncomment all the lines that are
related to the first pipeline, called main. We don't need to do anything else. The file itself
is located in the /etc/logstash folder, and should look something like this after you
make these changes:

Figure 14.6 – The logstash.yml file

The next thing we need to do is configure Metricbeat.

536 Monitoring the KVM Virtualization Platform

Configuring data collector and aggregator
In the previous steps, we managed to deploy Metricbeat. Now, we need to start the actual
configuration. So, let's go through the configuration procedure, step by step:

1. Go to /etc/metricbeat and open metricbeat.yml.

Uncomment the lines that define elasticsearch as the target for Metricbeat.
Now, we need to change one more thing. Find the line containing the following:

setup.dashboards.enabled: false

Change the preceding line to the following:
setup.dashboards.enabled: true

We need to do this to load to dashboards so that we can use them.

2. The rest of the configuration is done from the command line. Metricbeat has a
couple of commands that can be run, but the most important is the following one:

metricbeat setup

This command will go through the initial setup. This part of the setup is probably
the most important thing in the whole initial configuration – pushing the
dashboard templates to Kibana. These templates will enable you to get up and
running in a couple of clicks, as opposed to learning how to do visualization and
configuring it from scratch. You will have to do this eventually but for this example,
we want to get things running as quickly as possible.

3. One more command that you need right now is the following one:

metricbeat modules list

This will give you a list of all the modules that Metricbeat already has prepared for
different services. Go ahead and enable two of them, logstash and kvm:

metricbeat modules enable kvm

metricbeat modules enable logstash

The logstash module is confusingly named since it is not intended to push data to
Logstash; instead, its main purpose is to report the Logstash service and enable you to
monitor it through Logstash. Sound confusing? Let's rephrase this: this module enables
Logstash to monitor itself. Or to be more precise, it enables beats to monitor part of the
Elastic stack.

The KVM module is a template that will enable you to gather different KVM-related metrics.

Configuring data collector and aggregator 537

This should be it. As a precaution, type in the following command to check Metricbeat's
configuration:

metricbeat test config

If the preceding command runs okay, start the Metricbeat service using the following
command:

systemctl start metricbeat

You now have a running service that is gathering data on your host – the same one that
is running KVM and dumping that data into Elasticsearch. This is essential since we are
going to use all that data to create visualizations and dashboards.

Creating charts in Kibana
Now, open Kibana in a browser using localhost:5601 as the address. There should
be an icon-based menu on the left-hand side of the screen. Go to Stack management
and take a look at Elasticsearch index management.

There should be an active index named metricbeat-<somenumber>. In this particular
example, <somenumber> will be the current version of metricbeat and the date of the first
entry in the log file. This is completely arbitrary and is just a default that ensures you know
when this instance was started.

In the same line as this name, there should be some numbers: what we are interested in is
the docs count – the number of objects that database holds. For the time being, if it's not
zero, we are okay.

Now, go to the Dashboard page and open the Metricbeat System Overview ECS
dashboard. It will show a lot of visual widgets representing CPU, memory, disk, and
network usage:

Figure 14.7 – Overview of the ECS dashboard

538 Monitoring the KVM Virtualization Platform

Now, you can click on Host Overview and view even more data about your system. Try
playing with the dashboard and different settings. One of the most interesting items on
this dashboard is the one in the upper-right part of the screen – the one that defines the
timespan that we are interested in. We can either create our own or use one of the presets,
such as last 15 minutes. After you click the Refresh button, new data should show
on the page.

With that, you now know enough about Kibana to get started, but we still are unable
to visualize KVM data. The next step is to create a dashboard that will cover that.

But before we do that, think about what you can do with only what we've learned so far.
Not only can you monitor the local system that has your KVM stack installed, but you
can also monitor any system that is able to run Metricbeat. The only thing that you need
to know is the IP address of the ELK stack, so that you can send data to it. Kibana will
automatically deal with visualizing all the different data from different systems, as we
will see later.

Creating custom utilization reports
Since version 7, Elastic stack has introduced mandatory checks that are designed to ensure
minimum security and functionality compliance, especially once we start using ELK
in production.

At first glance, these checks may confuse you – the installation that we guided you
through will work, and suddenly, as you try to configure some settings, everything will
fail. This is intentional.

In previous versions, these checks were performed but were flagged as warnings if a
configuration item was missed or misconfigured. Starting from version 7, these checks will
trigger an error when the system is in production and not configured correctly. This state
automatically means that your installation will not work if it's not configured properly.

ELK has two distinct modes of operation: development and production. On the first
installation, it is assumed that you are in development mode, so most of the functionality
simply works out of the box.

Things change a lot once you go into production mode – security settings and other
configuration options need to be explicitly set in order for the stack to function.

Configuring data collector and aggregator 539

The trick is that there is no explicit mode change – production settings and checks
associated with them are triggered by some settings in the configuration. The idea is that
once you reconfigure something that can be important from a security standpoint, you need
to reconfigure everything correctly. This will prevent you from forgetting something that can
be a big problem in production and force you to have at least a stable configuration to start
from. There is a switch to disable checks, but it is not recommended in any circumstances.

The main thing to pay attention to is the binding interface – the default installation binds
everything to localhost or a local loopback interface, which is completely fine for
production. Once your Elasticsearch is capable of forming a cluster and it can be triggered
by simply reconfiguring the network address for HTTP and transport communication, you
have to pay attention to the checks and reconfigure the whole system in order to make it
work. Please consult the documentation available on https://www.elastic.co/ for
more information, starting with https://www.elastic.co/guide/index.html.

For example, configuring clusters in the Elastic stack and all that it entails is way out of
the scope of this book – we are going to stay within the realm of a single-node cluster
in our configuration. This solution was specifically created for situations that can work
with a single node or, more precisely, a single machine instance that covers all the
functionality of a stack. In a normal deployment, you will run Elastic stack in a cluster, but
implementation details will be something determined by your configuration and its needs.

We need to warn you of two crucial points – firewall and SELinux settings are up to you.
All the services use standard TCP to communicate. Don't forget that for the services to
run, the network has to be configured correctly.

Now that we've gotten that out of the way, let's answer one simple question: what do we
need to do to make the Elastic stack work with more than one server? Let's discuss this
scenario, bit by bit.

Elasticsearch
Go to the configuration file (/etc/elasticsearch/elasticsearch.yml) and add
a line in the discovery section:

discovery.type: single-node

Using this section is not mandatory, but it helps when you must go back to the
configuration later.

This option will tell Elasticsearch that you will have only one node in the cluster, and it
will make Elasticsearch ignore all the checks associated with the cluster and its network.
This setting will also make this node the master node automatically since Elasticsearch
depends on having master nodes that control everything in the cluster.

https://www.elastic.co/guide/index.html

540 Monitoring the KVM Virtualization Platform

Change the setting under network.host: so that it points to the IP address of the
interface Elasticsearch is going to be available on. By default, it points to localhost and
is not visible from the network.

Restart the Elasticsearch service and make sure it is running and not generating errors:

sudo systemctl restart elasticsearch.service

Once you have it working, check whether the service is behaving normally from the local
machine. The easiest way is to do this is as follows:

curl -XGET <ip_address>:9200

The response should be .json formatted text containing information about the server.

Important note
The Elastic stack has three (or four) parts or services. In all our examples,
three of them (Logstash, Elasticsearch, and Kibana) were running on the same
server, so no additional configuration was necessary to accommodate network
communication. In a normal configuration, these services would probably run
on independent servers and in multiple instances, depending on the workload
and configuration of the service we are trying to monitor.

Logstash
The default installation for Logstash is a file named logstash-sample.conf in the
/etc/logstash folder. This contains a simple Logstash pipeline to be used when we are
using Logstash as the primary destination for beats. We will come to this later, but for the
time being, copy this file to /etc/logstash/conf.d/logstash.conf and change
the address of the Elasticsearch server in the file you just copied. It should look something
like this:

hosts => ["http://localhost:9200"].

Change localhost to the correct IP address of your server. This will make Logstash
listen on port 5044 and forward the data to Elasticsearch. Restart the service and verify
that it runs:

sudo systemctl restart logstash.service

Now, let's learn how to configure Kibana.

Configuring data collector and aggregator 541

Kibana
Kibana also has some settings that need to be changed, but when doing so, there are a
couple of things to remember about this service:

• By itself, Kibana is a service that serves visualizations and data over the HTTP
protocol (or HTTPS, depending on the configuration).

• At the same time, Kibana uses Elasticsearch as its backend in order to get and work
with data. This means that there are two IP addresses that we must care about:
a) The first one is the address that will be used to show Kibana pages. By default,
this is localhost on port 5601.

b) The other IP address is the Elasticsearh service that will deal with the queries.
The default for this is also localhost, but it needs to be changed to the IP address
of the Elasticsearch server.

The file that contains configuration details is /etc/kibana/kibana.yml and you
need to at least make the following changes:

• server.host: This needs to point to the IP address where Kibana is going to have
its pages.

• elasticsearch.hosts: This needs to point to the host (or a cluster, or multiple
hosts) that are going to perform queries.

Restart the service, and that's it. Now, log into Kibana and test whether everything works.

To get you even more familiarized with Kibana, we will try and establish some basic
system monitoring and show how we can monitor multiple hosts. We are going to
configure two beats: Metricbeat and Filebeat.

We already configured Metricbeat, but it was for localhost, so let's fix that first. In the
/etc/metricbeat/metricbeat.yml file, reconfigure the output in order to send
data to the elasticsearch address. You only need to change the host IP address since
everything else stays the same:

Array of hosts to connect to

Hosts: ["Your-host-IP-address:9200"]

Make sure that you change Your-host-IP-address to the IP address you're using.

Configuring filebeat is mostly the same; we need to use /etc/filebeat/filebeat.
yml to configure it. Since all the beats use the same concepts, both filebeat and metricbeat
(as well as other beats) use modules to provide functionality. In both, the core module is
named system, so enable it using the following command in filebeat:

filebeat modules enable system

542 Monitoring the KVM Virtualization Platform

Use the following command for metricbeat:

metricbeat modules enable system

We mentioned this previously, in the first example, but you can test your configuration
by running the following command:

filebeat test config

You can also use the following command:

metricbeat test config

Both beats should say that the config is ok.

Also, you can check the output settings, which will show you what the output settings
actually are and how they work. If you are configuring the system using only this book,
you should have a warning come up to remind you there is no TLS protection for the
connection, but otherwise, the outputs should work on the IP address that you set in
the configuration file.

To test the outputs, use the following command:

filebeat test output

You can also use the following command:

metricbeat test output

Repeat all this for every system that you intend to monitor. In our example, we have two
systems: one that is running KVM and another that is running Kibana. We also have
Kibana set up on the other system to test syslog and the way it notifies us of the problems
it notices.

We need to configure filebeat and metricbeat to send data to Kibana. We'll edit the
filebeat.yml and metricbeat.yml files for that purpose, by changing the
following portion of both files:

setup.kibana

 host: "Your-Kibana-Host-IP:5601"

Before running beats, on a fresh installation, you need to upload dashboards to Kibana. You
only need to do this once for each Kibana installation, and you only need to do this from
one of the systems you are monitoring – templates will work, regardless of the system they
were uploaded from; they will just deal with data that is coming into Elasticsearch.

Configuring data collector and aggregator 543

To do this, use the following command:

filebeat setup

You also need to use the following command:

metricbeat setup

This will take a couple of seconds or even a minute, depending on your server and client.
Once it says that it created the dashboards, it will display all the dashboards and settings
it created.

Now, you are almost ready to go through all the data that Kibana will display:

Figure 14.8 – Excerpt from the Kibana dashboard

544 Monitoring the KVM Virtualization Platform

Before we start, there's something else you need to know about time and timestamps. The
date/time picker in the top-right corner will let you choose either your own timespan or
one of the predefined intervals:

Figure 14.9 – Date/time picker

Important note
Always remember that the time that's shown is local to the browser's/machine's
time zone you are accessing Kibana from.

All the timestamps in the logs are local to the machine that is sending the logs. Kibana
will try and match time zones and translate the resulting timestamps, but if there is a
mismatch in the actual time settings on the machines you are monitoring, there is going
to be a problem trying to establish a timeline of events.

Configuring data collector and aggregator 545

Let's presume you got filebeat and metricbeat running. What can you do with these? As it
turns out, a lot:

• The first thing is discovering what is in your data. Press the Discover button in
Kibana (it looks like a small compass). Some data should show on the right if
everything is okay.

• To the right of the icon you just clicked on, a vertical space will fill up with all the
attributes that Kibana got from the data. If you do not see anything or something is
missing, remember that the time span you select narrows down the data that will get
shown in this view. Try readjusting the interval to Last 24 hours or Last 30 days.

Once the list of attributes shows up, you can quickly establish how many times each shows
up in the data you just selected – just click on any attribute and select Visualize. Also note
that once you click on the attribute, Kibana shows you the top five distinct values in the
last 500 records. This is a very useful tool if you need to know, for example, which hosts
are showing data, or how many different OS versions there are.

The visualization of particular attributes is just a start – notice how, once you hover over
an attribute name, a button called Add appears? Try clicking it. A table will start forming
on the right, filled with just the attributes you selected, sorted by timestamp. By default,
these values are not auto-refreshed, so the timestamps will be fixed. You can choose as
many attributes as you want and save this list or open it later.

The next thing we need to look at is individual visualizations. We are not going to go
into too many details, but you can create your own visualizations out of the datasets
using predefined visualization types. At the same time, you are not limited to using only
predefined things – using JSON and scripting is also possible, for even more customization.

The next thing we need to learn about is dashboards.

Depending on a particular dataset, or to be more precise, on the particular set of
machines you are monitoring, some of them will have attributes that cover things only a
particular machine does or has. One example is virtual machines on AWS – they will have
some information that is useful only in the context of AWS. This is not important in our
configuration, but you need to understand that there may be some attributes in the data
that are unique for a particular set of machines. For starters, choose one of the system
metrics; either System Navigation ECS for metricbeat or Dashboards ECS for filebeat.

These dashboards show a lot of information about your systems in a lot of ways. Try
clicking around and see what you can deduce.

546 Monitoring the KVM Virtualization Platform

The metricbeat dashboard is more oriented toward running systems and keeping an eye
on memory and CPU allocation. You can click and filter a lot of information, and have it
presented in different ways. The following is a screenshot of metricbeat so that you can
get a rough idea of what it looks like:

Figure 14.10 – metricbeat dashboard

The filebeat dashboard is more oriented toward analyzing what happened and establishing
trends. Let's check a couple of excerpts from the filebeat dashboard, starting with the
syslog entries part:

Figure 14.11 – filebeat syslog entries part

Configuring data collector and aggregator 547

At first glance, you can notice a couple of things. We are showing data for two systems,
and the data is partial since it covers a part of the interval that we set. Also, we can see that
some of the processes are running and generating logs more frequently than others. Even
if we do not know anything about the particular system, we can now see there are some
processes that show up in logs, and they probably shouldn't:

Figure 14.12 – filebeat interactive doughnut chart

Let's take a look at setroubleshoot. Click on the process name. In the window that
opens, click on the magnifying glass. This isolates only this process and shows only its
logs at the bottom of the screen.

We can quickly see on which host – including how often and why – setroubleshoot is
writing logs to. This is a quick way to spot potential problems. In this particular case, some
action should obviously be taken on this system to reconfigure SELinux since it generates
exceptions and stops some applications from accessing files.

Let's move along the vertical navigation bar and point out some other interesting
functionalities.

Going from top to bottom, the next big functionality is Canvas – it enables us to create
live presentations using data from the dataset we are collecting. The interface is similar to
what can be expected from other presentation programs, but the accent is on using data
directly in slides and generating slides in almost real time.

548 Monitoring the KVM Virtualization Platform

The next is Maps. This is a new addition to version 7.0 and allows us to create a
geographic presentation of data.

Machine learning is next – it enables you to manipulate data and use it to "train" filters
and create pipelines out of them.

Infrastructure is also interesting – when we mentioned dashboards, we were talking about
flexibility and customization. Infrastructure is a module that enables us to do real-time
monitoring with minimal effort and observe important metrics. You can see important data
either as a table, a balloon-like interface, or as a graph. Data can be averaged or presented
in other ways, and all that is done through a highly intuitive interface.

Heartbeat is another of these highly specialized boards – as its name suggests, it is the
easiest way to track and report on uptime data, and to quickly notice if something has
gone offline. Inventory hosts require the Heartbeat service to be installed on each system
we intend to monitor.

SIEM deserves a more thorough explanation: if we think about dashboards as being
multipurpose, SIEM is the exact opposite; it is created to be able to track all the events
on all the systems that can be categorized as security-related. This module will parse the
data when searching for IPs, network events, sources, destinations, network flows, and all
other data, and create simple to understand reports regarding what is happening on the
machines you are monitoring. It even offers anomaly detection, a feature that enables the
Elastic stack to serve as a solution for advanced security purposes. This feature is a paid
one and requires the highest-paid tier to function.

Stack monitor is another notable board as it enables you to actually see what is happening
in all the different parts of the Elastic stack. It will show the status of all the services, their
resource allocation, and license status. The Logs feature is especially useful since it tracks
how many logs of what type the stack is generating, and it can quickly point to problems
if there are any.

This module also generates statistics for services, enabling us to understand how the
system can be optimized.

Configuring data collector and aggregator 549

Management, the last icon at the bottom, was already mentioned – it enables the
management of the cluster and its parts. This is the place where we can see whether there
are any indices we are expecting, whether the data flowing in, whether can we optimize
something, and so on. This is also the place we can manage licenses and create snapshots
of system configuration.

ELK and KVM
Last but not least, let's create a system gauge that is going to show us a parameter from a
KVM hypervisor, and then visualize it in a couple of ways. The prerequisites for this are
a running KVM hypervisor, metricbeat with the KVM module installed, and an Elastic
stack configuration that supports receiving data from metricbeat. Let's go through ELK's
configuration for this specific use case:

1. First, go to the hypervisor and open a virsh shell. List all the available domains,
choose a domain, and use the dommemstat –-domain <domain_name>
command.

The result should be something like this:

Figure 14.13 – dommemtest for a domain

550 Monitoring the KVM Virtualization Platform

2. Open Kibana and log in, go to the Discover tab, and select metric* as the index
we are working with. The left column should populate with attributes that are in the
dataset that metricbeat sends to this Kibana instance. Now, look at the attributes
and select a couple of them:

Figure 14.14 – Selecting attributes in Kibana
You can select fields using a button that will show up as soon as you hover the
mouse cursor over any field. The same goes for deselecting them:

Figure 14.15 – Adding attributes in Kibana

Configuring data collector and aggregator 551

3. For now, let's stick with the ones we selected. To the right of the column, a table is
formed that contains only the fields you selected, enabling you to check the data that
the system is receiving. You may need to scroll down to see the actual information
since this table will display all the data that was received that has at least one item
that has a value. Since one of the fields is always a timestamp, there will be a lot of
rows that will not contain any useful data for our analysis:

Figure 14.16 – Checking the selected fields
What we can see here is that we get the same data that was the result of running the
command line on the monitored server.

What we need is a way to use these results as data to show our graphs. Click on the
Save button at the top left of the screen. Use a name that you will be able to find
later; we used dommemstat. Save the search.

552 Monitoring the KVM Virtualization Platform

4. Now, let's build a gauge that will show us the real-time data and a quick
visualization of one of the values. Go to Visualize and click Create new
visualization:

Figure 14.17 – Creating a new visualization
Choose the area graph. Then, on the next screen, find and select our source for
the data:

Figure 14.18 – Selecting a visualization source
This is going to create a window that has all the settings on the left and the end
result on the right. At the moment, what we can see makes no sense, so let's
configure what we need in order to show our data. There are a couple of ways to
accomplish what we want: we are going to use a histogram and filters to quickly
display how our value for unused memory changed over time.

Configuring data collector and aggregator 553

5. We are going to configure the y axis to show average data for kvm.dommemstat.
stat.value, which is the attribute that holds our data. Select Average under
Aggregation and kvm.dommemstat.stat.value as the field we are aggregating.
You can create a custom label if you want to:

Figure 18.19 – Selecting metric properties
This is still not right; we need to add a timestamp to see how our data changed over
time. We need to add a Date Histogram type to the x axis and use it:

Figure 14.20 – Choosing an aggregation type

554 Monitoring the KVM Virtualization Platform

6. Before we finish this visualization, we need to add a filter. The problem with data
that is received from the KVM metricbeat module is that it uses one attribute
to hold different data – if we want to know what the number in the file we are
displaying actually means, we need to read its name from kvm.dommemstat.
stat.name. To accomplish this, just create a filter called kvm.dommemstat.
stat.name:"unused".

After we refresh the visualization, our data should be correctly visualized on
the right:

Figure 14.21 – Correct visualization

7. We need to save this visualization using the Save button, give it a name that we will
be able to find later, and repeat this process but instead of filtering for unused, filter
for usable. Leave all the settings identical to the first visualization.

Let's build a dashboard. Open the Dashboard tab and click on Add new dashboard
on the first screen. Now, add our two visualizations to this dashboard. You just need
to find the right visualization and click on it; it will show up on the dashboard.

Configuring data collector and aggregator 555

As a result, we have a couple of simple dashboards running:

Figure 14.22 – Finished dashboard showing usable memory
The second dashboard – in the UI, which is actually right next to the first one – is
the unused memory dashboard:

Figure 14.23 – Finished dashboard showing unused memory

556 Monitoring the KVM Virtualization Platform

8. Save this dashboard so that you can use it later. All the elements of the dashboard
can be customized, and the dashboard can consist of any number of visualizations.
Kibana lets you customize almost everything you see and combine a lot of data
on one screen for easy monitoring. There is only one thing we need to change to
make this a good monitoring dashboard, and that is to make it autorefresh. Click
on the calendar icon on the right-hand side of the screen and select the auto refresh
interval. We decided on 5 seconds:

Figure 14.24 – Selecting time-related parameters

Now that we've done this, we can reflect on the fact that building this dashboard was
really straightforward and easy. This only took us a couple of minutes, and it's easy to read.
Imagine going through hundreds of megabytes of log files in text mode compared to this.
There's really no contest, as we were able to use our previously deployed ELK stack to
monitor information about KVM, which was the whole point of this chapter.

Summary 557

Summary
What Kibana enables you to do is create custom dashboards that can show you data
for different machines side by side, so KVM is just one of the many options we have.
Depending on your needs, you can display, for example, disk usage for a KVM hypervisor
and all the hosts running on it, or some other metric. The Elastic stack is a flexible tool,
but as with all things, it requires time to master. This chapter only covered the bare
basics of Elastic configuration, so we strongly recommend further reading on this
topic – alongside KVM, ELK can be used to monitor almost everything that produces
any kind of data.

The next chapter is all about performance tuning and optimization for KVM virtual
machines, a subject that we didn't really touch upon. There's quite a lot to be discussed
– virtual machine compute sizes, optimizing performance, disks, storage access and
multipathing, optimizing kernels, and virtual machine settings, just to name a few.
All these subjects will be more important the larger our environment becomes.

Questions
1. What do we use metricbeat for?

2. Why do we use Kibana?

3. What is the basic prerequisite before installing the ELK stack?

4. How do we add data to Kibana?

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• ELK stack: https://www.elastic.co/what-is/elk-stack

• ELK stack documentation: https://www.elastic.co/guide/index.html

• Kibana documentation: https://www.elastic.co/guide/en/kibana/
current/index.html

• Metricbeat documentation: https://www.elastic.co/guide/en/beats/
metricbeat/current/index.html

https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/beats/metricbeat/current/index.html
https://www.elastic.co/guide/en/beats/metricbeat/current/index.html

15
Performance Tuning
and Optimization for

KVM VMs
When we're thinking about virtualization, there are always questions that keep coming
up. Some of them might be simple enough, such as what are we going to get out of
virtualization? Does it simplify things? Is it easier to back up? But there are also much
more complex questions that start coming up once we've used virtualization for a while.
How do we speed things up on a compute level? Is there a way to do more optimization?
What can we tune additionally to get some more speed out of our storage or network?
Can we introduce some configuration changes that will enable us to get more out of the
existing infrastructure without investing a serious amount of money in it?

That's why performance tuning and optimization is so important to our virtualized
environments. As we will find out in this chapter, there are loads of different parameters
to consider – especially if we didn't design things properly from the very start, which
is usually the case. So, we're going to cover the subject of design first, explain why it
shouldn't be just a pure trial-and-error process, and then move on to disassembling
that thought process through different devices and subsystems.

560 Performance Tuning and Optimization for KVM VMs

In this chapter, we will cover the following topics:

• Tuning VM CPU and memory performance – NUMA

• Kernel same-page merging

• Virtio device tuning

• Block I/O tuning

• Network I/O tuning

It's all about design
There are some fundamental patterns that we constantly repeat in many other aspects
of our lives. We usually do so in IT, too. It's completely normal for us not to be good at
something when we just start doing it. For example, when we start training in any kind
of sport, we're usually not as good as we become after a couple of years of sticking with it.
When we start musical training, we're usually much better at it after a couple of years of
attending musical school. The same principle applies to IT – when we start doing IT, we're
nowhere near as good at it as we become with time and – primarily – experience.

We as humans are really good at putting intellectual defenses in the way of our learning.
We're really good at saying I'm going to learn through my mistakes – and we usually
combine that with leave me alone.

The thing is – there's so much knowledge out there already, it would be silly not to use it.
So many people already went through the same or similar process as we did; it would be a
pointless exercise in futility not to use that experience to our advantage. Furthermore, why
waste time on this whole I'm going to learn through my mistakes thing when we can learn
much more from people with much more experience than us?

When we start using virtualization, we usually start small. For example, we start by
installing a hosted-virtualization solution, such as VMware Player, Oracle VirtualBox, or
something like that. Then, as time goes by, we move on to a hypervisor with a couple of
Virtual Machines (VMs). As the infrastructure around us grows, we start following linear
patterns in trying to make infrastructure work as it used to, when it was smaller, which
is a mistake. Nothing in IT is linear – growth, cost, the time spent on administration…
absolutely nothing. It's actually rather simple to deconstruct that – as environments grow,
there are more co-dependencies, which means that one thing influences another, which
influences another, and so on. This endless matrix of influences is something that people
often forget, especially in the design phase.

It's all about design 561

Important note:
It's really simple: linear design will get you nowhere, and proper design is
the basis of performance tuning, which leaves much less work to be done on
performance tuning afterward.

Earlier on in this book (in Chapter 2, KVM as a Virtualization Solution), we mentioned
Non-Uniform Memory Access (NUMA). Specifically, we mentioned that the NUMA
configuration options are a very important part of VM configuration, especially if you're
designing an environment that hosts loads of virtualized servers. Let's use a couple of
examples to elaborate on this point further. These examples will give us a good basis to
take a mile-high view of the biggest problem in performance tuning and optimization and
describe how to use good design principles to get us out of many different types of trouble.
We're going to use Microsoft-based solutions as examples on purpose – not because we're
religious about using them, but because of a simple fact. We have a lot of widely available
documentation that we can use to our advantage – design documents, best practices,
shorter articles, and so on. So, let's use them.

General hardware design
Let's say that you've just started to design your new virtualized environment. When you
order servers today from your channel partners – whichever they are – you need to select
a model from a big list. It doesn't really matter which brand – there are a lot of models on
offer. You can go with 1U (so-called pizza box) servers, which mostly have either one or
two CPUs, depending on the model. Then, you can select a 2U server, a 3U server…the list
gets exponentially bigger. Let's say that you selected a 2U server with one CPU.

In the next step, you select the amount of memory – let's say 96 GB or 128 GB. You place
your order, and a couple of days or weeks later, your server gets delivered. You open it up,
and you realize something – all of the RAM is connected to CPU1 memory channels. You
put that in your memory bank, forget about it, and move on to the next phase.

Then, the question becomes about the micro-management of some very pedestrian
settings. The BIOS version of the server, the drivers on the hypervisor level, and the
BIOS settings (power management, C-states, Turbo Boost, hyperthreading, various
memory-related settings, not allowing cores to turn themselves off, and so on) can have
a vast influence on the performance of our VMs running on a hypervisor. Therefore, it's
definitely best practice to first check whether there are any newer BIOS/firmware versions
for our hardware, and check the manufacturer and other relevant documentation to make
sure that the BIOS settings are as optimized as possible. Then, and only then, we can start
checkboxing some physical and deployment procedures – deploying our server in a rack,
installing an OS and everything that we need, and start using it.

562 Performance Tuning and Optimization for KVM VMs

Let's say that after a while, you realize that you need to do some upgrades and order some
PCI Express cards – two single-port Fibre Channel 8 Gbit/s host-based adapters, two
single-port 10 Gbit/s Ethernet cards, and two PCI Express NVMe SSDs. For example, by
ordering these cards, you want to add some capabilities – to access Fibre Channel storage
and to speed up your backup process and VM migrations by switching both of these
functionalities from 1 Gbit/s to 10 Gbit/s networking. You place your order, and a couple
of days or weeks later, your new PCI Express cards are delivered. You open them up,
shut down your server, take it out of the rack, and install these cards. 2U servers usually
have space for two or even three PCI Express riser cards, which are effectively used for
connecting additional PCI Express devices. Let's say that you use the first PCI Express
riser to deploy the first two cards – the Fibre Channel controllers and 10 Gbit/s Ethernet
cards. Then, noticing that you don't have enough PCI Express connectors to connect
everything to the first PCI Express riser, you use the second PCI Express riser to install
your two PCI Express NVMe SSDs. You screw everything down, close the server cover,
put the server back in your rack, and power it back on. Then, you go back to your laptop
and connect to your server in a vain attempt to format your PCI Express NVMe SSDs and
use them for new VM storage. You realize that your server doesn't recognize these SSDs.
You ask yourself – what's going on here? Do I have a bad server?

Figure 15.1 – A PCI Express riser for DL380p G8 – you have to insert your
PCI Express cards into its slots

You call up your sales rep, and tell them that you think the server is malfunctioning as it
can't recognize these new SSDs. Your sales rep connects you to the pre-sales tech; you hear
a small chuckle from the other side and the following information: "Well, you see, you
can't do it that way. If you want to use the second PCI Express riser on your server, you
have to have a CPU kit (CPU plus heatsink) in your second CPU socket, and memory for
that second CPU, as well. Order these two things, put them in your server, and your PCI
Express NVMe SSDs will work without any problems."

It's all about design 563

You end your phone conversation and are left with a question mark over your head – what
is going on here? Why do I need to have a second CPU and memory connected to its memory
controllers to use some PCI Express cards?

This is actually related to two things:

• You can't use the memory slots of an uninstalled CPU, as that memory needs a
memory controller, which is inside the CPU.

• You can't use PCI Express on an uninstalled CPU, as the PCI Express lanes that
connect PCI Express risers' cards to the CPU aren't necessarily provided by the
chipset – the CPU can also be used for PCI Express lanes, and it often is, especially
for the fastest connections, as you'll learn in a minute.

We know this is confusing; we can feel your pain as we've been there. Sadly, you'll have to
stay with us for a little bit longer, as it gets even more confusing.

In Chapter 4, Libvirt Networking, we learned how to configure SR-IOV by using an Intel
X540-AT2 network controller. We mentioned that we were using the HP ProLiant DL380p
G8 server when configuring SR-IOV, so let's use that server for our example here, as well.
If you take a look at specifications for that server, you'll notice that it uses an Intel C600
chipset. If you then go to Intel's ARK website (https://ark.intel.com) and search
for information about C600, you'll notice that it has five different versions (C602, C602J,
C604, C606, and C608), but the most curious part of it is the fact that all of them only
support eight PCI Express 2.0 lanes. Keeping in mind that the server specifications clearly
state that this server supports PCI Express 3.0, it gets really confusing. How can that be
and what kind of trickery is being used here? Yes, PCI Express 3.0 cards can almost always
work at PCI Express 2.0 speeds, but it would be misguiding at best to flat-out say that this
server supports PCI Express 3.0, and then discover that it supports it by delivering PCI
Express 2.0 levels of performance (twice as slow per PCI Express lane).

It's only when you go to the HP ProLiant DL380p G8 QuickSpecs document and find
the specific part of that document (the Expansions Slots part, with descriptions of three
different types of PCI Express risers that you can use) where all the information that
we need is actually spelled out for us. Let's use all of the PCI Express riser details for
reference and explanation. Basically, the primary riser has two PCI Express v3.0 slots
that are provided by processor 1 (x16 plus x8), and the third slot (PCI Express 2.0 x8) is
provided by the chipset. For the optional riser, it says that all of the slots are provided by
the CPU (x16 plus x8 times two). There are actually some models that can have three PCI
Express risers, and for that third riser, all of the PCI Express lanes (x16 times two) are also
provided by processor 2.

https://ark.intel.com

564 Performance Tuning and Optimization for KVM VMs

This is all very important. It's a huge factor in performance bottlenecks for many scenarios,
which is why we centered our example around the idea of two PCI Express NVMe SSDs.
We wanted to go through the whole journey with you.

So, at this point, we can have an educated discussion about what should be the de facto
standard hardware design of our example server. If our intention is to use these PCI
Express NVMe SSDs for local storage for our VMs, then most of us would treat that as a
priority. That would mean that we'd absolutely want to connect these devices to the PCI
Express 3.0 slot so that they aren't bottlenecked by PCI Express 2.0 speeds. If we have
two CPUs, we're probably better off using the first PCI Express slot in both of our PCI
Express risers for that specific purpose. The reasoning is simple – they're PCI Express 3.0
compatible and they're provided by the CPU. Again, that's very important – it means that
they're directly connected to the CPU, without the added latency of going through the
chipset. Because, at the end of the day, the CPU is the central hub for everything, and data
going from VMs to SSDs and back will go through the CPU. From a design standpoint,
we should absolutely use the fact that we know this to our advantage and connect our
PCI Express NVMe SSDs locally to our CPUs.

The next step is related to Fibre Channel controllers and 10 Gbit/s Ethernet controllers.
The vast load of 8 Gbit/s Fibre Channel controllers are PCI Express 2.0 compatible. The
same thing applies to 10 Gbit/s Ethernet adapters. So, it's again a matter of priority. If
you're using Fibre Channel storage a lot from our example server, logic dictates that you'd
want to put your new and shiny Fibre Channel controllers in the fastest possible place.
That would be the second PCI Express slot in both of our PCI Express risers. Again,
second PCI Express slots are both provided by CPUs – processor 1 and processor 2. So
now, we're just left with 10 Gbit/s Ethernet adapters. We said in our example scenario that
we're going to be using these adapters for backup and VM migration. The backup won't
suffer all that much if it's done via a network adapter that's on the chipset. VM migration
might be a tad sensitive to that. So, you connect your first 10 Gbit/s Ethernet adapter to
the third PCI Express slot on the primary riser (for backup, provided by the chipset).
Then, you also connect your second 10 Gbit/s Ethernet adapter to the third PCI Express
slot on the secondary riser (PCI Express lanes provided by processor 2).

We've barely started on the subject of design with the hardware aspect of it, and already we
have such a wealth of information to process. Let's now move on to the second phase of our
design – which relates to VM design. Specifically, we're going to discuss how to create new
VMs that are designed properly from scratch. However, if we're going to do that, we need
to know which application this VM is going to be created for. For that matter, we're
going to create a scenario. We're going to use a VM that we're creating to host a node in a
Microsoft SQL database cluster on top of a VM running Windows Server 2019. The VM
will be installed on a KVM host, of course. This is a task given to us by a client. As we
already did the general hardware design, we're going to focus on VM design now.

Tuning the VM CPU and memory performance 565

VM design
Creating a VM is easy – we can just go to virt-manager, click a couple of times,
and we're done. The same applies to oVirt, RedHat Enterprise Virtualization Manager,
OpenStack, VMware, and Microsoft virtualization solutions… it's more or less the same
everywhere. The problem is designing VMs properly. Specifically, the problem is creating
a VM that's going to be pre-tuned to run an application on a very high level, which then
only leaves a small number of configuration steps that we can take on the server or VM
side to improve performance – the premise being that most of the optimization process
later will be done on the OS or application level.

So, people usually start creating a VM in one of two ways – either by creating a VM
from scratch with XYZ amount of resources added to the VM, or by using a template,
which – as we explained in Chapter 8, Creating and Modifying VM Disks, Templates, and
Snapshots – will save a lot of time. Whichever way we use, there's a certain amount of
resources that will be configured for our VM. We then remember what we're going to
use this VM for (SQL), so we increase the amount of CPUs to, for example, four, and the
amount of memory to 16 GB. We put that VM in the local storage of our server, spool it
up, and start deploying updates, configuring the network, and rebooting and generally
preparing the VM for the final installation step, which is actually installing our application
(SQL Server 2016) and some updates to go along with it. After we're done with that, we
start creating our databases and move on to the next set of tasks that need to be done.

Let's take a look at this process from a design and tuning perspective next.

Tuning the VM CPU and memory performance
There are some pretty straightforward issues with the aforementioned process. Some
are just engineering issues, while some are more procedural issues. Let's discuss them for
a second:

• There is no one-size-fits-all solution to almost anything in IT. Every VM of every
single client has a different set of circumstances and is in a different environment
that consists of different devices, servers, and so on. Don't try to speed up the
process to impress someone, as it will most definitely become a problem later.

• When you're done with deployment, stop. Learn the practice of breathe in, breathe
out, and stop for a second and think – or wait for an hour or even a day. Remember
what you're designing a VM for.

• Before allowing a VM to be used in production, check its configuration. The
number of virtual CPUs, the memory, the storage placement, the network options,
the drivers, software updates – everything.

566 Performance Tuning and Optimization for KVM VMs

• A lot of pre-configuration can be done before the installation phase or during the
template phase, before you clone the VM. If it's an existing environment that you're
migrating to a new one, collect information about the old environment. Find out what
the database sizes are, what storage is being used, and how happy people are with
the performance of their database server and the applications using them.

At the end of the whole process, learn to take a mile-high perspective on the IT-related
work that you do. From a quality assurance standpoint, IT should be a highly structured,
procedural type of work. If you've done something before, learn to document the things
that you did while installing things and the changes that you made. Documentation – as it
stands now – is one of the biggest Achilles' heels of IT. Writing documentation will make
it easier for you to repeat the process in the future when faced with the same (less often)
or a similar (much more often) scenario. Learn from the greats – just as an example, we
would know much less about Beethoven, for example, if he didn't keep detailed notes
of the things he did day in, day out. Yes, he was born in 1770 and this year will mark
250 years since he was born, and that was a long time ago, but that doesn't mean that
250-year-old routines are bad.

So now, your VM is configured and in production, and a couple of days or weeks later, you
get a call from the company and they ask why the performance is not all that great. Why
isn't it working just like on a physical server?

As a rule of thumb, when you're looking for performance issues on Microsoft SQL, they
can be roughly divided into four categories:

• Your SQL database is memory-limited.

• Your SQL database is storage-limited.

• Your SQL database is just misconfigured.

• Your SQL database is CPU-limited.

In our experience, the first and second category can easily account for 80–85% of SQL
performance issues. The third would probably account for 10%, while the last one is rather
rare, but it still happens. Keeping that in mind, from an infrastructure standpoint, when
you're designing a database VM, you should always look into VM memory and storage
configuration first, as they are by far the most common reasons. The problems just kind of
accumulate and snowball from there. Specifically, some of the most common key reasons
for sub-par SQL VM performance is the memory location, looking at it from a CPU
perspective, and storage issues – latencies/IOPS and bandwidth being the problem. So,
let's describe these one by one.

Tuning the VM CPU and memory performance 567

The first issue that we need to tackle is related to – funnily enough – geography. It's very
important for a database to have its memory content as close as possible to the CPU
cores assigned to its VMs. This is what NUMA is all about. We can easily overcome this
specific issue on KVM with a bit of configuration. Let's say that we chose that our VM
uses four virtual CPUs. Our test server has Intel Xeon E5-2660v2 processors, which have
10 physical cores each. Keeping in mind that our server has two of these Xeon processors,
we have 20 cores at our disposal overall.

We have two basic questions to answer:

• How do these four cores for our VM correlate to 20 physical cores below?

• How does that relate to the VM's memory and how can we optimize that?

The answer to both of these questions is that it depends on our configuration. By default,
our VM might use two cores from two physical processors each and spread itself in terms
of memory across both of them or 3+1. None of these configuration examples are good.
What you want is to have all the virtual CPU cores on one physical processor, and you
want those virtual CPU cores to use memory that's local to those four physical cores –
directly connected to the underlying physical processor's memory controller. What we just
described is the basic idea behind NUMA – to have nodes (consisting of CPU cores) that
act as building compute blocks for your VMs with local memory.

If at all possible, you want to reserve all the memory for that VM so that it doesn't swap
somewhere outside of the VM. In KVM, that outside of the VM would be in the KVM
host swap space. Having access to real RAM memory all of the time is a performance and
SLA-related configuration option. If the VM uses a bit of underlying swap partition that
acts as its memory, it will not have the same performance. Remember, swapping is usually
done on some sort of local RAID array, an SD card, or a similar medium, which are many
orders of magnitude slower in terms of bandwidth and latency compared to real RAM
memory. If you want a high-level statement about this – avoid memory overcommitment
on KVM hosts at all costs. The same goes for the CPU, and this is a commonly used best
practice on any other kind of virtualization solution, not just on KVM.

Furthermore, for critical resources, such as a database VM, it definitely makes sense to
pin vCPUs to specific physical cores. That means that we can use specific physical cores
to run a VM, and we should configure other VMs running on the same host not to use
those cores. That way, we're reserving these CPU cores specifically for a single VM, thus
configuring everything for maximum performance not to be influenced by other VMs
running on the physical server.

568 Performance Tuning and Optimization for KVM VMs

Yes, sometimes managers and company owners won't like you because of this best practice
(as if you're to blame), as it requires proper planning and enough resources. But that's
something that they have to live with – or not, whichever they prefer. Our job is to make
the IT system run as best as it possibly can.

VM design has its basic principles, such as the CPU and memory design, NUMA
configuration, configuring devices, storage and network configuration, and so on. Let's go
through all of these topics step by step, starting with an advanced CPU-based feature that
can really help make our systems run as best as possible if used properly – CPU pinning.

CPU pinning
CPU pinning is nothing but the process of setting the affinity between the vCPU and the
physical CPU core of the host so that the vCPU will be executing on that physical CPU
core only. We can use the virsh vcpupin command to bind a vCPU to a physical CPU
core or to a subset of physical CPU cores.

There are a couple of best practices when doing vCPU pinning:

• If the number of guest vCPUs is more than the single NUMA node CPUs, don't go
for the default pinning option.

• If the physical CPUs are spread across different NUMA nodes, it is always better
to create multiple guests and pin the vCPUs of each guest to physical CPUs in the
same NUMA node. This is because accessing different NUMA nodes, or running
across multiple NUMA nodes, has a negative impact on performance, especially for
memory-intensive applications.

Let's look at the steps of vCPU pinning:

1. Execute virsh nodeinfo to gather details about the host CPU configuration:

Figure 15.2 – Information about our KVM node

Tuning the VM CPU and memory performance 569

2. The next step is to get the CPU topology by executing the virsh capabilities
command and check the section tagged <topology>:

Figure 15.3 – The virsh capabilities output with all the visible physical CPU cores
Once we have identified the topology of our host, the next step is to start pinning
the vCPUs.

3. Let's first check the current affinity or pinning configuration with the guest named
SQLForNuma, which has four vCPUs:

Figure 15.4 – Checking the default vcpupin settings
Let's change that by using CPU pinning.

570 Performance Tuning and Optimization for KVM VMs

4. Let's pin vCPU0 to physical core 0, vCPU1 to physical core 1, vCPU2 to physical
core 2, and vCPU3 to physical core 3:

Figure 15.5 – Configuring CPU pinning
By using virsh vcpupin, we changed a fixed virtual CPU allocation for this VM.

5. Let's use virsh dumpxml on this VM to check the configuration change:

Figure 15.6 – CPU pinning VM configuration changes

Notice the CPU affinity listed in the virsh command and the <cputune> tag in the
XML dump of the running guest. As the XML tag says, this comes under the CPU tuning
section of the guest. It is also possible to configure a set of physical CPUs for a particular
vCPU instead of a single physical CPU.

There are a couple of things to remember. vCPU pinning can improve performance;
however, this depends on the host configuration and the other settings on the system.
Make sure you do enough tests and validate the settings.

Tuning the VM CPU and memory performance 571

You can also make use of virsh vcpuinfo to verify the pinning. The output of the
virsh vcpuinfo command is as follows:

Figure 15.7 – virsh vcpuinfo for our VM

If we're doing this on a busy host, it will have consequences. Sometimes, we literally won't
be able to start our SQL machine because of these settings. So, for the greater good (the
SQL VM working instead of not wanting to start), we can change the memory mode
configuration from strict to interleave or preferred, which will relax the
insistence on using strictly local memory for this VM.

Let's now explore the memory tuning options as they are the next logical thing to discuss.

572 Performance Tuning and Optimization for KVM VMs

Working with memory
Memory is a precious resource for most environments, isn't it? Thus, the efficient use
of memory should be achieved by tuning it. The first rule in optimizing KVM memory
performance is not to allocate more resources to a guest during setup than it will use.

We will discuss the following in greater detail:

• Memory allocation

• Memory tuning

• Memory backing

Let's start by explaining how to configure memory allocation for a virtual system or guest.

Memory allocation
To make the allocation process simple, we will consider the virt-manager
libvirt client again. Memory allocation can be done from the window shown in the
following screenshot:

Figure 15.8 – VM memory options

As you can see in the preceding screenshot, there are two main options: Current
allocation and Maximum allocation:

• Maximum allocation: The runtime maximum memory allocation of the guest. This
is the maximum memory that can be allocated to the guest when it's running.

• Current allocation: How much memory a guest always uses. For memory
ballooning reasons, we can have this value lower than the maximum.

The virsh command can be used to tune these parameters. The relevant virsh
command options are setmem and setmaxmem.

Tuning the VM CPU and memory performance 573

Memory tuning
The memory tuning options are added under <memtune> of the guest configuration file.

Additional memory tuning options can be found at http://libvirt.org/
formatdomain.html#elementsMemoryTuning.

The admin can configure the memory settings of a guest manually. If the <memtune>
configuration is omitted, the default memory settings apply for a guest. The virsh
command at play here is as follows:

virsh memtune <virtual_machine> --parameter size parameter

It can have any of the following values; this best practice is well documented in the
man page:

--hard-limit The maximum memory the guest can use.

--soft-limit The memory limit to enforce during memory
contention.

--swap-hard-limit The maximum memory plus swap the guest can
use. This has to be more than hard-limit value provided.

--min-guarantee The guaranteed minimum memory allocation for
the guest.

The default/current values that are set for the memtune parameter can be fetched
as shown:

Figure 15.9 – Checking the memtune settings for the VM

http://libvirt.org/formatdomain.html#elementsMemoryTuning
http://libvirt.org/formatdomain.html#elementsMemoryTuning

574 Performance Tuning and Optimization for KVM VMs

When setting hard_limit, you should not set this value too low. This might lead
to a situation in which a VM is terminated by the kernel. That's why determining the
correct amount of resources for a VM (or any other process) is such a design problem.
Sometimes, designing things properly seems like dark arts.

To learn more about how to set these parameters, please see the help output for the
memtune command in the following screenshot:

Figure 15.10 – Checking virsh help memtune

As we have covered memory allocation and tuning, the final option is memory backing.

Tuning the VM CPU and memory performance 575

Memory backing
The following is the guest XML representation of memory backing:

<domain> ...

 <memoryBacking>

 <hugepages>

 <page size="1" unit="G" nodeset="0-3,5"/>

 <page size="2" unit="M" nodeset="4"/>

 </hugepages>

 <nosharepages/>

 <locked/>

</memoryBacking> ...

 </domain>

You may have noticed that there are three main options for memory backing: locked,
nosharepages, and hugepages. Let's go through them one by one, starting
with locked.

locked
In KVM virtualization, guest memory lies in the process address space of the qemu-kvm
process in the KVM host. These guest memory pages can be swapped out by the Linux
kernel at any time, based on the requirement that the host has, and this is where locked
can help. If you set the memory backing option of the guest to locked, the host will not
swap out memory pages that belong to the virtual system or guest. The virtual memory
pages in the host system memory are locked when this option is enabled:

<memoryBacking>

 <locked/>

</memoryBacking>

We need to use <memtune> to set hard_limit. The calculus is simple – whatever the
amount of memory for the guest we need plus overhead.

576 Performance Tuning and Optimization for KVM VMs

nosharepages
The following is the XML representation of nosharepages from the guest
configuration file:

<memoryBacking>

 <nosharepages/>

</memoryBacking>

There are different mechanisms that can enable the sharing of memory when the memory
pages are identical. Techniques such as Kernel Same-Page Merging (KSM) share pages
among guest systems. The nosharepages option instructs the hypervisor to disable
shared pages for this guest – that is, setting this option will prevent the host from
deduplicating memory between guests.

hugepages
The third and final option is hugepages, which can be represented in XML format, as
follows:

<memoryBacking>

</hugepages>

</memoryBacking>

HugePages were introduced in the Linux kernel to improve the performance of memory
management. Memory is managed in blocks known as pages. Different architectures (i386,
ia64) support different page sizes. We don't necessarily have to use the default setting for
x86 CPUs (4 KB memory pages), as we can use larger memory pages (2 MB to 1 GB),
a feature that's called HugePages. A part of the CPU called the Memory Management
Unit (MMU) manages these pages by using a list. The pages are referenced through page
tables, and each page has a reference in the page table. When a system wants to handle a
huge amount of memory, there are mainly two options. One of them involves increasing
the number of page table entries in the hardware MMU. The second method increases the
default page size. If we opt for the first method of increasing the page table entries, it is
really expensive.

Tuning the VM CPU and memory performance 577

The second and more efficient method when dealing with large amounts of memory is
using HugePages or increased page sizes by using HugePages. The different amounts of
memory that each and every server has means that there is a need for different page sizes.
The default values are okay for most situations, while huge memory pages (for example,
1 GB) are more efficient if we have large amounts of memory (hundreds of gigabytes or
even terabytes). This means less administrative work in terms of referencing memory
pages and more time spent actually getting the content of these memory pages, which
can lead to a significant performance boost. Most of the known Linux distributions can
use HugePages to manage large memory amounts. A process can use HugePages memory
support to improve performance by increasing the CPU cache hits against the Translation
LookAside Buffer (TLB), as explained in Chapter 2, KVM as a Virtualization Solution.
You already know that guest systems are simply processes in a Linux system, thus the
KVM guests are eligible to do the same.

Before we move on, we should also mention Transparent HugePages (THP). THP is an
abstraction layer that automates the HugePages size allocation based on the application
request. THP support can be entirely disabled, can only be enabled inside MADV_HUGEPAGE
regions (to avoid the risk of consuming more memory resources), or enabled system-wide.
There are three main options for configuring THP in a system: always, madvise,
and never:

cat/sys/kernel/mm/transparent_hugepage/enabled [always]
madvise never

From the preceding output, we can see that the current THP setting in our server is
madvise. Other options can be enabled by using one of the following commands:

echo always >/sys/kernel/mm/transparent_hugepage/enabled

echo madvise >/sys/kernel/mm/transparent_hugepage/enabled

echo never >/sys/kernel/mm/transparent_hugepage/enabled

In short, what these values mean is the following:

• always: Always use THP.

• madvise: Use HugePages only in Virtual Memory Areas (VMAs) marked with
MADV_HUGEPAGE.

• never: Disable the feature.

578 Performance Tuning and Optimization for KVM VMs

The system settings for performance are automatically optimized by THP. We can have
performance benefits by using memory as cache. It is possible to use static HugePages
when THP is in place or in other words THP won't prevent it from using a static
method. If we don't configure our KVM hypervisor to use static HugePages, it will use
4 Kb transparent HugePages. The advantages we get from using HugePages for a KVM
guest's memory are that less memory is used for page tables and TLB misses are reduced;
obviously, this increases performance. But keep in mind that when using HugePages for
guest memory, you can no longer swap or balloon guest memory.

Let's have a quick look at how to use static HugePages in your KVM setup. First, let's
check the current system configuration – it's clear that the HugePages size in this
system is currently set at 2 MB:

Figure 15.11 – Checking the HugePages settings

We're primarily talking about all the attributes starting with HugePages, but it's worth
mentioning what the AnonHugePages attribute is. The AnonHugePages attribute
tells us the current THP usage on the system level.

Now, let's configure KVM to use a custom HugePages size:

1. View the current explicit hugepages value by running the following command or
fetch it from sysfs, as shown:

cat /proc/sys/vm/nr_hugepages

0

2. We can also use the sysctl -a |grep huge command:

Figure 15.12 – The sysctl hugepages settings

Tuning the VM CPU and memory performance 579

3. As the HugePage size is 2 MB, we can set hugepages in increments of 2 MB. To set
the number of hugepages to 2,000, use the following command:

echo 2000 > /proc/sys/vm/nr_hugepages

The total memory assigned for hugepages cannot be used by applications that are
not hugepage-aware – that is, if you over-allocate hugepages, normal operations of
the host system can be affected. In our examples, 2048*2 MB would equal 4,096 MB
of memory, which we should have available when we do this configuration.

4. We need to tell the system that this type of configuration is actually OK and
configure /etc/security/limits.conf to reflect that. Otherwise, the system
might refuse to give us access to 2,048 hugepages times 2 MB of memory. We need
to add two lines to that file:

soft memlock <value>

hard memlock <value>

The <value> parameter will depend on the configuration we want to do. If we
want to configure everything according to our 2048*2 MB example, <value>
would be 4,194,304 (or 4096*1024).

5. To make it persistent, you can use the following:

sysctl -w vm.nr_hugepages=<number of hugepages>

6. Then, mount the fs hugepages, reconfigure the VM, and restart the host:

 # mount -t hugetlbfs hugetlbfs /dev/hugepages

Reconfigure the HugePage-configured guest by adding the following settings in the VM
configuration file:

<memoryBacking>

</hugepages>

</ memoryBacking>

It's time to shut down the VM and reboot the host. Inside the VM, do the following:

systemctl poweroff

580 Performance Tuning and Optimization for KVM VMs

On the host, do the following:

systemctl reboot

After the host reboot and the restart of the VM, it will now start using the hugepages.

The next topic is related to sharing memory content between multiple VMs, referred to
as KSM. This technology is heavily used to save memory. At any given moment, when
multiple VMs are powered on the virtualization host, there's a big statistical chance
that those VMs have blocks of memory contents that are the same (they have the same
contents). Then, there's no reason to store the same contents multiple times. Usually, we
refer to KSM as a deduplication process being applied to memory. Let's learn how to use
and configure KSM.

Getting acquainted with KSM
KSM is a feature that allows the sharing of identical pages between the different processes
running on a system. We might presume that the identical pages exist due to certain
reasons—for example, if there are multiple processes spawned from the same binary
or something similar. There is no rule such as this though. KSM scans these identical
memory pages and consolidates a Copy-on-Write (COW) shared page. COW is nothing
but a mechanism where when there is an attempt to change a memory region that is
shared and common to more than one process, the process that requests the change gets a
new copy and the changes are saved in it.

Even though the consolidated COW shared page is accessible by all the processes,
whenever a process tries to change the content (write to that page), the process gets a
new copy with all of the changes. By now, you will have understood that, by using KSM,
we can reduce physical memory consumption. In the KVM context, this can really add
value, because guest systems are qemu-kvm processes in the system, and there is a huge
possibility that all the VM processes will have a good amount of similar memory.

For KSM to work, the process/application has to register its memory pages with KSM.
In KVM-land, KSM allows guests to share identical memory pages, thus achieving an
improvement in memory consumption. That might be some kind of application data, a
library, or anything else that's used frequently. This shared page or memory is marked as
copy on write. In short, KSM avoids memory duplication and it's really useful when
similar guest OSes are present in a KVM environment.

Getting acquainted with KSM 581

By using the theory of prediction, KSM can provide enhanced memory speed and
utilization. Mostly, this common shared data is stored in cache or main memory, which
causes fewer cache misses for the KVM guests. Also, KSM can reduce the overall guest
memory footprint so that, in a way, it allows the user to do memory overcommitting in a
KVM setup, thus supplying the greater utilization of available resources. However, we have
to keep in mind that KSM requires more CPU resources to identify the duplicate pages
and to perform tasks such as sharing/merging.

Previously, we mentioned that the processes have to mark the pages to show that they are
eligible candidates for KSM to operate. The marking can be done by a process based on
the MADV_MERGEABLE flag, which we will discuss in the next section. You can explore
the use of this flag in the madvise man page:

man 2 madvise

MADV_MERGEABLE (since Linux 2.6.32)

Enable Kernel Samepage Merging (KSM) for the pages in the
range specified by addr and length. The kernel regularly scans
those areas of user memory that have been marked as mergeable,
looking for pages with identical content. These are replaced
by a single write-protected page (that is automatically copied
if a process later wants to update the content of the page).
KSM merges only private anonymous pages (see mmap(2)).

The KSM feature is intended for applications that generate many
instances of the same data (e.g., virtualization systems such
as KVM). It can consume a lot of processing power; use with
care. See the Linux kernel source file Documentation/ vm/ksm.
txt for more details.

The MADV_MERGEABLE and MADV_UNMERGEABLE operations are
available only if the kernel was configured with CONFIG_KSM.

So, the kernel has to be configured with KSM, as follows:

Figure 15.13 – Checking the KSM settings

582 Performance Tuning and Optimization for KVM VMs

KSM gets deployed as a part of the qemu-kvm package. Information about the KSM
service can be fetched from the sysfs filesystem, in the /sys directory. There are
different files available in this location, reflecting the current KSM status. These are updated
dynamically by the kernel, and it has a precise record of the KSM usage and statistics:

Figure 15.14 – The KSM settings in sysfs

In an upcoming section, we will discuss the ksmtuned service and its configuration
variables. As ksmtuned is a service to control KSM, its configuration variables are
analogous to the files we see in the sysfs filesystem. For more details, you can check out
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html.

It is also possible to tune these parameters with the virsh command. The virsh
node-memory-tune command does this job for us. For example, the following
command specifies the number of pages to scan before the shared memory service
goes to sleep:

virsh node-memory-tune --shm-pages-to-scan number

As with any other service, the ksmtuned service also has logs stored in a log file, /var/
log/ksmtuned. If we add DEBUG=1 to /etc/ksmtuned.conf, we will have logging
from any kind of KSM tuning actions. Refer to https://www.kernel.org/doc/
Documentation/vm/ksm.txt for more details.

https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://www.kernel.org/doc/Documentation/vm/ksm.txt

Getting acquainted with KSM 583

Once we start the KSM service, as shown next, you can watch the values change
depending on the KSM service in action:

systemctl start ksm

We can then check the status of the ksm service like this:

Figure 15.15 – The ksm service command and the ps command output

Once the KSM service is started and we have multiple VMs running on our host, we can
check the changes by querying sysfs by using the following command multiple times:

cat /sys/kernel/mm/ksm/*

Let's explore the ksmtuned service in more detail. The ksmtuned service is designed
so that it goes through a cycle of actions and adjusts KSM. This cycle of actions continues
its work in a loop. Whenever a guest system is created or destroyed, libvirt will notify the
ksmtuned service.

The /etc/ksmtuned.conf file is the configuration file for the ksmtuned service.
Here is a brief explanation of the configuration parameters available. You can see these
configuration parameters match with the KSM files in sysfs:

Configuration file for ksmtuned.

How long ksmtuned should sleep between tuning adjustments

KSM_MONITOR_INTERVAL=60

Millisecond sleep between ksm scans for 16Gb server.

Smaller servers sleep more, bigger sleep less.

KSM_SLEEP_MSEC=10

584 Performance Tuning and Optimization for KVM VMs

KSM_NPAGES_BOOST - is added to the `npages` value, when `free
memory` is less than `thres`.

KSM_NPAGES_BOOST=300

KSM_NPAGES_DECAY - is the value given is subtracted to the
`npages` value, when `free memory` is greater than `thres`.

KSM_NPAGES_DECAY=-50

KSM_NPAGES_MIN - is the lower limit for the `npages` value.

KSM_NPAGES_MIN=64

KSM_NPAGES_MAX - is the upper limit for the `npages` value.

KSM_NPAGES_MAX=1250

KSM_THRES_COEF - is the RAM percentage to be calculated in
parameter `thres`.

KSM_THRES_COEF=20

KSM_THRES_CONST - If this is a low memory system, and the
`thres` value is less than `KSM_THRES_CONST`, then reset
`thres` value to `KSM_THRES_CONST` value.

KSM_THRES_CONST=2048

KSM is designed to improve performance and allow memory overcommits. It serves
this purpose in most environments; however, KSM may introduce a performance
overhead in some setups or environments – for example, if you have a few VMs that
have similar memory content when you start them and loads of memory-intensive
operations afterward. This will create issues as KSM will first work very hard to reduce the
memory footprint, and then lose time to cover for all of the memory content differences
between multiple VMs. Also, there is a concern that KSM may open a channel that could
potentially be used to leak information across guests, as has been well documented in the
past couple of years. If you have these concerns or if you see/experience KSM not helping
to improve the performance of your workload, it can be disabled.

To disable KSM, stop the ksmtuned and ksm services in your system by executing
the following:

systemctl stop ksm

systemctl stop ksmtuned

We have gone through the different tuning options for CPU and memory. The next big
subject that we need to cover is NUMA configuration, where both CPU and memory
configuration become a part of a larger story or context.

Tuning the CPU and memory with NUMA 585

Tuning the CPU and memory with NUMA
Before we start tuning the CPU and memory for NUMA-capable systems, let's see what
NUMA is and how it works.

Think of NUMA as a system where you have more than one system bus, each serving
a small set of processors and associated memory. Each group of processors has its own
memory and possibly its own I/O channels. It may not be possible to stop or prevent
running VM access across these groups. Each of these groups is known as a NUMA node.

In this concept, if a process/thread is running on a NUMA node, the memory on the
same node is called local memory and memory residing on a different node is known
as foreign/remote memory. This implementation is different from the Symmetric
Multiprocessor System (SMP), where the access time for all of the memory is the same
for all the CPUs, as memory access happens through a centralized bus.

An important subject in discussing NUMA is the NUMA ratio. The NUMA ratio is a
measure of how quickly a CPU can access local memory compared to how quickly it can
access remote/foreign memory. For example, if the NUMA ratio is 2.0, then it takes twice
as long for the CPU to access remote memory. If the NUMA ratio is 1, that means that
we're using SMP. The bigger the ratio, the bigger the latency price (overhead) that a VM
memory operation will have to pay before getting the necessary data (or saving it). Before
we explore tuning in more depth, let's discuss exploring the NUMA topology of
a system. One of the easiest ways to show the current NUMA topology is via the
numactl command:

Figure 15.16 – The numactl -H output

586 Performance Tuning and Optimization for KVM VMs

The preceding numactl output conveys that there are 10 CPUs in the system and they
belong to a single NUMA node. It also lists the memory associated with each NUMA
node and the node distance. When we discussed CPU pinning, we displayed the topology
of the system using the virsh capabilities. To get a graphical view of the NUMA
topology, you can make use of a command called lstopo, which is available with the
hwloc package in CentOS-/Red Hat-based systems:

Figure 15.17 – The lstopo command to visualize the NUMA topology

This screenshot also shows the PCI devices associated with the NUMA nodes. For
example, ens* (network interface) devices are attached to NUMA node 0. Once we have
the NUMA topology of the system and understand it, we can start tuning it, specially for
the KVM virtualized setup.

NUMA memory allocation policies
By modifying the VM XML configuration file, we can do NUMA tuning. Tuning NUMA
introduces a new element tag called numatune:

<domain> ...

 <numatune>

Tuning the CPU and memory with NUMA 587

 <memory mode="strict" nodeset="1-4,^3"/>

 </numatune> ...

</domain>

This is also configurable via the virsh command, as shown:

Figure 15.18 – Using virsh numatune to configure the NUMA settings

The XML representation of this tag is as follows:

<domain>

 …

 <numatune>

 <memory mode="strict" nodeset="1-4,^3"/>

 <memnode cellid="0" mode="strict" nodeset="1"/>

 <memnode cellid="2" mode="preferred" nodeset="2"/>

 </numatune> ...

</domain>

588 Performance Tuning and Optimization for KVM VMs

Even though the element called numatune is optional, it is provided to tune the
performance of the NUMA host by controlling the NUMA policy for the domain process.
The main sub-tags of this optional element are memory and nodeset. Some notes on
these sub-tags are as follows:

• memory: This element describes the memory allocation process on the NUMA
node. There are three policies that govern memory allocation for NUMA nodes:

a) Strict: When a VM tries to allocate memory and that memory isn't available,
allocation will fail.

b) Interleave: Nodeset-defined round-robin allocation across NUMA nodes.

c) Preferred: The VM tries to allocate memory from a preferred node. If that
node doesn't have enough memory, it can allocate memory from the remaining
NUMA nodes.

• nodeset: Specifies a NUMA node list available on the server.

One of the important attributes here is placement, as explained at the following
URL – https://libvirt.org/formatdomain.html:

"Attribute placement can be used to indicate the memory placement mode
for domain process, its value can be either "static" or "auto", defaults to
placement of vCPU, or "static" if nodeset is specified. "auto" indicates

the domain process will only allocate memory from the advisory nodeset
returned from querying numad, and the value of attribute nodeset will be

ignored if it's specified. If placement of vCPU is 'auto', and numatune is not
specified, a default numatune with placement 'auto' and mode 'strict'

will be added implicitly."
We need to be careful with these declarations, as there are inheritance rules that apply. For
example, the <numatune> and <vcpu> elements default to the same value if we specify
the <nodeset> element. So, we can absolutely configure different CPU and memory
tuning options, but also be aware of the fact that these options can be inherited.

https://libvirt.org/formatdomain.html

Tuning the CPU and memory with NUMA 589

There are some more things to consider when thinking about CPU pinning in the NUMA
context. We discussed the basis of CPU pinning earlier in this chapter, as it gives us better,
predictable performance for our VMs and can increase cache efficiency. Just as an example,
let's say that we want to run a VM as fast as possible. It would be prudent to run it on the
fastest storage available, which would be on a PCI Express bus on the CPU socket where
we pinned the CPU cores. If we're not using an NVMe SSD local to that VM, we can use a
storage controller to achieve the same thing. However, if the storage controller that we're
using to access VM storage is physically connected to another CPU socket, that will lead
to latency. For latency-sensitive applications, that will mean a big performance hit.

However, we also need to be aware of the other extreme – if we do too much pinning, it
can create other problems in the future. For example, if our servers are not architecturally
the same (having the same amount of cores and memory), migrating VMs might become
problematic. We can create a scenario where we're migrating a VM with CPU cores
pinned to cores that don't exist on the target server of our migration process. So, we
always need to be careful about what we do with the configuration of our environments so
that we don't take it too far.

The next subject on our list is emulatorpin, which can be used to pin our qemu-kvm
emulator to a specific CPU core so that it doesn't influence the performance of our VM
cores. Let's learn how to configure that.

Understanding emulatorpin
The emulatorpin option also falls into the CPU tuning category. The XML
representation of this would be as follows:

<domain> ...

 <cputune> ….. <emulatorpin cpuset="1-3"/>
…..

 </cputune> ...

</domain>

590 Performance Tuning and Optimization for KVM VMs

The emulatorpin element is optional and is used to pin the emulator (qemu-kvm) to a
host physical CPU. This does not include the vCPU or IO threads from the VM. If this is
omitted, the emulator is pinned to all the physical CPUs of the host system by default.

Important note:
Please note that <vcpupin>, <numatune>, and <emulatorpin>
should be configured together to achieve optimal, deterministic performance
when you tune a NUMA-capable system.

Before we leave this section, there are a couple more things to cover: the guest system
NUMA topology and hugepage memory backing with NUMA.

Guest NUMA topology can be specified using the <numa> element in the guest XML
configuration; some call this virtual NUMA:

 <cpu> ...

 <numa>

 <cell id='0' cpus='0-3' memory='512000' unit='KiB'/>

 <cell id='1' cpus='4-7' memory='512000' unit='KiB' />
</numa> ...

</cpu>

The cell id element tells the VM which NUMA node to use, while the cpus element
configures a specific core (or cores). The memory element assigns the amount of memory
per node. Each NUMA node is indexed by number, starting from 0.

Previously, we discussed the memorybacking element, which can be specified to use
hugepages in guest configurations. When NUMA is present in a setup, the nodeset
attribute can be used to configure the specific hugepage size per NUMA node, which
may come in handy as it ties a given guest's NUMA nodes to certain hugepage sizes:

<memoryBacking>

 <hugepages>

 <page size="1" unit="G" nodeset="0-2,4"/>

 <page size="4" unit="M" nodeset="3"/>

 </hugepages>

</memoryBacking>

Tuning the CPU and memory with NUMA 591

This type of configuration can optimize the memory performance, as guest NUMA nodes
can be moved to host NUMA nodes as required, while the guest can continue to use the
hugepages allocated by the host.

NUMA tuning also has to consider the NUMA node locality for PCI devices, especially
when a PCI device is being passed through to the guest from the host. If the relevant PCI
device is affiliated to a remote NUMA node, this can affect data transfer and thus hurt
the performance.

The easiest way to display the NUMA topology and PCI device affiliation is by using the
lstopo command that we discussed earlier. The non-graphic form of the same command
can also be used to discover this configuration. Please refer to the earlier sections.

KSM and NUMA
We discussed KSM in enough detail in previous sections. KSM is NUMA-aware, and it
can manage KSM processes happening on multiple NUMA nodes. If you remember, we
encountered a sysfs entry called merge_across_node when we fetched KSM entries
from sysfs. That's the parameter that we can use to manage this process:

cat /sys/kernel/mm/ksm/merge_across_nodes

1

If this parameter is set to 0, KSM only merges memory pages from the same NUMA node.
If it's set to 1 (as is the case here), it will merge across the NUMA nodes. That means that
the VM CPUs that are running on the remote NUMA node will experience latency when
accessing a KSM-merged page.

Obviously, you know the guest XML entry (the memorybacking element) for asking the
hypervisor to disable shared pages for the guest. If you don't remember, please refer back
to the memory tuning section for details of this element. Even though we can configure
NUMA manually, there is something called automatic NUMA balancing. We did mention
it earlier, but let's see what this concept involves.

592 Performance Tuning and Optimization for KVM VMs

Automatic NUMA balancing
The main aim of automatic NUMA balancing is to improve the performance of different
applications running in a NUMA-aware system. The strategy behind its design is simple:
if an application is using local memory to the NUMA node where vCPUs are running, it
will have better performance. By using automatic NUMA balancing, KVM tries to shift
vCPUs around so that they are local (as much as possible) to the memory addresses that
the vCPUs are using. This is all done automatically by the kernel when automatic NUMA
balancing is active. Automatic NUMA balancing will be enabled when booted on the
hardware with NUMA properties. The main conditions or criteria are as follows:

• numactl --hardware: Shows multiple nodes

• cat /sys/kernel/debug/sched_features: Shows NUMA in the flags

To illustrate the second point, see the following code block:

cat /sys/kernel/debug/sched_features

GENTLE_FAIR_SLEEPERS START_DEBIT NO_NEXT_BUDDY LAST_BUDDY
CACHE_HOT_BUDDY

WAKEUP_PREEMPTION ARCH_POWER NO_HRTICK NO_DOUBLE_TICK LB_BIAS
NONTASK_

POWER TTWU_QUEUE NO_FORCE_SD_OVERLAP RT_RUNTIME_SHARE NO_LB_MIN
NUMA

NUMA_FAVOUR_HIGHER NO_NUMA_RESIST_LOWER

We can check whether it is enabled in the system via the following method:

cat /proc/sys/kernel/numa_balancing

1

Obviously, we can disable automatic NUMA balancing via the following:

echo 0 > /proc/sys/kernel/numa_balancing

The automatic NUMA balancing mechanism works based on the number of algorithms
and data structures. The internals of this method are based on the following:

• NUMA hinting page faults

• NUMA page migration

• Pseudo-interleaving

• Fault statistics

Tuning the CPU and memory with NUMA 593

• Task placement

• Task grouping

One of the best practices or recommendations for a KVM guest is to limit its resource to
the amount of resources on a single NUMA node. Put simply, this avoids the unnecessary
splitting of VMs across NUMA nodes, which can degrade the performance. Let's start
by checking the current NUMA configuration. There are multiple available options to do
this. Let's start with the numactl command, NUMA daemon, and numastat, and then
go back to using a well-known command, virsh.

The numactl command
The first option to confirm NUMA availability uses the numactl command, as shown:

Figure 15.19 – The numactl hardware output

This lists only one node. Even though this conveys the unavailability of NUMA, further
clarification can be done by running the following command:

cat /sys/kernel/debug/sched_features

This will not list NUMA flags if the system is not NUMA-aware.

Generally, don't make VMs wider than what a single NUMA node can provide. Even if
the NUMA is available, the vCPUs are bound to the NUMA node and not to a particular
physical CPU.

594 Performance Tuning and Optimization for KVM VMs

Understanding numad and numastat
The numad man page states the following:

numad is a daemon to control efficient use of CPU and memory
on systems with NUMA topology.

numad is also known as the automatic NUMA Affinity Management Daemon. It
constantly monitors NUMA resources on a system in order to dynamically improve
NUMA performance. Again, the numad man page states the following:

"numad is a user-level daemon that provides placement advice and
process management for efficient use of CPUs and memory on systems

with NUMA topology."
numad is a system daemon that monitors the NUMA topology and resource usage. It will
attempt to locate processes for efficient NUMA locality and affinity, dynamically adjusting
to changing system conditions. numad also provides guidance to assist management
applications with the initial manual binding of CPU and memory resources for their
processes. Note that numad is primarily intended for server consolidation environments,
where there might be multiple applications or multiple virtual guests running on the
same server system. numad is most likely to have a positive effect when processes can be
localized in a subset of the system's NUMA nodes. If the entire system is dedicated to a
large in-memory database application, for example, especially if memory accesses will
likely remain unpredictable, numad will probably not improve performance.

To adjust and align the CPUs and memory resources automatically according to the
NUMA topology, we need to run numad. To use numad as an executable, just run
the following:

numad

You can check whether this is started as shown:

Figure 15.20 – Checking whether numad is active

Tuning the CPU and memory with NUMA 595

Once the numad binary is executed, it will start the alignment, as shown in the following
screenshot. In our system, we have the following VM running:

Figure 15.21 – Listing running VMs

You can use the numastat command, covered in an upcoming section, to monitor the
difference before and after running the numad service. It will run continuously by using
the following command:

numad -i 0

We can always stop it, but that will not change the NUMA affinity state that was
configured by numad. Now let's move on to numastat.

The numactl package provides the numactl binary/command and the numad package
provides the numad binary/command:

Figure 15.22 – The numastat command output for the qemu-kvm process

596 Performance Tuning and Optimization for KVM VMs

Important note:
The numerous memory tuning options that we have used have to be thoroughly
tested using different workloads before moving the VM to production.

Before we jump on to the next topic, we'd just like to remind you of a point we made
earlier in this chapter. Live-migrating a VM with pinned resources might be complicated,
as you have to have some form of compatible resources (and their amount) on the target
host. For example, the target host's NUMA topology doesn't have to be aligned with
the source host's NUMA topology. You should consider this fact when you tune a KVM
environment. Automatic NUMA balancing may help, to a certain extent, the need for
manually pinning guest resources, though.

Virtio device tuning
In the virtualization world, a comparison is always made with bare-metal systems.
Paravirtualized drivers enhance the performance of guests and try to retain near-bare-
metal performance. It is recommended to use paravirtualized drivers for fully virtualized
guests, especially when the guest is running with I/O-heavy tasks and applications.
Virtio is an API for virtual IO and was developed by Rusty Russell in support of his own
virtualization solution, called lguest. Virtio was introduced to achieve a common
framework for hypervisors for IO virtualization.

In short, when we use paravirtualized drivers, the VM OS knows that there's a hypervisor
beneath it, and therefore uses frontend drivers to access it. The frontend drivers are part
of the guest system. When there are emulated devices and someone wants to implement
backend drivers for these devices, hypervisors do this job. The frontend and backend
drivers communicate through a virtio-based path. Virtio drivers are what KVM uses as
paravirtualized device drivers. The basic architecture looks like this:

Figure 15.23 – The Virtio architecture

Block I/O tuning 597

There are mainly two layers (virt queue and virtual ring) to support communication
between the guest and the hypervisor.

Virt queue and virtual ring (vring) are the transport mechanism implementations in
virtio. Virt queue (virtio) is the queue interface that attaches the frontend and backend
drivers. Each virtio device has its own virt queues and requests from guest systems are
put into these virt queues. Each virt queue has its own ring, called a vring, which is where
the memory is mapped between QEMU and the guest. There are different virtio drivers
available for use in a KVM guest.

The devices are emulated in QEMU, and the drivers are part of the Linux kernel, or an
extra package for Windows guests. Some examples of device/driver pairs are as follows:

• virtio-net: The virtio network device is a virtual Ethernet card. virtio-net
provides the driver for this.

• virtio-blk: The virtio block device is a simple virtual block device (that is, a
disk). virtio-blk provides the block device driver for the virtual block device.

• virtio-balloon: The virtio memory balloon device is a device for managing
guest memory.

• virtio-scsi: The virtio SCSI host device groups together one or more disks and
allows communicating to them using the SCSI protocol.

• virtio-console: The virtio console device is a simple device for data input and
output between the guest and host userspace.

• virtio-rng: The virtio entropy device supplies high-quality randomness for
guest use, and so on.

In general, you should make use of these virtio devices in your KVM setup for better
performance.

Block I/O tuning
Going back to basics – a virtual disk of a VM can be either a block device or an image file.
For better VM performance, a block device-based virtual disk is preferred over an image
file that resides on a remote filesystem such as NFS, GlusterFS, and so on. However, we
cannot ignore that the file backend helps the virt admin to better manage guest disks and
it is immensely helpful in some scenarios. From our experience, we have noticed most
users make use of disk image files, especially when performance is not much of a concern.
Keep in mind that the total number of virtual disks that can be attached to a VM has a
limit. At the same time, there is no restriction on mixing and using block devices and files
and using them as storage disks for the same guest.

598 Performance Tuning and Optimization for KVM VMs

A guest treats the virtual disk as its storage. When an application inside a guest OS writes
data to the local storage of the guest system, it has to pass through a couple of layers. That
said, this I/O request has to traverse through the filesystem on the storage and the I/O
subsystem of the guest OS. After that, the qemu-kvm process passes it to the hypervisor
from the guest OS. Once the I/O is within the realm of the hypervisor, it starts processing
the I/O like any other applications running in the host OS. Here, you can see the number
of layers that the I/O has to pass through to complete an I/O operation. Hence, the block
device backend performs better than the image file backend.

The following are our observations on disk backends and file- or image-based virtual disks:

• A file image is part of the host filesystem and it creates an additional resource
demand for I/O operations compared to the block device backend.

• Using sparse image files helps to over allocate host storage but its usage will reduce
the performance of the virtual disk.

• The improper partitioning of guest storage when using disk image files can cause
unnecessary I/O operations. Here, we are mentioning the alignment of standard
partition units.

At the start of this chapter, we discussed virtio drivers, which give better performance. So,
it's recommended that you use the virtio disk bus when configuring the disk, rather than
the IDE bus. The virtio_blk driver uses the virtio API to provide high performance
for storage I/O device, thus increasing storage performance, especially in large enterprise
storage systems. We discussed the different storage formats available in Chapter 5, Libvirt
Storage; however, the main ones are the raw and qcow formats. The best performance
will be achieved when you are using the raw format. There is obviously a performance
overhead delivered by the format layer when using qcow. Because the format layer has to
perform some operations at times, for example, if you want to grow a qcow image, it has
to allocate the new cluster and so on. However, qcow would be an option if you want to
make use of features such as snapshots. These extra facilities are provided with the image
format, qcow. Some performance comparisons can be found at http://www.Linux-
kvm.org/page/Qcow2.

http://www.Linux-kvm.org/page/Qcow2
http://www.Linux-kvm.org/page/Qcow2

Block I/O tuning 599

There are three options that can be considered for I/O tuning, which we discussed in
Chapter 7, Virtual Machine – Installation, Configuration, and Life Cycle Management:

• Cache mode

• I/O mode

• I/O tuning

Let's briefly go through some XML settings so that we can implement them on our VMs.

The cache option settings can reflect in the guest XML, as follows:

<disk type='file' device='disk'>

<driver name='qemu' type='raw' cache='writeback'/>

The XML representation of I/O mode configuration is similar to the following:

<disk type='file' device='disk'>

<driver name='qemu' type='raw' io='threads'/>

In terms of I/O tuning, a couple of additional remarks:

• Limiting the disk I/O of each guest may be required, especially when multiple
guests exist in our setup.

• If one guest is keeping the host system busy with the number of disk I/Os generated
from it (noisy neighbor problem), that's not fair to the other guests.

Generally speaking, it is the system/virt administrator's responsibility to ensure all the
running guests get enough resources to work on—in other words, the Quality of Service
(QOS).

600 Performance Tuning and Optimization for KVM VMs

Even though the disk I/O is not the only resource that has to be considered to
guarantee QoS, this has some importance. Tuning I/O can prevent a guest system from
monopolizing shared resources and lowering the performance of other guests running on
the same host. This is really a requirement, especially when the host system is serving a
Virtual Private Server (VPS) or a similar kind of service. KVM gives the flexibility to do
I/O throttling on various levels – throughput and I/O amount, and we can do it per block
device. This can be achieved via the virsh blkdeviotune command. The different
options that can be set using this command are displayed as follows:

Figure 15.24 – Excerpt from the virsh blkdeviotune –help command

Details about parameters such as total-bytes-sec, read-bytes-sec,
writebytes-sec, total-iops-sec, and so on are easy to understand from
the preceding command output. They are also documented in the virsh command
man page.

For example, to throttle the vdb disk on a VM called SQLForNuma to 200 I/O operations
per second and 50 MB-per-second throughput, run this command:

virsh blkdeviotune SQLForNuma vdb --total-iops-sec 200
--total-bytes-sec 52428800

Next, we are going to look at network I/O tuning.

Network I/O tuning 601

Network I/O tuning
What we've seen in most KVM environments is that all the network traffic from a guest
will take a single network path. There won't be any traffic segregation, which causes
congestion in most KVM setups. As a first step for network tuning, we'd advise trying
different networks or dedicated networks for management, backups, or live migration.
But when you have more than one network interface for your traffic, please try to avoid
multiple network interfaces for the same network or segment. If this is at all in play, apply
some network tuning that is common for such setups; for example, use arp_filter to
control ARP Flux. ARP Flux happens when a VM has more than one network interface
and is using them actively to reply to ARP requests, so we should do the following:

echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter

After that, you need to edit /etc/sysctl.conf to make this setting persistent.

For more information on ARP Flux, please refer to http://linux-ip.net/html/
ether-arp.html#ether-arp-flux.

Additional tuning can be done on the driver level; that said, by now we know that virtio
drivers give better performance compared to emulated device APIs. So, obviously,
using the virtio_net driver in guest systems should be taken into account. When
we use the virtio_net driver, it has a backend driver in qemu that takes care of the
communication initiated from the guest network. Even if this was performing better,
some more enhancements in this area introduced a new driver called vhost_net, which
provides in-kernel virtio devices for KVM. Even though vhost is a common framework
that can be used by different drivers, the network driver, vhost_net, was one of the
first drivers. The following diagram will make this clearer:

Figure 15.25 – The vhost_net architecture

http://linux-ip.net/html/ether-arp.html#ether-arp-flux
http://linux-ip.net/html/ether-arp.html#ether-arp-flux

602 Performance Tuning and Optimization for KVM VMs

As you may have noticed, the number of context switches is really reduced with the new
path of communication. The good news is that there is no extra configuration required in
guest systems to support vhost because there is no change to the frontend driver.

vhost_net reduces copy operations, lowers latency and CPU usage, and thus yields
better performance. First of all, the kernel module called vhost_net (refer to the
screenshot in the next section) has to be loaded in the system. As this is a character device
inside the host system, it creates a device file called /dev/vhost-net on the host.

How to turn it on
When QEMU is launched with -netdev tap,vhost=on, it will instantiate the
vhost-net interface by using ioctl() calls. This initialization process binds qemu
with a vhost-net instance, along with other operations such as feature negotiations
and so on:

Figure 15.26 – Checking vhost kernel modules

Network I/O tuning 603

One of the parameters available with the vhost_net module is experimental_
zcopytx. What does it do? This parameter controls something called bridge zero
copy transmit. Let's see what this means (as stated on http://www.google.com/
patents/US20110126195):

"A system for providing a zero copy transmission in virtualization
environment includes a hypervisor that receives a guest operating

system (OS) request pertaining to a data packet associated with a guest
application, where the data packet resides in a buffer of the guest OS or

a buffer of the guest application and has at least a partial header created
during the networking stack processing. The hypervisor further sends, to a
network device driver, a request to transfer the data packet over a network
via a network device, where the request identifies the data packet residing
in the buffer of the guest OS or the buffer of the guest application, and the
hypervisor refrains from copying the data packet to a hypervisor buffer."

If your environment uses large packet sizes, configuring this parameter may have a
noticeable effect. The host CPU overhead is reduced by configuring this parameter when
the guest communicates to the external network. This does not affect the performance in
the following scenarios:

• Guest-to-guest communication

• Guest-to-host communication

• Small packet workloads

Also, the performance improvement can be obtained by enabling multi queue virtio-
net. For additional information, check out https://fedoraproject.org/wiki/
Features/MQ_virtio_net.

One of the bottlenecks when using virtio-net was its single RX and TX queue. Even
though there are more vCPUs, the networking throughput was affected by this limitation.
virtio-net is a single-queue type of queue, so multi-queue virtio-net was
developed. Before this option was introduced, virtual NICs could not utilize the multi-
queue support that is available in the Linux kernel.

This bottleneck is lifted by introducing multi-queue support in both frontend and backend
drivers. This also helps guests scale with more vCPUs. To start a guest with two queues,
you could specify the queues parameters to both tap and virtio-net, as follows:

qemu-kvm -netdev tap,queues=2,... -device virtio-net-
pci,queues=2,...

http://www.google.com/patents/US20110126195
http://www.google.com/patents/US20110126195
https://fedoraproject.org/wiki/Features/MQ_virtio_net
https://fedoraproject.org/wiki/Features/MQ_virtio_net

604 Performance Tuning and Optimization for KVM VMs

The equivalent guest XML is as follows:

<interface type='network'>

 <source network='default'/>

 <model type='virtio'/>

 <driver name='vhost' queues='M'/>

</interface>

Here, M can be 1 to 8, as the kernel supports up to eight queues for a multi-queue tap
device. Once it's configured for qemu, inside the guest, we need to enable multi-queue
support with the ethtool command. Enable the multi-queue through ethtool
(where the value of K is from 1 to M), as follows:

ethtool -L eth0 combined 'K'

You can check the following link to see when multi-queue virtio-net provides the
greatest performance benefit: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/7/html/virtualization_
tuning_and_optimization_guide/sect-virtualization_tuning_
optimization_guide-networking-techniques.

Don't use the options mentioned on the aforementioned URL blindly – please test the
impact on your setup, because the CPU consumption will be greater in this scenario
even though the network throughput is impressive.

KVM guest time-keeping best practices
There are different mechanisms for time-keeping. One of the best-known techniques
is Network Time Protocol (NTP). By using NTP, we can synchronize clocks to great
accuracy, even when using networks that have jitter (variable latency). One thing that
needs to be considered in a virtualization environment is the maxim that the guest time
should be in sync with the hypervisor/host, because it affects a lot of guest operations
and can cause unpredictable results if they are not in sync.

There are different ways to achieve time sync, however; it depends on the setup you have.
We have seen people using NTP, setting the system clock from the hardware clock using
hwclock –s, and so on. The first thing that needs to be considered here is trying to
make the KVM host time in sync and stable. You can use NTP-like protocols to achieve
this. Once it's in place, the guest time has to be kept in sync. Even though there are
different mechanisms for doing that, the best option would be using kvm-clock.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-networking-techniques
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-networking-techniques
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-networking-techniques
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-networking-techniques

Network I/O tuning 605

kvm-clock
kvm-clock is also known as a virtualization-aware (paravirtualized) clock device.
When kvm-clock is in use, the guest asks the hypervisor about the current time,
guaranteeing both stable and accurate timekeeping. The functionality is achieved by the
guest registering a page and sharing the address with the hypervisor. This is a shared page
between the guest and the hypervisor. The hypervisor keeps updating this page unless it
is asked to stop. The guest can simply read this page whenever it wants time information.
However, please note that the hypervisor should support kvm-clock for the guest to use
it. For more details, you can check out https://lkml.org/lkml/2010/4/15/355.

By default, most of the newer Linux distributions use Time Stamp Counter (TSC), a CPU
register, as a clock source. You can verify whether TSC or kvm_clock are configured
inside the guest via the following method:

[root@kvmguest]$ cat /sys/devices/system/clocksource/
clocksource0/current_clocksource

tsc

You can also use ntpd or chrony as your clock sources on Linux, which requires
minimal configuration. In your Linux VM, edit /etc/ntpd.conf or /etc/chronyd.
conf and modify the server configuration lines to point to your NTP servers by IP
address. Then, just enable and start the service that you're using (we're using chrony
as an example here):

systemctl enable chronyd

systemctl start chronyd

There's another, a bit newer, protocol that's being heavily pushed for time synchronization,
which is called the Precision Time Protocol (PTP). Nowadays, this is becoming the de
facto standard service to be used on the host level. This protocol is directly supported in
hardware (as in network interface cards) for many of the current network cards available
on the market. As it's basically hardware-based, it should be even more accurate then
ntpd or chronyd. It uses timestamping on the network interface, and external sources,
and the computer's system clock for synchronization.

Installing all of the necessary pre-requisites is just a matter of one yum command to
enable and start a service:

yum -y install linuxptp

systemctl enable ptp4l

systemctl start ptp4l

https://lkml.org/lkml/2010/4/15/355

606 Performance Tuning and Optimization for KVM VMs

By default, the ptp4l service will use the /etc/sysconfig/ptp4l configuration
file, which is usually bound to the first network interface. If you want to use some other
network interface, the simplest thing to do would be to edit the configuration file, change
the interface name, and restart the service via systemctl.

Now, from the perspective of VMs, we can help them time sync by doing a little bit of
configuration. We can add the ptp_kvm module to the global KVM host configuration,
which is going to make our PTP as a service available to chronyd as a clock source. This
way, we don't have to do a lot of additional configuration. So, just add ptp_kvm as a
string to the default KVM configuration, as follows:

echo ptp_kvm > /etc/modules-load.d/kvm-chrony.conf

modprobe ptp_kvm

By doing this, a ptp device will be created in the /dev directory, which we can then
use as a chrony time source. Add the following line to /etc/chrony.conf and
restart chronyd:

refclock PHC /dev/ptp0 poll 3 dpoll -2 offset 0

systemctl restart chronyd

By using an API call, all Linux VMs are capable of then getting their time from the
physical host running them.

Now that we've covered a whole bunch of VM configuration options in terms of
performance tuning and optimization, it's time to finally step away from all of these
micro-steps and focus on the bigger picture. Everything that we've covered so far in terms
of VM design (related to the CPU, memory, NUMA, virtio, block, network, and time
configuration) is only as important as what we're using it for. Going back to our original
scenario – a SQL VM – let's see how we're going to configure our VM properly in terms
of the software that we're going to run on it.

Software-based design
Remember our initial scenario, involving a Windows Server 2019-based VM that should
be a node in a Microsoft SQL Server cluster? We covered a lot of the settings in terms of
tuning, but there's more to do – much more. We need to be asking some questions. The
sooner we ask these questions, the better, as they're going to have a key influence on
our design.

Network I/O tuning 607

Some questions we may ask are as follows:

• Excuse me, dear customer, when you say cluster, what do you mean specifically, as
there are different SQL Server clustering methodologies?

• Which SQL licenses do you have or are you planning to buy?

• Do you need active-active, active-passive, a backup solution, or something else?

• Is this a single-site or a multi-site cluster?

• Which SQL features do you need exactly?

• Which licenses do you have and how much are you willing to spend on them?

• Is your application capable of working with a SQL cluster (for example, in a
multi-site scenario)?

• What kind of storage system do you have?

• What amount of IOPS can your storage system provide?

• How are latencies on your storage?

• Do you have a storage subsystem with different tiers?

• What are the service levels of these tiers in terms of IOPS and latency?

• If you have multiple storage tiers, can we create SQL VMs in accordance with the
best practices – for example, place data files and log files on separate virtual disks?

• Do you have enough disk capacity to meet your requirements?

These are just licensing, clustering, and storage-related questions, and they are not going
to go away. They need to be asked, without hesitation, and we need to get real answers
before deploying things. We have just mentioned 14 questions, but there are actually
many more.

Furthermore, we need to think about other aspects of VM design. It would be prudent
to ask some questions such as the following:

• How much memory can you give for SQL VMs?

• Which servers do you have, which processors are they using, and how much
memory do you have per socket?

• Are you using any latest-gen technologies, such as persistent memory?

608 Performance Tuning and Optimization for KVM VMs

• Do you have any information about the scale and/or amount of queries that you're
designing this SQL infrastructure for?

• Is money a big deciding factor in this project (as it will influence a number of design
decisions as SQL is licensed per core)? There's also the question of Standard versus
Enterprise pricing.

This stack of questions actually points to one very, very important part of VM design,
which is related to memory, memory locality, the relationship between CPU and memory,
and also one of the most fundamental questions of database design – latency. A big part
of that is related to correct VM storage design – the correct storage controller, storage
system, cache settings, and so on, and VM compute design – which is all about NUMA.
We've explained all of those settings in this chapter. So, to configure our SQL VM
properly, here's a list of the high-level steps that we should follow:

• Configure a VM with the correct NUMA settings and local memory. Start with four
vCPUs for licensing reasons and then figure out whether you need more (such as if
your VM becomes CPU-limited, which you will see from performance graphs and
SQL-based performance monitoring tools).

• If you want to reserve CPU capacity, make use of CPU pinning so that specific CPU
cores on the physical server's CPU is always used for the SQL VM, and only that.
Isolate other VMs to the remaining cores.

• Reserve memory for the SQL VM so that it doesn't swap, as only using real RAM
memory will guarantee smooth performance that's not influenced by noisy neighbors.

• Configure KSM per VM if necessary and avoid using it on SQL VMs as it might
introduce latency. In the design phase, make sure you buy as much RAM memory
as possible so that memory doesn't become an issue as it will be a very costly
issue in terms of performance if a server doesn't have enough of it. Don't ever
overcommit memory.

• Configure the VM with multiple virtual hard disks and put those hard disks in
storage that can provide levels of service needed in terms of latency, overhead, and
caching. Remember, an OS disk doesn't necessarily need write caching, but database
and log disks will benefit from it.

• Use separate physical connections from your hosts to your storage devices and tune
storage to get as much performance out of it as possible. Don't oversubscribe – both
on the links level (too many VMs going through the same infrastructure to the same
storage device) and the datastore level (don't put one datastore on a storage device
and store all VMs on it as it will negatively impact performance – isolate workloads,
create multiple targets via multiple links, and use masking and zoning).

Summary 609

• Configure multipathing, load balancing, and failover – to get as much performance
out of your storage, yes, but also to have redundancy.

• Install the correct virtio drivers, use vhost drivers or SR-IOV if necessary, and
minimize the overhead on every level.

• Tune the VM guest OS – turn off unnecessary services, switch the power profile to
High Performance (most Microsoft OSes have a default setting that puts the
power profile into Balanced mode for some reason). Tune the BIOS settings and
check the firmware and OS updates – everything – from top to bottom. Take notes,
measure, benchmark, and use previous benchmarks as baselines when updating and
changing the configuration so that you know which way you're going.

• When using iSCSI, configure jumbo frames as in most use cases, this will have a
positive influence on the storage performance, and make sure that you check the
storage device vendor's documentation for any best practices in that regard.

The takeway of this chapter is the following – don't just blindly install an application just
because a client asks you to install it. It will come to haunt you later on, and it will be
much, much more difficult to resolve any kind of problems and complaints. Take your
time and do it right. Prepare for the whole process by reading the documentation, as it's
widely available.

Summary
In this chapter, we did some digging, going deep into the land of KVM performance tuning
and optimization. We discussed many different techniques, varying from simple ones,
such as CPU pinning, to much more complex ones, such as NUMA and proper NUMA
configuration. Don't be put off by this, as learning design is a process, and designing things
correctly is a craft that can always be improved with learning and experience. Think of it
this way – when architects were designing the highest skyscrapers in the world, didn't they
move the goalposts farther and farther with each new highest building?

In the next chapter – the final chapter of this book - we will discuss troubleshooting your
environments. It's at least partially related to this chapter, as we will be troubleshooting
some issues related to performance as well. Go through this chapter multiple times before
switching to the troubleshooting chapter – it will be very, very beneficial for your overall
learning process.

610 Performance Tuning and Optimization for KVM VMs

Questions
1. What is CPU pinning?

2. What does KSM do?

3. How do we enhance the performance of block devices?

4. How do we tune the performance of network devices?

5. How can we synchronize clocks in virtualized environments?

6. How do we configure NUMA?

7. How do we configure NUMA and KSM to work together?

Further reading
Please refer to the following links for more information:

• RedHat Enterprise Linux 7 – installing, configuring, and managing VMs on a
RHEL physical machine: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/7/html/virtualization_
deployment_and_administration_guide/index

• vCPU pinning: http://libvirt.org/formatdomain.
html#elementsCPUTuning

• KSM kernel documentation: https://www.kernel.org/doc/
Documentation/vm/ksm.txt

• Placement: http://libvirt.org/formatdomain.
html#elementsNUMATuning

• Automatic NUMA balancing: https://www.redhat.com/files/
summit/2014/summit2014_riel_chegu_w_0340_automatic_numa_
balancing.pdf

• Virtio 1.1 specification: http://docs.oasis-open.org/virtio/virtio/
v1.1/virtio-v1.1.html

• ARP Flux: http://Linux-ip.net/html/ether-arp.html#ether-arp-
flux

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index
http://libvirt.org/formatdomain.html#elementsCPUTuning
http://libvirt.org/formatdomain.html#elementsCPUTuning
https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://www.kernel.org/doc/Documentation/vm/ksm.txt
http://libvirt.org/formatdomain.html#elementsNUMATuning
http://libvirt.org/formatdomain.html#elementsNUMATuning
https://www.redhat.com/files/summit/2014/summit2014_riel_chegu_w_0340_automatic_numa_balancing.pdf
https://www.redhat.com/files/summit/2014/summit2014_riel_chegu_w_0340_automatic_numa_balancing.pdf
https://www.redhat.com/files/summit/2014/summit2014_riel_chegu_w_0340_automatic_numa_balancing.pdf
http://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
http://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
http://Linux-ip.net/html/ether-arp.html#ether-arp-flux
http://Linux-ip.net/html/ether-arp.html#ether-arp-flux

Further reading 611

• MQ virtio: https://fedoraproject.org/wiki/Features/MQ_virtio_
net

• libvirt NUMA tuning on RHEL 7: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/7/html/
virtualization_tuning_and_optimization_guide/sect-
virtualization_tuning_optimization_guide-numa-numa_and_
libvirt

https://fedoraproject.org/wiki/Features/MQ_virtio_net
https://fedoraproject.org/wiki/Features/MQ_virtio_net
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt

16
Troubleshooting

Guidelines for the
KVM Platform

If you've followed this book all the way from Chapter 1, Understanding Linux
Virtualization, then you'll know we went through a lot together in this book – hundreds
and hundreds of pages of concepts and practical aspects, including configuration
examples, files and commands – everything. 700 or so pages of it. So far, we've almost
completely ignored troubleshooting as part of that journey. We didn't do this on the
premise that everything just works in Linux and that we didn't have any issues at all
and that we achieved a state of nirvana while going through this book cover to cover.

614 Troubleshooting Guidelines for the KVM Platform

It was a journey riddled with various types of issues. Some of them aren't worth
mentioning as they were our own mistakes. Mistakes like the ones we made (and you
will surely make more too) mostly come from the fact that we mistyped something (in a
command or configuration file). Basically, humans play a big role in IT. But some of these
issues were rather frustrating. For example, implementing SR-IOV required a lot of time
as we had to find different types of problems at the hardware, software, and configuration
levels to make it work. oVirt was quite quirky, as we'll soon explain. Eucalyptus was
interesting, to put it mildly. Although we used it a lot before, cloudbase-init was really
complicated and required a lot of our time and attention, which turned out not to be due
to something we did – it was just the cloudbase-init version. But overall, this just further
proved a general point from our previous chapter – reading about various IT subjects in
books, articles, and blog posts – is a really good approach to configuring a lot of things
correctly from the start. But even then, you'll still need a bit of troubleshooting to make
everything picture perfect.

Everything is great and amazing once you install a service and start using it, but it seldom
happens that way the first time round. Everything we used in this book was actually
installed to enable us to test different configurations and grab the necessary screenshots,
but at the same time, we wanted to make sure that they can actually be installed and
configured in a more structured, procedural way.

So, let's start with some simple things related to services, packages, and logging. Then,
we'll move on to more advanced concepts and tools for troubleshooting, described
through various examples that we have covered along the way.

In this chapter, we will cover the following topics:

• Verifying the KVM service status

• KVM service logging

• Enabling debug mode logging

• Advanced troubleshooting tools

• Best practices for troubleshooting KVM issues

Verifying the KVM service status
We're starting off with the simplest of all examples – verifying the KVM service status and
some of its normal influence on host configuration.

Verifying the KVM service status 615

In Chapter 3, Installing a KVM Hypervisor, libvirt, and ovirt, we did a basic installation
of the overall KVM stack by installing virt module and using the dnf command to
deploy various packages. There are a couple of reasons why this might not end up being
a good idea:

• A lot of servers, desktops, workstations, and laptops come pre-configured with
virtualization turned off in BIOS. If you're using an Intel-based CPU, make sure that
you find all the VT-based options and enable them (VT, VT-d, VT I/O). If you're
using an AMD-based CPU, make sure that you turn on AMD-V. There's a simple
test that you can do to check if virtualization is enabled. If you boot any Linux live
distribution, go to the shell and type in the following command:

cat /proc/cpuinfo | egrep "vmx|svm"

You can also use the following command, if you already installed your Linux host
and the appropriate packages that we mentioned in Chapter 3, Installing a KVM
hypervisor, libvirt, and ovirt:

virt-host-validate

If you don't get any output from this command, your system either doesn't support
virtualization (less likely) or doesn't have virtualization features turned on. Make
sure that you check your BIOS settings.

• Your networking configuration and/or package repository configuration might not
be set up correctly. As we'll repeatedly state in this chapter, please, start with the
simplest things – don't go off on a journey of trying to find some super complex
reason why something isn't working. Keep it simple. For network tests, try using
the ping command on some well-known server, such as google.com. For repository
problems, make sure that you check your /etc/yum.repos.d directory. Try
using the yum clean all and yum update commands. Repository problems
are more likely to happen on some other distributions than CentOS/Red Hat, but
still, they can happen.

• After the deployment process has finished successfully, make sure that you start and
enable KVM services by using the following commands:

systemctl enable libvirtd libvirt-guests

systemctl start libvirtd libvirt-guests

616 Troubleshooting Guidelines for the KVM Platform

Often, we forget to start and enable the libvirt-guests service, and then we
get very surprised after we reboot our host. The result of libvirt-guests not
being enabled is simple. When started, it suspends your virtual machines when you
initiate shutdown and resumes them on the next boot. In other words, if you don't
enable them, your virtual machines won't resume after the next reboot. Also, check
out its configuration file, /etc/sysconfig/libvirt-guests. It's a simple
text configuration file that enables you to configure at least three very important
settings: ON_SHUTDOWN, ON_BOOT, and START_DELAY. Let's explain these:

a) By using the ON_SHUTDOWN setting, we can select what happens with the virtual
machine when we shut down your host since it accepts values such as shutdown
and suspend.

b) The ON_BOOT option does the opposite – it tells libvirtd whether it needs to
start all the virtual machines on host boot, whatever their autostart settings are. It
accepts values such as start and ignore.

c) The third option, START_DELAY, allows you to set a timeout value (in seconds)
between multiple virtual machine power-on actions while the host is booting. It
accepts numeric values, with 0 being the value for parallel startup and all other
(positive) numbers being the number of seconds it waits before it starts the next
virtual machine.

Considering this, there are at least three things to remember:

• Make sure that these two services are actually running by typing in the following
commands:

systemctl status libvirtd

systemctl status libvirt-guests

At least libvirtd needs to be started for us to be able to create or run a KVM
virtual machine.

• If you're configuring more advanced settings such as SR-IOV, make sure that you
read your server's manual to select a correct slot that is SR-IOV compatible. On
top of that, make sure that you have a compatible PCI Express card and BIOS
that's configured correctly. Otherwise, you won't be able to make it work.

KVM services logging 617

• When you start the libvirt service, it usually comes with some sort of pre-defined
firewall configuration. Keep that in mind in case you ever decide to disable libvirt
services as the firewall rules will almost always still be there. That might require
a bit of additional configuration.

The next step in your troubleshooting journey will be checking through some of the log
files. And there are plenty to choose from – KVM has its own, oVirt has its own, as does
Eucalyptus, ELK, and so on. So, make sure that you know these services well so that you
can check the correct log files for the situation you're trying to troubleshoot. Let's start
with KVM services logging.

KVM services logging
When discussing KVM services logging, there are a couple of locations that we need to be
aware of:

• Let's say that you're logged in as root in the GUI and that you started virt-manager.
This means that you have a virt-manager.log file located in the /root/.
cache/virt-manager directory. It's really verbose, so be patient when reading
through it.

• The /etc/libvirt/libvirtd.conf file is libvirtd's configuration file and
contains a lot of interesting options, but some of the most important options are
actually located almost at the end of the file and are related to auditing. You can
select the commented-out options (audit_level and audit_logging) to suit
your needs.

• The /var/log/libvirt/qemu directory contains logs and rotated logs for all of
the virtual machines that were ever created on our KVM host.

Also, be sure to check out a command called auvirt. It's really handy as it tells you
basic information about the virtual machines on your KVM host – both virtual machines
that are still there and/or successfully running and the virtual machines that we tried to
install and failed at doing so. It pulls its data from audit logs, and you can use it to display
information about a specific virtual machine we need as well. It also has a very debug-level
option called --all-events, if you want to check every single little detail about any
virtual machine that was – or still is – an object on the KVM host.

618 Troubleshooting Guidelines for the KVM Platform

Enabling debug mode logging
There's another approach to logging in KVM: configuring debug logging. In the libvirtd
configuration file that we just mentioned, there are additional settings you can use to
configure this very option. So, if we scroll down to the Logging controls part, these
are the settings that we can work with:

• log_level

• log_filters

• log_outputs

Let's explain them step by step. The first option – log_level – describes log verbosity.
This option has been deprecated since libvirt version 4.4.0. In the Logging controls
section of the file, there's additional documentation hardcoded into the file to make things
easier. For this specific option, this is what the documentation says:

Figure 16.1 – Logging controls in libvirtd.conf

What people usually do is see the first part of this output (Logging level description), go
to the last line (Iog_level), set it to 1, save, restart the libvirtd service, and be done
with it. The problem is the text part in-between. It specifically says that journald does
rate limiting so that it doesn't get hammered with logs from one service only and instructs
us to use the log_filters setting instead.

Let's do that, then – let's use log_filters. A bit lower in the configuration file, there's a
section that looks like this:

Enabling debug mode logging 619

Figure 16.2 – Logging filters options in libvirtd.conf

This gives us various options we can use to set different logging options per object types,
which is great. It gives us options to increase the verbosity of things that we're interested
in at a desired level, while keeping the verbosity of other object types to a minimum. What
we need to do is remove the comment part of the last line (#log_filters="1:qemu
1:libvirt 4:object 4:json 4:event 1:util" should become log_
filters="1:qemu 1:libvirt 4:object 4:json 4:event 1:util") and
configure its settings so that they match our requirements.

The third option relates to where we want our debug logging output file to be:

Figure 16.3 – Logging outputs options in libvirtd.conf

620 Troubleshooting Guidelines for the KVM Platform

Important Note
After changing any of these settings, we need to make sure that we restart the
libvirtd service by typing in the systemctl restart libvirtd
command.

If we're only interested in client logs, we need to set an environment variable
called LIBVIRT_LOG_OUTPUTS to something like this (let's say we want
DEBUG-level logging):

export LIBVIRT_LOG_OUTPUTS="1:file:/var/log/libvirt_guests.log"

All these options are valid until the next libvirtd service restart, which is quite handy
for permanent settings. However, there's a runtime option that we can use when we need
to debug a bit on the fly, without resorting to permanent configuration. That's why we
have a command called virt-admin. We can use it to set our own settings. For example,
let's see how we can use it to get our current settings, and then how to use it to set
temporary settings:

Figure 16.4 – Runtime libvirtd debugging options

We can also delete these settings by issuing the following command:

virt-admin daemon-log-filters ""

This is something that's definitely recommended after we're done debugging. We don't
want to use our log space for nothing.

In terms of straight-up debugging virtual machines – apart from these logging options
– we can also use serial console emulation to hook up to the virtual machine console.
This is something that we'd do if we can't get access to a virtual machine in any other
way, especially if we're not using a GUI in our environments, which is often the case in
production environments. Accessing the console can be done as follows:

virsh console kvm_domain_name

Advanced troubleshooting tools 621

In the preceding command, kvm_domain_name is the name of the virtual machine that
we want to connect to via the serial console.

Advanced troubleshooting tools
Depending on the subject – networking, hardware and software problems, or specific
application problems – there are different tools that we can use to troubleshoot problems
in our environments. Let's briefly go over some of these methods, with the chapters of this
book in mind as we troubleshoot:

• oVirt problems

• Problems with snapshots and templates

• Virtual machine customization issues

• Ansible issues

• OpenStack problems

• Eucalyptus and AWS combo problems

• ELK stack issues

Interestingly enough, one thing that we usually don't have problems with when dealing
with KVM virtualization is networking. It's really well documented – from KVM bridges
all the way to open vSwitch – and it's just the matter of following the documentation. The
only exception is related to firewall rules, which can be a handful, especially when dealing
with oVirt and remote database connections while keeping a minimal security footprint.
If you're interested in this, make sure that you check out the following link: https://
www.ovirt.org/documentation/installing_ovirt_as_a_standalone_
manager_with_remote_databases/#dns-requirements_SM_remoteDB_
deploy.

There's a big table of ports later in that article describing which port gets used for what
and which protocols they use. Also, there's a table of ports that need to be configured at
the oVirt host level. We recommend that you use this article if you're putting oVirt
into production.

https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_remote_databases/#dns-requirements_SM_remoteDB_deploy
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_remote_databases/#dns-requirements_SM_remoteDB_deploy
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_remote_databases/#dns-requirements_SM_remoteDB_deploy
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_remote_databases/#dns-requirements_SM_remoteDB_deploy

622 Troubleshooting Guidelines for the KVM Platform

oVirt
There are two common problems that we often encounter when dealing with oVirt:

• Installation problems: We need to slow down when we're typing installation options
into the engine setup and configure things correctly.

• Update problems : These can either be related to incorrectly updating oVirt or the
underlying system.

Installation problems are fairly simple to troubleshoot as they usually happen when we're
just starting to deploy oVirt. This means that we can afford the luxury of just stopping the
installation process and starting from scratch. Everything else will just be too messy and
complicated.

Update problems, however, deserve a special mention. Let's deal with both subsets of
oVirt update issues and explain them in a bit more detail.

Updating the oVirt Engine itself requires doing the thing that most of us just dislike
doing – reading through heaps and heaps of documentation. The first thing that we
need to check is which version of oVirt are we running. If we're – for example – running
version 4.3.0 and we want to upgrade to 4.3.7, this is a minor update path that's pretty
straightforward. We need to back up our oVirt database first:

engine-backup --mode=backup --file=backupfile1 --log=backup.log

We do this just as a precaution. Then, later on, if something does get broken, we can use
the following command:

engine-backup --mode=restore --log=backup.log
--file=backupfile1 --provision-db --provision-dwh-db --no-
restore-permissions

If you didn't deploy the DWH service and its database, you can ignore the
--provision-dwh-db option. Then, we can do the standard procedure:

engine-upgrade-check

yum update ovirt*setup*

engine-setup

This should take about 10 minutes and cause no harm at all. But it's still better to be safe
than sorry and back up the database before doing that.

Advanced troubleshooting tools 623

If we're, however, migrating from some older version of oVirt to the latest one – let's
say, from version 4.0.0, or 4.1.0, or 4.2.0 to version 4.3.7 – that's a completely different
procedure. We need to go to the ovirt.org website and read through the documentation.
For example, let's say that we're updating from 4.0 to 4.3. There's documentation on ovirt.
org that describes all these processes. You can start here: https://www.ovirt.org/
documentation/upgrade_guide/.

This will give us 20 or so substeps that we need to complete to successfully upgrade. Please
be careful and patient, as these steps are written in a very clear order and need to be
implemented that way.

Now that we've covered oVirt troubleshooting in terms of upgrading, let's delve into OS
and package upgrades as that's an entirely different discussion with much more to consider.

Keeping in mind that oVirt has its own prerequisites, ranging from CPU, memory, and
storage requirements to firewall and repository requirements, we can't just blindly go and
use a system-wide command such as the following:

yum -y update

We can't expect oVirt to be happy with that. It just won't, and this has happened to us
many times, both in production environments and while writing this book. We need to
check which packages are going to be deployed and check if they're in some co-dependent
relationship to oVirt. If there are such packages, you need to make sure that you do the
engine-backup procedure that we mentioned earlier in this chapter. It will save you from a
lot of problems.

It's not only the oVirt Engine that can be a problem – updating KVM hosts that oVirt has
in its inventory can also be quite a bit melodramatic. The oVirt agent (vdsm) that gets
deployed on hosts either by the oVirt Engine or our manual installation procedures, as
well as its components, also have their own co-dependencies that can be affected by a
system-wide yum -y update command. So, put the handbrake on before just accepting
upgrades as it might bring a lot of pain later. Make sure that you check the vdsm logs
(usually located in the /var/log/vdsm directory). These log files are very helpful when
you're trying to decipher what went wrong with vdsm.

oVirt and KVM storage problems
Most storage problems that we come across are usually related to either LUN or share
presentation to hosts. Specifically, when you're dealing with block storage (Fibre Channel
or iSCSI), we need to make sure that we don't zone out or mask out a LUN from the host,
as the host won't see it. The same principle applies to NFS shares, Gluster, CEPH, or any
other kind of storage that we're using.

https://www.ovirt.org/documentation/upgrade_guide/
https://www.ovirt.org/documentation/upgrade_guide/

624 Troubleshooting Guidelines for the KVM Platform

The most common problem apart from these pre-configuration issues is related to failover
– a scenario where a path toward a storage device fails. That's when we are very happy if
we scaled out our storage or storage network infrastructure a bit – we added additional
adapters, additional switches, configured multipathing (MPIO), and so on. Make sure
that you check your storage device vendor's documentation and follow along with the
best practices for a specific storage device. Believe us when we say this – iSCSI storage
configuration and its default settings are a world apart from configuring Fibre Channel
storage, especially when multipathing is concerned. For example, when using MPIO with
iSCSI, it's much happier and snappier if you configure it properly. You'll find more details
about this process in the Further reading section at the end of this chapter.

If you're using IP-based storage, make sure that multiple paths toward your storage
device(s) use separate IP subnets as everything else is a bad idea. LACP-like technologies
and iSCSI don't work in same sentence together and you'll be troubleshooting a
technology that's not meant for storage connections and is working properly, while
you're thinking that it's not. We need to know what we're troubleshooting; otherwise,
troubleshooting makes no sense. Creating LACP for iSCSI equals still using one path
for iSCSI connections, which means wasting network connectivity that doesn't actively
get used except for in the case of a failover. And you don't really need LACP or similar
technologies for that. One notable exception might be blade servers as you're really
limited in terms of upgrade options on blades. But even then, the solution to the we
need more bandwidth from our host to storage problem is to get a faster network or Fibre
Channel adapter.

Problems with snapshots and templates – virtual
machine customization
To be quite honest, over the years of working on various virtualization technologies,
which covers Citrix, Microsoft, VMware, Oracle, and Red Hat, we've seen a lot of different
issues with snapshots. But it's only when you start working in enterprise IT and see how
complicated operational, security, and backup procedures are that you start realizing how
hazardous a simple procedure such as creating a snapshot can be.

We've seen things such as the following:

• The backup application doesn't want to start because the virtual machine has a
snapshot (a common one).

• A snapshot doesn't want to delete and assemble.

• Multiple snapshots don't want to delete and assemble.

• A snapshot crashes a virtual machine for quirky reasons.

Advanced troubleshooting tools 625

• A snapshot crashes a virtual machine for valid reasons (lack of disk space
on storage)

• A snapshot crashes an application running in a virtual machine as that application
doesn't know how to tidy itself up before the snapshot and goes into a dirty state
(VSS, sync problems)

• Snapshots get lightly misused, something happens, and we need to troubleshoot

• Snapshots get heavily misused, something always happens, and we need
to troubleshoot

This last scenario occurs far more often than expected as people really tend to flex their
muscles regarding the number of snapshots they have if they're given permission to. We've
seen virtual machines with 20+ snapshots running on a production environment and
people complaining that they're slow. All you can do in that situation is breathe in, breathe
out, shrug, and ask, "What did you expect, that 20+ snapshots are going to increase the
speed of your virtual machine"?

Through it all, what got us through all these issues was three basic principles:

• Really learning how snapshots work on any given technology.

• Making sure that, every time we even think of using snapshots, we first check the
amount of available storage space on the datastore where the virtual machine is
located, and then check if the virtual machine already has snapshots.

• Constantly repeating the mantra: snapshots are not backups to all of our clients, over,
and over again, and hammering them with additional articles and links explaining
why they need to lay off the snapshots, even if that means denying someone
permission to even take a snapshot.

Actually, this last one has become a de facto policy in many environments we've
encountered. We've even seen companies implementing a flat-out policy when dealing
with snapshots, stating that the company policy is to have one or two snapshots, max, for
a limited period of time. For example, in VMware environments, you can assign a virtual
machine advanced property that sets the maximum number of snapshots to 1 (using
a property called snapshot.maxSnapshots). In KVM, you're going to have to use
storage-based snapshots for these situations and hope that the storage system has policy-
based capabilities to set the snapshot number to something. However, this kind of goes
against the idea of using storage-based snapshots in many environments.

626 Troubleshooting Guidelines for the KVM Platform

Templating and virtual machine customization is another completely separate world
of troubleshooting. Templating only rarely creates issues, apart from the warning
we mentioned in Chapter 8, Creating and Modifying VM Disks, Templates, and
Snapshots, related to the serial use of sysprep on Windows machines. Creating Linux
templates is pretty straightforward nowadays, and people use either virt-sysprep,
sys-unconfig, or custom scripts to do that. But the next step – related to virtual
machine customization – is a completely different thing. This is especially true when using
cloudbase-init, as cloud-init has been a standard method used for preconfiguring Linux
virtual machines in cloud environments for years.

The following is a short list containing some of problems that we had with cloudbase-init:

• Cloudbase-init failed due to Cannot load user profile: the device
is not ready.

• Domain join doesn't work reliably.

• Error during network setup.

• Resetting Windows passwords via cloudbase-init.

• Getting cloudbase-init to execute a PowerShell script from a specified directory.

The vast majority of these and other problems are related to the fact that cloudbase-init
has documentation that's really bad. It does have some config file examples, but most of
it is more related to APIs or the programmatic approach than actually explaining how to
create some kind of configuration via examples. Furthermore, we had various issues with
different versions, as we mentioned in Chapter 10, Automated Windows guest deployment
and customization. We then settled on a pre-release version, which worked out-of-the-
box with a configuration file that wasn't working on a stable release. But by and large,
the biggest issue we had while trying to make it work was related to making it work with
PowerShell properly. If we get it to execute PowerShell code properly, we can pretty much
configure anything we want on a Windows-based system, so that was a big problem.
Sometimes, it didn't want to execute a PowerShell script from a random directory on the
Windows system disk.

Make sure that you use examples in this book for your starting points. We deliberately
made examples in Chapter 10, Automated Windows guest deployment and customization as
simple as possible, which includes the executed PowerShell code. Afterward, spread your
wings and fly – do whatever needs to be done with it. PowerShell makes everything easier
and more natural when you're working with Microsoft-based solutions, both local and
hybrid ones.

Advanced troubleshooting tools 627

Problems working with Ansible and OpenStack
Our first interaction with Ansible and OpenStack happened years ago – Ansible was
introduced in 2012, and OpenStack in 2010. We always thought that both were (are) very
cool pieces of kit, albeit with a few problems. Some of these small niggles were related to
the fast pace of development (OpenStack), with a large number of bugs being solved from
version to version.

In terms of Ansible, we had loads of fights with people over it – one day, the subject was
related to the fact that we're used to using Puppet, why do we need Ansible?!; the next day it
was argh, this syntax is so complex; the day after that it was something else, and something
else… and it was usually just related to the fact that the Ansible architecture is much
simpler than all of them in terms of architecture, and a bit more involved – at least initially
– in terms of syntax. With Ansible, it's all about the syntax, as we're sure that you either
know or will find out soon enough.

Troubleshooting Ansible playbooks is usually a process that has a 95% chance that we
misspelled or mistyped something in the configuration file. We're talking about the initial
phase in which you already had a chance to work with Ansible for a while. Make sure that
you re-check outputs from Ansible commands and use their output for that. In that sense,
it's really excellent. You don't need to do complex configuration (such as with libvirtd,
for example) to get usable output from your executed procedures and playbooks. And that
makes our job a lot easier.

Troubleshooting OpenStack is a completely different can of worms. There are some well-
documented OpenStack problems out there, which can also be related to a specific device.
Let's use one example of that – check out the following link for issues when using NetApp
storage: https://netapp-openstack-dev.github.io/openstack-docs/
stein/appendices/section_common-problems.html.

The following are some examples:

• Creating volume fails

• Cloning volume fails

• Volume attachment fails

• Volume upload to image operation fails

• Volume backup and/or restore fails

https://netapp-openstack-dev.github.io/openstack-docs/stein/appendices/section_common-problems.html
https://netapp-openstack-dev.github.io/openstack-docs/stein/appendices/section_common-problems.html

628 Troubleshooting Guidelines for the KVM Platform

Then, for example, check out these links:

• https://docs.openstack.org/cinder/queens/configuration/
block-storage/drivers/ibm-storwize-svc-driver.html

• https://www.ibm.com/support/knowledgecenter/STHGUJ_8.2.1/
com.ibm.storwize.v5100.821.doc/storwize_openstack_matrix.
html

As you've probably deduced yourself, OpenStack is really, really picky when it comes
to storage. That's why storage companies usually create reference architectures for their
own storage devices to be used in OpenStack-based environments. Check out these two
documents from HPE and Dell EMC as good examples of that approach:

• https://www.redhat.com/cms/managed-files/cl-openstack-hpe-
synergy-ceph-reference-architecture-f18012bf-201906-en.pdf

• https://docs.openstack.org/cinder/rocky/configuration/
block-storage/drivers/dell-emc-unity-driver.html

One last word of warning relates to the most difficult obstacle to surmount – OpenStack
version upgrades. We can tell you loads of horror stories on this subject. That being
said, we're also partially to blame here, because we, as users, deploy various third-
party modules and utilities (vendor-based plugins, forks, untested solutions, and so
on), forget about using them, and then we're really surprised and horrified when the
upgrade procedure fails. This goes back to our multiple discussions about documenting
environments that we had throughout this book. This is a subject that we'll revisit for one
final time just a bit later in this chapter.

Dependencies
Every administrator is completely aware that almost every service has some dependencies
– either the services that depend on this particular service running or services that our
service needs to work. Dependencies are also a big thing when working with packages
– the whole point of package managers is to strictly pay attention to what needs to be
installed and what depends on it so that our system works as it should.

What most admins do wrong is forget that, in larger systems, dependencies can stretch
across multiple systems, clusters, and even data centers.

https://docs.openstack.org/cinder/queens/configuration/block-storage/drivers/ibm-storwize-svc-driver.html
https://docs.openstack.org/cinder/queens/configuration/block-storage/drivers/ibm-storwize-svc-driver.html
https://www.ibm.com/support/knowledgecenter/STHGUJ_8.2.1/com.ibm.storwize.v5100.821.doc/storwize_openstack_matrix.html
https://www.ibm.com/support/knowledgecenter/STHGUJ_8.2.1/com.ibm.storwize.v5100.821.doc/storwize_openstack_matrix.html
https://www.ibm.com/support/knowledgecenter/STHGUJ_8.2.1/com.ibm.storwize.v5100.821.doc/storwize_openstack_matrix.html
https://www.redhat.com/cms/managed-files/cl-openstack-hpe-synergy-ceph-reference-architecture-f18012bf-201906-en.pdf
https://www.redhat.com/cms/managed-files/cl-openstack-hpe-synergy-ceph-reference-architecture-f18012bf-201906-en.pdf
https://docs.openstack.org/cinder/rocky/configuration/block-storage/drivers/dell-emc-unity-driver.html
https://docs.openstack.org/cinder/rocky/configuration/block-storage/drivers/dell-emc-unity-driver.html

Advanced troubleshooting tools 629

Every single course that covers OpenStack has a dedicated lesson on starting, stopping,
and verifying different OpenStack services. The reason for this is simple – OpenStack
is usually run across a big number of nodes (hundreds, sometimes thousands). Some
services must run on every node, some are needed by a set of nodes, some services are
duplicated on every node instance, and some services can only exist as a single instance.

Understanding the basics of each service and how it falls into the whole OpenStack
schema is not only essential when installing the whole system but is also the most
important thing to know when debugging why something is not working on OpenStack.
Read the documentation at least once to connect the dots. Again, the Further reading
section at the end of this chapter contains links that will point you in the right direction
regarding OpenStack.

OpenStack is one of those systems that includes how do I properly reboot a machine
running X? in the documentation. The reason for this is as simple as the whole system
is complex – each part of the system both has something it depends on and something
that is depending on it – if something breaks, you need to not only understand how this
particular part of the system works, but also how it affects everything else. But there is a
silver lining through all this – in a properly configured system, a lot of it is redundant, so
sometimes, the easiest way of repairing something is to reinstall it.

And this probably sums the whole troubleshooting story – trying to fix a simple system
is usually more complicated and time-consuming than fixing a complex system.
Understanding how each of them works is the most important part.

Troubleshooting Eucalyptus
It would be a lie to say that once we started the installation process, everything went
according to the manual – most of it did, and we are reasonably sure that if you follow the
steps we documented, you will end up with a working service or system, but at any point
in time, there are things that can – and will – go wrong. This is when you need to do the
most complicated thing imaginable – troubleshoot. But how do you do that? Believe it or
not, there is a more or less systematic approach that will enable you to troubleshoot almost
any problem, not just KVM/OpenStack/AWS/Eucalyptus-related ones.

630 Troubleshooting Guidelines for the KVM Platform

Gathering information
Before we can do anything, we need to do some research. And this is the moment most
people do the wrong thing, because the obvious answer is to go to the internet and search
for the problem. Take a look at this screenshot:

Figure 16.5 – Eucalyptus logs, part I – clean, crisp, and easy to read – every procedure that's been done
in Eucalyptus clearly visible in the log

Advanced troubleshooting tools 631

If you haven't noticed already, the internet is full of ready-made solutions to almost any
imaginable problem, with a lot of them being wrong. There are two reasons why this is so:
most of the people who worked on the solution didn't understand what the problem was,
so as soon as they found any solution that solved their particular problem, they simply
stopped solving it. In other words – a lot of people in IT try to picture a path from point
A (problem) to point B (solution) as a laser beam – super flat, the shortest possible path,
no obstacles along the way. Everything is nice and crisp and designed to mess with our
troubleshooting thought process as soon as the laser beam principle stops working. This is
because, in IT, things are rarely that simple.

Take, for example, any problem caused by DNS being misconfigured. Most of those can be
solved by creating an entry in the hosts file. This solution usually works but is, at the same
time, wrong on almost any level imaginable. The problem that is solved by this is solved
on only one machine – the one that has the particular hosts file on it. And the DNS is still
misconfigured; we just created a quick, undocumented workaround that will work in our
particular case. Every other machine that has the same problem will need to be patched in
this way, and there is a real possibility that our fix is going to create even more problems
down the road.

The real solution would obviously be to get to the root of the problem itself and solve
the issue with DNS, but solutions like this are few and far between on the internet. This
happens mainly because the majority of the commenters on the internet are not familiar
with a lot of services, and quick fixes are basically the only ones they are able to apply.

Another reason why the internet is mostly wrong is because of the famous reinstall
fixed the problem solution. Linux has a better track record there as people who use it
are less inclined to solve everything by wiping and reinstalling the system, but most of
the solutions you will find for Windows problems are going to have at least one simple
reinstall fixed it. Compared to just giving a random fix as the one that always works, this
reinstall approach is far worse. Not only does it mean you are going to waste a lot of time
reinstalling everything; it also means your problem may or may not be solved in the end,
depending on what the problem actually was.

So, the first short piece of advice we will give is, do not blindly trust the internet.

632 Troubleshooting Guidelines for the KVM Platform

OK, but what should you actually do? Let's take a look:

1. Gather information about the problem. Read the error message, read the logs (if the
application has logs), and try to turn on debug mode if at all possible. Get some
solid data. Find out what is crashing, how it is crashing, and what problems are
causing it to crash. Take a look at the following screenshot:

Figure 16.6 – Eucalyptus logs, part II – again, clean, crisp, and easy to read – information messages
about what was updated and where

2. Read the documentation. Is the thing you are trying to do even supported? What are
the prerequisites for the functioning system? Are you missing something? A cache
disk? Some amount of memory? A fundamental service that is a dependency for
your particular system? A dependency that's a library or additional packages? A
firmware upgrade?

Advanced troubleshooting tools 633

Sometimes, you will run into an even bigger problem, especially in poorly written
documentation – some crucial system dependency may be mentioned in passing and may
cause your entire system to crash. Take, for example, an external identification service
– maybe your directory uses a wrong character set, causing your system to crash when a
particular user uses it in a particular way. Always make sure you understand how your
systems are interconnected.

Next, check your system. If you are installing a new system, check the prerequisites. Do
you have enough disk space and memory? Are all the services your application requires
readily available and working properly?

Search the internet. We mentioned previously that the internet has a simple, incorrect
solution to all possible problems, but it usually also has the right solution hidden
somewhere among the wrong ones. Having armed yourself with a lot of data about your
particular system and your specific problem, the internet will soon become your friend.
Since you understand what the problem is, you will be able to understand what solutions
have been offered to you are simply wrong.

Now, let's talk about a real-world problem we created while installing Eucalyptus on
purpose, just to show you how important documentation is.

We showed you how to install Eucalyptus in Chapter 13, Scaling Out KVM with AWS – we
not only went through the installation process but also how to use this amazing service.
If you want to learn something about how not to do it, continue reading. We will present
you with a deliberate scenario of an unsuccessful Eucalyptus installation that won't finish
because we creatively forgot to do some steps that we knew we needed to do. Let's put it this
way – we acted as humans and used the method of browsing the documentation instead of
actually sitting down and reading the documentation. Does that sound familiar?

Installing Eucalyptus should be a straightforward task since its installation is, in essence,
an exercise in applied scripting. Eucalyptus even says so on the front page of the project:
just run this script.

But the truth is much more complicated – Eucalyptus can definitely be installed using
only this script, but certain prerequisites must be met. Of course, in your rush to test the
new service, you will probably neglect to read the documentation, as we did, since we
already had experience with Eucalyptus.

We configured the system, we started the installation, and we ran into a problem. After
confirming the initial configuration steps, our installation failed with an error that said it
was unable to resolve a particular address: 192.168.1.1.nip.io.

634 Troubleshooting Guidelines for the KVM Platform

DNS is one of the primary sources of problems in the IT infrastructure, and we quickly
started debugging – the first thing we wanted to see was what this particular address
is. There's actually a saying in IT – It's always DNS. It looks like a local address, so we
started pinging it, and it seemed fine. But why is DNS even involved with IP addresses?
DNS should be resolving domain names, not IP addresses. Then, we turned to the
documentation, but that didn't yield much. The only thing that we found was that DNS
must work for the whole system to work.

Then, it was time to try and debug the DNS. First, we tried resolving it from the machine
we were installing it on. The DNS returned a timeout. We tried this on another machine
and we got back the response we didn't expect – 127.0.0.1.nip.io resolved as
127.0.0.1, which meant localhost. Basically, we asked a DNS on the internet to give
us an address, and it directed us to our local system.

So, we had an error we didn't understand, an address that resolved to an IP address we
hadn't expected, and two different systems exhibiting completely different behaviors for
an identical command. We turned our attention to the machine we were installing on and
realized it was misconfigured – there was no DNS configured at all. The machine not only
failed to resolve our strange IP address but failed to resolve anything.

We fixed that by pointing to the right DNS server. Then, in true IT fashion, we restarted
the installation so that we were able to go through with this part and everything was ok,
or so it seemed. But what happened? Why is a local service resolving such strange names
and why do they get resolved at all?

We turned to the internet and took a look at the name of the domain that our mystery
name had at its end. What we found out is that the service, nip.io, actually does just the
thing we observed it do – when asked for a particular name formed from an IP address in
the local subnet range (as defined by RFC 1918), it returned that same IP.

Our next question was – why?

After some more reading, you will realize what the trick was here – Eucalyptus uses DNS
names to talk to all of its components. The authors very wisely chose not to hardcode a
single address into the application, so all the services and nodes of the system have to have
a real DNS registered name. In a normal multi-node, multi-server installation, this works
like a charm – every server and every node are first registered with their appropriate DNS
server, and Eucalyptus will try and resolve them so it can communicate with the machine.

Advanced troubleshooting tools 635

We are installing a single machine that has all the services on it, and that makes installing
easier, but nodes do not have separate names, and even our machine may not be registered
with the DNS. So, the installer does a little trick. It turns local IP addresses into completely
valid domain names and makes sure we can resolve them.

So, now we know what happened (resolving process was not working) and why it
happened (our DNS server settings were broken), but we also understood why DNS
was needed in the first place.

This brings us to the next point – do not presume anything.

While we were troubleshooting and then following up on our DNS problem, our
installation crashed. Eucalyptus is a complex system and its installation is a fairly complex
thing – it automatically updates the machine you run it on, then it installs what seems
like thousands of packages, and then it downloads, configures, and runs a small army
of images and virtual packages. To keep things tidy, the user doesn't see everything that
is happening, only the most important bits. The installer even has a nice ASCII graphic
screen to keep you busy. Everything was OK up to a point, but suddenly, our installation
completely crashed. All we got was a huge stack trace that looked like it belonged to the
Python language. We reran the installation, but it failed again.

The problem at this point was that we had no idea why all this was happening since the
installation calls for a minimal installation of CentOS 7. We were running our tests on a
virtual machine, and we actually did a minimal install.

We retried installing from scratch. Reinstalling the whole machine took a couple of
minutes, and we retried the installation. The result was the same – a failed installation that
left us with an unusable system. But there was a possible solution – or to be more precise,
a way to understand what happened.

636 Troubleshooting Guidelines for the KVM Platform

As with all great installers of the IT universe, this one also has something reserved
especially for this possibility: a log file. Take a look at the following screenshot:

Figure 16.7 – The Eucalyptus installation process takes time when you don't read its documentation.
And then some more time... and some more...

This is the installation screen. We can't see any real information regarding what is
happening, but the third line from the top contains the most important clue – the location
of the log file. In order to stop your screen from being flooded with information, the
installer shows this very nice figlet-coffee graphic (everyone who ever used IRC in the
1990s and 2000s will probably smile now), but also dumps everything that is happening
into a log. By everything, we mean everything – every command, every input, and every
output. This makes debugging easy – we just need to scroll to the end of this file and try to
go from that point backward to see what broke. Once we did that, the solution was simple
– we forgot to allocate enough memory for the machine. We gave it 8 GB of RAM, and
officially it should have at least 16 GB to be able smoothly. There are reports of machines
running with as little as 8 GB of RAM, but that makes absolutely no sense – we are
running a virtualized environment after all.

Advanced troubleshooting tools 637

AWS and its verbosity, which doesn't help
Another thing we wanted to mention is AWS and how to troubleshoot it. AWS is an
amazing service, but it has one huge problem – its size. There are so many services,
components, and service parts that you need to use to get something to run on AWS that
simple tasks can get very complicated. Our scenario involved trying to put up an EC2
instance that we used as our example.

This task is relatively straightforward and demonstrates how a simple problem can have a
simple solution that can, at the same time, be completely not obvious.

Let's go back to what we were trying to do. We had a machine that was on a local disk. We
had to transfer it to the cloud and then create a running VM out of it. This is probably one
of the simplest things to do.

For that, we created an S3 bucket and got our machine from the local machine into the
cloud. But after we tried to run the machine, all we got was an error.

The biggest problem with a service like AWS is that it is enormous and that there is no
way of understanding everything at once – you must build your knowledge block by
block. So, we went back to the documentation. There are two kinds of documentation on
AWS – extensive help that covers every command and every option on every service, and
guided examples. Help is amazing, it really is, but if you have no idea what you are looking
for, it will get you nowhere. Help in this form only works as long as you have a basic
understanding of the concepts. If you are doing something for the first time, or you have
a problem you haven't seen before, we suggest that you find an example of the task you
are trying to do, and do the exercise.

In our case, this was strange, since all we had to do was run a simple command. But our
import was still failing. After a couple of hours of us banging our head against the wall, we
decided to just behave like we knew nothing and went and did the how do I import a VM
into AWS? example. Everything worked. Then, we tried importing our own machine; that
didn't work. The commands were copy/pasted, but it still didn't work.

And then we realized the most important thing – we need to pay attention to details.
Without this train of thought properly implemented and executed, we're inviting a world
of problems upon ourselves.

638 Troubleshooting Guidelines for the KVM Platform

Paying attention to details
To cut the story (that's way too long) short, what we did wrong was we misconfigured
the identity service. In a cloud environment such as AWS, every service runs as an
independent domain, completely separate from other services. When something needs to
be done, the service doing it has to have some kind of authorization. There is a service that
takes care of that – IAM – and the obvious default for every request from every service
is to deny everything. Once we decide what needs to be done, it is our job to configure
proper access and authorization. We knew that, and so we created all the roles and
permissions for EC2 to access the files in S3. Even though that may sound strange, we had
to give a service we are using the permission to get the files we uploaded. If you are new
to, this you might expect this to be automatic, but it isn't.

Check out the following small excerpt, which is from the really long list of roles that AWS
has predefined. Keep in mind that the complete list is much, much longer and that we've
barely scratched the surface of all of the available roles. These are just roles that have
names starting with the letter A:

Figure 16.8 – AWS predefined roles

Advanced troubleshooting tools 639

What we misconfigured was the name of the role – to import the VM into the EC2
instance, there needs to be a security role named vmimport giving EC2 the right
permissions. We configured a role named importvm in our haste. When we completed
the examples, we pasted the examples and everything was fine, but as soon as we started
using our security settings, EC2 was failing to do its job. So, always check the product
documentation and read it carefully.

Troubleshooting problems with the ELK stack
The ELK stack can be used to monitor our environment efficiently. It does require a bit
of manual labor, additional configuration, and being a bit sneaky, but it can still offer
reporting, automatic reporting, sending reports via email, and a whole lot of other
valuable things.

Out of the box, you can't just send reports directly – you need to do some more snooping.
You can use Watcher, but most of the functionality you need from it is commercial, so
you'll have to spend some cash on it. There are some other methods, as well:

• Using snapshot for Kibana/Grafana – check out this URL: https://github.
com/parvez/snapshot

• Using ElastAlert – check out this URL: https://github.com/Yelp/
elastalert

• Use Elastic Stack Features (formerly X-Pack) – check out this URL: https://
www.elastic.co/guide/en/x-pack/current/installing-xpack.
html

Here's one more piece of advice: you can always centralize logs via rsyslog as it's a
built-in feature. There are free applications out there for browsing through log files if you
create a centralized log server (Adiscon LogAnalyzer, for example). If dealing with ELK
seems like a bit too much to handle, but you're aware of the fact that you need something,
start with something like that. It's very easy to install and configure and offers a free
web-like interface with regular expression support so that you can browse through
log entries.

https://github.com/parvez/snapshot
https://github.com/parvez/snapshot
https://github.com/Yelp/elastalert
https://github.com/Yelp/elastalert
https://www.elastic.co/guide/en/x-pack/current/installing-xpack.html
https://www.elastic.co/guide/en/x-pack/current/installing-xpack.html
https://www.elastic.co/guide/en/x-pack/current/installing-xpack.html

640 Troubleshooting Guidelines for the KVM Platform

Best practices for troubleshooting KVM issues
There are some common-sense best practices when approaching troubleshooting KVM
issues. Let's list some of them:

• Keep it simple, in configuration: What good does a situation in which you deployed
50 OpenStack hosts across three subnets in one site do? Just because you can subnet
to an inch of an IP range's life doesn't mean you should. Just because you have eight
available connections on your server doesn't mean that you should LACP all of
them to access iSCSI storage. Think about end-to-end configuration (for example,
Jumbo Frames configuration for iSCSI networks). Simple configuration almost
always means simpler troubleshooting.

• Keep it simple, in troubleshooting: Don't go chasing the super-complex scenarios
first. Start simple. Start with log files. Check what's written there. With time, use
your gut feeling as it will develop and you'll be able to trust it.

• Use monitoring tools such as ELK stack: Use something to monitor your
environments constantly. Invest in some kind of large-screen display, hook it up
to a separate computer, hang that display on a wall, and spend time configuring
important dashboards for your environments.

• Use reporting tools to create multiple automated reports about the state of your
environment: Kibana supports report generation, for example, in PDF format. As
you monitor your environment, you will notice some of the more sensitive parts of
your environments, such as storage. Monitor the amount of available space. Monitor
path activity and network connections being dropped from host to storage. Create
reports and send them automatically to your email. There's a whole world of options
there, so use them.

• Create notes while you configure your environment: If nothing else, do this so that
you have some starting point and/or a reference for future, as there will be many
changes that are often done on the fly. And when the process of taking notes is
finished, create documentation.

• Create documentation: Make these permanent, readable, and as simple as possible.
Don't remember things, write things down. Make it a mission to write everything
down, and try to spread that culture all around you.

Get used to having a large portion of <insert your favorite drink here>
available at all times and many sleepless nights if you want to work in IT as administrator,
engineer, or DevOps engineer. Coffee, Pepsi, Coca-Cola, lemon juice, orange juice….
whatever gets your intellectual mojo flowing. And sometimes, learn to walk away from
a problem for a short period of time. Solutions often click in your head when you're
thinking about something completely opposite to work.

Summary 641

And finally, remember to try and have fun while working. Otherwise, the whole ordeal of
working with KVM or any other IT solution is just going to be an Open Shortest Path First
to relentless frustration. And frustration is never fun. We prefer yelling at our computers
or servers. It's therapeutic.

Summary
In this chapter, we tried to describe some basic troubleshooting steps that can be applied
generally and when troubleshooting KVM. We also discussed some of the problems
that we had to deal with while working with various subjects of this book – Eucalyptus,
OpenStack, the ELK stack, cloudbase-init, storage, and more. Most of these issues were
caused by misconfiguration, but there were quite a few where documentation was severely
lacking. Whatever happens, don't give up. Troubleshoot, make it work, and celebrate when
you do.

Questions
1. What do we need to check before deploying the KVM stack?

2. What do we need to configure after deploying the KVM stack in terms of making
sure that virtual machines are going to run after reboot?

3. How do we check KVM guest log files?

4. How can we turn on and configure KVM debug logging permanently?

5. How can we turn on and configure KVM debug logging at runtime?

6. What's the best way to solve oVirt's installation problems?

7. What's the best way to solve oVirt's minor and major version upgrade problems?

8. What's the best way to manage the oVirt Engine and host updates?

9. Why do we need to be careful with snapshots?

10. What are the common problems with templates and cloudbase-init?

11. What should be our first step when installing Eucalyptus?

12. What kind of advanced capabilities for monitoring and reporting can we use with
the ELK stack?

13. What are some of the best practices when troubleshooting KVM-based
environments?

642 Troubleshooting Guidelines for the KVM Platform

Further reading
Please refer to the following links for more information regarding what was covered in
this chapter:

• Working with KVM debug logging: https://wiki.libvirt.org/page/
DebugLogs

• Firewall requirements for oVirt nodes and oVirt Engine: https://www.
ovirt.org/documentation/installing_ovirt_as_a_standalone_
manager_with_remote_databases/#dns-requirements_SM_
remoteDB_deploy

• oVirt upgrade guide: https://www.ovirt.org/documentation/
upgrade_guide/

• Common problems with NetApp and Openstack integration: https://netapp-
openstack-dev.github.io/openstack-docs/stein/appendices/
section_common-problems.html

• Integrating the IBM Storwize family and SVC driver in OpenStack: https://
docs.openstack.org/cinder/queens/configuration/block-
storage/drivers/ibm-storwize-svc-driver.html

• Integrating IBM Storwize and OpenStack: https://www.ibm.com/support/
knowledgecenter/STHGUJ_8.2.1/com.ibm.storwize.v5100.821.
doc/storwize_openstack_matrix.html

• HPE Reference Architecture for the Red Hat OpenStack Platform on _HPE Synergy
with Ceph Storage: https://www.redhat.com/cms/managed-files/
cl-openstack-hpe-synergy-ceph-reference-architecture-
f18012bf-201906-en.pdf

• Integrating Dell EMC Unity and OpenStack: https://docs.openstack.org/
cinder/rocky/configuration/block-storage/drivers/dell-emc-
unity-driver.html

• DM-multipath configuration for Red Hat Enterprise Linux 7: https://access.
redhat.com/documentation/en-us/red_hat_enterprise_linux/7/
html/dm_multipath/mpio_setup

• DM-multipath configuration for Red Hat Enterprise Linux 8: https://
access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/8/pdf/configuring_device_mapper_multipath/Red_Hat_
Enterprise_Linux-8-Configuring_device_mapper_multipath-
en-US.pdf

https://wiki.libvirt.org/page/DebugLogs
https://wiki.libvirt.org/page/DebugLogs
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_remote_databases/#dns-requirements_SM_remoteDB_deploy
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_remote_databases/#dns-requirements_SM_remoteDB_deploy
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_remote_databases/#dns-requirements_SM_remoteDB_deploy
https://www.ovirt.org/documentation/installing_ovirt_as_a_standalone_manager_with_remote_databases/#dns-requirements_SM_remoteDB_deploy
https://www.ovirt.org/documentation/upgrade_guide/
https://www.ovirt.org/documentation/upgrade_guide/
https://netapp-openstack-dev.github.io/openstack-docs/stein/appendices/section_common-problems.html
https://netapp-openstack-dev.github.io/openstack-docs/stein/appendices/section_common-problems.html
https://netapp-openstack-dev.github.io/openstack-docs/stein/appendices/section_common-problems.html
https://docs.openstack.org/cinder/queens/configuration/block-storage/drivers/ibm-storwize-svc-driver.html
https://docs.openstack.org/cinder/queens/configuration/block-storage/drivers/ibm-storwize-svc-driver.html
https://docs.openstack.org/cinder/queens/configuration/block-storage/drivers/ibm-storwize-svc-driver.html
https://www.ibm.com/support/knowledgecenter/STHGUJ_8.2.1/com.ibm.storwize.v5100.821.doc/storwize_openstack_matrix.html
https://www.ibm.com/support/knowledgecenter/STHGUJ_8.2.1/com.ibm.storwize.v5100.821.doc/storwize_openstack_matrix.html
https://www.ibm.com/support/knowledgecenter/STHGUJ_8.2.1/com.ibm.storwize.v5100.821.doc/storwize_openstack_matrix.html
https://www.redhat.com/cms/managed-files/cl-openstack-hpe-synergy-ceph-reference-architecture-f18012bf-201906-en.pdf
https://www.redhat.com/cms/managed-files/cl-openstack-hpe-synergy-ceph-reference-architecture-f18012bf-201906-en.pdf
https://www.redhat.com/cms/managed-files/cl-openstack-hpe-synergy-ceph-reference-architecture-f18012bf-201906-en.pdf
https://docs.openstack.org/cinder/rocky/configuration/block-storage/drivers/dell-emc-unity-driver.html
https://docs.openstack.org/cinder/rocky/configuration/block-storage/drivers/dell-emc-unity-driver.html
https://docs.openstack.org/cinder/rocky/configuration/block-storage/drivers/dell-emc-unity-driver.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/dm_multipath/mpio_setup
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/dm_multipath/mpio_setup
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/dm_multipath/mpio_setup
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/pdf/configuring_device_mapper_multipath/Red_Hat_Enterprise_Linux-8-Configuring_device_mapper_multipath-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/pdf/configuring_device_mapper_multipath/Red_Hat_Enterprise_Linux-8-Configuring_device_mapper_multipath-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/pdf/configuring_device_mapper_multipath/Red_Hat_Enterprise_Linux-8-Configuring_device_mapper_multipath-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/pdf/configuring_device_mapper_multipath/Red_Hat_Enterprise_Linux-8-Configuring_device_mapper_multipath-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/pdf/configuring_device_mapper_multipath/Red_Hat_Enterprise_Linux-8-Configuring_device_mapper_multipath-en-US.pdf

Further reading 643

• Using snapshot for Kibana/Grafana: https://github.com/parvez/
snapshot

• Using ElastAlert: https://github.com/Yelp/elastalert

• Using Elastic Stack Features (formerly X-Pack): https://www.elastic.co/
guide/en/elasticsearch/reference/current/setup-xpack.html

• Troubleshooting OpenStack Networking: https://docs.openstack.org/
operations-guide/ops-network-troubleshooting.html

• Troubleshooting OpenStack Compute: https://docs.openstack.org/
ocata/admin-guide/support-compute.html

• Troubleshooting OpenStack Object Storage: https://docs.openstack.org/
ocata/admin-guide/objectstorage-troubleshoot.html

• Troubleshooting OpenStack Block Storage: https://docs.openstack.org/
ocata/admin-guide/blockstorage-troubleshoot.html

• Troubleshooting OpenStack Shared File Systems: https://docs.openstack.
org/ocata/admin-guide/shared-file-systems-troubleshoot.
html

• Troubleshooting a Bare Metal OpenStack service: https://docs.openstack.
org/ocata/admin-guide/baremetal.html#troubleshooting

https://github.com/parvez/snapshot
https://github.com/parvez/snapshot
https://github.com/Yelp/elastalert
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-xpack.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-xpack.html
https://docs.openstack.org/operations-guide/ops-network-troubleshooting.html
https://docs.openstack.org/operations-guide/ops-network-troubleshooting.html
https://docs.openstack.org/ocata/admin-guide/support-compute.html
https://docs.openstack.org/ocata/admin-guide/support-compute.html
https://docs.openstack.org/ocata/admin-guide/objectstorage-troubleshoot.html
https://docs.openstack.org/ocata/admin-guide/objectstorage-troubleshoot.html
https://docs.openstack.org/ocata/admin-guide/blockstorage-troubleshoot.html
https://docs.openstack.org/ocata/admin-guide/blockstorage-troubleshoot.html
https://docs.openstack.org/ocata/admin-guide/shared-file-systems-troubleshoot.html
https://docs.openstack.org/ocata/admin-guide/shared-file-systems-troubleshoot.html
https://docs.openstack.org/ocata/admin-guide/shared-file-systems-troubleshoot.html
https://docs.openstack.org/ocata/admin-guide/baremetal.html#troubleshooting
https://docs.openstack.org/ocata/admin-guide/baremetal.html#troubleshooting

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Enterprise Automation on Linux

James Freeman

ISBN: 978-1-78913-161-1

• Perform large-scale automation of Linux environments in an enterprise

• Overcome common challenges and pitfalls of extensive automation

• Define the business processes needed to support a large-scale Linux environment

• Get well-versed with the most effective and reliable patch management strategies

• Automate a range of tasks from simple user account changes to complex security
policy enforcement

• Learn best practices and procedures to make your Linux environment automatable

https://www.packtpub.com/product/hands-on-enterprise-automation-on-linux/9781789131611

646 Other Books You May Enjoy

Hands-On Linux for Architects

Denis Salamanca , Esteban Flores

ISBN: 978-1-78953-410-8

• Study the basics of infrastructure design and the steps involved

• Expand your current design portfolio with Linux-based solutions

• Discover open source software-based solutions to optimize your architecture

• Understand the role of high availability and fault tolerance in a resilient design

• Identify the role of containers and how they improve your continuous integration
and continuous deployment pipelines

• Gain insights into optimizing and making resilient and highly available designs
by applying industry best practices

https://www.packtpub.com/product/hands-on-linux-for-architects/9781789534108

Leave a review - let other readers know what you think 647

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Access Control List (ACL) 143
Address Resolution Protocols (ARPs) 249
ad hoc 388
Advanced Host Controller

Interface (AHCI) 172
Advanced Micro Devices (AMD) 247
advanced troubleshooting tools

about 621
Ansible and OpenStack, problems

working with 627, 628
AWS 637
dependencies 628, 629
ELK stack, used for troubleshooting

problems 639
Eucalyptus, troubleshooting 629
KVM, storage problems 624
oVirt 622, 623
oVirt, storage problems 624
service, executing 638, 639
service, implementing 638, 639
snapshots and templates,

problems 624-626
agentless systems 369

aggregator
configuring 536, 537

Amazon Elastic Compute Cloud (EC2) 14
Amazon Machine Image (AMI) 503
Amazon Web Services (AWS)

about 14, 470, 637
big infrastructure 474, 475
cloud, approaching 470, 471
data centers 477, 478
image, uploading to EC2 498-507
key placement 478, 479
market share 474
multi-cloud 472
pricing 475-477
Shadow IT 473, 474
verbosity 637
virtual machines, converting 484
virtual machines, migrating 484-498
virtual machines, preparing 484

AMD Virtualization (AMD-V) 21
Ansible

about 366-372
approaches 366
deploying 382, 383
examples, with KVM 409, 410

650 Index

problems, working with 627, 628
used, for integrating OpenStack 462-464
using, for automation and

orchestration 399-406
Ansible AWX 372
Apache Software Foundation (ASF) 14
App Engine 471
application programming

interface (API) 259
Application Programming

Interface (API) 30
application virtualization 6
ARK

URL 563
ARP Flux

reference link 601
automatic NUMA balancing 591-593
automation approaches, Ansible

about 367
agentless systems 369
systems that use agents 368

auvirt command 617
availability zone 508
AWS free tier

reference link 480
AWS services

about 480, 481, 482
EC2 482
IAM 483
other services 483
S3 482, 483

AWX
about 371
deploying 372-381
reference link 373
using 372-381

AWX project
reference link 371

B
bare-metal hypervisors 10
basic KVM storage operations 162
blockcommit

used, for merging external disk
snapshots 302, 303

block I/O
tuning 597-600

blockpull
used, for merging external disk

snapshots 304, 305
bridge zero copy 603
Brtfs 127

C
CentOS 8 template

preparing, with complete
LAMP stack 266-270

central processing unit (CPU)
about 215, 263
tuning, with NUMA 585, 586

Ceph
about 155
using, as storage backend

for KVM 155-162
ceph-mds 155
ceph-mon 155
ceph-osd 155
cloud

Linux virtualization 14, 15
cloudbase-init

used, for customizing Windows
VMs 350-352

cloudbase-init customization
examples 353-361
issues, troubleshooting 361, 363

Index 651

cloud-config script
using, with cloud-init 323-329

Cloud Controller 508
CloudFront 481
cloud-init

about 314, 399
architecture 315-317
configuring, at boot time 318
data sources 320
images 319, 320
installing 318
metadata, passing to 321, 322
modules 322
post installation 336-342
user data, passing to 321, 322
using, for automation and

orchestration 399-406
cloud-init boot, stages

config stage 316
final stage 316
generator 315
local phase 315
network phase 315

cloud provider scalability, problems
compute problem 417
network problem 418
storage problem 418

CloudStack 14
cloud-utils 321
Cockpit

used, for creating VM 223-225
container-based virtualization 9
Content Delivery Network (CDN) 471
Controlled Replication Under Scalable

Hashing (CRUSH) 155
control node 383
Copy-on-Write (COW) 265, 580

core concept, Xen
Dom0 12
management utilities 12
virtual machines 12
Xen Hypervisor 12

CPU pinning 568-571
custom utilization reports

creating 538, 539

D
dashboard 435
data centers 477, 478
data collector

configuring 536
data points 525
debug mode logging

enabling 618, 619, 620
design 560, 561
Designate 435, 436
Desired State Configuration (DSC) 367
desktop virtualization 6
disk

attaching, with virsh 166
attaching, with virt-manager 164-166

disk allocation methods
preallocated 163
thin-provisioned 163

Distributed Resource Scheduler
(DRS) 216

Domain Name System (DNS) 240, 262

E
Elastic Compute Cloud

(EC2) 471, 481, 482
Elasticsearch

about 526, 527

652 Index

configuring 539
Elasticsearch, Logstash, Kibana

(ELK) 7, 526
and KVM 549-556

ELK stack
development mode 538
integrating 528-533
production mode 538
setting up 528-532
used, for troubleshooting problems 639
workflow, creating 533-535

embedded hypervisors 10
emulator

QEMU, operating as 39
emulatorpin 589-591
Enterprise Virtualization

Hypervisor (RHEV-H) 10
ESX integrated (ESXi) 214, 257
euca2ools

reference link 508
Euca2ools 508
Eucalyptus

about 14, 507
information gathering 630-636
installation, pre-requisites 510
installing 509-518
troubleshooting 629
used, for building hybrid

KVM clouds 507, 508
using, for AWS control 518-521

Eucalyptus 4.4.5 installation guide
reference link 509

Eucalyptus, components
Cloud Controller (CLC) 508
Cluster Controller (CC) 508
eucanetd 508
Node Controller (SC) 508
Storage Controller (SC) 508

execution flow
of vCPU 59-64

Extended Page Tables (EPT) 22, 50
Extensible Markup Language (XML) 222
external disk snapshots

creating 293-296
deleting 302
merging, blockcommit used 302, 303
merging, blockpull used 304, 305
quiesce 296, 297
reverting to 298-301
working with 292, 293

external snapshot 286

F
FastCGI Process Manager (FPM) 269
FastStart 509
fault domains 477
Fiber Channel (FC) 239
File Transfer Protocol (FTP) 214
Front Side Bus (FSB) 174
full cloning method

about 265
used, for deploying VM 276, 277

full virtualization 8, 26, 27
Fully Automated Install (FAI) 313

G
gather_facts module 370
GDPR 479
General Public License (GPL) 38
GENEVE 425
gigabytes (GB) 213
Glance 434
Global Accelerator 481

Index 653

Gluster
using, as storage backend

for KVM 150-154
GPU

partitioning, with NVIDIA
vGPU 187, 188, 189

GPU PCI passthrough
enabling 189-193

graphical user interface (GUI) 286
guestfish

using 259-262

H
hardware-assisted virtualization 28, 29
hardware-based approach 8
hardware design 561-564
high availability (HA) 226
Horizon 435
hosted hypervisors 11
host's NUMA topology 596
HugePages 576
hybrid KVM clouds

building, with Eucalyptus 507, 508
hybrid virtualization 8
hypercalls 28
HyperText Transfer Protocol (HTTP) 214
HyperText Transfer Protocol

Secure (HTTPS) 214
hypervisor

type 1 hypervisor 10, 11
type 2 hypervisor 10, 11
using 9

Hyper-V Network Virtualization
(HNV) 425

I
Identity and Access Management

(IAM) 481, 483
image information

obtaining 164
Infrastructure-as-a-Service (IaaS) 14, 416
input/output (I/O) 231
input/output (I/O)-intensive

applications 285
Input/Output Memory Management

Unit (IOMMU) 22
integrated drive electronics (IDE) 234
internal snapshot

about 285
creating 287
creating, with custom name

and description 288
deleting 290, 291
multiple snapshots, creating 288, 289
reverting to 290
working with 287

International Organization for
Standardization (ISO) 213

Internet of Things (IoT) 182
Internet Protocol (IP) 212, 263
Internet Small Computer Systems

Interface (iSCSI) 239
inventories 370
iothread 49
iSCSI

using 136-145
ISO image library

creating 167, 168

654 Index

J
Just-In-Time (JIT) compiler 39

K
Keystone 436
Kibana

about 528
charts, creating 537, 538
configuring 541-548

kickstart file 77
KSM 580-584

and NUMA 591
Kernel-based Virtual Machine
(KVM)

about 5, 13, 210
anonymous inodes 53, 54
Ansible, examples using 409
file structures 53, 54
guest mode 50
installing 393-399
internal working 49, 50
storage problems 623, 624
virtual machine, installing 76
Windows VMs, creating

prerequisites 346
KVM APIs 52
kvm-clock 605, 606
KVM guest time-keeping

best practices 604
KVM internals 41
KVM issues

best practices, for troubleshooting 640
kvm_libvirt module

used, for provisioning virtual
machine 383-387

KVM services logging 617

KVM service status
verifying 614-617

kvm structure 55-58
KVM virtualization platform

monitoring 524, 525
KVM VM

multi-tier application deployment,
orchestrating 406, 408, 409

L
libguestfs tools

guestfish, using 259-262
used, for modifying VM images 256
virt-builder 281
virt-p2v, using 259
virt-v2v, using 257, 258

libvirt
about 70
installing 73, 75
internal working 30
URL 30
used, for starting virtual machine 83-86

libvirtd 30
libvirt isolated network 95-100
libvirt NAT network 93, 94
libvirt routed network 94, 95
libvirt storage pools 130
linear design 561
linked cloning method

about 265
used, for deploying VM 277-280

Linux, Apache, MySQL, and
PHP (LAMP) 266

Linux bridging
implementing 103-105

Index 655

Linux virtualization
about 4, 5
in cloud 14, 15

live migration, VM 247-252
local.conf file 446
local storage pools 128, 129
logical unit number (LUN) 245
Logical Volume Manager (LVM)
 about 239
 configuring 141-143
Logstash

about 527
installing 540

M
macvtap

about 118
bridge mode 120
passthrough mode 120
private mode 119
VEPA mode 118

market share 474
media access control (MAC) 266
memory

tuning, with NUMA 585, 586
working with 572

memory allocation 572
memory backing 575
memory backing, options

hugepages 576-580
locked 575
nosharepages 576

Memory Management Unit (MMU) 576
Memory Overcommitment

Manager (MOM) 72

memory performance
tuning 565-567

memory tuning 573, 574
metadata

about 320
passing, to cloud-init 321, 322

metricbeat 528
Microsoft Azure 471
Microsoft SQL database

used, for preparing Windows Server
2019 template 273-275

Modular Layer 2 (ML2) 437
modules 367, 370
multi-cloud

about 472
need for 472, 473

multipathing 146
multi-tier application deployment

orchestrating, on KVM VM 406-409

N
native hypervisors 10
Nested Paging Table (NPT) 50
Network-as-a-Service (NaaS) 426
Network File System (NFS) 240
networking interfaces, Linux

Bond 92
Bridge 92
IPOIB 92
IPVLAN 92
MACVLAN 92
MACVTAP/IPVTAP 92
Team 92
VETH 92
VXLAN 92

network interface controllers (NICs) 249

656 Index

network I/O
tuning 601, 602

Network Time Protocol (NTP) 240, 604
network virtualization 7
Neutron 437, 438
Neutron, network categories

project networks 438
provider networks 438
self-service networks 438
tenant networks 438

Neutron, network types
flat 438
local 438
VLAN 438

NFS server options
configuring 135

NFS storage pool
about 131, 132
configuration options 133
selecting 134

Non-Unified Memory Access (NUMA) 20
Non-Uniform Memory Access (NUMA)

about 231, 561
and KSM 591
CPU, tuning with 585, 586
memory allocation policies 586-589
memory, tuning with 585, 586

Non-Volatile Memory Express
(NVMe) 172

Nova
about 430-432
Reference link 432

nova-api 432
nova-compute 433
nova-conductor 434
nova-network 433
nova-volume 433

noVNC
used, for obtaining display

portability 202-206
NUMA Affinity Management

Daemon (numad) 594
numactl command 593
NUMA node 585
numastat command 595
numatune 586
NVIDIA vGPU

used, for partitioning GPU 187-189
NVMe over Fabrics (NVMe-OF) 175

O
Object Storage Daemon (OSD) 155
Office 365 471
offline migration, VM

about 243, 244
lockd, enabling 245-247

open source cloud projects
CloudStack 14
Eucalyptus 14
OpenStack 14

open source ELK solution
about 526
Elasticsearch 526, 527
Kibana 528
Logstash 527

open source virtualization projects
about 11
KVM 13
Xen 12, 13

OpenStack
about 14, 416-418
day-to-day administration 457-460
identity management 460, 461

Index 657

installing 445-449
Packstack demo environment,

creating for 441-443
problems, working with 627, 628
URL 417, 465
use cases 439, 440
virtualization solutions 15

OpenStack administration 449-456
OpenStack-Ansible (OSA)

about 462
reference link 463

OpenStack, components
about 426
Designate 436
Glance 434
Horizon 435
Keystone 436
Neutron 437, 438
Nova 430-432
Swift 427-429
Swift daemons 429, 430

OpenStack Compute 426
OpenStack environment

provisioning 443, 444
OpenStack, integrating with Ansible

about 462-464
Ansible deployment server,

installing 464, 465
Ansible inventory, configuring 466
Ansible playbooks, running 467

Open Virtualization Appliance (OVA) 257
Open Virtualization Format (OVF) 257
Open vSwitch

architecture 107
configuring 105-112
flow mode 108
installing, on CentOS 8 108, 110

normal mode 108
use cases 113, 114
working 106, 108

orchestration 416
oVirt

about 71, 622, 623
architecture 73
functionalities 72
installing 73-82
storage problems 623, 624
URL 30
used, for creating VM 226-229

oVirt Engine Administration Portal 83
oVirt, example on iSCSI

using 146-149

P
Packstack 441
Packstack demo environment

creating, for OpenStack 441-443
Packstack documentation

reference link 443
paravirtualization

about 8, 27
URL 28

partitioning 8
PC over IP (PCoIP) 179
Persistent Memory (PM) 174
physical environment

versus virtualized environment 18, 19
Physical Functions (PF) 23
physical graphics cards

in VDI scenarios 185-187
physical networking 90
physical-to-virtual (P2V) conversion 256

658 Index

playbook
about 387
working with 387-393

Point of Contact (POC) 478
pong 390
PowerShell 369, 383
Preboot eXecution Environment

(PXE) 213
Precision Time Protocol (PTP) 240, 605
pricing 475-477
Privacy Shield 479
Proof of Concept (POC) 441
protection rings 24

Q
qemu-img 222
Quality of Service (QoS) 252, 599
Quantum 437
Quick Emulator (QEMU)

about 12, 235
data structures 42, 44, 45, 46
installing 73, 75
internal working 38
KVM internals 41
operating, as emulator 39
operating, as virtualizer 40, 41
threading models 48, 49
URL 39
used, for starting virtual machine 83-86

Quick Path Interconnect (QPI) 174
quiesce 296, 297

R
Rapid Virtualization Indexing (RVI) 22
Red Hat Enterprise Linux (RHEL) 216

Red Hat Enterprise Linux (RHEL) 8.0
URL 259

Red Hat Enterprise Virtualization
Hypervisor (RHEV-H) 146

redundancy 146
Registry 434
Reliable Autonomic Distributed

Object Store (RADOS) 155
remote desktop protocol (RDP) 179
remote display protocols

about 193
history 193, 194
types 195

replica 429
risk zones 477
Rundeck 372

S
SAN storage

using 136
scheduler 432
scheduler, Nova

chance 433
simple scheduler 433
zone scheduling 433

Second-Level Address
Translation (SLAT) 22

Secure Copy Protocol (SCP) 248
Secure Shell (SSH) 212, 263
Secure Virtual Machine (SVM) 29
Security-Enhanced Linux

(SELinux) 243, 267
Semaphore 372
Server Message Block (SMB) 214
server virtualization 6
service-level agreement (SLA) 417

Index 659

Shadow IT 473, 474
Simple Protocol for Independent

Computing Environments (SPICE)
about 198
reference link 198

Simple Storage Service (S3) 471, 481, 482
Single Point Of Failure (SPOF) 125
Single Root Input Output

Virtualization (SR/IOV) 22
small computer system

interface (SCSI) 234
snapshots

about 285
external disk snapshots,

working with 292
internal snapshots, working with 286
managing, with virt-manager 291, 292
problems 624-626
use cases 305
using, best practices 305

software-based approach 8
software-based design 606-609
software-defined networking (SDN)

about 7, 93, 418-420
GENEVE 425
VXLAN 420-422

Software-Defined Storage (SDS) 7
Solid State Drives (SSDs) 172
Spanning Tree Protocol (STP) 103
SPICE display protocol

using 198
SPICE graphics server

adding 198, 199
SR-IOV

about 114
using 115-118

SSH 369
storage

about 124, 125
latest developments 172-175

Storage Class Memory (SCM) 174
storage pool

about 126
deleting 169
libvirt storage pools 130
local storage pools 128, 129
types 126, 127

storage virtualization 7
storage volumes

creating 170
Stratis 128
Structured Query Language (SQL) 273
Swift

about 427-429
URL 427

Swift-account 429
Swift-container 430
Swift daemons 429, 430
Swift-object 430
Symmetric Multiprocessor

System (SMP) 585
System Center Operations

Manager (SCOM) 216
system gauge

creating 549-556
system identification number (SID) 274
System on a Chip (SoC) 182
System Preparation (sysprep) tool

URL 273
systems that use agents 368

660 Index

T
TAP devices

userspace networking, using
with 101, 102

templates
creating 266
creating, examples 266-273
problems 624-626
virt-sysprep 270, 272
working with 266

terabyte (TB) 222
Time Stamp Counter (TSC) 605
Tiny Code Generator (TCG)

about 39
reference link 39

Translation Lookaside Buffer
(TLB) 22, 577

Transmission Control Protocol (TCP) 248
Transparent Hugepages (THP) 577
Trusted Platform Module (TPM) 23
TUN devices

userspace networking, using
with 101, 102

tunneling interfaces
GENEVE 92
GRE 92
GRETAP 92
IP6GRE 92
IP6GRETAP 92
ip6tnl 92
IPIP 92
SIT 92

type 1 hypervisor
about 10, 11
advantages 10

type 2 hypervisor 10, 11

U
Uniform Resource Locator (URL) 214
universally unique identifier

(UUID) 160, 246
user data

about 320
passing, to cloud-init 321, 322

user mode Linux (UML) 15, 433
userspace networking

using, with TAP devices 101, 102
using, with TUN devices 101, 102

V
vCPU

execution flow 59-64
VDI scenarios

physical graphics cards 185-187
virtual graphics cards 185-187

vdsm 72
vhost

turning on 602-604
vhost kernel modules

checking 602-604
virsh

about 30
used, for attaching disk 166

virsh binary
using, for remote connection 31-38

virsh command
used, for creating volume 171
used, for deleting volume 171

virt-builder
about 281, 283
repositories 283-285

virt-clone command 220, 221

Index 661

virt-* commands
using 217

virt-convert command 222
virt-install utility

used, for creating Windows
VMs 347-349

virtio-blk 597
Virtio devices

tuning 596, 597
virt-manager

URL 30
used, for attaching disk 164-166
used, for creating VM 210
used, for managing snapshots 291, 292
using 210-215

virt-p2v
using 259

Virt queue 597
virt-sysprep 270, 272
virtual CPU (vCPU) 215
Virtual Desktop Infrastructure

(VDI) 6, 179, 198, 265, 345
Virtual Direct Graphics

Acceleration (vDGA) 186
virtual disk images 162
Virtual Ethernet Port Aggregator

(VEPA) 118
Virtual Functions (VF) 22
virtual graphic card, use cases

cg3 181
cirrus 180
none 181
qxl 180
std 180
tcx 180
virtio 181
vmware 180

virtual graphics cards
in VDI scenarios 185-187

virtual hardware
adding, in VM 236, 237
removing, from VM 236, 237

virtualization
about 18
from CPU perspective 50-52
hardware requirements 21, 23
need for 20
software requirements 24-26

Virtualization Technology (VT) 29
virtualization, types

about 6, 7
application virtualization 6
container-based virtualization 9
desktop virtualization 6
full virtualization 8
hybrid virtualization 8
network virtualization 7
paravirtualization 8
partitioning 8
server virtualization 6
storage virtualization 7

virtualized environment
versus physical environment 18, 19

Virtualized Functions (VF) 187
virtualized networking 90
virtualizer

QEMU, operating as 40, 41
virtual LAN (VLAN ID) 418
virtual local area network

(VLAN) 252, 263
virtual machine

Ansible, using for automation
and orchestration 399-406

662 Index

cloud-init, using for automation
and orchestration 399-406

deploying 329-335
installation, automating 77-80
installing, in KVM 76
KVM, installing 393-399
playbook, working with 388-393
provisioning, with kvm_libvirt

module 383-387
starting, with libvirt 83-86
starting, with QEMU 83-86

virtual machine console
accessing, methods 200, 201

Virtual Machine Control
Block (VMCB) 50

Virtual Machine Control Structure
(VMCS) 50, 51

virtual machine customization 624-626
need for 312, 313

Virtual Machine Extensions (VMX) 21, 50
virtual machine manager (VMM)

about 80
using 9

Virtual Machine Monitor (VMM) 26
virtual machines (VMs)

about 345, 560
configuring 230-235
converting, for AWS 483
creating, with Cockpit 223-225
creating, with oVirt 226-229
creating, with virt-manager 210
deploying, from template 275
deploying, full cloning

method used 276, 277
deploying, linked cloning

method used 277-280
preparing, for AWS 483

starting, accidently on two
hypervisors 244

virtual machines (VMs), importing
with VM Import/Export

reference link 485
Virtual Memory Areas (VMAs) 577
Virtual Network Computing (VNC) 218
virtual networking 91
Virtual Private Server (VPS) 600
virtual ring (vring)

tuning 597
Virtual Shared Graphics

Acceleration (vSGA) 186
virtual switch 90, 91
virt-v2v

using 257, 258
virt-viewer command 218
virt-xml command 219
VM CPU

tuning 565-567
VM design 565
VM Disk (VMDK) 222
VM display devices

using 180-184
VM images

modifying, with libguestfs tools 256
VM migration

about 238
benefits 239
environment, setting up 240-242
live migration 247-252
offline migration 243, 244
requisites, for production

environment 239
VM storage

configuring 215, 216

Index 663

VM templates
creating 263-265

VNC display protocol
need for 197
using 196, 197

volume
creating, with virsh command 171
deleting, with virsh command 171

VT-i 28
VXLAN

about 420-422
UDP, need for 421

VXLAN, features
Layer 2 across sites, stretching 423, 424
layer 2, bridging 423
offloading technologies 423

VXLAN network identifiers (VNIs) 421

W
Web Server Gateway Interface

(WSGI) 431
Windows Azure 471
Windows Remote Management

(WinRM) 350, 369, 383

Windows Server 2019 template
creating, with Microsoft SQL

database 273-275
Windows VMs

creating, on KVM prerequisites 346
creating, with virt-install utility 347-349
customizing, with

cloudbase-init 350-352

X
Xen

about 5, 12, 13
URL 12

Y
yum module 395

Z
ZFS 127
Zones 508

	Cover
	Copyright
	About PACKT
	Contributors
	Table of Contents
	Preface
	Section 1:
KVM Virtualization Basics
	Chapter 1: Understanding Linux Virtualization
	Linux virtualization and how it all started
	Types of virtualization
	Using the hypervisor/virtual machine manager
	Type 1 and type 2 hypervisors

	Open source virtualization projects
	Xen
	KVM

	What Linux virtualization offers you in
the cloud
	Summary
	Questions
	Further reading

	Chapter 2: KVM as a Virtualization Solution
	Virtualization as a concept
	Virtualized versus physical environments
	Why is virtualization so important?
	Hardware requirements for virtualization
	Software requirements for virtualization

	The internal workings of libvirt, QEMU, and KVM
	libvirt
	QEMU
	QEMU – KVM internals
	Data structures
	Threading models in QEMU
	KVM
	Data structures

	Execution flow of vCPU
	Summary
	Questions
	Further reading

	Section 2:
libvirt and ovirt for Virtual Machine Management
	Chapter 3: Installing KVM Hypervisor, libvirt, and oVirt
	Getting acquainted with QEMU and libvirt
	Getting acquainted with oVirt
	Installing QEMU, libvirt, and oVirt
	Installing the first virtual machine in KVM
	Automating virtual machine installation
	Installing oVirt

	Starting a virtual machine using QEMU
and libvirt
	Summary
	Questions
	Further reading

	Chapter 4: Libvirt Networking
	Understanding physical and virtual networking
	Virtual networking
	Libvirt NAT network
	Libvirt routed network
	Libvirt isolated network

	Using userspace networking with TAP and TUN devices
	Implementing Linux bridging
	Configuring Open vSwitch
	Other Open vSwitch use cases

	Understanding and using SR-IOV
	Understanding macvtap
	Summary
	Questions
	Further reading

	Chapter 5: Libvirt Storage
	Introduction to storage
	Storage pools
	Local storage pools
	Libvirt storage pools

	NFS storage pool
	iSCSI and SAN storage
	Storage redundancy and multipathing
	Gluster and Ceph as a storage backend
for KVM
	Gluster
	Ceph

	Virtual disk images and formats and basic KVM storage operations
	Getting image information
	Attaching a disk using virt-manager
	Attaching a disk using virsh
	Creating an ISO image library
	Deleting a storage pool
	Creating storage volumes
	Creating volumes using the virsh command
	Deleting a volume using the virsh command

	The latest developments in storage – NVMe and NVMeOF
	Summary
	Questions
	Further reading

	Chapter 6: Virtual Display Devices and Protocols
	Using virtual machine display devices
	Physical and virtual graphics cards in VDI scenarios
	GPU PCI passthrough

	Discussing remote display protocols
	Remote display protocols history
	Types of remote display protocols

	Using the VNC display protocol
	Why VNC?

	Using the SPICE display protocol
	Adding a SPICE graphics server

	Methods to access a virtual machine console
	Getting display portability with noVNC
	Summary
	Questions
	Further reading

	Chapter 7: Virtual Machines: Installation, Configuration, and Life Cycle Management
	Creating a new VM using virt-manager
	Using virt-manager
	Using virt-* commands
	Creating a new VM using Cockpit

	Creating a new VM using oVirt
	Configuring your VM
	Adding and removing virtual hardware from your VM
	Migrating VMs
	Benefits of VM migration
	Setting up the environment
	Offline migration
	Live or online migration

	Summary
	Questions
	Further reading

	Chapter 8: Creating and Modifying VM Disks, Templates, and Snapshots
	Modifying VM images using libguestfs tools
	virt-v2v
	virt-p2v
	guestfish

	VM templating
	Working with templates
	Deploying VMs from a template

	virt-builder and virt-builder repos
	virt-builder repositories

	Snapshots
	Working with internal snapshots
	Managing snapshots using virt-manager
	Working with external disk snapshots

	Use cases and best practices while using snapshots
	Summary
	Questions
	Further reading

	Section 3:
Automation, Customization, and Orchestration for
KVM VMs
	Chapter 9: Customizing a Virtual Machine with cloud-init
	What is the need for virtual machine customization?
	Understanding cloud-init
	Understanding cloud-init architecture
	Installing and configuring cloud-init at boot time
	Cloud-init images
	Cloud-init data sources

	Passing metadata and user data to cloud-init
	Using cloud-init modules

	Examples on how to use a cloud-config script with cloud-init
	The first deployment
	The second deployment
	The third deployment

	Summary
	Questions
	Further reading

	Chapter 10: Automated Windows Guest Deployment and Customization
	The prerequisites to creating Windows VMs
on KVM
	Creating Windows VMs using the
virt-install utility
	Customizing Windows VMs using
cloudbase-init
	cloudbase-init customization examples
	Troubleshooting common cloudbase-init customization issues
	Summary
	Questions
	Further reading

	Chapter 11: Ansible and Scripting for Orchestration and Automation
	Understanding Ansible
	Automation approaches
	Introduction to Ansible
	Deploying and using AWX
	Deploying Ansible

	Provisioning a virtual machine using the
kvm_libvirt module
	Working with playbooks
	Installing KVM
	Using Ansible and cloud-init for automation and orchestration

	Orchestrating multi-tier application deployment on KVM VM
	Learning by example – various examples of using Ansible with KVM
	Summary
	Questions
	Further reading

	Section 4:
 Scalability, Monitoring, Performance Tuning, and Troubleshooting
	Chapter 12: Scaling Out KVM with OpenStack
	Introduction to OpenStack
	Software-defined networking
	Understanding VXLAN
	Understanding GENEVE

	OpenStack components
	Swift
	Nova
	Glance
	Horizon
	Designate
	Keystone
	Neutron

	Additional OpenStack use cases
	Creating a Packstack demo environment for OpenStack

	Provisioning the OpenStack environment
	Installing OpenStack step by step
	OpenStack administration
	Day-to-day administration
	Identity management

	Integrating OpenStack with Ansible
	Installing an Ansible deployment server
	Configuring the Ansible inventory
	Running Ansible playbooks

	Summary
	Questions
	Further reading

	Chapter 13: Scaling out KVM with AWS
	Introduction to AWS
	Approaching the cloud
	Multi-cloud
	Shadow IT
	Market share
	Big infrastructure but no services
	Pricing
	Data centers
	Placement is the key
	AWS services

	Preparing and converting virtual machines for AWS
	What do we want to do?
	Uploading an image to EC2

	Building hybrid KVM clouds with Eucalyptus
	How do you install it?
	Using Eucalyptus for AWS control

	Summary
	Questions
	Further reading

	Chapter 14: Monitoring the KVM Virtualization Platform
	Monitoring the KVM virtualization platform
	Introduction to the open source ELK solution
	Elasticsearch
	Logstash
	Kibana

	Setting up and integrating the ELK stack
	Workflow

	Configuring data collector and aggregator
	Creating charts in Kibana
	Creating custom utilization reports
	ELK and KVM

	Summary
	Questions
	Further reading

	Chapter 15: Performance Tuning and Optimization for KVM VMs
	It's all about design
	General hardware design
	VM design

	Tuning the VM CPU and memory performance
	CPU pinning
	Working with memory

	Getting acquainted with KSM
	Tuning the CPU and memory with NUMA
	NUMA memory allocation policies
	Understanding emulatorpin
	KSM and NUMA
	Automatic NUMA balancing
	The numactl command
	Understanding numad and numastat

	Virtio device tuning
	Block I/O tuning
	Network I/O tuning
	How to turn it on
	KVM guest time-keeping best practices
	Software-based design

	Summary
	Questions
	Further reading

	Chapter 16: Troubleshooting Guidelines for the KVM Platform
	Verifying the KVM service status
	KVM services logging
	Enabling debug mode logging
	Advanced troubleshooting tools
	oVirt
	oVirt and KVM storage problems
	Problems with snapshots and templates – virtual machine customization
	Problems working with Ansible and OpenStack
	Dependencies
	Troubleshooting Eucalyptus
	AWS and its verbosity, which doesn't help
	Paying attention to details
	Troubleshooting problems with the ELK stack

	Best practices for troubleshooting KVM issues
	Summary
	Questions
	Further reading

	Other Books You May Enjoy
	Index

