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Preface

Convolutional neural networks (CNNs) have gained tremendous significance
in the domain of artificial intelligence (AI) because of their use in a variety of
applications related to visual imagery analysis. There has been a drastic increase
in the accuracy of CNNs in recent years, which has helped CNNs make its way
in real-world applications. This increase in accuracy, however, translates into a
sizable model and high computational requirements, which make the deployment
of these CNNs in resource-limited computing platforms a challenging endeavor.
Thus, embedding CNN inference into various real-world applications requires the
design of high-performance, area, and energy-efficient accelerator architectures.
This book targets the design of accelerators for CNNs.

This book is organized into five parts: overview, compressive coding for CNNs,
dense CNN accelerators, sparse CNN accelerators, and HW/SW co-design and
co-scheduling for CNN acceleration. The first part of the book provides an
overview of CNNs along with the composition of different contemporary CNN
models. The book then discusses some of the architectural and algorithmic
techniques for efficient processing of CNN models. The second part of the book
discusses compressive coding for CNNs to compress CNN weights and feature
maps. This part of the book then discusses Huffman coding for lossless com-
pression of CNN weights and feature maps. The book then elucidates a two-step
lossless input feature maps compression method followed by discussion of an
arithmetic coding and decoding-based lossless weights compression method. The
third part of the book focuses on the design of dense CNN accelerators. The book
provides a discussion on contemporary dense CNN accelerators. The book then
presents an iMAC dense CNN accelerator, which combines image-to-column and
general matrix multiplication hardware acceleration followed by the discussion
of another dense CNN accelerator that utilizes log-based processing elements and
2D data flow to maximize data reuse and hardware utilization. The fourth part
of the book targets sparse CNN accelerator. The book discusses contemporary
sparse CNNs that consider sparsity in weights and activation maps (i.e., many
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weights and activations in CNNs are zero and result in ineffectual computations)
to deliver high effective throughput. The book then presents a sparse CNN
accelerator that performs in situ decompression and convolution of sparse input
feature maps. Afterwards, the book discusses a sparse CNN accelerator, which
has the capability to actively skip a huge number of ineffective computations (i.e.,
computations involving zero weights and/or activations), while only favoring
effective computations (nonzero weights and nonzero activations) to drastically
improve the hardware utilization. The book then presents another sparse CNN
accelerator that uses sparse binary mask representation to actively lookahead
into sparse computations, and dynamically schedule its computational threads
to maximize the thread utilization and throughput. The fifth part of the book
targets hardware/software co-design and co-scheduling for CNN acceleration.
The book discusses hardware/software co-design and co-scheduling that can
lead to better optimization and utilization of the available hardware resources
for CNN acceleration. The book summarizes recent works on hardware/software
co-design and scheduling. The book then presents a technique that utilizes
software, algorithm, and hardware co-design to reduce the response time of
CNN inferences. Afterwards, the book discusses a CPU-accelerator co-scheduling
technique, which co-utilizes the CPU and CNN accelerators to expedite the CNN
inference. The book also provides directions for future research and development
for CNN accelerators.

This is the first book on the subject of accelerators for CNNs that introduces
readers to advances and state-of-the-art research in design of CNN accelerators.
This book can serve as a good reference for students, researchers, and practi-
tioners working in the area of hardware design, computer architecture, and AI
acceleration.

January 24, 2023 Arslan Munir
Manhattan, KS, USA
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Introduction

Deep neural networks (DNNs) have enabled the deployment of artificial intel-
ligence (AI) in many modern applications including autonomous driving [1],
image recognition [2], and speech processing [3]. In many applications, DNNs
have achieved close to human-level accuracy and, in some, they have exceeded
human accuracy [4]. This high accuracy comes from a DNN’s unique ability to
automatically extract high-level features from a huge quantity of training data
using statistical learning and improvement over time. This learning over time
provides a DNN with an effective representation of the input space. This is quite
different from the earlier approaches where specific features were hand-crafted
by domain experts and were subsequently used for feature extraction.

Convolutional neural networks (CNNs) are a type of DNNs, which are most
commonly used for computer vision tasks. Among different types of DNNs,
such as multilayer perceptrons (MLP), recurrent neural networks (RNNs), long
short-term memory (LSTM) networks, radial basis function networks (RBFNs),
generative adversarial networks (GANs), restricted Boltzmann machines (RBMs),
deep belief networks (DBNs), and autoencoders, CNNs are the mostly commonly
used. Invention of CNNs has revolutionized the field of computer vision and
has enabled many applications of computer vision to go mainstream. CNNs
have applications in image and video recognition, recommender systems, image
classification, image segmentation, medical image analysis, object detection,
activity recognition, natural language processing, brain–computer interfaces, and
financial time-series prediction.

DNN/CNN processing is usually carried out in two stages, training and infer-
ence, with both of them having their own computational needs. Training is the
process where a DNN model is trained using a large application-specific data
set. The training time is dependent on the model size and the target accuracy
requirements. For high accuracy applications like autonomous driving, training a
DNN can take weeks and is usually performed on a cloud. Inference, on the other

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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Training dataset

Lion LionDog

Cloud-hosted training Edge device inference

Device sensor capturing

real-world data

Edge device processing

system

Trained DNN model

deployed on the

edge device

Figure 1.1 DNN/CNN processing methodology. Source: (b) Daughter#3 -
Cecil/Wikimedia Commons/CC BY-SA 2.0.

hand, can be performed either on the cloud or the edge device (mobile device,
Internet of things (IoT), autonomous vehicle, etc.). Nowadays, in many applica-
tions, it is advantageous to perform the inference process on the edge devices, as
shown in Figure 1.1. For example, in cellphones, it is desirable to perform image
and video processing on the device itself rather than sending the data over to
the cloud for processing. This methodology reduces the communication cost and
the latency involved with the data transmission and reception. It also eliminates
the risk of losing important device features should there be a network disruption
or loss of connectivity. Another motivation for doing inference on the device is the
ever-increasing security risk involved with sending personalized data, including
images and videos, over to the cloud servers for processing. Autonomous driving
systems which require visual data need to deploy solutions to perform inference
locally to avoid latency and security issues, both of which can result in a catas-
trophe, should an undesirable event occurs. Performing DNN/CNN inference
on the edge presents its own set of challenges. This stems from the fact that the
embedded platforms running on the edge devices have stringent cost limitations
which limit their compute capabilities. Running compute and memory-intensive
DNN/CNN inference in these devices in an efficient manner becomes a matter of
prime importance.
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1.1 History and Applications

Neural nets have been around since the 1940s; however, the first practically appli-
cable neural network, referred to as the LeNet [5], was proposed in 1989. This neu-
ral network was designed to solve the problem of digit recognition in hand-written
numeric digits. It paved the way for the development of neural networks respon-
sible for various applications related to digit recognition, such as an automated
teller machine (ATM), optical character recognition (OCR), automatic number
plate recognition, and traffic signs recognition. The slow growth and a little to no
adoption of neural networks in the early days is mainly due to the massive com-
putational requirements involved with their processing which limited their study
to theoretical concepts.

Over the past decade, there has been an exponential growth in the research on
DNNs with many new high accuracy neural networks being deployed for various
applications. This has only been possible because of two factors. The first factor is
the advancements in the processing power of semiconductor devices and techno-
logical breakthroughs in computer architecture. Nowadays, computers have sig-
nificantly higher computing capability. This enables the processing of a neural
network within a reasonable time frame, something that was not achievable in
the early days. The second factor is the availability of a large amount of training
datasets. As neural networks learn over time, providing huge amounts of training
data enables better accuracy. For example, Meta (parent company of Facebook)
receives close to a billion user images per day, whereas YouTube has 300 hours of
video uploaded every minute [6]. This enables the service providers to train their
neural networks for targeted advertising campaigns bringing in billions of dollars
of advertising revenue. Apart from their use in social media platforms, DNNs are
impacting many other domains and are making a huge impact. Some of these areas
include:

● Speech Processing: Speech processing algorithms have improved significantly
in the past few years. Nowadays, many applications have been developed that
use DNNs to perform real-time speech recognition with unprecedented levels
of accuracy [3, 7–9]. Many technology companies are also using DNNs to per-
form language translation used in a wide variety of applications. Google, for
example, uses Google’s neural machine translation system (GNMT) [10] which
uses LSTM-based seq2seq model for their language translation applications.

● Autonomous Driving: Autonomous driving has been one of the biggest tech-
nological breakthroughs in the auto industry since the invention of the internal
combustion engine. It is not a coincidence that the self-driving boom came at the
same time when high accuracy CNNs became increasingly popular. Companies
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like Tesla [11] and Waymo [12] are using various types of self-driving technol-
ogy including visual feeds and Lidar for their self-driving solutions. One thing
which is common in all these solutions is the use of CNNs for visual perception
of the road conditions which is the main back-end technology used in advanced
driver assistance systems (ADAS).

● Medical AI: Another crucial area where DNNs/CNNs have become increas-
ingly useful is medicine. Nowadays, doctors can use AI-assisted medical
imagery to perform various surgeries. AI systems use DNNs in genomics to
gather insights about genetic disorders like autism [13, 14]. DNNs/CNNs are
also useful in the detection of various types of cancers like skin and brain cancer
[15, 16].

● Security: The advent of AI has challenged many traditional security approaches
that were previously deemed sufficient. The rollout of 5G technology has caused
a massive surge of IoT-based deployments which traditional security approaches
are not able to keep up with. Physical unclonability approaches [17–21] were
introduced to protect this massive deployment of IoTs against security attacks
with minimum cost overheads. These approaches, however, were also unsuc-
cessful in preventing AI-assisted attacks using DNNs [22, 23]. Researchers have
now been forced to upgrade the security threat models to incorporate AI-based
attacks [24, 25]. Because of a massive increase in AI-assisted cyber-attacks on
cloud and datacenters, companies have realized that the best way of defeating
offensive AI attacks is by incorporating AI-based counterattacks [26, 27].

Overall, the use of DNNs, in particular CNNs, in various applications has seen
exponential growth over the past decade, and this trend has been on the rise for the
past many years. The massive increase in CNN deployments on the edge devices
requires the development of efficient processing architectures to keep up with the
computational requirements for successful CNN inference.

1.2 Pitfalls of High-Accuracy DNNs/CNNs

This section discusses some of the pitfalls of high-accuracy DNN/CNN mod-
els focusing on compute and energy bottlenecks, and the effect of sparsity of
high-accuracy models on throughput and hardware utilization.

1.2.1 Compute and Energy Bottleneck

CNNs are composed of multiple convolution layers (CONV) which help in extract-
ing low-, mid-, and high-level input features for better accuracy. Although CNNs
are primarily used in applications related to image and video processing, they are
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Table 1.1 Popular CNN models.

CNN model Layers
Top-1
accuracy (%)

Top-5
accuracy (%) Parameters MACs

AlexNet [30] 8 63.3 84.6 62M 666M
VGG-16 [31] 16 74.3 91.9 138M 15.3B
GoogleNet [35] 22 68.9 88 6.8M 1.5B
MobileNet [35] 28 70.9 89.9 4.2M 569M
ResNet-50 [32] 50 75.3 92.2 25.5M 3.9B

also used in speech processing [3, 7], gameplay [28], and robotics [29] applica-
tions. We will further discuss the basics of CNNs in Chapter 2. In this section,
we explore some of the bottlenecks when it comes to implementing high-accuracy
CNN inference engines in embedded mobile devices.

The development of high accuracy CNN models [30–34] in recent years has
strengthened the notion of employing DNNs in various AI applications. The clas-
sification accuracy of CNNs for the ImageNet challenge [2] has improved consid-
erably from 63.3% in 2012 (AlexNet [30]) to a staggering 87.3% (EfficientNetV2
[4] in 2021). This high jump in accuracy comes with high compute and energy
costs for CNN inference. Table 1.1 shows some of the most commonly used CNN
models. The models are trained using the ImageNet dataset [2], and the top-1 and
top-5 classification accuracy is also given. We note that top-1 accuracy is the con-
ventional accuracy, which means that the model answer (i.e., the one predicted
by the model with the highest probability) must be exactly the expected answer.
Top-5 accuracy means that any of the five highest probability answers predicted
by the model must match the expected answer. It can be seen from Table 1.1 that
the addition of more layers results in better accuracy. This addition, however, also
corresponds to a greater number of model parameters, requiring more memory
and storage. It also results in higher multiply-accumulate (MAC) operations, caus-
ing an increase in computational complexity and resource requirements, which in
turn, affects the performance of the edge devices.

Even though some efforts have been made to reduce the size of the high accuracy
models, they still require massive amounts of computations over a series of net-
work layers to perform a particular inference task (classification, segmentation,
etc.). These tremendous number of computations (typically in tens of millions)
present a huge challenge for the neural network accelerators (NNAs) running
the CNN inference. NNAs are specialized hardware blocks inside a computer sys-
tem (e.g., mobile devices and cloud servers) that speed up the computations of
the CNN inference process to maintain the real-time requirements of the system
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Figure 1.2 Energy cost (relative to 8 bit Add operation) shown on a log 10 scale for a
45 nm process technology. Source: Adapted from [6, 36].

and improve system throughput. Apart from the massive computational require-
ments, the addition of more layers for higher accuracy drastically increases the
CNN model size. This prevents the CNN model from being stored in the limited
on-chip static random access memory (SRAM) of the edge device, and, therefore,
requires off-chip dynamic random access memory (DRAM) which presents a high
DRAM access energy cost.

To put this in perspective, the energy cost per fetch for 32 bit coefficients in an
off-chip low-power double data rate 2 (LPDDR2) DRAM is about 640 pJ, which
is about 6400× the energy cost of a 32 bit integer ADD operation [36]. The bigger
the model is, the more memory referencing is performed to access the model data
which in turn expends more energy. Figure 1.2 shows the energy cost of various
compute and memory operations relative to an 8 bit integer add (8 bit INT Add)
operation. It can be seen that the DRAM Read operation dominates the energy
graph with the 32 bit DRAM Read consuming greater than 4 orders of magnitude
higher energy than the 8 bit INT Add. As a consequence, the energy cost from just
the DRAM accesses would be well beyond the limitations of an embedded mobile
device with limited battery life. Therefore, in addition to accelerating the compute
operations, the NNA also needs to minimize the off-chip memory transactions for
decreasing the overall energy consumption.

Many algorithm-level techniques have been developed to minimize the compu-
tational requirements of a CNN without incurring a loss in accuracy. Since the
main compute bottleneck in CNN inference is the CONV operation, Mobilenets
[33, 34] were developed to reduce the total number of CONV operations. These
CNNs drastically reduce the total number of parameters and MAC operations by
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breaking down the standard 2D convolution into depthwise separable and point-
wise convolutions. The depthwise separable and pointwise convolutions result in
8× to 9× reduction in total computations compared to regular CONV operations,
with a slight decrease in accuracy. They also eliminate varying filter sizes, and
instead, use 3 × 3 and 1 × 1 filters for performing convolution operations. This
makes them ideal for embedded mobile devices because of their relatively low
memory footprint and lower total MAC operations.

A widely used approach for decreasing the memory bottleneck is the reduc-
tion in the precision of both weights and activations using various quantization
strategies [37–39]. This again does not result in a significant loss in accuracy and
reduces the model size by a considerable amount. Hardware implementations like
Envision [40], UNPU [41], and Stripes [42] show how reduced bit precision, and
quantization, translates into better savings in energy.

1.2.2 Sparsity Considerations

Nonlinear activation functions [6], in addition to deep layers, is one of the key char-
acteristics that improve the accuracy of a CNN model. Typically, nonlinearity is
added by incorporating activation functions, the most common being the rectified
linear unit (ReLU) [6]. The ReLU converts all negative values in a feature map to
zeros. Since the output of one layer is the input to the next layer, many of the com-
putations, within a layer, involve multiplication with zeros. These feature maps
containing zeros are referred to as one-sided sparse feature maps. The multiplica-
tions resulting from this one-sided sparsity waste compute cycles and decrease the
effective throughput and hardware utilization, thus, reducing the performance of
the accelerator. It also results in high energy costs as the transfer of zeros to/from
off-chip memory is wasted memory access. In order to reduce the computational
and memory access volume, previous works [43–45] have exploited this one-sided
sparsity and displayed some performance improvements. To exacerbate the issue
of wasted compute cycles and memory accesses, two-sided sparsity is introduced
in CNNs often by pruning techniques when, in addition to the feature maps, the
weight data also consists of zeros. Designing a CNN accelerator that can overcome
the wasted compute cycles and memory accesses issues of one-sided and two-sided
sparsities is quite challenging.

In recent years, many pruning techniques have been developed for the com-
pression of DNN models [46–49]. Han et al. [46] iteratively pruned the connec-
tions based on parameter threshold and performed retraining to retain accuracy.
This type of pruning is referred to as unstructured pruning. It arbitrarily removes
weight connections in a DNN/CNN but does little to improve acceleration on tem-
poral architectures like central processing units (CPUs) and graphics processing
units (GPUs) which rely on accelerating matrix multiplications. Another form
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of pruning, referred to as structured pruning [50, 51], reduces the size of weight
matrices and maintains a full matrix. This makes it possible to simplify the NNA
design since the sparsity patterns are predictable, therefore, enabling better hard-
ware support for operation scheduling.

Both unstructured and structured pruning strategies, as described above, result
in two-sided sparsity, (i.e., sparsity in both weights and activations) which lead
to approximately 9× model reduction for AlexNet and 13× reduction for VGG-16.
The purning strategies also result in 4–9× effective compute reduction (depending
on the model). These gains seem very promising; however, designing an acceler-
ator architecture to leverage them is quite challenging because of the following
reasons:

● Data Access Inconsistency: Computation gating is one of the most common
ways by which sparsity is generally exploited. Whenever a zero in the activation
or the weight data is read, no operation is performed. This results in energy
savings but has no impact on the throughput because of the wastage of compute
cycle. Complex read logic needs to be implemented to discard the zeros, and
instead, perform effective computations on nonzero data. Some previous
works [52, 53] use sparse compression formats like compressed sparse column
(CSC) or compressed sparse row (CSR) to represent sparse data. These formats
have variable lengths and make looking ahead difficult if both the weight
and the activation sparsity are being considered. Other than that, developing
the complex control and read logic to process these formats can be quite
challenging.

● Low Utilization of the Processing Element (PE) Array: Convolution
operations for CNN inference are usually performed using an array of
two-dimensional PEs in a CNN accelerator. Different dataflows (input sta-
tionary, output stationary, weight stationary, etc.) have been proposed that
efficiently map the weight data and the activation data onto the PE array to
maximize the throughput [6, 54]. Sparsity introduces inconsistency in the
scheduling of data thereby reducing hardware utilization. The subset of PEs
provided with more sparse data have idle times while those provided with less
sparse (or denser) data are fully active. This bounds the throughput of the
accelerator to the most active PEs, and therefore, leads to the underutilization
of the PE array.

Considering the abovementioned issues, many accelerators have been proposed
in the past that attempt to strike a balance between hardware resource complex-
ity and performance improvements. The CNN accelerators that exploit sparsity in
CNN models are covered in detail in Part IV of this book.
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1.3 Chapter Summary

This chapter discussed the history and applications of DNNs, focusing on CNNs.
The chapter also highlighted the compute and energy bottlenecks as well as the
effect of sparsity in high-accuracy CNN models on the throughput and hardware
utilization of edge devices.
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2

Overview of Convolutional Neural Networks

This chapter gives an overview of the composition of different deep neural
network (DNN) models, specifically the convolutional neural networks (CNNs),
and explore the different layers that these neural networks are comprised of.
Additionally, this chapter describes some of the most popular high accuracy
CNN models and the datasets upon which these CNNs operate. Finally, the
chapter reviews some of the architectural and algorithmic techniques for efficient
processing of high accuracy CNN models on edge devices.

2.1 Deep Neural Network Architecture

DNNs are a manifestation of the notion of deep learning, which comes under
the umbrella of artificial intelligence (AI). The main inspiration behind DNNs is
the way different neurons work in a brain to process and communicate informa-
tion. The raw sensory input is transformed into a high-level abstraction in order to
extract meaningful information and make decisions. This transformation, referred
to as inference (or forward propagation) in DNNs, results from many stages of
nonlinear processing, with each stage called a layer.

Figure 2.1 shows a simple DNN with four hidden layers and one input and out-
put layer. The DNN layers receive a weighted sum of input values (wixi, where wi
denotes weights and xi denotes the inputs) and compute outputs using a nonlin-
ear function, referred to as the activation function. Many activation functions have
been proposed in the literature, some of which are shown in Figure 2.2. Rectified
linear unit (ReLU) is one of the most commonly used activation functions utilized
in many modern state-of-the-art DNNs. The weights in each layer are determined
through the process of training. Once the training is complete after meeting a
desired accuracy, the trained model is deployed on computer servers or often on
edge devices where inference is performed.

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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Figure 2.1 A neural network example with one input layer, four hidden layers, and one
output layer.
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DNNs come in various shapes and sizes depending on the target application.
Multi-layer perceptrons (MLPs) are DNNs that consist of many fully connected
(FC) layers, with each layer followed by a nonlinear activation function. In
MLPs, each neuron in layeri is connected to every neuron in layeri+1. In this
way, the FC layer computations can be generalized as matrix–vector multipli-
cations followed by the activation function. The FC layer computation can be
represented as:

y = f (Wi + b) (2.1)

where i is the input vector, W is the weight matrix, b is the bias, f is the activation
function, and y represents the output activation vector. It can be seen that the DNN
in Figure 2.1 is an example of an MLP network.

2.2 Convolutional Neural Network Architecture

CNNs are a specialized type of DNNs that utilize a mathematical operation called
convolution instead of general matrix multiplication in at least one of their layers.
A CNN is composed of an input layer, hidden layers, and an output layer. In any
feed-forward neural network, any middle layers between the input layer and the
output layer are known as hidden layers. The hidden layers take a set of weighted
inputs and produce output through an activation function. In a CNN, the hidden
layers include layers that perform convolution operations. In a convolutional layer
of the CNN, each neuron receives input from only a confined area (e.g., a square
of 3 × 3 or 5 × 5 dimension) of the previous layer called the neuron’s receptive field.
In an FC layer of the CNN (further elaborated in the following), the receptive field
is the entire previous layer. Each neuron in a neural network applies a specific
function to the input values received from the receptive field in the previous layer
to compute an output value. The input value received by the function in neuron
depends on a vector of weights and biases, which are learned iteratively as the
neural network is being trained on the input data. In CNNs, the vectors of weights
and biases are called filters that capture specific features of the input. A distinctive
feature of CNNs as opposed to other DNNs or MLPs is that a filter in CNNs can be
shared by many neurons (i.e., weights or filter sharing). As illustrated in Figure 2.3,
the same weights are shared between the neurons across receptive fields in the case
of CNNs. This sharing of filter in CNNs reduces the memory footprint because
a single vector of weights and a single bias can be used across all the receptive
fields that share that filter as opposed to having a separate weight vector and bias
for each receptive field. The other distinctive feature of the CNN as compared to
MLPs is sparse connection between the input and output neurons. It means only
a small fraction of the input neurons are connected to a certain output neuron.
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(a) (b)

Figure 2.3 The demonstration of (a) MLPs and (b) CNNs.

As shown in Figure 2.3, the neurons are sparsely connected in CNNs, while all the
input neurons are connected to all the output neurons (i.e., are densely connected)
in MLPs.

An overall architecture of a CNN is depicted in Figure 2.4. The input for CNNs is
typically composed of three channels (red, green, and blue [RGB]), each of which
comprises two-dimensional pixel arrays. The convolution layer performs the con-
volution operations with filters to extract features from the inputs. The pooling
layer reduces the size of the feature maps by downsampling the input feature
maps. The flatten layer flattens the multidimensional tensors to a one-dimensional
vector. The fully connected layer performs the classification, which is represented
by a probability distribution across the classes.
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Figure 2.4 Overview of a typical CNN architecture.
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2.2.1 Data Preparation

This first step of using a CNN for any application is to collect data (in most cases
images or video frames for CNNs) from different sources. Section 2.4 highlights
some of the popular datasets that are often utilized for training and testing CNNs.
In case, the publicly available datasets are not suitable for a particular CNN appli-
cation, a designer needs to collect his/her own dataset. The collected dataset then
also needs to be annotated (either manually or with the help of some annotation
tool) for training. The data (images or frames) from the dataset often needs to be
resized to match the default size for a given CNN. Furthermore, the dataset is
also augmented by perturbing the input and/or output of the collected samples
to create various altered versions of the same data. Dataset augmentation provides
additional data to train and provides modified versions of the data. For instance,
in case of image data, image augmentation provides a different viewpoint to the
CNN model. These different viewpoints can represent changes in the saturation,
color, crop, and horizontal and vertical flips [55]. Dataset augmentation also helps
to reduce over-fitting of a CNN model to the training data.

2.2.2 Building Blocks of CNNs

A CNN architecture comprises a stack of distinct layers that transform the input
to output. In the following, we discuss the distinct layers that are commonly used
in CNN architectures.

2.2.2.1 Convolutional Layers
The core layers in CNNs that distinguish CNNs from other DNNs are convolu-
tional (CONV) layers. CNNs contain multiple CONV layers. The parameters in
CONV layers are a set of learnable filters (or kernels), which have a small receptive
field. During the forward pass, each filter computes the dot product between the
filter entries and the input. The filter is then slided across the width and height
of the input to produce a two-dimensional activation map of that filter. As the
training progresses, the network learns filters that activate when they detect some
particular type of feature at some spatial position in the input.

In CNNs, each successive layer extracts features that are at a higher level of
abstraction compared to the previous layers. Modern CNNs are capable of achiev-
ing superior performance by employing a deep hierarchy of layers. The CONV
layers in a CNN are composed of multidimensional convolution operations, as
shown in Figure 2.5. The input to the CONV layer is an H × W × C matrix, called
an input feature map (ifmap or IFM), where H and W are the height and width,
respectively, of the IFM and C is the total number of channels1. For an input layer

1 For a colored image, the value of C at the input layer is 3 which represents the RGB
colorspace. For a grayscale image, the value of C at the input layer is 1.
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Figure 2.5 Multidimensional convolution operation performed in a CNN CONV layer.
There are M filters of R (filter height)×S (filter width)×C (the number of input channels)
dimension. The dimension of input feature maps is H (input feature map height)×W
(input feature map width)×C (the number of input channels). The dimension of output
feature maps is E (output feature map height)× F (output feature map width)×M (the
number of output channels, which is same as the number of filters).

of a CNN, this IFM is usually a 224 × 224 × 3 image, which is used in the ImageNet
dataset. Each channel of the IFM is convolved with a unique 2D filter (weight)
from a set of filters, one for each channel. The dimensions of the output feature
maps are dependent on the size of the input and the filters. Based on Figure 2.5,
the following equation governs the multidimensional convolution operation in a
CONV layer of a CNN:

O[z][u][x][y] = B[u] +
C−1∑

k=0

S−1∑

i=0

R−1∑

j=0
I[z][k][Ux + i][Uy + j] × W[u][k][i][j],

0 ≤ z < N, 0 ≤ u < M, 0 ≤ x < F, 0 ≤ y < E,

E = (H − R + U)∕U, F = (W − S + U)∕U (2.2)

where O, B, I, and W denote the output feature map (OFM or ofmap), bias,
ifmap, and filter matrices, respectively, U represents the convolution stride, and
N denotes the batch size.

A multibatch CONV (N > 1) can improve the throughput as compared to a
single-batch (N = 1) CONV. Figure 2.6 demonstrates the difference between
the single-batch and multibatch CONV operations. When executing the CONV
operations with N (N > 1) batches, N ifmaps (the dimension of a single ifmap
is H × W × C) can be convolved simultaneously. During the multibatch CONV
operations, the same filters (M filters with R × S × C filter dimension) are shared
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Figure 2.6 The demonstration of (a) single-batch CONV operations and (b) multibatch
CONV operations.

across the batches, generating N ofmaps (the dimension of a single ofmap is
E × F × M). Multibatch CONV can also improve the reusability of the filters due
to the filter sharing across the batches.

2.2.2.2 Pooling Layers
CNNs contain many pooling layers. Pooling is performed mainly for down-
sampling the feature maps by aggregating features from local regions to make
the CNN less compute-intensive. Pooling also helps CNNs to learn larger-scale
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Figure 2.7 Max and averaging pooling on a 6 × 6 ifmap.

image features that are invariant to small local transformations (e.g., transla-
tion, scaling, shearing, and rotation) [56]. Pooling layers generally use max or
averaging operations on nonoverlapping blocks of ifmaps. A stride of nonunit
size is applied to reduce the dimensionality of the ifmaps. Figure 2.7 shows an
example of max and average pooling applied on a 6 × 6 ifmap to produce 3 × 3
outputs.

The output of the pooling layer can be determined by the input matrix size
(H × W), the spatial extent of pooling (i.e., K × K pooling filter), and stride S.
The pooling layer will generate the output matrix of dimension ((H − K)∕S + 1) ×
((W − K)∕S + 1). For C channels of ifmap (i.e., H × W × C), the pooling operations
can be applied independently to each H × W matrix, generating the output with
((H − K)∕S + 1) × ((W − K)∕S + 1) × C dimension.

2.2.2.3 Fully Connected Layers
A CNN, typically, also comprises a few FC layers after several CONV and pooling
layers for classification purposes. Neurons in a layer have connections to all activa-
tions in the previous layer, just like MLP networks. The activations of the FC layers
can be computed by affine transformations, that is, multiplication of the activation
values of the previous layer with the weights of their connections with neurons in
the FC layer followed by a vector addition of learned or fixed bias terms.

As the FC layer can be calculated by an affine transformation Wi + b, where W ,
i, and b are weights, inputs, and bias, respectively; the output dimension of the FC
layer depends on the size of W and i. Assuming that we have IFC input neurons and
OFC output neurons, W will be an OFC × IFC matrix, and i will be an IFC × 1 vector,
generating an OFC × 1 vector as an output as shown in Figure 2.8. A bias and a
nonlinear activation function can be applied to this OFC × 1 vector to generate the
output neurons y.
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Figure 2.8 Affine transformation in the fully connected layer.

2.2.3 Parameters of CNNs

A machine learning or deep learning model, including a CNN model, is defined or
characterized by the model parameters. On the other hand, the process of training
a model involves selecting the optimal hyperparameters that the learning algo-
rithm employs to learn the optimal parameters that befittingly map the input fea-
tures to the labels or targets to achieve some form of machine intelligence [57].

Parameters of a CNN are internal to the model. The parameters of a CNN model
are learned or estimated entirely from the data during training as the algorithm
used in the model strives to learn the mapping between the input features and the
targets or labels. CNN model training begins with the parameters being initialized
to some random values (e.g., using uniform distribution) or zeros. These initial
parameter values are continuously updated using an optimization algorithm (e.g.,
gradient descent) as the training progresses. Although the parameter values are
regularly updated as the training progresses, the hyperparameter values set by the
model designer remain unchanged. The model parameters constitute the model
itself at the end of the training process [57]. For a CNN model, parameters are the
weights and the biases of the model.

2.2.4 Hyperparameters of CNNs

Hyperparameters are variables that determine the neural network structure
(e.g., the number of hidden layers and neurons within each layer) and also
the variables that control the learning process (e.g., learning rate) [58]. CNNs
use more hyperparameters than MLPs. The prefix “hyper” implies that these
are “top-level” parameters that control the network structure and the learning
process. Essentially, any parameter in machine learning or deep learning that a
designer chooses or selects its configuration before training begins and whose
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value or configuration stays the same when training completes is referred to as a
hyperparameter.

Some examples of the hyperparameters for CNNs are [57] train-test split
ratio, learning rate in optimization algorithms, choice of optimization algorithm
(e.g., gradient descent, stochastic gradient descent, or Adam optimizer), choice
of activation function in a neural network layer (e.g., Sigmoid, ReLU, Tanh
(Figure 2.2)), the choice of cost or loss function the model uses, number of hidden
layers in a neural network, number of activation units in each layer, the drop-out
rate (or dropout probability) in a neural network, number of iterations (epochs)
in training a neural network, kernel or filter sizes in convolutional layers, pooling
size, and batch size.

We can broadly classify hyperparameters into two categories: (i) hyperparam-
eters related to network structure, and (ii) hyperparameters related to training
process.

2.2.4.1 Hyperparameters Related to Network Structure
Hyperparameters related to network structure include number of hidden layers
and units, drop-out rate (or dropout probability) in a neural network, and the
choice of activation function in a neural network layer. We elaborate some of the
hyperparameters related to network structure in the following:

Number of Hidden Layers and Units: The layers between the input layer and
the output layer are referred to as hidden layers. The number of hidden lay-
ers in a CNN as well as the number of neurons within each hidden layer are
hyperparameters of a CNN. When designing a new CNN, a general rule is to
keep adding the hidden layers and the number of hidden units (neurons) in
each layer until the test error does not improve anymore. Increasing the num-
ber of hidden units within each layer along with some regularization techniques
tends to increase the accuracy of a CNN. A smaller number of units in a CNN
hidden layer may cause underfitting. A large number of neurons in the hid-
den layer without appropriate regularization may lead to overfitting the model
on the training data, which often result in low accuracy of the model on the
validation and test data.

Drop-out Probability: Drop-out is regularization technique aimed to mitigate
overfitting of the CNN model to the training data and to help increase the val-
idation and test accuracy of the model. Drop-out, thus, helps to increase the
generalizing power of the CNN or the DNN model. Typically, a small dropout
value/probability of 20–50% of neurons is chosen with 20% providing a good
starting point [58]. A very small value of drop-out probability has a minimal
effect and a very high value results in under-learning by the network. Often bet-
ter performance can be achieved if drop-out is used on a large network, which
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gives the model a greater opportunity to learn the mapping from input features
to target labels.

Activation Function: Activation functions are employed in DNNs, including
CNNs, to introduce nonlinearity to models, which enables deep learning mod-
els to learn nonlinear prediction boundaries. Generally, the ReLU activation
function is the most commonly used activation in DNNs. Sigmoid activation
function is typically used in the output layer of a DNN while making binary
predictions, whereas Softmax activation function is used in the output layer
of a DNN while making multiclass predictions.

2.2.4.2 Hyperparameters Related to Training
Hyperparameters related to training process include learning rate, loss function,
optimization algorithm, momentum, number of epochs, and batch size. We elab-
orate some of the hyperparameters related to training process in the following:

Learning Rate: The learning rate of a training algorithm employed by a machine
learning and/or deep learning model determines the step size at each itera-
tion while moving toward a minimum of a loss function. The learning rate
influences to what extent or how quickly the newly learned information over-
rides or updates the older information (model parameters in deep learning con-
text), and thus it metaphorically signifies the speed at which a machine learning
model “learns.” A low learning rate decelerates the learning process but ensures
smooth convergence. A high learning rate accelerates the learning process but
may cause the learning process to not converge. Often a decaying learning rate
is preferred.

Loss Function: DNNs, including CNNs, learn through a process called forward
propagation where each training input is loaded into the neural network and
given a forward pass. Once the network produces an output, this predicted out-
put is compared with the given target output (label) in a process called back-
propagation. A loss function is a function that compares the target and predicted
output values and provides an estimate of how well the neural network models
the training data [59]. The average loss J for DNNs can be given as:

J(w, b) = 1
k

k∑

i=1
L(y(i), ŷ(i)) (2.3)

where ŷ(i) denotes the predicted output value and y(i) denotes the target output
value for a sample i, i ∈ {1, 2, 3,… , k} in the training data, and L denotes a loss
function that measures the “cost” of predicting an output ŷ(i) = f (xi;w, b) for
an input xi and model parameters w and b when the corresponding target is y(i)
[60]. The goal of training is to find weights w and bias b to minimize this average
loss J between the predicted and target outputs. The parameters of the model
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(i.e., weights and biases) are then adjusted so that the network outputs a result
closer to the target output.

There are two main types of loss functions: (i) regression loss functions, and
(ii) classification loss functions. Regression loss functions are used in regression
neural networks. For a given input value, regression neural networks predict a
corresponding output value instead of a preselected label. Examples of regres-
sion loss functions include mean squared error and mean absolute error. Classi-
fication loss functions are used in classification neural networks. For a given input
value, classification neural networks predict a vector of probabilities of the input
belonging to various preset categories out of which the category with the highest
probability can be selected as the predicted category [59]. Examples of classifica-
tion loss functions include binary cross-entropy and categorical cross-entropy.
CNNs often use binary cross-entropy and categorical cross-entropy loss func-
tions. Binary cross-entropy also known as log loss is used in CNNs with binary
classification models, that is, the CNN models that have to classify a given input
into one of the two preset categories. Categorical cross-entropy loss functions
are used in CNN models where the models have to classify a given input into
one of the many preset categories where the number of classes/categories is
greater than two. One can also define custom loss functions when traditional
loss functions may not be sufficient for a given task.

Optimization Algorithm: DNNs, including CNNs, employ an optimization algo-
rithm to update the weights of a neural network through backpropagation. Gra-
dient descent is one of the most popular optimization methods for finding the
minimum of a function, and different variants of gradient descent optimiza-
tion algorithms are employed by DNNs. A vanilla (standard) stochastic gradient
descent (SGD) updates weights by subtracting the current weight by a factor
(i.e., learning rate 𝛼) of its gradient [61].

wnew = w − 𝛼
𝜕L
𝜕w

(2.4)

where L denotes the loss function. Different variants of SGD algorithms can be
obtained by introducing some variations in Eq. (2.4). Three common variations
include (i) adapting the gradient component (𝜕L∕𝜕w), (ii) adapting the learning
rate component (𝛼), and (iii) adapting both the gradient and learning rate com-
ponents. For the variants that adapt the gradient component, instead of using
only a single gradient like in vanilla SGD to update the weights, an aggregate
of multiple gradients is used to update the weights. In particular, many of these
optimizers use the exponential moving average of gradients. For the variants
that adapt the learning rate component, instead of using a constant learning
rate, the learning rate component is adapted based on the magnitude of the gra-
dients. The learning rate must be prudently adapted to ensure good progress
while thwarting overshooting and exploding gradients [60]. Often, the learning
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rate is set to a relatively large value at the start of the training process and then
it is decreased over time so that the optimization settles into a global minimum.

The modern SGD optimizers aim to enhance the amount of information used
to update the weights, primarily through using previous (and future) gradients,
instead of only relying on the current gradient. Some of the commonly used
SGD optimizers include AdaGrad, RMSprop, Adadelta, NAG, Adam, AdaMax,
Nadam, and AMSGrad.

Momentum: Momentum helps to determine the direction of the next step with
the knowledge of the previous steps. Momentum speeds up the learning process
and also helps the learning process to find a global minimum and not to get
stuck in local minima. A momentum value of 0.5–0.9 is typically chosen for
DNNs [58].

Number of Epochs: An epoch is one single pass of the entire training set through
the neural network. Number of epochs is the number of times the complete
training data is presented to the network while training [58]. Typically, increas-
ing the number of epochs improves the accuracy of a DNN, including a CNN.
As a general rule, a designer can choose to increase the number of epochs until
the validation accuracy starts decreasing even when training accuracy could be
increasing due to overfitting.

Batch Size: A batch size is the number of samples presented to the network after
which the update of model parameters happens. In other words, batch size is
the number of samples that are passed through the network at one time. The
batch is also commonly referred to as mini-batch.

To better understand the concept of batch size, let us consider an example.
Assume our training set comprises 1000 images of cats, and we aim to train our
CNN to identify different breeds of cats. Further assume that we select the batch
size hyperparameter to be 10. This implies that 10 images of cats will be passed
as a batch or group to the network at one time. Considering that a single epoch
is one single pass of the entire training data through the network, it will take
100 batches to constitute the full epoch. Number of batches in an epoch NB can
be given as NB = ST∕SB, where ST denotes the training set size and SB denotes
the batch size. For the considered example, NB = 1000/10 = 100.

2.2.4.3 Hyperparameter Tuning
A CNN designer selects the hyperparameter values that the learning algorithm
will use before even the training begins. Setting the right hyperparameter values is
imperative because hyperparameters directly impact the performance of the CNN
model as the model parameters learned during the training process depend on the
hyperparameters. The process of selecting the best hyperparameters for a CNN
model is called hyperparameter tuning.
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At the completion of the training process, we obtain trained model parameters,
which are essentially what we refer to as the model. The hyperparameters that
were used during training are not part of this model, that is, it cannot be inferred
from the trained model what hyperparameter values were used to train the model
from the model itself [57].

2.3 Popular CNN Models

Many CNN models have been developed by researchers in the past. These models
have different architectures in terms of layer dimensions, the total number of lay-
ers, layer types, and layer connections. This section provides an overview of some
of the most popular CNN models.

2.3.1 AlexNet

We start off by discussing the AlexNet [30] model which was proposed in 2012.
AlexNet is the first CNN to win the ImageNet challenge [2]. AlexNet has been
considered a major breakthrough in the field of computer vision that paved the
way for widespread use of CNNs. Figure 2.9 shows the architecture of AlexNet. It
comprises five CONV layers and three FC layers. Max pooling is performed after
every CONV layer to reduce the layer dimensions. AlexNet has a total of 61 million
parameters and achieves a top-1 accuracy of 57.2% and a top-5 accuracy of 80.3%
on ImageNet dataset. The CONV layers of AlexNet have three kernel (filter) sizes:
11 × 11, 5 × 5, and 3 × 3.

2.3.2 VGGNet

VGGNet [31] architecture was proposed in 2014. VGGNet has different versions
with each version having a different number of layers. The version shown in
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Figure 2.10 VGG-16 architecture. Source: Adapted from [31].

Figure 2.10 is VGG-16, the 16-layer version of VGGNet, which has a total of 13
CONV layers and 3 FC layers. VGG-16 has a total of 138 million parameters
and achieves top-1 and top-5 accuracies of 68.5% and 88.7%, respectively. The
accuracy jump in VGG-16 as compared to AlexNet can be attributed to the use of a
greater number of CONV layers, which helps to extract more features at different
scales as compared to AlexNet. This use of a large number of CONV layers,
however, also results in a significant increase in the model parameters which
makes VGG-16 much slower than the AlexNet. AlexNet, however, uses variable
filter dimensions which make it much more difficult to implement in hardware.
VGG-16, on the other hand, only uses filter dimensions of 3 × 3 making it easier
to employ hardware-based acceleration.

2.3.3 GoogleNet

GoogleNet [35], depicted in Figure 2.11, was proposed in 2014 and is a very
parameter-efficient CNN architecture. Even though it has a total of 58 layers (57
CONV and 1 FC), it only has 7 million parameters. GoogleNet comprises special-
ized modules, referred to as the Inception modules, as shown in Figure 2.12. The
Inception modules comprise four branches of variable length filters (1 × 1, 3 × 3,
5 × 5). The GoogleNet achieves top-1 and top-5 accuracies of 68.9% and 89.0%,
respectively.

2.3.4 SqueezeNet

SqueezeNet (Figure 2.13), proposed in 2016, targets mobile applications by having
a relatively smaller number of model parameters (1.2 million), but with accuracy
comparable to the AlexNet. It comprises a total of 26 CONV layers and no FC
layer. SqueezeNet has eight unique modules, which it refers to as Fire modules.
The Fire modules are an improvement over GoogleNet’s Inception module and
use 1 × 1 convolution and a pair of 1 × 1 and 3 × 3 convolutions. It has a top-1
and top-5 accuracy of 57.4% and 80.5%, respectively. SqueezeNet’s primary pur-
pose is to provide CNN support for low-cost embedded platforms with accuracy
level comparable to the existing models.
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Figure 2.13 SqueezeNet architecture. Source: [62] Iandola et al., 2016/Kurt Keutzer.

2.3.5 Binary Neural Networks

Another class of CNNs that significantly reduce the total number of multiply
accumulate (MAC) computations, resulting from CONV operations, are the
binary neural networks (BNNs). BinaryConnect [63] modified the weights to only
have two possible values (−1 and +1). These modified weights reduced the MAC
operations to simple additions and subtractions. BNN [64] further extended the
concept to activations as well which reduced the MAC operations to much more
hardware-friendly XNORs. This, however, severely impacted the accuracy of the
BNN [65].

2.3.6 EfficientNet

Recently, another class of CNNs, referred to as EfficientNets, have been proposed
[4, 66]. EfficientNet [66], proposed in 2019, uses a dynamic scaling approach to
scale all the dimensions of depth, width, and resolution, using a simple yet effec-
tive compound coefficient. The intuition behind the compound scaling method is
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that if the input image is bigger in size, then the network requires more layers to
increase the receptive field and additional channels to extract more fine-grained
patterns on the bigger image. An EfficientNet variant, EfficientNet-B7, has a top-1
accuracy of 84.3% on ImageNet while having a parameter count of 43 million. Effi-
cientNetv2 [4] builds upon EfficientNet and drastically reduces the total number
of parameters to 24 million with a slight decrease in accuracy to 83.9%.

There exist many other CNN models, all of which cannot be described within the
scope of this book. However, it can be seen that by applying various algorithmic
and architectural approaches, the size of CNNs continues to decrease while the
accuracy keeps on increasing with time.

2.4 Popular CNN Datasets

A CNN is typically designed taking into account the complexity and difficulty of
the task that CNN will be used for. A simple task of digit recognition requires a
much simpler CNN than a CNN that is used for classifying an object into one of
the 1000 classes of objects. LeNet [5], which is a much smaller CNN, is designed
for the task of digit classification, whereas more complex CNNs like AlexNet [30],
GoogleNet [35], ResNet [32], and MobileNets [33, 34] are built for complex image
classification tasks (e.g., classifying an object into one of the 1000 classes). In the
following, we briefly describe some of the datasets that are often used for bench-
marking the accuracy/performance of CNNs.

2.4.1 MNIST Dataset

The MNIST dataset [67], introduced in 1998, is used for digit classification. The
dataset comprises images of handwritten digits. The images are 28 × 28 in dimen-
sions and are in grayscale format. There are a total of 10 classes, one for each digit
from 0 to 9. The dataset consists of 60,000 training images and 10,000 test images.
The LeNet-5 [5] CNN was able to achieve an accuracy of 99.05% on the MNIST
dataset. This accuracy has further increased to 99.79% using regularization tech-
niques. The MNIST has become a fairly simple dataset and is, therefore, rarely
used as a metric for CNN performance these days.

2.4.2 CIFAR

CIFAR dataset [68] was introduced in 2009 and consists of 32 × 32 colored images
of objects. CIFAR-10 and CIFAR-100 comprise 10 and 100 classes of objects,
respectively. In CIFAR-10 and CIFAR-100, each dataset has a total of 50,000
training images and 10,000 test images. Most modern CNNs are able to achieve a
high level of accuracy (≈ 96.5%) on the CIFAR dataset.
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2.4.3 ImageNet

The ImageNet dataset [2], introduced in 2010, is by far the most widely used
dataset for the accuracy benchmarking of modern CNNs. It contains color images
of dimensions 256 × 256 in 1000 classes. There are multiple categories of classes
with no overlap between each category. The ImageNet dataset has a total of 1.3
million training images, 100,000 test images, and 50,000 validation images. The
ImageNet uses two measures to report a model’s accuracy: top-1 and top-5 error
rates. The top-1 error rate is the percentage of test images for which the model’s
most likely label is not the correct label. The top-5 error rate is the percentage
of test images for which the correct label is not among the model’s top five most
likely labels.

Since 2010, an annual software contest, the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC), is run by the ImageNet project, where different algo-
rithms/models compete to correctly classify and detect objects and scenes at large
scale. The ILSVRC challenge uses a subset of the ImageNet dataset. AlexNet [30]
competed in the ILSVRC in 2012 and achieved a top-5 error of 16.4%, which was
more than 10% lower than that of the runner up, which didn’t use a CNN. The
top-1 error achieved by AlexNet in ILSVRC 2012 was 38.1%. These results served
as a breakthrough for the use of CNNs for image classification and other computer
vision tasks. Since then, the accuracy of CNNs has significantly improved with the
latest CNNs having the top-5 accuracy as high as 99.02% [69].

2.5 CNN Processing Hardware

As edge computing is gaining traction in recent years, there is a desire to push CNN
inference on edge devices [70]. Furthermore, many of the intelligent edge applica-
tions/systems, such as surveillance [71], autonomous vehicles [72, 73], smart grid
[74], remote patient monitoring [75], predictive maintenance [76], also require
real-time response. Since edge devices are often resource-constrained, enabling
intelligent real-time applications on the edge necessitates the design of hardware
accelerators for CNN inference.

The popularity of CNNs as well as increasing demand of CNN inferences on
edge devices has led many researchers and companies to design specialized
hardware for accelerating CNN processing. Qualcomm’s neural processing
engine (NPE) [77], embedded in Snapdragon processors, enables accelerated
processing of 8-bit quantized DNN models on mobile devices. Google’s tensor
processing unit (TPU) [78] is another example of dedicated CNN processing
hardware. The TPUv1 is an 8-bit systolic-array architecture comprising matrix
multiplication units (MXUs), static random access memory (SRAM) buffers,
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and activation logic used primarily for CNN inferences. The TPUv2, in addition
to inferences, also supports training by employing 16-bit precision. The TPUv3
further improves the computational capability by increasing the number of
MXUs, memory bandwidth, clock frequency, etc. Xilinx provides a deep learning
processing unit (DPU) [79] for its Zynq Ultrascale+ MPSoC (MultiProcessor
System On Chip) devices. The Xilinx DPU specifically targets the acceleration of
CNNs in field-programmable gate array (FPGA) devices. Samsung Exynos 2100
mobile processor, powering Samsung Galaxy S21 smartphones, uses triple-core
neural processing unit (NPU) [80] and can perform 26 trillion/Tera operations
per second (TOPS) for accelerated video processing applications.

If we look closely into the structure of CNNs, we can notice that the basic com-
ponent in a CNN is a MAC operation. Both the CONV and the FC layers use MAC
operation for the generation of OFMs from IFMs. Therefore, the main problem
of CNN acceleration boils down to the acceleration of MAC operations. The three
most commonly used computation paradigms for CNN processing are temporal
architectures, spatial architectures, and near-memory processing.

2.5.1 Temporal Architectures

A temporal architecture is operated by instructions, which eventually provide bet-
ter flexibility and programmability. Depending on the instruction, the control unit
generates appropriate control signals to execute the instruction. The generated
control signals control the computation unit and memory in accordance with the
required operations to execute the instruction. In the case of the temporal archi-
tecture, the data is transferred between the memory (or register) and computation
unit when executing each instruction, resulting in high data transfer overhead.
Figure 2.14a depicts an overview of temporal architectures.
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The temporal architectures are equivalent to central processing unit (CPU) and
graphics processing unit (GPU) architectures. These architectures contain a large
number of arithmetic logic units (ALUs), all of which can communicate directly
with the memory, but cannot communicate with one another. These architec-
tures use single instruction multiple data (SIMD) processing for improving paral-
lelism. Furthermore, computational transforms are applied on the kernel matrices
to reduce the total number of computations for increasing the throughput.

Many CPU and GPU architectures are optimized for matrix multiplication oper-
ations. These platforms typically implement CONV and FC layers using matrix
multiplications. Figure 2.15 shows two of the most widely used convolution trans-
formations for reducing the computational workload. Figure 2.15a uses Toeplitz
transformation for converting convolution operations to a general matrix multipli-
cation which can be carried out using efficient specialized hardware of a processor
or a GPU. The disadvantage of using such transformation is the additional memory
requirement of storing redundant data which can lead to memory inefficiencies.

Figure 2.15b shows conversion of convolution operations into fast Fourier trans-
form (FFT) computations. FFT-based approaches [81, 82] reduce the computa-
tional workload of convolution operations from O(N2M2) to O(N2log2N), where
the ofmap size is N × N and the filter size is M × M [6]. In FFT-based transfor-
mation, the input and the weight matrices are transformed into their frequency
domain counterparts and then multiplications are performed in the frequency
domain. Inverse fast Fourier transform (IFFT) transformation is applied to the
output to bring the result back in the spatial domain, as shown in Figure 2.15b.
Even though FFT-based approaches reduce the total number of computations,
they require more memory and bandwidth as the size of the FFT is determined
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by the size of the output feature map which is typically much larger than the filter
size. The FFT also produces complex coefficients which require more storage.

Many other algorithms have been proposed for reducing the total number of
MACs required for convolution by applying different transformation techniques.
Cong and Xiao [83] use Strassen’s algorithm [84] for reducing the total number of
multiplications from O(N3) to O(N2.81). Similarly, Lavin [85] use Winograd trans-
formation [86] for accelerating convolution operations involving 3 × 3 filters.

2.5.2 Spatial Architectures

A spatial architecture has a fixed2 dataflow for operation, which sacrifices the
flexibility and programmability. However, a spatial architecture has a lightweight
control unit because of the fixed dataflow and can reduce the amount of the data
transfer between the computation unit and the memory. Spatial architectures can
lead to better performance and energy efficiency than temporal architectures due
to reduction in the data transfer overhead. Figure 2.14b depicts an overview of
spatial architectures.

The spatial architectures, used for CNN acceleration in application-specific inte-
grated circuits (ASICs) and FPGAs, use different dataflows for passing data among
different ALUs (also called processing elements [PEs]) in an efficient manner to
increase the throughput and energy efficiency.

Many previously proposed accelerator architectures have focused on perfor-
mance improvement; however, one of the major bottlenecks that limit a CNN
accelerator’s performance is the data movement. CNN inference generates a
significant amount of data that needs to be moved to and from the off-chip
memory. There are four memory transactions during a MAC operation in a CNN:
filter read, ifmap read, partial sum (psum) read, and psum write. Partial sums are
intermediate outputs that are generated as a result of a MAC operation. Because
of big layer sizes and a limited number of parallel multipliers in hardware,
intermediate sums (psums) need to be stored in the memory and then used later
to generate the ofmaps. Instead of using the dynamic random access memory
(DRAM), which results in higher energy consumption, spatial architectures
use local memory hierarchy for storing the intermediate results on the less
energy-consuming on-chip SRAM memory. Since the on-chip SRAM memory is
very limited, specialized dataflows are designed to maximize the reuse of the data
brought on-chip from the DRAM.

Many dataflows have been proposed to limit the movement of the data
off-chip for minimizing the energy consumption. The weight stationary dataflow

2 Some spatial architectures can also support the instruction-based execution; however, they
support only a small number of instructions for a specific domain.
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(Figure 2.16a) minimizes the energy consumption of reading weights by storing
them in a local register file (RF) of the PE. Since, in a CONV operation, the same
weight matrix is convolved with the input feature map, it makes sense to store
the weight locally instead of reading it from DRAM for every MAC operation.
The global buffer (“Buffer” in Figure 2.16) present on-chip stores the generated
psums and accumulates them across the PE array. Accelerator architectures
presented in [87] and [88] use weight stationary dataflow for data reuse. Output
stationary dataflow (Figure 2.16b) stores the psums in the local RF of the PEs. It,
therefore, minimizes the energy consumption of psum movement. The psums for
a particular ofmap are accumulated locally. No Local Reuse dataflow (Figure 2.16c)
eliminates the local memory (RF) inside the PEs, and instead, uses a bigger global
buffer. This is because, even though the RF memory is energy-efficient, it is
not area-efficient. Thus, eliminating RF memory translates into having a larger
on-chip global memory for more local data storage. DianNao [89] and DaDianNao
[90] use no local reuse dataflow in their accelerator architectures. Another
dataflow, referred to as the row stationary (RS) dataflow, was proposed in Eyeriss
accelerator [45]. It aims to maximize the reuse of all data types (weights, ifmaps,
and psums) for overall better energy efficiency. Comparison of different dataflows
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shows that the RS dataflow is the most energy-efficient owing to its minimum
off-chip data movement [45].

2.5.3 Near-Memory Processing

Near-memory processing techniques reduce the energy consumption by minimiz-
ing the off-chip data movement and performing computations in or near the mem-
ory as shown in Figure 2.17. show how energy consumption is minimized by the
reuse of data locally instead of going off-chip. There have been several enhance-
ments toward bringing data and processing much closer to memory to accelerate
the processing and minimize energy consumption. Embedded dynamic random
access memory (eDRAM) technology places high-density DRAM on the acceler-
ator chip for faster execution and minimum memory delays. It is approximately
2.85× denser than a standard SRAM and is 321× more energy-efficient than a
DDR3 memory [90]. A major downside of eDRAM is its higher cost compared to
standard DRAM memory. 3D memory technology, referred to as hybrid memory
cube (HMC), stacks DRAM on top of the chip to provide a higher bandwidth for
better performance than standard 2D memory architectures. The higher DRAM
bandwidth with near-memory computing enables more data transfer per unit time

CPU
Memory

(a)

(b)

CPU
Memory

Near-memory

accelerator

Legend

Data transfer Computational load

Figure 2.17 Difference between (a) traditional architecture and (b) near-memory
processing. In a traditional architecture, all computations are performed in the CPU
incurring a huge data transfer overhead between the CPU and memory. When using
near-memory processing, the near-memory accelerator can take over a large amount of
the computations from the CPU. It leads to much less data transfer between the CPU and
memory as compared to the traditional architecture.
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due to the reduced transfer latency, which also results in better PE utilization and
computation throughput. Works like Neurocube [91] and Tetris [92] use HMC
technology for faster and more energy-efficient CNN inference.

Another approach found in the literature for faster and more energy-efficient
CNN inference is processing-in-memory. Since CNN inference requires MAC
operations, bringing trivial computations involving MAC into the memory itself
would eliminate the need for data movement, which in turn, would decrease the
energy consumption significantly. Zhang et al. [93] integrated MAC operations
directly in the SRAM array by using binary weights (+1 and −1). This gives an
energy saving of 12× as compared to a standard 1b read from the SRAM cell.
The approach by Zhang et al. [93], however, hampers the CNN accuracy on the
account of using binary weights.

2.6 Chapter Summary

This chapter discussed the architecture of CNNs focusing on the main layers com-
prising CNNs and the parameters and hyperparameters for CNNs. Afterward, this
chapter described some of the most popular high accuracy CNN models, such as
AlexNet, VGGNet, and GoogleNet. Subsequently, this chapter highlighted popular
datasets on which many of the contemporary CNNs operate on. The datasets that
were discussed in this chapter included MNIST, CIFAR, and ImageNet. Finally,
the chapter elaborated some of the architectural and algorithmic techniques for
efficient processing of high accuracy CNN models.
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Compressive Coding for CNNs
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3

Contemporary Advances in Compressive Coding for CNNs

This chapter provides a brief overview of compressive coding as well as highlights
recent advancements in compressive coding methods for convolutional neural net-
works (CNNs). This chapter begins with a brief background of compressive coding
methods for general applications. The chapter then discusses compressive coding
methods particularly used for CNNs, which are broadly classified into lossy and
lossless compression. The chapter then reviews recent advancements of compres-
sive coding methods for CNNs.

3.1 Background of Compressive Coding

Compressive coding techniques have been widely adopted in many applications.
These techniques can contribute to reducing the data size, eventually leading to
less memory and storage requirement. In addition, these techniques can reduce
the amount of the computation as they can reduce the amount of the data to be
processed.

The compression ratio can be determined as follows:

compression ratio =
original data size

compressed data size
(3.1)

The higher the compression ratio, the lesser the size needed for the data storage
or memory to retain the data within the storage or memory. It also means
that obtaining a high compression ratio makes the storage or memory usage
efficient. Compressive coding is very important for resource-constrained systems
(e.g., low-power edge devices) where the available local storage or memory size is
extremely small.

The compressive coding can be classified into two broad categories: lossy and
lossless compression. The lossy compression is suitable for applications that are
tolerant to data loss. The lossy compression cannot be used where even only a

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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small amount of data loss is not tolerable because every bit of data is critical to
the functioning and performance of that application. Thus, the lossy compression
should be employed for an application by considering how much the quality of
the result is affected by data losses. As compared to the lossless compression,
lossy compression can generally lead to a better compression ratio as the lossy
compression can reduce the metadata size by exploiting the tolerance of an
application to data loss.

The lossless compression, contrary to the lossy compression, can fully recover
the compressed data to the original data with the help of metadata. Thus, the loss-
less compression can be broadly applied to a variety of applications regardless of
their tolerance to the data loss. However, as compared to the lossy compression, the
lossless data compression techniques generate more metadata when compressing
the data, and thus likely have a lower compression ratio. In addition, before using
the losslessly compressed data for computation, in many cases, we first need to
generate uncompressed form of the data, which are entirely same as the original
data, from the compressed data. When decompressing the losslessly compressed
data, it is likely to typically incur more decompression latency and energy over-
head as compared to the case of decompressing the lossy compressed data. This is
because the losslessly compressed data typically entails more metadata and com-
putation for decompression than the lossy compressed data to perfectly recover
the original data. Thus, when using the losslessly compressed data that need to
be decompressed prior to the operation, in situ decompression and operation are
desirable for better performance and energy efficiency. Figure 3.1 summarizes the
concept and pros/cons of the lossy and lossless compression methods.

Processing

element 

+ Data transfer latency reduction

+ Data transfer energy reduction

+ Computation complexity reduction

+ Better compression ratio

– Data loss

Processing

element

+ Data transfer latency reduction

+ Data transfer energy reduction

+ No data loss

– Worse compression ratio than 

 lossy compression

Compressed data
+

less or no metadata

Compressed data

+
more metadata

Data transfer

Data transfer 

Memory or storage

Memory or storage

Lossless

compression 

Lossy 

compression 

Figure 3.1 Concepts and comparison of the lossy and lossless compression methods.
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3.2 Compressive Coding for CNNs

CNNs typically have a lot of data to process at runtime. For inference, the
largest amount of data comes from the weights. Specifically, the huge weight
(parameter) size of the CNNs is one of the major hurdles for deploying the
CNNs in resource-constrained edge devices. For example, ResNet-152 [32] and
VGG-16 [31], which are very widely used CNN models, have weight sizes of
235 and 540 MB, respectively (in 32-bit floating-point precision). In addition, for
improving the accuracy of the CNN models, CNN models and parameter sizes
are expected to be further increased. Though the large weight size causes several
important challenges for CNN deployment in resource-constrained devices, one
of the most serious problems is limited memory (and/or storage size) of these
devices. The large weight data cannot be often fully loaded into the small memory
and storage of the resource-constrained devices. In addition, the large weight
size inevitably causes latency, power, and energy overhead when transferring the
weight data between the storage/memory and the processing units, such as central
processing units (CPUs), graphics processing units (GPUs), neural processing
units (NPUs), or accelerators, which are not desirable for resource-constrained
edge devices. By only storing the encoded (hence, the reduced size of) weight
data in device’s memory and/or storage, a more cost-efficient deployment of the
CNN models in resource-constrained devices can be achieved.

Considering the large size of CNN weights, the data compression is one
of the most promising solution to alleviate the storage of CNN weights. The
data compression approach for the CNN weights can also be classified into
two broad approaches: lossy and lossless compression. Since the CNNs have
accuracy-tolerant characteristic, data size and accuracy can be traded off. The
lossy compression exploits this characteristic to compress the data, reducing the
data transfer size and operation complexity. The lossless compression compresses
the data with the metadata, which can fully recover the original data without any
loss. In terms of accuracy, the lossless compression can result in a little better
accuracy as compared to the lossy compression. However, due to the metadata
size and the limit of the information entropy, the lossless compression shows
typically a less compression ratio than the lossy compression. In general, the lossy
compression does not contain the metadata.

3.3 Lossy Compression for CNNs

For lossy compression, several well-known techniques such as weight pruning [94]
and quantization [46] have been introduced. Though the weight pruning does
not actually reduce the data size, it increases the sparsity of the weight data by
replacing the near-zero weight elements with zero-valued elements, potentially
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improve the compression ratio when employing the compression methods such
as Huffman coding or run-length coding. The pruning can also reduce the num-
ber of neurons. If the connected weights to a certain neuron are all zero-values, we
can also remove that neuron, resulting in the reduction of the amount of the data
size and computations.

The quantization reduces weight elements’ size with a negligible loss of the CNN
accuracy. For example, while the conventional precision of the elements in CNNs
is single-precision floating-point (32-bit), 8-bit integer and 16-bit fixed-point preci-
sions are also widely used for cost-efficient CNN inferences, which can reduce the
weight size by 4× and 2×, respectively. Even further, as a more aggressive solution,
several works have been proposed to use 5-bit weight elements for deploying the
CNN models in resource-constrained systems [37, 95]. The 5-bit quantization
represents each weight element with either 5-bit log-based or 5-bit linear-based
one. Between the log- and linear-based quantization, the log-based representation
is more preferred. This is because (i) log-based approach can achieve a better
accuracy as compared to the linear-based approach [37], and (ii) log-based rep-
resentation is more hardware-friendly as it can replace multiplier with a shifter
[96]. It has been reported that the log-based representation shows very small
accuracy drops (e.g., 1.7% and 0.5% top-5 accuracy drop in AlexNet and VGG-16,
respectively).

3.4 Lossless Compression for CNNs

For lossless compression, entropy-based coding is a widely used approach. It
adopts a variable length encoding based on the occurrence probability of a
certain symbol in a datastream. Based on the probability, it assigns different code
lengths for encoding of the datastream. There are two widely used entropy-based
coding schemes: Huffman coding and arithmetic coding. When encoding the
data with Huffman coding, one generates Huffman tree (a type of binary tree)
which represents how data are encoded for each symbol based on the occurrence
probability of each symbol. Figure 3.2 depicts an example of the Huffman tree
generated from certain symbol occurrence probabilities. The higher occurrence
probability of a certain symbol has, the shorter length of the bits assigned for
encoding of the symbol. When decoding the data, one performs a tree traversal
from the root node to the leaf node by following the bit sequence. When we find
“0” in the bit sequence, we move to the left child, and while we move to the right
child when finding “1” in the bit sequence. When we arrive at the leaf node,
the corresponding symbol that is defined when generating the Huffman tree is
written to the decoded datastream and we perform the tree traversal from the root
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Figure 3.2 An example of the Huffman tree.

node again. The tree traversals are repeatedly performed until we reach the end
of the encoded bitstream.

On the other hand, arithmetic coding encodes the data by mapping a stream of
the symbols into the real number space [0, 1). Figure 3.3 depicts an example of
the arithmetic coding. The example shows an encoding process of the datastream
“BDAC..” with the symbol occurrence probability in the datastream as presented
in the table of Figure 3.3. The first symbol “B” is mapped to the subrange [0.4, 0.7).
The symbol sequence “BD” should be mapped to the subrange within the range
[0.4, 0.7), resulting in mapping of the sequence to the subrange [0.67, 0.7). “BDA” is
also mapped to [0.67, 0.674), which is a subrange of the range [0.67, 0.7). Similarly,
“BDAC” will be mapped to [0.6728, 0.6736) as shown in Figure 3.3. Several weight
compression approaches based on Huffman coding have been introduced [46, 97]
because of its simplicity whereas little attention is paid to arithmetic coding. How-
ever, in general, arithmetic coding is known to result in a better compression ratio
as compared to Huffman coding [98]. Moreover, when applying the arithmetic
coding to the 5-bit quantized CNN weights, it also results in better compression
ratio as compared to Huffman coding [99].

As the CNN weights or feature maps show high sparsity due to pruning and
rectified linear unit (ReLU) activation, several lossless coding methods can also
be employed for sparse data compression. Since the dense format (i.e., storing
the matrix elements in the order of the coordinates in either row-major or
column-major order) is not efficient when storing the sparse matrix due to a huge
number of zero-valued elements, the compressive coding can also be employed
for efficiently storing the sparse data for CNNs.

One of the widely used lossless compression methods is a run-length coding.
The run-length coding encodes the datastream with combinations of the symbol
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Figure 3.3 An example of the arithmetic coding.
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Run-length coding

0 7
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Figure 3.4 An example of
run-length coding with (a)
symbols and (b) sparse data.

and how many times this symbol is presented in a row. Figure 3.4a shows an
example of data compression with run-length coding. As shown in the example,
symbol “A,” “B,” and “C” appear eight times, three times, and four times, in
a row, respectively. Thus, we encode each symbol with ⟨symbol + unsigned
integer number⟩, where the “unsigned integer number” denotes the number of
times a symbol appears continuously in a sequence, resulting in the encoded
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sequence “A8B3C4.” Here, run-length coding reduces the number of the elements
(numbers or symbols) from 15 to 6.

The run-length coding can be beneficial, in particular, for sparse data compres-
sion, where there are many zero-valued elements in a datastream. This is because
a long sequence of zero-valued elements can be converted to two elements ⟨“0” +
integer number⟩. Figure 3.4b shows an example of runlength coding for sparse
data. The encoded datastream by applying run-length coding is also shown in
Figure 3.4b. Assuming the size of each element is equal, run-length coding leads
to a compression ratio of 1.875 (=15/8). As there are many zero values in a row
in the datastream, we can obtain a good compression ratio making the run-length
coding attractive to the sparse data compression.

Since the CNN weights are often represented in the form of matrices or tensors, a
bitmap-based lossless compression approach is another widely used approach for
sparse matrix or tensor compression. An example of bitmap-based lossless com-
pression is shown in Figure 3.5. During the compression, the bitmap-based com-
pression also generates the metadata. The required metadata is a bitmap; each bit
in the bitmap corresponds to each weight element. Each bit in the bitmap indicates
whether or not the corresponding weight element is zero. For storing the elements,
only nonzero elements are stored. When decompressing the compressed data, the
nonzero elements are restored in order in the locations where the bits in the bitmap
are “1” while the zero value is restored in the locations where the bits in the bitmap
are “0.” In addition, for sparse weight matrix compression, a coordinate-based
(COO) approach [100, 101] can also be used. Similar to the bitmap-based approach,
only the nonzero elements are stored, while the coordinate information of the
corresponding weight elements are also stored. Majority of the CNN weight com-
pression approaches exploit the characteristics of the data structure in the matrix
or tensor to efficiently and losslessly compress the sparse matrix or tensor.

1 4 7 0 0

0 0 0 2 0

0 0 0 1 4

0 5 0 0 0

9 0 0 0 8

1 1 1 0 0

0 0 0 1 0

0 0 0 1 1

0 1 0 0 0

1 0 0 0 1

1 4 7 2 1 4 5 9 8

Bitmap

Elements

Original matrix

Figure 3.5 An example of bitmap-based coding for sparse matrices.
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Figure 3.6 A conversion between the dense and compressed sparse row format. The
coordinate (x, y) indicates a location of the element in the row index x and column index
y with the dense format matrix. In the CSR format, an array index indicates a location in
the NV, CI, or RP array. For CSR format, we follow a general C-style representation for
indicating a certain array element. For example, NV[2] and CI[2] are equal to “c” and “1,”
respectively. Source: [102] Lee et al., 2022/arXiv/Public Domain CC BY 4.0.

The most well-known approach for compressing the sparse matrix is com-
pressed sparse row (CSR) format. As shown in Figure 3.6, the CSR format
stores three components: values of nonzero elements, column index (CI) of each
nonzero element, and row pointers. The CSR format removes the zero-valued
elements when storing the matrix while only maintaining the nonzero elements
and their location information. The first part, nonzero value (NV), in the CSR
format, contains the nonzero value itself. The second part, CI, contains the index
of the column location of the corresponding nonzero elements. Since NVs and CIs
are maintained in a pairwise manner, the same index value for nonzero element
array and CI array can be used for ease of the data structure management. Thus,
NV[i] and CI[i] work as a pair (i is a certain index) incorporating the information
on a single element in the matrix.

The third part, row pointer (RP), maintains how many nonzero elements exist
from the first row to the current row (i.e., cumulative number). For example, RP[x]
contains how many nonzero elements exist from the row with index 0 to the row
with index x − 1 (thus, RP[0] is always 0).

3.5 Recent Advancements in Compressive Coding
for CNNs

This section presents recent representative advancements in compressive coding
for weight size reduction. In [94], Han et al. have proposed a network pruning
technique that removes weak (i.e., a weight value is less than a certain threshold)
synapse connections. To improve the accuracy, it re-trains a model with the pruned
weights. After pruning, the number of parameters is reduced by 9× and 13× in



�

� �

�

3.5 Recent Advancements in Compressive Coding for CNNs 49

AlexNet and VGG-16, respectively, with a negligible accuracy loss. In [46], Han
et al. have also proposed a weight compression technique with Huffman coding.
They have presented a quantization method which reduces the size of the weight
elements with a small accuracy loss. They observed that the accuracy of deep neu-
ral networks (DNNs) does not significantly decreases until 4-bit precision (2.0%
and 2.6% accuracy drop in top-1 and top-5 accuracies, respectively). When com-
bining the quantization with weight pruning and data compression by Huffman
coding, storage reduction of 35× to 49× has been reported. Similarly, in [97], Choi
et al. have proposed a weight size reduction technique that exploits quantization
and Huffman coding. They proposed an entropy-constrained quantization method
which minimizes accuracy losses under a given compression ratio. In addition,
with Huffman coding, it achieves over 40× compression ratio with less than 1%
accuracy losses.

In [103], Ko et al. have proposed a JPEG-based weight compression technique.
In order to minimize accuracy losses from the JPEG encoding, the proposed
technique adaptively controls a quality factor according to error sensitivity. The
proposed technique achieves a 42× compression ratio for multilayer perceptron
(MLP)-based network with an accuracy loss of 1%. In [104], Ge et al. have
proposed a framework that reduces weight data size by using approximation,
quantization, pruning, and coding. For the coding method, the framework
encodes only non-zero weights with their positional information. It is reported
that the framework proposed in [104] shows a compression ratio of 21.9× and
22.4× for AlexNet and VGG-16, respectively. In [105], Reagan et al. have proposed
a lossy weight compression technique that exploits Bloomier filter and arithmetic
coding. Due to the probabilistic nature of Bloomier filter, it also re-trains weights
based on lossy compressed weights. The technique by Reagan et al. shows a
compression ratio of 496× in the first fully connected layer of LeNet5. However,
the technique also shows an accuracy loss of 4.4% in VGG-16 top-1 accuracy. In
[106], Choi et al. have proposed a universal DNN weight compression framework
with lattice quantization and lossless coding such as bzip2. By leveraging the
dithering which adds a randomness to the sources (i.e., weights), the framework
proposed in [106] can be universally employed without the knowledge on the
probability distribution of the source values. This implies that the compression
ratio is not likely to severely vary depending on the source distribution. This
also means that the compression method proposed in [106] does not require
preprocessing to examine the statistical distribution of DNN weights. In practice,
it would result in an easy deployment of the weight compression technique under
frequently fluctuating source distribution (e.g., frequent weight updates through
model training). In [107], Young et al. have proposed a transformation-based
quantization method. By applying the transformation before the quantization,
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the proposed method achieves a significantly low bit rate around 1–2 bits per
weight element.

3.6 Chapter Summary

This chapter provided an overview of the compressive coding methods and
classified them into two categories: lossy and lossless compression. For lossy
compression, the chapter introduced quantization and pruning, which is widely
used techniques for CNNs. For lossless compression, the chapter discussed
entropy-based coding and some other coding methods that can be employed for
sparse matrices or tensors. The chapter also reviewed recent compressive coding
methods for CNNs. In Chapters 4 and 5, this book discusses several compressive
coding techniques recently proposed for CNNs. In Chapter 4, this book presents a
lossless compression technique for CNN input feature maps [108]. In Chapter 5,
this book discusses an arithmetic coding method for compression of 5-bit CNN
weights [99].
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Lossless Input Feature Map Compression

Although convolutional neural network (CNN) model parameter sizes are contin-
uously being reduced via model compression and quantization, the CNN hardware
acceleration still entails huge data transfer between the hardware accelerator and
memory via direct memory access (DMA). This data transfer overhead aggrandizes
latency, memory bandwidth pressure, and energy consumption, which limits the
feasibility of many contemporary CNN accelerators for resource-constrained sys-
tems such as embedded and Internet of things (IoT) devices. Even though many
hardware accelerators attempt to reuse data to minimize off-chip data transfer, the
limited on-chip memory of CNN hardware accelerators results in large amounts
of data transfer between hardware accelerators and main memory.

The data transfer overhead in CNNs can be classified into two types: latency
overhead and energy overhead. The latency overhead could be hidden by dou-
ble buffering. However, double buffering requires twice more on-chip memory
capacity to support the same processing element (PE) utilizations, thus inhibit-
ing its suitability for resource-constrained systems. Furthermore, in case of huge
amounts of data transfer between the accelerator and main memory, data trans-
fer latency cannot be hidden completely by overlapping computations with data
transfer. Moreover, overlapping computations with data transfer do not hide the
energy overhead of data transfer. The only way to minimize data transfer energy
is to reuse on-chip data as much as possible. However, a limited size of on-chip
memory in CNN hardware accelerators restricts the amount of the data reuse thus
resulting in nonnegligible energy overhead. Though processing-in-memory (PIM)
has been emerged to minimize data transfer, PIM would be hard to be adopted
in resource-constrained systems. Hence, it is imperative to consider both com-
putational performance and data transfer between main memory and the CNN
accelerator when designing CNN hardware accelerator for resource-constrained
systems.

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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To this end, this chapter introduces a novel input feature map (IFM) compres-
sion method [108]. To reduce data transfer overhead between the hardware accel-
erator and main memory, it is proposed to use an efficient compression method for
IFM data. The introduced scheme exploits the activation sparsity in CNN models,
which are attributed to rectified linear unit (ReLU) activation function. The pre-
sented IFM data compression method, which is performed on the software side,
removes the transfer of zero-valued elements in IFMs. In the following sections,
this chapter introduces the IFM compression method in detail.

4.1 Two-Step Input Feature Map Compression
Technique

Since there is a huge sparsity in CNN feature maps, the presented technique only
maintains nonzero values (elements) with metadata for a location, while zero val-
ues are omitted in the IFM. In order to record the location of nonzero elements
(NZEs) in IFMs, the presented technique also maintains indices of the NZEs in
IFMs. Figure 4.1 shows a format of compressed IFM data. The presented compres-
sion algorithm maintains three entities: nonzero elements (32-bit floating-point for
each element1), indices (8-bit for each element), and count_table (one element for
each chunk2). The first part, that is NZE part, stores all NZEs in the IFMs. The
second part, indices, indicates the location of NZEs in a chunk of IFM. The third
part, count_table, indicates the accumulated number of NZEs from the first chunk
to the current one.

The presented compression algorithm works as follows: Firstly, the 3D tensor
IFM is converted into the 1D vector format which is also divided into a granularity
of the chunk (256-elements per chunk in this work). It then linearly searches for
the NZE from the first chunk. If it finds the NZE in the chunk, it updates the indices
by storing the location of the NZE in the chunk (i.e., IFM 1D vector index % 256).
It also increases the number of the NZEs of the current chunk in the count_table.
Also, it stores the element itself to NZE. After it finishes the NZE search in a
chunk, it starts to search for the NZEs in the next chunk and updates the cumu-
lative number of the NZE in the next count_table entry. For example, as shown
in Figure 4.1, since there are three NZEs in the first chunk (IFM[0]–IFM[255]), it
records 3 in the count_table[0]. In the next chunk, it found another three NZEs,
and thus records 6 (cumulative number) in the count_table[1]. Similarly, it records
8 in the count_table[2] corresponding to the third chunk as it found two NZEs in

1 For explanation of the presented technique, 32-bit floating-point precision for IFM elements is
used. However, the presented technique can also be applied to the cases of using 16-bit
fixed-point and 8-bit integer elements by applying quantization.
2 Although in this work, it is assumed that 256 elements correspond to one chunk, the chunk
size depends on the design and can be extended.
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Figure 4.1 The two-step data compression technique.

the third chunk. Following the same procedure, it searches for the NZEs in all the
chunks till it encounters the last element in IFM.

Table 4.1 illustrates a comparison among the presented two-step compression,
conventional one-step compression which maintains NZEs and the corresponding
indices (locations), and well-known compressed sparse row (CSR) compression. In
Table 4.1, N

𝜙
denotes the number of NZEs and Nc denotes the number of chunks.

Table 4.1 indicates that for the presented two-step compression scheme, 4B (i.e.,
32-bits) are required for storing an NZE, 1B is required for storing the index of an
NZE in a chunk (since it performs index % 256), and 2B are required to store the
cumulative number of NZEs in a chunk. Table 4.1 also indicates that for the con-
ventional one-step compression schemes, 4B are required for storing an NZE and
2B are required for storing the index of NZEs. The presented two-step compression
scheme leads to a better compression ratio than the conventional one under the
condition of N

𝜙
> 2 × Nc. Since the maximum allowable number of chunks (Nc)

is 256 assuming that the maximum number of elements in the IFM is 216, the pre-
sented two-step compression scheme leads to a better compression ratio as long
as the sparsity of the IFMs is lower than 99.2% ((65,536 − 512)∕65,536 = 99.2%),
which is a common case.3

The comparison between the introduced compression scheme and the CSR com-
pression scheme is also presented. Please note that we also assume the 256 × 256
matrix format where 216 elements (at maximum) can exist since the CSR scheme

3 Since the presented technique is geared toward resource-constrained systems, it is assumed
that the maximum number of elements in the IFM is 216 (256 KB when using 4B floating-point
format for an element).
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Table 4.1 Compressed data size comparison between conventional one-step
compression, compressed sparse row (CSR)-based compression, and the presented
two-step compression assuming the maximum number of elements in the IFM is 216.

Compression scheme Data stored Memory required

Conventional one-step
compression

Data element + indices N
𝜙
× 4B + N

𝜙
× 2B

Conventional CSR
compression

Data element + column
indices + row pointers

N
𝜙
× 4B + N

𝜙
× 1B + 256 × 2B

Presented two-step
compression

Data element + indices +
Count_table

N
𝜙
× 4B + N

𝜙
× 1B + Nc × 2B

N
𝜙

and Nc denote the number of nonzero elements and chunks, respectively.

can only be used to compress 2D matrix format. The CSR format requires a column
index for each NZE and row pointers to maintain (in a cumulative manner) how
many NZEs exist in each row. Thus, N

𝜙
× 1B (8-bits) for column indices is required

because of representing 0-255 column indices. For the row pointers, the worst-case
requirements are considered because the data size for row pointers depends on the
sparsity and data distribution pattern in the matrix. Since the row pointer should
record the cumulative number of NZEs until the corresponding row (i.e., from
the first row to the corresponding row), the maximum value of the row pointer is
216, meaning that 16-bits (2B) are required for each row pointer value (technically,
though 17-bits are needed for the case where all the elements in the matrix are
nonzero value, this case is excluded because it is a very rare case and not desirable
to apply CSR compression). In addition, the number of required row pointer ele-
ments is the same as the number of rows in the matrix. Thus, 256 (28) row pointer
values are required. Hence, for the CSR format, N

𝜙
× 4B + N

𝜙
× 1B + 28 × 2B are

required. As explained, since the maximum allowable number of chunks (Nc) of
our presented compression technique is 256 assuming that the maximum num-
ber of elements in the IFM is 216, the two-step compression technique shows a
compression ratio comparable to the CSR format.

On the other hand, the CSR format can only be applied to a 2D sparse matrix
because it can only contain the column indices and row pointers which are
two-dimensional positional metadata. On the contrary, the presented two-step
compression technique can also be employed to compress the 3D tensors because
of flattening the sparse tensor to 1D vector before data compression. If one would
like to use the CSR compression for a tensor (i.e., input feature maps) compres-
sion, one can separately compress each 2D IFM and combine the compressed data
of each IFM. However, when performing the compression with a large number
of input channels, it may seriously increase the metadata (column indices and
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row pointers) size because the metadata size will be proportional to the number
of input channels. In addition, depending on the IFM size (height and width)
and the number of input channels, the metadata size will vary. It may hugely
increase accelerator hardware complexity due to variable input dimensions. On
the contrary, since our compression technique converts the 3D IFM tensor into
1D vector format, our hardware accelerator (will be explained in Chapter 10)
operations are not affected by the tensor dimension, relieving the hardware design
complexity. Even though some other compression techniques may be a little better
in terms of the compression ratio, they can increase hardware complexity for
decompression and convolution, deteriorating the overall performance.

In the presented compression technique, the zero values are removed to reduce
the required storage size. At the same time, the nonzero values still remain in the
compressed data with their location information within the tensor. Although
the zero values are removed in the compressed data, it is not actually removed
from the tensor. In other words, if one restores (i.e., decompress) the compressed
data to the original data, one can completely restore the tensor same as before
compression (i.e., without any data loss). This is because the compressed data
only contains the information on nonzero values (i.e., values and locations),
whereas all the remaining spots of the tensor can be filled with zero values,
meaning that the presented compression technique is lossless compression.

4.2 Evaluation

By applying the presented compression technique, one can obtain a huge amount
of transferred data and transfer latency. Figure 4.2 shows the comparison of
compressed IFM size normalized to the noncompressed IFM size. The presented
technique reduces the IFM data size by 34.0–85.2% across the degree of the
IFM sparsity from 50% to 90%. As illustrated in Figure 4.2, there are remarkable
differences in compressed data size depending on the degree of sparsity in IFM.
The reduced IFM data size can also contribute to the reduction of latency, memory
bandwidth pressure, and energy. As shown in Figure 4.3, the presented technique
reduces the DMA transfer latency by 41.6%, on average as compared to the case of
transferring noncompressed IFMs. These results imply that one can significantly
reduce the data transfer latency caused by the large batch of the inputs depending
on the input data sparsity. In case of the input sparsity of 50%, one can only
obtain the data transfer latency reduction by 4.4% with the presented technique.
This is because additional latency for compression is required when applying the
presented technique. Although the presented compression technique provides
only a small data transfer latency benefit for 50% input sparsity, the data transfer
latency improvements imparted by the presented compression technique increase
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Figure 4.3 Normalized data transfer latency comparison of the presented acceleration
technique across various CONV layers.

as the degree of IFM sparsity increases. For input sparsity of 90%, results indicate
that one can obtain data transfer latency reductions by 75.7%, on average, with
the presented technique.

Though the DMA transfer time may be hidden by double buffering, the reduced
data transfer latency can also reduce the required memory bandwidth which
is very crucial for low-power resource-constrained edge systems. Moreover,
as observed in [109], since power and energy consumption from the dynamic
random access memory (DRAM) interface is significant in embedded platforms,
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the data transfer reduction by the presented technique can hugely contribute
to energy efficiency of the system. Apart from the data transfer latency, since
the presented technique compresses the IFMs, the decoding latency should also
be taken into account when performing convolution (CONV) layer operations.
However, the hardware accelerator, which is introduced in Chapter 10 performs
the decoding of the compressed IFMs in an in-situ manner. Thus, the decoding
latency is inherently included in the latency of the hardware accelerator and
therefore the decoding latency in CONV operations is not separately reported.

4.3 Chapter Summary

Sparsity in CNNs provide a huge opportunity for optimizing CNN accelerators and
reducing data size. This chapter discussed a lossless compression scheme for com-
pressing IFM data resulting in data transfer reduction between the memory and
the accelerator. The compression technique presented in this chapter reduced the
data size and latency for IFM data transfer by 34.0–85.2% and 4.4–75.7%, respec-
tively, as compared to the case without the data compression.
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5

Arithmetic Coding and Decoding for 5-Bit CNN Weights

To mitigate a large parameter size in convolutional neural networks (CNNs),
several well-known techniques such as weight pruning and quantization have
been introduced. The weight pruning increases the sparsity of the weight data
by replacing the near-zero weight elements with zero-valued elements. The
quantization reduces weight elements’ size with a negligible loss of the CNN
accuracy. For example, while the conventional precision of the elements in CNNs
is single-precision floating-point (32-bit), 8-bit integer and 16-bit fixed-point pre-
cisions are also widely used for cost-efficient CNN inferences, which can reduce
the weight size by 4× and 2×, respectively. Even further, as a more aggressive
solution, several works have proposed to use 5-bit weight elements for deploying
the CNN models in resource-constrained systems [37, 95]. Though, these works
have shown successful results on reducing the weight data size, one could further
reduce the weight size by applying the data encoding schemes such as Huffman
coding or arithmetic coding. By only storing the encoded (hence, the reduced
size of) weight data in device’s memory and/or storage, one could enable more
cost-efficient deployment of the CNN models in resource-constrained devices.

This chapter introduces an arithmetic coding-based 5-bit quantized weight
compression technique for on-device CNN inferences in resource-constrained
edge devices. Once the weight elements are quantized to a 5-bit format (quanti-
zation can be done by other methods such as [95]), it leverages arithmetic coding
for weight compression, which has been generally employed for entropy-based
data compression (e.g., for image compression in [110] and [111]). In addition,
a range scaling for lossless compression is employed, meaning that there is no
accuracy loss in CNN inferences as compared to the case of using uncompressed
5-bit weight element. Compared to Huffman coding-based compression, which
is commonly used, the arithmetic coding-based technique leads to a better
compression ratio (CR), resulting in less memory and storage requirements for
weights. In addition, when applying this technique to the pruned weights, one
can obtain much higher compression ratio as compared to Huffman coding-based

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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weight compression. For an in situ weight decompression for edge devices which
contain a CNN accelerator or NPU, a hardware decoder which can decompress
the compressed weight with a small latency overhead will also be introduced.

The contributions of the introduced compression technique are summarized as
follows:

● A lossless arithmetic coding-based 5-bit quantized weight compression tech-
nique is introduced;

● A hardware-based decoder for in situ decompression of the compressed weights
in the NPU or CNN accelerator is introduced, and the hardware-based decoder
is implemented in field-programmable gate array (FPGA) as a proof-of-concept;

● The introduced technique for 5-bit quantized weights reduces the weight size
by 9.6× (by up to 112.2× in the case of pruned weights) as compared to the case
of using the uncompressed 32-bit floating-point (FP32) weights;

● The introduced technique for 5-bit quantized weights also reduces memory
energy consumption by 89.2% (by up to 99.1% for pruned weights) as compared
to the case of using the uncompressed FP32 weight;

● When combining the compression technique and hardware decoder (16 decod-
ing units) with various state-of-the-art CNN accelerators [112–114], the intro-
duced technique incurs a small latency overhead by 0.16–5.48% (0.16–0.91% for
pruned weights) as compared to the case without the introduced technique and
hardware decoder.

● When combining the introduced technique with various state-of-the-art CNN
accelerators [112, 113], the introduced technique with 4 decoding unit (DU)
decoder hardware reduces system-level energy consumption by 1.1–9.3% as
compared to the case without using the introduced technique.

5.1 Architecture and Design Overview

For a real-world deployment of the weight compression technique, we introduce
a system overview and execution flow to support fast and cost-efficient weight
encoding/decoding. The overall architecture and execution flow of the introduced
technique are illustrated in Figure 5.1. First, the weight quantization and encod-
ing (upper part of Figure 5.1) are performed offline. In the cloud (or datacenter),
the trained 32-bit FP weight elements1 can be quantized to 5-bit format (and can
also be pruned), and compressed by using the presented arithmetic coding-based
compression technique, and sent to resource-constrained edge devices for CNN
inference. The compressed weight data are stored in the memory or storage of the

1 Instead of FP32, the presented compression technique can also be applied to fixed-point
(e.g., 16-bit) weight values as long as they can be quantized to 5-bit weight format.
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Figure 5.1 Architecture and execution flow of the presented technique.

edge devices and will be accessed when running the CNN inference. We assume
there is a CNN accelerator (or NPU) in the edge device because recent edge devices
are widely adopting CNN accelerators (e.g., edge tensor processing unit in Google
Coral platform [115]). Please note that the 5-bit quantization can be performed
with any already proposed technique (e.g., [46], [116], and [38]), and thus the pro-
posal of a 5-bit quantization method is outside the scope of this chapter. A clear
description of the contributions and execution flow is depicted in Figure 5.2.

In case of CNN inference in the baseline system (i.e., without the presented
technique), the weight data will be directly loaded into CNN accelerator’s private
local memory (PLM). In this case, non compressed 5-bit weight data are fully
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Figure 5.2 A quantization, encoding, and decoding flow for CNN inference in the
presented technique. The gray-shaded part denotes the main contributions of the
presented technique.
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or partially loaded into CNN accelerator’s PLM. However, with the presented
technique, before we send the weight data to the CNN accelerator, we need a
fast in situ decompression (i.e., decoding) of the compressed weight data, which
necessitate a hardware decoder. The hardware decoder receives the bitstream
(BS) of the compressed weight and generates the original 5-bit quantized weight
data. In the hardware decoder, there are multiple DUs to expedite the runtime
decoding process. Please note that the presented decoding hardware does not have
any dependency to the CNN accelerator that can perform convolution operations
with 5-bit quantized weight.

5.2 Algorithm Overview

In this section, we describe an overview of the algorithm. Figure 5.3 summarizes
the comparison between the theoretical arithmetic coding-based encoding (a),
binary arithmetic coding-based encoding without range scaling (b), and the
presented binary arithmetic coding-based encoding with range scaling (c), and
decoding (d). As shown in Figure 5.3a, arithmetic coding encodes the original
data into a certain real number between 0 and 1 ([0, 1)). Theoretically, the
arithmetic coding can compress any raw data (i.e., a sequence of the symbols) to
one real number since we can have an infinite number of real numbers between
0 and 1. In general, however, when we encode certain data to a bitstream, the
encoded data should be mapped to a finite binary number space, which can
cause underflow. In this case, the encoded data may be lossy because different
binary data can be mapped to the same encoded binary due to the limited space
for data encoding. As shown in Figure 5.3b, if we have a long sequence of the
weight elements and we do not have a sufficiently large binary mapping space,
the underflow can occur. This is because the feasible mapping space will become
smaller and smaller as more weight elements are encoded.

In the presented technique, we also map the weight elements into the unsigned
integer-based binary mapping space. Since the presented compression (i.e., encod-
ing) technique aims to generate losslessly encoded data, we also employ a range
scaling method that can adaptively scale the range of the binary mapping space.
In the case of encoding (Figure 5.3c), depending on the mapped subrange for a
certain element, we adaptively scale this subrange according to the range scal-
ing condition (we explain the details on the scaling condition in the next Section
5.2.1, Section 5.3, and Section 5.4). In this case, we record the scaling information
as well as the information on the mapped and scaled subrange to the compressed
bitstream. In the case of decoding (Figure 5.3d), by referring to a sliding window
(gray shaded area in Figure 5.3d) within a bitstream, we find which subrange the
unsigned integer (the number Z converted from the binary in the sliding window)
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belongs to. By referring to the found subrange, we decode a weight element to
which the subrange corresponds. By shifting the sliding window,2 we decode the
next weight element in the similar way we describe above.

5.2.1 Weight Encoding Algorithm

In this section, we explain how we compress (i.e., encode) the 5-bit quantized
weight data in details. Figure 5.4 shows a pseudocode of the presented arithmetic
coding-based weight encoding with range scaling. For input, 5-bit quantized
weight data (W), the occurrence probabilities for each weight value (PROB), and
the number of weight elements (K) (i.e., the number of parameters) are required.
To obtain PROB, we can calculate the probability based on how many times each
weight appears in the weight data. The output is an encoded weight bitstream
(BS). Prior to encoding, we need to set variables: N means the number of bits
for mapping the weight data to an unsigned binary with arithmetic coding. RS
contains range scaling information, which is initially set to 0. The MAX , HALF,
and QTR are calculated according to the N. For initialization, low and high
are first set to 0 and MAX , respectively. We also need to collect the cumulative
probabilities for each weight value3 (F[X] = PROB[x < X] where 0 ≤ X ≤ 32).

The encoding procedure is performed by per weight element basis. For each
weight element (from 0 to K − 1), we set the high and low values to a range for
mapping a certain weight element to an unsigned integer binary number space
(lines 2–4 in Figure 5.4). We call this range ([low, high]) as subrange. When map-
ping the elements in the subrange with range scaling, there can be three cases
of the range scaling: (a) upper scaling, (b) lower scaling, and (c) middle scaling.
These three cases of the range scaling are also shown in Figure 5.5. Lines 5–7 and
11 in Figure 5.4 correspond to the case (a) in Figure 5.5: upper scaling. In this case,
we write 12 followed by RS-bits of 02s in the bitstream (for example, if RS= 3, we
write (1000)2 to BS), reset RS to 0, and update low and high values by following
the upper scaling rule for further range scaling. The reason why we write 12 in the
upper scaling case is that the subrange is in the upper half of the binary mapping
space, meaning that the most-significant bit (MSB) of the mapped unsigned inte-
ger binary value will be 12. RS-bits of 02s incorporate the information on how many
middle scaling has been done before. Performing more middle scalings implies
that the original subrange (i.e., before performing the upper and middle scalings)
was closer to the center point of the range (Figure 5.6a). This is why we write more
number of 02s as we perform more middle scalings in the previous loop iteration.

2 To decode one weight element, the sliding window can be shifted by more than 1-bit
depending on the range scaling condition.
3 Though the actual weights are interpreted by 5-bit log-based or linear-based values, here we
represent 5-bit binary as an unsigned integer (0–31) for an ease of explanation.
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Pseudocode for Encoding (Compression)

INPUT: W – 5-bit quantized weight elements
PROB – Probability of each weight value occurrence in W
K – # of weight elements

OUTPUT: BS – Encoded weight bitstream
N = # of bits for mapping the weight data to an unsigned integer number
RS = 0
MAX = 2N−1, HALF = round(MAX/2), QTR = round(MAX/4)
low = 0, high = MAX
F[X] = PROB[x < X] (X=0 to 32, F[0]=0, F[1]=PROB[0], ... F[32]=1)

1 for i=0 to K − 1
2 range = high − low
3 high = low + floor(range * F[W[i]+1])
4 low = low + floor(range * F[W[i]])
5 while high < HALF or low >= HALF
6 if low >= HALF
7 write 12 and RS-bits of 02s to BS, RS=0, low=low-HALF, high=high-HALF
8 else
9 write 02 and RS-bits of 12s to BS, RS=0

10 end if
11 low=low << 1, high=high << 1
12 end while
13 while low >= QTR and high < 3*QTR
14 RS++, low = (low−QTR) << 1, high = (high−QTR) << 1
15 end while
16 end for
17 RS++
18 if low <= QTR
19 write 02 and RS-bits of 12s to BS
20 else
21 write 12 and RS-bits of 02s to BS
22 end if

Figure 5.4 Pseudocode of the weight encoding technique.

In case (b) in Figure 5.5 (lower scaling: lines 5 and 8–11 in Figure 5.4), we write 02
(MSB of the mapped unsigned integer binary value will be 02) followed by RS-bits
of 12s in the bitstream, reset RS to 0, and update low and high values by follow-
ing the lower scaling rule for further range scaling. As depicted in Figure 5.6b, the
reason why we write 02 and RS-bits of 12s can be explained in a similar way of
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Figure 5.5 Three possible cases and scaling rules for range scaling. (a) Upper scaling,
(b) lower scaling, and (c) middle scaling.

the upper scaling case. In the case (c) in Figure 5.5 (middle scaling: lines 13–15
in Figure 5.4), we do not encode the element data and only scale the subrange by
following the middle scaling rule as long as the condition of the middle scaling
case (line 13 in Figure 5.4) is met while we also keep incrementing RS to track
how many times of middle scaling has been done. There can be a case where the
subrange does not belong to any of the three scaling cases. In this case, we do not
scale the subrange and we move onto the next iteration (i.e., next iterations of the
for loop or terminate the for loop in the case of the last loop iteration). This proce-
dure (lines 1–16 in Figure 5.4) is repeatedly performed until the entire W elements
are encoded to BS. After that, lines 17–22 in Figure 5.4 perform a bitstream writing
that corresponds to the last part of the weight data which have not been encoded
yet. In this part, we do not have a middle scaling case and only record the bits by
following either upper or lower scaling rule. Although the presented technique
maps weight elements to an N-bit unsigned integer binary number space with
arithmetic coding, the encoded bitstream also contains range scaling information
(RS) along with iteratively appended binary bits depending on the scaling condi-
tion (i.e., lower and upper scaling: Lines 6–9 in Figure 5.4). Thus, the encoded
bitstream is typically much longer than N-bits.
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5.3 Weight Decoding Algorithm

An overall structure of the decoding (i.e., decompression) procedure is very simi-
lar to that of the encoding procedure. The decoding procedure exactly follows the
range calculation and scaling while we perform the weight element mapping with
a part of the bitstream, which is an inverse operation of the encoding procedure.
Figure 5.7 presents a pseudocode for the decoding. We need the encoded weight
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Pseudocode for Decoding (Decompression)

INPUT: BS – Encoded weight bitstream
PROB – Probability of each weight value occurrence in W
K – # of original weight element

OUTPUT: W – Original 5-bit quantized weight elements
N = # of bits for mapping the weight data to an unsigned integer number
MAX = 2N−1, HALF = round(MAX/2), QTR = round(MAX/4)
low = 0, high = MAX, idx=0
F[X] = PROB[x < X] (X=0 to 32, F[0]=0, F[1]=PROB[0], ... F[32]=1)
Z(idx) = N−bits starting from bit index ‘idx’ in BS

1 Append N−1 ‘0’s at the end of BS
2 for i=0 to K−1
3 range=high−low
4 for j=0 to 31
5 high = low + floor(range * F[j+1])
6 low = low + floor(range * F[j])
7 if low <= Z(idx) and Z(idx) < high
8 store weight value j to W[i]
9 break

10 end if
11 end for
12 while high < HALF or low >= HALF
13 if low >= HALF
14 low = low − HALF, high = high − HALF, Z(idx) = Z(idx) − HALF
15 end if
16 low = low << 1, high = high << 1, idx++
17 end while
18 while low >= QTR and high < 3 * QTR
19 low = (low − QTR) << 1, high = (high − QTR) << 1
20 Z(idx) = Z(idx) − QTR, idx++
21 end while
22 end for

Figure 5.7 Pseudocode of the weight decoding technique.

bitstream (BS), the occurrence probabilities for each weight value (PROB), and the
number of original weight elements (K) as inputs while the output of the decod-
ing procedure is original 5-bit weight elements (W). We omit the explanation for
variable initialization because the variable setting is same as the encoding except
for Z(idx) which corresponds to the N-bits starting from the bit index idx in the BS
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where N is the number of bits used for mapping the encoded data to an unsigned
binary number space, which is same as in the encoding. For example, if N = 8, the
Z(idx) will be the 8-bits starting from the bit index “idx,” which can also be rep-
resented by an unsigned integer number ranging from 0 to 255 (= 28 − 1). Please
note that Z(idx) shifts from the starting point of the encoded bitstream in a sliding
window manner as we explained in Section 15.2.1.

The decoding procedure is performed until the encoded bitstream (BS) is
fully decoded into original 5-bit weight elements (W). We decode the bitstream
by a unit of N-bits (Z(idx)). Here, the bit index of the bitstream begins with 0
(idx = 0). Thus, the initial N-bit window will be Z(0). Before we perform the
iterations, we need to append the N − 1 bits of 02s at the end of BS in order to
enable the decoding of the last N − 1 bits in the BS (line 1 in Figure 5.7). As in
the encoding procedure, decoding is also performed by per weight element basis
(from 0 to K − 1: line 2 in Figure 5.7). In lines 3–11, we calculate the subrange
([low, high]) for each weight value (i.e., from 0 to 31) and find which weight
value’s subrange contains Z(idx). If the subrange of weight value j contains Z(idx),
we write j to the decoded weight W[i]. Similar to the case of the encoding, we
then consider the three different range scaling cases: upper, lower, and middle
scaling. In the cases of upper and lower scaling (lines 13–16 in Figure 5.7), we
also scale the subrange ([low, high]) by following the corresponding scaling rule
as in Figure 5.5a,b, respectively, while also updating Z(idx). Please note that the
Z(idx) can be regarded as a pointer that indicates the N-bits in the BS with a
starting index of idx. Thus, updating the Z(idx) also means updating N-bits in
the BS starting at the bit-index idx, also affecting the following Z(idx + 1) value
which will be referenced next (i.e., referenced by shifting the sliding window). In
the middle scaling case (lines 18–21 in Figure 5.7), we scale the subrange as in
Figure 5.5c while also updating Z(idx). As in the encoding procedure, for three
scaling cases, the scaling procedure is repeatedly performed (in a while loop) as
long as the scaling condition is satisfied. Once K weight elements are all decoded,
the for loop (lines 2–22 in Figure 5.7) terminates, and the decoding process is
completed.

5.4 Encoding and Decoding Examples

Figure 5.8 shows an illustrative example of the presented arithmetic coding-based
weight encoding. For brevity, we limit the types of weight values (i.e., possible
weight element values) as “0,” “1,” and “2” (originally, possible weight element
values are 0–31: 32 different weight values) and assume that we encode the
sequence of the weight elements {0, 1, 0, 1, 2} (weight elements flattened to a
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i Starting
range

W[i] Subrange Scaling case BS Updated
RS

0 [0, 255] 0 [0, 102] Lower scaling 02 0
1 [0, 204] 1 [81, 163] Middle scaling 02 1
2 [34, 198] 0 [34, 99] Lower scaling (001)2 0
3 [68, 198] 1 [120, 172] Middle scaling (001)2 1
4 [112, 216] 2 [195, 216] Upper scaling (00110)2 0
4 [134, 176] — — Upper scaling (001101)2 0
4 [12, 96] — — Lower scaling (0011010)2 0
Out of
the loop

[24, 192] — — — (001101001)2 1

Figure 5.8 An example for encoding by using the presented technique.

form of a 1d-vector.4) From the sequence, we can recognize that the F[x] values
for a range [0, 3] ({F[0], F[1], F[2], F[3]}) will be {0.0, 0.4, 0.8, 1.0}. In this
example, we assume that N = 8, meaning that MAX , HALF, and QTR are 255,
128, and 64, respectively.

At first, we encode the first weight element “0.” By calculating the sub-range
([low, high]) of the weight element “0,” a new subrange will be [0, 102]
(=[0+ ⌊255*0.0⌋, 0+ ⌊255*0.4⌋]) which corresponds to the case of lower scaling
(high < HALF). In this case, we write a bit 02 in the output bitstream (RS is
currently 0, thus we do not write 12). We then scale the lower bound and upper
bound of the subrange by 2× by following the lower scaling rule. A new scaled
range will be [0, 204] which does not account for any of the three scaling cases.
Thus, we move to the next iteration for encoding the second weight element
“1.” The next subrange will be [81, 163] (=[0+ ⌊204*0.4⌋, 0+ ⌊204*0.8⌋]), which
corresponds to the case of the middle scaling. In this case, we increment RS
by 1 and scale the range by following the middle scaling rule, which makes
the current range [34, 198] (=[(81− 64)*2, (163− 64)*2]). This range does not
correspond to the middle scaling case, which means that we need to encode the
following element. When we encode the third element “0,” a new subrange will be
[34+ ⌊164*0.0⌋, 34+ ⌊164*0.4⌋] = [34, 99], which is the lower scaling case. Thus,
we write (01)2 (because of RS= 1) to the bitstream and reset RS to 0 while we also

4 For a sequence of weight elements, we flatten the weight elements starting from the first
convolutional (CONV) layer to the last CONV layer of the CNNs.
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scale the lower and upper bounds of the subrange by 2×, resulting in the range
of [68, 198] which does not correspond to any of the three cases. For the fourth
weight element “1,” a new subrange will be [68+ ⌊130*0.4⌋, 68+ ⌊130*0.8⌋]=
[120, 172], which corresponds to the middle scaling case. Thus, we incre-
ment the RS by 1 and scale the subrange by following the middle scaling rule
([(120− 64)*2, (172− 64)*2] = [112, 216]). The scaled range [112, 216] does not
correspond to any of the three cases, we perform the next iteration. For the next
weight element “2,” a new subrange will be [112+⌊104*0.8⌋, 112+ ⌊104*1.0⌋] =
[195, 216], which corresponds to the upper scaling case. Since the current RS
value is 1, we write (10)2 to the bitstream and reset RS to 0. After the upper scaling,
we obtain [(195− 128)*2, (216− 128)*2]=[134, 176] as a new scaled range, which
is still upper scaling case. Thus, we write 12 to the bitstream and scale the range by
following the upper scaling rule, which results in [(134− 128)*2, (176− 128)*2]=
[12, 96]. It accounts for the lower scaling case, resulting in writing 02 to the
BS. By following the lower scaling rule, we obtain a new scaled range of [12*2,
96*2]=[24, 192], which does not correspond to any of the three cases, terminating
the main loop (lines 1–16 in Figure 5.4). Since we have already encoded all the
weight elements, we need to process the last part of the encoding (lines 17–22
in Figure 5.4). After we increment RS by 1, we write (01)2 to the BS because the
lower bound of the current range (low) is 24 which is less than QTR (64). Finally,
we obtain the encoded bitstream of (001101001)2.

Figure 5.9 demonstrates an example of the weight decoding. Please note
that the N, MAX , HALF, and QTR values are equal to the encoding example.
Before starting the first iteration, we append 7-bits of 02s at the end of BS. In
this example, we will perform five iterations because K, the number of weight
elements encoded in the BS, is 5. We first start with the 8-bit part Z(0), (00110100)2
(=52) in the first iteration. When we calculate the subranges for each weight
element, Z(0) is within the subrange of “0” ([0+ ⌊255*0.0⌋, 0+ ⌊255*0.4⌋] =
[0, 102]). Thus, we write element “0” to the weight data W[0]. Since the subrange
[0, 102] corresponds to the lower scaling case, we scale the lower and upper
bounds of the subrange by 2× (thus, a new scaled range will be [0, 204]) while
increasing the idx by 1. Since the scaled range [0, 204] does not correspond to any
of the three scaling cases, we move to the next iteration. In the second iteration,
Z(1) is equal to (01101001)2 (=105), meaning that it corresponds to the subrange
of the element “1” (([0+ ⌊204*0.4⌋, 0+ ⌊204*0.8⌋] = [81, 163])) which will be
written to the W[1]. A new subrange will be [81, 163] (subrange of j= 1), which
corresponds to the middle scaling case. After scaling the range ([(81− 64)*2,
(163− 64)*2] = [34, 198]) and updating Z(1) (105− 64(QTR)=41((00101001)2)),
the new scaled range does not correspond to any of the three cases. Thus, we
perform the next iteration with Z(2) ((01010010)2 = 82). Similarly, after calcu-
lating the new subrange for each weight element, Z(2) is within the subrange
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i Starting
range

Sub-range Z(idx)-gray-shaded
part

Output w Scaling
case

Updated
idxj = 0 j = 1 j = 2

0 [0, 255] [0, 102] — — ( 00110100 10000000)2 {0} Lower 1

52 scaling

1 [0, 204] [0, 81] [81, 163] — (0 01101001 0000000)2 {0,1} Middle 2

105 scaling

2 [34, 198] [34, 99] — — (00 01010010 000000)2 {0,1,0} Lower 3

82 scaling

3 [68, 198] [68, 120] [120, 172] — (000 10100100 00000)2 {0,1,0,1} Middle 4

164 scaling

4 [112, 216] [112, 153] [153, 195] [195, 216] (0000 11001000 0000)2 {0,1,0,1,2} — —

200

Figure 5.9 An example for decoding by using the presented technique.

([34+ ⌊164*0.0⌋, 34+ ⌊164*0.4⌋]=[34, 99]) of the element “0,” which will be
written to the W[2], and we need to scale the subrange with the lower scaling
rule, resulting in the new scaled range [68, 198] (=[34*2, 99*2]). In the next
iteration, we have a starting range of [68, 198], while Z(3) is (10100100)2 (=164),
which exists within the subrange of the element “1” (164 is within the sub-range
[68+ ⌊130*0.4⌋, 68+ ⌊130*0.8⌋]=[120, 172]). Thus, we write element “1” to
the W[3], and perform the middle scaling with the subrange [120, 172] while
updating Z(3) to 100 (=164− 64(QTR)). After that, we have a new scaled range
[112, 216] (=[(120− 64)*2, (172− 64)*2]), which does not correspond to the mid-
dle scaling case. Thus, we move to the next iteration to seek for a subrange of Z(4),
(11001000)2 (=200). After calculating the subranges for each weight element,
Z(4) is within the subrange of “2” ([112+ ⌊104*0.8⌋, 112+ ⌊104*1.0⌋]=[195,
216]) which will be stored to the W[4]. Since we have already decoded five
weight elements, we finish the decoding procedure with the decoded weight
output W ={0, 1, 0, 1, 2}.

5.4.1 Decoding Hardware

Figure 5.10 shows a block diagram of the decoder hardware with a single DU.
There are two buffers, bitstream buffer (for BS) and decoded weight buffer
(for W), and one table (probability table for PROB). The bitstream buffer contains
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Figure 5.10 Decoding unit (DU) architecture.

the encoded weight bitstream which is delivered from the main memory (or
storage). The probability table maintains F[x] for each weight value (F[0] and
F[32] are always 0 and 1, respectively, meaning that they do not need to be stored
in the table). The decoded weight buffer will store the decoded weight elements.
From the bitstream buffer, we send the Z(idx) (where idx is the starting bit
index of the N-bits) to the range scaling unit which performs the range scaling
according to the three cases (upper, lower, and middle scaling). After that, the
scaled ranges from the range scaling unit and probability values (F[0] − F[32] in
Figure 5.7) are sent to the range calculation unit, which performs calculations
of a new sub-range for each weight value. In the presented design, we perform
32 subrange calculation (corresponds to the lines 4–6 in Figure 5.7) in parallel,
improving the performance of the decoder. In the comparator, the Z(idx) value
and each subrange are also compared in parallel in order to figure out which
weight value should be written to the output in the current iteration. Once the
comparison is done, we store the corresponding element to the decoded weight
buffer (lines 7–9 in Figure 5.7). This process is iteratively performed according to
the orchestration of the control logic.

For proof-of-concept of the decoding hardware,5 we have implemented the hard-
ware in a FPGA board (Xilinx ZCU106). We have used Xilinx Vivado design suite to
implement the decoder design. We have synthesized our design for 150 MHz with
16 DUs (the maximum number of DUs which the FPGA chip can accommodate),
which results in 16× higher throughput than the 1-DU decoder implementation.
To utilize 16 DUs, we divide the weight elements into 16 chunks as evenly as
possible and encode each chunk into a separate bitstream. When decoding the
bitstreams, we send each bitstream to each of the 16 DUs. Although the prototype

5 Hardware resources for the 16-DU decoder in FPGA are as follows: 141,568 LUTs; 49,379
flip-flops; 1152 DSP48E blocks; and 512 BRAM blocks. If we share the decoded weight buffer
with the CNN accelerator, we could further reduce the resource usage though we design a
separate decoded weight buffer in the implementation.
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Figure 5.11 Latency hiding for the decoding hardware.

is implemented with 16 DUs, the number of DUs is one of the design parameters
which can be flexibly determined by the designer considering the available hard-
ware resources (we will demonstrate the latency vs. resource usage trade-off in
Section 5.6.3). If we implement the decoding hardware with application-specific
integrated circuits (ASICs), we could implement more number of DUs, resulting in
a better decoding throughput. According to the implementation results, the single
DU hardware takes 6.45 clock cycles per one weight element decoding, on average,
though the total number of decoding cycles depends on the pattern and sequence
of the weight elements in the bitstream.

When executing the CNN inference, the weight decoding must be performed
prior to the convolution operations. Without hiding the decoding latency, the
latency overhead would be nonnegligible, which is not desirable. To minimize the
decoding latency, we can overlap the transfer and decoding latency for weights
in the ith CNN layer with the (i − 1)th CNN layer execution latency in the CNN
accelerator (illustrated in Figure 5.11). In this case, the latency overhead will be
only decoding latency of the weights for the first CNN layer (where the weight
decoding latency cannot be overlapped) as long as the following two conditions
are satisfied. First, the input and output feature maps are reused across the CNN
layers in the CNN accelerator (hence, the input and output feature maps do not
need to be transferred between the memory and the PLM of the accelerator).
Second, data transfer and decoding latency of CNN layer i are fully hidden by
the execution time of CNN layer i − 1, where integer i > 1. To satisfy the second
condition, more DUs in the decoding hardware can be desirable. This is because
the decoding latency can be further reduced as we have more DUs in the decoder.

5.5 Evaluation Methodology

We show the evaluation results in terms of three metrics: compression ratio, energy
consumption in the main memory, and latency overhead. For benchmarks, we use
five CNN models: Network-in-Network (NiN) [117], SqueezeNet [62], GoogleNet
[35], AlexNet [30], and CaffeNet [118]. We use 32 for N in the evaluations.

We have used the trained FP32 weights provided by Caffe framework [118].
For 5-bit quantization, we have employed an incremental network quantization
(INQ) [95] method to generate 5-bit power-of-two (i.e., utilizing binary logarithm
or logarithm to the base 2) quantized weights from the 32-bit full-precision
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weights. The main reason we choose INQ for the baseline is that it shows
comparable or even better accuracy with 5-bit quantized weights as compared
to 32-bit full-precision weights when running CNN inferences. Though we use
a specific method (INQ) for 5-bit power-of-two quantization, the presented
technique can be deployed with any 5-bit quantization method. For AlexNet
and CaffeNet, we have additionally employed weight pruning (we used [119]
and [120] for weight pruning of AlexNet and CaffeNet, respectively) to figure
out how weight pruning affects the compression ratio. Although the top-1/top-5
accuracies show a little fluctuation by applying the weight pruning,6 the presented
compression technique itself does not adversely affect the inference accuracy as
the technique is based on lossless compression. In other words, accuracy losses
are not attributed to the compression technique, but attributed to the quantization
and/or weight pruning. For AlexNet and CaffeNet, we demonstrate the results for
two separate cases: (i) only 5-bit quantization (denoted as Q) and (ii) pruning and
5-bit quantization (denoted as P+Q).

Firstly, we present compression ratio (Section 5.6.1), memory energy consump-
tion (Section 5.6.1), and latency overheads for CNN inference (Section 5.6.2). We
only compare the compression ratio and memory energy consumption for CNN
convolutional (CONV) layers while excluding the fully connected (FC) layers. For
latency overheads, we assume that we only compress CONV layers’ weights, while
the weights of the other layers such as FC layers are not compressed. In this case,
we do not have the latency overheads of the layers other than the CONV layers
because it does not need to be decompressed. Although early CNN models have a
large number of weights in FC layers (e.g., AlexNet [30]), recent CNN models have
FC layers only in the last layer of the CNN model (e.g., ResNet [32]), meaning that
the CNN layer architecture is mostly composed of CONV layers. For deployment of
the presented technique to highly resource-constrained systems, we also demon-
strate a trade-off between the CNN inference latency and hardware resource usage
(Section 5.6.3). In addition, we further show a system-level energy consumption
for a CNN inference in highly resource-constrained systems (Section 5.6.4).

5.6 Evaluation Results

5.6.1 Compression Ratio and Memory Energy Consumption

The compression ratio (CR) is defined as the ratio of uncompressed data size Su to
the compressed data size Sc, that is, CR = Su∕Sc. Table 5.1 summarizes the com-
pression ratio across five CNN models. In Table 5.1, 32-bit, 16-bit, 8-bit, and 5-bit

6 Weight pruning results in top-1/top-5=−0.0%/+0.4% and top-1/top-5=−1.5%/−1.4% for
AlexNet and CaffeNet, respectively. The accuracy results are obtained by using Caffe framework
[118] with ImageNet dataset [121].
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Table 5.1 Compression ratio (for only CONV layers) comparison across five CNN models.

CNN models 32-bit 16-bit 8-bit 5-bit HC-5bit AC-5bit IE-5bit

NiN (Q) 9.335 9.744 9.747
SqueezeNet (Q) 8.817 9.118 9.157
GoogleNet (Q) 8.801 9.434 9.454
AlexNet (Q) 9.652 9.829 9.835
CaffeNet (Q) 1.000 2.000 4.000 6.400 9.524 9.672 9.678
Average (Q) 9.226 9.560 9.574
AlexNet (P+Q) 26.675 57.498 57.536
CaffeNet (P+Q) 28.806 112.154 112.333
Average (P+Q) 27.744 84.826 84.934

Bold values denote the values corresponding to our proposed/presented arithmetic coding
technique.

correspond to the cases of uncompressed 32-bit FP, 16-bit quantized, 8-bit quan-
tized, and 5-bit quantized weights, respectively. HC-5bit and AC-5bit (the pre-
sented technique) denote the cases of 5-bit quantized weight compressed with
Huffman coding and arithmetic coding, respectively. IE-5bit denotes the theoreti-
cal bound of compression ratio (information entropy) when losslessly compressing
the 5-bit quantized weight data.

In the case of only quantization (Q), the AC-5bit reduces the weight data size
by 9.6× as compared to the uncompressed 32-bit weight data. In addition, the
presented technique reduces the weight data size by 29.8–34.9% as compared
to the uncompressed 5-bit quantized weight data size. It means the presented
technique can significantly reduce the required storage and memory. In addition,
the arithmetic coding-based compression technique shows better compression
ratio as compared to the Huffman coding-based compression technique. On aver-
age, when compressing the 5-bit quantized weight data, the presented technique
results in 3.7% (up to 7.2%) better compression ratio compared to the Huffman
coding-based technique (HC-5bit). Moreover, the arithmetic coding-based com-
pression technique shows near-optimal compression ratios. As compared to
IE-5bit, the AC-5bit shows only 0.1% less compression ratio, on average.

In the case of pruning and quantization (P+Q), the AC-5-bit obtains 57.5× and
112.2× higher compression ratio over 32-bit FP for AlexNet and CaffeNet, respec-
tively. The pruning significantly increases the number of zero-valued elements
in the weights, which also significantly contributes to the compression ratio. On
the other hand, HC-5-bit obtains 26.7× and 28.8× (as compared to the 32-bit FP)
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better compression ratios for AlexNet and CaffeNet, respectively. However, the
AC-5bit results in 2.2× and 3.9× better compression ratios for AlexNet and Caf-
feNet, respectively, as compared to HC-5bit. As shown in the results (Table 5.1),
the presented technique shows more promising results when applying the weight
pruning which is a widely used technique for CNN inferences.

We also compare the presented technique with other state-of-the-art techniques
in terms of the compression ratio when using AlexNet [30]. Though the compar-
ison in Table 5.1 is based on the compression of the weight in the CONV layers,
for a fair comparison, we have compared the presented technique to other tech-
niques based on the compression of the weights in the entire layers including
the FC layers. Before applying the presented compression technique, the entire
CONV and FC layers are pruned by [119] and quantized to 5-bit format by [95].
As shown in Table 5.2, the presented technique shows better compression ratio as
compared to the techniques or methods presented in [46], [97], and [104]. As com-
pared to the method presented in [106]; however, the presented technique shows
a little lower compression ratio by 24.7%. In [106], the bzip2 compression is addi-
tionally applied to pruned and quantized weights. In this case, there would be a
nonnegligible latency overhead for decompressing the compressed weights during
the runtime CNN inference. Please note that without bzip2 compression in [106],
the compression ratio of the presented technique is better than that of [106] by
14.2%. Since this chapter has also introduced hardware decoder and pipelining
which minimizes latency overhead of runtime weight decompression, the pre-
sented technique would be more practical and suitable for real-world deployment.

Higher weight compression ratio translates into less memory energy consump-
tion when transferring the weight data to the PLM of the CNN accelerator or the
NPU. Table 5.3 presents memory data transfer energy comparison results when
the device uses LPDDR4 (5 pJ per bit [122] and 0.43 W static power [123]) dynamic

Table 5.2 AlexNet (full layers including CONV and
FC layers) compression ratio comparison of the
presented technique with the state-of-the-art
methods.

Method
Compression
ratio

[46] 34.8
[97] 40.7
[104] 21.9
[106] (w/o bzip2) 57.5 (37.9)
Presented technique (AC-5 bit) 43.3
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Table 5.3 Memory energy consumption (μJ) when transferring the weight data to the
CNN accelerator or NPU on-chip memory.

CNN model 32-bit 16-bit 8-bit 5-bit HC-5bit AC-5bit IE-5bit

NiN (Q) 17532.72 8766.36 4383.18 2924.72 1907.95 1814.19 1798.76
SqueezeNet (Q) 2874.67 1437.34 718.67 503.87 353.31 341.66 313.94
GoogleNet (Q) 14089.60 7044.80 3522.40 2398.83 1626.18 1536.88 1490.30
AlexNet (Q) 5388.55 2694.27 1347.14 902.44 567.10 556.90 547.88
CaffeNet (Q) 574.74 565.21 556.77
AlexNet (P+Q) 201.99 93.71 93.65
CaffeNet (P+Q) 187.06 48.05 47.97

random access memory. We have estimated the dynamic energy by multiplying
the accessed data size (in bits) by the per-bit access energy and static energy by
multiplying the static power by the memory transfer time. The total estimated
energy consumption is a summation of the dynamic and static energy. When
only employing the 5-bit quantization (Q), the AC-5bit reduces the memory data
transfer energy by 89.2% as compared to the case of using uncompressed 32-bit
FP weight data. The AC-5bit also leads to 36.4% and 3.4% less memory energy
consumption for weight transfer as compared to the cases of uncompressed 5-bit
weight and HC-5bit, respectively. When employing both 5-bit quantization and
pruning (P+Q), the AC-5bit results in 98.3% and 99.1% less memory energy
consumption for AlexNet and CaffeNet, respectively, as compared to the case
of 32-bit FP weights. Even compared to HC-5bit, the AC-5bit reduces memory
energy consumption by 53.6% and 74.3% for AlexNet and CaffeNet, respectively.
Considering that the energy consumption in memory-related parts accounts for a
large portion in resource-constrained edge systems [109], the presented technique
will enable more energy-efficient resource-constrained edge devices.

5.6.2 Latency Overhead

The presented technique incurs decoding latency before the weight data are loaded
to the accelerator on-chip memory. As explained in Section 5.4.1, the decoding
latency can be hidden by overlapping bitstream decoding in the decoding hard-
ware with the CNN layer execution in the accelerator or the NPU. Even with the
latency hiding, the weight decoding latency for the first layer in the CNN model
cannot be hidden, thus incurring the latency overhead. Table 5.4 summarizes the
latency overhead results when using the presented decoding hardware combined
with various state-of-the-art CNN accelerators [112, 113, 114] (“Combined CNN



�

� �

�

5.6 Evaluation Results 79

Table 5.4 Inference latency (in milliseconds) and overhead comparison across the
baseline (w/o the presented technique) and the presented technique (16-DU decoder) w/
latency hiding (LH) and w/o LH when employing various state-of-the-art CNN
accelerators.

Combined CNN
accelerator [112] [113] [114]

CNN model AlexNet AlexNet AlexNet GoogleNet
Platform Stratix-V GXA7 ZC 706 Xilinx ZU9 MPSoC
Clock (MHz) 155 156.25 100
Precision (bits) 5-bits 5-bits 8-bits
Peak throughput
(GOP/s)

206.87 155.10 14.97 15.63

Decode + Transfer
latency

3.79 6.70 16.06 42.62

Decode + Transfer
latency (pruned)

3.45 3.42 10.94 N/A

Baseline inference
latency

8.83 52.80 90.01 202.02

Inference
latency of the
presented
technique w/ LH
(overhead)

9.31 (5.48%) 52.886
(0.16%)

91.16
(1.27%)

204.85
(1.40%)

Inference
latency of the
presented
technique w/ LH
(overhead) w/
pruned weights

8.91 (0.91%) 52.884
(0.16%)

90.15
(0.16%)

N/A

Inference latency
of the presented
technique w/o LH
(overhead)

12.62 (42.94%) 59.50
(13.26%)

106.07
(17.84%)

244.64
(21.10%)

Inference latency
of the presented
technique w/o LH
(overhead) w/
pruned weights

12.28 (39.07%) 56.24
(6.48%)

100.95
(12.15%)

N/A

When estimating the decoding latency, we assume that the presented decoder operates at the
same clock frequency as the CNN accelerator.
Source: Adapted from [112–114].
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Accelerator” in Table 5.4). We present the latency overhead results when the intro-
duced decoding hardware (Figure 5.10) is combined with the FPGA-based CNN
accelerators because the decoding hardware prototype is implemented and veri-
fied in an FPGA.

There is also a CNN accelerator [114] with 8-bit precision in Table 5.4, while
the main target for weight compression is 5-bit quantized weights. Though we
have suggested the presented technique for 5-bit weights, the presented arithmetic
coding-based encoding and decoding technique can also be used along with 8-bit
precision-based CNN accelerators. In this case, we only compress 5-bits within
each 8-bit weight element by using the arithmetic coding, while the remaining
bits (i.e., 3-bits) of the weights remain uncompressed (the remaining 3-bits can
be transferred directly from the memory to the CNN accelerator without passing
through the hardware decoder). In this case, we will have a lower compression
ratio, and a higher weight decoding and transfer latency as compared to the case
of 5-bit weight compression due to the uncompressed part in each weight element.
Nonetheless, to present the versatility of the presented technique, we also present
the latency overhead results when adopting the presented technique with the 8-bit
precision accelerator [114] in Table 5.4.

When using the presented decoding hardware and various CNN accelerators
without the latency hiding, the latency overhead is 13.26–42.94%. On the other
hand, with the latency hiding,7 the presented technique without pruning shows
0.16–5.48% latency overheads when performing the CNN inferences, implying
that the latency overhead from the decoding hardware is small. In the case of the
presented technique with pruning and latency hiding, the latency overheads are
almost negligible (0.16–0.91%). When focusing on the case with 8-bit precision
accelerator [114] in Table 5.4, the latency overhead is only up to 1.40%, implying
that the presented technique can also be deployed with 8-bit precision accelerator
with a negligible latency overhead.

The huge latency overhead reduction when applying the pruning is attributed
to the reduced weight data size with arithmetic coding (due to the increase in
the number of zero-valued weight elements), resulting in quicker decoding and
shorter weight transfer latency. Considering that the main focus of the presented
technique is resource-constrained edge devices, this small latency overhead is suf-
ficiently acceptable as the benefits from the reduced memory and storage require-
ment and reduced memory energy consumption are much greater than the latency
overhead.

7 The latency hiding does not affect the compression ratio, but reduces latency overhead
incurred by the runtime decoding.
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5.6.3 Latency vs. Resource Usage Trade-Off

For systems or devices under tight resource constraints, we also present the
latency vs. resource usage trade-off when employing 2-DU, 4-DU, 8-DU, and
16-DU decoders.8 The 2-DU, 4-DU, and 8-DU designs require much less hardware
resources than the 16-DU design. Thus, the 2-DU, 4-DU, and 8-DU designs can be
suitable for small or tiny embedded edge devices. However, the smaller number
of DUs will lead to a higher decoding latency overhead, which also results in
increased CNN inference latency. As shown in Figure 5.12, in the case of the
4-DU and 8-DU decoders, performance overheads without pruning can be up to
34.2% and 8.73%, respectively, whereas the performance overheads with pruning
can be up to 31.4% and 2.77%, respectively, even with the latency hiding. With the
2-DU decoder, which can be deployed for the systems with extremely stringent
resource constraints, the latency overhead can be up to 126.1% without pruning
and 108.0% with pruning. The reason why the decoding time overhead seems to
be large when used with the CNN accelerator in [112] is that the baseline CNN
inference latency in [112] is very small, which makes the latency overhead from
the decoder relatively large. For the decoding overhead with the CNN accelerator
in [114], even though the baseline inference latency of [114] is higher than that
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Figure 5.12 A comparison of decoding time overheads across the number of DUs in the
decoder (2-DU, 4-DU, 8-DU, and 16-DU) when running AlexNet. Please note that LH
stands for latency hiding

8 We have additionally implemented and verified 8-DU decoder design in ZCU106. We have
also implemented and verified 2-DU and 4-DU decoder designs in Ultra96 platform, which is
used in highly resource-constrained edge devices and/or embedded systems.
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of [113], the latency overhead is larger as compared to the case of [113]. This is
because the CNN accelerator in [114] uses the 8-bit precision accelerator, which
implies that the compression ratio will be worse in [114] as compared to 5-bit
precision accelerators as the presented arithmetic coding technique is optimized
for 5-bit weight encoding (i.e., 5-bits within 8-bits element are compressed
while the remaining 3-bits remain uncompressed). This results in relatively high
transfer latency when using the CNN accelerator in [114] with the decoder. In
the cases of 8-DU and 16-DU with the CNN accelerator in [114], the transfer
latency and decoding latency can be mostly hidden by the CNN layer processing
time. However, in the cases of 2-DU and 4-DU with the CNN accelerator in
[114], the transfer latency and decoding latency cannot be hidden by the CNN
layer processing time, leading to the large latency overhead. For [112], though
relative decoding time overhead can be large, the absolute inference latency
is negligibly affected (+9.54 ms and +2.77 ms with 2-DU and 4-DU decoders,
respectively) as shown in Table 5.5. For [114], the decoding time overheads
with 2-DU and 4-DU decoders can be decreased if we use 5-bit precision CNN
accelerators.

In typical edge devices, the baseline CNN inference latency will not be very
small. This is because the CNN accelerator performance will be limited due to
the tight hardware resource constraints. In addition, satisfying the deadline of
the response time (i.e., latency) is more important in edge or embedded systems,
which imply that the increased latency overhead is acceptable as long as it does
not violate the response time deadline. Thus, the edge system designers can choose
the appropriate number of DUs by considering the performance requirements and
resource constraints of the system under design.

Table 5.5 Inference latencies (in ms) across the
state-of-the-art CNN accelerators without the presented
technique (baseline) and with the presented technique
(2-DU, 4-DU, 8-DU, and 16-DU).

Combined CNN accelerator

[112] [113] [114]

Baseline 8.83 52.80 90.01
2-DU 18.37 53.23 138.96
4-DU 11.60 53.02 105.46
8-DU 9.02 52.91 92.50
16-DU 8.91 52.88 90.15
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5.6.4 System-Level Energy Estimation

We compare the system-level energy when using the presented arithmetic
coding-based compression for the 5-bit quantized and pruned weights with
4-DU decoder and baseline (i.e., without the presented compression and decoder
while only 5-bit quantization is employed since the combined CNN accelerators
supports 5-bit precision arithmetic operations). The system-level energy includes
the CNN accelerator (with the 4-DU decoder in the case with the presented
technique) energy, DRAM-based main memory energy, and NVMe (Non-Volatile
Memory Express) flash-based storage energy. Since the nonvolatile flash storage
will be accessed to load the weights into the main memory before CNN infer-
ences, we have included the flash-based storage energy to the system-level energy
estimation. Please note that we use the flash energy parameter reported in [124]
(1 J/28 MB = 4.26 nJ per bit). Since CNN accelerator power is reported in [112]
and [113], while it is not reported in [114], we only include the results with
[112] and [113] for the system-level energy estimation. The reason why we choose
the 4-DU decoder among the various configurations is that the 4-DU decoder can
be accommodated in an edge/embedded platform (such as Ultra96) and shows a
good tradeoff between the inference latency and resource usage.

As shown in Table 5.6, for the combined accelerators with the presented
technique, power consumption and inference latency are increased, which results
in an increased energy consumption in the FPGA by 40.2% and 5.7% with the

Table 5.6 System-level energy comparison between the baseline (Q) and the presented
technique (P+Q) with 4-DU decoder.

Combined CNN accelerator [112] [113]

FPGA platform Stratix-GXA7 ZC706

Baseline (Q) Latency (ms) 8.83 52.80
FPGA power (W) 8.69 12.02
FPGA energy (mJ) 76.73 634.66
Total energy (mJ) 130.27 707.10

Our technique
(P+Q) with
4-DU decoder

Latency (ms) 11.60 53.23

FPGA power (W) 9.28 12.61
FPGA energy (mJ) 107.59 670.96
Total energy (mJ) 118.11 699.39
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CNN accelerators in [112] and [113], respectively. However, when considering
the system-level energy consumption which includes the DRAM memory and
flash-based storage energy consumption, the presented technique with 4-DU
configuration results in the system-level energy reduction by 9.3% and 1.1% with
the CNN accelerators in [112] and [113], respectively. This is attributed to the
reduced weight data size from the presented arithmetic coding-based weight
compression.

5.7 Chapter Summary

In resource-constrained edge devices, one of the most serious challenges for
deploying on-device CNN inferences is huge weight data size which can hardly be
fully stored in an edge device. This chapter introduced an arithmetic coding-based
5-bit quantized weight compression technique with range scaling for lossless 5-bit
weight compression. The chapter also presented a decoding hardware for fast, yet
efficient runtime weight decoding (decompression). Evaluation results revealed
that employing the presented weight compression technique to 5-bit quantized
weights (not pruned) achieved 9.6× better compression ratio as compared to the
uncompressed 32-bit FP weights. When employing the presented technique to
the pruned 5-bit quantized weights, the technique resulted in 57.5×–112.2× better
compression ratio as compared to the uncompressed 32-bit FP weights. Due to the
reduced weight data size, the technique also led to memory data transfer energy
reduction by 89.2% (by up to 99.1% for pruned weights), on average, as compared
to the uncompressed 32-bit FP weight data. When combining the presented
decoding hardware with various state-of-the-art CNN accelerators, the latency
overheads of the presented technique with 16-DU decoder along with the latency
hiding were only 0.16–5.48% and 0.16–0.91% for nonpruned and pruned weights,
respectively. In addition, the presented technique with 4-DU decoder hardware
reduced system-level energy consumption by 1.1–9.3% as compared to the case
without the presented technique.
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6

Contemporary Dense CNN Accelerators

This chapter provides background on dense convolutional neural network (CNN)
accelerators, including the exact definition of the dense CNN accelerators.
The chapter then discusses popular architectures of the contemporary dense
CNN accelerator. Toward the end, the chapter highlights recent advancements in
dense CNN accelerators.

6.1 Background on Dense CNN Accelerators

The CNN accelerators generally perform matrix multiplication (MM) with
hardware logic. Since the CNN weights and feature maps contain lots of zeros,
many researches have explored the efficient representation of the sparse matrix.
However, in the early stages of the CNN hardware development, the dense format
representation has been widely used as it is more intuitive and efficient for storing
the dense (i.e., low sparsity) matrix.

As shown in Figure 6.1, we define a dense CNN accelerator as a CNN accelerator
that accepts the weights or activation maps (feature maps) in dense format matrices.
Please note that a dense format can also contain a sparse matrix even if the
sparsity of the matrix is sufficiently high. Thus, it does not necessarily mean
that the dense format always contains dense matrices for representing weights
or activation maps. We cover the CNN accelerators that accept sparse format
matrices in Part IV of this book (Chapters 9–12).

6.2 Representation of the CNN Weights and Feature
Maps in Dense Format

Dense CNN accelerators generally perform matrix multiplications. Thus, it is
natural to represent CNN weights (filters) and input feature maps (IFMs) in

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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Figure 6.1 The comparison between the dense and sparse CNN accelerators. We have
shown the compressed sparse row (CSR) format as an example of the sparse format
although other sparse formats, such as bitmap-based compression, can also be used.

a matrix format for dense CNN accelerators. Since the convolution operations
are performed like a sliding window (i.e., CNN filters slide onto the IFMs), the
IFMs should be unrolled for dense format matrix conversion. The unrolled dense
matrix of the IFMs is often referred to as Toeplitz matrix.

Figure 6.2 shows how the IFMs and filters are transformed into a matrix–vector
multiplication. For convolution operations, the overlapped area in the IFMs
(gray-shaded part in the IFM in Figure 6.2) is flattened into a row vector format
with the dimension of 1 × 4. As we need to perform convolution with four
overlapped areas in the example in Figure 6.2, we generate four rows, generating
a 4 × 4 matrix. Similarly, the filter is flattened into a column vector with the
dimension of 4 × 1. Finally, the generated 4 × 4 matrix and 4 × 1 vector are
multiplied, generating the 4 × 1 vector as a result.

Most of the contemporary CNN models are employing multiple input and
output channels for better feature extraction. Figure 6.3 depicts another example
of converting the CNN IFMs and filters into dense matrix–matrix multiplication
when performing a 3 × 3 convolution with two input channels and two output
channels. Assuming the filter weights slide onto the IFMs with a row major order,
the IFM elements for convolution are unrolled in a form of row vectors to generate
one output feature map (OFM) element. Since we generate a 3 × 3 OFM for a
single output channel, we have 9 rows generating the 9 × 18 matrix. A weight
filter also forms a column vector with 18 elements (=9 elements × 2 input
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Figure 6.2 The conversion of convolution operations into matrix–vector multiplication.

channels). As we have two sets of filters to generate the two output channels, we
append the two column vectors to make a matrix format with the dimension of
18 × 2. As a result of the convolution of the example presented in Figure 6.3, we
obtain the matrix of OFMs with the dimension of 9 × 2.

6.3 Popular Architectures for Dense CNN Accelerators

The widely used dense CNN accelerators are based on systolic arrays as shown in
Figure 6.4a. The systolic arrays employ a dataflow-driven architecture as the data
are moved between the processing elements (PEs) and transferred via the fixed
routes while minimizing the role of the control logic (i.e., minimizing the impact
of the control flow). The systolic arrays are widely used for matrix multiplication
(MM) engine.

In systolic arrays, there are multiple PEs which are organized in a grid. In a
single PE, multiply-and-accumulate (MAC) is a key operation. Thus, a PE has
a multiplier and an adder which perform the multiplication and accumulation,
respectively. There are also registers in systolic arrays to temporarily store the
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Figure 6.3 The conversion of multichannel convolution operations into matrix–matrix multiplication.
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Figure 6.4 Hardware architecture of systolic array- and MAC array-based CNN
accelerator. BN and ACT stand for batch normalization and activation, respectively.
(a) Systolic array-based CNN accelerator architecture (weight stationary). (b) An array of
MAC PE-based CNN accelerator architecture.

weights, inputs, and partial sums (outputs). In systolic arrays, there are two
routing paths between the PEs: one in the X-axis direction and the other in the
Y -axis direction. These paths can be differently used depending on different
dataflows.

In typical systolic arrays, there are three representative dataflows [54]: weight
stationary, output stationary, and input stationary. In case of the weight station-
ary dataflow, the weights are pinned into the PEs, and the inputs are streamed
across the PEs (in the direction of X-axis). The accumulated outputs are delivered
through the PEs in the direction of Y -axis. In the case of output stationary dataflow,
the outputs are pinned into the PEs while the inputs and the weights are streamed
in the direction of X-axis and Y -axis, respectively. In the case of input stationary
dataflow, the inputs are pinned to the PEs while the weights are streamed in the
direction of X-axis, and the outputs are accumulated in the direction of Y -axis.
Figure 6.5 summarizes the three dataflows used in systolic arrays.

Instead of systolic arrays where PEs are organized in a grid, one can also utilize
a MAC array-based structure for CNN accelerators. As shown in Figure 6.4b, this
architecture is similar to the single instruction multiple data (SIMD) architecture
where a single instruction triggers multiple PEs in the array. The MAC array-based
structure exploits the parallelism of the MACs within the matrix multiplications.
For example, when performing the inner products, the MAC operations can
be executed in parallel with different rows and columns of the input matrices.
In addition, as in [125] and also described in Chapter 15, the multiple MAC PEs
in the array can be used in parallel to generate multiple OFMs in parallel.
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Figure 6.5 Three widely used systolic array dataflows in CNN accelerators. (a) Weight
stationary, (b) output stationary, and (c) input stationary.

6.4 Recent Advancements in Dense CNN Accelerators

Many dense architectures have been introduced in the past for the acceleration
of CNN inference. The proposed accelerators either optimize the compute
[39, 126–130] or the memory bandwidth [131, 132]. Accelerators proposed in
[133, 134] use Booth encoding to avoid the use of zeros and reduce the total
computations. They, however, still transfer zeros to and from memory which
incurs static random access memory (SRAM) area and energy overhead. Block
circulant matrices for weights were introduced in CirCNN [135]. CirCNN,
however, requires complex fast Fourier transform (FFT) operations in its PE
design which significantly increases the area overhead.

In-memory accelerators have also been presented in literature [136, 137] that
use analog logic design to perform matrix multiplications within memory. Analog
circuits, however, are impacted by noise and variations during the manufacturing
process which can significantly impact the CNN model accuracy during inference.

Chen et al. have proposed Eyeriss [45], a nonsystolic array, reconfigurable
spatial architecture along with a new dataflow scheme called row stationary to
maximize the data reuse. This design, however, incurs high PE costs owing to
local storage and control in PE. It also has low hardware utilization which results
in low throughput per PE. Liu et al. [138] have proposed an field-programmable
gate array (FPGA)-based CNN accelerator with an integrated depthwise separable
mode of operation. This accelerator, however, has low throughput because
of the usage of a 32-bit floating point format. Bai et al. [139] have proposed
an FPGA-based CNN accelerator having a dedicated matrix multiplication
engine (MME) on Arria 10 SoC. It achieves a frame rate of 266 fps; however,
its MME engine has a huge digital signal processing (DSP) cost of 1200+ DSP
blocks. Miyashita et al. [37] have introduced the concept of logarithmic data
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representation for neural network accelerator designs. It also gives accuracy
comparison between linear and log quantization. Vogel et al. [38] have proposed
an accelerator design using an arbitrary log base. It, however, does not utilize
the low hardware overhead of the log-based PE and instead rely on linear PE
arrangements. Huan et al. [140] propose a reconfigurable design for various
convolution kernels. It uses a propagated input data-flow scheme but incurs high
latency and low hardware utilization. Jo et al. [141] have proposed a rescheduled
dataflow for convolution to optimize the energy efficiency. Chang and Chang
[142] have proposed VWA, a vectorwise accelerator architecture, with the goal
of maximizing hardware utilization. It supports various kernel sizes from 1 × 1
to 5 × 5. Although some of the recent designs achieve high hardware utilization,
they are not able to increase the peak throughput per PE count beyond unity
owing to the use of single-core, linear PEs with high area cost.

One of the most well-known dense CNN accelerators from industries is Google
tensor processing unit (TPU). The TPUs have been deployed in Google data cen-
ters since 2015 [78]. According to [127], TPUv1 is based on 256 × 256 PE-based
systolic array with 8 bit integer precision support. However, for the fast deploy-
ment of TPUv1, architectural support for sparse matrix multiplication has not
been included, meaning that the TPUv1 only accepts dense format inputs. The
TPU has been currently updated to TPUv4i, which shows 1.5× better peak tera
floating-point operations per second (TFLOPS) per chip with bf16 (brain floating
point) precision support.

6.5 Chapter Summary

This chapter defined dense CNN accelerators and provided background of dense
CNN accelerators. The chapter discussed the representation of CNN weights
and feature maps in dense format that is required for dense CNN accelerators.
The chapter elaborated systolic array- and MAC array-based architectures for
dense CNN accelerators. Finally, the chapter highlighted recent advancements
in dense CNN accelerators. In the following chapters, this book presents modern
dense CNN accelerators that overcome the limitations of contemporary dense
CNN accelerators. In Chapter 7, iMAC CNN accelerator is introduced, which is
based on the MAC array architecture and is suitable for resource-constrained
systems [188]. In Chapter 8, NeuroMAX accelerator is introduced, which supports
multithreaded execution and log-based MAC operation [96].
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iMAC: Image-to-Column and General Matrix
Multiplication-Based Dense CNN Accelerator

In resource-constrained systems, cost-efficiency (i.e., performance per unit cost)
is one of the key metrics. For cost-efficient design, the approach introduced
in this chapter performs finer-grained offloading of the operations required
for convolution layers instead of offloading the entire convolution layer opera-
tions. We choose im2col (image-to-column) and MAC (general matrix-multiply
[GEMM] and accumulation), which we refer to as iMAC (im2col + MAC), for
offloading to the hardware (HW) accelerator. Though only offloading GEMM
could be a cost-efficient approach, we have determined that im2col significantly
increases the amount of data transfer (e.g., 9× in the case of 3 × 3 convolution),
and thus necessitates in situ execution of im2col and MAC within the accelerator.
This chapter presents implementation results of a prototype of the introduced
design in ZED platform (which equips ZYNQ7020) with full-stack software (SW)
including operating system (petaLinux).

7.1 Background and Motivation

Inference tasks of convolutional neural networks (CNNs) are often required to
be executed on-device (e.g., IoT edge) because of limited communication band-
width to cloud and security/privacy concerns. However, since IoT devices have a
tight resource budget, it is very hard to meet the response time requirement of the
CNNs. A major challenge of CNN inferences in resource-constrained IoT devices
is to find an optimal point of trade-off between resource cost and response time.
A tight budget for hardware resources makes it hard to offload the computational
tasks such as convolution operations. In such systems, CNN inferences are typ-
ically performed by CPUs. However, CPUs are known to be inefficient for CNN
execution because of their meagre performance on data-parallel workloads such
as matrix multiplications. Even with the single instruction multiple data (SIMD)

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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instructions, general CPU provides only a few SIMD execution lanes that limit the
exploitation of parallelism in matrix or vector operations. In addition, CPUs rely
on caches for data transfer between the CPU and main memory, which can be
inefficient when running CNNs with large number of weights (i.e., weight size >

cache capacity) because of cache misses. These cache misses can result in slower
response time and relatively high energy consumption.

To improve response time and energy efficiency, one can employ the GEMM
(GEneral Matrix Multiplication) hardware accelerator such as systolic arrays to
offload convolution operations of CNNs. In fact, GEMM accelerators can be used
not only for CNNs but also for many other embedded/IoT applications, making
this design decision very attractive for resource-constrained IoT and embedded
systems. As shown in Figure 7.1, when running CNNs with a GEMM accelerator,
the GEMM can be executed in a dedicated GEMM accelerator while the other CNN
tasks can be executed in the CPU. However, before performing GEMM, we need
to unroll the input feature maps (IFMs) to fit the data into matrix or vectors that
can be applied to the GEMM hardware. This is often called as “im2col” which
is already employed in many CNN frameworks such as [143]. However, decou-
pled im2col and GEMM execution causes nonnegligible data storage and transfer
overhead. The main reason for this overhead is that im2col actually explodes the
amount of storage requirements and the amount of data transfer depending on the
weight kernel size (e.g., 3 × 3 or 5 × 5). For example, to execute 3 × 3 convolution
operations with GEMM on the accelerator, we need to transform the IFM to mul-
tiple vectors that have redundant IFM elements resulting in 9× more data storage
and transfer requirements for IFMs. To utilize a GEMM accelerator, we need to
offload the unrolled vectors, which has 9× larger size as compared to the original
data size, which is not desirable for meeting response time and energy constraints
due to high data transfer overheads.

The other problem using the hardware accelerators for CNNs is that the
CPU remains idle during the direct memory access (DMA) transfer and accel-
erator execution. If we could find the parallelism among the convolution
layer operations, we would efficiently utilize the hardware resources in the
resource-constrained systems. To exploit the parallelism, the approach that uses
both accelerators and CPUs such as [109] would be beneficial. The presented
work also exploits the parallelism in convolution layer operations to utilize both
the accelerator and the CPU simultaneously. The exploitation of parallelism and

im2col GEMM (MAC)
Normalization

Scale bias
Add bias

Activation
Input

feature
map

Output
feature

map

Figure 7.1 A general flow of the convolution layer execution.
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HW/SW co-design eventually leads to better response time and energy efficiency
of CNN inference in the presented design.

7.2 Architecture

The iMAC hardware accelerator functions a combined operation of im2col and
MAC (we refer to it as im2col+MAC or iMAC). Figure 7.2 shows the conven-
tional software-based im2col with 5 × 5 input feature map, 3 × 3 weights, one
zero-padding, and stride as one. Since the GEMM or MAC operations can be
executed after the SW-based im2col is entirely finished, it just unrolls the IFM
into multiple vectors for matrix multiplication and accumulation in a rowwise
fashion as shown in Figure 7.2. However, as we discussed in Section 7.1, the
im2col actually generates 9× more data (25*9 elements) in the case of 3 × 3
convolutions, which causes inefficiency in terms of data storage and transfer.

Since im2col, which must be performed before GEMM, replicates IFM data
for GEMM execution, only offloading the GEMM to the accelerator increases
the required data storage and transfer, which is not desirable for cognitive IoT
systems. Hence, we combine the im2col, GEMM, and accumulation operation
within a unified hardware accelerator referred to as “iMAC.” Figure 7.3 shows
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Figure 7.2 Conventional im2col execution in software.
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an overall architecture of the iMAC accelerator. From the input block random
access memory (BRAM), IFM data are delivered to the im2col functional units
(FUs) that perform im2col operations for a certain area of the IFM. Data that are
unrolled from the im2col FU is delivered to Im2colBuffer, which is multiplied by
the weights from the weight BRAM. Since we immediately calculate the MAC
operation with data from im2col FU, we do not need to maintain replicated data
in the memory, implying that we can reduce the amount of the data transfer
and required size of the data storage compared to the case of only offloading the
GEMM. The multiplied results are temporarily stored in multiplication buffer
(MulBuffer) and then accumulated to output buffer (OutBuffer). Finally, the
results in OutBuffer are also added to the Output BRAMs for accumulation across
the results from the multiple input channels.

To further improve performance, we can employ multiple processing ele-
ments (PEs) for parallel executions of the multiple im2col and MAC operations.
Figure 7.4 shows an example execution sequence of the iMAC accelerator with
two PEs. In this case, we can simultaneously perform im2col operations for two
columns which will be temporarily stored into Im2colBuffer in each PE. We also
carry out multiplications with weights (K1–K9) and accumulations to OutBuffer
and output BRAM for two columns (one column is processed with one PE) at the
same time, increasing the computation throughput compared to the case of using
a single PE.
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5 × 5 input feature map with 3 × 3 filter with 1 zero-padding and 1 stride. Filter weights
are assumed to be all 1.0 in this example.
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The presented hardware design focuses on cost efficiency. Through fine-grained
offloading (we only offload the portions that take a huge latency, e.g., GEMM),
we use minimal hardware resources. Thus, the presented hardware is suitable
for accelerating CNNs in resource-constrained IoT systems. Due to the limited
on-chip memory (BRAMs), the weight data could not be reused in the presented
design. We may trade the input BRAMs for weight BRAMs in order to increase the
weight reusability. However, decreasing the size of input BRAMs has two impor-
tant disadvantages: (i) it may also reduce the PE utilization due to the reduced
input data supply, and (ii) we need more frequent input data transfer, which results
in worse performance and more power consumption.

7.3 Implementation

We implement the presented design in ZED platform [144], which has a Xilinx
Zynq 7020 field-programmable gate array (FPGA)-system-on-chip (SoC) that
integrates programmable logic and ARM Cortex-A9 CPU. For iMAC implemen-
tation, we use Vivado HLS (High-Level Synthesis) that translates high-level
programming language to Zynq-compatible hardware design. In order to actually
implement CNN, we use Darknet [143] framework with PetaLinux. For the
CNN model, we use Tiny Darknet [145]1. The presented implementation is
based on 32-bit floating-point CNN model which can be more flexibly applied
to many types of different CNN models and frameworks. The FPGA clock
frequency is set to 90 MHz. Table 7.1 shows the hardware utilization of the
presented implementation for iMAC accelerator with 8 PEs compared to the
existing designs [146–148] that use Xilinx FPGA-based platforms. Since the
presented design is geared toward resource-constrained system, we use much less
logic and memory elements in Zynq FPGA-SoCs. In terms of BRAM, we only
use around 600 KB, which is also less than the other implementations shown
in Table 7.1. Though the presented design additionally uses 728 lookup table
random access memories (LUTRAMs) (not shown in Table 7.1), the hardware
cost of an LUTRAM is comparable to an 64-bit storage, meaning that overhead
of the additional LUTRAMs is negligible (∼5.8 KB). Compared to the existing
designs, the presented design is more suitable for resource-constrained cognitive
IoT where we have much lower budget for power and hardware resource.

1 Please note that the implementation is not limited to Tiny-Darknet and other CNN models
can also be implemented with only configuring the network architecture description files in
Darknet.
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Table 7.1 Logic element and BRAM usage of the design presented in
[146–148], and ours.

[148]
(Virtex7)

[147]
(Zynq-7045)

[146]
(Zynq-7045)

Our design
(Zynq-7020)

Register 205 K 127 K 61 K 18 K
LUT 185 K 182 K 100 K 16 K
DSP 2240 780 864 50
36 Kb BRAM 512 486 320 133.5

The numbers of registers and LUTs are approximate values.
LUT, lookup table; DSP, digital signal processor.
Source: Adapted from [147–149].

7.4 Chapter Summary

This chapter presented a cost-efficient design for dense CNN accelerators. For a
cost-efficient design, the presented approach only offloaded the most critical
parts in convolution layers (i.e., im2col and GEMM) to the FPGA-based iMAC
accelerator. The results demonstrated the hardware resource efficiency of the
FPGA-based implementation of the presented iMAC hardware accelerator.
Please note that the performance and energy results of the iMAC accelerator are
presented in Chapter 14 when the software-based techniques are additionally
applied to the iMAC accelerator.
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NeuroMAX: A Dense CNN Accelerator

Convolutional neural networks (CNNs) enable embedding of artificial intelligence
(AI) into devices for vision-based applications with an unprecedented accuracy.
The early proposed high accuracy CNNs [30, 31, 35] required tens of millions
of parameters and computations for one inference pass. This computational
complexity along with high memory requirements greatly hampered their deploy-
ment on low-energy, resource-constrained devices. In addition to this, many
CNN architectures used varying kernel sizes which result in reconfigurability
requirement as well as low hardware utilization in accelerator designs. Separable
convolution for CNNs was introduced the first time in mobilenets [33, 34] to
reduce the number of multiply and accumulates (MACs). In addition, many
modern CNNs use kernels of size 3 × 3 to promote ease of accelerator design with
high hardware utilization and throughput.

Design of an efficient dataflow for scheduling data into the accelerator is equally
important. An inefficient dataflow results in reduced hardware utilization which
causes a decrease in throughput. Dataflow should also promote the reusability
of data since, in most cases, the same kernels are being applied on the entire
input feature map. It has been shown previously that the movement of data
to/from double data rate (DDR) memory is 200× more costly in terms of energy
consumption than a standard MAC operation [36]. Thus, the dataflow design
should not only optimize the throughput and area-, but also the data movement,
in order to ensure reduced energy expenditure. Log-based accelerators have
recently gained quite a lot of traction because of their simpler structure as
compared to traditional accelerators with linear processing elements (PEs).
Each PE in traditional CNN accelerator cores is essentially responsible for one
multiplication in convolution operation. Log PEs replace the bulky multiplier
cores with low cost barrel shifters without incurring a significant loss in accuracy.
We clarify that cost here primarily refers to the area cost, which is determined
by the number of LookUp Tables (LUTs) for field-programmable gate arrays
(FPGAs) and gate count for application-specific integrated circuits (ASICs).

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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This area cost is important because there are limited resources on-chip and thus
this area cost also translates to monetary cost of system-on-chip (SoC). Many past
approaches have designed log-based PE elements but have not exploited the low
cost and overhead of such PEs. They instead rely on already established spatial
architectures and 1D dataflows used for linear PEs. This chapter introduces
NeuroMAX, a dense CNN accelerator capable of accelerating CONV operations.
NeuroMAX accelerator core comprises 108 PEs arranged in a 6 × 3 × 6, 3D spatial
grid. The presented accelerator optimizes the most commonly used 3 × 3 and
1 × 1 kernel sizes to achieve high throughput and utilization. It can also be used
for larger kernel sizes because of its grid structure and configurable 2D dataflow.
The main contributions of this chapter are as follows:

● Design of a multithreaded, low-cost, log-based PE core. Using this core, we
generate a spatial grid of 6 × 3 × 6 = 108 PEs, capable of performing a wide
variety of convolution operations commonly used in many CNNs.

● NeuroMAX utilizes a 2D dataflow that exploits the thread-based PE design to
maximize the throughput and enhance the data reuse to minimize the off-chip
DRAM memory accesses.

● The NeuroMAX architecture is implemented in software and its performance is
compared against recent dense accelerator architectures. It is also implemented
on an FPGA to show improvement in terms of resource utilization and static
power consumption.

The remainder of this chapter is organized as follows: A summary of relevant
works in literature is presented in Section 8.1. Section 8.2 summarizes log
mapping which is utilized by NeuroMAX accelerator. Section 8.3 gives the archi-
tectural details of the NeuroMAX accelerator. Section 8.4 details the proposed
dataflow on some use cases. Section 8.5 gives the implementation results and
finally, Section 8.6 summarizes and concludes the chapter.

8.1 Related Work

Many hardware accelerators have been proposed recently and in the past. Chen
et al. [45] proposed a nonsystolic array, reconfigurable spatial architecture along
with a new dataflow scheme called row stationary to maximize the data reuse.
However, this design incurs high PE cost owing to local storage and control in PE.
It also has low hardware utilization which results in low throughput per PE. Liu
et al. [138] proposes an FPGA-based CNN accelerator with integrated depthwise
separable mode of operation. This accelerator, however, has low throughput
because of the usage of 32-bit floating point format. Bai et al. [139] proposes an
FPGA-based CNN accelerator having a dedicated matrix multiplication engine
(MME) on Arria 10 SoC. It achieves a frame rate of 266 fps, however, its MME
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engine has a huge digital signal processing (DSP) cost of 1200+ DSP blocks.
Chen et al. [52] is the improved version of [45] with higher hardware utilization
and throughput. Miyashita et al. [37] introduced the concept of logarithmic data
representation for neural network accelerator designs. It also gives accuracy
comparison between linear and log quantization. Vogel et al. [38] proposes an
accelerator design using arbitrary log base. It, however, does not utilize the low
hardware overhead of the log-based PE and instead rely on linear PE arrange-
ments. Huan et al. [140] proposes a reconfigurable design for various convolution
kernels. It uses a propagated input data flow scheme but incurs high latency
and low hardware utilization. Jo et al. [141] proposes a rescheduled dataflow for
convolution to optimize the energy efficiency. Chang and Chang [142] proposes
a vectorwise accelerator architecture with the goal of maximizing the hardware
utilization. It supports various kernel sizes from 1 × 1 to 5 × 5.

Although some of the recent designs achieve high hardware utilization, they
are not able to increase the peak throughput per PE count beyond unity owing
to the use of single core, linear PEs with high area cost. This chapter overcomes
the limitations of prior works by leveraging log PEs with multiple low cost threads
within each log PE, and designing a 2D dataflow which promises high throughput
by exploiting multilevel parallelism.

8.2 Log Mapping

Log mapping or log quantization maps an input value x to a logarithmically
quantized value x′. Many trained neural nets have weights w and input activa-
tions a which are nonuniformly distributed. Mapping these 32-bit floating-point
(fp32), nonuniformly distributed values over fixed-point, linearly quantized
values introduces a significant amount of quantization noise for small bit width.
Most hardware platforms use fixed-point arithmetic for data manipulation where
the fixed point number is represented in signed Qm.n format. Here, m represents
the integer part whereas n represents the fractional part. The range of values
which can be represented are rangelin = [−2m−1, 2m−1 − 𝜖] where, 𝜖 = 2−n, is the
step size.

A linear quantizer rounds the fp32 value to the nearest multiple of 𝜖 and then
clips it as follows:

xq = clip
[(

round
(x
𝜖

))
⋅ 𝜖,−2m−1, 2m−1 − 𝜖

]
(8.1)

where,

clip(x,min,max) =
⎧
⎪
⎨
⎪⎩

max, x ≥ max
x, min < x < max
min, otherwise

(8.2)
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A log quantizer takes as input, x, and the quantization parameters ⟨m,n, b⟩,
where b is the logarithmic base, and produces a log-quantized value x′ as output.
The quantization process can be written as

x′ = clip
[(

round(logb(|x|))
)
,−2m−1, 2m−1 − 𝜖

]
(8.3)

xq =

{
0, x = 0

sign(x) ⋅ bx′ , otherwise
(8.4)

Figure 8.1 shows some of the quantization results for the first five convolution
layers of VGG16 [31] and SqueezeNet [62]. Instead of using log base-2 (log2) for
quantization, we use log base-

√
2 (log√2) for more accurate mapping, as shown in

Figure 8.1c,f. In fact, we observe that VGG16, pretrained on ImageNet dataset, with
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Figure 8.1 Linear vs. log quantization. (a) 1.5 bits linear vgg16 net, (b) 5.0 bits log
vgg16, (c) 5.1 bits log vgg16, (d) 1.5 bits linear squeezeNet, (e) 5.0 bits log squeezeNet,
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fp32 data, after log√2 quantization, has top-1 accuracy decrement by only ≈3.5%
from 67.5% to 63.8%. This is opposed to log base-2 quantization which decreases
the accuracy by ≈10%.

8.3 Hardware Architecture

8.3.1 Top-Level

Figure 8.2 shows the top-level hardware architecture of the presented Neuro-
MAX CNN accelerator on Zynq-7020 SoC. The CONV core is the accelerator
module containing a memory block, a state controller, PE grid, adder stages,
and post-processing module. The memory block contains the weight, input,
and output SRAMs with a total cumulative size of 3.8 Mb. The PE grid consists

Off-chip DDR

Memory SRAMs

(input, output,

weight)

6×3 PE

Matrix 0

6×3 PE

Matrix 1

6×3 PE

Matrix 2

6×3 PE

Matrix 3

6×3 PE

Matrix 4

6×3 PE

Matrix 5

ARM

core
DDR

controller

I/O

peripherals

Post

processing

State

controller

PE grid

(6×3×6 PEs + 6

adder net 0s)

6 adder

net 1s +
channel

accums.

AXI DMA +
interconnect

d
a
ta

P
a
ra

m
s

AXI4

interconnect

PS

PL

CONV Core

Figure 8.2 NeuroMAX system architecture.
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of 108 PEs arranged in a 6 × 3 × 6 3D array. Figure 8.2 also shows the internal
structure of the PE grid containing PE matrices, numbered from 0 to 5. The PE
matrices are all connected to their respective input, weight, and output SRAM
blocks. Each PE matrix processes independent channels in parallel for standard
and separable convolutions for maximizing the throughput. The outputs from the
PE matrices are provided to their respective adder nets within the PE grid. A total
of six adder net 0s are present corresponding to six PE matrices. The configuration
of these adder nets remain constant regardless of the type of convolution used or
the filter size. The output from the adder net 0 is provided to six configurable
two-stage adders whose input connections change based on the filter size and
the convolution type. The first adder stage is referred to as adder net 1, and the
second stage is the channel accumulation stage.

To perform a convolution operation, a tile of log-quantized input fmap and
weight data is loaded from the off-chip DRAM memory into the SRAMs in
the CONV core by AXI DMA and interconnect. The processor also sends the
parameter information containing the values for filter size, input width, input
height, output width, output height, and total channels to the state controller
inside the CONV core. The state controller modifies the configurable adders and
determines the dataflow to be used for the convolution operation. The linear
convolution outputs are sent to the post processing block which performs ReLU
operation and quantizes the results back into log values using pre computed
log table. These output log values are loaded into the output SRAMs and sent
back to the off-chip DRAM memory to be used for processing the next layer.
No intermediate outputs or partial sums are stored in the DRAM memory and
all the intermediate processing is done within the CONV core to minimize the
off-chip traffic.

8.3.2 PE Matrix

Figure 8.3 shows the hierarchical design of a single PE matrix (PE matrix 0) in
a bottom up view. Each PE receives a 1D vector of weight values and one input
value. It should be noted that both the input (i0′) and the weight values (w00–2

′ )
are log quantized. The output vectors from PEs are provided to the adder net 0
which generates 18 psums (o1–o18). This adder net works by summing the same
color coded values generated within a row of PEs, as shown in Figure 8.4.

Figure 8.3b shows the internal structure of a single PE element (PE0_0_0). There
are three compute cores or threads, each processing a single weight data and the
input value, and in turn, produce three outputs (p11, p12, p13). The lowest level of
the PE matrix is a thread within an individual PE, as shown in Figure 8.3a. Basic
log-based multiplication operation is performed in a single thread. Assuming we
have two log-quantized values, wq

′ and aq
′, representing the original weight (wq)
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Figure 8.3 (a) Compute thread, (b) collection of threads to make a PE, and (c) 6 × 3 PE matrix 0 and adder net 0.
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Row0: o1 = p11 + p14 + p17  , o2 = p12 + p15 + p18  , o3 = p13 + p16 + p19

Row1: o4 = p21 + p24 + p27  , o5 = p22 + p25 + p28  , o6 = p23 + p26 + p29

Row2: o7 = p31 + p34 + p37  , o8 = p32 + p35 + p38  , o9 = p33 + p36 + p39

Row3: o10 = p41 + p44 + p47  , o11 = p42 + p45 + p48  , o12 = p43 + p46 + p49

Row4: o13 = p51 + p54 + p57  , o14 = p52 + p55 + p58  , o15 = p53 + p56 + p59

Row5: o16 = p61 + p64 + p67  , o17 = p62 + p65 + p68  , o18 = p63 + p66 + p69

Figure 8.4 Adder net 0 psum generation.

and the activation input (aq), respectively, the multiplication of these values in log
domain can be carried out as

wqaq = sign(wq) ⋅ 2gq
′ (8.5)

where,

g′q = w′
q + a′

q (8.6)

Equation (8.5) can be implemented in hardware by decomposing the exponent
into its integer and fractional part as

wqaq = sign(wq) ⋅ 2INT(gq
′) ⋅ 2FRAC(gq

′) (8.7)

The integer part 2INT(gq
′) can be implemented by a shift operation, whereas the

fractional part can be precomputed and stored within the thread. The total number
of fractional computations depends on the total number of fractional bits (n) used.
In our case, we have n = 1 and thus store 2n = 2 values in the thread memory.
Equation (8.7) can now be rewritten as

wqaq = sign(wq) ⋅ (LUT(FRAC(gq
′)) ≫ ¬INT((gq

′))) (8.8)

The hardware implementation of Eq. (8.8) is shown in Figure 8.3a. Since weights
can have negative values, which is not accounted for in the log computations, we
use an additional bit to represent the log weight data with the most significant bit
w′

q[6] representing the sign of the weight before quantization. This is not required
for the input fmap values since most modern CNNs use ReLU activations which
eliminate the negative outputs.

8.4 Data Flow and Processing

The main idea behind designing an efficient dataflow is to minimize the data
movement to/from the off-chip DRAM memory. One MAC operation typically
requires three memory reads corresponding to weight, ifmap, psum, and one
memory write, corresponding to the updated psum. A neural net like AlexNet,
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with 724M MACs, will need ≈3000M DRAM memory accesses. Many efficient
dataflows have been presented in literature to minimize this data movement.
Some of these include output stationary, weight stationary and, row stationary [6].
Since convolution operation requires the reuse of filter weights, input, and psums,
in successive operations, the dataflows are designed to optimize the re-usability
without accessing the DRAM memory. We introduce a 2D weight broadcast
dataflow for maximizing the re-usability of the weights, input, and psums.

8.4.1 3 × 3 Convolution

Figure 8.5 shows a 3 × 3 convolution example. Here, a 12 × 6 input is convolved
with a 3 × 3 filter to produce a 10 × 4 output for stride 1 and a 6 × 3 output for
stride 2. A total of 108 bits, corresponding to the 6 × 3 input tile, are received from
the AXI4 interconnect and stored in the input SRAM. This input tile is modified
by the state controller and provided to the PE matrix in a row shifted pattern as
shown in Figure 8.6a,c for stride 1 and stride 2, respectively. We also acquire a 2D
weight array and broadcast it to the PE matrix as shown in Figure 8.6b. Figure 8.7
shows the dataflow and the operation of the PE matrix for the first 6 × 3 input tile
and the weight matrix at time stamp t = 1. The entire input tile and the 2D weight
array are loaded into the PE matrix simultaneously. Because of the multithreaded
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structure of PEs, each PE performs three multiplication operations using three
threads and the outputs are rowwise summed to generate the psums (o1–o18)
using adder net 0 (Figure 8.4). The dataflow chart and the processing of the entire
12 × 6 input is shown in Figure 8.8. The output a0wa012, in Figure 8.8, represents
the three outputs a0wa0, a0wa1, a0wa2 generated by three threads within a PE. The
adder net 0 computes the partial sum outputs (o1–o18) the same way as shown in
Figure 8.4, where p11 = a0wa0, p14 = b0wb0 and p17 = c0wc0 are the same colored
outputs along the row.

The outputs (rows 5 and 6) in Figure 8.5 for stride 1 and outputs (row 3) for
stride 2 represent the boundary outputs. The boundary condition occurs when the
filter overlaps two different columnwise input tile sectors. For clarity, we assume
that the first input tile at t = 1 is processed by the PE matrix. This corresponds
to the first six rows and the first three columns of the input. The PE matrix will
process the last rowwise input tile at t = 4 which corresponds to the first six rows
and the last three columns of the input as shown in Figure 8.6a. The input tile will
then jump to the next columnwise 6 × 3 input tile which corresponds to the last
six rows and the first three columns at t = 5 as shown in Figure 8.6a. However, it
can be seen that the row 5 and 6 in the output are dependent on the overlapping
results from the two concurrent columnwise input tile sectors (e.g., at t = 1 and
t = 5, t = 2 and t = 6 and so on). To resolve this, the three dependent psums (o13,
o17, and o16), generated from row 5 and row 6, of first columnwise tile sector of the
12 × 6 input, are passed through a variable length shift register with the maximum
length equal to the width of the input. These psums are subsequently utilized when
the next columnwise 6 × 3 input tile (a6 to a11) is being processed. Thus, the rows
1 to 4 in the output are generated during the time intervals t = 1 to t = 4, whereas
the rows 5 to 10 are generated during the time interval t = 5 to t = 8.

The output in Figure 8.5, for stride 1, is generated by alternate colored,
columnwise summation of the psums in the adder net 1 as shown in Figure 8.9a.
Figure 8.9b shows the output generation for stride 2 case. The shift registers
(VAR Len SR) for generating the boundary outputs are also shown in Figure 8.9.
It can be observed that because of the optimized dataflow, only 2 out of 18 or
11% psums require local storage as opposed to >50% psums requiring storage
(local or off-chip) in previously proposed dataflows. The throughput for the above
example is 45 OPS/cycle (total OPS/total cycles = 360/8 = 45), which results in an
83.3% overall thread utilization (45/(3 × 6 × 3))×100. We will simply use thread
utilization as hardware utilization in this context.

8.4.2 1 × 1 Convolution

1 × 1 convolutions are very popular in modern CNNs. These convolutions, along
with the depthwise separable, are replacing the normal 2-D convolutions because
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Figure 8.8 Dataflow chart for 3 × 3 stride 1 convolution in Figure 8.5.
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Figure 8.9 Adder net 1 configuration: (a) Stride 1 and (b) Stride 2.

of the less number of MAC operations [33]. The 1 × 1 CONV operation convolves
1 × 1 × C × P filters with a M × N × C input to produce M × N × P outputs. Here,
C is the number of channels, P is the number of filters, M is the input width and
N is the input height.

Figure 8.10 shows a 1 × 1 CONV example where a 3 × 6 × 6 input is convolved
with 6, 1 × 1 × 6 filters to produce a 3 × 6 × 6 output. Since this convolution gener-
ates the psums by channel accumulation, the outputs from the multiple PE matri-
ces are utilized. For the example in Figure 8.10, the state controller data scheduling
for PE matrix 0 and 1 is shown in Figure 8.11. It can be seen that the first three
channels of the input are convolved with the first three channels of all the filters
in PE matrix 0, whereas the last three channels of the input are convolved with the
last three channels of all the filters in PE matrix 1. The time stamps during spe-
cific processing of input and weights in PE matrices are also shown in Figure 8.11.
It should be noted that for an input with more channels, the rest of the PE matrices
will also be used. Thus, by using the dataflow in Figure 8.11, the architecture can
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Figure 8.10 1 × 1 convolution example.
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Figure 8.11 State controller load operation.

process 18 channels concurrently by using the 6 PE matrices, with each PE matrix
processing 3 input and filter channels.

The dataflow chart for the PE matrix 0 for the example in Figure 8.10 is
shown in Figure 8.12. The same dataflow chart can also be generated for the PE
matrix 1. As mentioned earlier, the psums in 1 × 1 convolution are calculated
using channel-wise accumulation. The 18 outputs (o1–o18) generated by the
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Figure 8.12 Dataflow chart for 1 × 1 convolution in Figure 8.10.

individual PE matrices are summed in their respective adder net 1s. The input
connections for adder net 1 (AN 1_0) and the channel accumulator (CA 0)
of PE matrix 0 are shown in Figure 8.13a. Here, o10 is the psum output from
the PE matrix 0 and o15 is the psum output from the PE matrix 5. Since the
example in Figure 8.10 is small, it only requires the first two PE matrices and their
outputs, that is, only o10–180 and o11–181 are active. The output in Figure 8.10 is
generated by using all six adder net 1s and the channel accumulators as shown
in Figure 8.13b. The throughput for the above example is 108 OPS/cycle (total
OPS/total cycles = (6 × 6 × 3 × 6∕6 = 108), which results in a 100% overall thread
utilization (108/(3 × 6 × 3 × 2)× 100).
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Figure 8.13 (a) Channel-wise accumulation for PE matrix 0. (b) All channel-wise
accumulations.

8.4.3 Higher-Order Convolutions

The presented NeuroMAX accelerator is designed to optimize 3 × 3 and 1 × 1
convolutions. It can, however, also be used to accelerate larger kernel sizes.
NVIDIA [150] proposed a kernel decomposition method such that an addi-
tional support for 4 × 4 and 5 × 5 filter is needed to implement any filter size.
Figure 8.14a gives an example of 5 × 5 convolution. As the size of the PE matrix
is 6 × 3, a filter of width greater than 3 and height greater than 6 needs multiple
cycles to calculate the output value. This can be seen in Figure 8.14b,c where
the last two columns of the input matrix and the weight matrix are loaded at
time stamp t = 2. Figure 8.15 shows the dataflow chart which accounts for this
configuration. The generated psums (o1–o18) are provided to the adder net 1 as



�

� �

�

8.4 Data Flow and Processing 117

From AXI4

to

input SRAM
0 c

5
b

5
a

5
...c

1
b

1
a

1
c

0
b

0
a

0

wc
0-4

wb
0-4

wa
0-4

0we
0-4

wd
0-4

wc
0-4

wb
0-4

wa
0-4

0we
0-4

wd
0-4

wc
0-4

wb
0-4

wa
0-4

0we
0-4

wd
0-4

0e
5
d

5
...0e

1
d

1
0e

0
d

0

000...000c
6
b

6
a

6

000...0000e
6
d

6

c
5
b

5
a

5
...c

2
b

2
a

2
c

1
b

1
a

1
c

0
b

0
a

0

0e
5
d

5
...0e

2
d

2
0e

1
d

1
0e

0
d

0

000c
6
b

6
a

6
c

5
b

5
a

5
c

4
b

4
a

4
c

3
b

3
a

3
c

2
b

2
a

2

0000e
6
d

6
0e

5
d

5
0e

4
d

4
0e

3
d

3
0e

2
d

2

wa
0

a
0

a
1

a
2

a
3

* a
4

a
5

b
0

b
1

b
2

b
3

b
4

b
5

d
0

d
1

d
2

d
3

d
4

d
5

e
0

e
1

e
2 Va

0

Va
1

Va
2

e
3 =

e
4

e
5

c
0

c
1

c
2

c
3

c
4

c
5

a
6 b

6 d
6

e
6

c
6

wa
1

wa
2

wa
3

wa
4

wb
0

wb
1

wb
2

wb
3

wb
4

wc
0

wc
1

wc
2

wc
3

wc
4

wd
0

wd
1

wd
2

wd
3

wd
4

we
0

we
1

we
2

we
3

we
4

6×3×6 = 108 bits
To PE matrix

7×5×3 = 105 bits

(a)

(b)

(c)

State

controller

State

controller

t = 1
t = 2
t = 3
t = 4

t = 1
t = 2
t = 3
t = 4

From AXI4

to

weight SRAM
0

Figure 8.14 (a) 5 × 5 convolution example, (b) input load operation, and (c) weight load
operation.

t = 1 wa
0-4

wb
0-4

wc
0-4

a
0
wa

012

a
1
wa

012

a
2
wa

312

a
3
wa

342

a
4
wa

342

a
5
wa

342

a
3
wa

012

a
4
wa

312

a
5
wa

342

a
6
wa

342

0 0 0

b
0
wb

012

b
1
wb

012

b
2
wb

312

b
3
wb

342

b
4
wb

342

b
5
wb

342

c
0
wc

012

c
1
wc

012

c
2
wc

312

c
3
wc

342

c
4
wc

342

c
5
wc

342

c
0
b

0
a

0

t = 3 wa
0-4

wb
0-4

wc
0-4

a
2
wa

012

b
3
wb

012

b
4
wb

312

b
5
wb

342

b
6
wb

342

b
2
wb

012

c
3
wc

012

c
4
wc

312

c
5
wc

342

c
6
wc

342

c
2
wc

012
c

2
b

2
a

2

c
3
b

3
a

3

c
4
b

4
a

4

c
5
b

5
a

5

c
6
b

6
a

6

000

t = 2 wd
0-4

we
0-4

0

d
0
wd

012

d
1
wd

012

d
2
wd

312

d
3
wd

342

d
4
wd

342

d
5
wd

342

e
0
we

012

e
1
we

012

e
2
we

312

e
3
we

342

e
4
we

342

e
5
we

342

0

0

0

0

0

0

0e
0
d

0

0e
1
d

1

0e
2
d

2

0e
3
d

3

0e
4
d

4

0e
5
d

5

t = 4 wd
0-4

we
0-4

0

d
2
wd

012

d
3
wd

012

d
4
wd

312

d
5
wd

342

d
6
wd

342

0 0

e
2
we

012

e
3
we

012

e
4
we

312

e
5
we

342

e
6
we

342

0

0

0

0

0

0

0e
2
d

2

0e
3
d

3

0e
4
d

4

0e
5
d

5

0e
6
d

6

000

c
1
b

1
a

1

c
2
b

2
a

2

c
3
b

3
a

3

c
4
b

4
a

4

c
5
b

5
a

5

Figure 8.15 Dataflow chart for 5 × 5 convolution in Figure 8.14a.
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Figure 8.16 Adder configuration for 5 × 5 convolution.

shown in Figure 8.16. For this convolution, the output values are calculated as

Va0,Va2 = ((o1 + o5 + o9) + (o10 + o14))old + (o1 + o5 + o9)new (8.9)

Va1 = ((o4 + o8 + o12) + (o13 + o17))old + (o4 + o8 + o12)new (8.10)

In Eqs. (8.9) and (8.10), the old value corresponds to the convolution output from
the first three columns of the input and the weight matrix at t = 1, whereas the new
value corresponds to the last two columns at t = 2. The adder net 1 and the channel
accumulator configuration for this convolution is shown in Figure 8.16. A similar
configuration and dataflow chart are used for implementing a 4 × 4 convolution.
In addition to this, the CONV core can also perform pooling operation by choosing
the appropriate stride and kernel.

8.5 Implementation and Results

This section discusses the implementation of the introduced NeuroMAX accelera-
tor and presents the area cost, power consumption, performance, throughput, and
hardware utilization results. The accelerator has been implemented in software
and also on hardware (PL side of Xilinx Zynq-7020 SoC operating at 200 MHz).
Figure 8.17 shows cost comparison between our multithreaded log PE core and an
area-optimized linear multiplier core with equal output bit precision and latency.
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Figure 8.17 Linear vs. log PE LUT and FF cost (16-bit).

It can be seen that by choosing a thread count of 3 (shown as log (3) in Figure 8.17),
the LUT and FF cost is only 1.05× and 1.14× that of the linear PE. Thus, a total
of 108 linear PEs would be equivalent, in cost, to ≈122 multithreaded log PEs. For
fairness, we will use the cost adjusted PE number for performance comparison.

Table 8.1 shows the resource utilization of the implemented accelerator core
as well as the power consumption. Figure 8.18a–c shows the breakdown of LUT
cost, FF cost and power consumption among different modules of the acceler-
ator. The PE grid and the adder net 0 combined have the highest LUT and FF
count (81% and 91%, respectively). The postprocessing block consumes negligible
resources. The processing system (ARM core) dominates the power consumption
(57%), while the PE grid and adder net 0 have the second highest consumption
(26%) of the total.

Figure 8.19 shows layer-by-layer hardware utilization for various CNN archi-
tectures. NeuroMAX achieves an average utilization of 95%, 84%, and 86% for
VGG-16, MobileNet v1, and, ResNet-34, respectively. The dip in hardware utiliza-
tion in some layers of mobilenet and ResNet-34 is because of stride 2 convolutions
which utilize only 50% of the available PE cores. The low utilization in the first
layer of VGG16 is because it only has three channels and since each PE matrix
processes one channel, the last three PE matrices remain idle which gives an exact
utilization of 50%.

Table 8.1 Resource utilization.

Property Accelerator Utilization

LUTs 20,680 38%
FFs 17,207 16%
36 kB BRAMs 108 77%
Power 2.727 W NA
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Figure 8.18 Breakdown of (a) LUT cost, (b) FF cost, and (c) power consumption for
NeuroMAX.

Chang and Chang [142] recently presented an accelerator, referred to as VWA,
with 1D broadcast dataflow which promises higher utilization and throughput
(GOPS) than all the previous designs. NeuroMAX is, therefore, compared against
VWA [142] in Figure 8.20 for various CNNs. VWA uses a total of 168 PE cores
and provides a utilization of 99% with throughput 166.32 GOPS, 93.4% with
throughput 156.91 GOPS, and 90.2% with throughput 151.54 GOPS for VGG16,
ResNet-34 and mobilenet, respectively. We use 122 PE cores (cost adjusted),
a 28% decrease from VWA, and provide a throughput of 307.8 GOPS, an 85%
increase, 281.8 GOPS, a 79.4% increase, and 268.92 GOPS, a 77.4% increase, for
the three CNNs, respectively. This increase in throughput with lower PE count
is attributed toward our low-cost, multithreaded PE core design and an efficient
2D dataflow. We also achieve somewhat similar hardware utilization, that is, 94%
for VGG16, 87.3% for ResNet-34, and, 83% for mobilenet. It should be noted that
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Figure 8.19 Hardware utilization of NeuroMAX for (a) VGG-16, (b) MobileNet v1, and
(c) ResNet-34.
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Table 8.2 Comparison of NeuroMAX with previous designs.

Property NeuroMAX
Eyeriss
[45]

Liu et al.
[138]

Vogel et al.
[38]

VWA
[142]

Technology Zynq-7020 SoC 65 nm Zynq-7100 Arria 10 SoC Virtex-7
Precision (bits) 6-bit log 16-bit 32fp 16-bit 5-bit log
PE number 122 (adjusted) 168 1926 1278 256
Processing clock
(MHz)

200 200 100 133 Unreported

Peak throughput
(GOPS)

324 84 17.11 170.6 Unreported

Peak
throughput/PE

2.7 (adjusted) 0.5 0.008 0.13 Unreported

Cost
(LUTs(a),gates(b))

20.6k(a) 1176k(b) 142k(a) 66k(a) 29k(a)

Power (W) 2.72 0.278 4.083 Unreported 3.756

VWA implements the accelerator on an ASIC, whereas we use an FPGA, thus, an
accurate comparison in LUT count, FF count, and power consumption cannot
be made. It is, however, evident that the design in VWA when ported into FPGA
will have ≈31% more LUTs and FFs owing to more number of PEs used. Table 8.2
shows the comparison of our accelerator with previous state-of-the-art ASIC and
FPGA designs. We see an improved performance in terms of PE number, peak
throughput, and peak throughput/PE ratio. Only VWA has a peak throughput/PE
ratio equal to unity with average around 0.85. Our peak throughput/PE is 3 with
average around 2.7 after cost adjustment. The power comparison reveals that the
FPGA-based designs inherently consume more power compared to ASICs. We
can, however, see that NeuroMAX consumes significantly less power and has
lower cost in terms of LUT count compared to other FPGA designs. Table 8.3 gives
a layer-by-layer processing latency comparison for VGG16. Both Eyeriss [45] and
VWA [142] benchmark the latency of their accelerators on this CNN; therefore,
we also evaluate and compare NeuroMAX’s performance on VGG16. It should
be noted however that VWA uses 500 MHz processing clock in their design. For
fair comparison, we make suitable adjustments in their reported values. Our
presented NeuroMAX accelerator has 93% and 47% decrease in latency, when
compared to Eyeriss and VWA, respectively, at 200 MHz clock.
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Table 8.3 VGG16 latency comparison.

Layer NeuroMAX Eyeriss [45] VWA [142]

CONV1_1 (ms) 1.35 38.0 2.57
CONV1_2 (ms) 28.9 810.6 55.04
CONV2_1 (ms) 14.4 405.3 27.43
CONV2_2 (ms) 29.26 810.8 55.7
CONV3_1 (ms) 14.54 204 27.7
CONV3_2 (ms) 28.6 408.1 54.5
CONV3_3 (ms) 28.7 408.1 54.6
CONV4_1 (ms) 14.4 105.1 27.42
CONV4_2 (ms) 29 210.0 55.23
CONV4_3 (ms) 29.5 210.0 56.19
CONV5_1 (ms) 7.24 48.3 13.79
CONV5_2 (ms) 7.23 48.5 13.77
CONV5_3 (ms) 7.11 48.5 13.54
Total (ms) 240.23 3755.3 457.5

8.6 Chapter Summary

This chapter explained the architectural details and working of NeuroMAX – a
dense accelerator which leveraged multithreaded, log-based PE cores. Experi-
mental results indicated that the designed PE cores are capable of providing a
200% increase in peak throughput while only increasing the area overhead by
6%, when compared to a standard multiplier-based PE core. NeuroMAX used an
efficient 2D weight broadcast dataflow scheme which exploited the multilevel
parallelism of the processing engine and enabled hardware utilization close to
a 100%. The accelerator is capable of performing a wide variety of convolutions
including standard and separable 3 × 3 stride 1 and 2, 4 × 4, 5 × 5, and 1 × 1
depthwise, required in modern CNN architectures. Experimental results showed
that the NeuroMAX delivered a throughput increase of 77.4% and a latency
decrease of 47% with a 28% decrease in PE count against recently proposed
accelerator designs for modern CNNs. NeuroMAX also provided at least a 27%
and a 29% decrease in power consumption and LUT count, respectively, against
prior FPGA-based CNN accelerators.
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Sparse CNN Accelerators
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9

Contemporary Sparse CNN Accelerators

This chapter provides background on sparse convolutional neural network (CNN)
accelerators. Before delving into sparse CNN accelerators, this chapter first dis-
cusses why the data in CNN models are generally sparse and why considering
sparsity in hardware accelerators is important. This chapter then discusses general
approaches for designing sparse CNN accelerators. Since the CNNs or multilayer
perceptrons (MLPs) are generally processed in the form of matrix multiplication
(MM), this chapter elaborates on the sparse matrix multiplication hardware accel-
erators. This chapter also covers recent advancements in sparse CNN accelerators.

9.1 Background of Sparsity in CNN Models

Sparsity refers to the fraction of zeros in a CNN layer’s weight and input activation
matrices. Weight sparsity is static and is introduced while pruning a network
during training. Han et al. [46] developed an iterative scheme for pruning a deep
neural network while retraining the network’s accuracy. Activation sparsity is
introduced dynamically during the inference phase and is highly dependent on
the input being processed. This sparsity occurs mostly because of the rectified
linear unit (ReLU) activation function, most commonly used in many CNN
models, which convert all the negative outputs of a layer to zero.

Figure 9.1 shows the weight and activation sparsity among two of the most com-
monly used CNNs. It can be seen that the weight sparsity for AlexNet and VGG-16
can reach as high as 70% and 80%, respectively, for some layers. Activation sparsity
tends to be lower in the initial layers but rises considerably in later layers with some
layers of VGG-16 having activation sparsity as high as 85%. This goes to show that
many neural nets, though seemingly compute and memory bandwidth intensive,
are incredibly sparse with huge amounts of redundant computations. An archi-
tecture which efficiently exploits this redundancy can provide immense gains in
both performance and energy efficiency.

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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Figure 9.1 Sparsity in CNNs: (a) sparsity in AlexNet, (b) sparsity in VGG-16.

To represent the sparse weights or inputs various formats can be employed. As
explained in Chapter 3, entropy-based coding such as Huffman coding or arith-
metic coding can be used. In addition, run-length coding, bitmap-based coding,
two-step compression [108], or compressed sparse row (CSR) format can also be
used. As this book has already explained each of these methods in Chapters 3–5,
we omit the explanation of these formats or coding methods in this chapter.

9.2 Background of Sparse CNN Accelerators

A sparse CNN accelerator can be defined as a CNN accelerator that accepts weights
and input feature maps in the sparse format. Figure 9.2 compares sparse and dense
CNN accelerators. Although in Figure 9.2, the CSR format is shown to represent
a sparse matrix, the sparse format inputs can be any specialized format for repre-
senting the sparse matrices or tensors, such as bitmap-based format or run-length
coding which was already presented in Chapter 3.
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Figure 9.2 The comparison between the dense and sparse CNN accelerators. We have
shown the CSR format as an example of the sparse format though other sparse format
such as bitmap-based compression can also be used for sparse CNN accelerators.

Since CNN operations can be generally performed with matrix multiplication,
we explain matrix multiplication accelerators, which can be used for CNN accel-
eration. The sparse matrix multiplication (SpMM) can be performed in typical
central processing units (CPUs) or GPUs. However, CPUs do not perform data par-
allel workloads well while they have strengths on executing the control-intensive
workloads. Although graphic processing units (GPU)s (e.g., NVIDIA V100 [150])
could be an alternative for executing the data parallel workloads, GPU cannot skip
the zero multiply and accumulations (MAC)s and only provides a rigid support for
sparsity, worsening the performance and energy efficiency. In addition, GPUs are
typically power-hungry, making them hard to be deployed in systems that have a
tight cost budget. On the other hand, systolic arrays such as Google tensor process-
ing units (TPUs) [78] have strengths in executing matrix multiplications. However,
the systolic arrays, which are explained in Chapter 6 of this book, cannot also
skip the zero MACs due to their fixed dataflow. Thus, a specialized accelerator for
SpMM will be a key component for performance and power efficiency of modern
computer systems.

For efficient SpMM, there are two traditional and well-known approaches:
inner-product and outer-product. For explanation of the inner-product and the
outer-product, we assume that we perform the matrix multiplication A×B = C.
The dimensions of matrices A, B, and C are M×N, N×K, and M×K, respectively.
The inner-product approach performs the dot product between each row of A and
each column of B. As shown in Figure 9.3, a dot product is performed for each
row vector u in A and each column vector v in B to generate each scalar element
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Figure 9.3 Inner product-based matrix multiplication.

in the matrix C. The outer-product approach performs the outer product between
each column of A and each row of B. As shown in Figure 9.4, an outer-product
between the two vectors is performed for each column vector u in A and each row
vector v in B to generate N×N partial sum matrices with the dimension M×K.
Generation of partial sum matrices can be better understood and visualized by
considering the dimensions of vector u and v. The vector u in A is of dimension
M× 1 and the vector v in B is of dimension 1×K, so when we multiply the vector
u with the vector v, we get a matrix of dimension M×K, which is a partial sum
matrix in the context of original matrix multiplication of matrices A and B. To
generate the matrix C of dimension M×K, all the partial sum matrices are added.

For sparse matrix multiplication, to remove the MAC operations with zero ele-
ments, the inner-product must match the column indices of the nonzero elements
in the row vector of the matrix A and row indices of the nonzero elements in the
column vector of the matrix B during the dot-product, making the hardware design
complicated. Though the outer-product does not require the index matching, par-
tial results from the cross-product require a large on-chip memory to minimize
the amount of data transfer between the accelerator and the off-chip memory.
In addition, in the cases of inner-product and outer-product, accessing the col-
umn of the matrices could be difficult for exploiting the locality. In order to fully
exploit the locality from the matrix column, the matrix (i.e., B in the inner-product
and A in the outer-product) should be stored in a transposed format, eventually
causing the burden of transposing operations. To overcome the drawbacks of the
inner- and outer-product, one can utilize a row-wise product-based approach as an
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alternative. The main advantages of the row-wise product matrix multiplication
can be summarized as follows: First, it does not need to perform index match-
ing. Second, it does not require a huge size of on-chip memory which is necessary
for storing the partial results. Third, it does not require columnwise access to the
operand matrices, making it advantageous to exploit the locality.

Figure 9.5 briefly describes generic matrix multiplication hardware archi-
tectures for (i) inner product-based, and (ii) outer product-based matrix
multiplications. Before multiplication, the inner-product-based architecture per-
forms index matching for removal of the ineffectual operations (i.e., multiplying
with zero-valued operand). Nonzero index-matched values are multiplied and
accumulated for generating an element1 in the output matrix. The outer product
requires multicasting of the operands in a certain column in the matrix A to the
operands in a certain row in the matrix B. After performing the multiplications,
the matrix merger generates a partial matrix (or multiple partial matrices) by
accumulating the partial matrices.

9.3 Recent Advancements in Sparse CNN Accelerators

As the SpMM is frequently used in a wide variety of the emerging applications,
many SpMM hardware architectures have been recently introduced. One of

1 If we have multiple multiplier hardware, we can also generate multiple elements in parallel.
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Figure 9.5 The comparison between the inner product-based and outer product-based
matrix multiplication (MM) architecture. (a) Inner product-based MM architecture and (b)
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the most well-known and intuitive approaches for matrix multiplication is an
inner-product approach. In [150], Gondimalla et al. have introduced SparTen
architecture, which utilizes an inner-product based approach. They have intro-
duced an efficient inner-join with bitmask (to mark nonzero element positions)
which eventually are ANDed to identify ineffectual operations. They have also
introduced a sorting-based greedy load balancing technique for the processing ele-
ments (PEs). Qin et al. [152] have also proposed an inner-product based hardware
accelerator architecture, which they named as SIGMA. They have introduced
a dot product engine (a.k.a., Flex-DPE) that exploits tree-based topology and
forward adder network in order to support flexible interconnect. Their proposed
architecture also utilizes a bitmap-based format as a compressed data format.
However, only loaded operand matrix is represented by the compressed format
while the streaming matrix is represented by a dense format (i.e., including both
zero and non-zero elements). These inner-product based approaches inherently
require index matching (or inner-join), which is not desirable for cost-efficient
hardware design and implementation.

To remove the complex index matching process, several outer-product based
approaches have been introduced. Zhang et al. have proposed SpArch [153]
that utilizes the outer-product approach for sparse matrix multiplication. For
compressed data format, SpArch utilizes condensed matrix representation that
compacts non-zero elements in a row. SpArch also utilizes Huffman tree-based
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scheduler, which helps efficiently use memory bandwidth. When scheduling
the partial result matrix generation during the outer-product, SpArch produces
partial result matrices that have less nonzero elements earlier than those that
have more nonzero elements. As the condensed format of the matrices with less
nonzero elements will use less memory capacity, it enables an efficient use (i.e.,
occupying less capacity in the memory to store the partial result matrices for a
longer time) of the memory and reduces memory bandwidth requirement. Hojabr
et al. have proposed SPAGHETTI [154], which also utilizes the outer-product
approach. SPAGHETTI uses different compressed formats for input matrices
(CSR and compressed sparse column for each operand matrix) and output matrix
(COO: coordinate format). Since the COO format is not a sorted format (i.e.,
the coordinates and values are not sorted in a format of row- or column-major
order), it is hard to be utilized in an in situ manner. These outer-product based
approaches typically require a large storage for partial result matrices.

In order to complement the disadvantages of the inner- and outer-product-based
approaches, several row-wise product-based approaches have also been pro-
posed. Srivastava et al. have proposed MatRaptor [155], which is a row-wise
product-based approach with a new compressed format, channel cyclic sparse
row (C2SR). Exploiting that the multiplications for each row of the matrix A can
be performed in parallel, MatRaptor carries out row-wise multiplication followed
by sort and accumulation with the primary and helper queues. Similarly, in [156],
another row-wise product-based approach has been introduced by Zhang et al.,
which they named as Gamma. The approach by Zhang et al. also exploits the
row-level parallelism while it also employs Fiber cache, a specialized memory
structure to store nonzero elements and their coordinates. In [102], Lee et al.
have proposed a row-wise product-based matrix multiplication accelerator with
optimal load balancing. The proposed design in [102] exploits the CSR format
which is widely used for representing SpMM. The hardware accelerator performs
the matrix multiplication operations with CSR-formatted operand matrices,
generating the CSR-formatted output matrix. The load balancing technique
proposed in [102] leads to better parallelism between the PEs. The technique
considers the amount of operations assigned to each PE so that the execution
time of each PE is as close as possible. In Chapters 10–12, we introduce several
sparse CNN or SpMM accelerators.

9.4 Chapter Summary

This chapter explored the sparsity characteristics in CNN models and also
defined sparse CNN accelerators. The chapter further provided background
of sparse CNN accelerators and highlighted recent advancements in sparse
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CNN accelerators. In Chapters 10–12, this book explores different sparse CNN
accelerators. Chapter 10 discusses a sparse CNN accelerator that leverages in
situ decompression and acceleration for compressed sparse input feature maps
(IFMs) [108]. Chapter 11 and Chapter 12 discuss Sparse-PE [157] and Phantom
[158], respectively, which are two sparse CNN accelerators.
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CNN Accelerator for In Situ Decompression and
Convolution of Sparse Input Feature Maps

In this chapter, an accelerator architecture that efficiently performs convolution
operations with the two-step compressed data format (introduced in Chapter 4) is
introduced. In addition, the introduced hardware accelerator adopts three tech-
niques to further optimize the convolutional neural network (CNN) hardware
accelerator, which is introduced in Section 10.3. The presented sparse hardware
accelerator is prototyped on a field-programmable gate array-system-on-chip
(FPGA-SoC). Please note that the sparse CNN acceleration technique discussed
in this chapter is based on lossless compression of input feature maps (IFM)s,
meaning that there is no accuracy loss by adopting the presented technique.

10.1 Overview

For CNN acceleration with data transfer overhead reduction, the presented tech-
nique exploits a HW/SW codesign methodology. Figure 10.1 shows an overall flow
of the presented CNN acceleration technique for sparse input feature maps (IFMs).
On the software side, the noncompressed IFM is converted into the compressed
format by using the compression technique presented in Chapter 4 before it is
sent to the on-chip memory in the hardware accelerator via direct memory access
(DMA). The weight data are not compressed and just sent to the hardware acceler-
ator. On the hardware side, the presented CNN accelerator performs convolution
layer operations with the weight and compressed IFMs. Sections 10.2 and 10.3
present how convolution operations are performed in the hardware accelerator
with the compressed IFMs.

10.2 Hardware Design Overview

Since the presented acceleration technique compresses the IFMs, it is crucial
to efficiently perform convolution operations with the compressed data format.

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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Figure 10.1 The execution flow of the presented acceleration technique.

The presented hardware accelerator performs convolution operations with only
non-zero elements (NZE)s and their location information (extracted from Indices
and Count_table) and avoids the multiply-accumulate (MAC) operations with
the zero operands,1 eventually resulting in performance and energy benefits
proportional to the degree of input sparsity. Figure 10.2 describes the overall
execution flow of the introduced hardware accelerator.

The first part of the introduced hardware accelerator is searching and weight
matching. It brings the compressed IFMs (nonzero elements) with metadata
(indices and count_table) and store them in on-chip memory in the accelerator
( 1© in Figure 10.2). Firstly, it brings NZEs to the nonzero element buffer before
performing the MAC operations ( 2© in Figure 10.2). To perform MAC operations
with sparse inputs, it is crucial to align the weights with the NZEs to be multiplied,
which is done in the Nonzero alignment logic. In the Nonzero alignment logic
( 3© in Figure 10.2), there are filter alignment logic and filter offset buffer. Filter
alignment logic ( 4© in Figures 10.2 and 10.3) finds the offset of the weights in the
filter which will be multiplied with nonzero IFM elements. Figure 10.3 shows a
detailed operation of the filter alignment logic. To perform index matching, it first
restores the original IFM index in the 1D vector format by using the Indices and

1 Though we compute the MAC operations with only NZEs, it does not hurt accuracy as
compared to the case without the presented compression and acceleration technique because
MAC operations with the zero values are ineffectual (i.e., N× 0= 0).
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Figure 10.2 Overall architecture of the presented CNN accelerator.
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Count_table. It then performs a comparison between the 1D vector format indices
of the NZEs and the indices of the IFM area where it will perform the convolution
operations (dark-gray shaded buffer in Figure 10.3). If there are matched indices,
it stores the filter indices to the filter offset buffer ( 5© in Figures 10.2 and 10.3) in a
first-in first-out (FIFO) manner.

After filling the filter offset buffer, the weights are loaded to the filter buffers
( 6© in Figure 10.2). The values in the filter offset buffer indicate the location of
weight values in the filter. For example, Figure 10.2 shows that the weight value
in the filter indices2 0, 5, 7, 9, 14, 21, 22, and 24 will be selected and loaded
into the filter buffers. This process of loading filter weights into filter buffers
is also depicted in weight loading part of Figure 10.2. For example, filter 0[0]
corresponds to the weight value 6 in Figure 10.2, and thus it loads 6 in the filter
buffer. The rest of the weight values are also loaded into the filter buffer in the
same manner. Please note that the filter buffer holds 16 entries in the presented
hardware design and implementation, although only eight entries are shown in
Figure 10.2. Once 16 weight values are loaded into the filter buffer, it performs
MAC operations with the aligned NZEs and the corresponding weights in the
processing elements (PEs), followed by bias addition and activation (ReLU)
( 7© in Figure 10.2). The output feature map (OFM) elements are also stored
in the on-chip memory. The presented hardware accelerator design exploits
output channel-level parallelism, which means each PE performs the MAC
operations for each output channel. The presented hardware accelerator design
for 32-bit floating-point precision3 uses 16 PEs though the number of PEs is also
design-dependent.

In the filter alignment logic, the storage for 1D vector format conversion may
require the nonnegligible storage overhead. Assuming that the maximum number
of NZEs is 216, we need 128KB (2B× 216) on-chip buffer to temporarily store the
converted indices for 1D vector format. It accounts for the on-chip buffer size
of 10.3% (=128 KB/1247 KB; 1247 KB is the total block random access memory
(BRAM) usage in the presented FPGA prototype with floating-point 32-bit preci-
sion support), which is not a significant overhead. To alleviate this overhead, the
counter or on-demand conversion may help reduce the on-chip buffer require-
ments of the presented design, though it should be done with further design
optimizations.

2 1D vector index is used instead of 3D tensor index in the filter. It means
Filter[z][y][x]=Filter[x+y*width+z*width*height].
3 We have also implemented 16-bit fixed-point precision-based accelerator with 32 PEs, which
is explained in Section 10.4
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10.3 Design Optimization Techniques Utilized in the
Hardware Accelerator

While the back-end (MAC PEs, bias addition, and activation) logic is very similar
to the conventional CNN accelerators, the front-end logic (searching and weight
matching, and weight loading) is newly introduced in the presented design.
Though the baseline (i.e., introduced in Section 10.2) hardware design can bring
a nonnegligible performance benefit, one can further optimize the front-end of
an accelerator for even better performance. The presented accelerator design
leverages three design optimization techniques for the front-end part of the
accelerator.

● Parallel Searching and Weight Matching: The most performance-critical
aspect of the presented hardware accelerator is searching and weight match-
ing that finds and aligns filter weights that will be multiplied with the NZEs
in IFMs. It needs to compare the NZE indices to the original 1D vector index
in the IFM, which is performed sequentially in the baseline design. For better
performance, it uses multiple comparison logics (16 in the presented design) so
that the searching and weight matching can be performed for multiple NZEs in
parallel.

● Input Data Reuse: N×N kernels with N>1 provide an opportunity for IFM
data reuse. For example, let us assume that it performs 3× 3 convolution oper-
ations with the depth of 3 (i.e., 𝟑 × 𝟑 × 𝟑 filter). For the next adjacent OFM
element, instead of searching 27 (𝟑 × 𝟑 × 𝟑) elements and reloading all NZEs
to the nonzero element buffer, it can search and load the data for only nine ele-
ments while the rest 18 elements are reused in the nonzero element buffer. This
is because 3× 3 convolutions (CONV) (in general, all N×N kernels with N>1) is
carried out in a sliding window manner. Please note here that 3× 3 CONV oper-
ation is performed with a sliding window-based operation [159], while it does
not mean that the presented hardware uses sliding window logic. Assuming the
kernel window slides in a row-major order, the IFM elements overlapped with
the second and third columns of the 3× 3 kernel can be reused in CONV opera-
tions for the next adjacent OFM element. On the other hand, when performing
1× 1 convolution, it does not perform the input data reuse as 1× 1 convolution
has no opportunity for IFM data reuse in the presented design.4

● Removal of Complex Operations: Searching and weight matching require
several complex operations such as division and modulo to calculate offset or
index values. The presented hardware design replaces those complex operations
with simpler operations such as shift operations or table lookup so that the

4 For 1× 1 CONV, since there is no overlapped IFM element when sliding the kernel window, it
cannot reuse the input data.
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latency for searching and matching can be reduced. For removal of the complex
operations, it does not actually affect the data (e.g., NZEs), while it only reduces
the complexity of the required operations, resulting in performance improve-
ment. According to the evaluations, the removal of complex operations results
in 1.7× and 2.4× speedups for 1× 1 and 3× 3 CONV, respectively, as compared to
the case without the removal of complex operations, implying that the removal
of complex operations affects performance significantly.

10.4 FPGA Implementation

We implement the presented hardware accelerator and software (for compression)
in Xilinx ZCU106 FPGA-SoC platform [160], which is equipped with a quad-core
ARM Cortex-A53 CPU [161], programmable logic elements, and various hard
intellectual properties (IPs). The presented hardware accelerator is implemented
in the programmable logic part while the introduced compression algorithm is
implemented in software and executed on the CPU on-board Xilinx ZCU106
FPGA-SoC platform.

For hardware implementation, Xilinx high-level synthesis (HLS), and Vivado
design suite are used. The implemented hardware accelerator operates at 150 MHz
clock frequency. Although we have explained the compression technique based
on 32-bit floating-point elements, the presented hardware accelerator has been
implemented with two different versions of precisions, 32-bit floating-point and
16-bit fixed-point. In the resource-constrained mobile or edge platforms, the data
quantization is a common technique for efficient on-device CNN inferences.
This implementation of the presented CNN accelerator with 32-bit floating-point
and 16-bit fixed-point is expedient as many CNN hardware accelerators have
been implemented to process 16-bit fixed-point as well as 32-bit floating-point
elements for CNN inferences. Please note that the compression technique
(presented in Chapter 4) can be identically employed to both versions of the
accelerator. Furthermore, the IFM compression technique can be applied for
other quantization levels, such as 5-bit quantization or log quantization. How-
ever, in this work, we have explained the presented approach with two different
precisions (32-bit floating-point for the compression technique and accelerator
and 16-bit fixed-point for the accelerator). Depending on the CNN applications, a
system designer can choose an appropriate version of the accelerator. Due to the
reduced resource usages of the 16-bit fixed-point version of the accelerator under
the same number of PEs, we increase the number of PEs from 16 to 32 in the
16-bit fixed-point version. Table 10.1 summarizes the resource utilization of the
presented hardware accelerator’s implementation in Xilinx ZCU106. The results
in Table 10.1 correspond to the presented hardware accelerator implementation
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Table 10.1 FPGA resource utilization of the presented hardware accelerator
implementations.

32-bit floating-point 16-bit fixed-point Available resources

BRAM 18Kb 554 (88%) 458 (73%) 624
DSP48E 136 (8%) 540 (31%) 1,728
FF 64,600 (14%) 35,458 (7%) 460,800
LUT 66,481 (29%) 132,143 (57%) 230,400

that incorporates all the optimization techniques discussed in Section 10.3. For
both versions of the accelerators, the implementation can execute both 1× 1
CONV and 3× 3 CONV versatility. The presented accelerator design focuses
on the cost efficiency, which means the main goal is to improve performance
per resource usage (cost). As seen from Table 10.1, the absolute amount of the
resource usage as well as usage rates of the presented implementation is very
low, meaning that the presented design and implementation are well suited for
resource-constrained systems. When comparing the 16-bit fixed-point version
to the 32-bit floating-point version, the former uses less BRAM blocks as it
uses 16-bit elements instead of 32-bit elements. However, the 16-bit fixed-point
version uses more digital signal processor (DSP)s, flip-flops (FF)s, and lookup
table (LUT)s because of the increased number of PEs as compared to the 32-bit
floating-point version.

For both the 32-bit floating-point and 16-bit fixed-point versions, the resource
utilization of 18 kb BRAM (i.e., on-chip memory) blocks is still higher than that of
the other components such as LUTs and FFs. The presented implementation uses
BRAM blocks to store the compressed IFMs, weights, and OFMs. To exploit the
parallelism between the output channels with multiple PEs, we need to maintain
as many IFMs, weights, and OFMs on-chip as possible, resulting in high resource
utilization of the BRAM blocks. While hardware resource utilization of the search-
ing and weight matching part, which is mainly composed of the LUTs and FFs, is
hardly proportional to the number of PEs (because it is shared between the PEs),
that of the other parts including BRAM blocks is linearly proportional to the num-
ber of PEs. For the best performance in the platform, we have implemented the
presented accelerator to have as many processing elements (please note that the
number of processing elements is 2N where integer N ≥ 0) as possible, resulting in
high BRAM block utilizations in the platform.
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10.5 Evaluation Results

Since we have prototyped the presented sparse CNN accelerator in FPGA-SoC,
direct quantitative comparison with many of the previously proposed CNN
accelerators would be infeasible as some of the previously proposed CNN accel-
erators have been implemented in application-specific integrated circuit (ASIC)
[44, 45], which hugely differs from an FPGA in terms of the degree of logic
optimizations, or some of the accelerators have been evaluated in simulators
[162, 163]. Hence, Section 10.5.1 compare the introduced technique to CPU-based
(i.e., fully software-based with 1.2 GHz clock frequency) CNN inference with
Darknet framework [143] (by only comparing CONV layer execution time) with
a single-core execution. Though the ZCU106 platform has quad-core Cortex-A53
CPU, the reason why we assume a single-core CPU execution as a baseline is that
the main target for the presented technique is a resource-constrained system.
For example, the resource-constrained edge devices (e.g., IoT devices) often
use a single-core CPU due to resource and power constraint (e.g., Raspberry Pi
Zero [164] still uses a single-core CPU, ARM1176 series CPU [165]). We have
compiled the software code for two different versions: without and with single
instruction multiple data (SIMD) vector instruction supports for both baseline
and the presented acceleration technique. Section 10.5.2 provides quantitative
comparison results of the presented hardware accelerator implementation as
compared to the previous FPGA-based hardware accelerators.

For benchmarks, six convolution layers from SqueezeNet [62] have been
selected: CONV layers 15, 17, 26, 28, 41, and 43. Table 10.2 summarizes the
configurations of the convolution layers used for the evaluation. When executing
the selected six layers, all the data (input, output, and weight) required for
processing a single CONV layer can be fit into the accelerator on-chip memory
(i.e., BRAM in the FPGA-SoC). Though we run the experiments with the selected
six layers, we believe that it does not hurt the generality of the evaluation. For the
layers in which all the data cannot be fit into the accelerator on-chip memory, we
can perform the accelerator execution along with the DMA data transfer multiple
times. In this case, performance can be easily estimated by adding the results of
accelerator execution time and DMA data transfer time obtained from executing
the accelerator and DMA transfer multiple times. For IFMs used for the evalua-
tions, we have synthetically generated 100 random-valued IFMs for each degree of
sparsity (50%, 60%, 70%, 80%, and 90%). For evaluations of performance, energy,
and data transfer, 32-bit floating-point version of the hardware accelerator is
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Table 10.2 The configurations of CNN layers for evaluations.

Layer 15 Layer 17 Layer 26 Layer 28 Layer 41 Layer 43

IFM size 29× 29× 32 29× 29× 32 15× 15× 48 15× 15× 48 15× 15× 64 15× 15
× 64

OFM size 29× 29× 128 29× 29× 128 15× 15× 192 15× 15× 192 15× 15× 256 15× 15
× 256

Filter size 1× 1× 32 3× 3× 32 1× 1× 48 3× 3× 48 1× 1× 64 3× 3
× 64

# of filters 128 128 192 192 256 256
Stride 1 1 1 1 1 1
Pad 0 1 0 1 0 1

The layers’ configurations are based on SqueezeNet implementation in Darknet Framework.
Source: Adapted from [143].

used since the baseline CNN framework [143] only supports 32-bit floating-point
precision while not supporting the 16-bit fixed-point precision [166].

10.5.1 Performance and Energy

Figure 10.4 summarizes performance comparison across various levels of IFM
sparsity. Please note that the performance is normalized to the case of CPU-based
CNN inference without the IFM compression. For fair comparison, the DMA data
transfer time (both read and write) and compression time5 are also included to the
total execution time in the case of the presented design. In the cases of executing
1× 1 CONV and 3× 3 CONV, the presented technique leads to better performance
by 3.4× to 5.4× and 11.3× to 22.6×, respectively, as compared to the CPU-based
execution without SIMD supports. Even when comparing with the CPU-based
execution with SIMD supports, the presented technique still leads to better perfor-
mance by 1.1× to 1.7× and 3.5× to 7.1× in the cases of 1× 1 CONV and 3× 3 CONV,
respectively. As demonstrated in the results, the presented acceleration technique
shows better performance (compared to the CPU-based execution) in 3× 3 CONV
rather than 1× 1 CONV. This is because the presented hardware design is versatile
for both 1× 1 CONV and 3× 3 CONV. Since 3× 3 CONV has more complex opera-
tions compared to 1× 1 CONV, the presented hardware design is mainly optimized
for 3× 3 CONV rather than 1× 1 CONV. Moreover, the hardware logic for data

5 The OFMs of the previous layer are IFMs of the current layer in CNNs, thus inherently
incorporating the recompression latency for the OFMs of the previous layer in the latency
evaluation. According to the evaluation, the compression latency on the software side occupies
only a small portion of the entire latency (3.5%–9.5% of the entire latency).
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Figure 10.4 Performance comparison of the presented acceleration technique
normalized to the CPU-based execution w/o and w/SIMD supports.

Table 10.3 Average power results obtained from Xilinx Vivado.

Processor system (PS) Programmable logic (PL)

Static Dynamic Static Dynamic

Power (W) 0.100 2.701 0.602 1.133

reuse is only for 3× 3 CONV, which is merely regarded as hardware overhead in
the case of 1× 1 CONV.

The presented acceleration technique also reduces energy consumption due to
significant reduction of execution time for CNN inferences. For energy calculation,
we utilize estimated average power results (shown in Table 10.3) from Vivado tool.
The static power is always consumed as long as the system is turned on while the
dynamic power is only consumed when the component is running. Thus, in order
to obtain power consumption of the baseline (i.e., only CPU execution), we add
the dynamic and static power of the processor system (PS: CPU part) and only
static power of the programmable logic (PL: FPGA part). For energy calculation of
the baseline, we multiply average power consumption by the execution time. To
obtain the power consumption when employing the presented acceleration tech-
nique, we break down the execution into two phases: data compression and CONV
which are performed in the CPU and accelerator, respectively. When performing
the data compression, the total system power consumption is equal to an addition
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Figure 10.5 Energy comparison of the presented acceleration technique normalized to
the CPU-based execution w/o and w/SIMD supports.

of dynamic and static power of the PS and only static power of the PL (excluding
the dynamic power of the PL). On the other hand, when performing the CONV
operations in the accelerator, the total system power consumption is equal to the
addition of static power of the PS (excluding the dynamic power of the PS) and
dynamic and static power of the PL. To calculate the total energy consumption, for
each execution phase, we multiply the execution time by the total system power
consumption and aggregate the energy consumption of the two phases.

Figure 10.5 shows the energy results normalized to the CPU-based CNN
inference across various levels of IFM sparsity. As compared to the CPU-based
execution without SIMD supports, the presented technique reduces system-level
energy consumption by 83.4%–89.3% and 95.0%–97.4% in the cases of 1× 1 CONV
and 3× 3 CONV, respectively. When the SIMD supports in the CPU are available,
the presented technique still reduces energy consumption by 47.7%–66.9% and
84.0%–91.9% in the cases of 1× 1 CONV and 3× 3 CONV, respectively. As demon-
strated in the energy results, the presented technique leads to a huge energy
reduction, implying the presented technique is suitable for resource-constrained
embedded systems such as tiny Internet of things (IoT) devices.

10.5.2 Comparison with State-of-the-Art Hardware Accelerator
Implementations

We compare the two versions (32-bit floating-point and 16-bit fixed-point preci-
sion) of the presented hardware accelerator implementation with several recent
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FPGA-based CNN accelerator implementations [138, 148, 167–169]. For quantify-
ing the cost (area) efficiency, the most fair way to perform comparison would be
based on the hardware implementations of [138, 148, 167–169] under the same
or similar costs. However, it is not possible to implement the hardware designs in
[138, 148, 167, 168], and [169] to have hardware cost (or resource usages) same or
similar to the presented accelerator (i.e., our own implementations of the acceler-
ators in [138, 148, 167, 168], and [169] that have the costs similar to the presented
accelerator may distort the results due to suboptimal or different implementations
compared to those in [138, 148, 167, 168], and [169]). Thus, we introduce the met-
ric, giga operations per second per unit cost (GOPs/cost), which quantifies the
performance of the accelerator at iso-cost. We clarify that the cost here estimates
the area required for implementing the accelerator in an FPGA fabric and BRAM
blocks.

The cost is estimated based on resource usage and the number of the transistors
required for each hardware resource component. Firstly, we calculate the number
of metal-oxide-semiconductor (MOS) transistors required for implementing each
type of components. For calculation of the 18kb BRAM block, we multiply 6 (6T
SRAM cell) by the number of cells (18*1024) in the block. For FFs, we assume
that the FF is composed of two cascaded latches (SRAMs), requiring 12 transistors
for each FF. For lookup tables (LUTs), we assume 5× 1 LUTs which are com-
monly used in the modern FPGAs. A single 5× 1 LUT can be implemented with
32 SRAMs and 31 2× 1 MUXes [171]. For LUT cost calculations, we only consider
the SRAM cost because SRAM cells typically occupy large area (due to the sizing
of the transistor) than 2× 1 MUXes. Please note that excluding the 2× 1 MUX area
is still a conservative assumption as the implementation uses the smaller number
of the LUTs (see Table 10.4). Due to the lack of the detailed design and imple-
mentation of DSPs, we omit the cost of the DSPs. For the technology-dependent
(TD) cost, we multiply the square of the process technology (T2) [171] (e.g., 16 nm,
28 nm) with the number of required MOS transistors (NTr) for each type of com-
ponents. After that, by multiplying the number of used blocks or elements in the
FPGA with T2 × NTr, we can estimate the relative cost (area) of the three differ-
ent components (i.e., BRAM blocks, FFs, and LUTs) in the FPGA. By aggregat-
ing the relative costs of the three types of the components, we can figure out the
entire relative cost of a certain accelerator implementation. Finally, we normalize
the relative cost of each implementation to that of the presented 16-bit fixed point
implementation.

As shown in Table 10.4, although the presented implementations attain lower
absolute GOPs as compared to the implementations in [138, 148, 167, 168],
and [169], the 16-bit fixed-point version of the presented hardware implemen-
tation achieves 1.9× (on average) better technology-dependent performance
per unit cost as compared to [138, 148, 167, 168], and [169]. Similarly, 32-bit



Table 10.4 Quantitative comparison of the presented hardware accelerator with the state-of-the-art designs.

Comparison
metrics [167] [168] [138] [169] [148]

Presented
accelerator
(32-bit
floating point)

Presented
accelerator
(16-bit
fixed point)

Platform Zynq7100-based Virtex7-based Zynq7100-based VC709 VC707 ZCU106 ZCU106
Process
technology

28 nm 28 nm 28 nm 28 nm 28 nm 16 nm 16 nm

Precision 16-bit fixed 32-bit float 32-bit float 32-bit float 32-bit float 32-bit float 16-bit fixed
Clock (MHz) 60 200 100 200 100 150 150
BRAM blocks
(18 Kb)

772 1,515 708 1,121 1,024 554 458

FF 107K 383K 187,146 292,016 205,704 64,600 35,458
LUT 229K 252K 142,291 192,493 186,251 66,481 132,143
DSP 128 1,123 1,926 1,032 2,240 136 540
GOPs 17.2 78.3 17.1 66.4 61.6 6.8 10.9
Power (W) 2.3 6.0 3.3 5.3 3.6 2.4 2.7
TD Relative
estimated cost
except DSP

5.23 8.83 4.32 6.59 6.07 0.98 1.00

TD GOPs/cost 3.29 8.87 3.96 10.07 10.15 6.94 10.90

Comparison with [167] is provided for FPGA-based accelerator introduced in [167]. Comparison with [168] is provided for the 32-bit floating-point
accelerator introduced in [168] because 16-bit fixed-point version accelerator in [168] has huge resource usage (e.g., LUTs and FFs usage over 460K and
640K, respectively, and a 99.6% BRAM usage in Virtex7 FPGA), which would not be suitable for resource-constrained systems. “TD” means the
technology-dependent, considering the process technology impact.
Source: Adapted from [138, 148, 167–169]
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floating-point version of the presented hardware implementation also attains
better technology-dependent performance per unit cost as compared to [138]
and [167]. On the other hand, the presented implementations use much less
DSP blocks compared to the other designs. Considering that the cost esti-
mated here excludes the cost of the DSP blocks, the actual (i.e., DSP-included)
technology-dependent cost efficiency of the presented implementations will be
much better as compared to [138, 148, 167, 168], and [169]. In summary, the
presented hardware accelerator is very suitable for resource-constrained systems
where performance under the limited hardware cost is the most important design
metric. Moreover, in terms of power consumption (obtained from Xilinx power
estimator tool [172]), Table 10.4 indicates that the presented implementations
show lower power consumption than [138, 148, 168], and [169] assuming that the
accelerators are implemented in the same FPGA device (i.e., the implementation
is technology-independent). These power results verify that the presented accel-
eration is more suitable for low-power, low-energy, and resource-constrained
systems as compared to the contemporary CNN accelerators. Though the pre-
sented accelerator shows a little higher power consumption than [167], the TD
GOPs/cost of the presented accelerator is much better than [167], leading to a
better tradeoff between cost efficiency and power consumption.

Unlike the works which only present hardware accelerators, the presented
technique also have additional benefits for end-to-end system performance
and energy (i.e., considering not only hardware but also software stack) by
using the software-based compression. The end-to-end performance and energy
comparison of the presented work with other works is not presented in Table 10.4
because the presented technique combines the software-based compression with
the tailored hardware accelerator design, whereas the other works only present
hardware accelerators. It also means end-to-end performance comparisons to
the other accelerators [138, 148, 167–169] with the same software optimizations
would result in misleading because the software optimizations would affect
differently to the various accelerators. Meanwhile, as presented in Chapter 4, the
IFM compression technique reduces memory access latency and the data size to
be transferred between the accelerator and the off-chip memory, which leads to
significant performance and energy efficiency benefits.

10.6 Chapter Summary

This chapter introduced a novel CNN accelerator that exploited sparsity in IFMs
to enhance performance, reduce energy consumption, and curtail data transfer
between the accelerator and the off-chip main memory. The introduced hardware
accelerator performed convolution layer operations with the compressed IFM
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engendering performance improvement and energy reduction. The discussed
sparse CNN accelerator was implemented on an FPGA-SoC platform (Xilinx
ZCU106). Evaluation results from the prototype implementation demonstrated
that the presented technique improved performance by 1.1× to 22.6× depending
on the degree of the sparsity and filter size as compared to the CPU-based
convolution layer execution. In terms of energy, the presented technique led
to 47.7%–97.4% energy reduction as compared to the CPU-based execution.
Moreover, the presented hardware accelerator design attained 1.9× (on average)
better cost efficiency with less or comparable power consumption as compared
to several state-of-the-art CNN accelerator designs. Results verified the suitability
of the presented accelerator for resource-constrained artificial intelligence (AI)
systems such as intelligent embedded and Internet of things (IoT) devices that
require performance- and energy-efficient CNN inference.
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Sparse-PE: A Sparse CNN Accelerator

High-accuracy convolutional neural network (CNN) models [30–32] proposed in
recent years have further strengthened the notion of employing CNNs for various
vision-based AI applications. These CNN models require massive amounts of
convolution operations over a series of network layers to perform a classification
task during the inference phase. These tremendous number of computations
(typically in tens of millions) present a huge challenge for the devices employing
these CNN models. In addition, because of the large number of network layers
and varying layer dimensions, the massive CNN model cannot be stored in the
on-chip memory of the device, and, therefore, requires off-chip dynamic random
access memory (DRAM) which presents high DRAM access cost. To put this in
perspective, the energy cost per fetch for 32b coefficients in an off-chip LPDDR2
DRAM is about 640 pJ, which is about 6400× the energy cost of a 32b integer
ADD operation [36]. The energy cost from just the DRAM accesses would be well
beyond the limitations of an embedded mobile device employing the CNN.

Various techniques have been developed to address the compute and memory
bandwidth issues of a neural network accelerator, running a CNN. Mobilenets
[33, 34] were developed to reduce the total number of computations by splitting
a regular convolution operation into separable convolutions (depthwise and
pointwise), without incurring a loss in accuracy. Another widely used approach
for decreasing the model size is the reduction in precision of both weights and
activations using various quantization strategies [37–39]. This again does not
result in a significant loss in accuracy and reduces the model size by a considerable
amount. Hardware implementations such as Envision [40], NeuroMAX [96],
UNPU [41], and Stripes [42] show how reduced bit precision, and quantization,
translates into increased throughput and savings in energy.

Nonlinear activation functions [6], in addition to deep layers, are one of the key
characteristics that improve the accuracy of a CNN model. Typically, nonlinearity
is added by incorporating activation functions, the most common being the
rectified linear unit (ReLU) [6]. The ReLU converts all negative values in a

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
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feature map to zeros. Since the output of one layer is the input to the next layer,
many of the computations, within a layer, involve multiplication with zeros.
These feature maps containing zeros are referred to as one-sided sparse feature
maps. The multiplications resulting from this one-sided sparsity wastes compute
cycles and decreases the effective throughput and hardware utilization, thus,
reducing the overall performance of the accelerator. It also results in high-energy
cost as the transfer of zeros to/from off-chip memory is a wasted memory access.
In order to reduce the computational and memory access volume, previous works
[43–45] have exploited this one-sided sparsity and displayed some performance
improvements.

The ReLU, being one of the most commonly used activation function, converts
all negative values in a feature map to zeros, thereby, introducing the notion
of one-sided sparsity. Two-sided sparsity is introduced when, in addition to the
feature maps, the weight data also consists of zeros. Han et al. [46] presented an
iterative method of CNN compression that resulted in a two-sided sparsity, that
is, sparsity in both weights and activations, leading to an approximate 9× and
13× reduction in model size for AlexNet and VGG-16, respectively. A compute
reduction of 4–9×, depending on the model, was also observed. These compute
and memory gains, in theory, are very encouraging; however, designing an
accelerator that leverages the two-sided sparsity is quite challenging as it results
in inconsistency in data accesses and load imbalance.

Compression of deep neural network (DNN) models was introduced the first
time in [46]. Han et al. [46] iteratively pruned the connections based on parame-
ter threshold, and performed retraining to retain accuracy. This process resulted
in two-sided sparsity, i.e., sparsity in both weights and activations, which led to
approximately 9× model reduction for AlexNet, and 13× reduction for VGG-16.
It also resulted in 4–9× effective compute reduction (depending on the model).
These gains seem very promising; however, designing an accelerator architecture
to leverage them is quite challenging because of the following reasons:

(1) Data Access Inconsistency: Computation gating is one of the most
common ways by which sparsity is generally exploited. Whenever a zero in the
activation or the weight data is read, no operation is performed. This results in
energy savings but has no impact on the throughput because of the wastage of
compute cycle. Complex read logic needs to be implemented to discard the zeros,
and instead, perform effective computations on nonzero data. Some previous
works [52, 53] use sparse compression formats like compressed sparse column
(CSC) or compressed sparse row (CSR) to represent sparse data. These formats
have variable lengths and make looking ahead difficult if both the weight, and the
activation sparsity is being considered. Other than that, developing the complex
control and read logic to process these formats can be quite challenging.
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(2) Low Utilization of the Processing Element (PE) Array: Convolu-
tion operations for CNN inference are usually performed using an array of
two-dimensional PEs in a CNN accelerator. Different dataflows (input stationary,
output stationary, and row stationary) have been proposed that efficiently map the
weight data and the activation data on to the PE array to maximize the throughput
[6]. Sparsity introduces inconsistency in the scheduling of data thereby reducing
the hardware utilization. The subset of PEs provided with more sparse data have
idle times while those provided with less sparse (or more dense) data are fully
active. This bounds the throughput of the accelerator to the most active PEs, and
therefore, leads to the under utilization of the PE array.

Considering the abovementioned issues, many accelerators have been pro-
posed in the past that attempt to strike a balance between hardware resource
complexity and performance improvements. Cnvlutin [43] attempts to exploit
sparsity by skipping the computations during zero activation data. It, however,
does not avoid transfer of zeros and only skips cycles for zero-activations but
not zero-weights. This results in exploitation of only one-sided sparsity. Eyeriss
[45] only gates computations for sparse activations. Eyeriss v2 [52] attempts
to address the two-sided sparsity by using CSC format for both the activations
and weights. It, however, requires complex read logic embedded within a PE
that drastically increases the area by ∼ 93% when compared to the original
Eyeriss [45]. Cambricon-X [44] does not store activations in compressed format,
while Cambricon-S [173] forces regularity by employing coarse grain pruning
that affects accuracy. Even though it discards zeros during computation, it still
retrieves and stores them. EIE [53] exploits the two-sided sparsity, albeit only
in fully connected (FC) layers. EIE’s performance is equivalent to one-sided
sparsity as it discards zeros in the filter but wastes compute cycles due to being
idle. Sparse CNN (SCNN) [162] targets two-sided sparsity but suffers heavily
from inefficient microarchitecture and systematic load imbalance as explained
in [151]. It, also, can not handle nonunit stride convolutions and FC layers. To
address the complexity associated with the CSC compression format, SparTen
[151] uses sparse bit mask to represent the location of zeros and nonzero data
values. SparTen, however, needs an offline load balancing strategy, which it refers
to as Greedy Balancing, to address the systematic load imbalance. The balancing
is performed based on the filter density using either a software-only approach
(GB-S), or a software-hardware hybrid (GB-H). This form of balancing adds extra
latency and complicates the synchronization of various compute threads. SparTen
also employs Permuter and Output Collector Units for the computation clusters
to merge and/or accumulate the outputs from independently running compute
units. These circuits require rather complex hardware and the complexity grows
exponentially as the number of compute units are increased. In addition, SparTen,
like SCNN, has no support for FC layers.
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This chapter introduces Sparse-PE, a high performance, multithreaded, generic
processing engine (PE) core for sparse CNN computations [157]. Unlike many
previous works, this PE design can exploit full or two-sided sparsity and can be
used for sparse computations in any layer in a typical CNN model. While the previ-
ous approaches use complex PE designs targeted toward their specific accelerator
architectures, the Sparse-PE core is generic in nature and can be used as a general
purpose, sparse dot product compute core. The main contributions in this chapter
can be summarized as follows:

● Presenting Sparse-PE, a multithreaded, high performance, processing engine
core, ideal for two-sided sparse computations. The core works by actively skip-
ping a huge number of ineffective computations (zerow × zeroa, zerow × nonzeroa,
nonzerow × zeroa) involving zeros, while only favoring effective computations
(nonzerow × nonzeroa). This is accomplished by the use of novel selection, com-
putation, and accumulation blocks to dynamically allocate maximum, nonzero
computations, on to a thread matrix inside the core to drastically improve the
hardware utilization. The presented PE core does not target a specific architec-
ture, and thus, can be modified for any accelerator design.

● Unlike previous approaches that use CSC format for their PEs, the Sparse-PE
core uses bit mask (BM) representation for sparse computations. We show that,
on average, the CSC format has 3× higher DRAM memory accesses compared
to the BM representation which directly translates into higher energy require-
ments for the CSC format.

● Developing a cycle-accurate performance simulator for an accelerator that uses
the Sparse-PE cores and show drastic performance improvement over various
recently proposed dense and sparse CNN accelerators, and high hardware
utilization over a range of sparsity levels. Experiments show that the Sparse-PE
core-based accelerator has a performance gain of 12× over a recently proposed
dense accelerator NeuroMAX (discussed in Chapter 8 of this book). For sparse
accelerators, it provides a performance gain of 4.2×, 2.38×, and 1.98× over
SCNN, Eyeriss v2, and SparTen, respectively. An register transfer level (RTL)
implementation of the core on Xilinx Z-7100 SoC is also done and a detailed
module level breakdown of the field-programmable gate array (FPGA) primi-
tives cost, static random access memory (SRAM) cost, and power consumption
of the core is shown.

The remainder of the chapter is organized as follows: Section 11.1 gives a
background on CNN sparsity and layer-by-layer sparsity associated with various
popular CNN models. Section 11.2 presents the introduced Sparse-PE core and
its inner workings. Experimental methodology, simulation results, comparisons,
and implementation cost are given in Section 11.3. Lastly, Section 11.4 concludes
this chapter.
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11.1 Related Work

Many dense architectures have been introduced in the past for acceleration of CNN
inferences. Accelerators proposed in [39, 126, 127] optimize compute, whereas
[131, 132] optimize memory bandwidth. Quantization (linear [39, 175] and log
[37, 38]) of weights and activations provides additional benefits for memory
footprint and compute reductions. Accelerators such as NeuroMAX [96], VWA
[142], UNPU [41], and Stripes [42] show how reduction in bit precision, improved
dataflow, and quantization, increases throughput and saves energy. Another set of
accelerators [138, 139] provide efficient implementation of separable convolutions
on FPGA hardware. These, however, cannot handle regular convolution and FC
layers which are almost always a part of CNN models. Accelerators proposed in
[133, 134] use Booth encoding to avoid the use of zeros to reduce the total com-
putations. They, however, still transfer zeros to and from memory which incurs
SRAM area and energy. Block circulant matrices for weights were introduced in
CirCNN [135]. CirCNN, however, requires complex fast Fourier transform (FFT)
operations in its PE design. It also does not capture two-sided sparsity. In-memory
accelerators [136, 137] have also been presented that use analog logic design to
perform matrix multiplications within memory. Sparse multiplications, however,
cannot be performed in these accelerators as they require complex arithmetic
logic unit (ALU) and buffering logic. Analog circuits are also impacted by noise
and variations during manufacturing process which can significantly impact the
CNN model accuracy during inference.

Sparse architectures reduce the compute and memory access volume by
exploiting the zeros in activations (one-sided), or both activations and weights
(two-sided). Cnvlutin [43] and Cambricon-X [44] exploit one-sided sparsity by
ignoring zeros in weights or input maps, but not both. Cnvlutin also does not
avoid transferring of zeros and only skips cycles for activations. Tensaurus [175]
accelerates sparse and dense tensor factorizations by introducing compressed
interleaved sparse slice (CISS) dataflow. It, however, only supports one-sided
sparsity. Recent sparse general matrix multiplication (GEMM) (SpGEMM) accel-
erators [152, 153, 155, 176, 177] target generalized sparse-matrix, sparse-matrix
multiplications. Sigma [152] and ExTensor [176] use inner-product (output
stationary) dataflow for sparse matrix multiplications. Inner product, however,
is inefficient for highly sparse matrices because every element of the rows and
the columns must be traversed even though there are less effectual computations
(nonzero × nonzero). This leads to a significant amount of wasted computations.
SpArch [153] and OuterSPACE [177] use outer-product (or input stationary)
dataflow to avoid the inefficiencies associated with the traversals inherent in
the inner-product dataflow. Outer-product, however, gives poor output reuse
as the partial outputs generated are much more than the final outputs causing
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significant memory traffic. Finally, MatRaptor introduces a modified version
of the CSR format referred to as channel cyclic sparse row (C2SR) for better
reuse and memory efficiency but requires complex encoding for output matrices.
Eyeriss v2 [52] uses the CSC format for both weights and activations to address
the two-sided sparsity. It, however, suffers from systematic load imbalance due to
variations in the density of the sparse matrices. The PE design of Eyeriss v2 also
requires complex buffering logic that drastically increases the area by ∼93% when
compared to the original Eyeriss [45]. EIE [53] exploits the two-sided sparsity in
FC layers and does not address the CONV layers. EIE essentially discards zeros
in weights but remains idle, thus, wasting compute cycles. Sparse CNN (SCNN)
[162] targets two-sided sparsity, but its PEs suffer from inefficient microarchitec-
ture and system-level load imbalance (also pointed out in [151]). SCNN, also, is
incapable of handling nonunit stride convolutions and FC layers. Although some
previous accelerator architectures attempt to exploit sparsity in CNNs, they do
not address the issues related to high PE cost, inefficient microarchitecture, and
dependence of PE on accelerator design. We design a multithreaded PE, referred
to as Sparse-PE, which not only addresses the issues present in the previous
designs but also can carry out general sparse dot product computations for any
application.

11.2 Sparse-PE

Figure 11.1 shows a typical convolution operation in a CNN. Here, a 3 × 8 sparse
input is convolved with a 3 × 3 sparse weight to generate a 1 × 6 output. The input
and weight matrices have sparsity of 42% and 45%, respectively. The convolution
operation can be broken down into six smaller convolution chunks (C0–C5), as
shown in Figure 11.1. Each of the nine multiplications in a single convolution
chunk are performed by a compute thread within a 3 × 3 compute thread matrix.
The multiplications in dark gray are ineffective computations which mean that
either one or both the multiplication operands are zeros, resulting in a wasted com-
putation, whereas the multiplications in black are effective. It can be seen that, on
average, 66% multiplications in a convolution chunk are ineffective (Output Spar-
sity OS = 6/9) which corresponds to an effective hardware utilization of only 33%.
This represents a significant loss in computational efficiency as most of the com-
pute cycles are wasted on ineffective computations. The Sparse-PE core addresses
this issue and increases the hardware utilization, consequently the throughput,
by minimizing the total number of ineffective computations performed by the
3 × 3 compute matrix. It does this by looking-ahead into the computations before-
hand and scheduling only the valid computations to minimize the total compute
cycles.
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Figure 11.1 Dense convolutions.
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Figure 11.2 Sparse-PE architecture.

Figure 11.2 shows the high-level block diagram of the Sparse-PE core. The core
takes the binary mask (BM) and data input and performs sparse computations to
generate output data and binary mask. The Sparse-PE core consists of three main
components: Selection (SL), Computation (CM), and Accumulation (AM). The
SL block uses the sparse binary masks of input data/feature maps and weights
to perform selection of valid computations (nonzerow × nonzeroa). These valid
computations are represented by a set of binary matrices referred to as select
matrices. The CM block uses the select matrices to map the sparse input and
weight data on to a 3 × 3 matrix of compute threads. The mapping is performed
in such a way as to maximize the utilization of individual compute threads.
The AM block accumulates the CM outputs to produce valid output results. The
output sparse binary mask (BM) is also generated which will be used for the next
CNN layer.
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11.2.1 Sparse Binary Mask

Many previous approaches use compressed sparse row (CSR) or column (CSC) for-
mats to represent sparse data [43, 44, 53]. We, instead, use a binary representation
referred to as sparse BM for representing both weights and activations. The BM
representation provides a simplistic, and a more convenient method for represent-
ing the unstored zero data and the stored, nonzero data. Unlike the CSR/CSC for-
mats, this representation does not require storage of count and data pointers which
significantly decrease the memory footprint of the BM representation. Figure 11.3
shows the dense, BM and CSR format representation of the 3 × 3 weight matrix
and the 3 × 8 input data/feature map given in Figure 11.1. In the dense represen-
tation, both the zero and nonzero data is stored in the memory along with the
indices, as shown in Figure 11.3a. Figure 11.3b shows the equivalent BM repre-
sentation where only the nonzero data is stored. The BM representation represents
nonzero (stored) data with the binary 1, and zero (unstored) data with the binary 0.
Finally, Figure 11.3c shows the CSR format representation, where the relative loca-
tions of the nonzero data are represented by the row and col pointers.

To process the input sparse data, the Sparse-PE core is provided the BM and the
associated data in the form of chunks for processing of a particular CNN layer.
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Although, the Sparse-PE core can work on any type of convolution or FC layer,
for convenience and ease of understanding, we will show the working of the core
using the input and the weight matrix in Figure 11.1. We also assume that the
input and the weight data are 8 bits wide.

11.2.2 Selection

The convolution operation works by performing dot product between two vectors.
In a two-sided sparse CNN model, the dot product can result in four possible mul-
tiplication outputs.

(i) zeroo = zerow × zeroa
(ii) zeroo = zerow × nonzeroa

(iii) zeroo = nonzerow × zeroa
(iv) nonzeroo = nonzerow × nonzeroa

It can be seen that the only valid multiplication is the nonzeroo which results
when a nonzero weight (nonzerow) is multiplied by a nonzero input/activation
(nonzeroa). The SL block has two user-defined parameters, n and k. The main pur-
pose of the SL block is to determine k, nonzeroo computations in a set of n convolu-
tion chunks. The value of k represents the total number of multiplier threads in the
CM block. In this design, we have a 3 × 3 matrix of multipliers, making the value of
k = 9. We define n as the lookahead factor, which represents the number of convo-
lution chunks the core looks into to determine k multiplications. There are a total
of six convolution chunks (C0–C5) in the example input, as shown in Figure 11.1.
For this design, we consider the value of n to be 3. This means that during one
cycle, the core looks into k = 9 valid multiplications in a set of n = 3, 3 × 3 convo-
lution chunks. The SL block does this by using a series of n, 2k-input AND gates
followed by a selector, as shown in Figure 11.4. Figure 11.5 shows the process of
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Figure 11.5 Process of ANDing between the weight binary mask and the input binary
mask chunks in the SL block.

ANDing. During the first cycle, the sparse masks of the weight and n = 3 chunks of
the input matrix are loaded into the core. Bit by bit ANDing is performed between
the sparse masks of the weight and the input to generate SEL_R1, SEL_R2, and
SEL_R3, representing the ANDed output of the first, second, and third, convolu-
tion chunks, respectively. The ones in the SEL_R outputs represent the location
of valid nonzero multiplications, whereas zeros represent in-effective computa-
tions involving zero operands. To process the six convolution chunks, two cycles
are needed and the final SEL_R outputs are shown in Figure 11.6. The first cycle
generates the ANDed outputs for the first three convolution chunks (C0, C1, C2),
whereas the second cycle generates the ANDed outputs for the last three convolu-
tion chunks (C3, C4, C5).

The ANDed outputs are provided to the selector which selects the valid
multiplications in a column major format. There are a total of n selectors each
processing a particular comma-separated column. For this design, the three
columns Col0, Col1, Col2 (shown in Figure 11.6) are processed in parallel by
the three selectors. The selection process occurs iteratively in a nonlinear (or
out-of-order) fashion. The purpose of the selector is to schedule the effec-
tive computations in each of the input columns (Col0, Col1, Col2) on to the
respective columns of the multiplier matrix. Since, at any point, the maximum
number of scheduled multiplications per column can not exceed the total
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Figure 11.6 Selection for maximum multiplier utilization.

number of multipliers per column of the multiplication matrix, the selector
has to make sure that during any cycle the total number of selected multipli-
cations are equal to multiplier threads per column of the multiplier matrix
((k = 9)∕3 = 3) to ensure maximum hardware utilization. Since every 1 in the
input columns (Col0, Col1, Col2) represents a valid computation, the selection
algorithm works by counting the number of ones in the individual entries and
selecting the entries that maximize the utilization of the multiplier matrix.
Consider the second column (Col1) in Figure 11.6 on which the second selector
operates. The selection algorithm is shown in Figure 11.7. The selector iterates
over the first n = 3 values (val1, val2, val3) and generates three accumulation
values (accum1, accum2, accum3). # ones function calculates the total number of
ones in a particular val. The first iteration comprises of the first three values 001
(val1), 100 (val2), 101 (val3). The first value, i.e., 001 is assigned the highest priority
and the selector counts the total number of ones in this entry and stores the result,
which in this case is 1, in the init variable. It then computes the accumulator
variables (accum1, accum2, accum3) using the next two values (val2, val3). The
selector then selects the values based on whether the total number of ones in
accumulated values exceed the total number of compute threads in one column
of the thread matrix (i.e., 3). The working of the algorithm for Col1 is shown
in Figure 11.8. In the first iteration (cycle 1), the selector selects val1 and val2,
based on the algorithm in Figure 11.7. The selector generates the output (out0)
by creating a single row of the selected values. Since a total of three values were
considered, the selector replaces the last unselected value (val3) by zeros in the
out0 output. In the next iteration (cycle 2), the selector prioritizes the unselected
value (val3) from the previous cycle and repeats the same process to generate out1.
It takes a total of three cycles for the selector to process the entire input column.
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init = #ones(val1)
accum1 = init + #ones(val2)
accum2 = init + #ones(val3)
accum3 = init + #ones(val2) + #ones(val3)
if (accum3)<=k/3

select val1, val2, val3
elseif (accum1) <= k/3

select val1, val2
init = val3

elseif (accum2) <= k/3
select val1, val3
init = val2

else
select val1
init = val2

Figure 11.7 Selection algorithm employed by the Selector to maximum the utilization
of the multiplier matrix.
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Algorithm in Figure 11.7.
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Figure 11.9 Generation of
selection matrices.

SEL_R
1
 =

1st

cycle

select_matrix 0

select_matrix 1

select_matrix 2

2nd

cycle

Col
0

Col
1

Col
2

SEL_R
2
 =

SEL_R
3
 =

100
1 1 1

2

2

3

2

3

2

3

000

100

001

100

101

100

101

101

,

,

,

,

,

,

SEL_R
1
 =

SEL_R
2
 =

SEL_R
3
 =

100

100

100

100 000 100

100 100 100

000 000 000
001 100 000

000 100 101

101 000 100

100 101 000

100 000 101

000 100 100

101

100

100

100

100

100

,

,

,

,

,

,

At the end, a total of three select matrices are generated by the three selectors
operating in parallel, as shown in Figure 11.9.

As indicated earlier, in this design example, we have considered the value of n to
be 3. Therefore, in Figure 11.8, the selector considers three values (val1, val2, val3)
for selection in a particular cycle and uses three accumulators (accum1, accum2,
accum3 in Figure 11.7). For a higher value of n, let us say 6, the selector will con-
sider all the values in Col1 in Figure 11.8. At higher levels of sparsity, the increased
n will result in an increase in throughput as more valid, nonzero computations
will be scheduled and more invalid, zero computations will be skipped by the
core. We should also mention that increasing the value of n will also result in an
increase in the hardware resource count as more logic will be required for the selec-
tor implementation. For n > 3, (2n − 2) accumulators and conditional statements
will be required by the algorithm in Figure 11.7 for the selector implementation.
Therefore, the value of n is chosen in such a way as to keep a balance between
performance and area overhead.

Figure 11.10 shows the implementation of the selection process for Col1 in
Figure 11.6. The outputs from the AND network are stored in a local SRAM
memory. On every cycle, a new value is written into the memory, and values are
read based on the priority of selection, with P1 being the higher priority. The
selector block implements the algorithm presented in Figure 11.7. After every
iteration, the read address (rd_addr) gets incremented to read the next value
in the memory and the priorities are reversed. The outputs get stored into the
selection matrix based on the row numbers. The tag bits are a crucial part of
this process since they are used by the CM and the AM block for accumulation
of data (explained in Sections 11.2.3 and 11.2.4). Whenever a particular value is
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Figure 11.10 First-in first-out (FIFO)-based selector implementation in hardware for
generating select_matrices.

not selected during a selection run, the tag bit associated with that value is reset
to 0. The selection process ends when no more values need to be read from the
memory, the read addresses for all the memories are equal, and all the tag bits
are set to 1. These conditions raise a termination flag which ends the process of
selection. The final select matrices, along with the associated tag bits for every
value are shown in Figure 11.10.

11.2.3 Computation

Figure 11.11 shows the process of computation in the CM block. The actual sparse
data and their BM representation for a particular layer is loaded into the on-chip
SRAM. Based on the BM of the input and the weight matrix, zeros are inserted
at various locations for length equalization and proper indexing, as shown in
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are used to schedule the computations on to the multiplier threads.
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Figure 11.11. The CM block consists of a series of fifos connected to the multiplier
threads of the thread matrix. Since the size of multiplier matrix is 3 × 3, a total
of 9 fifos (fifo0-fifo8) are connected to the nine individual multiplier threads.
Each column of the multiplier matrix gets a portion of the zero-inserted weight
matrix. This can be seen in Figure 11.11, where the first column of multiplier
threads (th0,0, th1,0, th2,0) gets the weight vector wa000, the second column (th0,1,
th1,1, th2,1) gets wb00wb2 and the third column (th0,2, th1,2, th2,2) gets wc00wc2.
Zero-inserted data are also scheduled to the threads from the fifos as shown in
Figure 11.11. The enabled pin of the fifos are connected to the tag bits of the
select matrices. Whenever the tag bit for a particular entry is 1, the fifo is enabled
and a new value from the fifo is passed to the multiplier which performs the
computation. Figure 11.12 shows the process of computation for the second
column (th0,1, th1,1, th2,1) of the thread matrix. In the first cycle, the first three
values in the three fifos (fifo3, fifo4, fifo5) are controlled by the first row of the
select_matrix 1 (001 100 000). The first three bits (001) along with the associated
tag bit (1) controls fifo3. Similarly the next two sets of the three bits control fifo4
and fifo5, respectively. Since the tag bits for the first two values (001 and 100) are
set to 1, the two corresponding fifos are enabled, and the data are moved to the
corresponding multiplier threads. The multiplier determines the valid nonzero
computation based on the values from the select matrix. For the first value (001),
the multiplier extracts the last 8 bits corresponding to the weight value (wb2) and
the data (b2) and performs the multiplication to generate the output value b2wb2.
Similarly, the second multiplier thread (th1,1) generates the value c0wb0. Since the
last three bits of the first row of the select matrix 1 have a tag 0 associated to it, the
fifo5 enable is off and the multiplier th2,1 does not perform a valid multiplication.
The same process repeats for the next two rows of the select matrix for cycles
2 and 3. The light gray rectangles on the fifo entries in Figure 11.12 represent
the fifo entries that have tag bits of 1 and are thus utilized in the current cycle,
whereas the dark gray rectangles indicate the entries that have tag bit of 0, and
thus, are not utilized in the current cycle. Parallel to this multiplier column, the
first (th0,0, th1,0, th2,0) and the third (th0,2, th1,2, th2,2) multiplier columns process
the data in their own respective fifos using their own select matrices to generate
the outputs.

From Figure 11.11, it can be seen that the output of the multiplier threads are
fed into the level 1 (L1) Adder circuit. The purpose of this adder is to accumu-
late the outputs which belong to the same convolution chunk and to bypass the
addition if the outputs belong to different convolution chunks. To further illustrate
this, consider the Cycle 2 in Figure 11.12. The outputs from th1,1 (d0wb0) and th2,1
(d2wb2) belong to the same convolution chunk (C2 in Figure 11.1) and therefore
need to be accumulated, whereas the output from th0,1 (f0wb0) belongs to a com-
pletely different convolution chunk (C4 in Figure 11.1) and has no relevance to
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Figure 11.12 Cycle-by-cycle computation of the partial products from the second
column thread matrix (th0,1, th1,1, th2,1) in Figure 11.11.

the outputs from th1,1 and th2,1. This happens because the selector in the previous
step is selecting the valid nonzero computations in a nonlinear fashion to maxi-
mize the multiplier utilization and does not necessarily care about maintaining a
proper flow of multiplications. To circumvent this issue and to determine which
multiplier outputs need to be accumulated, the L1 adder uses a bit mapper that
encodes the select matrix rows to appropriate values, as shown in Figure 11.13a.
The two bits at the output encode the following information:

00 -> The thread outputs within the multiplier column are not added and passed
as is.

01 -> The outputs of th0,x and th1,x are added, whereas, the th2,x output is passed
as is.

10 -> The outputs of th1,x and th2,x are added, whereas, the th0,x output is passed
as is.

11 -> The outputs of all the threads within a multiplier column are added.

The mapping from the 9 bits of select matrix to 2 bit output is straightforward.
Since every color coded set of three bits represent a multiplication within a par-
ticular convolution chunk, whenever there are multiple ones within the same set
(black, dark gray, or light gray), the thread outputs associated to those values need
to be added together. This can be seen from entry 4 of Figure 11.13a (000 000 011
-> 01). The light gray set has value 011, so according to the above mapping, the first
two thread outputs are added together because they belong to the same convolu-
tion chunk. Similarly, the last entry (111 000 000) is mapped to 11, meaning that all
three thread outputs within a multiplier column belong to the same convolution
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Figure 11.13 L1 Adder computational mapping and partial sum generation
(a) select_matrix to configer bits mapper, (b) L1 Adder internal structure, and (c) Partial
sum generation through accumulation from the L1 Adders.

chunk, and therefore, need to be accumulated. Using this mapping, the L1 adder
can keep track of which thread outputs need to be accumulated and which do
not. Figure 11.13b shows the internal structure of the L1 Adder. It comprises three
adders which add different combinations of the thread outputs. It also comprises
an output multiplexer whose select line is connected to the mapper output (2 bits).
The multiplexer has three outputs which are determined by the mapper output
bits. The L1 Adder operation for the second column of the thread matrix (th0,1,
th1,1, th2,1) is shown in Figure 11.13c. The mapper maps the individual rows of the
select matrix to 2 configuration bits. Using the configuration bits, the L1 Adder
generates the outputs. In the first cycle, all three outputs (b2wb2, c0wb0, 0) belong
to different convolution chunks and therefore the config bits are 00, which passes
the inputs to outputs without accumulation. In the second cycle, the select matrix
row maps to 10, which adds the last two thread outputs (d0wb0, d2wb2) together
because they belong to the same convolution chunk and forward the first thread
output (f0wb0) as is because it belongs to a different convolution chunk. In the last
cycle, the first two thread outputs are added and the last is passed as is. It should
be noted that there are a total of three identical mappers (Figure 11.13a), each
belonging to a particular L1 adder in Figure 11.11.
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Even though the row length of the select matrix is 9 which produces 29 = 512
combinations, the mapper only needs to store those combinations for which the
total number of ones in the select matrix rows are less than or equal to the mul-
tiplier threads per column of the multiplier matrix (3 in this case). Therefore, the
total combinations that need to be stored are only 130. Generally, the total combi-
nations that need to be stored can be found using the following equation:

Combinations =
(

k
0

)
+
(

k
1

)
+
(

k
2

)
+ · · · +

(
k
n

)
(11.1)

Where k represents the length of a select matrix row (9 in this case) and n repre-
sents the total multiplier threads per column of the thread matrix (3 in this case).
Therefore, the total memory required for storing the three mappers is only 780 bits
(130 × 2 × 3).

Figure 11.14 shows the scheduling of threads for computation of the output
for the example in Figure 11.1. All the threads are connected to their respective
fifos and receive the data. The select matrices are used to schedule the data and
for generating the 2-bit L1 Adder configuration bits (also shown in Figure 11.14).
To compare the performance of a dense design which does not exploit sparsity, we
can see from Figure 11.1 that a dense approach would take a total of six cycles to
generate the output using the same number of multipliers (9 arranged in a 3 × 3
matrix). The approach presented here utilizes just three cycles to process the entire
output by exploiting the sparsity and maximizing the scheduling of valid, nonzero
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Figure 11.14 Multiplier matrix thread scheduling for the example in Figure 11.1.
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Figure 11.15 Accumulation for the example in Figure 11.1.

multiplications during majority of the processing cycles. This represents a 50%
increase in the hardware utilization which consequently represents a 50% increase
in throughput. It should also be noted that the hardware utilization increases fur-
ther when the input sparse matrix is larger. It can be seen from Figure 11.14 that
the last three multiplications in the Thread Col 1 are all zeros because the input
matrix has been exhausted. For a larger input matrix, the average hardware uti-
lization and throughput would be higher.

11.2.4 Accumulation

The accumulation (AM) block buffers and accumulates the partial dot product
outputs from the CM block to produce the final output results. The AM block
consists of a series of fifos (fifo1-fifo9) connected at the output of the 3 L1 Adder
circuits, as shown in Figure 11.15. The output of the fifos is provided to a level 2
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(L2) adder which accumulates the dot products for a particular convolution chunk
to generate the final output. The CM block outputs the partial dot products as well
as the tag values associated with every product. The tag bits are shown in paren-
thesis in Figure 11.15. The process of accumulation occurs in two stages by the
same color coded fifos (fifo1 + fifo4 + fifo7), (fifo2 + fifo5 + fifo8), and (fifo3 + fifo6
+ fifo9). The outputs are either valid or partial, based on the tag values associated
to each accumulation stage. If the tag values for all the inputs are equal to 1, the
output is considered valid, otherwise, it is considered partial. Figure 11.16 shows
the accumulation stage map for the example in Figure 11.1. On every cycle there
are two accumulation stages. In the first stage, the previously generated partial
outputs are added to the new entries to make the output valid. To do this, the AM
block checks the tag bits in the partial output and adds the missing tag 1 input to
make the partial output complete/valid. In the second stage, the AM replaces the
already used tag 1 values with zeros and generates new partial outputs by summing
the unused tag 1 values. This process can be seen in Figure 11.16. The O3 partial
value is generated by summing the fifos F3, F6, F9 in cycle 1. The output is partial
because the Input2 and Input3 tag values are 0. O3 is made valid by summing the
O3(partial) with the now available Input2 and Input3 tag 1 values in the stage 1
during the second cycle. In the second stage, during the same cycle, the already
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Figure 11.17 Initial latency of the Sparse-PE core operations.

used tag 1 inputs are replaced by 0 and the new partial product (O6) is generated.
This process is repeated in subsequent cycles until all the inputs are utilized and
all the outputs are valid.

Figure 11.17 shows the cycle-by-cycle processing latency of the various blocks
of the Sparse-PE core for the example in Figure 11.1. The process of ANDing
takes a total of two cycles for the generation of a pair of three-tuples (SEL_R1,
SEL_R2, SEL_R3). After the generation of the first tuple of the SEL_R1, SEL_R2,
and SEL_R3 values, the selection block starts processing and takes a total of three
cycles to generate the select_matrices and the associated tag values (Figure 11.10).
The computation block gets triggered after the first row of the select_matrices
is generated and takes a total of three cycles to process the three rows of the
select_matrices (Figure 11.14). Finally, the accumulation block takes a total of
three cycles to process the partial product outputs from the computation block
(Figure 11.16) to generate the final outputs. Therefore, the initial processing
latency to generate the first output is six cycles. This initial latency, however, is
amortized over processing over a larger input.

11.2.5 Output Encoding

Figure 11.18 shows the process of output sparse binary mask encoding. Unlike the
weight masks, the output binary mask needs to be generated on-the-fly because
of its dynamic nature. From Figure 11.5, we can see that the SEL_R outputs show
the presence of the nonzero partial products for a particular convolution chunk.
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Figure 11.18 Output sparse mask generation. (a) Reduction of the individual SEL_R
outputs to a single bit (SEL_Rxr), based on an all-zero check and (b) sparse binary mask
after ReLU where the negative outputs and their corresponding sparse mask locations are
converted into zeros.

The presence of even a single one in the SEL_R outputs show that the output is
nonzero. To determine the output binary mask, we can use the same metadata.
The first step involves reduction of the individual SEL_R outputs to a single bit
(SEL_Rxr), based on an all-zero check, as shown in Figure 11.18a. This generates
the sparse binary mask for the outputs before ReLU. Note that the SEL_R values
are taken from the test example (Figure 11.1). Figure 11.18b shows the second
step after ReLU, where the negative outputs, and their corresponding sparse mask
locations, are converted into zeros. This final sparse mask is stored as is, whereas
the output is shifted first to omit zero data entries, and then stored.

This concludes the processing that goes on in a single Sparse-PE core when
convolution is performed using a 3 × 3 filter. For a filter of size 5 × 5, 7 × 7, or
higher, the kernel factorization [178] is employed to convert larger filters into a
set of smaller 3 × 3 filters. This factorization makes it possible to keep the design
of PEs relatively simple and not incorporate complex flow control to support larger
filters. It should be noted that the kernel factorization is done during model gener-
ation and training. The final generated model with 3 × 3 filters is then used during
the inference. Sparse-PE, however, also supports 5 × 5 filters by using a multiplier
matrix of 5 × 5, instead of the current 3 × 3.

1 × 1 convolution, used in many modern CNN models, is performed the same
way as the 3 × 3 convolution. Figure 11.19 shows an example of 1 × 1 convolu-
tion. Here, a 1 × 1 × 9 filter is convolved with a 3 × 1 × 9 input matrix to produce
a 3 × 1 output. Figure 11.19 also shows the transformation employed by the archi-
tecture to transform the 1 × 1 convolution operation into an equivalent 3 × 3 stride
3 convolution. Here, individual channels of the filter and the input matrix are
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transformed into a 3 × 3 matrix and scheduled to the core for processing. The core
then performs the selection, computation, and accumulation in the same manner
as explained previously. For an input and a kernel with higher channel count, as
is the case for most commonly used CNN models, the channels are broken down
equally and scheduled among different Sparse-PE cores (Figure 11.21).

Sparse-PE architecture also allows the processing of FC layers. Figure 11.20
shows an example of FC layer processing. Here, a 9 × 1 input array and a 9 × 3
filter matrix produces a 1 × 3 output. The input and the filter matrices are
again transformed into an equivalent 3 × 3 stride 3 convolution. Sparse-PE then
processes the transformed input to generate the final outputs.

In Section 11.3, we will show the performance improvement offered by an
accelerator that uses a system of Sparse-PE cores to accelerate the CNN inference
process.

11.3 Implementation and Results

This section describes the performance modeling and the implementation of the
Sparse-PE core. An individual Sparse-PE core works by computing dot products
between a subsection of the sparse input data and the sparse weight data to pro-
duce a subsection of the output data. To process multiple subsections, we envision
an R × C matrix architecture of the Sparse-PE cores, where, R represents the rows
and C represents the columns. From Figure 11.21, we can see that the value of R
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Figure 11.20 FC layer transformation into an equivalent 3 × 3, stride 3 convolution
layer.

and C is 7 and 4, respectively, making the total number of Sparse-PE cores equal
to 7 × 4 = 28. Since, a single Sparse-PE core has 3 × 3 = 9 multiplier threads, the
matrix of cores in Figure 11.21 have a total of 9 × 28 = 252 multiplier threads. The
cores get the sparse data and the binary masks from input SRAMs. The outputs
of the cores are connected to level 3 (L3) adders that accumulate individual chan-
nel outputs to generate the final output. These outputs are stored in the output
SRAMs and subsequently sent to the DRAM for next layer processing. We simu-
late the architecture using our cycle-accurate simulator and extract the throughput
and hardware utilization results. We also implement the Sparse-PE core in RTL
Verilog and provide an estimate of resource and power consumption.

11.3.1 Cycle-Accurate Simulator

To evaluate the performance of an individual Sparse-PE core and the 7 × 4 matrix
of Sparse-PE cores as a whole, we develop a cycle-accurate performance simulator.
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Figure 11.21 3D Sparse-PE core architecture.

The simulator generates the results using different values of n for the Sparse-PE
cores in Figure 11.21. The simulator was built using MATLAB R2020a and the
Sparse-PE functionality was implemented in software. The Sparse-PE cores in
Figure 11.21 are implemented using a MATLAB function which is provided
different data based on the current layer dimensions. The evaluation files in
the simulator use the data outputted by the individual cores and schedulers to
generate the throughput and the speedup results for various dense and sparse
CNN models. The simulator has modifiable n parameter for the individual cores.
Recall that n (look-ahead factor) represents the total number of convolution
chunks the core looks into during an input processing. For the design example
previously presented, we considered the n value to be 3, which indicates that at
any particular cycle, the core looks into three convolution chunks to determine
valid computations. To evaluate the performance, we use different values of the n
parameter which allows us to look-ahead into a different number of convolution
chunks for processing in a particular cycle. The simulator also contains routines
for SparTen [151], SCNN [162], and Eyeriss v2 [52] for performing comparisons.

The performance is evaluated on many widely used CNN models including
Alexnet [30], VGG16 [31], MobileNet [33], and GoogleNet [35]. We use the
sparse versions of VGG16 and MobileNet for comparison purposes. To create
sparse versions of the CNNs, we use the approach presented in [46] for pruning
using the MATLAB’s Deep Learning Toolbox. For fair comparison, we achieve
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the same level of the weight and the input sparsity as the previous approaches
and then evaluate the nets for performance comparisons. The activation sparsity
changes dynamically during the inference process; therefore, we average out the
input sparsity for a batch of 100 randomly selected inputs. After pruning of the
network, we generate the sparse binary masks for every layer and generate a
network containing only the binary masks, since only this information is needed
to efficiently represent the multiply-accumulate (MAC) operations needed per
layer for the accelerator.

11.3.1.1 Performance with Varying Sparsity
Our core simulator has the ability to sweep both input activation/weight spar-
sity from high (95%/95%) to low (10%/10%). This gives us an accurate measure
of how much performance improvement, in terms of speedup and hardware uti-
lization, can be achieved using the Sparse-PE core. Figures 11.22 and 11.23 show
the speedup results and the average thread utilization for VGG16 and MobileNet,
respectively, under varying sparsity. These results are obtained by running the
sparse neural nets layer by layer and then averaging out the speedup and the thread
utilization for one complete run. It should be noted that all the layers, including
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Figure 11.22 VGG16 performance with varying sparsity: (a) Speedup results and
(b) average thread utilization.
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Figure 11.23 MobileNet performance with varying sparsity: (a) Speedup results and
(b) average thread utilization.

the FC layers, are accounted for in this test. Three Sparse-PE core configurations
(Sparse-PE-n) are considered with n (lookahead factor) changed from 9 to 18 to
27. At very low sparsity (0.1/0.1), we observe that a dense core and the Sparse-PE
core perform somewhat similar in terms of performance. There is a slight increase
in the thread utilization, with dense providing almost 80% utilization while all the
Sparse-PE configurations providing almost 90% utilization for sparse VGG16 net.
For MobileNet, the dense provides almost 70% utilization, while Sparse-PE cores
provide almost 80%. For VGG16, the Sparse-PE cores consistently keep the uti-
lization greater than 90% even at high sparsity levels (60%), whereas, as expected,
the dense core’s utilization decreases by 25–30% and then decreases sharply by
50% at high sparsity levels. This higher thread utilization directly correlates to
improved throughput and speedup when compared against a dense design. At 80%
sparsity, the Sparse-PE-9, Sparse-PE-18 and Sparse-PE-27 are 7×, 10×, and 11.5×
faster, respectively, than a dense design for the sparse VGG16 net. Comparing dif-
ferent versions of the Sparse-PE cores, we see a 57% performance improvement
when going from Sparse-PE-9 configuration to Sparse-PE-27 configuration. This
shows that the higher the value of the lookahead factor n, the greater is the per-
formance improvement delivered by our Sparse-PE core for sparse input activa-
tions/weights.
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11.3.1.2 Comparison Against Past Approaches
We compare our core design against three previously proposed sparse CNN accel-
erators (SCNN [162], SparTen [151], Eyeriss v2 [52]), and one dense accelerator
(NeuroMAX [96]). Among these designs, SCNN, SparTen, and NeuroMAX do not
support FC layers, so we omit our FC layer results for fair comparison. SCNN, in
addition, also does not support nonunit stride convolutions. We use the Sparse
VGG16 net for comparison with these three accelerators. The average sparsity
achieved without a significant loss in accuracy for the weights and activations is
77% and 68%, respectively. Figure 11.24 shows the comparison results obtained
using our simulator. We observe that Sparse-PE-27, on average, performs 11.2×,
4.3×, and 1.96× better than NeuroMAX, SCNN, and SparTen, respectively.

Figure 11.25 shows the comparison of the Sparse-PE core configurations
against Eyeriss v2 on selected layers of MobileNet. The average sparsity for the
weights and activations is 73% and 64%, respectively. We observe that, on average,
Sparse-PE-9, Sparse-PE-18, and Sparse-PE-27, perform 1.04×, 1.71×, and 2.85×,
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Figure 11.24 VGG16 speedup comparison.
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better, respectively, than Eyeriss v2. Comparing different configurations show
that the Sparse-PE-27 configuration offers 108.8% increase in speedup over
Sparse-PE-9 configuration for sparse MobileNet.

Energy comparison among different accelerators is somewhat challenging as it
requires working RTL implementations. Since the energy consumption is domi-
nated by the total number of DRAM accesses, therefore, by estimating the DRAM
accesses, energy difference among the accelerators can be approximated. Many
of the recent works rely on the CSC/CSR formats for the storage of the nonzero
data. We, therefore, compare the accessed memory for the CSC format against
the sparse binary mask format. Figure 11.26 shows the intermediate activations’
memory access comparison for selected sparse VGG 16 and MobileNet layers.1
The activation sparsity for different layers is also shown. In the initial layers with
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Figure 11.26 Sparse binary mask vs. CSC DRAM access for (a) Sparse VGG16 and
(b) Sparse MobileNet.

1 The memory requirement for the nonzero data is not shown since it is the same for both the
CSC format and the sparse binary mask. The accessed memory comparison is made for the
sparse binary mask and the location vectors (column, index) of the CSC format.
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low activation sparsity, the CSC format has approximately 4× and 3.7× higher
DRAM memory accesses than the sparse mask for sparse VGG16 and Mobilenet,
respectively. In the deeper layers with moderate-to-high sparsity, the memory
requirement for the CSC format is around 1.7× that of the sparse mask.

This shows that the sparse binary mask format not only needs less encoding/
decoding logic, but is also efficient when it comes to memory requirements when
compared against the CSC format. This translates directly to higher energy, area,
and compute savings for our accelerator which employs the sparse binary mask.

11.3.2 RTL Implementation

We use Xilinx Z-7100 SoC to implement the Sparse-PE core design. The SoC is
divided into two parts, the programmable logic (PL), containing the FPGA fabric,
and the processing system (PS), containing ARM cores. The two are connected
using an AXI on-chip communication subsystem. We implement the Sparse-PE
core on the PL and use the PS to transfer data to/from a desktop computer to PL.
The test design is implemented for the Sparse-PE-27 configuration and runs at
200 MHz. Table 11.1 shows the resource utilization results for a single Sparse-PE
core with n = 27. Figure 11.27 shows the breakdown of the utilization among

Table 11.1 Resource utilization for a single Sparse-PE-27 core.

Property Available Used Utilization (%)

LUTs 277k 3.4k 1.23%
FFs 554k 6k 1.1%
On-chip SRAM 26.5Mb 2.1kB 0.01%

Selection (SL) Computation (CM) Accumulation (AM) AXI SRAM Logic
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Figure 11.27 Breakdown of resource utilization for (a) LUTs, (b) FFs, and (c) SRAM
memory.
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various sub-blocks of the Sparse-PE core. The lookup table (LUT) and the flip-flop
(FF) cost is dominated by the selection (SL) block with SL taking almost 40% and
34% of the overall LUTs and FFs used, respectively. The SRAM utilization is domi-
nated by the computation (CM) block because of the bit mapping and the buffering
fifos (Figure 11.12). The design has a power consumption of 2.48W with the PS
dominating the consumption (55%).

Table 11.2 shows the implementation details of the Sparse-PE accelerator
(Figure 11.21) comprising of the Sparse-PE-27 cores. It should be noted that the
PE number in Table 11.2 refers to the total number of multipliers in the design.
Since a single Sparse-PE-27 core has 3 × 3 = 9 multipliers, the total PEs (or
multipliers) in the design are R × C × 9 = 252. The R × C matrix of the accelerator
consumes roughly 85% of the available LUT resources, whereas the rest 15%
are consumed by the additional control logic. Table 11.2 also lists the details of
some recently proposed sparse CNN accelerators. Eyeriss v2, implemented on a
65 nm application-specific integrated circuit (ASIC), supports two-sided sparsity
(sparsewa), i.e., sparsity in both weights and activations. Eyeriss v2, however,
uses a total of 2695 k gates which represent a 108% increase in area cost when
compared to the original Eyeriss [45]. This is because of the relatively complex
design of the PEs of Eyeriss v2. SparTen accelerator [151] is implemented on Intel
Cyclone IV FPGA and operates at 50 MHz. It also supports two-sided sparsity but
has no support for FC layers. Although the implementation cost of SparTen is not
reported, the architecture of SparTen requires complex inter-PE synchronization
circuits which would greatly increase its cost. Zero-Activation-Skipping Convolu-
tional Accelerator (ZASCA) [179], implemented on a 65 nm ASIC, uses a total of
192 PEs and runs at 200 MHz. Just as Sparse-PE, ZASCA accommodates both the
CONV and the FC layers in its architecture. However, unlike Sparse-PE, ZASCA
only exploits activation sparsity (sparsea). In addition, because of architectural
limitations, ZASCA can not fully exploit its resources for 1 × 1 convolution,
resulting in a significant decrease in hardware utilization for such convolutions.
Zhu et al. [180] proposed a structured sparse CNN accelerator, implemented
on Xilinx ZCU102 FPGA. The proposed accelerator uses structured pruning to
reduce irregularities in sparse weights and employs a sparse wise dataflow scheme
for high data reuse. The accelerator proposed in [180], however, only exploits
sparsity in weights (sparsew) and can not exploit activation sparsity. Because of
the complex design and the dataflow scheme, the accelerator proposed in [180]
has a huge logic utilization cost (390 k LUTs). Sparse-PE accelerator, even though,
employs 32% more PEs than [180], it, however, utilizes 71% lesser resources.
Xie et al. [181] proposed a flexible accelerator architecture that supports both
structured and unstructured weight sparsity. The accelerator is implemented on
Intel Aria 10 SoC and uses a hybrid parallel (HP) dataflow. Even though, the
resoure count of the accelerator is lower than Sparse-PE, the dataflow employed



Table 11.2 Comparison of Sparse-PE-based accelerator with previous designs.

Property
Sparse-PE
accelerator

Eyerissv2
[52]

SparTen
[151]

ZASCA
[179]

Zhu et al.
[180]

Xie et al.
[181]

Lu et al.
[182]

Technology Z-7100 65nm Cyclone IV 65nm ZCU102 Aria 10 ZCU102
Precision(bits) 8-bit 8-20 bits 8-bit 16-bit 16-bit 8-bit 16-bit
PE number 252 192 256 192 192 512 288
Frequency (MHz) 200 200 50 200 200 170 200
Accelerator type sparsewa sparsewa sparsewa sparsea sparsew sparsew sparsew

Resources (LUTs(a), Gates(b)) 112k(a) 2695k(b) unreported 1036k(b) 390k(a) 102.6k(a) 132k(a)
Core only Power (W) 3.7 0.460 unreported 0.301 unreported 4.6 unreported
Supported layers CONV + FC CONV + FC CONV only CONV + FC CONV + FC CONV only CONV only
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in the accelerator does not support FC layers. It, also, can only exploit weight
sparsity (sparsew) and has no support for activation sparsity. The accelerator
proposed in [182] uses a weight-oriented dataflow that performs element-matrix
multiplication. It also uses a tile lookup table (TLUT) to match the sparse weight
with the input pixel to exploit weight sparsity (sparsew). Similar to [181], the
accelerator proposed in [182] is also a CONV only accelerator and has no support
for FC layers. It also can not exploit activation sparsity (sparsea).

11.4 Chapter Summary

This chapter presented Sparse-PE, a multithreaded, general purpose, dot prod-
uct core for sparse convolutional neural networks. The designed core exploited
two-sided sparsity, that is, sparsity in both the weights and activations to maximize
the throughput and hardware utilization. Unlike contemporary approaches that
use the CSC format and the associated complex PE design, the Sparse-PE core uses
the sparse binary mask format and has a relatively low complexity. The chapter
also presented novel, low-cost circuits, including selection, computation, and
accumulation, which, when used in conjunction, allows the core to skip huge
number of computations involving zero data and only favor computations involv-
ing nonzero data to maximize the throughput. Results showed that the Sparse-PE
core could effectively keep the hardware utilization above 85% at sparsity as high
as 60%, for both the input activations and weights. The chapter also compared the
performance of Sparse-PE core-based accelerator against previous state-of-the-art
dense and two-sided sparse CNN accelerators. Experimental results showed that
the Sparse-PE offered, on average, 12×, 4.2×, 2.38×, and 1.98×, speedup over
NeuroMAX (dense), SCNN (sparse), Eyeriss v2 (sparse), and SparTen (sparse),
respectively.
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Neural nets have been around since the 1940s; however, the first practically
applicable neural network, referred to as the LeNet [5], was proposed in 1989.
This neural network was designed to solve the problem of digit recognition in
handwritten numeric digits. It paved the way for the development of neural
networks responsible for various applications related to digit recognition like
an ATM. The slow growth and a little to no adoption of neural networks in the
early days is mainly due to the massive computational requirements involved
with their processing which limited their study to theoretical concepts. Over
the past decade, there has been an exponential growth in the research on deep
neural networks (DNNs) with many new high accuracy DNNs being deployed
for various applications. This has only been possible because of two factors.
The first factor is the advancements in the processing power of semiconductor
devices and technological breakthroughs in computer architecture. Nowadays,
computers have significantly higher computing capability. This enables the
processing of a neural network within a reasonable time frame, something that
was not achievable in the early days. The second factor is the availability of a
large amount of training datasets. As neural networks learn over time, providing
huge amounts of training data enables better accuracy. For example, Facebook
receives close to a billion user images per day, whereas YouTube has 300h of video
uploaded every minute [6]. This enables the service providers to train their neural
networks for targeted ad campaigns bringing in billions of dollars of ad revenue.
Apart from their use in social media platforms, DNNs are impacting many other
domains and expect to make a huge impact. One of the domains where DNNs
have contributed significantly is speech processing. Nowadays, many applications
have been developed that use DNNs to perform real-time speech recognition
with unprecedented levels of accuracy [7–9]. Many technology companies are
also using DNNs to perform language translation used in a wide variety of
applications. Google, for example, uses Google’s Neural Machine Translation
system (GNMT) [10] which uses recurrent neural networks (RNNs), a type of

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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DNN, for their language translation applications. Autonomous driving has been
one of the biggest technological breakthroughs in the auto industry since the
invention of the internal combustion engine. It is not a coincidence that the
self-driving boom came at the same time when high accuracy DNNs became
increasingly popular. Companies like Tesla and Waymo are using various types
of self-driving technology including visual feeds and Lidar for their self-driving
solutions. One thing which is common in all these solutions is the use of DNNs
for visual perception of the road conditions which is the main back-end technol-
ogy used in advanced driver assistance systems (ADAS). Another crucial area
where DNNs have become increasingly useful is medicine. Nowadays, doctors
can use artificial intelligence (AI)-assisted medical imagery to perform various
surgeries. AI systems use DNNs in genomics to gather insights about genetic
disorders like autism [13, 14]. DNNs are also useful in the detection of various
types of cancers like skin and brain cancer [15, 16]. The advent of AI has also
challenged many traditional security approaches that were previously deemed
sufficient. The rollout of 5G technology has caused a massive surge of IoT-based
deployments which traditional security approaches are not able to keep up with.
Physical unclonability approaches [17–19] were introduced to protect this massive
deployment of IoTs against security attacks with minimum cost overheads. These
approaches, however, were also unsuccessful in preventing AI-assisted attacks
using DNNs [22, 23]. Researchers have now been forced to upgrade the security
threat models to incorporate AI-based attacks [24, 25]. Because of a massive
increase in AI-assisted cyber-attacks on cloud and datacenters, corporations and
governments have realized that the best way of defeating offensive AI attacks is
by incorporating AI-based defensive strategies.

Overall, the use of DNNs in various applications has seen exponential growth
over the past decade and this trend has been on the rise for the past many years.
The massive increase in DNN deployments on the edge devices requires the devel-
opment of efficient processing architectures to keep up with the computational
requirements for successful DNN inference.

CNNs for vision AI applications have reached an unprecedented accuracy ever
since the introduction of AlexNet [30] about a decade ago. Many of the previously
proposed high-accuracy CNNs [30–32, 35] have tremendous amounts of compu-
tations owing to a large number of model parameters. These parameters and the
associated massive number of computations generate exorbitant amounts of data
in the form of partial sums (psums) and feature maps. This massive data, in addi-
tion to the model parameters, raise concerns in regards to both compute and mem-
ory bandwidth. In addition, it also raises concerns about energy consumption of a
neural network accelerator (NNA), since on-chip memory is not sufficient to store
the entire model, which, in some cases, can be in the order of hundreds of MBs. To
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support this massive model size of a CNN, off-chip dynamic random access mem-
ory (DRAM) memories are generally employed. It has been shown that the energy
cost per fetch for 32b coefficients in an off-chip LPDDR2 DRAM is about 640 pJ,
which is about 6400× the energy cost of a 32b integer ADD operation [36]. The
power dissipation resulting from just the DRAM accesses would be well beyond
the limits of an embedded mobile device employing the NNA.

Various techniques have been developed to address the compute and memory
bandwidth issues of an NNA, running a CNN. Mobilenets [33, 34] were developed
to reduce the total number of computations by splitting a regular convolution oper-
ation into separable convolutions (depthwise and pointwise), without incurring a
loss in accuracy. Another widely used approach for decreasing the model size is the
reduction in precision of both weights and activations using various quantization
strategies [37–39]. This again does not result in a significant loss in accuracy and
reduces the model size by a considerable amount. Hardware implementations like
Envision [40], NeuroMAX [96], UNPU [41], and Stripes [42] show how reduced
bit precision, and quantization, translates into increased throughput and savings
in energy.

Modern CNNs owe their high accuracy to deep layers and the nonlinearity in
their design. Typically, nonlinearity is added by incorporating activation functions,
the most common being the rectified linear unit (ReLU) [6]. The ReLU converts
all negative values in a feature map to zeros. Since the output of one layer is the
input to the next layer, many of the computations, within a layer, involve multipli-
cation with zeros. These feature maps containing zeros are referred to as one-sided
sparse feature maps. The multiplications resulting from this one-sided sparsity
wastes compute cycles and decreases the effective throughput and hardware uti-
lization, thus, reducing the overall performance of the accelerator. It also results
in high energy cost as the transfer of zeros to/from off-chip memory is a wasted
memory access. In order to reduce the computational and memory access volume,
previous works [43–45] have exploited this one-sided sparsity and displayed some
performance improvements.

Compression of DNN models was introduced the first time in [46]. Han et al.
[46] iteratively pruned the connections based on parameter threshold, and per-
formed retraining to retain accuracy. This process resulted in two-sided sparsity,
i.e., sparsity in both weights and activations, which led to approximately 9× model
reduction for AlexNet, and 13× reduction for VGG-16. It also resulted in 4–9× effec-
tive compute reduction (depending on the model). These gains, in theory, are very
promising, however, designing an accelerator that leverages the two-sided sparsity
is quite challenging as explained in Chapter 11.

Considering the aforementioned issues, many previously proposed accelerators
attempt to strike a balance between hardware complexity and performance
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improvements; however, the contemporary accelerators have many shortcomings
as explained in Chapter 11.

To address the issues in contemporary sparse CNN accelerators, this chapter
proposes and introduces Phantom, a flexible and high throughput neural com-
putational core which promises high hardware utilization. The core works for
both dense and sparse networks by dynamically mapping valid computations on
the processing threads. The core also addresses the systematic load imbalance by
using a two-level, dynamic, load balancing strategy. Unlike some of the previous
works, the core can work on any input layer, be it CONV or fully connected (FC),
and supports any type of convolution (regular or separable). Phantom is based on
Sparse-PE presented in Chapter 11 and like Sparse-PE, Phantom utilizes binary
mask representation to actively lookahead into sparse computations, and dynam-
ically schedule its computational threads to maximize the thread utilization and
throughput. Many concepts in Phantom overlap with Sparse-PE, and these con-
cepts are presented in this chapter again for completeness. In summary, the main
contributions of this chapter include

● A multithreaded neural computational core architecture, called Phantom,
designed to maximize the hardware utilization and throughput of CNN models.

● Phantom exploits the sparsity in both weights, and activations, simultaneously,
by incorporating simple, yet powerful circuits like Lookahead Mask, Top-Down
Selector, and Thread Mapper. These circuits, when used in conjunction, map the
effective, nonzero computations onto an array of multiplier threads within a PE.
The core also has the capability to skip huge number of nonessential computa-
tions (zerow × zeroa, zerow × non-zeroa, non-zerow × zeroa), while simultaneously
favoring essential computations (non-zerow × non-zeroa), without wasting com-
pute cycles (subscripts “w” and “a” here refer to weights and activations, respec-
tively). This drastically improves the core’s hardware utilization, consequently
improving the throughput.

● Addressing the systematic load imbalance by using a two-tiered, on-the-fly, load
balancing strategy. Unlike some previous approaches, this balancing does not
require offline processing or modification of the CNN model.

● Generating a two-dimensional (2D) mesh architecture of Phantom neural com-
putational cores, which we refer to as Phantom-2D accelerator. Unlike some
previous works that only support either CONV layers or FC layers, we show
how Phantom-2D supports different CONV types (unit and nonunit stride) and
FC layers, in addition to supporting both sparse and dense CNN models.

● Simulations show that the Phantom-2D accelerator has a performance gain of
12×, 4.1×, 1.98×, and 2.36×, over dense architectures, SCNN, SparTen, and Eye-
riss v2, respectively, while retaining the energy efficiency of SparTen.
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The remainder of the chapter is organized as follows: Section 12.1 presents
relevant works in literature. Section 12.2 presents the proposed Phantom core
and its inner workings. Section 12.3 presents the design of a two-dimensional
accelerator comprising of Phantom cores. Experimental methodology, simulation
results, comparisons, and implementation cost are given in Section 12.4. Lastly,
Section 12.5 concludes this chapter.

12.1 Related Work

Many dense architectures have been proposed in the literature that optimize com-
pute [39, 126, 127] and memory bandwidth [131, 132] for CNN inferences. Quanti-
zation of weights and activations using log [37, 38] and linear [39, 175] techniques
further reduce the memory footprint. This does not result in a significant loss in
accuracy and reduces the CNN model size by a considerable amount. Hardware
implementations such as Envision [40], VWA [142], NeuroMAX [96], UNPU [41],
and Stripes [42], show how reduced bit precision, efficient dataflow, and quanti-
zation, translates into increased throughput and savings in energy. Efficient data
reuse-based accelerators [45, 184] maximize the data reuse within different layers
to minimize the memory accesses, thereby, reducing energy consumption. Sepa-
rable accelerators [138, 139] implement efficient hardware on programmable gate
array (FPGA) for accelerating separable convolutions. These accelerators, how-
ever, cannot handle a vast majority of CNNs that employ regular convolutions
and FC layers. Bit-serial accelerators [133, 134] use booth encoding to suppress
the use of zero bits, and, thereby, reduce the total computations. These schemes,
however, transfer zeros to and from memory which incurs SRAM area and energy.
CirCNN [135] uses block circulant matrices for weights to improve the perfor-
mance. It, however, utilizes complex hardware to perform the Fourier transform
(FFT) operations, and also, does not capture full sparsity. In-memory accelerators
[136, 137] use simple analog logic to implement matrix multiplications within
memory. These accelerators, however, cannot exploit sparsity as it requires com-
plex arithmetic logic unit (ALU) and buffering logic. Analog circuits also suffer
heavily from noise and process variations which can drastically reduce the CNN
accuracy.

Sparse architectures try to reduce the compute and data volume by exploiting
the naturally occurring zeros in weights or activations (one-sided), or both
weights and activations (two-sided). Cnvlutin [43] and Cambricon-X [44] exploit
one-sided sparsity of either weights or input maps but not both. Cnvlutin, also,
does not avoid transfer of zeros and only skips cycles for activations. Cambricon-X
does not store activations in compressed format, while Cambricon-S [174] forces
regularity by employing coarse grain pruning that affects accuracy. Even though
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it discards zeros during computation, it still retrieves and stores them. Tensaurus
[176] accelerates dense and sparse tensor factorizations by introducing a new
dataflow which they refer to as compressed interleaved sparse slice (CISS)
dataflow. Tensaurus, however, is capable of supporting only one-sided sparsity.
Some recent sparse GEMM (SpGEMM) accelerators [153, 154, 156, 158, 177, 178]
target general sparse-matrix, sparse-matrix multiplications. Extensor [177] and
Sigma [153] use output stationary (inner-product) dataflow for sparse matrix
multiplications. Inner-product, however, is inefficient against highly sparse
matrices because every element of the rows and columns must be traversed even
though there are less effectual computations (nonzero × nonzero). This leads
to a massive amount of wasted computations. SpArch [154] and OuterSPACE
[178] use input stationary (or outer-product) dataflow to avoid the inefficiencies
associated with the inner-product dataflow. Outer-product, however, gives poor
output reuse as the partial outputs generated are more in quantity than the
final outputs which can cause significant memory traffic. Finally, MatRaptor
[156] introduces channel cyclic sparse row (C2SR) dataflow for better reuse and
memory efficiency. It is a modified version of the CSR format but requires complex
encoding for output matrices. Finally, SCNN, SparTen, and Eyeriss v2, exploit the
full two-sided sparsity, but, as explained previously, suffer from either inefficient
micro-architecture, no support for FC layers and nonunit stride convolutions,
complex PE design to incorporate compressed sparse column (CSC) compression
format, or systematic load imbalance. Phantom addresses all of these issues while
also providing higher performance and energy efficiency.

12.2 Phantom

This section describes the architecture and inner workings of the Phantom core.
As mentioned earlier in the chapter, the Phantom core in itself provides two major
contributions. First, it considers both activation and weight sparsity simultane-
ously and looks ahead into future computations to determine only the valid MAC
operations (non-zerow × non-zeroa). Second, because of the multithreaded design
of the PEs, the scheduling of data into each thread is handled dynamically in a
nonlinear fashion, based on the sparsity of input and weight matrices. This ensures
that only valid computations are mapped on to the multithreaded PEs and that the
compute cycles are not wasted. This is opposed to the designs which schedule data
into the PEs in a constant manner and gate the computations whenever zeros are
read, thereby, wasting the compute cycles.

Figure 12.1 shows a 3 × 3 convolution example, where a 3 × 8 input is con-
volved with a 3 × 3 filter to produce a 1 × 6 output. The six individual convolution
chunks which produce the output are also shown. The effective and ineffective
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Figure 12.1 3 × 3 convolution example.

multiplications are shown in light gray and dark gray, respectively. It can be
seen that, on average, 55% computations involve multiplication with zeros which
result in wasted compute cycles. This causes a significant drop in the effective
throughput, as many cycles are wasted in zero multiplications. The Phantom
core addresses this issue and uses look-ahead masking to maximize the effective
throughput by skipping ineffectual computations involving zeros.

12.2.1 Sparse Mask Representation

Unlike the recent approaches that use compressed sparse row (CSR) or CSC
formats to represent non-zero data [43, 44, 53], we use a binary mask called sparse
mask for both weight and activation data. Sparse mask provides an efficient and
simplistic way for data representation and enables identification of zero and
nonzero data without explicitly storing zeros. It also does not require storage of
count and data pointers which are needed for CSC (and CSR) formats. Figure 12.2
shows the equivalent sparse mask representation and storage of the input and
the weight matrix shown in Figure 12.1. For a particular matrix, two arrays are
stored in the column major format. The data array contains the nonzero data,
whereas the binary array contains the sparse mask. The ones in the sparse mask
array represent the location of stored nonzero values, whereas zeros represent
unstored zero data. To process a specific type of convolution, the sparse mask and
the data array is broken into chunks and scheduled to the core. Although, the
core can work on any type of CONV or FC layers, for ease of understanding, we
will explain the working of Phantom core using the 3 × 3 unit stride convolution
example, shown in Figure 12.1.
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Figure 12.2 Sparse mask representation.

12.2.2 Core Architecture

Phantom core accepts data in the sparse mask format and consists of five main
blocks, as shown in Figure 12.3. The lookahead mask (LAM) and the top-down
selector (TDS) blocks use the sparse mask to extract the information about the valid
computations and thread selection. The thread mapper (TM) uses the information
from the previous blocks to efficiently map input and weight data onto the data
registers of the multiplier threads within the compute engine (CE). The CE consists
of an array of multithreaded PEs and level 1 (L1) configurable adders. The output
buffer (OB) block consists of an array of FIFO buffers and level 2 (L2) accumulators
which generate the final output.

12.2.3 Lookahead Masking

Dot product between two vectors is the basic unit of computation in a convolution
operation. Considering two-sided sparsity, there are four possible multiplication
outcomes as a result of sparse vector-vector dot product.

(A) zerow × zeroa
(B) zerow × non-zeroa
(C) non-zerow × zeroa
(D) non-zerow × non-zeroa

The only valid multiplication is when a nonzero weight data is multiplied by a
nonzero activation data. As the name implies, the lookahead mask (LAM) block
looks ahead into n convolution chunks to determine the locations of valid mul-
tiplications. We refer to the value n as the lookahead factor (Lf ).1 To perform its

Lookahead
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delector
(TDS)

Thread
mapping

(TM)

Compute
engine
(CE)

Output
buffer
(OB) SPM

and
data output

SPM
and

data input
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Figure 12.3 Phantom block diagram.

1 Notations n and Lf will be used interchangeably throughout the text.
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task, the LAM block performs an AND operation between the sparse masks of
the weight matrix and the input chunks to generate output masks. Figure 12.4
shows the process of ANDing. Here, SPMW and SPMIA are the sparse masks of the
weight and the input matrix of the example in Figure 12.1. Six output chunks are
generated based on the AND operation.

To perform this ANDing, the LAM consists of a series of n AND gates, as shown
in Figure 12.5a. Bitwise ANDing is performed between the weight and the acti-
vation sparse mask. For this example, we set the value of n to 3. This means that
to generate six output masks in Figure 12.4, two cycles will be needed for the six
AND operations.

Figure 12.5b shows the output of LAM for the test example. The n = 3 AND gates
produce outputs (LAM1, LAM2, LAM3) on every cycle edge. It takes two cycles to
slide over the entire 3 × 8 activation matrix. The ones in the outputs of AND gates
represent the location of a valid vector-vector dot product, whereas the zeros rep-
resent a product resulting in a zero. Overall, it can be seen that by using a sequence
of n-AND gates, we can accurately determine the positions of valid computations
in n convolution chunks.

12.2.4 Top-Down Selector

The top-down selector (TDS) receives the LAM outputs on every cycle edge and
selects a subsequence of LAM outputs that can maximize the utilization of mul-
tiplier threads in the PEs within the CE. There are a total of p parallel selectors,
with p equal to the total number of PEs in the CE. In this design, we consider p = 3,
since there are a total of three PEs in the CE. We develop two selection algorithms
for the TDS block namely, in-order selection and out-of-order selection.
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masking: (a) Sequence of
parallel AND gates and
(b) output for test case.

12.2.4.1 In-Order Selection
Figure 12.6a shows the process of in-order selection. The three selectors work on
the three comma-separated columns in parallel. The selection is performed iter-
atively in an ordered fashion on the entire column in a top-down manner. For
column 1 in Figure 12.6a, the first selector loops through the first n elements in
the current iteration, i.e., 011 (black), 011 (dark gray), and 010 (light gray). Here,
n equals the lookahead factor (Lf ), which is three in this design. The first 011
(in black) is assigned the highest priority and is selected. The selector counts the
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number of ones from this entry and stores the result. The selector then proceeds to
the next entry, i.e., 011 (in dark gray), and counts the number of ones. If the com-
bined sum of the number of ones of the current and the previous entry is greater
than n, the current and the next entries, in the current iteration are not consid-
ered, and instead, replaced by zeros. Here, we see that 011 (in black)+ 011 (in dark
gray) = 4 > (n = 3). Therefore, only the first 011 (in black) is selected and the rest
two entries are replaced by zeros in the first iteration. Here, every 1 in the selected
output corresponds to a valid multiplication. Since, there are a total of three mul-
tiplier threads within a single PE, if the selected values contain a total of three 1s,
then all the threads within a PE are utilized, giving a utilization of 100% (as shown
in Figure 12.6a). The utilization decreases if the order in which the entries appear
do not align with the priority of selection. The circles around the values and the
numbers on top represent the iteration number during which the particular value
was selected by the selector. In the second iteration, the selector goes on to the
first unselected value (011 in dark gray) and follows the same selection process.
It takes a total of four iterations (cycles) for the selector to select all the values in
the first column, as shown in Figure 12.6a. We can also see that the second and
the third columns require a total of three cycles for selection, but need to wait one
additional cycle for the selection of the first column to complete. This can cause
computational idling and underutilization of the PE multipliers.

12.2.4.2 Out-of-Order Selection
In-order selection is highly dependent on the order in which the inputs appear.
This can lead to underutilization of the multiplier threads in the PE, as shown in
Figure 12.6a. Figure 12.6b shows the out-of-order selection method, where after
the selection of the first entry (011 in black), all next entries (011 in dark gray,
010 in light gray) in an iteration are considered for selection. Therefore, as shown
in Figure 12.6b, in the first iteration, after the selection of 011(in black), the next
value 011 (in dark gray) is not considered (011 + 011 = 4 > n), but the subse-
quent value 010 (in light gray) is considered because 011(in black) + 010 (in light
gray) ≤ n. This small, yet efficient change greatly improves the thread utilization
and consequently the throughput, as shown in Figure 12.6b. Figure 12.7 shows
the implementation of the out-of-order selection variant of the TDS for the first
column in Figure 12.6b. A small block memory, having independent read and
write ports, receives the LAM outputs on every cycle. P1 and P2 are the high and
low priorities, respectively. The read address (rd_addr) of the memory increments
every time a value is selected and the tag bits are set to 1 for those values. The tag
bits serve the purpose of accumulation during the output buffering (explained in
Section 12.2.7). The priority of selection is reversed on the next input to ensure
that the values missed in the previous iteration are given the highest priority in
the current iteration. map11, map12, and map13 are the final outputs, as shown in
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Figure 12.8. The hardware overhead of the out-of-order selector is roughly 1.03×
that of the in-order selector variant, but can increase the hardware utilization by
as much as 60%. Phantom, therefore, employs the out-of-order selection variant of
the TDS for higher thread utilization and efficient mapping.

12.2.5 Thread Mapper

The Thread Mapper (TM) takes the input from the TDS (map1x, map2x, and map3x)
and uses this information to map the length equalized sparse data (weight and
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activation) onto the internal registers of the multithreaded PEs. The length equal-
ization is done by adding appropriate zeros at specific locations using the sparse
masks. Figure 12.9 shows the map operation for the three PEs in this design. Out
of the 29 = 512 combinations, the mapper only needs to store those for which the
total number of ones do not exceed the multiplier count of each PE (3 in this case).
This drastically reduces the total combinations needed to be stored (

(
9
0

)
+
(

9
1

)
+

(
9
2

)
+
(

9
3

)
= 130, a 74% reduction in the memory footprint). Each PE has a 50 bit

internal register, out of which, 48 bits are the data bits, and 2 bits are the L1 adder
control bits. The first 48 bits are divided into a set of 16 bits (8 bits for both activa-
tions and weights). The total memory requirement for storage of all three mappers
is approximately 2.5 kB. One key observation from Figure 12.9 is that the mappers
2 and 3 map the data in a similar fashion as the mapper 1, but only use different
location bits for weights and data. We, therefore, remove the two mappers (map2x
and map3x), and only use one mapper (map1x) sequentially three times, and adjust-
ing the location bits afterwards. This only incurs an initial latency of two cycles but
reduces the memory footprint by approximately 66% (2.5 to 0.83 kB). Appropriate
delay registers are added in the PEs to account for the initial delay.

12.2.6 Compute Engine

The Phantom core uses a multithreaded CE block. In this particular design, the
CE block consists of three multi-threaded PEs, with each PE containing three
multiplier threads, as shown in Figure 12.10a. The mapper maps the data to the
individual threads which perform independent computations. The outputs of the
threads, local to a particular PE, are provided to the L1 adder. The L1 adder is pro-
vided by the configuration bits from the last 2 bits of the mapper (Figure 12.9).
There are four cases for the configuration bits:

C1: 00 → The individual outputs of the multiplier threads within the PE are not
added and simply passed.

C2: 01 → The outputs of the first two multiplier threads (th0,x,th1,x) are added,
whereas, the third one (th2,x) is passed as is.

C3: 10 → the outputs of th1,x and th2,x are added and the output of th0,x is passed
as is.

C4: 11 → the outputs of all the multiplier threads are added.
Figure 12.10b shows the cycle by cycle scheduling of the multiplier threads with

data (weights and activations) mapped using the logic in Figure 12.9. The mapping
inputs (map11, etc.) and L1 adder configuration outputs are also shown. It can be
seen that all the multiplier threads are efficiently utilized even though the output
is 55% sparse (counting number of zeros from the left side of Figure 12.8, 30/54).
The hardware utilization during the first and second cycle is 100%, whereas, for
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the third cycle, it is 66%. The reason for low utilization in the last cycle is because
the input is at the boundary and the LAM block does not have more data to look
ahead into.

12.2.7 Output Buffer

The final block in the Phantom core is the output buffer (OB). OB is responsi-
ble for buffering the outputs of the CE, and accumulation of data using the L2
adder to generate the final outputs. The buffering is performed using a system of
m first-in, first out (FIFO) buffers, where m is equal to the total number of mul-
tiplier threads in the CE (9). Figure 12.11 shows the OB block for the example
in Figure 12.1. F1-F9 are the 9 fifos receiving data from the L1 adders in the CE.
The ones (in light gray) and zeros (in dark gray) within the parenthesis represent
the tag bits which were set by the TDS block, as shown in Figure 12.7. Accu-
mulation is performed in two stages by the same colored fifos (F1 + F4 + F7),
(F2 + F5 + F8), and (F3 + F6 + F9). The outputs are either valid or partial, based
on the associated tags. If the tags of all the values being accumulated are equal to 1,
the output is considered valid, otherwise, it is considered partial. For the example
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Cycle 1
(a1wa1+a2wa2) (1) + (b1wb1)(1) + (c0wc0+c1wc1)(1) = O0(valid)

(0) (0) + (c0wb0 + c1wb1)(1) + (d0wc0)(1) = O1(partial)

(c1wa1) (1) + (0)(0) + (0)(0) = O2(partial)

Cycle 2
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(b1wa1+b2wa2) (1) + O1(partial) = O1(valid)
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O2(partial) + (d0wb0)(1) + (e1wc1)(1) = O2(valid)

(0)(0) + (0)(0) + (0)(0) = O5(partial)

Cycle 3
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Figure 12.12 L2 accumulation for the example in Figure 12.1.
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in Figure 12.1, the outputs in L2 adder are calculated as shown in Figure 12.12.
The two stages of accumulation are also shown. In the first stage, the previously
accumulated partial output is added to the new entry in the fifo to make the out-
put valid. This is done by checking the tag bits in the partial output and adding the
missing tag 1 in the new value to generate the valid output from partial output. In
the second stage, new partial values are generated by replacing the used tag 1 value
in the first stage by 0 and accumulating the rest of the tag 1 values. The process
ends once the input is exhausted and all the tag 1 values have been accumulated
to generate valid outputs.

12.2.8 Output Encoding

Figure 12.13 shows the process of output sparse mask generation. Unlike the
weights, the output activation sparsity is dynamic and the sparse mask needs
to be generated on-the-fly. From Figure 12.4, we can see that the presence of
even a single one in the LAM outputs represent a nonzero output. To determine
the output sparse mask, the same metadata can be used. The first step involves
reduction of the individual LAM outputs to a single bit (LAMxr), based on an
all-zero check, as shown in Figure 12.13a. This generates the sparse mask for the
outputs before ReLU. Note that the LAM values are taken from the test example
(Figure 12.1). Figure 12.13b shows the second step after ReLU, where the negative
outputs, and their corresponding sparse mask locations, are converted into zeros.
This final sparse mask is stored as is, whereas the output is shifted first to omit
zero data entries, and then stored.

This concludes the processing in a single Phantom core. In Section 12.3, we will
introduce Phantom-2D; a two-dimensional accelerator having a system of Phan-
tom cores for processing CNN layers during the inference process.

12.3 Phantom-2D

Section 12.2 describe the working of the various blocks in the Phantom core. The
individual core works by computing a dot product between a weight matrix and
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Figure 12.14 Phantom-2D architecture.

a subsection of the input feature map to compute a subsection of the output fea-
ture map. To compute the full output feature map, corresponding to a particular
layer, we design a two-dimensional accelerator comprising of the Phantom cores,
which we refer to as Phantom-2D, as shown in Figure 12.14. We envision that the
Phantom-2D accelerator connects to a memory bus and accepts data and instruc-
tions from a CPU. The accelerator contains on-chip SRAMs (weight, input, and
output), the inter-Core balancer and scheduler, the R × C compute matrix, com-
prising of Phantom cores, and the accumulator circuits.

12.3.1 R × C Compute Matrix

The compute unit consists of an R × C matrix of the Phantom cores and R adders
for channel accumulation. The design choice for R and C, and the dataflow asso-
ciated with the transfer of data across various Phantom cores, is based on the
following design goals:

G1: To maximize the data reuse (weights and input) across multiple input subsec-
tions.

G2: To optimize the data scheduling across various Phantom cores to maximize
the theoretical hardware utilization.

G3: To support all layers of a CNN. This includes support for a variety of CONV
layers and the FC layers.
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Looking deeper into the dimensions and configurations of various popular CNN
models (VGGnet [31], Resnet [32], MobileNets [33, 34], Googlenet [35], etc.), we
observe that the channel count for various CNN layers is almost always a multiple
of 4. In the Phantom-2D architecture, the channels in a CNN layer are broken
along the columns. Therefore, to ensure that the cores are engaged most of the
time, and thus, satisfy G2, we set the C value equal to 4. Similar rationale applies
for the choice of R = 7. The input subsections are broken along the vertical axis
and distributed along the rows. Most of the popular CNNs have an input layer size
(width or height) S, a multiple of 7, thus, having R = 7, ensures equal distribution
of chunks of data among all the cores.

12.3.2 Load Balancing

The design choice for R × C matrix is highly dependent on the layer dimensions of
various CNNs. It, however, has no relevance to the static and dynamic sparsity in
weights and inputs, respectively. Efficient reuse of data is one of the key require-
ments to minimize the memory accesses, repeatedly, for the same data. This reuse,
however, amplifies the computational imbalance among different PEs. If the same
filter is held in the local memory of the PEs and the input subsections are swept
across the PEs, the subsections with higher density would inevitably take more
cycles to compute the output, compared to the PEs receiving the subsections with
lower density. This varying sparsity of the input maps would create a system-level
load imbalance among the PEs which would be exposed during the next filter
broadcast. Holding the input maps and sweeping the filters would also have sim-
ilar results, as would the buffering of data. In order to address this system-level
load imbalance, we incorporate a two-level load balancing strategy in the Phantom
architecture. The Inter-Core balancer (Figure 12.14), balances the computational
load dynamically using the density of the weight matrix such that each phan-
tom core works on the weight matrices with the same/similar density over the
CNN layers (as described in Section 12.3.3.1 with an example). This balancing
is only performed when the weight data is actively being reused (e.g., in regular
and depthwise separable CONV). The second balancer, referred to as Intra-Core
balancer, is local to each core, and performs columnwise balancing of the weight
matrix. This balancer is always enabled, regardless of the layer, and significantly
improves the individual multiplier thread scheduling performed by the TDS.

In Sections 12.3.3–12.3.6, we demonstrate, with examples, the designed dataflow
for various CONV and FC layers. We choose the input sizes that fit well with the
layer sizes of actual CNNs. We also show how the balancing is performed to pre-
vent idling of the cores, which in turn, maximizes the throughput, all the while
ensuring high data reuse.
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12.3.3 Regular/Depthwise Convolution

Figure 12.15 shows a 3 × 3 depthwise separable convolution example, where 4,
3 × 3 filters are convolved with a 9 × 5 × 4 input to generate a 7 × 3 × 4 output. We
choose these size parameters as an example because they fit well when consider-
ing the layer sizes of the actual CNNs. The figure also shows the scheduling and
mapping of data on to the R × C matrix. The input is broken down into n chunks
along the rows, where n is the number of rows of the output. These n chunks are
then scheduled along the rows of the R × C matrix. Each Phantom core processes
a 3 × 5 input chunk to generate a 1 × 3 output chunk. The filters F0 to F3 represent
the channel wise filters, with each column of the R × C matrix processing a differ-
ent channel. The reuse of filters (G1) along the rows is also shown. The nonunit
stride convolutions follow the same dataflow. Because of the efficient dataflow
and choice of the R × C dimensions, all Phantom cores are provided data for a
particular processing chunk, thereby, achieving a 100% intercore utilization (G2).

12.3.3.1 Intercore Balancing
The intercore balancing is performed for the layers that support filter reuse
because of the static nature of the weights. In the proposed dataflow, the layers
that support filter reuse are the regular and the depthwise separable convolution
layers. As shown in Figure 12.15, each R × C matrix column, at any given time,
processes the same filter. The filters are scheduled in a low latency, more dense and
high latency, less dense approach. Assuming that during the first iteration, the four
filters (F0, F1, F2, F3) are broadcasted and the first column’s processing latency is
the lowest. In the next filter broadcast, the next set of filters will be broadcasted
in such a way that the filter with the highest density and the associated input
channel will be scheduled to the first column. In a similar fashion, as the columns
proceed to completion, the next filters are scheduled based on the order of their
completion. This ensures that the processing completes uniformly across all the
columns so that the idle time for the individual phantom cores is minimized.
Computation of density is trivial as it involves finding the total number of ones in
the sparse mask of the filters, and thus, requires minimal resources.

12.3.4 Pointwise Convolution

Figure 12.16 shows a pointwise convolution example where a set of 1 × 1 × 36 × 7
sparse filters convolve with a 3 × 3 × 36 sparse input to produce a 3 × 3 × 7 output.
These dimensional parameters are a good representative of the layer dimensions
of actual CNNs. Figure 12.16 also shows the dataflow and the mapping of the var-
ious computations involved for this example. It can be seen that the 7 filters are
scheduled along the 7 rows of the Phantom cores with each row processing equal
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Figure 12.15 Regular/depthwise convolution.
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Figure 12.16 Pointwise convolution.

number of channels along the columns. The channels are equally divided based
on the number of combined multiplier threads in each Phantom core. Since, in
this design, each Phantom core consists of 3 PEs, with each PE containing three
multipliers (Figure 12.10), the channels are divided equally into batches of nine
and scheduled along the columns to maximize the hardware utilization (G2). To
enhance data reuse (G1), each weight matrix is held locally in a particular core,
while the input is swept across it. The input is scheduled in a channel-first manner,
followed by rows, and then columns. Figure 12.16 only shows the generation of the
first column of the output. After all the rows for a particular channel have been
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exhausted, the next column is evaluated in a similar fashion till all the columns
have been swept through. The L3 adder circuit gathers all the partial outputs from
the cores along the columns to generate the required outputs.

12.3.5 FC Layers

FC layers are an inherent part of modern CNN designs and, therefore, need to be
accounted for in CNN accelerator designs (G3). AlexNet and VGG-16 both have
FC layers with activation vectors that are 4K long and weight matrix that is 4K ×
4K long. Similarly, Mobilenet has an FC layer with activation vector that is 1K long
and weight matrix that is 1K × 1K long. The FC parameters comprise of a total
of 24.3% of all the parameters in the Mobilenet. FC computations, therefore, are
crucial and need to be accounted for in CNN accelerator designs (G3). Figure 12.17
shows an FC computation example where a length 36 sparse input vector (R0-R35)
is element-wise convolved with a 36 × 49 sparse weight matrix to generate a length
49 output vector. Figure 12.17 also shows the dataflow and the computational
mapping of the example onto the Phantom cores in the Phantom-2D architecture.
Similar to the pointwise convolution, the input and the weight channels are
broken into four batches of length nine and scheduled across the columns.
The input vector, is held stationary (input stationary) across the rows and the
individual weight vectors are swept over the input vector to generate the partial
outputs. Similar accumulation is performed by the L3 adders to generate the
final outputs.

12.3.6 Intracore Balancing

The Intracore balancer performs thread-level balancing inside every Phantom
core. This is opposed to the Intercore balancer which performs balancing across
all the Phantom cores in the Phantom-2D architecture. Recall that the TDS
(Section 3.4) operates in a columnwise manner where each column of the LAM
outputs are evaluated concurrently, as shown in Figure 12.6. Also, recall that the
total number of ones selected by the TDS per column are less than or equal to the
number of multiplier threads per PE (3 in this case). Because of the columnwise
selection, the TDS latency is bounded by the column with the highest density.
Figure 12.18a shows a test example to explain the intracore balancing and its sig-
nificance. Figure 12.18b shows the core operation without any balancing. The first
column of the weight matrix has the highest density. This is also reflected in the
generated LAM values. This uneven distribution results in the first column taking
the highest number of cycles, whereas, the second and the third column selection
completing in only one cycle, as shown in Figure 12.18b. This stalls the core as the
core must wait for the first column to complete all three cycles before processing
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Figure 12.17 FC layer processing.

the next block which significantly decreases the thread utilization of the core
(Valid Computations/(Cycles × PEs × ThreadsPerPE) = 9/(3 × 3 × 3) = 33%).

Figure 12.18c shows how the intracore balancer mitigates this issue by efficient
distribution of the load, prior to the TDS operation, in a relatively simplistic man-
ner. A right circular shift is performed on LAM2 and LAM3 values, as shown in
Figure 12.18c. This modifies the load distribution among the three LAM columns.
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Figure 12.18 Intracore balancing (a) Test example, (b) without balancing, and (c) with
balancing.

Operation of the TDS this time ensures the selection of all three columns in one
cycle. A circular left shift is performed on the generated map inputs (map11 =
111 000 000, map12 = 000 111 000, map13 = 000 000 111) in the same manner
as the circular right shift in the first step to ensure a valid mapping by the mapper.
The updated map values, after shifting, are shown in Figure 12.18c. The updated
map values are then used in the map1x without adjustment in the location/index
(Section 3.5) to accurately map data to the individual threads. The thread utiliza-
tion of the core, in this case, increases drastically (Valid Computations/(Cycles ×
PEs × ThreadsPerPE) = 9/(1 × 3 × 3) = 100%). Finally, it should be noted that
the evaluation of the example in Figure 12.18 is performed with Lf = 3. However,
the same process follows for any value of Lf . We will further explore the com-
bined effect of both, the intercore, and the intra-core balancing, on performance,
in Section 5.

12.4 Experiments and Results

12.4.1 Evaluation Methodology

12.4.1.1 Cycle-Accurate Simulator
To accurately model the performance of an individual Phantom core and the
Phantom-2D accelerator, as a whole, we design a software-based, cycle-level
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Table 12.1 Operation parameters.

Operation Level Parameters

TDS Phantom TDS_inOrder
TDS_outOrder

Balancing unbalanced
Phantom/ intra_core
Phantom-2D inter_core

full(inter + intra)
Lookahead factor (Lf ) Phantom 3 ≤ Lf ≤ 27
CNN models Phantom-2D dense

sparse

Table 12.2 Accelerator configuration.

Configuration parameter Value

Compute matrix size 28 (7 × 4)
PEs per core 3
Multiplier threads per PE 3
Total multiplier threads 252

performance simulator. The simulator is parameterizable across various core and
architecture level design parameters to capture their effect on the performance.
Table 12.1 shows the modifiable design parameters. The operations are cate-
gorized as core level and architecture-level. Table 12.2 shows the arrangement
and configuration of the Phantom-2D accelerator’s compute matrix containing
Phantom cores.

The simulator has a set of five built-in test scenarios which covers the sweeping
of all the parameters shown in Table 12.1. The simulator also contains routines
for SparTen, SCNN, and Eyeriss v2 for performing comparisons. During the pro-
cessing of each layer, every Phantom core outputs seven values which includes the
total cycles by a dense design, the cycles of TDS in-order and TDS out-of-order, cou-
pled with two-level load balancing, and the average thread utilization for various
Phantom-2D configurations. The total cycle count for SparTen, SCNN, and Eyeriss
v2 is also outputted. The evaluation files in the simulator use the data provided by
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the individual routines and schedulers to generate the throughput and speedup
results for dense and sparse accelerator designs.

12.4.1.2 Simulated Models
Although we test our design on many CNN models including Alexnet [30], VGG16
[31], MobileNets [33, 34], GoogleNet [35], and recently proposed EfficientNetV2
[46], we present the results for sparse versions of VGG16 and MobileNet for com-
parison purposes. We use the approach presented in [46] to prune these networks
using the MATLAB’s Deep Learning Toolbox and ensure that we achieve the same
level of weight sparsity as previous approaches, for fair comparisons. The activa-
tion sparsity is highly dependent on the input and changes dynamically during the
inference process. We, therefore, average out the input sparsity for a batch of 100
randomly selected inputs. After pruning of the network, we generate the sparse
binary masks for every layer and generate a network containing only the sparse
masks, since only this information is needed to efficiently represent the MAC oper-
ations needed per layer for the Phantom-2D accelerator. The sparse masks are fed
into the simulator in the model dimensions (i.e., mapped to the dimension of each
CNN layer in the model). The simulator’s scheduler uses the dataflow for vari-
ous layers, presented in Figures 12.15–12.17, to break down the dimensions and
schedule the individual binary masks to different Phantom cores.

12.4.2 Results

We capture the simulator’s results in an incremental approach, starting from the
basic core-level configurations, and moving toward system-level configurations.
All the comparisons are made with an equivalent dense architecture, having an
equal number of MAC units, but without leveraging the sparse optimizations. At
the end, we compare different versions of Phantom-2D accelerator against previ-
ously proposed two-sided sparse architectures.

12.4.2.1 TDS Variants Comparison
Figure 12.19a shows the performance comparison of the two TDS variants, namely,
the in-order TDS (TDS-IO) and the out-of-order TDS (TDS-OO), evaluated on a
sparse VGG16 net. We set the lookahead factor (Lf ) for this test to six for both the
variants. The performance of the dense architecture can be modeled by setting the
Lf value equal to 1. This would ensure that no future computations are observed
by the TDS, thus, replicating a dense accelerator. It can be seen that the first layer
does not have any significant performance gains over a dense architecture because
of very low sparsity. The performance gains increase drastically in subsequent lay-
ers with TDS-IO variant, on average, being 4.5×, and the TDS-OO variant, being
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Figure 12.19 TDS-IO vs. TDS-OO (a) Per layer comparison with Lf = 6 and
(b) comparisons with changing Lf .

4.8× faster, than the equivalent dense architecture. This represents a 1.07× perfor-
mance improvement of TDS-OO over TDS-IO. The performance difference, how-
ever, improves substantially as Lf is increased, as shown in Figure 12.19b. We run
the VGG16 net a total of five times, and average out the speedups, while sweeping
Lf from 6 to 18, with a jump of three in every iteration. For Lf = 18, we observe
a 6.35× and a 7.9× performance gain of TDS-IO and TDS-OO, respectively, over
dense architecture, representing a 43% and a 68% increase, when switching from
Lf = 3 to Lf = 18, respectively. TDS-OO, for Lf = 18, gives a 1.24× performance
gain over TDS-IO, a jump of 16% from Lf = 6. These results are inline with our
preliminary observations in Section 3.4. The improvement in the core’s thread uti-
lization from TDS-OO directly correlates to the increase in performance. For the
next experiments, we will always use the TDS-OO variant.

12.4.2.2 Impact of Load Balancing
Figure 12.20 shows the impact of load balancing (intercore + intracore) on the per-
formance for sparse VGG16 and MobileNet with Lf = 6. During the initial layers
for both the CNNs, we observe a drastic improvement in performance (as much as
1.5× for VGG16 and 1.3× for MobileNet). On average, we observe a performance
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Figure 12.20 Balanced vs unbalanced at Lf = 6 for (a) Sparse VGG16 and (b) sparse
MobileNet.

difference of 1.1× and 1.08× for VGG16 and MobileNet, respectively. From our
experiments, we also observe that the performance difference due to intracore
balancing increases drastically at high sparsity and greater value of Lf . This con-
clusion is inline with the example in Figure 12.18, where the increase in thread
utilization from intracore balancing increases the speedup by 3×. The intercore
balancing is dominant in later layers where there are a large number of channels.
For reduction in simulation times, we only use approximately 25% of the channel
filters for our simulations in the case of regular (and depthwise seperable) convolu-
tions, which prevents us from exploiting the full power of the intercore balancing.
Hence, Figures 12.20a,b do not show a significant improvement in layers with a
large number of channels. Based on our experiments, we observe, on average, a
7% increase in speedup by having 15% more filters in our simulations.

12.4.2.3 Sensitivity to Sparsity and Lf

Our performance simulator has the capability to sweep the weight/activation spar-
sity from low 0.1/0.1 (10%) to high 1.0/1.0 (100%). This is shown in Figures 12.21
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Figure 12.21 Sensitivity to sparsity and Lf for VGG16 (a) Speedup and (b) average thread
utilization.

and 12.22. We also plot the average multiplier thread utilization at different levels
of sparsity for VGG16 and MobileNet. For a dense architecture, we observe a higher
thread utilization at low sparsity and lower thread utilization at a higher sparsity,
as shown in Figures 12.21b and 12.22b. Phantom-2D, however, exhibits signifi-
cantly higher thread utilization compared to a dense architecture, even at high lev-
els of sparsity. For VGG16, Phantom-2D consistently keeps the thread utilization
higher than 90% even at 60% sparsity for both weights and activations, whereas
as expected, the utilization for the dense architecture decreases by 25 − 30% and
decreases by almost 50% at higher sparsity levels. This thread utilization difference
directly correlates to greater speedups at mid to high levels of sparsity, as shown in
Figures 12.21a and 12.22a. At higher sparsity levels (0.8/0.8–1.0/1.0), we observe
a massive speedup over dense architecture even when the thread utilization starts
decreasing. This is because the Phantom-2D accelerator starts actively skipping all
the zero computations without wasting compute cycles.

For convenience in comparing different versions of the Phantom-2D accelera-
tors, we rename them as Phantom-2D-CV (conservative, with Lf = 9, balanced),
Phantom-2D-MD (moderate, with Lf = 18, balanced), and Phantom-2D-HP
(high-performance, with Lf = 27, balanced). At low sparsity, all three versions
exhibit similar speedups and thread utilization. This difference increases at higher
sparsity levels with Phantom-2D-MD and Phantom-2D-HP being 1.43× and 1.65×
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Figure 12.22 Sensitivity to sparsity and Lf for MobileNet (a) Speedup and (b) average
thread utilization.

faster, respectively, than Phantom-2D-CV , at 80% sparsity. The unbalanced con-
figurations display a similar trend among each other. Comparison between the
Phantom-2D-HP, balanced and unbalanced configurations, show a 1.4× speedup
of balanced over unbalanced at 80% sparsity. Analysis of hardware resources
show that the Phantom-2D-HP requires only 1.05× more lookup table (LUT)s
than Phantom-2D-CV . This is because the higher values of Lf only increase the
LUT count of LAM and TDS blocks, whereas the Mapper, CE, and the OB blocks’
LUT count remains the same.

12.4.2.4 Comparison Against Past Approaches
Figure 12.23 shows the speedup comparison of the different versions of the
Phantom-2D accelerators over dense architecture, SCNN, and SparTen, for sparse
VGG16 net. The average sparsity for the weights and activations is 77% and
68%, respectively. Note that both the SCNN, and SparTen, do not support FC
layers, whereas Phantom-2D does. In addition, SCNN also does not support
nonunit stride convolutions present in AlexNet and MobileNet. Therefore, for
fair comparison, we omit the last three FC layers in our results and use sparse
VGG16 which does not contain any nonunit stride convolution. We observe that
the Phantom-2D-CV version, on average, performs 1.05×, 2.56×, and 6.4×, better
than SparTen, SCNN, and dense architecture, respectively. The speedup increases
to approximately 1.57×, 3.8×, and 9.9× for Phantom-2D-MD, and 1.98×, 4.1×, and
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Figure 12.23 VGG16 speedup comparison with SCNN [163] and SparTen [152].
Source: Adapted from [152, 163].

11×, for Phantom-2D-HP over SparTen, SCNN, and dense architecture, respec-
tively. Upon comparing different versions of Phantom-2D, we observe that, on
average, Phantom-2D-HP has a 67% and a 14% improvement in performance,
compared to the Phantom-2D-CV and Phantom-2D-MD versions, respectively.
Lastly, we would like to point out the impact of FC layers on the Phantom-2D
versions. Our experiments show, on average, a speedup of 13×, 11.4×, and 8.6×
for Phantom-2D-HP, Phantom-2D-MD, and Phantom-2D-CV , respectively, over
dense architecture after inclusion of FC14, FC15, and FC16 layers of the VGG16
net. This improvement corresponds to our efficient dataflow and scheduling for
the FC layers.

Figure 12.24 shows the performance comparison of the Phantom-2D versions
against Eyeriss v2 on sparse MobileNet. The average sparsity for the weights and
activations is 73% and 64%, respectively. Authors of Eyeriss v2 performed their
comparisons against their previous approach (Eyeriss [45]). Eyeriss v2 uses twice
the number of MACs as Eyeriss, which doubles their final speedups. For fair
comparison, we adjust the speedup values of Eyeriss v2 for comparison against a
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dense accelerator having the same number of MACs and only use the layers used
by Eyeriss v2. We observe that, on average, Phantom-2D-CV performs 1.04× better
than Eyeriss v2, whereas the MD and HP versions, on average perform 1.71× and
2.86×, respectively, better than Eyeriss v2. Doing a layer-by-layer comparison,
we observe that Eyeriss v2 performs better than Phantom in CONV2-DW (DW
indicates depth-wise convolution) because of its efficient hierarchical mesh
network-on-chip (NoC); however, Phantom-2D-HP catches up in deeper layers
and almost always provides an improvement. Pointwise layers are especially faster
in the case of Phantom-2D-HP, with the average speedup of 4.5× over Eyeriss v2,
and 25× over a dense architecture. This is because of the efficient channelwise
breakdown offered by our dataflow for these layers.

Comparing different versions of the Phantom-2D accelerators, Phantom-2D-HP,
on average, offers 108.9% and 27.4% increase in speedup over Phantom-2D-CV and
Phantom-2D-MD, respectively, for sparse MobileNet.

Comparing energy among different accelerators is quite challenging as it
requires working register transfer level (RTL)s. The energy consumption of an
accelerator is dominated by the DRAM accesses, therefore, by estimating the
DRAM accesses, energy difference among the accelerators can be approximated.
Since many of the recent works rely on the CSC format for nonzero data storage,
we compare the accessed memory for the CSC format against the sparse mask
format. Figure 12.25 shows the intermediate activations’ memory access com-
parison for selected VGG 16 and MobileNet layers.2 The activation sparsity for
different layers is also shown. In the initial layers with low activation sparsity, the
CSC format has approximately 4× and 3.7× higher DRAM memory accesses than
the sparse mask for VGG16 and Mobilenet, respectively. In the deeper layers with
moderate-to-high sparsity, the memory requirement for the CSC format is around
1.7× that of the sparse mask.

This shows that the sparse mask representation not only needs less encod-
ing/decoding logic but is also efficient in terms of memory requirements when
compared against the CSC format. This translates directly to higher energy, area,
and compute savings for the accelerators employing the sparse mask format.

12.4.2.5 RTL Synthesis Results
We wrote the RTL Verilog for a single Phantom core with Lf = 27 (high perfor-
mance) and synthesized it for the Xilinx Zynq 7100 SoC’s programmable logic
(PL), running at 150 MHz. The SoC’s ARM-based processing system (PS) was used
to transfer data to/from a desktop computer to DRAM. The PL acquires this data
and stores it in its global buffers (input and weight SRAMs), shown in Figure 12.14.

2 The required memory for the stored nonzero data is not shown since it is the same for both
the sparse mask and the CSC format. The accessed memory is shown for the binary sparse mask
and the location vectors (column, index) of the CSC format.
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The generated outputs and the sparse masks are stored in the output SRAMs and
transferred to DRAM for the next layer. Table 12.3 shows the total resource utiliza-
tion among various sub-blocks of the Phantom core. The main takeaway is that
the novel components of the Phantom core (LAM, TDS, Mapper, and intracore
balancer) only account for approximately 48% and 35% of the utilized LUT and
the FF cost, respectively. The local SRAM utilization is dominated by the map-
per and the output buffering block (approximately 78%). The design has a power
consumption of 2.48 W with the PS dominating the consumption (55%). Eyeriss
v2, implemented on a 65 nm application-specific integrated circuit (ASIC), uti-
lizes 2695k gates which represents a 108% increase in area cost when compared
to the original semisparse Eyeriss [45]. This drastic increase in area is the result of
the complex encoding/decoding logic required by the CSC format in their design.
SCNN has a 35% increase in area compared to their dense design, whereas SparTen
does not report the resource utilization of their PEs.

12.5 Chapter Summary

Designing a CNN accelerator to leverage the two-sided sparsity is quite challeng-
ing owing to the varying layer shapes and sizes, associated with a sparse model.
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Table 12.3 Resource utilization for a single Phantom core with Lf = 27.

Property Available Used Utilization (%)

LUTs 277k 3.4k 1.23
FFs 554k 6k 1.1
On-chip SRAM 26.5Mb 2.1kB 0.01

In this chapter, we introduced Phantom: a novel multithreaded, flexible, neural
computational core that exploits the two-sided sparsity to provide high gains in
performance at a relatively low hardware complexity. Using a system of Phan-
tom cores, we then designed the Phantom-2D accelerator, and presented a novel
dataflow that efficiently used the capabilities of the Phantom cores. As opposed
to many previous approaches, the Phantom-2D accelerator supports all layers of a
CNN, including unit and non-unit stride convolutions, and FC layers. In addition,
we discussed a two-level load balancing strategy that efficiently balanced the load
across the architecture level (inter-core), and at the thread level (intracore) to min-
imize idling of the compute threads, thereby, further increasing the throughput.
The chapter presented performance comparison of Phantom-2D against many pre-
vious state-of-the-art two-sided sparse CNN accelerators. The simulation results
show that, on average, Phantom-2D accelerator performed 12×, 4.1×, 1.98×, and
2.36×, better than an equivalent dense CNN architecture, SCNN, SparTen, and
Eyeriss v2, respectively, while retaining the energy efficiency of SparTen.
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Part V

HW/SW Co-Design and Co-Scheduling for CNN
Acceleration
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13

State-of-the-Art in HW/SW Co-Design and Co-Scheduling
for CNN Acceleration

This chapter provides an overview of hardware/software (HW/SW) co-design and
co-scheduling for convolutional neural network (CNN) acceleration. This chapter
can be broadly divided into two parts: HW/SW co-design and co-scheduling.
For the first part, this chapter defines HW/SW co-design and provides background
of HW/SW co-design. The chapter then presents a case study of cognitive Internet
of things (IoT) as an example of HW/SW co-design. This chapter then describes
recent advancements in the HW/SW co-design for resource-constrained systems.
For the second part, this chapter provides background of HW/SW co-scheduling
and then highlights recent advancements in HW/SW co-scheduling.

13.1 HW/SW Co-Design

The traditional computer system architecture is based on central processing
unit (CPU) based design. The CPU has been widely deployed and is used to
execute a wide spectrum of the applications. As transistor size approaches
the size of a single atom, Moore’s Law is not strictly applicable to the modern
computer systems, and thus performance improvements attained by CPUs that
have benefited from Moore’s Law for decades have seen a slower increase over
the years. Furthermore, memory wall and power wall make the continuous
performance improvements from general-purpose computer systems even harder.
Consequently, computing and architecture landscape has transitioned toward
multicore and domain-specific architectures where multiple accelerators are
available on-chip (i.e., system on-chip) or off-chip. These accelerators are utilized
when executing specific workloads. The software of these domain-specific
architectures is also often designed and optimized by considering the underlying
hardware. This software design and optimization is very important for attaining

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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high performance and energy efficiency in particular in embedded system
domain where hardware resources are scarce. Software design and optimization
considering the underlying hardware architecture can significantly improve
performance and energy efficiency in domain-specific HW/SW systems because
the architecture of the underlying hardware is different and can be best exploited
by optimizing the software for that specific hardware. That is why, hardware and
software are often co-designed for an application-specific workload or system,
and this approach is referred to as hardware/software co-design.

HW/SW co-design concept emerged in 1990s. The notion of HW/SW co-design
is essentially the concurrent design of hardware and software components of
complex electronic systems [184]. HW/SW co-design aims to exploit the synergy
between hardware and software in order to optimize and meet design constraints
such as cost, performance, power, energy, and reliability of the final product.
In HW/SW co-design concept, when the system is being designed, tasks/subtasks,
functionalities/subfunctionalities, and different aspects or facets of the system
are partitioned into hardware and software components depending on the design
requirements. Software can provide flexibility and programmability whereas
hardware can optimize aspects of a system that do not require change over the
lifetime of a product. Modern HW/SW codesign techniques target SoC design
that integrates general-purpose microprocessors/CPUs, digital signal processors
(DSPs), programmable logic (FPGA), application-specific integrated system
(ASIC) cores, memory blocks, peripherals, and interconnection buses on one
chip. HW/SW co-design techniques aim to determine an optimal partitioning and
assignment of tasks between software running on microprocessors or DSPs and
hardware implemented on ASIC or FPGA for a given application [185].

For CNN acceleration, HW/SW co-design is imperative. When designing a
computing system for CNNs, certain tasks in the CNNs can be offloaded to the
hardware. For instance, since CPU is not suitable for data parallel workloads,
the general matrix multiplication (GEMM) task can be offloaded to a dedicated
hardware accelerator while other tasks can performed in software on CPU.
In this way, task offloading afforded by HW/SW co-design can lead to a huge
performance and energy efficiency benefit for CNN execution as compared to a
system with only software-based execution on the CPU. On the software-side,
the task scheduling by exploiting the task-level parallelism is also beneficial. In
a HW/SW co-designed CNN acceleration system, when the dedicated hardware
accelerator is performing some tasks/sub-tasks of CNN execution, other CNN
tasks/sub-tasks can be executed in parallel in software running on the CPU.
Figure 13.1 summarizes the comparison between the conventional CPU-based
design and execution versus HW/SW co-design and execution.
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Figure 13.1 Comparison between (a) conventional software-based design and
execution, and (b) HW/SW co-design and execution.

13.1.1 Case Study: Cognitive IoT

This section discusses cognitive IoT as a case study example of HW/SW co-design
for CNN acceleration. Many of the IoT applications not only require the
IoT devices to perform compute-intensive tasks but also to learn, think, and
understand both physical and social worlds by themselves thus motivating the
development of a new paradigm, named cognitive IoT [186]. Cognitive IoT outfits
the current IoT with a “brain” for high-level intelligence. Cognitive IoT will be
able to accomplish various application tasks including resource control (e.g.,
sensing resolution, actuation), inference, and decision-making with minimum
human intervention/supervision thus saving human’s time and effort and will
also provide efficient resource usage. Hence, there is a need to develop a flexible,
high-performance, energy-efficient, and cognitive IoT architecture to assist with
various emerging IoT applications (e.g., agriculture, smart homes, smart cities,
military).

Figure 13.2 depicts an example of cognitive IoT architecture. This architec-
ture consists of a host processor which comprises of an application processor,
co-processors, and accelerators. The host processor is connected to various
low-power interface processors that collect data from sensors and control
actuation elements.

The core component of a cognitive IoT architecture is cognitive engine, which
provides cognition capabilities to the IoT device. The cognitive engine implements
various deep learning accelerators, such as CNNs, recurrent neural networks
(RNNs), and multilayer perceptrons (MLPs). The cognitive engine helps with var-
ious cognitive tasks in IoT devices, such as in situ analysis of the sensed data, local
resource management, inference, decision-making, and response calculation for
the IoT devices based on the analysis of the sensed data. Increasing cyber-physical
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Figure 13.2 Cognitive IoT architecture.

and vision applications of IoT make CNNs an integral part of cognitive engine for
imparting real-time object detections and/or classifications. To enable efficient
on-device CNN inferences, hardware-based CNN inference engines are often
used instead of general-purpose CPUs or graphics processing units (GPUs). With
the hardware components, the software which actually controls the hardware
also hugely contributes to the performance, energy efficiency, and cost of the
systems. This section focuses on HW/SW co-design of CNN inference engine for
cognitive IoT.

For cognitive IoT computing platforms, implementing the cognitive engine
with ASICs would be desirable for better optimization; however, ASICs being
hardwired provide no flexibility to adopt a new cognitive engine. Alterna-
tively, field-programmable gate array system-on-chip (FPGA-SoC) that equips
programmable logic, CPU, and other hard intellectual properties (IPs) provides
an attractive platform because of its reconfigurability, flexibility, cost efficiency,
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and faster time-to-market. Cost efficiency is an important metric to consider for
real-world adoption of on-device CNN inference architectures in IoT devices.
We define cost efficiency metric as: an architecture (or implementation) is
cost-efficient if it requires fewer resources under performance and energy
efficiency constraints as compared to other architectures (implementations).
Though there have been many studies and proposals on fast and efficient CNN
inference for FPGA platforms (e.g., [146–148, 166], and [187]), cost efficiency of
the implementations has been largely ignored, which may make those designs
infeasible for low-power and resource-constrained cognitive IoT.

The designed hardware for cognitive IoT can also be supported by software. For
example, software can perform scheduling of the underlying hardware resources
for improving the hardware resource utilization. In addition, the operating system
support can also be available to meet the real-time constraints when executing the
IoT applications that have a hard deadline.

13.1.2 Recent Advancements in HW/SW Co-Design

Many recent CNN inference engines leverage HW/SW co-design. Sugimoto et al.
[187] have proposed a method to accelerate execution of the convolution layer
with general matrix multiplication (GEMM) hardware, whereas implementing
image-to-column (im2col) operations in software. In [147], Qiu et al. have
proposed an acceleration technique via dynamic data quantization and convolver
design, leading to an improved bandwidth and resource utilization in an embed-
ded FPGA platform. Meloni et al. [146] have proposed a new methodology to
utilize both hardware accelerator and embedded CPU in Zynq-based FPGA-SoC
platform. Their methodology utilizes a 16-bit fixed-point convolution engine
implemented in the programmable arrays and ARM CPU’s NEON units for
processing the convolution layers. The proposed software framework orchestrates
the overall convolution layer processing. Zhong et al. [166] have proposed a
unified framework for accelerating CNNs on heterogeneous embedded platforms.
The proposed framework in [166] utilizes GEMM hardware with multithreading
to efficiently hide latencies.

In [188], authors have proposed a HW/SW codesign approach for cost-efficient
on-device CNN inference in resource-constrained cognitive IoT devices. The
authors have utilized the CNN hardware accelerator introduced in Chapter 7 as
the main hardware part. For the software part, the authors have proposed and
implemented two important software-level support mechanisms: (i) efficient
channel partition and input/weight allocation, and (ii) the pipelined execution of
the front-end (e.g., input data transfer, im2col, and MAC) and the back-end part
(e.g., bias addition and activation) of the execution. The efficient input channel
partition, input/weight allocation, and the pipelined execution are essential
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parts to maximize the resource utilization in the system. Experimental results
demonstrate the superiority of our FPGA-based implementation for Tiny-Darknet
[145] CNN model with full-stack software including operating system (PetaLinux)
and Darknet framework [143] in terms of response time and energy consumption
as compared to the implementations using the CPU with NEON (SIMD, Single
Instruction Multiple Data) architecture extension for the Arm Cortex processors)
supports as well as the implementations that only offload the GEMM to the
hardware accelerator.

13.2 HW/SW Co-Scheduling

Although many hardware accelerators and algorithmic advancements have
been proposed for CNNs, efficient CNN inference in resource-constrained edge
systems is still an arduous undertaking. Modern SoCs, which are generally used
in many resource-constrained edge systems, employ many different hardware
IPs to support a wide range of tasks. Recently, CNN accelerators are also being
incorporated as hardware IP in modern edge devices and servers. For CNN
inference in such environments, the main CPU triggers the CNN accelerator
with direct memory access (DMA)-based data transfer. The CNN accelerators in
most cases can execute CNN inferences faster than the CPU or other hardware
IPs. However, in most of the contemporary CNN acceleration systems, the CPU
or hardware IPs other than the CNN accelerator remain idle during the CNN
inference. These idle hardware resources could otherwise be utilized for acceler-
ating the CNN inferences alongside the CNN accelerator. For example, a typical
CPU in embedded platforms can perform matrix–vector operations. With SIMD
supports, these matrix–vector operations can be made much faster. Consequently,
idle hardware resources in CPU can be utilized to execute a certain portion
of CNN inference tasks to make the CNN inference faster than using only the
CNN accelerator. The process of scheduling tasks on both hardware and software
(CPU) is referred to as HW/SW co-scheduling. In regards to CNN acceleration,
the concept of scheduling and executing CNN inference tasks/subtasks on
both the CNN hardware accelerator as well as the CPU to share the workload
of the CNN acceleration for improving performance is referred to as HW/SW
co-scheduling for CNN acceleration.

For efficient utilization of hardware resources in an intelligent SoC-based plat-
form, an important design decision is how to distribute the CNN inference tasks in
a load-balanced manner. The “ideal load balancing” for CNN inference means the
distribution of CNN tasks in a manner that maximizes the utilization of multiple
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hardware resources. Such distribution of CNN tasks also increases the possibility
of idle time minimization of SoC hardware resources when executing the paral-
lel tasks in multiple different hardware resources. An important metric to con-
sider for load balancing of CNN inferences is relative performance ratio. Relative
performance ratio (RPR) is the ratio of the performance between various hard-
ware resources. For two resources (or components or subsystems) A and B, the
RPR is defined as the performance of A relative to B, that is, RPR = PerfA

PerfB
, where

PerfA and PerfB denote the performances of A and B, respectively. Load imbalance
can result in idle time for various hardware resources, which lead to underuti-
lization of the hardware resources. Thus, in order to minimize load imbalance
in SoC platforms (i.e., to minimize idle time in hardware resources), a careful
consideration of task distribution is required at a fine granularity by considering
the relative performance ratio.

13.2.1 Recent Advancements in HW/SW Co-Scheduling

Recent efforts have focused on co-scheduling of CNN workloads with various
hardware IPs in SoC platforms. In [166], a framework to utilize heterogeneous
hardware resources in SoCs when executing CNN inferences is proposed.
The framework utilizes CPU (with SIMD engine) and accelerator to expedite
multiple CONV layer executions for different image frames. In [189], a technique
to utilize CPU, GPU, and hardware accelerator for CNN acceleration by partition-
ing a batch of images is proposed. By exploiting the roofline model, the technique
partitions a batch of images and then distributes these partitioned images to
CPU, GPU, and FPGA accelerator for efficient CNN acceleration. In [190], a task
assignment technique is proposed for multi-CNN acceleration, which utilizes
multiple deep learning processing units (DPUs) for CNN inference, while CPU is
responsible for task initialization. Similarly, [146] proposes a technique to utilize
both an FPGA-based accelerator and a CPU for CNN inferences. The technique
[146] offloads the convolution operation to the FPGA accelerator, while the other
parts of CNN (such as fully connected layer or shortcut connection, etc.) are
executed in the CPU. Though the technique proposed in [146] can improve the
throughput of CNN inference by exploiting both the CPU and the FPGA-based
accelerator, it is very hard to fully utilize both the hardware accelerator and the
CPU because granularity for task distribution is still large (e.g., layer granularity).
Further, due to coarse granularity, there is a high probability for having idle period
in hardware resources, thus incurring throughput loss. In [191], a single layer
acceleration technique is proposed by utilizing both CPU and GPU. The tech-
nique in [191] distributes the output channels with a fixed ratio (e.g., 0.25, 0.5,
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and 0.75). In [109], a technique to accelerate memory streaming workloads
(memory-to-memory data transfer with or without simple arithmetic operations
such as memory COPY, ADD, SCALE, and TRIAD [192]) via cooperation between
a CPU and an FPGA-based accelerator is proposed. Though the technique in [109]
can accelerate 1 × 1 convolution operations, it has limitations on accelerating
N × N convolution operations where N > 1.

The previously proposed approaches targeting heterogeneous hardware uti-
lization for CNN inferences use multiple available resources (CPU and FPGAs
in [166], CPU, GPU, and FPGAs in [189], and CPU and multiple DPUs in [190]);
however, the previously proposed approaches can only be employed when simul-
taneously executing multiple CNN inferences, thus limiting their applicability. In
addition, the coarse-grained task partitioning employed in previously proposed
approaches may not work well in resource-constrained edge devices because it is
very rare to execute a large batch of images together in edge devices.

In Chapter 15, we introduce a recently proposed HW/SW co-scheduling
technique [125] in detail. The work presented in [125] can be applied to a
single CONV layer acceleration, which has wider applicability as compared
to the HW/SW co-scheduling techniques proposed in [189], [166], and [190].
In addition, the HW/SW co-scheduling technique presented in [125] employs a
finer-grained approach that distributes output channels in a single CONV layer
to the accelerator and the CPU, which is more suitable for resource-constrained
edge devices. Furthermore, the technique proposed in [125] is based on task
distribution with a finer granularity (i.e., CNN output channels in a CONV layer),
and thus has a higher probability of keeping the accelerator and the CPU busy.
Lastly, the accurate latency estimation in [125] guides the load-balanced task
distribution to the accelerator and CPU, thereby minimizing idle time in the
hardware resources when executing the CONV layer operations.

13.3 Chapter Summary

This chapter defined HW/SW co-design and HW/SW co-scheduling. Further-
more, this chapter provided a background of HW/SW co-design followed by a
case study of cognitive IoT as an example of HW/SW co-design. The chapter
then discussed some recent advancements in HW/SW co-design. The chapter
then provided a background of HW/SW co-scheduling followed by a reviewof
recent advances in HW/SW co-scheduling. In Chapter 14, this book introduces
a HW/SW co-design technique for CNN acceleration in resource-constrained
edge devices. Chapter 15 discusses a HW/SW co-scheduling technique for CNN
acceleration in resource-constrained edge devices.
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Hardware/Software Co-Design for CNN Acceleration

In Chapter 7, this book has already explained the iMAC hardware accelerator.
This chapter focuses on the software partition/portion of the iMAC. This chapter
introduces two important software-level support mechanisms: (i) efficient
channel partition and input/weight allocation, and (ii) the pipelined execu-
tion of the front-end (e.g., input data transfer, image-to-column (im2col), and
multiply-accumulate (MAC)) and the back-end part (e.g., bias addition and
activation) of the execution. The efficient input channel partition, input/weight
allocation, and the pipelined execution are essential parts to maximize the
resource utilization in the system.

14.1 Background of iMAC Accelerator

This chapter mainly explains the software supports for the iMAC accelerator. In
order to help the readers understand better this chapter, we briefly discuss how
the tasks are offloaded in the iMAC accelerator.

HW/SW partitioning of the iMAC accelerator architecture is shown in
Figure 14.1. As we explained in Chapter 7, the iMAC accelerator incorporates the
im2col and general matrix multiplication (GEMM) operations in the hardware
accelerator to reduce the data transfer between the main memory and the accel-
erator on-chip memory. As shown in four processing element (PE) architecture
of the iMAC accelerator in Figure 14.2, the iMAC accelerator has multiple MAC
arrays to perform the parallel MAC operations for GEMM. In Section 14.2, we
explain the software partition/portion of the iMAC accelerator with a detailed
channel partition algorithm for convolutional neural network (CNN)s.

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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Figure 14.1 HW/SW partitioning for iMAC accelerator.
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14.2 Software Partition for iMAC Accelerator

Sections 14.2.1 and 14.2.2 discuss the software partitioning of the HW/SW
co-designed iMAC accelerator, which includes channel partition and software-
based pipelined execution.

14.2.1 Channel Partition and Input/Weight Allocation to Hardware
Accelerator

Provisioning the hardware resources for in situ execution of the entire convo-
lution layer could not be a desirable solution for resource-constrained Internet
of things (IoT) or edge systems. Since the presented design is geared toward
resource-constrained systems, we only have limited on-chip memories and PEs
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which are not enough to implement a whole convolution layer. Since our iMAC
hardware can only execute a part of the convolution layer (i.e., only a part of
the entire input channels in a convolution layer) at once, efficient partition and
allocation of input channels to the iMAC hardware accelerator are very crucial.

In the presented design, the hardware accelerator (iMAC) operates by a unit(s)
of an input channel. Thus, we try to put the input feature map and weight data
for as many input channels as possible to the input and weight block random
access memory (BRAM)s, respectively, to minimize the number of data transfer.
Figure 14.3 shows a pseudocode of the presented channel partition method
controlled by software. One outer-loop iteration generates results for one output
channel (lines 2–19). Thus, if we would like to generate more than one output
channel, we need to execute the outer loop by NumOutputChannel times (i.e.,
equal to the number of the total output channels in a certain convolution layer).
For each inner-loop iteration (lines 3–14), we generate partial results for one

Pseudocode for Software-Level Supports

1 out = 0;
2 for (i=1; i<=NumOutputChannel; i ++)
3 for (j =1; j <=NumPartition; j ++)
4 DMA_Transfer_to_iMAC (jth_Weight);
5 while (!DMA_done);
6 DMA_done = 0;
7 DMA_Transfer_to_iMAC (jth_InputFeatureMAP);
8 if (out)
9 Bias_Addition_and_Activation ((i−1)th_OutputChannel);

10 out = 0;
11 end if
12 while ((!Check_iMAC_done()) || (!DMA_done));
13 DMA_done = 0;
14 end for
15 DMA_Transfer_to_Memory (ith_OutputChannel);
16 out = 1;
17 while (!DMA_done);
18 DMA_done = 0;
19 end for
20 Bias_Addition_and_Activation ((i−1)th_OutputChannel);

Figure 14.3 Pseudocode of the software-level supports for the iMAC accelerator. The
“DMA_done” is a flag variable that autonomously set as “1” as soon as the direct memory
access (DMA) transfer is finished. The “Check_iMAC_done()” is a function that returns
whether or not the iMAC accelerator is finished (it returns “1” if finished, “0” if not).
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output channel. The inner-loop iterations are executed by NumPartition times
where NumPartition is equal to ⌈(the total number of input channels/the number
of maximum input channels that the iMAC hardware can accommodate)⌉.
How many input channels can be accommodated is bound to input and weight
BRAM size. For a hypothetical example, we have 50,176× 4B input BRAMs
with 288× 4B weight BRAMs. We also have 112 × 112 × 12 input feature maps
(an element size=4B: one floating-point variable) with 32 3× 3× 12 weights
(filters). The input and weight BRAM can accommodate input feature maps
for up to 4 input channels (50,176*4B= 4*112*112*4B) and 12 layers of filters
(288 ∗ 4B ≥ 12 × 3 × 3 × 4B), respectively. In this example, the number of input
channels we can accommodate is bound to the input BRAM size (12>4). Thus,
NumOutputChannel and NumPartition values will be set as “32” (same as the
number of the filters) and “3” (=12 input channels / 4 channels at maximum with
available BRAMs), respectively.

14.2.2 Exploiting Parallelism Within Convolution Layer Operations

By exploiting the parallelism that exists in different operations in the convolution
layer, the presented design implements a pipelined execution of the operations. As
shown in Figure 14.3, in lines 7–11, as soon as the direct memory access (DMA)
transfer is triggered for input feature maps (during the DMA transfer, the CPU
can perform another task), the bias addition and activation for the previous out-
put channel are performed (lines 8–11). Since the iMAC hardware is implemented
to autonomously perform the im2col and MAC operations as soon as finishing
the DMA transfer for input feature maps, the CPU waits for finishing the DMA
transfer for input feature map and im2col and MAC operations in the while loop
(line 12). In lines 15–18, DMA transfer for the results of output channel i is per-
formed and the CPU waits for finishing the DMA transfer. After the termination
of the outer-loop iterations, the bias addition and activation operations for the last
output channel (i − 1 because we already incremented i by 1 before we terminate
the outer loop) are carried out in the CPU in line 20.

For comparison, Figure 14.4 shows the timing diagrams without pipelined exe-
cution (a) and with pipelined execution (b) for three output channels (OCs). With-
out pipelining (Figure 14.4 a), the bias addition and activation are performed when
the iMAC hardware computation and DMA transfers for outputs are entirely fin-
ished. Thus, iMAC accelerator and CPU are not used in parallel and either of
hardware resources is idle, causing a throughput loss. In the presented design,
as shown in Figure 14.4b, we exploit the data independence between the output
channels. It means we can overlap the executions of the bias addition and acti-
vation for the previous output channel N − 1 with the iMAC execution for the
current output channel N. Please note that the bias addition and activation for
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Figure 14.4 Comparison between (a) nonpipelined and (b) pipelined execution.

the last output channel of a convolution layer cannot be overlapped as shown in
Figure 14.4b. This part also corresponds to the line 20 in the pseudocode shown in
Figure 14.3.

In this design, we do not apply double buffering. The rationale behind this
design decision is cost (resource) efficiency. To support double buffering with
the same PE utilization, we need twice more BRAMs, which are not desirable
for resource-constrained system. In the presented implementation, the compu-
tation time dominates the data transfer time, which also means a performance
gain from double buffering would be marginal. Instead of applying the double
buffering, we exploit parallelism in the convolution layer operations by over-
lapping the im2col+GEMM and bias addition/activation, leading to cost- and
resource-efficient design.

14.3 Experimental Evaluations

We show the experimental results with four different designs: CPU, GEMM,
iMAC_NPL, and iMAC_PL. CPU only uses CPU without an additional hardware
accelerator. GEMM only offload GEMM to the dedicated field-programmable
gate array (FPGA)-based logic. iMAC_NPL offloads im2col and MAC to the
dedicated FPGA hardware (iMAC accelerator), while the pipelining described in
Section 14.2.2 is not applied. iMAC_PL offloads im2col and MAC to the iMAC
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accelerator with the pipelining supports in the software. We also show the results
when the single instruction multiple data (SIMD) (ARM NEON) support, which
can be orthogonally applied to four different designs, is provided and not provided
in the CPU. In the cases of iMAC_PL and iMAC_NPL, the identical 8PE-based
iMAC hardware accelerator is used. For fair comparison, we use the same amount
of BRAM blocks in GEMM (with 95 MHz FPGA clock) as that in iMAC_PL.

Figure 14.5 shows the response time and energy results for eight cases
(4 different designs * 2 (w/ NEON and w/o NEON)). In the case of response
time, our iMAC_PL significantly reduces response time of the CNN inference
regardless of the NEON support is available or not. When the NEON support is
not available, the speedup of the iMAC_PL is 1.97× compared to CPU. It means
the cognitive engine (i.e., iMAC accelerator) can achieve a huge speedup in
resource-constrained embedded/IoT environments with a small hardware over-
head. In the case of GEMM, response time is rather increased compared to CPU.
This is because of the huge increase in the amount of data transfer caused by data
replication (i.e., unrolling the input) during im2col. Compared to iMAC_NPL,
iMAC_PL shows 1.12× speedup which is attributed to the overlap between the
computation times for data transfer/accelerator and bias addition/activation. The
relative performance impact of pipelining could be further improved as we put
more PEs and/or increase the clock frequency of the iMAC so that we can reduce
the execution time of the im2col and MAC operations. When the NEON support
is available, performance of CPU is increased by 52.9% compared to CPU without
NEON. However, iMAC_PL with NEON still shows better performance by 29.2%
compared to CPU with NEON. It implies the presented acceleration technique
can achieve better response time regardless of NEON supports in the CPU. In the
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case of platform-level energy, the iMAC_PL shows the highest energy reductions
among GEMM, iMAC_NPL, and iMAC_PL compared to CPU. The iMAC_PL
shows energy reductions by 44.3% and 19.4% compared to the CPU without and
with NEON supports, respectively.

14.4 Chapter Summary

This chapter discussed a HW/SW co-designed CNN accelerator for resource-
constrained systems. Hardware partitioning of the discussed iMAC accelerator
had been elaborated in Chapter 7, so this chapter focused on the software parti-
tion of the design. This chapter discussed software-level supports to efficiently
partition and allocate the input channels to the iMAC hardware accelerator and
exploit the parallelism inside the convolution layer operations. Experimental
results revealed that the iMAC implementation attained 1.3× ∼ 2.0× speedup
and energy reduction of 19.4%∼44.3% as compared to using only the CPU.
Experimental results verified that the presented HW/SW co-design achieves a
good trade-off between response time, energy, and cost for CNN inference in
intelligent systems under tight resource budgets.
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CPU-Accelerator Co-Scheduling for CNN Acceleration

This chapter introduces a technique to utilize idle hardware resources for
convolution (CONV) layer acceleration, which generally constitutes the largest
portion of convolutional neural network (CNN) inference latency. The introduced
technique exploits the central processing unit (CPU) for sharing load of CNN
inference tasks along with the CNN hardware accelerator. The main reasons of
utilizing CPUs for sharing CNN inference load with the hardware accelerator in
the introduced technique are (i) CPUs are hardware IPs employed in most of the
resource-constrained edge systems, and (ii) CPUs can execute matrix-vector (or
matrix-matrix) operations with reasonable efficiency [166], which makes CPUs
attractive components for sharing CNN tasks with the CNN accelerator. In order
to distribute CNN inference tasks between the hardware accelerator and the
CPU, the parallelism in generating multiple CNN output channels (which can be
generated independently) in a single CONV layer is exploited. To help minimize
the idle time in both the accelerator and the CPU, this chapter also introduces a
linear regression-based latency model for CONV layer execution. By referring to
the estimated latency from the presented model, the introduced co-scheduling
technique distributes the CNN output channels between the accelerator and the
CPU to maximize the utilization of the both (i.e., to minimize the idle time in
both the accelerator and the CPU).

There have been previous works that achieve more than 10× reduction of the
computation [94] or more than 40× weight size reduction [46, 62] with a negligi-
ble accuracy loss; however, those works focus on improving the CNN models [62]
or changing data format (quantization) and value (pruning) of the weights [46, 94].
On the contrary, the introduced acceleration technique utilizes CPU and the CNN
accelerator co-scheduling and can be employed orthogonally with the existing
CNN acceleration techniques that utilize quantization and pruning. Furthermore,
the introduced technique is applicable to any CNN model because this technique
focuses on utilizing both the CPU and the CNN accelerator when executing a

Accelerators for Convolutional Neural Networks, First Edition.
Arslan Munir, Joonho Kong, and Mahmood Azhar Qureshi.
© 2024 The Institute of Electrical and Electronics Engineers, Inc. Published 2024 by John Wiley & Sons, Inc.
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CNN inference with a given CNN model (i.e., this technique is not limited to
any particular CNN model). Thus, the introduced technique can be much more
broadly applied for CNN inference acceleration at the edge as compared to other
CNN acceleration techniques.

The main contributions related to HW/SW co-scheduling covered in this
chapter are

● A CNN output channel distribution technique with CPU-accelerator
co-scheduling, which utilizes both the CNN accelerator and the CPU

● A simple, yet accurate convolution layer latency model for the CNN accelerator
and the CPU

● Implementation of the introduced co-scheduling technique in a CNN frame-
work [143] while verifying it in various field programmable gate array
system-on-chip (FPGA-SoC) based platforms as a proof-of-concept

● The experimental results reveal that the introduced co-scheduling technique
improves the performance of convolution layer operations by 1.18xto 2.00x
while at the same time reducing the energy consumption by 14.9%–49.7% as
compared to the accelerator-only execution.

15.1 Background and Preliminaries

In this section, we cover the generic topics for CNNs and the baseline system archi-
tecture used in this chapter. For baseline system architecture, we also explain how
the underlying systems and accelerators are organized and how they exploits par-
allelism in the CNN.

15.1.1 Convolutional Neural Networks

CNNs are generally composed of multiple different types of layers. Though some
CNN architectures contain specialized layers (e.g., Inception layer in [35]), most
of the modern CNN architectures are composed of CONV layers, pooling layers,
and fully connected layers. Among those layers, it is known that the CONV layer
takes the largest portion of the execution time in a CNN inference. Thus, in this
chapter, we mainly focus on accelerating the CONV layers.

A deep look into the CONV layer (Figure 15.1) divulges that input feature
maps (IFMs) and weights (filters) mainly constitute an input for the CONV layer.
Bias values (gamma and beta for batch normalization) are sometimes included
in the inputs for CONV layers though they are omitted in Figure 15.1. With the
IFMs (IH× IW× IC) and weights (N×N× IC×OC), the convolution operations
are performed. After the convolution, depending on the CNN models, the batch
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Figure 15.1 Typical convolutional layer operations. IH, IW, IC, OH, OW, and OC stand for
input height, input width, input channel, output height, output width, and output
channel, respectively.

normalization can be performed to the output from the convolution operations.
Lastly, the activation is performed, typically by rectified linear units (ReLUs),
which generate the output feature maps (OFMs) of dimension OH×OW×OC.

15.1.2 Baseline System Architecture

In this work, we assume a resource-constrained edge system with a CNN acceler-
ator (such as Coral platform [115] which has a CPU with edge tensor processing
unit). As shown in Figure 15.2, the baseline SoC is similar to a typical embedded
system which includes CPU and memory controller. In the baseline system,
we also use the CNN accelerator to expedite the CNN inference in the system.
Though there can be various types of CNN accelerator, we assume that the

CPU

DDR

controller

DMA controller

Private local memory

Main memory

…

Multiple

PEs

MAC unit BN ACT

MAC unit BN ACT

Figure 15.2 Baseline system architecture. The light gray-shaded area corresponds to
the CNN accelerator while the dark gray-shaded area corresponds to the processing
elements in the accelerator.
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CNN accelerator leverages multiple processing elements (PEs) by exploiting
the parallelism in the output channels of the OFMs. It means that each PE
generates different 2D (OH×OW) OFMs. For example, if we have M PEs in
the accelerator, we can generate M output channels simultaneously. Please
note that this type of accelerator design which exploits output channel paral-
lelism for multiple PE design is widely used [193–195]. Inside the PE, there are
multiply-and-accumulation (MAC) units, batch normalization (BN) units, and
activation (ACT) units. The accelerator on-chip memory, which is also referred
to as private local memory (PLM) is used as a local buffer in which we store
IFMs, weights, and OFMs (or intermediate results). Similar to typical embedded
systems, we use direct memory access (DMA) for data transfer between the CPU’s
main memory and the accelerator’s PLM.

15.2 CNN Acceleration with CPU-Accelerator
Co-Scheduling

This section provides an overview of the introduced CNN acceleration with
CPU-accelerator co-scheduling technique. This section further presents the
convolution layer latency model for the CNN accelerator and the CPU that is
utilized by the introduced CPU-accelerator co-scheduling technique for CNN
acceleration.

15.2.1 Overview

To fully utilize both the CNN accelerator and the CPU in resource-constrained
edge devices, this work aims at distributing the CNN CONV layer tasks to the
CNN accelerator and the CPU in a load-balanced manner by carefully consid-
ering the performance ratio between the CPU and the accelerator. Since there
is no dependency when generating different output channels (i.e., they can be
executed in parallel) in a single CONV layer, we divide the output channels to dis-
tribute the tasks into the accelerator and CPU. Consequently, we perform CONV
layer operations in the accelerator and the CPU with different 3D filter tensors.
Figure 15.3 demonstrates an overview of the presented co-scheduling technique.
To fully utilize the accelerator and CPU, we need to estimate the relative difference
of the achievable performance in the accelerator and CPU. For accurate estima-
tion, we use a latency model of the CONV layer operations for the accelerator and
CPU, which is described in Section 15.2.2 in details. With the estimated relative
attainable performance of the accelerator and CPU, we distribute output chan-
nels (i.e., 3D filter tensors) to the accelerator and CPU. The information on the
output channel distribution is stored in the CNN framework (Figure 15.3), which
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Figure 15.3 An overview of the presented CPU-accelerator co-scheduling.

will be referenced at runtime. In the example shown in Figure 15.3, we assign
“K” 3D filter tensors (which will be used for generating “K” output channels) to
the CNN accelerator while we assign “OC − K” filter tensors to the CPU. At run-
time, the co-execution control module, which is executed on the CPU in the pre-
sented co-scheduling technique, launches the accelerator, and CPU co-execution
for given output channels. The CONV layer operation includes convolution, batch
normalization (BatchNorm), and activation. After we generate “K” and “OC − K”
2D OFMs in the accelerator and the CPU, respectively, we aggregate those OFMs
to compose the full 3D OFM tensor.

15.2.2 Linear Regression-Based Latency Model

For latency estimation, we use a linear regression-based methodology. In general
linear regression, we use a following form of the equation:

Y = 𝛼X + 𝛽 (15.1)

where X and Y are explanatory and dependent variables, respectively. With the
pairs of X and Y values, we determine 𝛼 and 𝛽 values through the linear regression
training (line fitting). Based on the above form of the equation, we extend it to
estimate accelerator and CPU latencies when processing a single CONV layer.

15.2.2.1 Accelerator Latency Model
In this chapter, we present a linear regression-based latency model for CONV
layer executions in the CNN accelerators introduced in Section 15.1.2. For typical
task offloading to the hardware IPs in embedded systems, we firstly need to send
the data from the main memory to the accelerator’s PLM via DMA. After that,
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the accelerator executes the offloaded computations and sends the result data
back to the main memory via DMA. Between the data transfer, if we do not
use a cache-coherent interconnect, we also need to perform CPU data cache
flush and invalidation for software managed cache coherence, which also takes
nonnegligible latency depending on the amount of the data to be transferred.
Thus, an accelerator latency requires to be broken down into three different parts:
computation, data transfer, and coherence latency.

Computation Latency
For computation latency, it mainly depends on how many operations we need to
generate the OFMs. Firstly, we generate a unit latency LuACC that corresponds to
the computation latency in the 1PE accelerator (i.e., the accelerator with one PE)
when generating one OFM element. Deriving LuACC can be done as follows:

LuACC = 𝛼comp × SizeFT + 𝛽comp (15.2)

where SizeFT indicates the number of elements in one 3D filter tensor. For
example, if one 3D filter tensor size is 3×3×3, the SizeFT is 27. The 𝛼comp and
𝛽comp are determined by the linear regression analysis. We can extend it to derive
the accelerator computation latency (Lcomp) when generating NF OFMs (i.e., NF
output channels) as follows:

Lcomp = LuACC × SizeOFM ×
⌈

NF

NPE

⌉
(15.3)

where SizeOFM , NF , and NPE correspond to the number of the elements in one 2D
OFM, the total number of output channels in a certain CONV layer, and the num-
ber of PEs in the accelerator, respectively. The

⌈
NF
NPE

⌉
equals to how many times the

accelerator execution must be triggered. For example, if we run a CONV layer with
NF = 28 in the accelerator with NPE = 10, the number of times the accelerator’s PE
execution will be triggered is equal to 3 (=⌈28/10⌉). Accordingly, we calculate the
latency of the accelerator when generating the total number of the output channels
(i.e., NF output channels) in a certain CONV layer because we need to calculate the
relative performance ratio between the accelerator and CPU. In other words, we
should derive the latency of the accelerator and CPU when we execute the CONV
layer with the identical input data size.

Transfer Latency
The transfer latency is also linearly proportional to the size of data to be trans-
ferred. Thus, the transfer latency can be estimated by the following equation:

Ltran = 𝛼tran × SizeData + 𝛽tran (15.4)



�

� �

�

15.2 CNN Acceleration with CPU-Accelerator Co-Scheduling 245

where SizeData indicates a total size of the data (in the number of the elements)
to be transferred. The 𝛼tran and 𝛽tran are also determined by the linear regression
analysis. The SizeData can be calculated as follows:

SizeData = SizeIFMs + Sizegamma + Sizebeta

+ SizeFT × NF + SizeOFM × NF .
(15.5)

For input data transfer, we need to count SizeIFMs, Sizegamma, and Sizebeta which
correspond to the number of elements of (multiple) input feature maps, gamma
values, and beta values for batch normalization. Depending on the CONV layer
configurations, Sizegamma and/or Sizebeta can be neglected. We also need to count
the total number of the elements in NF 3D filter tensors, which can be derived
by multiplying SizeFT by NF . For output transfer, we count the data size (in the
number of elements) of the OFMs generated by the accelerator, which is calculated
by SizeOFM × NF .

Coherence Latency
The coherence latency model is composed of two parts: cache flush and cache
invalidation. The cache flush is required before we trigger DMA read (send input
data to the accelerator PLM) while the cache invalidation is required before
we trigger DMA write (send output data from the PLM to the main memory).
For cache flush latency (Lfl), we use the following equation:

Lfl = 𝛼fl × (SizeIFMs + Sizegamma + Sizebeta

+ SizeFT × NF) + 𝛽fl

(15.6)

where 𝛼fl and 𝛽fl correspond to the coefficient values for cache flush. Cache inval-
idation latency (Linv) can also be estimated by using the following equation:

Linv = 𝛼inv × SizeOFM × NF + 𝛽inv (15.7)

where 𝛼inv and 𝛽inv correspond to the coefficient values for cache invalidation. By
adding Lfl and Linv, we can estimate the total latency required for cache coherence
as shown in the following equation:

Lcohr = Lfl + Linv. (15.8)

Latency Aggregation
The total latency taken by the accelerator can be derived by adding the computa-
tion, transfer, and coherence latency as follows:

LACC = Lcomp + Ltran + Lcohr . (15.9)

In the baseline system, the data transfer, computation, and coherence operations
are not overlapped. However, the presented latency model can also be extended
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to other systems where an overlap exists between data transfer, computation, and
coherence operations. For example, when we use cache-coherent interconnects,
we can just remove Lcohr because the explicit cache flush and invalidation are not
required in the system with cache-coherent interconnects. When using double
buffering where the transfer latency and computation latency can be overlapped,
we can replace Lcomp + Ltran with MAX(Lcomp,Ltran).

15.2.2.2 CPU Latency Model
We also present a linear regression-based latency model for CONV layer execu-
tions in the CPU. Different from the accelerator latency model, CPUs use cache
memories for data transfer between the CPU core and main memory. Since it is
not explicitly controlled by software programmer, accurately estimating the data
transfer time in the CPU would be more challenging than that in the accelerator.
Hence, we use a unified latency model, which means we do not distinguish the
data transfer and computation latency. By leveraging the linear regression-based
latency model, we figure out the CPU latency depending on the number of the
OFM elements generated by the CPU along with the CPU unit latency (LuCPU : a
CPU latency for generating one OFM element). This is because the computation
and data transfer (implicitly via caches) latencies will be linearly proportional to
the number of the generated OFM elements. The CPU unit latency can be derived
as follows:

LuCPU = 𝛼CPU × SizeFT + 𝛽CPU (15.10)

where the SizeFT equals to the size (in the number of elements) of the one 3D filter
tensor. The coefficients 𝛼CPU and 𝛽CPU , which will inherently incorporate the effect
of both computation and data transfer on CPU unit latency, are also determined
by the linear regression. With the CPU unit latency model, we can extend it to
estimate the total CONV layer latency in the CPU (LCPU ) as follows:

LCPU = LuCPU × SizeOFM × NF (15.11)

where SizeOFM × NF corresponds to the number of the total OFM elements in a
certain CONV layer.

15.2.3 Channel Distribution

With the estimated latency from the presented model, we distribute the output
channels in order to fully utilize the accelerator and CPU in the system. To accom-
plish it, we need to distribute the output channels so that the execution time of
the accelerator and the CPU is (almost) equivalent. Thus, we use the following
equations for the output channel distribution for the accelerator:

NFA =
⌈( LCPU

LACC + LCPU

)
× NF

⌉
(15.12)
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where NFA means the number of the output channels which will be processed in
the accelerator. For example, assuming that the accelerator performance is three
times better than the CPU (i.e., LACC:LCPU=1:3), the accelerator should process
three times more tasks than the CPU in order to fully remove the idle time in
both the CPU and the accelerator. Obviously, the rest of the filter tensors must be
processed in the CPU, which means:

NFC = NF − NFA (15.13)

where NFC corresponds to the number of the output channels which will be pro-
cessed in the CPU. As we mentioned in Section 15.2.1, determining the NFA and
NFC is performed offline, which means the distribution decision for a given embed-
ded system and CNN model is performed at the design time. Once we determine
the output channel distribution, this information is stored in the CNN framework
(Figure 15.3). At runtime, when processing a certain CONV layer, the CNN frame-
work can distribute the tasks (output channels) to the accelerator and CPU by the
distribution information stored in the framework.

15.2.4 Prototype Implementation

We have implemented the presented co-scheduling technique in Darknet frame-
work [143], which is used as the baseline CNN framework, and have verified the
presented co-scheduling technique using four off-the-shelf FPGA-SoC platforms:
Ultra96 [196], Zed [144], ZCU104 [197], and ZCU106 [160]. These platforms
deploy various types of the CPUs, which are summarized in Table 15.1. For
the implementation, we use interrupt-based mechanism to simultaneously
execute the CONV layer operations on the accelerator and the CPU, which is
similar to that introduced in [109]. In the presented prototype implementation,
though we do not employ double buffering, the presented latency model and
co-scheduling can also be extended to support double buffering as we explained
in Section 15.2.2.1. Since the prototype is mainly for verification and proof of
the implementation, we run the modified framework in each platform without
running an operating system (OS). Please note that this environment is similar
to resource-constrained embedded edge devices where the firmware orchestrates
the system without running OS. The precision for CNN models used in this work
is 32-bit floating-point; however, the presented technique can also be applied to
other precisions such as 16-bit fixed-point and 8-bit integer without modifying
the latency model and channel distribution mechanism.

Figure 15.4 shows the timing diagram of the presented co-scheduling technique
based on the interrupt mechanism. The main framework runs on the CPU, and
initialization is performed before the co-execution in the CPU and the accelerator.
The initialization ( 1©) includes information fetching required for the presented
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Table 15.1 CPU specifications for four FPGA-SoC platforms.

Platform Ultra96 Zed ZCU104, ZCU106

CPU architecture Quad-core Cortex-A53 Dual-core Cortex-A9 Quad-core Cortex-A53
Clock Frequency Up to 1200 MHz Up to 667 MHz Up to 1334 MHz
Per core L1 Cache 32 KB I-Cache, 32 KB

D-Cache
32KB I-Cache, 32 KB
D-Cache

32 KB I-Cache, 32 KB
D-Cache

L2 Cache Shared 1 MB Shared 512 KB Shared 1 MB

CPU

DMA transfer

Accelerator

…

…

…

…

Initialization

CPU execution

DMA and cache flush/invalidate

Interrupt handler

Accelerator execution

Interrupt signal

1

2

3

4

5

63

Figure 15.4 A timing diagram of the presented co-scheduling implementation.

co-scheduling technique (e.g., NFA and NFC). When a CONV layer execution
begins, the CPU launches data transfer which includes cache flush in the CPU
and DMA transfer ( 2©). During the DMA transfer, the CPU begins to generate
the NFC OFMs ( 3©). As soon as the DMA transfer finishes, the accelerator begins
to generate NFA OFMs ( 4©). When the accelerator finishes the execution, a cache
invalidation in the CPU and DMA write operation ( 5©) begins in order to send
the generated OFMs from the accelerator’s PLM to the main memory to make the
data visible to the CPU. During the DMA write operations, the CPU can continue
executing the CONV layer operations for generating the NFC OFMs because
the DMA transfer and CPU execution can be performed in parallel. When the
accelerator needs to be triggered by multiple times during a single CONV layer
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Table 15.2 Obtained 𝛼 and 𝛽 values through linear regression analysis.

Ultra96 Zed ZCU104 ZCU106

𝛼tran 0.01 0.009999 0.009998 0.009999
𝛽tran 2.697551 2.162106 2.458088 2.472711
𝛼comp 0.099999 0.150077 0.090014 0.090021
𝛽comp 0.237558 0.309062 0.218302 0.218306
𝛼fl 0.008811 0.009323 0.006082 0.006101
𝛽fl 0.514771 6.101897 0.491329 0.314022
𝛼inv 0.008812 0.003748 0.006084 0.006091
𝛽inv 1.663402 0.986305 1.036251 0.900236
𝛼CPU 0.049176 0.072254 0.049155 0.049176
𝛽CPU 0.116896 0.164479 0.113563 0.113043

execution because of the larger number of OFMs than the accelerator’s PEs can
handle concurrently, these steps can be iterated ( 6©) until the accelerator and
CPU generates NFA and NFC OFMs, respectively.

For prototype implementation, we acquire 𝛼 and 𝛽 values via linear regression
analysis. For training the linear regression model (i.e., acquiring 𝛼 and 𝛽 values),
we use synthetically generated arbitrary 32 data points each for regression train-
ing of transfer time, flush and invalidation (coherence) time, and computation
time. Please note that the range of the arbitrarily generated data points sufficiently
covers the range of the data points used in real CNN models, resulting in accu-
rate latency estimation. We demonstrate the coefficient values and plots obtained
from the presented linear regression analysis in Table 15.2 and Figures 15.5–15.8,
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Figure 15.5 Plots for linear regressions in Ultra96 platform. (a) Linear regression for
transfer, cache flush, and invalidation latencies and (b) Linear regression for accelerator
and CPU unit latencies.
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Figure 15.6 Plots for linear regressions in Zed platform. (a) Linear regression for
transfer, cache flush, and invalidation latencies and (b) Linear regression for accelerator
and CPU unit latencies.
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Figure 15.7 Plots for linear regressions in ZCU104 platform. (a) Linear regression for
transfer, cache flush, and invalidation latencies and (b) Linear regression for accelerator
and CPU unit latencies.
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Figure 15.8 Plots for linear regressions in ZCU106 platform. (a) Linear regression for
transfer, cache flush, and invalidation latencies and (b) Linear regression for accelerator
and CPU unit latencies.
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respectively. We use Microsoft Excel for linear regression analysis. As shown in
Figures 15.5–15.8, the computation time and transfer time are well fitted to the
linear function (as a form of Y = 𝛼X + 𝛽). We can notice that the plots in Figures
15.7 and 15.8 seem to be almost identical. This is because ZCU104 and ZCU106
have almost identical specifications except for the connectivity parts.

15.3 Experimental Results

In this section, we present the experimental results for the presented co-scheduling
technique related to various metrics, such as latency model accuracy (measured
via mean absolute percentage error (MAPE)), performance, and energy consump-
tion. We evaluate these metrics for the implemented prototypes in Ultra96, Zed,
ZCU104, and ZCU106. For CPU clock frequencies, we use the following clock
frequencies for each platform: Ultra96, ZCU104, and ZCU106 at 1.2 GHz and Zed
at 667 MHz. We also perform the linear regression analysis with these CPU clock
frequencies. To evaluate the presented technique across the wide spectrum of
accelerators, we implement three different accelerator versions for each platform
while varying the number of PEs: 2PE, 4PE, and 8PE, where xPE denotes an
accelerator with the “x” number of PEs. Since the target is resource-constrained
edge devices, we do not consider the CNN accelerator design with massive
number of PEs (e.g., over 100 PEs).

For workloads, we use 14 different CONV layers as shown in Table 15.3. Six
layers (Layer 0, 1, 2, 3, 5, and 6) are from SqueezeNet [62] while five layers (Layer 4,
7, 8, 9, and 10) are from MobileNet-v2 [34]. The rest of the three layers (Layer 11, 12,
and 13) are synthetically generated for the evaluation. Please note that the results
shown in this section are the averaged results of the 14 CONV layer executions (i.e.,
we measure the results of each CONV layer separately and average them out).

15.3.1 Latency Model Accuracy

We show the MAPE results of the presented latency model. With the obtained 𝛼

and 𝛽 values in the presented latency model, we measured the error rate between
the measured and estimated (from the presented model) latency of the accelerator
and CPU. As summarized in Table 15.4, the MAPE of the presented latency model
is 0.11–1.06%, which means the presented latency model estimates the accelera-
tor and CPU latency of the CONV layer execution very accurately. It also implies
that with the accurate latency estimation, we can distribute output channels to the
accelerator and the CPU so that both the hardware resources can be fully utilized,
minimizing the idle time and improving performance.
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Table 15.3 Convolutional layer configurations for the benchmarks.

SizeIFMs SizeOFM × NF SizeFT × NF Network

Layer 0 57 × 57 × 16 57 × 57 × 64 1 × 1 × 16 × 64 SN
Layer 1 57 × 57 × 16 57 × 57 × 64 3 × 3 × 16 × 64 SN
Layer 2 29 × 29 × 32 29 × 29 × 128 1 × 1 × 32 × 128 SN
Layer 3 29 × 29 × 32 29 × 29 × 128 3 × 3 × 32 × 128 SN
Layer 4 28 × 28 × 32 28 × 28 × 192 1 × 1 × 32 × 192 MN
Layer 5 15 × 15 × 64 15 × 15 × 256 3 × 3 × 64 × 256 SN
Layer 6 15 × 15 × 48 15 × 15 × 192 3 × 3 × 48 × 192 SN
Layer 7 14 × 14 × 96 14 × 14 × 576 1 × 1 × 96 × 576 MN
Layer 8 7 × 7 × 576 7 × 7 × 160 1 × 1 × 576 × 160 MN
Layer 9 7 × 7 × 320 7 × 7 × 1280 1 × 1 × 320 × 1280 MN
Layer 10 7 × 7 × 160 7 × 7 × 960 1 × 1 × 160 × 960 MN
Layer 11 7 × 7 × 160 7 × 7 × 160 3 × 3 × 160 × 160 SG
Layer 12 7 × 7 × 160 7 × 7 × 960 3 × 3 × 160 × 960 SG
Layer 13 7 × 7 × 160 7 × 7 × 1280 3 × 3 × 160 × 1280 SG

In the fifth column, SN, MN, and SG indicate SqueezeNet, MobileNet-V2, and Synthetically
Generated, respectively.

Table 15.4 MAPE results of the presented latency model.

Ultra96 Zed ZCU104 ZCU106

LACC PE2 1 × 1 CONV 1.01% 0.82% 1.06% 1.06%
3× 3 CONV 0.14% 0.18% 0.13% 0.13%

LACC PE4 1 × 1 CONV 0.74% 0.26% 0.63% 0.63%
3 × 3 CONV 0.16% 0.17% 0.12% 0.11%

LACC PE8 1 × 1 CONV 0.47% 0.98% 0.87% 0.87%
3 × 3 CONV 0.26% 0.26% 0.19% 0.19%

LCPU 1 × 1 CONV 0.65% 0.40% 0.48% 0.47%
3 × 3 CONV 0.76% 0.67% 0.68% 0.68%

PE2, PE4, and PE8 corresponds to the MAPEs of the accelerator latency model.
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15.3.2 Performance

We evaluate the performance of the presented co-scheduling technique through
experimental results. Figure 15.9 shows the performance results across three
different configurations: CPU_ONLY (only CPU execution), ACC_ONLY (only
accelerator execution), and CPU+ACC (co-scheduling). Experimental results
indicate that when we use 2PE accelerator version, relative performance of the
accelerator compared to CPU_ONLY is 0.97 × −1.09×. This limited performance
improvement for 2PE case is due to small number of PEs in the accelerator.
The presented co-scheduling (CPU+ACC) results in better performance by
1.93 × −2.05× and 1.89 × −2.00× than CPU_ONLY and ACC_ONLY , respectively.
By utilizing both accelerator and CPU, the presented co-scheduling technique
leads to better performance than CPU_ONLY and ACC_ONLY .

Experimental results indicate that in the case of 4PE accelerator version, rela-
tive performance of the accelerator compared to the CPU is better than the case
of 2PE accelerator. Thus, CPU+ACC leads to better performance as compared to
the CPU_ONLY by 2.84 × −3.07×. As compared to ACC_ONLY , CPU+ACC shows
better performance by 1.43 × −1.48×. Though the relative performance improve-
ment of the CPU+ACC is less than that in the case of 2PE accelerator version, the
CPU+ACC still results in better performance due to the concurrent execution of
the CONV layer in the accelerator and CPU.

In the case of 8PE accelerator version, the CPU+ACC shows better performance
than CPU_ONLY and ACC_ONLY by 4.58 × −4.98× and 1.18 × −1.21×, respec-
tively. As demonstrated in the evaluation results, due to the accurate latency
model, the presented technique minimizes the idle time in either accelerator or
CPU, leading to better performance as compared to CPU_ONLY and ACC_ONLY .
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Figure 15.9 Performance results of ACC_ONLY and CPU+ACC normalized to CPU_ONLY .



�

� �

�

254 15 CPU-Accelerator Co-Scheduling for CNN Acceleration

Table 15.5 Results for a ratio (%) of the idle time to the total execution time.

Ultra96 Zed ZCU104 ZCU106

PE2 PE4 PE8 PE2 PE4 PE8 PE2 PE4 PE8 PE2 PE4 PE8

Layer 0 2.22 3.04 6.85 2.81 2.79 7.16 0.14 1.63 6.00 0.13 1.64 5.97
Layer 1 0.35 3.19 1.94 1.02 3.98 3.06 0.85 0.31 0.39 0.84 0.33 0.39
Layer 2 0.63 0.06 1.83 0.41 0.83 6.55 1.34 0.91 3.84 1.33 0.92 3.86
Layer 3 0.73 0.77 1.14 0.60 0.38 2.15 1.02 0.37 1.59 1.02 0.38 1.59
Layer 4 1.11 1.06 1.93 1.50 2.50 0.81 0.61 1.86 2.88 0.61 1.86 2.90
Layer 5 0.07 0.43 1.71 0.31 0.03 0.47 0.33 0.74 1.49 0.33 0.75 1.49
Layer 6 0.66 1.51 1.91 0.25 0.65 0.70 0.74 0.81 0.94 0.74 0.79 0.98
Layer 7 2.91 4.92 2.08 4.18 3.43 0.70 4.14 2.29 4.89 4.10 2.29 4.91
Layer 8 1.17 1.51 2.89 0.17 0.60 1.79 0.56 2.41 1.51 0.57 2.40 1.52
Layer 9 0.73 0.15 0.07 1.85 0.56 0.18 0.45 1.29 1.04 0.45 1.29 1.03
Layer 10 0.08 1.16 1.41 0.86 0.91 0.67 0.82 2.36 1.32 0.82 2.35 1.34
Layer 11 1.36 2.52 4.82 0.90 1.12 6.59 1.95 1.97 3.28 1.94 1.95 3.29
Layer 12 0.82 1.22 1.56 0.23 0.71 1.77 1.01 1.55 1.40 1.00 1.54 1.40
Layer 13 0.85 1.09 2.29 0.44 0.88 1.28 0.61 1.10 1.67 0.60 1.09 1.66

The bold cells represent the CPU idle time (i.e., the case in which the CPU finishes faster than the
accelerator) while the underlined cells denote the accelerator idle time (i.e., the case in which the
accelerator finishes faster than the CPU).

The main reason why the presented co-scheduling techniques obtains a huge
performance improvement is load balancing between the accelerator and CPU. To
measure how well the presented technique distributes the tasks in a load-balanced
manner, we present a ratio of the idle time to the total execution time in either the
accelerator or the CPU in Table 15.5. As shown in the results, the average idle
time is only 1.61% (maximum idle time is 7.16%), which implies the presented
technique almost completely removes the idle time. Results also demonstrate that
the output channel distribution of the presented co-scheduling technique based
on the presented latency model makes the CPU and accelerator to be fully utilized
as much as possible, thus maximizing the throughput.

15.3.3 Energy

We have also determined energy consumption for the presented co-scheduling
technique based on the platform-level power measured by HPM-300A power
meter [198]. Figure 15.10 summarizes the normalized energy results of
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Figure 15.10 Energy results of ACC_ONLY and CPU+ACC normalized to CPU_ONLY .

CPU_ONLY , ACC_ONLY , and CPU+ACC. Due to the reduced execution
time, the presented co-scheduling approach CPU+ACC shows energy reduction
across different accelerators with varying number of PEs by 48.0–79.8% and
14.9–49.7% as compared to CPU_ONLY and ACC_ONLY , respectively. Results
indicate that the power consumption of the CPU+ACC increases as compared
to CPU_ONLY and ACC_ONLY because the CPU+ACC makes the CPU and
the accelerator to stay in the active state most of the time during the CONV
layer operations. In fact, CPU+ACC shows higher power consumption than
CPU_ONLY and ACC_ONLY by up to 1.8% and 1.3%, respectively, when we use
8PE accelerator version. However, the reduced execution time overwhelms the
increased power consumption, resulting in huge energy reductions.

15.3.4 Case Study: Tiny Darknet CNN Inferences

In this subsection, we show CNN inference latency results for all the layers in
the Tiny Darknet model [145]. As in Sections 15.3.2 and 15.3.3, we compare
the results of CPU_ONLY , ACC_ONLY , and CPU+ACC when executing a
CNN inference with the Tiny Darknet model. For a comprehensive analysis,
we breakdown the latencies of each layer in Tiny Darknet across CPU_ONLY ,
ACC_ONLY , and CPU+ACC as shown in Table 15.6. Since the target platform
is a resource-constrained edge, we use 2PE CNN accelerator in the ACC_ONLY
and CPU+ACC. We use pretrained weight in Darknet framework and ImageNet
dataset [121] for the input. The results verify that the presented CPU+ACC leads
to a latency reduction of CNN inference (i.e., performance improvement) by 49.6%
and 44.8% as compared to CPU_ONLY and ACC_ONLY . Since the presented
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Table 15.6 Per-layer latency results (in seconds) for CNN inferences with Tiny Darknet
model across CPU_ONLY , ACC_ONLY , and CPU+ACC.

CNN Layer # Description CPU_ONLY ACC_ONLY CPU+ACC

Layer 0 3 × 3 CONV 1.283221 1.057395 0.736854
Layer 1 2 × 2 max pooling 0.073256 0.073281 0.073755
Layer 2 3 × 3 CONV 3.039238 2.644233 1.526805
Layer 3 2 × 2 max pooling 0.035911 0.035959 0.036173
Layer 4 1 × 1 CONV 0.083625 0.078752 0.051595
Layer 5 3 × 3 CONV 2.895266 2.642671 1.419424
Layer 6 1 × 1 CONV 0.317731 0.328591 0.225072
Layer 7 3 × 3 CONV 2.894089 2.642836 1.419433
Layer 8 2 × 2 max pooling 0.035706 0.035747 0.035734
Layer 9 1 × 1 CONV 0.158447 0.148602 0.085157
Layer 10 3 × 3 CONV 2.841999 2.623150 1.401368
Layer 11 1 × 1 CONV 0.313930 0.294245 0.167850
Layer 12 3 × 3 CONV 2.841940 2.623151 1.401373
Layer 13 2 × 2 max pooling 0.017782 0.017908 0.017954
Layer 14 1 × 1 CONV 0.157549 0.147017 0.078937
Layer 15 3 × 3 CONV 2.830288 2.617322 1.373944
Layer 16 1 × 1 CONV 0.313590 0.292231 0.156487
Layer 17 3 × 3 CONV 2.830093 2.617305 1.373931
Layer 18 1 × 1 CONV 0.627162 0.583194 0.311537
Layer 19 1 × 1 CONV 1.239286 1.153453 0.609620
Layer 20 14 × 14 avg pooling 0.008565 0.008591 0.008588
Layer 21 Softmax 0.000197 0.000197 0.000197

Total 24.838871 22.665831 12.511788

Source: Adapted from [145].

acceleration technique only accelerates the CONV layer, the latency of max
pooling (Layers 1, 3, 8, and 13), average pooling (Layer 20), and softmax (Layer
21) layers in CPU+ACC is similar to the latency in the case of the CPU_ONLY
and ACC_ONLY (i.e., the layers except for the CONV layers are performed in
the CPU). However, since 16 layers in the Tiny Darknet model are CONV layers
that accounts for 73% of the total layers, the presented CPU+ACC results in a
huge CNN inference performance improvement of 1.81 × −1.99× as compared to
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the CPU_ONLY and ACC_ONLY . Please note that the latency of the ACC_ONLY
in Layer 6 is a little higher than the CPU_ONLY , which is not consistent with
the other CONV layers (i.e., for the CONV layers except for Layer 6, the latency
of the ACC_ONLY is lower than that of the CPU_ONLY ). This is because we
trigger the accelerator twice in Layer 6 due to the limited on-chip memory size
(i.e., block random access memory (BRAM) size), resulting in much longer data
transfer latency.

15.4 Chapter Summary

Recent trend of artificial intelligence (AI) at the edge has resulted in assimilation
of AI hardware accelerators in edge devices and edge servers for efficient AI infer-
ence. CNN acceleration at the edge has, in particular, gained tremendous attention
as CNN acceleration at the edge can help enable many novel applications such
as autonomous vehicles, surveillance, and robots. In typical resource-constrained
edge systems, while hardware accelerators are running, CPUs remain idle. How-
ever, the CPU can also contribute to the CONV layer execution along with the
accelerator, which can further improve performance and energy efficiency.

This chapter discussed the introduced CPU-accelerator co-scheduling tech-
nique to accelerate a single CONV layer operation during the CNN inference at
the edge. By exploiting the independence among the operations for generating
different CNN output feature maps, the presented co-scheduling technique
distributes the output channels to the accelerator and CPU, which leads to further
performance improvements as compared to the accelerator-only execution.
For load balancing between the accelerator and CPU, we also presented a linear
regression-based latency model which could estimate the CONV layer execution
time on the CPU and the accelerator. Based on the latency estimation from
the presented model, we can distribute the output channels in a load-balanced
manner so that the accelerator and the CPU can be fully utilized. The presented
technique helps in minimizing the idle time in the accelerator and the CPU,
resulting in performance improvements. We have implemented the presented
technique in four different FPGA-SoC platforms as a proof-of-concept. Experi-
mental results indicated that the presented co-scheduling technique improved
system performance by 1.18x to 2.00x as compared to the accelerator-only execu-
tion across a wide spectrum of the accelerator platforms. Moreover, the presented
technique also reduced platform-level energy consumption by 14.9–49.7% as
compared to the accelerator-only execution. In addition, as demonstrated in the
case study, a full layer CNN inference for Tiny Darknet CNN model with the
presented co-scheduling technique showed 1.81x to 1.99x better performance as
compared to that without the presented technique.
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Conclusions

Convolutional neural networks (CNNs) have revolutionized the field of artificial
intelligence (AI) and computer vision because of their ability to automatically
extract features from images and videos and make predictions about the content of
images/videos with accuracy equal to or even surpassing humans in many tasks.
To attain this high inference accuracy, size, and computational requirements of
the CNN models have drastically increased over the years, which make the deploy-
ment of CNN models in resource-constrained devices a challenging endeavor.
Furthermore, this exorbitant size and computational requirements make these
highly accurate CNN models infeasible for real-time applications on edge devices.
Thus, embedding CNN inference into various real-world applications on edge
devices necessitate the design of high-performance, area, and energy-efficient
CNN accelerator architectures. This book targeted the design of accelerators for
CNNs and discussed different techniques and approaches for designing CNN
accelerators.

Chapter 1 discussed the history and applications of deep neural networks
(DNNs) with an emphasis on CNNs. The chapter also elaborated the compute
and energy bottlenecks associated with high accuracy CNN inference on the edge
device.

Chapter 2 discussed the composition and layers of different CNN models. The
chapter also discussed various parameters and hyperparameters for CNNs. The
chapter further described some of the prominent high-accuracy CNN models,
such as AlexNet, VGGNet, and GoogleNet. The chapter further elucidated some
well-known datasets, such as MNIST, CIFAR, and ImageNet, which are often
used for training many of the contemporary CNNs. Furthermore, the chapter
discussed some of the architectural and algorithmic techniques for efficient
processing of high-accuracy CNN models.

Chapter 3 elaborated compressive coding methods for CNNs. The compressive
coding for CNNs was classified into two categories, namely, lossy and lossless com-
pression. For lossy compression, the chapter introduced quantization and pruning,
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whereas for lossless compression, the chapter discussed entropy-based coding and
some other coding techniques that can be employed for sparse matrices or ten-
sors. The chapter further provided a review of contemporary compressive coding
methods for CNNs.

Chapter 4 presented a novel input feature map (IFM) compression method.
The presented scheme exploited the activation sparsity in CNN models, which is
attributed to the rectified linear unit (ReLU) activation function. The presented
IFM data compression method, which is performed on the software side, removed
the transfer of zero-valued elements in IFMs. The presented lossless compression
method resulted in data transfer reduction between the memory and the accel-
erator. Experimental results indicated that the presented compression technique
reduced the data size and latency for IFM data transfer by 34.0–85.2% and
4.4–75.7%, respectively, as compared to the case without the data compression.

Chapter 5 introduced an arithmetic coding-based 5-bit weight compression
method. In addition, we have also introduced a decoding hardware for fast,
yet efficient runtime weight decoding (decompression). When employing our
technique to the pruned 5-bit quantized weights, our technique resulted in
57.5×–112.2× better compression ratio as compared to the uncompressed 32-bit
floating-point (FP) weights. Due to the reduced weight data size, our technique
also led to memory data transfer energy reduction by 89.2% (by up to 99.1%
for pruned weights), on average, as compared to the uncompressed 32-bit FP
weight data.

Chapter 6 provided an overview of dense CNN accelerators, which accept
IFMs and weights as dense matrices, thus changing the convolution operations
to dense matrix multiplication. The chapter also discussed the two widely used
architectures to implement the dense CNN accelerators, viz., systolic arrays and
multiply-accumulate (MAC) arrays. The chapter further provided a brief review
of the contemporary advances in dense CNN accelerators.

Chapter 7 introduced an iMAC CNN accelerator for resource-constrained
systems. The iMAC accelerator offloaded finer-grained operations required for
convolution layers to the accelerator hardware instead of offloading the entire
convolution layer operations. The chapter further presented the implementation
results focusing on the hardware utilization for the iMAC accelerator prototyped
on the ZED platform, which was equipped with Zynq-7020 system-on-chip, with
full-stack software including operating system (petaLinux).

Chapter 8 presented NeuroMAX – a dense accelerator which incorporated
multi-threaded processing element (PE) cores. NeuroMAX introduced an efficient
2D weight broadcast dataflow scheme which exploited the multilevel parallelism
of the processing engine and enabled hardware utilization close to a 100%. The
chapter discussed the hardware design and dataflow of NeuroMAX to elaborate
dense CNN accelerators. Experimental results indicated that NeuroMAX provided
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a throughput increase of 77.4% and a latency decrease of 47% with a 28% decrease
in the PE count against recently proposed dense accelerator designs for modern
CNNs. Experimental results further showed that NeuroMAX provided at least a
27% and a 29% decrease in power consumption and lookup table (LUT) count,
respectively, against prior field-programmable gate array (FPGA)-based CNN
accelerators.

Chapter 9 provided an overview of sparse CNN accelerators. The chapter dis-
cussed the reason for sparsity in CNN models and the importance of exploiting
this sparsity in CNN accelerators. The chapter further discussed the advances in
contemporary sparse CNN accelerators.

Chapter 10 introduced a sparse CNN accelerator that exploited sparsity in
IFMs to enhance performance, reduce energy consumption, and curtail data
transfer between the accelerator and the off-chip main memory. The presented
accelerator first compressed the IFMs and then performed convolution layer
operations with the compressed IFM engendering performance improvement and
energy reduction. Evaluation results from the prototype accelerator demonstrated
that the accelerator improved performance by 1.1×–22.6× depending on the
degree of the sparsity and filter size as compared to the central processing unit
(CPU)-based convolution layer execution. In terms of energy, the presented
accelerator led to 47.7–97.4% energy reduction as compared to the CPU-based
execution. Furthermore, the accelerator attained 1.9× (on average) better cost
efficiency with less or comparable power consumption as compared to several
state-of-the-art CNN accelerator designs.

Chapter 11 presented Sparse-PE, a multithreaded, general purpose, dot product
core for sparse CNNs. The core was designed to exploit two-sided sparsity, that
is, sparsity in both the weights and activations, to maximize the throughput and
hardware utilization. Unlike contemporary approaches for sparse accelerators that
use the compressed sparse column (CSC) format and the associated complex PE
design, the Sparse-PE core used the sparse binary mask format and had a rela-
tively low complexity. The chapter also presented novel, low-cost circuits, includ-
ing selection, computation, and accumulation, which, when used in conjunction,
allowed the core to skip huge number of computations involving zero data and
only favored computations involving nonzero data to maximize the throughput.
Experimental results showed that the Sparse-PE core could effectively keep the
hardware utilization above 85% at sparsity as high as 60%, for both the input acti-
vations and weights. The chapter also compared the performance of Sparse-PE
core-based accelerator against previous state-of-the-art dense and two-sided sparse
CNN accelerators. Sparse-PE offered, on average, 12×, 4.2×, 2.38×, and 1.98×,
speedup over NeuroMAX (dense), SCNN (sparse), Eyeriss v2 (sparse), and SparTen
(sparse), respectively.
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Chapter 12 introduced Phantom – a novel multithreaded, flexible, neural com-
putational core that exploited the two-sided sparsity to provide high gains in per-
formance at a relatively low hardware complexity. Phantom extended Sparse-PE
design introduced in Chapter 11. The chapter discussed the design of Phantom-2D
accelerator that used a 2D array of Phantom cores and also presented a novel
dataflow that efficiently used the capabilities of the Phantom cores. As opposed
to many previous approaches, the Phantom-2D accelerator could support all lay-
ers of a CNN, including unit and nonunit stride convolutions, and fully connected
(FC) layers. In addition, the chapter discussed a two-level load balancing strategy
that efficiently balanced the load across the architecture level (intercore), and at
the thread level (intracore) to minimize idling of the compute threads, thereby,
further increasing the throughput. Experimental results showed that, on average,
Phantom-2D accelerator performed 12×, 4.1×, 1.98×, and 2.36×, better than an
equivalent dense CNN architecture, SCNN, SparTen, and Eyeriss v2, respectively,
while retaining the energy efficiency of SparTen.

Chapter 13 provided an overview of hardware/software (HW/SW) co-design and
co-scheduling. The chapter first discussed the recent advancements in the HW/SW
co-design for resource-constrained systems. The chapter also discussed a cognitive
Internet of things architecture as an example of HW/SW co-design. Afterwards,
the chapter discussed the recent advancements in HW/SW co-scheduling.

Chapter 14 discussed the HW/SW co-design aspects of the iMAC accelerator
discussed in Chapter 7. The chapter focused on software-level supports to
efficiently partition and allocate the input channels to the iMAC accelerator and
to exploit the parallelism inside the convolution layer operations. Experimental
results revealed that the implementation attained 1.3× ∼ 2.0× speedup and
energy reduction of 19.4∼44.3% as compared to using only the CPU. Experimental
results verified that the HW/SW co-design in the iMAC accelerator achieved a
balanced trade-off between response time, energy, and cost for CNN inference in
resource-constrained systems.

Finally, Chapter 15 presented a CPU-accelerator co-scheduling technique
to accelerate a single convolution (CONV) layer operation during the CNN
inference at the edge. By exploiting the independence among the operations
for generating different CNN output feature maps, the co-scheduling technique
distributed the output channels to the accelerator and CPU, which led to further
performance improvements as compared to the accelerator-only execution. For
load balancing between the accelerator and the CPU, the chapter discussed a
linear regression-based latency model which could estimate the CONV layer
execution time on the CPU and the accelerator, based on which the output
channels could be distributed in a load-balanced manner so that the accelerator
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and the CPU could be fully utilized. Experimental results showed that the pre-
sented CPU-accelerator co-scheduling technique improved system performance
by 1.18×–2.00× as compared to the accelerator-only execution across a wide
spectrum of the accelerator platforms. Moreover, the presented technique also
reduced the platform-level energy consumption by 14.9–49.7% as compared to
the accelerator-only execution.

Although this book covered a variety of approaches for CNN acceleration, new
techniques for CNN acceleration are continuously being developed. Modern CNN
accelerators deliberate on the following design factors:

● Mixed Precision Support: CNNs accelerators strive for a balanced tradeoff
between the model accuracy, computation complexity, and the amount of data
transfer. To reduce computation complexity and the amount of data transfer,
low-precision weights, and feature maps are widely used. Accordingly, the
modern CNN accelerator designs contrive to support mixed precision (i.e.,
combined use of different numerical precisions such as 8-bit integer, 16-bit, and
32-bit floating types, etc.) in a single CNN accelerator for better computation
efficiency.

● Memory/Storage Architecture: As the weight and feature map sizes are con-
tinuously growing, efficient utilization of storage and memory bandwidth is
becoming increasingly important for attaining better performance. Thus, mod-
ern CNN accelerators are incorporating 3D-stacked memories to provide high
bandwidth memory. Furthermore, near-memory or in-memory processing for
CNNs is being considered in modern CNN accelerator designs for reducing the
amount of the data transfer between memory and the accelerator.

● Data Characteristics: As explained in this book, sparsity considerations and
support are prevalent in many contemporary CNN accelerators. Skipping the
ineffectual operations that result in zero value can greatly enhance the perfor-
mance and energy efficiency of a CNN accelerator.

Finally, some futuristic approaches in CNN accelerator design are the following:

● Exploiting New Technologies: Exploiting new technologies, such as new
memory cell or logic, will be a promising research direction for future CNN
accelerators. With new memory cells, such as resistive random-access memory
(ReRAM), we can easily implement compute-in-memory concept in the CNN
accelerator [199] by exploiting the cell characteristics. In addition, with new
logic, such as single-flux quantum (SFQ) logic [200], we can obtain much better
performance as compared to the conventional logic-based CNN accelerators.
According to [200], the SFQ-based neural processing unit (NPU) shows 23×
better performance as compared to the state-of-the-art NPUs.
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● Security and Privacy Consideration: CNNs may include processing of
security or privacy-sensitive data. With the conventional encryption methods,
encrypted data should be decrypted before performing the CNN operation,
which means that the privacy of users may not be preserved. The homomorphic
encryption, which enables operations over encrypted data, can be a good
candidate for security- and privacy-preserving CNNs.
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