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Abstract 

The study of non-linear phenomena in systems with many degrees of freedom often relies 
on complex numerical simulations. In trying to model realistic situations, these systems may be 
coupled to an external environment which drives their dynamics. For non-linear field theories 
coupled to thermal (or quantum) baths, discrete lattice formulations must be dealt with extreme 
care if the results of the simulations are to be interpreted in the continuum limit. Using techniques 
from renormalization theory, a self-consistent method is presented to match lattice results to 
continuum models. As an application, symmetry restoration in ~b 4 models is investigated. 

PACS: 64.60.Cn; 05.50.+q; 11.10.Gh 

1. Introduct ion 

The study of  non-linear phenomena has changed dramatically during the last two 

decades or so, as an increasing number of  once forbidding problems have become 

amenable to treatment by faster and cheaper computers. From coupled anharmonic 

oscillators to gravitational clustering, from plasma physics to the dynamics of  phase 

transitions, numerical simulations are often the only tool to probe the physics of  complex 
non-linear systems [ 1 ]. 

Typically, we are interested in investigating the behavior of  a particular physical 

system described by ordinary or partial non-linear differential equations. In the present 
work, focus will be mostly on the latter case, which can be thought o f  as representing 
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systems with finitely or infinitely many coupled degrees of freedom. Apart from very few 
exceptions, such as kink solutions for sine-Gordon or q~4 models [2], non-linear partial 
differential equations have no analytical solutions. The situation is even worse if we 
attempt to model realistic behavior by coupling the system to an external environment. 
This external environment often represents a thermal or quantum bath, adding an element 

of stochasticity to the deterministic evolution equations. In order to gain some insight into 
the role of non-linearities, perturbation theory is frequently used. However, examples 

ranging from the simple pendulum equation [3] to critical phenomena during phase 
transitions [4] remind us that perturbation theory breaks down precisely in the region 
of parameter space where non-linear effects become predominant. 

The alternative is to address the problem numerically, solving the equations of interest 
using a computer. In the case of partial differential equations, the problem is set up on a 
lattice which represents a particular choice of discretization procedure. For a function of 
d-dimensional position and time, f ( x ,  t), satisfying some partial differential equation 
with given initial and boundary conditions, we typically construct a d-dimensional lattice 
of a given geometry, say cubic or triangular, to represent space at a particular instant, 

and replicate it at (usually regular) intervals to represent time. The continuous function 
may then be discretized following well-prescribed rules by which continuous derivatives 
are approximated by finite ratios of the lattice variables [5]. 

The use of a spatial lattice introduces two artificial length scales; the 'macroscopic' 
size of the lattice in each dimension, L, and the 'microscopic' distance between neigh- 
boring lattice points, 8x. These length scales provide bounds on the wavelengths of 
modes which can be represented on the lattice, whilst the total the number of lattice 
points N (for cubic lattices being N = (L /6x )  d) is the restricted number of degrees of 
freedom being integrated at each time step. Computational physicists (and computers) 
spend a considerable amount of time trying to get around the limitations that these 
length scales introduce to numerical studies of continuum systems. Occasionally, one 

or other of these limitations may become insignificant due to the particular physical 

behavior of the system; for example, close to the critical point of a second-order phase 
transition the divergence of the characteristic length scale of the system means that its 
bulk properties (and in particular its critical exponents) are determined by the long 
wavelength modes alone, doing away with the need for the high spatial resolution given 
by a small lattice spacing 6x [4]. In general, however, since the continuum corresponds 
to the limit L --~ cxz, 8x ~ 0, N ~ a<z, a better approximation is obtained from a 
larger and finer lattice, leading to the notion of the continuum limit of a discrete sys- 
tem. For continuum systems described by continuous functions, such as fluids, fields, 
or deformable bodies, our discrete representation should have a well-defined continuum 
limit, i.e. one that is stable as 8x --~ 0 (at fixed L). Moreover, we should also demand 
that it is a good continuum limit, in that it matches the original continuum system. As 
discussed below, for systems coupled to external environments, even if the continuum 
limit can be achieved on the lattice it is not always clear how to match the lattice results 
to a continuum theory. These two questions - how to achieve a continuum limit in 
lattice simulations, and how to ensure that it is a good limit, in the sense of matching 



418 J. Borrill. M. Gleiser/Nuclear Physics B 483 (1997) 416-428 

the appropriate continuum theory - are the focus of this work. 

For linear systems, achieving a continuum limit does not usually present any difficul- 

ties. Typically there is a minimal length scale in the problem which can be used as a 
guideline for the choice of t~x. For example, when solving the wave equation, it is pos- 

sible to find a small enough t~x and show that the same results are obtained if smaller 

values are used, provided one makes sure the discretization of time is appropriately 
chosen so that the evolution is stable. 

For non-linear systems, the situation is more complicated. If  we think for a moment 
in terms of a Fourier decomposition of the function f ( x ,  t), the effect of non-linearities 

is to couple different wavelength modes in a non-trivial way; the dynamics of short 

wavelength modes will influence the dynamics of long wavelength modes and vice 

versa. Mechanisms to handle this problem are sensitive both to the particular system 

under study and to which of its properties are of interest, often seeming to be more 
an art than a science. For example, if we are solely interested in the dynamics of long 

wavelength modes with slow relaxation time scales, it may be possible to add extra 

artificial terms to the evolution equations which damp the behavior of faster modes. 
For situations in which non-linear fields are coupled to an external environment with 

stochastic properties, say a thermal (or quantum) bath, a detailed investigation of how 

to approach the continuum limit on the lattice is lacking. This does not imply that this 
problem has been completely overlooked, but that it may have received less attention 

than it deserves. 
In the context of  classical field theories at finite temperature there has been some 

work on obtaining such a continuum limit. For example, Parisi [6] suggested the 
addition of renormalization counterterms, a proposal then implemented by Alford and 

Gleiser [7] in the context of two-dimensional nucleation studies (albeit with a somewhat 

ad hoc match to a continuum theory), and by Kajantie et al. [8] in lattice gauge 

simulations of the electroweak phase transition. Alford and Gleiser in particular showed 

that neglecting lattice spacing effects in the numerical determination of nucleation rates 
can lead to severe errors in the measured values. This conclusion is not particular to 
systems exhibiting metastable states, but to any non-linear field model in contact with 
external stochastic environments. Thus, the issues that are raised here are of concern 
to a wide range of physical systems modelled through the separation of system and 

environment, from quantum field theories to effective field theories describing condensed 
matter systems. 

Even if a continuum limit can be achieved on the lattice, we must still ensure that 
the numerical results correspond to the appropriate continuum theory. In general, the 
coupiing to a stochastic environment modifies the effective lattice theory, which cannot 
be naively matched to the original continuum model. The question then becomes what 
theory is the lattice simulating, and can we extract it in a self-consistent way? These 
questions will be addressed below in the context of two continuous non-linear models 
in 2+ l dimensions, one temperature independent and the other temperature dependent 
(the well-known Ginzburg-Landau model). Both models describe phase transitions in 
the Ising universality class. Extensions to d + l dimensions should be straightforward. 
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2. Formula t ing  cont inuum mode l s  on a lattice 
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2.1. The  issues  

Consider a single scalar field ~b(x, t) in a potential F~(~b) which may or not be 
temperature dependent• This potential can model interactions of ~b with itself and with 
other fields. For example, a linear term of the form ~b~ is often used to represent the 

coupling of ~b to an external magnetic field for models of ferromagnetic transitions. In 

this report, focus will be on potentials which are simple polynomials of even power in 
q~, although our approach is equally valid for potentials with odd powers of ~b, typical 
of nucleation studies. The Hamiltonian for this system is (in units of c = ks = 1 ) 

n[~b] 1 f T = T  d2x [½ ( V ~ ' V ~ )  + V°(~)] • (1) 

The field ~b can be thought of as representing a scalar order parameter in models 
of phase transitions in the Ising universality class, such as ferromagnets, binary fluid 
mixtures, metal alloys, or in studies of domain wall formation in cosmology. As such, 

it is convenient to model its dynamics in contact with a heat bath by means of a 
generalized Langevin equation, 

a,k aVo 
a24~ - V24, - rl - -  + ( ( x ,  t ) ,  (2 )  
Ot 2 Ot Od~ 

where the viscosity coefficient r/ is related to the stochastic force of zero mean ~(x,  t) 
by the fluctuation-dissipation relation, 

( ( ( x ,  t ) ~ ( x ' ,  t ' ) )  = 2 r l T S ( x  - x ' ) 6 ( t  - t ' ) .  (3 )  

This approach guarantees that ~b will be driven into equilibrium, although the time 
scale ~7 -1 is arbitrary. It has been extensively used in numerical simulations of thermal 
creation of kink-antikink pairs [9], nucleation [7,10], spinodal decomposition [11], 
and pattern formation in the presence of external noise [ 12], to mention but a few 

examples. Note that in the high viscosity limit the second-order time derivative can be 
neglected, as is common practice in systems with slower dynamical time scales. 

The next step is to discretize this system and cast it on a lattice. Using a standard 
second-order staggered leapfrog method we can write 

• ~Tlrt)q~i,m-1/2 -}- ~t(~2q~i,m -- V~o(~)i,m) -]- ~i,m) 
~ i , m + l / 2  = (1 -- l 

1 + ½rl~t 

~i ,m+l  = ~i,m "~- ~tc~i,m+ l /2, (4) 

where /-indices are spatial and m-indices temporal, overdots represent derivatives with 
respect to t and primes with respect to ~b. The discretized fluctuation-dissipation relation 
now reads 

8i, i 6,,,n 
( ( i  m~.jn) = 2 r l T - ~  2 6t ' (5) 
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so that 

/-2r/T 
(i,m = V ~--~-~i,m, (6) 

where Gi,m is taken from a zero-mean unit-variance Gaussian. 
Note that as a first guess we have used V0(~b) in the lattice formulation of the 

model. Is this the correct procedure? It is well known that classical field theory in 

more than one spatial dimension is ultraviolet divergent, the Rayleigh-Jeans ultraviolet 

catastrophe [ 13]. Formulating the theory on a lattice takes care of the problem, as a sharp 

momentum cutoff is introduced by the lattice spacing 6x, with A = ~r/6x. However, a 
finite lattice spacing creates two difficulties. First, the lattice theory is coarse-grained on 

the scale ~x; in other words, the lattice theory is not equivalent to the continuum theory 
we started with, and our results will depend on 8x, unless this dependence is handled 

by a proper renormalization procedure. Second, if the lattice theory is not equivalent 

to the continuum theory we started with, to what continuum theory is it equivalent to? 

Fortunately, there is a well-defined procedure that addresses both difficulties at once. 

Within its validity, it is possible to establish a one-to-one correspondence between lattice 

simulations and field theories in contact with stochastic baths. 

2.2. The procedure 

In order to recover the continuum limit on the lattice we must eliminate any depen- 
dence on the cutoff. The coupling to the heat bath will induce fluctuations on all possible 

scales. Since the cutoff sets the scale for the smallest possible spatial fluctuations in the 

system, we may incorporate the effects of all fluctuations down to the smallest scale 
using perturbation theory. Thus, the lattice theory must be equivalent to a continuum 

theory with a sharp ultraviolet cutoff. For classical field theories, the one-loop corrected 

effective potential with a large momentum cutoff is given by [ 14] 

A 
T - -  / d2p In (p2 + v(~t) + counterterms. (7) = Vo + 

o 

These theories describe fluctuations with hxo << kBT. In semi-classical language, the 
excitations of the field contain many fundamental quanta. Note that there is a one-to- 
one correspondence between classical statistical field theory in d + 1 dimensions and 
Euclidean quantum field theory in d dimensions. While the loop expansion is in powers 
of T for the former, it is in powers of h for the latter. For d = 2, the only divergences are 
at one loop, although higher loops can generate finite terms which modify the effective 
Hamiltonian. The dependence on the cutoff A can be handled by introducing proper 

counterterms. 
Integration gives 

r v:,[ (W l ~L(~b) = Vo + ~ o 1 - I n  \ a 2 J  j + counterterms. (8) 
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The form of V0 will determine the counterterms needed to cancel the dependence on 
A. For polynomial potentials of order q~n, one typically needs counterterms up to order 
~b "-2. In the case of interest here, degenerate double-well potentials, only one quadratic 
counterterm is needed, of form a~b 2, with a constant. As usual, the value of a is fixed 
by imposing a renormalization condition. Because of the logarithmic divergence, the 
renormalization condition must be imposed at some energy scale M, which is chosen to 

be 

I! VIL({/} ---- V/-M) = V~'(~ = V/-M). (9) 

The renormalized one-loop corrected potential is then 

[ V I L ( ~ ) - - ' V o F 8 - - ~  0 1-1nk, A2j j 

( fVo"  +]--~ vd'"ln \ A: J + V~-~ J (10) 

The above procedure incorporates thermal fluctuations to the original potential V0(~b) 
at some energy scale M to one-loop order. As with any perturbative approach, it will 
break down wherever large amplitude fluctuations are present, and in particular close 
to the critical point Tc. Although there are techniques to improve the perturbative ex- 
pansion in the neighborhood of the critical point, such as e-expansion methods [ 15] 
(not too reliable for 2D), in this work we will concentrate on the matching of the 
continuum theory to the lattice simulation in regions of the parameter space where the 
one-loop calculation is valid. Close to criticality the theory of Eq. (10) breaks down, 
and we restrict our investigation to the extraction of the critical exponent controlling the 
divergence of the order parameter. 

How is this continuum theory matched to the lattice simulation? The procedure we 
propose is quite simple. Since the continuum theory above incorporates fluctuations from 
momentum scales up to A, we write the lattice potential as 

~att (¢~) = V0 Jr- a~b 2, (11 )  

where a is fixed by the renormalization condition in the continuum, but with A = ~r/Sx. 
That is 

Vlatt(~) = Vo + ~ V~'"ln (r /Sx) 2 + V~-~-i-- ) (12) 

As we show below, this procedure takes care of the two problems raised by formulating 
the continuum theory on the lattice, namely, the dependence of lattice results on lattice 
spacing and the matching of the lattice theory to the continuum at some renormalization 
energy scale M. The generic emergence of a good continuum limit from Eq. (12) is 
the central result of this work. 
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Fig. 1. The time evolution of the mean field q~(t) at five different lattice spacings 6x = 0.125, 0.25, 0.5, 1.0 
and 2.0 for the temperature-independent potential - (a) without the renormalization counterterms added (6x 
increasing downwards), and (b)  with the renormalization counterterms added. 

3. Applications 

We will apply the above procedure to two cases, with potentials which are temperature 
independent and temperature dependent, respectively. Consider first the temperature- 
independent potential 

g 0 ( ~ )  = - ½ m 2 ~  2 Jr- l~.~b4. (13) 

Choosing the renormalization point to be gbRN = V/(-M2 + m2)/3a, the renormalized 
continuum potential is, from Eq. (10), 

V I L ( ~ )  = 1 2--2 3,~T ( 2 M2 -+- m2"~ q~2 

8~'T (3a&2 _ m2) in (3a~bM2 m2 ) . (14) 

It is convenient to introduce dimensionless variables (because there is no h in this 
theory, m has dimensions of (length) -1 while ~b has dimensions of (energy)1/2), ~ = 
x m ,  ~ = t i n ,  ~ = ~hal/2m - ' ,  ¢; = n m  -~, 0 = Tam -2,  E4 = M m  - 1  and A = A m  - I  . From 
the discussion in the previous section, the lattice-spacing independent lattice potential 
is, using dimensionless variables (and dropping the tildes), 

Vlatt(q~ ) = 1 ~ 2  + l~b4 + ~ In + M--------T-- (15) 

Fig. 1 shows the impact of the added counterterm to the lattice results. We display the 
time evolution of the spatially averaged field, 6 = ( l / a )  f da  ~b, starting from a broken 
symmetric phase 6 = -1 ,  without the counterterm (Fig. la) and with the counterterm 
(Fig. lb). The parameters 0, M, and the physical lattice size L, were kept fixed, and 
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only the lattice spacing 6x  was varied. (Throughout this work we keep the viscosity 
coefficient r/ = 1 as we are only interested in final equilibrium quantities.) Clearly, 

omitting the counterterm leads to a severe lattice spacing dependence of the results, 
even to the point of having symmetry restoration. Experiments varying 0 and M showed 
that the procedure is robust, with excellent 6x-independence being achieved, even close 
the critical point, as long as the expansion parameter 0/87r << 1. 

The next step is to compare the lattice results with the continuum models of Eq. (14) 
in their domain of validity. Being perturbative, we expect the continuum models to break 

down when the fluctuations become large, at high temperatures or close to the critical 
point. By contrast, the lattice models incorporate fluctuations up to the limiting size L, 
and so may remain valid even when the continuum models break down. The continuum 
potential gives a prediction for the critical temperature of 

27r 
0c = 3 ( 1 +  M -2 + lnM)" (16) 

Note that 0c has its maximum value at M 2 = 2; as we move away from this point in 
either direction Oc decreases, and we should expect perturbation theory to continue to 
be a valid approximation closer and closer to the critical point. Ultimately, however, the 
phase transition is non-perturbative, the field fluctuations become large, and perturbation 
theory must fail. Fig. 2 shows the variation in the equilibrium mean field value &eq 

with temperature O, squares from the lattice and lines from the continuum, for values 
of the renormalization energy scale M = 0.1 (Fig. 2a), M = x/2 (Fig. 2b), and M = 10 
(Fig. 2c). The discontinuities in the continuum are related to the concavity of the 
corrected potential between the inflection points, which gives rise to an imaginary part. 
As shown by Weinberg and Wu [ 16], the imaginary part of the potential represents 
unstable physical states typical of the process of phase separation; the figure shows 
only the real part of the corrected potential. There is indeed excellent agreement at low 
temperatures, which is progressively lost as the temperature increases. 

At the one-loop level, perturbation theory is equivalent to mean field theory. Close 
to the critical point, where mean field theory breaks down, we expect the equilibrium 
value of ~ to diverge as a power law, 

&eq o( ( (8c  - 8 ) / O c )  - ~  , (17) 

with the critical exponent/3 = 1 for mean field theory and/3 = ~ for the 2D Ising model. 

Fig. 3 shows the behavior of the lattice and continuum equilibrium mean field values q~eq 
with reduced temperature Or ~ ( O c -  O)/Oc for M = 0.1 - squares being results from the 
lattice simulations, triangles the predicted behavior from the continuum, and the lines 
indicating the two slopes /3 = ½ and /3 = ~. We see that the continuum perturbation 
theory behaves as a mean field theory, whilst the lattice theory in the neighborhood of 
the critical point is in the universality class of the 2D Ising model as expected. 

We now consider the case of a temperature-dependent potential. The goal is to show 
that the above procedure works equally well in this case; both lattice-spacing indepen- 
dence and the matching to a continuum theory can be achieved in a consistent way. 
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Fig. 2. The variation in the equilibrium mean field 6eq with the dimensionless temperature 0 from the lattice 
(squares) and the continuum (lines) for the temperature-independent potential - (a) for M = 0.1, (b) for 
m -- ,/'2, and (c) for m = 10. 

Coupling a temperature-dependent potential to a heat bath does not necessarily imply 

a double counting of the thermal degrees of freedom. The choice of potential V0 sim- 
ply reflects different physical models. For example, one may include phenomenological 
temperature-dependent terms in I~, as in the Ginzburg-Landau model, or may obtain 
temperature corrections by integrating out from the partition function either other fields 
coupled to ~b or short wavelength modes of the field ~b itself [ 17]. In either case, the heat 
bath may then be representing stochastic forces not included in the integration process, 
or simply an external environment coupled to ~b phenomenologically, which drives the 
system to its final equilibrium state. As an example, we choose the Ginzburg-Landau 
potential, 

Vo(c~) = ½a(T-  T~)~ 2 + 1~4, (18) 
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Fig. 4. The time evolution of the mean field ~ ( t )  at five different lattice spacings 6x = 0.125, 0.25, 0.5, 1.0 
and 2.0 for the temperature-dependent potential - (a) without the renormalization counterterms added (6x 
increasing downwards), and (b) with the renormalization counterterms added. 

where the prime is a reminder that the critical temperature has an arbitrary value in the 
mean field model. Fixing the renormalization energy scale at ~bva~ = v/-(M 2 - a(T  - 
T~!) ) /3 A, the renormalized continuum potential becomes 

1 4 3 A T (  - a ( T - T ~ ) ) d p 2  glL(q~) = ½ a ( T -  Tc~)O 2 + ~A~b + ~ 1 + 2 Mz M2 

T [3A~b 2 + a(T - T:)]ln ( 3AO2 + a(T - T[ ) )  
8 ~ "  M 2  . ( 1 9 )  

Following the same steps as before and arbitrarily setting 0~ = 1, this theory is matched 
on the lattice to 
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Fig. 5. The variation in the equilibrium mean field ~eq with the dimensionless temperature 0 from the lattice 
(squares) and the continuum (lines) for the temperature-dependent potential - (a) for M = 0.1, (b) for 
M = v'~, and (c) for M = 10. 

3 0 [  ( M ~ x )  M 2 - ( 0 - 1 ) ]  ~b2. 
r~att(q~) = 1(0  -- 1)q~ 2 --}- /~b4 -Jr- ~ In - -  + M2 (20) 

Fig. 4 compares the lattice results without (Fig. 4a) and with (Fig. 4b) the renormaliza- 

tion counterterm. The prescription to obtain lattice-spacing independence works equally 
well in this case. Fig. 5 again compares the lattice simulations (squares) and the con- 

tinuum model (lines) for renormalization scales M = 0.1 (Fig. 5a), M = v/2 (Fig. 5b), 
and M = 10 (Fig. 5c). For low temperatures excellent agreement is obtained, as in the 

temperature-independent case. Note that this also confirms that our model has not been 
' twice-cooked' ;  had it been, no such agreement would be possible. Finally, in Fig. 6, 
we show the critical behavior of  the lattice (squares) and continuum (triangles) for 
M = 0.1. Again the lattice obtains the Ising critical exponent,/3 = -~, close to criticality. 
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Fig. 6. The variation in the equilibrium mean field ~eq with the reduced dimensionless temperature 0r from 
the lattice (squares) and the continuum (triangles) for the temperature-dependent potential. The dashed lines 
have slopes of I and ½. 

In summary, we have presented a self-consistent method to match lattice simulations 

to non-linear field theories in contact with an external stochastic environment. This 

approach is of  potential interest in a wide range of  physical problems, from noise- 

induced pattern-forming instabilities and phase separation in condensed matter physics 

to symmetry breaking in high energy physics and cosmology. It was shown that adding 

the right renormalization counterterms to the lattice potential provides a good continuum 

limit, independent of  the lattice spacing and matching the appropriate continuum theory. 

That this matching breaks down at high temperatures and/or  close to a critical point 

is not surprising, as it reflects the limitations of  perturbation theory in probing critical 

phenomena quantitatively. The procedure was demonstrated to work well for a large 

class of  widely used potentials - both temperature independent and dependent - and 

over a wide range of  the renormalization energy scale M. 
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