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INTRODUCTION 

The possibility that the baryon number of the Universe can be generated at  
the electroweak phase transition has triggered a lot of interest in understanding 
the dynamics of weakly first-order phase transitions in the early Universe.' One 
of the necessary ingredients of a successful baryogenesis scenario is a depar- 
ture from equilibrium during the transition. Current scenarios of electroweak 
baryogenesis rely on a first-order phase transition to generate the required 
out-of-equilibrium conditions; the symmetric metastable phase decays by the 
nucleation of bubbles of the broken-symmetric phase which are larger than a 
critical size. These bubbles expand and eventually percolate, completing the 
transition. There has been a lot of interesting work on the details of bub- 
ble wall dynamics within different baryogenesis models, including both the 
standard model and some of its extensions.2 

In the present work, however, we would like to focus on questions con- 
cerning mainly the standard electroweak model and its phase transition, even 
though sufficient baryon number is probably not generated in the minimal 
version of the model. First we examine the reliability of the l-loop approx- 
imation to  the effective potential. By now it is well-known that the l-loop 
approximation to the effective potential in any Higgs-like model suffers from 
infrared problems in the gau e sector for small enough values of the scalar 
vacuum expectation value, iq5fs3 In analogy with QCD, it is believed that this 
IR problem is taken care o by a proper resummation of graphs; a magnetic 
plasma mass appears which is independent of (4), solving the IR problem. 
This divergence is independent of the strength of the transition. Another IR 
problem arises for weak enou h transitions, when X is not much smaller than 

spehing, the perturbative expansion parameter for scalar loops, X~TlrnfT 
may become too large for a certain temperature range. An extreme examp e 
occurs in the context of second order transitions for which m(T) -+ 0 at the 
critical temperature T,. This is the origin of critical phenomena, characterized 
by divergent correlations on spatial fluctuations of the order ~ a r a m e t e r . ~  It 
turns out that for large enough Higgs mwses, when X g2, the electroweak 
transition is sufficiently weak for both these IR problems to be relevant. 

The arguments above are based on perturbation theory. We would also like 
to have a non-perturbative criterion in order to establish the validity of the 
l-loop approximation to the effective potential, and apply it to the electroweak 
potential. This will be done in the next Se~ t ion .~  
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The results are in qualitative agreement with the estimates coming from 
the breakdown of perturbation theory. 

The advantage of the non-perturbative approach is that it will give us an 
indication of the possible dynamics of a weak first-order transition. This will 
be the second issue addressed here. Is the dynamics of a sufficiently weak first 
order transition governed by the usual nucleation mechanism?6 By studying 
the kinetics of sub-critical thermal fluctuations, we will argue that for suffi- 
ciently weak transitions, the evolution of the transition will be characterized 
by an emulsion of phases which will compete for dominance, as opposed to 
the nucleation and subsequent percolation of bubbles larger than a critical 
size. This should not come as a surprise, as weak enough transitions should 
exhibit pseudo-critical behavior due to the large (but non-divergent) correla- 
tions present in the symmetric phase.7 In Section 3 we obtain an a proximate 
kinetic equation describing the early stages of the phase transition8By solving 
the equation it is possible to study the relevance of sub-critical thermal fluc- 
tuations to the evolution of the transition. We find that for sufficiently weak 
transitions sub-critical bubbles are effectively produced, and may occupy a 
reasonable fraction of the total volume of space. In this case, the transition 
completes by percolation of domains of the broken-symmetry phase. 

THERMAL FLUCTUATIONS AND THE 1-LOOP POTENTIAL5 

As is well-known, the 1-loop approximation to the effective potential relies 
on having fluctuations about 4, = (4) which are small enough that the in- 
homogeneous terms in the effective action can be neglected. We assume that 
for a given amplitude #A,  the dominant fluctuations are spherically symmetric 
and of roughly a correlation volume. Since in this case the free energy becomes 
a monotonically increasing function of the radius, a correlation volume bubble 
is the smallest coherent fluctuation consistent with the coarse-graining implicit 
in the 1-loop potential, and thus with smallest free energy. In practice, within 
the 1-loop approximation, the effective potential is equivalent to the coarse- 
grained Landau-Ginzburg free-energy density, with its minima determining the 
equilibrium states of the system. In this case, a reasonable criterion for the 
validity of the 1-loop approximation is that the rms amplitude of these fluc- 
tuations, which we write as $(T) ,  be smaller than the nearest inflexion point, 
+j&(T). This condition is a simple consequence of the fact that the 1-loop 
approximation is equivalent to a Gaussian approximation for the path integral 
which naturally breaks down at the inflexion point. Thus we can write, as a 
criterion for the validity of the 1-loop approximation, 

This is a general criterion which can be adapted to different models, including 
second-order transitions in the neighborhood of the critical point. 

What remains is to calculate J(T) .  Since 6(T)  is the rms amplitude of the 
fluctuations, its definition is simply, 

where the thermal average (. . .)T is defined in terms of the probability distri- 

bution for a fluctuation with free energy F ( 6 , T )  = J@z [; (+C#)~ + V ( h ) ] ,  
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By writing the profile for the correlation volume fluctuations as $(r,T) = 
$~exp[- r~ / [ (T)~] ,  where <(T) = m(T)-' is the correlation length, the path 
integrals above become simple integrals over the amplitude of the fluctuation 
4 A  * 

As an application, we study the 1-loop approximation to the electroweak 
potential given byg 

(4) 
Kff(4, T )  = D(T2 - Ti)& - ET43 + ~4 4 , 

where D and E are constants given in terms of the W and Z boson masses 
and of the top quark mass as D = & b (y)' + 3 (y)' + 6 (F)2] and E = 

& [6 (y)3 t 3 (?)"I N where u N 246 GeV is the vacuum expecta- 
tion value of the Higgs field. We use mw = 80.6 GeV and mZ = 91.2 GeV. T2 

is the spinodal instability temperature, given by TZ = 

is the physical Higgs mass and B = & (6m& -t 3m4, - 1 2 4 ) .  The 
temperature dependent Higgs self-coupling AT can be well approximated by 
its tree-level value, AT N X = mi/2u2 N 0.08(m~/lOOGeV)~. 

Below the temperature T: = T,2/(1- 9E2/8XD), the electroweak potential 
acquires a new minimum at q5+ = & [3ET + 49EZT2 - 8D(T2 - Ti)X]. At 
the critical temperature, T," = T,2/(1 - E2/XD), the two minima are degener- 
ate. For T < TI, the nearest inflexion point to the minimum 4 = 0 is located 
at 

/r, ma -8Ba2 where mf,, = 

&d(T) = 
- i n .  E2T' 2D(T' - T 2  

( 5 )  

We can now easily obtain an expression for &T). Due to the non-linear 
terms, the integrals over $A cannot be calculated exactly. However, for the 
case at hand, the free energy of the fluctuations is dominated by their surface 
term which is quadratic in 4 ~ .  We thus obtain, 

This result can be written as @(T N m(T)T/6.1° When compared to the 

within By evaluating the condition for the validity of the 1-loop ap- 
proximation at the critical temperature, (P(Tc) 5 4id(Tc), we obtain a weak 
coupling condition, 

numerical evaluation of the integr a s, this approximation proves to  be good 

213 

x 5 a [. (1 - $71 (7) 
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In terms of the Higgs mass, we find that for r n ~  > 70 GeV the 1-loop ap- 
proximation is no longer valid at T,, due to large amplitude fluctuations about 
(4) = 0. 

KINETICS OF WEAK FIRST-ORDER TRANSITIONS 

We have seen that large fluctuations about equilibrium may invalidate the 
1-loop approximation to the effective potential. We may ask if the usual mech- 
anism for the dynamics of first-order transitions, based on the nucleation and 
subsequent percolation of lar e bubbles, will hold for sufficiently weak transi- 

all, what is the form of the effective potential beyond 1-loop order? Clearly, in 
any study of the transition we must rely on some valid approximation to the 
effective action. Although considerable progress has been made through recent 
 effort^,^ it is fair to say that within the minimal standard model the question 
is not yet settled. However, an important aspect of any improved effective 
potential is that summing higher loops makes the transition even weaker. In 
studying the kinetics of the transition we may addopt a pragmatic point of 
view and use the 1-loop approximation as a working model, but keeping in 
mind that the real transition will be even weaker, if at all first-order. In fact, 
the presence of large fluctuations within the symmetric phase indicates a sort 
of pseudo-critical behavior, signalling the proximity of the critical point; the 
weakness of the transition is related to having T, -+ T2. 

The second hard question that comes to mind is how to best model the dy- 
namics of the system in the presence of sub-critical thermal fluctuations. This 
question is also far from being solved, although an initial attempt was made 
in Ref. 6, and, more recently in Ref. 8. The idea is to model the statistically 
dominant fluctuations as having roughly a correlation volume and amplitudes 
which interpolate between the two phases in question, i . e . ,  the minima of the 
effective potential. The simple picture that emerges is that of a chessboard-like 
volume, filled with both phases fluctuating into each other.6 In principle, the 
problem is solved when we obtain the time evolution of the volumes of each 
phase. Clearly, the fact that one can have fluctuations of different volumes and 
different amplitudes, added to kinetic processes between the bubbles, such as 
collisions and shrinking, makes the full problem intractable analytically." One 
must treat the problem numerically, or rely on some simple approximations 
which are expected to work for a range of parameters. 

In Ref. 8 a simple kinetic equation for the earlier stages of the transition was 
derived. By early stages we mean temperatures just below TI, the temperature 
at which a new minimum appears. In this case, most of the volume is in the 
(4) = 0 phase, and only small sub-critical fluctuations of the phase at ++ 
appear. The equation for the number density of these fluctuations was shown 
to be, 

tions. There are many difficu P ties involved in answering this question. First of 

Here, I'o,+(R) (I'+,o(R)) is the rate per unit volume for the thermal nucle- 
ation of a bubble of radius R of phase r$ = 4+ within the phase 4 = 0 (phase 
4 = 0 within the phase 4+). The volume ratios Vo(+,/V take into account the 
fact that the total volume in each phase changes in time due to the evolution 
of n(R,t). The initial conditions we choose are &(t = 0) = V, and V+(t = 



670 ANNALS NEW YORK ACADEMY OF SCIENCES 

0) = 0, that is, all volume V = Vo -f V+ is initially in the phase 4 = 0. Also, 
in bubbles of radius R V+ must be understood as the volume of the 

only, since we are following the 
of radius R can disappear due 
first term in the right-hand side with 
bubble of the (0)-phase in its interior. 

Within these approximations, we expect the equation above to be a valid 
description of the kinetics. The interest in studying this equation lies on the 
fact that we can solve it exactly in two regimes, includin and neglecting the 

reaching equilibrium for each of these two regimes we can compare them for 
different values of parameters that govern the strength of the transition and 
decide if there is a reasonable range of values for the parameters when shrinking 
can be neglected in the kinetics. If this is the case, sub-critical bubbles may 
become a crucial factor in the evolution of the phase transition. Denoting by 
71(2) the equilibration time-scale with (without) shrinking, and assuming that 
the bubbles shrink with constant speed v, the ratio of equilibration time scales 
is, for bubbles of a correlation radius, 

term responsible for the bubble shrinking. Once we fin I f  the time scales for 

where Q - 4: is the coefficient of the surface contribution to the fluctuation's 
free energy. As 71/72 becomes larger than unity, shrinking becomes a sub- 
dominant process in the kinetics of the transition. In Ref. 8, the ratio 71/72(t) 
was obtained for the minimal standard model as a function of the Higgs mass, 
and for a top mass of 130 GeV. It was found that the ratio approaches unity for 
m H  N 55 GeV, for v = 1. For smaller (and more realistic) shrinking velocities 
one obtains smaller Higgs masses. Even though the approximations used to  
solve the kinetic equation break down for about the same values of m H ,  it 
is clear that as the strength of the transition weakens shrinking becomes less 
important in the dynamics.l2 In fact, the approximations break down precisely 
because a large fraction of the volume is occupied by the broken phase. 

We then arrive at the following picture for the evolution of a sufficiently 
weak first order transition.' As the expansion of the Universe cools the sys- 
tem down to T, (we are interested in T, << Mpr, with Mpl being the Planck 
mass), there will be large amplitude fluctuations about the high temperature 
minimum (4) = 0. These are unstable fluctuations, which will shrink at some 
velocity v. (v is not known in general. We expect it to depend on the curvature 
radius of the fluctuation, on the coupling to the 'environmentn, and on the 
free energy density difference between the two phases.) However, the thermal 
nucleation rate for the fluctuations will be efficient enough that a reasonable 
fraction of the volume will be occupied by the broken-symmetric phase. As the 
temperature drops below T,, the broken-symmetric phase may be above per- 
colation threshold. If percolation occurs, the transition will complete by the 
competition between the domains of both phases. As the broken-symmetric 
phase has lower free energy, the interfaces (walls) between the two phases will 
move toward the symmetric phase, which eventually will disappear. 



GLEISER ELECTROWEAK TRANSITION 671 

REFERENCES 

1. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. 
155B, 36 (1985 ; M. E. Shaposhnikov, Nucl. Phys. B287, 757 (1987); 

0. Lechtenfeld, B. Sakita, W. Fischler, and J. Polchinski, Nucl. Phys. 
B342, 381 (1990); N. Turok and J. Zadrozny, Phys. Rev. Lett. 65, 2331 
(1990); Nucl. Phys. B358, 471 1991); A. G. Cohen, D. B. Kaplan, and 

1991); M. Dine, P. Huet, R. S. Singleton Jr., and L. Susskind, Phys. I ett. 257B, 351 (1991). 

2. See, for example, P. Huet, K. Kajantie, R. Leigh, B.-H. Liu, and L. 
McLerran, Slac preprint SLAC-PUB-5943, December 1992; M. Kamionkowski 
and K. Freese, Phys. Rev. Lett. 69, 2743 (1992). 

3. G. Boyd, D. Brahm and S. Hsu, Harvard preprint No. HUTP-92-A027; 
M. E. Carrington, Phys. Rev. D45, 2933 (1992); J.R Espinosa, M. 
Quirb,  and F. Zwirner, Phys. Lett. B291, 115 1992 ; ibid., CERN 

2628 (1992); W. Buchmiiller and T. Helbig, DESY preprint No. 92-117; 
W. Buchmiiller, T. Helbig, and D. Walliser, DESY preprint No. 92- 
151, December 1992; P. Arnold and 0. Espinosa, Univ. of Washington 
preprint No. UW/PT-92-18, December 1992. 

4. J.J. Binney, N.J. Dowrick, A.J. Fisher, and M.E.J. Newman, The Theory 
of Critical Phenomena: An Introdzlction to the Renormalitation Group, 
Oxford Science Publications (Clarendon Press, Oxford 1992). 

5. M. Gleiser and R. 0. Ramos, Dartmouth College preprint No. DART- 
HEP-92/08, November 1992. In press, Phys. Lett. B. 

6. M. Gleiser, E.W. Kolb, and R. Watkins, Nucl. Phys. B364, 411 (1991). 

7. M. Gleiser and E.W. Kolb, Phys. Rev. Lett. 69, 1304 (1992); FERMI- 

8. G. Gelmini and M. Gleiser, UCLA preprint No. UCLAHEP-92-44, 

9. G.W. Anderson and L.J. Hall, Phys. Rev. D45, 2685 (1992). 

P. Arnold and L . McLerran, Phys. Rev. D 36, 581 (1987); M. Dine, 

A. E. Nelson, Phys. Lett. 245 L (1990) 561; Nucl. Phys. B349,727 

preprint No. TH.6577/92, December 1992; P. Arno \ I ,  d, P ys. Rev. D46, 

LAB preprint No. Pub-92/222-A (1992). 

November 1992. Submitted to Nucl. Phys. B. 

10. For other recent works which estimated the rms amplitude of fluctuations 
see M. Dine, R. Leigh, P. Huet, A. Linde, and D. Linde, Phys. Rev. D46, 
550 (1992); M. Gleiser, Phys. Rev. D42, 3350 (1990). 

11. For a review see, K. Binder and D. Stauffer, Adv. Phys. 25, 343 (1976). 

12. For a different opinion see G. Anderson, Phys. Lett. 295B, 32 (1992). 
We believe that this author's conclusions are based in an incorrect un- 
derstanding (and consequent formulation) of the kinetics of thermal fluc- 
tuations, which we hope to have clarified here. 


