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The Origin of Matter  in the Universe: 
A Brief  Review 

Marcelo Gleiser 

Department of Physics and Astronomy, Dartmouth College 1 
Hanover, NH 03755 

Abstract. In this talk I briefly review the main ideas and challenges involved 
in the computation of the observed baryonic excess in the Universe. 

T H E  S A K H A R O V  C O N D I T I O N S  A N D  G U T  
B A R Y O G E N E S I S  

Given that the observational evidence is for a Universe with a primordial 
baryon asymmetry [1,2], we have two choices; either this asymmetry is the 
result of an initial condition, or it was attained through dynamical processes 
that took place in the early Universe. In 1967, just a couple of years after the 
discovery of the microwave background radiation, Sakharov wrote a ground- 
breaking work in which he appealed to the drastic environment of the early 
stages of the hot big-bang model to spell out the 3 conditions for dynamically 
generating the baryon asymmetry of the Universe [3]. Here they are, with 
some modifications: 
i) Baryon number violating interactions: Clearly, if we are to generate any 
excess baryons, our model must have interactions which violate baryon num- 
ber. However, the same interactions also produce antibaryons at the same 
rate. We need a second condition; 
ii) C and CP violating interactions: Combined violation of charge conjugation 
(C) and charge conjugation combined with parity (CP) can provide a bias to 
enhance the production of baryons over antibaryons. However, in thermal 
equilibrium n b  = nlb, and any asymmetry would be wiped out. We need a 
third condition; 
iii) Departure from thermal equilibrium: Nonequilibrium conditions guarantee 
that the phase-space density of baryons and antibaryons will not be the same. 
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Hence, provided there is no entropy production later on, the net ratio nB/s 
will remain constant. 

Given the above conditions, we have to search for the particle physics models 
that both satisfy them and are capable of generating the correct asymmetry. 
The first models that attempted to compute the baryon asymmetry dynami- 
cally were Grand Unified Theory (GUT) models [4]. A typical mechanism of 
GUT baryogenesis is known as the "out-of-equilibrium decay scenario"; one 
insures that the heavy X bosons have a long enough lifetime so that their in- 
verse decays go out of equilibrium as they are still abundant. Baryon number 
is produced by the free decay of the heavy Xs, as the inverse rate is shut off. 

Interesting as they are, GUT models of baryogenesis have serious obstacles 
to overcome. Here I mention only the obstacle related to electroweak scale 
phenomena. The vacuum manifold of the electroweak model exhibits a very 
rich structure, with degenerate minima separated by energy barriers (in field 
configuration space). Different minima have different baryon (and lepton) 
number, with the net difference between two minima being given by the num- 
ber of families. Thus, for the standard model, each jump between two adjacent 
minima leads to the creation of 3 baryons and 3 leptons, with net B - L con- 
servation and B + L violation. At T = 0, tunneling between adjacent minima 
is mediated by instantons, and, as shown by 't Hooft [5], the tunneling rate 
is suppressed by the weak coupling constant (F ~ e -4~/~w ,-~ 10-17~ That 
is why the proton is stable. However, as pointed out by Kuzmin, Rubakov, 
and Shaposhnikov, at finite temperatures (T ,~ 100 GeV), one could hop over 
the barrier, tremendously enhancing the rate of baryon number violation [6]. 
The height of the barrier is given by the action of an unstable static solution 
of the field equations known as the sphaleron [7]. 

Being a thermal process, the rate of baryon number violation is controlled 
by the energy of the sphaleron configuration, F ,-~ exp[-/3Es], with Es 
Mw/aw, where Mw is the W-boson mass. Note that Mw/c~w = (r where 
(r is the vacuum expectation value of the Higgs field. For temperatures above 
the critical temperature for electroweak symmetry restoration, it has been 
shown that sphaleron processes are not exponentially suppressed, with the 
rate being roughly r --, (awT) 4 [8]. Even though this opens the possibility of 
generating the baryonic asymmetry at the electroweak scale, it is bad news for 
GUT baryogenesis. Unless the original GUT model was B -  L conserving, any 
net baryon number generated then would be brought to zero by the efficient 
anomalous electroweak processes. There are several alternative models for 
baryogenesis invoking more or less exotic physics. The interested reader is 
directed to the review by Olive, listed in Ref. 1. I now move on to discuss the 
promises and challenges of electroweak baryogenesis. 
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II E L E C T R O W E A K  B A R Y O G E N E S I S  

As pointed out above, temperature effects can lead to efficient baryon num- 
ber violation at the electroweak scale. Can the other two Sakharov conditions 
be satisfied in the early Universe so that the observed baryon number could 
be generated during the electroweak phase transition? The short answer is 
that in principle yes, but probably not in the context of the minimal stan- 
dard model. Let us first see why it is possible to satisfy all conditions for 
baryogenesis in the context of the standard model. 

Departure from thermal equilibrium is obtained by invoking a first order 
phase transition. After summing over matter and gauge fields, one obtains a 
temperature corrected effective potential for the magnitude of the Higgs field, 
r The potential describes two phases, the symmetric phase with (r = 0 and 
massless gauge and matter fields, and the broken-symmetric phase with (r = 
r with massive gauge and matter fields. The loop contributions from 
the gauge fields generate a cubic term in the effective potential, which creates 
a barrier separating the two phases. This result depends on a perturbative 
evaluation of the effective potential, which presents problems for large Higgs 
masses as I will discuss later. At l-loop, the potential can be written as [9] 

I 4 
VEW(r T ) :  D (T ~ -  T~) r _ ETr + -~ITr (i) 

where the constants D and E 
are given by D = [6(Mw/a) 2 + 3(Mz/a) 2 + 6(MT/a) 2]/24 ,~ 0.t7 , and 
E = [6(Mw/cr) 3 + 3(Mz/~r) 31/127r ..~ 0.01 , where I used, Mw = 80.6 GeV, 
Mz = 91.2 GeV, MT = 174 GeV [10], and a = 246 GeV. The (lengthy) ex- 
pression for AT, the temperature corrected Higgs self-coupling, can be found 
in Ref. 9. At the critical temperature, Tc = T2/~/1 - E2/ATD, the minima 
have the same free energy, VEw(r = VEw(O, Tc). As E ~ O, Tc ~ T2 
and the transition is second order. Since E and D are fixed, the strength of 
the transition is controlled by the value of the Higgs mass, or A. 

Assuming that the above potential (or something close to it) correctly de- 
scribes the two phases, as the Universe cools belows Tc the symmetric phase 
becomes metastable and will decay by nucleation of bubbles of the broken- 
symmetric phase which will grow and percolate completing the transition. 
Departure from equilibrium will occur in the expanding bubble walls. This 
scenario relies on the assumption that the transition is strong enough so that 
the usual homogeneous nucleation mechanism correctly describes the approach 
to equilibrium. As I will discuss later, this may not be the case for "weak" 
transitions. For now, we forget this problem and move on to briefly examine 
how to generate the baryonic asymmetry with expanding bubbles. 

The last condition for generating baryon number is C and CP violation. It is 
known that C and CP violation are present in the standard model. However, 
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the CP violation from the Kobayashi-Maskawa (KM) phase is too small to 
generate the required baryon asymmetry. Even though the debate is still going 
on, efficient baryogenesis within the standard model is a remote possibility. 

For many, this is enough motivation to go beyond the standard model in 
search of extensions which have an enhanced CP violation built in. Several 
models have been proposed so far, although the simplest invoke either more 
generations of massive fermions, or multiple massive Higgs doublets with ad- 
ditional CP violation in this sector of the theory. Instead of looking into all 
models in detail, I will just briefly describe the essential ingredients common 
to most models. 

The transition is assumed to proceed by bubble nucleation. Outside the 
bubbles the Universe is in the symmetric phase, and baryon number violation 
is occurring at the rate I" ,,~ (c~wT) 4. Inside the bubble the Universe is in 
the broken symmetric phase and the rate of baryon number violation is F ,-~ 
exp[-/3Es]. Since we want any net excess baryon number to be preserved in 
the broken phase, we must shut off the sphaleron rate inside the bubble. This 
imposes a constraint on the strength of the phase transition, as Es -~ (r 
that is, we must have a large "jump" in the vacuum expectation value of r 
during the transition, (r >_ 1, as shown by Shaposhnikov [11]. 

Inside the bubble wall the fields are far from equilibrium and there is CP 
violation, and thus a net asymmetry can be induced by the moving wall. In 
practice, computations are complicated by several factors, such as the depen- 
dence on the net asymmetry on the bubble velocity and on its thickness [12]. 
Different charge transport mechanisms based on leptons as opposed to quarks 
have been proposed, which enhance the net baryonic asymmetry produced 
[13]. However, the basic picture is that as matter traverses the moving wall 
an asymmetry is produced. And since baryon number violation is suppressed 
inside the bubble, a net asymmetry survives in the broken phase. Even though 
no compelling model exists at present, and several open questions related to 
the complicated nonequilibrium dynamics remain, it is fair to say that the 
correct baryon asymmetry may have been generated during the electroweak 
phase transition, possibly in some extension of the standard model. However, 
I would like to stress that this conclusion has two crucial assumptions built 
in it; that we know how to compute the effective potential reliably, and that 
the transition is strong enough to proceed by bubble nucleation. In the next 
Section I briefly discuss some of the issues involved and how they may be 
concealing interesting new physics. 
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I I I  C H A L L E N G E S  T O  E L E C T R O W E A K  
B A R Y O G E N E S I S  

A T h e  Effect ive  P o t e n t i a l  

A crucial ingredient in the computation of the net baryon number generated 
during the electroweak phase transition is the effective potential. In order to 
trust our predictions, we must be able to compute it reliably. However, it is 
well known that perturbation theory is bound to fail due to severe infrared 
problems. It is easy to see why this happens. At finite temperatures, the loop 
expansion parameter involving gauge fields is g2T/Mg~uge. Since Mg~uge = 
g(r in the neighborhood of (r = 0 the expansion diverges. This behavior 
can be improved by summing over ring, or daisy, diagrams [14]. 

Another problem that appears in the evaluation of the effective potential 
is due to loop corrections involving the Higgs bosom For second order phase 
transitions, the vanishing of the effective potential's curvature at the critical 
temperature leads to the existence of critical phenomena characterized by di- 
verging correlation lengths. Even though there is no infrared-stable fixed point 
for first order transitions, for large Higgs masses the transition is weak enough 
to induce large fluctuations about equilibrium; the mean-field estimate for 
the correlation length ~(T) = M -I(T)  is certainly innacurate. This behavior 
has led some authors [15,16] to invoke e-expansion methods to deal with the 
infrared divergences. Another alternative is to go to the computer and study 
the equilibrium properties of the standard model on the lattice [17]. Recent 
results are encouraging inasmuch as they seem to be consistent with pertur- 
bative results in the broken phase for fairly small Higgs masses. Furthermore, 
they indicate how the transition becomes weaker for large values of the Higgs 
mass, MH _> 60 GeV. 

B W e a k  vs. S t ro ng  First  Order  Trans i t ions  

In order to avoid the erasure of the produced net baryon number inside 
the broken-symmetric phase, the sphaleron rate must be suppressed within 
the bubble. As mentioned earlier, this amounts to imposing a large enough 
"jump" on the vacuum expectation value of r during the transition. In other 
words, the transition cannot be too weakly first order. But what does it mean, 
really, to be "weakly" or "strongly" first order? 

This is a very important point which must not be overlooked (although it 
often is!); the vacuum decay formalism used for the computation of nucleation 
rates relies on a semi-classical expansion of the effective action. That is, we 
assume we start at a homogeneous phase of false vacuum, and evaluate the 
rate by summing over small amplitude fluctuations about the metastable state 
[18]. This approximation must break down for weak enough transitions, when 
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we expect large fluctuations to be present within the metastable phase. An 
explicit example of this breakdown was recently discussed, where the extra 
free energy available due to the presence of large-amplitude fluctuations was 
incorporated into the computation of the decay rate [19]. 

In Ref. 15, it was suggested that weak transitions may evolve by a dif- 
ferent mechanism, characterized by substantial mixing of the two phases as 
the critical temperature is approached from above (i.e. as the Universe cools 
to Tc). They estimated the fraction of the total volume occupied by the 
broken-symmetric phase by assuming that the dominant fluctuations about 
equilibrium are subcritical bubbles of roughly a correlation volume which in- 
terpolate between the two phases. Their approach was later refined by the 
authors of Ref. [21] who found, within their approximations, that the l-loop 
electroweak potential shows considerable mixing for MH > 55 GeV. Clearly, 
the presence of large-amplitude, nonperturbative thermal fluctuations com- 
promises the validity of the effective potential, since it does not incorporate 
such corrections. 

In order to understand the shortcomings of the mean-field approximation 
in this context, numerical simulations in 2d [23] and 3d [24] were performed, 
which focused on the amount of "phase mixing" promoted by thermal fluctu- 
ations. 

The results show that the problem boils down to how well localized the 
system is about the symmetric phase as it approaches the critical temperature. 
If the system is well localized about the symmetric phase, it will become 
metastable as the temperature drops below Tc and the transition can be called 
"strong". In this case, the mean-field approximation is reliable. Otherwise, 
large-amplitude fluctuations away from the symmetric phase rapidly grow, 
causing substantial mixing between the two phases. This will be a "weak" 
transition, which will not evolve by bubble nucleation. Defining (r as the 
volume averaged field and r as the inflection point nearest to the r = 0 
minimum, the criterion for a strong transition can be written as [23] 

(q~)v < r (2) 

Recently, an analytical model, based on the subcritical bubbles method, 
was shown to qualitatively and quantitatively describe the results obtained by 
the 3d simulation [25]. The fact that subcritical bubbles successfully model 
the effects of thermal fluctuations promoting phase mixing and the breakdown 
of the mean-field approximation with subsequent symmetry restoration, sup- 
ports previous estimates which showed that the assumption of homogeneous 
nucleation is incompatible with standard model baryogenesis for Mn _< 55 
GeV [21,22]. It is straightforward to adapt these computations to extensions 
of the standard model. Thus, the requirement that the transition proceeds by 
bubble nucleation can be used, together with the subcritical bubbles method, 
to constrain the parameters of the potential. 
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