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Configurational entropy (CE) consists of a family of entropic measures of information used to describe 
the shape complexity of spatially-localized functions with respect to a set of parameters. We obtain the 
Differential Configurational Entropy (DCE) for similariton waves traveling in tapered graded-index optical 
waveguides modeled by a generalized nonlinear Schrödinger equation. It is found that for similariton’s 
widths lying within a certain range, DCE attains minimum saturation values as the nonlinear wave 
evolves along the effective propagation variable ζ(t). In particular, saturation is achieved earlier for lower 
values of the width, which we show correspond to global minima of the DCE. Such low entropic values 
lead to minimum dispersion of momentum modes as the similariton waves propagate along tapered 
graded-index waveguides, and should be of importance in guiding their design.

© 2020 Published by Elsevier B.V.
1. Introduction

Nonlinear phenomena appear in all areas of science, from 
physics and chemistry to the life sciences and engineering [1,2]. In 
most applications, nonlinear systems are modeled by partial dif-
ferential equations called nonlinear evolution equations (NLEEs). 
Of much interest are solutions in the shape of spatially-localized 
excitations. Many such excitations are non-dispersive and non-
dissipative waves, that is, configurations that are weakly or non-
radiative and that maintain their shape as they propagate to sig-
nificantly long distances [3]. Due to this special feature, these con-
figurations are known as solitons or solitary waves. Soliton-like so-
lutions appear in various research areas, including hydrodynamics, 
plasma physics, nonlinear optics, condensed matter physics, optical 
communications, nuclear physics, and astrophysics [4–9].

Different strategies are used to investigate the dynamical fea-
tures of soliton-like solutions from NLEEs, including exact analyti-
cal methods [10], numerical techniques [11], variational analysis, 
and other tools [12]. A new emerging area is the study of the 
configurational entropy (CE) of these nonlinear excitations, a mea-
sure of spatial complexity of spatially-localized systems proposed 
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by Gleiser and Stamatopoulos, originally applied to the study of 
kinks and bounces in relativistic field theory [13]. As described in 
detail in Ref. [23], the original CE has been expanded to include 
a family of related entropic measures, Configuration Information 
Measures (CIMs), adapted for different applications. In the current 
case, for a continuum field theory, the proper measure is known 
as Differential Configurational Entropy (DCE), as defined below. It 
gives a quantitative measure of the shape complexity of a func-
tion or, in the case of most physical applications, of a given field 
configuration.

Inspired by Shannon information entropy [14], the DCE is ob-
tained from the Fourier transform of a spatially-localized configu-
ration (e.g. a solution of a NLEE) or its related energy density. There 
is an intimate link between information and dynamics, where the 
entropic measure plays a prominent role in signaling the emer-
gence of nonlinear structures and in highlighting their stability 
properties [13,15]. Configurational Entropy has since been applied 
to a variety of fields, including neutron and boson stars [16], spon-
taneous symmetry breaking [15], glueballs [17], the stability of 
Q-balls [18], anti-de Sitter black holes [19,20], stability of gravi-
ton Bose-Einstein condensate in the brane-world [21], the energy-
energy correlation in e+e− into hadrons [22], oscillon lifetimes 
in scalar field theories [23], instantons and vacuum decay in ar-
bitrary spatial dimensions [24], dynamical tachyonic holographic 
Ads/QCD models [25], standard model cosmology for the homo-
geneous Friedmann-Robertson-Walker universe [26] and in infla-
tionary cosmology [27], and in the study of dissociation of heavy 
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vector mesons in a thermal medium [28]. Apart from the above 
applications in high-energy physics and cosmology, DCE has been 
calculated for several nonlinear scalar field models featuring so-
lutions with spatially-localized energy, including bounces in one 
spatial dimension and critical bubbles in three spatial dimensions 
[13], for the determination of critical points in second order phase 
transitions [29], solitons in supersymmetric theories [30], and for 
Korteweg-de Vries solitons in quark-gluon plasmas [31].

In the present work, we apply the DCE measure to solitary 
waves propagating along tapered graded-index nonlinear waveg-
uides. The graded potential is widely used in optical fiber commu-
nications [32], computer networks [33], long-distance telecommu-
nications [34], and sensory receptor cells [35]. It solves the prob-
lem of modal dispersion to a considerable extent [33]. In particular, 
we will investigate the propagation of waves in tapered graded-
index waveguides modeled by a generalized nonlinear Schrödinger 
equation (GNLSE) [36–38] and obtain the DCE for an optical simi-
lariton, a solitonic solution of the GNLSE with variable coefficient.

The paper is organized as follows: In section 2, we briefly re-
view DCE. (For a more detailed discussion see Ref. [23].) In sec-
tion 3, the similariton solution of GNLSE is obtained invoking the 
similarity transformation, as well as the saturation minimum-value 
DCE as a function of width as the similariton evolves in time. We 
also find that the similariton’s DCE has global minima as a func-
tion of width. These time-dependent values determine the optimal 
value of the width for the configurational stability of similaritons 
propagating through tapered graded-index optical waveguides. Fi-
nally, we summarize our results in section 4.

2. Differential Configurational Entropy for bright similaritons in 
tapered graded-index waveguide

The Differential Configurational Entropy of a square-integrable, 
bounded mathematical function is constructed from its Fourier 
modes [13,23]. In physical applications, it is often the case that the 
square-integrable continuous function is the energy density ρ(x)
defined on Rd and with Fourier transform,

F (k) =
∫

exp[−ix · k]ρ(x)ddx. (1)

Henceforth, we consider only d = 1. The corresponding modal frac-
tion, which measures the relative weight of each mode k is defined 
as [13]

f (k) = |F (k)|2∫ |F (k)|2dk
. (2)

To ensure positivity of DCE, the modal fraction is normalized by 
the mode carrying maximum weight fmax(k),

f̃ (k) = f (k)

fmax(k)
. (3)

The mathematical expression of DCE is defined as Sc[ f̃ ] is [13]

Sc[ f̃ ] = −
∞∫

−∞
f̃ (k) ln f̃ (k)dk, (4)

which represents an absolute limit on the best lossless compres-
sion of any communication [39]. For periodic functions, one would 
use the Fourier series of the function ρ(x) to define DCE. While 
other possible functional transforms could in principle be used to 
obtain the DCE, the clear physical interpretation of Fourier trans-
form relating increased spatial localization to broader momentum-
mode distribution, makes it the most efficient to define DCE, as the 
many applications referenced above have shown.
3. Differential Configurational Entropy for bright similaritons in 
tapered graded-index waveguide

3.1. Model equation and similariton solution

The beam propagation in tapered graded-index nonlinear fiber 
waveguide is modeled by the GNLSE [36–38]. The GNLSE in (1 +
1)-dimensional form is given as

i
∂�

∂t
+ 1

2
a2(t)

∂2�

∂x2
+ 1

2
M(t)x�− i

2
g(t)�+2γ (t)�+μ|�|2� = 0.

(5)

Here a(t), M(t), and γ (t) are the time-dependent dispersion coef-
ficient, tapered potential, and external potential, respectively, while 
x is the transverse direction and � is the wave function. Further, 
g(t) is a dimensionless net energy gain (if g > 0) or loss (if g < 0) 
in the system, and μ is the coefficient of nonlinearity.

Introducing the similarity variable χ ,

χ(x, t) = [x − xc(t)]
α(t)

, (6)

the self-similar optical similariton solution of Eq. (5) can be ob-
tained by transforming it into a standard nonlinear Schrödinger 
equation (NLSE) by using gauge and similarity transformations 
[36–38]

�(x, t) = B(t)	 [χ(x, t), ζ(t)] exp[iϕ(x, t)], (7)

where B(t), α(t), and xc(t) are the dimensionless amplitude, width, 
and guiding-center coordinate of the beam, respectively.

Assuming a linear ansatz for the global phase,

ϕ(x, t) = [p1(t) · x + p2(t)], (8)

and substituting Eqs. (7) and (8) into Eq. (5), we obtain a set of 
first-order differential equations for the parameters of the trans-
formation and for the transformed field 	, which satisfies the 
standard NLSE [40]

i
∂	

∂ζ
+ 1

2

∂2	

∂χ2
+ μ|	|2	 = 0. (9)

Here, the effective propagation variable ζ(t) and guiding-center 
position xc(t) are given by

ζ(t) = ζ0 +
t∫

0

B2(τ )dτ , (10)

xc(t) = α(t)

⎡
⎣ t∫

0

a2(τ )p1(τ )dτ

α(τ )
+ x0

⎤
⎦ , (11)

where ζ0 and x0 are integration constants which we fix as ζ0 =
1, x0 = 1. The remaining nonlinear partial differential equations for 
the parameters are

B(t) = a(t)

α
,

g(t) = 2
Ḃ(t)

B(t)
,

M(t) = 2ṗ1(t),

γ (t) = 1

2
ṗ1(t) + a2(t)p2

1(t).

Eq. (9) is a standard NLSE, admitting bright [40] and dark [41]
soliton solutions, as well as rogue waves and breathers [42]. Using 
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these, and width α(t) constant, one can obtain solutions of Eq. (5)
implementing the self-similar transformation of Eq. (7). In particu-
lar, the bright similariton solution of Eq. (9) is given as

�(x, ζ(t)) = a

⎛
⎝

√
μ3

2
sech

(
μ2 (

√
2
( x−xc

α

) − χ0)

2
+ 2ξζμ2

)

× exp(r1)

⎞
⎠ r0, (12)

where

r0 = exp (i(p1 · x + p2)) ,

r1 = −4i

(
ξ2 −

(
μ2

4

)2)
ζ − 2iξ

√
2

(
x − xc

α

)
+ iε.

In Eq. (12), the dispersion coefficient a(t) is the amplitude of the 
similariton, which, in general, could have space and time depen-
dence. Here, we have chosen it to be a periodic function of t ,

a(t) = 1 + cos2(t)

α
.

3.2. Calculation of Differential Configurational Entropy

The energy density corresponding to the solution (Eq. (12)) can 
be written as

ρ(x, ζ(t)) =
μ2sech

[
2μ2ζ ξ + 1

2μ2
(√

2(x−xc)
α − χ0

)]2

2
√

2α
. (13)

The square of the Fourier transform of the energy density F 2(k), 
using Eq. (1), is given as

F 2(k, ζ(t)) =
r2

(
−ir3(−ikα+√

2μ2)

r3+r4
+kαr5

)(
ir3(ikα+√

2μ2)

r3+r4
+kαr7

)
π(k2α2+2μ2)

,

(14)

where

r2 =
exp

(
−2μ2(

√
2xc + α(−4ζ ξ + χ0))

)
α

,

r3 =
exp

(
μ2(

√
2xc + αχ0)

)
α

,

r4 = exp(4ζ ξμ2),

r5 = 2F 1

[
1,1 − ikα√

2μ2
,2 − ikα√

2μ2
, r6

]
,

r6 =
exp

(
−μ2(

√
2xc + α(−4ζ ξ + χ0))

)
α

,

r7 = 2F 1

[
1,1 + ikα√

2μ2
,2 + ikα√

2μ2
, r6

]
,

and 2F 1 is the Hypergeometric function.
From a detailed investigation of the dependence of F 2(k)

(Eq. (14)) on its parameters, we observed that DCE depends most 
strongly on the width α of the similariton. To study this depen-
dence, we fixed the values of the other parameters as x0 = 1, χ0 =
0.3, ζ0 = 1, ε = 1, μ = 1, ξ = 1. In Fig. 1, we plot the modal fraction 
of the bright similariton solution for several values of α, showing 
that all have a clear bell-shaped curve with a maximum at k = 0.
Fig. 1. The modal fractions for bright similaritons with α = 0.1, 0.5, 1.0, 1.5 showing 
a maximum at k = 0.

Fig. 2. Differential Configurational entropy of bright optical similariton in the ta-
pered graded-index waveguide propagating in the ζ(t) time at similariton width (a) 
α = 0.1, (b) α = 0.5, (c) α = 1.0, (d) α = 1.5.

The evolution of DCE for the bright similariton (given by 
Eq. (12)) as a function of the time parameter ζ(t) was obtained 
using Eq. (4) for several values of α. As shown in Fig. 2, DCE 
saturates in all cases at a minimum value sensitive to the value 
of α. For α = 0.1, 0.5, 1.0, 1.5 the saturation occurs at ζ(t) �
0.001, 0.02, 0.1, 0.2, respectively: the smaller the width α, the ear-
lier the similariton reaches the saturation value. The same behavior 
has been observed for all α belonging to [0.1, 1.5].

Alternatively, one may examine the dependence of Sα
c (ζ(t)) on 

the width parameter α itself at different fixed times in the evo-
lution of the bright similariton. The results are shown in Fig. 3
for three snapshots of ζ(t) = 0.1, 0.3, 0.5. Overall, we find that 
Sα

c (ζ(t)) is weakly dependent on ζ(t), with a global minimum at 
α � 1.8, 1.7, 1.6, respectively. Furthermore, comparing Figs. 2 and 
Fig. 3 we note that the saturation values for different α in Fig. 2
correspond to the values of Sα

c (ζ(t)) in Fig. 3. This can be clearly 
seen comparing Figs. 2(d) and 3(c), since the values of α for both 
are near the global minimum of Sα

c (ζ(t)). As discussed in the lit-
erature (see e.g. [16–18,23,25,28]), a minimum of DCE signals the 
most stable configuration with respect to a given parameter, in this 
case the similariton width α. These values denote the best range 
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Fig. 3. Differential configurational entropy (Sc(α)) as a function of the similariton 
width α. The minimum value of DCE (Sc(α)) occurs at (a) α = 1.8, (b) α = 1.7, (c) 
α = 1.6.

for the similariton’s width to ensure its propagation through the 
tapered graded-index waveguide with optimal compression of in-
formation.

4. Conclusion

The tapered graded-index waveguide finds applications in op-
tical fiber communications [32], computer networks [33], long-
distance telecommunications [34], and sensory receptor cells [35,
43]. In this work, we have computed the differential configura-
tional entropy Sα

c (ζ(t)) for optical bright similaritons propagating 
along a tapered graded-index waveguide. We found that Sα

c (ζ(t)) 
has a weakly time-dependent global minimum for a narrow range 
of width α. We can thus see that this formalism helps one obtain 
the optimal width of the similariton waves for which dispersion 
is minimized and the spatial shape is most compressed into its 
momentum modes. This optimal compression ensures the propaga-
tion of minimally-entropic similariton waves through the tapered 
graded-index waveguide. In future work, we may investigate the 
dependence of our results on different values of the other similari-
ton parameters and expand our method to two and three spatial 
dimensions, computing the related differential configurational en-
tropy (DCE) [23]. We hope this work will aid in the design of more 
efficient tapered graded-index waveguides with optimized widths.
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