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We use an information-theoretic measure of shape complexity known as configurational entropy (CE) 
to investigate numerically the remarkably long lifetimes of spherically-symmetric “resonant oscillons” 
in three-dimensional and of azimuthally-symmetric oscillons in two-dimensional relativistic scalar field 
theories, which have been conjectured to be infinite. In 3d, we obtain a power law relating a stability 
measure derived from CE to the oscillons’ lifetimes that, upon extrapolation to large times, offers support 
to this conjecture. In 2d, we obtain a three-way relation between the oscillons’ energies, a CE-derived 
measure of their stability, and their radiation rates to support the conjecture that they asymptotically 
tend toward a classically-stable attractor solution.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The study of long-lived, solitonic configurations in field theo-
ries has a long history, dating back to Edmond Bour’s study of 
surfaces of constant negative curvature in the mid nineteenth cen-
tury [1], which was rediscovered in 1939 as the Frenkel-Kontorova 
model encapsulated in the Gauss-Codazzi equation [2]. Solitons ex-
perienced a resurgence in the 1970s with the possibility that they 
could model particles with spatial extension [3–5]. Typical applica-
tions involve finding a static solution to a nonlinear field equation 
describing a specific physical system with its stability determined 
by the topology of the vacuum manifold.

Above one spatial dimension, no time-independent solution in-
volving only real scalar fields exist, a result known as Derrick’s 
theorem [4,6]. One way to circumvent this limitation is to consider 
models featuring time-dependent complex scalar fields, coupled or 
not to other fields. The solutions, known as nontopological solitons, 
owe their (classical) stability to a conserved global charge Q , such 
as particle number. Examples of the vast literature on nontopolog-
ical solitons and the related Q -balls can be found in Refs. [7,8].

Another possibility is to find spatially-bound real scalar field 
configurations that are time-dependent but still extremely long-
lived. This is the case of oscillons, first discovered by Bogolyubskii 
and Makhan’kov in 1976 [9], and rediscovered by Gleiser in 1994, 
where the name “oscillon” was first suggested [10]. Since then, 
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oscillons have attracted a huge amount of interest due to their po-
tential applications in high-energy physics and cosmology, as this 
incomplete list of references shows [11–29].

Of the many interesting properties of the oscillons studied so 
far in the literature, one of the most intriguing is the conjecture, 
first raised by Honda and Choptuik in Ref. [14] (henceforth HC), 
that a class of three-dimensional, spherically-symmetric scalar-
field oscillons with simple double-well potential interactions could 
be infinitely long-lived. Those oscillons are obtained from generic 
Gaussian initial configurations with radial parameter r0, and ap-
pear as resonant peaks in the oscillon lifetime versus initial radius 
curve, as shown in Fig. 1. Henceforth, we refer to the lifetime pro-
file depicted in Fig. 1 as the “resonance mountain,” and to oscillons 
living in each of the resonant peaks as “resonant oscillons” [31].

In analogy with the critical point of continuous phase transi-
tions, where the correlation length diverges at the critical temper-
ature Tc [30], HC proposed that, as each resonance is approached 
from below and from above, there will be a critical value for the 
initial radius, r∗

0n , where the lifetime diverges to arbitrarily large 
values. Here, 1 ≤ n ≤ 127, since we observe 127 resonances in to-
tal. As in the numerical study of phase transitions, the approach 
to the critical values r∗

0n is limited by simulations on a field lattice 
and can only be inferred indirectly. Still, the possibility of infinitely 
long-lived, self-supporting scalar field configurations is so remark-
able and counter-intuitive that it deserves further study.

In a recent work [31], we presented supporting evidence for the 
HC conjecture using parametric resonance and virial methods. We 
also added a longevity study of two-dimensional oscillons, since 
these too have yet to be shown to decay in numerical simula-
tions. Motivated by these results, in the present work we extend 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The 127 resonances seen along the lifetime vs. r0 plot for 3d oscillons ob-
tained with the potential of Eq. (4). The 64th resonance is the highest, or peak, 
resonance. The inset shows resonant oscillons generated from many initial radii 
straddling the 54th resonance.

our studies of the longevity of resonant and 2d oscillons using a 
recently proposed measure of spatial complexity known as Con-
figurational Entropy (CE) [32], which has been applied to many 
physical systems, from solitons in field theories [33–38] to phase 
transitions [41–43], and to astrophysics and cosmology [44–48].

In this work, we use that CE has been successfully used as a 
phenomenological indicator of stability of localized field config-
urations in several physical systems: in the application of CE to 
stellar polytropes, it was found that as the binding energy of the 
Newtonian stars decreased, CE increased. Following this stability 
trend, CE was used to determine the Chandrasekhar limit for white 
dwarfs to few percent accuracy [44]. For general-relativistic neu-
tron and boson stars, the critical points of CE nearly paralleled 
their critical stability regions determined by perturbation theory 
[45]. Additionally, CE has been employed as a predictor of sta-
bility in the study of decay rates in hydrogen [49]. More to the 
point, CE was recently shown to be a predictor of lifetimes for 
non-resonant oscillons [38]. Here, we extend the CE formalism to 
investigate the HC conjecture for resonant oscillons, which require 
a different treatment.

From the above paragraph, it should be clear that a more thor-
ough study of the connection of CE with the stability of static and 
time-dependent configurations is needed. For static configurations 
such as solitons or nonrelativistic and relativistic stars and compact 
objects, one would use linearized perturbation theory transform-
ing the problem into Sturm-Liouville form for the eigenvalues of 
the perturbative modes [39,40]. One would then compare he CE of 
the unperturbed and perturbed configurations to establish a more 
general stability criterion. For the case of time-dependent configu-
rations, such as the oscillons of interest in this paper, a preliminary 
approach was proposed in Ref. [10], although it has limited validity 
due to the many time-scales involved. Instead, as already suggested 
in Ref. [38], stability would correlate with the radiation rate and 
longevity of the oscillon. In what follows, when we refer to sta-
bility in a time-dependent context, we mean the longevity of the 
configuration, that is, how CE portrays the radiation loss (or not) 
of the configuration under study.

The rest of this paper is structured as follows. In Section 2 we 
describe the model and its numerical implementation. In Section 3, 
we briefly review configurational entropy. In Section 4 we present 
our results for three and two-dimensional oscillons. In 3d, we ob-
tain a power-law relation between the resonant oscillon lifetimes 
and their related CE stability measure, offering further support for 
the HC conjecture. In 2d, we use CE to show that oscillons ra-
diate their initial energy toward an attractor solution which, at 
least numerically, is classically stable, as anticipated analytically in 
Ref. [17]. We summarize our results in Section 5.

2. The model and its numerical implementation

We work with metric signature (−, +, +, +) and use spherical 
coordinates. More details of our model and numerical implemen-
tation can be found in Ref. [31].

The action for a self-interacting, real scalar field in D = d + 1
spacetime dimensions is

S[φ] =
∫

dD x
√|g|

(
−1

2
gμν∂μφ∂νφ − V (φ)

)
, (1)

where we consider the double-well potential,

V (φ) = λ

4
φ2 (φ − φ0)

2 . (2)

Introducing the following dimensionless field and coordinates, φ =
αφ̄, t = ξ t̄, and r = ξ r̄, and defining v = φ0

α , ξ−1 = √
λα and drop-

ing the bars, the action becomes,

S[φ] =
(
λ

1−d
2 φ3−d

0 vd−3
)

×∫
dD x

√|g|
(

−1

2
gμν∂μφ∂νφ − V (φ)

)
.

(3)

The physical units of time and distance are then ξ = v/
√

λφ0. 
Choosing v = √

2, the dimensionless potential is

V (φ) = 1

2
φ2 − 1√

2
φ3 + 1

4
φ4, (4)

with degenerate minima at φ = 0 and φ = √
2.

Following HC [14], we transform to monotonically increasing 
boosted (MIB) coordinates. We take t̃ = t, r̃ = r + f (r)t, and �̃ =
�, where f (r) is a smooth, monotonically increasing function in-
terpolating between 0 and 1 at a cutoff radius rc : f (r) → 0 when 
r � rc and f (r) → 1 for r � rc . Choosing f (r) = 1

2 tanh
( r−R

δ

) −
1
2 tanh

(−R
δ

)
, we see that MIB coordinates transition from regular 

spherical coordinates to light cone coordinates at a distance R from 
the origin in a space of thickness δ. The transition to light cone co-
ordinates blue shifts radiation and causes it to take a longer time 
to bounce back, effectively freezing the radiation in the region of 
thickness δ.

Using the definitions

a(t, r) = 1 + f ′(r)t, (5)

β(t, r) = f (r)

1 + f ′(r)t
, (6)

the Euler-Lagrange equation becomes,

1√|g|∂μ

√|g|gμν∂νφ =
1

ar̃d−1

(
∂t

[
ar̃d−1 (−∂tφ + β∂rφ)

])
+

1

ar̃d−1

(
∂r

[
ar̃d−1

(
β∂tφ + 1 − a2β2

a2
∂rφ

)])
.

(7)

Defining two auxiliary fields, � and � as

� = ∂rφ, (8)

� = a (∂tφ − β∂rφ) , (9)
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we obtain three coupled equations of motion for φ, �, and �. In-
serting (8) into (9) and rearranging, we arrive at the equation of 
motion for φ in terms of the auxiliary fields,

∂tφ = a−1� + β�. (10)

The two equations for the auxiliary fields are,

∂t� =∂r
[
a−1� + β�

]
,

∂t� = 1

r̃d−1
∂r

[
r̃d−1 (

β� + a−1�
)]−

(d − 1)
f

r̃
� − a

dV

dφ
.

(11)

Using the auxiliary fields in the definition of the stress energy-
momentum tensor, we derive the energy density,

ρ = T 00 = �2 + �2

2a2
+ V (φ), (12)

with the gradient energy density and kinetic energy density terms

E∇ = �2 − �2

2a2
, EK = ∂0φ∂0φ = �2

a2
. (13)

To find resonant oscillons, we evolve φ and the two auxiliary fields, 
� and �. Our initial condition is a Gaussian profile interpolating 
between the two vacua, φ(r, t = 0) = √

2e−(r/r0)2
. Since oscillons 

are attractors in field configuration space [17], different initial pro-
files with proper boundary conditions would also generate them. 
Spatial derivatives are computed using a finite difference method 
with second order accuracy. For the time progression, we imple-
ment an iterative method for a field f, resulting in a second order 
scheme (see Ref. [31])

f t+1 = f t
(0) +

(
�t

2

)
F
[

f t+1
]
+ μdiss

[
f t] . (14)

The dissipative term, μdiss , takes the form −ε∇4φ�x3. We used 
ε = 0.2. In k-space, we have ∇4φ → k4φk: the dissipative term be-
comes significant at higher k modes suppressing the blue shifted 
frequencies.

3. Configurational entropy in brief

In this section we briefly review the mathematical formalism of 
CE [32]. For details see Ref. [38]. Since we wish to study spatially-
localized configurations such as a field or its energy density, con-
sider the set of square-integrable bounded functions f (x) ∈ L2(R). 
Denoting F (k) as the Fourier transform of f (x), define the modal 
fraction f (k), as

f (k) = |F (k)|2∫ |F (k)|2 ddk
. (15)

For periodic functions with an associated Fourier series, the modal 
fraction is f (k) → fn = |An |2∑|An |2 , where An is the coefficient of the 
n-th Fourier mode. In analogy with Shannon’s information entropy, 
the discrete configurational entropy, Sc[ f ], is defined as [32]

Sc[ f ] = −
∑

fnln( fn). (16)

CE quantifies the spatial informational content of a function mod-
eling a physical system. It is maximal for a system with N modes 
carrying the same weight, fn = 1/N , Sc = lnN . If only one mode n∗
carries all the weight, fn∗ = 1, and CE is minimized, Sc = 0. Lower 
Sc corresponds to less localization in space.
For continuous systems, the mathematically consistent form 
of CE is the Differential CE (DCE) [38], which ensures positive-
definiteness. Consider the energy density of a field ρ(r, t) in 
d-spatial dimensions with a bounded l2-norm and its Fourier 
transform, ρ̃(k, t) = (2π)− d

2
∫

ddrρ(r, t)e−ik·r . The probability of 
a wave mode being detected in a volume ddk centered at k+
is proportional to the power carried by that mode, p 

(
k+|ddk

) ∝∣∣ρ̃(k+, t)
∣∣2

ddk. The weight of a mode k+ relative to the mode 
about which the power spectrum peaks, k∗ , is defined as the nor-
malized modal fraction,

fN(k, t) = p
(
k+|ddk

)
p

(
k∗|ddk

) =
∣∣ρ̃(k+, t)

∣∣2

∣∣ρ̃(k∗, t)
∣∣2

, (17)

bounded as 0 ≤ fN(k, t) ≤ 1. We thus define DCE as

C[ρ̃(k, t)] = −
∫

ddk fN(k, t) ln fN(k, t)

= C[t].
(18)

In Ref. [38], different quantities related to DCE were proposed 
to obtain the general result that the lifetime of oscillons is in-
versely related to the magnitude of such measures: more stable 
configurations display lower values of CE. Due to the essential 
dynamical differences between normal oscillons and the resonant 
oscillons we study here, we must approach the problem differently, 
as explained in what follows.

4. Lifetime of resonant oscillons

4.1. 3d DCE analysis

To get a better sense of resonant oscillons, we refer back to 
Fig. 1, the plot of oscillon lifetime as a function of initial bub-
ble radius r0, with spacing �r0 = 0.00047. In Ref. [38] different 
measures derived from DCE were used to study the longevity of 
“normal” oscillons, that is, oscillons that don’t live in one of the 
resonances anchored by a value r∗

0n . In Figs. 2 and 3, we plot DCE 
vs. time for normal and resonant oscillons, respectively, for a few 
illustrative examples. In Fig. 2, we follow four normal oscillons 
with different initial radii: as seen for other physical systems and 
in Ref. [38], DCE is inversely correlated with stability, and, thus, to 
oscillon longevity. We will show that this remains true for resonant 
oscillons, although the situation is subtler, as can be seen in Fig. 3: 
within our numerical precision, two resonant oscillons belonging 
to a specific resonance, n = 54, seem at least by eye to behave in 
essentially identical ways until the appearance of the last plateau, 
which extends further for the longer-lived oscillon, located higher 
up in the resonance peak. (See inset in Fig. 1.)

Fig. 3 and the inset show that by eye the behavior in DCE as 
a function of time for two oscillons on the same resonance seems 
nearly identical for most of their lifetimes. We thus cannot use the 
measures of DCE from Ref. [38] to study the longevity of resonant 
oscillons, since those relied on marked differences in the dynamics 
of normal oscillons throughout their lifetimes. (See Fig. 2.) How-
ever, if DCE is sensitive to growing instabilities in the configuration, 
it should be possible to construct a time-dependent measure that 
captures them. In [31], we found that an amplitude measure of the 
departure from virialization correlated well with resonant 3d oscil-
lon longevity. Following a similar logic, we constructed an average 
amplitude measure of the DCE, �C , defined as

�C = 1

T

t f in∫ ∣∣DC E(t) − C(t)
∣∣

C(t)
dt. (19)
tosc
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Fig. 2. DCE vs. time for several 3d “normal” oscillons with different initial radii r0, 
as labeled.

Fig. 3. DCE vs. time for two different 3d “resonant oscillons” lying on the 54th res-
onance. The plateau regions late in the lifetime of the oscillons differ in length. The 
inset shows that the difference between the two curve is small, but grows when 
approaching the plateau region.

Here, tosc is chosen to be near the formation time of the os-
cillon. We chose tosc = 1, 000 time units. Testing tosc in the range 
200 ≤ tosc ≤ 1200 showed that the results were consistent as long 
as tosc � 800 time units. t f in is the time just before the oscillon 
decays, and T is given by T = ∣∣t f in − tosc

∣∣. DC E(t) is the DCE as a 
function of time, and C(t) is the boxcar average of DC E(t), where 
the boxcar interval is taken to be the period associated with the 
fast frequency of the DCE curve. �C is a normalized, time-averaged 
measure of the difference between DCE and its boxcar average dur-
ing the oscillon’s lifetime.

As stated above, in [38], normal oscillon lifetimes were found 
to be inversely related to the magnitude of DCE measures. Also, in 
[31] the departure from virialization was seen to be inversely re-
lated to lifetime. Thus, we expect that �C would also obey such 
a trend. In Fig. 4 we plot �C as a function of lifetime for oscil-
lons along resonances 18, 36, 54, 74, 92, and 110. Comparing with 
Fig. 1, we see that resonances higher up on the resonance moun-
tain have lower values of �C , following a monotonic trend. As 
discussed in Ref. [31], the similar behavior of resonance pairings 
18 - 110, 36 - 92, and 54 - 74 is due to the near symmetry of the 
Fig. 4. �C as a function of lifetime for several 3d resonant oscillons along various 
resonances, using tosc = 1000.

Fig. 5. Logarithmic plot showing a power law relating �C with the lifetime of 3d 
resonant oscillons, �C ∼ bτ δ , where τ is the lifetime.

resonance mountain at its peak and the fact that each of these res-
onance pairings is the same number of resonances away from the 
peak resonance on the resonance mountain - resonance 64.

Fig. 5 is the logarithmic plot of �C as a function of lifetime for 
a few sample resonances. The best fit is given by,

�C = bτ δ, (20)

with b = 835.5 and δ  −4/3 as fitting constants. The coefficient 
of determination is R2 = 0.998.

The power law relationship shows that as we explore oscillons 
higher in the resonance peaks, �C continues to decrease as their 
lifetimes increase. Extrapolation suggests, at least within our nu-
merical accuracy, that oscillons located higher up in the resonances 
will have �C → 0 as τ → ∞, corroborating the infinite lifetime 
conjecture.

4.2. 2d DCE analysis

Multiple numerical studies investigating oscillons in 2d found 
that out to 107 time units, oscillons do not decay [12,20]. Here, 
we will advance this study exploring the fact that although 2d 
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Fig. 6. Energy vs. time for 2d oscillons with different initial radii.

Fig. 7. Plateau energy (blue) and DCEMin (red) as a function of initial radius r0. 
DCEMin values are vertically displaced upwards by 2.8 units to display similar trends 
of DCEMin and plateau energy.

oscillons may be infinitely long-lived and, therefore, cannot be dis-
tinguished from one another by their lifetimes, they do not all 
share the same plateau energy, as do oscillons in 3d. This can be 
seen in Fig. 6, where energy is plotted out to 105 time units for 
several oscillons with different initial radii. To study the longevity 
of 2d oscillons, we must investigate their properties as a function 
of their distinct plateau energies, in particular, whether they ra-
diate towards an attractor solution, as conjectured analytically in 
Ref. [17].

In Ref. [31], we found a correspondence between 2d oscillons’ 
plateau energies and their stabilities. Upon performing a paramet-
ric resonance analysis, we saw that the Floquet exponent of the 
solution to the linearized equations grew with increasing plateau 
energy, concluding that 2d oscillons with higher plateau energies 
are less stable. Above, in 3d, we found that longer-lived, and thus 
more stable, oscillons exhibited smaller values of �C . Since our 
previous findings suggest that both plateau energy and DCE can 
be used to study the stability of resonant oscillons, we expect that 
2d oscillons with lower plateau energies will also exhibit smaller 
values of different DCE measures.

To implement this analysis, we chose the plateau energy to be 
the value of the oscillon energy at 100,000 time units, and de-
Fig. 8. DCEMin vs. Plateau Energy for 2d oscillons.

fined a new measure of DCE, called DCEMin. This is the minimum 
value of DCE that an oscillon obtains between 20,000 and 100,000 
time units. We choose 20,000 time units as a lower bound in time 
when searching for DCEMin to allow the oscillon to shed most of 
its initial energy, as can be seen in Fig. 6. After 20,000 time units, 
radiation rates decrease rapidly (but not completely) for all oscil-
lons.

In Fig. 7 we display the plateau energy (blue) and DCEMin
(red) as a function of r0. DCEMin is vertically displaced 2.8 units 
upwards so that similarities in the trends between DCEMin and 
plateau energy can be observed. The trend is quite clear, as DCEMin
qualitatively tracks plateau energies. Also in this plot, we see 
that there are many oscillons with plateau energies Eplat ∼ 3.2. 
(We are currently investigating the curious dip around r0 ∼ 5.2.) 
From Fig. 6, we can see that the oscillons with initial radii r0 =
2.6, 2.7, 2.9, 3.1, and 3.3 are an illustrative sample of the many 
that group around Eplat ∼ 3.2. The corresponding values of DCEMin
hover slightly below ∼ 0.38.

Fig. 8 displays DCEMin as a function of plateau energy for the 
same 2d oscillons displayed in Fig. 7. As expected from Fig. 7, 
as DCEMin increases so does the plateau energy. However, note 
the cluster of oscillons around a plateau energy of ∼ 3.2 and 
DCEMin ∼ 0.375. The cluster divides two different trends, character-
ized by approximately linear slopes. To understand this behavior, 
we investigated the rates of energy loss for the different oscillons.

Fig. 9 shows the rate of energy loss dE
dt ≡ Ė for five sample 

oscillons as a function of time. The oscillon with plateau en-
ergy, Eplat = 3.1894 (red curve) is found in the cluster region in 
Fig. 8. Back to Fig. 9, oscillons with plateau energies lower than 
Eplat = 3.1894 have slower radiation rates (top of figure), while 
oscillons with plateau energies above Eplat = 3.1894 have faster 
radiation rates (bottom of figure).

In Fig. 8, the slow (fast) increase in DCEMin before (after) the 
cluster can be attributed to different radiation rates. Relative to 
the radiation rates for oscillons within the cluster, those for oscil-
lons below the cluster are monotonically slower, while those above 
the cluster are monotonically faster. We also note that the radi-
ation rates decrease with time in all cases. Our results indicate 
that increasing values of the plateau energy are correlated with 
increasing DCEMin and with increasing radiation rates, indicating 
growing instability. This correlation between plateau energy, con-
figurational entropy, and radiation rate helps us define the mean-
ing of instability in the context of 2d oscillons. Comparing with 
Fig. 6, we see that oscillons with lower plateau energies settle to 
those near constant plateau energies very quickly and then hardly 
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Fig. 9. Oscillon radiation rate, Ė , as a function of time for several 2d oscillons.

radiate, whereas oscillons with higher plateau energies shed away 
energy faster. In Fig. 9, notice that the oscillon with plateau energy, 
Eplat = 2.9081 radiates very slowly. Extrapolation suggests that the 
energies converge to an asymptotic value. Indeed, in Ref. [17], it 
was argued that 2d oscillons may be infinitely long-lived because 
they asymptotically approach an attractor solution with energy 
Eattract. Using the formalism of Ref. [17] with the potential of Eq. 4, 
we find Eattract = 2.2229. From Fig. 6 we see that the lowest oscil-
lon we probed, with r0 = 2.42, has plateau energy Eplat  2.5978, 
and thus still larger than Eattract. The closer to the attractor solu-
tion, the slower oscillons radiate, as seen in Fig. 9.

5. Summary and conclusions

We investigated the longevity of two classes of oscillons: res-
onant oscillons in three spatial dimensions and oscillons in two 
dimensions using a measure of spatial complexity known as con-
figurational entropy (CE) [32]. Resonant oscillons are configurations 
that live on specific regularly-spaced resonant peaks in the lifetime 
versus initial radius plot of oscillons (see Fig. 1) that have been 
conjectured in Ref. [14] to have potentially infinite lifetimes. We 
found a power law relating a stability measure derived from CE 
called �C̄ and the oscillons’ lifetimes, shown in Fig. 5. Upon ex-
trapolation and within the limits of our numerical approach, the 
trend does support the conjecture, in agreement with our previous 
results using dynamical methods [31]. In two dimensions, oscil-
lons have not been seen to decay in numerical studies. We found 
a correlation between the oscillons’ plateau energies, a CE-derived 
measure called DCEMin, and their radiation rates that supports the 
conjecture of Ref. [17] that 2d oscillons tend to a classically sta-
ble attractor solution. The results in this paper suggest the need 
for a more detailed exploration of the relation between configura-
tional entropy and stability of both static and time-dependent field 
configurations. Work along these lines is in progress.
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