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We compute the configurational complexity (CC) for discrete soliton and rogue waves traveling along an
Ablowitz-Ladik-Hirota (ALH) waveguide and modeled by a discrete nonlinear Schrodinger equation. We
show that for a specific range of the soliton transverse direction « propagating along the parametric time
£(t), CC reaches an evolving series of global minima. These minima represent maximum compressibility
of information in the momentum modes along the Ablowitz-Ladik-Hirota waveguide. Computing the CC

for rogue waves as a function of background amplitude modulation @, we show that it displays two
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essential features: a maximum representing the optimal value for the rogue wave inception (the “gradient
catastrophe”) and saturation representing the rogue wave dispersion into constituent wave modes. We
show that saturation is achieved earlier for higher values of modulation amplitude as the discrete rogue
wave evolves along time ¢ (t).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The discrete nonlinear Schrodinger (DNLS) equation, the dis-
crete version of the continuous nonlinear Schrédinger (NLS) equa-
tion, models the dynamics of various oscillatory physical systems,
including nonlinear waveguide arrays and nonlinear lattices [1]. It
is well-known that both discrete and continuous equations have
wide applicability in many areas of physics, from nonlinear optics
and plasma physics to hydrodynamics and biology [2-4]. An in-
complete list of applications of the DNLS equation includes light
propagation arrays on optical waveguides [5-7], Bose-Einstein con-
densates (BECs) trapped in deep optical lattices [8], denaturation
of the DNA double strand [9], breathers in granular crystals [10],
dynamics of protein loops [11], molecular crystals [12], and atomic
chains [13]. The Ablowitz-Ladik-Hirota (ALH) equation is a finite-
difference approximation to the NLS and thus plays a significant
role in the study of anharmonic lattices [3,14]. Its various appli-
cations include rogue [15,16] and solitary waves [17], as well as
Bloch oscillations [18] among others.

In this paper, we will focus our attention on discrete solitons
modeled by the ALH equation, examining their stability as applied
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to their propagation on nonlinear wave guides [19]. In 1973, it was
shown that optical solitons in a fiber behave as solitary waves with
envelope satisfying the NLS equation. This theoretical prediction
was observed experimentally in 1980 [20], with solitons clearly
forming on waveguides. In turn, the use of DNLS equation as an
approximate model gained importance particularly in the area of
AlGaAs waveguide arrays [21].

Of particular interest is the study of localized excitations so-
lutions of the DNLS equation. Among these wave excitations
one finds rogue waves [15]-also known as freak waves—sudden,
spontaneously-emerging surface waves which may occur in deep
oceans and shallow waters, with potentially disastrous conse-
quences [15,16]. Rogue waves have been observed in various
physical systems, including nonlinear optical fibers [22-24], super-
fluids [25,26], Bose-Einstein condensates [27], and capillary waves
[26,28].

Various strategies are adopted to extract the dynamical features
of physical systems modeled by the DNLS equation, including the
AL model [3] and the Salerno model [29]. In this work, we pro-
pose to expand the investigation of such configurations by using
Configurational Complexity (CC), one of a family of Configuration
Information Measures (CIMs) designed to study spatial complexity
and stability of spatially-localized discrete or continuous configu-
rations that emerge in many different areas of physics, including
various solitons in the NLS equation and its discrete versions. In-
spired by Shannon information theory [30], CIMs make use of the
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continuous or discrete Fourier transform of square-integrable fields
to establish an equivalent information content description whereby
the field is a “message” written in terms of its momentum modes
k, the “alphabet,” which appear with a certain probabilistic fre-
quency.

The first member of the family of CIMs was originally pro-
posed in the work by Gleiser and Stamatopoulos [31], where it
was called Configurational Entropy (CE). Since then, it became clear
that there are four different entropic and complexity information
measures, as defined and explained in the work by Gleiser and
Sowinski [32]. In particular, the measure originally used by Gleiser
and Stamatopoulos is, in fact, the differential configurational com-
plexity (DCC). (“Differential” is applied when one deals with a
continuous function or field.) We define this measure below, but
refer the reader to Ref. [32] for details.

For the case of discrete solitons and rogue waves, the appro-
priate CIM is CC [32]. There is a firm link between information
and dynamics, where the entropic computations signal the emer-
gence of nonlinear structures and highlight their stability proper-
ties [31,33]. CIMs have been applied to a wide variety of physical
systems, such as neutron and boson stars [34], spontaneous sym-
metry breaking [33] and criticality during phase transitions [35],
glueballs [36], Q-balls [37], anti-de Sitter black holes [38,39], gravi-
ton Bose-Einstein condensates in the brane-world [40], the energy-
energy correlation of ete™ into hadrons [41], oscillon lifetimes in
scalar field theories [42], instantons and vacuum decay in arbitrary
spatial dimensions [32], dynamical tachyonic holographic Ads/QCD
models [43], standard model [44] and inflationary cosmology [45],
and in the study of dissociation of heavy vector mesons in a ther-
mal medium [46]. Specific solitonic applications include bounces in
one spatial dimension and critical bubbles in three spatial dimen-
sions [31], solitons in supersymmetric theories [47], Korteweg-de
Vries solitons in quark-gluon plasma [48], transition behavior of
the discrete nonlinear Schrodinger equation [49], and optical bright
similariton in tapered graded-index waveguides [50].

Here, we apply CC to waves propagating in Ablowitz-Ladik-
Hirota (ALH) lattices [51-54], modeled with variable [50] as op-
posed to constant coefficients [48]. In section 2, we briefly review
CC. In section 3, the discrete one-soliton and rogue wave solutions
of the DNLS equation are obtained invoking a similarity transfor-
mation. First, we show that the discrete soliton CC has global min-
ima as a function of transverse direction « and time variable ¢(t),
indicating the configurational stability of discrete solitons propa-
gating on a Ablowitz-Ladik-Hirota lattice or waveguide. Second, we
examine the solutions for rogue waves as a function of the back-
ground amplitude modulation w«, and find two essential features:
there is a pronounced maximum for CC representing the “gradient
catastrophe” typical of the inception of a rogue wave; also, there is
saturation for larger values of u as CC tends to vanish, which oc-
curs at earlier times as w increases. Our results are summarized in
section 4.

2. Configurational complexity for discrete one-solitons and
rogue waves

Consider a scalar field configuration, ¢(r), within a finite vol-
ume V and periodic boundary conditions. The field can be decom-
posed into a countable sum of Fourier modes

pm =) gre™". (1)

k

The two-point correlation function contains information about the
shape of the field. Its Fourier transform, the power spectrum, en-
capsulates the strength of all the modes that go into generating
the configuration,

PLA:127039

Physics Letters A eee (eeee) seecee

1 o
v / dr o)t +1) = ij |Grl2e™T. 2)

Given a specific power spectrum, the relative contribution of dif-
ferent modes is quantified by the modal fraction

loi|?
fio= — 3)
max | @y |
which satisfies 0 < fix < 1. The normalization with the maximum
mode guarantees the positivity of the configurational complexity

(CC), defined as [31]
Cclpl=—=) filn fi. (4)
k

This measure vanishes if all the non-zero modes contributing to a
configuration have a uniform modal fraction (i.e., carry the same
weight). It also vanishes for a plane wave. Somewhere in between
the monotony of a plane wave and the randomness of uncorrelated
white noise CC maximizes, lending weight to the interpretation of
CC as a measure of shape complexity. Configurational Entropy (CE),
on the other hand, maximizes when all modes contribute equally,
justifying the use of “entropy.” This explains our use of “entropy”
and “complexity” for CE and CC, respectively. CE is defined without
the normalization by the maximum mode contribution and is thus
concerned with quantifying the number of bits necessary to con-
struct a field configuration out of wave modes. (This was not quite
clear in the previous literature, as pointed out in Ref. [32]. What
was called CE is now called CC.)

3. Configurational complexity for nonautonomous discrete
one-solitons and rogue waves

3.1. Model equation and discrete one-soliton solution

Wave propagation in generalized Ablowitz-Ladik Hirota (ALH)
lattices with variable coefficients is modeled by the DNLS equation
[51-54]. The (1+1) Dimensional form of the DNLS equation is given
as

U, N 2
Il [A(O)Uny1 + 2" OUn—11(1 + h(®)|Un|")
=2V (O Un +ic()Un + (£ () — x ()Uy =0. (5)

Here U, = U, (t) denotes the complex field amplitude at the
nth site of the lattice, with n =0, £+1, £+2..... The complex-valued
function A(t) is the coefficient of tunnel coupling between sites
and can be rewritten as A(t) = a(t) +ib(t) with a(t) and b(t) being
real-valued functions. h(t), v, (t), and «(t) are the time-modulated
coefficients of intersite nonlinearity, space and time modulated in-
homogeneous frequency shift, and time modulated gain or loss
term, respectively. x (t) and ¢(t) are functions of time.

The discrete soliton solution of Eq. (5) can be obtained by trans-
forming it into a standard discrete Hirota equation by using the
similarity transformation [51-54]

Un(t) = g(t) explign () Wn (£ (£)), (6)

where the g(t) is the real-valued function of time and the phase
¢n(t) is a function of space and time.

Assuming the phase is a first degree polynomial in space with
time-dependent coefficients,

¢n(t) = C1(On + C2(0), (7)

and substituting Eqs. (6) and (7) into Eq. (5), a set of first-order
differential equations for the parameters of transformation is ob-
tained, and the transformed field W satisfies the standard discrete
Hirota equation [55]

i
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where the parameters are related through a set of nonlinear ordi-
nary differential equations,
&) +a(hg) =0,
[C1(On + Co ()] + 2vy(t) — £ () =0,
h(®)[g®)* =M,
C1() +o1(t) =tan "' (B/A),
t

a= 2O

e

t

{(t):%/cos(tan_l(B/A))dr,
0
X (t) =2[a(t) cos(C1(t)) + b(t) sin(C1(t))].

We write the parameters a(t) and b(t) as

a(t) = cos(oq(t)), b(t) = sin(o(t)).

Solving equation for g(t),
t

&(t) = goexp[ / a(s)ds],
0

and choosing «(t) = o sin(t)? cos(t), we obtain
1
8(D) = gocro exp(—3 sin(t)?).
We parameterize the external potential v, in Eq. (5) as

vp(t) = v1(On + va(b),

with
Ci(t
o =-122,
__ G0,
Va(t) = 5 + 7

We further write

C1(t) = tan(sin(t) + cos(t)),

so that

C1(t) = sec[cos(t) + sin(t)]*(cos(t) — sin(t)),
and

Ca(b)
2

() = —% sec[cos(t) + sin(t)]z(cos(t) —sin(t)) —

+ % cos(tan "' (B/A))¢ (1),
M
goexplfy a(s)ds]’
01(t) = tan(sin(t) + cos(t)) — tan "' (B/A).

h() =

Eq. (5) and its transformed version Eq. (8) admit soliton solutions
[55], as well as rogue waves and breathers [15]. In particular, writ-
ing the transverse direction as «, the discrete one-soliton solution
of Eq. (8) is given as
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Un(n,g)_ﬁ51nh( 5 )sech( n—+ 5 e
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2 2

where,

e1r =expli(Cin + C2)],

P T ST e
e2 = expl( 5t Ol

& =iy (cosh(x) — 1) — Bsinh(x).

Choosing k* =0, £* =0, for discrete one-soliton solution we
obtain,

Uny(n,¢) = % sinh(g)sech(%n + %(

+log(§ sinh(%)))ewz. (10)

3.2. Calculation of configurational complexity for discrete one-soliton

The position-space energy density corresponding to Eq. (10) is

K S - N IR

p(n, )= 4sech<2n 2§+log( 5 smh(z))> . (11)

After exploring the available parameter space for p(n, ¢), we found

that CC depends mainly on the transverse direction x and time

¢ (t) of the discrete one-soliton. To investigate this dependence, we

fix the values of the other parameters as y =i,8 = 0.001,¢ =

1,g0=1,00=1,M=1,A=2,B=0. CC for discrete soliton en-

ergy density (given by Eq. (11)) has been obtained using Eq. (4)
for several values of ¢(t) and «.

Profiles of CC as a function of time parameter for illustrative
values of the transverse direction are shown in Fig. 1 and Fig. 2,
respectively. In both cases, we observe a clear global minimum
value for Cc(k) and C.(¢(t)). We also observe plateaus for small
and large values of the variables (Fig. 1) and for large values
of k (Fig. 2). The asymptotic high plateaus imply small relative
change in the shape complexity of the soliton early and later in
time, with higher spatial localization: more momentum modes
contribute similarly to the object and there is not much relative
gain or loss of efficiency in information storage in time. As dis-
cussed in the CIMs literature, a minimum in CC indicates stability
(see, e.g., Refs. [35,34,32]). For these configurations in both figures,
there is less spatial compression and a larger number of modes
contribute to the modal fraction. In practical terms, this allows
for more information to be encoded into the one-soliton of the
Ablowitz-Ladik lattice.

3.3. Configurational complexity for nonautonomous discrete rogue
waves

The nonautonomous discrete one-rogue wave solution of Eq. (8)
is given as [15,54],

41+ w)(1 +20pu8)
1+4un? +16p2 + (1 + p)¢2

Un(n,§)=g\/17[(1 - )] eres,
(12)
where pu is the background amplitude and

e1 =expli(Cin + C2)],
e7 = exp[i(2¢((1+ )V A2 4+ B2 — A) +ntan ! (B/A)].
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Fig. 1. Configurational complexity of discrete one-soliton C.(¢(t)) for several values of transverse direction « as a function of time variable ¢(t). The minimum value of
Cc(¢(t)) varies with « and occurs at (a) ¢(t) =40.0, (b) ¢(t) =1.47 and (c) ¢(t) =1.07 for x = 0.1, 0.3, 0.5, respectively.

AT :

(=1 .o':

05 10 15 20 25 3.0
K

Fig. 2. Snapshot of configurational complexity C.(k) as a function of transverse di-
rection « of the discrete one-soliton. The minimum value of CC occurs at ¥ =0.18.

The related position-space energy density is,

pn,g)

[(1 _ 4(1+u)(172£u£)> (1 _ 4(1+M)(1+2m§))]

€s €s

a5

1]

(13)

8(1+/)2 (—t4+2u8) 14+218)  4/I(1+p)(e11) 1
|:1 + (e9)(e10) - (69)% tan

where

es =1+4n’u + 162 (14 )¢,
eg=1+16u2c2 +16u3¢2,
er0=1+4u +16p%c% + 1612,
e11 = (=14 12ue? +12u%2%).

Values of the various parameters were fixed as ggp = 1,9 =
1,M =1,A =2, B =0. The configurational saturation states have
been achieved at ¢(t) ~ 2.1, 1.0, and 0.62, for values of background
amplitude parameter © = 0.1, 0.3, and 0.5, respectively: for higher
values of background amplitude g, saturation occurs earlier in the
propagation time ¢ (t) (Fig. 3) [56].

In terms of CC, we can interpret the rogue wave as the maxi-
mum instability solution, thus at strong spatial concentration and
thus large CC. At the other extreme (CC — 0), the saturation state
is equivalent to all modes carrying the same weight, represent-
ing the dispersion of the wave. In Fig. 4, we show the ranges of

‘CO u=01:
AA IJ=0.37

{am

Fig. 3. Configurational complexity C.(¢(t) of discrete one-rogue wave in the
Ablowitz-Ladik Hirota (ALH) lattice propagating in the ¢(t) time with background
amplitude © = 0.1, 0.3, 0.5. Saturation (C.(¢(t) — 0) occurs earlier for larger values
of .

25t Z()=1.01
205" ]
s 15k "
©op
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u

Fig. 4. Snapshot of configurational complexity C.(u) for the discrete one-rogue wave
propagating in the Ablowitz-Ladik Hirota (ALH) lattice as a function of the parame-
ter , showing a clear maximum at p© = 0.18.

the background amplitude w that include the maximum of CC and
the saturation state for a fixed value of the time variable {(t). The
peak indicates the range of values for the background modulating
the rogue wave, sometimes called the “gradient catastrophe” [57].

4. Conclusion

We have studied one-soliton and rogue wave solutions prop-
agating in Ablowitz-Ladik waveguides modeled with the discrete
nonlinear Schrédinger equation, using a measure of space com-
plexity known as Configurational Complexity (CC). For discrete
solitons, the configurational complexity displays plateaus for dif-
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ferent values of the transverse parameter x as it evolves in time,
with a sharp minimum in between (see Fig. 1). Using the inter-
pretation of the CC measure, the high plateaus imply that there
is more spatial localization and momentum modes contributing
similarly to the object without much gain or loss of efficiency in
information storage. A minimum in CC indicates stability, where
there is less spatial compression and a larger number of modes
contribute similarly to the modal fraction, allowing for more infor-
mation encoding. For rogue waves, we found that the CC displays
both saturation for larger times for illustrative values of the am-
plitude modulation parameter u (see Fig. 3), as well as a clear
maximum for a time snapshot at « = 0.18 (see Fig. 4). The satura-
tion indicates the dispersion of the configuration into free waves,
while the maximum indicates maximum spatial compression for
the optimal modulation amplitude triggering the onset of such un-
stable waves.

We plan to expand this study to objects in higher dimensions
in future work, as well as offer a more detailed parameter analysis.
We hope our results will inspire further work on the application
of entropic measures to discrete and continuous solitons with the
goal of aiding the design of more efficient Ablowitz-Ladik waveg-
uides and other solitonic conduits.
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