
VOLUME 73, NUMBER 26 PHYSICAL REVIEW LETTERS 26 DECEMBER 1994

Dynamics of Weak First Order Phase Transitions
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The dynamics of weak vs strong first order phase transitions is investigated numerically for (2 + 1)-
dimensional scalar field models. It is argued that the change from a weak to a strong transition is itself
a (second order) phase transition, with the order parameter being the equilibrium fractional population
difference between the two phases at the critical temperature, and the control parameter being the
coefficient of the cubic coupling in the free-energy density. The critical point is identified, and a power
law controlling the relaxation dynamics at this point is obtained. Possible applications are briefly
discussed.
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Of the many interesting possibilities raised by primor-
dial phase transitions [1], the generation of the baryon
number of the Universe during the electroweak transition
has been extensively investigated following the seminal
work of Kuzmin, Rubakov, and Shaposhnikov [2]. For
the purpose of this paper, the important aspect of the elec-
troweak phase transition is that it is, in most scenarios
proposed so far, a first order phase transition. And, at
least within the context of the standard model of particle
physics, the transition is very possibly a weak one; the
standard computation for nucleation of critical bubbles
(see Refs. [3—5]) shows that the thin-wall approximation
fails and that the bubbles are rather thick [6].

The possibility that the electroweak transition could
be weakly first order has led Gleiser and Kolb (GK) to
propose a novel mechanism by which such transitions
evolve [7). The transition would be characterized by a
substantial phase mixing as the critical temperature T,
(i.e., when the two phases are degenerate) is approached
from above, followed by domain coarsening below T, .
(The slow cooling is provided by the expansion of the
Universe. ) GK modeled the dynamics of this phase
mixing by estimating the fraction of the volume occupied
by subcritical (correlation volume) thermal fluctuations
of each phase as a function of the temperature. They
neglected the fact that these subcritical fluctuations were
unstable and thus found that the system would be equally
populated by the two phases as it reached T, . The results
of Ref. [8] indicate that GK are at least qualitatively
correct; there will be a regime in which the transition is
weak enough that considerable phase mixing occurs even
above T, . (It is, of course, possible, although not directly
relevant here, that this interesting regime lies beyond the
validity of the perturbative evaluation of the electroweak
effective potential. At present, this question does not
appear to be resolved [9].)

Because of the complex nonequilibrium nature of the
system, any analytical approach is bound to be severely
limited. The need for a numerical investigation of this
question is clear. This need is even more justified by not-
ing that several of the gross features of the electroweak

transition may appear in other unrelated physical systems
such as nematic liquid crystals and certain magnetic ma-

terials. Moreover, numerical simulations of first order
transitions in the context of field theories (as opposed to
discrete Ising models [10]) are scarce. Recent work has
shown that the effective nucleation barrier is accurately
predicted by homogeneous nucleation theory in the context
of (2 + 1)-dimensional classical field theory [11]. These
results were obtained for strong transitions, in which the
nucleation barrier B was large. Nucleation was made pos-
sible due to the fairly high temperatures used in the simu-
lations. [Recall that the decay time is proportional to
exp (B/T).]

In order to study how the weakness of the transition will
affect its dynamics, the homogeneous part of the (coarse-
grained Helmholtz) free-energy density is written as

U(Q, T) = —(T —T )Q ——Tf + —
Q . (1)

This free-energy density resembles the finite-temperature
effective potential used in the description of the elec-
troweak transition, where u is determined by the masses
of the gauge bosons and T2 is the spinodal instability tem-
perature [2]. In the electroweak case the order parameter
is the magnitude of the Higgs field, and the effective
potential is obtained after integrating out the gauge and
fermionic degrees of freedom. Here, we will not be
concerned with the limits of validity of the perturbative
effective potential. The goal is to explore the possible dy-
namics of a transition with free-energy density given by
Eq. (1) and use the results as suggestive of the behavior
in the electroweak case. This free-energy density is also
similar to the de Gennes —Ginzburg —Landau free energy
(with the elastic constants set to zero) used in the study
of the isotropic-nematic transition in liquid crystals [12].
This transition is known to be weakly first order; departures
from the mean field prediction for the behavior of the cor-
relation length were detected as the degeneracy tempera-
ture is approached from above, signaling the presence of
"pretransitional phenomena, "due to long-wavelength fluc-
tuations observed by light-scattering experiments [13].

0031-9007/94/73(26)/3495(4)$06. 00 1994 The American Physical Society 3495



VOLUME 73, NUMBER 26 PHYS ICAL RE VIE% LETTERS 26 DEcEMBER 1994

It proves convenient to introduce dimensionless vari-
ables, x=xJa. T2, t =tJaT2, X=@/JT2, and 8=
T/T2, so that we can write the Hamiltonian as

H[X]
8

d x —)%Xi + —(8 —1)X
1 2 1 — 2 1 2

0 2 2

6 3 A 4——X + —X
3 4

(2)

where n = tx/a JT2 and A = A/aT2, (From now on the
tildes will be dropped unless a new quantity is intro-
duced. ) For temperatures above 8~ = (1 —u2/4A)
there is only one minimum at X = 0. At 8 = 8& an in-
fiection point appears at X;„t = u8~/2A. Below 8& the
inflection point separates into a maximum and a minimum
given by X = (n8/2A) [1 ~ Jl —4A(1 —1/8 )/u'].
At the critical temperature 8, = (1 —2n~/9A) '~', the
two minima, at Xo = 0 and X+, are degenerate. Below
8, the minimum at X+ becomes the global minimum, and
the Xo phase becomes metastable. Finally, at 8 = 1 the
barrier between the two phases disappears.

In order to study numerically the approach to equilib-
rium at a given temperature 8, the coupling of the order
parameter X with the thermal bath will be modeled by a
Markovian Langevin equation,

8 X 2 BX BU(X 8) + x, t, 3
gt2 gg QX

where g = p/Ja T2 is the dimensionless viscosity coef-

ficient and g = g/aT2 is the dimensionless stochastic
5/2

noise with vanishing mean, related to rt by the fiuctuation-
dissipation theorem, (g(x, t)g(x', t')) = 2rtTB(t —t') &

82(x —x ). The viscosity coefficient was set to unity in
all simulations. The lattice spacing was also set to unity
in all simulations. It turns out that in all cases of interest
here the mean-field correlation length g,,2 = U"(Xo, 8)
will be sufficiently larger than unity to justify this choice.
In future work it would be interesting to see how to
generalize the lattice renormalization conditions obtained
in Ref. [11] for temperature independent potentials to
the situation studied here. The Langevin equation was
integrated using the fifth-degree Nordsiek-Geer algorithm,
which allows for fast integration with high numerical
accuracy [14]. The time step used was Bt = 0.2, and

results were obtained with a square lattice with L = 64.
(Comparison with L = 40 and L = 128 produced negli-
gible differences for our present purposes. ) No depen-
dence of the results was found on the time step, random
noise generator, and random noise seed.

The strategy adopted was to study the behavior of the
system given by Eq. (2) at the critical temperature when
the two minima are degenerate. The reason for this choice
of temperature is simple. If at 8, most of the system is
found in the X = 0 phase then, as the temperature drops
below H„one expects homogeneous nucleation to work;
the system is well localized in its metastable phase. This
is what happens when a system is rapidly cooled below
its critical temperature (rapid quench), so that it finds
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FIG. l. The approach to equilibrium for several values of o. .

itself trapped in the metastable state. The large amplitude
fluctuations which will eventually appear and grow are the
nucleating bubbles. If at 0, one finds a large probability
for the system to be in the X+ phase, then considerable
phase mixing is occurring and homogeneous nucleation
should not be accurate in describing the transition. Large
amplitude fluctuations are present in the system before it
is quenched to temperatures below 0, . For definiteness
call the two phases the 0 phase and the + phase. The
phase distribution of the system can be measured if the
idea of fractional area (volume in three dimensions) is
introduced. As the field evolves according to Eq. (3), one
counts how much of the total area of the lattice belongs to
the 0 phase with X ~ X (i.e., to the left of the maximum)
and how much belongs to the + phase with X & X
(i.e., to the right of the maximum). Dividing by the total
area, one obtains the fractional area in each phase, so that

fo(t) + f+(t) = 1, independently of L2.
The system is prepared initially in the 0 phase, fo(0) =

1 and f+(0) = 0. Thus, the area-averaged value of the or-
der parameter, (X)(t) = A ' fXdA, is initially zero. The
coupling with the thermal bath will induce fiuctuations
about X = 0. By keeping A = 0.1 fixed, the dependence
of fo(t), f+(t), and (X) (t) on the value of u can be mea-
sured. Larger values of u imply stronger transitions. This
is clear from the expression for 8, which approaches unity
as u 0. (In the electroweak case, the same argument
applies, as what is relevant is the ratio u2/A; u is fixed but
A increases as the Higgs mass increases. ) The results are
shown in Fig. 1 for several values of u between u = 0.3
and u = 0.4. Each one of these curves is the result of av-

eraging over 200 runs. The two important features here
are the final equilibrium fraction in each phase and the
equilibration time scale. The approach to equilibrium can
be fitted at all times by an exponential,

fo(t) = (1 fo')expt. dt/&. q) I + fo"
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TABLE I. The values of the equilibration time scales and the

exponents for the exponential fit of Eq. (4) for several values of
u. Also shown are the equilibrium fractions fo(8,) and f (8,)
Uncertainties are in the last digit.

0.30
0.33
0.35
0.36
0.37
0.38
0.40

&eq

21.0
40.0
75.0

25.0
15.0
5.0

0.80
0.80
0.60

0.65
0.80
1.0

fo(8.)

0.505
0.514
0.525
0.580
0.800
0.870
0.937

f+(8,)

0.495
0.486
0.475
0.420
0.200
0.130
0.063

where fo is the final equilibrium fraction and r,q is the
equilibration time scale. In Table I the values of r,q and
o. are listed for different values of a. Note that the slot
for u = 0.36 is empty. For this value of a the approach
to equilibrium cannot be fitted at all times to an exponen-
tial; however, at large times it can be fitted by a power
law,

fo(&) la=0.36 (5)

where k is the critical exponent controlling the approach
to equilibrium. A good fit is obtained for k = 0.25
(~0.01), as shown in Fig. 2. Note that this is not the
same as the dynamical critical exponent z = 2, defined as

Z
~eq b cor '

The fact that there is a critical slowing down of the
dynamics for u = 0.36 is indicative of the presence of
a second order phase transition near a = 0.36. Similar
behavior has been found in liquid crystals in the neighbor-
hood of the isotropic-nematic transition [15] and is typi-
cal of ferromagnetic materials near the Curie temperature.
This transition reveals itself in a striking way if we define
as an order parameter the equilibrium fractional difference
AFeq,

bF,q
= fo —f+ (6)

In Fig. 3 BF,q is plotted as a function of n. Clearly,
there is a marked change in the behavior of the system
around u = a, = 0.36. This curve is essentially identical
to numerical results for the magnetization as a function of
temperature in Ising models; the rounding is due to finite
size effects. [See Fig. 2(a) in [10].] For u ( u, the
fractional are occupied by both phases in equilibrium is
practically the same at 0.5. There is considerable mixing
of the two phases, with the system unable to distinguish
between them. One may call this phase the symmetric
phase with respect to the order parameter AF,q. For a )
u, there is a clear distinction between the two phases,
with the + phase being sharply suppressed. This may be
called the broken-symmetric phase. As a consequence of
this behavior, a very clear distinction between a strong
and a weak transition is possible. A strong transition
has u & a, so that the system is dominated by the 0
phase at 8,. For a weak transition neither phase clearly
dominates, and, as argued above, the dynamics should be
quite different from the usual nucleation mechanism.

In order to understand the reason for the sharp change
of behavior of the system near u„ in Fig. 4 the equilib-
rium area-averaged order parameter (X),q and the inflec-

tion point X;„I = (n8/3A) [1 —gl —3A(1 —1/8 )/a ]
are shown as a function of u. Also shown is the rms
amplitude of correlation-size fluctuations X, = (X')r—
(X)r, where ( )r is the normalized thermal average with
probability distribution P[X ] = exp( —F[X„]/8). F[X )
is the free energy of a Gaussian-shape subcritical fluctua-
tion. For details see Ref. [16]. It is clear from this figure
that the transition from weak to strong occurs as (X),q
drops below X;„I. This result can be interpreted as an
effective Ginzburg criterion for the weak-to-strong transi-
tion. It matches quite well the fact that the critical slowing
down occurs for u = 0.36. This result is in qualitative
agreement with the study of Langer, Bar-on, and Miller
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FIG. 2. Fitting fo(8, ) by a power law at large times for
u = 0.36.

FIG. 3. The fractional equilibrium population difference AF,q
as a function of u.
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FIG. 4. Comparison between area-averaged field and location
of the inflection point as a function of n. Also shown are the
location of the barrier X,„and the rms fluctuation X

contrasting the onset of nucleation vs spinodal decompo-
sition for binary fluid and solid solutions [17], where it
was found that the transition between the two regimes oc-
curs roughly at the spinodal (i.e., at the inflection point).
Event though X, drops below X;„t for a smaller value
of o, , being a much less computer intensive quantity to
obtain, it should serve as a rough indicator of the weak-
to-strong transition.

The present work raises many questions for future
investigation. Apart from investigating the (3 + 1)-
dimensional case and obtaining the critical exponent for
the order parameter (as well as more accurate values for
ct„7,q, and k) using finite-size scaling techniques [10],
EF,q

~ (a —ct, )t' (P = 1/8 for the d = 2 Ising model,
and p = I/2 for mean field), it should be interesting to
test if this behavior could be observed in the laboratory.
A possible system would be an Ising magnetic film in

the absence of an external field, heated to just above its
measured Curie point. For the model studied here, this

would correspond to u ~ u, .
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