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Abstract. The dynamics of phase transitions plays a crucial r61e in the so-called in- 
terface between high energy particle physics and cosmology. Many of the interesting 
results generated during the last fifteen years or so rely on simplified assumptions 
concerning the complex mechanisms typical of nonequilibrium field theories. Af- 
ter reviewing well-known results concerning the dynamics of first and second order 
phase transitions, I argue that much is yet to be understood, in particular in sit- 
uations where homogeneous nucleation theory does not apply. I present a method 
to deal with departures from homogeneous nucleation, and compare its efficacy 
with numerical simulations. Finally, I discuss the interesting problem of matching 
numerical simulations of stochastic field theories with continuum models. 

LECTURE I 

1 Homogeneous Nucleat ion 

The fact that the gauge symmetries describing particle interactions can be 
restored at high enough temperatures has led, during the past 15 years or so, 
t o  an active research program on the possible implications that  this symme- 
t ry restoration might have had to  the physics of the very early Universe. One 
of the most interesting and popular possibilities is that during its expansion 
the Universe underwent a series of phase transitions, as some higher symme- 
t ry group was successively broken into products of smaller groups, up to  the 
present standard model described by the product SU(3)c 8 SU(2)L 8 U(l)y.  
Most models of inflation and the formation of topological (and nontopolog- 
ical) defects are well-known consequences of taking the existence of cosmo- 
logical phase transitions seriously [I]. 

One, but certainly not the only, motivation of the works addressed in 
this talk comes from the possibility that the baryon asymmetry of the Uni- 
verse could have been dynamically generated during a first order electroweak 
phase transition [2]. As is by now clear, a realistic calculation of the net 
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baryon number produced during the transition is a formidable challenge. 
We probably must invoke physics beyond the standard model (an exciting 
prospect for most people), push perturbation theory to its limits (and beyond, 
due to the nonperturbative nature of magnetic plasma masses that regulate 
the perturbative expansion in the symmetric phase), and we must deal with 
nonequilibrium aspects of the phase transition. Here I will focus on the latter 
problem, as it seems to me to be the least discussed of the pillars on which 
most baryon number cMculations are built upon. To be more specific, it is 
possible to separate the nonequilibrium aspects of the phase transition into 
two main subdivisions. If the transition proceeds by bubble nucleation, we 
can study the propagation of bubbles in the hot plasma and the transport 
properties of particles through the bubble wall. A considerable amount of 
work has been devoted to this issue, and the reader can consult the works of 
Ref. [3] for details. These works assume that homogeneous nucleation theory 
is adequate to investigate the evolution of the phase transition, at least for 
the range of parameters of interest in the particular model being used to 
generate the baryon asymmetry. This brings us to the second important as- 
pect of the nonequilibrium dynamics of first order phase transitions, namely 
the validity of homogeneous nucleation theory to describe the approach to 
equilibrium. This is the issue addressed in this talk. 

Nucleation theory is a well-studied, but far from exhausted, subject. Since 
the pioneering work of Becker and Dbring on the nucleation of droplets in 
supercooled vapor [4], the study of first order phase transitions has been 
of interest to investigators in several fields, from meteorology and materi- 
als science to quantum field theory and cosmology. Phenomenological field 
theories were developed by Cahn and Hilliard and by Langer [5, 6] in the con- 
text of coarse-grained time-dependent Ginzburg-Landau models, in which an 
expression for the decay rate per unit volume was obtained by assuming a 
steady-state probability current flowing through the saddle-point of the free- 
energy functional [6, 7]. The application of metastable decay to quantum field 
theory was initiated by Voloshin, Kobzarev, and Okun [8], and soon after put 
onto firmer theoreticM ground by Coleman and Callan [9]. The generalization 
of these results for finite temperature field theory was first studied by Linde 
[10], and has been the focus of much recent attention [11]. 

The crucial ingredient in the evaluation of the decay rate is the compu- 
tation of the imaginary part of the free energy. As shown by Langer [6], the 
decay rate 7¢ is proportional to the imaginary part of the free energy 5 c, 

I E -  l 
= =  ' ImS,  (1.1) 

7rT 

where E_ is the negative eigenvalue related to metastability, which depends 
on nonequilibrium aspects of the dynamics, such as the growth rate of the 
critical bubble. Since .T" = - T l n Z ,  where Z is the partition function, the 
computation for the rate boils down to the evaluation of the partition function 
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for the system comprised of critical bubbles of the lower energy phase inside 
the metastable phase. 

If we imagine the space of all possible field configurations for a given 
model, there will be different paths to go from the metastable to the ground 
state. We can think of the two states as being separated by a hill of a given 
"height". The energy barrier for the decay is then related to the height of 
this hill. At the top of the hill, only one direction leads down to the ground 
state, the unstable direction. Fluctuations about this direction will grow, with 
rate given by the negative eigenvalue which appears in the above formula. 
All other directions are positively curved, and fluctuations about them give 
rise to positive eigenvalues which do not contribute to the decay rate. The 
path which will cost less energy is the one which will dominate the parti- 
tion function, the so-called critical bubble or bounce. It is simply the field 
configuration that interpolates between the two stable points in the energy 
landscape, the metastable and ground state. The energy barrier for the decay 
is the energy of this particular field configuration. 

For a dilute gas of bubbles only, the partition function for several bubbles 
is given by [12, 6], 

LZ@s)J . L j 

z( s)exp Lz@DJ ' 
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- ~ -  . . . 

(1.2) 

where ~S is the metastable vacuum field configuration and ~b is the bubble 
configuration, the bounce solution to the O(3)-symmetric Euclidean equation 
of motion. We must evaluate the partition functions above. This is done 
by the saddle-point method, expanding the scMar field ¢(x,T), such that 
¢(x, T) ~ (flf Jr- ~(X, T) for Z(~y), and ¢(x, ~-) -~ ~b(X) + ~(x, T) for Z(~b), 
where ~(x, ~-) and V(x, 7) are small fluctuations about equilibrium. 

It is crucial to note that the saddle-point, or Gaussian, method only 
gives good results if indeed the fluctuations about equilibrium are sufficiently 
small that nonlinear terms in the fields can be neglected. Even though the 
method sums over all amplitude fluctuations, it does so by assuming that 
the functional integral is well approximated by truncating the expansion 
of the action to second order. The efficiency of the method relies on the 
fact that higher amplitudes will be suppressed fast enough that their con- 
tribution to the partition function will be negligible. One can visualize this 
by comparing a sharp parabolic curve with a flatter one with minimum at 
x0, and investigating when f dxe -$(x) will be well approximated by writing 
f(x) ~ f(xo) + ½(x -xG)2f"(xo). For a sharp curve, larger amplitude fluctu- 
ations will be strongly suppressed and thus give a negligible contribution to 
the integral over all amplitudes. Clearly, this will not be the case for flatter 
curves. 
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Skipping details [11], using the saddle-point method one obtains for the 
ratio of partition functions, z(~) z(~s), 

1 

Z(gOb) saddZgzpoin* [ det(--[:]E +__V"(~b) )~ ]-~ e_~S (1.3) 
z( j) - ' 

where [det(M)z]-½ = f Duexp ( -  f :  dT f d3x½rl[M]~l) and AS -- SE(~b)-- 
SE(~f) is the difference between the Euclidean actions for the field config- 
urations ~b and Tf. [Note that SE(T), and hence AS, does not include any 
temperature corrections. It would if one had summed over other fields coupled 
to ~.] Thus, the free energy of the system is, 

1 

[ + e _ A s  (1.4) .T=-T [ ~ - ~ ~ j  

Let me stress again the assumptions that go into computing the free en- 
ergy. First, that the partition function is given by Eq. 1.2 within the dilute gas 
approximation, and second, that the partition function is evaluated approx- 
imately by assuming small fluctuations about the homogeneous metastable 
state ~I- It is clear that for situations in which there are large amplitude 
fluctuations about the metastable equilibrium state the above formula must 
break down. Thus the breakdown of the expression for the rate is intimately 
connected with the question of how well-localized the system is about the 
metastable state as the temperature drops below the critical temperature To. 
Homogeneous nucleation, as its name already states, is only accurate when 
the metastable state is sufficiently homogeneous. In the presence of inhomo- 
geneities, there is no reason to expect that the decay rate formula will apply. 
The question then is to quantify when does it break down and how can we 
incorporate nonperturbative corrections to the decay rate in a consistent way. 

2 N o n p e r t u r b a t i v e  C o r r e c t i o n s  t o  D e c a y  R a t e s  

In order to investigate the importance of large-amplitude fluctuations in the 
description of first order phase transitions, I have developed numerical sim- 
ulations in two [13] and, with J. Borrill, three [14] spatial dimensions, which 
measured the fraction of the volume of the system in the initial phase as a 
function of the barrier height. Since these have been documented elsewhere, 
here I quickly describe the main idea and results. 

Imagine a scalar field with a degenerate double-well potential. The field is 
coupled to a thermal bath at temperature T through a Langevin-like equation 
which assumes that the bath is Markovian, i.e., the noise is white and addi- 
tive. The system is artificially divided into two regions, left and right of the 
maximum of the potential, call it the negative and positive regions, respec- 
tively. The system is prepared initially in one of the regions, say, the negative 
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region with ¢(x,  t = 0) = -1 .  The coupling to the bath will then drive fluc- 
tuations of the field around this minimum and we measure the fraction of the 
total  volume in each of the two regions as a function of the parameters  con- 
trolling the height of the potential barrier, usually the tempera ture  and /or  a 
coupling constant. 

We observed that  while for large enough potential barriers the system 
remained well-localized around its initial state, a sharp change of behavior 
occurred for a critical value of the specific control parameter  being varied. 
In the case examined in Ref. [14], the control parameter  was the quartic 
coupling of the scalar field, A. We showed that  for A > )~c the system became 
completely mixed, in tha t  the volume was equally shared by the positive and 
negative regions. In other words, for A > Ac, the effective potential  describing 
the system is not a degenerate double-well, but a parabolic curve centered at 
(¢) = 0; Thermal fluctuations have "restored" the symmetry  of the system. 

The challenge was thus to model the large amplitude fluctuations which 
were responsible for this phase mixing. In what  follows I review the so-called 
subcritical bubbles method which can model quantitatively the dynamics of 
large, nonperturbative,  thermal fluctuations in scalar field theories. 

L E C T U R E  I I  

2.1 M o d e l i n g  N o n p e r t u r b a t i v e  F l u c t u a t i o n s :  
S y m m e t r y  R e s t o r a t i o n  a n d  P h a s e  M i x i n g  

As was stressed before, the computation of decay rates based on homogeneous 
nucleation theory assumes a smooth metastable background over which crit- 
ical bubbles of the lower free energy phase will appear, grow and coalesce, 
as the phase transition evolves. However, as the results from the numerical 
simulations indicate, the assumption of smoothness is not always valid. To 
the skeptical reader, I point out tha t  several condensed mat ter  experiments 
indicate tha t  homogeneous nucleation fails to describe the transit ion when 
the nucleation barrier (AS~T) becomes too small. Furthermore,  the agree- 
ment between theory and experiment has a long and problematic history [15]. 
Homogeneous nucleation has to be used with care, in a case by case basis. 

The  basic idea is that  in a hot system, not only small but  also large ampli- 
tude  fluctuations away from equilibrium will, in principle, be present. Small 
amplitude fluctuations are perturbatively incorporated in the evaluation of 
the finite temperature  effective potential, following well-known procedures. 
Large amplitude fluctuations probing the nonlinearities of the theory are not. 
Whenever they are important,  the perturbative effective potential  becomes 
unreliable. In an ideal world, we should be able to sum over all amplitude 
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fluctuations to obtain the exact parti t ion function of the model, and thus 
compute the thermodynamic quantities of interest. However, we can only to 
this perturbatively, and will always miss information coming from the fluc- 
tuations not included in its evaluation. If large amplitude fluctuations are 
strongly suppressed, they will not contribute to the part i t ion function, and 
we are in good shape. But  what if they are important,  as argued above? We 
can t ry  to approach this question avoiding complicated issues related to the 
evaluation of path integrals beyond the Gaussian approximation by obtaining 
a kinetic equation which describes the fraction of volume populated by these 
large amplitude fluctuations. In order to  keep the t reatment  simple, and thus 
easy to apply, severM assumptions are made along the way, which I believe are 
quite sensible. In any case, the strength of the method is demonstrated when 
the results are compared with the numerical experiments described before. 

Large amplitude fluctuations away from equilibrium are modelled by 
Gaussian-profile spherically-symmetric field configurations of a given size and 
amplitude. They  can be thought of as being coreless bubbles. Keeping with 
the notation of the numericM experiment, fluctuations away from the 0-phase 
[called the "negative phase" above], and into the 0-phase are writ ten respec- 
tively as, 

Co(r) = ¢ce - r ' / R '  , ¢0(r) = ¢~ "[1 - e - r ' /R~ )  \ , (2.5) 

where R is the radial size of the configuration, and ¢~ is the value of the 
amplitude at the bubble's core, away from the 0-phase. In previous t reatments  
(cf. Refs. [16] and [17]), it was assumed that  ¢~ = ¢+, tha t  is, tha t  the 
configuration interpolated between the two minima of the effective potential, 
and that  R = ~(T), where ~(T) = re(T) -1 is the mean-field correlation 
length. But in general, one should sum over M1 radii and amplitudes above 
given values which depend on the particular model under study. This will 
become clear as we go along. 

Define dn(R,  ¢, t) as the number density of bubbles of radius between R 
and R + dR at time t, with amplitudes ¢ >_ Ce between ¢ and ¢ + de. By 
choosing to sum over bubbles of amplitudes ¢~ and larger, we are effectively 
describing the system as a "two-phase" system. For example, in the numericM 
simulation above it was assumed that  the negative-phase was for amplitudes 
¢ -< Cmax, and the positive-phase was for amplitudes ¢ > Cmax. Clearly, for a 
continuous system this division is artificial. However, since the models we are 
interested in have two local minima of the free energy, this division becomes 
bet ter  justified. Fluctuations with small enough amplitude about  the minima 
are already summed over in the computat ion of the effective potential. It  is the 
large amplitude ones which are of relevance here. To simplify the notation, 
from now on I will denote by "+ phase" all fluctuations with amplitudes 
¢ > ¢c and larger. The choice of ¢~ is model-dependent, as will be clear 
when we apply this formMism to specific examples. 
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The  fact tha t  the bubbles shrink will be incorporated in the t ime depen- 
dence for the radius R 1. Here, I will only describe a somewhat  simplified 
approach to the dynamics. More details are provided in the work by Gleiser, 
Heckler, and Kolb [19]. The results, however, are essentially identical. 

The net rate at which bubbles of a given radius and ampli tude are created 
and destroyed is given by the kinetic equation, 

On(R,t)ot _ On(R,t) - ~  ÷ (V° ) 

( 2 . 6 )  

Here, Fo-.+(R) (F+--.0(R)) is the rate  per unit volume for the thermal  nucle- 
ation of a bubble of radius R of positive-phase within the 0-phase (0-phase 
within the positive-phase). V0(+) is the volume available for nucleating bub- 
bles of the +(0)  phase. Thus we can write, for the to ta l  volume of the system, 
VT = Vo + V+, expressing the fact tha t  the system has been "divided" into 
two available phases, related to the local minima of the free energy density. 
I t  is convenient to define the fraction of volume in the ÷ phase, V, as 

v+ v0 
v v  - = 1 - --yv ( 2 . 7 )  

In order to compute V we must sum over all bubbles of different sizes, 
shapes, and amplitudes within the + phase, i.e., star t ing with ¢min -> ¢c. 
Clearly, we cannot compute ~ exactly. But  it turns out tha t  a very good 
approximat ion is obtained by assuming tha t  the bubbles are spherically sym- 
metric,  and with radii above a given minimum radius, Rmin. The  reason 
we claim tha t  the approximation is good comes from comparing the results 
of this analytical approach with numerical simulations. The  approximat ion 
s tar ts  to break down as the background becomes more and more mixed, and 
the morphology of the "bubbles" becomes increasingly more important ,  as 
well as other terms in the kinetic equation which were ignored. For exam- 
ple, there should be a t e rm which accounts for bubble coalescence, which 
increases the value of 7. This te rm becomes impor tan t  when the density of 
bubbles is high enough for the probabil i ty of two or more of them coalescing 
to be non-negligible. As we will see, by this point the mixing is already so 
pronounced tha t  we are justified in neglecting this additional complication 
to the kinetic equation. As a bonus, we will be able to solve it analytically. 
The  expression for V is, 

1 Of course, the amplitude ¢ will also be time-dependent. However, its time- 
dependence is coupled to that of the radius, as recent studies have shown [18]. 
In order to describe the effect of shrinking on the population of bubbles it is 
sufficient to include only the time dependence of the radius. 
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f ¢ o 0 / /  ( 4 7  3 )  ,,v~--~ co2n 
7 ~- - -  ~--2-5-~dCdR . (2.8) 

n l i n  i n i n  

The attentive reader must have by now noticed that  we have a coupled 
system of equations; 7, which appears in the rate equation for the number 
density n, depends on n itself. And, to make things even worse, they both 
depend on time. Approximations are in order, if we want to proceed any 
further along an analytical approach. The first thing to do is to look for the 
equilibrium solutions, obtained by setting On~cOt = 0 in the kinetic equation. 
In equilibrium, 7 will also be constant 2. If wished, after finding the equi- 
librium solutions one can find the t ime-dependent solutions, as was done in 
Ref. [17]. Here, we are only interested in the final equilibrium distribution of 
subcritical bubbles, as opposed to the approach to equilibrium. 

The first approximation is to take the shrinking velocity of the bubbles to 
be constant, dR~dr = - v .  This is in general not the case (cf. Ref. [18]), but  
it does encompass the fact tha t  subcritical bubbles shrink into oblivion. The  
strength of the thermodynamic approach is tha t  details of how the bubbles 
disappear are unimportant,  only the time-scale playing a r61e. The second 
approximation is to assume that  the rates for creation and destruction of 
subcritical fluctuations are Boltzmann suppressed, so that  we can write them 
as /" = A T 4 e  -ysc /T ,  where A is an arbi t rary constant of order unity, and 
Fsc(R,  ¢c) is the cost in free energy to produce a configuration of given radius 
R and core amplitude ¢c. For the Gaussian ansatz  we are using, Fsc assumes 
the general form, Fs~ = a R  + f i r  3, where a = be 2 (b is a combination of 
zr's and other numerical factors) and /3  depends on the particular potential  
used. In practice, the cubic term can usually be neglected, as the free energy 
of small (R ~ ~) subcritical bubbles is dominated by the gradient (linear) 
term. We chose to look at the system at the critical tempera ture  Tc. For 
this temperature,  the creation and destruction rates, F0-~+ and F+-,o are 
identical. Also, for To, the approximation of neglecting the cubic te rm is very 
good (in fact it is better  and better  the larger the bubble is) even for large 
bubbles, since for degenerate vacua there is no gain (or loss) of volume energy 
for large bubbles. Finally, we use that  V+/VT  = 7 in the F+--,0 term. A more 
sophisticated approach is presented in Ref. [19]. 

We can then write the equilibrium rate equation as, 

where, 

On 
- e l ( R ) ,  (2.0) 

OR 

c ~ (1 - 2~/ )AT4/v ,  f ( R )  -- e -F~c/T (2.10) 

2 This doesn't mean that thermal activity in or between the two phases is frozen; 
equilibrium is a statement of the average distribution of thermodynamical quan- 
tities. Locally, bubbles will be created and destroyed, but always in such a way 
that the average value of n and 3, are constant. 



Two Lectures on Phase Mixing: Nucleation and Symmetry Restoration 163 

Integrat ing from Rmin and imposing tha t  n(R --~ c~) = 0, the solution is 
easily found to be, 

n(R) = a(¢C)/T e-~(¢c)R/T (2.11) 

Not surprisingly, the equilibrium number  density of bubbles is Bol tzmann  
suppressed. But  we now must  go back to V, which is buried in the definition 
of c. We can solve for ~/perturbatively,  by plugging the solution for n back 
into Eq. 2.8. After a couple of fairly nasty integrals, we obtain, 

: g (Ol(¢min)' Rmin)) , (2.12) 
1 + 2g (Ol(¢min) , Rmin) 

where, 

g (Ol(¢min), Rmin) = -~- a/T x 

× 6 +  + 3 ~  2 +  (2.13) 

We can now apply this formalism to any model we wish. The  first obvious 
application is to compare T obtained from the numerical experiment  with 
the value obtained from the kinetic approach. F~rom the definition of the  
equilibrium fractional population difference, Z~FEQ (Pc) = f~q _fy~,eq 

AFEQ (Pc) = 1 - 2V • (2.14) 

Thus, it is straightforward to extract  the value of V from the numerical 
simulations as a function of A. Also, as we neglected the volume contr ibution 
to the free energy of subcritical bubbles, we have, 

Fsc ---- ol(¢c)Rmin = 3v/-27r3/2X2 (Oc)Rmin , (2.15) 
8 

where, as you recall, X_ is the position of the max imum of the mean-field 
potential  used in the simulations. So, we must sum over all ampli tudes with 
X > X_,  and all radii with R > 1 (in dimensionless units), as we took the  
lattice spacing to be £ = 1. Tha t  is, we sum over all possible sizes, down to 
the minimum cut-off size of the lattice used in the simulations. In practice, 
we simply subst i tute ¢c = X_ and Rmin = 1 in the expression for 7. In 
Fig. 1, we compare the numerical results for V (dots) with the results from 
the analytical integration of the kinetic equation. The  plots are for different 
values of the parameter  A/v. Up to the critical value for A -~ 0.025, the  
agreement is very convincing. As we increase A into the mixed phase region 
of the diagram, the kinetic approach underest imates the amount  of volume 
in the +-phase.  This is not surprising, since for these values of A the density 
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of subcritical bubbles is high enough that terms not included in the equation 
become important, as I mentioned before. However, the lack of agreement 
for higher values of ~ is irrelevant, if we are interested in having a measure 
of the smoothness of the background; clearly, the rise in V is sharp enough 
that homogeneous nucleation should not be trusted for A > 0.024 or so, as 
the fraction of volume occupied by the +-phase is already around 30% of the 
total volume. Subcritical bubbles give a simple and quantitatively accurate 
picture of the degree of inhomogeneity of the background, offering a guideline 
as to when homogeneous nucleation theory can be applied with confidence, 
or, alternatively, when the effective potential needs higher order corrections. 

2.2 Mode l ing  N o n p e r t u r b a t i v e  F luc tua t ions :  
" Inhomogeneous"  Nuclea t ion  

Now we apply the subcritical bubbles method to the decay of metastable 
states in the case that the homogeneous nucleation formalism (section I) 
does not apply. Details of this work can be found in Ref. [21]. 

As mentioned before, if there is significant phase mixing in the background 
metastable state, its free-energy density is no longer V(¢ = 0), where I as- 
sume the potential has a metastable state at ¢ = 0. One must also account for 
the free-energy density of the nonperturbative, large-amplitude fluctuations. 
Since there is no formal way of deriving this contribution outside improved 
perturbative schemes, we propose to estimate the corrections to the back- 
ground free-energy density by following another route. We start by writing 
the free energy density of the metastable state as V(¢ = 0) + 5~sc, where 
5~sc is the nonperturbative contribution to the free-energy density due to the 
large amplitude fluctuations, which we assume can be modelled by subcritical 
bubbles. We will calculate 9~c further below. 

We thus define the effective free-energy difference between the two min- 
ima, AVcg, which includes corrections due to phase mixing, as 

ZlV~g = AVo + 9~sc (2.16) 

which is the sum of the free-energy difference calculated in the standard way, 
and the "extra" free-energy density due to the presence of subcritical bubbles. 
Henceforth, the subscript 'cg' will stand for "coarse-grained". 

Since for degenerate potentials (temperature-dependent or not) no criti~ 
cal bubbles should be nucleated, taking into account subcritical bubbles must 
lead to a change in the coarse-grained free-energy density (or potential) de- 
scribing the transition. Thus, it should be possible to translate the "extra" 
free energy available in the system due to the presence of subcritical bubbles 
in the background into a corrected potential for the scalar order parameter. 
We will write this corrected potential as V~g(¢). 

The standard coarse-grained free energy is calculated by integrating out 
the short-wavelength modes (usually up to the correlation length) from the 
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Fig. 1. The fraction of the volume in the + phase. The dots are from numerical 
simulations of Ref. 14, while the lines are the solutions of the Boltzmann eq. for 
different values of the parameter A/Iv I. 

parti t ion function of the system, and is approximated by the familiar form 
[2O] 

Fcg(¢) = f dar ( l  (v¢)2 + Vcg(¢)) . (2.17) 

How do we est imate Vcg? One way is to simply constrain it to be consis- 
tent  with the thin wall limit. Tha t  is, as Vcg(¢) approaches degeneracy (i.e. 
AV~g(¢) -~ 0), it must  obey the thin wall limit of eq. (2.16). Note tha t  with 
a simple rescaling, a general polynomial potential  (to fourth order) can be 
wri t ten in terms of one free parameter .  Thus, the thin wall constraint  can 
be used to express the corrected value of this parameter  in te rms of 5c~ in 
appropr ia te  units. The free energy of the critical bubble is then obtained by 
finding the  bounce solution to the equation of motion V2¢ - dVcg(¢)/d¢ = 0 
by the usual shooting method,  and subst i tut ing this solution into eq. (2.17). 

In order to determine Vcg, we must  first calculate the free-energy density 
9C~c of the subcritical bubbles. From the formalism presented in the previous 
subsection, 

oo f R  .... 02n(R, t) 
~sc "~ F~b 7 dRdCA, 

r a i n  J / ~ m i n  u~Uq~A 
(2.18) 
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where Cmi, defines the lowest amplitude within the +phase, typically (but 
not necessarilly) taken to be the maximum of the double-well potential. Rmi n 

is the smallest radius for the subcritical bubbles, compatible with the coarse- 
graining scale. For example, it can be a lattice cut-off in numerical simula- 
tions, or the mean-field correlation length in continuum models. As for Rm~x, 
it is natural  to choose it to be the critical bubble radius. 

As an application of the above method, we investigated nucleation rates 
in the context of a 2-d model for which accurate numerical results are avail- 
able [22]. This allowed us to compare the results obtained by incorporating 
subcritical bubbles into the calculation of the decay barrier with the results 
from the numerical simulations. The potential  used was wri t ten in terms of 
one dimensionless parameter  A - m2h/g 2, 

)~ 4 ( 2 . 1 9 )  v ( ¢ )  = + 

This double-well potential is degenerate when A = 1/3, and the second min- 
imum is lower than the first when A < 1/3. 

As argued before, we find the new coarse-grained potential  V~g (or, equiv- 
alently, Acg) by constraining it to agree with the thin wall limit. Simple 
algebra from eqs. (2.16) and (2.19) yields, to first order in the deviation from 
degeneracy, 

£o 
= - ( 2 . 2 0 )  

= 2 9 ~  ` where J~sc ~ s¢ is the dimensionless free-energy density in subcritical 
bubbles. The new potential V¢g is then used to find the bounce solution and 
the free energy of the critical bubble. 

In Fig. 2 we show that  the calculation of the nucleation barrier including 
the effects of subcritical bubbles is consistent with data  from lattice simula- 
tions, whereas the standard calculation overestimates the barrier by a large 
margin. In fact, the inclusion of subcritical bubbles provides a reasonable 
explanation for the anomalously high nucleation rates observed in the simu- 
lations close to degeneracy. 

3 Match ing  Numerica l  Simulat ions 
to Cont inuum Field Theories  

As a final topic to be discussed in this lecture, I would like to change gears 
and briefly turn  to the issue of how to match numerical simulations of field 
theories with their continuum counterparts.  In particular, I am interested 
in situations where a degree of stochasticity is present in the simulations, 
as for example happens when we model the coupling of fields to a thermal  
or quantum bath via a Langevin-like equation, or even in the form of noisy 
initial conditions. 
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Fig. 2. Comparison between numerical data and theoretical predictions for the 
decay barrier with and without the inclusion of subcritical bubbles. The parameter 
a is related to an extra term in the Boltzmann eq. which can be safely neglected. 

Although field theories are continuous and usually formulated in an in- 
finite volume, lattice simulations are discrete and finite, imposing bo th  a 
max imum ("size of the box" L) and a minimum (lattice spacing 5x) wave- 
length tha t  can be probed by the simulation. When  the system is coupled 
to an external thermal  (or quantum) bath,  fluctuations will be constrained 
within the allowed window of wavelengths, leading to discrepancies between 
the continuum formulation of the theory and its lattice simulations; the  re- 
sults will be dependent on the choice of lattice spacing. 

Parisi suggested tha t  if proper counterterms were used, this depedence on 
lattice spacing could be at tenuated [23]. Recently, Borrill and Gleiser (BG) 
have examined this question within the context of 2-d critical phenomena  
[24]. They  have computed the counterterms needed to render the simulations 
indepedent of lattice spacing and have obtained a match  between the simula- 
tions and the continuum field theory, valid within the one-loop approximat ion  
used in their approach. Here, I want to focus most ly  on the application of 
these techniques to 1-d field theories, in particular to the problem of thermal  
nucleation of kink-antikink pairs. [This is based on work of Ref. [25].] 

Even though 1-d field theories are free of ultra-violet divergences, the  
ultra-violet cutoff imposed by the lattice spacing will generate a finite con- 
t r ibut ion to the effective potential  which must  be taken into account if we 
are to obtain a proper match between the theory and its numerical simula- 
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tion on a discrete lattice. If neglected, this contribution may compromise the 
measurement of physicM quantities such as the density of kink-antikink pairs 
or the effective kink mass. 

For classicM, 1-dimensionM finite-temperature field theories, the one-loop 
corrected effective potential is given by the momentum integral [23] 

viL(¢) = v0(¢) + 7 ~-~ln 1 + = V0(¢) + V0"(¢ ) . (3.21) 

As mentioned before, the lattice spacing 5x and the lattice size L introduce 
long and short momentum cutoffs A = 7r/gx and kmin = 27c/L, respectively. 
Lattice simulations are characterized by one dimensionless parameter,  the 
number of degrees of freedom N = L/Sx.  For sufficiently large L one can 
neglect the effect of kmin and integrate from 0 to A. For V~ ~ << A 2 (satisfied 
for sufficiently large A), the result can be expanded into 

T T v;,' 
V1L(¢'A) = V° + 4 V / - ~  47r A + AT  O \ - ~ - ]  . (3.22) 

As is to be expected for a 1-dimensional system, the limit A --* c~ exists 
and is well-behaved; there is no need for renormalization of ultra-violet diver- 
gences. However, the effective one-loop potential  is lattice-spacing dependent  
through the explicit appearance of A, and so are the corresponding numerical 
simulations. In order to remove this dependence on 5x, we follow the renor- 
malization procedure given by BG [24]; it is irrelevant if the A-dependent 
terms are ultra-violet finite (d = 1) or infinite (d > 2). In the lattice formu- 
lation of the theory, we add a (finite) counterterm to the tree-level potentiM 
V0 to remove the lattice-spacing dependence of the results, 

T Y~'(¢) (3.23) 
V~ t (¢ ) -  4~r A 

There is an additional, A-independent, counterterm which was set to zero 
by an appropriate choice of renormalization scale. The lattice simulation then 
uses the corrected potential 

TSx V , " "  ' "  
V~tt(¢) = V0(¢) + ~ 0 (~)-  (3.24) 

Note that  the above t rea tment  yields two novel results. First, tha t  the 
use of Vlatt instead of V0 gets rid of the dependence of simulations on lattice 
spacing. [Of course, as 5x --~ 0, ~/]att ---+ V0. However, this limit is often 
not computationally efficient.] Second, tha t  the effective interactions tha t  are 
simulated must be compared to the one-loop corrected potential VIL(¢) of 
Eq. (3.21); once the lattice formulation is made independent of lattice spacing 
by the addition of the proper counterterm(s),  it simulates, within its domain 
of validity, the thermally corrected one-loop effective potential. 
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Fig. 3. Average field value ¢(t) for T = 0.1 using the tree-level potential, left, and 
the corrected potential, right. The filter cutoff is AL = 3. 

Applying this method to the formation of kink-antikink pairs, we get a 
corrected potential, 

(3.25) 

simulations using ~/]att will, in principle, match the continuum theory 

(3.26) 

which has (shifted) minima at ±•min(T), with Cmin(T) < ¢0. 
As a first test of our procedure, we investigate the mean field value 

¢(t) = ( l / L ) f ¢ ( x , t ) d x  before the nucleation of a kink-antikink pair, i.e., 
while the field is still well localized in the bot tom of the well. In Fig. 3 we 
show the ensemble average of ¢ (after 100 experiments) for different values 
of ~x, ranging from 1 down to 0.1, at T = 0.1. The simulations leading to 
the left graphs use the "bare" potential V0, whereas the right graphs are 
produced employing Ylat t  (Eq. 3.25). 

Perhaps the most difficult task when counting the number of kink-antikink 
pairs that  emerge during a simulation is the identification of what  precisely 
is a kink-antikink pair at different temperatures.  Typically, we can identify 
three "types" of fluctuations: i) small amplitude, perturbat ive fluctuations 
about  one of the two minima of the potential; ii) full-blown kink-antikink 
pairs interpolating between the two minima of the potential; iii) nonpertur-  
bative fluctuations which have large amplitude but  not quite large enough 
to satisfy the boundary conditions required for a kink-antikink pair. These 
latter fluctuations are usually dealt with by a smearing of the field over a cer- 
tain length scale. Basically, one chooses a given smearing length AL which 
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will be large enough to "iron out" these "undesirable" fluctuations but  not 
too large tha t  actuM kink-antikink pairs are also ironed-out. The choice of 
AL is, in a sense, more an art  than  a science, given our ignorance of how to 
handle these nonperturbat ive fluctuations. 

The  smearing was implemented as a low pass filter with filtering cut- 
off AL; the field is Fourier transformed, filtered at a given wavelength, and 
Fourier t ransformed back. We counted pairs by identifying the  zeros of  the 
filtered field. Choosing the filter cutoff length to be too large may actually 
undercount the number of pairs. Choosing it too low may  include nonper tuba-  
t ive fluctuations as pairs. We chose AL --- 3 in the present work, as this is the 
smallest "size" for a kink-antikink pair. In contrast,  in the works by Alexan- 
der et al. a different method was adopted, tha t  looked for zero-crossings for 
eight lattice units (they used ~x -- 0.5) to the left and right of a zero crossing 
[26]. We have checked tha t  our simulations reproduce the  results of Alexan- 
der et al. if we: i) use the bare potential  in the lattice simulations and ii) 
use a large filter cutoff length AL. Specifically, the number  of pairs found 
with the bare potential  for T = 0.2, 6x = 0.5 are: np = 36, 30, and 27, for 
AL = 3, 5, and 7 respectively. Alexander et al. found (for our lattice length) 
np - - - -  25. Comparing results for different AL, it is clear tha t  the differences 
between our results and those of Alexander et al. come from using a different 
potential  in the simulations, viz. a dressed vs. a bare potential.  For small 6x 
these differences disappear. 
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Fig. 4. Density of kink-antikinks (half of density of zeros), for T = 0.2 and 6x = 1, 
0.5, 0.2, and 0.1. The filter cutoff is AL = 3. 

Fig. 4 compares measurements  of the kink-antikink pair density (half the 
number  of zeros of the smeared field), ensemble-averaged over 100 experi- 
ments,  for different lattice spacings. Again it is clear from the graphs on the 
left tha t  using the tree-level potential  V0 in the simulations causes the re- 
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sults to be dependent on 5x, whereas the addition of the finite counterterm 
removes this problem quite efficiently. 

Another step is to establish what is the continuum theory being simulated. 
Due to space limitations, I refer the reader to the work of Ref. [25] for more 
details. 

This work was written in part while the author was visiting the Osserva- 
torio Astronomico di Roma. I thank Franco Occhionero and Luca Amendola 
for their kind hospitality. The author was partially supported by the National 
Science Foundation through a Presidential Faculty Fellows Award no. PHY- 
9453431 and by the National Aeronautics and Space Administration through 
grant no. NAGW-4270. 
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