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We show that compactifications of theories with extra dimensions are unstable if due to 
monopole configurations of an antisymmetric tensor field balanced against one-loop Casimir 
corrections. In the case of ten-dimensional supergravity it is possible, at least for a portion of the 
phase space, to achieve a stable compactification without fine-tuning by including the contribu- 
tion of fermionic condensates to the monopole configurations. 

1. Introduction 

In  the quest  for a unif ied descr ip t ion  of gravi ty and gauge interact ions,  ext ra  

d i mens ions  are  bel ieved by  many  to p lay  a fundamenta l  role [1]. The idea  that  we 

can  u n d e r s t a n d  four -d imens iona l  gauge invar iance  as coming  from isometr ies  of 

h igher  d imens iona l  gravi ty  is indeed a very a t t ract ive  one. This can be seen by  the 

now extens ive  l i tera ture  on the subject.  

Never the less ,  the modern  versions of this unif ica t ion are very different  ei ther  

f rom K a l u z a ' s  or iginal  fo rmula t ion  or  from the more recent  extensions of  his model  

to i n c o r p o r a t e  non-abe l ian  symmetr ies .  In part ,  these modi f ica t ions  were mot iva ted  

for  two reasons :  first, it has been shown that  the d imens iona l ly  reduced  act ions  

o b t a i n e d  f rom 4 + D d imens iona l  gravity could  not  give rise to chiral  fermions as 

r equ i r ed  f rom phenomenology .  Second,  the qua n tum behavior  of  pure  higher  

d i m e n s i o n a l  gravi ty  is even more  divergent  than its four -d imens iona l  counterpar t .  

I t  is cu r ren t ly  bel ieved that  supers t r ing theories [2] offer  the best  way to cope with 

the  a b o v e  difficult ies.  Supers t r ing theories must  live in ten d imensions  in o rder  to be 

q u a n t u m  mechan ica l ly  consistent .  More  impor tan t ly ,  they are anomaly- f ree  [3] and 

o n e - l o o p  f ini te  [4] if and  only if the gauge group is E 8 ® E s or s p i n ( 3 2 ) / Z  2. This  
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intimate relationship between proper quantum behavior, space-time dimensionality 
and gauge symmetry suggests that superstrings should be taken seriously as a 
candidate for unification. 

Once we assume that higher dimensional theories may be of physical relevance, 
two questions immediately come to mind; which background configuration offers a 
stable compactification for the internal manifold and why the scales for the physical 
space and the internal space differ by roughly 60 orders of magnitude. 

These questions are obviously related and are very sensitive to the field content of 
the theory. Also, the solutions must be consistent with the constancy of the 
fundamental couplings, which forces the internal radius to be constant or very 
nearly so before nucleosynthesis [5]. 

One way of answering these questions is to look for possible compactified 
solutions of the field equations and follow their cosmological evolution for various 
toy models to understand the effect of different contributions to the energy- 
momentum tensor such as monopole configurations, cosmological constant and 
Casimir corrections coming from bosonic and fermionic degrees of freedom in the 
theory. In this connection, it has been shown by Maeda [6] that the asymptotic 
product  space of the form (4-dimensional Friedmann) x (compact internal space) is 
a classically stable solution or various possible sources of the energy-momentum 
tensor, including monopole + cosmological constant, Casimir + cosmological con- 
stant and also for some supergravity models. These results are somewhat encourag- 
ing but, on the other hand, it has also recently been shown [7, 8] that the system with 
monopole or Casimir plus cosmological constant in 4 + D dimensions, with a 
product  space M 4 X S ° (S D being the D-dimensional sphere), is semiclassically and, 
for a range of temperatures (initial entropies), thermally unstable against fluctua- 
tions to large values of the internal radius. In this case, the monopole or Casimir 
term becomes negligible and the cosmological constant dominates the energy 
density giving rise to a 4 + D dimensional isotropic de Sitter space-time. 

When we turn our attention to supersymmetric theories, the cosmological con- 
stant has to be dropped from Einstein's equations, since it breaks supersymmetry 
explicitly. Thus, one should try to combine monopole and Casimir effects to look 
for stable compactifications [9]. The monopole terms are the best known way to 
obtain spontaneous compactified solutions of the field equations in a natural 
fashion [10], while the inclusion of Casimir effects is justified by the fact that the 
compactification scale is very close to the Planck scale [11]. 

In this paper we show that for pure "Einstein-monopole" configurations with 
quantum Casimir corrections coming from scalar matter fields, no stable compacti- 
fication is possible, either for one or a product of internal spheres of d dimensions, 
d being the rank of the antisymmetric field strength that generates the monopole 
configuration. In fact, if we picture the internal radius as a scalar field with a 
potential, 4-dimensional Minkowski space-time is a solution when the value of the 
field is a maximum of the potential and thus is unstable against perturbations. In 
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addition, the potential is unbounded from below, making the other extremum point, 
the de Sitter solution for the physical space, unstable against barrier penetration. 

By including fermionic contributions, the above conclusions can be avoided. Type I 
or heterotic string [12] theories contain N = 1 supersymmetry coupled to N = 1 
super-Yang-Mills [13]. This contains an antisymmetric rank-2 tensor with its accom- 
panying three-index field strength H. We can place H in a monopole configuration 
on two internal S 3 and we can do the same for fermionic condensates. We find that 
if the two internal radii are nearly equal, a stable compactification can be achieved. 
Unfortunately,  due to technical difficulties in computing the Casimir contributions 
of the relevant fields, we cannot say whether this compactification is absolutely 
stable when the radii are not approximately equal. 

The paper is organized as follows: in sect. 2 we develop the basic formalism and 
assumptions and write the expressions for the monopole configurations and for the 
Casimir corrections to be used later. In sect. 3 we apply the general formalism to 
two examples with only gravity and an antisymmetric tensor field. Sect. 4 is devoted 
to the analysis of the Chapline-Manton action and a possible stable background is 
found. We conclude with general remarks in sect. 5. 

2. Basic formalism 

As we mentioned in the introduction, we are interested in studying the stability of 
different backgrounds with the 4 + D dimensional geometry being given by a 

= 1-[ ~ S d where S 3 and S a are three- and product  of the form M 4+D R ×  $3× i=a 

d-dimensional spheres with D = a d .  Accordingly, we assume that the metric can be 
written in block-diagonal form as a straightforward generalization of the 
Robertson-Walker metric in 4 dimensions [14], 

- 1  

a2(t)  j(x k) 

~;MN 
') 

(1) 

where capital latin indices cover 4 + D dimensions, i, j ,  k = 1, 2, 3 and rn i, n i cover 
each d-dimensional internal sphere. ~,j is the maximally symmetric metric of the 
physical 3-space and g-,,,,i is the unit metric for each internal sphere. 

It is easy to generalize this metric to include spheres of different dimensionality, 
which would be a natural step if there were antisymmetric tensors with different 
ranks, but this will not be necessary for our purposes. 
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In order to be consistent with the symmetries of the metric 
energy-momentum tensor must be written as 

in eq. (1), the 

T~N = 

P 
Pgg/ 

[(1)gml,h 
(2) 

where 0 is the energy density, p is the pressure in the physical 3-space and p(i~ is 
the pressure for each internal space. These can be at most functions of time. 

With eqs. (1) and (2), Einstein's equations assume the general form (we take 

16'n'G4+ D = c = 1), 

3 - + d  - - = -  p +  -p+3p p(~ 
a i=1 b~ D + 2  . 

(3a) 

- + 2 ~  + d -  + = - O  + 3p + p(') (3b) a ai=lbii -a2 P D + 2  = ' 

- - + ( d - I ) - - +  + " - Z - + -  
b, b b , , . . ,b j  b 

= P ( i ) - - - [  -O+3p+d~'p( i )]D+2 ,=l , (3c) 

where the last equation should be written for each internal sphere. 
In order to develop the basic formalism to be applied to the supergravity model, 

we start considering a simpler model with only gravity and an antisymmetric tensor 
field of rank d -  1 as the dynamic fields. [10] The field strength, FMN.Q, is then a 
rank d antisymmetric tensor field with energy-momentum tensor given by 

1 
T~= FMp...sF~ ' s  2dFPQ...sFPQSgMN, (4) 

where the superscript m refers to monopole contribution. 

In this paper  we will be interested in the case when the field FM. s takes values 
only in the internal space. Thus, the most natural ansatz consistent with compactifi- 
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cation is given by the Freund-Rubin or "monopole"  ansatz, 

)em, n .... q , f ( i ) ( t ) ,  for each d-dimensional sphere (5) 

F U N Q =  O, otherwise, 

where f u ) ( t )  are functions of time and g(a) is the determinant of the S a metric. 
This ansatz guarantees that the field equation for FMN.. O is trivially satisfied. 

We can use the Bianchi identities for FMN...O to express fU)( t )  in terms of the 
internal radius b~(t), 

f ( i ) ( t )  =fo(i)/b~l(t), fo u) is a constant. (6) 

Using (5) and (6) the only non-vanishing components of the energy-momentum 
tensor are 

T~ m= - ½ ( d -  1)! ~ [ f°u) ] / 2 

,=ltVa /~, ~ = 0 ,1 ,2 ,3 ,  (7a) 

rr [ i4" ] 
= (7b) 

It is now a simple matter to compare the coefficients in (7) and (2) to express the 
monopole contribution to the energy-momentum tensor as the energy density p and 
the pressures p and pU). 

The other contribution to be included in the energy-momentum tensor comes 
from one-loop corrections to the action due to vacuum fluctuations of matter fields 
[11]. As is by now well known, the fact that we must impose periodic boundary 
conditions on the quantum fields due to the compactness of the internal space, gives 
rise to an effect analogous to the Casimir effect of the electromagnetic field. 

The Casimir effect has been calculated in a number of different situations within 
the Kaluza-Klein framework. The calculations are usually restricted to odd dimen- 
sional spaces because of restrictions with the ~-function regularization procedure 
commonly adopted. In even dimensions there will be an explicit dependence of the 
free energy on the parameter that sets the scale of the path integral which can, 
nevertheless, be fixed by imposing certain conditions on the effective potential. 

For  the particular case of a 4 + D dimensional manifold R x S 3 × S D, the free 
energy is, in the limit where a ---, oc and zero temperature [15], 

A + A'ln(2Trp 2) 
U =  V 3 b4 , (8) 
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where A and A' are calculable numerical constants, 0 2=/~2b2, /x being the scale 
mentioned above and V 3=2Tr2a 3 is the volume of S 3. If 4 +  D is odd, the 
coefficient A' vanishes. 

As a first simplifying step, we are going to neglect the logarithmic dependence on 
the radius. This approach is justified if the internal radius is a slowly-varying 
function of time, thus allowing us to consider the numerator in (8) as approximately 
constant. In any case, we believe that the general qualitative picture to be obtained 
will not be drastically modified by the inclusion of the logarithmic correction. 

As we are interested in a general background of the form R × S 3 × YI e S d the i = 1  , 

following expression for the free energy due to Casimir corrections will be adopted, 

U= V 3 ~ A(i) 
i=1 b 4  (9) 

This is again an approximate expression which, nevertheless, is supported by some 
recent calculations for manifolds of product form M4X SMx S N where stable 
solutions with finite values for the internal radii are found [16]. (Again, this 
calculation was originally developed for odd dimensional spaces.) 

Using the above expression for the free energy, we obtain the energy density and 
pressures due to the Casimir correction as 

where 

1 1 ~ A (~ 
Pc= Tllq~ ~/(i) U =  lq~ v(i~ b4 , (10a) 

r 3 1 X i = l r d  x l i = l ' d  i = 1  

, , 4 v F [ a  g ( i )  17 a v ( i )  ~ 4  ' (10b) pc -= 
" "  31 1 i = 1 "  d l X i = l " d  i= 

1 (0 ; )  p~i) = _ 
dV31_iT=lVd(i ) b, d[IT_lVd ~̀> b~'  

Vd~i ) (2qr) (d+l)/2bd 

= F(12(d+ 1)) 

(10c) 

is the volume of the d-dimensional sphere. We can see that the Casimir part of the 
energy-momentum tensor is traceless. 
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Using eqs. (7) and (10), we obtain the final expressions for the energy density and 
pressures as 

. , ,  
1 L --+~(d-1)!L (lla) 

P = P m " [ - P c - -  17 a v' i)  b~ ~--id J ' 
~Xi~l"d i=1 i=1 

p =pro +pc = -13, ( l lb )  

, fi:o,,.> 1 . _  _ l'] 
NHia=IVJ i) 64 ] t%[b/J ] (11c) 

Given a certain model with geometry M 4+D= R ×  S 3 ×Hai=lSJ, it is easy to 
obtain the above quantities and substitute them in Einstein's equations (3) to solve 
for the scale factors. The fact that 13 = - p  allows us to define a four-dimensional 
effective cosmological constant that depends on the internal radius b. The equi- 
librium value for b will determine if A 4 vanishes or not. 

In the next section, we are going to apply the above formalism to two specific 
models, with one D-dimensional internal sphere and two 3-spheres, respectively. 

3. Examples 

We will start by considering a model with one internal sphere of D-dimensions. 
This approach naturally generalizes the 6-dimensional Einstein-MaxweU or 7- 
dimensional Einstein-Kalb-Ramond models. 

As we have only one internal space, no summation is necessary in eq. (11). We 
suppress the i index and call the internal radius b(t ) .  Also, in the Casimir 
contribution, we redefine the constant A to absorb the numerical factors coming 
from the definition of the volume of the D-dimensional sphere. For example, if 
D = 3, we have A'  =- A /2~r  2. Thus, Einstein's equations are simply, 

a b 
3 - + D -  

a b 

a a 2 a b  
- + 2  + D - -  
a ~ a b  

D + 2  

1 

where 

D + 2  

(D + 2)A' 2 ( D -  1) ] 
b4+O + b2 D c] ,  (12a) 

(D + 2)A' 2 ( D -  1) ] 
b4+D + b2 D c] ,  (126) 

b 62 fib D - 1  2 [2(D+2)A' 3c ] 
+ (D - 1)~-~ + 3 a b  b 2 + --D+2 64+D + -gSF , (12c) 

c-= 1)W. 



508 F.A. Accetta et al. / Stable compactifications 

We are interested in the situation where, for critical values of a = a o, b = b o, the 
monopole  and Casimir contributions will balance each other thus rendering b 0 
stable. It is desirable that no net 4-dimensional effective cosmological constant is 
left over in the physical space-time once the internal radius becomes constant since 
this would induce a classically stable de Sitter phase. In other words, the ideal 
equilibrium situation would be given by a constant internal radius and a Minkowski 
space-time. Radiation contributions to the stress tensor may be added to induce a 

smooth transition to a Friedmann universe. 

These two conditions can be imposed into eq. (12) by requiring that the r.h.s, of 

both  (12a) or (12b) and (12c) vanishes at a - - a  0, b - - b  o. We can then express the 
constants A' and c in terms of the constant value b 0 as 

D( D -  1)2boP+ D( D + 2 ) ( D -  1) 
A' _ 2 c = - ( 1 3 )  

D - 4 ' 2 (D - 4) " 

As the coefficient A' is, in principle, calculable, the equilibrium value of b o can be 
eventually determined within a realistic framework. Note that for D > 4, the 
monopole  coefficient must be negative which is inconsistent with our ansatz. This is 
perhaps connected with the fact that known theories have at most forms of rank 

four. 
In order to study the stability of the constant value b0, it is helpful to introduce 

the logarithmic variable q~ = ln(b/bo) in the dynamical equation for the internal 
radius, eq. (12c). We then obtain, 

D - 1  
(D_4)b~[(D-4)e-2*-4(D-1)e- 'D+4'*+ 3De 2D+], 

(]4) 

where the r.h.s, can be written - 0 V/Oeo with V being interpreted as a potential for 
q~. The next step is to look for the extrema of this potential for ~ = q~c- We are then 
forced to solve a polynomial with a degree that varies with D. There is no obvious 
solution to this unless for some particular cases like D = 2. Nevertheless, for the 
critical value b = b o, we have that ~c = 0 which is, of course, always a solution for 
any D. For b = b 0, the second derivative of the potential is, 

00~ 22V-- q,c=o ( D b° 2- 1)2 (15) 

Thus, the solution with constant b and 4-dimensional Minkowski space-time is 
always located at the maximum of the potential for any number of dimensions 
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(D ~ 1 by definition). From the general expression for the potential, 

( / ) - -4)b0 2 D - 1  [ D - I  V(q~) = ½ ( D - 4 ) e - 2 ~ ' - 4 - D  + 4 e (v+4),~ 

2D~,_ (D-  1)(D + 4) ] + 3e_ ~ + ~  , (16) 

it is easy to check that l i m ~  ~V(~)=  ( D -  1)2/2(D + 4)b0 2, where we have fixed 
the integration constant such that V(0) = 0. The reader should note that the effective 
4-dimensional cosmological constant is not  defined by V(~), but by the r.h.s, of eq. 
(12a) or (12b). V(~) is not  the inflationary potential as in 4-dimensional theories. 
The fixed points of this potential will determine values of b that in turn will define a 
cosmological term in eq. (12a). This is a common source of confusion in Kaluza-Klein 
inflationary scenarios. 

In fig. 1 we plot the potential for the 6-dimensional case. It is easy to verify the 
existence of a local minimum at q¥ = lnv~- or bc = v~b 0. This value gives rise to an 
anti-de Sitter solution for the physical space-time which can be shown to be 
unstable under semi-classical tunneling [7]. 

As our next example, we will present the analysis for the case with two internal 
3-spheres. This is of particular interest for our analysis of ten-dimensional super- 

O,2[  1 1 I I 
I 

..r. 

01 

o 

- O 1  

-0.2 
0 0 5  I 1.5 2 

Fig. 1. The potential for the internal radius b(t)=boexp(0) for a 6-dimensional Einstein-Maxwell 
model with an internal 2-sphere. The maximum corresponds to a 4-dimensional Minkowski space-time. 
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gravity. The S 3 compactification is obtained with a rank-3 tensor FMN P. 

F r o m  eq. (11), we can write the energy density and the pressure as 

At(l) A,(2) C (1) C(2) 

P =  7 3 + -  + -  + - -  (17a) bib2 blb? P' 

4A m) c (1) C (2) 

Pl = 5i3bTb~--S + b6 b6 , (17b) 

4A,(2) c (2) c (1) 
P2 = 7 ~  + (17c)  

36261 ' 

where, as before, A '(i) = A(°/4~r4; c (i) = (foCi)) 2. 

We could now try to generalize our previous analysis to a two-dimensional 

potent ial  for two "scalar  fields" ~ and ~2 and look for stable configurations for b x 

and b 2. Instead,  we are going to consider only the simpler case where the two radii 

have the same value, b 1 = b 2 = b. 
With  this assumption and taking A '(1) = A '(2) = A', c (1) = c (2) = c, Einstein's equa- 

tions (3) reduce to 

3 - + 6 - = -  + (18a) b 7 6. V '  

/ / a 2 3 b  [ 2 A ' c ]  
- + 2 ~  + 6  - + (18b) 

b 2 a b 2 4A'  c 
+ 5 ~  + 3  b: + + - -  a b 3 ~  b 6" 

08c) 

After  imposing the vanishing of the r.h.s, of eq. (18), at a = a 0, b = b 0 and 
in t roducing the variable ~ = ln (b /bo)  as before, we obtain the potential for q, f rom 

eq. (18c) as 

2 I -2~, ~e m , +  
V(~,) = 6b-F[-~e - - ½e 6~,+ ~] .  (19) 

This potential  has the same shape as the potential of  fig. 1, with a maximum at 

q~ = 0 or b c = b 0 and a minimum at ¢& = ¼1n 2. 
Thus,  for one sphere of  arbitrary dimensions or for two 3-spheres for the internal 

space (and, we believe, any number  of them), it is not  possible to obtain a 
conf igura t ion  which has a stable internal radius and a vanishing effective cosmo- 

logical constant  for the physical space-time. 
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In the next section we will see that this situation is radically changed for the 
Chapline-Manton action. We will obtain a potential with a global minimum, 
compatible with a four-dimensional Minkowski space-time. 

4. Stability from ten-dimensional supergravity 

We now turn our attention to the N = 1 ten-dimensional supergravity action 
which describes the point-like limit of the heterotic and type I superstring models 
[17]. We will show that we can use the fermionic condensates to provide a stable 
background geometry. The idea that fermionic condensates have some relationship 
with the vanishing of the cosmological constant has been used before in Kaluza-Klein 
supergravity [18]. 

It has recently been used in the context of ten-dimensional supergravity with a 
Calabi-Yau compactification in order to provide a mechanism for supersymmetry 
breaking with zero net cosmological constant at the tree level [19]. The cosmological 
stability of this model has been studied by Maeda [20], who found a classically 
stable product manifold of (4-dimensional Friedmann) × (Calabi-Yau) for a certain 
range of initial conditions. The potential for this model closely resembles that 
obtained for the semi-classically unstable monopole (or Casimir) and cosmological 
constant since the role of the fermionic condensate is similar to that of A. 

Here we are going to assume that the condensates take values in the internal 
space [21], thus contributing to the curvature energy of the monopole configuration 
that comes from the 3-index field HMu p which is defined in terms of the Kalb- 
Ramond and the Yang-Mills and Lorentz Chern-Simons 3-forms. This combined 
monopole configuration is going to be balanced by the Casimir contribution, 
providing the desired stable background with zero net four-dimensional effective 
cosmological constant. 

The bosonic part of the action including the gluino and subgravitino couplings is 
given by 

S= -½ f dl°z -fZ~°7[R + 3e °[H.Ne--e°/2(Tr~FMNpX)] 2 

+ ½e °/2(TrGMN GMN) + ½ 3 , o 0 %  + (Tr2FMNpX)(hF'NP?~)], (20) 

where R is the 10-dimensional curvature scalar, o is the dilaton field, GMN is the 
Yang-Mills field strength, HMN P w a s  defined above and X and X are the gluino and 
subgravitino fields, respectively. 

Once we assume that the 3-form H and the fermionic condensates will take values 
in the internal space, the most natural ansatz for compactification is given by the 
Freund-Rubin ansatz, with the internal geometry given by the product of two 
3-spheres. This explains our interest in the second example of sect. 3. We will thus 
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set the Yang-Mills field to zero and take the dilaton field to be constant in 
space-time. The latter assumption can be relaxed in a more general treatment by 
taking the dilation field to be a function of time. 

By setting the Yang-Mills field to zero, we lose the possibility of obtaining chiral 
fermions from the model. However, our present concern is with the question of 
stability of the compactification. 

From the action (20), we obtain from the dilation field equation (with o = %) that 

e- % (HMN e)2 = ~e °°/aHMNp(Tr 2FMNPx). (21) 

Using eq. (21) and introducing ~ ' ° M N  P ~-- e o°/2HMNP, Einstein's equations become, 

= ~ ,  ~ , P Q _  1~ , ,  ~ o ~ e e R .  ~(Tr 2FpeRX)(XFeQRX)gMN R M N  2 ~ MPQ ~* N 5 ~ PQR ~ 6 M N  --  

- 36(Tr XFpQRX)(Tr xFPQRx)gMN + ~YFPQTr 2FNpQX. (22) 

The Freund-Rubin ansatz for ~t~MN P and the fermionic condensation is the same 
as eq. (5) where now i = 1,2, d =  3, and we introduce the constants ho, Xo and X 0 
for ~MNP, X and X, respectively. 

We could now proceed by substituting this ansatz into Einstein's equations which 
would describe the evolution of the scale factors a(t), bl(t ), b2(t ) and then study 
the stability of the dynamical system in the phase plane of bl(t ) and b2(t ). 
Nevertheless, we again adopt a simpler point of view and study the evolution of the 
system when the two radii are equal. 

Adding the general form of the Casimir contribution to the r.h.s, of eq. (22) and 
taking b I = b 2 = b, X(o i) = Xo, h(o ~) = ho, X(~ ) = Xo for i = 1,2, we can write Einstein's 
equations as, 

3-a + 6-b bl o b6 , (23a) 

i ~ f i Z i t b  ( 2 A ' c ]  
-a + 2-£5 + 6 a b  bl 0 b6 , (23b) 

6 2 a b 2 4A' c' 
+ 5~Z + 3 a b - b 2 + 3~F6 + --b6, (23c) 

where, as before A' - 47r4A. The basic difference to the previous example comes in 
the two monopole coefficients, c and c', which are given by 

~XoXo + ~Xo), (24a) 

1 3 2 c ' -  3 ( - h g -  3hoX o+ ~XoXo+ 5Xo)- (24b) 
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At first glance to eq. (24), one may think that by setting the fermionic fields to 
zero we should reproduce the previous case and have c = c' (c.f. eq. (18)). The 
modification in the above was brought in by the use of the dilaton field equation 
that relates Jt  °2 terms to YXX terms. 

We should point out that the theorem for 10 into 4 compactification [22] will not 
apply here since it does not hold for non-maximally symmetric four-dimensional 
space-times and for time-dependent fields. 

From eq. (23) we see that now we have three independent constants, h o, Xo and 
Xo (A' is in principle calculable) to relate to the constant value of the radius, b o, by 
means of our two stability conditions. Clearly, there is a degree of arbitrariness in 
the choice of the constants which is unavoidable at this level. To avoid a naive and 
always convenient fine-tuning, we will obtain the conditions for A', c' and c that 
would provide a stable internal radius b 0 and a zero net cosmological constant. 

The requirement of zero net cosmological constant fixes the value of c in terms of 

A' and b o as 

c = 2 A ' b  4 . (25) 

From the requirement that b 0 is a critical point, we obtain, 

c ' =  2b 4 -  Zc (26) 
3 " 

We can now rewrite Einstein's equation for the internal radius in terms of the 
logarithmic variable q~ and try to use the properties of the potential V(ff) to get a 
bound for say, c' for a given value of b 0. Following the same procedure as before, 
we obtain for the derivative of V(q 0, 

c' ( 2 b 4 -  c ')  10~,] (27) cgV _ 1 _2e -2~ ,+  7a e 6~+ e 
bo bo ' 

which has, in principle, two critical points, 

where ~c2 
For  ~c,, 

- 2 b 4  ] (28) 
Oc = 0 ,  q , c 2 = - l l n  ( 2 b 4 _ c , )  , 

is only defined for 2bo 4 < c', c' > 0. 
we get that the second derivative is 

O 2 V  +:,=o 4 4 
0302  = ~6o6 (4bo - c' ) . (29) 

Thus, we obtain a minimum for 4b 4 > c' (for c' > 0) or for c' < 0. These conditions 
can be easily rewritten in terms of the constants h o, Xo and X 0, using the definition 
of c'. 
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By compar i son  with the conditions for ~2 '  we see that  only an accurate  fine-tun- 
ing would allow it to occur. In any case, f rom the expression for the potential ,  with 

V(0) = 0, 

V ( ~ ) =  ~2o2 [ -  + 6b4e 6,~+ 10b___~e 10q,+ 15b 4 ]" (30) 

It  is easy to see that  for 2b 4 < c', we reproduce the same undesirable si tuation as in 
the previous  section. 

An easy way  of realizing the correct condit ions for stability is to set Xo = - h 0  in 
eq. (24). For  this choice, c = c'  and f rom (26) we get that  c = c '  = 6 4 ~b 0, which is well 
within the above  condition. In fig. 2, we plot  the potent ia l  V(~) for this part icular  
choice of the constants.  A similar potential  has been found for N = 2, 6-dimensional  

supergravi ty  [23]. 
Varying the value of c '  or of the constant  X0 will move the min imum up and 

down until the bound  4b 4 = c '  is reached. For  c '  > 4b 4, the situation is inverted and 

we reproduce  the same qualitative features shown in fig. 1. 
It  is an interesting feature of supergravity that  no strict fine-tuning is needed to 

reach stabil i ty but  that, instead, there is a range of values for the fields which are 
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Fig. 2. The potential for 10-dimensional supergravity with fermionic condensates taking values in the 
internal space. Note that the potential has a global minimum that guarantees stability in the limit where 

the internal radii are equal, 
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compatible with the imposed conditions. However as mentioned in the introduction, 
we do not know whether the system is semi-classically stable away from the b 1 = b 2 
line phase space. 

5. Conclusions 

We have shown that by adding Casimir contributions to monopole configurations 
in general 4 + D dimensional models with gravity and an antisymmetric tensor field 
of rank D for one internal sphere or of rank d = D/c~ for c~ internal spheres, it is 
not possible to obtain a stable compactification where the internal radius is constant 
with no net effective cosmological constant in four dimensions. The possible critical 
points for the potential for the internal radius induce either an unstable Minkowski 
or a semi-classically unstable anti-de Sitter solution for the four-dimensional space- 
time. 

This situation is modified when we consider the action coming from the point-like 
limit of superstring theories. In this case, we can add fermionic condensates to the 
monopole configuration which will render the Minkowski solution for the physical 
space-time stable, at least for a portion of the phase space. 

The fact that the potential is flat for large values of the internal space naively 
suggests that there may be a slow rollover which will produce enough inflation to 
solve the horizon or flatness problems. One would start far on the right of fig. 2, 
producing a net cosmological constant as required by inflation, and roll down to the 
minimum. Some preliminary calculations show that this is not the case* for 
reasonable choices of the initial value of ~. The possibility of reheating is a more 
viable one, if we associate particle creation with the oscillations of the internal 
radius about the minimum at b 0. This might induce a smooth transition to a 
Friedmann cosmology. 

This work was supported in part by the Department of Energy and the National 
Aeronautics and Space Administration. One of us (M.G.) would like to thank CNPq 
of Brazil for financial support during the completion of this work. 
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