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MARCELO GLEISER

Department of Physics and Astronomy, Dartmouth College,

NH 03755 Hanover, USA

gleiser@dartmouth.edu

KRSNA DEV

Department of Physics, Haverford College Haverford, PA 19041, USA

kdev@haverford.edu

Received 26 February 2004

I report on recent work concerning the existence and stability of self-gravitating spheres

with anisotropic pressure. After presenting new exact solutions, Chandrasekhar’s varia-
tional formalism for radial perturbations is generalized to anisotropic objects and applied
to investigate their stability. It is shown that anisotropy can not only support stars of
mass M and radius R with 2M/R ≥ 8/9 and arbitrarily large surface redshifts, but
that stable configurations exist for values of the adiabatic index γ smaller than the
corresponding isotropic value.
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1. Introduction

A common assumption in the study of stellar structure and evolution is that the

interior of a star can be modeled as a perfect fluid.1 This perfect fluid model neces-

sarily requires the pressure in the interior of a star to be isotropic. This approach

has been used extensively in the study of polytropes, including white dwarfs, and of

compact objects such as neutron stars.2 However, theoretical advances in the last

decades indicate that deviations from local isotropy in the pressure, in particular at

very high densities, may play an important role in determining stellar properties.3

The physical situations where anisotropic pressure may be relevant are very

diverse. By anisotropic pressure we mean that the radial component of the pres-

sure pr(r) differs from the angular components, pθ(r) = pϕ(r) ≡ pt(r). (That

pθ(r) = pϕ(r) is a direct consequence of spherical symmetry.) Of course, spher-

ical symmetry demands both to be strictly a function of the radial coordinate.

Boson stars, hypothetical self-gravitating compact objects resulting from the cou-

pling of a complex scalar field to gravity, are systems where anisotropic pressure

occurs naturally.4 In the interior of neutron stars pions may condense. It has been
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shown that due to the geometry of the π− modes, anisotropic distributions of pres-

sure could be considered to describe a pion condensed phase configuration.5 The

existence of solid cores and type P superfluidity may also lead to departures from

isotropy within the neutron star interior.2

Since we still do not have a detailed microscopic formulation of the possible

anisotropic stresses emerging in these and other contexts, we take the general

approach of finding several exact solutions representing different physical situa-

tions, modeled by ansatze for the anisotropy factor, pt − pr. Previous studies have

found some exact solutions, assuming certain relations for the anisotropy factor.6

Our goal here is two fold: first, to find new exact solutions which may better model

realistic situations and explore their physical properties;7 second, to investigate

their stability against small radial perturbations.8 For this, we generalize Chandra-

sekhar’s well-known variational approach to anisotropic objects. We find that not

only interesting exact solutions can be found,7 but that they may have a wider

stability range when contrasted with their isotropic counterparts.8

2. Relativistic Self-Gravitating Spheres: Basics

We consider a static equilibrium distribution of matter which is spherically sym-

metric. In Schwarzschild coordinates the metric can be written as

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2 sin2 θdφ2 , (1)

where all functions depend only on the radial coordinate r. The most general

energy–momentum tensor compatible with spherical symmetry is

T µ
ν = diag(ρ,−pr,−pt,−pt) . (2)

We see that isotropy is not required by spherical symmetry; it is an added assump-

tion. The Einstein field equations for this spacetime geometry and matter distribu-

tion are

e−λ

(

ν′

r
+

1

r2

)

−
1

r2
= 8πpr ; (3)

e−λ

(

1

2
ν′′ −

1

4
λ′ν′ +

1

4
(ν′)2 +

(ν′ − λ′)

2r

)

= 8πpt ; (4)

eλ

(

λ′

r
−

1

r2

)

+
1

r2
= 8πρ . (5)

Note that this is a system of 3 equations with 5 unknowns. Consequently, it is

necessary to specify two equations of state, such as pr = pr(ρ) and pt = pt(ρ).

It is often useful to transform the above equations into a form where the hydro-

dynamical properties of the system are more evident. For systems with isotropic

pressure, this formulation results in the Tolman–Oppenheimer–Volkov (TOV) equa-

tion. The generalized TOV equation, including anisotropy, is

dpr

dr
= −(ρ + pr)

ν′

2
+

2

r
(pt − pr) , (6)
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with

1

2
ν′ =

m(r) + 4πr3pr

r(r − 2m)
, (7)

and

m(r) =

∫ r

0

4πr2ρdr . (8)

Taking r = R in the above expression gives us the Schwarzschild mass, M . (This

implicitly assumes that ρ = 0 for r > R.)

In order to solve the above equations we must impose appropriate boundary

conditions. We require that the solution be regular at the origin. This imposes the

condition that m(r) → 0 as r → 0. If pr is finite at the origin then ν ′ → 0 as r → 0.

The gradient dpr/dr will be finite at r = 0 if (pt − pr) vanishes at least as rapidly

as r when r → 0. This will be the case in all scenarios examined here.

The radius of the star is determined by the condition pr(R) = 0. It is not

necessary for pt(R) to vanish at the surface. But it is reasonable to assume that all

physically interesting solutions will have pr, pt ≥ 0 for r ≤ R.

3. Exact Solutions

In Ref. 7, we obtained several exact solutions for different forms of the pressure

anisotropy. Our solutions fall into two classes: (i) ρ = constant, and (ii) ρ ∝ 1/r2.

Given the limited space, we will restrict the presentation to the latter case. Inter-

ested readers should consult Ref. 7 for details.

Consider stars with energy density modeled as

ρ =
1

8π

(

a

r2
+ 3b

)

, (9)

where both a and b are constant. The choice of the values for a and b is dic-

tated by the physical configuration under consideration. For example, a = 3/7 and

b = 0, corresponds to a relativistic Fermi gas, as in the Misner–Zapolsky solution

for ultradense cores of neutron stars.9 If we take a = 3/7 and b 6= 0 then we

have a relativistic Fermi gas core immersed in a constant density background. For

large r the constant density term dominates (r2
c � a/3b), and can be thought of

as modelling a shell surrounding the core. We also take the pressure anisotropy

to be

pt − pr =
1

8π

(

c

r2
+ d

)

, (10)

with c and d constant.

We found it convenient to seek solutions for the metric function ν(r) directly,

rather than solving the generalized TOV equation. We then use the known functions
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λ(r) and ν(r) to find the radial and tangential pressures. From Eqs. (3), (4), and

(5), we find
(

ν′′

2
+

(ν′)2

4

)

e−λ − ν′

(

λ′

4
+

1

2r

)

e−λ

−

(

1

r2
+

λ′

2r

)

e−λ +
1

r2
= 8π(pt − pr) . (11)

Introducing a new variable y = e
ν

2 , Eq. (11) becomes,

(y′′)e−λ − y′

(

λ′

2
+

1

r

)

e−λ − y

[(

1

r2
+

λ′

2r

)

e−λ −
1

r2

]

= 8πy(pt − pr) . (12)

Since e−λ = 1 − 2m(r)/r, using Eq. (9) we find

e−λ = 1 − a − br2 ≡ I2
b (r) , (13)

where we defined the function I2
b (x) ≡ 1−a−bx2. When b = 0, we write I2

0 ≡ 1−a.

Using the expression for e−λ in Eq. (12) and substituting for the pressure anisotropy

we find

[br4 − (1 − a)r2]y′′ + (1 − a)ry′ − (a − c − dr2)y = 0 . (14)

The full solution of Eq. (14) with a, b, c, d 6= 0 is in Ref. 7. Here, we will only

consider solutions with b = d = 0. In this case, the total mass is M = aR/2, and

exp[−λ] = 1−a. Since for any static spherically-symmetric configuration we expect

(2M/R)crit ≤ 1, we must have a < 1. (Also, the metric coefficient grr becomes

infinite when a = 1).

Since we want to construct stars with finite radii and density in the context of

anisotropic pressure, we impose boundary conditions such that pr(R) = 0. With

b = d = 0, Eq. (14) reduces to an Euler–Cauchy equation,

(1 − a)r2y′′ − (1 − a)ry′ + (a − c)y = 0 . (15)

The solutions of this equation fall into three classes, depending on the value of

q (q is real, q = 0, or q is imaginary), where

q ≡
(1 + c − 2a)

1

2

(1 − a)
1

2

. (16)

We will only show results for q real. (See Ref. 7 for the other cases.)

The solution for y is

y = A+

(

r

R

)1+q

+ A−

(

r

R

)1−q

, (17)

with the constants A+ and A− fixed by boundary conditions. For the case under

consideration here (b = d = 0), the boundary conditions are

e−λ(R) = eν(R) = I2
0 , and eν(R) dν

dr

∣

∣

∣

∣

R

=
a

R
. (18)
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Applying the boundary conditions we find

A+ =
I0

2
+

1 − 3I2
0

4qI0
and A− = A+(q → −q) . (19)

The radial pressure for this case, after substituting the expressions for A+ and A−,

is

8πpr =
(3I2

0 − 1)2 − 4q2I4
0

r2

[

R2q − r2q

(3I2
0 − 1 + 2qI2

0 )R2q + (1 − 3I2
0 + 2qI2

0 )r2q

]

. (20)

We note that the boundary conditions automatically guarantee that pr(R) = 0. The

radial pressure is always greater than zero provided a < 2/3 and a2 > 4c(1 − a).

Since by definition a > 0, the second condition implies c > 0. Thus, this model

does not allow for negative anisotropy. Further, since we are considering the case

q > 0, we must impose the condition 1 + c < 2a. Combining the two inequalities

for a and c, we obtain, 2a − 1 < c < a2/4(1 − a). Since we have 0 < a < 2/3 we

find that 0 < c < 1/3. We note that for the anisotropic case the maximum value

of a is 2/3, corresponding to a 33% increase when compared with the isotropic

case (a = 3/7). In Fig. 1 we plot the radial pressure pr as a function of the radial

coordinate r, for a = 3/7 and several values of c. Note that for this choice of a, the

inequality c < a2/4(1 − a) imposes that c < 0.08 for positive pressure solutions.

This can be seen in the figure. For larger anisotropies, no static self-gravitating

stable configuration is possible. For r � R, we find

8πr2pr = 3I2
0 − 1 − 2qI2

0 . (21)

Choosing a = 3/7 we recover, in the limit c → 0, the Misner–Zapolsky solution,9

with pr = 1/(56πr2) = ρ/3.

4. Stability

For sake of brevity, we will skip most details of our generalization of Chandra-

sekhar’s formalism to anisotropic spheres. Readers can consult Ref. 8 for details.

As in Chandrasekhar’s original formalism, we limit our study to small radial and

baryon-number conserving perturbations. Writing ρ = ρo + δρ, pr = pro + δpr,

pt = pto + δpt, λ = λo + δλ, and ν = νo + δν we find that, to first order in

v = dξ/dt (ξ is the Lagrangian displacement) and using the zeroth-order equations,

the perturbation in the radial pressure satisfies,

δpr = −pro

′ − γpro

eνo/2

r2

(

r2eνo/2ξ

)

′

+
2ξ

r
Πo

∂pro

∂ρo
, (22)

with γ being the adiabatic exponent defined as

γ ≡
1

pr(∂n/∂pr)

[

n − (ρ + pr)
∂n

∂pr

]

, (23)
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Fig. 1. Radial pressure as a function of r for ρ and (pt − pr) ∝ r−2 and q real.

and Π ≡ pt − pr. We now assume that all perturbations have a time dependence

of the form eiωt. Further, considering δλ, δν, δρ, δpr and δΠ to now represent the

amplitude of the various perturbations with the same time dependence we obtain,

after using the zeroth-order equations, the pulsation equation governing the radial

stability of anisotropic stars8

ω2(ρo + pro)ξe
λo−νo

=
4

r
pr

′

oξ − e−(λo+2νo)/2

[

e(λo+3νo)/2γ
pro

r2
(r2e−νo/2ξ)′

]

′

+ 8πeλo(Πo + pro)(ρo + pro)ξ −
1

(ρo + pro)
(pr

′

o)
2ξ

+
4pro

′Πoξ

r(ρo + pro)
−

4Π2
oξ

r2(ρo + pro)

− e−(λo+2νo)/2

[

e(λo+2νo)/2 2

r
ξΠo

(

∂pr

∂ρ
+ 1

)]

′

−
8

r2
Πoξ −

2

r
δΠ . (24)
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The boundary conditions imposed on this equation are

ξ = 0 at r = 0 and δpr = 0 at r = R . (25)

The pulsation Eq. (24), together with the boundary conditions Eq. (25), reduce

to an eigenvalue problem for the frequency ω and amplitude ξ. One multiplies

this equation by r2ξe(λ+ν)/2 and integrates over the entire range of r, using the

orthogonality condition
∫ R

0

e(3λ−ν)/2(ρ + pr)r
2ξiξjdr = 0 (i 6= j) , (26)

where ξi and ξj are the proper solutions belonging to different eigenvalues ω2.

We now apply this equation to the exact solutions with ρ ∝ 1/r2 described

above. Using the trial function ξ = r2(ρ + pr)e
ν we found that all integrals could

be computed exactly. In Table 1 we present results for the frequencies of radial

oscillations ω2 as a function of the anisotropy parameter, c, for given values of

the density parameter. Instabilities set in for ω2 < 0. This can be used to find

the critical value for the adiabatic index, γc(c), and the maximum value for the

anisotropy parameter cmax. We also give, in Table 2, the values of γc above which

stable oscillations are possible. Here we see that the effect of a positive anisotropy

is to reduce the value of γ, thus giving rise to a more stable configuration when

compared with the corresponding isotropic model. In particular, for the Misner–

Zapolsky solution (a = 3/7), we find that a small positive pressure anisotropy in

the equation of state improves the neutron star’s core stability.

Table 1. ω2 versus c for given values of a.

a = 2/9 ω2R2 = 0.95(γ − 1.79) + (101.1 − 52.6γ)c

a = 2/7 ω2R2 = 2.3(γ − 1.83) + (122.3 − 59.3γ)c

a = 3/7 ω2R2 = 0.57(γ − 1.93) + (15.2 − 5.1γ)c

a = 3.4/7 ω2R2 = 0.4(γ − 2.6) + (8.9 − 2.3γ)c

a = 3.49/7 ω2R2 = 0.36(γ − 2.76) + (8.0 − 1.97γ)c

Table 2. γc versus c for given values of a.

a = 2/9 cmax = 0.0016 γc = 1.79 − 6.87c

a = 2/7 cmax = 0.0028 γc = 1.83 − 13.39c

a = 3/7 cmax = 0.083 γc = 1.93 − 5.55c

a = 3.4/7 cmax = 0.11 γc = 2.6 − 2.84c

a = 3.47/7 cmax = 0.12 γc = 2.75 − 7.29c

5. Conclusions

We have presented a summary of results concerning the existence of self-gravitating

spheres in General Relativity with anisotropic equations of state, aka anisotropic

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

00
4.

13
:1

38
9-

13
97

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 A
T

 B
U

FF
A

L
O

 o
n 

02
/0

4/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 30, 2004 11:33 WSPC/142-IJMPD 00558

1396 M. Gleiser and K. Dev

stars. I have also presented a summary of our investigation of their stability, based

on the extension of Chandrasekhar’s celebrated variational formalism for isotropic

spheres to those with anisotropic energy-momentum tensors.

Although the search for exact solutions restricts the forms of anisotropy we could

treat, our results illustrate the fact that, indeed, pressure anisotropy may greatly

affect the physical structure of the star, leading to several observational effects.

Most importantly, the absolute stability bound 2M/R < 8/9 can be violated, and

the star’s surface redshift may be arbitrarily large (zs > 2). It is thus conceivable

that objects which are observed at large redshift may actually be closer than we

think due to anisotropic distortions. They may also be more stable than we think,

especially if pressure anisotropy exists near the stellar core.

Here, I have presented results only for one of the cases we treated, stars with

energy density scaling as 1/r2. These are of interest as they include ultra-relativistic

equations of state used to model the cores of neutron stars. Perhaps the most

important lesson of our study is that one must keep an open mind as to whether

isotropy is or not a justified assumption to describe stellar matter. Until we have a

better microscopic understanding of what truly goes on inside ultra-dense compact

objects, isotropy should be taken with a grain of salt. Especially if some of these

objects contain bosonic condensates at their cores, as is the case for several models

of neutron star interiors and for a whole class of fully-anisotropic hypothetical

objects known as boson stars.4
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