
Nuclear Physics B339 (1990) 407-416
North-Holland

SOLITONIC DARK MATTER AND THE SOLAR NEUTRINO PROBLEM

JamesG. BARTLETT', Marcelo GLEISERZ and Joseph SILK 1,3

1Department ofPhysics and Center for Particle Astrophysics, University of California,
Berkeley, CA 94720, USA

2Institutefor TheoreticalPhysics, University of California, Santa Barbara, CA 93106, USA
3Department ofAstronomy, University of California, Berkeley, CA 94720, USA

Received 23 October 1989
(Revised 14 February 1990)

Weakly interacting massive particles (known as cosmions) have been proposed as a possible
solution to the solar neutrino problem. However, in order to successfully reduce the neutrino
flux, their scattering cross section on hydrogen must be two orders of magnitude larger than the
typical weak cross section. We suggest that finite-size, bound configurations of weakly interacting
particles, known as non-topological solitons, can naturally produce the necessary enhancement
of the cross section. For a simple model exhibiting solitonic configurations formed in a
primordial phase transition with a calculable mass spectrum, solitons with masses of a few GeV
and higher are shown to solve the solar neutrino problem and to provide the energy density
needed to close the universe .

There is a well-known discrepancy between the measured [1] and the predicted
[2] flux of neutrinos from the Sun. For example, the more recent result from
Kamiokande II finds that the ratio of the observed flux of 8B neutrinos to the
predicted flux is 0.46 ± 0.13 ± 0.08, the first error being statistical and the second
systematic [3]. Assuming that there is indeed a "solar neutrino problem", several
solutions have been proposed in the literature over the past few years. They fall
into one of two categories : either modify the properties of the neutrino or modify
the Sun's interior conditions . Included in this latter category is the idea that the
core temperature is slightly lower than expected in standard solar models (the 8B
decay neutrino flux is extremely temperature sensitive) . As suggested by Spergel
and Press [4], and calculated more accurately by Gilliland et al . [5], the presence in
the Sun of a weakly interacting massive particle (hereafter cosmion) with just the
right properties would indeed reduce the core temperature by the correct amount,
as it enhances energy transport from the core to the exterior regions . The cosmion
needs to have a scattering cross section on hydrogen of about QS _ 10 -36 cm2, a
mass in the range 4-10 GeV, and to be present at the level of Ncosmion/Nbaryon ^'
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10 -12-10 -11. Lower mass particles evaporate over the Sun's lifetime while those
with a larger mass orbit too close to the center to alter the neutrino flux
significantly. Press and Spergel [6] also demonstrated that if these particles are
present in the galactic halo, they would be captured over the Sun's lifetime,
achieving an abundance by number given by the expression

Ncosmion = 3 X 10-9
Nbaryon
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Here Nosmion is the density of the cosmions in the halo, Uesc = 618 km s-1 is the
Sun's escape velocity, v - 300 km s-1 is the velocity dispersion of the cosmions in
the halo, mp is the proton mass, mcosmion is the cosmion mass, writ =_ 4.0 X 10 -36

cm2, and Qs is the cosmion's actual scattering cross section on hydrogen. For

Os > O'crit the cross section ratio saturates at unity. The halo density is about
0.01Mo pc-3 , and so we see that the Sun can capture cosmions with an abundance
ratio in the range of 10-12-10-11 for the cross section and mass range above, as is
needed . Equation (1) ignores the possible annihilation of the cosmions once
captured. We will discuss this below.
Various particle models have been given for the cosmion [7-11] . One of the

main issues in the construction of these models is achieving the large required
scattering cross section, which is about 100 times the typical weak cross section of

10 -38 cm2 [9,10] . In this note we propose another model for the cosmion,
namely one in which the cosmion is not an elementary particle but, instead, is a
stable field configuration known as a non-topological soliton (hereafter NTS). In
such a model, we shall argue that the large scattering cross section can easily be
achieved. NTSs owe their stability to the conservation of a global charge, carried
by either a spin-0 or spin- z field. Within renormalizable theories, the simplest
models exhibiting NTS solutions have the charge carrying field coupled to a real
scalar field in such a way as to have different masses in the different vacua of the
theory; in the NTS interior the charge carrying field is massless, while outside the
field is massive. It is this mass gap that renders the soliton stable ; the massless
particles are trapped inside the soliton, giving rise to an effective kinetic pressure
that balances the surface and/or volume pressures coming from the interaction
potential of the real scalar field. If the trapped charge Q is larger than a certain
value Qmi,,, stable equilibrium configurations are found to exist and to have
smaller energy than the free massive particles would. In other words, the NTSs are
the favored energy configuration. There is an extensive literature on NTSs, and we
refer the reader to ref. [12] for details. Within realistic models of particle physics,
the obvious candidate for the global charge is bayron number (or, if the particles
are only weakly interacting, lepton number). Recently, there have been some
efforts to construct NTS solutions in the standard model, with partial success; it
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has been found that NTS solutions are possible and are the ground state of matter
for quite a narrow window of allowed Higgs masses around mH - 6.6 GeV [13] .
Extensions to the standard model, supersymmetric or not, offer a wider range of
possibilities but remain largely unexplored . Here we will adopt the point of view
that cosmion physics calls for physics beyond the standard model [7-11], and will
assume that the requirements to find NTS solutions in particle physics models are
general enough as to be met by most non-trivial extensions to the standard model.
The prime motivation for proposing the NTS as the cosmion comes from

considering how such configurations would interact with a proton ; a soliton of
charge Q can be thought of as a coherent state of Q particles . Assuming that the
constituent particles each interact with the proton with the typical weak cross
section, the solitons and protons would scatter coherently with a cross section that
scales as Q2. Thus, a NTS with Q = 10 would "naturally" provide the desired
enhancement of the weak cross section . Below we develop the properties of this
NTS cosmion in the context of a simple model which accounts for its production in
the early universe, proposed recently by Frieman, Gelmini, Gleiser and Kolb [14]
(hereafter FGGK). We shall show, using this model, that it is possible for the
solitons to both close the universe and to behave as cosmions . We assume
throughout that ntot =ptot/(3HO/8arG) = 1, as preferred by inflation, where ptot
is the total energy density of the universe, G is the gravitational constant and Ho
(=-- 100ho km s -1 Mpc-1) is the present day Hubble parameter . For the calcula-
tions below, ho = 0.5 .
The simplest generic theory with soliton solutions is given by the lagrangian

where
L = Ia012 + I(ao,) 2 - U,

U(I
0

I2,

	

)= 8À1(QZ- ~ô)2 +hiß1 2 (U- ~o) 2 +14(o' - a0)3oo+gl~l 4 +A . (3)

The soliton is a false vacuum configuration with o- = Qo , and hence m. =0, as
opposed to the true vacuum solution with a = Q_, the global minimum of U(0, Q),
and m, :* 0. We will follow FGGK and set the coupling g to zero . Being a
repulsive self-interaction between the trapped particles, this coupling can change
the properties of the solitons somewhat [15] . However, the approach used here can
easily be extended to include this case, without change in the qualitative picture.
Also, there is no fundamental reason for the charge carrying field to be a scalar .
Solitons are as easily obtained by trapping fermions with false vacuum energy, in
the same spirit as the bag models for hadrons. As at this point there is no
compelling evidence in favor of either scalar or fermion solitons, we choose a
model which has the virtue of simplicity without the burden of triviality . The
vacuum scale A is defined such that U(0, cr) = 0 at the global minimum o-_ . The
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free parameters of the theory are thus taken to be A1, a --- A z/A I, h, ao and 71,,, the
cosmic asymmetry between ¢ and its antiparticle, which is assumed to exist in the
FGGK model but can be relaxed in other models of solitogenesis [16] . Note,
however, that if baryon number (lepton number) is the required global charge, an
asymmetry comes about naturally. In what follows we present a model where the
asymmetry is determined by the requirement that the NTSs close the universe.
The five parameters must be chosen to satisfy four constraints, thereby leaving

one free parameter which we choose to be a. The four constraints are determined
by the desire to both close the universe with the NTSs (fixing 12T .LS, the total
contribution to the energy density from NTSs with all possible values of the charge
Q) and to satisfy the cosmion conditions for the NTS with Q = Qmin, the lightest
stable NTS, which we call "minimal NTS" from now on; MNTS = 4 - 10 GeV, and
a, = 1000w. We choose the minimal NTS as the cosmion since it is the most
abundant, as we shall see. The free massive ¢'s outside are assumed to have
decayed, giving negligible contribution to the energy density of the universe (see
ref. [16]). The minimal solitons should be present at the level required for the Sun
to capture enough over its lifetime to significantly alter the solar neutrino flux
today. This implies that they should dominate the galactic halo density.However,
the uncertainty in halo models and in expression (1) implies a factor of > 2
uncertainty in the required halo density of cosmions . Since galactic halos amount
to a cosmological abundance of - 0.1, we require the minimal NTS cosmic density
to be 12N.'s > 0.1 . For concreteness we will choose ,f2NTS = 0.1 . The NTSs with
Q > Qmin then contribute 9NTS = 0.8, assuming the baryons have fb = 0.1 . With
these definitions, the total contribution in NTSs is f2T .rs = DNTs + DNTS = 0.9 . (Of
course, these specific values are just chosen for calculational purposes.) We also
require that the minimal NTS satisfy the cosmion conditions on scattering cross
section and mass, so that

NTS - 0.8,

	

S2NTS =o.1,

	

'b = 0.1,

0,S

	

10 -36 cm 2 ,

	

MNTS - 4 - 10 GeV .

	

(4)

We must now apply these conditions to the FGGK model. First, let us recall
how NTSs are formed in this model. The basic idea of the formation mechanism is
to examine the evolution of the potential defined in eq . (3) in the early universe .
As the temperature cools below the relevant mass scale in the model (T - 0,0), two
vacua will appear in the effective potential, with the Q-field thermally fluctuating
between them . Thus, both vacua will be populated with a rate given by the
Boltzmann factor. (We assume thermal equilibrium is maintained, i.e. only weakly
first order or second order.) As the temperature continues to go down, thermal
fluctuations become progressively suppressed, until, at a temperature commonly
called the Ginzburg temperature (TG), they become dynamically forbidden ; there
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is not enough thermal energy in the system to induce a "jump" over the potential
barrier separating the two vacua. FGGK showed that the probability of having a
fluctuation ending up in the false vacuum (the NTS) at freeze-out is very sensitive
to the asymmetry between the two minima ; the bigger the asymmetry the more
difficult it is to be in the false vacuum . Thus, there are basically two possible
outcomes for the freeze-out process, depending on the asymmetry of the potential.

Roughly, for a < 0.13 (recall that a, being the coefficient of the cubic coupling,
induces the asymmetry in the potential at tree level) both vacua will percolate, and
the universe will be permeated by an infinite domain wall, as is familiar from
discrete symmetry breaking with degenerate potentials . Due to the asymmetry, the
domain wall will move from the true to the false vacuum regions, pinching
off domains of false vacuum in the process. If the charge trapped inside these
pinched domains is larger than Qmin, these domains will be stable NTSs . Domain
walls in an asymmetric universe were studied in ref. [17]. If a > 0.13 only the true
vacuum percolates, and the universe will be filled with isolated bubbles of false
vacuum . Again, if the charge in these bubbles is bigger than Qmin, NTSs are
formed . FGGK showed that in this case it is possible to use results from
percolation theory to estimate the population of NTSs in the universe . For this
reason, we will consider only this latter case in our calculations, although other
formation mechanisms are certainly possible . (The actual calculation of TG in-
volves comparing the expansion rate of the universe to the thermal fluctuation
rate, obtained by exponentiation of the O(3)-symmetric euclidean action at finite
temperatures [18] . The value of TG is of extreme importance for the survival of
NTSs, at least in the context of the present formation mechanism, as has been
shown by Frieman et al . [16] . For temperatures T>Ib - m. (where Ib is the NTSs
binding energy per particle) the NTSs can evaporate into free cg's . Thus, the lower
the value of TG the better the chance the NTSs have for survival . For TG < m,,/30
or so, evaporation is substantially suppressed . It is not clear at present if such
values of TG are naturally attainable, although they are by no means prohibitive .
We will assume our NTSs will not suffer substantial evaporation. Of course, if this
assumption fails, the other formation mechanisms can be invoked, such as the
pinching walls mechanism or the more recent random-charge fluctuations mecha-
nism [16], although the estimates for the NTS population are not as clear in these
mechanisms as in the FGGK mechanism.)
From FGGK the present density of NTSs with charge Q is given by

3/2
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where we have set their constants b and c to unity. Note that the contribution
from NTSs with higher values of the charge Q is exponentially suppressed . This
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fact led the authors of refs . [14] and [16] to completely neglect the contribution to
the energy density of the universe from all NTSs with Q > Qmin . However, it can
be seen that this approximation is incorrect in most cases; even though higher
charges are exponentially suppressed, they still give a relevant (and in the present
paper the dominant) contribution to ntot . Indeed, the total contribution from
NTSs can be written, from eq . (5), as

or

with Q ----- Qmin +j. Taking -/= 1 is, for most values of Qmin, A1 and Th, incorrect,
since the exponential is quite flat for values of f2NTs around unity. Figure 1 plots
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Fig. 1. The figure shows the abundance of solitons of charge Q, ONTS(Q), as a function of Q. The
parameters for which this plot was constructed are as given in the text [eq. (16)]: a = 0.15, 17m =
1 .0 X 10 -7 , A t = 1 .9 X 10-3 , h = 5 .9 X 10- Z, Qo = 0.82 GeV. The minimum stable charge in this case is
Qmin = 10. It is evident that solitons with charges greater than the minimum value contribute signifi-

cantly to the total density of solitons today.



the abundance of solitons of a given charge Q as a function of Q for the
parameters chosen below in eq . (16) . It is easy to see that solitons with Q > Qcnin
contribute significantly to the sum in eq. (6). There is an upper value to the sum
over Q coming from the maximum charge contained within the horizon at
formation. For the present model, QHOR - r7'~(MPi/0,o)3, where MPi is the Planck
mass (see paper by Frieman et al . in ref. [16] for details) . However, the sum
converges much faster with Q, and such values of the charge give a negligible
contribution to .flNTS .

Following the above discussion we adopt a point of view different from previous
work, one in which all NTSs contribute to f2 tot, thus helping the minimal NTS to
close the universe . So long as the free massive O's outside the solitons are unstable
and give a negligible contribution to 12 t, this seems to be the most adequate
approach, if NTSs are to be taken as dark matter candidates. For stable O's, a
further partition of f2 tot is required that would fix their primordial asymmetry.
We will require the following formulae, which can be derived from the results of

FGGK (we neglect the contribution from the surface terms to the NTS's energy, a
good approximation for the values of Q below)

where

and
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Qmin =1231

	

C

	

Al
(A _ 1)4 h2 ,

m� = h1/Z IA - l lo,o ,

	

(8)

3/4
Q

MNTS(Q) ' m¢Qmin
1

	

(9)(
Qmin ~

A(a) =

	

_ -i{(1+2a) + [(1+2a)Z+Sa ] 1/2},

	

(10)
0

C(a) =

	

A
4 = --!(A2 _ 1) 2 - 3a(A - 1)3 .

	

(11)
À 0-

Here Qmin is the minimum stable soliton charge, as can be seen from eq . (9).
If we assume that the O's have the typical weak cross section of _ 10 -38 cm2 for

scattering off hydrogen, then, as mentioned earlier, we need Q = 10 to reach the
required cross section for cosmions . As the minimal NTS is the most abundant, the
most natural candidate for the cosmion is the minimal NTS with Qmin = 10. Due to
their larger cross sections, NTSs with Q> Qinin need to be present in the Sun at a
higher level than the minimal NTS. Hence we shall neglect their effect on the Sun
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and consider only the minimal NTS as the cosmion. To satisfy the cosmion mass
range for the minimal NTS we are led to the restriction

By employing eq. (11) in eq . (7) and using this value of Qm;n, we find that
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Solving eq . (8) for (A - 1) and incorporating it into the above expression
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for h
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A= 0.008m~ .

	

(13)

By using DNrs = 0.9 and .fl"s = 0.1 (conditions (4)) in eq . (6), we see that /= 9.
This determines the ratio Ai/rl, . Using this and eq. (13) in eq . (5) for Q = Qmin,
we fix the value of both A1 and rl, for a given value of m.. Furthermore, the
parameters Qo and h may be expressed in terms of this value of A1 and a as
follows . Using eq. (13) in eq . (11),
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it is emphasized that C is a function of a only. Then eq . (8) may be solved
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where it is again emphasized that C and A are only functions of a.
The general scheme is to first choose values for m,, and a, and then solve for

the remaining parameters . (The freedom to choose m0 is due to the range of
values allowed by the mass constraint.) As discussed before, a > 0.13 in order to
prevent both vacua from percolating. There is thus a range of parameter space in
which solitons could both be cosmions and also provide the closure density . For
example, let us take m,, = 0.5 GeV and a = 0.15 . Then we find

MN.s = 5 GeV .

	

(16)

As with any cosmion candidate there are two additional concerns . First, the
candidate must have an annihilation cross section Qa < ß-1 10 -4vs _ 10-37 cm2,
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with /3 being the NTSs thermal velocity, so that its population is not greatly
reduced over that expected from continuous accretion over the Sun's lifetime [19] .
For the models considered here we have built in an asymmetry for the O's . One
might think, therefore, that there would be no difficulty for the NTS cosmion.
However, collisions among solitons in the Sun's interior should lead to a nonzero
fusion rate . This process would reduce the number of NTSs with the desired
cosmion properties (in favor of NTSs with larger masses and cross sections)
thereby effectively acting as an annihilation of available cosmions . The fusion rate
is at present unknown and in general difficult to calculate, as it involves a
complicated skin-skin interaction among the underlying vacuum field Q. (Recall
that at least in the present model the O's do not self-interact.) Furthermore, it is
possible that some of the binding energy released by the fusion of two solitons
would appear in the form of detectable energetic neutrinos, making limits on the
flux of such neutrinos applicable . Any details, though, must depend upon a more
specific 'model of the O's and their interactions . Even if fusion were to be
energetically favored, the question remains as with what efficiency it would occur
and, ultimately, how it would affect the NTS population in the Sun's interior . For
comparison, the geometric cross section of the NTSs is Qg

-R2 _ 10-28 cm2, much
greater than the limit on the annihilation cross section. Thus, although the
effective cross section will probably be smaller than Qg , one might expect the
cosmions to interact effectively . These considerations should motivate the study of
solitonic interactions, a topic of great importance if such configurations are to be
taken seriously as a dark matter candidate.
The second concern is laboratory detection of the cosmion NTSs . (There is also

a recent proposal for the detection of NTSs through gravitational radiation that
would be emitted in their formation process [20] .) Since they interact coherently
with baryon number, we expect a cross section on a large nucleus of mass number
A to be roughly ON

- 10 -36A2 cm2. For the current limits imposed by the Germa-
nium detector, we find ON - 5 x 10 -33 cm2 for the minimal soliton, well within the
detectable range [21] . From this data the NTS is therefore limited to a mass
M< 10 GeV. More stringent limits arise from recent results due to a silicon
detector (described in ref. [22]). On such a target we expect that for the minimal
soliton UN - 10 -33 cm2. The data then restrict M < 5 GeV [23]. However, new
theoretical calculations by Gould [24] indicate that the evaporation mass of
cosmions (which sets the lower mass limit in eq. (4 )) may be as low as - 2 GeV.
Thus, there remains a viable region of phase space between 2-5 GeV. Recall,
however, that laboratory limits are obtained by assuming that the halo density is
saturated by the cosmion. If the cosmion contributes only partially to the halo
density, the limits should be modified .

In conclusion, we have suggested a new cosmion candidate, the non-topological
soliton. The key idea behind this suggestion is the ability to reach the large
scattering cross section of 1000w by placing weakly interacting particles into a
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soliton configuration. Coherent scattering of the soliton produces the required
cross section for a NTS of charge about 10 . Using the model of FGGK for their
formation in a primordial phase transition, we were able to develop a scenario
where the NTSs with the minimal charge required for their stability act as
cosmions and, together with solitons of higher charge, provide the closure energy
density for the universe.
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