


 

 

 

 

 

Operating Systems 

This text demystifes the subject of operating systems by using a simple step-by-step approach, 
from fundamentals to modern concepts of traditional uniprocessor operating systems, in addition to 
advanced operating systems on various multiple-processor platforms and also real-time operating 
systems (RTOSs). While giving insight into the generic operating systems of today, its primary 
objective is to integrate concepts, techniques, and case studies into cohesive chapters that provide 
a reasonable balance between theoretical design issues and practical implementation details. It 
addresses most of the issues that need to be resolved in the design and development of continuously 
evolving, rich, diversifed modern operating systems and describes successful implementation 
approaches in the form of abstract models and algorithms. This book is primarily intended for use 
in undergraduate courses in any discipline and also for a substantial portion of postgraduate courses 
that include the subject of operating systems. It can also be used for self-study. 

Key Features 

• Exhaustive discussions on traditional uniprocessor-based generic operating systems with 
fgures, tables, and also real-life implementations of Windows, UNIX, Linux, and to some 
extent Sun Solaris. 

• Separate chapter on security and protection: a grand challenge in the domain of today’s 
operating systems, describing many different issues, including implementation in modern 
operating systems like UNIX, Linux, and Windows. 

• Separate chapter on advanced operating systems detailing major design issues and salient 
features of multiple-processor-based operating systems, including distributed operating 
systems. Cluster architecture; a low-cost base substitute for true distributed systems is 
explained including its classifcation, merits, and drawbacks. 

• Separate chapter on real-time operating systems containing fundamental topics, useful 
concepts, and major issues, as well as a few different types of real-life implementations. 

• Online Support Material is provided to negotiate acute page constraint which is exclusively 
a part and parcel of the text delivered in this book containing the chapter-wise/topic-wise 
detail explanation with representative fgures of many important areas for the completeness 
of the narratives. 



http://taylorandfrancis.com


 
Operating Systems 

Evolutionary Concepts and Modern 
Design Principles 

Pranabananda Chakraborty 

An Eminent IT Professional and Senior Visiting Professor 



 
 

 
  

 
  

 
  

 
 

  
 

First edition published 2024 
by CRC Press 
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431 

and by CRC Press 
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN 

CRC Press is an imprint of Taylor & Francis Group, LLC 

© 2024 Pranabananda Chakraborty 

Reasonable efforts have been made to publish reliable data and information, but the 
author and publisher cannot assume responsibility for the validity of all materials or the 
consequences of their use. The authors and publishers have attempted to trace the copyright 
holders of all material reproduced in this publication and apologize to copyright holders if 
permission to publish in this form has not been obtained. If any copyright material has not 
been acknowledged please write and let us know so we may rectify in any future reprint. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, 
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other 
means, now known or hereafter invented, including photocopying, microflming, and 
recording, or in any information storage or retrieval system, without written permission 
from the publishers. 

For permission to photocopy or use material electronically from this work, access www. 
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978–750–8400. For works that are not available on CCC 
please contact mpkbookspermissions@tandf.co.uk 

Trademark notice: Product or corporate names may be trademarks or registered trademarks 
and are used only for identifcation and explanation without intent to infringe. 

Library of Congress Cataloging‑in‑Publication Data 
Names: Chakraborty, Pranabananda, author. 
Title: Operating systems : evolutionary concepts and modern design principles / 

Pranabananda Chakraborty. 
Description: First edition. | Boca Raton : Chapman & Hall/CRC Press, [2024] | 

Includes bibliographical references and index. 
Identifers: LCCN 2023009376 (print) | LCCN 2023009377 (ebook) | 

ISBN 9781032467238 (hbk) | ISBN 9781032467467 (pbk) | ISBN 9781003383055 (ebk) 
Subjects: LCSH: Operating systems (Computers) 
Classifcation: LCC QA76.77 .C39 2024 (print) | LCC QA76.77 (ebook) | 

DDC 005.4/3—dc23/eng/20230601 
LC record available at https://lccn.loc.gov/2023009376 
LC ebook record available at https://lccn.loc.gov/2023009377 

ISBN: 978-1-032-46723-8 (hbk) 
ISBN: 978-1-032-46746-7 (pbk) 
ISBN: 978-1-003-38305-5 (ebk) 

DOI: 10.1201/9781003383055 

Typeset in Times 
by Apex CoVantage, LLC 

Access the Support Material: www.routledge.com/9781032467238 

https://doi.org/10.1201/9781003383055
mailto:mpkbookspermissions@tandf.co.uk
http://www.routledge.com/9781032467238
https://lccn.loc.gov
https://lccn.loc.gov
http://www.copyright.com
http://www.copyright.com


Contents 
Preface..............................................................................................................................................xv 
Author Bio .......................................................................................................................................xxi 

Chapter 1  Computers and Software ..............................................................................................1 

1.1  Introduction .......................................................................................................1 
1.2  Computer Software: System Software...............................................................1 
1.3  Operating Systems.............................................................................................3 
1.4  Hardware Structure Terminology......................................................................4 
1.5  Programming Terminology...............................................................................5 
1.6  Evolution of Operating Systems and Their Role ...............................................5 

1.6.1  The First-Generation System and Zero-Generation  
OS (1945–1954) ....................................................................................6 

1.6.2  The Second-Generation System and First-Generation  
OS (1955–1964) ....................................................................................6 

1.6.3  The Third-Generation System and Third-Generation  
OS (1965–1980) ....................................................................................8 

1.6.4  Modern Operating Systems ................................................................ 18 
1.6.5  Distributed Operating Systems ..........................................................23 
1.6.6  Clusters: A Distributed Computer System Design.............................26 
1.6.7  Real-Time Operating Systems ............................................................27 
1.6.8  Genesis of Modern Operating Systems and Grand Challenges .........29 

Summary .................................................................................................................... 32 
Exercises..................................................................................................................... 33 
Suggested References and Websites...........................................................................34 
Websites......................................................................................................................34 

Chapter 2  Operating Systems: Concepts and Issues ................................................................... 35 

2.1  Operating Systems: Objectives and Functions ................................................ 35 
2.1.1  Operating Systems: Resource Manager .............................................36 

2.2  Process: Concepts and Views .......................................................................... 37 
2.2.1  Process Types .....................................................................................40 

2.3  Operating Systems: Design Issues...................................................................40 
2.3.1  Event: A Fundamental Concept  ......................................................... 41 
2.3.2  Interrupts and Traps ........................................................................... 42 
2.3.3  Resource Sharing and Protection .......................................................48 
2.3.4  Scheduling and Its Role...................................................................... 49 

2.4  Operating System: Supports and Services ...................................................... 53 
2.4.1  System Calls .......................................................................................54 
2.4.2  Procedure Calls ..................................................................................56 
2.4.3  Processor Modes: Mode Bit ............................................................... 57 
2.4.4  Software Interrupt .............................................................................. 58 
2.4.5  Message Passing................................................................................. 58 
2.4.6  Signals ................................................................................................60 
2.4.7  Locks ..................................................................................................60 
2.4.8  Pipes ................................................................................................... 61 
2.4.9  Command Language Users ................................................................ 62 

v 



vi  Contents 

2.5  Design Factors and Related Issues .................................................................. 63 
Summary ....................................................................................................................65 
Exercises.....................................................................................................................65 

Chapter 3  Operating System: Structures and Designs................................................................68 

3.1  Evolution of System Structure.........................................................................68 
3.1.1  Monolithic Systems............................................................................68 
3.1.2  Hierarchical and Extended Machines ................................................69 
3.1.3  Layered Systems—Modular Hierarchical Design ............................. 70 
3.1.4  Virtual Machine Operating Systems—A Revolutionary  

Approach ............................................................................................ 73 
3.1.5  Networks of Computers: Client–Server Model: A New  

Direction ............................................................................................. 76 
3.1.6  Comparing MVS and UNIX: Concepts and Terms ........................... 81 
3.1.7  Monolithic Kernel .............................................................................. 81 
3.1.8  Case Study: Monolithic Kernel-Based Operating System .................84 
3.1.9  Microkernel: The Extensible Nucleus ................................................86 
3.1.10  Hybrid Kernel.....................................................................................90 
3.1.11  Exokernel............................................................................................ 91 

3.2  M odern Operating Systems: Design Issues and Salient Features ...................92 
Summary ....................................................................................................................95 
Exercises.....................................................................................................................95 
Suggested References and Websites...........................................................................96 

Chapter 4  Processor Management ..............................................................................................97 

4.1  Introduction .....................................................................................................97 
4.2  The Concept and Implementation of Process Model  ......................................98 
4.3  Processor Management Functions................................................................... 98 
4.4  Structure of Processor Management ...............................................................99 
4.5  Process–States Model......................................................................................99 

4.5.1  Additional Process States: Suspended State  .................................... 100 
4.5.2  Suspended Processes: Their Characteristics and Importance.......... 101 

4.6  Process Description ....................................................................................... 101 
4.7  Process Image: Process Totality.................................................................... 102 

4.7.1  Process Data Block and Process Control Block............................... 103 
4.8  Process Creation ............................................................................................ 104 
4.9  Process Creation Methods............................................................................. 104 
4.10  Process Hierarchy and Daemon Processes.................................................... 105 
4.11  Process Switch: Change of Process............................................................... 105 
4.12  Context Switch: Change of Context  .............................................................. 106 
4.13  Process-Based Operating Systems ................................................................ 107 
4.14  Threads: An Alternative Approach ............................................................... 108 

4.14.1  Introduction to Threads.................................................................... 108 
4.14.2  Conventional Thread States ............................................................. 110 
4.14.3  Single-Shot Threads ......................................................................... 111 
4.14.4  Types of Threads .............................................................................. 111 
4.14.5  Threads: Priority .............................................................................. 116 
4.14.6  Multithreading.................................................................................. 116 
4.14.7  Threads and Processes: A Comparative Overview.......................... 117 



Contents  vii 

4.14.8  Thread Implementations .................................................................. 118 
4.14.9  Case Study: Solaris Threads Implementations  ................................ 118 

4.15  Objects: Object-Oriented Concept ................................................................ 119 
4.15.1  Case Study: Windows NT Implementation...................................... 120 

4.16  Process Scheduling (Uniprocessor): Time Management .............................. 121 
4.16.1  Scheduling Criteria: Short-Term Scheduler ..................................... 122 
4.16.2  Scheduler Design.............................................................................. 122 
4.16.3  Scheduling Mechanisms .................................................................. 123 
4.16.4  Process Schedulers: Different Kinds................................................ 123 
4.16.5  Process Scheduler Organization ...................................................... 125 
4.16.6  System Performance......................................................................... 125 
4.16.7  Scheduling Strategies ....................................................................... 126 
4.16.8  Nonpreemptive Strategies ................................................................ 127 
4.16.9  Preemptive Strategies....................................................................... 131 
4.16.10  Classifcation of Scheduling Policies ............................................... 142 
4.16.11  Fair-Share Scheduling...................................................................... 142 
4.16.12  Hybrid Methods................................................................................ 143 
4.16.13  State-Dependent Priority Methods................................................... 143 
4.16.14  External Priority Methods................................................................ 144 
4.16.15  Other Scheduling Systems ............................................................... 144 
4.16.16  Evaluating Policies ........................................................................... 144 
4.16.17  Scheduling Levels ............................................................................ 145 
4.16.18  Performance Comparison................................................................. 146 
4.16.19  Guiding Principles............................................................................ 146 
4.16.20  Case Study: UNIX, Linux, Windows NT ........................................ 147 

4.17  Interprocess Synchronization........................................................................ 147 
4.17.1  Introduction ...................................................................................... 147 
4.17.2  Concurrency: Forms and Issues ....................................................... 148 
4.17.3  Race Condition................................................................................. 149 
4.17.4  Mutual Exclusion: Requirements ..................................................... 150 
4.17.5  Mutual Exclusion Implementation ................................................... 150 

4.18  Interprocess Communication and Synchronization ...................................... 176 
4.18.1  Messages .......................................................................................... 177 
4.18.2  Message Format ............................................................................... 177 
4.18.3  Message Implementation: Different Issues ...................................... 178 
4.18.4  Message Exchange: Synchronous versus Asynchronous  ................. 182 
4.18.5  Design Issues: Message-Passing Systems ........................................ 185 
4.18.6  Messages: For Interprocess Synchronization and  

Communication ................................................................................ 186 
4.18.7  Message Usage: A Possibility in Interrupt Signaling....................... 189 
4.18.8  Equivalence of Primitives  ................................................................ 189 
4.18.9  Implementation: Interprocess Communication and  

Synchronization................................................................................ 191 
4.19  Deadlock and Starvation ............................................................................... 193 

4.19.1  Resources: Different Types .............................................................. 194 
4.19.2  General Resource Systems............................................................... 195 
4.19.3  Deadlocks and Resources................................................................. 195 
4.19.4  The Conditions for Deadlocks .......................................................... 195 
4.19.5  Deadlock Modeling: Graphical Representation ............................... 196 
4.19.6  Deadlock Detection and Subsequent Recovery ............................... 198 
4.19.7  Deadlock Prevention  ........................................................................200 



viii  Contents 

4.19.8  Deadlock Avoidance.........................................................................203 
4.19.9  The Banker’s Algorithm ...................................................................205 
4.19.10  Hybrid Strategy: A Combined Approach.........................................207 
4.19.11  Case Study: Deadlock Handling in UNIX.......................................208 
4.19.12  Discussions: Various Strategies and Their Impacts .........................209 
4.19.13  Starvation ......................................................................................... 211 

Summary .................................................................................................................. 212 
Exercises................................................................................................................... 213 
Suggested References and Websites......................................................................... 217 

Chapter 5  Memory Management .............................................................................................. 219 

5.1  Introduction ................................................................................................... 219 
5.2  Key Characteristics of Memory Systems  ...................................................... 221 
5.3  Primary Memory: Essential Requirements ................................................... 221 
5.4  Memory Hierarchies: Access-Time Reduction.............................................. 222 
5.5  Memory Management: Some Basic Requirements ....................................... 222 

5.5.1  Separation and Sharing: Importance and Different  
Approaches....................................................................................... 222 

5.5.2  Protection: Importance and Implementation.................................... 223 
5.5.3  Relocation: Address Translation ...................................................... 223 
5.5.4  Swapping: Impact and Implementation............................................225 
5.5.5  Logical Addresses and Logical Organization..................................226 
5.5.6  Physical Addresses and Physical Organization................................226 

5.6  Memory Management: Functions and Responsibilities ................................226 
5.7  D ifferent Memory-Management Schemes: Comparison Parameters............ 227 
5.8  Memory Management Schemes  ....................................................................228 

5.8.1  Contiguous Memory Allocation.......................................................228 
5.8.2  Noncontiguous Memory Allocation................................................. 247 
5.8.3  Memory Allocation Strategy: For OS Kernel Usage ....................... 259 

5.9  Virtual Memory.............................................................................................260 
5.9.1  Background and History .................................................................. 262 
5.9.2  Virtual Memory and Locality .......................................................... 262 
5.9.3  Basic Concepts ................................................................................. 263 
5.9.4  Virtual Memory Implementation .....................................................264 
5.9.5  Virtual Memory Management: Design Issues ................................. 278 

5.10  Case Study: Memory Management in UNIX and Solaris............................. 295 
5.11  Case Study: Memory Management in Linux ................................................ 296 
5.12  Case Study: Memory Management in Windows........................................... 298 
5.13  Cache Memory ..............................................................................................302 
Summary ..................................................................................................................303 
Exercises...................................................................................................................304 
Suggested References and Websites.........................................................................306 

Chapter 6  Device Management .................................................................................................307 

6.1  Introduction ...................................................................................................307 
6.2  I/O Devices: General Characteristics ............................................................308 
6.3  Types of I/O Devices .....................................................................................309 
6.4  I/O Controllers: Device Controllers  ..............................................................309 



Contents  ix 

6.5  I/O Systems: I/O Modules ............................................................................. 310
6.6  I/O System Organization: Types of I/O Operation........................................ 311 
6.7  Physical I/O Operation: Device-Level I/O .................................................... 311 
6.8  Device Management: Objectives ................................................................... 311 
6.9  Device Management: Functions .................................................................... 312 

6.9.1  Dedicated, Shared, and Virtual Devices .......................................... 313 
6.10  Physical I/O Function Organization: Logical Structuring ............................ 313 
6.11  Device Manager: Its Constituents and Design Principles ............................. 314 

6.11.1  Scheduler and Interrupt Handler ...................................................... 315
6.11.2  Device Drivers.................................................................................. 316 
6.11.3  Device-Independent Software .......................................................... 317 
6.11.4  User-Level I/O Software .................................................................. 318 

6.12  I/O Buffering ................................................................................................. 318 
6.13  Clock.............................................................................................................. 319 

6.13.1  Clock Hardware................................................................................ 319 
6.13.2  Clock Software (Clock Device Drivers)........................................... 320

6.14  Magnetic Disk I/O ......................................................................................... 320 
6.14.1  Physical Characteristics ................................................................... 320 
6.14.2  Disk Components and Organization ................................................ 321 

6.15  Disk I/O Operation: Parameters .................................................................... 322 
6.16  D isk Management: Data Organization and Formatting ................................ 323 
6.17  D isk Access Time Management: Disk Arm Scheduling Policies ................. 324 

6.17.1  Random Scheduling ......................................................................... 325
6.17.2  First-In-First-Out/First-Come-First-Serve  ...................................... 326 
6.17.3  Priority ............................................................................................. 326 
6.17.4  Last-In-First-Out .............................................................................. 327 
6.17.5  Shortest-Seek (Service)-Time-First .................................................. 327 
6.17.6  SCAN  ............................................................................................... 328 
6.17.7  LOOK or Elevator Algorithm .......................................................... 329 
6.17.8  Circular SCAN or C-SCAN............................................................. 330
6.17.9  C-LOOK........................................................................................... 330 
6.17.10  N-step-SCAN ................................................................................... 331 
6.17.11  FSCAN ............................................................................................. 331 
6.17.12  Deadline Scheduling ........................................................................ 331 
6.17.13  Anticipatory Scheduling .................................................................. 331 

6.18  Raid................................................................................................................ 332 
6.19  Disk Cache..................................................................................................... 333 

6.19.1  Design Considerations...................................................................... 333 
6.20  Page Cache .................................................................................................... 334 
6.21  Unifed Disk Cache........................................................................................ 335
6.22  Case Study: Device Management in UNIX .................................................. 335 
6.23  Case Study: Device Management in Linux ................................................... 337 
6.24  Case Study: Device (I/O) Management in Windows ....................................340 
Summary .................................................................................................................. 341 
Exercises................................................................................................................... 342 
Suggested References and Websites.........................................................................344 

Chapter 7  File Management...................................................................................................... 345 

7.1  Introduction ................................................................................................... 345 
7.2  Files ...............................................................................................................346 



x  Contents 

7.3  File Systems...................................................................................................346 
7.3.1  File Naming...................................................................................... 347 
7.3.2  File Structure....................................................................................348 
7.3.3  File Types .........................................................................................348 
7.3.4  File Attributes................................................................................... 350 
7.3.5  File Operations: System Calls .......................................................... 350 
7.3.6  File Access  ....................................................................................... 351 

7.4  File Service: File Servers............................................................................... 352 
7.5  File Control Blocks........................................................................................ 353 
7.6  File Management Systems: Requirements .................................................... 353 
7.7   File Management Systems: Functions and Design Issues ............................. 354 
7.8  File Management Systems: Design Principles .............................................. 355 
7.9  File Organization and Access: Structured Files............................................ 356 

7.9.1  The Pile  ............................................................................................ 357 
7.9.2  The Sequential File .......................................................................... 357 
7.9.3  Indexed Sequential Files .................................................................. 359 
7.9.4  Indexed Files: Inverted Files ............................................................360 
7.9.5  The Direct (or Hashed) File ............................................................. 361 
7.9.6  Access Methods................................................................................ 361 

7.10  File Directories.............................................................................................. 362 
7.10.1  Structure ........................................................................................... 362 

7.11  Graph Directory Structure: File Sharing....................................................... 365 
7.12  Blocking of Records: Logical to Physical .....................................................366 

7.12.1  Fixed-Length Blocking .................................................................... 367 
7.12.2  Variable-Length Spanned Blocking ................................................. 367 
7.12.3  Variable-Length Unspanned Blocking............................................. 367 
7.12.4  Choice of Blocking Factor................................................................ 368 

7.13  Management of Secondary Storage............................................................... 368 
7.14  File Allocation: Different Issues and Approaches......................................... 368 

7.14.1  Static (Pre-Allocation) and Dynamic Allocation............................. 369 
7.15  File Allocation: Different Methods ............................................................... 370 

7.15.1  Contiguous Allocation...................................................................... 370 
7.15.2  Noncontiguous Allocation: Linked (or Chained)  

Allocation ......................................................................................... 371 
7.15.3  Indexed Allocation ........................................................................... 372 

7.16  Free Space Management: Different Techniques............................................ 373 
7.16.1  Disk Status Map or Bit Tables.......................................................... 373 
7.16.2  Chained Free Blocks and Groups of Blocks .................................... 374 
7.16.3  Indexing............................................................................................ 374 
7.16.4  Free List of Blocks ........................................................................... 375 

7.17  File Organization: Physical Representation .................................................. 376 
7.18  File System Reliability .................................................................................. 376 

7.18.1  File System Integrity: Importance ................................................... 377 
7.18.2  Reliability Implementation: Different Techniques........................... 377 

7.19  Virtual File Systems ...................................................................................... 379 
7.20  Pipes .............................................................................................................. 381 
7.21  File System Performance............................................................................... 381 
7.22  Log-Structured File Systems ......................................................................... 383 
7.23  Case Study: File Management Systems in UNIX ......................................... 385 
7.24  Case Study: File Management Systems in Linux.......................................... 388 
7.25  Case Study: File Management Systems in Windows .................................... 391 



Contents  xi 

Summary .................................................................................................................. 393 
Exercises................................................................................................................... 393 
Suggested References and Websites......................................................................... 395 

Chapter 8  Security and Protection ............................................................................................ 397 

8.1  Introduction ................................................................................................... 397 
8.2  Security and Protection: An Overview ......................................................... 398 
8.3  Goals of Security and Protection: Security Threats......................................400 
8.4  Security: Types of Threats............................................................................. 401 
8.5  S ecurity Attacks: Penetration Attempts on Computer System  

Assets............................................................................................................. 401 
8.5.1  Passive Attacks.................................................................................402 
8.5.2  Active Attacks ..................................................................................402 

8.6  Security Policies and Mechanisms: Design Issues........................................405 
8.7  Protection.......................................................................................................407 
8.8  Protection of Memory ...................................................................................408 
8.9  Protection Structure: Access Control ............................................................408 

8.9.1  User-Oriented ...................................................................................408 
8.9.2  Data-Oriented...................................................................................409 

8.10  Intruders  ........................................................................................................ 416 
8.11  User Authentication ....................................................................................... 416 

8.11.1  Passwords ......................................................................................... 416 
8.11.2  Artifact-Based Authentication.......................................................... 419 
8.11.3  Biometrics ........................................................................................ 419 

8.12  Malicious Programs....................................................................................... 420 
8.12.1  Trap Door ......................................................................................... 420 
8.12.2  Logic Bomb...................................................................................... 421 
8.12.3  Trojan Horse..................................................................................... 421 
8.12.4  Viruses.............................................................................................. 422 
8.12.5  Worms .............................................................................................. 425 
8.12.6  Zombies ............................................................................................ 426 

8.13  Encryption  ..................................................................................................... 426 
8.13.1  Encryption Techniques..................................................................... 427 

8.14  Case Study: UNIX Security .......................................................................... 431 
8.15  Case Study: Linux Security........................................................................... 432 
8.16  Case Study: Windows Security ..................................................................... 432 
Summary .................................................................................................................. 434 
Exercises................................................................................................................... 434 
Suggested References and Websites......................................................................... 435 
Recommended Websites .......................................................................................... 436 

Chapter 9  Distributed Systems—An Introduction.................................................................... 437 

9.1  Distributed Computing Systems: Evolution .................................................. 438 
9.2  C haracteristics of Distributed Computing Systems: Advantages.................. 439 
9.3  Distributed Computing Systems: Disadvantages ..........................................440 
9.4  Distributed Computing Systems: Hardware Concepts .................................. 441 
9.5  Distributed Computing Systems: Different Forms........................................ 443 

9.5.1  Systems Consisting of Minicomputers............................................. 443 
9.5.2  Systems Containing Workstations....................................................444 



xii  Contents 

9.5.3  Workstation–Server Model: Client–Server Model...........................444 
9.5.4  Systems with Processor Pools ..........................................................446 
9.5.5  Hybrid Systems  ................................................................................447 

9.6  Distributed Computing Systems: Software Concepts  ...................................447 
9.7  Network Operating Systems and NFS...........................................................449 
9.8  Distributed Operating Systems...................................................................... 451 
9.9  Distributed Operating Systems: Design Issues ............................................. 452 

9.9.1  Transparency and Its Different Aspects........................................... 452 
9.9.2  Reliability ......................................................................................... 453 
9.9.3  Flexibility  ......................................................................................... 456 
9.9.4  Scalability......................................................................................... 456 
9.9.5  Performance ..................................................................................... 457 
9.9.6  Security ............................................................................................ 458 
9.9.7  Heterogeneity ................................................................................... 458 

9.10  Multiprocessor Operating Systems ............................................................... 459 
9.10.1  Multiprocessor Architecture ............................................................ 459 
9.10.2  Operating System Considerations .................................................... 461 
9.10.3  Case Study: Linux in Multiprocessors ............................................. 477 
9.10.4  Priorities and Time Slices ................................................................ 478 
9.10.5  Case Study: Windows in Multiprocessors (SMP) ............................ 479 

9.11  Multicomputer Operating Systems ................................................................480 
9.11.1  Multicomputer Architecture.............................................................480 
9.11.2  Operating System Considerations .................................................... 481 
9.11.3  Middleware....................................................................................... 483 

9.12   Comparison between Various Types of Operating Systems .........................487 
9.13  Distributed Systems: Network of Computers ................................................488 

9.13.1  Networking: Concepts and Issues  ....................................................488 
9.13.2  Communication Protocols for Distributed Systems:  

Essential Requirements .................................................................... 499 
9.13.3  Standard Communication Protocols ................................................500 
9.13.4  Sockets..............................................................................................502 
9.13.5  A Traditional Distributed Operating System: Amoeba ....................504 
9.13.6  Internetworking: Concepts and Issues  .............................................505 

9.14   Distributed Operating Systems: Workstation–Server Model ........................508 
9.14.1  Naming.............................................................................................509 
9.14.2  Process Migration ............................................................................ 510 
9.14.3  Communication in Distributed Systems: Distributed  

Message Passing............................................................................... 511 
9.14.4  Remote Procedure Calls................................................................... 517 
9.14.5  Distributed Shared Memory............................................................. 523 
9.14.6  Distributed File Systems .................................................................. 526 
9.14.7  Fault Tolerance  ................................................................................. 529 
9.14.8  Client and Server Node Failures ...................................................... 530 
9.14.9  Operation of Distributed File Systems: An Overview ..................... 532 
9.14.10  Case Study: Windows....................................................................... 537 
9.14.11  Case Study: Sun NFS ....................................................................... 538 
9.14.12  Case Study: Linux General Parallel File System ............................. 542 

9.15  Clusters: A Distributed Computer System Design ........................................ 543 
9.15.1  Distinct Advantages .........................................................................544 
9.15.2  Classifcation of Clusters .................................................................. 545 
9.15.3  Different Clustering Methods .......................................................... 545 



Contents  xiii 

9.15.4  General Architecture........................................................................546 
9.15.5  Operating System Considerations .................................................... 547 
9.15.6  Case Study: Windows Clusters ........................................................ 547 
9.15.7  Case Study: Sun Clusters ................................................................. 550 

Summary .................................................................................................................. 553 
Exercises................................................................................................................... 553 
Suggested References and Websites......................................................................... 556 
Websites.................................................................................................................... 557 

Chapter 10  Real-Time Operating Systems .................................................................................. 558 

10.1  Background: Real-Time Systems .................................................................. 558 
10.2  Real-Time Tasks: An Overview .................................................................... 559 

10.2.1  Real-Time Tasks: Parameters ...........................................................560 
10.3  Real-Time Systems: Different Issues.............................................................560 
10.4  Real-Time Operating Systems: Evolution ..................................................... 562 
10.5  Real-Time Operating Systems: Design Philosophies .................................... 563 
10.6  R eal-Time Operating Systems: Characteristics and Requirements............... 563 
10.7  Real-Time Operating Systems: Features ....................................................... 565 
10.8  Real-Time Operating Systems: Basic Components....................................... 565 

10.8.1  Threads and Tasks............................................................................566 
10.8.2  The Kernel........................................................................................ 567 
10.8.3  Scheduling Mechanisms .................................................................. 571 
10.8.4  Time Services: Clocks and Timers .................................................. 582 
10.8.5  Communication and Synchronization .............................................. 582 
10.8.6  Memory Management ...................................................................... 586 

10.9  Case Studies................................................................................................... 588 
10.9.1  Linux: Real-Time Extensions........................................................... 588 
10.9.2  LynxOS............................................................................................. 591 
10.9.3  pSOSystem ....................................................................................... 591 
10.9.4  VxWorks: The Mars Pathfnder........................................................ 592 

Summary .................................................................................................................. 593 
Exercises................................................................................................................... 593 
Suggested References and Websites......................................................................... 595 
Websites.................................................................................................................... 596 

Additional Reading ...................................................................................................................... 597 

Index .............................................................................................................................................. 599 



http://taylorandfrancis.com


xv 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
  
 
 

 
 

Preface 
Operating systems are today an essential core subject of interest both in academic curricula and in 
the IT industry, as underlined by the IEEE/ACM Computer Curricula, 2005. Computers are now 
prevalent in every sphere of life. As such, all students/professionals involved in computing culture 
must have some knowledge about operating systems, not only when designing and structuring appli-
cations properly to run most effciently on a real machine but also to be able to benchmark the vari-
ous contemporary popular operating systems to select a ftting one for actual use. Although much 
information about this subject is now available on the internet, but fundamental knowledge is badly 
lacking in that the internet, only offers a few basic concepts. 

The universe of operating systems is relentlessly expanding, spanning a vast area that includes a broad 
range of concepts and related design issues, and as such it is extremely diffcult to entirely explore it 
within the short space of any book on the subject. Moreover, from its very inception, it has continuously 
passed through many numerous innovations and improvements to arrive at its present form. In spite of 
having numerous forms along with a fast pace of continuous changes in the computer feld as a whole, the 
basic philosophy and certain fundamental concepts are consistent throughout. The implementation and 
application of these concepts, however, depends mostly on the current state of the technology used in the 
underlying computer hardware systems and also on the existing cost/performance metrics of the system. 
The primary goal of this book is thus to present a thorough, intuitive discussion of the fundamentals of 
generic traditional uniprocessor operating systems, not tied to any particular one, as well as to provide 
the common concepts and most of the important issues associated with advanced operating systems and 
real-time operating system (RTOSs). In addition, a large number of real-life implementations of relevant 
topics are cited here as case studies that pertain to the most commercially popular and innovative operat-
ing systems, including Microsoft Windows, Linux, UNIX, and Sun Solaris. 

As usual, with each publication, there is always a stringent page-count constraint, and as such, 
there is often a constant struggle with the publisher to maintain a realistic balance between a reason-
able page count and the amount of the latest vital materials to be included. To attain this objective and 
incorporate the minimum amount of the newest innovative, important materials, the needed room is 
usually created by simply eliminating relatively outdated items and tightening narratives. Yet many 
currently important materials and vital issues that deserve to be addressed remain untouched, and 
sometimes not even fully described in the present text for either being out of the scope of the book or 
being too voluminous. The author deeply expresses his inability to counter this unavoidable situation. 

It is important to note that even after squeezing the text as much as possible, the page-count still 
exceeded the prescribed limit. Accordingly, some of the topics in the text are delivered only with their 
main theme, and further descriptions and explanations, with fgures, have been placed on the book’s 
website hosted by CRC Press. Hence, the text material along with the respective website material (if 
present) mentioned with any topic within the body of the text is the actual content of the topic for the 
reader to obtain a clear and complete explanation of the topic or its related aspects. The website hosts 
downloadable Support Material, visit www.routledge.com/9781032467238. Still, many currently impor-
tant materials and vital issues that deserve to be addressed are yet remained untouched, and sometimes 
not even fully described in the present text for either being out of the scope of this book or becoming to 
be too voluminous. The author deeply expressed his inability to counter such an unavoidable situation. 

This book is designed as a text for any course in operating systems at the junior/senior under-
graduate level. No topics in this book are original, but there is originality in each of its representa-
tions. Here, the objective is essentially to give insight into a generic modern operating system and 
show how the stepwise evolution of different concepts (both current and historical) is ultimately 
converted to respective design techniques and subsequently implemented using ftting methods. 
This approach emphasizes the fact that expertise on operating systems can only be built up if a 
profound understanding of their concepts can be developed to appreciate the ongoing rapid changes 

http://www.routledge.com/9781032467238


 xvi Preface 

and negotiate the grand challenges of the future. To acquaint readers with the design principles and 
implementation issues of every relevant aspect, each topic, after a description of the theory, is 
mapped to various types of contemporary real-world design methodologies wherever applicable, 
using directions that are exploited in the actual development of almost all widely used representa-
tive modern operating systems, including Windows, UNIX, Linux, and Solaris. Placing real-life 
implementations after a theoretical description of each respective relevant topic is thought to be a 
much better method for understanding and is thus used throughout the text instead of compiling 
them separately in a single additional chapter or appendix. 

ORGANIZATION OF THE BOOK 

The text in this book is organized for gaining knowledge of operating systems following the model 
suggested by IEEE and ACM curricula. The design of contents presented here is the ultimate out-
come of the author’s many years of teaching experience on this subject supported by his equal pro-
fessional experience in the IT industry on systems. Here, the frst few chapters, Chapters 1–3, cover 
fundamental OS principles and designs using traditional approaches, along with the introduction of 
modern design elements used in the development of advanced operating systems. In the next four 
chapters, Chapters 4–7, each describes the different constituent resource management modules of 
OS corresponding to each of the respective computer system resources. Additional emphasis is also 
placed here on relevant topics to highlight the different derived approaches that are actually imple-
mented in representative modern, widely used commercial operating systems. All these chapters 
together almost entirely cover the design, principles, and working of a traditional uniprocessor oper-
ating system run on a standalone computer system and are considered adequate for an operating sys-
tem principles course in computer science, IT, and related curricula. Chapter 8 is entirely dedicated 
to briefy introducing one of the most challenging areas, security and protection, which is linked 
with today’s operating systems to safeguard the valuable, sensitive, and confdential information 
of the user/system as well as the precious assets lying in the computing environment from threats 
launched from outside/inside the system. Chapter 9 is devoted to describing the basics of advanced 
operating systems that run on computer systems consisting of multiple CPUs (multiprocessors) and 
also on computer systems formed by arranging many interconnected computers (networks of com-
puters or multi-computers and computer networks). Chapter 10 describes in brief an increasingly 
important emerging area, the real-time operating system, which is said to be a very different kind 
and belongs to a special class distinct from all other traditional/modern operating systems running 
either on uniprocessor or multiple-processor computing systems. 

A number of pedagogic features incorporated in each chapter include numerous fgures and 
tables to clarify and explain the related subjects. Readers are encouraged, as a general rule, to prog-
ress sequentially through the chapters, as this approach provides the best way to gain a thorough 
understanding of operating systems. However, the reader can also select a different ordering of 
chapters if that is ft for a different situation. However, all topics discussed here cannot be covered 
in one semester, so a syllabus may be formed only with those chapters which are needed to fulfll 
the requirements, omitting some of the sections which may be useful for a two-course sequence on 
operating system principles. The chapters on advanced operating systems (Chapter 9) and real-time 
operating systems (Chapter 10) may be included at the higher-undergraduate/postgraduate level, and 
these chapters may then be considered for a substantial portion of that course. 

Content of this book 
Ten chapters altogether form this book. The logical divisions of the text are as follows: 

Part One: The frst three chapters deal with basic principles and fundamental issues, detail-
ing the objectives and functions of an operating system in general. 



 

 

   

 

 

 

 
 

 

 

Preface xvii 

• Chapter 1 briefy illustrates the evolution of generation-wise operating systems (OSs) 
from historic to current ones, including distributed and real-time operating systems, 
along with their salient features that drive the ongoing different generations of unipro-
cessor/multiple-processor computer architectures. 

• Chapter 2 describes the concepts of the OS, with its ultimate objectives and different 
functions it provides to offer various supports and related services. It also elaborates on 
the design factors and related issues involved with the development of generic modern 
operating systems. 

• Chapter 3 articulates the structures and designs of OSs using layered/level concepts, 
including the sensational virtual machine and its related OS. The kernel/shell concept, 
including monolithic and microkernels, and its deployment in the development of oper-
ating systems used for networks of computers and computer networks is described. The 
concept of threads and objects and their use as basic design elements in the development 
of modern OSs is portrayed. 

Part Two: The next four chapters (Chapters 4, 5, 6, and 7) together describe all the operat-
ing system modules individually and cover almost all the fundamental OS principles and 
techniques that are used by generic operating systems of today with additional topic-wise 
emphasis on how they are actually realized in representative modern widely used com-
mercial operating systems. 

• Chapter 4 depicts the design and development of a processor/process management, a 
rich constituent of generic operating systems, using the process model as a basic building 
block. The concept of threads, a smaller basic design element (unit), and subsequently 
the concept of multithreading and its implementation in the design and development 
of modern operating systems are shown. Various topics on Oss: process scheduling, 
interprocess synchronization, interprocess communication, deadlock, and starvation 
are briefy described with examples. 

• Chapter 5 illustrates the design and development of whole memory management, a 
vital ingredient of generic operating systems, consisting of primary and different types 
of secondary memory. Management of virtual memory, paging, and segmented mem-
ory are described, along with their actual implementations in UNIX, Linux, Windows, 
and also in Solaris separately. Although cache is not visible to the OS, yet the objectives, 
principles, and various design issues related to cache memory are stated in brief. 

• Chapter 6 describes the device management module along with its objectives and func-
tions, including the role of a generic device manager and its constituents: I/O scheduler, 
interrupt handler, and device driver. The different disk scheduling policies and their indi-
vidual implementations are explained. The page cache and disk cache, along with their mer-
its and drawbacks, are described. The real-life implementation of the device management 
realized in UNIX, Linux, and Windows is described individually and separately in brief. 

• Chapter 7 discusses the fle management unit, an important part of the general operat-
ing system, containing different types of generic fle systems, including various types 
of directory and fle organization. Different methods of fle allocation in secondary 
devices and the different techniques used to manage free space in secondary storage 
are shown. The virtual fle system (VFS) and its implementation along with the log-
structured fle system and pipes are mentioned. The real-life fle management systems 
implemented in UNIX, Linux, and Windows are described in brief. 

Part Three: This part includes only Chapter 8, which is entirely dedicated to briefy intro-
ducing one of the most challenging areas linked to today’s operating systems, security and 
protection. 



 

  
 
 

 
 
 

 

 

 

xviii Preface 

• Chapter 8 gives an overview of the objectives of security and protection needed for an 
OS to negotiate different types of security threats. Different types of active and passive 
security attacks and how to counter them; the required security policies, mechanisms, and 
different proven methods to prevent them are explained. A spectrum of approaches to pro-
vide appropriate protections to the system is shown. Different types of malicious programs 
(malware), worms, and viruses and various schemes and mechanisms to restrict them from 
entering the system are described. The actual implementation of security and protection 
carried out in UNIX, Linux, and Windows in real-life situations is explained in brief. 

Part Four: This part consists of only Chapter 9 and presents the introductory concepts and 
fundamental issues of advanced operating systems, describing the different topics involved 
in these systems. 

• Chapter 9 briefy explains advanced operating systems, including the major issues of 
multiprocessor operating systems, multicomputer operating systems, and distributed 
operating systems, and also highlights the differences between them as well as from a 
conventional uniprocessor operating system. Since the computing resources and con-
trols of these OSs are distributed and geographically separated, it gives rise to many 
fundamental issues concerning the effciency, consistency, reliability, and security of 
the computations as well as of the OS itself. This chapter addresses many of the most 
common issues and puts less emphasis on their actual implementations, mostly due to 
page-count constraints. A brief discussion of design issues of distributed shared mem-
ory (DSM) and different aspects in the design of distributed fle systems (DFSs) is 
given, with examples of real-life implementation of Windows distributed fle system, 
SUN NFS, and Linux GPFS. The cluster architecture, a modern approach in distributed 
computing system design to form a base substitute of distributed systems, is explained 
here, along with its advantages, classifcations, and different methods of clustering. 

Part Five: Chapter 10 simply describes in brief an increasingly important emerging area, the 
real-time operating system (RTOS). 

• Chapter 10 attempts to explain the RTOS, indicating why it is said to be a very differ-
ent kind of system that belongs to a special class, distinct from all the other traditional 
operating systems running either on uniprocessor or multiple-processor computing sys-
tems. The description here mainly provides fundamental topics, useful concepts, and 
major issues, including kernel structure, signals in the form of software interrupts, the 
role of clocks and timers, scheduling mechanisms, implementation of required synchro-
nization and communication, memory management, and many other similar distinct 
aspects. Finally, real-life implementations of RTOS are shown, with a brief description 
of the Linux real-time extension, KURT system, RT Linux system, Linux OS, pSOSys-
tem, and VxWorks used in Mars Pathfnder. 

Despite all-out sincere efforts, many topics still remain untouched, and some are not adequately described. 
This is mostly due to their being outside the scope of this book or limitations on the text’s length. 

THE TARGET AUDIENCE 

The material presented in this book is intended for use in one- or two-semester undergraduate 
courses in any relevant discipline that include the subject of operating systems. It also targets profes-
sionals who are interested in this feld apart from those engaged with academics. It can equally be 
used as a text book for self-study. 



 Preface xix 

THE PREREQUISITES 

The design of this book begins with an introduction to operating systems and gradually steps 
towards the state of the art of implementation issues and ultimate design of versatile modern oper-
ating systems, in addition to the concepts and important criteria of different types of advanced 
operating systems of today. So, to start with, this book does not assume any specifc background. 
However, today’s students know many things related to computers from many different sources but 
often severely suffer from a lack of fundamental concepts or, more precisely, wrong concepts. Thus, 
it is suggested to at least go through the basic, familiar material, which is presented here over the 
frst three chapters in a concept-based manner. Also, it is assumed that students and readers have 
some knowledge of logic design, algorithmic approaches, the fundamentals of computer hardware, 
and a little bit of C-like programming. It is hoped that users of this book will, after all, fnd it useful 
even if they do not have all the prerequisites. 



http://taylorandfrancis.com


xxi 

Author Bio 
Pranabananda Chakraborty has strong, diversifed experience in the information technology indus-
try over the last 45 years covering system analysis and design and implementation of system soft-
ware (like operating system and compiler design) for various types of large mainframe computing 
systems with the giant multinationals, re-engineering, and project monitoring and management, 
including banking, insurance, and state-based public examination processing systems; production 
planning and survey, demographic census (government of India); different areas in postal systems, 
Ministry of Posts, government of India; staff selection systems, government of India; and many 
other real-time projects in India and abroad. 

As an academician, for the last 45 years, he has also been affliated with several prominent insti-
tutes, including reputed engineering colleges and universities. Recently, he was a senior visiting pro-
fessor at the Government Engineering Colleges, Kolkata, West Bengal, India, and also guest faculty 
at Birla Institutes of Technology and Sciences (BITS), Pilani, India, on a regular basis. During this 
period, he also conducted corporate and institutional training on various academic subjects of core 
computer science and IT disciplines for large, reputed multinationals, including IBM, and R&D 
organization using contemporary large systems, as well as seminars and management development 
programs in India and abroad sponsored by different corporate bodies in information technology-
based industry. 

Although he has extensive research experience in theoretical computer science and software 
development, his work is mainly focused on operating systems and real-time operating systems. He 
has also authored a text book on computer organization and architecture published by CRC Press, 
USA. 



http://taylorandfrancis.com


DOI: 10.1201/9781003383055-1 1  

 

 

 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Computers and Software 1 
Learning Objectives 

• To defne different types of generic system software and their relative hierarchical position 
on a common computer hardware platform. 

• To illustrate the evolution of operating systems with their basic functions and role in com-
puter operation. 

• To describe the different generations of computers and the salient features of the corre-
sponding generations of operating systems up to modern operating systems. 

• To provide an overview of networked operating systems running on computer networks. 
• To provide a general idea of distributed operating systems running on multiple-processor 

machines (multiprocessors and multicomputer systems) separately. 
• To explain the cluster architecture of computers, its classifcation, different methods of 

clustering, and the role of the operating system in distributed computing. 
• To give an overview of real-time operating systems (RTOSs), with a few of their distinct 

features and characteristics 
• To show the genesis of modern operating systems and their grand challenges. 

1.1 INTRODUCTION 

A brief history of the evolution of operating systems is not only interesting but a journey because 
it reveals how the concept of operating systems has evolved and subsequently provides a com-
prehensive overview of operating system principles, design issues, the different forms of their 
structures, and their functions and activities. It is also observed how the different generations of 
operating systems, starting from a bare primitive form to today’s most modern systems, gradually 
progressed over a period of the last six-odd decades in order to manage constantly emerging more 
intelligent and sophisticated computer hardware. A different form of operating system, known 
as a real-time operating system (RTOS), has been also introduced that evolved to meet certain 
specifc demands of different kinds. Most of the concepts mentioned briefy in this chapter are, 
however, thoroughly explained in later relevant chapters. This chapter fnally comes to an end 
describing the stage-wise, generation-wise development of operating systems, since their birth in 
primitive form to the ultimate design and development of the most advanced operating systems: 
in other words, the genesis of modern operating systems. 

1.2 COMPUTER SOFTWARE: SYSTEM SOFTWARE 

The architectures of modern computer systems could be realized in numerous ways, but all of them 
use only four fundamental hardware resources. Those are one or more processors, main memory, 
I/O devices, and interconnection buses. These resources, along with other add-on units, form a 
very complex system that ultimately provides the necessary computing power the computer system 
exhibits. This hardware is basically machines and is useless unless it is properly driven to execute 
very specifc and primitive instructions, and that is exactly what particular software does. Computer 
software truly defnes and determines the ways in which the hardware resources of a computer 

https://doi.org/10.1201/9781003383055-1


 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 

 

 

2 Operating Systems 

system can be used. The joint effort of the software and hardware of a computer system provides a 
tool that precisely solves numerous problems, performing logical decisions and various mathemati-
cal calculations with astonishing speed. 

Software is differentiated according to its purpose and broadly classifed into two types, applica-
tion software and system software. In the early days, there was only one class of software, applica-
tion software, which was designed and developed by the user, writing lines of code to solve his or 
her specifc problem and also several additional instructions that were required to keep track of and 
control the associated machine operations. 

In order to release the programmer from this tedious task of writing frequently needed com-
mon codes to drive the machine to implement the application software every time, a set of codes 
in the form of a program could be developed and tested and stored permanently on a storage 
medium for common use by all users. Any application program could then exploit the service 
of these common programs by issuing an appropriate call whenever required. These common 
programs intended for all users of the computer hardware were developed to drive, control, and 
monitor the operations of computing system resources as and when they were required. These 
programs together are historically called system software, and it essentially hides the details of 
how the hardware operates, thereby making computer hardware relatively easy and better adapted 
to the needs of the users. It provides a general programming environment to programmers for the 
mechanics of preparing their specifc applications using the underlying hardware appropriately. 
This environment, in turn, often provides new functions that are not available at the hardware 
level and offers facilities for tasks related to the creation and effective use of application software. 

Common system software, in particular, is very general and covers a broad spectrum of func-
tionalities. It mainly comprises three major subsystems: (i) language translators (compilers, 
interpreters, assemblers) and runtime systems (linkers, loaders, etc.) for a programming lan-
guage, (ii)  utility systems, and (iii) operating systems (OSs). Numerous input/output (I/O) 
devices also require device-dependent programs that control and monitor their smooth operation 
during an I/O operation. These programs are essentially system software known as device driv-
ers, sometimes called input–output control systems (IOCSs). All these programs are mostly 
written in low‑level languages, such as Assembly language, binary language, and so on, which are 
very close to the machine’s (hardware’s) own language or have patterns so that machine resources 
can be directly accessed from the user level. Nowadays, they are also often developed with the 
high-level language C. 

Some system software, namely graphic library, artifcial intelligence, image processing, expert 
systems, and so on, are specifc to a particular application area and are not very common in oth-
ers. The OS, compiler, assembler, loader, and to some extent the utilities (DBMS) are required to 
commit physical hardware (machine) resources to bind with the application program for execution. 
The optimal design of this software, based on the architecture and organization of the underlying 
hardware, its offered facilities, and fnally its effectiveness, ultimately determines the effciency of 
the hardware and the programmability of the computer system as a whole. Figure 1.1 is a conceptual 
representation of an overall computing environment when viewed from the user’s end with respect 
to the relative placement of hardware and the different types of software, as already mentioned, 
including the operating system. 

Modern computers use many such system programs as an integral part of them. They are often 
designed and developed by the manufacturer of the hardware and are supplied along with the 
machine as inseparable components. The use of third-party–developed system software against 
additional cost is already a common practice today. 

For more details about system software, see the Support Material at www.routledge.com/ 
9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 3  

 

 
 
 
 
 
 

 
 
 

   

 

 
 
 
 
 

 
 
 
 
 
 

1.3 OPERATING SYSTEMS 

The operating system (OS) is the most critical and important subset of the system software in 
a computer system. It has been developed to govern control of the basic hardware resources on 
behalf of the users, hiding the complexity of the hardware from them. It presents a nice and 
simple view of the computer system and provides a more modest and user-friendly interface 
to the users and their programs. Without any exception, almost every computer ranging from 
small personal computers to supercomputers has an operating system. Other programs in the 
computer depend on facilities provided by the operating system to gain access to computer–sys-
tem resources. Operating systems have become so essential to effcient computer operation that 
they are now considered inseparable from the computer hardware. In fact, the performance of 
the operating system sets the stage for the concert of all the hardware and the software run on a 
computer system. 

In fact, the operating system consists of various program modules that control the operation of 
equipment resources such as processor, main memory, secondary storage, I/O devices, and different 
fles. Since the responsibilities of these modules are to operate the computer on behalf of the user, 
they are historically called operating systems or sometimes collectively the executive, controls, or 
supervisor. Application-oriented modules, namely language processors, library routines, utilities, 
debugging aids, and so on, are merely users of the operating system and are not included within the 
domain of the operating system. 

Anything submitted to the computer system is actually handed over to its master, the operating 
system, which initiates the execution, allocating the needed resources. It keeps track of the status 
of each resource and decides who gets a resource, when, and for how long to resolve conficting 
requests to optimize system performance at the time of simultaneous execution of many programs. 
In fact, the scheduling, the control of traffc, and the entire management of these resources are the 
responsibilities of the operating system. The operating system here actually acts as a resource 
manager. 

The operating system supervises the computer operations and acts as an interface between the 
user, user’s program, and physical computer hardware. The user never interacts with the hardware 
directly, but to get the services of the hardware, the user has to submit the request to the operating 
system. One component of the operating system module accepts the user’s request, acts as the user 
interface, and arranges everything for the execution of the request. This component of the operating 
system is called the command interpreter, which starts operating as soon as the computer system 
is booted (login) displaying a prompt, thereby indicating that the computer is ready to interact with 
the user. 

At times, the design of the operating systems was mostly concerned with somehow extracting 
the highest potential of the underlying hardware, but user convenience and pleasure as well as 
productivity were of secondary considerations. At the other end of the spectrum, the goal is just 
the opposite. An operating system for a low-cost single-user personal computer may be designed 
to increase the productivity and ease of the user as much as possible, with hardware utilization 
being of much less concern. Since, the operating system initiates the hardware resources, moni-
toring their operation by way of keeping track of the status of each resource while allocating 
them during the execution of user programs, it must have a fairly good idea about the resources 
to be driven as well as the respective actions to be taken by means of executing some of its 
own programs and other software utilities. Let us now discuss the basic hardware components 
of a computer system that the operating system drives and the role of the operating system in 
this regard. The relationship of the operating system to basic computer hardware is depicted in 
Figure 1.1. 



 

 

  

4 Operating Systems 

FIGURE 1.1 The level-wise position of operating system, system software and hardware organization in a 
generic computer system. 

1.4 HARDWARE STRUCTURE TERMINOLOGY 

A computer comprises two parts, hardware and software. The hardware is physical objects that are 
driven in an orderly way by the software to achieve the desired goal. In fact, the performance of 
the computing system is essentially a joint venture of these two parts. The hardware of any com-
puting system (large or small) consists of four fundamental resources: processor, main memory, 
I/O devices, and interconnection buses. A processor is a hardware device capable of interpreting 
instructions and performing the indicated operations. The central processing unit (CPU) is the 
main processor and is a rich resource that manipulates and performs arithmetic and logical opera-
tions upon data available in the main memory. It can also control the other processors; for example, 
the CPU may execute a START I/O (SIO) instruction to initiate an I/O processor. A computer may 
have more than one CPU. Main memory, historically called core memory, is a vital resource oper-
ated mostly by the CPU but is also connected to various processors. The I/O processor is designed 
to control various types of I/O devices and handles the movement of data between the main memory 
and I/O devices. This processor can execute several I/O instructions to simultaneously control many 
devices. Most I/O devices (e.g. hard disk, CD, tape, printer, etc.) require control circuitry that can 



Computers and Software 5  

 

 

 

 

 

also be used to control other devices. That is why, for reasons of economy, the common hardware 
(i.e. the common control circuitry) is sometimes separated out into a device called a control unit. 

1.5 PROGRAMMING TERMINOLOGY 

System software (compilers, assemblers, loaders, etc.) and application software (user programs) is a 
collection of programs consisting of a sequence of instructions and/or data that are placed in coded 
form in main memory and interpreted/executed by a processor to perform certain predefned tasks. 
These routines are managed and kept track of by the operating system only. 

The operating system provides an appropriate run‑time environment in which particular soft-
ware packages such as compilers, assemblers, database systems, and user application programs 
can be executed. The operating system offers the assistance required by the software in regard to 
memory management as well as to fulfll their other specifc needs during run-time. The operating 
system thus can legitimately be called an environment creator. 

The operating system really acts as a mediator (interface) between the user and the computer. 
It provides a pleasant and convenient interface, making it easier for the user and the application 
program to access, control, and use those resources and facilities while the computer system is 
in operation. An effective operating system optimally manages the allocation and deallocation 
of resources during the execution of user programs; hence, operating systems can be legitimately 
called resource managers. 

1.6 EVOLUTION OF OPERATING SYSTEMS AND THEIR ROLE 

In the early days, there was no concept of an operating system. Operating systems started to evolve 
only from the early 1950s in a primitive form as a resident monitor program to today’s most 
advanced distributed operating system (DOS) and also RTOS. This process of evolution is still 
ongoing in search of more advanced and intelligent forms. Since the responsibility of the operating 
system is to facilitate the use of computer hardware, it has historically been closely associated with 
the architecture of the computer on which it runs, and as such, there exists a one-to-one, inseparable 
relationship between the operating system and the underlying computer architecture. As hardware 
architecture by this time has continuously evolved and progressed generation after generation with 
numerous innovations, so too have the designs and issues of operating systems been constantly 
reviewed, redefned, and redesigned, and thus they have also progressed through gradual evolu-
tion, generation after generation, for the sake of staying matched with the underlying, continuously 
evolving advanced hardware technology. However, the mapping of operating system generations to 
computer generations is not very straightforward, but it at least offers some structure to understand. 
Language processors, assemblers, loaders, database systems, library routines, debugging aids, and 
application-oriented modules, though are not included within the domain of the operating system, 
have equally progressed during this time and are on a par with the continuous advancement of 
operating system because they are always using the facilities provided by the underlying system 
(see Figure 1.1). 

Starting from the days of Charles Babbage with his Difference Engine in 1822 up to World War 
II, a lot of continuous innovation and subsequent successful implementations of different types of 
machines to perform numerous types of computational work have constantly been made by scien-
tists and technologists from different countries. Out of those, the most notable one came in 1938 
from Konrad Zuse of Germany, who designed a purely mechanical device, Z1, the frst program-
controlled machine, which was then modifed to Z2 and further in 1941 to Z3: a binary computer 
with a 64-word store. Relays were used for circuit elements, punched tape and keyboard for input, 
and a lamp display for output. A very fast general‑purpose electro‑mechanical decimal computer 
was proposed by Howard H. Aiken of Harvard University in 1937 which was fnally completed 
later in 1944 as Harvard Mark I by IBM. In 1943, Prof. M. H. Newman and T.H.S. Flowers during 



 

    

 
 
 

 
 

 

 
 

     

 
 
 

 
 

  

6 Operating Systems 

World War II built an electronic computer, COLOSSUS, using 1,500 electronic valves and a fast 
photo-electric tape reader for input, mainly to crack secret German codes. However, no machine 
introduced over this period had an operating system, even in concept. 

For more details about the evolution of operating system software, see the Support Material at www. 
routledge.com/9781032467238. 

1.6.1 THE FIRST-GENERATION SYSTEM AND ZERO-GENERATION OS (1945–1954) 

After World War II, a need for increased speed in computation was observed. 
The frst‑generation system ENIAC (Electronic Numerical Integrator And Calculator), a deci-

mal computer, was developed in 1946 by John Mauchley and Presper Eckert at the Moore School, 
University of Pennsylvania, with Dr. Von Neumann as consultant of the project. This machine, pro-
vided a storage facility and could perform arithmetic addition, subtraction, multiplication, division, 
and also square root operations. 

All the computers of the frst generation used roughly 15,000–20,000 vacuum tubes, relay memo-
ries, and toggle switches interconnected with insulated wires. Each machine was designed, manufac-
tured, programmed, operated, and maintained by a group of experts and precisely was a manually 
programmed computer with exclusive access to the entire machine. These machines were dedicated 
to a single program in execution at a time. Absolute machine language was used for writing programs, 
which again varied from computer to computer. Programming and entering data were done by plug-
ging and unplugging cables on a plugboard as well as with an available set of switches or often by 
the use of punched paper tape. The output was read by the programmer/operator from a set of display 
lights on the operator’s console. This generation of computers had no operating system (zero-genera-
tion OS) but used a primitive single-user processing operating environment, mostly for numerical and 
scientifc computations. Manual programming of the bare machine, however, resulted in low produc-
tivity with respect to both users and hardware. It is said that Alan Turing was a master of the particular 
structure and form that the early Manchester Mark I machine had. Actually, he was the one who frst 
drew the seminal concepts of operating systems from ideas used in the Universal Turing Machine. 

For more details about this topic, see the Support Material at: www.routledge.com/9781032467238. 

1.6.2 THE SECOND-GENERATION SYSTEM AND FIRST-GENERATION OS (1955–1964) 

By the mid 1950s, the architecture of the computer had radically changed, with the introduction of 
semiconductors in the digital logic circuit replacing vacuum tubes, and it became more versatile and 
enormously simplifed, even with the introduction of numerous input/output devices such as magnetic 
tapes, magnetic drums, and line printers. The cost of the computer as well as the overhead for mainte-
nance proportionately came down, and above all, the functioning of computers became more reliable. 

To relieve the programmer, a set of system programs, commonly referred to as utilities, were 
developed mainly to implement frequently used functions needed in program creation, to man-
age fles, and to control the operation of these I/O devices. Various types of I/O routines (IOCS) 
were developed to automatically control the numerous newly included I/O devices. Higher-level 
languages were developed to ease program development, and related translators, such as compilers 
and interpreters, were developed to convert programs to an executable form. Assemblers were also 
developed, and a linking loader was introduced that automated the process of linking and loading 
the fnally created executable modules into memory to begin the execution. Truly speaking, these 
system programs gave rise to a primitive form of operating system that offered support and services 
to the other system programs such as editors, language translators/interpreters, debuggers, and so on 
which are generally not considered part of the operating system. However, in many situations, the 
programmer had to operate the machine on his or her own with programs being punched on a deck 
of cards to carry out serial processing of jobs using all of the machine resources. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 7  

 
 
 
 

 
 

 
 
 
 

 

 

1.6.2.1 Second-Generation Operating Systems: Simple Batch Systems 
Manual handling of machines and engaging full-machine resources, most of the time with 
no use, however, ultimately severely affected both user productivity and utilization of system 
resources. In order to get rid of these negative impacts, the ultimate aim was thus to develop a 
system to automate the operator’s job to minimize the amount of idle time spent for manual han-
dling of the machine. This meant that the proposed system would work on behalf of the opera-
tor all the time as long as the computer was on. Since its major task is to operate the computer 
system, masking (hiding) the details of the hardware from the programmer and providing neces-
sary software support as demanded by the user, this system program was historically called an 
operating system. A small module was thus developed to monitor and supervise the control of 
all internal activities of the computer system while the users’ jobs were under execution. This 
program, called the resident monitor, was kept resident in the computer at all times after the 
computer was switched on. 

Operating systems of this type could handle one job at a time to completion and one after 
another (in sequence) from a number of jobs submitted in the form of batches by the operator. Such 
operating systems were thus legitimately called a batch systems or monitors, widely used in sys-
tems, including the most popular ones, the IBM 1401 and 7090/7094. They summarily relieved the 
user from direct access to the machine to control the hardware and handled the task of scheduling 
jobs queued up in a batch and also controlling the sequence of events in a job. 

One of the serious drawbacks of batch system approach was that the currently executing job 
monopolized the entire machine irrespective of actual usage of all the resources. Moreover, it was 
observed that the response time for most small jobs that arrived at later times was too high when 
large jobs were already present in the machine waiting for execution. 

Buffering: Further enhancements in batch processing were carried out to improve resource uti-
lization by overlapping CPU operations with I/O operations to proportionately increase the through-
put. One such technique to realize this is buffering, which allowed operation of both the CPU and 
I/O devices of one job to go on in parallel all the time. With the advancement of technological 
developments, this buffering technique, however, has been gradually improved and is in use today 
in various forms in different categories of modern computers. 

Offine processing: Another approach was to replace the online involvement of slow card read-
ers and printers with executing jobs by deploying fast magnetic tape units with input data created 
separately by a satellite computer to be used in the job under execution. Similarly, tape units can 
also be used to store output data in printable format, replacing the printer online. This mode of oper-
ation, called offine processing, was very popular and in heavy use until the mid-1980s to handle the 
bulk of commercial data processing. But due to suffering from several drawbacks, and also with the 
advent of other coinciding technological developments, particularly in the area of introduction of 
disk systems, this form of offine processing fell out of favor and ultimately disappeared. 

Spooling: The introduction of faster disk systems created a more sophisticated form of I/O buff-
ering. Input data were temporarily created in the disk and then fed to the executing job whenever 
needed, and the output of this execution could also be stored on the disk. Output of the execution 
to be printed, if there was any, could be written as line images in another area of the disk instead 
of sending it directly to the slower printer. Later, this line image output of an already completed 
job could be sent directly to a printer at a convenient time to get the printed output. Carrying out 
card-to-disk operations for the subsequent jobs and disk-to-printer operations of the previous jobs is 
called SPOOLing (simultaneous peripheral operations on line), which could be carried out concur-
rently with the execution of a program by the CPU. 

Spooling operation allowed overlapping the input and output of several different jobs kept in 
queue on disk as necessary with the execution of another job by the CPU in parallel to sustain high 
rates of processor utilization and also increase effective I/O transfer rates during program-execution 
time. Buffering, on other hand, overlaps the I/O of one job with the execution of the same job. Since 
spooling brought signifcant performance improvements, numerous upgrades of it are present in 



 

 
 

 
 

    

8 Operating Systems 

different types of operating systems used in mini, supermini, and mainframe large systems, even 
up to today’s small microcomputers. 

Second-generation computers with single-user batch operating systems in the early 1960s were 
mostly used for both commercial processing using COBOL or some form of dedicated language and 
scientifc/engineering computations using FORTRAN and Assembly languages. Typical operating sys-
tems were developed by different computer manufacturers exclusively for their own systems. Since 
batch processing with a bulk of information does not require any human interaction while it is executed, 
hence, all modern operating systems usually incorporate facilities to support batch-style processing. 

For more details about second-generation OSes, see the Support Material at: www.routledge. 
com/9781032467238. 

1.6.3 THE THIRD-GENERATION SYSTEM AND THIRD-GENERATION OS (1965–1980) 

With the pulsating invention of integrated circuits (ICs) in electronic engineering, computer systems 
entered a new generation, replacing traditional semiconductor components with faster, tiny ICs that 
brought about a revolutionary change in the design and architecture of computers. The inclusion of 
higher-speed CPUs with increased memory size and also pipelining in the design of CPUs along 
with introduction of speedy cache memory for quick access by CPU reduced the speed gap between 
main memory and the CPU, thereby substantially increasing the speed of execution. Numerous I/O 
devices such as high-speed disk drives, high-speed printers, and terminals were also included. In 
order to fully extract the potential of this enormous and powerful hardware, new ideas in the design 
and development of operating systems evolved. Software additions, including utilities and libraries 
of most commonly used functions, were incorporated to support executions of a diverse spectrum of 
emerging applications. In essence, third-generation computer systems could be considered a renais-
sance (major breakthrough) because of having advanced computer architecture and design equipped 
with enhanced, powerful operating systems supported by numerous system software and utilities 
that ultimately created a vibrant rhythmic orchestra in the computing environment. 

Multiprogramming: Simple-batch operating systems failed to negotiate this changed environ-
ment, as a single executing user program only in memory could not make use of both the costly 
CPU and I/O devices properly all the time. In most situations, both user productivity and utilization 
of potential system resources were severely affected. Even use of offine processing and spooling 
systems did not make any notable improvement in the effective utilization of all these resources. 
One way to resolve this issue and maximize machine utilization is to let a different user program 
in the batch in memory use the processor whenever it is idle with the attached program currently 
involved in I/O operation. The same approach could also be taken while the I/O devices attached to 
one executing program are idle. In short, these underutilized resources could be assigned to differ-
ent programs in the batch available in the memory to allow them to execute their different activities 
concurrently. This approach leads to a signifcant performance enhancement that has been realized 
by overlapping the execution of programs by way of time-multiplexing the processor and loading 
multiple programs into space-multiplexed memory. This mode of operation is usually called multi-
programming (advanced batch processing). It should not be considered as parallel execution of 
programs, since with a single processor, at most only one program can be attached to the processor 
at any point in time. But switching of the processor is automatically carried out from one program 
to another by the OS whenever the former is in the input/output phase of its execution. 

Since the distributions of processor-bound activities and I/O phases of the jobs are neither pre-
dictable nor normal, to increase resource utilization, an attempt was usually made to accommodate 
as many programs as possible in the memory and let them compete for system resources at any point 
in time. Thus, multiprogramming also invites competition for memory space. However, the number 
of jobs that can be accommodated at one time depends both on the size of the main storage and 
hardware availability for dividing up that space with proper security against inadvertent or mali-
cious interference or inspection by one another, as well as to guard the resident monitor (operating 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 9  

  

 

  

 

 

 

system) because not one but many jobs will suffer if it is damaged. The maximum number of 
programs allowed in main memory at any instant, actively competing for resources, is called the 
degree of multiprogramming. Intuitively, the higher the degree, of course, up to a certain extent, 
the higher the resource utilization. A multiprogrammed operating system supervises and monitors 
the state of all active programs and system resources, provides resource isolation and sharing with 
proper scheduling, manages memory with protection, and deals with several other issues related to 
directly supporting multiple simultaneously active users in the machine. As a result, this operating 
system became comparatively complex and fairly sophisticated. However, this OS was quite able to 
handle both sophisticated scientifc applications and massive volumes of commercial data process-
ing, which is considered today the central theme of all modern operating systems. 

However, the major drawback of this system was that there was no provision for the user to 
interact with the computer system during runtime to study the behavior of the executing program in 
order to avoid unpleasant situations, if it happened. Consequently, it caused serious inconvenience 
for professional users, particularly when technological development began to rapidly progress and 
numerous software designs and development processes started to emerge in more and more new 
areas as major activities in computer usage. Moreover, for some types of jobs, such as transaction 
processing, user interaction with the system during runtime is mandatory. 

Interactive multiprogramming: To resolve all these limitations, time-shared operating sys-
tems were further enhanced to empower them to facilitate interactive support to the user, known as 
interactive multiprogramming. By this arrangement, the user could now interact with the system 
during runtime from an interactive terminal to execute specifc types of jobs, such as online trans-
action processing (OLTP). The principal user-oriented I/O devices now changed from cards or tape 
to the interactive terminal (keyboard and display device CRT), and data were then fed from any 
input devices, especially from the terminal according to the status and demands of the executing 
program. This summarily made computer users more productive, since they could directly interact 
with the computer system on an as-needed basis during runtime. With continuous technological 
development, the tangible benefts of interactive computing facilities, however, have been extended, 
and are often extracted today by the use of dedicated microcomputers used as terminals attached to 
large main systems. Today, the term multiprogramming simply implies multiprogramming together 
with its other aspects. 

Interactive computing resulted in a revolution in the way computers were used. Instead of being 
treated as number crunchers, systems became information manipulators. Interactive text editors 
allowed users to construct fles representing programs, documents, or data online. Instead of speak-
ing of a job composed of steps, interactive multiprogramming (also called “timesharing”) deals 
with sessions that continue from initial connection (begin/logon) to the point at which that connec-
tion is broken (end/logoff). 

Machines from IBM, and from other giant manufacturers, like NCR, Burroughs, DEC, and 
UNIVAC, etc., with almost compatible architecture implemented all these ideas in their designed 
operating systems. Of all of them, the most notable came from IBM with a series of models in the 
System/360 family running under operating systems like DOS/360, OS/360, etc., and also many 
others. 

Multiuser systems: This form of multiprogramming operating systems in single-processor 
hardware with some sort of attached computer terminal enables multiple users to interact with the 
system during runtime in a centralized fashion instead of traditional advanced batch processing. 
Here, the main objective is that the system be responsive to the needs of each user and yet, for cost 
reasons, able to support many users simultaneously. Precisely, this type of operating system essen-
tially provides facilities for the allocation and maintenance of each individual user environment, 
requires user identifcation to authenticate for security and protection, preserves system integrity 
with good performance, and offers accounting of per-user resource usage. With the advent of the 
tremendous power of today’s 32- or even 64-bit microprocessors, which rival yesterday’s main-
frames and minicomputers in speed, memory capacity, and hardware sophistication, this multiuser 



 

 
 
 
 
 
 
 
 
 

 

 

10 Operating Systems 

approach with modern hardware facilities gradually became more versatile, opening new dimen-
sions in application areas providing a graphical user interface (GUI). 

Multiaccess systems: A multi-access operating system allows simultaneous access to a single pro‑
gram by the users (not multi-users) of a computer system with the help of two or more terminals. In 
general, multi-access operation is limited mainly to one or in some cases a few applications at best and 
does not necessarily imply multiprogramming. This approach, however, opened an important line of 
development in the area of online transaction processing (OLTP), such as railway reservation, banking 
systems, etc. Under a dedicated transaction-processing system, users enter queries or updates against a 
database through hundreds of active terminals supported under the control of a single program. Thus, 
the key difference between this transaction processing system and the multiprogramming system is 
that the former is restricted mainly to one application, whereas users of a multiprogramming system 
can be involved in different types of activities like program development, job execution, and the use of 
numerous other applications. Of course, the system response time is of paramount interest in both cases. 

For more details about third-generation OSes, see the Support Material at: www.routledge. 
com/9781032467238. 

1.6.3.1 Preemptive Multitasking Systems: Time-Sharing 
Multiprogramming led to signifcant performance enhancement, allowing many users to execute 
their jobs in an overlapping manner, and increased resource utilization by way of providing solu-
tions for resource isolation and sharing. However, if a large job were submitted earlier, it would get 
control of the CPU and continue until its completion with no interruption, provided no I/O request 
was issued. Now, if a small job (e.g. a command from the operator’s console) were submitted at 
this time, it would have to wait a long time for its turn to come. As a result, not only would system 
throughput be substantially decreased, the response for this type of small job would be poor, and 
the turnaround time would also be appreciably high. Multiprogramming in this form in those days 
really had no way to restrict programs from monopolizing the processor. 

In order to resolve the drawbacks and realize a quick response time for small jobs (like a com-
mand given to the OS from terminals using the interactive computing facility), the existing effcient 
multiprogramming scheme was modifed and was referred to as time sharing, a variant or enhance-
ment of existing multiprogramming. In this innovative approach, the processor’s time is equitably 
shared among multiple contesting users, although an illusion is created to the users that they indi-
vidually have exclusive access to all the resources, similar to batch processing. 

The basic technique followed in a time-sharing system is to allow multiple users present in 
main memory to work all together, sometimes also using the system through terminals. Here, the 
operating system interleaves the execution of each user program, and hence the processor’s time is 
actually shared among multiple user programs present in the machine. Each program, in turn, gets 
a particular short duration (burst) of CPU time, also called quantum or time‑slice, for its execution 
and is then forced (preempted) to relinquish the CPU, which now switches to another program. 

If an I/O operation is encountered before the expiry of the time slice, control will then go to the 
next program. Thus, the time slice is the maximum span of time during which a program can get 
the service of the CPU. Hence, if there are n active users present in the memory requesting service 
at a time, each user, then, on average, will have 1/n of effective computer speed if administrative 
overhead of the operating system is not taken into account. Since human reaction time at the termi-
nal is relatively slow in comparison to CPU speed, the response time for a properly designed system 
appears to be closely comparable to that on a single-user dedicated computer. This environment 
thus could provide fast interactive services on one hand to a number of users and perhaps also work 
simultaneously on big batch jobs in the background when the CPU is otherwise idle. 

While batch-style multiprogramming maximizes processor usage, time-sharing is targeted to 
minimize response time and provide equitable processor sharing. To initiate a job, while batch-style 
multiprogramming requires a set of job control instructions (Job Control Language) along with the 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 11  

 

 

job at the time of its submission, the time-sharing approach usually needs short commands to be 
entered at the terminal. However, purely batch-style multiprogramming with no interactive comput-
ing can also be implemented with a time-sharing option. 

Time-sharing systems demand sophisticated processor scheduling to fulfll certain requirements 
of the environment ensuring system balance. Numerous approaches in this regard have been thus 
developed to meet certain goals, which are discussed in the following chapters. Memory manage-
ment should ensure perfect isolation and protection of co-resident programs. Of course, some form 
of controlled sharing is offered in order to conserve memory space and possibly to exchange data 
between active programs. Generally, programs from different users running under time-sharing 
systems do not usually have much need to communicate with each other. Device management in 
time-sharing systems should be adequately equipped to handle multiple active users while nego-
tiating their simultaneous requests to access numerous devices. Allocation of devices and later 
their deallocation must be done keeping in view safeguarding the users’ interest, preserving system 
integrity, and at the same time optimizing device utilization. File management in a time-sharing 
system should be able to resolve conficting attempts made by different active users over a shared 
fle and should ensure full protection and access control at the time of concurrent accesses. In many 
cases, it is desirable for a user to create fles that are not to be modifed by other users, or even 
sometimes not read by other users. Protection and security became major issues in the early days of 
timesharing, even though these issues were equally applied to batch-style multiprogramming. These 
aspects are still crucial in today’s systems in multiuser environments and are continually growing 
in importance due to the ubiquity of computers. All these issues will be discussed in detail later in 
respective chapters. 

1.6.3.2 Case Study: The Compatible Time Sharing System (CTSS) 
The frst time-sharing operating system, the compatible time sharing system (CTSS), permitting 
many users to simultaneously access a computer in interactive mode came in 1963 and was later 
transferred to a specially modifed IBM 7094 in the mid-1960s. Both the computer and the primi-
tive CTSS belong to the last part of second generation, and CTSS became popular when third-
generation systems evolved and the timesharing concept became widespread. The system ran on a 
machine with 32K main memory and 36-bit word size, and its resident portion occupied a space of 
5K, thereby leaving only 27K of main memory for a maximum of 32 users’ programs and data. The 
time slice used was 0.2 seconds, and at each clock interrupt, the executing program would be pre-
empted, and then this program or only a portion of it with its associated data and other status infor-
mation were to be written out to disk, only if suffcient space in main memory were not available 
to accommodate the new incoming program that was either to be loaded into or already available 
in main memory. The operating system then assigned the processor to this newly loaded program 
to initiate its execution. CTSS was extremely simple and was a pioneer in the initial research on 
radical scheduling algorithms. Although it was not aware of exploiting the technique of relocation, 
but it succeeded in offering adequate protection to multiple jobs and keeping interactive users in 
memory from interfering with one another. It is thus recognized as a pioneer in the concept of mod-
ern memory management techniques. 

For more details about CTSS, see the Support Material at www.routledge.com/9781032467238. 

1.6.3.3 MULTICS 
To simplify CTSS, Bell Labs and General Electric (GE, a major computer manufacturer in those 
days) developed Multics (MULTiplexed Information and Computing Service) with many sensa-
tional, innovative ideas that could support hundreds of timesharing users concurrently. It was not 
just years but decades ahead of its time. Even up to the mid-1980s, almost 20 years after it became 
operational, Multics continued and was able to hold its market share in the midst of steep compe-
tition with other emerging advanced operating systems enriched with many novel ideas in their 

http://www.routledge.com/9781032467238


 

 

 

 

12 Operating Systems 

design. The design of Multics was realized by organizing it as a series of concentric rings instead of 
layers (to be discussed in Chapter 3). The inner ring was more privileged than the outer ones, and 
any attempt to call a procedure in an inner ring required the equivalent of a system call, called a trap 
instruction, with its own valid parameters. 

Multics had superior security features and greater sophistication in the user interface and also 
in other areas than all contemporary comparable mainframe operating systems. But it was gigantic 
and slow, and it also required complicated and diffcult mechanisms to implement. Moreover, it was 
written in PL/1, and the PL/1 compiler was years late and hardly worked at all when it was fnally 
released. 

As a result, Bell Labs withdrew from the project, and General Electric totally closed down 
its computer activities. Yet Multics ran well enough at a few dozen sites, including MIT. Later, 
Multics was transferred to Honeywell and went on to modest commercial success. Had Honeywell 
not had two other mainframe operating systems, one of which was marketed very aggressively, 
Multics might have had greater success. Nevertheless, Multics remained a Honeywell product with 
a small but trusted customer base until Honeywell got out of the computer business in the late 
1980s. However, Multics ultimately fzzled out, leaving behind enormous infuence and an immense 
impact on the design and development of the following modern systems, especially in the areas of 
virtual memory, protection and security that were implemented on a number of operating systems 
developed in the 1970s, including the operating systems developed to drive commercially popular 
minicomputers. 

For more details about Multics, see the Support Material at www.routledge.com/9781032467238. 

1.6.3.4 Mainframes 
By this time, the steady development of IC technology ultimately led to the emergence of large-
scale integration (LSI) circuits containing thousands of transistors on a square centimeter of sili-
con. Consequently, new machines with compatible architectures belonging to the third generation 
with these powerful components were launched by different manufacturers. Of these, a notable 
one, the S/360 series (System/360 series, 3 stands for third generation and 60 for the 1960s) came 
from IBM, the industry’s frst planned computers with a family concept, comprising different soft-
ware-compatible machines that offered time-shared multiprogramming with telecommunication 
facilities using a video display unit (VDU) for interactive use. To drive this potential hardware, 
appropriate advanced operating systems were developed by different manufacturers implement-
ing the ideas mostly tested by Multics. Two of the most popular operating systems were ultimately 
released by IBM, multiprogramming with fxed tasks (MFT) and multiprogramming with variable 
tasks (MVT) for their large S/360 and early large S/370 (3 stands for third generation and 70 for the 
1970s) systems. 

The versatile operating systems DOS/360 and OS/360 were developed later by IBM with the 
main goal of driving their latest System/360 series but also for their existing small systems like 
1401s and large systems like 7094s. As a result, an extraordinarily complex large operating system 
evolved with thousands of bugs that were ultimately rectifed and also modifed after several ver-
sions. This operating system, however, was the frst of this kind that was fnally able to operate on 
all different machines belonging to the S/360 family. The awesome success of DOS/360 and OS/360 
provoked the other contemporary leading manufacturers like Burroughs, UNIVAC, NCR, CDC, 
and ICL to come out with their own operating systems, and those were developed along the same 
lines as DOS/360 and OS/360. 

DOS/360 and OS/360, however, were further enhanced by IBM, primarily to accommodate 
more users of the machine at a time, and also to include some deserving enhanced features. The 
main bottleneck in this context was the limited capacity of main memory, which was really not 
enough to simultaneously accommodate all the executing programs with their whole data sets. 
It was thus fnally planned to allocate memory space only dynamically (during runtime) among 

http://www.routledge.com/9781032467238


Computers and Software 13  

 

different competing executing programs and move or “swap” them back and forth between main 
and secondary memory as and when needed to mitigate this scarcity of memory space. This strat-
egy, however, was ultimately implemented within the operating system as an additional major pri-
mary function to automate memory management. 

The ultimate outcome of this idea was the concept of virtual memory, an additional facility 
implemented in third-generation computers that offered the user an illusion of having essentially 
unlimited addressable memory for use with unrestricted access. IBM successfully implemented the 
virtual memory mechanism in its line of 360 series machines, and the existing operating systems 
were also upgraded accordingly to drive these architecturally modifed machines. Consequently, 
operating systems like OS/VS1 and OS/VS2 (VS stands for virtual storage) came out, and later the 
operating system OS/SVS (single virtual storage) was introduced in 1972 using a 24-bit addressing 
scheme, a virtual space of 16 MB (224 = 16 MB) for the older S/370 machine architecture. But this 
24-bit address space along with separate virtual memory for each job also quickly became inad-
equate for some situations and the constantly widening spectrum of the S/370 family. Moreover, as 
newer different application areas were constantly emerging, and there was an upsurge in the mem-
ory requirements from the user end, IBM thus introduced multiple virtual storage (MVS), the top 
of the line and one of the most complex operating systems ever developed, for its mainframes to 
manage such situations. With MVS, the limit was a dedicated 16 MB memory per job, where each 
job actually got something less than half of this assigned virtual memory; the remaining space was 
for the use of the operating system. 

IBM extended the architecture of its underlying processor to handle 31-bit addresses, a facility 
known as extended addressing (XA). To extract the potential of this new hardware, a new version of 
MVS known as MVS/XA was launched in 1983 that summarily increased the per-job address space 
to a maximum of 2 GB (gigabytes). Still, this was found not at all suffcient for some applications 
and environments. As a result, IBM introduced the last major extension of the 370 architecture, a 
new form known as enterprise system architecture (ESA), and the corresponding enhanced version 
of the operating system, known as MVS/ESA, emerged in the late 1980s/early 1990s. Out of many 
distinguishing features of this OS, one was that there were up to 15 additional 2-GB address spaces 
for data available only to a specifc job, apart from the 2 GB address space per job that was already 
available in MVS/XA. Consequently, the maximum addressable virtual memory per job was now 
32 GB, one step further in the implementation of virtual storage. 

With the development of semiconductor IC RAM, memory size and speed notably increased, 
and the price of the memory dropped drastically. The cost of sizable memory then came down to 
an affordable range that ultimately inspired designers to have multiple memory modules instead of 
just one. A relatively large high-speed buffer memory is thus provided between the CPU and main 
memory to act as intermediate storage for quick access to information by the CPU that summarily 
reduces the impact of the speed gap between the fast CPU and relatively slow main memory, thereby 
improving overall execution speed. This memory is now called caches and is in common use by 
modern CPUs to access both data and instructions. 

As the hardware was relentlessly upgraded with the continuous advancement of electronic tech-
nology, computer architecture was also constantly enhanced to make use of modern hardware to 
fulfll the various needs and continually increasing demands of the users. Consequently, new oper-
ating systems were required to drive the changed hardware systems, and these new OSs were natu-
rally realized either by developing new ones or by repeated modifcation of existing older ones. 
This, in turn, invited another problem: a user’s program, while executable under an old operating 
system, became unusable under a new operating system (enhanced version) without modifcation, 
and this modifcation sometimes could be quite extensive and also expensive. This situation was 
faced by IBM in particular, since it introduced many different versions of OSs in quick succession 
for its 360 and 370 series of machines, and those were very similar but not fully compatible. An 
IBM installation with different versions of operating systems faced a lot of diffculties while chang-
ing or switching the operating system periodically to meet all the user needs and demands. To avoid 



 

 

 

 

14 Operating Systems 

the operational diffculties arising from frequent switching of operating systems caused by frequent 
updates in hardware architecture, IBM developed a special form of system architecture for its S/360 
and S/370 series, popularly known as virtual machines (VMs). 

So many installations resorted to VM that an operating system was designed to emulate multiple 
computer systems. The ultimate objective of a virtual machine was to multiplex all system resources 
between the users in such a way that each user was under the illusion they had undivided access to 
all machine’s resources. In other words, each user believed they had a separate copy of the entire 
machine of their own. Each such copy was termed a virtual machine. Each virtual machine was 
logically separated from all others; consequently it could be controlled and run by its own separate 
operating system. This led to innovative system organization (discussed in detail in Chapter 3), 
where several different OSs were used concurrently over a single piece of hardware. The heart of the 
system, known as virtual machine monitor (VMM), ran on the bare hardware (physical hardware) 
and created the required virtual machine interface. The operating system accordingly was upgraded 
to drive these architecturally modifed machines. The new operating systems thus released based on 
the existing ones were called DOS/VM and OS/VM. A VM could even be confgured to take advan-
tage of systems with multiple processors, but it was unable to provide all of the controls needed to 
extract the full strength of modern multiprocessor confgurations. 

In spite of having several merits, two major drawbacks were observed in the design of virtual 
machines. First of all, the cost of the hardware and hardware interface were very high in those days. 
Second, any fault or failure in the common hardware interface (VMM) or the single piece of basic 
hardware on which the different virtual machines with their own operating systems were running 
concurrently would cause a severe breakdown in the operation of every machine, leading to a total 
collapse of the entire system. In addition, the VMM-interface is still a complex program and was 
not that simple to realize to obtain reasonable performance. As a result, virtual machines gradually 
fzzled out, but the concept and its successful implementation eventually had an immense impact 
that opened new horizons in the architectural design of computer systems and their organization 
(especially the innovation of computer networks) in the days to come. 

For more details about mainframes, see the Support Material at www.routledge.com/ 
9781032467238. 

1.6.3.5 Minicomputers 
During the third generation, another major development was the introduction of minicomputers. 
The Digital Equipment Corporation (DEC) in 1961 launched its PDP-1, which had only 4K memory 
of 18-bit words but with a drastic reduction in price and size, much less than its contemporary, IBM 
7094. The performance of the PDP-1 was up to the level of the IBM 7094, and hence it became 
very popular. A whole new industry came up, with DEC introducing a series of other PDPs: PDP-7 
and PDP-8. The block diagram of the organization of PDP-8 is shown in Figure 1.2. Soon, DEC 
launched its enhanced version, the 16-bit successor PDP-11, a machine totally compatible with 

FIGURE 1.2 Operating systems used to drive minicomputers and the hardware structure of such representa-
tive minicomputer organization (DEC-PDP–8). 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 15  

 

 

 
  

 

the other members in the family, in the early 1970s. The IBM 360 and PDP-11 had a very close 
resemblance: both had byte-oriented memory and word-oriented registers. The parameters of the 
PDP-11, like the cost, performance, size, and overhead expenditure, were so attractive that it became 
immensely successful both in the commercial and academic arenas, and it was also in wide use until 
the 2000s for industrial process control applications. 

DEC developed many operating systems for its various computer lines, including the simple 
RT-11 operating system for its 16-bit PDP-11-class machines. For PDP-10–class systems (36-bit), 
the time-sharing operating systemsTOPS-10 and TOPS-20 were developed. In fact, prior to the 
widespread use of UNIX, TOPS-10 was a particularly popular system in universities and also in the 
early ARPANET community. 

Technological advancements led to the increasing power of minicomputers’ functional opera-
tions. The availability of low-cost and larger-capacity main memory attached to the minicomputer 
allowed a multi-user, shared system to run. Within a short period, the successor to the PDP-11, the 
frst versatile 32-bit minicomputer, VAX, was launched with a powerful VMS operating system that 
offered a multi-user shared environment. 

Minicomputers also came from many other companies with various confgurations, but a mini-
computer technically consists of a 16-or 32-bit microprocessor or similar type of other processor, a 
comfortable size of memory and a few input-output-supported chips interconnected with each other 
or mounted on a single motherboard. DEC with its PDP family soon took a formidable lead over 
the other manufacturers. The PDP-11 became the computer of choice at nearly all computer science 
departments. Commercial organizations were also able to afford a computer of this type for their 
own dedicated applications. 

For more details about minicomputers, see the Support Material at www.routledge.com/ 
9781032467238. 

1.6.3.6 UNICS/UNIX 
Multics eventually fzzled out. But Ken Thompson, one of computer scientists who worked on the 
Multics project at Bell Labs, remained under the strong infuence of the design approach used 
by Multics. He wanted to continue with this idea and ultimately decided to write a new, stripped-down, 
one-user version of Multics using an obsolete and discarded PDP-7 minicomputer. His developed 
system actually worked and met the predefned goal in spite of the tiny size of the PDP-7 computer. 
One of the other researchers and his friend, Brian Kernighan, somewhat jokingly called it UNICS 
(UNiplexed Information and Computing Service), although the spelling was eventually changed 
to UNIX after a series of modifcations and enhancements. Historically, UNIX appeared at that 
point as a savior of the popular PDP-11 series, which was in search of a simpler, effcient operating 
system, since it was running at that time under a dreadful operating system with literally no other 
alternatives. 

Looking at the initial success of UNIX, and after being totally convinced of its bright future, 
Dennis Ritchie, a renowned computer scientist at Bell Labs and a colleague of Thompson, joined 
in this project with his whole team. Two major steps were immediately taken in this development 
process. The frst was to migrate the project from the platform of the obsolete PDP-7 to the more 
modern and larger PDP-11/20, then to the even more advanced PDP-11/45, and fnally to the most 
modern system of those days, thePDP-11/70. The second step was in regard to the language used 
in writing UNIX. Thompson, at this juncture, decided to rewrite UNIX afresh in a high-level lan-
guage, leaving its existing line to avoid having to rewrite the entire system whenever the underlying 
hardware platform was upgraded. He thus used his own designed language, called B, a simplifed 
form of BCPL, which in turn was a form of CPL that never worked. Unfortunately, the structure 
of this B language was not enough equipped to support his approaches in designing UNIX, and 
consequently, his strategy for realizing this operating system could not be implemented. At this 
stage, Ritchie came to the rescue and designed an appropriate successor to the B language called C, 
and then wrote a fabulous compiler for it. Later, Ritchie and Thompson jointly rewrote UNIX once 
again using C. Coincidences sometimes shape history, and the emergence of C at that critical time 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 16 Operating Systems 

was precisely the correct approach for that implementation. Since then, the C language has been 
constantly modifed and enhanced, and remains as an important language platform in the area of 
system program development even today. 

UNIX developed using C has been widely accepted in the academic world, and ultimately in 
1974, the UNIX system was frst described in a technical journal. However, the frst commonly 
available version outside Bell Labs, released in 1976, became the frst de facto standard named 
Version 6, so called because it was described in the sixth edition of the UNIX programmer’s man-
ual. Soon, it was upgraded to Version 7, introduced in 1978, with a simple fle system, pipes, clean 
user-interface—the shell—and extensible design. Apart from many other contemporary systems, 
the main non-AT&T UNIX system developed at the University of California, Berkeley was called 
UNIX BSD and ran frst on PDP and then on VAX machines. In the meantime, AT&T repetitively 
refned its own systems, constantly adding many more features, and by 1982, Bell Labs had com-
bined several such variants of AT&T UNIX into a single system that was marketed commercially 
as UNIX system III. Later, this operating system, after several upgrades, incorporated a number of 
important new features in a commercially viable integrated fashion that was eventually introduced 
as UNIX system V. 

By the late 1980s, however, the situation was horrible. Virtually every vendor by this time had 
started to regularly include many extra nonstandard features as enhancements and part of its own 
upgrades. As a result, there were no standards for binary program formats, and the world of UNIX 
was split into many dissimilar ones that greatly inhibited the expected commercial success of 
UNIX. In fact, two different and quite incompatible versions of UNIX, 4.3 BSD and System V 
Release 3, were in widespread use. It was then diffcult and truly impossible for software vendors 
to write and package UNIX programs that would run on any UNIX system, as could be done with 
other contemporary operating systems. The net outcome was that standardization in different ver-
sions of UNIX, including the ones from these two different camps, was immediately needed and 
accordingly demanded. Many attempts in this regard initially failed. For example, AT&T issued its 
System V Interface Defnition (SVID), which defned all the system calls, fle formats, and many 
other components. The ultimate objective of this release was to keep all the System V vendors in 
line, but it failed to have any impact on the enemy camp (BSD), who just ignored it. 

However, the frst serious attempt to reconcile the different favors of UNIX was initiated through 
a project named POSIX (the frst three letters refer to portable operating system, and the last two let-
ters was added to make the name UNIXish) carried out by a collective effort under the auspices of 
the IEEE standards board, hundreds of people from industry, academia, and the government. After 
a great deal of debate, with arguments and counterarguments, the POSIX committee fnally pro-
duced a standard known as 1003.1 that eventually broadened the base of OS implementation beyond 
that of pure UNIX by standardizing the user–interface to the OS rather than merely organizing its 
implementation. This standard actually defnes a set of library procedures that every conformant 
UNIX system must provide. Most of these procedures invoke a system call, but a few can be imple-
mented outside the kernel. Typical procedures are open, read, and fork, etc. The 1003.1 document is 
written in such a way that both operating system implementers and software developers can under-
stand it, another novelty in the world of standards. In fact, all manufacturers are now committed to 
provide standardized communication software that behaves in conformance with certain predefned 
rules to provide their customers the ability to communicate with other open systems. 

The triumph of UNIX had already begun, and by the mid-1980s, UNIX nearly monopolized 
the commercial as well as scientifc environment, with workstations running on machines ranging 
from 32-bit microprocessors up to supercomputers. Although UNIX was designed as a time-sharing 
system, its multiprogramming ability as well as the extensibility function inherent in its design 
naturally ft into the workstations used in network environments. UNIX gradually became popular 
in the workstation market and ultimately started to support high-resolution graphics. Today, main-
frame environments and even supercomputers are managed by UNIX or a UNIX-like (or a variant 
of UNIX) operating system. 



Computers and Software 17  

 

 

 
 

 

 
 
 
 
 

 

Another system evolved during this period was the Pick operating system that initially started 
as a database application support program and ultimately graduated to carrying out system works 
and is still in use as an add-on database system across a wide variety of systems supported on most 
UNIX systems. Other database packages, such as Oracle, Cybase, and Ingres, etc. came at a later 
stage and were primarily middleware that contained many of the features of operating systems, by 
which they can support large applications running on many different hardware platforms. 

For more details about UNICS/UNIX, see the Support Material at www.routledge.com/ 
9781032467238. 

1.6.3.7 Multitasking Systems 
A task can be defned as a collection of executable statements and data declarations that gives rise to 
an independent specifc activity (process) at runtime. A program can be considered a task or a col-
lection of tasks. With the evolution of time-sharing methodology, processes were sometimes called 
tasks. A time-sharing system (multitasking system) often allows two or more processes (tasks) to 
run at any given time. More precisely, a multitasking operating system facilitates concurrent execu-
tion of programs on a single processor, setting up appropriate memory protection and regulated fle 
access by means of coupling the available hardware and software tools to safeguard the address 
spaces of the resident processes and coordinate the fle-accesses made by the active processes. This 
operating system exploits the multitasking operation, which is normally accomplished by schedul-
ing ready-to-execute processes based on their relative importance (priority) and selecting a par-
ticular deserving process, which would then be allocated to the processor (CPU or I/O processor) 
to independently carry out its operation. However, in this system, a single user can run multiple 
applications concurrently, each one competing with the others to gain access to the resources or 
to run background processes while retaining control of the computer. In fact, more emphasis is put 
here on processor management and device management. 

In contrast, a multiprogramming operating system is actually a more general concept with well-
defned simple policies and strategies to support concurrent execution of programs. Here, the user 
is represented only by the job they submit, and a batch job would execute only one program at any 
instant on behalf of the job. The multiprogramming system actually exploits multitasking operation 
as one of the key mechanisms in managing all the resources available within the computer system. 
However, in this system, the main target was to put as many jobs as possible in memory, and hence 
memory management was a major design challenge. 

The growth of the client/server model of computing using a local/wide area network has once again 
added further momentum with a different favor in the increasing motivation for multitasking. With 
this approach, a client (a personal computer or sometimes a workstation) and a server (a host system or 
maybe a mainframe) are linked together and used jointly to accomplish a particular application. Each 
is assigned a portion of the job that is deemed ft for its capabilities. Thus, multiple tasks (portions of 
the job) are concurrently under execution, even on two different machines, which gives rise to multi-
tasking supported by an operating system capable of driving sophisticated real-time communication 
hardware and its associated system software while providing ongoing user interaction. 

Multitasking operations are even found in single-user operating systems of some advanced per-
sonal computers and in real-time systems that rely on certain computer hardware features; the 
notable ones are direct memory access (DMA) and I/O interrupts. In the presence of this type of 
hardware, when the processor (CPU) issues an I/O command for one job, the I/O operation of the 
job can be independently carried out by the device controller without the CPU’s involvement, and 
the CPU is released and can then proceed with the execution of another job. After the completion 
of the I/O operation, the device controller issues an interrupt, the processor is interrupted, and the 
operating system gains control and takes appropriate actions. For example, a user of a personal com-
puter writes a text using a text editor and at the same time plays music. The writing task (applica-
tion) is independently carried out by the DMA without any involvement of the CPU, while the task 
(application) of playing the music is carried out by the CPU at the same time, an ideal example of 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

 
 
 
 

 
 
 
 

 

   

18 Operating Systems 

multitasking in single-user environment. Windows NT was one such operating system that exploited 
the tremendous power of contemporary 32-bit microprocessors and provided full multitasking with 
ease-of-use features in a single-user environment. This indicates that a multiprogramming operat-
ing system is necessarily a multitasking operating system, but the converse is not always true. 

1.6.4 MODERN OPERATING SYSTEMS 

Over the years, more advanced hardware organization and architecture constantly evolved, mainly 
due to the rapid pace of development in electronic technology with the introduction of ICs, primar-
ily large scale integration (LSI), very large scale integration (VLSI), and ultra large scale integra-
tion (ULSI). As a result, small, powerful microprocessors as well as tiny, speedier capacious main 
memory systems have been introduced. The corresponding signifcant hardware outcomes are pow-
erful microprocessors, multicomputer systems, multiprocessor machines, sophisticated embedded 
systems, real-time systems, high-speed communication channels used in network attachments, vari-
eties of memory storage devices with increasing speed and capacity, and above all, greatly increased 
machine speed as a whole. In the application domain, the introduction of related intelligent soft-
ware, multiuser client–server computing, multimedia applications, Internet and Web-based applica-
tions, cloud computing, applications using distributed systems, real-time applications, and many 
others have had an immense impact on the structure and design of evolving operating systems. To 
manage these advanced machines and the sophisticated environment, OSs have also constantly pro-
gressed, with new ideas and approaches, ultimately incorporating a number of new design elements 
to organize the OS afresh that eventually culminated in a major change in the existing concept, 
forms, design issues, and structure, as well as in their nature. These modern OSs (either new OSs or 
new releases of existing OSs), however, are properly ft to adequately address new developments in 
hardware to extract its highest potential. They are also found conducive to new applications, and yet 
able to negotiate increasingly numerous potential security threats. 

That is why, beyond the third generation of operating systems, along with continuous releases of 
enhanced versions, making any sharp demarcation between generations of operating systems is diffcult 
to do, and, in fact, there is less general agreement on defning generations of operating systems as such. 
Consequently, the classifcation of operating systems by generation to drive this constantly changing 
environment becomes less clear and meaningful. It could be summarily said that the scientifc, com-
mercial, and special-purpose applications of new developments ultimately resulted in a major change in 
OSs in the early 1980s and that the outcomes of these changes are still in the process of being worked 
out. However, some of the notable breakthroughs in approaches that facilitated redefning the concept, 
structure, design, and development of OSs to realize numerous modern OSs to drive the constantly 
emerging advanced architecture in the arenas of both scientifc and commercial use are mentioned here. 

For more details about modern operating systems, see the Support Material at www.routledge. 
com/9781032467238. 

1.6.4.1 Personal Computers 
The availability of tiny, low-cost, high computing-powered microprocessors started the regime of 
microcomputers, with the ultimate emergence of a different class of general-purpose machines 
called the personal computer (PC). These started to be used in a completely different way from 
large computers and even minicomputers of those days. Text processing, spreadsheet applications, 
small database handling, and the use of various types of highly interactive applications are only a 
few of these. One of the most widely used personal computer families is the PC series that came 
from IBM in 1981 with 8-bit processor chips and has become a de facto standard for this class 
of machine. The organization of PCs has been gradually improved and enhanced based on the 
Intel 8088/8086/80286/80386/80486/80586/Pentium family (Intel X-86 families) or Motorola 680 
10/68020/68030/68040/68050/68060 (MC 68000 series) using 16/32/64-bit microprocessors with 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 19  

 

    

 

 
 

 
 
 
 
 
 
 
 
 

typical clock rates exceeding a few gigahertz (GHz) today. Other manufacturers started produc-
ing PCs in the same line as IBM, and all their machines were compatible with IBM-PCs, but the 
components used by different manufacturers were obviously different. The most popular single-
user highly interactive operating system for early personal computers was CP/M, which was then 
converted to PC-DOS by IBM and was fnally displaced by MS-DOS being developed based on 
existing PC-DOS by the Microsoft Corporation under license from IBM. 

Although single-user MS-DOS was not very intelligent, it was well suited to the organization 
of the PC machine and had excellent performance. Its design actually put more emphasis on user-
friendliness, sacrifcing its other vital objectives; one such is resource utilization. All PCs, irrespec-
tive of the brand (manufacturer), ultimately used MS-DOS, which eventually became a de facto 
standard. It has been constantly upgraded on a regular basis, ending every time with a release of a 
newer version with more advanced features to fulfll most of the users’ requirements and, of course, 
developed in the same line of the existing system, maintaining its family concept. Consequently, 
MS-DOS on personal computers ultimately dominated other operating system products and fnally 
consolidated its position in the entire personal computer market. MS-DOS is traditionally a single-
user system but does provide multitasking by way of coupling available hardware facilities (DMA) 
with existing software support. It was not at all a true multiprogramming system, although it pro-
vided a fle system similar to the one offered by UNIX. 

Due to the constantly decreasing cost of hardware resources, it became feasible to provide graph-
ical user interfaces (GUIs) for many operating systems. The original GUI was developed at Xerox’s 
Palo Alto Research Center (XEROX PARC) in the early 1970s (the Alto computer system), and 
then many others were created, including Apple’s Mac OS and also IBM’s OS/2. Microsoft fnally 
added this excellent GUI feature in the early 1990s in the form of Windows as a platform to the user 
running on the existing MS-DOS operating system. Windows 3.1/95/98/second version of Windows 
98 and even Windows Millennium were this type of platform released by Microsoft running on 
MS-DOS. Finally, Microsoft launched a Windows NT-based OS, a full-fedged standalone operat-
ing system providing an extensive graphic user interface. 

Hardware technology rapidly advances, offering more tiny, low-cost, sophisticated components 
for use in all aspects of computers to make the system more powerful and versatile. Side by side, 
both the system software and third-party–created application software development tools progressed 
remarkably, yielding lots of different types of useful software for users to fulfll their everyday 
requirements. As a result, personal computer culture gradually became widespread and matured to 
ultimately grow into more sophisticated systems, even moving one step forward to almost replace 
existing larger minicomputer machines. 

For more details about personal computers, see the Support Material at www.routledge.com/ 
9781032467238. 

1.6.4.2 Computer Networks: Network Operating Systems 
The successful implementation of VM370 using advanced operating systems (like IBM’s DOS/VM 
and OS/VM) introduced the idea that with a single piece of hardware exploiting the service of a com-
mon hardware interface, different virtual machines could be simultaneously run with their own indi-
vidual different operating systems, collectively giving rise to a concept of multiple operating systems 
running independently over a single piece of hardware. This innovative concept, however, addressed 
many issues and solved many critical problems of those days. In spite of having several merits, two 
major drawbacks were observed in this design. First of all, the costs of the hardware and hardware 
interface were very high. The second major drawback of this design was that any fault or failure in 
the common hardware interface or in the single piece of hardware on which the different virtual 
machines with their own operating systems were running concurrently would cause every machine to 
breakdown, leading to a total collapse of the entire system. To alleviate these two major drawbacks, 
designers desperately searched for a suitable alternative. However, this idea, on other hand, had an 
immense impact that opened a new horizon in the domain of personal computers and their use. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 
 
 

  

 

 

 

20 Operating Systems 

Both the issues, such as; cost, and fault tolerance of the entire system (or, at least, a part of the 
entire system) at the time of critical hardware failure have been successfully addressed exploiting a 
different approach, but keeping preserved the central theme of allowing multiple operating systems 
to run concurrently. 

Now all the costly centralized hardware has been replaced, and the cost was then distributed to 
realize a collection of low-cost standalone autonomous computer systems, like microcomputers; 
each one was then run under its own operating system to support its own local users, and all such 
systems in this domain were then interconnected with one another via their hardware and soft-
ware tools to enable them to intercommunicate and cooperate. This fulflls the frst requirement: 
cost. Since each such small system in this arrangement can use its own different operating system 
to support its own local users, this arrangement appeared to have multiple operating system run-
ning simultaneously, thus fulflling the second requirement. In this way, the cost was substantially 
brought down to an affordable limit, and since the failure of any system or any fault in intercon-
nection hardware in this arrangement will not affect the other systems, the fault-tolerance issue has 
been solved to a large extent. 

The emergence of this design concept of interconnecting a collection of autonomous computer 
systems capable of communication and cooperation between one another by way of communi-
cation links and protocols is popularly known as a computer network. Each such autonomous 
machine running under its own operating system is able to execute its own application programs 
to support its own local users and also offers computational resources to the networks, usually 
called a host. Computer networks could, however, be considered an immediate predecessor of a 
true distributed computing system, which will be discussed later in detail. Sometimes computer 
networks are loosely called distributed computer systems, since they carry a favor of a true dis-
tributed computing system comprising hardware composed of loosely bound multiple processors 
(not multiprocessors). 

Apart from the local operating system installed in each machine to drive it, computer networks 
are managed by a different type of operating system installed additionally in each individual com-
puter to allow the local user to use and access information stored in another computer via high-
speed communication facilities. This operating system is known as a network operating system 
(NOS) or sometimes network fle system (NFS), a successor of KRONOS, which was developed 
by Control Data Corporation during the 1970s. In the late 1970s, Control Data Corporation and the 
University of Illinois jointly developed what was then the innovative PLATO operating system that 
featured real-time chat and multi-user graphical games using long-distance time-sharing networks. 
In the 1970s, UNIVAC produced the Real-Time Basic (RTB) system to support a large-scale time-
sharing environment. 

A NOS enables users to be aware of the presence of other computers, login to a remote computer, 
and transmit and receive data/fles from one computer to another. Since then, a NOS supported 
multiple users interacting. However, it has crossed a long way with numerous enhancements and 
modifcations in its various forms, and ultimately evolved to multiuser interactive operating sys‑
tems, known as the client–server model, a widely used form observed today. 

1.6.4.3 Client–Server Model: Multiuser Systems 
With relentless progress in hardware technology, a personal computer gradually evolved to a more 
sophisticated system consisting of a faster and more powerful processor, larger main memory, 
bigger disk storage, and high-resolution graphic display unit and also connected to many more 
resources than a personal computer usually has. When this personal computer is connected as a 
communication terminal to another large computer in a computer network (or, loosely, network of 
computers), it is called a workstation. Almost at the same time, local area networks (LANs) in the 
form of ethernet and token ring LAN technology came out, enabling the interconnection of small 
machines/workstations that, in turn, would be connected with a comparatively larger and more 
powerful machine by relatively high-speed communication links in a network environment in order 



Computers and Software 21  

 

 

 FIGURE 1.3 Network operating system which is a different kind of operating system used in computer net-
works organized in the form of Workstation-Server (Client-Server) model. 

to share both the hardware and software resources available in the entire low-cost arrangement. The 
environment thus formed is depicted in Figure 1.3. The outcome was a remarkable one in the design 
of computer hardware confgurations that led computing practices to follow a completely different 
path. To make this approach operative, the entire system naturally requires the service of a different 
type of more sophisticated and complex operating system to manage all the resources. The result-
ing operating system developed along the lines of time-sharing technology became well-suited to 
managing LAN-based computing environments. 

The operating system eventually evolved with an innovative concept in the design that structured 
it as a group of cooperating processes called servers that offer services to their users, called clients. 
This client–server model of the operating system was able to manage many cooperating machines 
with related network communications. It also provided client and server resource management strat-
egies, new forms of memory management and fle management strategies, and many other similar 
aspects. In fact, client and server machines usually all run the same microkernel (the inner level of 
the operating system), with both the clients and servers running as user processes. 

These operating systems running on distributed hardware confgurations are well-suited to han-
dle distributed applications offering coarse-grained distribution. Moreover, they provide distributed 
fle systems that facilitate system-wide access to fles and I/O devices. Some systems also provide 
migration of objects such as fles and processes for the sake of improved fault tolerance and load 
distribution. Another nice feature of this system is its scalability, which means that the system 
confguration can be gradually incremented on demand in size as the workload regularly grows, 
of course without affecting its high reliability. In short, these systems exhibit tremendous strength, 
offering an excellent cost/performance ratio when benchmarked. 

The major drawbacks of this system are in the complex software, weak security, and, above 
all, potential communication bottlenecks. Since the distributed fle system is exposed to the user 
running commonly as a user process, it is often under potential threat in the form of unauthorized 
access or snooping by active/passive intruders, casual prying by non-technical users, or determined 



 

 

 

 

 

22 Operating Systems 

attempts by unscrupulous users. To protect information from such malicious activities, the system 
has to provide more elaborate forms of protection mechanisms, including user authentication and, 
optionally, data encryption for increased security. 

For more details about the client–server model, see the Support Material at www.routledge.com/ 
9781032467238. 

1.6.4.4 Superminis 
The power of minicomputers was constantly increasing, and at the same time, numerous types 
of diverse application areas started to evolve, particularly in the area of large applications. In this 
situation, the existing 16-bit minicomputers were thus observed to have certain limitations from an 
architectural point of view. A few of these to mention are: limited addressing capability, a limited 
number of operation codes due to existing 16-bit instructions, limited scope to use numbers with 
higher precision, and many others. The solution to all these drawbacks of these machines ultimately 
led to the introduction of 32-bit minicomputers, following the same line of its predecessor, the 16-bit 
minicomputer in the late 1970s, and it was popularly known as a supermini or mid-range system. 

The 32-bit supermini computer supported more users working simultaneously, providing more 
memory and more peripheral devices. These machines were considered far more powerful than 
the gigantic mainframe of the IBM360/75. DEC launched its most powerful supermini family, 
popularly known as VAX series. VAX 8842, with the VMS operating system, was one of the most 
popular and widely used superminis. IBM introduced its supermini AS 400 series of machines 
with operating system OS 400 is still dominating, and at present, its upgrade version known as 
P-series is also widely in use in many application areas. A schematic diagram of AS 400 is shown 
in Figure 1.4. These machines today also provide support to larger computers when hooked up to 
them. Most superminis, including the AS 400 (P-series) are today commonly used as powerful 

FIGURE 1.4 Operating systems used in supermini computer system and the hardware design of such a rep-
resentative supermini system (IBM-AS/400). 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 23  

 

   

 

 

 

 
 
 

 
 
 
 
 

standalone systems for both scientifc and commercial applications as well as servers in a network 
of computers. 

For additional details about superminis, see the Support Material at www.routledge.com/ 
9781032467238. 

1.6.5 DISTRIBUTED OPERATING SYSTEMS 

The successful implementation of networks of computers introduces the concept of distributed com-
puting systems that spread rapidly in the 1990s when the prices of computer hardware sharply 
dropped, and use of the open system standard paved the way for incremental growth of existing 
systems. An open system is identifed as having well-defned and non-proprietary interfaces with 
a universally accepted specifc standard that enables a computing system to straightaway add new 
components and subsystems, thereby facilitating incremental growth. The LAN environment is an 
appropriate example of an open system. A distributed computing system can then be realized in one 
way with several individual independent computer systems connected with one another in different 
fashions by communication links and protocols. Computer systems ranging from expensive super-
computers to cheap PCs can be connected in this way using standard interfaces to build up a distrib-
uted computing system. A true distributed computer system, in contrast, is a multiprocessor system 
consisting of tightly coupled multiple processors confned in one system with distributed shared 
memory organization connected to a pool of I/O devices located in close vicinity or remotely. 

A distributed system actually comprising multiple computer systems appears to its users essen-
tially a virtual uniprocessor system. Such a system should provide various kinds of transparencies, 
such as access, control, data, execution, and location and should also be reliable and tolerant to 
some kind of faults and failures. A rough demarcation between a distributed system and a paral-
lel system is that the former is designed to allow many users to work together either independently 
or often with interactions and cooperation, and the latter is targeted to achieve maximum speed 
in handling a single problem using a set of interconnected multiple processors or computers. This 
distinction is diffcult to maintain because the design spectrum is really a continuum. However, we 
prefer to use the term “distributed system” to denote any system in which multiple interconnected 
CPUs or computers work together. 

Whatever the form of a distributed computing system, a different type of operating system (not similar 
to either our known traditional centralized systems or NOSs) is then required to drive this type of comput-
ing system, historically known as a distributed operating system (DOS). In fact, it evolved in numerous 
forms to drive and support many different types of distributed computing systems. A DOS is actually a 
common operating system shared by a network of computers (not computer networks) or is used to drive 
a computer system with multiple processors (non-uniform memory access (NUMA) model multiproces-
sor). Here, we will discuss only the generic DOS that manifests a spectrum of common features. 

The ultimate objective of a DOS is something else; to ideally distribute computations, real distri-
butions of the components and resources by completely hiding those from the users and application 
programs unless explicitly demanded. In this regard, sometimes the difference between a network 
OS and a distributed OS is somewhat arbitrary, since the network OS will also allow some aspects 
of the hardware environment to be location transparent, while others will be apparent. For example, 
in 4.3 BSD UNIX, fle servers may be location transparent, although telnet, ftp, rlogin, rsh, and 
other commands make the machine boundaries explicit. In fact, DOSs differ from traditional oper-
ating systems or even NOSs in critical ways. However, a generic DOS is committed to addressing a 
spectrum of common functionalities. A few of them are: 

• Resource sharing 
• Communication 
• Reliability 
• Computation speed-up 
• Scalability (incremental growth) 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 
 
 

 
 
 
 

 

24 Operating Systems 

Besides, a DOS often requires personal IDs and passwords for users to strengthen security mecha-
nisms to provide guaranteed authenticity of communication and at the same time permit the users 
to remain mobile within the domain of the distributed system. 

However, the advantages of DOSs may be sometimes negated by the presence of certain factors: 
their ultimate dependence on communication networks; any potential problem in them or their satu-
ration at any time may create havoc. Moreover, easy sharing of resources, including data, though 
advantageous, may turn out to be a double-edged sword, since remaining exposed may cause a poten-
tial threat in security even with the provision of user-ids and passwords in communications. We will 
now separately discuss in brief the DOS when used in multiprocessor and multicomputer systems. 

For more details about common functionalities of DOS, see the Support Material at www.routledge. 
com/9781032467238. 

1.6.5.1 Distributed Operating Systems: In Multiprocessor Machines 
A true distributed computing system, in contrast, is a multiprocessor consisting of tightly bound 
multiple processors. A multiprocessor with shared memory works by centralizing everything, so 
it is not considered a true distributed system. However, a multiprocessor offers multiprocessing, 
which means simultaneous execution of multiple processes by a computer system with multiple hard-
ware processors rather than a single processor supporting multiple processes to run concurrently. 
Multiprocessing systems, by defnition, are naturally multitasking systems because they provide 
simultaneous execution of multiple tasks (processes) on different processors. An individual processor 
in the multiprocessor, in turn, may also offer multitasking depending on the implementation strategy. 
A representative multiprocessor system with distributed hardware is illustrated in Figure 1.5. 

FIGURE 1.5 Operating system used in advanced multiprocessor system and the hardware organization of 
such a representative multiprocessor system (DEC VAX 9000). 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 25  

 

A multiprocessor in the form of true distributed hardware requires different types of operating 
systems to be designed with an innovative approach using a new set of modules to meet its objec-
tives that ultimately give rise to the concept of a DOS. This system creates an abstract environment 
in which machine boundaries are not visible to the programmer. A DOS of this type uses a single 
centralized control system that truly converts the existing collection of hardware and software into 
a single integrated system. 

A multiprocessor when managed by a true DOS under which a user while submits a job is not 
aware of; on which processor the job would be run, where the needed fles are physically located, 
or whether the executing job during execution would be shifted from one processor to another for 
the sake of balancing load. In fact, the user has no choice and also not informed because every-
thing should be effciently handled in a transparent way by the operating system in an automated 
manner. To achieve this, among many options, one is to have more complex processor scheduling 
mechanisms that would synchronize several coexisting processors’ activities in order to realize the 
highest amount of parallelism. Hence, a true DOS should not be considered an extension or addition 
of code to realize more new features over the existing traditional uniprocessor or NOSs. A DOS 
though appears to its users very similar to a traditional uniprocessor system offering those system 
services that may qualify it as time-sharing, real-time, or any combination of them for the beneft 
of local clients, but it may also facilitate shared access to remote hardware and software resources. 

The versatile third-generation OS/360 from IBM gradually evolved to become successively MFT, 
MVT, and SVS systems and then to higher-generation (fourth-generation) DOSs like MVS, MVS/ 
XA, MVS/ESA, OS/390, and z/OS. Although these operating systems include the essentials of the 
UNIX kernel, a huge amount of new functions were included. These functions provide numerous 
supports that are required by modern mission-critical applications running on large distributed 
computer systems like z-Series mainframes. It is worthwhile to mention that IBM maintained total 
compatibility with the past releases, giving rise to a full family concept, so that programs developed 
in the 1960s can still run under the modern DOS z/OS with almost no change. Although z/OS runs 
UNIX applications, it is a proprietary OS, in opposition to an open system. 

1.6.5.2 Distributed Operating Systems: In Multicomputer Machines 
Historically, the success of networks of computers gives rise to the evolution of a distributed com-
puting system of another type in which there is a collection of loosely coupled autonomous similar 
or dissimilar computer systems capable of communication and cooperation via hardware and soft-
ware interconnections (multicomputers). More specifcally, a distributed computing system of this 
type is a system consisting of two or more complete computers; each is equipped with communica-
tion hardware and is capable of performing some of the control functions of an OS. 

Managing the operation of this type of distributed computing system requires one kind of DOS 
which is different from the conventional operating system and also from NOSs in critical ways. 
A DOS of this type uses a single centralized control system that truly converts the entire existing 
collection of hardware and software into a single integrated system (single system image). Its main 
responsibility is to exploit the multiplicity of resources with existing interconnectivity to extract the 
potential of resource sharing and distribution across computers to accommodate more concurrent 
applications and to speed-up their computation, with reliability in operation. 

A NOS with a multicomputer system in a network environment is simply an adjunct to the local 
operating system that allows the application machine to interact with a server or other peer systems 
in a predefned manner. Here, the user is quite aware that there are multiple independent computers 
and deals with them explicitly. Typically, common communications architecture is employed to sup-
port these network applications. In contrast, a multicomputer system in a distributed environment 
is more than a mere collection of computers forming a network: the functioning of each individual 
computer must here be integrated by both hardware and software in such a way so as to realize 
effective utilization of services and the resources in the integrated system in a manner to obtain the 
needed functionalities of a distributed system, as mentioned before. This is achieved through the 



 

 

     

 
 
 
 
 
 

 
 
 
 

 
 

  

26 Operating Systems 

participation of all associated computers in the control functions of the distributed OS. However, 
there always exists a possibility of network failure or even failure of an individual computer system 
in the collection that may complicate the normal functioning of the operating system. To negotiate 
such a situation, special techniques must be present in the design of the operating system that will 
ultimately permit the users to somehow access the resources over the network. 

However, the special techniques used in the design of a DOS mostly include distributed control, 
transparency, and remote procedure calls (RPCs). 

Brief details of these special techniques are given on the Support Material at www.routledge. 
com/9781032467238. 

1.6.6 CLUSTERS: A DISTRIBUTED COMPUTER SYSTEM DESIGN 

A true distributed system is costly to own and equally expensive to scale and subsequently to main-
tain. But its useful features that provide enormous computational fexibility and versatility can-
not be ignored. As an alternative, an arrangement is made interconnecting comparatively low-cost 
computers that has fully satisfed the user community providing a base substitute of an expensive 
true distributed system called clustering. This approach is a relatively recent development that pro-
vides high performance and high availability and is particularly attractive for server applications. 
A cluster can be defned as a group of interconnected homogeneous/heterogeneous self-suffcient 
computers (multicomputer) working together as a unifed computing system that can cast a single-
system image (SSI) as being one single machine to the outside world. Each individual computer in 
a cluster may be a uniprocessor or a multiprocessor and is typically referred to as a node, which can 
run on its own without any assistance from the cluster. The use of a multiprocessor as a node in the 
cluster, although not necessary, does improve both performance and availability. 

Cluster architecture is built on a platform of a computer networks comprising heterogeneous mul-
ticomputer systems connected by high-speed LAN or switch hardware and operated by a loosely cou-
pled NOS. This multicomputer system is, however, composed of interconnected nodes (computers) in 
which each computer in the cluster is a complete, independent, and autonomous system, apart from 
its operation as a member of the cluster in which it belongs. Now, while the traditional distributed 
system is run by a DOS, a DOS is not supposed to manage a collection of independent computers (as 
are present in clusters). On the other hand, a network of computers in a computer network being run 
by a NOS never provides a view of a single coherent system (which is what a cluster looks like). So 
neither DOS nor NOS really qualifes as part of a distributed system in this regard. The obvious ques-
tion thus arises as to whether it is possible to develop a distributed system that could be run in such a 
way that it could possess most of the salient features of these two different domains (DOS and NOS 
environments), such as the transparency and related ease of use provided by DOS and the scalability 
and openness offered by NOS. One viable solution in this regard was attempted simply by way of 
enhancement to the services that a NOS provides, such that better support for distribution transpar-
ency could be realized. To implement these enhancements, it was then decided to include a layer of 
software with a NOS in order to improve its distribution transparency and also to more or less hide 
the heterogeneity in the collection of underlying systems. This additional layer is known as middle-
ware, which lies at the heart of cluster-based modern distributed systems currently being built. 

The use of a middleware layer of software as included in each computer to build a cluster in a 
computer network provides a means of realizing horizontal distribution by which applications 
and resources (both software and hardware) are made physically distributed and replicated across 
multiple machines (computers), thereby providing a distributed nature to the underlying computer 
networks. In addition, the architecture of underlying computer networks in the form of multi-tiered 
(client–server) organization inherently offers vertical distribution (see multi-tiered architecture, 
Chakraborty, 2020 and also Chapter 9 of this book). Consequently, cluster architecture when built 
with server-based hardware supported by ftting middleware and managed by an appropriate oper-
ating system (discussed later) can ultimately provide distribution both in the horizontal as well as 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Computers and Software 27  

   

  

 
  

vertical sense, leading to a feasible implementation of a large-scale distributed system. Middleware-
based distributed systems, however, generally adopt a specifc model for expressing distribution 
and communication. Popular models are mainly based on remote procedure calls, distributed fles, 
objects, and documents. 

Whatever the hardware confguration and arrangement of the cluster, it requires a specifc type 
of operating system and related system software so that this form of distributed computing system 
can cast a single-system image to the user. An operating system that can project this view (a single-
system image) will, of course, be of a special type and will be different for different cluster archi-
tectures and is thus essentially required to be fully matched with the underlying respective cluster 
hardware. Details of cluster architectures and related systems are given in detail in Chapter 9. 

1.6.7 REAL-TIME OPERATING SYSTEMS 

A real-time operating system (RTOS) is another form of operating system that evolved to meet 
certain demands. In a class of applications called real‑time applications it is mandatory that the 
computer perform certain courses of actions in a time-bound manner so as to control the activities 
in an external system or even to be involved in them. Real-time applications are often associated 
with process control applications. In a real-time environment, the course of action to be taken while 
an application is in execution are not declared before the start of execution; the requirements are 
not predetermined. In fact, during the execution of such an application, numerous events, mostly 
external to the computer system, occur very frequently within a short span of time and demand 
immediate intervention and appropriate actions. All forms of existing operating systems already in 
use have been developed with a time-sharing design that switches tasks on a clock interrupt as well 
as on events to attain different targets, either optimal resource utilization or user friendliness and 
hence are unable to manage a real-time environment. 

The proposed operating system should provide necessary support to negotiate the environment 
while an event changes by quickly switching the control from the current event to another targeted 
event by way of immediately servicing the appropriate interrupt. In doing so, the OS is ready to 
ignore, and may even sacrifce, its prime responsibilities of resource utilization and user conve-
nience. Indeed, this operating system is essentially an event-driven OS which changes tasks only 
when an event requires service. It can accept a large number of events and is guaranteed to process 
them within a short period or within a fxed deadline. Even if it fails to meet the deadline, it contin-
ues with its work to provide service rather than simply discarding the service request. The design 
principle of RTOS is thus entirely different and implements certain specifc policies, strategies, and 
techniques in order to shorten event-response times (not only to speedup execution) and to quickly 
service bursts of thousands of interrupts without missing a single one. To achieve this target, inter-
rupt servicing required at the time of change in events are sometimes promoted from their natural 
level (kernel level) as supervisor processes to user level as user processes for the sake of directly 
managing the events, and thereby permitting the application to have greater control on the operating 
environment without requiring OS intervention. 

The applications being handled by these operating systems are found mostly in embedded appli-
cations like programmable thermostats used in the cooling process of nuclear reactors, mobile 
telephones, industrial robots and scientifc research equipment, household appliance controllers, 
process-controlled industrial systems, guided control of missiles, fight control in aviation, switch-
ing systems in telecommunication, interactive graphics, and different forms of real-time simula-
tions. A schematic diagram of a real-time environment and participation of RTOS is shown in 
Figure 1.6. 

Two kinds of real-time systems have essentially evolved depending on the specifc policies, strat-
egies, and techniques that are to be realized in OS implementation. A hard real‑time system is 
typically dedicated to processing real-time applications and perhaps strictly meets the response 
requirements of an application under all possible conditions. A soft real‑time system does its best 



 

 
 

 
 
 

 

28 Operating Systems 

FIGURE 1.6 Hardware model of representative real-time system controlled by Real-Time Operating System 
(RTOS). 

to meet the underlying response requirement of a real-time application but cannot guarantee it will 
meet it under all conditions. Typically, it meets the response requirements in a probabilistic manner, 
say, 95% of the time. Control applications like nuclear reactor control, fight control in aviation, and 
guided control of a missile miserably fail if they cannot meet the response time requirement. Hence, 
they must be serviced using hard real-time systems. Other types of real-time applications like res-
ervation systems and banking operations do not have any notion of such failure; hence they may be 
serviced using soft real-time systems. Hard real-time systems should not be used in situations with 
features whose performance cannot be predicted precisely. 

The provision of domain specifc interrupts and associated interrupt servicing actions facilitates a real-
time system to quickly respond to special conditions and events in the external system within a fxed dead-
line. When resources are overloaded, hard real-time systems sometimes partition resources and allocate 
them permanently to competing processes in applications. This reduces OS overhead by way of avoiding 
repeated execution of the allocation mechanisms done by the OS that summarily allow processes to meet 
their response time requirements, thereby compromising with the resource utilization target of the system. 

A RTOS is thus valued more for effciency, that is, how quickly and/or predictably it can respond 
to a particular event, than for the given amount of work it can perform over time. An early example 
of a large-scale RTOS was the so-called “control program” developed by American Airlines and 
IBM for the Sabre Airline Reservations System. 

The key secret in the success of RTOS lies in the design of its scheduler. As every event in the 
system gives rise to a separate process and to handling a large number of almost-concurrent events, 
the corresponding processes are arranged in order of priority by the scheduler. The operating sys-
tem thus emphasizes processor management and scheduling and concentrates less on memory and 



Computers and Software 29  

 

 
 
 
 
 

       

fle management. The RTOS usually allocates the processor to the highest-priority process among 
those in a ready state. Higher-priority processes are normally allowed to preempt and interrupt the 
execution of lower-priority processes, if required, that is, to force them to go from an executing state 
to ready state at any point as per demand of the situation. 

Many such processes simultaneously exist, and these must be permanently available in main 
memory with needed protection, not only for realizing a quick response but also to enable them to 
closely cooperate with one another at certain times to manage current needs. The processes are, 
however, seldom swapped to and from main memory. 

Another area RTOSs focus on is time-critical device management. For example, a telecommu-
nication system carries out an exchange of information on communication lines by way of trans-
mitting sequence of bits. For error-free message transmission, each and every bit must be received 
correctly. A bit, while on the line, remains intact only for a very short time known as a bit period. 
The system must respond within this critical time period (bit period) before it gets lost; otherwise 
erroneous message transmission may happen. 

File management is not very important and not even present in most real-time systems. For 
example, many embedded real-time systems used as controllers, like aviation controllers used in 
fight control and ballistic missile control have no provision of secondary storage for storing fles 
and their management. However, larger installations with RTOS have this management with almost 
the same requirements as is found in conventional multiprogramming with time-sharing systems. 
The main objective of this fle management is again to meet time-critical criteria: more emphasis 
on the speed of fle access rather than building up an effcient fle system for optimal utilization of 
secondary storage space and user convenience. 

RTOS maintains the continuity of its operation even when faults occur. In fact, RTOS usu-
ally employs two techniques to negotiate such situations: fault tolerance and graceful degradation. 
Fault tolerance is realized by using redundancy of resources (the presence of more resources than 
the actual requirement) to ensure that the system will keep functioning even if a fault occurs; for 
example, the system may have two disks even though the application actually requires only one. 
The other one will actually take charge when a fault occurs in the operating disk. Graceful degra‑
dation implies that when a fault occurs, the system can fall back to a reduced level of service and 
subsequently revert when the fault is rectifed. In this situation, the user assigns high priorities to 
critical functions so that those will be performed in a time-bound manner within a specifed time 
even when the system runs in degraded mode. 

Designers of RTOSs are quite aware of these and other facts and accordingly developed these 
systems in order to achieve all these objectives and many others. Different types of RTOSs are thus 
designed and developed with numerous important features so as to attain their different respective 
goals. However, some common features, as summarized in the following, must be present in any 
type of RTOSs. Those are: 

• Permits priorities to be assigned to processes. 
• Uses priority-driven preemptive scheduling or deadline-oriented scheduling. 
• Permits creation of multiple processes within an application. 
• Permits a user to defne interrupts and related interrupt-servicing routines. 
• Provides necessary arrangements to cope with the situation when a fault occurs. 

However, more recent RTOSs are found to have almost invariably implemented time-sharing sched-
uling in addition to priority-driven preemptive scheduling. 

1.6.8 GENESIS OF MODERN OPERATING SYSTEMS AND GRAND CHALLENGES 

The design and development of modern operating systems have gradually evolved and took a con-
siderable period of the last sixty-odd years to emerge. The frst major step was the inclusion of 



 30 Operating Systems 

electronic technology in building the hardware of computer systems, discarding existing mechani-
cal technology, and the concept of the operating system then started to bloom. Computer architec-
ture then progressed through generation after generation, with the sixth generation at present; each 
one is, however, distinguished by its own major characteristics. To manage these constantly evolv-
ing, more advanced computer systems, different generations of operating systems have continuously 
been developed. Sometimes an innovation in design of an operating system awaits the arrival of a 
suitable technology for implementation. Market forces also play an important role in encouraging 
a particular design feature. Large manufacturers, by their dominance in the market, also promote 
certain features. It is interesting to note that despite rapid technological advances, both in hardware 
and in software, the design of the logical structure of the operating system as proposed in the 1960s 
has progressed rather slowly. 

For any change in design of operating system, it demands high cost in related program develop-
ment and consequently make an impact on the application software run on it. Once the operating 
system and related system software of a particular computer become popular and widely accepted, 
it is observed that users are very reluctant to switch to other computers requiring radically different 
software. Moreover, if the software system comes from a giant manufacturer, a worldwide standard 
is enforced by them, and all the newer emerging techniques and methodologies are then imple-
mented by them along the same lines as those of forthcoming members of their family. This has 
been observed in operating systems developed by IBM and Microsoft and also in different versions 
of Linux/UNIX and Solaris operating systems. 

The track of development of operating systems is from single-user operating systems used in 
mainframe systems; to batch multiprogramming systems; to timesharing multitasking systems; to 
single-user, single-task personal computer-based systems and thereby workstations interconnected 
with various forms of networks; and fnally DOSs to manage distributed hardware with multiple 
processors. An operating system that manages a single computer on its own is popularly known as a 
centralized, single‑CPU, single‑processor, or even traditional/conventional operating system. One 
of the important aspects in today’s computer usage is handling of high volumes of numerous forms 
of information generated by individual computer (user) that requires proper sharing and willful 
exchange as well as fast simultaneous accesses whenever required by other different computers. 
That is why it is observed that essentially all computers in industries, educational institutions, and 
government organizations are networked and running under an OS providing adequate protection 
from unauthorized access and ensuring free access to all shared resources. This leads us to believe 
that the DOS is in coarse-grained form at present, and its fne-grained form is in the future. These 
systems also implement multiprogramming techniques inherited from traditional batch and then 
timesharing and multitasking systems. The growing complexity of embedded devices has ultimately 
led to increasing use of embedded operating systems (RTOS). Figure 1.7 exhibits a schematic evolu-
tionary track in the development of modern operating systems. 

Modern operating systems have a GUI using a mouse or stylus for input in addition to using 
a command-line interface (or CLI), typically with only the keyboard for input. Both models are 
centered around a “shell” that accepts and executes commands from the user (e.g. clicking on a but-
ton or a typed command at a prompt). Choosing an OS mainly depends on the hardware architec-
ture and the associated application environment, but only Linux and BSD run on almost any CPU 
and supporting nearly all environments. All Windows versions (both Professional and Server) are 
mainly for Intel CPUs, but some of them can be ported to a few other CPUs (DEC Alpha and MIPS 
Magnum). Since the early 1990s, the choice for personal computers has largely been limited to the 
Microsoft Windows family and the UNIX-like family, of which Linux and Mac OS X are becom-
ing the major alternatives. Mainframe computers and embedded systems use a variety of different 
operating systems, many with no direct relation to Windows or UNIX but typically more similar to 
UNIX than Windows. 

UNIX systems run on a wide variety of machine architectures. They are heavily in use as 
server systems in commercial organizations, as well as workstations in academic and engineering 



Computers and Software 31  

 

 

 

 

  

 FIGURE 1.7 Graphical presentation of stage-wise evolution of operating systems from its very inception 
(primitive one) to most modern forms. 

environments. Free software UNIX variants, such as Linux and BSD, are increasingly popular and 
are mostly used in multiuser environments. 

The UNIX‑like family, commonly used to refer to the large set of operating systems that resemble 
the original UNIX (also an open system), is a diverse group of operating systems, with several 
major sub-categories, including System V, BSD, and Linux. Some UNIX variants like HP’s HP-
UX and IBM’s AIX are designed to run only on that vendor’s proprietary hardware. Others, such 
as Solaris, can run on both proprietary hardware (SUN systems) and on commodity Intel x86 PCs. 
Apple’s Mac OS X, a microkernel BSD variant derived from NeXTSTEP, Mach, and FreeBSD, has 
replaced Apple’s earlier (non-UNIX) Mac OS. Over the past several years, free UNIX systems have 
supplemented proprietary ones in most instances. For instance, scientifc modeling and computer 
animation were once the province of SGI’s IRIX. Today, they are mostly dominated by Linux-based 
or Plan 9 clusters. 

Plan 9 and Inferno were designed by Bell Labs for modern distributed environments that later 
added graphics built-in to their design. Plan 9 did not become popular because it was originally not 
free. It has since been released under the Free Software and Open Source Lucent Public License and 
gradually gained an expanding community of developers. Inferno was sold to Vita Nuova and has 
been released under a GPL/MIT license. 

The Microsoft Windows family of operating systems initially originated as a graphical layer 
on top of the older MS-DOS environment, mainly for IBM PCs, but also for DEC Alpha, MIPS, 
and PowerPC, and, as of 2004, it ultimately held a near-monopoly of around 90% of the worldwide 
desktop market share. Modern standalone Windows versions were based on the newer Windows 
NT core borrowed from OpenVMS that frst took shape in OS/2. They were also found in use 
on low-end and mid-range servers, supporting applications such as web servers, mail servers, and 
database servers as well as enterprise applications. The next addition to the Microsoft Windows 
family was Microsoft Windows XP, released on October 25, 2001, and then many others, and 



 

 
 

   
 

 

 
 

 

 
 

32 Operating Systems 

fnally its next generation of Windows named Windows Vista (formerly Windows Longhorn), 
adding new functionality in security and network administration, and a completely new front-end 
known as Windows‑Black‑Glass. Microsoft then constantly kept releasing newer and newer ver-
sions of Windows, upgrading the latest member of its family with many novel, distinct, important 
features applicable to both individual computing as well as server-based distributed computing 
environments. 

Older operating systems, however, are also in use in niche markets that include the versatile 
Windows-like system OS/2 from IBM; Mac OS, the non-UNIX precursor to Apple’s Mac OS X; 
BeOS; RISC OS; XTS-300; Amiga OS; and many more. 

As one of the most open platforms today, the mainframe fosters a tighter integration between 
diverse applications and provides a strong basis for an organization’s service-oriented architecture 
(SOA) deployment. Mainframes today not only provide the most secure, scalable and reliable plat-
form but also demonstrate a lower total cost of ownership (TCO) when compared to a true distrib-
uted system. Today, most business data reside on mainframes. Little wonder that it continues to be 
the preferred platform for large organizations across the globe. The most widely used notable main-
frame operating systems that came from IBM, such as IBM’s S/390 and z/OS, and other embedded 
operating systems, such as VxWorks, eCos, and Palm OS, are usually unrelated to UNIX and 
Windows, except for Windows CE, Windows NT Embedded 4.0, and Windows XP Embedded, 
which are descendants of Windows, and several *BSDs and Linux distributions tailored for embed-
ded systems. OpenVMS from Hewlett-Packard (formerly DEC) already contributed a lot and is still 
in heavy use. However, research and development of new operating systems continue both in the 
area of large mainframes and in the minicomputer environment, including DOSs. 

Although the operating system drives the underlying hardware while residing on it, only a small 
fraction of the OS code actually depends directly on this hardware. Still, the design of the OS pre-
cisely varies across different hardware platforms that, in turn, critically restrict its portability from 
one system to another. Nevertheless, it will be an added advantage if the same developed code can 
be used directly or by using an interface to produce a multi-modal operating system, such as gen-
eral-purpose, real-time, or embedded. Moreover, if the design of the OS could be made so fexible 
that it would allow the system policy to be modifed at will to fulfll its different targeted objectives, 
then developers could take advantage by varying the compile-time directives and installation-time 
parameters to make the operating system customized, an important aspect in the development of 
operating system code. Consequently, it could then fulfll the different operating system require-
ments of a diverse spectrum of user environments, even those with conficting needs. For example, 
an OS developed for a desktop computer could be ported to cell phone by using appropriate instal-
lation-time parameters, if provided. 

The introduction of cluster/server architecture eventually gave the needed impetus for radical 
improvement both in hardware architecture and organization as well as in sophisticated OS and 
related system software development for distributed computing (cloud computing) to users on single-
user workstations and personal computers. This architecture, however, provides a blend of distributed 
decentralized and centralized computing using resources that are shared by all clients and main-
tained on transparent server systems. Resurgence continues in this domain, maintaining a high pace 
of enhancements culminating in more refned technological and application developments, and these 
innovative improvements and upgrades are expected to continue relentlessly in the days to come. 

SUMMARY 

This chapter explains the need for operating systems in computers and in what ways they can help 
users handle computers with relative ease. The concept of the operating system and its subsequent 
continuous evolution through different generations, starting from its bare primitive form to today’s 
most modern versions, to manage different, constantly emerging more powerful and sophisticated 
hardware platforms gradually progressed over a period of the last six decades. The evolution took 



Computers and Software 33  

  

  

  

  
  
  
  

  

  

  

 
 
 

  

place from batch processing (resident monitor) and variants of multiprogramming, multitasking, 
multiuser, multi-access, virtual machine OSs to ultimately distributed systems of different kinds 
along with other types: real-time systems and embedded systems. Side by side, system software in 
its primitive form emerged earlier, and its continuous evolution in different forms has met the rising 
potential of constantly emerging more advanced hardware and operating systems. In this chapter, an 
overview of the generational developments of generic operating systems was given chronologically 
and illustrated with representative systems, mentioning each one’s salient features and also draw-
backs. With the introduction of tiny powerful microprocessors as well as small speedier capacious 
main memories, more advanced form of hardware organization and architecture were constantly 
evolved using multiple processors, the signifcant hardware outcomes are powerful multiprocessors 
and multicomputer systems. Due to immense success of networks of computers using sophisticated 
hardware technology, two different types of models (multicomputers), computer networks, and true 
distributed system, came out. Each requires the service of a different type of sophisticated and 
complex operating system to manage resources. This gave rise to two different types of operating 
systems, NOSs and true DOS, each with its own targets and objectives. In recent years, a third alter-
native, clustering, built on the premise of low-cost computer networks, emerged, which is essentially 
a base substitute for an expensive true distributed system that provides enormous computational 
fexibility and versatility. This system, however, needs a completely different type of operating sys-
tem to work. Another form of operating system called a RTOS evolved to meet demands of different 
kinds, known as real-time applications. This chapter concludes by discussing the genesis of modern 
operating systems and the grand challenges of the days to come. Overall, this chapter is a short 
journey through the evolution of the operating system that lays the foundation of operating system 
concepts that will be discussed in the rest of this book. 

EXERCISES 

1. “In the early days of computers, there was no operating system, but there did exist a form 
of operating system”: Justify this statement. 

2. What is meant by generations of an operating system? In what ways have they been classi-
fed and defned? 

3. State and explain the two main functions that an operating system performs. Discuss the 
role of the system software in the operation of a computer system. 

4. Explain the various functions of the different components of the resident monitor. 
5. Why was timesharing not wide spread on second-generation computers? 
6. Why is spooling considered a standard feature in almost all modern computer systems? 
7. How might a timesharing processor scheduler’s policy differ from a policy used in a batch 

system? 
8. State and differentiate between multiprogramming, multitasking, and multiprocessing. 

Multitasking is possible in a single-user environment; explain with an example. 
9. What is meant by degrees of multiprogramming? Discuss some factors that must be con-

sidered in determining the degree of multiprogramming for a particular system. You may 
assume a batch system with same number of processes as jobs. 

10. A multiprogramming system uses a degrees of multiprogramming m ≥ 1. It is proposed to 
double the throughput of the system by modifcation/replacement of its hardware compo-
nents. Give your views on the following three proposals in this context. 
a. Replace the CPU with a CPU with double the speed. 
b. Expand the main memory to double its present size. 
c. Replace the CPU with a CPU with double the speed and expand the main memory to 

double its present size. 
11. Three persons using the same time-sharing system at the same time notice that the response 

times to their programs differ widely. Discuss the possible reasons for this difference. 



 

  

  

  

  

  

  

  

  

  

 
 
 
 

 
 

 

34 Operating Systems 

12. What is meant by interactive systems? What are the salient features of an interactive mul-
tiprogramming system? Write down the differences between multi-user and multi-access 
systems. 

13. Discuss the impact and contributions of MULTICS in the development of UNIX operating 
systems. 

14. “The third-generation mainframe operating system is a milestone in the evolution of mod-
ern operating systems”—justify the statement, giving the special characteristics of such 
systems. 

15. What is meant by computer networks? “A network operating system is a popular distrib-
uted system”: justify the statement with reference to the special characteristics of such a 
system. Discuss the main features of a client–server model. 

16. Discuss in brief the salient features and key advantages of the distributed operating system 
used in a multiprocessor platform. 

17. In order to speed up computation in a distributed system, an application is coded as four 
parts that can be executed on four computer systems under the control of a distributed 
operating system. However, the speedup as obtained is < 4. Give all possible reasons that 
could lead to such drop in speed. 

18. What are the main characteristics that differentiate a real-time operating system from 
a conventional uniprocessor operating system? In a multiprogramming system, an I/O-
bound activity is given higher priority than non-I/O-bound activities; however, in real-time 
applications, an I/O-bound activity will be given a lower priority. Why is this so? 

19. A real-time application requires a response time of 3 seconds. Discuss the feasibility of 
using a time-sharing system for the real-time application if the average response time in 
the time-sharing system is: (a) 12 seconds, (b) 3 seconds, or (c) 0.5 seconds. 

20. An application program is developed to control the operation of an automobile. The pro-
gram is required to perform the following functions: 
a. Monitor and display the speed of the automobile. 
b. Monitor the fuel level and raise an alarm, if necessary. 
c. Monitor the state of the running car and issue an alarm if an abnormal condition arises. 
d. Periodically record auxiliary information like speed, temperature, and fuel level (similar 

to a black box in an aircraft). 
Comment on the following questions with reasons in regard to this application: 
i. Is the application a real-time one? Explain with justifcations. 
ii. What are the different processes that must be created in order to reduce the response 

time of the application? What would be their priorities? 
iii. Is it necessary to include any application-specifc interrupts? If so, specify the inter-

rupts, when they would appear, and their priorities. 

SUGGESTED REFERENCES AND WEBSITES 

Andleigh, P. UNIX System Architecture, Englewood Cliffs, NJ, Prentice Hall, 1990. 
Chakraborty, P. Computer Organization and Architecture: Evolutionary Concepts, Principles, and Designs, 

Boca Raton, FL, CRC Press, 2020. 
Liu, J. W. S. Real‑Time Systems, London, Pearson Edition, 2008. 
Tanenbaum, A. S., Van Renesse, R. “Distributed Operating Systems”, ACM Computing Surveys, vol. 17, 

pp. 419–470, 1985. 
Weizer, N. “A History of Operating Systems”, Datamation, 1981. 
Wolf, W.“A Decade of Hardware/Software Codesign”, Computer, vol. 36, no.4, pp. 38–43, 2003. 

WEBSITES 

www.gnu.org/philosophy/free-software-for-freedom.html 

http://www.gnu.org


DOI: 10.1201/9781003383055-2 35  

 

 

 

 

 

 
 

 

 

Operating Systems 2 
Concepts and Issues 

Learning Objectives 

• To explain the needs of an operating system and to give an overview of the objectives and 
functions of generic operating system, including its main role as a resource manager. 

• To describe in brief the concepts and the general characteristics of the overall organization 
of an operating system. 

• To give an introductory concept of process and its different types, along with the different 
views when it is observed from different angles. 

• To describe the major issues in the design of generic operating systems, including inter-
rupts and its processing, resource sharing and protection, scheduling, and many others. 

• To describe interrupts and their different types, along with their working and servicing and 
their differences from traps. 

• To narrate the different types of schedulers and their level-wise organization. 
• To articulate the various supports and services offered by an operating system in making 

use of hardware resources providing the system calls, procedure calls, signals, message 
passing, pipes, etc. required for various types of processing that help the user control the 
working environment. 

• To introduce the most important common factors with impact on the design of generic 
operating systems. 

2.1 OPERATING SYSTEMS: OBJECTIVES AND FUNCTIONS 

The operating system was introduced mainly to relieve the user from the tedious task of managing 
the computer system. One of its major responsibilities is thus to manage the only three fundamen-
tal hardware resources, the processor, memory, and I/O devices, and the most common software 
resource, the fles, on behalf of the user. In the course of managing and supervising these resources 
while they are in operation, it creates an appropriate working environment for executing programs 
by way of responding to implicit/explicit resource requests issued by the user’s program. In fact, 
resource management is primarily governed by certain policies, and related strategies are then 
formed based on design objectives such as optimal utilization of resources, effciency of operation, 
and, of course, user convenience. 

Based on the policy to be employed in the management of resources, operating systems of vari-
ous types evolved that are differently defned and individually characterized. For example, a central-
ized time-sharing system while emphasizes on equitable sharing of resources and responsiveness 
to interactive requests; distributed operating systems, on the other hand, concentrate mainly on 
resource migration and obviously on distribution of computations. Real-time operating systems 
have certain other targets that are more concerned with immediate responsive handling of exter-
nal events generated by the controlled systems. In addition, several functional requirements were 
demanded by users to get numerous OS services. Thus, the operating system as a resource manager 
should ensure that both private and shared resources are readily accessible to all relevant users with 
adequate protection from any unauthorized access. 

https://doi.org/10.1201/9781003383055-2


 

   

  
  

  
  

  

  

 
  

  

  

  
  

  

  

  

  
  

36 Operating Systems 

2.1.1 OPERATING SYSTEMS: RESOURCE MANAGER 

Viewing the operating system as a manager of resources, each resource manager must do the 
following: 

1. Keep track of all the related resources. 
2. Enforce policy and impose relevant strategy that determines who gets what, when, and 

how much. 
3. Allocate the particular resource. 
4. Reclaim (de-allocate) the resource when it is not needed. 

To address all these issues while negotiating such complex requirements, a modular approach in 
operating system design was initially proposed that resulted in group-wise division of all the pro-
grams of the operating system into four resource categories along with respective major functions 
to be carried out as detailed. 

Processor Management Functions 

1. Keep track of the resources (processors and the status of the process). The program that 
performs this task is called the traffc scheduler. 

2. Decide who will have a chance to use the processor. The job scheduler frst chooses from 
all the jobs submitted to the system and decides which one will be allowed into the system. 
If multiprogramming, decide which process gets the processor, when, and for how long. 
This responsibility is carried out by a module known as process (or processor) scheduler. 

3. Allocate the resource (processor) to a process by setting up necessary hardware registers. 
This is often called the dispatcher. 

4. Reclaim the resource (processor) when the process relinquishes processor usage, termi-
nates, or exceeds the allowed amount of usage. 

It is to be noted that the job scheduler is exclusively a part of process (processor) management, 
mainly because the record-keeping operations for job scheduling and processor scheduling are very 
similar (job versus process). 

Memory Management Functions 

1. Keep track of the resources (memory). What parts are in use and by whom? What parts are 
not in use (called free)? 

2. If multiprogramming, decide which process gets memory, when it gets it, and how much. 
3. Allocate the resource (memory) when the processes request it and the policy of item 2 

allows it. 
4. Reclaim the resource (memory) when the process no longer needs it or has been terminated. 

Device Management Functions 

1. Keep track of the resources (devices, channels, bus, control units); this program is typically 
called the I/O traffc controller. 

2. Decide what an effcient way is to allocate the resource (device). If it is to be shared, then 
decide who gets it and for how long (duration); this is called I/O scheduling. 

3. Allocate the resource and initiate the I/O operation. 
4. Reclaim resource. In most cases, the I/O terminates automatically. 



Operating Systems: Concepts and Issues 37  

  

  

  
  

 
 
 
 
 

 
 

 
 
 
 
 
 

 

 

 

 

Information (File) Management Functions 

1. Keep track of the resources (information) and their location, use, status, and so on. These 
collective facilities are often called the fle system. 

2. Decide who gets the resources, enforce protection managements, and provide accessing 
routines. 

3. Allocate the resource (information); for example, open a fle. 
4. Deallocate the resource; for example, close a fle. 

This approach is the central theme and was suffcient to derive the conceptual design of an operating 
system in a multiprogramming environment. Optimal management of available hardware resources 
with almost no human intervention during runtime is a major function that has been achieved with this 
operating system design. The introduction of faster hardware technologies and techniques, innovative 
designs with ever-increasing processor speed, memory and other resources, and fnally a sharp drop in 
the cost of computer hardware paved the way for the emergence of a new concept of parallel architec-
ture in the design and organization of computer systems using many CPUs and larger memories. As 
a result, additional complexities are imposed in the conceptual design of existing operating systems 
to properly drive this more powerful hardware organization. Further improvements in different direc-
tions in the design of operating systems also have occurred in order to provide a multi‑user environ-
ment that requires sharing and separation of local and global hardware resources. A multiprocessor 
computer system, on the other hand, demands an altogether different type of operating system, a 
different concept in the design of the operating system that provides a multiprocessing environment. 
Since the type of fundamental resources present in modern computers remains unchanged, and only 
the speed, capacity, and number of resources attached have signifcantly increased, the central theme 
of resource management by and large remains the same and has been treated as a backbone for all 
types of emerging concepts in the design of all modern operating systems. 

Since, many different modules are present in the operating system for management of various 
types of resources, one of the major problems faced by operating system designers is how to man-
age and resolve the complexity of these numerous management functions at many different levels 
of detail while offering a product that will be suffciently effcient, reasonably reliable, easy to 
maintain, and above all convenient for user. However, operating system design in its early stages 
was proposed and realized in the form of monolithic structures. Later, for larger systems, improved 
versions of this concept were developed in terms of a hierarchy of levels (layers) of abstraction with 
an aim to hide information where the details of algorithms and related data structures being used in 
each manager are confned within respective module. Each module is entrusted to perform a set of 
specifc functions on certain objects of a given type. However, the details of any module’s operation 
and the services it provides are neither visible/available nor of concern to its users. The details of 
this approach are cited and explained in later sections. 

Now, the obvious question raised is how the operating system handles a user’s job when it is 
submitted, and in which way, and at what instant, all these different resource managers will come 
into action. 

2.2 PROCESS: CONCEPTS AND VIEWS 

A job submitted to the operating system is a predefned sequence of commands, programs, and data 
that are combined into a single unit performing the activities needed to do the required work. A job 
may be divided into several steps known as job steps. Job steps are units of work that must be done 
sequentially. For example, if a user submits a job (program) written in a high-level language, the job 
essentially consists of three steps: compile, load, and execute. 

Once the operating system accepts a user’s job, it may create several processes. The notion of 
a process is central to operating systems. A process (or task) is essentially an activity of some 



 

 

 

38 Operating Systems 

kind. Each such activity comprises one or more operations. To realize each operation, one or more 
instructions must be executed. Thus, process is obtained while a set of such instructions is executed, 
and these instructions are primitive (machine) instructions and not the user’s. In fact, a process 
is a fundamental entity that requires resources (hardware and software) to accomplish its task. 
Alternatively, a process is actually a piece of computation that can be considered the basis of the 
execution of a program. In brief, a process is considered the smallest unit of work that is individually 
created, controlled, and scheduled by the operating system. 

Thus, a process is precisely an instance of a program in execution. For example, the “copy” pro-
gram is simply a collection of instructions stored in the system. But when this “copy” program runs 
on a computer, it gives rise to a process, the “copy” process. Multiple processes can be executing 
the same program. Processes are considered a primary operating-system mechanism for defning, 
determining, and managing concurrent execution of multiple programs. 

A different approach in expressing processes is to consider them agents representing the intent 
of users. For example, when a user wants to compile a program, a process (compilation process) 
runs a different specifc program (compiler) that accepts the user program as data and converts the 
user program into another form, known as an object program. When the user wants to execute the 
object program, a process (perhaps a new one) runs a different program (linker) that knows how to 
convert the object program into a new form to make it runnable (executable). In general, processes 
run specifc appropriate programs that help the user achieve a goal. While performing their task, 
the processes may also need help from the operating system for such operations as calling specifc 
programs and placing the converted program in long-term storage. They require resources, such as 
space in the main storage and machine cycles. The resource principle says that the operating system 
is the owner while allocating such resources. 

Another view of a process is the locus of points of a processor (CPU or I/O) executing a collec-
tion of programs. The operation of the processor on a program is a process. The collection of pro-
grams and data that are accessed in a process forms an address space. An address space of a job is 
defned as the area of main memory occupied by the job. Figure 2.1 depicts the relationship between 
user, job, process, and address space, with two sample address spaces, one for the CPU process, 
the other for an I/O process. The operating system must map the address spaces of processes into 
physical memory. This task may be assisted by special hardware (e.g. a paged system), or it may be 
primarily performed by software (e.g. a swapping system). 

However, we now start with the CPU, the most important resource, required by every user, so we 
need an abstraction of CPU usage. We defne a process as the OS’s representation of an executing 
program so that we can allocate CPU time to it. Apart from executing user jobs, the CPU is also 
often engaged in performing many other responsibilities, mainly servicing all types of operating 
system requests by way of executing related OS programs to manage all the existing resources and 
to create the appropriate environment for the job under execution to continue. All these CPU activi-
ties are, by and large, identical and are called processes but give rise to different types of processes, 
namely user processes and OS processes. 

This process abstraction turns out to be convenient for other resource management and usage 
besides the CPU, such as memory usage, fle system usage (disk/tape), network usage, and number 
of sub-processes (i.e. further CPU utilization), which are all assigned on a per-process basis. 

When a particular program code resident in memory is shared by more than one user at the 
same time, this memory sharing will result in different processes displaced in time and probably in 
data. Thus processes are truly a unit of isolation. Two processes cannot directly affect each other’s 
behavior without making explicit arrangements to do so. This isolation extends itself to more gen-
eral security concerns. Processes are tied to users, and the credentials of running on a user’s behalf 
determine what resources the process can use. 

It should be noted that there exists a clean and clear distinction between a program and a pro-
cess. A program consists of static instructions which can be stored in memory. A program is thus 
basically a static, inanimate entity that defnes process behavior when executed on some set of data. 



Operating Systems: Concepts and Issues 39  

 

 FIGURE 2.1 In a generic operating system, the relationship between User, Job, and Process when mapped by 
the operating system in two sample address spaces; one for the CPU process, and the other for an I/O process. 

A process, on the other hand, is a dynamic entity consisting of a sequence of events that result due 
to execution of the program’s instructions. A process has a beginning, undergoing frequent changes 
in states and attributes during its lifetime, and fnally has an end. The same code program can result 
in many processes. While a program with branch instruction is under execution, the CPU may leave 
the normal sequential path and traverse different paths in the address space depending on the out-
come of the execution of branch instructions present in the program. Each locus of the CPU, while 
traversing these different paths in address space, is a different process. A single executable program 
thus may give rise to one or more processes. 

Although process is considered the classic unit of computation, some modern operating systems 
have a specialized concept of one or both of two additional fundamental units of computation: 
threads and objects. We will discuss these two units later in this chapter. It is true that there exists 



 

 

 

 

 
 
 
 
 
 
 

 

 
 
 
 

 
 
 
 

40 Operating Systems 

no explicit relationship between threads and objects, although some designers have used threads to 
realize (implement) objects. While most operating systems use the process concept as the basis of 
threads or objects, a few systems, however, implement these alternatives directly in the design of the 
operating system as well as in higher-level system software. 

A further description of the process when viewed from different angles, such as the user, operat-
ing system, and system programmer views, is given on the Support Material at www.routledge.com/ 
9781032467238. 

2.2.1 PROCESS TYPES 

Processes by nature can be classifed into two types: 

A system process (OS process) results when the operating system program is under execution 
to initiate and manage computer-system resources. A user process is when a user program 
is under execution to solve its own problems. A user process may, however, be of two types: 
CPU process and I/O process. 

User processes compete with one another to gain control of system resources by way of requesting 
operating-system services and are accordingly assigned them. System processes, on other hand, are 
assigned with an initial set of resources, and these pre-assigned resources remain unaltered during the 
lifetime of the process. A user process cannot create another process directly; it can only create another 
process by issuing requests to operating system services. A user process always has a program data 
block (PDB) for its own use being offered by the operating system, but system process never requires 
one. User processes need the assistance of system processes while issuing system service requests for 
many reasons, for example, at the instant of a transition from a CPU process to an I/O process. 

2.3 OPERATING SYSTEMS: DESIGN ISSUES 

An operating system is targeted to provide mechanisms to manage resources used by the commu-
nity of processes as well as to look after user convenience that best suits its computing environment. 

With different computing environments, such as interactive and real-time environments, an oper-
ating system employs appropriate techniques to best handle user programs and system resources. 
Although there is no universal agreement about the set of functions required for an OS to perform, 
for this book, the most widely accepted general framework has been chosen for considering more 
detailed requirements, design issues, architectures, and subsequent implementation. OS functions 
thus can be broadly classifed into four categories: 

• Processor/process management 
• Memory management 
• Device management 
• File management 

Each management is characterized by principles, or abstractions, developed to handle diffcult practical 
problems. Taken together, these four areas span the key design and implementation issues of modern 
operating systems. While carrying out these different management functions to monitor and control the 
operation of computer resources, the operating system is in control of the computer’s basic functions, and 
the control mechanism being employed, unlike other control systems, is internal to the operating system. 

The operating system works in the same way as ordinary computer software does. It is, in fact, 
nothing more than a computer program executed by the processor. The key difference is in the intent 
and the target of this program. When the computer system is switched on, a portion of the operating 
system program is loaded and remains resident in main memory that contains the key functions of 
the operating system and, at a given time, other portions of the operating system currently in use. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Operating Systems: Concepts and Issues 41  

  

 

The remainder of the main memory contains other user programs and data. The allocation of this 
memory space (resource) is controlled jointly by the operating system and memory-management 
hardware located mainly within the processor. When the operating system program is executed by 
the processor, the result is that it directs the processor to use other system resources and controls the 
timing of the processor’s execution with other programs. 

Since the processor itself is a rich resource and has to do many different things, it must cease 
executing the operating system program and execute other programs. Thus, the operating system 
has to relinquish control for the processor to allow it to do useful and productive work for the user, 
and then it resumes control once again at the appropriate time to prepare the processor to do the next 
piece of work. While the user program is under execution, the different management functions of 
the operating system will come into operation at different times according to the intent of the user 
program. For example, the normal activity of any job could be halted by the occurrence of a defned 
event, such as an I/O instruction or an instruction issued by the user seeking a system service. The 
operating system decides when an I/O device can be allocated to an executing program and controls 
access to it (device management) and allows use of fles (fle management). Switching from one 
management function to another while the user program is under execution by the processor (pro-
cessor management) or when request is issued from the user program to the processor to execute the 
operating–system program, and also for such many other similar reasons, the normal processing of 
the processor with the user program is summarily hindered to a large extent. This event is known as 
interrupt that simply interrupts the ongoing processing, and in this situation, the operating system 
must have the provision to intervene, to restore normalcy by way of resolving the interrupt to allow 
ongoing processing to continue. This principal tool was extensively used by system programmers in 
the early days of developing multiprogramming and multi-user interactive systems. 

2.3.1 EVENT: A FUNDAMENTAL CONCEPT 

An event is any occurrence that requires the attention of the operating system and subsequently its 
intervention, for example, a resource request issued by a user program or insuffcient memory faced 
by an executing program. When an event occurs, control of the CPU (or other resources) is passed 
to the operating system, which then analyzes the event and takes appropriate actions to negotiate 
it. For example, when a program requests a resource, the OS takes appropriate actions to allocate 
the resource if it is available. Similarly, when an I/O operation ends, the OS informs the program 
that requested the I/O operation and then makes necessary arrangements to initiate another I/O 
operation on the device if one is pending. In all situations, whenever an event occurs, it requires the 
intervention of the OS, and that is why the operating system is sometimes said to be event‑driven. 

Figure 2.2 illustrates the logical view of the functioning of an operating system when it is event-
driven. In the corresponding physical view, the end of an I/O operation or a resource request by a 
program, for example, causes an event (interrupt) to occur in the computer system. The OS takes 

FIGURE 2.2 Location and logical view of functioning of the operating system when it is event-driven in a 
computing environment. 



 

  

 

 

 
  

 

 
 
 

 
 
 
 

42 Operating Systems 

care of the situation, and does what is needed to service the event. Consequently, an event handler 
routine (interrupt servicing routine) provided by the OS is executed by the CPU to resolve the event. 
This physical view is one of the basics for developing a concept about the operating system and its 
working that will help to formulate the set of functions required in its design. 

2.3.2 INTERRUPTS AND TRAPS 

All contemporary computers provide a mechanism that gives rise to an interrupt, by which the other 
resources (I/O modules, memory) may get control, interrupting the normal processing of the proces-
sor. The operating system exploits this interrupt hardware facility to allow and coordinate multiple 
simultaneously operations in order to improve processing effciency. 

Interrupts are unusual and exceptional events but quite natural. An interrupt is a mechanism by 
which a processor is forced to take note of an event. The event forces the CPU to make a tempo-
rary transfer of control from its currently executing program to another program (interrupt service 
routine (ISR)), a part of the operating system program that resolves the event. Interrupt is not a 
routine called from the user program; rather, the interrupt can occur at any time and at any point 
in the execution of a user program. Its occurrence is unpredictable. Interrupts are caused by events 
induced by a variety of sources internal and external to the CPU over which the CPU has no control. 
The most common classes of interrupts are: 

• I/O: Generated by an I/O module to signal normal completion of an I/O operation or to 
signal various types of error conditions that occur during I/O execution. 

• Program: Generated by some condition that occurs as a result of an execution, such as 
division by zero, arithmetic overfow, violation of protection in memory space, attempt to 
execute an illegal machine instruction, or many other reasons. 

• Hardware: Generated by a failure such as memory parity error or even power failure. 
• Clock (Timer): One very important interrupt is generated by a device called the clock 

within the processor. Clocks can be designed to interrupt periodically (for example, every 
60th part of a second) or to accept an interval from the computer and interrupt when that 
time has expired. If it were not for clock interrupts, a running process could sit in an acci-
dental infnite loop that may not be in a position to perform any service calls, and the OS 
would never be able to wrest control from it. The OS, therefore, depends on the clock to 
enforce and gain access back to its control so that it can make new policy decisions. 

User applications always start with the CPU in control. Interrupts are the primary means by which 
I/O systems obtain the services of the CPU. With an interrupt, the performance of the computer is 
greatly increased by allowing I/O devices to continue with their own operations while the processor 
can be engaged in executing other instructions in parallel. 

Figure 2.3 shows the interrupt in an application program from the system point of view. Here, the 
user program has a WRITE instruction interleaved with processing. This WRITE instruction is basi-
cally a call to a WRITE program (an I/O program), which is a system utility that will perform the actual 
I/O operation. When the user program encounters this WRITE instruction during execution, as shown 
in Figure 2.3, normal execution is interrupted; it makes a call to the operating system in the form of a 
WRITE call. In this case, the WRITE program is invoked that consists of a set of instructions for prepa-
ration (initiation) of the real I/O operation and the actual I/O command which drives the I/O device to 
perform the requested functions. After execution of a few of these instructions, control returns to the 
user program, allowing the CPU to execute other instructions. Meanwhile, the I/O device remains busy 
accepting data from computer memory and printing it. In this way, this I/O operation is carried out 
simultaneously and overlaps with the CPU’s instruction executions in the user program. 

When the I/O device has completed its scheduled operation or is ready to accept more data from 
the CPU, the I/O module for that device then sends an interrupt‑request signal to the processor. The 



Operating Systems: Concepts and Issues 43  

 

 

 

FIGURE 2.3 In an executing program, the program fow of control when an interrupt occurs, indicated by 
an asterisk (*) in the respective instruction of the program. 

FIGURE 2.4 The mechanism of servicing an interrupt when viewed by a user. 

processor immediately responds by suspending its own operation on the current program, branch-
ing off to execute the interrupt handler program to service that particular I/O device, and then back 
once again to resume its original execution after the device is serviced. The point at which the inter-
rupt occurs is indicated by an asterisk (*) in Figure 2.3. 

From the user program point of view, an interrupt is an event that breaks the normal sequence 
of program execution, and the CPU is then temporarily diverted to execute the corresponding ISR. 
When the execution of this ISR routine is over, the interrupt processing (servicing) is completed, 
and control once again comes back to resume the original interrupted program from the point where 
control was transferred, as illustrated in Figure 2.4. Thus, the user program need not have any spe-
cial code to accommodate interrupts; the processor and operating system are jointly responsible for 
suspending the user program and subsequently resuming it from the point it left off. In brief, inter-
rupts are used primarily to request the CPU to initiate a new operation, to signal the completion of 
an I/O operation, and to signal the occurrences of hardware and software errors or failures. 

A key concept related to interrupt is transparency. When an interrupt happens, actions are taken, 
and a program (ISR) runs, but when everything is fnished, the computer should be returned to 



 

  

  
  
  
  
  
  
  
  

  

 

 

  

  

  

  

  

44 Operating Systems 

exactly the same state as it was before the occurrence of the interrupt. An interrupt routine that has 
this property is said to be transparent. Having all interrupts be transparent makes the entire inter-
rupt process a lot easier to understand. 

Traps are essentially interrupts but are generated internally by a CPU and associated with the 
execution of the current instruction and result from programming errors or exceptional conditions 
such as an attempt to: 

1. Divide by zero 
2. Floating-point overfow 
3. Integer overfow 
4. Protection violation 
5. Undefned op-code 
6. Stack overfow 
7. Start non-existent I/O device 
8. Execute a privileged instruction (system call) when not in a privileged (supervisor mode) state 

With a trap, the operating system determines whether the error is fatal. If so, the currently running 
process is abandoned, and switching to a new process occurs. If not, then the action of the operat-
ing system will depend on the nature of the error and the design of the operating system. It may go 
on to attempt a recovery procedure, or it may simply alert the user. It may even carry out a switch 
of process, or it may resume the currently running process (see also processor modes: mode bit). 

The essential difference between interrupts and traps is that traps are synchronous with the pro-
gram, and interrupts are asynchronous. If the program is rerun a million times with the same input, 
traps will reoccur in the same place each time, but interrupts may vary, depending on the run-time 
environment. The reason for the reproducibility of traps and irreproducibility of interrupts is that 
traps are caused directly by the program and solved by jumping to a procedure called a trap handler, 
and interrupts are, at best, indirectly caused by the program. 

2.3.2.1 Interrupt—How It Works—Processing 
An interrupt is a response to an asynchronous or exceptional event that automatically saves the cur-
rent CPU status to allow a later restart and then causes an automatic transfer to a specifed routine 
called an interrupt handler (ISR). Interrupts should be hidden deep in the bowels of the operating 
system so that as little of the system as possible knows about them. 

2.3.2.2 Interrupt Processing (Servicing) 
When the interrupt begins, the following steps (in a simplifed form) are executed: 

Hardware Actions 

1. The device controller issues an interrupt signal to tell the processor to start the interrupt 
sequence. 

2. The processor completes its execution on the current instruction before responding to the 
interrupt. However, an immediate response is sometimes required with no waiting for 
the completion of the current instruction to service time-critical interrupts. Such an imme-
diate response will result in the loss of the current instruction processing. 

3. As soon as the CPU is prepared to handle the interrupt, it asserts an interrupt acknowledge 
signal on the bus to the device that issued the interrupt. This acknowledgement ensures the 
device removes its interrupt signal. 

4. When the device controller fnds that its interrupt signal has been acknowledged, it puts a 
small integer on the data line to identify itself. This number is called the interrupt vector. 

5. The CPU takes the interrupt vector from the bus and saves it temporarily. 



Operating Systems: Concepts and Issues 45  

  

  
 

 

6. The CPU now prepares to transfer control to the ISR. It needs to save the information 
needed in the future to resume the current program again after servicing the interrupt. The 
minimum information required to save is the program status word (PSW) and the address 
of the next instruction to be executed, which is contained in the program counter (PC). The 
CPU saves the PC and PSW onto the system control stack (see Figure 2.5a). 

7. The CPU then locates a new PC by using the interrupt vector as an index in a table at the 
bottom of memory. If the PC is 4 bytes, for example, then interrupt vector n corresponds 
to address 4n in the table. This new PC points to the start of the ISRs for the device caus-
ing the interrupt. Loading the PC with the starting address of the appropriate interrupt-
handling program that will respond to the specifed interrupt depends on the architecture 
of the computer and the design of the operating system, because there may be different 
programs for different types of interrupts and even for different types of devices. 

Once the PC has been loaded, the current content of the PC eventually results in the transfer of con-
trol to the beginning of the interrupt-handling program. The start of the execution of this program 
begins the software actions resulting in the following operations: 

FIGURE 2.5 When an interrupt is serviced, the changes made in memory, registers and stack. 



 

  

  

  
  

  
  

  

 

  
  

46 Operating Systems 

Software Actions 

1. The frst thing the ISR does is to save all the processor registers on a system control stack 
or in a system table so that they can be restored later, because these registers may be used 
by the current program (interrupt handler). Any other “state” information may also need to 
be saved. For example, as shown in Figure 2.5, assume that a user program is interrupted 
after the instruction at location I. The contents of all of the registers and the address of the 
next instruction are now pushed on to the system control stack. The stack pointer is gradu-
ally changed due to this pushing and accordingly updated from its initial content to the new 
top of the stack. The PC is now updated to point to the beginning address of the ISR. 

2. Each interrupt vector is generally shared by all devices of a given type (such as a terminal), 
so it is not yet known which terminal caused the interrupt. The terminal number can be 
found by reading a device register. 

3. Any other information about the interrupt, such as status codes, can now be read in. 
4. If an I/O error occurs, it can be handled here. If required, a special code is output to tell the 

device or the interrupt controller that the interrupt has been processed. 
5. Restore all the saved registers (Figure 2.5b). 
6. The fnal step is to restore the PSW and PC values from the stack. This ensures that the 

next instruction to be executed will be the instruction from the previously interrupted 
program. 

7. Execute the RETURN FROM INTERRUPT instruction, putting the CPU back into the 
mode and state it had just before the interrupt happened. The computer then continues as 
though nothing had happened. 

Like subroutines, interrupts have linkage information, such that a return to the interrupted program 
can be made, but more information is actually necessary for an interrupt than a subroutine because 
of the random nature of interrupts. 

2.3.2.3 Multiple Interrupts 
There are various circumstances in which it is necessary to prohibit interrupts. For example, when 
an I/O interrupt occurs for a device, the current status is stored in the I/O’s old PSW location. While 
processing this interrupt, if another I/O interrupt occurs for another device, the current status is 
again required to be stored in the I/O’s old PSW location, destroying its previous contents. As a 
result, the original PSW will be lost, and it will then be impossible to restore the original condition. 
This situation is normally handled by either 

1. Completely prohibiting interrupts while processing an interrupt, or 
2. Temporarily masking interrupts until the old PSW is safely copied and stacked elsewhere. 

This is called interrupt queuing. 

When an ISR completes its execution, the processor checks to see if other interrupts have already 
occurred. If so, the queued interrupts are then handled in strict sequential order, as shown in 
Figure 2.6. 

This approach is nice and simple, but the drawback is that it does not consider the relative priority 
or time-critical needs of interrupts waiting in the queue. For example, when an interrupt is issued by 
a communication line at the time of input arrival, it may need to be serviced immediately to allow 
the next input to come. If the frst set of input has not been processed before the second set arrives, 
data may be lost. 

So another approach in interrupt processing is to accommodate the priorities of interrupts. This 
means that while a lower-priority interrupt processing is under execution, a higher-priority interrupt 



Operating Systems: Concepts and Issues 47  

 

 

 
 
 
 
 

  

  

 

FIGURE 2.6 All the interrupts lying in queue, when the current interrupt is under processing, are then ser-
viced in strict sequential order one after another. 

FIGURE 2.7 A higher-priority interrupt interrupts the ongoing lower-priority interrupt processing, and the 
control is transferred accordingly. 

can interrupt the ongoing interrupt processing, and the higher-priority interrupt processing will be 
started. When this servicing is over, the interrupted lower-priority interrupt processing will once 
again resume, and when this processing completes, control fnally returns to the user program. The 
fow of control of this approach is shown in Figure 2.7. 

2.3.2.4 Interrupt Vectors 
When an interrupt occurs, the hardwired interrupt handling system saves everything in regard to 
current CPU state and loads the PC with the starting address of the required ISR. Now the question 
arises: How does the interrupt handling system know about the starting address? There are various 
ways to provide this information. The way the processor chooses the branch address of the service 
routine varies from unit to unit. In principle, there are two methods for accomplishing this branching. 

1. Non-vectored interrupts: When a branch address is assigned to a fxed location in 
memory. 

2. Vectored interrupt: Here, the source that interrupts supplies the branch information to 
the computer, and the PC is modifed accordingly for appropriate branching. This infor-
mation is the starting address of the interrupt-handling program or transfer vector and 



 

    

 
 

 
 
 
 

  

48 Operating Systems 

is also called the interrupt vector. This is the fastest and most fexible response to inter-
rupts, since this causes a direct hardware-implemented transition to the correct interrupt-
handling routine. This technique, called vectoring, can be implemented in a number of 
ways. In some computers, the interrupt vector is the frst address of the I/O service routine. 
In other computers, the interrupt vector is an address that points to a location in memory 
where the beginning address of the I/O service routine is stored. This is illustrated in 
Figure 2.8. In Intel 80386, the interrupt vectors are 8-byte segment descriptors, and the 
table containing the address of the ISRs can begin anywhere in memory. 

2.3.3 RESOURCE SHARING AND PROTECTION 

In principle, computer resources, both abstract and physical, should be shared among a set of 
concurrently executing programs for optimal utilization in order to increase system performance. 
This sharing can be broadly classifed into two types: space–multiplexed and time–multiplexed. 
Space‑multiplexed sharing indicates that the resource can be physically or logically divided into 
two or more units. Each different unit can be individually allocated to each of many executing 
programs, and in this way, different executing programs or processes can be given exclusive 

FIGURE 2.8 Interrupt vectors in memory point to locations in memory where the beginning addresses of 
the respective interrupt service routines are stored. 



Operating Systems: Concepts and Issues 49  

 
 
 
 

 
 

 
 

 

 

 

    

 
 

control of different units of a resource at the same time. Memory and I/O devices are examples 
of space-multiplexed resources. In the case of time‑multiplexed sharing, a resource will not be 
divided into units. Instead a program or a process will be allocated to get exclusive control of the 
entire resource for a short specifed period of time. After this specifed time, the resource will be 
de-allocated from the currently executing process and will then be allocated to another. Time-
multiplexing is usually done with the processor resource. Under this scheme, a single processor 
in the machine is switched among processes which are holding also other resources, like memory 
space and I/O devices. In this way, it creates an illusion to the user that the concurrently execut-
ing processes are really running simultaneously, although the fact is that the execution is strictly 
sequential. Hence, while referencing concurrent execution, it means that either the execution may 
actually be simultaneous (in the case of a multiprocessor) or that the single processor is time-
multiplexed based on certain pre-defned allocation policy (scheduling) across a set of processes 
holding space-multiplexed resources. 

While encouraging and allowing resource sharing, the operating system should enforce resource 
isolation. This means that the system must be reliable to isolate resource access with suffcient 
protection based on a certain pre-defned allocation policy (scheduling). The system must also be 
able to allow resources to share co-operatively when it is required, without creating damage. For 
example, the operating system must provide a memory isolation and protection mechanism that 
should ensure loading of two or more programs in different parts of memory at the same time. It 
should not only provide suffcient protection to prevent any unauthorized access but ensure that 
neither program will be able to change or reference the memory contents being used by the other 
program. The operating system must guarantee that the OS codes are kept well protected, allowing 
sharing while in main memory, but are not overwritten by any user program. Protection hardware 
is often used by the operating system to implement such control access to parts of memory. 

Similarly, the processor isolation mechanism should insist the processes sequentially share the 
processor according to a pre-defned allocation policy (scheduling). The processor should also be 
protected from being indefnitely monopolized by any user program for any unforeseen reason. 
For example, due to an error in the user program, the CPU enters an infnite loop and gets stuck 
with no message to the operating system. In this situation, the system must have some mechanism, 
with the help of a timer, to interrupt the CPU and take control from the CPU to restore operation. 
The OS software in all such cases really depends on the available hardware support to implement 
key parts of the mechanism to fully ensure resource isolation with protection. While the operating 
system implements the abstraction directly from the physical resources, it provides the basic trusted 
mechanisms to realize and manage resource sharing. 

2.3.4 SCHEDULING AND ITS ROLE 

Computer resources, both abstract and physical, are always encouraged and allowed to be shared 
among a set of concurrently executing programs for their optimal utilization in order to increase 
system performance. To determine how these resources would be shared and managed, a set of poli-
cies and mechanisms have been developed in the operating system that govern the order in which 
the work is to be carried out by a computer system. This mechanism refers to scheduling, which 
can also be called time management. Scheduling is, however, based on certain defned policies that 
are implemented in the operating system, thereby producing a good scheduling algorithm to realize 
optimal system performance. These policies may also be different for different operating systems 
and are framed using the predefned criteria of an individual operating system to attain its primary 
objectives. In fact, the goal of scheduling is to provide good service to the execution of multiple 
processes that are competing for computing resources. It has been found that one of the keys to 
success in a multiprogramming/multitasking environment is truly proper scheduling. The designers 
of operating systems, however, believe that the behavior of the scheduler might be critical to the 
overall behavior of the entire system. 



 

 
 

 

 

50 Operating Systems 

A scheduler is an OS module that decides which job is to be selected next and elects the next pro-
cess to run. The scheduler is concerned with deciding on policy, enforces this policy, and imposes 
relevant strategy that determines who gets what, when, and how much, but never provides an imple-
mentation mechanism. 

We can distinguish several classes of scheduling based on how decisions must be made. Four 
types of scheduling are typically involved, as shown in Figure 2.9. One of these is I/O scheduling 
that takes the decision as to which process’s pending I/O request shall be handled by an available 
I/O device. Each device has a device scheduler that selects a process’s I/O request from a pool of 
processes waiting for the availability of that particular device. This issue is discussed in more detail 
in the following chapter, “Device Management”. 

The remaining three types of scheduling are types of processor scheduling that are concerned 
with the assignment of processor/processors to processes in such a way as to attain certain sys-
tem objectives and performance criteria, such as processor utilization, effciency, throughput, and 
response time. This scheduling activity is once again broken down into three separate functions: 
long-term, medium-term, and short-term scheduling, and the corresponding three types of 
schedulers are long-term, medium-term, and short-term schedulers. All of them may sometimes 
simultaneously exist in a complex operating system, as depicted in Figure 2.9. 

2.3.4.1 The Long-Term Scheduler: Job Scheduler 
The long-term scheduler decides which jobs or job steps (programs) are to be added to the system 
to start processing next. In a spooling system, when a job is submitted, it joins the batch queue and 
remains there waiting to be processed. When a job fnishes and departs the system, this scheduler 
is invoked, which then makes a decision to select a particular job from the queue and then allows it 
to enter the system for processing. This selection is carried out based on a number of factors, such 
as the order of arrival of the jobs, their priorities, and many other important parameters. In batch 
multiprogramming/multitasking, the decision may be based on the different requirements of the 
competing jobs and the resources currently available. Interactive multiprogramming often does not 
have this level of scheduling at all; it is up to the user to decide which job steps to run. An example 
of this type of scheduler is a job scheduler. 

In the case of batch jobs, the job scheduler usually obtains certain information either given by 
the programmer at the time of job submission or system-assigned estimates, such as size of the job 

FIGURE 2.9 Four-types of schedulers in a modern uniprocessor operating system and their operational 
interactions and relationships. 



Operating Systems: Concepts and Issues 51  

 

   

(memory requirement), device requirements, expected execution time, and other related information 
about the job. Being equipped with such knowledge beforehand, the job scheduler could then select 
a job from its queue that would ensure system balance, that is, to maintain a proper mix of a desired 
proportion of processor- and I/O-bound jobs in the system depending on the current environment of 
the system and availability of resources at that moment. 

The long-term scheduler acts here as a frst-level regulatory valve in attempting to always keep 
resource utilization at the desired level. If the scheduler at any point in time detects that proces-
sor utilization has fallen below the desired level, it may admit more processor-bound jobs into the 
system to increase the number of processes to attain system balance. Conversely, when the utiliza-
tion factor becomes high due to the presence of too many processor-bound jobs in the system, as 
refected in the response time, it may opt to reduce the admission rate of batch-jobs accordingly. 
Since this scheduler is usually invoked whenever a job is completed and departs the system, the 
frequency of invocation is thus both system- and workload-dependent, but it is generally much lower 
than that of the other two types of scheduler. The invocation of this scheduler usually occurs after a 
relatively long time, hence its name. 

Since an exact estimate of the workload’s characteristics is not regularly available, and the pres-
ence of several parameters and their various combinations often create situations in the system, all 
these together ultimately require the scheduler to incorporate rather complex and computationally 
intensive algorithms while selecting a job to admit into the system. Once scheduled for execution, 
a job or user program is admitted into the system with a transition of state from dormant (submit)– 
to–ready and then spawns processes which fnally enter the ready queue awaiting the processor 
allocation controlled by the short-term scheduler. This issue will be discussed in detail in Chapter 
4,“Processor Management”. 

2.3.4.2 The Medium-Term Scheduler 
A running process during execution may become suspended or blocked temporarily due to many 
reasons, such as resources (e.g. main store) being over-committed or an I/O request that cannot be 
satisfed at the moment or may be for some other reasons. The suspended process cannot proceed 
any further until the related condition is removed, but it remains there, occupying costly main 
memory area. It is thus sometimes felt to be benefcial to remove these processes for the time being 
from main memory to make room for the other eligible processes. In reality, the capacity of main 
memory may also impose a limit on the number of processes that can remain resident in the system. 
As a result, due to the presence of many such suspended processes in main memory, the number of 
ready processes and also their supply in the system may be reduced to such a level that it prevents 
the system from working effciently and also impairs functioning of the short-term scheduler, leav-
ing it few or almost no options for willful selection. The suspended process is hence decided to be 
temporarily removed from main memory, and its image is saved in secondary storage. This mecha-
nism is called swapping, and the corresponding process is said to be swapped out or rolled out. 
Swapping is a subject of memory management and will be discussed in detail in Chapter 5. 

Processes have been swapped out. All the necessary information in regard to disk addresses 
and other aspects of the swapped-out processes are added and maintained in a separate queue of 
swapped-out processes which are under the control of the medium-term scheduler. Not all sus-
pended processes are always swapped out; in fact, only a portion of them are sometimes swapped 
out, and that also when the memory space is found really inadequate to support the existing working 
environment. 

This scheduler can be invoked when memory space becomes available due to vacating of mem-
ory space by departing processes or when the supply of ready processes falls below a specifed limit. 
In that situation, swapped-out processes are once again brought back into the main memory at the 
right point in time by the medium-term scheduler working on its own queue, allowing the selected 
swapped-out process to resume from the point it left and continue the remaining part of its execu-
tion. The process then undergoes a transition of state from suspended to ready. The aim of long-term 



 

 

 
 

 
 
 
 
 

  

 

52 Operating Systems 

and medium-term scheduling is primarily for performance improvement related to degrees of multi-
programming, where as medium-term scheduling itself is an issue related to memory management. 
Chapter 5 discusses the intricacies of space management and describes policies for medium-term 
scheduling. 

2.3.4.3 The Short-Term Scheduler: The Process Scheduler 
When a job enters the ready queue and spawns into processes, it awaits the processor allocation 
being done by the short-term scheduler, also referred to as process/processor scheduler. Short-
term scheduling using a chosen set of criteria decides how to share and distribute the computer 
resources (processor) among all the ready processes that currently need to be carried out in order 
to maximize system performance. Such decisions may be made frequently (e.g. tens of times each 
second) in order to provide good service to all the existing processes. Since this scheduler imposes 
a state transition of processes from ready to running, it must be invoked for every process switch (to 
be discussed in Chapter 4) to select the next process to be run. Most of the OS services under pro-
cess management thus require frequent invocation of the short-term scheduler as part of their pro-
cessing. For example, creating a process, deleting a process from the ready list when it fnishes, and 
rescheduling the entire system requires a call to this scheduler, and resuming a suspended process 
and then adding one as a new entry in the ready list requires a call to this scheduler to determine 
whether the new one should also become the running process, and, if so, rescheduling and other 
related actions are then performed. 

When the medium- or long-term scheduler schedules a process or a process waits for an I/O 
event to complete, the process arrives within the control of the short-term scheduler. Processes 
generally alternate between a computing burst, during which they are in the domain of short-
term scheduler, and an I/O burst, during which they are in a wait list. In addition, the short-term 
scheduler is always invoked to determine whether any signifcant changes in the global state 
(such as a running process being suspended or one or more suspended processes needing to be 
brought back to a ready state) of the system have really happened due to the occurrence of an 
event, namely interrupt and I/O completions, sending and receiving of signals, most operational 
system calls, clock ticks, and many such others. If it is, the scheduler then takes the appropriate 
actions to reschedule. 

In the case of interactive environments, a user interacting with a process would ideally like to 
get an immediate response to every command. Interactive programs often directly enter the ready 
queue just after submission to the OS without being handled by the other schedulers; this scheduler 
must then take appropriate measures to safeguard the system environment from any unforeseen 
situation, especially preventing the system from being saturated with a constant infux of such pro-
grams. In effect, short-term scheduling is one of the major issues in determining the principles and 
design of an operating system that should be carefully defned in order to attain certain pre-defned 
criteria to fulfll its main objectives. This issue will once again be discussed in detail in the area of 
process scheduling in Chapter 4. 

2.3.4.4 Organization of Schedulers: Level Concept 
Figure 2.10 shows the three levels of scheduling. Within the domain of short-term scheduling, a pro-
cess may be either running or ready to run. The short-term scheduler is in charge of deciding which 
ready process should remain running at any instant. Within the domain of medium-term scheduling, 
a process may be running (that is, it may have entered the domain of the short-term scheduler), may 
be ready to run, or may be waiting for some resource like I/O. The medium-term scheduler is in 
charge of deciding when ready processes should be allowed to enter the domain of the short-term 
scheduler and when they should leave that domain. This decision is based on an attempt to prevent 
over-commitment of space, as will be discussed in Chapter 5, as well as a desire to balance compute-
bound processes with I/O-bound processes. The long-term scheduler, however, distinguishes only 
between ready and running processes. 



Operating Systems: Concepts and Issues 53  

 

 

 

 

 FIGURE 2.10 Level–wise presentation of three levels of schedulers, namely; short-term scheduler, medium-
term scheduler, and long-term scheduler. 

2.3.4.5 Processes: Long and Short 
We have already seen the distinction between compute-bound and I/O-bound processes. From the 
point of view of the short-term scheduler, a compute-bound process remains in view for a long time, 
since it does not terminate quickly and seldom waits for I/O. For this reason, compute-bound pro-
cesses are legitimately called long processes. 

In contrast, an I/O-bound process enters and leaves very quickly, since it disappears from the 
view of the short-term scheduler as soon as it starts waiting for I/O. Interactive programs that inter-
act heavily with the user tend to be I/O bound and often directly enter the ready queue just after 
submission to OS. In general, the user issues a command which is interpreted and gets executed. 
Shortly thereafter, the process is ready to receive the next command. The user, however, is still puz-
zling over the response to the previous command. Thus, the process spends most of its time waiting 
for the user to submit the next command and only a little time for computing to respond the com-
mand. Text editor programs and system commands usually exhibit this sort of behavior. Other I/O-
bound processes are not interactive at all but spend a lot of time fetching data from devices (read) or 
sending data back (write), performing very little computation in between. Both kinds of I/O-bound 
processes are similar in that small amounts of computation are sandwiched between longer periods 
of waiting. For this reason, they are naturally called short processes. 

More details about this topic are given on the Support Material at www.routledge.com/ 
9781032467238. 

2.4 OPERATING SYSTEM: SUPPORTS AND SERVICES 

The services provided by the operating system as perceived by different classes of users can be 
broadly categorized into two different classes: user‑related services and system‑related services. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

  

  

 
 
 
 

 
 
 
 
 
 
 

 
 

54 Operating Systems 

User-related services make the computer system more convenient, easy to program, and also 
friendly to the users and support them in executing their tasks using the environment consisting 
of machine resources and people, like operators, programmers, and system administrators. While 
the program is under execution, these services interact with the operating system to make use of 
system-related services. 

System-related services are mainly concerned with the control and management of system 
resources for the effcient operation of the system itself. The user often makes use of these services 
for support like resource allocation, access control, quick response, resource isolation with protec-
tion, proper scheduling, reliable operation, and many similar functions and aspects offered by dif-
ferent resource managements, as already discussed. 

Operating system users generally use both these services and are commonly divided into two 
broad classes: command language users and system call users. Command language users, infor-
mally, are those who invoke the services of the operating system by means of typing in commands 
at the terminal or by embedding commands as control cards (like $FTN, $RUN, etc., as discussed in 
the previous chapter) or embedding commands in a batch job. We will discuss this issue later in this 
chapter. System-call users, on the other hand, obtain the services of the operating system by means 
of invoking different system calls during runtime to exert fner control over system operations and 
to gain more direct access to hardware facilities, especially input/output resources. System calls are 
usually embedded in and executed during runtime of programs. 

2.4.1 SYSTEM CALLS 

System-related services are offered by the operating system while a program (both user and OS 
program) under execution interacts with the operating system. User programs, while attempting to 
perform certain kinds of resource management functions, communicate with the operating system 
to get these services by way of issuing special “extended instructions” provided by the operating 
system. This set of extended instructions, known as system calls or supervisor calls (SVCs), are spe-
cialized hardware instructions that interface between the operating system and user program and are 
usually not available to the ordinary user. Systems and application programmers often directly invoke 
system-related services of the operating system from their programs by means of issuing system 
calls, sometimes also called application programming interfaces (APIs), to control and willfully 
manage their own program during runtime. System commands issued by command-language users 
are essentially system programs that are normally converted into and executed as a series of system 
calls. Since the system calls act much like subroutine calls, but control is always transferred to the 
operating system only, it usually provides a common means to enter the operating system arena. 

Most contemporary computer systems provide some hardware support to protect operating sys-
tems from user processes by defning a privilege level that changes whenever the OS–user boundary 
is crossed. That is why every modern computer has at least two states of execution; problem state 
(user state, slave state) and supervisor state (executive state, master state). Operating system services 
(reading or writing fles, for example) can only be accessed when the CPU is in supervisor state, 
but user programs must run in user state. The processor can correctly execute system call programs 
while in supervisor state under the control of the operating system and not by any other program. 
Thus, switching state from user to supervisor is required for executing system call programs, and 
this change can be made by using software interrupts. To service software interrupts, the interrupt 
table is accessed by the OS to point to the OS program code that changes the system to supervisor 
state and also calls the appropriate OS routines (ISRs). The OS routines, for example, may start the 
I/O processors, change the protection rights of parts of memory, change the interrupt status of the 
machine, or many such system-related things as needed. (The correct routine to be called can either 
be directly determined by the software interrupt number or by one of the parameters attached to the 
system call.) This table and the ISRs must be protected by the OS. Software interrupts are discussed 
in more detail later in this chapter. 



Operating Systems: Concepts and Issues 55  

 

 

 

 

After executing the required system-related operations while in supervisor mode, the control is 
again returned to the user program for further resumption; hence, a change in state, from supervisor 
state (mode) to user state (mode), is once again required. The operating system must execute a privi-
leged instruction for such switching of the state to return to the user state before entering the user 
program. While the intent of system calls and interrupt processing is primarily for effcient use of 
system resources, but they themselves are expensive with regard to consumption of processor time, 
leading to a little bit of degradation in overall system performance. 

2.4.1.1 System Call: How It Works 
Each system call at the time of its invocation provides at least one operand attached to it that gives 
the identity of the desired operating system service. Corresponding to each system call, there is a 
library procedure that the user program can call. This procedure puts the parameters as provided 
by the system call in a specifed place, such as in the machine registers, and then issues a trap 
instruction (a kind of protected procedure call) to cause a software interrupt that eventually starts 
the operating system. The purpose of the library procedure is to hide the details of the trap instruc-
tion that makes the system calls look like ordinary procedure calls (subroutine calls). 

When the operating system gets control after the trap, it examines the parameters to see if they 
are valid and, if so, performs the work requested. When the work is fnished, the operating system 
puts a status code in a register, telling whether it succeeded or failed, and executes a RETURN 
FROM TRAP instruction to send control back to the library procedure. The library procedure then 
returns control to the caller in the usual way with a status code as a function value. This is illustrated 
in Figure 2.11. Sometimes additional values are also returned through parameters. 

FIGURE 2.11 Mechanism and fow of control when a system call works in the operating system. 



 

 
 
 
 

 

  

 

 

  

56 Operating Systems 

However, different operating systems provide various numbers and types of system calls that 
span a wide range. The system calls are mostly used to create processes, manage memory, control 
devices, read and write fles, and do different kinds of input/output, such as reading from the termi-
nal and writing on the printer/terminal. 

A description regarding the working of a system call in relation to Figure 2.11 is given on the 
Support Material at www.routledge.com/9781032467238. 

A few system calls in the UNIX operating system are: 

• Process management system calls: fork, join, quit, exec, and so on. 
• Memory management system calls: brk. 
• File and directory system calls: creat, read, write, lseek, and so on. 
• Input/output system calls: cfsetospeed, cfsetispeed, cfgetospeed, cfgetispeed, tcsetattr, 

tcgetattr, and so on. 

A few system calls in the Windows operating system are: 

• Process management system calls: LOAD_AND_EXEC, END_PROG, LOAD_OVERLAY, 
GET_CHILD_STATUS, and so on. 

• Memory management system calls: ALLOC_MEMORY (n bytes), SET_MEM_BLK_SIZ 
(size, addr), FREE_ALLOCATED_MEM, and so on. 

• File and directory system calls: CREATE, OPEN, CLOSE, READ, WRITE, RENAME_ 
FILE, DELETE_FILE, GET_CUR_DIR, GET_FILE_DATE, and so on. 

• Input/output system calls: IOCTL and a large number of different calls. 

Operating system design based on a system call interface has the interesting property that there is 
not necessarily any OS process. Instead, a process executing in user mode gets changed to supervi-
sor mode when it intends to execute a core program of operating system services (kernel code) and 
back to user mode when it returns from the system call. But, if the OS is designed as a set of separate 
processes, it is naturally easier to design and implement it so that it can get control of the machine in 
special situations. This is more conducive than the case if the core operating system (kernel) is sim-
ply built with only a collection of functions executed in supervisor mode by user processes. Process-
based operating system design has nicely exploited this concept. This is discussed in Chapter 3. 

2.4.2 PROCEDURE CALLS 

Not all machines in the early days were equipped with system calls; rather operating system ser-
vices were usually obtained by calling different procedures at the right point in time. However, 
contemporary modern computer systems, while using numerous system call facilities, do also use 
procedures and call them in different ways to perform different tasks. 

A procedure call, in its simple form, assumes that the operating system is designed and imple-
mented as a collection of coded routines in the form of procedures, each of which can call any of 
the other ones whenever it needs to. When this technique is used, each procedure in the system must 
have a well-defned interface in terms of parameters and results. The services provided by these 
procedures are requested by putting the parameters in well-defned places, such as in registers or 
on the stack, and then executing the needed procedure call instruction. Users can also invoke these 
OS routines by using standard procedure calls and passing appropriate parameters. This method is 
simple and usable on almost all computer systems, and the common technique employed to control 
the execution of procedure calls and subsequent returns is by making use of a stack, which is pro-
vided virtually on all computer systems. In spite of having almost no complexity in implementation, 
procedure calls are still not found suitable to use OS services, mainly due to the following reasons: 

http://www.routledge.com/9781032467238


Operating Systems: Concepts and Issues  57 

•  Procedure calls are generally considered not appropriate to manage protection hardware 
when a change in the privilege level occurs due to transfer of control from a caller to a cal-
lee who is located on the other side of the OS–user boundary. 

•  Procedure calls mostly require direct addressing that must specify the actual address of the  
respective OS routine while invoking specifc OS services in the user program for the sake of  
linking and binding to create the load module. It expects that the programmer at the time of  
implementation has suffcient knowledge and expertise in this area, but this is actually rare. 

However, the concept of generic procedure call mechanism was later extended in a different way 
to realize a widely used technique known as a remote procedure call mechanism that is used to 
call procedures located on other machines in a client–server environment. This call mechanism, 
however, resides at the higher level of the operating system. In spite of having many complications 
and hazards in the implementation of RPC, most of them have been successfully dealt with, and 
this technique is popular and still in heavy use in client–server environments that underlie many 
distributed operating systems. 

A brief explanation relating to shortcomings of procedure calls used to obtain OS services is 
given on the Support Material at www.routledge.com/9781032467238. 

2.4.3  PROCESSOR  MODES: MODE  BIT 

The mode bit available inside the processor is used to separate the execution of OS-related work 
from the user-related application work carried out by the processor. This bit can be set either to 
supervisor mode (state) or user mode (state). In supervisor mode, the processor can only execute 
hardware instruction (OS instructions) called supervisor, privileged, or protected instructions (don’t  
confuse it with supervisor call instructions) that are different from the normal user mode instruc-
tions. But in user mode (state), the processor can execute only a subset of the hardware instructions 
plus all the other instructions of the application programs. 

To make a system request, the supervisor call instruction (a special type of hardware instruction), 
sometimes called trap instruction, is issued from an application program running in user mode, and 
the result of the execution of this call instruction sets the mode bit  of the processor to supervisor 
mode and then performs a branching to its corresponding operating system routines (ISR) located in 
a pre-defned secure place in the system area, protected from any user access. Since the OS code is 
located in the system area, this code can only be accessed and invoked via a trap. That is, a trap pro-
duces the same effect as a vectored interrupt. When the operating system completes the execution 
of a supervisor call, it once again resets the mode bit (by way of executing the “Return From Trap” 
instruction included in the operating system routine) to user mode prior to returning control to the 
user program.  Figure 2.12 illustrates a simple mechanism which provides a safe way for a user-mode 
process to execute only pre-defned system software while the mode bit is set to supervisor mode. 

FIGURE  2.12  For trap–Instruction operation, change in mode of CPU from user–mode to supervisor—mode. 

http://www.routledge.com/9781032467238


 

  

  

58 Operating Systems 

The mode bit can be used in defning the domain of memory that can be accessed when the 
processor is in supervisor mode versus while it is in user mode. If the mode bit is set to supervisor 
mode, the process executing on the processor can access either the supervisor partition (system 
space) or user partition (user space) of the memory. But if user mode is set, the process can reference 
only the user-reference space. 

The mode bit also helps to implement protection and security mechanisms on software by way of 
separating operating system software from application software. For example, a protection mecha-
nism is implemented to ensure the validity of processor registers or certain blocks of memory that 
are used to store system information. To protect these registers and memory blocks, privileged load 
and store instructions must be used to willfully manipulate their contents, and these instructions can 
only be executed in supervisor mode, which can only be attained by setting the mode bit to supervi-
sor mode. In general, the mode bit facilitates the operating system’s protection rights. 

2.4.4 SOFTWARE INTERRUPT 

The software interrupt (SWI) instruction is another simple and powerful tool for the invocation 
of operating system services and to accomplish similar other purposes relating to various system 
activities. Due to its simplicity and easy-to-use nature, these instructions became well-accepted and 
gradually used in an increasing number of various types of computer systems, including modern 
microprocessors with emerging technologies. A software-interrupt instruction processing essen-
tially follows the same mechanisms as the hardware interrupt-processing sequence, as already 
described in previous sections. Basically, a software interrupt creates the same effect as if an exter-
nal interrupt has occurred. Numerous types of SWI instructions are available that mainly depend on 
the specifc computer architecture and its supporting interrupt handling hardware. 

When it is used in application program to invoke the operating system to gain the operating-
system services, it switches the processor to privileged mode and then saves the context (all infor-
mation related to the state of the interrupted process) and fnally transfers the control directly to 
the related OS routines. The loading of the address of the corresponding OS service routine into 
the interrupt vector attached to the SWI instruction can be performed by the operating system or 
some other program in a way similar to a system call instruction. Here, the user needs only to know 
the number or the “interrupt level” of the corresponding OS service. As a result, the linking and 
binding of the SWI instruction while creating the load module is straightforward, and object-code 
portability can be easily obtained. Moreover, if the SWI instruction can be designed with only a 
single interrupt vector as an entry point to the operating system, it can be even utilized to emulate 
the system call. Of course, the drawbacks arising due to having only a single entry point in an SWI 
instruction have been, however, removed by way of dedicating a separate vector to each and every 
individual operating-system service. 

Another attractive feature of an SWI instruction is that it can be used to simulate hardware inter-
rupts in order to test and debug numerous interrupt-related codes, whereas in reality, creating such 
codes for the purpose of testing are diffcult to build. An SWI instruction can also be used to test 
and examine an interrupt-driven event-recognition sequence by issuing it from a sample program 
to simulate an interrupt as if it is coming from a physical device and causing the event. In spite of 
having lot of merit, it is always advisable that suffcient safeguards be taken to prevent all sorts of 
potentially hazardous uses of the SWI instructions. 

2.4.5 MESSAGE PASSING 

When the user requests an operating system service using the message passing approach, the user 
process then constructs a message Xi that describes the desired service as requested. Then, it uses 
a send function to pass the message to a trusted OS process that offers the service. The send func-
tion serves the same purpose as the system call (trap) rather than language constructs; it carefully 



Operating Systems: Concepts and Issues 59  

  
   

  

 FIGURE 2.13 Message Passing mechanism in uniprocessor modern operating systems. 

checks the message, switches the processor to supervisor mode, and then delivers the message to 
an appropriate OS process that implements the target function. Meanwhile, the user process waits 
for the outcome of the service thus requested with a message receive operation. When the OS 
process completes the operation, it passes a message Yk in regard to its operation back to the user 
process by a send function that is accepted by the user process using its receive function, as shown 
in Figure 2.13. These send and receive functions can easily be put into a library procedure, such as: 

send (destination, . . ., message, . . .); and 
receive (source, . . ., message, . . .); 

The former sends a message to a given destination, and the latter receives a message from a given 
source (or from any source, if the receiver does not care). 

Message systems also have to deal with the question as to how processes are to be named so 
that the process (destination or source) specifed in a send or receive call is unambiguous. Often 
a naming scheme is suggested and is used. If the number of concurrently active processes is very 
large, sometimes they are also named by grouping similar processes into domains, and then process 
addressing requires injection of the domain name into the process name to form a unique process 
name. Of course, the domain names must also be unique. Authentication is also an issue of impor-
tance in message-passing systems. 

Messages are also used in the area of interrupt management to synchronize interrupt processing 
with hardware interrupts. For this, some services are provided that manipulate the interrupt levels, 
such as enabling a level, say, by means of an ENABLE system call. 

However, one of the major objectives of the design of a message passing scheme is to ultimately 
enhance the level of system performance. For instance, copying messages from one process to 
another is always a slower activity than doing it with a system call. So, to make this message-passing 
approach effcient, one such suggestion out of many, for example, is to limit the message size to what 
could ft in the machine’s registers and then carry out message passing using these registers to speed 
up the execution. 

The distinction between the system call approach and message passing approach has important 
consequences regarding the relative independence of the OS behaviors from application process 
behaviors and thereby the resulting performance. This distinction has signifcant bearing in the 
design issues of the operating system and also an immense impact on the structural design. As a 
rule of thumb, operating system design based on a system call interface can be made more effcient 
than that requiring messages to be exchanged between distinct processes, although the system call 
is implemented with a trap instruction that incurs a high overhead. This effciency is benchmarked 



 

 

 

 
 

60 Operating Systems 

considering the whole cost of process multiplexing, message formation, and message copying ver-
sus the cost of servicing a trap instruction. 

2.4.6 SIGNALS 

Signals are truly OS abstractions of interrupts. A signal is often used by an OS process to notify an 
application process that an asynchronous event has occurred. It often represents the occurrence of 
a hardware event, such as a user pressing a delete key or the CPU detecting an attempt to divide by 
zero. Hence, signal implementation is likely to use a trap instruction if the host hardware supports 
it. Signals also may be generated to notify a process about the existence of a software condition. 
For example, an OS daemon may notify a user process that its write operation on a pipe cannot suc-
ceed, since the reader of the pipe has been deleted. In addition, signals may also be generated by 
external events (some other process writes to a fle or socket) or internal events (some period of time 
has elapsed). A signal is similar to a hardware interrupt but does not include priorities. That is, all 
signals are treated equally; signals that occur at the same time are presented to respective process 
one at a time, with no particular ordering. Processes can generally defne handler procedures that 
are invoked when a signal is delivered. These signal handlers are analogous to ISRs in the OS. 

In fact, signals are the software analog of hardware interrupts but do not provide priorities 
and can be generated by a variety of causes in addition to timers expiring. Many traps detected by 
the hardware, such as executing an illegal instruction or using an invalid address, are also converted 
into signals to the guilty process. Signals are also used for interprocess synchronization as well as 
for process-to-process communications or to interact with another process in a hurry. 

Signals can also be used among application-level processes. Each signal has a type (called a 
“name”) associated with it. Contemporary UNIX systems including Linux have different types of 
built-in signals. A few UNIX signals are: 

Value Name Description 
01 SIGHUP Hang up; sent to process when kernel assumes that 

the user of that process is doing no useful work 

02 SIGINT Interrupt 

03 SIGQUIT Quit; sent by user to indicate halting of process and 
start production of core dump 

2.4.7 LOCKS 

Lock is simply an area in common virtual storage and is usually kept resident permanently in main 
memory. Apart from their other uses, locks can often be employed to enforce mutual exclusion 
between processes at the time of interprocess synchronization (discussed later in Chapter 4) for 
access to shared system resources. A lock contains bits which can be set to indicate that the lock is 
in use. Locks normally come in two classes, and are of many different types (see Chapters 7 and 9). 
The classes are: 

• Local: Across all tasks in a single address space. 
• Global: Across all address spaces. 

Some of the types are: 

Spin: The processor, while executing a test‑and‑set–lock type of instruction (TSL instruction 
in IBM machines), constantly tests the lock sitting in a tight loop and thus waiting only 
for the lock to set it to guard some of its activity. In fact, while waiting, the processor is 



Operating Systems: Concepts and Issues 61  

 

 
 
 
 
 

 
 

 
 
 

 
 

 

not doing any productive work but only testing the lock, thereby suffering critically from 
busy-waiting. The lock used for this purpose is known as a spin lock. 

Suspend: The task waiting for an event to occur is made suspended, or the task in a ready 
state is explicitly suspended for various reasons; thereby to eliminating undesirable useless 
busy-waiting. 

Spin locks are used to avoid a race condition at the time of interprocess synchronization for criti-
cal sections that run only for a short time. A suspend lock, on the other hand, is used for the same 
purpose but is employed for considerably long critical sections when a required (denied) process is 
suspended and another suitable process is then dispatched to utilize the costly CPU time for the sake 
of performance enhancement. Local locks are usually always suspend locks, whereas global locks 
can be both spin and suspend locks. 

Locks can be arranged in a hierarchical level, and many large systems employ this strategy to 
prevent the circular-wait condition of deadlocks (to be discussed later in Chapter 4). A hierarchical 
arrangement implies that a processor may request only locks higher in the hierarchy than locks it 
currently holds. 

2.4.8 PIPES 

A pipe is an excellent facility introduced by UNIX to connect two processes together in a unipro-
cessor computing system. When process A wishes to send data to process B, it simply writes on the 
pipe as though it were an output fle. Process B can then get the data by reading the pipe as though it 
were an input fle. Thus, communication between processes looks very similar to ordinary fle reads 
and writes. A pipe is essentially a unidirectional channel that may be written at one end and read 
at the other end for the sake of communication between two processes. In fact, a pipe is a virtual 
communication channel to connect two processes wishing to exchange a stream of data. Two pro-
cesses communicating via a pipe can reside on a single machine or on different machines in network 
environment. Apart from its many other uses, it is a powerful tool that was exploited by UNIX in 
its earlier versions to primarily carry out inter-process communications; for example, in a producer– 
consumer problem, the producer process writes data into one end of the pipe and the consumer 
process retrieves it from the other end, as shown in Figure 2.14. In fact, when the pipe is in use, only 
one process can access a pipe at any point in time, which implicitly enforces the mutual exclusion 
with synchronization between the processes communicating via pipe. This form of communica-
tion is conceptually very similar to the message-passing facility, allowing asynchronous operations 
of senders and receivers (producers and consumers), as well as many-to-many mapping between 

FIGURE 2.14 Overview of the mechanisms when information fows through UNIX pipes. 



 

 
 
 
 
 
 
 

 

   

62 Operating Systems 

senders and receivers. But the major differences are that the pipe facility does not require explicit 
synchronization between communicating processes as the message system does and also does not 
even require explicit management and formation of messages. Moreover, the pipe is handled at the 
system-call level in exactly the same way as fles and device-independent I/O with the same basic set 
of system calls. In fact, a pipe can be created or an already existing pipe can be accessed by means 
of an OPEN system call. A writer-process writes data into the pipe by means of WRITE calls, and a 
reader-process consumes data from the pipe by means of READ calls. When all data are transferred, 
the pipe can be closed or destroyed depending on whether further use of it is anticipated. 

A pipe is represented in the kernel by a fle descriptor. When a process wants to create a pipe, it 
issues a system call to the kernel that is of the form: 

Int pipeID [2]; 
…….. 
…….. 
pipe (pipeID); 

The kernel creates the pipe with a fxed size in bytes as a kernel First–In–First–Out data structure 
(queue) with two fle identifers. In Figure 2.14, pipeID [0] is a fle pointer (an index into the pro-
cess’s open fle table) to the read-end of the pipe, and pipeID [1] is the fle pointer to the write–end 
of the pipe. The pipe’s read-end and write-end can be used in most system calls in the same way that 
a fle descriptor is used. The automatic buffering of data and the control of data fow within a pipe 
are performed as byte streams by the operating system. 

UNIX pipes do not explicitly support messages, although two processes can establish their own 
protocol to provide structured messages. There are also library routines that can be used with a pipe 
for communication using messages. 

The pipe can also be used at the command‑language level with the execution of a pipeline state-
ment, such as, a b;, that is often used to generate output from one program to be input to another 
program. This is an additional form of inter-program communication that is established without any 
special effort of reprogramming and also without the use of any temporary fles. 

Pipes are differentiated by their types. There are two types of pipes: named and unnamed. Only 
related processes can share unnamed pipes, whereas unrelated processes can share only named 
pipes. In normal pipes (unnamed pipes), the pipe-ends are inherited as open fle descriptors by the 
children. In named pipes, the process obtains a pipe-end by using a string that is analogous to a fle 
name but which is associated with a pipe. This enables any set of processes to exchange informa-
tion using a “public pipe” whose end names are fle names. Moreover, when a process uses a named 
pipe, the pipe is a system-wide resource, potentially accessible by any process. Named pipes must be 
managed in a similar way, just as fles have to be managed so that they are not inadvertently shared 
among many processes at one time. 

2.4.9 COMMAND LANGUAGE USERS 

Command language users, informally, are those who invoke operating system services by issuing 
instructions to the OS known as commands that are written using a typical language known as 
command language. Those commands are issued by typing in at the terminal; given in the form 
of job control cards using job control language (JCL), mainly in mainframe systems; or embed-
ded in a batch job. For each command, there exists one system program, consisting of instructions 
apart from a series of system calls, and whenever a command is issued, the corresponding system 
program is executed. Operating system commands are obviously different for different operating 
systems and are usually system-specifc, but they appear to cover a common range and functionality 
that are mostly similar in different operating systems. The type of the commands to be offered, and 
subsequently the design of the command set, are settled as soon as the design of the OS is fnalized. 



Operating Systems: Concepts and Issues 63  

 

 

 

 

Many large complex operating systems have more elaborate, versatile forms of command facilities 
and OS software support and services to assist the different types of users across a diverse spectrum. 

System commands provide an interface to the operating system for the user so that the user can 
directly issue these commands to perform a wide range of system-related functions from user mode. 
This interface actually separates the user from operating system details and presents the operating 
system simply as a collection of numerous services. The command language interpreter, an operat-
ing system program (called the shell in UNIX), accepts these user commands or job control state-
ments, interprets them, and creates and controls processes as needed. 

2.5 DESIGN FACTORS AND RELATED ISSUES 

An OS offers many services in addition to providing mechanisms for managing resources used by 
the community of processes so that these resources can be allocated on request in numerous ways 
such that their allocation will not result in any improper or unintended behavior of the entire system. 
While fulflling all these basic requirements for management facilities and users’ ease and conve-
nience, a number of other factors need to be seriously considered that have a signifcant infuence 
and immense impact in the continuous evolution and ever-changing design of operating systems. 

• Performance: 

While the OS creates an abstraction to provide a pleasant environment in a cost-effective manner 
to users, that may also sometimes slow down the execution, leading to a substantial degradation in 
the overall performance of the computer system. Performance is generally determined and mea-
sured in terms of certain factors, such as throughput, response time in the case of an interactive sys-
tem, and also speed of execution, which although mostly depends on the related hardware platform, 
but in many situations is infuenced by the design and working of the associated operating systems. 

Most OS designer incline to continuously adding lucrative features without looking into their 
performance. But, when each such new feature would be injected additionally into the exiting OS 
design, it must be tested and evaluated with respect to its contribution to the functionality of the 
system against its impact on the computer’s performance. Such considerations thus sometimes also 
insist the designers even to sacrifce an otherwise excellent function to incorporate. In addition, an 
invention in hardware technology often provokes designers to add features to the existing design 
that may look lucrative but ultimately make the system comparatively ineffcient. 

However, there is no universally acceptable method to determine the performance level of an OS. 
In some situations, an OS may appear to be offering good performance, but the same OS in other 
situations might look worse. So, before attempting to design an operating system, the target users 
and the application environment to which the OS will be dedicated, along with other tradeoffs of 
the functionality versus its actual performance, should be carefully analyzed with due importance 
and judged accordingly. 

• Protection and Security: 

Users implement security using different degrees of protection facilities offered by a modern OS 
for different management, objects, users, or applications to safeguard all types of resources from 
unauthorized accesses and threats. 

• Correctness and Reliability: 

Since all software in the computer is executed by the hardware with the support and services 
offered by the OS, the correctness and reliability of the underlying OS are to be ensured at the time 
of its design and also when injecting new features into its existing design for required enhancements. 



 

 

 

 

64 Operating Systems 

• Maintainability and Upgradability: 

As the complexity and the volume of the OS software are gradually increasing to accommodate 
a constantly growing number of users from a diverse spectrum of disciplines working on numer-
ous hardware platforms, the design of the OS should be made easily maintainable. Maintainability 
is also closely related to upgradeability, which states that the release of a new version of an exist-
ing OS should include downward compatibility to confrm the upgradeability of its older version. 
Maintainability often means a compromise, even accepting relatively inferior performance, but to 
what extent it will be tolerated is actually driven by tactical decisions being made by the designers 
at the time of OS design. 

• Market Demand and Commercial Infuence: 

With the continuous increase in the number of computer users and developers along with the 
constant emergence of new avenues in the area of computer applications supported by relentless 
developments in the feld of hardware and software technologies ultimately paved the way for the 
different types of operating systems to evolve in advanced forms to drive the newer hardware along 
with offering more convenient user interface. Of course, downward compatibility of the evolving 
OS must be maintained. Sometimes an innovation in the design of an operating system awaits the 
implementation of a suitable technology. Market forces and large manufacturers, by their dom-
inance, also promote certain features that eventually steer, control, infuence, and subsequently 
direct the choices of the users. However, the most radical commercial development in the implemen-
tations of forthcoming new OS is the Open Systems Foundation (OSF-1) approach that was based on 
Mach OS and was originally designed as a multiprocessor operating system. It was initially targeted 
to implement different parts of the OS on different processors in the multiprocessor system and ulti-
mately became successful. In fact, today’s common trend in research and development of operating 
systems is to implement some variant of a UNIX/Linux interface, especially toward microkernel 
implementations for all types of computers as well as a ftting OS for the various types of emerg-
ing cluster architectures to handle a diverse spectrum of distributed application areas. An all-out 
attempt in the development process of more innovative system software is also observed that could 
negotiate the challenge of newer (upcoming) environments. 

• Open Systems and Design Standards: 

Due to the resurgence of electronic technology since the late 1970s, the renaissance in the archi-
tectural evolution of computers and the corresponding development of various types of operating 
systems and other system software to drive these constantly emerging more intelligent machines 
have progressed through various forms and ultimately culminated in the arrival of distributed hard-
ware equipped with multiple processors in the form of various types of multiprocessors and multi-
computers as well as cluster architectures driven by ftting modern distributed operating systems. 

As the working environments constantly expanded with the continuous introduction of various 
types of computers with dissimilar architectures and run by individually dedicated operating sys-
tems, there was, thus, no compatibility between them, which eventually caused havoc in the user 
domain. To remedy this, there was a keen desire to have technology that would, by some means, 
bring about an imposed compatibility between different environments. Consequently, this gave rise 
to the birth of what is commonly known as open system technology, which fnally succeeded in 
consolidating entire computing environments. 

The ultimate objective of open system architecture is, however, to allow the end users to work 
on any computer irrespective of its architecture and associated dedicated operating system. It also 
enables the end users to carry out information-processing tasks from their own domain in an envi-
ronment of a network of heterogeneous computers with different architectures but interconnected 



Operating Systems: Concepts and Issues 65  

 
 
 

  
 

 

  

  

  

through a standardized communication facility. The fundamental requirements now converge to 
implement such a distributed system so that information can be shared and distributed across the 
network and yet available to each and every user in a legible form, of course obeying the underly-
ing specifc security policy. Open systems in a network of computers never encroach in the internal 
functioning of individual systems, it is rather mainly concerned more with the capability of the 
systems to cooperate in the exchange of information to accomplish the respective tasks. 

One of the main goals for an open system to achieve is portability, which means that the appli-
cation programs developed on one kind of hardware platform can be moved (ported) to run on 
a dissimilar one with almost no change; that is, they are hardware-independent. This implicitly 
demands the provision of a standard set of facilities at the operating system level. Another aspect 
is application integration, which specifes that the application program should present a common 
interface to users in order to effectively exchange data. This, in turn, suggests a standardized 
operating system in regard to having a consistent set of abstract device management and informa-
tion management. Many other similar issues thus need to be settled before making any attempt to 
design generalized open system software that could drive a broad spectrum of distributed hard-
ware as a whole. 

Most of the efforts thus attempted already succeeded in implementing standardization that 
addresses most aspects of open system technology. Particularly, the POSIX project in this regard 
is worthwhile to mention, and it has broadened the base of OS implementation beyond that of 
pure UNIX by putting more emphasis on standardizing the user-interface to the OS rather than 
organizing its implementation. Later, the POSIX committee further refned this standard after a 
great many arguments and counterarguments and fnally produced a standard known as 1003.1. 
Virtually all manufacturers are now committed to providing standardized communications soft-
ware that behaves in conformance with certain predefned rules to support their customers with the 
ability to communicate comfortably with other open systems. 

SUMMARY 

This chapter explains why operating systems are needed and gives an overview of the objectives 
and functions which serve to defne the requirements that an operating system design is intended 
to meet. Here, the concepts and the general characteristics of the overall organization of an operat-
ing system have been explained. The major issues that infuence the design of generic multitasking 
operating systems, as well as expansion in the area of fundamental requirements to support hard-
ware abstraction, resource sharing, and needed protection have been discussed. Many other critical 
issues that need to be resolved have been identifed. The concept of process is a central theme to all 
the key requirements of the operating system, and its view from different angles has been featured. 
A brief description of the different supports and services that are offered by operating systems in 
the form of user-accessibility and that of system-related subjects has been presented. The chapter 
ends with an introduction to the most important factors that have an immense impact in the design 
of generic operating systems. 

EXERCISES 

1. “Certain specifc responsibilities are performed by an operating system while working as 
a resource manager”—state these and explain. 

2. “The conceptual design of an operating system can be derived in the form of a collection 
of resource management”. What is this different management that is found in any generic 
operating system? What are the basic responsibilities performed by the different manage-
ment individually? 

3. Which of the four basic OS modules might be required on a computer system? Why are 
these modules not multi-programmed? 



 

  

  

  

  

  

  

  

  

  

  

  

  
  
  

  

  

  

  

  

  

  

  

  

  

66 Operating Systems 

4. State and explain the concept of a process. Distinguish between a process and a program. 
Is this difference important in serial (single-process) operating systems? Why or why not? 

5. “Processes by nature can be classifed into two types”. State and explain these two types 
and show their differences. 

6. “A process can be viewed from different angles”. Justify the statement with adequate 
explanation. What are the salient features that exist in these different visions? 

7. The CPU should be in privileged mode while executing the OS code and in user mode (i.e. 
non-privileged mode) while executing a user program. Why is a change in mode required? 
Explain how this change in mode is carried out. 

8. What is an interrupt? What are the different classes of interrupts that are commonly found 
in any generic operating system? 

9. Explain why an interrupt is considered an essential element in any operating system. 
Explain an interrupt from a system point of view. 

10. How is an interrupt viewed from the domain of a user program? Explain with an appropri-
ate diagram. 

11. What is meant by interrupt processing? What are the different types of actions being taken 
to process an interrupt? Explain the various processing steps that are involved in each of 
these types. 

12. What does interrupt servicing mean? State and explain the different courses of action 
being taken by an operating system in order to service an interrupt. 

13. “Interrupts are required to be interrupted in certain situations”. Explain at least one such 
situation with an example. Discuss how this situation is normally handled. 

14. The kernel of an OS masks interrupts during interrupt processing. Discuss its merits and 
drawbacks. 

15. State and explain vectored interrupts and non-vectored interrupts. 
16. What is a trap? How can it be differentiated from an interrupt? 
17. Sharing of resources is required for concurrent processing in order to attain performance 

improvement. Explain space-multiplexed sharing and time-multiplexed sharing in this 
context. 

18. What is meant by protection of hardware resources? Why is protection required for such 
resources? How is protection achieved for each individual resource? 

19. Why is scheduling of system resources required for concurrent execution in a computer 
system? 

20. What are the different classes of resource scheduling used in a computer system? State 
in brief the numerous responsibilities that are performed by these different classes of 
schedulers. 

21. Point out the responsibilities that are performed by a short-term scheduler. Explain how the 
action of a medium-term scheduler affects the movement of a short-term scheduler. 

22. “The operating system provides numerous services that can be broadly categorized into 
two different classes”. What are these two classes? State and explain in brief the services 
that they individually offer to common users normally. 

23. Defne system calls. How can a user submit a system call? State and explain the working 
principle of a system call. What is the difference between a system call and a subroutine 
call? 

24. Various types of service calls are usually incorporated that the kernel may provide. Suggest 
a few of them that every kernel should have. 

25. How can a device submit a service call? Does a service call always require a context 
switch? Does it always require a process switch? 

26. System call and interrupt are closely related to each other. Justify this relationship, if there 
is any, with reasons. 

27. Defne a procedure call. How does it differ from a system call? 



Operating Systems: Concepts and Issues 67  

  

  

  

  
  

  

  

  
  

  

28. “A procedure call is simple, usable, and has almost no complexity in implementation on 
almost all computer systems; still it is not preferred in contemporary systems to use OS 
services”. Would you agree? If so, give reasons in favor of your stance. 

29. State some factors that might differentiate between the time to do a normal procedure call 
from an application program to one of its own procedures compared to the time to perform 
a system call to an OS procedure. 

30. What is the difference between a command and an instruction? Discuss the various types 
of system commands that are available in a generic operating system. How is the command 
executed in a system? 

31. A command-language interpreter is not considered a part of an operating system. Justify. 
32. “The processor works in two modes”. What are these two modes? Why are these two 

modes required? Explain how the switching of modes is carried out by the processor. 
33. What is a software interrupt? In what way does it differ from a hardware interrupt? Discuss 

its salient features and the distinct advantages of using it. 
34. Discuss the working methodology of a message-passing technique. Message-passing tech-

niques are an important constituent of an operating system. Give reasons in favor of this 
statement. What are the drawbacks of this technique? What is the difference between a 
system call approach and a message-passing approach? 

35. What is the role of a signal in the working of an operating system? 
36. What are locks? What are the basic functions that a lock performs? What are the different 

classes and different types of locks commonly used in an operating system? What are their 
specifc usages? 

37. Discuss in brief some of the factors that infuence the design of an operating system at the 
time of its development. Explain their role in arriving at a specifc trade-off. 



68 DOI: 10.1201/9781003383055-3  

 

 

 

 

 

 

 

 

  

 
 

 

Operating Systems 3 
Structures and Designs 

Learning Objectives 

• To illustrate the step-wise evolution of different design models of operating systems based 
on numerous design objectives. 

• To explain the structure, design, formation, and subsequent realization of primitive mono-
lithic systems, then improved hierarchical and extended machines, and subsequently dif-
ferent types of modular layered systems, mainly for large mainframe machines. 

• To describe a revolutionary approach in the design and development of operating systems 
for virtual machines. 

• To describe the introduction of a new direction in the design and development of different 
operating systems, leaving its traditional concept for the emerging client–server model 
systems. 

• To articulate the arrival of a new dimension in the design and development of operating 
systems using a kernel-based approach. 

• To demonstrate the novel concepts in the design and development of operating systems 
based on monolithic kernels and microkernels and subsequently hybrid kernels. 

• To briefy discuss the basic design issues and salient features of generic modern operating 
systems, including distributed operating systems. 

3.1 EVOLUTION OF SYSTEM STRUCTURE 

An operating system mainly acts as a resource manager, keeping the status of resources to properly 
allocate/deallocate them to provide services to users. It also keeps track of the states of all execu-
tions to effciently control the ongoing working environment. When multiple competing processes 
attempt to simultaneously gain accesses to available shared and distributed resources, the OS then 
acts as an arbiter by way of separating them dynamically. But when cooperating processes intend 
to interact with one another to fulfll their own targets, the operating system facilitates sharing of 
objects with appropriate protection. Many other issues still require the intervention of the operating 
system at the right point in time to resolve. To equip the OS to perform all these responsibilities, 
certain strategic design objectives are thus required to be framed on the basis of a set of well-
defned policies. The ultimate aim is, however, to form a workable OS structure that is reasonably 
manageable and easily maintainable and also equally upgradeable. Different structures of operating 
systems thus gradually evolved over the years with continuous improvements in structural design 
as more and more demanding features have been regularly added to exploit the constantly growing 
potential of underlying increasingly complex and versatile hardware. A few representatives of them 
are given here to indicate some of the ideas and thoughts that have been introduced and subse-
quently implemented. 

3.1.1 MONOLITHIC SYSTEMS 

An operating system can be developed without having any structured organization, but just as a 
collection of procedures with well-defned interfaces in terms of parameters and results. Each pro-
cedure is visible to every other one, and it can freely call any of them to get its service. This scheme, 

https://doi.org/10.1201/9781003383055-3


Operating Systems: Structures and Designs 69  

  

  
  

 
 
 

 
 

 

   

 
 
 
 
 
 
 
 
  

when realized, gives rise to what is called a monolithic system. Here, processing, data, and user 
interfaces; all reside on the same system with OS code to be simply executed as a separate entity 
in privileged mode. All the individual procedures or fles containing the procedures of the OS are 
compiled and then bound together into a single object fle with a related linker (linkage editor). The 
monolithic structure of the operating system, however, suggests the following organization for its 
implementation. 

1. A main program within the operating system that invokes the requested service procedure 
(table search). 

2. A set of service procedures that carry out the execution of requested system calls. 
3. A set of utility procedures that do things such as fetching data from the user program 

and similar other things. These are needed by several service procedures during their 
execution. 

This concept was exploited in developing the frst simple batch operating systems in the mid-1950s 
and was implemented in the IBM 704 after refnement, and then by the early 1960s, even larger 
mainframe computers used this approach with considerable success. It was then implemented as 
the IBSYS operating system by IBM for its 7090/7094 computers. But when this design was imple-
mented on PC-DOS and later on MS-DOS and subsequently on earlier Windows-based OSs on PCs, 
it worked poorly with multiple users. Even large operating systems when designed as a collection of 
monolithic pieces of codes were observed not suitable from their organizational point of view. 

For more details about monolithic systems, see the Support Material at www.routledge.com/ 
9781032467238. 

3.1.2 HIERARCHICAL AND EXTENDED MACHINES 

Generalization of monolithic design considering the OS mainly a manager of resources and then 
organizing the components of different managers of resources in respective hierarchical levels (lay-
ers) with an inter-relationship ultimately gave rise to an improved workable structure of this operat-
ing system. 

This operating system provides some basic hardware instructions (key operating system func-
tions) that run on the bare machine (hardware) called the kernel (core of the OS). Other types of 
instructions to perform different kinds of resource management functions together with the kernel 
are called the instruction set of the extended machine. The inner extended machine (kernel) is 
composed of routines that manage central storage, time, devices, and other resources. It responds 
to requests issued by processes and services interrupts raised from devices. In fact, the kernel runs 
only when it is invoked either from above by a process or below by a device. If no process is ready to 
run and no device needs attention, the computer sits idle. User programs run on the outer extended 
machine. The instructions that relate to different kinds of resource management functions (outer 
extended machine) can also be issued from a user program by raising special supervisor call (sys-
tem call) instructions which act much like subroutine calls, but transfer control to the operating 
system rather than to one of the user subroutines. 

The basic organization of this operating system, as shown in Figure 3.1, thus consists of two 
main parts: the inner extended machine, which is a low-level interface to the bare hardware and is a 
mechanism-dependent, hardware-dependent one. The other part is the outer extended machine that 
provides the other requirements of the specifc OS in essentially the same way as user processes. 
There are at present no frm rules to indicate how many levels should be used, what modules should 
go into which levels, what should constitute the kernel, and so on. It entirely depends on the design 
objectives of the operating system and what support and services it will provide to users. However, 
this approach ultimately exhibited a lot of distinct advantages that eventually opened a new horizon 
with many innovative ideas that summarily had an immense impact on the evolution of different 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

   

 

70 Operating Systems 

FIGURE 3.1 Design of the earlier operating systems in the form of Extended machine concept using hier-
archical levels. 

forms of generalized design and development of more modern operating systems for the days to come. 
For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.3 LAYERED SYSTEMS—MODULAR HIERARCHICAL DESIGN 

To negotiate constantly growing user density across a diverse spectrum of disciplines associated 
with numerous demands along with the continuous emergence of more complex, sophisticated, and 
versatile hardware, the operating system too has been continuously enhanced to drive more intel-
ligent hardware and also to incorporate newer support and services that ultimately made it more 
complex, and its size also gradually increased. As a result, it was decided to make an abrupt change 
in its design approach in favor of structuring it in modules with relatively low degrees of interfac-
ing between all such well-designed modules. The modular concept, however, started gaining more 
importance with passing days. This design approach ultimately facilitated easy maintainability and 
smooth upgradability and also supported encapsulation of data where objects may be manipulated 
exclusively within the module by means of a set of acceptable operations specifed for that particular 
object type. 

The structuring of the OS in the form of modules organized in hierarchical layers/levels eventu-
ally permitted the design to divide and separate the OS functions according to their importance, 
complexity, characteristic time scale, and of course, level of abstraction. The OS was then viewed 
as software clothing designed as series of levels or layers (like wafers arranged one above another) 
arranged hierarchically that wrapped around the bare hardware. However, the ordering of layers is 
such that some parts of the operating system belong to lower levels. The lower the level, the higher 

http://www.routledge.com/9781032467238


Operating Systems: Structures and Designs 71  

 

the power, and it is away from the user and closer to the core hardware and thus can then directly 
interact with the hardware over a far shorter time scale. Other parts of the operating system belong 
to higher levels which are away from the hardware and closer to the user. Some of these upper 
parts of the operating system allow the user to communicate directly with the operating system via 
commands that interact with the peripheral hardware over a longer duration of time. A represen-
tative modular hierarchical layer/level-structuring approach in designing an operating system as 
discussed is depicted in Figure 3.2. 

In a strictly hierarchical implementation, a given level can exploit facilities including the objects 
and operations provided by all downward intermediate levels (up to bare hardware) by way of simply 

FIGURE 3.2 Generalized modular hierarchical layer/level structuring approach in designing an operating 
system used in large mainframe systems, and implemented in mid of 1960s. 



 72 Operating Systems 

calling upon the services they offer but without the details of their operations. Each level, however, 
already has its own existing set of primitive operations and related hardware support and cannot 
make use of anything of its higher levels. This modular hierarchical structuring approach also sup-
ports the concept of information hiding, where the details of data structures, processing algorithms, 
and mode of working of each and every module are totally confned within that module at its respec-
tive level. Externally, a module is observed to only perform a set of specifc functions on various 
objects of different types. The internal details of its way of working are neither visible nor available 
and truly not of concern to the users enjoying the services provided by the respective module. 

Over time, these design principles, realized in the form of hierarchical layers/levels, ultimately 
became a universal approach for being nicely matched with the working environment but greatly 
varying in methods of implementation among contemporary operating systems. The model as pro-
posed by Denning and Brown (DENN 84) did not correspond to any specifc operating system, but 
this representative structure (Figure 3.2) otherwise served to gain an overview of an operating sys-
tem when designed and developed in the form of a hierarchical model. This model is summarized 
by layer/level with a few respective objects and their corresponding operations in Table 3.1. 

TABLE 3.1 
Leveled Operating System Design Hierarchy 

Level Name Objects Some Operations 

5 Information Management 

Command language User programming Statements in command 
interpreter (Shell) environment (shell) language 
User processes User processes Quit, kill, suspend, resume 

Supervisor process module 
Job scheduler Jobs Scheduling of jobs 
Directories Directory create, destroy, open, close, read, write 
File systems Files create, destroy, open, close, read, write 

4 Device Management 
Keep track of status of all External devices create, destroy, open, close, read, write 
I/O devices.  
I/O Scheduling External devices 
Initiate I/O process External devices 
Communication Pipes create, destroy, open, close, read, write 

3 Processor management upper level 
Start process, stop process Processes create, destroy, send and receive, 

2 Memory Management 
Allocate memory Segments, Pages, allocate, free, fetch, read, write 
Release (free) memory 
Local secondary store blocks of data, device channels read, write, allocate, free 

1 Processor management lower level 
P, V primitives Semaphore Interprocess comm. 

Process scheduling Processes suspend, resume, wait and signal 

0 Procedures Procedure call, call stack call, return, mark stack 

Interrupts Interrupt-handling programs invoke, mask, retry, 
Instruction sets Microprogram program load, store, branch, add, subtract 

interpreter, scalar and array 
data, evaluation stack. 

Electronic circuits Fundamental components like activate, complement, clear, transfer 
registers, gates, buses 



Operating Systems: Structures and Designs 73  

 

    

 

 

3.1.3.1 Case Study: IBM MVS System 
Multiple virtual storage (MVS); a top-of-the-line most complex and immensely powerful operating 
system was introduced by IBM along with its versatile successor systems, like OS/390 and fnally 
the largest z/OS to drive their different series of most advanced third-, fourth-, and ffth-generation 
mainframe and multiprocessor systems, like S/370, S/3000, and S/390 series of machines, and also 
for large server computers. Although MVS has often been looked as a modular-leveled (mono-
lithic, centrally controlled) information-processing system, IBM later restructured it (and succes-
sor systems) as a “large server” in a network-oriented distributed environment using a three-tier 
application model. However, the evolution path of MVS actually highlights the design concept of a 
modular-leveled approach to an operating system that was eventually implemented in the develop-
ment of MVS, a relevant representative system of this category in reality. 

For more details about layered systems and their implementation and the MVS operating system, 
see the Support Material at www.routledge.com/9781032467238. 

3.1.4 VIRTUAL MACHINE OPERATING SYSTEMS—A REVOLUTIONARY APPROACH 

The real essence of this layer/level concept in the design of an OS, however, was religiously imple-
mented by IBM in their initial versions of DOS/360 and later in OS/360 and many such operat-
ing systems for their series of S/360 and S/370 computing systems. The overwhelming success 
of these products eventually provoked other contemporary manufacturers like Burroughs, DEC, 
NCR, ICL, and others to come out with their own operating systems developed almost in the same 
line as DOS/360 and OS/360. IBM also kept constantly enhancing these products, releasing many 
different versions with numerous additional features. At the other end, due to the revolution in elec-
tronic technology, series of more advanced computer systems had been regularly coming out with 
more intelligence and power, and lower size and cost that were capable of fulflling various newer 
demands of the users. Consequently, more and more advanced operating systems were then needed 
that were mostly realized by simply carrying out repeated modifcations and upgrading the exist-
ing older ones to drive these continually changing, more sophisticated computer systems. All these 
together, however, eventually created a major upheaval in computing environments. A user’s appli-
cation program while was executable under an older operating system, but found unusable under the 
new operating system (enhanced version) without modifcation, and that modifcation sometimes 
might be again quite extensive and also expensive. IBM faced this problem most critically. An IBM 
installation with different versions of operating systems in the machine often required repeatedly 
changing operating systems to meet all its users’ needs. To avoid these operational diffculties, 
IBM developed a radically different form of system architecture for its S/360 and S/370 series of 
computers called virtual machines (VMs), which was fnally accepted and widely used for being an 
amazing product. 

Until then, it was mandatory that one piece of complete hardware was to be driven by one dedi-
cated operating system supporting many individual users. But a VM is an arrangement that was 
designed to emulate multiple computer systems. The ultimate objective of the VM was to multiplex 
all the system resources among users located under different operating systems in such a way that 
each user seemed to have undivided access to all the machine’s resources. In other words, each 
user is assumed to have a separate copy of the entire machine; each such copy was termed a virtual 
machine. 

Each VM, although logically separated from all others, but is essentially the same as to have a 
true piece of the total hardware and as such is able to run its own operating system, exactly like that 
on a real hardware system. Consequently, different VMs run on a single piece of hardware and are 
controlled by different operating systems per their own choice to satisfy their individual require-
ments. This scenario is depicted in Figure 3.3, where several different operating systems are run 
concurrently over a single piece of hardware. Virtual machines ultimately insulate many users from 
one another or one user from many different types of hardware. 

http://www.routledge.com/9781032467238


 

 
 

   

 

 

 

 

74 Operating Systems 

FIGURE 3.3 Virtual machines that run on a single piece of hardware, but each such machine has its own 
dissimilar operating system, and the role of the virtual machine monitor (VMM) in this regard to keep them 
operationally integrated. 

The heart of the system, the virtual machine monitor, runs on the bare hardware (physical hard-
ware) and creates the required VM interface, providing multitasking concurrently to several VMs of 
the next layer up. A VMM is essentially a special form of operating system that multiplexes only the 
physical resources among users, offering each an exact copy of the bare hardware, including kernel/ 
user mode, I/O interrupts, and everything else the real machine has, but no other functional enhance-
ments are provided. These VMs should be considered neither extended machines (in which policy-
dependent and hardware-dependent parts have been completely separated) nor microkernels (to be 
discussed later at the end of this chapter) with different modules of programs and other features. 

A VMM is actually divided into roughly two equal major components: CP (control program) 
and CMS (conversational monitor system) that greatly simplify the design of the VMM and its 
implementation. The CP component is located close to the hardware and performs the functions 
of processor, memory, and I/O device multiplexing to create the VMs. The CMS, placed above the 
CP, is a simple operating system that performs the functions of command processing, information 
management, and limited device management. In fact, the CP and CMS are typically used together, 
but the CMS can be replaced by any other OS, such as OS/360, DOS, OS/VS1, or OS/VS2. Virtual 
machines, however, have many uses and distinct advantages: 

• Concurrent execution: Running of dissimilar operating systems simultaneously by dif-
ferent users on one physical machine. 

• Elimination of certain conversion problems: Users can run any program under any of 
the installed OSs and can even use more than one installed OS simultaneously on the same 
piece of hardware. 



Operating Systems: Structures and Designs 75  

 

 

 

 

 

 
 

 
 

   
   

 
 
  

  

• Software development: Programs can be developed and debugged for machine confgura-
tions that are different from those of the host. It can even permit developers to write real 
operating systems without interfering with other users. 

• Test of network facilities: It can test network facilities, as will be discussed later, by simu-
lating machine–machine communication between several VMs under one VM monitor on 
one physical machine. 

• Evaluation of program behavior: The VMM must intercept certain instructions for inter-
pretive execution rather than allowing them to execute directly on the bare machine. These 
intercepted instructions include I/O requests and most other supervisory calls. 

• Reliability: The VMM typically does not require a large amount of code or a high degree 
of logical complexity. This makes it feasible to carry out comprehensive check-out pro-
cedures and thus ensures high overall reliability as well as integrity with regard to any 
special privacy and security features that may be present. Isolating software components 
in different VMs enhances software reliability. 

• Security and privacy: The high degree of isolation between independent VMs facilitates 
privacy and security. In fact, privacy between users is ensured because an operating sys-
tem has no way of determining whether it is running on a VM or on a bare machine and 
therefore no way of spying on or altering any other co-existing VMs. Thus, security can be 
enhanced by isolating sensitive programs and data to one dedicated VM. 

3.1.4.1 Drawbacks 
The VM had a lot of distinct advantages, and it could also be confgured with multiple processors, 
but it was unable to provide all of the controls needed to take full advantage of modern multiproces-
sor confgurations. However, it also suffered from several other serious drawbacks; one of these is 
that the failure of a single piece of hardware, or any malfunction of the VMM-interface simultane-
ously supporting many VMs would ultimately cause a crash of the entire environment. Moreover, 
this hardware was very expensive and also gigantic in size. In addition, the VMM-interface is still 
a complex program, since simulating a number of virtual 370s or compatible machines is not that 
simple to realize, even with compromises for moderate effciency and reasonable performance. Last 
but not least, the inclusion of each additional layer offers a better level of abstraction for the sake of 
multiplexing and to simplify code, but that starts to affect the performance to some extent, as many 
interactions may then happen between such layers. 

Virtual-machine operating systems are too complex, and most instructions are directly executed 
by the hardware to speed up the execution. In fact, virtual-machine operating systems cannot be 
implemented on computers where dangerous instructions (such as I/O manipulating address-trans-
lation registers, discussed in Chapter 5, or the processor state, including interrupt-return instructions 
and priority setting instructions) are ignored or fail to trap in a non-privileged state, as was found in 
PDP-11/45. 

Some Famous Virtual Machine Interfaces 

• IBM’s VMs: The frst popular VM interface 
• VM line 

CP-40/CMS 1967, CP-67/CMS 1967, VP/CSS 1968 ° 
VM/370 1972, VM/SP 1980, VM/ESA 1988 ° 

• z/VM 2000 
• VMWare: Multiple OS on a single machine IBM VM under Linux 
• Java Virtual Machine (JVM): Hardware hiding, implemented at a little 

(—Java, Nice, Net REXX) bit higher level over OS 



 

 
 
 
 
 

 

     

 

   

76 Operating Systems 

A Representative List of Hardware with Virtual Machine Support 

• IBM System/370, System/390, and z-Series mainframes 
• Intel Vanderpool 
• Freescale PowerPC, MPC8572, and MPC8641D (Motorola) 
• AMD Pacifca 
• Boston Circuits gCore (grid-on-chip) with 16 ARC 750D cores and time-machine hard-

ware virtualization module 
• X86 virtualization # Hardware support in X-86 processors 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.5 NETWORKS OF COMPUTERS: CLIENT–SERVER MODEL: A NEW DIRECTION 

The serious drawbacks of architectural VMs, as discussed, ultimately paved the way for them to 
fzzle out, but their successful implementation opened a new horizon in the operating system design 
concept. It introduced the idea that the operating system can be developed even by way of moving 
a large part of conventional operating system code into a higher layer known as CMS (see virtual 
machine). A modern trend then started to emerge in organizing an operating system, exploiting this 
idea of moving a large part of the OS codes up into higher layers even further, leaving only mini-
mal (core) operating system codes, known as a kernel. A kernel is essentially a protected, trusted 
subsystem containing a set of programs consisting of the most-used and fundamental components 
of the operating system. This kernel usually keeps track of the active processes and manages sched-
uling and context switching (to be discussed in Chapter 4), exception and interrupt handling, mul-
tiprocessor synchronization and communication. The remaining portion of the operating system 
functions are implemented in user processes known as the client process that issues a request for a 
service (e.g. reading a block of a data fle) to a server process which services the request, performs 
the task as requested, and sends back the answer and control. However, the ultimate was the birth 
of a new concept, historically known as client–server model (not to be confused with client–server 
architecture). 

In the client–server model, the primary task of the kernel is to handle communication between 
clients and servers. By way of splitting up the operating system into parts where each part handles 
only one facet of the system, such as process services, memory services, terminal services, and 
fle services, and so on; each part becomes small, manageable, and hence easily maintainable. 
Moreover, because all the server processes run as user-mode processes and not in kernel-mode, as 
depicted in Figure 3.4, they do not have direct access to the hardware. As a result, if a bug in any of 
the servers is triggered, the same server may crash, leaving the other servers mostly unaffected, and 
hence, this will not usually cause the entire system as a whole to collapse. 

The client–server model is also fairly adaptable to use in distributed systems in which the com-
puting environment may be composed of large number of CPUs (or a set of personal computers or 
large systems) used as clients with shared/distributed memory systems connected by a high-speed 
communication network (or LAN) with server (one or a set of large hosts, such as a mainframe), 
as shown in Figure 3.5, in contrast to the conventional centralized systems consisting of a single 
CPU, its memory, peripherals, and some terminals. Under this environment, the application pro-
cessing is divided (not necessarily evenly) between the client and server, and it is actually initiated 
and partially controlled by the client and then executed most effciently either locally or in a coop-
erative manner with the server, keeping the client completely unaware of it, but a reply will come 
back and be received by the client in an ongoing user interaction. However, depending on the type 
of application and the design of the client–server operating-system software being used, the actual 
client–server interaction with respect to data transmission and its subsequent processing are to be 
carried out by and between the client and server in the most desirable beftting manner. 

http://www.routledge.com/9781032467238


Operating Systems: Structures and Designs 77  

 

 

    

 

FIGURE 3.4 A generic operating system model runs on single system (uniprocessor) when used in client– 
server environment in the premises of computer networks. 

FIGURE 3.5 A generic operating system model runs on multiple systems (multiple–processor) when used in 
client–server environment in the premises of distributed systems. 

In multi-user/multi-access environments, the client–server model also nicely fts. It facilitates 
the interactions that are made by and between the concurrently executing software processes issued 
by multiple users (clients) either working on different portions of a large program (multi-access, 
e.g. reservation systems) or with their individual different programs (multi-user). The interaction 
between the client and server processes is, however, a cooperative, transactional exchange, in 
which the client is proactive and the server is reactive. 

The client–server operating system sometimes follows a different approach where the kernel 
is built to have a minimal amount of mechanism but leaves all policy decisions up to the server in 
the user space (see Figure 3.4). Here, the kernel blindly executes the task requested from the server 
without checking its validity and leaves the entire burden to the receiving end to accept or reject 
policy-wise. This separation of mechanism from policy is an important concept; it appears again 
and again in the design of operating systems while implementing various functions. 

The client–server arrangement today provides a common model and a natural base for distrib-
uted computing using networks of computers over a wide geographical area supported by a dis-
tributed operating system that casts a single-system image of the entire arrangement to its users. 
Recently, client–server arrangements in computer networks consisting of standalone computers with 
their own individual different operating systems supported by network operating systems (NOS) 
and additional middleware (cluster architecture) provide cloud computing, another form (a sib-
ling) of distributed computing that mainly aims towards virtualization of resources. But, whatever 



 

 

 

 
 

78 Operating Systems 

the forms, the ultimate end is primarily targeted, apart from many other reasons, to balance the load 
of the entire arrangement in a ftting way to realize greater effciency and better performance in a 
distributed environment. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.5.1 Kernel-Based Operating System Model: A New Dimension 
The client–server model is managed by an operating system which is designed with an innovative 
concept popularly known as kernel–shell design. Under this concept, an operating system can be 
designed by way of dividing it into two distinctly separated major pieces: one part of the OS critical 
to its correct operation executes in privileged mode, referred to as supervisor mode, is called the 
kernel, or nucleus, while its other part, the generic system software, runs in user mode, similar to 
all application programs, and is called the shell, which talks to the user. This fundamental differ-
ence is the irrefutable distinction between the operating system and other system software, and this 
dual mode of processor execution is assisted by the mode bit present in the processor (as discussed 
in Chapter 2). In fact, much of the logic in the structure and implementation of the operating system 
design process is centered on the design of its kernel, which typically consists of a number of public 
and private routines, including its private system data structures. Users can only call on the OS’s 
public routines when they intend to perform system-related work. 

The design objective of the kernel is well defned. It operates as trusted software, kept totally 
protected from any undesirable attempt from the user space. While most of the functions present in 
the kernel may be easy to implement and also run fast, the procedure to implement trap mechanisms 
and authentication is too expensive and leads to graceful degradation in the overall performance of 
the entire system. In the event of concurrent execution of processes usually supported at the user-
process level, the kernel itself typically turns interrupts off whenever they enter in order to preserve 
the integrity of system data and implements synchronization between the processes. 

The other part of the operating system run in user mode is called the shell, which includes a 
program called the interactive command interpreter that interfaces with the user. When a user types 
a command at the terminal, the shell reads and interprets it and fnally invokes the corresponding 
system services (programs) available in the kernel to carry out those commands. Programs when 
run communicate directly with the kernel and do not talk to the shell. In addition, the shell also does 
I/O redirection and allows the user to have pipes and flters. In fact, the shell actually maintains 
several variables that determine the entire operating environment. 

When a new function is to be added in the kernel of the OS, it should be trusted software to be 
executed in supervisor space with access to other parts of the kernel. However, programs that are 
added to extend the operating system functionalities and implemented in user mode should not have 
any access to anything lying within the domain of the kernel, but those added programs can nor-
mally invoke the kernel functions as usual. The kernel, however, does not rely on the correctness of 
these added parts for correct operation of the OS. 

When a user logs in (boots the system), the system invokes a copy of the shell to handle interac-
tions caused by the user. Although the shell is the standard system interface, it is possible to add any 
other user-specifed process to coexist with the system shell that, in turn, offers quite different views 
and dissimilar working environments for different users of the same system. 

The kernel handles multiple users and processes, manages memory systems, and does all I/O man-
agement, including fle management for the entire computing system. Some of the typical functions 
performed by an operating-system kernel with respect to management of different resources are: 

Processor/Process Management 

• Process creation and termination 
• Process scheduling and dispatching 

http://www.routledge.com/9781032467238


Operating Systems: Structures and Designs 79  

 
 
 

 
 
 

 
 

 
 
 
 

 
 
 
 

 

 

• Process switching 
• Process synchronization at the time of inter-process communication 
• Process control block management 

Memory Management 

• Allocation of memory to processes 
• Swapping 
• Page and segment management 

Device or I/O Management 

• Buffer management 
• Allocation of devices to processes and allocation of I/O channels 

File Management 

• File creation and deletion 
• Operations on fle 
• Directory creation and removal 
• Operations on directories 

Execution-Support Functions 

• Interrupt handling 
• Procedure handling 
• Accounting 
• Monitoring and supervision 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.5.2 Case Study: UNIX System 
The kernel–shell concept has been successfully converted in design and implementation for many 
operating systems, but its true favor and elegance have been observed to be best in the implementa-
tion of UNIX (see also Chapter 1). As with other operating systems, UNIX is also a layered operat-
ing system but differently structured, as shown in Figure 3.6 with a general layer-wise description. 
The bare hardware is here surrounded by the operating-system software, often called the system 
kernel or simply the kernel to emphasize its isolation and separation from the user and applications. 
The kernel controls the hardware and provides operating-system services by means of a system call 
interface that allows user programs to create and manage fles and other resources. The way these 
system calls are implemented internally may differ between various UNIX versions. UNIX also 
consists of a number of user services and interfaces that can be grouped into the shell, other inter-
face software, and the components of the C compiler (this includes assembler, compiler, loader). The 
remaining layer that resides outside this domain and above it consists of user applications and user 
interface to the C compiler. 

User programs can invoke operating-system services, either directly or through library programs, 
by way of using system calls with respective arguments intercepted by the system call interface that 
ultimately issues trap instructions to switch from user mode to kernel mode to initiate UNIX. Since 
there is no way to write a trap instruction in C, a library is provided with one procedure written in 
assembly language per each system call that can be called from C. It needs to be clearly mentioned 

http://www.routledge.com/9781032467238


 

 

 

80 Operating Systems 

FIGURE 3.6 Operating system design based on kernel–shell concept implemented best in UNIX using lay-
ered implementation, but differently structured. 

at this point that it is the library interface, not the system call interface, that has been brought to an 
acceptable standard with the specifcation defned by POSIX 1003.1 to implement standardization 
in different versions and forms of UNIX. 

The kernel in UNIX is not really well structured internally, but two parts are more or less dis-
tinguishable. At the very bottom is the machine-dependent kernel that consists of a few modules 
containing interrupt handler, the low-level I/O system device drivers, and part of the memory man-
agement software. Since this directly drives the hardware, it has to be rewritten almost from scratch 
whenever UNIX is ported to (installed on) a new machine. In contrast, the machine-independent 
kernel is the same on all machines, because it does not depend closely on the particular hardware 
it is running on. This code includes system call handling, process management, scheduling, pipes, 
signals, paging and swapping, the fle system, and the high-level part of the I/O system (disk strat-
egy, etc.). 

In fact, fles and I/O devices are treated in a uniform manner by the same set of applicable system 
calls. As a result, I/O redirection and stream-level I/O are fully supported at both the command-
language (shell) and system-call levels. Fortunately, the machine-independent part is much larger 
than the machine-dependent part, which is why it is relatively straightforward to port UNIX to a 
wide range of different or new hardware. It is interesting to note at this point that portability was 
not one of the design objectives of UNIX. Rather, it came as a consequence of coding the system 



Operating Systems: Structures and Designs 81  

  
 
 
 
 
 
 

 
 
 
 

 
 

    

 
 
 
 
 

 
 
 

  

with a comparatively high-level and/or in a high-level language. Having realized the importance of 
portability, the designers of UNIX have then decided to confne hardware-dependent code to only a 
few modules in order to facilitate easy porting. In fact, today’s UNIX systems in many respects tend 
to disloyal to the original design philosophy so that they can better address increasing functionality 
requirements. 

All versions of UNIX (as shown in Figure 3.6) provide an operating system (kernel), standard 
system call library, and large number of standard utility programs. Some of these utility programs 
maintain the standard as specifed by POSIX 1003.1, and others that differ between UNIX versions 
that are invoked by the user include the command language interpreter (shell), compilers, editors, 
text-processing programs, and fle-handling utilities. Out of the three interfaces to UNIX (as shown 
in Figure 3.6): the true system call interface, the library interface, and the interface formed by 
the set of standard utility programs along with the shell (user interface), this last one is not part of 
UNIX, although most casual users think so. 

The huge number of utility programs can be again divided into six categories: fle and direc-
tory manipulation commands, flters, compilers and program development tools, text process-
ing, system administration, and miscellaneous. Moreover, the flters that have almost nothing 
to do with the operating system and are also usually not found in other existing contemporary 
operating systems can be easily replaced without changing the operating system itself at all. In 
fact, this and other fexibilities together precisely contribute much to making UNIX popular 
and allow it to survive so well even in the food of numerous changes continuously going on in 
the domain of underlying hardware technology over time. Some popular UNIX-like operating 
systems are: 

• UNIX-like systems on IBM mainframes 
• UTS 1981 
• AIX/370 1990 
• AIX/ESA 1991 

• HP–UNIX 
• Linux 1999 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.6 COMPARING MVS AND UNIX: CONCEPTS AND TERMS 

MVS is a layer/level-based top-of-the-line complex and powerful operating system from IBM with a 
versatile successor system, OS/390, and fnally the largest z/OS to drive the different series of advanced 
third-, fourth-, and ffth-generation mainframe multiprocessor systems, like the S/370 series, S/3000 
series, and S/390 series machines and also large server computers. IBM’s AIX operating system is a 
distributed UNIX operating system that came on the heels of development of the LOCUS operating 
system. IBM’s OS/390 UNIZ is another UNIX-like operating system developed mainly for server-
based large distributed computing systems. A comparison (dedicated OS versus UNIX) based on dif-
ferent attributes offered by these operating systems and their facilities along with the related concepts 
behind them, is given in Table 3.2 on the Support Material at www.routledge.com/9781032467238. 
The table is organized in a random order; the disparate nature of the tasks and concepts that are used 
in the table makes logical ordering and consistent phrasing diffcult. 

3.1.7 MONOLITHIC KERNEL 

It has been seen that partitioning OS kernel programs in separate modules with respect to their dif-
ferent resource management needs (as described in the previous section), along with their related 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

82 Operating Systems 

data structures, including resource queues, process descriptors, semaphores, deadlock information, 
virtual memory tables, device descriptors, fle descriptors, and the like, is very diffcult. The rea-
son is that each module depends on certain information that is encapsulated in other modules. 
Moreover, the performance of a partitioned OS might be too ineffcient for hardware with limited 
computing power or information transfer bandwidth. It was thus decided to implement the OS ker-
nel as a single monolith. 

A monolithic kernel organization means that almost all of the kernel (main or major) functions: 
process and resource management, memory management, and fle management, are implemented 
in a single unit. A monolithic kernel, as shown in Figure 3.7, running in kernel space in supervisor 
mode consists of all software and data structures that are placed in one logical module (unit) with 
no explicit interfaces to any parts of the OS software. In common with other architectures (micro-
kernel, hybrid kernel, discussed later), the kernel here also provides a high-level virtual interface to 
its upper level with a set of primitives or system calls that implement the operating system services, 
such as process management, concurrency, and memory management, using one or more compo-
nents (parts) that then interact with the bare hardware. 

Although every component servicing its respective operations is separate within the unit, the 
code integration between them is very tight and diffcult to develop correctly, and, since all the 
modules run in the same address space, a bug in one module can collapse the entire system. Still, 
when the implementation is complete and trustworthy, the tight internal integration of components 
in turn allows the low-level features of the underlying system to be excellently utilized and summar-
ily makes a good monolithic kernel highly effective and equally effcient. 

Under this system, the user gets operating system services by issuing necessary instructions 
(special trap instructions) known as system calls (supervisor calls) or kernel calls with appropri-
ate parameters in well-defned places, such as in registers or on the stack. When these instructions 
are executed, the machine is switched from user mode to kernel mode, also known as supervisor 
mode, and control is then transferred to the kernel (operating system), which examines the given 
parameters associated with the call and then loads the corresponding service procedure, which is 
then executed. After completion, control is then sent back to the user program to resume its ongoing 
operation. 

FIGURE 3.7 An overview of an operating system design based on Monolithic kernel concept. 



Operating Systems: Structures and Designs 83  

 

 
 
 
 
 
 
 

 
  

  
  
  

  

 

 

Some Important Examples of Monolithic Kernels 

• MS-DOS, Microsoft Windows 9x series (Windows 95, Windows 98, and Windows 98SE), 
and Windows Me 

• Traditional UNIX kernels, such as the kernels of the BSDs and Solaris 
• Linux kernels 
• Mac OS kernels, up until Mac OS 8.6 
• OpenVMS 
• XTS-400 
• Some educational kernels, such as, Agnix 
• Syllable (operating system) 

Monolithic kernels are further discussed in different sections at the end of this chapter and are 
also referred to in Chapter 9, “Distributed Systems”. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.7.1 Case Study: MS-DOS System 
MS-DOS was a kernel-based (essentially monolithic kernel, although it did not use supervisor mode 
in the CPU) single-user, single-process operating system structured in three layers: 

1. BIOS (basic input output system) 
2. The kernel 
3. The shell, COMMAND.COM 

The BIOS is a collection of low-level device drivers that serves to isolate MS-DOS from the details 
of the hardware. BIOS procedures are loaded in a reserved area in the lowest portion of main 
memory and are called by trapping to them via interrupt vectors. The basic OS kernel was wholly 
implemented in the read-only memory’s (ROM) resident BIOS routines, and two executable fles, 
IO.SYS and MS-DOS.SYS (Chappell, 1994). IO.SYS (called IBMBIO.COM in IBM) is a hidden 
fle and is loaded in memory at the time of booting, just above interrupt vectors. It provides a pro-
cedure call interface to the BIOS so the kernel can access BIOS services by making procedure calls 
to IO.SYS instead of traps to the ROM. This fle holds those BIOS procedures, not in the ROM, as 
well as a module called SYSINIT which is used to boot the system. The existence of IO.SYS further 
isolates the kernel from hardware details. The MS-DOS.SYS (which IBM calls IBMDOS.COM) 
is another hidden fle which is loaded in memory just above IO.SYS and contains the machine-
independent part of the operating system. It handles process management, memory management, 
and the fle system, as well as the interpretation of all system calls. 

The third part of what most people think of as the operating system is the shell, COMMAND. 
COM, which is actually not part of the operating system and thus can be replaced by the user. In 
order to reduce memory requirements, the standard COMMAND.COM is split into two pieces: a 
resident portion that always resides in memory just above MDDOS.SYS and a transient portion 
loaded at the high end of memory only when the shell is active. It can be overwritten by the user 
programs if the space is needed. Later, MS-DOS reloads COMMAND.COM afresh from disk if it 
is changed. 

As the device-dependent code is kept confned to one layer, porting MS-DOS is theoretically 
reduced to only writing or modifying the BIOS code afresh for the new hardware. Later releases of 
MS-DOS had UNIX-like features. At the command level (shell), MS-DOS provides a hierarchical 
fle system, I/O redirection, pipes, and flters. User-written commands can be invoked in the same 
way as standard system commands, thereby providing the needed extension of the basic system 
functionality. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

http://IBMDOS.COM
http://COMMAND.COM
http://COMMAND.COM
http://COMMAND.COM
http://COMMAND.COM
http://IBMBIO.COM
http://COMMAND.COM
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

 

 

84 Operating Systems 

3.1.8 CASE STUDY: MONOLITHIC KERNEL-BASED OPERATING SYSTEM 

• The Traditional UNIX Kernel 

The original UNIX philosophy was to keep kernel functionality as limited as possible with a mini-
mal OS to only implement the bare necessities while emphasizing the other system software to 
implement as many normal additional OS functions as possible. In fact, the original UNIX kernel, 
as shown in Figure 3.8, was small, effcient, and monolithic, providing only basic machine resource 
management and a minimal low-level fle system, along with kernel (OS) extension facilities for 
creating specifc computational environments. The device management functions were separately 
implemented in device drivers inside the kernel that were added to the kernel at a later time. Thus, 
the kernel would often need to be extended by way of reconfguring it with the code of new device 
drivers whenever new devices were added without disturbing the existing main kernel at all. The 
fle organization implemented byte-stream fles using the stdio (standard I/O) library to format the 
byte stream. 

Early monolithic UNIX kernels provided two signifcant interfaces, as shown in Figure 3.8. The 
frst one was between the kernel and user space programs, such as applications, libraries, and com-
mands. The second one was within the kernel space and that between the main part of the kernel 
and the device drivers using the interrupt handler as the interface between the device and the kernel. 
However, the UNIX kernel, after repeated modifcations and enhancements, ultimately emerged as 
a medium-sized monolithic monitor in which system calls are implemented as a set of co-routines. 
In general, once the kernel co-routine starts its execution, it continues with the processor until 
completion unless it is preempted by an interrupt. Some system processes, however, also are avail-
able to service device interrupts. 

The UNIX kernel, after being expanded, ported, and re-implemented many times, gradu-
ally became large and complex and eventually deviated from the original design philosophy to 
emphasize other expansions so that it could better address increasing functionality requirements, 

FIGURE 3.8 An overview of traditional UNIX operating system implementation using the design based on 
Monolithic kernel concept. 



Operating Systems: Structures and Designs 85  

 

 

 

particularly in the area of network and graphic device support. Graphic devices are largely handled 
in user space, and networks are addressed explicitly by the expanded system call interface. 

Modern monolithic kernels, when used in distributed systems, are essentially today’s centralized 
operating system augmented with networking facilities and the integration of remote services. Most 
system calls are made by trapping the kernel, which services and executes the calls and then returns 
the desired result to the user process. With this approach, most machines in a network have disks 
with a traditional kernel and manage their own local fle systems. Many distributed systems that are 
extensions or imitations of UNIX use this approach to a large extent. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

• The Linux Kernel 

The Linux kernel uses the same organizational strategy as found in other UNIX kernels but 
religiously sticks to a minimal OS (original principle of UNIX) that also accommodates the current 
technology in its detailed design with monolithic kernel organization. Similar to UNIX, Linux also 
provides an interface within the kernel between the main part of the kernel and the device drivers. 
This facility accommodates any modifcation or incorporation of additional device drivers or fle 
systems to the existing kernel that are already statically confgured into kernel organization. But 
the problem with Linux in this regard is that the development of Linux is mostly global and carried 
out by a loosely associated group of independent developers. Linux resolves this situation simply 
by providing an extra mechanism for adding functionality called a module, as shown in Figure 3.9. 
Whereas device drivers are statically confgured into a kernel structure, modules can be dynami-
cally added and deleted even when the OS is in action. Modules can also be used to implement 
dynamically loadable device drivers or other desired kernel functions. 

Linux is designed and structured as a collection of relatively independent blocks or modules, 
a number of which can be loaded and unloaded on demand, commonly referred to as loadable 
modules. In essence, a module is an executable fle that implements a specifc function, such as a 
fle system, a device driver, or some other feature of the kernel’s upper layer. These modules can 
even be linked to and unlinked from the kernel at runtime. A module cannot be executed as its 

FIGURE 3.9 An overview of traditional Linux operating system implementation based on Monolithic kernel 
concept, showing the placement of Linux kernel, device drivers, and modules. 

http://www.routledge.com/9781032467238


 

   

 

 
 

 

  

  

 

 

86 Operating Systems 

own process or thread; rather it can be executed in kernel mode on behalf of the current process. 
However, a module can create kernel threads for various purposes as and when needed. This modu-
larity of the kernel (as also is found in FreeBSD and Solaris) is at the binary (image) level, not at the 
kernel architecture level. These two are completely different but are sometimes confused. Modular 
monolithic kernels are not to be confused with the architectural level of modularity inherent in 
microkernels or hybrid kernels. By virtue of having a modular structure, the Linux kernel, in spite 
of being monolithic, has overcome some of its major inherent diffculties in developing and evolving 
the modern kernel. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.9 MICROKERNEL: THE EXTENSIBLE NUCLEUS 

While a monolithic kernel puts almost all of the kernel (main or major) functions in a single unit 
and provides good portability and fexibility, but since it is constantly expanded and re-implemented 
many times to enhance its functionality, it gradually gets large and complex, which starts to severely 
affect not only its portability and fexibility but also hampers its extensibility and to a large extent 
its reliability. The viable alternative, however, came out exactly following the extended machine 
approach implemented in the design of OSs as already described in the beginning of this chapter 
that eventually gave rise to the innovative idea of an extensible nucleus in the organization of the 
kernel. This strategy, when implemented, actually uses a common set of skeletal facilities, as shown 
in Figure 3.10(b), that defnes two types of modules for any particular OS. 

1. The skeletal hardware-dependent, mechanism-dependent but policy-independent modules 
to manage total core operating system functions. 

2. The policy-specifc, policy-dependent, hardware-independent modules to provide less-
important essential services but major applications of the OS, such as scheduling of CPU, 
I/O, and memory handling. 

The frst (No. 1) implements the extensible nucleus or microkernel that provides a low-level uni-
form VM interface with some form of process and memory management, usually with only the 
bare essentials of device management. In this way, it overcomes the problems concerning portabil-
ity, extensibility (scalability), fexibility, and reliability. While this part does not provide complete 

FIGURE 3.10 A formal design concept of structural organization of an operating system using (a) mono-
lithic kernel approach, and (b) microkernel (extensible nucleus) model separately. 

http://www.routledge.com/9781032467238


Operating Systems: Structures and Designs 87  

 

  

functionality, but it creates an environment in which the second part, that is, policy-dependent 
part of the operating system, can be built to meet all the needs and requirements of the application 
domain. The second part essentially refects the actual requirements and functions of the specifc 
OS that are implemented as server processes (kernel processes), resides and operates on top of the 
microkernel (at the upper level of the microkernel) along with user processes, performs interrupt 
handling, and provides communication between servers and user processes by means of message 
passing as shown in Figure 3.11. Processes here need not to be distinguished at all between kernel-
level and user-level services because all such services are provided by way of message passing. 

The microkernel is viewed differently and thus implemented in a different way by different oper-
ating systems, but the common characteristic is that certain essential core services must be provided 
by the microkernel, and many other services that traditionally have been part of the operating sys-
tem are now placed as external subsystems (the second item in the list) that interact with the kernel 
(microkernel) and also with each other. These subsystems usually include fle systems, process 
services, windowing systems, protection systems, and similar others (Figure 3.11). 

But whatever the design strategy followed in the architecture of the microkernel (extensible 
nucleus), its emergence consequently gave rise to two fundamentally new directions and dimensions 
in the operating system design: multiple OSs–single hardware and single OS–multiple hard-
ware, as shown in Figure 3.12. The frst approach, as shown in Figure 3.12(a), concerns the direction 
that allows policy-dependent parts of different OSs to run on a VM interface used to implement 
policy-specifc extensions built on a single hardware platform that complement the extensible kernel 
(nucleus) and form a complete operating system at each end. In fact, the IBM VM system designed 
in the 1970s mostly followed the same line, at least conceptually but implemented differently, and 
had the intent to inject the extensible nuclei factor into the design of an operating system that eventu-
ally culminated in the emergence of the microkernels of the 1990s. 

The second approach appeared to be the reverse of the frst and relates to the portability of an 
OS, as shown in Figure 3.12(b). Here, the nucleus (microkernel) is so designed that it can be run 
on different types of hardware and provides a high degree of fexibility and modularity. Its size is 

FIGURE 3.11 A typical kernel architectural design of an operating system using vertically layered kernel 
and horizontally layered microkernel. 



 

 

 

 
 

 

88 Operating Systems 

FIGURE 3.12 Basic design concept of operating systems using microkernel (extensible nucleus) for the envi-
ronments: a) different multiple OS when used on a single piece of hardware, and b) single portable OS when 
used on different hardware organization. 

relatively small, and it actually consists of the skeletal policy-independent functions (bare hardware 
functions) that are extended with specialized servers to implement a specifc policy. The remaining 
policy-dependent part of a specifc OS, which is much larger, runs on the corresponding nucleus 
and is portable. For example, when UNIX is installed on new hardware, the extensible nucleus 
(hardware dependent/policy independent) of UNIX is confgured afresh on the spot to match the 
existing available hardware, and the policy-dependent portion of UNIX is then copied to make it 
a completely runnable operating system to drive the specifc hardware in a broad family of vari-
ous hardware products. This well-publicized approach was exploited in Windows NT in which the 
nucleus kernel is surrounded by a number of compact subsystems so that the task of implementing 
NT on a variety of hardware platforms is carried out easily. 

The microkernel design ultimately tended to replace the traditional vertical layered concept of an 
operating system with a horizontal one (Figure 3.11) in which the operating-system components exter-
nal to the microkernel reside at the same level and interact with each other on a peer-to-peer basis by 
means of messages passed through the microkernel, as shown in Figure 3.13. The microkernel here vali-
dates messages, passes them between components, and grants access to the hardware. This structure is, 
however, most conducive to a distributed processing environment in which the microkernel can pass 
messages either locally or remotely without necessitating changes in other operating-system compo-
nents. Microkernels are further explored in some detail in Chapter 9, “Distributed Operating Systems”. 



Operating Systems: Structures and Designs 89  

 

 

 

 FIGURE 3.13 A formal design approach of operating systems using horizontally structured microkernel for 
the distributed processing environment. 

A microkernel architecture is very advantageous in the context of developing an object-oriented 
operating system (OOOS) in which objects are the components of the OS used as building blocks 
with clearly defned interfaces that can then be interconnected with one another to form complete 
software. This approach, however, ensures extensibility; any modifcations and/or additions of new 
features then require only certain changes to the respective objects and/or include extra objects, 
respectively, and thereby facilitate avoiding extensive changes in the existing form. Operating sys-
tems such as Windows though do not rely exclusively or fully on object-oriented methods but have 
injected object-oriented principles into their microkernel design. 

In spite of microkernels having several distinct advantages, one of its serious drawbacks is that 
some functionalities of a traditional kernel are split between a microkernel, and the remainder are 
implemented as a collection of OS functions that use the microkernel, thereby causing the familiar 
stratifcation problem. For example, a traditional kernel includes the complete process management 
function which performs creation, scheduling, and dispatching of processes, whereas a microkernel 
might include only process creation and dispatching, and process scheduling may reside at higher 
level but run as a process under the microkernel. Consequently, communication between the parts 
may eventually cause a graceful degradation in overall system performance. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.9.1 Case Study: Microkernel-Based OS: Windows NT 
Windows NT is a commercial OS, frst released for public use in July 1993 (Solomon, 1998) with the 
aim of being an extensible, portable, reliable and secure OS for contemporary computers, including 
symmetric multiprocessors. 

Windows NT is designed using the extensible nucleus software model (microkernel approach) 
in which only the most essential OS functions are implemented in a small nucleus of code, the 
microkernel. Additional mechanisms are then implemented as an OS (NT Executive) on top of the 
nucleus to defne policies as needed. The key mechanisms (such as scheduling policy, protection 
mechanisms, etc.) are carefully designed and tested as one trusted subassembly that can then be 
used to implement many different policies and mechanisms. 

As depicted in Figure 3.14, the NT kernel provides the essential low-level mechanisms as a 
layer of abstraction on top of the hardware. By abstraction, it is meant that the individual hardware 
resources are invisible to application programs and are accessed via conceptual models, such as 
fle systems for disk storage, virtual address spaces for memory, schedulers for task management, 
and sockets for network communication. The kernel provides objects and threads as computational 
abstraction (see Chapter 4 for threads and objects) on top of the hardware abstraction layer (HAL) 
and the bare hardware. Software that uses the NT Kernel can be defned using objects and threads 
as primitive; that is, these abstractions appear to NT Kernel client software as natural parts of 
the hardware. To implement objects and threads, the kernel must manage hardware interrupts and 
exceptions, perform processor scheduling, handle multiprocessor synchronization, and perform 
similar other tasks. 

http://www.routledge.com/9781032467238


 

  

 

90 Operating Systems 

FIGURE 3.14 A schematic block diagram of representative Windows NT operating system organization. 

The NT Executive (Figure 3.14) is designed as a layer of abstraction of the NT Kernel and builds 
on the NT Kernel to implement a full set of policies, specifc mechanisms for general objects, and 
various services that Windows NT offers, including process, memory, device, and fle management. 
Since Windows NT builds on an object-oriented approach, it does not strictly adhere to the classic 
separation of OS functionalities as observed in a layered architecture while creating its different 
modules. Instead, the NT Executive is designed and implemented as a modularized set of elements 
(Solomon, 1998): object manager, process and thread manager, virtual memory manager, and so on 
at the source code level. 

While the NT Kernel and Executive are designed and programmed as separate modules, they are 
actually combined with the kernel executable when Windows NT is built. This combined module, 
along with the underlying HAL, provides the essential core elements of the OS and implements the 
full NT operating system, though this nucleus can be extended again by the subsystems that provide 
specifc OS services. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.10 HYBRID KERNEL 

Hybrid kernel (quasi-category) architecture is based on the idea of combining several notable 
aspects of both microkernels and monolithic kernels, but has a structure similar to a microkernel, 
yet implemented as a monolithic kernel. In contrast to a microkernel, all (or nearly all) services in a 
hybrid kernel are in kernel space, similar to a monolithic kernel, and hence, there is no performance 
overhead, such as message passing and context switching between kernel mode and user mode, that 
is typically associated with microkernel. Side by side, none of the benefts of services are obtained 
if they are not implemented in user space. However, the best-known example of a hybrid kernel 

http://www.routledge.com/9781032467238


Operating Systems: Structures and Designs 91  

 

 

 

is the NT-based kernel inside Windows 2000, Windows XP, Windows Server 2003, Windows 
Vista, and Windows Server 2008. The Windows NT-based operating system family architecture 
essentially consists of two layers (user mode and kernel mode), with many different modules within 
both of these layers. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.10.1 Case Study: Windows NT-Based Kernel 
NT-based Windows is classifed as having a hybrid kernel (or a macrokernel) rather than a mono-
lithic kernel, because the emulation subsystems run in user-mode server processes rather than in 
kernel mode, as is found in a monolithic kernel. Furthermore, the OS functionalities are separated 
from the general kernel design to attain a large number of design goals (closely resembling the 
design goals of Mach OS). This is again contrary to the principle of a monolithic kernel. 

Conversely, it is said that NT is not even a microkernel system. The reason behind is that nearly 
all of its subsystems providing system services, including the entire Executive, run in the same 
address space as the kernel itself, as would be the case with a monolithic design. This strategy, in 
turn, offers superior performance, mainly as procedure calls are made here direct for being located 
in same memory space rather than using of IPC for communication among subsystems. 

The Windows NT design included a collection of modules that communicate via well-known 
interfaces with a small microkernel limited to core functions, such as frst-level interrupt handling, 
thread scheduling, and synchronizing primitives. Its other design goals include support for diverse 
architectures and a kernel with abstractions, general enough to allow multiple operating system 
functionalities to be implemented on top of it and also object-oriented organization. 

In NT, the list of subsystems run in user mode is far shorter than those run in kernel mode. The 
user-mode subsystems include one or more emulation subsystems, each of which provides operating 
system functionality to applications. These subsystems are not devoted to a particular OS personal-
ity but rather to the native NT API (or Native API). For performance reasons, some of these emula-
tion subsystems run in kernel mode in NT version 4.0 and onward. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.1.11 EXOKERNEL 

The exokernel concept started to bloom around 1994, but as of 2005,[update] exokernels were still a 
research effort and have not been used in any major commercial operating systems. However, an 
operating system kernel was developed by the MIT Parallel and Distributed Operating Systems 
group. One of the targets of this kernel design is always to keep individual hardware resources 
invisible from application programs by making the programs interact with the hardware via a con-
ceptual model. These models generally include, for example, fle systems for disk storage, virtual 
address spaces for memory, schedulers for task management, and sockets for network communica-
tion. These types of abstractions, in general, although make the hardware easy to use in writing pro-
grams, but limit performance and stife experimentation in adding new abstractions. This concept 
has been further redefned by letting the kernel only allocate the physical resources of the machine 
(e.g. disk blocks, memory pages, processor time, etc.) to multiple executing programs and then let-
ting each program make a link to an operating system library that implements familiar abstractions, 
or it can implement its own abstractions. 

The notion behind this radically different approach is to force as few abstractions as possible 
on developers, enabling them to make as many decisions as possible about hardware abstractions. 
Applications may request specifc memory addresses, disk blocks, and so on. The kernel only 
ensures that the requested resource is free and the application is allowed to access it. Resource man-
agement need not be centralized; it can be performed by applications themselves in a distributed 
manner. This low-level hardware access allows the programmer to implement custom abstractions 
and omit unnecessary ones, most commonly to improve a program’s performance. Consequently, 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

 
 

 

92 Operating Systems 

FIGURE 3.15 A typical schematic graphical overview of exokernel used in the design of modern operating 
systems. 

an exokernel merely provides effcient multiplexing of hardware resources, but does not provide any 
abstractions, leaving the programmers to choose what level of abstraction they want: high or low. 

An application process now views a computer resource in its raw form, and this makes the primi-
tive operations extremely fast; 10–100 times faster than when a monolithic UNIX kernel is used. For 
example, when data are read off an I/O device, it passes directly to the requesting process instead 
of going through the exokernel. Since traditional OS functionalities are usually implemented at the 
application level, an application can then select an OS function from a library of operating systems, 
as shown in Figure 3.15. The OS function can then be executed as a process in non-kernel mode, 
exploiting the features of the Exokernel. This kernel is tiny in size, since functionality is limited to 
only ensuring protection and multiplexing of resources, which are again much simpler than conven-
tional microkernels’ implementation of message passing and monolithic kernels’ implementation 
of abstractions. Exokernels and nanokernels are sometimes considered more extreme versions of 
microkernels. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

3.2 MODERN OPERATING SYSTEMS: DESIGN ISSUES 
AND SALIENT FEATURES 

Operating systems have been relentlessly evolving since the 1950s through various stages of devel-
opment, constantly offering innovative features from a primitive form of batch systems to sophis-
ticated multimode, multiuser, and fnally different forms of modern distributed systems that took 
a considerable period of the last sixty-odd years to emerge. In recent years, vibrant hardware tech-
nological developments introduced multiple processors (CPUs) in the machines in the form of mul-
tiprocessors and multicomputers (networks of computers), along with varieties of memory devices 
with increasing capacity and speed but tiny size; numerous types of I/O devices of diverse technol-
ogy; and high-speed network attachments that ultimately make systems immensely powerful and 
equally versatile. With the variants of these systems, new concepts popularly known as parallel 
processing and distributed computing in various forms were introduced that successfully handled 
many diverse, long-standing, unresolved problems in the application domain. To manage these enor-
mously intelligent systems, many new design elements have been introduced, both in new operating 
systems and new versions of existing operating systems that ultimately resulted in a major change 
in the concept, design, and nature of traditional operating systems. In the application domain, the 

http://www.routledge.com/9781032467238


Operating Systems: Structures and Designs 93  

 
 
 
 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

  

introduction of many new aspects, including internet and Web technology, multimedia applications, 
the client/server model of computing, cloud computing on quasi-distributed systems, and true dis-
tributed computing, have also had an immense impact on the existing concept and design of operat-
ing systems. In addition, internet access for computers as well as LAN and WAN implementations 
to build clusters of computers have made systems totally exposed and consequently have invited 
increased potential security threats and more sophisticated attacks that eventually had an enormous 
impact on design issues of emerging operating systems. 

To address and accommodate all these issues, extensive modifcations and enhancements in the 
existing structure of operating systems were found inadequate; it actually demanded fresh thoughts 
and new methods in organization of operating systems. As a result, numerous forms of structures 
and designs of different operating systems with various design elements have been released for both 
scientifc and commercial use. Most of the work that led to such developments can now be broadly 
categorized into the following areas: 

• Various forms of kernel/shell architecture. 
• The thread concept and its refnement. 
• Object concepts and object-oriented concept and designs. 
• Numerous forms of multiprocessing on different multiprocessor and multicomputer 

architectures. 
• Network operating systems in computer networks and client/server models. 
• Cluster architecture, mainly for cloud computing. 
• Distributed operating systems to drive distributed computing environments. 

Operating systems developed in recent years with the kernel–shell concept can be classifed into 
two major distinct categories: monolithic kernel and microkernel. Each category has already been 
discussed in detail in previous sections. 

Threads are a relatively recent development in the design of the operating system as an 
alternative form of a schedulable and dispatchable unit of computation in place of the tradi-
tional notion of process. A thread is an entity that executes sequentially with a single path of 
execution using the program and other resources of its associated process which provides the 
environment for the execution of threads. Threads incorporate some of the functionalities that 
are associated with their respective processes in general. They have been introduced mainly 
to minimize the system overhead associated with process switching, since switching back and 
forth among threads involves less processor overhead than a major switch between different 
processes. Threads have also been found to be useful for structuring kernel processes. Similar 
to a uniprocessor machine, threads can also be implemented in a multiprocessor environment in 
a way similar to a process in which individual threads can be allocated to separate processors 
to simultaneously run in parallel. The thread concept, however, has been further enhanced and 
gave rise to a concept known as multithreading, a technique in which the threads obtained from 
dividing an executing process can run concurrently, thereby providing computation speedup. 
Multithreading is an useful means for structuring applications and kernel processes even on a 
uniprocessor machine. The emerging thread concept is distinguished from the existing process 
concept in many ways, the details of which are discussed in Chapter 4 (“Processor Management”) 
as well as in subsequent chapters. 

An object is conceived of as an autonomous entity (unit) which is a distinct software unit that 
consists of one or more procedures with a set of related data items to represent certain closely 
correlated operations, each of which is a sibling unit of computation. These procedures are called 
services that the object provides, and the data associated with these services are called attributes of 
the object. Normally, these data and procedures are not directly visible outside the object. Rather, 
various well-defned interfaces exist that permit software to gain access to these objects. Moreover, 
to defne the nature of objects, the idea of class is attached to an object to defne its behavior, just 



 

 
 
 
 
 

 

 

 
 
 
 

 

94 Operating Systems 

as a program defnes the behavior of its related process. Thus, a class behaves like an abstract data 
type (ADT) that maintains its own state in its private variables. 

Thus, the unit of a “process model” is now used to exploit objects as an alternative schedulable 
unit of computation in the design of operating system and other related system software. Objects 
react only to messages, and once an object is created, other objects start to send it messages. The 
newly created object responds by performing certain computations on its internal private data and 
by sending other messages back to the original sender or to other objects. The objects can interface 
with the outside world only by means of messages. Objects are discussed in more detail in Chapter 4. 

The introduction of the kernel–shell concept in the design of the operating system together with 
the inclusion of the thread model established the multiuser environment with increasing user traffc 
load in virtually all single-user personal computers and workstations, realized by a single general-
purpose microprocessor, but ultimately failed to rise to the desired level in performance. At the 
same time, as the cost of microprocessors continues to drop due to the constant advent of more 
sophisticated electronic technology, it has paved the way for vendors to introduce computer systems 
with multiple low-cost microprocessors, known as multiprocessors, that require only a little more 
additional cost but provide a substantial increase in performance and accommodate multiple users. 

The structures and designs of multiprocessors, although they differ in numerous ways, mainly 
shared memory (UMA) architecture and distributed shared memory (NUMA) architecture, but 
they can also be defned as an independent stand-alone computer system with many salient features 
and notable characteristics and do possess a number of potential advantages over the traditional uni-
processor system. Some of them, in particular, are performance, reliability, scalability, incremental 
growth, and also ease of implementation. 

The operating systems used in multiprocessors are thus totally different in concept and design 
from the traditional uniprocessor modern operating system, and also from each other due to dif-
ferences in their hardware architectures. They hide the presence of the multiple processors from 
users and are totally transparent to users. They provide specifc tools and functions to exploit 
parallelism as much as possible. They take care of scheduling and synchronization of processes 
or threads across all processors, manage common and or distributed memory modules shared by 
the processors, distribute and schedule existing devices among the running processes, and pro-
vide a fexible fle system to handle many requests arriving almost simultaneously in the working 
environment. 

In spite of having several potential merits, multiprocessors of different kinds with different forms 
and designs suffer from several shortcomings along with the related cost factors that ultimately 
have been alleviated with the introduction of another form of architecture with multiple proces-
sors, known as multicomputers (Chakraborty, 2020). This architecture is essentially built up with 
a set of stand-alone full-fedged computers, each with its own resources, but they are connected 
to high-speed network interfaces (networks of computers) that eventually gave rise to computer 
networks, and/or offering the appearance of a single system image, depending on how the arrange-
ment is driven. This supports high processor counts with memory systems distributed among the 
processors. This yields cost-effective higher bandwidth that reduces latency in memory access, 
thereby resulting in an overall increase in processor performance. Each of these machines in a 
computer network may be locally driven by its own OS supported by NOS for global access, or 
these machines are together driven by a completely different type of operating system, known as a 
distributed operating system, that offers an illusion of a single-system image with a single main 
memory space and a single secondary memory space, plus other unifed access facilities, such as a 
distributed fle system. The distributed operating system dynamically and automatically allocates 
jobs to the various machines present in the arrangement in a transparent way for processing accord-
ing to its own policy and strategy. These arrangements, along with the respective operating systems, 
are becoming increasingly popular, and there are many such products available in the market from 
different vendors. 



Operating Systems: Structures and Designs  95 

The object concept has been gradually refned and continuously upgraded over time to ultimately 
culminate in the contemporary object-oriented technologies that have been exploited to introduce 
an innovative concept in the design of operating systems. One of the salient features of this object-
oriented design is that it facilitates modular programming disciplines that enable existing applica-
tions to extend by adding modules as and when required without affecting the existing logic and 
semantics. When used in relation to the design and development of operating systems, this approach 
can create modular extensions to an existing small kernel by means of adding needed objects to it. 
Object-oriented design and structure enable developers to customize an operating system (and, in 
fact, any other product) with ease without disrupting system integrity. This approach used in design 
has really enriched programming methodology and is considered an important vehicle in the design 
and development of both centralized and distributed operating systems. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

SUMMARY 

We have already described the concept and step-wise evolution of the generic operating system from 
its very primitive form to the most sophisticated modern one, its basic characteristics, the common 
principles it follows, the numerous issues linked to it to explain the different functions it performs, 
and the common services it usually provides while driving the bare hardware on behalf of the user. 
With the constant introduction of more intelligent and sophisticated hardware platforms, many dif-
ferent operating systems have continuously emerged over the last ffty-odd years. This chapter illus-
trates the step-wise evolution of different design models based on numerous design objectives and 
their subsequent realization, along with the formation of associated structures of different operating 
systems proposed over this period. The dynamism of computer systems was abstracted gradually 
by operating systems developed in terms of monolithic design, extended machine concept, and then 
versatile layered/leveled concepts and designs. Later, the evolution of VMs and their subsequent 
impacts facilitated redefning the concepts and designs of newer operating systems with an innova-
tive form of the kernel–shell concept that eventually became able to manage networks of computers 
and computer network implementations. The kernel–shell concept was further reviewed and rede-
fned from its monolithic kernel form to the more classic microkernel and later hybrid kernel forms 
to manage more sophisticated computing environments, including demands from diverse spectra 
of emerging application areas. A general discussion of the implementations of different models of 
operating systems is presented here with an illustration of popular representative operating systems 
as relevant case studies for each design model. This chapter concludes by giving an idea of modern 
operating systems used in both uniprocessor and multiple processor environments (both multipro-
cessors and multicomputers), including the requirements they fulfll and the salient features they 
possess. In short, this chapter lays a foundation for a study of generic operating system structures 
and designs that are elaborately discussed in the rest of this book. 

EXERCISES 

 1.  What is meant by a monolithic structure of an operating system? What are the key features 
of such a design? What are the main drawbacks of this design? 

 2.  What are the factors that infuenced the concept of an extended machine? How have these 
ultimately been implemented in the design of the extended machine? 

 3.  What paved the way to design operating systems with layered structures? How does this 
design concept negotiate the complexities and requirements of a generalized operating 
system? 

 4.  State the strategy in the evolution of hierarchical-level design of an operating system. How 
does this concept achieve the generalization that a versatile operating system exhibits? 

http://www.routledge.com/9781032467238


 

  

  

  

  

  

   

 

  
  

  

  

   

  

  

 

96 Operating Systems 

5. State the levels and explain the functions that each level performs in the hierarchical-level 
design of an operating system. 

6. What are the factors that accelerate the evolution of a virtual machine? State the concepts 
of a virtual machine. Why it is so called? Is a virtual machine a simple architectural 
enhancement or a frst step towards a renaissance in the design of an operating system? 
Justify your answer with reasons. 

7. What is the client–server model in the design of an operating system? What are the salient 
features of a client–server model from a design point of view? What are the reasons that 
make the client–server model popular in the user domain? 

8. Discuss the environment under which the client–server model is effective. State and explain 
the drawbacks of a client–server model. 

9. “The kernel–shell model in the design of an operating system is a refnement of the exist-
ing extended machine concept”—give your answer in light of extended machine design. 

10. What are the typical functions that are generally performed by a kernel in the kernel–shell 
model of an operating system? What is meant by shell in this context? What are the func-
tions that are usually performed by a shell in the kernel–shell design of an operating system? 
What are shell scripts? Why the shell is not considered a part of the operating system itself? 

11. State and explain the features found in the design of a monolithic kernel. 
12. “The virtual machine concept of the 1970s is the foundation for the emergence of the 

microkernel of the 1990s”. Would you agree? Give reasons for your answer. 
13. “The introduction of the microkernel concept in the course of design of a distributed oper-

ating system is a radical approach”. Justify. 
14. Briefy explain the potential advantages that are observed in a microkernel design com-

pared to its counterpart; a monolithic design. 
15. Give some examples of services and functions found in a typical monolithic kernel-based 

operating system that may be external subsystems in a microkernel-based operating system. 
16. Explain the main performance disadvantages found in a microkernel-based operating 

system. 
17. Explain the situation that forces the modern operating system to evolve. State the key fea-

tures that a modern operating system must include. 

SUGGESTED REFERENCES AND WEBSITES 

Chakraborty, P. Computer Organization and Architecture: Evolutionary Concepts, Principles, and Designs, 
Boca Raton, FL, CRC Press, 2020. 

Solomon, D. A. Inside Windows NT, Second Edition, Redmond, WA, Microsoft Press, 1998. 



DOI: 10.1201/9781003383055-4 97  

 

 

 

 
 

 

 

 

 

 

 
 

 
 

 

 

 

Processor Management 4 
Learning Objectives 

• To envisage the process model and its creation as an unit of execution, its description with 
images, the different states it undergoes, and fnally its uses as a building block in the 
design and development of generic operating systems. 

• To defne and describe threads, a smaller unit of execution, along with their specifc char-
acteristics, the different states they undergo, and their different types. 

• To introduce the concept of multithreading and its implementation in the design and devel-
opment of modern operating systems. 

• To portray a comparison between the process and thread concepts. 
• To defne and describe objects, a bigger unit of execution, along with a description of 

object-oriented concepts in the design and development of a few modern operating systems. 
• To demonstrate numerous CPU scheduling criteria and the respective strategies to realize 

various types of CPU-scheduling algorithms, including the merits and drawbacks of each 
of these algorithms. 

• To describe the different forms and issues of concurrent execution of processes and 
describe the needs of interprocess synchronization. 

• To articulate possible approaches using hardware and software solutions to realize inter-
process synchronization. 

• To describe some useful synchronization tools, such as semaphores and monitors, includ-
ing their respective merits and drawbacks. 

• To demonstrate a few well-known classical problems relating to interprocess synchroniza-
tion and also their solutions using popular synchronization tools. 

• To describe the purpose and elements of interprocess communications. 
• To demonstrate different models using message-passing and shared-memory approaches to 

implement interprocess communications. 
• To explain various schemes used to realize interprocess communications. 
• To illustrate the approaches used to realize interprocess communication and synchroniza-

tion in Windows and UNIX operating systems. 
• To explain deadlock and the related reasons behind its occurrence, along with different 

approaches to detect and avoid such deadlock. 
• To discuss starvation and the reasons behind it, along with the description of different 

strategies to detect and avoid it. 

4.1 INTRODUCTION 

The operating system (OS) controls and monitors the entire computing system. It consists of a col-
lection of interrelated computer programs, a part of which when executed under its control by the 
processor directs the CPU in the use of the other system resources and also determines the timing 
of CPU’s execution of other programs. While allowing the processor to do “useful” work for users, 
the OS relinquishes control to the processor and then takes control back at the right point of time to 
manage the system and prepare the processor to do the next piece of work. The execution of an indi-
vidual program consisting of a sequence of instructions is sometimes referred to as a process or task. 
The part of the OS program that implements certain mechanisms to constantly control, manage, and 
supervise the activity of the processor in executing different systems as well as user programs is 

https://doi.org/10.1201/9781003383055-4


 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

  

  

98 Operating Systems 

the subject of processor management. The terms processor management and process management 
are used sometimes interchangeably. In a well-designed, versatile operating system, a substantial 
amount of the execution time (sometimes more than 80%) is used only to execute the OS program. 

4.2 THE CONCEPT AND IMPLEMENTATION OF PROCESS MODEL 

Once the operating system accepts a program, it may create several processes. A process is essen-
tially an activity of some kind. To carry out the activity, an operation(s) is required. To realize 
the operation, instructions (primitive machine instructions) must be executed. So a process can be 
defned as an instance of instructions (program) under execution. The notion of a process is central 
to almost all operating systems and is a vital concept in defning and designing an operating system. 
The concept and different views of the process were discussed in detail in Chapter 2. A process 
can be viewed as being composed of (or is said to “own”) tangible elements: an executable program 
associated with a set of resources and related data to realize the respective process, the process 
descriptor (also called process control block or other names in some systems) to represent the state 
(attribute) of the process for keeping track of the process, OS descriptors of resources allocated to 
the process (such as fle descriptors in UNIX terminology or handles in Windows), security attri-
butes to indicate the process owner, and the process’s set of permissions. 

The processor manager (or process manager), a part of the operating system consisting of pro-
grams and a related set of algorithms and data structures, monitors and controls the process. A single 
processor may be shared among several processes by means of a scheduling algorithm (short-term 
scheduling), or a particular process can also be shared by more than one user at the same time. The 
behavior of an individual process can be characterized by listing the sequence of its instructions 
(Hoare’s approach), and this listing is referred to as a trace of that process. The behavior of the 
processor can be characterized and explained by analyzing the way in which the different traces 
of various processes are interleaved. Once the process manager creates a new process and its pro-
cess descriptor, it then allocates the set of required resources and initializes the respective OS data 
structures needed by the process. The new process is now ready to begin executing its own program 
and usually starts to compete with the already existing ready-to-execute processes or with the only 
executing process (quite natural in a multitasking OS) to gain access to the one available CPU. The 
processor manager in this situation negotiates the chaos using its own underlying policy, and the 
related strategy is then imposed to manage CPU multiplexing. Another situation may occur when 
two or more processes compete to access shared resources (such as main memory space or fles); the 
process manager will then use appropriate mechanisms and also provide synchronization tools that 
the community of processes can use to accomplish orderly sharing among themselves. Sometimes a 
process also refuses to share its resources, and no other process is then allowed to access the resource. 
All these issues are properly handled and considered the major objectives in defning and designing 
the processor management module. These are further detailed in many of the following sections. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.3 PROCESSOR MANAGEMENT FUNCTIONS 

Processor management (or process management) is concerned with the management of the physical 
processors, specifcally the assignment of processors to processes when created after the job sched-
uler has moved a job from hold to ready. Process management must perform the following functions: 

1. Keep track of the resources (processors and status of the process) using one of its modules 
called the traffc scheduler. 

2. In the presence of multiple processes (as in multitasking), it decides which process gets 
the processor, when, and how long. This is carried out by one of its modules known as the 
processor scheduler (also viewed as a micro-scheduler). 

http://www.routledge.com/9781032467238


Processor Management 99  

  

  
 

  

  

  

 

 

 
  

 
 
 
 
 
 
 

    
 

3. Allocate the resource (processor) to a process by setting up necessary hardware registers 
using one of its modules, often called the dispatcher. 

4. Control the progress of the processes towards completion at a specifed rate. The process 
status during this period is kept track of by one of its modules often called the traffc 
controller. 

5. Act properly on exceptional conditions if they arise during the execution of a process, 
including interrupts and arithmetic errors. 

6. Provide mechanisms to communicate among processes, if required, thereby implementing 
process synchronization. This responsibility is performed by the traffc controller. 

7. Reclaim the resource (processor) when the process relinquishes processor usage, termi-
nates, or exceeds the allowed amount of usage. 

It is to be noted that the job scheduler is a part of processor management, since the record-keeping 
operations for job scheduling and process scheduling are very similar. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.4 STRUCTURE OF PROCESSOR MANAGEMENT 

The assignment of processors to processes is mainly done by job scheduling, process schedul-
ing, and synchronization. In summary, processor management operates on two levels: assigning 
processors to a job and assigning processors to processes. On the job level, processor management 
is concerned with job scheduling, sometimes called frst-level scheduling, which may itself be a 
separate process. Once a job is scheduled, the system must then perform all the functions relating to 
the process, and these functions may be requested by users’ processes, the job scheduler, and other 
processes and thus may be common to all address spaces (processor management upper level). In a 
multiprogramming environment, the process scheduler and the synchronization mechanisms may 
be called by all modules of the system. Thus, they form the very center (core) of the kernel of the 
system (processor management lower level). This approach in modeling system structure is the basis 
of most of the operating system. 

Although the job scheduler (long-term scheduler) and processor scheduler (short-term scheduler) 
primarily differ in many ways, they may sometimes interact. The process scheduler may choose 
to postpone or rollout a process that requires it to go through macro-level job scheduling again in 
order to complete. This is especially true in a time-sharing system. In fact, the job scheduler is like 
a coordinator of the contest that only decides who will enter the contest, but the process scheduler 
decides which participant will ultimately win access to the processor. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.5 PROCESS–STATES MODEL 

A process is the smallest individually schedulable entity consisting of code in machine instructions 
and data, characterized by attributes and dynamic states. During the life cycle of a job, processes 
may undergo a variety of states that indicate the nature of the current activity. The OS manifests 
the execution of a typical process in the course of its activity in terms of a progression through 
a succession of states. The following typical process states are possible on all kinds of computer 
systems, and the OS will take a process through all its states. In most of these states, processes are 
“stored” in main memory. These states and the transition of states (i.e. when a process switches 
from one state to another) are handled by routines within the operating system. The different states 
that a process can undergo in the life cycle of a job from the instant a job is frst submitted up to 
its completion are submit, hold, created (new), ready (waiting), run (active), blocked (sleeping), 
complete (exit). All possible transitions of states of a process during the life cycle of a job are 
illustrated in Figure 4.1. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

    

 

 

100 Operating Systems 

FIGURE 4.1 A schematic view of the various process states and their interrelations used in the design of the 
generic operating systems. 

It is quite natural that, at any instant, a number of processes may be in a ready state, and as such, 
the system provides a ready queue in which each process, when admitted, is placed in this queue. 
Similarly, numerous events cause running processes to block, and processes are then placed into a 
blocked queue and each one is then waiting until its individual event occurs. When an event occurs, 
all processes in the blocked queue that are waiting on that particular event are then moved to the 
ready queue. Subsequently, when the OS attempts to choose another process to run, it selects one 
from the ready queue, and that process then enters the run state. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.5.1 ADDITIONAL PROCESS STATES: SUSPENDED STATE 

Many operating systems concentrate only on the three major states, ready, running, and blocked, 
and a particular process usually cycles through these three states a number of times before being 
completed or terminated and ultimately departing the system. 

4.5.1.1 Swapping: Importance 
Now too many ready processes are in main memory awaiting execution. A good number of blocked 
processes are also in main memory, waiting for an event to occur. Both these types of processes 
remaining idle occupies a substantial amount of costly memory space and forces the processor 
to remain idle for want of a suffcient number of eligible running process within the limited size 

http://www.routledge.com/9781032467238


Processor Management 101  

 

     

 

of main memory. Out of many acceptable solutions, the most convenient and workable solution 
to negotiate this situation is swapping, which involves moving part or all of a process from main 
memory to virtual memory in disk by the mid-term scheduler, thereby freeing up the occupied 
memory space for the use of the existing running processes or providing an option for a newly cre-
ated process/processes ready to admit. A queue can then form in virtual memory to keep track of 
all such temporarily swapped-out processes, called suspended. 

When there are no more ready processes and the OS intends to choose another ready process 
to run, it can then use one of two options to pick a process to bring into main memory: either it 
can bring a previously suspended process already in the queue, or it can admit a newly created 
process in the ready state. Both approaches, have their own merits and drawbacks. The problem is 
that admitting a new process may increase the total load on the system, but, alternatively, bringing 
a blocked process back into memory before the occurrence of the event for which it was blocked 
would not be useful because it is still not ready for execution (the event has not yet occurred). One 
of the probable solutions may be to specifcally consider the states of the processes when they have 
been swapped out and thus suspended. The suspended processes were actually in two different 
states: (i) a process was in a ready state but not running, waiting for its turn for the CPU, and (ii) a 
process was in a blocked state, waiting on an event to occur. So, there are two additional suspended 
states, ready-suspend and blocked-suspend, along with the existing primary process states already 
described. The state transition model is depicted in Figure 4.1. 

Usually, when there is no ready process available in memory, the operating system generally 
prefers to bring one ready-suspend process into main memory rather than admitting a newly created 
process that may increase the total load of the system. But, in reality, there may also be other situ-
ations that might need completely different courses of action. In addition, a process in the blocked-
suspend state is usually moved to the ready-suspend state when the operating system comes to 
know from the state information relating to suspended processes that the event for which the process 
has been waiting has occurred. 

In a more complex versatile operating system, it may be desirable to defne even more states. On 
the other hand, if an operating system were designed without the process concept in mind, it might 
be diffcult for an observer to determine clearly the state of execution of a job at any point in time. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.5.2 SUSPENDED PROCESSES: THEIR CHARACTERISTICS AND IMPORTANCE 

A suspended process may be in main memory but not readily available for execution and thus may 
be swapped out of main memory for various reasons irrespective of whether it is waiting for an event 
to occur. However, a suspended process possesses several distinct characteristics, and its eviction 
from main memory at the right point in time has several advantages for the computing environment. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.6 PROCESS DESCRIPTION 

When a user program is submitted for execution, the operating system creates the processes, changes 
the states of various other coexisting processes, and allocates the available resources as requested 
at the appropriate time. To control the processes and keep track of the status of the resources, the 
operating system constructs and maintains four different tables, process tables, memory tables, 
device (I/O) tables, and fle tables, to record various information relating to managing four different 
resources constituting the computing system. Most operating systems create these tables, but the 
contents and details of information present in each type of table area major design aspect that may 
differ from one operating system to another. Figure 4.2 shows a simplifed form of the arrangement 
of all these tables, but in reality, the situation is more complex, and these tables must be linked or 
cross-referenced in some fashion. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  
 
 
 
 
 

 

 

 

 
 
 
 

 
   

  
 

 

 

102 Operating Systems 

FIGURE 4.2 Model structure of different control tables used in the design of the generic operating systems. 

Process Table: This table is an array of structures, one entry with several felds containing all the 
information of each currently existing process, up to a maximum number of processes (entries) that 
the OS can support at any point in time. It is linked or cross-referenced in some fashion with the other 
tables relating to management of other resources to refer them directly or indirectly. An entry is made 
in this table when the process is created and is erased when the process dies. Although the process table 
is ultimately managed by the process manager, various other OS queries may change the individual 
felds of any entry in the process table. A fundamental part of the detailed design strategy for the pro-
cess manager is refected in the design of the process table data structure which largely depends on 
the basic hardware environment and differs in design approaches across different operating systems. 

More details about this topic are given on the Support Material at www.routledge.com/9781032467238. 
A case study showing the scheme of a UNIX process table entry is given on the Support 

Material at www.routledge.com/9781032467238. 

4.7 PROCESS IMAGE: PROCESS TOTALITY 

A process consists of a program or a set of programs associated with a set of data attached to local or 
global variables and other defned constants. Moreover, when this program is executed, it requires a 
stack, which is used to keep track of procedure calls and parameter passing between procedures. The 
collection of program, data, and stack together is known as a process data block (PDB). In addition, 
associated with each process are a number of attributes used by the operating system for process con-
trol. The collection of all attributes is referred to as process control block (PCB). The combination 
of process data block and process control block, along with any other address space that the process 
shares with other processes, together form the process image which is stored in noncontiguous blocks 
in virtual memory (secondary memory) for active processes and tracked by the respective process 
table. But a small portion of the process image containing vital information for the use of the operat-
ing system is maintained in main memory at the same time. Figure 4.3 shows a model structure of 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 103  

 

 
 

       

 
  

 
 

 FIGURE 4.3 A schematic design of process images created by the operating system stored in virtual memory. 

process images in virtual memory using a continuous range of addresses, but in actual implementa-
tion, this may be different. It entirely depends on the memory management scheme being employed 
and the way the control structures are organized in the design of the operating system. 

More details about this topic, see the Support Material at www.routledge.com/9781032467238. 
A case study showing the scheme used in the creation of a UNIX process image is given on the 
Support Material at www.routledge.com/9781032467238. 

4.7.1 PROCESS DATA BLOCK AND PROCESS CONTROL BLOCK 

A process data block is a local storage area in user space for each user process, a portion of which is 
used for a user data area that includes a program, program data, and a user stack. The other portion of 
the PDB is used for the user program to be executed to give rise the process and the system stack which 
is used to store parameters and calling addresses for procedure and system calls. In systems with 
virtual memory (to be discussed in Chapter 5), PDB is usually allotted a page frame in main memory. 

A process control block, or a process descriptor, task control block (TCB), or task descriptor, 
is a data structure with felds containing all information relating to the attributes of a particular 
process needed by the operating system to keep track of a single process to control its execution 
and management of resource usage. A process is recognized by the operating system only when it 
has a PCB created in the operating system area of memory. When the process terminates, its PCB 
is deleted, and the area is released for the new PCBs, if needed. Information stored in a PCB can 
be generalized into three categories: (i) process identifcation, (ii) processor state information, and 
(iii) process control information. Each category is again divided into one or more felds, and a PCB 
typically may include some or all of the felds. Some of the felds are used by the processor man-
ager, some are used by the memory manager, and so on. Since many felds in the process control 
block keep changing continually over time, all PCBs thus need to be manipulated and constantly 
updated rapidly by the operating system. In many systems, special hardware registers are, therefore, 
provided to point to the PCB of the currently executing process. Special machine instructions are 
also provided to quickly store the contents of CPU registers into the PCB and load them back from 
PCB to CPU registers. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 
 
 
 

 
 
 
 
 
 
 

 

  

  

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

104 Operating Systems 

4.8 PROCESS CREATION 

Operating systems that support the process concept must provide some means to create and 
destroy processes as needed to negotiate events during execution. A process cannot create itself, 
so a new process (child) must be created by another process (parent) following certain steps with 
the help of a system call. When a new process is created, the OS will assign it a unique process 
identifer (process-id and/or user-id), and this will also be entered as a new entry in the primary 
process table that contains one entry per process. The OS then allocates space (memory manage-
ment) for the process data block and process control block of the new process. If a process is cre-
ated by another process, the parent process will then provide all the needed values with regard to 
the newly created child process to the OS, including the sharing of address spaces, if there is any. 
All the felds in the PCB will then be initialized with appropriate values, and no resources (I/O 
devices and fles) are allocated unless explicitly requested for these resources. When the creation 
of the PCB is over, the PCB is then put on the ready list, and the system call returns. As soon as 
a new process is created, the respective scheduling queues must be modifed and updated. The 
other data structures associated with creation may be either created afresh or modifed or may 
even be expanded, if needed. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.9 PROCESS CREATION METHODS 

There are two main models of process creation: 

1. The classical method, fork/join/exec, as proposed by Conway in 1963, postulated three 
operating system primitive functions named fork, join, and quit, and later Dennis and Van 
Home defned a variant of them in 1966. 

2. The other model that modern systems use is a spawn command ( fork, CreateProcess, or 
other similar names). 

When the fork (label) command is executed, it results in the creation of a second process within 
the same address space as the original process, sharing the same program and all information, 
including the same variables. This new process then begins execution of the shared program at 
the statement with the specifed label. The original process executing fork continues its execution 
as usual at the next instruction, and the new processes then coexist and also proceed in parallel. 
Fork usually returns the identity of the child to the parent process to use it to henceforth refer to 
the child for all purposes. When the process terminates itself, it uses the quit() instruction, and 
consequently, the process is destroyed, its process control block is erased, and the memory space is 
released. The join (count) instruction is used by a parent process to merge two or more processes 
into a single one for the sake of synchronization with its child (children). At any instant, only one 
process can execute the join statement (system call), and its execution cannot then be interrupted: 
no other process is allowed to get control of the CPU until the process fnishes executing. This 
is one major strategy that a code segment implements in order to install mutual exclusion (to be 
discussed later). 

Modern systems use the spawn command ( fork, CreateProcess, or other similar names) 
that creates a child process in a separate address space for execution, thereby enabling every 
child and sibling process to have its own private, isolated address space. This, however, also 
helps the memory manager to isolate one process’s memory contents from others. Moreover, 
the child process also ought to be able to execute a different program from the parent, and this 
is accomplished by using a mechanism (usually the new program and arguments are named 
in the system call) that enables the child to redefine the contents of its own address space. 
A new process is thus created, and that program now runs directly. One of the drawbacks of 

http://www.routledge.com/9781032467238


Processor Management 105  

 
 
 

 

 
 
 

 

 

 

 
 

 
 

 
 

 
 
 
 

 

 

 

 

this model is that any parameters of the child process’s operating environment that need to be 
changed should be included in the parameters to spawn, and spawn has its own standard way 
to handle them. There are, of course, other ways to handle the proliferation of parameters to 
solve this problem. 

An important difference between the two systems is that while spawn creates a new address space 
derived from the program, the fork call must create a copy of the parent address space. This can be waste-
ful if that address space will be deleted and rewritten after a few instructions. One solution to this problem 
may be a second system call, vFork, that lets the child process use the parent’s memory until an exec is 
made. We will discuss other systems to mitigate the cost of fork when we talk about memory management. 
However, which model is “better” is an open issue. The tradeoffs here are fexibility vs. overhead, as usual. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 
A case study showing the creation of cooperating processes by using fork, join, and quit is given on 
the Support Material at www.routledge.com/9781032467238. 

A case study showing the mechanisms in process creation in UNIX is given on the Support 
Material at www.routledge.com/9781032467238. 

4.10 PROCESS HIERARCHY AND DAEMON PROCESSES 

A process (parent) can create one or more other processes, referred to as child processes, and each child 
process has exactly one parent process. Whenever a process spawns a child, a leaf node is added to the 
tree, and the child process is then identifed and named by its pid, which is then given to the respec-
tive parent. The initial process is the root of the tree of all processes. The child process also, in turn, 
can create their own child processes, and in this way, an original process can build up an entire tree of 
children, grandchildren, and further descendants, giving rise to a process tree structure. In a multiple-
process operating system, this hierarchy is implicitly defned among the set of processes to implement 
the environment. In fact, the basis of the hierarchy evolves from the process-creation mechanism. The 
community of processes present in the hierarchy are, however, agreed on certain basic tasks. 

Daemon Process: In a large system, each user may have several active processes at any instant, 
and there may be hundreds or even thousands of processes running at any point in time. In fact, on 
most single-user workstations, even when the user is absent, dozens of background processes are 
running. These processes are called daemons and are started automatically as soon as the system 
is booted. 

For more details about this topic, and also about daemon processes, see the Support 
Material at www.routledge.com/9781032467238. 

4.11 PROCESS SWITCH: CHANGE OF PROCESS 

The traditional multiprogramming/multitasking operating systems are mostly event-driven, and 
while responding to various system events, the OS may take actions that cause changes in pro-
cess states. For example, at any instant, a running process may be interrupted for some reason, 
and the operating system then assigns another process to the run state and transfers control over 
to that process. Such a transition from one memory-resident process to another in a multitasking 
system is called a process switch or task switch and may eventually lead to reassignments of system 
resources, including reallocation of the processor. 

A process switch is not unusual; rather it may be triggered at any time in response to events 
that change system state. When such an event occurs, the intervention of the operating system is 
required, and execution control is then transferred to the operating system, and an operating system 
program is executed to process the event. It is important to note that although servicing of the event 
that caused the change in state to happen often takes place at this point, it is a different issue and 
is generally not considered a part of the process switch. However, the activities involved in process 
switching are quite complex and sometimes require a joint effort of both hardware and software. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

  

 

 

 

 

 

 

 
 
 

 

 
 

 

106 Operating Systems 

Since the currently running process is to be moved to another state (ready, blocked, etc.), the 
operating system must make substantial changes in the global environment to effect this state transi-
tion, mostly involving the execution of the following steps: 

• Save the context of the processor, including the program counter and other registers into 
the user stack. 

• Modify and update the process control block of the currently running process, and change 
the state of this process to one of other states, ready, blocked, ready-suspend, or exit. Other 
relevant felds must also be updated, including the reason for leaving the running state and 
other accounting information (processor usage). 

• Move the PCB of this process to the appropriate queue (ready, blocked on event i, ready-
suspend, etc.). 

• Select another process for execution based on the policy implemented in the process sched-
uling algorithm, which is one of the major design objectives of the operating system. 

• Update the process control block of this process thus scheduled, including changing the 
state of this process to running. 

• Update memory-management data structures. This may be required depending on how the 
address translation mechanism is implemented. This topic is explained in Chapter 5. 

• Restore the context of the processor to the state at the time the scheduled process was last 
switched out of the running state by way of loading the previous values of the program 
counter and other registers. 

• Finally, the operating system initiates a mode switch to reactivate the user space and sur-
renders control to the newly scheduled process. 

It is now evident that process switching causing a change in state is considerably complex and 
time-consuming and, above all, requires substantial effort to carry out. Minimizing time con-
sumption and thereby increasing the effciency of process switching is thus considered one of 
the major design objectives of a process-based operating system that, in turn, requires additional 
hardware and its supported structure. To make this activity even faster, an innovative special 
process-structuring technique, historically called a thread, was introduced, which will be dis-
cussed later. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.12 CONTEXT SWITCH: CHANGE OF CONTEXT 

During the tenure of program execution, if an interrupt occurs or if an interrupt is pending, the 
control of execution will be immediately forced to transfer from the currently running process to a 
service routine (ISR) appropriate to that interrupt. Since control will once again be given back to 
the interrupted program after the interrupt request is serviced, the processor must do the following 
before attempting to service an interrupt: 

• It saves the context of the current program being executed. 
• It saves the current value of the program counter before reloading the program counter 

with the starting address of an interrupt handler program that ultimately calls the interrupt 
service routine (ISR). 

The elements that constitute the context of the current program that must be preserved are only 
those that may be modifed by the ISR, and, when restored, they will bring back the machine to the 
same state as it was in just prior to the interrupt. Usually, the context is assumed to mean the con-
tents of all processor registers and status fags and maybe some variables common to both the inter-
rupted program and ISR, if any. The mechanism involved in changing context from an executing 

http://www.routledge.com/9781032467238


Processor Management 107  

 

 

program to an interrupt handler is called the context switch. Since the interrupted program is not 
at all aware of the occurrence of the interrupt, nor does it have any idea of the machine context that 
may be modifed by the ISR during its execution, the ISR is entirely entrusted with the responsibility 
of saving and restoring the needed context of the preempted activity. Context switching is mostly 
hardware-centric; the save/restore operation is, no doubt, much faster than its counterpart, the soft-
ware approach. But, whatever approach is considered, context switching is comparatively less costly 
and much faster than its counterpart, process switching, which is considerably more complex and 
also more expensive. Linux’s well-tuned context switch code usually runs in about 5 microseconds 
on a high-end Pentium. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.13 PROCESS-BASED OPERATING SYSTEMS 

When an operating system is designed based on the different services it can render, each service 
essentially consists of one or a set of fundamental activities (process) that can be realized when 
one or a set of instructions (program) is executed. This approach, when implemented at the time of 
designing and developing an operating system, ultimately yields a process-based operating system. 
Each process or set of related processes gives rise to some sort of service that the user needs. In 
fact, the operating system can be conceived of as a collection of such system processes (programs) 
or activities in order to drive the machine on behalf of the user as well as to fulfll the user’s other 
requirements when a user starts interacting with the system. 

The design disciplines in this regard always encourage modular concepts in organizing the pool 
of services obtained from processes that, in turn, additionally require clean interfaces between the 
modules. That is why some of these system processes and the related software are usually kept 
resident in the core kernel and executed in supervisor or kernel mode. Other system processes that 
reside outside the kernel are executed in user mode, similar to a user process (program). Yet there 
exists a small amount of code, such as process-switching/context-switching code, that may be out-
side of any process when executed. Figure 4.4 illustrates a representative scheme of such a design 
of an operating system. 

In addition, some other processes relating to a few non-critical services, such as performance 
monitoring and statistical information processing, as often conducted by the operating system, are 
conveniently kept as separate processes. Since the programs related to these processes do not pro-
vide any particular service to an active user process, they can be invoked and run only by the oper-
ating system and can be interleaved with other processes under dispatcher control via the available 
interfaces. Implementation of the operating system as a set of such predefned processes exhibits 
some distinct advantages when used in a multiprocessor or multicomputer environment in which 
some of these operating-system processes (services) can be migrated to dedicated processors for the 
sake of performance improvement. 

FIGURE 4.4 Different operating system services (functions) execute as separate processes used in the 
design of the generic operating systems. 

http://www.routledge.com/9781032467238


 

 

 

 

  

  
 
 
 

  
 
 

108 Operating Systems 

4.14 THREADS: AN ALTERNATIVE APPROACH 

Operating systems, while defned and designed in terms of processes, have several merits in which 
the process is considered a fundamental unit of dispatch, and certain processes are also addition-
ally entrusted as owners of resources to control. This approach is also found especially suitable in 
multiprocessor or multicomputer environments in which some of the operating-system services 
(processes) can be shipped out to dedicated processors, thereby substantially improving system 
performance as a whole. But one of the major drawbacks of this process concept lies in process 
switching in which the activities involved in saving/restoring all the information of the currently 
executing process, including the resources under use, is quite complex and also expensive and even-
tually leads to huge overhead in relation to processor time consumption. This overhead, however, 
can be reduced if the resource-related overhead can be avoided, and this is possible if the currently 
executing process and the process to which control will be switched belong to the same application. 
In that situation, both processes share the same code, data, and resources; the state information of 
the two processes will then differ very little, only in the contents of CPU registers and stacks they 
are using that need to be saved/restored. 

In fact, this approach places a strong demarcation between the two independent characteristics of 
process as already mentioned, as the unit of dispatch and ownership of resources. The portion of the 
process that characterize the process as unit of dispatch is then referred to as a thread or lightweight 
process, and the other portion of the process that demonstrates the process as unit of resource 
ownership (such as memory and fles) is still being referred to as process or task. A thread can then 
be more specifcally defned as an instance of a program in execution that uses the resources of a 
process. The ownership of any subset of resources can be attached to a process, but typically, at 
least, the processor state may be associated with each of the process threads in operating systems 
that support threads or “daughter” processes. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.14.1 INTRODUCTION TO THREADS 

The motivation of the thread model is mainly to defne a thread as an alternative form of sched-
ulable unit of computation to the traditional notion of process. In this model, the process is still 
an OS abstraction that can allocate various resources, yet it has no component that can execute 
a program. In fact, a thread is an entity executed sequentially using its program, and the other 
resources that are offered by its associated process create the environment for the execution 
of threads. This is depicted in Figure 4.5. We sometimes thus use the phrases “thread(s) of a 
process” and “parent process of a thread” to describe the relationship between a thread and its 
respective related process. Threads often incorporate some of the functionalities associated with 
processes. 

A thread is said to be a dispatchable unit of work with a single path of execution within a pro-
gram. It is a part of a program. If a program has more than one part that can be run independently of 
each other, the program can then be logically divided into more than one part through threads and is 
then said to have multiple threads with individually separated independent paths of execution. The 
creation of many threads to execute a program appears to be more advantageous than creating many 
processes to execute the same program. One of its primary advantages is that of low overhead while 
switching the CPU from one thread to another of the same process. However, the resource state is 
switched only when switching between threads of different processes occur. A thread runs in the 
same address space of the program of which it is a part. Threads are interruptible so that the proces-
sor can turn to another thread at the right point in time. The concept of scheduling and dispatching 
threads is equivalent to a process on most other operating systems. 

The thread approach refnes and divides the work normally associated with a process because 
there can be several threads, known as sibling threads, associated with a process. These threads 

http://www.routledge.com/9781032467238


Processor Management 109  

 

 

 
 
 
 

 
 

 
 

 
 

 FIGURE 4.5 A schematic view of the thread concept and its relationship with its parent process. 

share the program and resources of that process, thereby causing a reduction in state. In thread-
based systems, a process with exactly one thread is equivalent to a traditional process. Each thread 
belongs to exactly one process, and no thread can exist outside a process. Here, processes or tasks 
are static and correspond to passive resources, and only threads can be scheduled to carry out 
program execution with the processor. Since all resources other than the processor are managed 
by the parent process, switching between related threads is fast and quite effcient. But switching 
between threads that belong to different processes incurs the full process-switch overhead as usual. 
However, each thread is characterized by the following (against the characteristics that are usually 
found associated with each process): 

• The hardware state: Each thread must have a minimum of its own allocated resources, 
including memory, fles, and so on, so that its internal state is not confused with the inter-
nal state of other threads associated with the same process. 

• The execution state: Similar to a portion of the traditional process’s status information 
(e.g. running, ready, etc.). 

• A saved processor context: When it is not running. 
• A stack: To support its execution. 
• Static storage: To store the local variables it uses. 
• OS table entries: Required for its execution. 

When compared to new process creation and termination of a process, it takes far less time to 
create a new thread in an existing process and also consumes less time to terminate a thread. 
Moreover, thread switching within a process is much faster than its counterpart, process switch-
ing. So, if an application can be developed as a set of related executable units, it is then far more 
effcient to execute it as a collection of threads rather than as a collection of separate processes. 
In fact, the existence of multiple threads per process speeds up computation in both uniproces-
sor as well as in multiple-processor systems, particularly in multiprocessor systems, and also 
in applications on network servers, such as a fle server that operates in a computer network 



 

 
 
 
 

  
 

  

 

110 Operating Systems 

FIGURE 4.6 A broad view of an implementation and managing of virtual–terminal session windows on a 
physical terminal using thread paradigm. 

built on a multicomputer system. Threads also provide a suitable foundation for true parallel 
execution of applications on shared-memory multiprocessors. Other effective uses of threads are 
found in communication processing applications and transaction processing monitors. Here, the 
use of threads simply makes the design and coding of these applications much easier to realize 
that subsequently perform servicing of concurrent requests. The thread paradigm is also an ideal 
approach for implementing and managing virtual terminal sessions in the context of a physical 
terminal, as shown in Figure 4.6, that are now widely used in contemporary commercial window-
ing systems. 

In fact, threads exhibit a compromise between two different philosophies of operating system 
implementations: (i) conventional heavy state-laden process-based operating systems that offer 
adequate protection but can impair real-time performance, as observed in UNIX, and (ii) lean and 
fast real-time operating systems that sacrifce protection for the sake of time-critical performance. 
Threads provide, on one hand, the benefts of speed and sharing to related threads that constitute 
a single application, but on other hand, also offer full protection while communicating with one 
another in different applications. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.14.2 CONVENTIONAL THREAD STATES 

Since threads and processes are analogous except that threads do not have resource ownership, the 
different states that a thread may go through in its lifetime and the related transitions of these states 

http://www.routledge.com/9781032467238


Processor Management 111  

 
 

    

 

 
 
 
 
 
 
 

 

 
 

 

 
 
 
 

  

 

are also analogous to process states and process state transitions, respectively. The different states 
that a thread may go through are: 

• Ready state : When the thread is waiting for its turn to gain access to the CPU for execution. 
• Running state : A thread is said to be in the running state when the CPU is executing it. 

This means that the code attached to the thread is getting executed. 
• Waiting state : A thread is said to be in the waiting state if it was given a chance to execute 

but did not complete its execution for some reason. It may choose to go to sleep, thereby 
entering a sleeping state. The other possibility may be that some other thread suspends the 
currently running thread. The thread now enters a suspended state. Suspending the execu-
tion of a thread is deprecated in new versions. 

• Dead state : When the thread has fnished its execution. 

Similar to a process scheduler, a thread scheduler in the more traditional model switches the proces-
sor (CPU) among a set of competing threads, thereby making a thread undergo its different states. 
In some systems, the thread scheduler is a user program, and in others, it is part of the OS. Since 
threads have comparatively few states and less information needs to be saved while changing states, 
the thread scheduler has a lower amount of work to do when actually switching from one thread to 
another than what is required in process switching. Hence, one of the important motivations in favor 
of using threads is the reduced context-switching time that enables the processor to quickly switch 
from one unit of computation (a thread) to another with minimal overhead. In addition, the thread 
manager also requires a descriptor to save the contents of each thread’s registers and associated stack. 

4.14.3 SINGLE-SHOT THREADS 

A single-shot thread can have only three different states: ready, running, and terminated. When it is 
ready to run, it enters the ready state. Once it gets CPU time, it enters the running state. If it is preempted 
by a higher-priority thread, it can go back to the ready state, but when it is completed, it enters the ter-
minated state. Conventional threads, however, have an extra state, the waiting state, which means that a 
conventional thread can yield the processor and wait for its time or for an event to occur. Since a single-
shot thread has no waiting state, the closest thing it can do is make sure that it can be restarted before it 
terminates when it gets its time or an event occurs. Single-shot threads are well suited for time-critical 
systems where one wants to create a schedule offine. They can be implemented using very little RAM 
and are therefore often used in small systems. In fact, a single-shot thread behaves much like an ISR: 
something starts it; it is preempted by higher-priority interrupts; and when it is fnished, it terminates. 

4.14.4 TYPES OF THREADS 

Threads can be classifed into two distinct categories, kernel threads that are managed and sched-
uled by the kernel and user threads are managed and scheduled in user space. Whenever we use the 
term thread, it refers to kernel threads, whereas the term “fber” is sometimes used to refer to user 
threads. While threads are scheduled preemptively, some operating systems provide a variant to 
threads, fbers, that are scheduled cooperatively. On operating systems that do not provide fbers, an 
application may implement its own fbers using repeated calls to worker functions. Since fbers are 
normally scheduled cooperatively, a running fber must explicitly “yield” to allow another fber to 
run. A fber can be scheduled to run like any thread in the same process. 

4.14.4.1 Kernel-Level Threads 
Some OS kernels support the notion of threads and implement kernel-level threads (KLTs). There 
are specifc system calls to create, terminate, and check the status of KLTs and manipulate them 



 

 
 
 
 
 
 
 

 
 

 

 

112 Operating Systems 

FIGURE 4.7 A schematic approach of the mechanism of kernel-level threads scheduling used in the design 
of thread–based operating systems. 

in ways similar to those done with processes. Synchronization and scheduling may be provided by 
the kernel. 

To create a new KLT, a process issues a system call, create_thread, and the kernel then assigns 
an id to this new thread and allocates a thread control block (TCB) which contains a pointer to the 
PCB of the corresponding process. This thread is now ready for scheduling. This is depicted in 
Figure 4.7. 

In the running state, when the execution of a thread is interrupted due to the occurrence of 
an event, or if it exceeds the quantum, the kernel then saves the CPU state of the interrupted 
thread in its TCB. After that, the scheduler considers the TCBs of all the ready threads and 
chooses one of them to dispatch. It does not have to take into account which process the selected 
thread belongs to, but it can if it wants to. The dispatcher then checks whether the chosen thread 
belongs to a different process than the interrupted thread by examining the PCB pointer in the 
TCB of the selected thread. If so, the process switch occurs, the dispatcher then saves all the 
related information of the process to which the interrupted thread belongs and loads the con-
text of the process to which the chosen thread belongs. If the chosen thread and the interrupted 
thread belong to the same process, the overhead of process switching is redundant and hence 
can be avoided. 

4.14.4.1.1 Merits and Drawbacks 
As the KLT is similar to a process, with the exception that it contains less state information, the 
programming for threads is thus almost no different from programming for processes. Moreover, 
this similarity facilitates assigning multiple threads within the same process on different proces-
sors in a multiprocessor system and can then be executed simultaneously on different processors, 
which eventually gives rise to a true parallel execution. This form of parallelism cannot be obtained 
with the use of user-level threads (ULTs). However, the similarities of the thread’s characteristics 
with those of the process invite the same inherent problems: switching between threads requires 
the intervention of the kernel and requires substantial overhead even if the departing thread and 
the selected incoming thread belong to the same process. In fact, KLTs have more overhead in the 
kernel (a kernel thread control block) and also have more overhead in their use (manipulating them 
requires a system call). However, the abstraction is cleaner (threads can make system calls indepen-
dently). Examples include Solaris lightweight processes (LWPs) and Java on machines that support 
kernel threads (like Solaris). 



Processor Management 113  

 
 

 
 

 

 
 

  
 

 
 
 

 

Many modern operating systems directly support both time-sliced and multiprocessor threading 
with a process scheduler. The OS kernel, however, also allows programmers to manipulate threads via 
the system call interface. Some implementations are called a kernel thread, whereas a lightweight pro-
cess is a specifc type of kernel thread that shares the same state and information. Absent that, programs 
can still implement threading by using timers, signals, or other methods to interrupt their own execution 
and hence perform a sort of ad-hoc time-slicing. These are sometimes called user-space threads. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.14.4.2 User-Level Threads (Fibers) 
User-level threads are implemented by a thread library, which is linked to the code of a process and 
hence are implemented entirely in user space. The programmer of the thread library writes code 
to synchronize threads and to context switch them, and they all run in one process. The operating 
system (kernel) is completely unaware of ULTs; it can only see the process. The scheduler works on 
processes and hence takes into account the PCBs and then selects a ready process; the dispatcher 
fnally dispatches it for execution. 

To create a user-level thread, a process invokes the library function create_thread that also 
creates its TCB, and the new thread is now ready for scheduling. The TCBs of all the threads 
are mapped onto the PCB of the corresponding process by the thread library, as shown in 
Figure 4.8. In the running state, if the thread invokes a library function to synchronize its func-
tioning with other threads, the library function performs scheduling and then switches to another 
targeted thread of the process. This gives rise to a thread switch. Thus, the kernel is oblivious and 
remains outside the switching activities between threads but is totally aware that the process is 

FIGURE 4.8 An overview of user-level threads and its scheduling approach used in the design of thread– 
based operating systems. 

http://www.routledge.com/9781032467238


 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 
 

 

 
 
 
 
 

114 Operating Systems 

continuously in operation. If the thread library cannot fnd a ready thread in the process, it makes 
a system call to block itself. The kernel now intervenes and blocks the process. The process will be 
unblocked only when an event occurs that eventually activates one of its threads and will resume 
execution of the thread library function, which will now perform scheduling and switch to the 
execution of the newly activated thread. As the OS treats the running process like any other, there 
is no additional kernel overhead for ULTs. However, ULTs only run when the OS schedules their 
underlying process. 

The thread library code is a part of each process that maps the TCBs of the threads into the PCB 
of the corresponding process. The information in the TCBs is used by the thread library to schedule 
a particular thread and subsequent arrangement for its execution. This is depicted in Figure 4.8. The 
scheduling algorithm can be any of those described in process scheduling, but in practice, round-
robin and priority scheduling are most common. The only constraint is the absence of a clock to 
interrupt a thread that has run too long and used up the process’s entire quantum. In that situation, 
the kernel will select another process to run. However, while dispatching the selected thread, the 
CPU state of the process should be the CPU state of the thread, and the process-stack pointer should 
point to the thread’s stack. Since the thread library is a part of a process, the CPU executes in non-
privileged (user) mode; hence, the loading of the new information into the PCB (or PSW) required 
at the time of dispatching a thread demands the execution of a privileged instruction (to change user 
mode to kernel mode) by the thread library in order to change the PCB’s (or PSW’s) contents and 
also to load the address of the thread’s stack into the stack address register. It then executes a branch 
instruction to transfer control to the next instruction of the thread. The execution of the thread now 
starts. 

User-level threads replicate some kernel-level functionality in user space. Examples of user-level 
thread systems are Nachos and Java (on operating systems that do not support kernel threads). In the 
case of handling Java threads, JVM is used, and the JVM is typically implemented on the top of a 
host operating system. JVM provides the Java thread library, which can be linked with the thread 
library of the host operating system by using APIs. The JVM for the Windows family of operating 
systems might use Win32 API when creating Java threads, whereas Linux, Solaris, and Mac OS X 
systems might use the pthreads API which is provided in the IEEE POSIX standard. 

4.14.4.2.1 Merits and Drawbacks 
Since the thread library is in charge of setting up thread implementation, including thread syn-
chronization and scheduling, it keeps the kernel set aside, thereby avoiding the related overhead 
in the execution of needed system calls. That is why the thread switching overhead is far less 
than that of KLTs. This arrangement also enables each process to use a scheduling policy that 
best suits its nature. For example, a process implementing a multi-threaded server may perform 
round-robin scheduling on its threads, whereas a process implementing a real-time application 
may use priority-based scheduling on its threads to attain one of its major goals of response-time 
requirements. 

But this arrangement has a few inherent drawbacks while managing threads without involv-
ing the kernel. First of all, since the kernel is unaware of the distinction between a thread and 
a process, if a thread were to be blocked by a system call (kernel action), the kernel would then 
block its parent process that would ultimately block all threads belonging to that process, irre-
spective of the fact that some other threads in the parent process may be in the ready state that 
could be scheduled. In order to avoid this situation, an OS would have to make adequate arrange-
ment so that a non-blocking version of each system call is available that would otherwise make 
a process non-blocked. Second, since the kernel schedules a process, and the thread library 
schedules the threads within a process, it must ensure that at most one thread of a process would 
be in operation at any instant. Thus, a user-level thread cannot provide parallelism, and even the 
concurrency provided by them is also adversely impacted if a thread makes a system call that 
leads to blocking. 



Processor Management 115  

 
 
 
 

 

 
 
 
 
 

 
 

 

4.14.4.3 Hybrid Thread Models 
A hybrid thread model consists of both user-level and KLTs and an associated mechanism that involves 
both user-level and KLTs. Different methods of associating user-level and KLTs give rise to different 
combinations of the low switching overhead of ULTs and the high concurrency and parallelism of KLTs. 
Three methods of association of user-level and KLTs are described here with their properties as follows: 

The thread library creates ULTs in a process and associates a (user) thread control block 
(UTCB) with each user-level thread. The kernel creates KLTs in a process and associates a 
kernel thread control block (KTCB) with each KLT. This is depicted in Figure 4.9, which 
shows different methods of associating ULTs with KLTs. 

In the many-to-one association method [Figure 4.9(a)], all ULTs created in a process by the thread 
library are associated with a single KLT which is created in each process by the kernel. This method of 
association provides a similar effect as in mere ULTs; ULTs can be concurrent without being parallel 
(since they are the smallest unit of computation), thread switching incurs low overhead, and blocking of 
a user-level thread leads to blocking of all threads in the process. Solaris initially implemented the JVM 
using the many-to-one model (the green thread library). Later releases, however, changed this approach. 

In the one-to-one association method [Figure 4.9(b)], each user-level thread is permanently 
mapped into a KLT. This method of association provides a similar effect as in mere KLTs. Here, 
threads can operate in parallel on different CPUs in a multiple processor system; however, switching 
between threads is performed at the kernel level and thus incurs high overhead. As usual, blocking 
of a user-level thread does not block other ULTs because they are mapped to different KLTs. For 
example, the Windows XP operating system uses the one-to-one model; therefore, each Java thread 
for a JVM running on such a system maps to a kernel thread. Beginning with Solaris 9 and onwards, 
Java threads, however, were mapped using the one-to-one model. 

The many-to-many association method [Figure 4.9(c)] is possibly the most advantageous one. 
This method produces an effect in which ULTs may be mapped into any KLT. Thus, it is possible 
to achieve parallelism between ULTs by mapping them into different KLTs, but the system can 
perform switching between ULTs mapped to the same KLT without incurring high overhead. Also, 
blocking a user-level thread does not block other ULTs of the process that are mapped into different 
KLTs. Of course, this method requires a complex mechanism that has been observed in the imple-
mentation of later versions of the Sun Solaris operating system and Tru64 UNIX. 

4.14.4.4 Threads and Fibers: Different Issues 
When we use the term thread, we refer to a kernel thread, whereas fber is used to refer to user 
threads. There are many different issues involved with these two types of threads. We have already 
discussed many of them in previous sections. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

PCB 

UTCBs 

KTCBs 
(a) 

PCB 

UTCBs 

KTCBs 
(b) 

PCB 

UTCBs 

KTCBs 
(c) 

FIGURE 4.9(a), (b), (c) Different methods of associating user-level threads with kernel-level threads in the 
design of thread–based operating systems: (a) Many-to-one, (b) One-to-one, (c) Many-to-many. 

http://www.routledge.com/9781032467238


 

 

 

 

 

 

 
 
 

116 Operating Systems 

4.14.5 THREADS: PRIORITY 

Thread priorities are set by an appropriate method belonging to the thread class and are used by 
the thread scheduler when deciding to release a thread to run. Thread priorities are integers that 
specify the relative priority of one thread to another. Usually higher-priority threads get more CPU 
time than lower-priority threads. Priority is used to decide when to context switch from one running 
thread to the next, and the rules that determine when to context switch are: 

• A thread can voluntarily release control by explicitly going to sleep. In such a case, all the 
other threads are examined, and the highest-priority ready thread is allocated to the CPU 
to run. 

• A higher-priority thread can preempt a running thread. In this case, as soon as the higher-
priority thread wants to run, it does. This is called preemptive multitasking. 

However, assignment of priority to threads at the right point in time has several uses and has an 
immense impact on controlling the environment in which the thread runs. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.14.6 MULTITHREADING 

In thread-based systems, a process with exactly one thread is equivalent to a classical process. Here, 
the relationship between threads and processes is one to one (1: 1), and each thread of execution is a 
unique process with its own address space and resources. An example system of this type is UNIX 
System V. If there are multiple threads within a single process, it is a many-to-one (M:1) relation-
ship, and the process defnes an address space and dynamic resource ownership. Multiple threads 
may be created and executed within that process. Representative operating systems of this type are 
OS/2, MACH, and MVS (IBM large system). Other relationships, many-to-many (M:M) and one-
to-many (1:M), also exist. 

Breaking a single application into multiple threads enables one to impose great control over the 
modularity in that application and the timing of application-related events. From the job or appli-
cation point of view, this multithreading concept resembles and is equivalent to a process on most 
other operating systems. In brief, it can be said that: 

• The concept of multithreading facilitates developing effcient programs that result in the 
optimum utilization of the CPU, minimizing CPU idle time. 

• A multithreaded program contains two or more parts that can run concurrently. 
• Each part of such a program is a separate thread that defnes a separate path of execution. 
• Multithreading enables a single program to perform two or more tasks simultaneously. For 

example, a text editor can format text while it is engaged in printing as long as these two 
actions are being performed by two separate threads. 

Concurrency among processes can also be achieved with the aid of threads, because threads in 
different processes may execute concurrently. Moreover, multiple threads within the same process 
may be allocated to separate processors (multiprocessor system) and can then be executed concur-
rently, resulting in excellent performance improvement. A multithreaded process achieves concur-
rency without incurring the overhead of using multiple processes. As already mentioned, threads 
within the same process can exchange information through shared memory and have access to the 
shared resources of the underlying process. Windows NT supports multithreading. However, mul-
tiple threads can be executed in parallel on many other computer systems. 

Multithreading is generally implemented by time-slicing, wherein a single processor switches 
between different threads, in which case the processing is not literally simultaneous; the single 

http://www.routledge.com/9781032467238


Processor Management  117 

P 

Core 1 
Th1 Th3 Th1 Th3 Th1 Th3 Th1 Th3 Th1 …. 

Core 2 
Th2 Th4 Th2 Th4 Th2 

time 
Th4 Th2 Th4 Th2 …. 

  single core 

Th1 Th2 Th3 Th4 Th1 Th2 Th3 Th4 Th1 …. 
time 

FIGURE 4.9(d)  Interleaving of thread processing over time in uniprocessor operating systems. 

FIGURE 4.9(e)  Interleaving of thread processing over time in parallel execution on a multi-core uniproces-
sor operating systems. 

processor can only do one thing at a time, and this switching can happen so fast that it creates an 
illusion of simultaneity to the end user. For instance, if the PC contains a processor with only a 
single core, then multiple programs can be run simultaneously, such as typing in a document with 
a text editor while listening to music in an audio playback program. Though the user experiences 
these things as simultaneous, in reality, the processor quickly switches back and forth between these 
separate processes. 

Since threads expose multitasking to the user (cheaply), they are more powerful but even more 
complicated. Thread programmers have to explicitly address multithreading and synchronization. 

An object-oriented multithreaded process is an effcient means of implementing a server applica-
tion. For example, one server process can service a number of clients. Each client request triggers 
the creation of a new thread within the server. 

In a single processor chip with multiple computing cores (multicore), each core appears as a sepa-
rate processor to the operating system. With effcient use of these multiple cores, a multithreaded  
approach can be more effectively implemented that eventually yields overall improved concurrency.  
For example, consider an application with four threads. On a system with a processor with a single  
computing core, concurrency merely means that the execution of these threads will be interleaved  
over time, as the processing core is capable of executing only one thread at a time. This is illustrated  
in Figure  4.9(d). On a system with a processor with multiple cores, concurrency, however, means that  
the threads can run in parallel, as the system can assign a separate thread to each core that gives rise to  
parallel execution effciently. This situation is depicted in Figure  4.9(e). Programs can now be designed  
in a multithreaded pattern to take advantages of multicore systems to yield improved performance. 

4.14.7  THREADS  AND  PROCESSES: A C OMPARATIVE  OVERVIEW 

The concepts of a process and thread are interrelated by a sense of ownership and  containment. 
Processes in conventional multitasking operating systems are typically independent, carry  

considerable state information, have separate address spaces, and interact only through sys-
tem-provided interprocess communication mechanisms. Multiple threads, on other hand,  



 

 
 
 
 
 
 

  
 

 

 
 

 

  

   

118 Operating Systems 

typically share the state information of a single process and share memory and other resources 
directly but are able to execute independently. Context switching between threads in the same 
process is certainly faster than context switching between processes. Systems like Windows 
NT and OS/2 are said to have “cheap” threads and “expensive” processes. In other operating 
systems, not much of a difference can be observed. In Linux, there is truly no distinction 
between the concepts of processes and threads. However, multiple threads in Linux can be 
grouped together in such a way that one can effectively have a single process comprising mul-
tiple threads. 

A multithreading approach allows multiple threads to exist in a single process, and this model 
provides a useful abstraction of concurrent execution since the threads of the program lend them-
selves to realizing such operation. In fact, a multithreaded program operates faster on computer 
systems with multiple CPUs or CPUs with multiple cores or across a cluster of machines. In this 
situation, threads must be carefully handled to avoid race conditions and need to rendezvous 
(meeting by appointment) in time in order to process data in the correct order. Threads may also 
require atomic operations (often implemented using semaphores) in order to prevent common data 
from being simultaneously modifed or read while in the process of being modifed. Nevertheless, 
improper handling of threads may lead to critical situations with adverse effects. However, perhaps 
the most interesting application of this approach is that when it is applied to a single process on a 
multiprocessor system, it yields parallel execution. 

Operating systems generally implement threads in one of two ways: preemptive multithreading 
or cooperative multithreading. Preemptive multithreading is, however, generally considered supe-
rior, since it allows the operating system to determine when to make a context switch. Cooperative 
multithreading, on the other hand, relies on the threads themselves to relinquish control once they 
are at a stopping point. This can create problems if a thread is waiting for resource availability. The 
disadvantage to preemptive multithreading is that the system may make a context switch at an inap-
propriate time, causing priority inversion or other ill effects which may also be avoided by use of 
cooperative multithreading. 

Traditional mainstream computing hardware did not have much support for multithreading. 
Processors in embedded systems supporting real-time behaviors might provide multithread-
ing by decreasing the thread switch time, perhaps by allocating a dedicated register fle for 
each thread instead of saving/restoring a common register fle. In the late 1990s, the idea of 
simultaneous execution of instructions from multiple threads became known as simultane-
ous multithreading. This feature was introduced in Intel’s Pentium 4 processor with the name 
hyper-threading. 

4.14.8 THREAD IMPLEMENTATIONS 

There are many different incompatible implementations of threading. These include both kernel-
level and user-level implementations. User-level threads can be implemented without operating 
system support, although some operating systems or libraries provide explicit support for them. 
However, KLTs are differently implemented in different operating systems. Hybrid-level thread 
implementation also differ and depends mainly on the design strategy used in the development of 
the associated operating system, and these threads may be created either in kernel space or in user 
space. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.14.9 CASE STUDY: SOLARIS THREADS IMPLEMENTATIONS 

Solaris implements an uncommon multilevel thread mechanism to provide considerable fexibility 
in making use of processor resources. It exploits multithreaded architecture that makes use of four 
separate thread-related concepts: process, ULTs, LWPs, and KLTs. These four entities are related 

http://www.routledge.com/9781032467238


Processor Management 119  

 

 

 

 

 
 
 
 
 

 
 

 

  
 
 
 
 
 

 
 

to one another in many different fashions. Within a process, there may be one or more than one 
thread (multithreaded) connected in many different ways with one or more than one LWP of the 
corresponding process. An LWP within a process is visible to the application, and LWP data struc-
ture can be obtained from the respective process address space. Each LWP, in turn, is always bound 
to exactly one single dispatchable kernel thread, which is a fundamental computational entity, and 
the data structure for that kernel thread is maintained within the kernel’s address space. The kernel 
creates, runs, and destroys these kernel threads to execute specifc system functions. The use of 
kernel threads instead of using kernel processes to implement system functions eventually reduces 
the overhead of switching (thread switching is much faster and less costly than process switching) 
within the kernel. 

For more details about this topic with fgures, see the Support Material at www.routledge.com/ 
9781032467238. 

4.15 OBJECTS: OBJECT-ORIENTED CONCEPT 

The concept of objects was originally derived in simulation languages (such as Simula 67) where 
an object was conceived of as an autonomous entity (unit) to represent certain operations in those 
systems. A simulation program can be thought of as a collection of large number of these individual 
units of computation (objects), each of which performs small amounts of computations at a time 
and is closely correlated to sibling units of computation. Moreover, to defne and derive the nature 
of such a simulated unit of computation (object), the idea of class was introduced with an object to 
defne the behavior of the object, just as a program defnes the behavior of its related process. The 
defnition of a class includes certain facilities that an object enjoys while declaring its own data 
which are private to the class computation. Thus, a class behaves like an abstract data type that 
maintains its own state in its private variables. The simulation is then defned by specifying a set 
of class instances; the objects that are allowed to communicate with one another by way of only 
message passing. 

Objects were frst introduced in many user interface systems, such as: InterViews, which clearly 
illustrates the power of object-oriented programming. The growing popularity of object-oriented lan-
guages and their related programming has added a new dimension in the computing world that paved 
the way to design, develop, and implement operating systems by way of using objects. One such early 
implementation is the Spring operating system (Hamilton and Kougiouris). The object concept was 
gradually refned and upgraded over time and ultimately gave rise to contemporary object-oriented 
systems. Windows, in particular, draws heavily on the concepts of object-oriented design. Thus, the 
unit of a process model is now used to defne objects as an alternative schedulable unit of computa-
tion. Objects reacts only to messages, and once an object is created, other objects send it messages. 
The newly created object responds by performing certain computations on its internal private data 
and by sending other messages back to the original sender or to other objects. This approach facili-
tates the sharing of resources and data among processes and the protection of resources from unau-
thorized access. The objects can interface with the outside world by means of using only messages. 

In object-oriented design, an object is a distinct software unit that consists of one or more 
procedures and a collection of related items of data. These procedures are called services that 
the object provides, and the data associated with these services are called attributes of the 
object. Normally, these data and procedures are not directly visible outside the object; rather 
various well-defned interfaces exist that permit other software to gain access to the objects 
consisting of data and procedures. The data, sometimes called variables, are typically simple 
scalars or tables. Each such variable has a type, possibly a set of allowable values (constant or 
variable values). Access restrictions on variables may also be imposed on users, categories of 
users, or situations. The only way to access the data or to take any action on the data in a par-
ticular object is by invoking one of the underlying services (method) of the object. Hence, the 
data in the object can easily be protected from unauthorized or incorrect use (e.g. attempting to 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 
 

   
 

 
 
 
 
 
 

   

 
 

 
 
 
 
 

 

120 Operating Systems 

execute a non-executable piece of data). This property in the defnition of the object is known as 
encapsulation and offers two distinct advantages: 

• It not only protects the objects from any corruption but also safeguards against the types of 
problems that may arise from concurrent accesses, such as, deadlocks. 

• It hides the internal structure of the object so that interaction with the object is relatively 
simple and standardized. Moreover, since the object is modular in concept, if the inter-
nal structure or the procedures associated with an object are modifed without chang-
ing its external functionality, other objects are unaffected. This helps any modifcation or 
enhancement in the object-oriented design to be straightforward. 

If a process is represented by an object, then there will be one object for each process present in a 
system. Clearly, every such object needs its own set of variables. But if the methods (procedures) in 
the object are re-entrant procedures, then all similar objects, including every new object of a similar 
type, could share the same procedures but with its own set of variables. 

To avoid all such diffculties, the object class is redefned to make a distinction between 
object class and object instance. The defnition of object classis to project it as a template that 
defnes both the variables (attributes) and procedures (services) attached to a particular type of 
object. An object instance is an actual object that includes the characteristics of the class that 
defnes it. The instance contains values for the variables defned in the object class. The operat-
ing system can then create specifc instances of an object class as needed. For example, there 
is a single-process object class and one process object for every currently active process. This 
approach simplifes object creation and management. Objects can be defned separately both 
in terms of process and thread individually, giving rise to a process object and thread object. 
The characteristics of these objects are, of course, different and can be willfully exploited 
when implemented in the design and development of operating systems using both processes 
and threads. 

Object-oriented concepts are becoming increasingly important in the design and development 
of operating systems. The object-oriented structure assists in the development of a general-purpose 
process facility to provide support for a variety of operating system environments. Objects defne 
another mechanism to specify the behavior of a distributed system of computational units. This is 
done by specifying the behavior of individual units of serial computation and the model by which 
they are coordinated when they execute. Specialized support for the object model enables tradi-
tional sequential programmers to achieve a strong intuition about distributed computing. This help 
programmers take advantage of contemporary multiprocessors and also clusters of interconnected 
computers. 

4.15.1 CASE STUDY: WINDOWS NT IMPLEMENTATION 

Windows NT a representative operating system that makes extensive use of object-oriented 
techniques using objects defned in terms of both traditional process and contemporary threads. 
However, Windows NT is not a full-fedged object-oriented operating system. It is not really imple-
mented in an object-oriented language and also does not support some common object-oriented 
capabilities, such as inheritance (parent–child relationship) or polymorphism. Data structures that 
reside completely within one executive component are not represented as objects. Nevertheless, NT 
illustrates the power of object-oriented technology and represents the increasing trend towards the 
use of this technology in operating system implementations. In spite of all these reasons, we have 
still used it as an example only to demonstrate how the object concept can be built up while main-
taining its relationship with the existing process and thread approach at the time of its realization. 

For more detailed description of this topic with related fgures, see the Support Material at www. 
routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 121  

 

  

 

 

 

  
 
 

 
 
 
 
 

4.16 PROCESS SCHEDULING (UNIPROCESSOR): TIME MANAGEMENT 

By the term scheduling, we refer to a set of defned policies and suitable mechanisms to imple-
ment these policies built into the operating system that determines the order in which the work is 
to be performed by a computer system or by the way the computer will be used. Different types 
of scheduling, as already discussed in Chapter 2, are encompassed with different units of work. In 
many operating systems, this scheduling activity, apart from I/O scheduling, comprises three sepa-
rate functions: long-, medium-, and short-term scheduling. The long-term scheduler executes rather 
infrequently and selects a job from a batch of jobs (hold state) to be loaded into memory (ready 
state) for execution. Once the job scheduler has moved a job, it creates one or more processes for this 
job. In a multiprogrammed operating system, more than one such job may be present in memory at 
a time, and hence, many such processes may share the CPU using time-multiplexing. The medium-
term scheduler is executed somewhat more frequently to make a swap-in decision. The short-term 
scheduler (process scheduler), also known as dispatcher or low-level scheduler, executes most fre-
quently, as the name suggests, and makes fne-grained decisions that govern the order of execution 
of runnable processes in memory. This module decides which process in the pool of ready processes 
in the memory gets a processor and when and for how long in accordance with a chosen set of 
criteria to optimize one or more aspects of system behavior. The process scheduler thus attempts 
to handle microscopic scheduling, the dynamic assignment of processor to process associated with 
each scheduled job. In this section, we will focus only on different aspects of process scheduling 
(processor scheduling) that is mostly carried out by a short-term scheduler. 

In a batch processing environment, the scheduling algorithm is very simple: just run the next job. 
In a multiprogramming environment, multiple programs are waiting for service along with back-
ground jobs which are also active. Hence, scheduling algorithms will always try to achieve a target 
with certain decisions based on underlying policy and not provide only a suitable mechanism. The 
process scheduler must perform the following functions: 

• Keeping track of the status of the process (all processes are either running, ready, or 
blocked). The module that performs this function is called the traffc controller. 

• Deciding which process gets a processor: when and for how long. This is performed by the 
processor scheduler. 

• Allocation of the processor to a process. This requires resetting of processor registers to 
correspond to the process’s correct state and is performed by the traffc controller. 

• Deallocation of the processor, such as when the running process exceeds its current 
quantum (time-slice) or must wait for I/O completion. This requires that all processor 
state registers be saved to allow future reallocation. This task is performed by the traffc 
controller. 

Based on certain pre-defned sets of criteria, the short-term scheduler thus always attempts to maxi-
mize system performance by switching the state of deserving processes from ready to running. It is 
invoked whenever an event (internal or external) occurs that may eventually change the global state 
of the system. For any such change, the currently running process may be interrupted or preempted 
in favor of other existing processes, and then the next deserving process is scheduled to run. Some 
of the events that force changes in global system states and thereby require rescheduling include 
the following: 

• Clock ticks: clock–time–base interrupts 
• I/O interrupts and I/O completion 
• Operating-system calls 
• Sending and receiving of signals 
• Interactive program activation 



 

   

 
 
 

 
 
 

  

122 Operating Systems 

In general, whenever one of these events occurs, the short-term scheduler is invoked by the oper-
ating system to take action, mostly to schedule another deserving process with allocation of the 
CPU for execution. The responsibilities the short-term scheduler performs in coordination with 
the activities of the other two schedulers while providing process-management OS services have 
already been discussed in Chapter 2 and hence are not repeated here. 

4.16.1 SCHEDULING CRITERIA: SHORT-TERM SCHEDULER 

The scheduling mechanism is the part of the process manager whose main objective is to control 
and allocate the processor in such a way as to maximize system performance on the basis of a par-
ticular strategy. The strategy to be employed is infuenced by certain established criteria that deter-
mine several dimensions of design objectives. There are numerous competing goals (criteria) in this 
regard that scheduling policies aim to fulfll. These criteria can even be viewed as being classifed 
into several distinct but interrelated dimensions. Those are: 

User-oriented criteria relate to the behavior of the system that directly affects the individual 
user or process. One such example is response time in interactive systems. 

System-oriented criteria emphasize effective and effcient use of the CPU. An example of this 
category is throughput, which is the rate at which processes are completed. 

Performance-related criteria focus on quantitative yield by the system and generally can be 
readily measured. Examples include response time and throughput. 

Non-performance-related criteria are qualitative in nature and cannot readily be measured or 
analyzed. An example of this category is predictability. 

However, all these dimensions can be summarized together in the following various criteria that can 
be used as a guideline in designing a well-defned policy: 

• Performance-Related Criteria 
• System-Oriented: Throughput, processor utilization (effciency) 
• User-Oriented: Response time, turnaround time, deadlines 

• Other Criteria 
• System-Oriented: Fairness, waiting time, priority, resource utilization 
• User-Oriented: Predictability 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

4.16.2 SCHEDULER DESIGN 

The scheduler is concerned with deciding on policy, not providing any mechanism. Scheduler 
design should start by setting a goal to be achieved. This requires selection of one or more primary 
performance criteria, as already described, and placing them in a relative order of preference. Based 
on this selected set of criteria, the scheduling policy/strategy is to be designed to maximize per-
formance. The scheduling algorithms thus implemented are mostly based on heuristic techniques 
that could offer only good or near-optimal performance. Schedulers thus developed always tend 
to maximize the average performance of a system relative to a particular criterion. However, the 
worst-case scenario and controlling variance in performance should also be taken into account. For 
example, a user experiencing a 10-minute turnaround time for their simple batch job is frustrated 
even if they know the system’s average turnaround time is below 5 minutes. 

Unfortunately, no policy with a set of selective performance criteria is truly fair. But as the 
amount of available CPU time is, after all, fnite, it can be shown (Kleinrock, 1975–1976) that any 
attempt to improve performance for one class of job (processes) is always at the expense of degraded 

http://www.routledge.com/9781032467238


Processor Management 123  

 
 
 

 
 
 
 
 
 
 

  

 
 
 
 
 

 
 
 
 

   

 

performance for some other class. Moreover, giving one user more means giving other users less. At 
best, there can be a reasonable distribution of CPU time with a target of the attainment of a desired 
goal. There is certainly no other way out. 

While a scheduling policy aims to fulfll several competing goals (criteria), some of these criteria 
are observed to be opposing one another. For example, to minimize response time for interactive 
users, the scheduler should try to avoid running any batch jobs during prime daytime even if there is 
a tremendous fow in incoming batch jobs. The batch users probably will not be happy with this algo-
rithm; moreover, it violates the turnaround criterion. Another example is that while increased proces-
sor utilization is achieved by increasing the number of active processes, this, in turn, causes response 
time to decrease. The design approach varies from one environment to another, and a careful balance 
of all these conficting requirements and constraints is needed to attain the desired goal appropriate 
to the specifc environment. For example, the design objectives of a batch system environment will 
focus more on providing an equitable share of processor per unit time to each process (user) or better 
throughput and increased resource utilization. Multi-user systems are usually designed with more 
emphasis on minimizing terminal response time, while real-time operating systems favor a focus on 
the ability to quickly handle bursts of external events responsively to meet certain deadlines. 

4.16.3 SCHEDULING MECHANISMS 

Process scheduling is a mechanism that, on the basis of an already-defned policy in accordance 
with a set of chosen criteria, selects a particular process from a list of ready processes in memory 
(in a multitasking operating system) and then allocates CPU time to run it using time-multiplexing. 
Processes generally alternate between a computing burst during which they are in the domain of the 
process scheduler and an I/O burst while invoking an I/O operation during which they are in a wait 
list. When a process invokes an I/O operation, the CPU is withdrawn from that executing process, 
and the scheduler then allocates the CPU to another deserving process. 

The scheduling mechanism is a part of the process manager. Every time a process enters the 
ready list, it will generally be treated as a new process, but more often it is an old process that 
has been brought back to the ready list from outside the domain of the short-term scheduler. It 
might have returned because the I/O for which it was waiting has completed, some resource it 
was requesting has been granted, or the medium-term scheduler has decided to favor it. Every 
time it leaves the ready list, either because it has terminated or due to other reasons as men-
tioned, the process will simply be forgotten, and it is said that the process has departed. It is not 
at all important here to consider why it has left. This narrow view will ultimately allow us to 
concentrate more on the fundamentals of short-term scheduling (process scheduling) that will 
fnally determine the design and general organization of a process scheduler to implement a 
suitable mechanism. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

4.16.4 PROCESS SCHEDULERS: DIFFERENT KINDS 

Process scheduling policies are designed for fulfllment of numerous competing criteria (already 
discussed) to realize the specifc goal of the OS in this regard. The design of a certain policy is 
usually determined mostly in terms of two functional characteristics: selection and decision. The 
selection function determines which process among a pool of ready process is to be selected for 
execution. The decision function, on the other hand, specifes the right instant in time when the 
already-decided selection function is to be launched for execution again. This function specifcally 
targets when and for how long, meaning at what point in time (when) a process is to be selected, 
and this automatically implies at what instant (when) the next selection is once again to be executed, 
thereby limiting the execution time of the currently running process. The selection function is com-
monly based on priority, resource requirements, or the execution characteristics (history) of the 

http://www.routledge.com/9781032467238


 

 

 
 
 

 

 

 

124 Operating Systems 

Scheduler 

Preemptive Nonpreemptive 

Cooperative Run-to-completion 

FIGURE 4.10 Different types of schedulers based on competing criteria and their interrelationships. 

process, such as; time already spent in execution, time already spent in the system including execu-
tion and waiting, total service time required by the process, and similar other factors relating to 
specifed criteria. 

A run-to-completion scheduler means that a job, once scheduled, will be run to completion. Such 
a scheduler is known as a nonpreemptive scheduler. Another simple approach in this category is for 
the scheduler to assume that each process will explicitly invoke the scheduler periodically, volun-
tarily releasing the CPU, thereby allowing other processes to use the CPU (cooperative scheduler). 

This nonpreemptive approach in short-term (process) scheduling allows the running process to 
absolutely retain the ownership of the processor and sometimes even of other allocated resources 
until it voluntarily surrenders control to the OS or due to a result of its own action, say, waiting for an 
I/O completion. This drawback could only be resolved entirely if the operating system itself could 
devise some arrangement that would force the running process not to continue at an arbitrary instant 
while engaged in involuntary sharing of the CPU. This strategy by the OS that forces temporary 
suspension of the logically runnable processes is popularly known as preemptive scheduling. Only 
in that situation can another ready process be scheduled. 

With preemptive scheduling, a running process may be interrupted at any instant and be moved to 
the ready state by the operating system, allowing any other deserving process to replace it. Preemption 
thus generally necessitates more frequent execution of the scheduler and may even lead to a critical 
race condition (to be discussed later), which may be prevented only by using another method. In addi-
tion, preemption incurs more overhead than nonpreemptive methods since each process rescheduling 
demands a complete costly process switch. In spite of accepting all this overhead, preemptive schedul-
ing, in essence, is generally more responsive and may still provide better service to the total population 
of processes for general-purpose systems, because it prevents processes from monopolizing the proces-
sor for a very long time. Today most operating systems are such preemptive multitasking systems. 

The maximum time a process can keep the CPU is called the system’s time quantum or time-
slice length. The choice of time quantum can have a profound impact on system performance. Small 
time quanta give good interactive performance to short interactive jobs (which are likely to block for 
I/O). Larger quanta are better for long-running CPU-bound jobs because they do not make as many 
time-consuming process switches, thus having less overhead. If the time quantum is kept so small 
that the system spends more time carrying out switching of processes than doing useful work, the 
system is said to be thrashing, which is also found in other subsystems. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238


Processor Management 125  

   

  

 

Preemption or Voluntary yield From other states 

Request 

Done 

Enqueuer Ready 
List 

Dispatcher Process 
Switcher 

Ready 
Process 

Process 
Control 

Block (PCB) 

Scheduler 

Process 
Control 

Block (PCB) 

Allocate CPU 

Resources 

FIGURE 4.11 The role and actions of process scheduler at the time of process scheduling. 

4.16.5 PROCESS SCHEDULER ORGANIZATION 

The process scheduler, a part of the process manager, is in charge of controlling and allocating the 
CPU on which the ready processes are multiplexed. The scheduling policy determines the strategy 
that chooses one or more primary performance criteria, as already described, while selecting a 
process from a pool of ready processes for execution to maximize performance. The scheduling 
mechanism is derived to implement a specifc already-decided policy to attain the ultimate goal of 
the OS and acts to remove the running process from the CPU and then selects another process from 
ready list on the basis of a particular strategy. 

Scheduler organization is essentially composed of several different parts, depending on how 
it is implemented in any particular OS. Figure 4.11 shows three such conceptually distinct parts 
incorporated into every scheduler: the enqueuer, the process switcher, and the dispatcher. At an 
appropriate time, the scheduler switches the CPU from one executing process to another process 
ready for execution. The process switcher saves all the relevant information of the running process 
being removed from the CPU in its PCB. The running process is now changed to the ready state, and 
the enqueuer enters a pointer (the ready list is essentially a queue of pointers) related to this ready 
process in its respective PCB of a list of ready processes to update it. The dispatcher is invoked after 
the running process has been removed from the CPU, and it then selects one of the ready processes 
queued in the ready list, then allocates the CPU to the selected process. 

4.16.6 SYSTEM PERFORMANCE 

Apart from the contribution of hardware components, the scheduler itself can have an immense 
impact and can have a dramatic effect on the performance of a multitasking system. Since it is 



 

 
 
 
 
 
 
 

 
 
 

  

 
 

 
 
 

 
 
 

 
 

 

 
 
 
 
 
 

  

126 Operating Systems 

in charge of deciding the order of the processes ready for execution, it ultimately controls which 
and ready process is to be allocated the CPU and when to maximize CPU utilization along with 
the proper utilization of other resources. As a result, the perceived performance of the system is 
greatly infuenced by the working of an appropriate scheduler matched with the existing system’s 
environment. 

The working of a scheduler also determines the frequency of switching of processes from one 
to another, when each such switch requires additional overhead to perform the process switch 
operation. Too much switching favors small or interactive jobs to get good service but may invite 
damaging effects due to thrashing that may degrade the system performance as a whole. On the 
contrary, any attempt by the scheduler to decrease the frequency of process switching in order 
to reduce the extra overhead favors large jobs for more CPU time at a stretch, but it will cause 
the other ready short jobs not to gain the access of CPU, thereby increasing the turnaround time 
of processes and also decreasing the throughput of the entire system. 

Scheduler design, particularly in a multitasking system, is critical to the performance of each 
individual process and also to the overall behavior of the system. Numerous scheduling strategies 
have been studied and tried in order to make a particular scheduler ft a specifc environment, but 
ultimately, it is the overall performance that depends on the choice of the strategy to be implemented. 

4.16.7 SCHEDULING STRATEGIES 

Different scheduling strategies are implemented by numerous scheduling algorithms, which are 
mainly partitioned into two major classes: nonpreemptive and preemptive. Nonpreemptive algo-
rithms are designed so that once a process enters the running state (a processor is allocated), it is 
not removed from the processor until it has completed its total execution or it explicitly yields the 
processor as a result of its own action. Nonpreemptive algorithms are consistent with voluntary 
CPU sharing. Preemptive algorithms are driven by the notion of prioritized (internal priority) 
computation in which the process with the highest priority (derived from specifc criteria to meet a 
goal) should always be the one currently using the processor. While a process is currently using the 
processor, a new process with a higher priority may enter the ready list, and the executing process 
should then be interrupted, removed, and returned to the ready list until it is once again the high-
est-priority process in the system, and the processor will be allocated to the newly entered higher-
priority process. Incidentally, it is also possible to assign an external priority to each process by 
using a priority number that many systems use. In that situation, the scheduler always chooses a 
process of higher-priority over one of lower-priority and takes the same courses of action, as men-
tioned. However, preemptive algorithms are normally associated with systems that use interrupts 
(which may occur for many other reasons) to negotiate involuntary CPU sharing. 

A scheduling strategy is based on the process model, and its time measurements are used to 
compare the performance characteristics of different algorithms. The design of the general model 
must be adjusted to ft each specifc class of OS environments. The process model, however, does 
not address the resource manager’s behavior except to identify the blocked state. The process 
scheduling model completely ignores all effects of resource competition except that for the CPU. 
Hence, a process in this model can be only in the running or ready state, and thus the entire time 
that the process might have spent in the blocked state is not taken into consideration in the perfor-
mance metric. 

Before describing some representative scheduling algorithms, let us identify some useful service 
measures (parameters) which can be taken into account at the time of defning scheduling policies. 
Those are: 

Service time, t: The total amount of time a process needs to be in the running state before 
it is completed. In other words, the service time represents the amount of 
time the process will use the CPU to accomplish its useful work. 



Processor Management 127  

  
  

     
  

  
 
 
 
 

    
 

     

   

  

  

 

  

 

 

Wait time, W:  The time the process spends waiting in the ready state before its frst transi-
(response time) tion to the running state to receive its frst unit of service from the processor. 
Turnaround time, T : This is the duration of time that a process p is present; i.e. (fnish time – 

arrival time). The turnaround time T counts not only how long a process 
p needs but also how long it sits in the ready list while other processes 
are run. Once it starts, it might be preempted after some time, letting 
it continue further later. The entire time a process p is on the ready list 
(until it leaves our view to go to other lists) is charged to T. The process is 
not visible to the short-term scheduler while it is waiting for I/O or other 
resources, and therefore the wait time is not included in T. 

Missed time M : T – t. The missed time M is the same thing, except we do not count the 
(wait time W) amount of time t during which a process p is actually running. M 

measures the amount of time during which p would like to run but 
is prevented. 

Response ratio R : t/T. The response ratio represents the fraction of the time that p is 
receiving service. If the response ratio R is 1, then p never sits in the 
ready list while some other process runs. 

Penalty ratio P : T/t. The penalty ratio P is the inverse of R. If the response ratio R is 1/100, 
then P = 100, and the process seems to be taking 100 times as long 
as it should; the user may be annoyed. A response ratio greater than 1 
doesn’t make any sense. Similarly, the penalty ratio P ranges from 1 
(which is a perfect value) upward. 

Kernel time: The time spent by the kernel in making policy decisions and carrying them 
out. This time includes context-switch and process-switch time. A well-tuned 
operating system tries to keep the kernel time between 10 and 30 percent. 

Idle time: The time spent when the ready list is empty and no fruitful work can be accomplished. 

4.16.7.1 System Load Considerations 
The values of the service measures (different guiding parameters) that would be obtained under 
different policies will be infuenced by many other things, such as; how many processes there are, 
how fast they arrive, and what amount of time they need to run. All these things together give rise 
to what are called the considerations of the load of the system at any instant, which should also be 
taken into account when benchmarking different scheduling strategies. 

For a brief description of this topic with fgures, see the Support Material at www.routledge. 
com/9781032467238. 

4.16.8 NONPREEMPTIVE STRATEGIES 

Nonpreemptive scheduling algorithms allow any process to run to completion once it is allocated 
the processor and then release control to the scheduler. It never uses interrupts to make the sched-
uler switch to a new process and thereby avoids additional costly process switching and other related 
table updating until it is inevitable. Non-preemptive policies are an example of the hysteresis prin-
ciple; the slogan is “Resist change”. 

4.16.8.1 First-Come-First-Served Scheduling 
First-come-frst-served (FCFS), also called frst-in-frst-out, is the simplest nonpreemptive schedul-
ing algorithm, which is easy to implement and easy to disparage. As each process joins the ready 
queue either from the outside world or from the waiting pool, it waits there until it gains access to 
the processor. This strategy assigns priority to processes in order of their arrival in the ready list, 
and the priority is computed by the enqueuer by timestamping all incoming processes and then hav-
ing the dispatcher select the process that has the oldest timestamp. Alternatively, the ready list can 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 
 
 
 
 
 

 

128 Operating Systems 

be organized as a simple FIFO data structure (where each entry will point to a process descriptor). 
Processes that arrive are added to the tail of the queue by the enqueuer, and the dispatcher will take 
(remove) processes from the head of the queue (the oldest process in the ready queue) when the cur-
rent running process stop executing. The preemptive version of this algorithm is commonly known 
as round-robin (RR) scheduling, discussed later. 

FCFS never takes into account the state of the system and the resource requirements of the 
individual scheduled processes. It ignores service time requests and all other criteria that may infu-
ence performance with respect to turnaround and waiting time. In the absence of any preemp-
tion, resource utilization and the system throughput rate may be quite low. Since FCFS does not 
discriminate jobs on the basis of their required service time, short jobs may suffer considerable 
turnaround delays and waiting times when one or more long jobs are present in front of them in the 
system. Consequently, this scheduling may result in poor performance under a specifc set of system 
requirements and thus has been dropped from favor. 

Although FCFS is not an attractive alternative approach on its own for a single-processor system, 
it is often combined with a priority scheme to provide an effective scheduling mechanism. The 
scheduler in that situation may maintain a number of queues of processes, one queue for each prior-
ity level, and dispatch each process on a frst-come-frst-served basis within each queue. One exam-
ple of such a system is known as feedback scheduling, which is discussed later in this subsection. 

The characteristics of FCFS scheduling with fgure is given on the Support Material at www. 
routledge.com/9781032467238. 

4.16.8.2 Shortest Remaining Time Next Scheduling 
Shortest remaining time next (SRTN) is a scheduling discipline in which the next scheduling entry, 
a process or a job, is selected on the basis of the shortest remaining execution time. SRTN may be 
implemented by means of either nonpreemptive or preemptive ways, giving rise to two different types 
of scheduling. The nonpreemptive version of SRTN is commonly called shortest job (process) frst 
(SJF/SPF), also known as shortest job (process) next (SJN or SPN). The preemptive version of SRTN 
is usually called SRTN (or even SRT) and is also known as preemptive shortest process next (PSPN). 
We will discuss these two scheduling disciplines separately under their respective categories. 

Whatever the category, in either situation, whenever the SRTN scheduler is invoked, it searches 
the corresponding queue (batch or ready list) to fnd the job or the process with the shortest remain-
ing execution time. The difference between the two cases lies in the conditions that lead to invocation 
of the scheduler and, consequently, the frequency of its execution. In the case of nonpreemption, the 
SRTN scheduler is invoked whenever a job is completed or the running process surrenders control 
to the OS. In the preemptive version, whenever an event occurs that makes a new process ready, the 
scheduler is invoked to compare the remaining processor execution time of the currently running 
process with the time needed to complete the next processor burst of the newcomer. Depending 
on the outcome, the running process may continue, or it may be preempted and replaced by the 
shortest-remaining-time process. If preempted, the running process joins the ready queue as usual. 

4.16.8.3 Shortest Process Next 
SPN is a nonpreemptive SRTN policy in which the process requiring the shortest expected pro-
cessing time is selected next. To realize this, the jobs in the ready queue may be sorted on their 
runtime; short processes will then jump in order towards the head of the queue past longer jobs 
and receive service. In this way, this method makes an attempt to shorten the average turnaround 
time to improve the response ratio of short processes and thereby reduce the bias in favor of long 
processes inherent in FCFS. Moreover, since the completed job departs the system, this discipline 
tends to reduce the number of waiting jobs, thereby allowing new jobs to quickly enter the queue. 
It is worth pointing out that SPN is only optimal when all the jobs are available in the ready queue 
simultaneously. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 129  

 
 
 
 
 

 

 
 

 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 

With SPN, although the overall performance in terms of response time is signifcantly improved, the 
long processes may be penalized. Moreover, if the ready list is saturated, which is often obvious, then long 
processes tend to remain in the ready list while short processes continuously receive service. In the extreme 
case, when the system has little idle time, long processes will never be served, and such starvation of long 
processes may ultimately be a serious liability of the scheduling algorithm. Moreover, especially for longer 
processes, the variability of response time is increased, and thus predictability is reduced. 

Another diffculty with the SPN policy is that it requires for its working a different ingredient: 
explicit information about the service-time requirements or at least an estimate of the required 
service time of each process. But, due to the presence of many issues, it is really diffcult for either 
the user or the scheduler to fgure out which of the currently runnable processes is the shortest one. 
In fact, the success of SPN in practical application depends mostly on the accuracy of prediction of 
the job and process behavior, and that also imposes additional overhead of correctly computing a 
predictor calculation at runtime. That is why, in spite of having several merits, due to the presence of 
all these critical issues and the absence of preemption in this scheduling, this method is not usually 
favored as suitable for a time-sharing or transaction-processing environment. 

A prediction calculation, analysis, and example fgure for SPN are given on the Support 
Material at www.routledge.com/9781032467238. 

4.16.8.4 Highest Penalty Ratio Next 
Nonpreemptive scheduling policies seem to give unfair advantage either to very long processes (FCFS) 
or very short ones (SPN). The highest penalty ratio next (HPRN) method (some authors called it high-
est response ratio next [HRRN], but the response ratio is just the opposite or inverse of penalty ratio, 
as defned earlier) tries to be more reasonable and still not introduce preemption. The penalty ratio 
(P), which is the ratio of turnaround time to actual service time (T/t), can be taken into consideration 
as a fgure of merit at the time of scheduling. For each individual process, all possible attempts should 
be made to minimize this ratio, and we would like to minimize its average value over all processes. 
Although this is an a posteriori measure, we can approximate it with an a priori measure as a selection 
criteria in a nonpreemptive scheduler. Consider the following penalty ratio (P): 

P =
T 

= 
( + )w t  

where :  
w

t 
= time spent waiting for the processor. 

=exxpected service time. tt 

When a new process enters the ready list, the value of w of this process is 0; hence, P = 1. When a 
new process keeps waiting in the ready list, its value of P, which starts at 1, begins to rise. After it 
has waited w time on the ready list, P = (w+ t)/t. 

Thus, the scheduling rule would be: When the currently running process completes or is blocked, 
choose the ready process with the greatest value of P for execution. This strategy is attractive because it 
counts the age of the processes. Although shorter jobs are favored (a smaller denominator yields a larger 
ratio and hence would likely be selected very soon), aging without service (increase in the value of w) 
also increases the penalty ratio P, so that a longer process will eventually get past competing shorter 
jobs. Consequently, as long as the saturation is not unreasonable, the HPRN method will not cause very 
long processes to starve indefnitely, since their penalty ratio by this time reaches a high value. 

As with SPN/SJF, the expected service time must be estimated before attempting to use this 
technique. That is why, if t is not known, it can be estimated by an exponential average of service 
times during previous compute bursts, as stated earlier. Alternatively, we can base the HPRN 
method on a medium-term penalty ratio, (M + t)/t, where M is the total time missed while the 
process has languished either on the short-term ready list or on a medium-term main store wait 
list (but not on a I/O wait list), and t is the total CPU time used during previous compute bursts. 

HPRN strikes a nice balance between FCFS and SPN. If we use the actual value of t on vari-
ous types of sample process sets, it reveals that the behavior of HPRN is most similar to FCFS. 
Interestingly, HPRN fts neatly between FCFS and SPN: for short processes, HPRN is much like 

http://www.routledge.com/9781032467238


 

 

 
 
 

 
 
 
 
 

 
 
 

 

130 Operating Systems 

SPN; for middle-length processes, HPRN has an intermediate penalty ratio; and for very long pro-
cesses, SPN becomes worse than FCFS, but HPRN is still in the middle. 

However, HPRN still has some distinct disadvantages. First of all, it is not preemptive, so it 
cannot beat RR or PSPN for short processes. A short process that unfortunately arrives just after 
a long-process started executing will still have to wait a very long time. Second, it is generally not 
as good as SPN (as indicated by the result of various simulations), which uses the same technique: 
knowledge of process length without preemption. Third, HPRN is more expensive to implement, 
since the penalty ratio must be calculated for every waiting process whenever a running process 
completes or blocks. 

4.16.8.5 Priority Scheduling 
Priority scheduling is carried out on the basis of external priority assigned by a positive number 
associated with each job. When the CPU becomes available, the scheduler allocates the CPU to the 
job (or process) with highest priority for its execution (it is assumed in this discussion that lower 
the number, the higher the priority, although some schedulers use the opposite ordering. There is 
no general agreement in this regard). If two or more jobs have equal priorities, FCFS is employed. 
Priority-based scheduling may be preemptive or nonpreemptive. Preemptive priority-based sched-
uling will be discussed later in this section. 

Priorities can be defned internally (dynamic) or externally (static). In either case, their initial values 
are assigned by the operating system at process creation time or by the user at the time of submission 
of the job. Internal priorities are derived dynamically by the operating system using the measurable 
attributes of a process in execution within the computing environment. Memory requirement, service-
time request, ratio of average CPU burst time to average I/O burst time, number of fles opened, 
and so on are used as criteria for determining an aggregate fgure of internal priorities. In SPN, we 
have already observed that this internal priority is derived and determined based on the length of the 
service-time request. External priorities, on the other hand, are set statically by considering factors 
which are external to the operating system. These priorities refect the importance of a task that the 
process is to perform based on factors that the process manager can only accept as input from users. 
For example, a process’s external priority might be inferred from the user identifcation (“important 
users have higher priorities”), the nature of the task (“a process should turn on a furnace when the 
temperature falls below a threshold value in a process control system”), or any other arbitrary criteria. 
A higher priority can be obtained by paying a higher rate for computer system usage. 

Both nonpreemptive and preemptive priority-based scheduling have the drawback that if many 
high-priority processes are present in the system or keep continuously arriving, a resident ready-to-
run low-priority process or request will be simply ignored and delayed indefnitely in receiving CPU 
service, causing it to suffer from long turnaround times or even be forced towards starvation. This 
starvation can, however, be compensated for if the priorities can be internally modifed by a suit-
able strategy. Aging is such a strategy that tends to eliminate this starvation problem by gradually 
increasing the priorities internally for jobs that wait in the ready queue for a long time. 

An illustrative example of this topic is given on the Support Material at www.routledge. 
com/9781032467238. 

4.16.8.5.1 Priority Problems—Inversion and Starvation 
When cooperating processes appear in a priority scheduling system, there can be interactions 
between the processes that confuse the priority system. Consider three processes, A, B, C; A has 
the highest priority (runs frst) and C the lowest, with B having a priority in between them. A blocks 
and waits for C to do something. B, by this time, get its turn due to the blocking of A and will run 
to completion, even though A, a higher-priority process, can only continue if C runs. This is some-
times referred to as priority inversion. This happens also in real-time systems: the Mars Pathfnder 
spacecraft (see Chapter 10) suffered a failure in its operation caused by priority inversion. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 131  

 

 

 

 
 
 
 
 
 

     
 
 

 

  

 
 
 

Starvation is simpler to understand. Imagine a two-level priority system with an endless, 
fast stream of interactive jobs at first-level priority. Any CPU-bound job at second-level pri-
ority may then have to wait a longtime or might even never run, leading to what is called 
starvation. 

The fnal problem with priority systems is how to determine priorities. They can be statically allo-
cated to each program (system commands always run with priority 3), allocated by each user (root 
always runs with priority 3), or computed on the fy (process aging). However, all these approaches 
have their own merits as well as drawbacks 

4.16.8.6 Deadline Scheduling 
Hard real-time systems comprise time-critical processes in which each process must be guaranteed 
completion of execution before expiration of its deadline. In such systems, the critical performance 
measure is whether the system was able to meet all such processes’ scheduling deadlines, and 
measures of turnaround and wait (missed) times are generally irrelevant here. Deadline scheduling 
can be considered one form of priority-based scheduling where priorities are assigned in terms of 
the deadlines associated with each process. In process control systems, the deadline may be estab-
lished by an external sensor reading. Deadline scheduling may be preemptive or nonpreemptive. 
Preemptive deadline scheduling, sometimes called event-driven scheduling (see also Chapter 10), 
will be discussed later in its respective area in this chapter. 

The system workload here consists of a combination of available processes, and these schedulers 
must have complete knowledge regarding how much time is required to execute each process (or part 
of a process). The scheduler will admit a process in the ready list only if the scheduler can guarantee 
that it will be able to meet each deadline imposed by the process. However, there may be several 
different schedules satisfying the deadline. An optimal scheduling strategy in such environments is 
earliest deadline scheduling in which the ready process with the earliest deadline is scheduled for 
execution. Another form of optimal scheduler is called the least laxity scheduler or the least slack 
scheduler that selects the ready process with the least difference between its deadline and service 
time (computation time). It is interesting to note that although these schedulers are sometimes optimal 
in single-processor systems, neither of these schedulers is optimal in multiprocessor environments. 

For more details on this topic with a fgure, see the Support Material at www.routledge.com/ 
9781032467238. 

4.16.9 PREEMPTIVE STRATEGIES 

In preemptive scheduling, the operating system itself could devise an arrangement that will stop 
the ongoing execution of the currently running process at an arbitrary instant, thereby realizing 
an involuntary sharing of CPU. The running process is interrupted at any time and moved to the 
ready state by the operating system, allowing another deserving process to replace it. This is accom-
plished by activating the scheduler whenever an event that causes a change in the state of the system 
is detected. Since, such events may occur due to many reasons (a process enters the ready state, time 
quantum expires, etc.), that may ultimately cause the scheduler to enforce the running process to 
voluntarily surrender the control of CPU. In this way, the highest-priority process among all ready 
processes is always allocated the CPU, and all lower-priority processes are made to yield to the 
highest-priority process whenever it requests the CPU. Preemptive strategies ensure quick response 
to high-priority processes and enforce fair sharing of the CPU among all ready processes. In fact, 
unlike nonpreemptive algorithms, their preemptive versions, always attempt to keep the highest-
priority job in the running state at all times. 

Preemption generally necessitates more frequent execution of the scheduler to reschedule pro-
cesses that, in turn, always require an extra time-consuming complete process switch. In addition, 
suspending a running process without warning at an arbitrary instant, allowing another process to 
run, may lead to an adverse situation, like a race condition (to be discussed later), which requires 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 
 
 
 

 

 

 
 

 

 
 

 
 

 

 
 

132 Operating Systems 

additional non-remunerative actions using a sophisticated method to negotiate the situation. As 
a result, the system is sometimes observed to be spending more time switching processes than 
doing useful work, causing thrashing, which has an immense impact on performance metrics in 
all preemptive scheduling algorithms. However, the cost of such preemption may be kept low by 
using effcient process-switching mechanisms (as much help from hardware as possible) and by 
providing a large main memory to accommodate a high percentage of programs in main memory 
to make the process selection more effective. In spite of all this additional overhead, preemptive 
scheduling still is generally more responsive and may provide better service to the total popula-
tion of processes for general-purpose systems because it prevents any one process from monopo-
lizing the processor for a very long duration and provides equitable sharing of system resources 
to all existing users. 

4.16.9.1 Round-Robin Scheduling: Time-Slice Scheduling 
In preemptive scheduling, one of the most critical criteria is time slicing, and one of the oldest, 
simplest, fairest, and perhaps most widely used of all the scheduling algorithms using this time 
slicing is round robin, which primarily distributes processing time equitably among all n requesting 
processes when each n process receives approximately 1/n time units of processing time for every 
real-time unit. (This is only an approximation, since the cost of running the scheduling algorithm 
and time needed for process switch must also be a part of the real-time unit.) 

The processor time here is divided into slices or quanta, and the duration of each time-slice is 
determined by a clock interrupt generated at periodic intervals. This clock (interval timer) is prefer-
ably a dedicated one, as opposed to sharing the system time base. The timer is usually set to issue an 
interrupt, and the periodic interval between two consecutive interrupts can be set to the desired time 
quantum. When this timer interrupt occurs, the time quantum of the currently executing process 
is over, and the scheduler is called that removes the running process from the CPU and selects the 
next deserving ready job from the ready list on an FCFS basis. No process is allowed to run for more 
than one time-slice when there are others waiting in the ready queue. If the process is running when 
the time-slice is over, that is, if a process needs more time to complete after exhausting its specifed 
time-slice, the CPU is preempted and switched over to another process, and the preempted process 
is placed at the end of the ready queue to await further allocation. In fact, this rearrangement of the 
ready list effectively lowers the scheduling priority of the preempted process. 

When the running process itself surrenders control to the operating system because it is either 
fnished or blocked (due to I/O wait) before the time-slice has elapsed, a signifcant event is 
declared. The scheduler is immediately invoked and adjusts the ready list according to the imple-
mentation and resets the timer at that point to provide a fulltime quantum to the next deserving 
process to be dispatched to run. The last running process either departs the system (if completed) 
or goes out of the view of the scheduler (if blocked). The frequent setting and resetting of a dedi-
cated interval timer requires adequate hardware support in systems that use time slicing. When 
an absolutely new process arrives, it is placed at the end of the ready queue, waiting for CPU allo-
cation. In this way, the processor time is effectively allocated to processes on a rotating priority 
basis (hence the name round robin), and every one of them, in turn, gets an approximately equal 
amount of processor time. 

Blocked processes can become ready processes at any time when the resource for which they 
were blocked is released by some other process and becomes available. The resource manager now 
allocates this newly available resource to one of the blocked processes and accordingly changes the 
state of that process. However, the currently executing process by this time continues its execution 
for the duration of its time-slice. 

The ready list can be implemented as a ring-linked list, in which the new process is placed in 
the ring of n processes immediately behind the last process being executed so that the other n – 1 
processes receive service before the new process. Another option is to implement the ready list as a 
queue, and the new process is always placed at the end of the queue. 



Processor Management 133  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
  

Now, in regard to placement of processes in the list, this RR approach has been further modifed 
a little bit in order to implement “fairness”, which is the basic philosophy of RR scheduling. A few 
other variants of RR scheduling are; inverse of remainder of quantum, limited round robin, and the 
multiple-level feedback variant of round robin. 

RR scheduling is actually very sensitive to the length of the time-slice or quantum to be chosen. If 
the quantum chosen is very short, then short processes will move through the system relatively quickly. 
But, if the chosen quantum is not very large in comparison to process switching, this will consume more 
time to handle system overhead, which sometimes leads to signifcantly lowering CPU effciency. Thus, 
very short time quanta are legitimately discarded. On the contrary, if the time-slice is taken too long 
than the process switch, then the extra overhead due to frequent preemption will be reduced, but the 
last positioned user in a long queue will have to wait a longer time to get its turn, and the response time 
will be appreciably increased. Moreover, in this situation, most of the processes would be completed 
within the specifed time-slice and usually surrender control to the OS rather than being preempted by 
an interval timer; the ultimate advantage of preemptive scheduling will be lost, and RR scheduling will 
eventually degenerate to simple FCFS scheduling. Therefore, the optimal value of the time-slice lies 
somewhere in between, but it mostly depends on the environment, which consists of both the computing 
system being used and the nature of the workload. This workload, in turn, is primarily determined by 
the type of program being submitted and also the instants of their arrivals. 

Moreover, consideration of the qualitative defnition of too short, short, or long duration of the 
time-slice is not really convincing, because a relatively short time interval in one kind of hardware 
system may be a comparatively long one in another in terms of the number of instructions executed 
by the processor (CPU speed) in the system. That is why the execution of an instruction-per-quan-
tum measure is more realistic for comparing different systems, because the time-duration measure 
does not refect the fact that processors with different speeds may generally accomplish different 
volumes of work within a specifed time-slice. 

In summary, the round robin is particularly effective in a general-purpose time-sharing or trans-
action-processing system as well as in multiuser environments where terminal response time is a 
critical parameter. The choice of a suitable time-slice matched with the existing environment is an 
infuencing factor in its performance metric. That is why selection of a time-slice duration is kept 
user-tunable and can be modifed by the user at system generation (OS installation). 

An example with fgures relating to the operation of RR scheduling, its Gantt chart, and sched-
uling characteristics in tabular form are given on the Support Material at www.routledge.com/ 
9781032467238. 

4.16.9.2 Virtual Round Robin 
One of the inherent drawbacks of round-robin scheduling is its relatively discriminating behavior 
in the treatment of I/O-bound processes, which have a shorter processor burst compared to CPU-
bound processes. An environment usually consists of a mix of CPU-bound and I/O-bound processes 
in which an I/O-bound process during execution mostly uses the processor for a short period and 
then is blocked for its own request of I/O, keeps waiting for the completion of I/O operation, and 
then again joins the ready queue. On the other hand, a CPU-bound process during execution mostly 
uses a full time quantum of CPU time and then comes back once again to the ready queue. This 
eventually might result in poor performance of I/O-bound processes, poor utilization of I/O devices, 
and also a considerable increase in response time. 

To minimize the effect of this drawback, a modifed approach of RR scheduling called virtual 
round robin (VRR) has been suggested (Halder 91). In this, when new processes arrive, they 
join the ready queue managed on an FCFS basis as usual. When the time quantum of the cur-
rently running process expires, but the process has not yet completed, it is as usual returned to 
the same ready queue. When a process is blocked for I/O, it joins an I/O queue and stays in the 
I/O domain until it is released. The beauty of the this approach is the inclusion of a new FCFS 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 
 

 

 

 

   

 

134 Operating Systems 

auxiliary queue, and the processes which are released from their I/O activities are now moved to this 
queue instead of sending them as usual to the ready queue. Now, when the CPU is available and a dis-
patching decision is to be made, the processes in this auxiliary queue get preference over those in the 
main ready queue. When a process is dispatched from this auxiliary queue, it runs only for a time dura-
tion equal to the basic time quantum minus the total time it already spent when it was last selected from 
the main ready queue. Performance evaluation carried out by the authors revealed that this approach is 
indeed superior to RR scheduling in terms of processor-time distribution to implement fairness. 

An example with fgures relating to the operation of VRR scheduling is given on the Support 
Material at www.routledge.com/9781032467238. 

4.16.9.3 Selfsh Round Robin 
The selfsh round-robin method (Raphael) adds a new dimension to round-robin scheduling by giv-
ing better service to processes that have been executing for a while than to newcomers. Processes 
in the ready list are partitioned into two lists: new and accepted. New processes will wait. Accepted 
processes are serviced as usual by RR. The priority of a new process increases at rate a. The prior-
ity of an accepted process increases at rate b. Both a and b are parameters and can be adjusted to 
tune the method. When the priority of a new process reaches the priority of an accepted process, 
that particular new process becomes accepted; otherwise, when all accepted processes fnish, the 
highest-priority new process will then be accepted. 

Adjusting the relative values of a and b has a great infuence on the behavior of SRR. If b/a ≥ 1, 
a new process is not accepted until all the accepted processes have fnished, so SRR becomes 
FCFS with respect to accepted and new. If b/a = 0, all processes are accepted immediately, so SRR 
becomes a RR. If 0 < b/a < 1, accepted processes are selfsh but not completely. 

An example with fgures relating to the operation of SRR scheduling, its Gantt chart, and 
scheduling characteristics in tabular form are given on the Support Material at www.routledge. 
com/9781032467238. 

4.16.9.4 Preemptive Shortest Process Next 
The scheduling algorithm PSPN/preemptive shortest job frst (PSJF)/SRTN is a preemptive version 
of SPN/SJF/SJN that chooses to run a process which has the shortest expected remaining processing 
time. When a new job arrives in the ready queue, the currently running process may be preempted 
if the new job has a total service time requirement (CPU burst) less than the remaining service time 
required by the current process. The currently executing job in that situation will be preempted; it 
will be placed at the head of the ready queue, and the new job will take over the CPU. But if the 
newly arrived job has a total service time requirement greater than or equal to the remaining ser-
vice time required by the currently executing job, the newly arrived job will then be placed in the 
ready queue as usual, and the action to be taken will be identical to that of the nonpreemptive SPN. 
Similar to SPN, the scheduler here also works in a consistent and predictable manner and must have 
some mechanism to get an estimate of processing time in order to perform the selection function. 
While this scheduling has a bias towards short jobs, it also tends to result in increased waiting times 
for long jobs, thereby causing a risk for them to suffer from starvation. 

PSPN, unlike round robin, requires no additional interrupts to be generated, and therefore the 
overhead is reduced. On the other hand, elapsed service times must be recorded in order to compute 
the required remaining service times. This again gives rise to additional overhead. Moreover, PSPN 
incurs extra overhead due to frequent process switching and scheduler invocation while examin-
ing each and every running process and its transition to the ready state. This work would simply 
be a waste when the new ready process has a longer execution time than the remaining time of the 
currently running process. This is not very unusual. However, PSPN is better than SPN. It has an 
excellent penalty ratio; its turnaround time T turns out to be lower than that of SPN for all processes, 
including the longest processes; and the missed time M stays very low for a large majority of pro-
cesses. Even for very long processes, PSPN is not much worse than RR. In fact, PSPN gives the 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 135  

 

 

 

 
 
 
 
 
 

 
 
 
 

 
 

best achievable average penalty ratio because it keeps the ready list as short as possible. It manages 
this feat by directing resources toward the process that will fnish soonest and will therefore shorten 
the ready list soonest. A short ready list means reduced contention and leads to a low penalty ratio. 

An example with figures relating to the operation of PSPN scheduling, its Gantt chart, and sched-
uling characteristics in tabular form are given on the Support Material at www.routledge.com/ 
9781032467238. 

4.16.9.5 Least Completed Next 
The least completed next (LCN) policy schedules the process that has consumed the least amount 
of CPU time. Thus, the nature of a process (whether CPU-bound or I/O-bound) and the CPU time 
requirement of a process do not infuence its progress in the system. The scheduling policy attempts 
to make all processes approximately equal in terms of CPU time consumed. So, short processes 
(like interactive processes) are guaranteed to complete ahead of long processes. However, this pol-
icy has the familiar drawback of long processes starving due to receiving less CPU attention. It also 
starts to neglect all existing processes if new processes keep arriving in the system. As a result, the 
execution of existing processes will be regularly postponed. In this situation, even medium-sized 
(not too long) processes tend to suffer from starvation or be affected by longer turnaround times. In 
fact, LCN provides poorer turnaround times than the RR and PSPN policies, because it favors newly 
arriving processes over existing processes in the system. 

An example with fgures relating to the operation of LCN scheduling, its Gantt chart, and sched-
uling characteristics in tabular form are given on the Support Material at www.routledge.com/ 
9781032467238. 

4.18.9.6 Preemptive Priority-Based Scheduling (Event-Driven) 
Round-robin scheduling works on the implicit assumption that all processes are equally important. But 
when external factors are taken into account at the time of scheduling so that each runnable process 
is assigned a priority and the process with highest priority is allowed to run, the scheme is known as 
priority-based scheduling. In principle, each process in the system is assigned a priority level, whether 
provided statically or generated dynamically. Priorities are assigned statically considering a number of 
factors at the time of submission of the job. Users can also reduce the priority of their own process vol-
untarily using commands (like the nice command in UNIX) available with some OSs. Dynamically 
derived priorities are internal priorities assigned by the OS using measurable attributes of a process 
while in execution within the computing environment. Memory requirements, service-time request, 
ratio of average CPU burst time to average I/O burst time, number of fles opened, and others are used 
as criteria to determine an aggregate fgure of internal priorities. In this sense, many scheduling disci-
plines may be thought of as being priority-driven, where the priority of a process represents its chance 
to be scheduled next. For example, in the case of RR scheduling, the priority is its time of arrival. In 
SPN, the internal priority is determined based on the length of the service time request. 

Priorities derived dynamically by the operating system can then be assigned to processes to 
fulfll desired system targets (such as increasing throughput). Highly I/O-bound processes should 
generally be given higher priority to let them start the next I/O request, which can then proceed in 
parallel with another process actually using the CPU for its computing. Assigning I/O-bound pro-
cesses a lower priority means keeping them waiting a long time for the CPU, unnecessarily occupy-
ing memory with no beneft. A simple approach for good service to an I/O-bound process is to set 
the priority to 1/f, where f is a fraction of the last quantum used by the process. The higher the use, 
that is, the higher the value of f, the lower its priority later on. 

When a new job with a higher priority than that of the currently running job arrives at the ready 
queue, the currently running job is preempted. The new job will get the CPU, and the currently 
running job is placed at the head of the ready queue. (In the case of nonpreemptive scheduling, 
the newly arrived job with a higher priority than that of the currently running job would have been 
placed at the head of the ready queue, and the running job would be allowed to run to completion.) 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 

 
 
 

136 Operating Systems 

If the newly arrived job has a priority lower than that of the currently running job, the action to be 
taken will be identical to that of nonpreemptive priority scheduling. 

If priority-based scheduling is implemented, there remains a high possibility that low-priority pro-
cesses may be effectively locked out by higher-priority ones. In general, with this scheduling scheme, 
no such guarantee could be given with regard to the expected time of completion of a job after its 
admission into the system. To get rid of this uncertainty, the usual remedy is to provide an aging prior-
ity in which a check prevents high-priority processes from running indefnitely. The schedulers in this 
situation have the option to reduce the priority of the currently running process at each clock interrupt. 
When this action causes the priority of the currently running process to drop below that of the next 
highest-priority process, a process switch occurs and the system leaves the currently executing process. 
Eventually, over time, the priorities of the low-priority older processes become higher than that of the 
running high-priority processes and will ultimately get their turn within a reasonable period of time. 

Event-driven (ED) scheduling is another variant of priority-based scheduling used in real-time 
operating systems to schedule real-time events (processes). In such systems, all the processes are 
time-critical and must be executed within specifc deadlines. The entire workload of the system may 
consist of a collection of periodic processes, executed cyclically within a specifed period (deadlines), 
and aperiodic processes whose times of arrival are not predictable. This means certain processes 
arrive with different already-assigned fxed priorities and other processes with dynamically varying 
priorities. The scheduler always takes the highest-priority ready process whenever a signifcant event 
(arrival of an important process) occurs. Arrival of a higher-priority important process will immedi-
ately preempt the currently running process, process switching will be carried out within a very short 
period (a special type of hardware is used to speed up the process switching mechanism), and the new 
higher-priority process will be executed. Different types of schedulers under this category have been 
devised to negotiate all such situations, as explained in the section “Deadline Scheduling”. 

An example with fgures relating to the operation of preemptive priority-based scheduling, its 
Gantt chart, and scheduling characteristics in tabular form are given on the Support Material at 
www.routledge.com/9781032467238. 

4.16.9.7 Multiple-Level Queue Scheduling 
The designs of all the scheduling algorithms explained so far have been adjusted to ft each spe-
cifc class of application environments. But the practical situation in any computer center equipped 
with numerous devices and terminals is somewhat different. Commonly, the environment, at any 
instant, is composed of a heterogeneous mixture of different types of jobs, such as interactive jobs 
from terminal users, small but extremely time-bound jobs, and large batch jobs (almost non-inter-
active) requiring varied device support. No single scheduling algorithm so far known to us can be 
employed to ft even moderately in this environment to yield at least reasonable performance. To 
negotiate this situation, one approach could be taken by way of devising an algorithm that will be a 
combination of different scheduling disciplines; each discipline will be entrusted with what it does 
best. For example, large batch jobs may be subjected to FCFS or SPN, interactive programs are 
conducive to RR scheduling, and OS processes and device interrupts are best ftted with preemptive 
priority-based scheduling (Event-driven). 

The realization of such a complex scheduling discipline requires thorough observation of the 
characteristics of the usual workload of the computing environment. One generalized approach in 
this regard may be to classify the jobs arriving at the computer center into several groups, where 
each job will be assigned to its respective group and each group will then be serviced by its best-
matched scheduler. This approach is often called multiple-level queues (MLQs). Possible classifca-
tions of jobs to form different groups could be mainly: 

• Operating-system jobs 
• Interactive jobs 
• Batch jobs 

http://www.routledge.com/9781032467238


Processor Management  137 

Pre-emptive priority-
System 

High-Priority Queue 

Medium-Priority Queue 

Low-Priority Queue 
FCFS Scheduling 

RR-Scheduling 

or FCFS
based (ED) scheduling 

processes 

Interactive Between-Queuesprocesses Scheduling (Priority, 
Biased, Time-slice) 

CPU 

Batch-like 
processes 

Scheduling 
within-queue 

FIGURE 4.12  An illustration of actions of scheduler at the time of scheduling of processes arranged in 
multiple-level queue. 

This would eventually result in the conventional single ready queue being partitioned into a few 
ready queues. As shown in Figure  4.12, three such separate ready queues are formed. A ready 
process may then be assigned to one of these queues on the basis of its attributes, which may be 
provided either by the user or the system. Multiple-level queue are thus an extension of priority-
based scheduling (multiple priority-level queues) in which all processes of the same characteristics 
(priority) are placed in a single queue. Within each queue, jobs can be scheduled using an algorithm 
that is best suited for that queue considering its workload. For example, queues containing interac-
tive jobs can be scheduled round robin, while queues containing batch jobs can be scheduled using 
FCFS or SPN. 

Between queues, a scheduling discipline should be devised to allocate the CPU to a particular  
queue. Typical approaches in this regard are to use absolute priority or some form of modifed  
time slicing injecting bias considering relative priority of the processes within particular queues.  
In the case of using absolute priority scheduling between queues, the highest-priority queue will  
frst be handled, and all the processes from this highest-priority queue (usually consisting of  
OS processes) are serviced in some order until that queue is empty. This ordering of processes  
within the queue can be implemented using some other scheduling discipline that may be event-
driven, or FCFS can also be chosen, since the queue consists of processes of similar nature  
and the overhead of FCFS is low. When the highest-priority queue is empty, the next highest-
priority queue may be serviced using its own best-matched scheduling discipline (e.g. a queue  
formed with interactive jobs normally uses RR scheduling). When both higher-priority queues  
are empty, the next high-priority queue (e.g. consisting of batch jobs) may then be serviced using  
its own best-matched scheduling discipline. In this way, all queues will be handled one after  
another in order. 

In general, during the execution of any process in any queue, if a new process arrives that is char-
acterized as a member of a higher-priority queue, the currently running job will be preempted and 
the newly arrived job will start executing. This strategy ensures responsiveness to external events 
and interrupts, of course with an extra cost of frequent preemptions and their associated overhead. 

A variant of this strategy for distributing CPU utilization across queues may be to assign a 
certain percentage of processor time to each queue, commensurate according to its priority. The 
highest-priority queue will then be given a larger portion of the CPU time, and the lowest-priority 
queue will be allocated a smaller portion of the CPU time. 

As is expected, multiple queue scheduling, by nature, is a very general discipline that exploits 
all the features and advantages of different “pure” scheduling disciplines by way of combining 
them into one single form of scheduling. Consequently, each of these more sophisticated constitu-
ent scheduling algorithms also contributes overhead that ultimately increases the overhead of this 
discipline as a whole. However, distinct advantages of MLQ were observed and recognized early on 



 

 

138 Operating Systems 

by OS designers who willfully deployed it in handling environments consisting of foreground/back-
ground (F/B) jobs in timesharing systems. An F/B system, in its normal form, employs two queues: 
a high-priority queue consisting of OS, interactive, and time-critical processes (foreground) and 
a low-priority queue of batch-like and other similar processes (background) that does not service 
external events. The foreground queue is serviced in an event-driven manner, while the background 
queue is intended to run whenever no foreground process requires the CPU. Any foreground job 
can preempt processes executing in the background and can always take precedence over all back-
ground jobs. 

4.16.9.8 Multiple-Level Queues with Feedback Scheduling 
Multiple-level queues assume that the operating system has prior knowledge about the attributes 
(that determines the priority), such as CPU bursts and absolute priority, of a job at the time of its 
arrival, so that jobs can be placed in queues based on these attributes, which may be provided either 
by the user or the system. In practice, this is not always true. Very often, no particular priority is 
attached to a process when it enters the system. If the OS assigns any priority in that situation via 
its own way of calculation/prediction, it may or may not be accurate. Moreover, nothing is known 
about CPU burst time when a job is run for the frst time. The lack of any such prior knowledge or 
merely an idea about the relative length of various processes thus restricts us to entirely rely on the 
algorithms where priority is derived based on “time remaining to execute” (like SPN/SJN, PSPN, 
HRRN, etc.). Above all, jobs are permanently assigned to one of these queues, and fxed priorities 
are attached to jobs once and for all. As a result, this may lead to an adverse situation that limits the 
effectiveness and adaptability of this scheduling. 

Rather than having fxed classes (priorities) of processes allocated to specifc queues, the idea is 
to concentrate the other way around to devise a mechanism where the priority of any process will 
additionally be derived based on time already spent so far in execution. As a result, the priority of a 
process may be changed periodically, which means jobs are not permanently assigned to any queue 
(in contrast to multi-level scheduling); rather, jobs move between queues, and scheduling will be 
done on preemptive basis. For example, each process may start with identical priority at the top-
level queue. If the process is completed within a given time-slice, it departs the system after having 
received the royal treatment. Processes that need more than one time-slice may be reassigned by the 
OS to a lower-priority queue, which gets a lower percentage of the processor time. If the process 
still has not fnished and needs yet more processor time after having run a few times in that queue, 
it may be moved to a lower-level queue. This approach is known as multiple-level feedback, mean-
ing that the operating system allocates the processor to a process, and when the process blocks or 
is preempted, feeds it back into one of several priority queues. Here, the operating system allows 
processes to change ready sub-lists (queues). 

In multi-level feedback scheduling (also called multi-level adaptive scheduling), a number of 
separate queues are maintained, similar to the case of multi-level scheduling. But, there are a num-
ber of variations with regard to the implementation of this scheme. However, a simple version is 
to perform preemption in the same fashion as for round robin: at periodic intervals. Our example 
explains this strategy with an approach that is easy to implement from a practical point of view 
considering jobs in general. 

As usual, multiple queues are present. Within each queue, jobs are scheduled with FCFS order. 
Fixed priorities are assigned to each queue. Between queues, there is preemptive priority schedul-
ing similar to ordinary multiple-level scheduling, as discussed in the last section. Each queue is 
assigned a time-slice or time quantum. This assigned time-slice increases gradually as one moves 
down between queues (Figures 4.13, 4.14, and 4.15). 

When a new job enters the system from the outside world, it is always placed in the highest-pri-
ority queue. The CPU will always be allocated to the job at the head of any queue. When the CPU is 
assigned the job at the head of highest-priority queue, the job will hold the CPU until the end of the 
CPU burst or the end of the time-slice, whichever comes earlier. If the time quantum expires frst, 



Processor Management 139

Highest – Priority QueueHighest – Priority Queue
Time – slice = 10 msTime – slice = 10 ms

Job completedJob completed

— Q1 — Q1 ->->

— Q2 — Q2 ->->

— Q3 — Q3 ->->

Timer expiresTimer expires

Job completedJob completed

Timer expiresTimer expires

Job completedJob completed

Timer expiresTimer expires

From outsideFrom outside
worldworld

Medium – Priority QueueMedium – Priority Queue
Time – slice = 20 msTime – slice = 20 ms

Low – Priority QueueLow – Priority Queue
Time – slice = 30 msTime – slice = 30 ms

FIGURE 4.13 An illustration of actions of scheduler in Multi-level feedback scheduling for jobs with a 
single CPU burst.

the job is placed at the tail of the next lower queue. If the end of the CPU burst is reached before 
the expiry of the time-slice, and if such an end of the CPU burst is due to an issue of I/O request, 
the job leaves the ready queue and joins the waiting pool of jobs, remaining there waiting for its I/O 
completion. The job at this moment is outside the vision of the scheduler. But, if the end of the CPU 
burst marks the end of the job, it leaves the system as completed.

To explain the operations of multi-level feedback queues, let us FIrst consider jobs with only one 
CPU burst. These jobs enter the highest-priority, Q1, from the outside world, as shown in Figure 4.13. 
The job at the head of this queue is assigned to the CPU. If it completes its CPU burst within the 
time-slice assigned to that queue, that job leaves the system as a completed job. If it cannot complete 
its CPU burst within the time-slice assigned to Q1, the job is then placed at the tail of the next lower-
level queue, Q2 (refer to Figure 4.13).

Jobs in the second queue Q2 will only be taken up for execution when all the jobs in Q1 are 
FInished. If a new job arrives in Q1 when a job in Q2 (the job which was at the head of Q2) is under 
execution, that running job in Q2 will be preempted and the newly arrived job in Q1 will get the 
CPU to start its execution. The newly arrived job will either leave the system from the FIrst queue 
itself or enter the second queue Q2 at its tail. At this time, if no other job is available in Q1, any job 
that is at the head of the queue Q2 will be started, or the preempted process at the head of queue Q2 
will resume execution. Similarly, jobs in Q3 will only be taken up for execution if and only if all the 
jobs in Q1 and Q2 are FInished. If a job arrives in Q1 while a job in Q3 (the one that was at the head 
of Q3) is under execution, the job in Q3 will be preempted.

The entire idea is to give preferential treatment to short processes, and a job with a large CPU 
burst will ultimately sink down to the lowest queue. If the job at the head of the lowest queue does 
not complete its remaining CPU burst within the time-slice assigned to that queue, it will be placed 
at the tail of the same queue, as shown in Figure 4.13.

Let us now consider a more practical situation with jobs in general. Usually, each job consists 
of several CPU and I/O bursts. If the total CPU burst time of a job is more than its total I/O burst 
time, the job is called a CPU-bound job, and the converse of this is called an I/O-bound job. As 



 

 

 

 

 

 

From outside 
world — 

Highest – Priority Queue 
Time – slice = 10 ms 

Q1 ˜ 

— Q2 ˜ 

— Q3 ˜ 

Medium – Priority Queue 
Time – slice = 20 ms 

Low – Priority Queue 
Time – slice = 30 ms 

Waiting pool 
for Q1 

Waiting pool 
for Q2 

Waiting pool 
for Q3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

end of CPU burst 
I/O request 
Time slice expires 

1 
2 
3 

Job completed 
To waiting pool for Q1 

Job completed 
To waiting pool for Q2 

Job completed 
To waiting pool for Q3 

140  Operating Systems 

FIGURE 4.14  An illustration of actions of modifed scheduler in Multi-level feedback scheduling for jobs 
in general. 

usual, jobs that enter the system from the outside world are placed in the highest-priority queues in 
FCFS order. The job at the head of this queue gets the CPU frst. If it issues an I/O request before the 
expiry of its time-slice, the job will then leave the ready queue to join the waiting pool. Otherwise, 
this job will naturally be placed at the tail of the next lower queue if it is not completed within the 
specifed time-slice. 

Jobs which leave the ready queue due to an I/O request will eventually become ready–to–run 
after completion of I/O. Now a policy is to be settled about the placement of these ready-to-run jobs 
at the time of their re-entry after I/O completion. The question obviously arises as to in which queue 
these jobs are to be placed. One strategy may be to mark each job while leaving the ready queue (due 
to I/O request) with the identity of the queue from which it left. When this job once again becomes 
ready–to–run, it will re-enter the same queue from which it left and be placed at the tail. Figure 4.14  
depicts a conceptual picture of this strategy. 

Placing a job once again in the same queue from which it left due to an I/O request is, however, 
not a judicious decision. It is also supported by the fact (as shown in Figure 4.14) that while a job 
having CPU burst happened to be a long burst is allowed to use only one time-slice and then it is 
preempted and fnally it is pushed down to a lower priority queue. It will never be promoted to 
a higher-priority queue. Thus, a better strategy would perhaps to be one which will adapt to the 
changing trends with regard to CPU and I/O bursts. It is acceptable that after one long CPU burst, 
the remaining workload will be less, and hence, subsequent CPU bursts may be of shorter duration. 
Such a self-adjusting strategy is expected to be superior to a non-adapting strategy like the one we 
just discussed. 

Following this line, one such self-adjusting strategy can be derived that will place a ready-to-run 
job in a queue one level above the queue from which it left due to an I/O request, because it can be 
logically assumed that after returning, the amount of work remaining for that job to complete its 
execution will be less. Figure 4.15 illustrates such a strategy. Under this strategy, jobs start to move 
up and down between queues. 

One serious problem with this scheme is that the turnaround time of longer processes can stretch 
out alarmingly, leading to a situation of starvation if new jobs happen to continuously enter the 



Processor Management 141

Highest – Priority Queue
Time – slice = 10 ms

— Q1 ->

— Q2 ->

— Q3 ->

From outside
world

Medium – Priority Queue
Time – slice = 20 ms

Low – Priority Queue
Time – slice = 30 ms

Waiting pool
for Q1

Waiting pool
for Q2

Waiting pool
for Q3

Job completed
To waiting pool for Q1

1

2

3

Job completed
To waiting pool for Q2

1

2

3

Job completed
To waiting pool for Q3

1

2

3

end of CPU burst
I/O request
Time slice expires

1
2
3

FIGURE 4.15 An illustration of actions of another type of modiFIed scheduler used in Multi-level feedback 
scheduling for jobs in general.

system. To negotiate this situation, one approach could be to vary the time-slices assigned to the 
queues to compensate for this drawback. For example, a process scheduled from Q1 will be allowed 
to execute for 1 time unit, and then it will be preempted; a process scheduled from Q2 will be 
allowed to execute for 2 time units, and so on. In general, a process scheduled from Qi will be 
allowed to execute 2i time units before preemption. Observations with this scheme, varying execu-
tion time for different types of processes (queues), when taken at random, reveal that this scheme 
works quite nicely.

However, the beauty of this scheduling discipline is that it favors short processes, but at the 
same time, it also forces the resource-consuming processes to slowly “sink down” into lower-level 
queues, thereby working as FIlters in order to keep processor utilization high. This way of think-
ing is also supported by observations on program behavior that suggest that completion rate has a 
natural tendency to decrease with increasing service. This means that the more service a process 
receives, the less likely it is to be completed, even if it is given a little more service. That is why the 
feedback mechanism in MLQs tends to rank processes dynamically according to the actual amount 
of time already used, favoring to those that have received less. This is actually reFLected in that when 
a process surrenders control to the OS before its time-slice expires (due to I/O request), it is rightly 
rewarded by being moved up in the hierarchy of queues.

In fact, MLQ with feedback scheduling is the most general one to incorporate many of the simple 
scheduling algorithms appropriate to each individual queue. Use of a feedback mechanism makes 
this scheduling more adaptive and responsive to the actual runtime behavior of processes, which 
seems to be more sensible. However, one of the major drawbacks of this class of scheduling is that 
it always suffers from a comparatively high overhead due to manipulation of global queue, as well 
as the presence of many constituent scheduling algorithms used by individual queues for their own 
internal scheduling, thereby contributing their own individual overhead that increases the overhead 
of this discipline as a whole.



 

    

 
 
 
 

  

 

  

 
 
 

 
 
 

142 Operating Systems 

4.16.10 CLASSIFICATION OF SCHEDULING POLICIES 

Scheduling policies are characterized in two distinct categories, preemptive and nonpreemptive. 
Each policy, irrespective of category, makes a priority-based decision when selecting a new process 
to run. In general, priority information may be based on the following properties: 

Intrinsic properties that distinguish one process from another usually include service-time 
requirements, storage needs, resources held, and the amount of I/O required. This sort of 
information may be obtained either before the process starts or may be determined while it is 
running and may even be changed during execution that may be placed in the process block. 

Extrinsic properties are characteristics that have to do with the user who owns the process. 
Extrinsic properties mainly include the urgency of the process and how much the user is 
willing to pay to purchase special treatment. 

Dynamic properties indicate the load that other processes are placing on resources. These 
properties include the size of the ready list and the amount of main storage available. Out 
of the commonly used policies, round-robin scheduling and all its variants are preemptive 
and non-intrinsic, while PSPN is preemptive and intrinsic. Nonpreemptive FCFS is non-
intrinsic, and nonpreemptive SPN and HPRN use intrinsic information. 

For more details on this topic with a fgure, see the Support Material at www.routledge.com/ 
9781032467238. 

4.16.11 FAIR-SHARE SCHEDULING 

All the scheduling algorithms explained so far treat the collection of all ready processes as a single 
pool or one that is broken down by priority of some form (such as MLQ) in which each process is 
assumed to be from different programs (users), and thus try to provide equitable service to all pro-
cesses. But, in reality, this relationships between processes and users may be altogether different, 
and that should be taken into consideration when scheduling the processes. 

In a multiuser system, while an individual user organizes the applications or jobs as a collec-
tion of multiple groups of processes (threads), the scheduler in that situation is unable to recog-
nize this structure and assumes them to be different individual processes. From the user’s end, 
the concern is not how a particular process performs but how and in which order the user’s group 
of processes that constitute a single application perform. Thus, the scheduling disciplines in this 
situation should primarily concentrate more on these process groupings. If applications initi-
ated by users create different numbers of processes, an application employing more processes is 
likely to receive more CPU attention than an application employing fewer processes. To properly 
negotiate this situation, the approach taken by the scheduler is generally known as fair-share 
scheduling (FSS). 

FSS can be further extended to groups of users in which each user is assumed to represent an 
individual single process. Scheduling decisions could then be carried out that attempt to offer each 
group similar service and ensure equitable use of the CPU by processes belonging to different group 
(users) or different applications. 

Under FSS, each user is assigned a given weight of some sort that defnes that particular user’s 
share of system resources as a fraction of total utilization of those resources. Here, the scheduler, in 
general, monitors usage so as to give fewer resources to users who have enjoyed more than their fair 
share and more to those who have received less than their fair share. 

Scheduling is carried out on the basis of priority in which each process is assigned a base prior-
ity. The priority is calculated together the associated priority of the process, its recent processor 
usage, and the recent processor usage of the group to which the process belongs. In the case of group 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 143  

 

 

  

   

  

   

  

  

  

utilization, the average is normalized by dividing by the weight of that group. The greater the weight 
assigned to the group, the less its utilization will affect its priority. Usually, the higher the numerical 
value of the priority, the lower it is. 

It is to be noted that the actual share of CPU time received by a group of processes may some-
times differ from the fair share of the group due to lack of activity in its processes or in processes of 
other groups. Different operating systems, particularly systems using the lottery scheduling policy 
and the scheduling policy used in the UNIX operating system, differ in the way they handle this 
situation. Lot of work has been done in this area by many OS researchers and designers. Interested 
readers can consult Kay and Lauder (1988) and Woodside (1986). 

For more details on this topic with computation, see the Support Material at www.routledge. 
com/9781032467238. 

4.16.12 HYBRID METHODS 

Numerous types of methods can be developed by combining ones that we have already mentioned. 
Here are some examples. 

1. Use multiple-level feedback up to a fxed number z of time-slices, then use FCFS for the 
last queue. This method reduces the number of process switches for very long processes. 

2. Use round robin up to some number of time-slices. A process that needs more time is to be 
put in a second-run queue, which can be treated with SRR scheduling. Very long processes 
are eventually placed in a third queue that could use FCFS. RR could have absolute prece-
dence over SRR, which, in turn, has precedence over FCFS, or each could be given a fxed 
percentage of total time. 

4.16.13 STATE-DEPENDENT PRIORITY METHODS 

These three methods adjust parameters based on the current state. 

1. Use RR. However, instead of keeping the quantum constant, adjust it periodically, perhaps 
after every process switch, so that the quantum becomes q/n, where n is the size of the 
ready list. If there are very few ready processes, each gets a long quantum, which avoids 
process switches. But if there are many, the algorithm becomes more fair for all, but at the 
expense of more process switching. Processes that need only a small amount of time get a 
quantum, and a small one may be able to fnish soon. The quantum should not be allowed 
to drop below a given minimal value so that process switching does not start to consume 
undue amounts of time. 

2. Offer the current process an extra quantum whenever a new process arrives. The effect of 
this gift is to reduce process switching in proportion to the level of saturation. 

3. Some versions of UNIX use the following scheduling algorithm. Every second, an internal 
priority is calculated for each process. This priority depends on the external priority (set 
by the user) and the amount of recent time consumed. This latter fgure rises linearly as 
the process runs and decreases exponentially as the process waits (whether because of 
short-term scheduling or other reasons). The exponential decay again depends on the cur-
rent load (that is, the size of the ready list); if the load is higher, the CPU usage fgure of a 
process decays more slowly. Processes with higher recent CPU usage get lower priorities 
than those with lower-recent CPU usage. The scheduler runs the process with the highest 
priority in the ready list. If several processes have the same priority, they are scheduled in 
RR fashion. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

  

  

  

   

  

 

144 Operating Systems 

4.16.14 EXTERNAL PRIORITY METHODS 

These three methods adjust parameters on the basis of some external priority. 

1. Use RR, but let the quantum depend on the external priority of the process. That is, allow 
larger quanta for processes run for a user willing to pay a premium for this service. 

2. The worst service next (WSN) method is a generalization of many others. After each time-
slice, compute for each process how much it has suffered so far. Suffering is an arbitrarily 
complex fgure arrived at by crediting the process for how much it has had to wait, how 
many times it has been preempted, how much its user is paying in premiums, and how 
urgent it is. The process is also debited for such items as the amount of time it has actually 
used and the other resources it has consumed (resources like space and access to secondary 
storage). The process with the greatest suffering is given the next quantum. 

3. The user buys a guaranteed response ratio. At the time of scheduling, a suffering function 
is used that takes into account only the difference between the guaranteed response ratio 
and the actual response ratio at the moment. 

4.16.15 OTHER SCHEDULING SYSTEMS 

There are other specialized scheduling mechanisms discussed in the text and other places, and it 
is easy to derive many such scheduling systems from the ones that we have already discussed. In 
all cases, they have to be evaluated on how well they infuence their fgure of merit (e.g. system 
response time, turnaround time, throughput, etc.) and the overhead of implementing them (e.g. esti-
mating runtime). However, it can be concluded that for every scheduling strategy, there is always a 
counter-strategy. 

4.16.16 EVALUATING POLICIES 

Since a scheduling policy decides the allocation of system resources directly or indirectly, the perfor-
mance of various scheduling policies has an immense impact on the performance and effectiveness 
of multitasking and multiuser operating systems. Thus, the choice of a particular scheduling policy 
appropriate to a specifc working environment is always a critical factor. In general, the unpredict-
able workload presented to real systems and the varying requirements of different resources by 
active processes being handled by individual schedulers managing specifc classes of resources are 
highly complicated. All these and similar other factors together would generally impose too much 
overhead while trying to balance resource utilization at runtime. It is, hence, not only very diffcult 
but probably impossible to draw defnitive comparisons over the different scheduling disciplines 
because their relative performances will mostly depend on a variety of factors, such as the prob-
ability distribution of service times of the various processes, the nature and the frequency of the I/O 
demand, the performance of the I/O subsystem, and above all, the effciency of the chosen schedul-
ing discipline, including process/context switching mechanisms. 

However, given a policy, when attempting to draw some general conclusions with regard to its 
performance; three common approaches of most interest can be used as evaluation tools: analysis, 
simulation, and experimentation. 

Analysis: It involves a mathematical formulation of the policy and a derivation of its behavior. 
Such a formulation develops an analytic model that is mostly based on the elements of queuing 
theory, which are often described in the language of queuing networks. Queuing models are usually 
based on several simplifying assumptions so as to make it mathematically manageable to extract an 
exact, simple solution. Although in real systems, these assumptions are not always valid, they often 
provide only an approximation of the reality. Such an approach always ignores some relevant details 
and is also incapable of describing other pertinent facts. However, once a model has been built and 



Processor Management 145  

 

 

 
 
 
 
 

 

 

 
 
 
 
 

  

 

 
 

results have been derived, the next step is to validate the model by comparing its predictions against 
reality. This step is easy if the model describes an actual situation, but it is harder if it describes a 
hypothetical situation. Nevertheless, it is an useful tool that may be used to rationally compare and 
study the overall behavior of the various scheduling disciplines for performance analysis. 

For an illustration of this topic with a fgure, see the Support Material at www.routledge.com/ 
9781032467238. 

Simulation: When analysis is inadequate or fails for being too complex, or when queuing net-
works do not able to effectively describe the situation, simulation may be used. Simulations are 
programs, often quite complex, that mimic the dynamic behavior of the actual system in the mod-
eled one. In fact, simulation usually involves tracking a large number of processes through a model 
(such as a queuing network) and collecting statistics. Whenever a probabilistic choice is to be made, 
such as when the next arrival should occur or which branch a process will take, a pseudo-random 
number is generated with the correct distribution. It is also possible to drive the simulation with 
traces of real systems to better match the reality. Depending on the nature of the input to be fed to 
the modeled system, a simulation may be trace-driven or self-driven. A trace-driven simulation uses 
an input that is a trace of actual events collected and recorded on a real system. A self-driven simu-
lation uses an artifcial workload that is synthetically generated to closely resemble the expected 
conditions in the target systems. 

Simulations, just like analytic models, must be validated to ensure that they are adequate to ratio-
nalize the situation that is being modeled. They are often run several times in order to determine how 
much the particular pseudo-random numbers being chosen affect the results. Simulations tend to 
produce enormous amounts of data that must be carefully fltered before they are used. Simulations 
often use extremely detailed models and therefore consume enormous amounts of computer time. 
Moreover, accurate simulations of comparatively complex systems are also critical in terms of design 
and coding. For these reasons, simulations are usually appropriate only if analysis fails. 

For an illustration of this topic with fgures, see the Support Material at www.routledge.com/ 
9781032467238. 

Experimentation: If simulation appears diffcult and does not work, usually due to the complexity 
of the model, experimentation is the last resort and often requires a signifcant investment in equip-
ment, both to build the system to be tested and to instrument it to acquire the required statistics. For 
example, it can be far cheaper to simulate the SPN scheduling method than to implement it properly, 
debug it, execute it on a user community for a while, and measure the results. Likewise, it is cheaper to 
simulate the effect of installing a new disk than to acquire it on rent, connect it, see how well it works, 
and then disconnect it after being convinced that the improvement is not cost-effective. However, 
experimentation almost always ensures accurate results, since by defnition, it uses a truthful model. 

4.16.17 SCHEDULING LEVELS 

While focusing on short-term scheduling, it is to be noted that some of the short-term scheduling 
disciplines contain certain aspects of medium-term scheduling. Tuning the parameters of a short-
term scheduling method is another form of medium-term scheduling. Moreover, since the domain of 
medium-term scheduling is not sharply demarcated, various reasons for waiting may lead to different 
blocking times that again vary considerably, thereby directly affecting short-term scheduling. 

Long-term scheduling often uses some criteria while making decisions to select a specifc job to 
admit next, and this act, in turn, sometimes directly affect the short-term scheduler. This selection 
at times may either overload the system with CPU-bound jobs or I/O-bound jobs, thereby leading 
to a situation that may summarily degrade system performance as a whole. Moreover, if too many 
large jobs happen to be selected for execution by the long-term scheduler using its own policy, then 
at times, many of these jobs must be swapped out to make room for the currently executing jobs. 
As a result, a suffcient number of processes on which the scheduler will work will not be available, 
which in turn will restrict the real benefts of a good short-term scheduler. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

  

 

 

 

  

146 Operating Systems 

Long-term scheduling also blends into medium-term scheduling somewhat. The decision not to 
allow a process to start may be based on explicitly declared resource needs that are not currently avail-
able, in which case it can be said that the process has really started (as far as the long-term scheduler is 
concerned) but is still waiting for resources (as far as the medium-term scheduler is concerned). 

In fact, the long-term scheduler since acts as a frst-level throttle in keeping resource utilization 
at the desired level but infuencing and regulating in many ways the decisive action to be taken by 
the short-term scheduler at the time of scheduling. 

For more details on this topic, see the Support Material at www.routledge.com/9781032467238. 

4.16.18 PERFORMANCE COMPARISON 

The behavior of scheduling policies can be seen, in general, by comparing them using a simulation 
considering a large number of processes. In fact, a sample of 50,000 processes has been taken with 
service times β randomly drawn from an exponential distribution with β = 1.0, and arrival rates α 
similarly drawn from an exponential distribution with α = 0.8. The saturation level (processor uti-
lization) was therefore, ρ = α/β = 0.8. Statistics were gathered on each process except for the frst 
100 to complete in order to measure the steady state, which is the behavior of a system once initial 
fuctuations have disappeared. The results of these simulations provide, by and large, useful insight 
into the general behavior of the different algorithms we have studied. 

The details of this topic, using simulation with illustrative fgures, are given on the Support 
Material at www.routledge.com/9781032467238. 

4.16.19 GUIDING PRINCIPLES 

The question now arises in respect to the selection of a specifc scheduling algorithm from the list 
of policies already explained that would be found best suited in a specifc environment. Here is a 
rule of thumb: Preemption is worth it, even with an extra switching cost. Since context must switch 
at every interrupt from the running process back to the kernel, it does not usually cost much extra 
for the kernel to make a decision and allow a different process to run. Clock devices are almost 
universal nowadays, from large computers down to board-level microcomputers. 

The quantum size should be large enough to prevent thrashing. A process switch might cost 
about 50 microseconds, and other scheduling bookkeeping might occupy another 300 microsec-
onds. If the quantum is 10 milliseconds, the scheduling mechanism occupies only about 3.5 percent 
of the quantum, which is quite reasonable to accept. 

Some policies are more expensive than others to implement. FCFS requires only one queue for 
the ready list. FB requires a number of queues. WSN can require arbitrarily complex computation 
at every decision point. The implementer should try to balance the cost of making decisions against 
the advantage that a particular strategy might yield. The complexity of the scheduling program 
itself is also worth minimizing. Simple programs are more likely to be correct and are certainly 
easier to maintain. 

Many operating systems use a hybrid policy, with RR and some other method for short processes, 
and possibly RR with a longer quantum and a lower priority for larger ones. Memory management, 
which we will discuss in the next chapter, also affects scheduling. Processes that need a substantial 
amount of storage are often given larger quanta so that they can get more work done and depart the 
system as quickly as possible, releasing the costly space they already occupy. 

The introduction of personal computing casts a different light on scheduling activities. Here, it is 
not always essential to keep the computer busy 100 percent of the time, even if there is work avail-
able. It is more important to provide interactive processes with good service; even if it waits for I/O, 
the scheduler might then wait for a while, letting the computer sit idle, with the hope that the interac-
tive process will soon become runnable once again and thereby avoid exercising a process switch to 
another one before it can start again. Similarly, an interactive process that enters a computationally 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 147  

   

 
 
 
 
 
 

  
 
 
 
 
 
 

 
 
 
 
 

 

 

 

intensive phase might still be considered interactive, and the scheduler might favor it instead of 
treating it as the equal of a background computation. 

4.16.20 CASE STUDY: UNIX, LINUX, WINDOWS NT 

Every operating system always targets to attain its own scheduling objectives; and in this respect, 
the UNIX, Windows NT, and Linux are no exception. The goals of Windows NT in this regard are 
different from those of UNIX and Linux. While the design objective of UNIX is more inclined 
towards offering fair and responsive services to its community of users, Windows NT tries to 
remain as responsive as possible to the needs of a single user in a highly interactive environment 
or even in the role of a server. Both UNIX and Windows NT employ apriority-based preemptive 
scheduling policy with a multiple-level queue, but UNIX employs a variant of preemptive priority-
based scheduling (event driven) with a fne blend of fair-share scheduling mechanisms. Windows 
NT in this regard employs a comparatively fexible system of priority levels that includes round-
robin scheduling within each level in multiple levels, and in other levels, dynamic priority variation 
is used based on their current thread activity. 

The Linux scheduling mechanisms, including its revised version (version 2.6), are very simi-
lar to traditional UNIX scheduling algorithms, but its scheduling capability is greatly enhanced 
in subsequent versions for non–real-time processes. The Linux scheduler primarily consists 
of three distinct scheduling classes: SCHED_FIFO (for scheduling frst-in-frst-out real-time 
threads), SCHED_RR (for scheduling round-robin real-time threads), and SCHED_OTHER (for 
scheduling non–real-time threads). Linux allows individual processes to make a choice among 
SCHED_FIFO, SCHED_RR, or SCHED_OTHER policies. Processes using the SCHED_FIFO 
and SCHED_RR policies are scheduled on a fxed-priority basis, whereas processes using the 
SCHED_OTHER policy are scheduled on a time-sharing basis. An initial priority (static) for 
each non–real-time task is often assigned, and as the execution continues, a priority is determined 
dynamically, based on the task’s static priority and its execution behavior. The dynamic priority is 
computed based mainly on how much time a process waits (waiting for an event) and how long a 
process runs. In principle, a task that suffers most in waiting is offered a relatively higher priority. 
Time-slices are assigned to a task according to its priority, and as such higher-priority tasks are 
obviously assigned larger time-slices. 

The scheduling procedure is straightforward and effcient. When a process is ready, it is assigned to 
the appropriate priority queue in the active queues structure and is assigned the needed time-slice. If a 
task is preempted before it completes its time-slice, it is returned to an active queue. When a task uses its 
time-slice, but does not complete, it is placed into the appropriate queue in the expired queue structure 
and is assigned a new time-slice. All scheduling, however, is carried out from among the active queues 
structure. When the active queues structure is exhausted, expired queues only then come under consid-
eration, and the scheduler chooses the highest-priority nonempty expired queue. If multiple tasks are 
present in that queue, the tasks are simply scheduled using a round-robin approach. 

The details of UNIX, Windows NT, and Linux scheduling with illustrative fgures are given on 
the Support Material at www.routledge.com/9781032467238. 

4.17 INTERPROCESS SYNCHRONIZATION 

4.17.1 INTRODUCTION 

In the design of an operating system, the most fundamental aspect is the introduction of the process 
and related thread concepts. The design also supports the existence of concurrent processes, which 
may then be involved among themselves either in competition or cooperation. While competition 
among processes requires careful resource allocation and protection as well as isolation of different 
address spaces, cooperation, on other hand, demands adequate mechanisms in the OS for controlled 

http://www.routledge.com/9781032467238


 

 

 

   

 

 

 
 

 

 

148 Operating Systems 

usage of shared information and to synchronize the operation of the constituent processes. It is 
worth mentioning that OSs typically provide only the minimum mechanism to address concurrency, 
since there are so many ways to implement concurrency (e.g. from the point of view of program-
ming languages, the designer’s ability to set a collection of concurrent processes without interfer-
ence, various methods of communication between concurrent processes without interference, etc.) 
but none of them have been found to dominate the area. However, as an aid to users, the OS provides 
a set of primitives so that interprocess synchronization can be achieved in a well-structured way 
without using interrupts. 

Cooperating processes require the simultaneous existence of two different communicating pro-
cesses that typically share some resources in addition to interacting with each other (one produces 
an output which is the input to the other) that, in turn, demands synchronization to preserve prece-
dence relationships and prevent concurrency-related timing problems. 

While all sorts of measures have been taken and numerous techniques have been devised for 
smooth execution of concurrent processes with proper synchronization for the sake of performance 
improvement and increased productivity, correct implementation, however, may invite other prob-
lems of different types, including a possibility of deadlock among concurrent processes. Deadlock 
will be discussed in a subsequent section later in this chapter. 

The details of this topic are given on the Support Material at www.routledge.com/9781032467238. 

4.17.2 CONCURRENCY: FORMS AND ISSUES 

While concurrent execution of processes accrues major benefts in performance and effciency, even 
with incurring the additional cost of a certain amount of administrative overhead due to switching 
between processes, on the other hand, it may invite a lot of diffculties. These concurrent processes 
share common resources, including shared global data, and the order in which various reads and 
writes are to be executed is critical to preserve system integrity and consistency. The mechanism to 
be used in this situation must allow at most one process to have access to such a resource at a time 
and let it remain in use until the completion of its operation. This approach is known as interprocess 
synchronization, without which malfunctioning at the time of concurrent execution of more than 
one processes cannot be avoided. 

Another problem in concurrent execution of more than one process is the relative speed of the 
related processes involved in acquiring the shared resources. This speed is again not predict-
able; it depends on various factors, such as the behavior of the concerned process, the activities 
of other processes, and, above all, the way in which the OS handles interrupts and implements 
scheduling policies. One of the solutions to negotiate this predicament relating to timing fac-
tors may be the use of appropriate timing signals that can be exchanged among concurrent 
processes or threads to coordinate their collective progress. This approach is known as interpro-
cess signaling, which is a rudimentary form, but is a common approach to handle interprocess 
synchronization. 

Besides interacting with each other, the concurrent processes typically share some resources 
to communicate, such as shared memory, in order to exchange data, send one’s output to another’s 
input, report progress, and accumulate collective results. While accessing a shared memory, they 
exhibit a simple common means called interprocess communication. To prevent any hazard caused 
by timing in this situation, all such concurrent processes must be synchronized only at the time of 
accessing the shared resources. 

Let us now identify the root of all these potential diffculties as mentioned and also to fnd out 
an alternative strategy that can combat the problems related to interprocess synchronization. This 
approach as being consisted of some systematic methodologies could then be injected early in the 
design process of OS, rather than to attempt to cure the system when it is already infested with 
concurrency-related timing problems. 

The details of this topic are given on the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 149  

  

 

 
 
 
 
 
 

 
 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

4.17.3 RACE CONDITION 

When two or more processes compete with one another to get access to a common shared resource 
during the course of their execution, they are in a race, and the situation is called the race condition. 
The result is that one of them will ultimately win the race and gain access to the resource. It will 
relinquish the resource only when its work is fnished, leaving the state of the resource unaffected 
for the other processes to continue. None of the processes is aware of the existence of the others, and 
each is unaffected by the execution of the other processes. Such competing processes never exchange 
any information, but the execution of one such process may affect the state of other competing 
processes. The shared resources may be processor time, memory, clock, and, of course, other I/O 
devices. In fact, a race condition exists when the result of a computation varies, depending on the tim-
ing of the other processes. A race condition occurs when the scheduling of two processes is so critical 
that the various orders of scheduling them result in different computations. A race condition results 
from the explicit or implicit sharing of data or resources among two or more processes. 

The solution to avoid the race condition can be formulated in an abstract way. The part of the 
program where the shared memory, variable, or resource is accessed is called the critical section. 
The critical section is one or a sequence of instructions with a clearly marked beginning and end. 
The critical section problem can be handled by allowing either process to enter its corresponding 
critical section at any time it needs to do so except when the other process is currently in the critical 
section. That is, if one could arrange matters that no two processes were ever in the critical section 
at the same time, we can avoid the race condition. 

A process that enters its critical section must complete all the instructions therein before any 
other process is allowed to enter the same critical section. To implement this, it is thus required that 
a process explicitly request to use the shared resource prior to using it. When all use of the resource 
completed, the resource may then be released by the process. The request and release operations 
are usually part of the operating system facilities handled by the traffc controller. If a process 
requests a resource which is already in use, the process automatically becomes blocked. When the 
resource becomes available again as a result of a later release, the blocked process may be assigned 
the resource and made ready. This is often referred to as mutual exclusion, which enforces inter-
process synchronization to ensure system integrity. Synchronization is actually a generalization of 
mutual exclusion. The choice of appropriate primitive operations for realizing mutual exclusion to 
avoid the race condition is thus a major design issue in any operating system. 

The realization of mutual exclusion, on the other hand, invites two additional control problems. 
One severe problem is that of deadlock. This situation arises when one of the constituent processes 
has already acquired a resource for its use and requests another resource that is already acquired by 
other, and vice-versa. Both processes then keep waiting for their respective resource and are waiting 
forever; no constituent process can continue, and all such processes then appear dead, leading to a 
situation that ultimately locks the entire system. That is why it is called deadlock. Another related 
hazard is a situation in which the algorithm that decides to block an activity for the sake of imple-
menting mutual exclusion continues to run for an indefnite period without arriving at a defnite deci-
sion. Here, the system is very much alive, but looks locked, since it sits in a tight loop, only checking 
the status of the shared resource for the purpose of reaching a frm decision without continuing to 
do productive work related to other processes. Such a situation is called livelock. A special case 
of livelock is busy waiting, in which an activity, as an alternative to blocking, uses computational 
resources without making any progress. Busy waiting is, however, not vulnerable and hence is not 
objectionable if there is no other work worth doing during the wait. Another control problem that is 
fatal to concurrent processing is starvation. During the course of implementing mutual exclusion, 
one of the constituent processes which is denied access to a shared resource will naturally slow down. 
In an extreme case, the process may be indefnitely denied access to its requested shared resource, 
thereby leading to a situation of starvation, although there is no situation of deadlock. 

The details of this topic are given on the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238


 

  

 

  

  

  

  
  

   

  
  
  

 

150 Operating Systems 

4.17.4 MUTUAL EXCLUSION: REQUIREMENTS 

Fundamental to successful execution of concurrent processes require the defnite identifcation of 
related critical sections in which mutual exclusion of the said processes is required to be enforced. 
Although it is the only requirement to prevent the race condition, this is not suffcient for having 
parallel processes (multiprocessor system) co-operate correctly and effciently using shared data. In 
order to derive an acceptable general solution to provide adequate support for mutual exclusion, the 
following fve conditions must be met: 

1. No two processes may be in their critical section at the same time in order to ensure mutual 
exclusion. 

2. When no process is in a critical section, any process that requests entry to its critical sec-
tion must be permitted to enter without delay. 

3. No assumptions may be made about relative process speeds and priorities, the number of 
contending processes, or the availability of the number of CPUs. 

4. No process running outside its critical section may block other processes. 
5. No process should have to wait forever to enter its critical section, that is, to grant entrance 

to one of the contending processes into the critical section for only a fnite duration, thereby 
preventing deadlock and starvation. 

4.17.5 MUTUAL EXCLUSION IMPLEMENTATION 

Concurrent processes can only be interleaved but cannot be overlapped, and mutual exclusion of 
these concurrent processes can thus be achieved in a number of ways, so that while one process 
is busy in its critical region, no other process will be allowed to enter the same critical region. 
To implement this approach to realize mutual exclusion, certain basic rules (protocols) must be 
observed by each process, such as: 

• To negotiate protocol (winner of the race proceeds) 
• Enter critical section (exclusive use of shared resource) 
• To release protocol (relinquish ownership) 

A willing process attempting to enter a critical section frst negotiates with all other concurrent pro-
cesses to make sure that no other conficting activity is in progress, and then all concerned processes 
are informed about the temporary unavailability of the resource. Once consensus is reached, the 
winning process can safely enter the critical section and start executing its tasks. After completion, 
the concerned process informs the other contenders about the availability of the resource, and that 
may, in turn, activate the next round of negotiations. 

We will now turn to developing mechanisms that can be used to provide mutual exclusion and 
thereby synchronization. We will start with simple but conservative techniques and move toward 
more complex, liberal ones. In each case, we will show how certain primitives can be built to ensure 
mutual exclusion. 

All mechanisms developed to realize mutual exclusion and synchronization ultimately depend 
on the synchronous nature of hardware. Some rely on the fact that processors can be made uninter-
ruptible. These processor-synchronous methods work only for individual processors. Others rely 
on the fact that main storage can service only one access request at a time, even in a multiprocessor. 
These store-synchronous methods have a wider range of applicability. 

4.17.5.1 Software Approaches: Switch Variables 
Software approaches to implement mutual exclusion are based on a fundamental exclusion attribute 
already built into main memory (hardware) that can service only one access request at a time, even 



Processor Management 151  

 

 
 

 
  

   
 
 
 

 
 
 
 

 
 

 

 
 

in a multiprocessor. This synchronization atomicity of main storage can be used to defne a new 
main-storage variable called a switch that can then be shared by two concurrent activities to imple-
ment mutual exclusion between them. This variable allows only one or the other to enter its critical 
region. To mitigate the confict that may arise due to simultaneous access to this common shared 
switch by concurrent independent processes, a user-made software approach can be employed to 
serialize the multiple accesses to the shared switch variable. When this approach is implemented; 
no special hardware facility, no additional OS assistance, and above all, seeking of any particular 
supporting attribute at the level of programming language have ever been at all assumed. Moreover, 
these approaches do not consider any ordering of access to be granted to the contending processes 
while arbitrating the conficting situation. 

4.17.5.2 Dekker’s Algorithm: A Real Software-Only Mutual Exclusion Algorithm 
The Dutch mathematician Dekker’s approach (1965) was the frst published software-only, two-
process mutual exclusion algorithm. This approach cannot be easily extended beyond two general-
ized processes that share a common resource accessed within a critical section. Both processes 
are sequential and cyclic, and each of them also executes some code other than the critical section. 
Although the initial approach was observed to be infested with bugs, four attempts were later made 
in succession to rectify it and fnally make it a foolproof system. In spite of having several limita-
tions, the beauty of this approach is its simplicity while addressing the race condition as well as 
offering a solution, and at the same time, it highlights numerous bugs that may be encountered in 
developing concurrent programs. 

This algorithm considers two independent and individually schedulable processes P1 and P2 
that can also be interleaved in any arbitrary order. But, for the sake of simplicity and convenience, 
we have presented here the two processes (or threads) as a part of a single module named mutual 
exclusion. The procedure includes a global variable turn which actually monitors and controls 
access to any type of unspecifed shared resource. The turn variable can assume only one of two 
values, proc1 or proc2, to identify the process permitted to enter its critical section. Each process 
is prohibited from entering the critical section when turn belongs to the other. Three successive 
modifed approaches, however, have been proposed over the already introduced initial algorithm 
with the previously mentioned assumption, when each such approach rectifed the faults and 
limitations of its just predecessor, and fnally the fourth one was able to overcome the shortcom-
ings of the third one. While this fourth approach tends to be very close to the correct solution; 
incidentally, this new approach is again not a foolproof one, and yet appeared to have some trivial 
faws in certain situations that are also not very usual. Moreover, if one of such faws occurs, it 
may not be sustained for very long time. Still it is considered not to be an effective approach, and 
that is why the fourth approach is also hereby conclusively abandoned. 

The details of each of these four approaches with their respective algorithms and their 
drawbacks are individually given, along with a separate correct approach, on the Support 
Material at www.routledge.com/9781032467238. 

4.17.5.3 Dekker–Peterson’s Algorithm 
Dekker’s algorithm, just described, published in 1965, was the only good solution for many years. 
Although this rather complex program solves the mutual exclusion problem, it is diffcult to follow, 
and its correctness is tricky to prove. There were also many other ways in which the switch could 
be built incorrectly. However, a surprisingly simple and elegant modifcation of Dekker’s algorithm 
was published by Peterson in 1981. Both algorithms can be generalized to multiple processes, but 
that is beyond the scope of this discussion. Here the global fag variables p1–in and p2–in indicate 
the position of each process with respect to mutual exclusion, and the other global variable turn 
(non-alternating switch) resolves simultaneity conficts. The logic as used in this algorithm is able 
to summarily remove all the drawbacks of Dekker’s algorithm. 

http://www.routledge.com/9781032467238


 

 
 

  
 
 

 

 

152 Operating Systems 

The solution as offered in this algorithm is able to preserve mutual exclusion, considering all the 
critical situations that may also arise. But, while Peterson’s approach is simple enough, it is not free 
from busy waiting that may summarily degrade the performance of the entire system. However, this 
drawback does not decline its theoretical signifcance but only tends to limit its direct applicability in 
practice. Moreover, this solution can also be generalized to any number of processes that compete over 
the same shared resources. This generalization can be achieved by use of a spin switch (Hofri, 1990). 

The details of this approach with the algorithm are given on the Support Material at www.routledge. 
com/9781032467238. 

4.17.5.4 Hardware Approach: Disable Interrupts 
The process concept in the design of an operating system means that a process will remain running 
until it invokes an operating-system service (system call) or is interrupted. Mutual exclusion is thus 
guaranteed if a process is allowed to continue in its critical section by way of providing a proper 
guard (lock) so that it cannot be interrupted. Since no interrupts are allowed to arrive, the current 
activity will be able to complete the instructions in its critical region before any other activity starts 
executing in the same region. Adjusting this interruptibility of the computer gives rise to a proces-
sor-synchronous technique that can enforce mutual exclusion. This capability can be provided in 
the form of primitives defned by the innermost system kernel for disabling and enabling interrupts. 
A disable interrupt/enable interrupt (DI/EI) mechanism is considered a quick and easy means for 
ensuring indivisibility in the execution of the critical section. Some operating systems, for example, 
Amiga DOS, allowed processes to do this. 

Interrupt disable/enable instructions are available in virtually all computers that allow inter-
rupts to be disabled, perhaps on a selective basis. Use of these instructions was probably the most 
widely applicable way to implement mutual exclusion in multitasking systems running on a single-
processor machine. The basic idea is quite simple. When a process wants to enter its critical region 
to gain exclusive access to a shared resource, it will disable all interrupts, restricting other processes 
from entering the same section at the same time, and re-enable them just before leaving the section 
to allow others to use it. Thus, once a process has disabled interrupts, it can use the shared resource, 
preventing any interference during the execution of the critical section. This may be accomplished 
by the following sequence: 

< disable interrupts >; 
< enter critical section: use protected resource >; 
< enable interrupts >; 
< remaining portion >; 

Interrupt disabling, however, can cause severe problems; it actually disables clock interrupts and in 
turn disables the scheduler temporarily, resulting in no preemptions, thereby affecting rescheduling. 
In that situation, a lower-priority process could prevent a higher-priority process from continuing. 
It also outlaws concurrency altogether by disabling all other innocent disjoint processes not related 
to the blocking process. Moreover, events related to real-time processing are unable to respond eff-
ciently; devices that need immediate service cannot be entertained until the ongoing activity in the 
critical region completes. In fact, attempts to disable the interrupt force the entire system virtually 
into a state of suspension. In addition, if the user process is given the power to handle interrupts for 
synchronization purposes, it may be dangerous and even totally unreliable if inappropriate moves 
are taken by the user that may lead to total collapse of the entire system, or the system may be 
trapped in a deadlock. The disabling-interrupts approach is not at all suitable for the multiprocessor 
systems (multiple CPUs) with shared memory, because it works only on the concerned CPU and 
is not applicable to other CPUs, which may cause a race condition among the processes running 
on them. Still, it is often convenient to entrust the kernel itself to disable interrupts for those few 
instructions causing a race condition. That is why it is sometimes a useful technique to disable 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 153  

 

     

 

    

 
  
   
   
  
 

interrupts within the kernel (implementation of semaphore WAIT and SIGNAL as system calls 
using DI and EI instructions at the system level only, to be discussed later in this chapter), but is not 
considered appropriate as a general mutual exclusion mechanism for user processes. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.17.5.5 Special Machine Instructions 
A more reasonable method using direct hardware support to achieve mutual exclusion is the test-
and-set lock (TSL) instruction which carries out two actions, such as reading and writing or reading 
and testing of a single shared lock (memory location) atomically. Since these actions are performed 
in a single instruction fetch cycle, they are not subject to any kind of interruptions and hence are 
free from interference from other activities. Many computer systems, even systems with multiple 
processors, offer this explicit store-synchronous TSL instruction that makes mutual exclusion far 
easier and clearer. 

• Test-and-Set Lock Instruction 

The test-and-set lock instruction negotiates the conficts among the contending processes by 
allowing only one process to receive a permit to enter its critical section. The basic idea is simple. 
A physical entity called lock byte is used as a global variable which controls the entry to the critical 
section (to access the shared resource). This global variable is set to free when the guarded shared 
resource is available. Each process intending to access the shared resource must obtain a permit to 
do so by executing the TSL instruction with the related control variable as an operand. When several 
concurrent contending processes compete, the TSL instruction guarantees that only one of them 
will be allowed to use the shared resource. 

In fact, when this TSL instruction is executed, the value of the lock byte (memory word) will be 
read and tested, and if it is 0 (free), it is then replaced by 1 (busy) or any non-zero value and returns 
true, and the process may now enter its critical section. This entire sequence of operations is guaran-
teed to be indivisible; that is, it is to be carried out atomically; no other process/processor can access 
the lock (word) until the TSL instruction is completed. 

The shared control variable used as a lock itself becomes a new critical section related to its 
testing and setting. If a process is interrupted after testing the shared control variable but before it 
sets it (after the if statement but before the assignment statement in the following declared function), 
the solution fails. This new, smaller critical section that manipulates the shared control variable can 
be handled by certain forms of needed system calls embedded in the TSL instruction. In this case, 
interrupts are disabled in OS code only while the variable is being manipulated, thereafter allowing 
them to be enabled while the main critical section is being executed. Hence, the amount of time 
that the interrupts are disabled is very short. When the execution of the TSL instruction is over, the 
shared resource becomes protected for the exclusive use of the process that calls the TSL instruc-
tion. The test and set can be defned as follows: 

atomic function test_set (var k: integer): boolean [k → control variable] 
begin 

if k = 0 then 
begin 

k := 1 
test_set := true 

end 
else test_set := false 

end 

The beauty of the TSL instruction lies in the guarantee of its atomic (indivisible) action with regard 
to testing of the global variable and its subsequent setting at the time of entering the critical section 

http://www.routledge.com/9781032467238


 

 

 

 

 

154 Operating Systems 

(occupying the corresponding shared resource). The IBM System/360 family with a number of 
models were the frst computers to include TSL instruction in hardware. Since then, the archi-
tectural design of almost all commercial computers includes explicit hardware provisions, either 
in a similar form to a TSL instruction or its functional equivalent for implementation of mutual 
exclusion. In fact, the other type of instructions, INCREMENT MEMORY and SWAP MEMORY 
AND REGISTER, are also available; each one, however, uses similar approaches to TSL instruc-
tion and carries out its respective indivisible operation at the time of execution to implement mutual 
exclusion. 

4.17.5.6 Multiprocessor Implementation 
The TSL instruction with modifcation may also be implemented in multiprocessor systems with 
shared memory accessible to several processors. When many concurrent processes executing on 
different processors attempt to execute their individual TSL instruction, as defned earlier, mutual 
exclusion may not be obtained. The reason is that multiprocessor systems with shared memory 
commonly run on a memory-cycle basis in which it is guaranteed only to have an undisturbed sepa-
rate READ and WRITE cycle. In a single-processor system, these two cycles in TSL instruction 
are, however, actually combined and treated (executed) as a single, indivisible read-modify-write 
memory cycle. As a result, in a multiprocessor system, it is highly probable that while a TSL execu-
tion is in progress on a given processor, another processor’s TSL execution may intervene between 
the READ and WRITE cycle of the currently running TSL instruction, and these two processes 
may then work on the same lock byte (shared resource) at the same time to enter the critical sec-
tion, thereby creating an inconsistency in the value of the lock byte that eventually damages the 
ultimate objective of mutual exclusion. One way to solve this problem is to use an approach which 
should be carried out at much lower level, which is to implement an indivisible read-modify-write 
cycle explicitly on the system bus (not on the lock byte as is usual in TSL instruction) leading to 
the lock byte. Accordingly, the concerned CPU at the time of executing the TSL instruction then 
locks the memory bus to prohibit other CPUs or processes from accessing the lock byte (the same 
memory location) until it is done. In other words, each processor’s TSL instruction can then only 
see a consistent global value of the lock byte (shared variable) as set before or after the completion 
of the execution of the competing TSL instructions. For example, Motorola implemented a test and 
set (TAS) instruction in the M68000 family of microprocessors to make them suitable for multi-
processor systems by way of using an indivisible read-modify-write cycle on the system bus for the 
purpose of TAS instruction execution to implement mutual exclusion. 

• Exchange Instruction 

A different type of instruction that uses a similar approach to TSL instruction to implement 
mutual exclusion is the Exchange (XCHG) instruction, which carries out the contents of a variable 
(lock byte) to be tested and subsequently set as an indivisible operation. This XCHG instruction may 
also be used successfully in a multiprocessor environment by providing an additional arrangement 
of a special LOCK prefx over the system bus that enables this instruction to enforce its atomicity 
(read-modify-write cycle on the bus) in a multiprocessor system, thereby ensuring mutual exclusion. 
This is found in the implementation of the Intel iAPX–86 (80 x 86) family of processors with the 
use of an WAIT operation. In fact, when this exchange (XCHG) instruction is executed, it exchanges 
the contents of a register with the contents of the lock byte (specifed memory word). During execu-
tion of this instruction, access to the lock byte is blocked for any other instruction referencing that 
particular lock byte. 

While both TSL and ECHG instructions are easy to implement, do not affect interrupts, and 
relieve the system from the state of any type of suspension, the performance advantages offered 
by them are often offset by some of their serious drawbacks. The busy waiting caused by them 
leads to serious degradation in the effective utilization of the system, and the busy waiting of many 



Processor Management 155  

 

 

 

 
 
 

 
 
 
 
 
 

  
 

 

processes lying in a queue with arbitrary ordering may cause the possibility of acute starvation 
for some processes In addition, the process or processes in a state of busy waiting may hold some 
resource(s) that may be required by the process executing in its critical section. But access to the 
resource(s) will simply be denied because of the principle guiding the mutual exclusion mechanism. 
Consequently, the process in the critical section cannot complete its execution, and all other pro-
cesses in the busy-waiting state will then remain in their existing state forever. The entire system 
may then simply be in deadlock. All these drawbacks that are found in hardware-based solutions 
summarily caused severe ill effects that greatly outweigh its many distinct advantages, and that is 
why a search for other effective mechanisms has been done. 

For more details about these topics, see the Support Material at www.routledge.com/ 
9781032467238. 

4.17.5.7 Mutual Exclusion (Synchronization) without Busy Waiting 
All the approaches, including disabling interrupts, as described, successfully solved the race con-
dition by implementing appropriate mutual exclusion, but they all suffer from busy waiting, the 
consequence of which is often severe and damaging to the overall performance of the entire system. 
It also creates a critical priority inversion problem (a low-priority process gets CPU access and 
a high-priority process remains waiting in a tight loop) on systems with a priority-based sched-
uler. Also, the solution obtained by disabling interrupts requires explicit OS support, but is still 
hazardous and also sometimes has a potential dramatic effect on the I/O system. To overcome all 
these shortcomings, an innovative approach is conceived that creates a shared resource accessible 
only through the operating system to enforce mutual exclusion. Processes that attempt to enter an 
already-occupied critical section will then simply be put in the blocked state, similar to the way a 
process that attempts to gain a currently allocated resource might be blocked by the resource man-
ager. Moreover, while a process is waiting, other processes may then continue. To make a system 
blocked, it, however, requires here only an extra cost of merely one or two process switch, against 
an unnecessary constant use of vital computational resources for being in a useless loop of busy 
waiting with no productive output. 

For brief details on this topic, see the Support Material at www.routledge.com/9781032467238. 

4.17.5.8 Semaphores 
Dijkstra proposed a reliable, effcient, and specialized mechanism to implement solutions to syn-
chronization problems, especially for mutual exclusion among an arbitrary number of cooperating 
processes using a synchronization tool called semaphore. His innovative approach was the frst 
one to use a software-oriented OS primitive (semaphore) to accomplish process synchronization 
and is still considered a viable one for managing communities of competing/cooperating pro-
cesses. Hence, it found its way into a number of experimental and commercial operating systems. 

Competing/cooperating processes can safely progress when they hold a permit, and a semaphore can 
be roughly considered a permit provider. A process requests a permit from a semaphore, waits until a 
permit is granted, proceeds further after obtaining one, and returns the permit to the semaphore when 
it is no longer needed. If the semaphore does not have a permit, the requesting process is blocked until a 
permit is available. The semaphore immediately receives a permit when a process returns one. Hence, a 
permit request is a blocking operation, and the permit return is not. In fact, the semaphore manager only 
keeps a count of the number of permits available and manipulates the number accordingly. 

A semaphore s is an OS abstract data type, a special variable used to synchronize the execution 
of concurrent processes. It has two member components. The frst component, count, is an integer 
variable which can take values from a range of integers that indicates the number of permits the sema-
phore (counting semaphore) has. The second component, wait-queue, is a queue of blocked processes 
waiting to receive permits from the semaphore. The initial value of count is created with a fxed num-
ber of permits, and the initial value of wait-queue is NULL, indicating no blocked processes. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

  

    

             
                       

             

  

             

    

             

             
                     

             

 

 

156 Operating Systems 

The two standard primitive atomic operations that can be invoked to access a semaphore struc-
ture are wait (or up) and signal (or down). Each primitive takes one argument, the semaphore vari-
able s, for permit request and permit release actions. A process takes a permit out of a semaphore 
(the semaphore transmits a signal) by invoking the operation wait (or up) on the semaphore and 
inserts a permit into (or releases a permit to) a semaphore (the semaphore receives a signal) by 
invoking the signal (or down) operation on the semaphore. In Dijkstra’s original paper, the wait (or 
up) operation was termed P (from the Dutch word proberen, meaning “to test”) and the signal (or 
down) was called V (from the Dutch word verhogen, meaning “to increment”). Operating systems 
often distinguish between counting and binary semaphores. The value of a counting semaphore can 
take values from a range of integers. The value of a binary semaphore can range only between 0 
and 1. On some systems, binary semaphores are known as mutex locks, as they are essentially locks 
that provide mutual exclusion. 

Both of these operations include modifcation to the integer value of the semaphore that, once 
started, is completed without any interruptions; that is, each of these two operations is indivisible 
(atomic action). In fact, semaphore variables can be manipulated or inspected by only three avail-
able operations, as depicted in Figure 4.16 and defned as follows: 

1.  A semaphore  variable  may  be  initialized  to  a nonnegative  value. 
2. wait (s) / * Get  a permit  from  semaphore s  * / 

{ 
if  ( count  >  0  ) { /*  permit  available  * / 

count = count—1;
 } 

else  { /*  permit  not  available  * /
                              put  the calling  process  in  the  wait-queue; 
                             block ;  / * invoke  CPU  scheduler  to  release  the  CPU  * /

 /* process returns here when rescheduled with a permit it got  * / 
                                     remove  the calling  process from  the  wait-queue; 

} 
return ;

 } 
3. signal (s) / * Return  a permit  to  semaphore s  * / 

{ 
if  ( not  empty  wait–queue ) { / * allocate  the  returning  token

                                                                               to  a waiting  process  * /
                    select  a process  from  the  wait–queue; awaken  the  selected  process ;  } 

else  { /*  put  the  token  in  the  semaphore  * / 
count = count + 1;  

} 
return ;

 } 

FIGURE 4.16 An algorithm illustrating the defnition of semaphore primitives (wait and signal). 

Wait and signal are primitives of the traffc controller component of processor management that 
are embedded in the scheduler instead of built directly on the hardware. 

A wait (s ) sets the process in the queue of blocked processes, if needed, and then sets the pro-
cess’s PCB to the blocked state. The processor is now available, so another process is then selected 
by the process scheduler to run. 

signal operation execution on a semaphore, as shown, frst checks if there are any blocked pro-
cesses waiting in the wait-queue. If there are, one of them is awakened and offered a permit using 
a scheduling discipline such as FCFS, the fairest policy to avoid indefnite delay of a process in a 



Processor Management 157  

  

 
 

 

  

 
                                             

               
                      
                            

                       

               
                     

                            

                  

 

semaphore that may otherwise cause starvation if other processes are given preference. The process 
selected by the scheduler is now ready to run again. Otherwise, the semaphore member variable 
count is simply incremented by one. 

There is some controversy over whether the scheduler should switch immediately to the waiting 
process to be activated in the domain of signal (Figure 4.16). An immediate switch guarantees that 
whatever condition awaited by that activity still holds, since the signal operation is in progress, and 
no other activity has had a chance to run. The disadvantage of an immediate switch within the sig-
nal domain is that it tends to increase the total number of switch processings. Moreover, the process 
that called signal may likely to call wait for a new region soon that may ultimately cause the said 
process itself to block in any case. The hysteresis principle suggests that the running process should 
be allowed to continue its remaining processing. 

When semaphore is supported, semaphore operations as well as the declaration of semaphore 
variables are commonly provided in the form of system calls in the operating system or as built-in 
functions and types in system implementation languages. 

4.17.5.9 Mutual Exclusion: General (Counting) Semaphore 
The defnition of wait() and signal() semaphore operations has been modifed to obtain a straight-
forward solution to the mutual exclusion problem. In fact, when a process executes the wait() opera-
tion and fnds that the semaphore value (s.count) is not positive, the process is blocked, and it is 
then placed in the wait-queue (s.queue) and switched to the wait state. Control is then transferred to 
the CPU scheduler, which then selects another process to run. A blocked process on a semaphore 
s should be restarted by a wakeup() operation only when some other process executes a signal() 
operation that changes the blocked process from the waiting state to the ready state. Now, whether 
the CPU may continue with the running process or switch to the newly ready process depends on the 
policy, as already discussed in the last section (last but one paragraph). Following this discussion, 
Figure 4.17 suggests a more formal defnition of these two primitives for semaphores:

     type    semaphore  = record
                                            count :  integer ;
                                            queue = list  of  process 

end ;
     var  s : semaphore ; 
     wait (s) :  [ P operation  ]

               s.count  :=  s.count  – 1 
if  s.count  < 0 then

 begin 
block () ; / * block  the  process  * / 

                            place  the  process  in  s.queue 
end ;

     signal (s) :  [ V operation  ]

               s.count  :=  s.count  + 1 
if  s.count  ≤ 0 then

  begin
                            remove  a process  P from  s.queue  ; 

wakeup () ;
                            place  the  process  in  ready  list ; 

end ; 

FIGURE 4.17 An algorithm illustrating the defnition of general (counting) semaphore primitives (wait and signal). 



 

 
 
 

 

  

 
 

  

  

    

          
                   
                 
                        

                        

                  

          

         
        

 

158 Operating Systems 

     Program/segment mutual_exclusion;
 . . . 

     const n  = . . .;  ( * number  of  processes )

     var s : semaphore  ( := 1 ) ; 

     process   P ( i : integer ) ; 
begin 

while true do 
begin 

wait ( s )  ;
 < critical  section  > ; 
signal ( s )  ;
 < remaining  P( i )  processing  > 

end  [ while ] 

end ; [ P( i ) ]

 [ main  process  ] 

     begin  [mutual_exclusion  ] 
s  :=  1;  ( free ) 
initiate   P(1),  P(2), . . .,  P(n)

     end [mutual_exclusion  ] 

FIGURE 4.18 An algorithm that implements mutual exclusion of competing processes using semaphores. 

In this implementation (Figure 4.17), semaphore values may be negative, although semaphore values 
are never negative under the classical defnition of semaphores. In fact, if a semaphore value is negative, 
its magnitude actually indicates the number of processes waiting on that semaphore. This fact results 
from switching the order of the decrement and then the test in the implementation of the wait() operation. 

As an illustration of the use of semaphores, let us consider that n different processes identifed in 
the array P(i) share a common resource being accessed within their own critical sections, as shown 
in Figure 4.18. Each process ensures the integrity of its critical section by opening its critical sec-
tion with a wait() operation and closing the critical section with a signal() operation on the related 
semaphore; that is, the semaphore is executed atomically. This means that in each process, a wait 
(s) is executed just before the critical section. If the value of s is negative, the process is suspended. 
If the value of s is 1, then it is decremented to 0, and the process immediately enters its critical 
section. Because s is now no longer positive, any other process that now attempts to execute wait() 
will make s negative and hence will not be allowed to enter its critical section. The process will 
be blocked and will be placed in the queue. When the process that already entered its critical sec-
tion ultimately leaves the region, it closes its critical section with a signal on the same semaphore. 
This will increment s by 1, and one of the blocked processes (if any) is removed from the queue of 
blocked processes associated with the semaphore and put in a ready state. When it is next scheduled 
by the operating-system scheduler, it can then enter its critical section. 

All these together frmly guarantee that no two processes can execute wait() and signal() opera-
tions on the same semaphore at the same time. This is realized (in a single-processor environment) 
by simply inhibiting interrupts during the time the wait() and signal() operations are executing. Once 
interrupts are inhibited, instructions from different processes cannot be interleaved, and only the cur-
rently running process executes until interrupts are re-enabled and the scheduler can regain control. 



Processor Management 159  

 

 

  

 

 

  

 

   
                                  

                 
                           
                 

        

                
                           
                   

        

 

It is to be noted that, since the wait() and signal() operation executions by the different pro-
cesses on the same semaphore must exclude one another, this situation itself is the mutual exclusion 
problem; hence, busy waiting with this defnition of wait() and signal() operations is really not 
completely eliminated. In fact, we have moved busy waiting from the entry section to the critical 
sections of the application programs. However, the critical section [containing wait() and signal() 
implementations] is usually very small, and almost never occupied; hence, it does involve in limited 
busy waiting albeit for a shorter duration, and that also occurs rarely. But if the critical section in an 
application program is relatively long and is almost always occupied, busy waiting in that situation 
really cannot be completely avoided. 

4.17.5.10 Binary Semaphore 
A more restricted form of semaphore is known as binary semaphore and has the same expres-
sive power as the general semaphore but is easier to implement. Here, the semaphore variable s is 
allowed to take on only two values; 0 (busy) and 1 (free). We use the mutex feld of each semaphore 
to make sure that wait and signal exclude each other (mutually exclusive) and only for a short dura-
tion; otherwise busy waiting may occur. In fact, any access of the value or the queue feld must be 
atomic, and this partial atomic action is required separately in implementing each of the wait and 
signal operations. The wait, activated by a process after having read the value of mutex, must imme-
diately seize the semaphore variable and prevent the other concurrent waits from reading it until 
checking its value and possibly changing it, if required, is completed. Similar actions are carried out 
in the case of signal operation. The logic of wait(s) should be interpreted as waiting until the sema-
phore variable s becomes free, followed by its indivisible setting of s busy before control is returned 
to the caller. The wait operation therefore implements the negotiation phase of the mutual-exclusion 
mechanisms. The signal (s) sets the semaphore variable free and thus represents the release phase 
of the mutual-exclusion protocol. Figure 4.19 depicts a formal defnition of a binary semaphore. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238.

     Type  binary  semaphore  = record
                                     value  ( 0, 1 )
                                     queue : list  of  process 

end ;
     var  mutex :  s  :  binary  semaphore
     wait B(s) : 

if mutex  = 1 then 
mutex  = 0 

else  begin
                           block  the  process ;
                           place  the  process  in  s.queue 

end  ;
     signal B(s) 

if   s.queue  is  empty then 
mutex  = 1 

else   begin
                                remove  a process  P from  s.queue ;
                                place  the  process  P in  the  ready  list ; 

end  ; 

FIGURE 4.19 An algorithm depicting the defnition of binary semaphore primitives (wait and signal). 

http://www.routledge.com/9781032467238


 

 

 

 
 
 
 
 
 

  
 
 
 
 
 

 

 

 

 
    

 

160 Operating Systems 

4.17.5.10.1 Implementation: As Lock Variable 
A binary semaphore s can be used to implement modifed lock and unlock mechanisms to imple-
ment mutual exclusion instead of using ordinary lock variables (Dekker–Peterson method), which 
eventually gives rise to busy waiting. Here, with the use of the wait (s) primitive, the process is 
blocked if the lock is not free, and the process is then placed in the queue of blocked processes, 
releasing the processor to do other useful work, thereby removing busy waiting. A signal (s) later 
checks the associated blocked list and selects one of the blocked processes from this list, if there 
are any, and wakes it up, putting it in the ready state for subsequent execution to be decided by the 
process scheduler. 

This mechanism can also be used for other purposes, including the process waiting for I/O 
completion. After an I/O request has been issued, the process can be blocked by a wait (x), where x 
is a status byte associated with the I/O device. When the I/O is completed, the corresponding I/O 
completion interrupt occurs, and it is then converted into a signal (x). 

For more details and the associated algorithm on this topic, see the Support Material at www.routledge. 
com/9781032467238. 

4.17.5.10.2 Semaphores: Related System Calls 
Semaphores are comparatively simple, yet a powerful mechanism to implement mutual exclusion 
among concurrent processes accessing a shared resource. To relieve users from the tedious task of 
devising their own synchronization mechanisms, operating systems often provide semaphores as a 
tool in the form of system calls so that processes that share resources (particularly parts of virtual 
storage) can synchronize their access with the use of these system calls. Each participating process 
then encloses the critical section (those sensitive statements that may be adversely affected by inter-
leaved or concurrent execution of processes) within a wait–signal pair with the related semaphore 
variable for safe execution. The semaphore variables are manipulated only through system calls. Four 
fundamental system calls are needed that may have different names in different implementations: (i) 
SemaphoreCreate (initial value) initializes the semaphore with a small integer. (ii) SemaphoreDestroy 
(semaphore descriptor) informs the kernel that the given semaphore is no longer needed. (iii) 
SemaphoreDown (semaphore descriptor) performs the down (wait) operation on the given semaphore. 
(iv) SemaphoreUp (semaphore descriptor) performs the up (signal) operation on the given semaphore. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.17.5.11 Semaphore: Service Ordering 
Since the implementation of semaphores does not impose any defnite ordering among the waiting 
processes to be serviced, there may be a high chance that some processes are unable to proceed 
due to locking of a resource by one or more other processes, leading to what is called indefnite 
postponement, sometimes referred to as livelock, and the affected processes then start to suffer from 
starvation. In fact, a biased service discipline may allow a group of processes to hinder others and 
attempt to permanently usurp (seize) the resource. Process starvation may, however, be avoided by 
imposing a simple condition on semaphore implementation: a request to enter the critical section 
must be granted in fnite time. The scheduling algorithm that can be matched to this requirement 
while selecting a waiting process from the queue of blocked processes is the frst-in-frst-out disci-
pline. That is why servicing of blocked processes with FIFO is sometimes also referred to as strong 
implementation of semaphore. In contrast, a weak semaphore is one in which all processes waiting 
on the same semaphore proceed in an unspecifed order (i.e. the order is unknown or indeterminate). 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.17.5.12 Semaphore: Granularity 
A semaphore allows only one process at a time to access the shared resource to implement mutual 
exclusion during runtime. This act imposes strict serialization of the processes that, in turn, may 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 161  

 

 

 

 
 
 
 
 
 

 
 
 
 

adversely affect the degrees of parallelism among the contending processes in systems. Apart from 
that, it creates other bad situations, such as the starvation of processes and deadlock in the system 
that, in turn, also require additional mechanisms to resolve. Hence, it is necessary to willfully con-
trol all these ill effects of serialization, and that can be accomplished by varying the granularity of 
individual semaphores. 

The fnest granularity of semaphores at one end is realized by dedicating a separate semaphore 
to guard each specifc shared resource from simultaneous use by contending processes. As a result, 
a huge number of semaphores are required to guard all these different shared resources available in 
a system for the sake of synchronization. The storage requirement overhead is then also appreciable, 
and the total time required by these semaphores to operate contributes a huge runtime overhead due 
to processing of numerous waits and signals. 

The coarse granularity of semaphores, on the other hand, can be made by assigning each sema-
phore to guard a collection of shared resources, possibly of similar types. This approach reduces 
the storage requirement and runtime overhead but adds extra cost required to negotiate an increased 
number of conficts as well as enforcing rigorous serialization of processes, which may also have no 
other resources in common. In fact, coarse-grained semaphores, apart from creating priority inver-
sion, may severely affect parallelism to such an extent that it often outweighs the benefts already 
accrued. Thus, the trade-off between coarse-grained and fne-grained semaphores must be care-
fully analyzed, and a satisfactory balance must then be realized on the basis of the application being 
handled after willful manipulation and compromise. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.17.5.13 Semaphores: Properties and Characteristics 
The use of semaphores provided by the operating system to ensure mutual exclusion is fexible and 
does not impose any constraints, even if the concurrent processes are restructured or modifed. A 
single semaphore can also be generalized to handle more than one process in situations when sev-
eral resources of the same type are used by a number of concurrent processes, by simply initializing 
the semaphore to the specifed value of available number of resources. A general semaphore may be 
implemented by means of a binary semaphore. However, these two types of semaphores may differ 
signifcantly in their use, and general semaphores are observed to provide better effciency of pro-
grams. Semaphores may also be provided as a language construct in the form of built-in functions 
and types in system implementation programming languages. Apart from these characteristics, 
semaphores also exhibit several other interesting properties, the details of which are given on the 
Support Material at www.routledge.com/9781032467238. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.17.5.14 Classical Problems: Concurrent Programming 
In the literature of operating systems, there are several well-known classical representative prob-
lems relating to mutual exclusion, synchronization, critical sections, or coordination aspects. Each 
can be seen as an example to theoretically explain concurrent processing and its implications. 
These problems mainly differ from one another in the way critical-section executions of different 
processes are ordered. After explaining each problem, the appropriate solution also could have 
been proposed based on the most popular tool, the semaphore, although other alternatives, equally 
good and even superior tools, are also available to solve such problems. Our aim is not at all to 
explore the details of all these problems individually but rather to use one such problem as a plat-
form to explain concurrent processing and its related issues. We will thus consider here only the 
most common popular problem, the producer/consumer problem, as a representative to elucidate 
the essence of concurrent processing and its associated complexities. We will use this example 
throughout the rest of this chapter to show the power of different synchronization tools, especially 
of the semaphore, monitor, and messages. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

  

 

 
 

  

 

162 Operating Systems 

4.17.5.14.1 The Producer/Consumer Problem 
The producer/consumer problem is a typical example to explain the behavior of concurrent pro-
cessing by cooperating processes where both mutual exclusion and synchronization are needed. 
The problem, in general, may be stated as follows: Given a set of cooperating processes, some of 
them (producers) generate (produce) some type of data items (characters, records), placing them in 
a shared buffer (memory) that is used (consumed) by others (consumers), usually with possible dis-
parities in the rates of production and consumption. The solution to the problem naturally demands 
a suitable mechanism to implement a synchronization protocol that will allow both producers and 
consumers to operate concurrently at their respective service rates within the specifed time-slice. 
Normally, data should be consumed in the order in which they are produced, although this rule is 
relaxed somewhat for data produced or consumed simultaneously. 

4.17.5.14.1.1 Producers and Consumers with an Unbounded Buffer Any number of producers 
and consumers can operate without overlap on the buffer of unbounded capacity using their respec-
tive service rates within the specifed time-slice. After the initialization of the system, a producer 
must obviously be the frst process to run in order to provide the frst item for the consumer. Each 
time the producer generates an item, an index (in) into the buffer is incremented. From that point on, 
a consumer process may run whenever there is an item in the buffer produced but not yet consumed. 
The consumer proceeds in a similar fashion incrementing the index (out) but ensuring that it does 
not attempt to consume from an empty buffer. Hence, the consumer must make sure that it works 
only when the producer has advanced beyond it (in>out). Alternatively, if the consumer is consid-
ered a frst process, then it begins with waiting for the frst item to be produced by the producer. 

A single general semaphore (counting semaphore) uses here a “produced” variable initialized 
with 0 as a counter to keep track of the number of items produced but not yet consumed. Since the 
buffer is assumed to be unbounded, the producer may run at any time to produce as many items as 
it can. When the producer generates an item, it is placed in the buffer, and this fact is signaled by 
means of the general semaphore PRODUCED; hence, no extra counter or check over the counter is 
required here. According to the assumption and per the nature of the problem, this implies that the 
consumer can never get ahead of the producer. However, this approach, in general, cannot guarantee 
system integrity due to having several limitations under certain situations. 

The entire implementation could even be realized by a different algorithm employing a binary 
semaphore (in place of a general semaphore) by means of using the two primitives WAIT and 
SIGNAL attached to the semaphore in each critical section and calling them at the right point 
for mutual exclusion. In that situation, an additional variable counter is required which is to be 
incremented and decremented and to be checked at the right point in the procedure, PRODUCER 
and CONSUMER, to keep track of whether the buffer is empty, and if so, provisions for appropri-
ate actions (wait) are to be made accordingly. But this implementation also suffers from certain 
limitations. 

Initially, both solutions to the problem, counting semaphores and binary semaphores, are found 
to have shortcomings under certain situations. After detecting faws, a refned, corrected approach 
to overcome the limitations of the solutions was formulated by taking appropriate actions at the 
right point within the existing algorithms. Although this example is not a realistic one, it can be 
concluded that it is a fairly representative one that demonstrates both the power and the pitfalls of 
the semaphore while it is in action. 

The details of these two approaches to separately solve the problem with algorithms, their 
limitations, and fnally the correct solution with refned algorithms, are described on the Support 
Material at www.routledge.com/9781032467238. 

4.17.5.14.1.2 Producers and Consumers with a Bounded Buffer The producer/consumer prob-
lem, initially introduced with an unbounded buffer, demonstrates the primary issues and its related solu-
tions associated with concurrent processing with virtually no restriction over the execution of producers. 

http://www.routledge.com/9781032467238


Processor Management 163  

 
 

 
 

  
 
 

  
 

        
  

                   

                          
                 
        

        
                    
                        
                          

                 
        

 
 

 
 
 

 
  

                               
                             

                               
                              

 

However, the unbounded buffer assumption is not a practical approach and may not be directly appli-
cable in real-life situations where computer systems with memory (buffer) of fnite capacity are used. 
This section will thus deal with the same producer/consumer problem, now with a bounded buffer and 
its solution so that it may be applicable in realistic situation where the shared buffer has a fnite capac-
ity. Here, the fnite buffer consists of n slots, each capable of holding one item. It is implemented in a 
circular fashion by “wrapping around” from the last (highest index) to the frst (lowest index) position. 
Two pointer variables are associated with the buffer, in and out, the former for the producer and the 
latter for the consumer, are used to indicate the current slots (or the next place) inside the buffer for the 
producers to produce an item and for the consumers to consume the next item, respectively. This is 
depicted in Figure 4.20. These pointer variables, in and out, are initialized to 0, incremented according 
to the execution of the producer or consumer, and must be expressed in terms of modulo, the size of the 
buffer. Now, the producer and consumer functions can be expressed as follows:

     producer  : 
begin

           produce pitem ; 
while  ( ( in + 1 ) mod buffersize  = out ))  do   [ nothing ] 

                        buffer  [ in ] :=  pitem 
in  :=  ( in  + 1 ) mod buffersize 

end  [ while ] 
end  [ producer ]

     consumer  : 
begin 

while in  = out   do   [ nothing ] 
citem  :=  buffer [ out ] 
out  :=  ( out  + 1 ) mod buffersize

           consume  citem 
end  [ while ] 

end  [ consumer ] 

As usual, producers may produce items only when the shared global buffer is empty or partially 
flled, that is, only when there are empty spaces available in the buffer to accept items. Otherwise, 
new items produced might overwrite the already existing items produced earlier but not yet con-
sumed, which may damage the processing, making it unreliable. All the producers must be kept 
waiting when the buffer is full. Similarly, consumers, when executing, may absorb only produced 
items, making the buffer empty, thereby enabling the producers to run. The consumers must wait 
when no items are available in the buffer; hence, they can never get ahead of producers. 

At any point in time, the buffer may be empty, partially flled, or full of produced items. Let produce 
and consume represent the total number of items produced and consumed respectively at any instant, 

bb(1) bb(2) bb(3) bb(4) bb(5) bb(6) . . . . . . . . . bb(n) 
↑ ↑ 

out  in
                                                       (a) 

bb(1) bb(2) bb(3) bb(4) bb(5) bb(6) . . . . . . . . . bb(n) 
↑ ↑ 
in  out

                                                       (b) 

FIGURE 4.20 An algorithm illustrating the logic to solve the classical producer–consumer problem with 
bounded (fnite) buffer used in circular fashion. 



 

  

 
 

  

   

         

         

          
          
        

   
          
        
                   
                   
                       

                        
                         
                            
                        
                        
                               
                   
        

   
          
        
                   
                   
                        
                        
                         
                            
                        
                        
                        
                              
                   
        

 

164 Operating Systems 

and let item-count be the number of items produced but not yet consumed at that instant, that is, [item-
count = produce – consume]. Let canproduce and canconsume be two conditions indicating the current 
status of the buffer that can be used to control the execution of the producers and consumers, respec-
tively, with the conditions [canproduce: item-count < buffersize], since the producers are allowed to run 
only when there are empty spaces available in the buffer, and [canconsume:item-count > 0], since the 
consumers can continue their execution if there exists at least one item produced but not yet consumed. 

Figure 4.21 shows a solution to the producer/consumer problem with a bounded buffer in which 
two types of semaphores have been used. The general semaphores canproduce and canconsume

     Program/segment bb–producer–consumer
 . . .

     const 
buffersize  = . . .

     type 
item  = . . .

     var 
buffer : array  [ 1 . . . buffersize ] of item  ; 
canproduce, canconsume  : semaphore  ; [ general ] 
pmutex ,  cmutex  : semaphore ; [ binary ]

        in,  out  : ( 1 . . . buffersize ) ;
     procedure producers  ; 

var pitem  : item ; 
begin 

while true do 
begin 

wait(canproduce) ;
                        pitem  :=  produce ; 

wait(pmutex) ; 
buffer [ in ] :=  pitem  ; 
in  :=  ( in mod buffersize ) + 1 ; 
signal(pmutex) ; 
signal(canconsume) ; 

other–producer–processing 
end  [ while ] 

end  [ producers ]
     procedure consumers  ; 

var citem  : item ; 
begin 

while true do 
begin 

wait(canconsume) ; 
wait(cmutex) ; 
citem  :=  buffer [ out ] ; 
out  :=  ( out mod buffersize ) + 1 ; 
signal(cmutex) ; 
signal(canproduce) ; 
consume (citem) ; 

other–consumer–processing 
end  [ while ] 

end  [ consumers ] 

FIGURE 4.21 An algorithm describing the modifed solution of the classical producer–consumer problem 
with bounded (fnite) buffer using semaphores (both counting and binary). 



Processor Management 165  

 

 

 

 

  
 

 

 

        
            
            
            
            

                      
                  
        

 

 [ main  program  ] 
begin  [ bb–producer–consumer ] 

in  :=  1 
out  :=  1 
signal(pmutex) ; 
signal(cmutex) ;
 [ canconsume  :=  0 ; ] 
for i  :=  1 to buffersize do signal(canproduce) ; 
initiate producers ,  consumers 

end  [ bb–producer–consumer ] 

FIGURE 4.21 (Continued) 

represent the two conditions to control the execution of producer and consumer processes, respec-
tively, as already explained. Two binary semaphores pmutex and cmutex are used to protect the 
buffer (atomic action) while producers and consumers are active in their respective turns manipulat-
ing their index (in or out). Consequently, this solution supports multiple concurrent producers and 
consumers. 

As shown in Figure 4.21, the producer processes, producers, can run only when there is any 
empty space in the buffer, indicated by the semaphore canproduce. This semaphore may initially 
be set to the value corresponding to the buffer size, thus allowing producers to get up to buffersize 
items ahead of consumers. Alternatively, it can also be set to 0, showing the buffer is empty at 
the beginning, and the producers can then proceed accordingly. However, when a consumer com-
pletes its turn, it empties a slot by consuming the item, removing it from the buffer, and signals 
the fact through the canproduce semaphore to wake up a waiting (sleeping) producer, if there is 
any. Similarly, the canconsume semaphore indicates the availability of items already produced and 
behaves almost in the same manner as the unbounded-buffer version of the consumers. Each time 
a producer process runs, it increments the value of canconsume [signal (canconsume)], and a con-
sumer process decrements it by executing a wait operation. 

Actions being taken as shown in Figure 4.21 in relation to buffer manipulations by both produc-
ers and consumers are treated here as critical sections which are kept protected with the use of the 
binary semaphores pmutex and cmutex to make this solution more versatile while using the global 
buffer. The modulo operator is used to implement the buffer in circular fashion. Two indices, in and 
out, are used by producers and consumers, respectively, to increase the degree of concurrency in 
the system. Usually, two sets of processes operate at different ends of the buffer, and they compete 
with their peers within the group (intra-group), but not between the groups (inter-group). This situa-
tion is handled by a single semaphore mutex in the solution of the unbounded–buffer case presented 
earlier. However, a single semaphore may unnecessarily block the producers whenever a consumer 
is in its critical section and vice-versa. As the indices are disjoint, two semaphores offer more con-
currency, of course with a little bit of additional overhead. 

4.17.5.14.2 The Readers–Writers Problem 
The readers–writers problem is essentially a special case of the producer/consumer problem where 
producers are called the writers and may update (i.e. both read and write) the shared resource, and 
the consumers are the readers, which can only read the shared resource. Obviously, if two readers 
access the shared resource simultaneously, no adverse effect will result. However, if a writer and 
another process (either a reader or a writer) access the shared resource simultaneously, confict 
may arise. That is why writers must have exclusive access to the shared resource while writing. In 
fact, the readers–writers problem has several variations, all involving priorities relating to either 
readers getting priority over writers or vice versa. The simplest version requires that no readers be 



 

 

 

 

 

 

 
 
 
 
 
 
 
 

166 Operating Systems 

kept waiting unless a writer has already received the access right to use the shared resource. That 
is, no reader should wait for other readers to complete because a writer is waiting. In other words, 
unlike the mutual exclusion problem, many readers are allowed to concurrently operate on a shared 
resource (critical section), as they do not change the content of the shared resource. Based on this 
discussion, a typical appropriate solution of this problem can be obtained, the details of which are, 
however, outside the purview of our present discussion. 

4.17.5.15 Semaphores: Drawbacks and Limitations 
Semaphores are a powerful, fexible, simple, and easy-to-use tool while handling concurrent pro-
cesses to implement interprocess synchronization and thereby realize mutual exclusion. In spite of 
being immensely attractive, they suffer from severe drawbacks. Some of their notable disadvantages 
are: 

• Semaphores are not really structured: They require strict adherence to related rules and 
regulations developed for each specifc problem to solve, and failing in this may lead to 
corrupting or blocking the entire system. They also impose strict serialization of processes 
during runtime and thus require a specifc form of service discipline among the waiting 
processes. 

• Semaphores do not support data abstraction: They only ensure protected access to critical 
sections and never control the type of operations to be performed in the critical section by 
the contending processes. Moreover, while they perform interprocess communication via 
global variables which are now exposed, that in turn invites severe threats. 

• Semaphores do not have any programming-language constructs: The user program has no 
liberty but can only religiously and carefully follow the synchronization protocol under-
lined by the semaphore. Since the compiler is not aware of the specifc resource to be 
shared, no compilation check can be carried out to detect syntactic errors. 

Besides other pertinent issues, all these drawbacks, however, encouraged designers to devise alter-
native appropriate suitable mechanisms that could, by and large, alleviate the notable disadvantages 
of using semaphores. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.17.5.16 Events: An Alternative Synchronization Primitive 
An event with a different concept is defned and developed as an abstraction of semaphore opera-
tions. The entire “event” is encapsulated to address the coordination in applications for semaphores 
(as opposed to the critical section problem). An event then represents the occurrence of some condi-
tion in the execution of software. Accordingly, if one process needs to synchronize its operation on 
the occurrence of an event, it can block itself until the event occurs. When the event occurs, another 
process can have the OS inform the blocked process of the occurrence. Thus, an event is analogous 
to a semaphore, waiting for an event is analogous to the P operation, and noting the occurrence of 
an event is analogous to the V operation. 

As usual, an event is represented by a data structure known as an event control block, some-
times called an event descriptor. If two or more processes synchronize on an event, then they 
both have a way of referencing the same event descriptor. The event wait operation blocks the 
calling process until another process performs a signal operation. The signal operation resumes 
exactly one waiting process, if any, suspended on the event by a wait call. If no processes are 
waiting when the signal is issued, it is ignored. Hence, a major distinction between events and 
semaphores is that if no process is waiting, the result of the signal operation (i.e. the signal 
itself) is not saved, and its occurrence will have no effect. It is sometimes convenient to add a 
third function to the event management set, queue, to return the number of processes currently 
waiting for an event. 

http://www.routledge.com/9781032467238
https://4.17.5.16
https://4.17.5.15


Processor Management 167  

 

 

 
 
 

  
 

  

  

  

 

 
 

 

 

The rationale for these semantics is that a signal should represent the situation that an event has 
just occurred, not that it occurred sometime in the past. If another process detects this occurrence 
at an arbitrary time later (as is the case with the passive semaphore operations), the causal relation-
ships among calls to the wait and signal functions are lost. These semantics, however, have a lasted 
bearing and far-reaching infuence in the design and development of monitors, another synchroniza-
tion tool described in later sections. 

An example detailing this topic is given on the Support Material at www.routledge.com/ 
9781032467238. 

4.17.5.17 Critical Regions and Conditional Critical Regions 
Brinch Hansen (1972) proposed a mechanism to embed semaphores in programming-language con-
structs called a critical region that can be controlled from the system’s end to realize semaphore 
operation, thereby relieving programmers from explicitly defning the semaphore and its associated 
tedious legal handling. The critical region obviously allows several processes to access shared global 
variables and protects the variable by making it known to the compiler, which, in turn, can gener-
ate code that guarantees mutually exclusive access to the related data. The shared variable, say v, is 
declared in the program with a keyword shared and a user-defnable type T. Processes may access 
this shared variable, which is protected by means of the region construct, which is defned as follows: 

region v do; 

where the sentence or sequence of sentences following do is executed as a critical section. At the 
time of generating code for a region, the compiler essentially injects a pair of wait and signal opera-
tions or their equivalents (calls to semaphore) around the critical section. Thus, mutual exclusion, 
as enforced by the use of the semaphore, has been properly realized by the use of region. Although 
the use of region may invite deadlock and also starvation of the processes waiting in the queue for 
the same shared variable, those can be alleviated by the compiler and with the use of appropriate 
scheduling algorithms on the waiting queue, respectively. Similar to a semaphore, while the critical 
region is used as the only facility to synchronize competing processes, it also requires busy waiting 
in a wait operation until some condition happens, in addition to its other drawbacks. To solve the 
synchronization problem without a busy wait, Brinch Hansen proposed a slight modifcation to the 
existing critical region, another construct called the conditional critical region. This construct is 
in all respects syntactically similar to the critical region, simply with an addition of only an extra 
instruction with a new keyword called await attached to an arbitrary Boolean condition to be used 
inside a critical region. This construct, when implemented, permits a process waiting on a condition 
within a critical region to be suspended and places it in a special queue until the related condition is 
fulflled. Unlike a semaphore, a conditional critical region can then admit another process into the 
critical section in this situation. When the condition is eventually satisfed, the suspended process 
is awakened and is once again brought into the ready queue. Thus, the conditional critical region 
satisfes both mutual exclusion and synchronization without a busy wait. 

Conditional critical regions are very easy to use for complex mutual exclusion and synchroni-
zation problems. But they are confusing and even cumbersome while keeping track of dynamic 
changes of the several possible individual conditions that the await statement requires. The com-
mon implementation of the conditional critical region normally assumes that each completed 
process may have modifed the system state in such a way that resulted in some of the waited-on 
conditions being fulflled. This incurs the additional cost involved in frequent checking of con-
ditions. Moreover, the code that modifes shared data may be scattered throughout a program, 
making it diffcult to keep track in a systematic manner. Due to such undesirable complex imple-
mentation, conditional critical regions are rarely supported in commercial systems directly. 

For more details with algorithms and also an example on this topic, see the Support Material 
at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
https://4.17.5.17


 

 

 

 

 

 

 

 

 

168 Operating Systems 

4.17.5.18 Monitors 
The limitations as experienced in semaphore operations and the complexities involved in intro-
ducing conditional critical region approach to negotiate the interprocess synchronization problem 
ultimately gave rise to introduce a new concept, proposed frst by Hoare (1974) in the form of a 
higher-level synchronization primitive called a monitor which was later further refned by Brinch 
Hansen (1975) in a slightly different way. 

The monitor is a programming-language construct that provides equivalent functionality to that 
of a semaphore and has been implemented in a number of programming languages, including Ada, 
Concurrent Pascal, Pascal-plus, Modula-2, Modula-3, Mesa, Concurrent Euclid, and also in a few 
other languages. But they received a big boost when Arm architecture lately implemented it. Java 
synchronized classes are essentially monitors, but they are not as pure as monitor advocates would 
like, yet there is a full language-supported implementation for users to realize a synchronization 
mechanism for Java threads. More recently, they have also been implemented as a program library 
that, especially, enables the user to put a monitor lock on any object (e.g. to lock all linked lists). 

Monitors are formed primarily to provide structural data abstraction in addition to concurrency 
control. This means that it not only controls the timing but also determines the nature of operations 
to be performed on global shared data in order to prevent harmful or meaningless updates. This 
idea is realized by way of fxing a set of well-defned and trusted data-manipulation procedures 
to be executed on global data in order to limit the types of allowable updates. Abstract data types 
actually hide all the implementation in data manipulation. Depending on whether the users are just 
encouraged or actually forced to access data by means of the supplied procedures, data abstraction 
may be regarded as weak or strong, respectively. The weak form of data abstraction may be found 
in an environment supported by semaphores, since it never enforces using the supplied procedures 
for global data manipulation, and it therefore sometimes makes the entire system truly vulnerable 
to its users. 

4.17.5.18.1 Defnition 
A monitor is a software module consisting of a collection of procedures, an initialization sequence, 
local data variables, and data structures that are all grouped together in a special kind of package 
for manipulating the information in the global shared storage. The main characteristics of a monitor 
are: 

• The local data variables with a data structure embedded in a monitor are only acces-
sible by the monitor’s supplied procedures and not directly by any other declared external 
procedure. 

• With the use of public interface, a process can enter the monitor by invoking one of its 
private procedures. 

• At any instant, only one process may be allowed to execute in the monitor, while the other 
processes that have invoked the monitor by this time are suspended and are kept waiting 
until the monitor next becomes available. 

The frst two characteristics encourage modularization of data structures so that the implementation 
of the data structure is private, with a well-defned public interface. This has a close resemblance to 
the defnition of an object as found in object-oriented software. In fact, an object-oriented operating 
system or a programming language can readily implement a monitor as an object with the required 
special characteristics. 

The third characteristic emphasizes that the monitor is able to achieve mutual exclusion, since 
the data variables in the monitor can be accessed by only one process at a time. Thus, the shared 
data structure can be easily protected by placing it in a monitor. If the data in a monitor represent 
some resource, then the monitor ensures a mutual-exclusion facility at the time of accessing the 
resource. 

https://4.17.5.18


Processor Management 169  

 

 
 

     
         

               
                  

                  
               

         

 

Since the monitors are a programming-language construct, the compiler is quite aware that they 
are of special types and hence can handle calls to monitor procedures differently from other proce-
dure calls, thereby arranging for mutual exclusion. Typically, when a process calls a monitor proce-
dure, the frst few instructions of the called procedure will check to see whether any other process 
is currently active within the monitor. If so, the calling process will be kept suspended until the 
other releases the monitor. If no other process is active in the monitor, the calling process may then 
be safely allowed to enter. In any event, the user need not be aware of how the compiler arranges 
for mutual exclusion. It is enough only to know that by turning all the critical sections into monitor 
procedures, no two processes will ever be allowed to execute their critical sections simultaneously. 

4.17.5.18.2 Principles of Operation 
A monitor, by defnition, structurally consists of a collection of private procedures and local private 
variables with associated data structures which cannot be accessed by any public procedure that lies 
outside the domain of the monitor. The public procedures are normally used as an interface to call 
the respective private procedures. However, a declaration of a typical monitor may have the follow-
ing format, as shown in Figure 4.22. 

The logic of structuring and implementation of monitors has a strong resemblance to the kernel 
of the operating system. As OS kernel typically consists of a number of private and public routines 
associated with private system data structures; the monitors likewise also contains similar type of 
things. Similar to OS public routines that are called by the user to perform some system-related 
work, monitors also do provide the same. As the kernel itself typically invalidates the interrupts 
whenever the system processes are executed for the sake of preserving system’s integrity and to 
avoid synchronization problems, so monitors also allow only one process to execute inside the 
monitor at any instant to implement synchronization for concurrent processes. 

When two or more processes want to share abstract data types, monitors make this critical data 
accessible indirectly and exclusively via an interface of a set of publicly available procedures. In the 
case of the producer/consumer problem, the shared global buffer may be declared as belonging to a 
monitor, and neither producers nor consumers would be allowed to directly access it. Instead, pro-
ducers may be permitted to call a monitor-supplied public procedure and to provide the number of 
items already produced as its argument. A monitor procedure would then actually append the pro-
duced item to the buffer. Similarly, consumers may call on a monitor procedure to take a produced 
item out of the buffer. This is depicted in Figure 4.23. No two processes should execute produce 
and consume concurrently, since this may result in one of the operations being lost. In this way, a 
set of monitor procedures may inherently incorporate a critical section that encapsulates the shared 
data used by the concurrent processes and handles the buffer management and synchronization of 

monitor–name  : monitor 
begin

            declaration  of  private  data ;  /* local variables used by monitor */ 
procedure pub–name ( formal  parameters ) /* public  procedures */ 

begin    
                       procedure  body  ;
                       ……………….  ; 

end ; 
procedure priv–name                                               /* private  procedures */

                    initialization  of  monitor  data  ;
                      ……………….  ; 

end  ( monitor–name ) ; 

FIGURE 4.22 An algorithm showing the typical format to declare a monitor. 



 

 

 

     
               
        
           
           

 

170 Operating Systems 

monitor     sharedBuffer { 
int   balance  ; 

public ; 
produce ( int  item  ) ( balance  = balance  + item  ; ) ; 
consume ( int  item  ) ( balance  = balance  – item  ; ) ; 

} 

FIGURE 4.23 An algorithm explaining the use of monitor while handling a shared variable. 

concurrent requests internally by means of its own codes and local variables with a specifc data 
structure that is absolutely hidden from users. In this way, interprocess synchronizations and com-
munications are handled by the monitor. 

However, in many cases, it is observed that when a process is executing inside the monitor, it 
discovers that it cannot proceed until some other process takes a particular action on the informa-
tion protected by the monitor. So a way is needed for an executing process to block when it cannot 
proceed; otherwise the process will perform an undesirable busy wait. In this situation, processes 
should be allowed to wait within the monitor on a particular condition without affecting other moni-
tor users signifcantly. Consequently, another process may then enter the monitor to execute its own 
purpose. This idea of internal signaling operations was borrowed by monitors from semaphores. 

In the case of the producer/consumer problem, when the producer inside the monitor fnds that 
the buffer is full, it cannot proceed until the consumer process consumes it. So, in this situation, a 
mechanism is needed by which the producer process will not only be suspended but temporarily 
relinquish the monitor so that some other process may enter and use it. Later, when the condition is 
satisfed, and the monitor is again available, the blocked process needs to be resumed and allowed 
to reenter the monitor at the point where it left. To accommodate this situation, monitors incorporate 
condition variables to realize a solution with synchronization. This particular aspect of monitors is 
similar to conditional critical regions. 

4.17.5.18.3 Condition Variables 
A condition variable is a structure which is placed inside the monitor and is accessible as global 
to all procedures within the monitor. Three functions are associated with condition variables to 
manipulate their value. Those are: 

cwait(c): Suspends execution of the invoking process on condition c until another process 
performs a csignal on the same condition. After execution of cwait, the monitor is then 
available for use by another process. 

csignal(c): Resumes execution of exactly one other process suspended after a cwait on the 
same condition. If there exist several such processes, one of them is chosen; if no process 
is waiting, then do nothing; the signal is not saved (and will have no effect). 

queue: Returns a value of TRUE if there exist at least one suspended process on the condition 
variable and FALSE otherwise. 

Condition variables are not counters. They do not accumulate signals for later use as semaphores do. 
In fact, monitor wait/signal operations behave differently from those for semaphores. If a process in 
a monitor signals; that is, the process executes csignal(x), the respective signaled condition queue is 
then inspected. If some activity is waiting in that queue, the signaler enters the queue and one waiter 
brought from the corresponding waiting queue is then allowed to be active (ready state) in the moni-
tor. If no activity is waiting on the condition variable in that queue, the signaler proceeds as usual, 
and the signal is simply ignored and lost without creating any damage. Since a monitor condition is 



Processor Management 171  

 

 
 

 
 
 
 
 
 
 
 
 
 
 

  
 
 

essentially a header of the related queue of waiting processes, one of the consequences of this is that 
signaling on an empty condition queue in the monitor has no effect. The monitor, however, allows 
only one process to enter at any point in time; other processes that intend to enter will then join a 
queue of suspended processes while waiting for the availability of the monitor. But when a process 
inside the monitor suspends itself on a certain condition x by issuing cwait(x), the process is then 
placed in a queue of processes waiting on the same condition and then reenters the monitor later 
when the condition is met. Apart from introducing an urgent queue for every condition, a separate 
condition queue is formed, and processes that are blocked on certain conditions will then be placed 
in the respective queues. 

When an executing process in the monitor detects a change in the condition variable x, it issues 
csignal(x), which alerts the corresponding condition queue that the condition has changed. Here lies 
the difference in the behavior of the signal operation that distinguishes Hoare’s version of monitor 
semantics from Brinch Hansen’s approach. 

With Hoare’s approach, if a process P1 is waiting on a condition queue (for a signal) at the 
time when P0 issues it (signal) from within the monitor, P0 is either to be suspended (blocked) on 
the monitor or immediately exit the monitor, while P1 at once begins execution within the moni-
tor. When P1 completes its execution in the monitor, P0 will once again resume its execution in the 
monitor. In general, this defnition of monitors says that if there is at least one process in a condition 
queue, a process from that queue runs immediately when another process issues a corresponding 
signal for that condition. The process issuing the signal must either be suspended (blocked) on the 
monitor or immediately exit the monitor The rationale for Hoare’s approach is that a condition is 
true at a particular instant in time when the signal occurs, but it may not remain true later, when P0, 
for example, fnishes its execution with the monitor. In his original paper, Hoare uses these seman-
tics to simplify proofs of the correct behavior of the monitor. 

Brinch Hansen’s monitor semantics incorporate the passive approach. (These semantics 
are also known as Mesa monitor semantics because of their implementation in the Xerox Mesa 
programming language. But Mesa semantics, in particular, are different; their approach is very 
similar to Brinch Hansen’s with regard to the situation that arises due to the behavior of the 
csignal operation, but their proposed solution to the situation is different. Mesa semantics will 
be discussed in detail separately later in this section.) Hansen’s approach is different. It states 
that when P0 executes a signal (as already described), appropriate for a non-empty condition 
queue, the signal for that particular condition is saved, and P0 is not to be suspended; rather 
it will be allowed to continue. When P0 later leaves the monitor, a process at the head of the 
respective condition queue, say, P1, will attempt to resume its execution in the monitor after 
rechecking the condition before it starts. He argues for rechecking due to the fact that even 
though signal indicates an event has occurred, the situation may have changed by the time 
P0 performs signal and P1 is allocated the CPU. This deliberation also favors fewer process 
context switches than with Hoare’s approach, which will ultimately tend to enhance the overall 
performance of the system. 

With Hoare’s semantics, a situation that leads to a wait operation may be looked as: 

. . . 
if (resource–Not–Available) resource-Condition.wait 
. . . 
/ *Now available—continue. . ./* 
. . . 

When another process executes a resource-Condition.signal, a process switch occurs in which one 
of the blocked processes gains control of the monitor and continues executing at the statement fol-
lowing the if statement. The process performed signal is then blocked and delayed until the waiting 
process fnishes with the monitor. 



 

 

 

 

 

  
  

 
 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
 

  

172 Operating Systems 

With Brinch Hansen’s semantics, the same situation could appear as: 

. . . 
while (resource–Not-Available) resource-Condition.wait 
. . . 
/ *Now available—continue. . ./* 
. . . 

This code fragment ensures that the condition (in this case resource-Not-Available) is rechecked 
before the process executing resource-Condition.wait precedes. No process switch occurs until the 
process performed signal voluntarily relinquishes the monitor. 

Mesa semantics and monitors with notify and broadcast are discussed on the Support Material 
at www.routledge.com/9781032467238. 

4.17.5.19 Wait-Signal Monitor 
Monitors are static structures with no life of their own. Consolidating all the ideas that we have dis-
cussed till now about the monitors, a sample monitor, in fact, is essentially quite simple and imple-
ments a familiar mechanism. It actually implements the wait and signal semaphore operations. cwait 
and csignal of monitors are very similar to the wait and signal operations, respectively, of sema-
phores but with one crucial difference: semaphore wait and signal failed because while one process 
was about to go to wait (but not slept) and the scheduler at that very moment if switches to other one, 
the semaphore later then tried to signal (wake–up) the former process, although it was not actually 
sleeping at that time. With monitors, this cannot happen. The inherent mutual exclusion in monitor 
procedures guarantees that if one process in the monitor discovers that it cannot proceed until a 
condition is satisfed, the process itself will be able to complete the wait operation inside the monitor 
without having to worry about the possibility that the scheduler may switch to another process just 
before the wait completes. In fact, no other process will ever be allowed into the monitor at all until 
the wait is fnished, and the process will then be placed into the corresponding waiting queue. 

It is also observed that the fairly simple mechanism used in await-signal monitor signifcantly 
demonstrates, at least theoretically, that semaphores can be implemented with monitors, and the 
reverse is also true: monitors can also be implemented by semaphores. In fact, monitors should not 
be considered a weaker concept than semaphores; rather the restricted version of monitors (moni-
tors in which the signal is the last operation of a protected procedure) are less fexible but in many 
situations relieve the system to avert a possible crisis. 

The details of wait-signal monitors with an algorithm are given on the Support Material at www. 
routledge.com/9781032467238. 

4.17.5.19.1 An Implementation: Producer/Consumer Problem with Bounded Buffer 
The producer/consumer problem with a bounded buffer can be solved using the full power of monitor 
with encapsulation of the critical shared data (bounded buffer). The traditional approach using sema-
phores to solve this problem has been modifed here with the use of condition variables in the moni-
tor to control the required buffer-full and buffer-empty situation in order to accommodate the usual 
speed disparity between producers and consumers. The bounded-buffer monitor accurately controls 
the shared buffer and provides the required procedures to manage a standard producer/consumer 
situation, besides supporting an arbitrary number of concurrent producer and consumer processes 
that can run in the environment in general. For the sake of maintaining similarity with the approach 
as already described in the semaphore-based solution of the same problem, the monitor data here also 
follow much the same logic and functions, except with the use of an additional variable, count, which 
keeps track of the number of items already produced but yet not consumed. 

However, a user process that implements the monitor to solve the producer/consumer bounded 
buffer problem is obviously a separate one, and the fact is that monitors are different entities, sepa-
rate from their users. More specifcally, the user process need not know anything with regard to 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 173  

 

 

 

  

 

 

 

the internal details of the procedures embedded in monitors but must have full knowledge of the 
interface specifcations required for invoking these monitor procedures at a specifc point whenever 
needed. The rest is up to the compiler to detect the conformity of syntax and semantics of user 
processes with the monitor’s specifcations at the time of compilation, and necessary errors may be 
displayed if identifed. 

The details of a monitor-based solution with an algorithm of the producer/consumer bounded 
buffer problem, and also a user process using monitor to solve the same problem with an algorithm, 
are given on the Support Material at www.routledge.com/9781032467238. 

4.17.5.20 Monitors with Notify and Broadcast: Mesa Semantics 
Although numerous modifcations on monitors have been proposed over the original defnition 
as modeled by Hoare, a completely different defnition of monitor as developed by Lampson and 
Redell resolved the main two drawbacks of Hoare’s model with respect to the issuing of signal (here 
it is csignal). Those are: 

• While the process issuing the csignal must either immediately exit the monitor or be 
blocked (suspended) on the monitor, it carries the cost of two additional context switches: 
one to suspend the process and another to resume it again when the monitor later becomes 
available. 

• When a csignal is issued, a waiting process from the corresponding condition queue must 
be activated immediately, and the process scheduler must ensure that no other process 
enters the monitor before activation. Otherwise, the condition under which the process is 
going to be activated may change. 

While these issues as raised in the proposed model with respect to the behavior of csignal operation 
are very similar to those as proposed by Brinch Hansen in his model, the solution approach as pro-
posed in this model to cope the situation is quite different. This proposed model was implemented 
in the programming language Mesa (Lampson 80) and thus is sometimes also referred to as Mesa 
semantics. In Mesa, a new primitive, cnotify, is introduced to solve these issues by replacing the 
existing csignal primitive with the following interpretation: When a process active in a monitor 
executes cnotify(x), it causes the x condition queue to be not only notifed but the signaling process 
continues to execute rather than being blocked or exiting the monitor. The result of this notifcation 
is that the process at the head of the condition queue will be resumed later at some time when the 
monitor is next available. However, since there is no guarantee that another process will not enter the 
monitor by this time before the start of the waiting process, the waiting process thus must recheck 
the condition before resuming. So, at the cost of one extra rechecking of the condition variable, we 
are saving some processing time by avoiding extra process context switches and, above all, ignoring 
such constraints as to when the waiting process must run after a cnotify. 

With the advantages of having a cnotify primitive to notify a waiting process following a pre-
scribed rule rather than forcible reactivation, it is also possible to add a cbroadcast primitive with 
specifc rules to the repertoire. The broadcast causes all processes waiting on a condition to be 
placed in a ready state, thereby relieving the process (using cbroadcast) from the burden of knowing 
exactly how many other processes should be reactivated. 

A broadcast, in addition, can also be used in a situation when a process would have diffculty 
precisely fguring out which other process to reactivate. A good example is a memory manager. 
The memory manager has k bytes free; a process terminates, releasing an additional m bytes, but 
the memory manager does not know which waiting process can proceed with a total of k + m 
bytes; hence, it uses broadcast, and all processes check for themselves whether it matches their 
requirements. 

Besides all these advantages, this model also supports several other useful extensions. 
Brief details of this topic with algorithms and its advantages are given on the Support 

Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

  

 

 

 

 

 

 

 

 
 

 

 

174 Operating Systems 

4.17.5.21 Case Study: Monitors in Java 
A Java class becomes a monitor type when the attribute synchronized is associated with one or 
more methods in the class. An object of such a class is a monitor. The Java virtual machine ensures 
mutual exclusion over the synchronized methods in a monitor. Each monitor contains a single 
unnamed condition variable. A thread then waits on the condition variable by executing the call 
wait(). The notify() call is like the signal operation. It wakes one of the threads waiting on the con-
dition variable. The Java virtual machine does not implement FIFO behavior for the wait and notify 
calls. Thus, it does not provide the bounded wait property. The notifyall() call, however, activates 
all threads waiting on the condition variable. 

4.17.5.22 Merits and Drawbacks of Monitors 
Monitors have several advantages. Some of the notable ones are: 

• Monitor code itself is more modular in its design structure, with all parts of synchroniza-
tion protocols under one module. This facilitates easy code rectifcation to modify any 
local effects, and even a major change in the monitor code will not at all affect users’ code 
as long as interfacing rules remain unchanged. This is in contrast to semaphores, where 
synchronization actions may be a part of each user process and also may span a number of 
processes, and thus any change in its structure and manipulation rules requires a thorough 
modifcation to all related user processes. 

• Its ability to hide all the details of implementation from the users makes it quite transparent 
and more secure in a way similar to the ISR. 

• The use of monitors supports modular programming at the time of program development 
to solve any related problem that, in turn, facilitates easier debugging and faster mainte-
nance of monitor-based programs. 

• Monitor code is usually more regimented, with complementing synchronizing actions 
found in the neighboring procedures (signal-receiving code). When semaphore is used, the 
pair of wait and signal operations may be spread over different processes and/or even in 
different modules. 

Although monitors represent a signifcant advancement over the devices used earlier, but some of 
their major strengths are directly related to their weaknesses. 

• While the presence of a number of monitors within an operating system may facilitate 
increased concurrency and provide fexibility in modular system design with ease of main-
tenance, management of several system resources entrusted to such separate monitors may 
invite deadlocks. This may especially happen when a monitor procedure calls another 
monitor procedure (nested calls). 

• As the defnition of monitors virtually eliminates the possibility of any access to monitor vari-
ables by external agents, it thus leaves very little scope to system implementers to combat any 
problems that may happen inside the monitor or outside due to the execution of the monitor. 

• Since the users are bound to live only with those methods that are provided by public 
monitor procedures for global data manipulation, but those are often found not to meet 
users’ requirements while accessing a given shared resource. For example, if a certain fle 
structure is imposed by the fle monitor that does only all reads and writes, then applica-
tion programmers are effectively denied the freedom of interpreting the fles in any other 
way. In many situations, it may not be acceptable to some categories of users, especially 
system programmers. 

• Monitors never provide any control over the ordering of the waiting queues The standard 
policy of treating them in FIFO order is not always appropriate. Some people therefore 
prefer a more general mechanism for inspecting and reordering the various queues. 



Processor Management 175  

 

 

 

 

 
 
 

  
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 

 

• The artifcial use of condition variables, which introduces much complexity in monitors, is 
also found inconvenient to programmers for regular use. 

• While a monitor requires that exclusion not be in force for very long, this hinders some 
applications which might require shared data for a very long time; for example, exactly this 
happens in the well-known readers-writers problem. 

A detailed discussion of this topic is given on the Support Material at www.routledge.com/ 
9781032467238. 

4.17.5.23 Conclusions 
Monitors have not been widely supported by commercial operating systems, including UNIX 
(though some versions of UNIX support mechanisms patterned after monitors), but they still are 
considered a powerful high-level language construct and as such are incorporated into many pro-
gramming languages, including Ada, that have been useful for solving many diffcult problems. 
Since it hides all the details of its implementation from users to make itself transparent that, in turn, 
also makes it more secure and enables easy code modifcation whenever required. Monitors act as 
an external functional extensions of user processes, but they differ from the traditional external 
procedures in that they provide additional facilities for concurrency control and also signaling that 
make parallel programming much less error-prone than their counterpart, the semaphore. 

It is interesting to note that the structuring and implementation logic of monitors conceptually look 
very similar to the kernel of an operating system in all respects, and its different attributes are also very 
similar to those of kernels, as already described in the previous section. But the essential difference 
between a monitor and a kernel is that in a monitor-based operating system, there coexist a collection of 
monitors in charge of different resources where each monitor controls a particular resource or a small 
group of related resources. In contrast, the kernel of an operating system (monolithic implementation), in 
essence, is a comparatively large single monitor consisting of a huge number of complex programs with 
numerous interactions that may be sometimes diffcult to debug and enhance and, above all, tedious to 
maintain. In addition, for being less reliable, monolithic operating systems often restrict concurrency by 
allowing at most one of their routines to be active at a time. On the contrary, each monitor itself imple-
ments mutual exclusion (concurrency), enforcing serial execution of procedures, and the presence of a 
large number of monitors simply permits unrestricted concurrency between processes that use separate 
monitors. In fact, monitors were originally introduced as an essential tool in structuring of OSs. 

Finally, it is observed that the increasing trend in implementing concurrent applications run-
ning within an address space using threads has appreciably changed the nature and overall 
behavior of the general problem. While synchronization of threads running across different 
address spaces is in nature similar to the usual interprocess synchronization already described, 
it is natural to possibly implement many of the characteristics of a monitor in programmer-
scheduled threads within an address space. The solutions thus targeted are then much easier to 
derive than semaphore-based synchronization and are easier to implement than full monitors. 
The reason is that the threads share a common address space, and only one thread will execute 
at a time in the space. Basically, the approach allows the program to control the address space 
while scheduling threads for execution so that a thread runs only when it does not violate a 
critical section. Whereas a generic solution cannot make any assumptions about the presence or 
absence of critical sections, thread scheduling is usually performed by the program developer 
while building application programs. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.17.5.24 Case Study: Interprocess Synchronization in UNIX Using Semaphores 
Interprocess synchronization is carried out by UNIX System V using semaphores that are imple-
mented and executed at the kernel level. Concurrent executing processes invoke semaphore system 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

   

  
 

 
 
 
 

 

 

 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 

176 Operating Systems 

calls in the form of a generalized wait and signal operations (primitives) in which several operations 
can be done simultaneously, and the increment and decrement operations may cause a change in the 
semaphore values, but that will always be greater than 1. User-specifed keys are used as semaphore 
names. A key is associated with an array of semaphores. Individual semaphores in the array can 
be accessed with the help of subscripts. A process intending to gain access to a semaphore makes 
a semget system call with a key as a parameter. If a semaphore array matched with the key already 
exists, the kernel makes it accessible to the process that makes the semget system call; otherwise 
the kernel creates a new semaphore array, assigns the key to this array, and makes it accessible to 
the process. 

The kernel provides a single system call semop for wait and signal operations. The call uses 
two parameters: a key and a list (subscript, op) of specifcations, where subscript identifes a 
particular semaphore in the semaphore array and op is the operation to be performed. The entire 
set of allowable operations is prescribed in the form of a list, where each operation is defned on 
one of the semaphores in the semaphore array and is performed one at a time in an atomic man-
ner. This means that either all operations as defned are performed one at a time and the process 
is then free to continue its execution, or none of the operations are performed and the process 
is then blocked. Associated with each semaphore are queues of such processes blocked on that 
semaphore. A blocked process is activated only when all operations, as indicated in semop, can 
succeed. 

Execution of semop itself is also atomic in nature; that is, only one process can access the sema-
phore at any instant, and no other process is allowed to access the same semaphore until all opera-
tions are completed or the process is blocked. It is interesting to note that the semantics of semop 
itself facilitate avoiding deadlocks. A single semop either allocates all the resources that a pro-
cess requires, or it is not allocated any of the resources. This attribute of semop resembles the all-
requests-together approach, which is one way to prevent (avoid) deadlocks. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.18 INTERPROCESS COMMUNICATION AND SYNCHRONIZATION 

Since concurrent processing can significantly improve system performance, the operating 
system must provide adequate support to realize concurrent processing by way of resolving 
competition as well as cooperation between the processes. These, in turn, primarily require 
correct implementation of two functions: interprocess synchronization and also their commu-
nication. Competing processes need to be synchronized to realize mutual exclusion; cooperat-
ing processes may need to exchange information. Semaphores and critical regions are able to 
primarily synchronize the operation of concurrent processes but not able to convey informa-
tion between them (except than the synchronization signal). Monitors also allow synchroni-
zation in the execution of concurrent processes while sharing information by using shared 
memory within the monitor. Moreover, both these tools as well as other similar mechanisms 
are based on the assumption of the availability of shared memory to accomplish sharing by 
all synchronizing processes, which may be running on one or more CPUs. In the case of 
distributed systems consisting of multiple CPUs (multicomputers), each with its own private 
memory and connected by a local network with no common memory, the use of semaphores 
is not workable. This is also true in distributed shared memory multiprocessor systems, since 
semaphore variables are global, and accessing such global variables can result in substantial 
communication delays in such systems. In the case of using monitors, the structures (local 
data, public procedures) of monitors are usually centralized on each CPU, making them inap-
plicable in such distributed systems. The designer was thus eagerly looking for some sort of 
a single mechanism to devise so that both synchronization and the communication functions 
could be realized at a time with ease in order to likely reduce the overhead with increased 
uniformity and greater clarity. 

http://www.routledge.com/9781032467238


Processor Management 177  

 

 

 

 

 

 

 

  

    

 

 

 

4.18.1 MESSAGES 

To negotiate all these issues, one approach may be to use a single mechanism, popularly known as 
message passing. Messages are a relatively simple mechanism able to implement both interprocess 
communication and synchronization and are often used in contemporary commercial centralized 
systems as well as in distributed system environments. Computer networks also normally use this 
attractive message passing mechanism to manage both interprocess communication and synchroni-
zation between concurrent processes that run on different nodes (machines) interconnected with one 
another in networks. Distributed operating systems running on loosely coupled system (multicom-
puters) as well as on tightly coupled systems (multiprocessor) usually also exploit messages for this 
purpose. Messages can also be used simply as a communication mechanism explicitly intended to 
copy information (even to transfer major portions of the operating systems and/or application pro-
grams) without using shared memory from one address space into another process’s address space 
of even other nodes (machines) located remotely. Sometimes the operating system itself is involved 
in this communication activity, since concurrency is to be implemented across address spaces, but 
those are inherently guarded by the protection mechanisms of memory management in order to 
strictly prevent any form of malfunctioning. The OS in that situation must inject an additional 
mechanism by which the information can be copied from one application’s address space to that of 
another. Applications can then use the OS as an intermediary to share information by way of copy-
ing it in these systems. Messages have been even found in use in the implementation of 32-bit system 
buses, such as Multibus II (Intel) and Futurebus (IEEE), designed for microcomputer systems that 
provide specialized hardware facilities for interprocessor communication with low overhead. 

More details on this topic with a figure are given on the Support Material at www.routledge. 
com/9781032467238. 

4.18.2 MESSAGE FORMAT 

A message, in essence, is a block of information formatted by a sending process so that its syntax 
conveys a certain meaning to the receiving process. The format of the message mostly depends on 
the objectives that the message should accomplish and also on the type of computer system (a single 
centralized computer or a distributed computing system) on which it will be run. Furthermore, there 
must be a protocol that both the sender and the receiver obey in this message format. A message 
may contain data, execution commands, or even some code to be transmitted between two or more 
processes. For large quantities of information to be transmitted, it can usually be placed in a fle, 
and the message can then simply reference that fle. In fact, the message format, in general, is not 
fxed but fexible and negotiable by each specifc sender–receiver pair. A message is divided into 
two parts: a header, which contains various pieces of information about the message, and the mes-
sage body, which contains the actual contents of the message. A representative format of a message 
with a possible arrangement of its felds is depicted in Figure 4.24. 

The header mostly has a fxed format in a given operating system and contains such information 
as type, length, sender ID, receiver ID, and a data feld. The type feld can be used to identify mes-
sages containing specialized information, such as synchronization information and error reporting. 

Sender’s 

ID 

Receiver’s

 ID 

Message

 length 

Control 

Informn 

Message 

type

 ……. …… Message 

contents 

•-----------------------------  Message Header ------------------------------->•Message-> 

body 

(optional) 

FIGURE 4.24 A typical message format of message-passing mechanism used in interprocess communica-
tion and synchronization. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

  
 

 

 

   

   

  

 

178 Operating Systems 

There may also be additional felds containing control information, such as a pointer feld so that 
a linked list of messages can be created, a sequence number that keeps track of the number and 
order of messages passed between sender and receiver, and sometimes a priority feld. The optional 
message body normally contains the actual message, and the length of the message may vary from 
one message to another (variable-length message), even within a single operating system. However, 
designers of operating system normally do prefer short, fxed-length messages for the sake of mini-
mizing processing load and to reduce storage overhead. 

4.18.3 MESSAGE IMPLEMENTATION: DIFFERENT ISSUES 

Systems using messages as a tool for communication and synchronization have many challenging 
problems and numerous issues that do not arise with semaphores or monitors, especially if the com-
municating processes are located on different machines connected by networks. Typical message 
operations are SEND message and RECEIVE message, which are provided either by the operating 
system or pre-declared in a system implementation language. This pair of primitives, SEND and 
RECEIVE, used at the time of communication between processes, like semaphores and unlike 
monitors, are essentially system calls rather than programming-language constructs. Systems based 
on message passing come in many different forms. In fact, implementation of messages is found to 
differ in a number of details that among other things affect the functioning and use of parameters 
that are associated with these SEND and RECEIVE operations. Some of the important issues relat-
ing to message implementation are described here for the sake of an overall understanding as to 
how message-passing mechanisms are to be realized. The important issues, in particular, are the 
following. 

4.18.3.1 Naming: Addressing 
Every message is identifed by its name (address) for which it is meant. One of the major decisions 
in designing the naming of a message is whether the naming should be direct or indirect. Direct 
naming (addressing) implies that whenever a message operation is invoked, each sender must name 
the specifc recipient (destination), and conversely, each receiver must name the source from which 
it wants to receive a message. The following code fragment explains the direct naming pattern of a 
message when a process A sends a message to process B. 

……. 
……. 
process  A ;
 ……… 

send ( B, message ) ; 
……… 
……… 
process B; 
receive (A, message) ;

 ……… 

Here, message represents the contents that are to be transmitted as the actual message, and B 
and A in the parameters identify the destination (receiver) and the source of the message (sender), 
respectively. Direct naming, by nature, is a symmetric communication in the sense that it is a one-
to-one mapping, and each sender must know the name of its receiver and vice-versa. Although this 
provides a safe and secure means of message communication, but it may impose a severe constraint 
when a service routine is implemented by the send/receive mechanism for public use by a com-
munity of users, since the name of each customer in this case must be known to the service routine 
beforehand, so it can expect the request. 



Processor Management 179  

 

  

  

 
 

 

 

4.18.3.1.1 Indirect Naming: Mailbox 
An alternative approach in this regard in message communication is indirect naming in which mes-
sages are sent to and received from specialized dedicated repositories used only for this purpose, 
commonly called mailboxes. The association of processes (senders and receivers) to mailboxes can 
be either static or dynamic. Pipes in the UNIX systems in this regard can be considered an analog 
of mailboxes. The following code fragment illustrates the functioning of a mailbox, for example, 
mailbox-1 as used here, when a process A sends a message to process B. 

……. 
……. 
process  A ; 
……. 
send  ( mailbox-1, message  ) ; 

……. 
……. 
process B ; 
receive  ( mailbox-1, message) ; 

……. 

The send operation places the generated message into the named mailbox; mailbox-1, and the 
receive operation removes a message from the named mailbox, mailbox-1, and provides it to the 
receiving process through the private variable, message. 

Ports also are often statically associated, in place of a mailbox, with a process for message com-
munication; that is, the port is created and assigned to the process permanently. In particular, a port 
is typically owned by and created by the receiving process, and when the process is destroyed, the 
port is also destroyed automatically. 

The placement of the mailbox with regard to its location and ownership is a design issue for 
the OS developer to decide. That is, should the mailbox be put in an unused part of the receiver’s 
(process’s B) address space, or should it be kept in the operating system’s space until it is needed by 
the receiver (process B)? Figure 4.25 shows the mailbox for process B, which is located in the user’s 
space. If the mailbox is kept in this manner in the user space, then the receive call can be simply a 
library routine, since the information is being copied from one part of B’s address space to another. 
However, in that situation, the translation system (compiler and loader) will have to take care to 
allocate space in each process for the mailbox. Under this arrangement, there remains a possibil-
ity that the receiving process may sometimes overwrite parts of the mailbox inadvertently, thereby 
destroying the links and losing messages. 

The alternative to this approach is to keep B’s mailbox in the operating system’s space and 
defer the copy operation until B issues the receive call. This situation is illustrated in Figure 4.26. 
This option shifts the responsibility of mailbox space arrangement from user process onto the OS. 
Consequently, it prevents any occurrence of inadvertent damage of messages or headers, since the 
mailbox is not directly accessible to any application process. While this option requires the OS to 
allocate memory space for mailboxes for all processes within its own domain, it at the same time 
puts a system-wide limit on the number of messages awaiting delivery at any given instant. The 
user processes, however, can access the mailbox only with the help of respective system calls that 
the operating system should provide. In addition, the operating system should have extra support 
for maintenance of mailboxes, such as, create_mailbox and delete_mailbox. Such mailboxes can 
be viewed as being owned by the creating process, in which case they terminate with the process, 
or they can be viewed as being owned by the operating system, in which case an explicit command, 
such as, delete_mailbox is required to destroy the mailbox. 

The distinct advantage of using indirect naming (addressing) in message communication is that 
it makes the horizon totally open by decoupling the sender and receiver, allowing greater fexibility 



Address space for Process A Address space for Process B 

Info. to 
be shared 

Copy of 
shared Info. 

Message 

Mailbox for B 

receive (...) send (...B...) 

send function receive function 

OS Interface 

Address space for Process A Address space for Process B 

Info. to 
be shared 

Copy of 
shared info 

receive (...)send (...B...) 

send function receive function 
Message 

OS Interface 

Mailbox for B 

180  Operating Systems 

FIGURE 4.25  A schematic block diagram of message-passing mechanism using mailboxes. 

FIGURE 4.26  A schematic block diagram of message-passing mechanism using mailboxes placed in operat-
ing system space. 

in the use of messages. It provides a relationship that can be one-to-one, one-to-many, or many-to-
one, as well as many-to-many mappings between sending and receiving processes. 

A one-to-one mapping is typically defned statically and permanently by creating a dedicated 
specifc mailbox for the exclusive use of only two processes. This essentially establishes a private 
communication channel between them that insulates all their interactions from other erroneous 
interferences.  One-to-many mapping, on the other hand, is provided by a mailbox dedicated to a 
single sender but used by multiple receivers. It is useful for applications in which a message or infor-
mation is to be broadcast to a set of processes. Many-to-one mapping is particularly important for  
server processes, and it may be implemented by providing a public mailbox with numerous senders 
(user processes) and a single receiver (server process). If the sender’s identity for any reason is felt 
to be important, that could be provided within the body of the message itself. In the case of many 
senders, the association of a sender to a mailbox may occur dynamically. Primitives, such as, con-
nect and  disconnect, may be used for this purpose. Modern systems thus favor the implementation 
of mailboxes in the domain of operating system, since it is a more versatile approach. 

4.18.3.2  Copying 
The exchange of messages between two processes simply means to transfer the contents of the 
message from the sender’s address space to receiver’s address space. This can be accomplished in 



Processor Management 181  

 

 
 
 
 
 
 

 

 
 

 
 
 
 

 

several ways, such as by either copying the entire message directly into the receiver’s address space 
or by simply passing a pointer to the message between two related process. In essence, message 
passing can be carried out by value or by reference. In distributed systems with no common mem-
ory, copying cannot be avoided. However, in centralized system, the trade-off is between safety 
versus effciency. 

Copying of an entire message from a sender’s space to a receiver’s space in message transmis-
sion exhibits several advantages. This approach keeps the two processes decoupled from each 
other, yet an imprint of the sender’s data is made available to the receiver. The original with the 
sender remains unaffected irrespective of any act be by the receiver on the data at its own end. 
Similarly, the receiver’s data also remain totally protected from any sort of direct access by the 
sender. Consequently, any malfunction of either process is fully localized in the sense that it can 
corrupt only the local copy and not the other one. The availability of such multiple private copies 
of data is always benefcial from a certain standpoint and is a possible alternative to its counter-
part that contains a single copy of carefully protected global data, as is found in a typical monitor 
approach. 

The message copying approach, however, also suffers from several drawbacks. It consumes 
additional processor and memory cycles that summarily lead to usage of extra system time. This 
asynchronous message communication is a useful feature, but due to existing memory protec-
tion schemes, it may also require that each message frst be copied from the sender’s space to 
the operating system’s space (to any buffer) and from there to the receiver process’s space (as 
already mentioned in the mailbox); that is a double copying effort and also additional support 
of an extra dynamic memory pool which is required by OS to operate while delivering only a 
single message. 

Use of Pointers: To get rid of the complexities arising out of copying, an alternative approach 
was devised in favor of using a pointer to pass it to the message between the sender and receiver 
processes. Although this provides a faster solution by way of avoiding the copying of message, but it 
enables the receiver to get entry into the sender’s addressing space that may otherwise cause a threat 
to security. Moreover, as a single copy of message is accessed both by the sender and the receiver, 
an additional mechanism is then required to synchronize their access to the message, to signal the 
end of any receiver operation so that the sender may reclaim it for any modifcation, if required. 

Copy-on-write : Besides these two approaches with their merits and drawbacks, that is, multiple 
copies of messages with copying and a single copy of the message without copying, an alternative 
viable hybrid approach in the line of UNIX copy-on-write facility ultimately came out that was 
eventually taken by the Mach operating system. With copy-on-write, sender and receiver copies of 
the exchanged message are logically distinct. This allows each process to operate on the contents 
of the message freely with no concern for interference. However, the OS attempts to optimize per-
formance by initially sharing a single physical copy of the message that is mapped into the address 
spaces of both sender and receiver. As long as both processes only read the message, a single 
physical copy is enough to serve the purpose. However, when either process attempts to modify the 
physically shared message space, the operating system intervenes and creates a separate physical 
copy of the message. The address-map tables are accordingly re-mapped, and each process contin-
ues with its own separate physical copy of the message. Thus, the copy-on-write scheme supports 
logical decoupling and at the same time eliminates the copying overhead in systems where the ratio 
of reads to writes is high. 

4.18.3.3 Queuing Discipline 
The simplest discipline in the arrangement of messages is queuing is normally frst-in-frst-out, but 
this may not be adequate in some situations when some messages are more urgent than others. An 
alternative is to allow determination of message priority on the basis of message type or account 
number (designation) of the sender. The other alternative when selecting a particular message from 



 

 

 

 
 
 
 
 
 

    

  

  
  

182 Operating Systems 

the queue is decided based on the priority given along with the message in the priority feld, which 
is a part of control information. Another alternative is to allow the receiver to inspect the message 
queue and select which message to receive next. 

4.18.3.4 Message Length 
To decide the length of the message is a major issue in message design, and that too whether the 
message would be of fxed or variable length. The trade-off is one of overhead versus fexibility, 
and this is particularly applicable when messages are transmitted by way of copying and buffering. 

Messages of fxed length are usually advantageous because the related system buffers would then 
also be of fxed size, which in turn makes the allocation quite simple and effcient, and the commu-
nication also would be comparatively easy in terms of timing and synchronization. But, in reality, 
messages are mostly of variable sizes. However, short messages with a fxed-size buffer often waste 
specifed buffer space. Long messages with a fxed-size buffer must be properly split up to ft into 
the smaller buffer and then must be sent in installments, but that often causes additional overhead 
and also results in sequencing (ordering) problems at the receiving end. 

An effective alternative may be to dynamically create buffers of variable size every time to 
ft the size of each instantaneous individual message. But such frequent dynamic allocation of 
variable-size chunks of memory at different times is not only costly in terms of CPU time usage, 
the constant creation of this dynamic memory pool carried out by the memory management of OS 
may, in turn, lead to critical problems of memory fragmentation that again require related added 
overhead to resolve. Fragmentation issues will be discussed later in the chapter in “Memory 
Management”. 

However, the message length issue is not so very important in those systems in which message 
passing is carried out via pointers, where a single parameter, like size-of-window, may be needed 
to include in the message itself so as to provide a different window size for each individual message 
transmission. 

4.18.4 MESSAGE EXCHANGE: SYNCHRONOUS VERSUS ASYNCHRONOUS 

Exchanges of messages between a sender and a receiver are accomplished by the send and receive 
operations, which use two general options: 

1. The send operation may use synchronous and asynchronous semantics. 
2. The receive operation may use blocking or non-blocking semantics. 

When the message exchange is synchronous, both the sender and the receiver must arrive together 
to complete the transfer. In synchronous systems, the synchronous send operation incorporates a 
built-in synchronization strategy which blocks (suspends) the sending process until the message is 
successfully received by the receiving process. In fact, when a sender wants to send a message for 
which no outstanding receive is issued, the sender must be blocked until a willing receiver accepts 
the message. In other words, the send call synchronizes its own operation with the receipt of the 
message. 

The synchronous send–receive mechanism has many advantages. First of all, it has compara-
tively lower overhead and easier to implement. Second, the sender knows that its message has been 
actually received, and there is no possibility of any damage once the send statement crosses over 
and the send operation is completed. Last but not least, if the sender attempts to transmit a message 
to a nonexistent process, an error is then returned to the sender so that it can synchronize with the 
occurrence of the error condition and take appropriate action. However, one of the serious draw-
backs of this approach is its forcible implement of synchronous operation of senders and receivers, 
which may not be desirable in many situations, as exemplifed by the public server processes in 
which the receiver and the sender processes usually run at different times. 



Processor Management 183  

 

 

 

 
 
 
 
 
 
 

  

 

With asynchronous message exchange, the asynchronous send operation delivers the message 
to the receiver’s mailbox with the help of the operating system and buffers outstanding messages, 
then allows the sending process to continue operation without waiting, regardless of any activity of 
the receiver with the message (the mailbox may, however, be located within the domain of receiver’s 
process or in the address space of operating system, as already discussed). The sending process here 
need not be suspended, and the send operation is not at all concerned with when the receiver actu-
ally receives the message. In fact, the sender will not even know whether the receiver retrieves the 
message from its mailbox at all. 

The distinct advantage of an asynchronous send operation, which behaves like a “set and forget” 
mode of operation, substantially increases the desired degree of concurrency in the system. All the 
messages being sent to a particular receiver are queued by the system without affecting the sender, 
which also allows other senders to create new messages, if required. 

Although the asynchronous send operation is a useful feature, its drawbacks may cause several 
adverse situations to happen. For example, if a sender transmits a message to a nonexistent process, 
it is not then possible for the OS to identify the specifc mailbox in which to buffer the message. But 
the sender is completely unaware of this situation and continues after “transmitting” the message, 
and, as usual, does not expect a return value. The fate of this message is then simply unpredict-
able. Since there is no blocking to discipline the process, these types of messages keep consuming 
system resources, including processor time and buffer space, to the detriment of other processes 
and also the operating system. Moreover, as there is no mechanism that causes an alert, such as 
UNIX signals, there is no way for the OS to tell the sending process about the status of its opera-
tion. Therefore, additional systems are required that will block an asynchronous send operation 
in this situation until the message is actually placed in the receiver’s mailbox. But there exists no 
such implied synchronization between the sending and receiving process, since this fundamentally 
opposes the philosophy behind the asynchronous send operation: that the sender process would not 
be suspended, and the receiver may retrieve the mailbox at any arbitrary time after the message has 
been delivered. Therefore, the non-blocking send places the burden entirely on the programmer 
to ascertain that a message has actually been received. Hence, the processes must employ “reply 
messages” to acknowledge the receipt of an actual message. We will discuss next an appropriate 
mechanism so that this approach can be properly accomplished. 

Another situation may occur that sometimes becomes critical due to the inherent drawback of the 
asynchronous send operation. When a sending process starts producing messages uncontrollably 
that quickly exhaust the system’s buffering capacity, it then creates blockage of all further message 
communication between other processes. One way to solve this problem may be to impose a cer-
tain limit on the extent of buffering for each sender–receiver pair or on a mailbox basis. However, 
in either case, this uncommon situation due to buffering of outstanding messages causes to incur 
additional system overhead. 

Another common problem that frequently happens related to both of these implementations is 
starvation (indefnite postponement). This usually happens when a message is sent to a defnite 
destination but never received. Out of many reasons, this may be due to crashing of the receiver 
or a fault in the communication line, or it may be that a receiver is waiting for a message which is 
never created. Whatever it may be, ultimately this failure to complete a transaction within a fnite 
time is not at all desirable, especially in an unbuffered (synchronous) message system, because 
that may automatically block the unmatched party. To address this problem, two common forms 
of receive primitive are used: a non-blocking (wait less) version and a blocking (timed-wait) 
implementation. 

The blocking form of the receive primitive is a blocking receive operation that inspects the des-
ignated mailbox. When a process (receiver) calls receive, if there is no message in the mailbox, the 
process is suspended until a message is placed in the mailbox. Thus, when the mailbox is empty, the 
blocking receive operation synchronizes the receiver’s operation with that of the sending process. 
But if the mailbox contains one or more messages, the calling process is not suspended, and the 



 

   

 

 

 

 

 

 

   

      
    
    
       

184 Operating Systems 

receive operation immediately returns control to the calling process with a message. Note that the 
blocking receive operation is exactly analogous to a resource request in the sense that it causes the 
calling process to suspend until the resource, that is, an incoming message, is available. 

The non-blocking form of the receive primitive is a non-blocking receive operation that inspects 
the designated mailbox and then returns control to the calling process immediately (with no waiting 
and without suspending) either with a message, if there is one in the mailbox, exactly in the same 
manner as in the case of blocking receive, or with an indicator that no message is available. As the 
blocking and non-blocking functions of receive are sometimes complementary, both these versions 
of receive are often supported in some systems. 

In short, both sender and receiver together can give rise to four different types of combinations, 
three of which are common, although any particular system is found to even have one or two such 
combinations implemented. 

• Synchronous (blocking) send, blocking receive: Both the sender and receiver are blocked 
until the message is delivered; this is sometimes referred to as rendezvous (a meeting 
by appointment). This combination is particularly useful when tight synchronization is 
required between processes. 

• Asynchronous (non-blocking) send, blocking receive: Although the sender here may be 
allowed to continue on, the receiver is blocked until the requested message arrives. This 
is probably the most useful combination. It allows a process to send one or more messages 
quickly to several destinations as and when required. A process that must receive a mes-
sage before it can proceed to do other useful work needs to be blocked until such a message 
arrives. A common example in this case is a server process that exists to provide a service 
or resource to other client processes which are to be blocked before the request of a service 
or the resource is granted by the server. Meanwhile, the server continues with its own work 
with other processes. 

• Asynchronous (non-blocking) send, non-blocking receive: Neither the sender nor the 
receiver is required to wait. 

4.18.4.1 Send–Receive Operation: A Modifed Approach 
A more appropriate but slightly complex approach to negotiate the problem of indefnite postpone-
ment (starvation, as already mentioned) is to incorporate a facility for setting a time limit during 
which a particular message exchange must be completed. Although this time limit is required to be 
included in both send and receive operations, but inclusion of it only in a receive operation is enough 
to serve the purpose. The modifed calling sequence of the receive operation with inclusion of this 
time limit would then be: 

receive ( mailbox1,  message,  time-limit) 

where time-limit is the maximum allowable time, expressed in clock ticks or any standard unit of 
time, that the receiver can wait for the message. If none arrives, the OS would then return control 
to the receiver and provide it with an indicator, perhaps via a special system message, that the time 
limit has elapsed. The sender processes can also be modifed in this scheme by using an interlock 
mechanism within itself that is of the form: 

Sender: 
……… 

send ( mailbox1, message ) 
receive ( ack, time-limit ) 

……… 



Processor Management 185  

       
    
     
     

 

   

 

 
 

Receiver: 
……… 

receive ( mailbox1, message, time-limit ) 
if message-received-in-time   then 
send (ack) 

The sender sends a message, and the receiver after receiving the message will send back a special 
acknowledgement message, ack, for which the sender waits. If the receiver for any reason does not 
receive the original message, the time limit eventually will expire, and the sender then regains con-
trol (from its timed-out receive operation), at which point it can take appropriate remedial action. 
The receiver process also cannot be held captive by a late message; it is signaled and informed about 
the fault as soon as its own receive times out. 

4.18.5 DESIGN ISSUES: MESSAGE-PASSING SYSTEMS 

Monitors and semaphores are basically designed for synchronization of concurrent processes in 
machines that share one memory; they are data-structure oriented. As the use of separate com-
puters in networks of computers become more prevalent, the message-passing paradigm is found 
more ftting to this environment. The design issues of message-passing systems in implementing 
synchronization and communication between concurrent processes is, however, somewhat differ-
ent from its counterpart, semaphores and monitors, and as such many critical problems need to be 
resolved, especially when the processes run on different machines connected by a network. When 
the processes run on multiprocessor system, the dimension of these problems may be again alto-
gether different and even acute. However, many issues in this regard may arise, but we will consider 
here only the most common ones and their remedies at the time of designing a somewhat trusted 
message-passing system. 

To ensure reliability, messages are to be delivered in an orderly way to processes running on 
different machines without any loss, which mostly happens due to the presence of the network. To 
safeguard against loss of messages, the sender and receiver can both agree that as soon as a message 
would be received, the receiver will at once send back a special message to the sender in the form 
of acknowledgement. If the sender has not received the acknowledgement within a specifed time 
limit, it may retransmit the message or take any other appropriate remedial action. 

There may be two different reasons for a mishap while passing messages. The frst one is that 
the message may be lost due to a transmission error; hence, the receiver does not get it, and thus the 
question of sending an acknowledgement does not arise. The sender does not getting its acknowl-
edgement and will then keep trying to retransmit the message in an appropriate format for a certain 
number of times, but in vain with no response. After that the system must declare that there is a line 
fault. The second reason may be that the message itself is correctly received, but the acknowledge-
ment is lost. The sender will not be getting the acknowledgement within the specifed time interval 
and hence starts re-transmitting the message. The receiver will get it twice at its own end. It is thus 
essential that the receiver somehow be able to distinguish the old original one already received from 
the new message received due to retransmission of the original. Usually, this problem is handled by 
putting consecutive sequence numbers in each original message. If the receiver sometimes gets a 
message bearing the same sequence number as the previous message, it knows that the message is 
a duplicate one and decides to ignore it. 

The identifcation of processes involved in message passing is also an issue, and thus message 
systems also have to deal with how processes are to be named so that the process specifed in a 
send and receive call is unambiguous. Different operating systems, however, use different naming 
formats, but often a naming scheme, such as, process@machine or machine:process, is used. But 
when a huge number of machines are connected over a network and there is no central authority that 
allocates machine name (identifcation), it may happen that two different units give their machine 



 

     

     

 

 

186 Operating Systems 

the same name. This problem of conficting names can be considerably reduced by simply grouping 
machines into domains, and then the processes can be addressed as process@machine.domain. 
Under this scheme, the domain names must be unique. 

Authenticity is another issue in the design of message-passing systems. It is realized by a tech-
nique by which the authentication of interacting processes involved in communication is verifed. It 
is surprisingly diffcult, particularly in the face of threats organized by malicious, active intruders, 
and hence requires complex mechanisms, usually based on cryptography, by which a message can 
be encrypted with a key known only to authorized users. 

In the case of a centralized system in which the sender and receiver exist on the same machine, 
the design considerations may be altogether different. The fundamental question is whether it is 
judicious to use a message-passing system that employs a relatively slow operation of copying mes-
sages from one process to another than that of its counterpart, the comparatively fast semaphore or 
monitor, for the sake of realizing better performance. As a result, much work has been carried out 
to effectively improve message-passing systems, and as such many alternatives have been proposed. 
Among them, Cheriton (1984), for example, suggested limiting the size of the message so as to ft 
it in the machine’s register and then perform message passing using these registers to make it much 
faster. 

4.18.6 MESSAGES: FOR INTERPROCESS SYNCHRONIZATION AND COMMUNICATION 

Message-passing systems, although realized by numerous operations and also different implementa-
tions of messages between senders and receivers, are still primarily considered a useful tool for both 
interprocess synchronization and communication. When message-passing is carried out between 
two processes with no data feld (empty message), it is equivalent to signaling. A sender process, 
by sending a message, then essentially passes a timing signal to another process, the receiver. In 
terms of signaling, this has the same effect as one process (sender) executing a signal operation and 
the other process (receiver) executing a wait on the semaphore. In this analogy, the existence of the 
mailbox corresponds to the presence of a unique semaphore variable. As usually happens in sema-
phore systems, the process undergoing a wait (receiver) remains suspended until the semaphore is 
signaled (message sent to the mailbox) by some other process. Alternatively, if the semaphore is 
free (mailbox contains one or more message), the process will not wait and is allowed to proceed 
without being blocked. 

This signaling power of a message-passing system can be used to enforce mutual exclusion fol-
lowing the logic of a similar solution using semaphore. We assume here the use of the blocking 
receive and non-blocking send primitives. This is depicted in Figure 4.27 in which the program 
segment contains the representative code of a set of concurrent user processes that access a shared 
resource protected by the mailbox, mutex, which can be used by all processes to send and receive. 
Following the logic of semaphore implementation, it is assumed that the mailbox is created empty: 
it initially contains no message. This is equivalent to the semaphore being initialized by the sys-
tem to busy. To make a message available to the frst requestor, the parent process uses a send to 
send a message to the mailbox before initiating any of the users to access the resource; otherwise 
the frst user process will be blocked due to mailbox having no message (empty). Since this mes-
sage attached to send in the parent process is used solely for signaling purposes, its data content is 
immaterial, and hence we assume that it is a null (empty) message. When the frst process wishes to 
use the resource, it invokes the receive operation (receive operation in process user in Figure 4.27) 
on the mutex mailbox. This results in the removal of the initial null message from the mailbox and 
is delivered to the process via its msg parameter. Once the process acquires the message, it is free 
to continue, and it enters the critical section. If any other process executes a receive on the mutex 
during that time, it will be blocked because the mailbox is empty. When its critical section is com-
pleted, the owner of the message then places a message back in the mailbox mutex (send operation 
in the process user in Figure 4.27) and continues to execute its remaining processing. 

mailto:process@machine.domain


Processor Management 187  

 

 
 

 
 
 

 

 
 

 

         
         

          
   

          
           
        
                   
                   
                       

                       
                              
                   
        

        
            
            
                
        

 

 Program / segment  message–mutex  ; 
              ……….
              ……….
     const 

null  = ….. ;  [ empty  message ] 
n  = …… ;  [ number  of  processes ]

     type 
message  = record ….. ;

     process user ( i : integer )  ; 
var 

msg  : message ; 
begin 

while true do 
begin 

receive(mutex ,  msg) ;
 < critical—section  > ; 
send(mutex ,  msg) ; 

other–remaining–processing 
end  [ while ] 

end ; [ user ]
 [ parent  process  ] 

begin  [ message–mutex ] 
create_mailbox(mutex) ; 
send(mutex ,  null ) ; 
initiate user(1) ;  user(2) ; ……… ; user(n)  ; 

end ; [ message–mutex ] 

FIGURE 4.27 An algorithm illustrating the Mutual exclusion of competing processes by using messages. 

This approach is conceptually similar to semaphore implementation. It also shows that the 
empty message used here only for signaling is enough to fulfll the desired purpose for syn-
chronization. Here, a single message is passed from process to process through the system as 
a token permit to access the shared resource. The receive operation (as shown in process user 
in Figure 4.27) should be an atomic action (indivisible) in the sense while delivering the mes-
sage, if there is any, to only one caller (blocked process) when invoked concurrently by several 
users. The process after receiving the message (as shown in process user in Figure. 4.27) would 
then be able to proceed accordingly. The other remaining waiting processes, if any, would 
remain blocked as usual and get their turns one at a time when the message is returned by pro-
cesses (send operation in process user in Figure 4.27) while coming out of the critical section. 
However, if the mailbox (mutex) is found empty at any instant, all processes will then be auto-
matically blocked. These assumptions hold true for virtually all message-passing facilities. The 
real strength of message-passing systems is, however, fully extracted when a message contains 
actual data and transfers them at the same time to the desired destination, thereby accomplish-
ing the ultimate purpose of achieving both interprocess synchronization and communication 
within a single action. 

This discussion has convincingly established the fact that messages should not be considered a 
weaker mechanism than semaphores. It appears from Figure 4.27 that a message mechanism may 
be used to realize a binary semaphore. General semaphores can similarly be implemented by simu-
lating messages by increasing the number of token messages in the system to match the initial value 



 

 
 
 
 

 
 

 
 

 

 

 

  

 
 
 
 

 

 

188 Operating Systems 

of an equivalent general semaphore. For example, if there are eight identical tape drives available in 
a system that are to be allocated by means of messages, then eight tokens need to be initially created 
by sending null messages to the appropriate mailbox. 

Message passing, however, unlike other strong contenders, is a robust and versatile mechanism 
for the enforcement of mutual exclusion and also provides an effective means of interprocess com-
munication. That is why messages in different forms with numerous implementation provisions and 
add-on facilities are often found in use in both types of distributed operating systems, especially 
network operating systems. 

4.18.6.1 Case Study: Producer/Consumer Problem with Bounded Buffer 
Since messages can be used to emulate semaphore, it can then be possible to devise a solution 
to the bounded-buffer producer/consumer problem by using an algorithmic structure similar 
to the approach that has been used to obtain the solution of this problem using semaphores. 
As the buffer is bounded, the capacity of the buffer is limited by the total number of mes-
sages that are made initially available to both producers and consumers. This capacity of the 
buffer, in fact, determines the maximum number of items that the producer can generate at a 
stretch before the first item is consumed by the consumer. It is assumed here that each mes-
sage as usual has a data field holding a single data item used as a data buffer. Two mailboxes, 
canproduce and canconsume, are taken for the purpose of message exchanges between pro-
ducers and consumers. 

Each producer process acquires a message from the canproduce mailbox; it then flls the data 
feld of the message with the produced item and fnally sends the message to the canconsume 
mailbox for the consumer to use. In this way, the number of remaining empty messages in the can-
produce mailbox shrinks with each production. However, as long as there exists at least one empty 
message in the canproduce mailbox, the producer is allowed to continue production. The consumer 
behaves in the same way. It removes a message from the canconsume mailbox, consumes the data 
item therein, and then returns the empty message to the canproduce mailbox for the producer to 
work. This consumption actually increases the number of remaining empty messages in the can-
produce mailbox. However, the producer can run only when there are empty messages, at least one 
message in the canproduce mailbox, otherwise producers are blocked and kept waiting (sleep) until 
a receive operation is carried out by the consumer to subsequently consume a message and there-
after sends an empty message to the canproduce mailbox for the producer to continue (wakeup). 
Similarly, the consumers can only proceed when there is least one item in the canconsume mailbox 
being sent by the producer that is not yet consumed; otherwise the consumers are blocked (sleep) 
and kept waiting until a message is generated by the producer and sent to the canconsume mailbox 
for the consumer to work on (wakeup). 

This solution is quite flexible and also allows multiple producers and consumers to run 
concurrently as long as all have access to both mailboxes. Other than the names of the 
two mailboxes, all variables as used here are local. Elimination of the global buffer is the 
beauty of this approach that, in particular, fits both centralized and distributed processing 
environments. 

Moreover, this approach elegantly handles the aspect of global data manipulation, a major issue 
in distributed systems, in the situation when all producer processes and the associated canproduce 
mailbox reside at one site and all the consumer processes and the associated canconsume mailbox at 
another. In addition, it fnds no diffculty even if both sites are run under different operating systems 
or if the producer–consumer processes are independently developed in different programming lan-
guages under dissimilar programming environments, provided both mailboxes are globally acces-
sible and both operating systems at their own ends can provide a compatible form of send–receive 
operation support. 

For more details and a algorithm about this topic, see the Support Material at www.routledge. 
com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 189  

      

 

   

 

 
 
 

 
 

 
 
 

4.18.7 MESSAGE USAGE: A POSSIBILITY IN INTERRUPT SIGNALING 

It is known that when an interrupt occurs, the interrupt signal causes switching of a process from 
one to another; a signal in interprocess synchronization does the same. Moreover, interrupts are 
asynchronous that intimate (signal) the arrival of certain external events, and this is conceptually 
identical when a process in interprocess synchronization at any instant similarly signals the occur-
rence of a certain event, such as an attempt to use a resource or the situation when the buffer is full. 
That is why there exists a strong resemblance between a signal when an interrupt occurs and a sig-
nal at the time of interprocess synchronization to tackle concurrent processes. Now, we know that 
when message passing is carried out between two processes with no data feld, this empty message 
is equivalent to a signal. As the message possesses signaling power, an important possibility that 
can now be explored is whether this ability of messages could be exploited to realize a single uni-
form tool that would be usable for signaling interrupts as well as handling all aspects of interprocess 
synchronization and communication. If it is possible, this, in turn, will then defnitely reduce the 
workload of system developers, especially in the area of program development and its maintenance. 
However, lots of arguments and counter arguments (against and in favor of unifcation) with merits 
and drawbacks in favor of and against this proposal have been presented by the contending parties. 
But fnally, it is left up to designers to decide whether they will step forward towards further explor-
ing this approach to incorporate an innovative concept in the design of operating systems. It is also 
kept open to let the readers and the designers of the operating systems of tomorrow form their own 
views, draw their own conclusions without being prejudiced, and make informed judgments. 

A brief discussion of this approach is given on the Support Material at www.routledge.com/ 
9781032467238. 

4.18.8 EQUIVALENCE OF PRIMITIVES 

There are many popular alternatives for synchronizing concurrent processes: Semaphores capture the 
essence of process synchronization. At the most abstract level, the monitor mechanism is also con-
sidered for sharing and synchronization. Some operating systems implement event counters for this 
purpose where events are used as abstractions of semaphore operations, particularly to address the 
coordinated applications (to trigger actions by other processes) of semaphores (as opposed to critical 
section problems). Both semaphores and events can be used to synchronize the operation of two pro-
cesses but not to convey any information between them. Event counts do not rely on shared memory, 
unlike other synchronization mechanisms. Campbell and Habermann (1974) introduced a method 
called path expressions. Reed and Kanodia (1979) described a different interprocess synchroniza-
tion method called sequencers. Atkinson and Hewitt introduced a different one called serializers. 
Message passing addresses a generalized interprocess communication mechanism that implements 
information transmission in conjunction with synchronization. There is also a list of other methods 
for this purpose that is certainly pretty long, with new ones being dreamed up all the time. We are not 
willing at this moment to delve into any such discussions or descriptions for all of them. 

Fortunately, many of the proposed schemes are, by and large, similar to others, and in fact, any 
of the synchronization primitives can basically be built up from any of the others. This is a prevail-
ing truth both philosophically (all synchronization systems are truly different ways of viewing the 
same essential ideas) as well as practically (a user can build a system intuitive to them if the system 
provides another). However, all modern operating systems provide semaphores, messages, or (more 
likely) at least one of the synchronization mechanisms already described or even a combination of 
those approaches. 

Since, semaphores, monitors, and messages are very popular and common mechanisms to nego-
tiate interprocess synchronization and communication problems, we will describe here in brief their 
essential equivalence in order to obtain a clear understanding of the working of these primitives and 
how they can be implemented. Although the other primitives, as already mentioned, are equally 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 

 
 

 
 
 

  
   

   

 

 

 

190 Operating Systems 

important, we restrict ourselves from entering the domain of those primitives due to the shortage of 
available space and for being beyond the scope of this text. 

4.18.8.1 Implementation of Monitors and Messages Using Semaphores 
Let us consider that the system provides semaphores as a basic tool that can be used to build moni-
tors and messages. Since the monitor is a programming-language construct, the compiler designer 
can easily implement the monitor as a language construct with the help of the existing semaphore 
operation in the following way: The compiler developer will frst construct a collection of runtime 
procedures for managing monitors and put them in the system library. Whenever the compiler gen-
erates code involving monitors, necessary calls are made to the respective runtime procedure that 
must be included as a call statement in the object code of the user program in order to perform the 
necessary monitor functions. Accessing and managing each such runtime procedure can be accom-
plished with the available semaphore support. 

Each monitor is associated with a binary semaphore, mutex, which is initialized to 1 to con-
trol entry to the monitor. An additional semaphore is also employed for each condition variable 
to work as needed by the monitor operation. This semaphore is initialized to 0. When a process 
enters a monitor, the compiler generates a call to a runtime procedure, such as enter_monitor, 
which actually does a down (wait) on the mutex associated with the monitor being entered. The 
calling process now enters the monitor, thereby also preventing the entry of the other processes. If 
the monitor is currently in use, the calling process will be blocked. When a process leaves a moni-
tor, the compiler generates another call to a runtime procedure, such as, leave_monitor which 
actually does an up (signal) on the mutex associated with the monitor. It is to be remembered that 
signal must always be carried out as the last operation before leaving a monitor. The condition 
variables are also operated in a similar way. For example, await operation on a condition vari-
able, c, is carried out as a sequence of two semaphore operations. First an up operation on binary 
semaphore mutex allows a process to enter the monitor and second operates a down on c to block 
on the condition variable. 

Let us now examine how a message-passing mechanism can be implemented using the existing 
semaphore support. Here, each sender and receiver process is associated with one semaphore which 
controls the operation of the process. This semaphore is initially set to 0 to block the process. The 
needed mailboxes are implemented by creating a shared buffer area. Each such mailbox contains an 
array of message slots organized in the form of a linked list, and the messages are delivered in FIFO 
order. This shared buffer as a whole is entirely protected by a binary semaphore, mutex, to ensure 
that only one process can be inside the shared data structure at any instant. 

For the management of mailboxes, each mailbox contains two integer variables, indicating how 
many message slots are full and how many are empty. In addition, each mailbox also contains 
the starting address of two queues: one queue contains only the process numbers of the processes 
that are unable to send to the mailbox, and the other queue contains only the process numbers of 
those processes that are unable to receive from the mailbox. The process numbers of the waiting 
processes are required to execute an up operation on the respective semaphore to activate the cor-
responding process. 

Send and receive operation is carried out in the usual manner on a mailbox with at least one 
empty slot or one slot with a message, respectively, to insert or remove a message, and then it 
updates the respective counter and adjusts the links and fnally exits in the usual way. The mutex 
semaphore is to be used at the beginning (down/wait) and end (up/signal) of the critical section so 
as to ensure mutual exclusion in terms of use of counters and pointers of the linked list by only one 
process at a time. 

When a send is done, if there exists an empty slot in the destination mailbox, the message is 
normally put there, and the sender then checks the receiving queue of that mailbox to see if there is 
any waiting process. If found, the frst one is removed from the queue, and the sender does an up on 
its semaphore and then comes out of the critical region. The newly activated receiver now starts and 



Processor Management 191  

 

 

 
 

    

 
 
 
 

 
 

 

 

 
 
 

 
 

continues. If there is none, the sender comes out, doing an up as usual to allow the other deserving 
process to start. 

When a send fails to complete due to a mailbox being full, the sender frst queues itself on the 
destination mailbox, then does an up on mutex and a down on its own semaphore. Later, when a 
receiver removes a message from the full mailbox, an empty slot will be formed, and the receiver 
will then notice that someone is queued attempting to send to that mailbox; one of the sender in the 
waiting queue will then be activated (wake-up). 

Similarly, when a receive is attempted on an empty mailbox, the process trying to receive a mes-
sage fails to complete and hence queues itself in the receive queue of the relevant mailbox, then does 
an up on mutex and a down on its own semaphore. Later, when a sender, after sending a message, 
observes that someone is queued attempting to receive from that mailbox, one of the receivers in the 
waiting queue will be activated. The awakened receiver (process) will then immediately do a down 
on mutex and then continue with its own work. 

This representative example shows that a user can build a system primitive intuitive to them 
if the system provides another. It can similarly be shown that semaphores and messages can be 
equally implemented using monitors, and likewise, semaphores and monitors can also be imple-
mented using messages. We will not proceed to any further discussion of these two issues due to 
space limitations. However, interested readers, for the sake of their own information, can consult the 
book written by Tanenbaum on this subject. 

4.18.9 IMPLEMENTATION: INTERPROCESS COMMUNICATION AND SYNCHRONIZATION 

4.18.9.1 IBM MVS 
When the MVS operating system runs on a multiprocessor computer system with multiple processors, 
each of which while executing a process may cause interprocess communications to happen between 
these processes running on different processors, thereby making the system more complicated, and 
hence, the complexity of the operating system is greatly increased when compared to an usual single-
processor machine. However, MVS provides two facilities for enforcing mutual exclusion with respect 
to the use of resources: enqueing and locking. Enqueing is concerned with user-controlled resources, 
such as fles, whereas locking is concerned with MVS system resources, such as shared memory. 

For more details and a fgure on this topic, see the Support Material at www.routledge.com/ 
9781032467238. 

4.18.9.2 Windows System 
The features in relation to message passing in Windows are drawn from and thus bear a close resem-
blance to the corresponding features of the Mach distributed operating system. Windows provides 
a local procedure call (LPC) facility for message passing between processes located in the same 
computer system. However, it provides a remote procedure call facility used for message passing 
in a distributed environment. In fact, it uses similar arrangements involving client and server stubs 
for any type of environment whether using LPC or RPC. Generally, LPC is used by a process to 
communicate with an environment subsystem. At present, we confne ourselves only to the features 
of the message-passing system of Windows used in an environment that employs LPC. The discus-
sions with regard to message passing using RPC are temporarily postponed at this moment and will 
be explained later in relation to distributed operating systems (Chapter 9). 

Message passing with LPC uses a similar plan of action as in a client–server model. LPC 
provides three types of message passing that suit the passing of small messages, large messages, 
and special messages used by the Win 32 GUI. The frst two types of LPC use port objects to 
implement message passing. Each port object behaves like a mailbox. It contains a set of mes-
sages in a data structure called a message queue (already discussed in the previous section). To 
set up communication with clients, a server creates a port and connects it to port object. The 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 

 
 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

192 Operating Systems 

name of the port is then announced within the system. A process that intends to communicate 
with a server sends a connection request to the port and becomes its client. While sending a 
message, a client can indicate whether it expects a reply. When the server receives the request, 
it returns a port handle to the client. In this way, the server can communicate with many clients 
over the same port. 

For small messages, the message queue in the port object contains the text of the message. The 
length of each such message can be up to 304 bytes. As already mentioned (in “Copying”), such 
messages get copied twice during message passing to keep the system fexible and at the same time 
reliable. When a process sends a message, it is copied into the message queue of the port. From 
there, it is copied into the address space of the receiver. The length of the message is, however, kept 
limited to only 304 bytes in order to mainly control the overhead of message passing within an 
affordable limit, both in terms of space and time. 

The second method of message passing is used for large messages. In order to avoid the overhead 
of copying a message twice, a message is not copied in the message queue of the port. Instead, the 
message is directly put into a section object. The section object is mapped in both the address spaces 
of the client and the server processes. When the client intends to send a message, it puts the text of 
the message in the section object and sends a message to the port (to signal the port) indicating that 
it has put a message in the section object. The server itself then views the message in the section 
object. In this way, the use of the section object helps to avoid the copying of the message into the 
server’s address space. 

The third type of message passing using LPC is comparatively faster and hence is called 
quick LPC. Here again, the actual message is passed in a section object that is mapped in both 
the address spaces of the client and the server processes. Quick LPC uses two interesting fea-
tures that are not present in the other types of LPC. Here, the server creates a thread for every 
client. Each thread is totally dedicated to requests made by the respective client. The second 
feature is the use of event-pair objects to synchronize the client and server threads. Each event-
pair object consists of two event objects: the server thread always waits on one event object, 
and the client thread waits on the other one. The message-passing mechanism proceeds as 
follows: The client thread submits a message in the section object; it then itself waits on its 
own respective event object and signals the corresponding event object of the pair on which 
the server thread is waiting. The server thread similarly waits on one event object and signals 
the corresponding event object. To facilitate error-free message passing, the kernel provides a 
function that ensures atomicity while signaling on one event object of the pair and waiting on 
the other event object of the same pair. 

4.18.9.3 UNIX System 
Numerous mechanisms are provided by UNIX in handling interprocess communication and syn-
chronization problems. Some of the most important are: 

• Semaphores 
• Signals 
• Messages 
• Pipes 
• Sockets 
• Shared memory 

While semaphores and signals are used only to realize synchronization between processes, the oth-
ers, such as messages, pipes, sockets, and shared memory, provide an effective means of commu-
nicating data across processes (interprocess communication) in conjunction with synchronization. 

For more details about this topic, with a description of each of the tools and supporting fgures, 
see the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238


Processor Management 193  

 

 

 

                                                                   
 

               

               

 

 

 
 
 
 
 
 
 
 
 

4.19 DEADLOCK AND STARVATION 

Concurrent execution of cooperating or competing processes in multitasking or multi–user environ-
ment always yield high overall resource utilization. Moreover, when these concurrent processes 
indulge parallel operations of many input/output devices, it further give rise to signifcant improve-
ment in system performance. That is why, while all–out attempts have been thus made to implement 
such concurrency, it on the other hand, plague all these efforts, thereby creating a fertile ground 
for two major problems; namely, deadlock and starvation, which are mostly fatal in detrimental to 
overall system performance. 

Deadlock is defned as the permanent blocking of a set of processes that either compete for system 
resources or cooperate with each other via communication. A deadlock, or the more striking name 
“deadly embrace”, as described by Dijkstra (1968), is actually a situation when a group of processes 
are permanently blocked as a result of each process having acquired at least one resource while 
making a request on another. This request can never be satisfed because the requested resource 
is being held by another process that is blocked, waiting for the resource that the frst process is 
holding, thus making it impossible for any of the processes to proceed. Unlike other problems in 
the management of concurrent processes, there is no effcient solution considered a general one. 
Figure 4.28 illustrates a situation of deadlock among three processes on three resources that might 
put the system in the state as shown while being executed in the following manner: 

Process  1 Process  2 Process  3 
-------------------------- -------------------------- --------------------------

       ………..                                    ………..                              ………..
 request ( resource 1 ) ;  request ( resource 2 ) ;  request ( resource 3 ) ;
  /* Holding  res. 1  */  /* Holding  res. 2  */  /* Holding  res. 3  */

         ………..                                   ………..                               ……….. 
request ( resource 2 ) ; request ( resource 3 ) ; request ( resource 1 ) ; 

FIGURE 4.28 A schematic view of a situation of three deadlocked processes with three available resources. 

Process 1 acquires resource 1 and is requesting resource 2; Process 2 is holding resource 2 and 
is requesting resource 3; Process 3 acquires resource 3 and is requesting resource 1. None of the 
processes can proceed because all are waiting for release of a resource held by another process. As 
a result, the three processes are deadlocked; none of the processes can complete its execution and 
release the resource that it owns, nor they can be awakened, even though other unaffected processes 
in the system might continue. The number of processes and the number and kind of resources pos-
sessed and requested in a deadlocked situation are not important. 

This example illustrates the general characteristics of deadlock. If these three processes can run 
serially (batch-wise) in any arbitrary order, they would then merrily complete their run without any 
deadlock. Deadlock thus results primarily due to concurrent execution of processes with uncontrolled 
granting of system resources (physical devices) to requesting processes. However, deadlocks can also 
occur as a result of competition over any kind of shared software resources, such as fles, global data, 
and buffer pools. In a database system, for example, a program may have to normally lock several 
records it is using to avoid a race condition. If process X locks record R1 and process Y locks record 
R2, and then each process tries to lock the other one’s record in order to gain access to it, deadlock is 
inevitable. Similarly, deadlocks can also result from execution of nested monitor calls. All these things 
together imply that deadlocks can occur on hardware resources as well as also on software resources. 

Even a single process can sometimes enter a deadlock situation. Consider a situation when a pro-
cess issues an I/O command and is suspended awaiting its completion (result) and then is swapped 



 

 

 
 

 
 
 

 

 

194 Operating Systems 

out for some reason prior to the beginning of the I/O operation. The process is blocked waiting on 
the I/O event, and the I/O operation is blocked waiting for the process to be swapped in. The process 
thus goes into a deadlock. One possible way to avoid this deadlock is that the user memory involved 
in the I/O operation must be locked in main memory immediately before the I/O request is issued, 
even though the I/O operation may not be executed at that very moment but is placed in a queue for 
some time until the requested device is available. 

Deadlock is actually a global condition rather than a local one. If a program is analyzed whose 
process involves a deadlock, no discernible error as such can be noticed. The problem thus lies not 
in any single process but in the collective action of the group of processes. An individual program 
thus generally cannot detect a deadlock, since it becomes blocked and unable to use the processor to 
do any work. Deadlock detection must be thus handled by the operating system. 

4.19.1 RESOURCES: DIFFERENT TYPES 

Granting exclusive accesses to either hardware objects, such as devices and memory pages, or to 
software objects, such as databases, fles, global data, and buffer pools, are the main reasons for 
deadlocks to occur. These objects are commonly referred to as resources. A computer system is 
normally equipped with many different types of resources, but sets of a particular type of identi-
cal resource, such as three disk drives, is referred to as a resource class. Similarly, all identical 
tape drives available in a computer system are therefore considered in the same class. However, 
resources in general attached to a computer system whose allocation may cause deadlock to occur 
can be broadly classifed into two distinct classes: reusable and consumable resources. Both these 
classes of resources are again operationally either preemptible or nonpreemptible. 

A resource is said to be preemptable if it can be taken away from the process that owns it with-
out injuring the process or the resource. A disk drive is a preemptable resource. A nonpreemptible 
resource is one that cannot be taken away from the current owner without causing ill effects or 
even causing the computation to fail. A printer is a nonpreemptible resource, since taking the 
printer away from a process and giving it to another process will result in interspersing the out-
put. Similarly, the process block created in the kernel for an existing process is neither shared nor 
preempted. 

Reusable resources: A serially reusable resource, Rk, for deadlock analysis has either one or a 
fnite number of identical units and is characterized as one that can be safely used by only one pro-
cess at a time. Such a resource is normally granted to a requesting process whenever available and is 
not depleted by that use. When this resource is released later by its temporary owner, it can be allo-
cated to another requestor, if there is any. Examples of reusable resources include shared hardware 
and software resources, such as processors, main memory, secondary memory, I/O devices, I/O 
channels, fles, databases, global data structures, and semaphores. A computer system may include 
reusable resources of different types, and each type may have a single or fnite multiple number as 
well as a single type of resource having one or a fnite multiple number. However, while systems 
containing only serially reusable resources and when they are already granted to and also they are 
offered to comply the requests issued by the deserving processes; all these together then consti-
tute a family of resource–process graph models (discussed in a later section, “Deadlock Modeling: 
Graphical Representation”) that can be used to defne and handle deadlocks. 

Generally, all the reusable resources are granted to the processes on their specifc requests 
for a fnite time and are relinquished unless deadlocked. All other issues in relation to holding of 
resources for an unlimited period other than the deadlock condition, such as hanging of the system 
due to hardware/software failure or program execution in infnite loops due to malfunctioning of a 
program, are assumed here to be properly taken care of by the operating system, and hence are kept 
set aside in this context for the consideration of only those issues that are solely related to deadlocks. 

Consumable resources: These resources, by defnition, signifcantly differ from serially reus-
able resources in that a process may request and acquire units of consumable resources but will 



Processor Management 195  

 
 

 
 
 
 
 
 
 

 

   

 
 
 
 
 
 
 
 
 

   

    

never release them. Conversely, a process can release units of consumable resources without ever 
acquiring them. More specifcally, a consumable resource is characterized as one that can be 
created (produced) and destroyed (consumed) by active processes. Common examples of consum-
able resources are messages, signals, interrupts, and contents of I/O buffers. In fact, there is as 
such no limit on the number of such resources of a particular type in a system, and that can even 
vary with time. For example, an unblocked producing process may create any number of such 
resources, as happens in the producer/consumer problem with an unbounded buffer. When such a 
resource is acquired by an active process, the resource ceases to exist. Since such resources may 
have an unbounded number of units, and moreover, the allocated units are not released, the model 
for analyzing consumable resources signifcantly differs from that of serially reusable resources. 
These consumable resources, however, can sometimes also cause deadlocks to occur. 

For more details and fgures about this topic, see the Support Material at www.routledge.com/ 
9781032467238. 

4.19.2 GENERAL RESOURCE SYSTEMS 

Since systems, in general, consist of a combination of both reusable and consumable resources, dead-
lock handling mechanisms should then be derived taking both these types of resources into account. 
The formal defnition of a general resource graph for deadlock handling, however, does not consider 
the resources specifcally as the union of reusable and consumable types. Hence, the general resource 
graph would then be redefned and would include a combination of the different conditions that are 
separately applicable to both reusable resources and consumable resources. The deadlock handling 
mechanism would then conduct analysis by using reusable resource graph reductions on all reusable 
resources and consumable resource graph reductions on all consumable resources. Thus, in the quest 
for a deadlock-free state, the reusable resources must be completely isolated by reductions. However, 
in the case of a consumable resource graph, there must be at least a specifc sequence in which each 
process can be shown not to be deadlocked on any consumable resource. 

4.19.3 DEADLOCKS AND RESOURCES 

Deadlocks, in general, occur with nonpreemptible resources. For example, if the use of a fle is 
preempted, the process cannot assume that it can get the fle to use again with the same state as 
before. The process would then be injured and most likely should just quit. Even worse, the process 
may have left the fle in an inconsistent state. For example, the fle may represent a load image that 
the preempted process was in the middle of linking. Some links are completed, and others are not. 
In this case, preemption injures the resource, and it might never again be usable. The incomplete 
linked image cannot be loaded, nor can the linking be fnished. However, preemptable resources 
involved in potential deadlocks can normally be resolved by simply reallocating such resources 
from one process to another. Our focus in relation to deadlock issues is thus primarily concerned 
with nonpreemptible resources. 

While requesting a resource, different systems, however, have different forms. In fact, the exact 
nature of requesting a resource is mostly system dependent, and it is mainly carried out by using 
system calls. When a process requests a resource, if it is available, it is then granted and allocated; 
the resource is afterwards used by the process, and fnally, the resource is released. But if the 
resource is not available, it is assumed that the requesting process is then simply put to sleep. 

For more details about this topic, see the Support Material at www.routledge.com/9781032467238. 

4.19.4 THE CONDITIONS FOR DEADLOCKS 

Coffman et al. (1971) showed that four conditions must be present for a deadlock to occur. However, 
the frst three conditions are, in fact, related to policy decisions, but the fourth condition is 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

  

  

  

   

196 Operating Systems 

fundamentally different from the other three. In truth, the fourth condition causes a situation that 
might occur depending on the sequencing of requests and releases of resources by the involved 
processes. 

1. Mutual exclusion condition: Each resource is either currently assigned to exactly one pro-
cess only or is available. 

2. Hold-and-wait condition: Process currently holding allocated resources granted earlier 
can request new resources and await assignments of those. 

3. No preemption condition: Resources previously granted cannot be forcibly taken away 
from a process holding it. They must be released by the respective process that holds them. 

4. Circular wait condition: There must exist a close chain of two or more processes, such that 
each process holds at least one resource requested by the next process in the chain. 

All four conditions must be simultaneously present for a deadlock to occur. If any one of them is 
absent, no deadlock is possible. Thus, one way to negotiate deadlocks is to ensure that at every 
point in time, at least one of the four conditions responsible for the occurrence of deadlocks is to be 
prevented by design. 

The frst three conditions are merely policy decisions for error-free execution of concurrent pro-
cesses to realize enhanced performance and hence cannot be compromised. On the other hand, these 
three conditions are the primarily ones that can invite a deadlock to exist. Although these three con-
ditions are necessary conditions for deadlock to occur, deadlock may not exist with only these three 
conditions. The fourth condition, which is a consequence of the frst three conditions that might 
occur depending on the sequencing of requests and releases of resources by the involved processes, 
is actually a suffcient condition for a deadlock to exist and hence is considered a defnition of dead-
lock. This states that, given that the frst three conditions exist, a sequence of events may happen in 
such a way that leads to an unresolvable circular–wait condition, resulting ultimately in a deadlock. 

4.19.5 DEADLOCK MODELING: GRAPHICAL REPRESENTATION 

The four conditions that are necessary and suffcient for a deadlock to occur can be graphically 
represented using directed graphs (Holt, 1972). Since deadlock is entangled with processes and allo-
cated/requested resources, two kinds of nodes are used: processes, shown as squares, and resources, 
shown as circles. An arc (↑) from a resource node to a process node indicates that the resource is 
currently held by that process. In Figure 4.29(a), resource R1 is currently assigned to process P1. 
Conversely, an arc (↓) from a process to a resource means that the process is currently blocked wait-
ing for that resource. In Figure 4.32(b), process P2 is waiting for resource R2. Figure 4.32(c) shows 
that a deadlock occurs. Process A is waiting for resource X, which is currently held by process B. 
Process B is not ready to release resource X because process B is waiting for resource Y, which is 
held by process A. Both processes keep waiting and will wait forever. The formation of a cycle with 
processes and resources in the graph shows that there is a deadlock involving the processes and 
resources present in the cycle. In this example, it is A → X → B → Y → A. 

With many processes and resources attached to a system, a resource graph can then be created in 
the form of the representative resource graphs shown in Figure 4.29. This graph is simply a tool that 
enables one to foresee if a given resource request/release sequence leads to a deadlock. The system 
will then inspect step by step each and every occurrence of resource requests and releases, and after 
checking every step, the graph is to be re-examined to see whether it contains any cycles (circuits). 
If so, deadlock is inevitable, and the operating system could then simply suspend the requesting 
process without granting the request in order to prevent or even better to avoid the impending dead-
lock. But if the graph contains no cycles, there is no possibility of a deadlock. The resource graph 
can be generalized to include multiple resources of the same type, such as seven tape drives, fve 
disk drives, and so on. 



Processor Management 197

A B

Y

(c)

X
P2

R2

(b)

P1

R1

(a

(a) Holding a resource.
(b) Requesting a resource.
(c) Deadlock occurs.

)

FIGURE 4.29 Graphical representation of resource allocation graphs in modeling deadlock.

In general, four strategies are employed for dealing with deadlocks.

 1. Don’t pay any attention to deadlock: simply ignore it altogether.
 2. Deadlock detection and subsequent recovery.
 3. Deadlock prevention by way of structurally abolishing one of the four conditions which are 

responsible for deadlock to happen, as already explained.
 4. Dynamic avoidance by legitimate allocation of resources.

4.19.5.1 The Ostrich Approach
The simplest algorithm is the ostrich approach: put your head in the sand and assume there is no 
problem at all. Thus, rather than facing the problem, this approach is an attempt to evade the prob-
lem. As the number of users is increasing day by day, and as computer-related interactive activities 
are being more and more exposed, any sort of problem that may jeopardize the system cannot be 
ignored. But system engineers, in particular, though they are quite aware that this problem may 
crash the entire system, they usually do not assign any importance to this problem and hence are not 
ready to give it any special attention nor willing to assume any additional overhead in order to elimi-
nate deadlocks for the sake of convenience or performance improvement, since they have observed 
that crashing of the system happens more frequently due to the failure of operating system, hard-
ware defects, or even sometimes due to errors in system software and utilities. On the other hand, 
scientists and particularly designers of mainframe operating systems are very keen to eliminate or 
even prevent this unacceptable problem at any cost.

In order to avoid deadlock, most mainframe operating systems usually take all possible measures 
right at the beginning when a job is just submitted by way of decisive allocation/deallocation of 
resources. UNIX, on other hand, totally ignores deadlocks, even it suffers from deadlocks that may 
remain undetected, and lets them be automatically resolved individually. In this system, the total 
number of permissible processes is determined by the number of available slots in the process table. 
Since the process table size is finite for a finite number of resources, if the table is full at any point 
in time and a new process still tries to enter, the operating system then, at best, would reasonably 
keep the process waiting, setting it aside until its entry is justified or it can tell it to retry. Similarly, 
the maximum number of files to be opened at any instant is also restricted by the size of the i-node 
table. In fact, UNIX users would prefer to have occasional deadlocks than to abide by several incon-
venient restrictions on processes in order to eliminate (prevent) deadlocks.

If the deadlock issue can be resolved without cost, there is no point to any further discussion. 
But the problem is that the price is reasonably high in terms of a large penalty in performance for 



 

     

 

 
 

 
 

 

 
 
 

 

 

 

 
 

  

198 Operating Systems 

the sake of correctness and also several unusual restrictions on processes for the purpose of conve-
nience. Thus, there exists an unpleasant trade-off between correctness and convenience. It is obvi-
ously a matter of concern about which is more important and to whom. Under such conditions, it is 
diffcult to arrive at any well-acceptable judicious general solution. 

4.19.6 DEADLOCK DETECTION AND SUBSEQUENT RECOVERY 

In general, processes freely request resources and are then granted them whenever possible with no limit 
to resource access or restrictions on process actions. This liberal allocation of resources with no particu-
lar intervention may eventually invite deadlocks. That is why, checking for deadlocks are occasionally 
carried out either for the purpose of reclaiming resources from the already deadlocked processes, if there 
is any, or at the time of granting a resource whenever it is requested, or initiating a periodical examina-
tion to ascertain whether a deadlock already exists, and sometimes also performing a search for deadlock 
whenever certain unusual events occur. Ironically, deadlock enters sneakily with no warning of any 
unexpected event, and thus deadlock detection algorithms cannot automatically be started. 

One of the vital aspects of this approach is to decide how frequently the detection algorithm should 
be run. If it is executed too often, it merely wastes system resources and performs nonproductive activ-
ities. On the other hand, if it is not run frequently enough, runtime overhead for deadlock detection can 
be avoided but at the expense of leaving deadlocks undetected for longer. Consequently, it can result 
in lower resource utilization, since deadlocked processes and allied system resources already granted 
will be unnecessarily tied up in a nonproductive manner until the system is restored to normalcy. 

A deadlock detection strategy, however, runs in two phases. The frst one is the detection phase 
that reveals the existence of the problem, during which the system uses appropriate algorithms in 
order to check if a deadlock currently exists. If it is detected, the system then goes to the second 
phase: recovery from deadlock, that is, to break the deadlock to reclaim resources held by the 
blocked processes and thereby release the affected processes to continue normally. This can be 
accomplished by employing suitable mechanisms. Sometimes removal of a deadlock using this 
strategy is determined manually; that is, the console operator manually invokes the detection algo-
rithm when the system appears to be inactive for a considerable period. 

Detection phase: It has already been explained that the existence of a cycle with no non-cycle 
outgoing path from any of the involved nodes in a general resource graph (as described in item 4 
of Section 4.19.4 and shown in Section 4.19.5) constituting even with multiple resources of same 
type (against single resource of each type, such as one printer, one tape drive, etc.) is a suffcient 
condition for deadlocks to occur. Any process involved in this cycle is deadlocked. Thus, the exis-
tence of deadlocks can be determined by using any formal algorithm that detects cycles (circuits) 
in a directed graph (see “Graph Theory”). The algorithm inspects the graph and terminates either 
when a cycle is detected or no such cycle exists. The ability of the chosen algorithm is particularly 
important because it facilitates subsequent deadlock recovery after detection. 

A simple algorithm with a fgure that detects deadlock is given on the Support Material at www. 
routledge.com/9781032467238. 

4.19.6.1 Recovery 
Second phase: Once the deadlock detection algorithm has succeeded and detected a deadlock, a strat-
egy is needed for recovery from deadlock to restore the system to normalcy. The frst step in deadlock 
recovery is thus to identify the deadlocked processes. The next step is to break the deadlock by the 
following possible approaches. Incidentally, none of them are, in particular, observed to be promising. 

1. Killing all deadlocked processes 

One of the simplest methods to recover the system from deadlock is to kill all the deadlocked 
processes to free the system. This may be one of the most common solutions but not the most 
acceptable for many reasons, yet it is still taken into consideration in operating system design. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 199  

  

 
 
 
 
 
 
 
 

 
 

 
 

  

  

 
 
 
 
 

2. Rollback 

Since the occurrence of deadlocks is most likely, system designers often keep the provision of 
maintaining previously defned separate periodical checkpoints for all the processes residing in the 
system. Checkpointing a process means that everything with regard to its runtime state, including 
its memory image, state of the resources being currently held by the process, and similar other 
important aspects, is recorded in a special fle so that it can be restarted later using this information. 
As the execution of a process progresses, an entire collection of checkpoint fles, each generated at 
different times, is sequentially accumulated. 

When a deadlock is detected, the frst step is to identify which resources are responsible for 
the deadlock. To recover the system, a process that holds one such resource is rolled back to an 
earlier moment when it did not have the resource, and then the process will be preempted so that 
the resources owned by the current process can now be withdrawn and fnally will be assigned 
to one of the deadlocked processes that needs it. Later, the rolled-back process can once again 
be restarted from the specifed point at a convenient time. The risk in this approach is that the 
original deadlock will recur because if the restarted process tries to acquire the resource once 
again, it will have to wait until the resource becomes available. This strategy thus requires that 
rollback and restart mechanisms be built into the system to facilitate high reliability and/or avail-
ability. In general, both rolling back and subsequent restarting may be diffcult, if not impossible, 
for processes that cannot be safely repeated. This is true for processes that have made irreversible 
changes to resources acquired prior to deadlock. Common applications include reading and writ-
ing messages to the network, updating fles while journalizing in transaction-processing systems 
(e.g. examination processing, fnancial accounting, and reservation systems), and checkpointing in 
real-time systems. 

3. Preemption 

At a certain point in time, it may be possible to select a process to suspend for the purpose of 
temporarily taking a needed resource from this suspended process and giving it to another process 
in order to break the existing deadlock. The selection criterion should be cost-effective, and re-
invocation of the detection algorithm is then required after each preemption to inspect whether the 
deadlock breaks. Under certain environments, particularly in batch processing operating systems 
running on mainframes, this practice is very common, not to break any deadlocks but to expedite 
the execution of a particular process by way of offering it unrestricted resource access. 

Taking a resource in this manner away from a process and giving it to another one for use, then 
returning it again to the former process may be a tricky at best but highly dependent on the nature 
of the process and the type of resource that can be withdrawn and then easily given back. 

4. Killing Processes 

The most drastic and possibly simplest approach to break a deadlock is to kill one or more pro-
cesses successively until the deadlock no longer exists. The order in which processes are selected 
for killing should be on the basis of certain predefned criteria involving minimum loss. After each 
killing operation, the detection algorithm must be re-invoked to inspect whether the deadlock still 
exists. Different selection criteria can be formulated in this regard while choosing a process to kill. 
The process to be selected as victim should have: 

• The least amount of processor time used so far 
• The lowest number of lines of output generated so far 
• The least total resources allocated so far 
• The most estimated time remaining so far 
• The lowest priority 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

  

  

200 Operating Systems 

Some of these quantities can be directly measured; others cannot. It is also diffcult to assess esti-
mated time remaining. In spite of having limitations, these parameters are still taken into account, at 
least as a guiding factor while selecting a process as a victim in order to break the existing deadlock. 

A brief description of this approach is given on the Support Material at www.routledge.com/ 
9781032467238. 

4.19.6.2 Merits and Drawbacks 
Deadlock detection and recovery, as a whole, provide a higher potential degree of concurrency than the 
other two commonly used approaches, deadlock prevention and deadlock avoidance, to be discussed in 
the following sections. While the runtime overhead caused by the deadlock detection mechanism can 
routinely be made into a tunable system parameter, the costly part of this approach is really the overhead 
of deadlock recovery once deadlocks are detected. This is mostly due to wastage of system resources 
already consumed by the processes that are possibly to be restarted or rolled back, if permitted, to recover 
the system to normalcy. In general, deadlock recovery is lucrative in systems with a low probability of 
deadlocks. In systems with high loads, unrestricted granting of resource requests tends to indulge in over 
commitment of resources, which can eventually cause deadlocks to occur very frequently. At the other 
end, systems with no provision for deadlock detection indirectly allow deadlocks to occur directly and 
also very frequently, and as the system load gradually increases, this results in a proportionate increase 
in wasted system resources, particularly in the situations when they are most needed. 

4.19.7 DEADLOCK PREVENTION 

The basic philosophy in defning the strategy to prevent deadlock is to design a system in such a 
way that the possibility of deadlocks occurring can be eliminated beforehand. Methods to prevent 
deadlock, however, fall into two distinct classes: One consists of indirect methods, in which each 
method will prevent one of the three necessary conditions that cause deadlock to occur, as listed 
earlier (conditions 1 through 3 in Section 4.19.4). The other class consists of a direct method that 
will prevent the occurrence of a circular wait (condition 4). If we can ensure that at least one of these 
conditions is prevented, then deadlocks will be structurally impossible (Havender, 1968). Let us 
now discuss relevant techniques so that each of these four conditions can be ultimately prevented. 

1. Mutual Exclusion Condition 

The frst of the four conditions (Section 4.19.4), mutual exclusion, as already mentioned, is usu-
ally diffcult to dispense with and cannot be disallowed. Simultaneous access by many processes 
to a particular resource is usually provided for the sake of performance improvement that requires 
mutual exclusion; hence mutual exclusion must be incorporated and supported by the operating sys-
tem, even though it may invite deadlock. Some resources, such as shared or distributed databases, 
may at any instant allow multiple accesses for reads but only one exclusive access for writes. In this 
case, deadlock can occur if more than one process seeks write permission. 

However, some types of device, such as printers, cannot be given simultaneously to many pro-
cesses without implementing mutual exclusion. By spooling printer output (thereby avoiding imple-
mentation of mutual exclusion), several processes can be allowed to generate output at the same 
time. In this approach, the only process that actually requests the physical printer is the printer 
daemon. Since this daemon never seeks any other resources, deadlock, at least for the printer, can be 
eliminated. But when competition for disk space for the purpose of spooling happens, this, in turn, 
may invite deadlock and cannot be prevented. 

Unfortunately, not all devices have the provision for being spooled. That is why the strategy 
being religiously followed in this regard is: avoid assigning any resource when it is not absolutely 
necessary, and try to ensure that as few processes as possible may claim the resource, which can be 
easily enforced initially at the job scheduler level at the time of selecting a job for execution. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Processor Management 201  

  

 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 

 
 

 

2. Hold-and-Wait Condition 

The second of the four conditions (Section 4.19.4), hold-and-wait, appears slightly more 
attractive. This condition can be eliminated by enforcing a rule that a process is to release all 
resources held by it whenever it requests a resource that is not currently available; hence the 
process, in turn, is forced to wait. In other words, deadlocks are prevented because waiting 
processes are not holding any resources unnecessarily. There are two possible approaches to 
implement this strategy. 

a. Require all processes to request all their needed resources prior to starting execution. 
If everything is available, the process will then be allocated whatever it requires and 
can then run to completion. If one or more resources are not available (busy), nothing 
will then be allocated, and the process will be left waiting. This approach is, however, 
ineffcient, since a process may be held up for a considerable period, waiting for all its 
resource requests to be fulflled, when, in fact, it could have started its execution with 
only some of its requested resources. 

Apart from that, a real diffculty with this approach is that many processes cannot predict how 
many resources they will need until execution is started. Although sometimes exerting additional 
effort, estimation of resource requirements of processes is possible, but such estimation with regard 
to preclaiming resources usually tends to be conservative and always inclined to overestimation. In 
fact, preclaiming necessarily includes all those resources that could potentially be needed by a pro-
cess at runtime, as opposed to those actually used. This is particularly observed in so-called data-
dominant programs in which the actual requirements of resources are only determined dynamically 
at runtime. In general, whenever resource requirements are to be declared in advance, the overesti-
mation problem cannot be avoided. 

This estimation task appears somewhat easier for batch jobs running on mainframe systems 
where the user has to frst submit a list (JCL) of all the resources that the job needs along with 
each job. The system then tries to acquire all resources immediately, and if available, allocates 
them to the job until the job completes its execution; otherwise, the job is placed in the waiting 
queue until all the requested resources are available. While this method adds a slight burden on 
the programmer and causes considerable wastage of costly resources, it, in turn, does prevent 
deadlocks. 

Another problem with this approach is that the resources will not be used optimally because 
some of those resources may actually be used only during a portion of the execution of the related 
process, and not all the resources will be used all the time during the tenure of the execution. As a 
result, some of the resources requested in advance will be tied up unnecessarily with the process 
and remain idle a long time until the process completes, but only for the sake of deadlock preven-
tion; they cannot be allocated to other requesting processes. This will eventually lead to poor 
resource utilization and correspondingly reduce the level of possible concurrency available in the 
system. 

b. The process requests resources incrementally during the course of execution but should 
release all the resources already being held at the time of encountering any denial due to 
unavailability of any requested resources. The major drawback of this approach is that 
some resources, by nature, cannot be withdrawn safely and given back easily at a later 
time. For example, when a fle is under process, it cannot be stopped, because it may 
corrupt the system if not carried to completion. In fact, withdrawal of a resource and 
later its resumption are only workable if this does not damage the integrity of the system 
and moreover if the overhead for this act due to context/process switch is found to be 
within the affordable limit. 



 

  

  

  
  
  
  
  

 

202 Operating Systems 

3. No-Preemption Condition 

The third condition (Section 4.19.4), the no-preemption condition, can obviously be prevented by 
simply allowing preemption. This means that the system is to be given the power to revoke at any 
point in time the ownership of certain resources which are tied up with blocked processes. The no-
preemption condition can be prevented in several ways. One such way is that if a process holding 
resources is denied a further request, the process must relinquish all its original resources and, if 
necessary, request them again, together with the additional new resources already allocated. 

However, preemption of resources, as already discussed, is sometimes even more diffcult than 
the usual approach of voluntary release and resumption of resources. Moreover, preemption is pos-
sible only for certain types of resources, such as CPU and main memory, since the CPU can be 
regularly preempted by way of routinely saving its states and status with the help of process/context 
switch operations, and memory can be preempted by swapping its pages to secondary storage. 
On the other hand, some types of resources, such as partially updated databases, cannot be pre-
empted without damaging the system. Forcibly taking these resources away may be tricky at best 
and impossible at worst. Therefore, preemption is possible only for certain types of resources, and 
that too if and only if deadlock prevention is felt to be more important than the cost to be incurred 
for the process switch operation associated with preemption. Since this approach cannot be appli-
cable for all types of resources in general, it is therefore considered less promising and hence is 
dropped from favor. 

4. Circular Wait 

Attacking the last one, the fourth condition (Section 4.19.4), the circular wait, can be eliminated 
in several ways: One simple way is to impose a rule saying that a process is allowed only to have a 
single resource at any instant. If it needs a second one, it must release the frst one. This restriction, 
however, can create hindrance, and that is why it is not always acceptable. 

Another way to prevent a circular wait is by linear ordering of different types of system resources 
by way of numbering them globally: 

1. Printer 
2. Plotter 
3. Tape drive 
4. CD-ROM drive 
5. Disk drive, and so on 

It is observed that the system resources are divided into different classes Rk, where k = 1, 2, . . ., n. 
Deadlock can now be prevented by imposing a rule which says: processes can request and acquire 
their resources whenever they want to, but all requests must be made in strictly increasing order 
of the specifed system resource classes. For example, a process may request frst a printer and 
then a disk drive, but it cannot request frst a tape drive and then a plotter. Moreover, acquiring 
all resources within a given class must be made with a single request, and not incrementally. This 
means that once a process acquires a resource belonging to class Rx, it can only request resources 
of class x + 1 or higher. 

With the imposition of this rule, the resource allocation graph can never have cycles. Let us 
examine why this is true, taking two processes, A and B. Assume that a deadlock occurs only if 
A requests resource x and B requests resource y. If x > y, then A is not allowed to request y. If x < 
y, then B is not allowed to request x. Either way, deadlock is not possible, no matter how they are 
interleaved. 

The same logic also holds for multiple processes. At any instant, one of the assigned resources 
will be of the highest class. The process holding that class of resource will never ask for a resource 



Processor Management 203  

 

  

 
 
 
 
 

 
 

 

of same class already assigned (as discussed). It will either fnish or, at worst, request resources of 
higher classes. Eventually, it will fnish and release all its acquired resources. At this point, some 
other process will acquire the resource of the highest class and can also complete its execution. 
In this way, all processes will fnish their execution one after another, and hence there will be no 
deadlock. 

A slight variation of this algorithm can be made by dropping the requirement that resources 
are to be acquired in a strictly increasing order of the specifed system resource classes and also 
requiring that no process request a resource with a class lower than that of the resource it is already 
holding. Now if a process initially requests resources with classes Rx and Rx + 1, and then releases 
both of them during the tenure of execution, it is effectively starting afresh, so there is no reason to 
restrict it from requesting any resource belonging to any class less than x. 

One serious drawback of this approach is that the resources must be acquired strictly in the pre-
scribed order, as opposed to specifc requests when they are actually needed. This may mean that 
some resources are to be acquired well in advance of their actual use in order to obey this rule. This 
adversely affects resource utilization and lowers the degree of concurrency, since unused resources 
already acquired are unavailable for needed allocation to other requesting processes already under 
execution. 

Another practical diffculty faced with this approach is to develop a particular numerical order-
ing of all the resources so that the specifc rule can be imposed to eliminate the deadlock problem. 
In reality, the resources, such as disk spooler space, process table slots, locked database records, 
and similar other abstract resources, together with the number of usual potential resources and their 
different uses, may be so large that no specifc ordering could be effectively possible to work out for 
actual implementation. 

4.19.8 DEADLOCK AVOIDANCE 

The deadlock problem can be resolved using another approach to avoid the situation that may 
cause deadlock to occur. In fact, there exists a fne demarcation line that distinguishes, at least 
in principle, deadlock avoidance from deadlock prevention. Truly speaking, the strategies drawn 
for deadlock avoidance can also be used for deadlock prevention because they ultimately prevent 
deadlock from occurring. Recall that deadlock prevention is realized by limiting how requests 
can be made and requires strict adherence to at least one of the four conditions as already dis-
cussed. Three of them (mutual exclusion, hold-and-wait, no preemption) are policy-related nec-
essary conditions, and preventing one of these three conditions can indirectly prevent deadlock. 
The fourth condition, circular wait, is a suffcient condition, and by preventing this condition, 
deadlock can be prevented directly. In doing so, prevention mechanisms, fnding no other alterna-
tives, admit poor resource utilization and even compromise with degradation in the assumed level 
of concurrency. 

Deadlock avoidance, on the other hand, is a little bit liberal, withdrawing all restrictions as 
imposed by these three necessary conditions, allowing them to freely occur, but in a way taking 
judicious measures so as to ensure that the deadlock situation never occurs. Since avoidance is a 
predictive approach, it relies on information about the resource activity that will be occurring for 
the process. However, the avoidance approach permits more resource utilization and higher concur-
rency in the execution of processes than what prevention usually offers. 

The main strategy of deadlock avoidance lies in the decision which is made dynamically at the 
time of granting resource requests: grant only those requests for available resources by letting the 
resource manager decide whether granting a particular request is safe. If such granting of resources 
does not potentially lead to a situation of deadlock, it is safe, and the resource is then granted to the 
requestor. Otherwise, the requesting process is suspended until it is safe to grant the pending request 
without causing any harm. This is normally carried out when one or more requesting resources 
held by other active processes are released. Avoidance is basically a conservative strategy. It tends 



 

  

  

 

 

 

204 Operating Systems 

to underutilize resources by refusing to allocate them if there is any possibility for a deadlock. 
Consequently, it is rarely favored for use in modern operating systems. 

Deadlock avoidance can be accomplished with the following two approaches: 

1. Process Initiation Refusal: A process should not be started if its claims might lead to a 
deadlock. Deadlock avoidance requires all processes to declare (pre-claim) their maxi-
mum resource requirements prior to execution. In fact, when a process is created, it must 
explicitly state its maximum claim: the maximum number of units the process will ever 
request for every resource type. The resource manager can honor the request if the stated 
resource requirements do not go beyond the total capacity of the system or do not exceed 
the total amount of resources that are available at that time, and it then takes the appropri-
ate actions accordingly. 

2. Resource Allocation Refusal: The main algorithms to ensure deadlock avoidance are 
based on the policies to be adopted while allocating resources in an incremental way to 
requesting processes. Once the execution of a process begins, it then starts requesting its 
resources in an incremental manner as and when needed, up to the maximum declared 
limit. The resource manager keeps track of the number of allocated and the number of 
available resources of each type, in addition to keeping a record of the remaining number 
of resources already declared but not yet requested by each process. If a process requests 
a resource which is temporarily unavailable, the process is then placed in waiting (sus-
pended). But if the requested resource is available for allocation, the resource manager 
examines whether granting the request can lead to a deadlock by checking whether each 
of the already-active processes could complete, in case if all such processes exercise all 
of their remaining options by acquiring other resources that they are entitled to by virtue 
of the remaining claims. If so, the resource is allocated to the requesting process, thereby 
ensuring that the system will not be deadlocked. 

At any instant, a process may have no or more resources allocated to it. The state of the system is 
simply defned as the current allocation of resources to all already-active processes. Thus, the state 
of a system consists of two vectors: the total number of resources, and the total number of available 
resources, as well as two matrices, claim and current allocation, as already defned. A state is said 
to be safe if it is not deadlocked and there exists at least one way to satisfy all currently pending 
requests issued by the already-active processes following some specifc order without resulting in 
a deadlock. An unsafe state is, of course, a state that is considered not to be safe. As long as the 
processes tend to use less than their maximum claim, the system is likely (but not guaranteed) to be 
in a safe state. However, if a large number of processes are found to have relatively large resource 
demands (at or very near their maximum claim) almost at the same time, the system resources will 
then be heavily under use, and the probability of the system state being unsafe happens to be higher. 

Safety Evaluation: Attainment of a safe state can possibly be guaranteed if the following strat-
egy is used: when a resource is requested by a process, make the decision while granting the request 
on the basis of whether the difference between the current allocation and the maximum requirement 
of the process can be met with the currently available resources. If so, grant the request, and the 
system will possibly remain in the safe state. Otherwise, refuse granting the request issued by this 
process, and suspend (block) the process until it is safe to grant the request, because such a request, 
if granted, may lead to an unsafe state culminating ultimately in a deadlock. Then exit the operating 
system. 

When a resource is released, update the available data structure to refect the current status of 
state and reconsider pending requests, if any, for that type of resource. 

It is important to note that if a state is unsafe, it does not mean that the system is in a deadlock 
or even indicate that a deadlock is imminent. It simply means that the situation is out of the hands 
of the resource manager, and the fate will be determined solely by future courses of action of the 



Processor Management 205  

 

 
 
 
 
 
 
 
 

 

 
 

 

 

 

   

 

 

processes. Thus, the main difference between a safe state and an unsafe state is that as long as the 
state is safe, it is guaranteed that all processes will be completed, avoiding deadlock, whereas in 
an unsafe state, no such guarantee can be given. That is why a lack of safety does not always imply 
deadlock, but a deadlock implies non-safety as a whole. 

Brief details on this topic with fgures and examples are given on the Support Material at www. 
routledge.com/9781032467238. 

4.19.8.1 Merits and Drawbacks 
Deadlock avoidance has the advantage that it acquires resources in an incremental manner as and 
when needed, up to the maximum declared limit. This eliminates the problem of resources being 
idle due to premature acquisition that leads to poor resource utilization, which is often encountered 
with other deadlock prevention strategies based on process initiation refusal, as already discussed. 
Moreover, it does not require preempting and rolling back processes as exercised in the deadlock 
detection approach, thereby avoiding wastage in resource usage by processes that are either restarted 
or rolled back, apart from incurring a huge system overhead required for such actions. It is also less 
restrictive and provides a comparatively high degree of concurrency compared to deadlock prevention. 

However, it imposes a number of restrictions on its use that are considered as its drawbacks: 

• There must be a fxed number of resources to allocate and a fxed number of active pro-
cesses in the system. 

• The maximum resource requirement for each process must be declared in advance. 
• Claiming of resources in advance indirectly infuences and adversely affects the degree of 

concurrency in systems. 
• The resource manager has to always perceive a greater number of system states as unsafe 

that eventually keep many processes waiting even when the requested resources are avail-
able and able to be allocated. 

• Requirement of additional runtime storage space to detect the safety of the system states 
and also the associated overhead in execution time for such detection. 

• The active processes must be independent; that is, the order in which they execute must be 
free from encumbrance of any synchronization requirement. 

4.19.9 THE BANKER’S ALGORITHM 

A scheduling algorithm for allocation of resources that gives rise to a classic model of a state used 
to avoid deadlock, proposed frst by Dijkstra (1965), is by far the best-known avoidance strategies. 
In fact, the safety evaluation portion of the entire strategy to realize deadlock avoidance that has 
just been discussed is nothing but the banker’s algorithm. Dijkstra used this name because of the 
analogy of this problem to one that occurs in banking, when customers (processes) wish to bor-
row money (resources) following lending policies in terms of a line of credit (maximum claim for 
resources) declared by the banker (operating system). 

The ultimate objective of this algorithm is to determine the safety of a state, that is, to fnd out 
whether some ordering of resource acquisitions exists that leads to completion of all processes. The 
time complexity of this algorithm is proportional to p2 × r, where p is the number of active processes 
and r is the number of resources present in the system. More effcient algorithms, however, are 
found when the system has only one instance of each type of resource, or only a single type of many 
resources is present in the system. 

4.19.9.1 Multiple Resources of Different Types 
The banker’s algorithm can be generalized to handle multiple resources of different types. Let there 
be a set of n processes P, say P = (P1, P2, P3, P4, P5), using a set of m resources R, say R = (R1, R2, 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 

   
 

 

 

 

   

 

206 Operating Systems 

R3, R4). The nature of the current system state Sk is determined by the pattern of resources already 
allocated to processes, as shown in Figure 4.30(b) as an example. At any instant, the system state 
can be deduced by enumerating the number of units of resource type held by each process. Let a 
vector E be the total number of resources in existence in the system for each type of resource Rj, as 
shown in Figure 4.30(a). Let Alloc be a table, as shown in Figure 4.30(b), in which row i represents 
process Pi, column j represents Rj, and Alloc (i, j) is the number of units of resource Rj held by the 
process Pi. Let another table Maxc be the maximum claim on resource Rj by process Pi, as shown in 
Figure 4.30(c). Let Need be a table, as shown in Figure 4.30(d), in which row i represents process Pi, 
column j represents Rj, and Need(i, j) is the number of units of resource Rj is needed by the process 
Pi. This table can be generated by computing the element-wise difference of two tables, Maxc(i, j) 
and Alloc(i, j), such as; 

Need (i, j) = Maxc (i, j) — Alloc (i, j) for all, 0 < i ≤ n and 0 < j ≤ m 

The available resource vector Avail for each type of resource Rj is simply the difference between the 
total number of each resource that the system has and what is currently allocated. This is shown in 
Figure 4.30(e) as an example. 

This algorithm determines whether the current allocation of resources is safe by considering 
each process Pi and asking: if this process suddenly requests all resources up to its maximum claim, 
are there suffcient resources to satisfy the request? If there are, then this process could not be dead-
locked in the state. So there is a sequence whereby this process eventually fnishes and returns all 
its resources to the operating system. In this way, if we can determine that every Pi for all i, 0 <i≤ n 
can execute, we declare the state is safe. 

R1 R2 R3 R4 

E= 7 5 3 2 

Total number of each type 
of resource in system. 

(a) 

R1 R2 R3 R4 
P1 3 0 1 0 
P2 0 1 0 0 
P3 1 1 1 0 
P4 1 1 0 1 
P5 0 1 0 1 

ALLOC : (Resource allocated) 
(b) 

R1 R2 R3 R4 

2 1 1 0 

R1 R2 R3 R4 
P1 4 1 1 0 
P2 0 2 1 2 
P3 4 2 1 0 
P4 1 1 1 1 
P5 2 1 1 1 

Maxc : (Maximum claim) 
(c) 

R1 R2 R3 R4 
P1 1 1 0 0 
P2 0 1 1 2 
P3 3 1 0 0 
P4 0 0 1 0 
P5 2 0 1 0 

Avail : (Number of available Need : (Resource still needed) 
resources of each type) (d) 

(e) 

FIGURE 4.30 An analytical example detailing Banker’s algorithm in deadlock avoidance with multiple 
resources. 



Processor Management 207  

 

   

   

  

 

 
 
 
 
 
 
 
 

 

    

 
 

 

Assuming that all the vectors, such as; E and Avail and all the tables such as Alloc, Maxc, and 
Need are present. Then 

1. Find Pi such that Need (i, j) ≤ Avail(j) for each i, 0 < I ≤ n and all j, 0 < j ≤ m. If no such 
Pi exists, then the state is unsafe and the system will eventually enter deadlock, since no 
process can run to completion; halt the algorithm; and exit to the operating system. 

2. Assume the process of the chosen row thus obtained, requests all the resources it needs up 
to its maximum claim (which is certainly possible) and fnishes. Mark the process as termi-
nated, reclaim all the resources it acquired, and add all those resources to the Avail vector. 

3. Repeat steps 1 and 2 until either all processes are marked terminated, in which case the 
initial state was safe, or until a deadlock occurs, in which case the state was unsafe. 

In step 1, if it is found that several processes are eligible to be chosen, it does not matter which one 
will be selected: in any case, either at best, the pool of available resources gets larger due to release 
of resources indicating poor utilization of resources but at the same time enabling many other wait-
ing processes to start and fnish, thereby avoiding deadlock to occur; or at worst, the pool of avail-
able resources remain the same. 

The banker’s algorithm is an excellent approach, at least from a theoretical point of view. In spite of 
having immense importance even today, especially the in academic domain, but in practice, the bank-
er’s algorithm has been neither approved nor accepted as a workable one to implement. One of the main 
reasons is that the basic assumptions on which the algorithms has been derived are not sound enough 
to trust, and hence, has the same drawbacks that all other avoidance strategies, in general, do have. The 
most important one is that processes are rarely aware in advance about their maximum resource needs. 
Moreover, the number of processes is not fxed but varies dynamically as new users frequently enter and 
exit. In addition, resources that were supposed to be available can suddenly go out of reach (disk drives 
not functioning), thereby reducing the total number of available resources. Furthermore, avoidance is 
overly conservative, and there are many more things that actually prevent the algorithm from working; 
hence, in reality, few operating systems, if any, use the banker’s algorithm for deadlock avoidance. 

The Banker’s algorithm used for a single type of resources is discussed on the Support 
Material at www.routledge.com/9781032467238. 

4.19.10 HYBRID STRATEGY: A COMBINED APPROACH 

It has been observed that all the strategies that have been discussed so far for dealing with deadlock 
have their own strengths and drawbacks, but none of these approaches is considered suitable for 
use as an exclusive method to negotiate deadlocks in a complex system. That is why, rather than 
to attempting to employ only one of these strategies to deal with deadlocks in general, it might be 
more effcient to combine different strategies into a single approach which would be able to handle 
different deadlock situations in order to extract maximum effectiveness. This can be accomplished 
by grouping all the system resources into a collection of disjoint classes and then applying the 
most appropriate method of handling deadlocks to resources within each particular class. One such 
approach that uses this strategy could be formulated as follows: 

• Group all system resources into a number of different disjoint resource classes. 
• Apply a resource (linear) ordering strategy, as described earlier in relation to deadlock 

prevention, while attacking circular wait, which can possibly prevent deadlocks between 
resource classes. 

• Within a resource class, use an algorithm that is most suitable for that particular class. 

Grouping of resources can be accomplished based on the principle being followed in the design hier-
archy of a given operating system. Alternatively, this grouping can also be made in accordance with 

http://www.routledge.com/9781032467238


 

 

 

 
 

 

     

208 Operating Systems 

the dominant characteristics of certain types of resources, such as permitting preemption or allow-
ing accurate predictions, and similar others. To describe this technique with an example, consider 
an usual system with the classes of resources as listed in the following, and ordering of this listing 
follows the same order in which these classes of resources are being assigned to a job or process 
during their lifetime, that is, starting from entry to the system until they exit. These resources are: 

• Swapping space: An area of secondary storage (disk) designated for backing up blocks of 
main memory needed for use in swapping processes. 

• Process ( job ) resources: Assignable devices, such as printers and fxed disks with remov-
able media, like disk drives, tapes, CDs, and cartridge disks. 

• Main memory: Assignable on a block basis, such as in pages or segments to processes. 
• Internal resources: Such as I/O channels and slots of the pool of the dynamic memory. 

The ultimate objective of this strategy is frst to prevent deadlock between this four classes of 
resources simply by linear ordering of requests in the order as presented. Next, to prevent deadlock 
within each class, a suitable local deadlock-handling strategy is chosen according to the specifc 
characteristics of its resources. Within each individual resource class, the following strategies, for 
example, may be applied: 

Swapping space: Prevention of deadlocks by means of acquisition of all needed space at 
one time in advance is a possibility, as is found in the hold-and-wait strategy in deadlock 
prevention. This strategy appears reasonable if the maximum storage requirements are 
known, which is often the case. Deadlock avoidance is also possible, but deadlock recovery 
(detection) cannot be achieved, since there is no backup of the swapping space. 

Process (job) resources: Avoidance of deadlocks is often effective in this category because 
it can be expected that processes would declare in advance the resources in this class that 
they may need during runtime. This is customarily done for jobs by means of providing 
job-control statements, which contain all such resource requirements, along with the job 
while it is submitted. Deadlock prevention is also possible by means of resource ordering 
within this class. But detection and recovery are not desirable at all due to the possibility 
of fles that belong to this class of resources having already been modifed by this time. 

Main memory: With the use of swapping, prevention by means of preemption appears the 
most suitable strategy for main memory, because when a process is preempted, it is sim-
ply swapped to secondary memory (disk), thereby freeing the space to resolve deadlock. 
Moreover, this approach facilitates runtime support while handling the situation when 
growth (and shrinking) of memory spaces already allocated to active processes takes 
place. Avoidance is normally not desirable because it leads to increase in runtime overhead 
and tends to underutilize resources. Deadlock detection although is possible but generally 
undesirable due to either an increase in runtime overhead for frequent detection or unused 
memory space held by the deadlocked processes. 

Internal resources: Deadlock avoidance and even deadlock detection are not desirable, since 
resources of this type are frequently requested and released, resulting in frequent changes 
in system state that make the runtime overhead so much high, often beyond the tolerance 
limit. Prevention by means of resource ordering is probably the best choice for this type 
of resource. 

4.19.11 CASE STUDY: DEADLOCK HANDLING IN UNIX 

Most operating systems remain indifferent and simply ignore the possibility of deadlocks involving 
user processes. UNIX is no exception. However, it contains some features that address deadlocks 
involving processes which execute kernel code while servicing interrupts and system calls. The 



Processor Management 209  

 

    

overall approach in this regard is simply based on deadlock prevention through resource ranking (as 
already described in the previous section). The related approach is to lock and unlock (release) the 
data structures in the kernel in a standard manner. However, there are some exceptions to this rule 
inherent to UNIX. Because all kernel functionalities cannot lock the data structures in the standard 
order, deadlocks cannot be totally prevented. We present simplifed views of two arrangements that 
are used to avoid deadlocks. 

The UNIX kernel uses a disk cache (buffer cache) to speedup accesses to frequently used disk 
blocks. This disk cache consists of a pool of buffers in primary memory and a buffer list with a 
hashed data structure to inspect whether a specifc disk block exists in a buffer. The buffer list is 
maintained using the least recently used (LRU) replacement technique in order to facilitate reuse 
of buffers. The normal order of accessing a disk block is to use the buffer list with the hashed data 
structure to locate a disk block; if found, put a lock on the buffer and also put a lock on the respective 
entry in the buffer list thus obtained in order to update the LRU status of the buffer. If the requested 
disk block is not found in the buffer list, it is obvious that the process would then merely want to 
obtain a buffer for loading this requested new block. To achieve this, the process frst puts a lock on 
the buffer list. It would then directly access the buffer list and inspect whether the lock on the frst 
buffer in the list has already been set by some other process. If not, it then sets the lock and uses the 
respective buffer; otherwise it repeats the same course of action on the next entry in the buffer list. 
Deadlocks are possible because of this order of locking the buffer list, and the buffer is different 
from the standard order of setting these locks. 

UNIX uses an innovative approach to avoid deadlocks. The process looking for a free buffer 
uses a technique that enables it to avoid getting blocked on its lock. The technique is to use a special 
operation that attempts to set a lock but returns with a failure condition code if the lock is already 
set. If this happens, the operation is repeated with an attempt to set the lock on the next buffer, and 
so on until it fnds a buffer that it can use. In this way, this approach avoids deadlocks by avoiding 
circular waits. 

Deadlock is possible in another situation, when locks cannot be set in a standard order in the 
fle system function that establishes a link. A link command provides pathnames for a fle and a 
directory which is to contain the link to the fle. This command can be implemented by locking the 
directories containing the fle and the link. However, a standard order cannot be defned for locking 
these directories. Consequently, two processes trying simultaneously to lock the same directories 
may get deadlocked. To avoid the occurrence of such deadlocks, the fle system function does not try 
to acquire both locks at the same time. It frst locks one directory, gets it work done in the desired 
manner, and then releases the lock. It then locks the other directory and does what it wants to do. 
Thus, it requires and acquires only one lock at any time. In this way, this approach prevents dead-
locks because the hold-and-wait condition is not satisfed by these processes. 

4.19.12 DISCUSSIONS: VARIOUS STRATEGIES AND THEIR IMPACTS 

Dynamic sharing of resources is the main reason for deadlock. Deadlocks are especially fatal and 
certainly not acceptable in time-critical environments, such as factory processes or monitoring 
aircraft operations. However, the danger of deadlocks can be mitigated by several considerations. 

First, deadlocks can often be avoided by proper design of the algorithms that share resources. 
For example, different parts of the kernel may share information, like process context blocks that 
require exclusive access, similar to holding a resource during runtime while they modify that infor-
mation. A hierarchical design inside the kernel is often used to make sure that no deadlocks arise 
from using these resources. However, we have already discussed numerous mechanisms for achiev-
ing exclusive access of resources that deal with interprocess communications 

Second, deadlock also causes an unacceptable situation when everyone is infnitely patient. One 
way to come out of this situation may be to modify the mechanism of the service (system) call issued 
for requesting respective resources by including an additional timeout parameter. If the resource 



 

 

 

210 Operating Systems 

manager fails or is not willing to honor the request within the time interval specifed by this param-
eter, it can unblock the calling process and give it a failure indication. The process could then try 
again, try a different request, or even may back out of whatever action it is trying to perform, or it 
can, at best, terminate if it fnds no other way out. 

There exist differences between deadlock prevention and avoidance. Prevention includes any 
method that negates one of the four conditions already explained. Avoidance, on the other hand, 
includes methods like the banker’s algorithm that takes advantage of prior knowledge (such as max-
imum claims). This advance knowledge alerts the system beforehand while navigating the progress 
diagram and still avoids dangerous regions. 

The conservative liberal metaphor helps in rating various policies that we have seen. Liberal 
policies have a greater potential for parallelism and throughput because they allow more fexible 
navigation of the progress diagram, but they have an equal potential for deadlock and starvation. 
The advance-claim algorithm provides a reasonably liberal method that is still conservative enough 
to prevent deadlock. To prevent starvation as well, other conservative steps must be taken, such 
as banning new arrivals or concentrating resources on particular processes. Overly conservative 
methods like one-shot allocation remove all worries about deadlock and starvation but at the cost of 
severe reduction of concurrency, leading to potential degradation in system performance. 

Although we have devoted a considerable amount of attention to the advance-claim algorithm, it 
is mostly interesting from the theoretical end and bears some academic importance but is not prac-
ticable. It can be pointed out that many applications are unable to compute reasonable claims before 
they start working; they can only discover what they will need once they have made some progress. 

Furthermore, resources can suddenly become unavailable if the hardware malfunctions. 
Therefore, most operating systems do not implement the advance-claim algorithm. It is much more 
common to grant resources to processes following the most liberal policy imaginable and accept-
able. If this policy leads to deadlock, the deadlock is detected (either by the resource manager or 
by disgruntled users) and broken by injuring some process(es). Hierarchical allocation has also 
been used successfully, especially within the kernel, to make sure that its modules never become 
deadlocked. 

Our ultimate goal is to achieve the most liberal resource-allocation policy without encounter-
ing any deadlock. Serialization avoids deadlock but is very conservative. Figure 4.31 also shows 
the resource-allocation policies that we have already explained. The one-shot, hierarchical, and 
advance-claim algorithms put increasingly less onerous restrictions on the processes that wish to 
request resources. The advance-claim algorithm also requires a certain amount of prior knowledge 
about the resources required by each process. The more information of this nature we know, the 

FIGURE 4.31 A pictorial representation of the liberal-conservative spectrum in rating various policies relat-
ing to deadlock problem and its solution approaches (Finkel). 



Processor Management 211  

 

closer we can get to our goal. However, the algorithms that make use of such knowledge are increas-
ingly expensive to execute. 

4.19.13 STARVATION 

Deadlock arises from dynamic resource sharing. If resources are not shared, there can never be 
deadlock. Moreover, deadlock results due to overly liberal policies for allocation of resources. 
Starvation is a problem that is closely related to deadlock. In a dynamic system, it is required 
that some policy be formulated to decide which process will get what resource when and for how 
long. While some of these policies are found quite reasonable and also lucrative from the point of 
resource allocation to negotiate deadlock, they sometimes may give rise to a peculiar situation in 
which some processes are continuously postponed and denied the desired service. Even when the 
needed resources are available, a process is still getting blocked. It happens that it might never get 
a chance to run again; we call this danger starvation, and the said process then enters a state of 
starvation, even though the process is not deadlocked. 

Starvation arises from consistently awarding resources to the competitors of a blocked process. 
As long as one competitor has the resources, the blocked process cannot continue. Starvation, in gen-
eral, may result due to overly liberal policies for reassignment of resources once they are returned. 
When resources are released, they can be granted to any process waiting for them in the resource 
wait list (The short-term scheduler most likely should not switch to the waiting processes but should 
normally continue with the releasing processes, in accord with the hysteresis principle.) However, 
not all policies used for granting those resources prevent starvation as being experienced from dif-
ferent real-life situations. Sill, increased conservatism may be one way to prevent this problem. 

A refnement of this policy is to grant resources whenever they are available after being released 
to those processes with low requirements, thereby allowing them to complete rather than allocating 
them to the frst blocked process. With best hope, it can be expected that the processes we favor 
in this way will eventually release enough resources to satisfy the requirement of the frst blocked 
process. More precisely, we might sort the resource wait list by the order in which processes block. 
When resources are freed, we scan this list and grant resources only to processes whose current 
request can be fully satisfed. Unfortunately, this frst-ft policy may insist the frst blocked pro-
cess to eventually go into starvation if a continuous stream of new jobs with smaller requirements 
arrives. 

One way to modify this strategy is to allow partial allocation. As many units of the resource can 
be granted to the frst process in the list as may be done safely; the rest may be allocated (if safe) 
to other later processes in the list. Even this policy fails, because there may be situations in which 
no  resources may safely be granted to the frst blocked process, others may otherwise continue 
even then. 

Another further modifcation could be to order the resource wait list according to some safe 
sequence (if there are several safe sequences, any one will do). Resources are granted, either par-
tially or fully, starting at the head of this list. However, there is no way to guarantee that any par-
ticular process will ever reach the beginning of this list. A process may remain near the end of the 
safe sequence and hence be left in starvation and never be favored with the allocation of resources. 

Starvation detection: The approach to detect starvation can be modeled exactly along the lines 
of deadlock detection. By the time deadlock is detected, it may be too late, but it is never too late to 
fx starvation. Starvation might be signaled by a process remaining on the resource wait list for too 
long, measured in either units of time or units of process completion. 

Once starvation is detected, new processes may be denied resources until starving processes 
have completed. Of course, processes that already have resources must be allowed to get more, since 
they may appear earlier on belonging to the safe sequence. This approach does certainly work, but it 
must be tuned carefully. If starvation detection is too sensitive, new processes are banned too often, 
with the result that there is an overall decrease in throughput. In other words, the policy becomes 



 212 Operating Systems 

too conservative. If detection reveals that it is not sensitive enough, processes, however, can nor-
mally go with starvation for a long time before they are fnally allowed to run. 

Starvation can be avoided by using a frst-come-frst-serve resource allocation policy. With this 
approach, the process waiting the longest units of time gets served next. In due course, any given 
process will eventually become the oldest, and, in turn, gets a chance with the needed resources. 

Starvation control, however, has not been extensively dealt with. Holt (1972) suggested maintain-
ing counters for each blocked process that are periodically incremented. When a counter exceeds 
a critical value, the scheduler has to fnd a safe sequence and fnish jobs in that order. He also sug-
gested partial allocations but a requirement that resources not be granted to jobs with zero holdings. 
The approach of banning new jobs was also introduced and considered. Another approach to handle 
starvation, which allocates resources according to a safe-sequence order, is found in the Boss 2 
operating system for the RC4000 computer. 

Fortunately, starvation is seldom a critical problem in the working of an actual operating system, 
because nonpreemptible, serially reusable resources, such as printers and tape drives, are mostly 
underused, and the existence of such idle periods tends to prevent starvation. 

SUMMARY 

This chapter introduces the details of processes, the characteristics of processes in terms of their 
different states, and their other features in order to realize already-defned functions (described in 
Chapter 2) that are to be performed by the processor (process) management module. The process 
concept, however, has been further refned and gives rise to a new construct of a relatively small 
executable unit known as thread. The reverse trend also has been observed. The concept of a rela-
tively large executable unit, called object consisting of processes and threads has been started to 
evolve, and a new concept of object-oriented design opened a new horizon that ultimately led to the 
development of some contemporary powerful operating systems. We presented here some cases as 
examples in relation to the actual implementation of these different concepts in the development of 
modern operating systems. 

Controlling multiple processes in a multitasking environment requires a specifc discipline real-
ized by a mechanism known as scheduling that allocates a processor or processors to each different 
process at the right point in time for substantial performance improvement with optimal resource 
utilization. Out of four types of scheduling discussed in detail in Chapter 2, one of these, I/O sched-
uling, will be described in Chapter 7. Out of the remaining three types of scheduling, long-term and 
medium-term scheduling are concerned primarily with performance concerns in relation to degrees 
of multiprogramming. Hence, the only scheduling that remains is short-term scheduling, also called 
process (processor) scheduling and discussed here in this chapter on a single-processor system. 
Since the presence of multiple processors in a system adds additional complexity while this type of 
scheduling is carried out, it is convenient to frst focus on the single-processor (uniprocessor) case to 
describe the fundamental approaches so that more elaborate forms of handling multiple processors 
can be easily explained. This section focuses on the various criteria based on which different sched-
uling policies can framed and then addresses different strategies for the design and implementation 
of respective policies to derive corresponding scheduling algorithms. 

Operating systems, while supporting multitasking, multiprocessing, and distributed processing, 
often use concurrent execution among a related group of processes that allows a single application 
to take advantage of parallelism between the CPU and I/O devices on a uniprocessor and among 
CPUs on a multiprocessor for the sake of performance improvement. However, multiple processes 
that compete for or cooperatively share resources (including information) introduce the potential 
for new problems that raise a lot of issues in software implementation. Hence, the design criteria of 
the OS for accommodating concurrency must address a host of these issues, including sharing and 
competing for resources, synchronization of the activities of multiple processes, communication 
among processes, and allocation of processor time to processes. 



Processor Management 213  

  

  

  

  

  

  

  

 

 

  

Synchronization among concurrent processes is essential for preserving precedence relation-
ships and preventing concurrency-related time-critical issues. Synchronization is required in 
uniprocessors, multiprocessors, and multiprocessing with networks of servers and workstations. 
Failure to devise appropriate synchronization mechanisms and enforce their use by each process 
that uses common resources often results in erratic system behavior that is extremely diffcult to 
debug. Concurrency yields increased productivity when implemented correctly, but it can equally 
degrade reliability when improper interprocess synchronization pollutes the entire system with elu-
sive timing errors. However, if a problem is suffciently complex, that is why it is traditionally frst 
studied in a uniprocessor environment, and we have followed the same approach in this chapter. 
We frst identifed concurrency-related issues and then articulated some possible approaches using 
some hardware and software solutions to implement interprocess synchronization. The appropriate 
solutions in this regard that aim to realize increased productivity can either be assisted by operat-
ing systems or provided by language compilers. Three such approaches are examined: semaphores, 
message-passing, and monitors, for interprocess communication and synchronization. A few well-
known examples are cited here that demonstrate concurrency problems and also approached to their 
solution. 

Concurrency implemented in a community of cooperating or competing processes extracts 
potential benefts in terms of performance, resource utilization, and system response but also invites 
a critical problem known as deadlock that eventually plagues all efforts to realize the benefts of 
concurrent processing. This chapter includes a discussion with regard to the reasons for deadlock. 
Then three automated strategies are discussed for negotiating deadlock: (i) detection and recovery 
and manual handling, (ii) prevention, and (iii) avoidance. The entire discussion on this issue is, how-
ever, limited to only a single system; measures to deal with this issue with distributed computing 
systems are outside the scope of this book. 

EXERCISES 

1. Describe how processes are developed and executed in the system following its different 
states. 

2. What is meant by process control block? Give the approximate structure of a process con-
trol block with the different categories of information that it contains. 

3. What are the events that are commonly responsible for a process switch occurring? 
Enumerate the steps usually followed when a process switch occurs. 

4. What are the main drawbacks that have been faced in the design of an operating system 
based on the process concept? How have these drawbacks been negotiated with making 
changes in concepts? 

5. What is meant by “thread”? What are the advantages that can be obtained by using the 
thread as a unit of computation? 

6. What are the type of system calls that a thread should avoid using if threads are imple-
mented at the user level? 

7. An OS supports both kernel-level threads and user-level threads. Justify the following 
statements: 
a. If a candidate for a thread is a CPU-bound computation, use a kernel-level thread if the 

system contains multiple processors; otherwise, make it a user-level thread. 
b. If a candidate for a thread is an I/O-bound computation, use a user-level thread if the 

process containing it does not contain a kernel-level thread; otherwise, make it a kernel-
level thread. 

8. A process creates eight child processes. It is required to organize the child processes into 
two groups of four processes each such that processes in a group can send signals to other 
processes in the group but not to any process outside the group. Implement this require-
ment using the features in UNIX. 



 

 

  

  

 

 
 

  

 
 
 

  

  

 
 
 

  

  

214 Operating Systems 

• Process scheduling 

9. State and explain the different criteria that are involved in the design strategy and design 
objectives of a process scheduling mechanism and its associated algorithm. 

10. Assume that the following jobs to execute with a single-processor system, with the jobs 
arriving in the order listed here: 

I Service Time 

1 60 

2 20 

3 10 

4 20 

5 50 

a. If the system uses FCFS scheduling, create a Gantt chart to illustrate the execution of 
these processes. 

b. What is the turnaround time for process P3? 
c. What is the average wait time for the processes? 

11. Use the process load as given in the previous example, and assume a system that uses SJN 
scheduling: 
a. Create a Gantt chart to illustrate the execution of these processes. 
b. What is the turnaround time for process P4? 
c. What is the average wait time for the processes? 

12. Prove that, among nonpreemptive scheduling algorithms, SJN/SPN provides the minimum 
average waiting time for a set of requests that arrive at the same time instant. 

13. Assume that the following jobs execute with a single-processor system that uses priority 
scheduling, with the jobs arriving in the order listed here, where a small integer means a 
higher priority: 

I Service time Priority 

1 60 2 

2 20 1 

3 10 4 

4 20 5 

5 50 3 

a. Create a Gantt chart to illustrate the execution of these processes. 
b. What is the turnaround time for process P4? 
c. What is the average wait time for the processes? 

14. The SJF (aging) algorithm with α = ½ is being used to predict run times. The previous four 
runs of a process, from oldest to most recent, are 40, 20, 40, and 15 msec. What will be the 
prediction for the next time? 

15. Assume that the following jobs to execute with a single-processor system that uses RR 
scheduling with a quantum of 10 and the jobs arriving in the order listed here: 

i Service Time Arrival Time 
1 60 0 

2 20 8 

3 10 8 

4 20 65 

5 50 75 



Processor Management  215 

a.  create a Gantt chart to illustrate the execution of these processes. 
b.  What is the turnaround time for process p3? 
c.  What is the average wait time for the processes? 

 16.  Devise a data structure that allows SRR to be implemented effciently. Consider a preemp-
tive HPRN policy. Can it be implemented exactly? If not, how would you approximate it? 

 17.  Consider the following process arrival list: 

  Calculate T, M, and P for each process under the following policies: FCFS, SPN, PSPN, 
HPRN, RR with t = 1, RR with t = 5, and SRR with b/a = 0.5 and t = 1. Assume that if 
events are scheduled to happen at exactly the same time, new arrivals precede termina-
tions, which precede quantum expirations. 

 18.  Some operating systems are used in environments where processes must get guaranteed 
service. Deadline scheduling means that each process specifes how much service time 
it needs and by what real time it must be fnished. Design a preemptive algorithm that 
services such processes. There will be occasions when deadlines cannot be met; try to dis-
cover these situations as early as possible (before starting a process, if it cannot be fnished 
in time). 

 19.  A multiprogramming time-sharing operating system uses priority-based scheduling for 
time-critical processes and round-robin scheduling for interactive user processes. At cer-
tain times, the hardware is upgraded by replacing the CPU with a functionally equivalent 
model that is twice as fast. Discuss the changes that different classes of users will experi-
ence. Do some parameters of the operating system need to be changed? If so, which ones 
and how? Explain the expected change in the system behavior as a consequence of such 
changes. 

 20.  A group of processes Gk in a system is using fair-share scheduling. When a process P1  
from  Gk is selected for scheduling, it is said that “P1 is a selection from Gk”. Show that if 
processes do not perform I/O operations, two consecutive selections from Gk  cannot be for 
the same process 

 21.  State the distinct advantages that can be obtained from a multilevel feedback queuing 
scheduler. Which type of process is generally favored by this scheduler: a CPU-bound 
process or an I/O-bound process? Explain briefy why. 

•  Interprocess Synchronization 

 22.  The processes P0 and P1 share variable V2, processes P1 and P2 share variable V0, and 
processes P2 and P3 share variable V1. Show how processes can use enable interrupt and  
disable interrupt to coordinate access to the variables V0, V1, and V2 so that the critical 
section problem does not arise. 

 23.  How is mutual exclusion implemented using general semaphores? Explain the drawbacks 
and limitations of semaphores in general. State the properties and characteristics that a 
semaphore in general exhibits. 



 

  

  

  

   

  

 

  

  
  

  

 

  

  

 

 

  

 

  

  
  

  

216 Operating Systems 

24. “A general semaphore is superfuous since it can be implemented with a binary semaphore 
or semaphores”—explain. 

25. It is sometimes found that a computer has both a TSL instruction and another synchroniza-
tion primitive, such as semaphores and monitors, in use. These two types play a different 
role and do not compete with each other. Explain this with reasons. 

26. Two processes p1 and p2 have been designed so that p2 writes a stream of bytes produced by 
p1. Write a skeleton of procedures executed by p1 and p2 to illustrate how they synchronize 
with one another using P and V. (Hint: consult the producer/consumer problem) 

27. Semaphores can be realized in a programming-language construct called critical region. 
Discuss the mechanism by which it can be realized. State the limitations that you may 
encounter. 

28. An inventory manager issues the following instructions to the store manager in regard to 
a particular item: “Do not purchase the item if the number of items existing in the store 
exceeds n, and hold any requisition until the number of items existing in the store is large 
enough to permit the issue of the item”. Using a particular item, implement these instruc-
tions with the help of a monitor. 

29. You have an operating system that provides semaphores. Implement a message system. 
Write the procedures for sending and receiving messages. 

30. Show that, using message, an interrupt signaling mechanism can be achieved. 
31. Show that monitors and semaphores have equivalent functionality. Hence, show that a 

monitor and message can be implemented using semaphores. This will demonstrate that a 
monitor can be used anyplace a semaphore can be used. 

32. Solve the producer/consumer problem using monitors instead of semaphores. 

• Interprocess Communication and Synchronization 

33. Suppose we have a message-passing mechanism using mailboxes. When sending to a full 
mailbox or trying to receive from an empty one, a process does not block. Instead it is 
provided an error code. The process in question responds to the error code by just trying 
again, over and over, until it succeeds. Does this scheme lead to race conditions? 

34. What sequence of SEND and (blocking) RECEIVE operations should be executed by a 
process that wants to receive a message from either mailbox M1 or mailbox M2? Provide 
a solution for each of the following cases: 
a. The receiving process must not be blocked at an empty mailbox if there is at least one 

message in the other mailbox. The solution can use only the two mailboxes and a single 
receiving process. 

b. The receiving process can be suspended (blocked) only when there are no messages in 
either mailbox, and no form of busy waiting is allowed. 

35. Discuss the relative time and space complexities of the individual implementations of the 
message facility. Propose an approach that you consider to be the best trade-off in terms of 
versatility versus performance. 

• Deadlock and Starvation 

36. “Deadlock is a global condition rather than a local one”. Give your comments. What are 
the main resources that are held responsible for the occurrence of a deadlock? 

37. State and explain the conditions that must be present for a deadlock to occur. 
38. “A deadlock can occur even with a single process”. Is it possible? If so, justify the statement 

with an appropriate example. 
39. What are the merits and drawbacks of the recovery approach when deadlock has already 

occurred and been detected? 



Processor Management 217  

  
  

  
 
 
 

  

  

  

 
 
 
 

  

  

  

  

 

 

40. Discuss the merits and shortcomings of the deadlock avoidance strategy. 
41. An OS uses a simple strategy to deal with deadlock situations. When it fnds that a set of 

processes is deadlocked, it aborts all of them and restarts them immediately. What are the 
conditions under which the deadlock will not recur? 

42. Compare and contrast the following resource allocation policies: 
a. All resource requests together. 
b. Allocation using resource ranking. 
c. Allocation using the banker’s algorithm in the light of (i) resource idling and (ii) over-

head of the resource allocation algorithm. 
43. Three processes share four resources that can be reserved and released only one at a time. 

Each process needs a maximum of two units. Show that a deadlock cannot occur. 
44. When resource ranking is used as a deadlock prevention policy, a process is permitted 

to request a unit of resource class R  only if rank > rank for every resource class Rx x y y 

whose resources are allocated to it. Explain whether deadlocks can arise if the condition is 
changed to rankx ≥ ranky. 

45. A system is composed of four processes [P1, P2, P3, P4] and three types of serially reusable 
resources, [R1, R2, R3]. The number of total existing resources are C = (3, 2, 2) 
a. Process P1 holds 1 unit of R1 and requests 1 unit of R2. 
b. Process P2 holds 2 units of R2 and requests 1 unit each of R1 and R3. 

c. Process P3 holds 1 unit of R1 and requests 1 unit of R2. 
d. Process P4 holds 2 units of R3 and requests 1 unit of R1. 

46. Can a system be in a state that is neither deadlocked nor safe? If so, give an example. If not, 
prove that all states are either deadlocked or safe. 

47. A situation in which there are several resource classes and for each class there is a safe 
sequence but the situation is still unsafe—justify. 

48. Can a process be allowed to request multiple resources simultaneously in a system where 
deadlocks are avoided? Justify why or why not. 

49. What are the effects of starvation that may affect the overall performance of a system? 
Discuss the mechanism by which starvation can be detected and then avoided. Explain 
how starvation is avoided in the UNIX and Windows operating systems. 

More questions for this chapter are given on the Support Material at www.routledge.com/ 
9781032467238 

SUGGESTED REFERENCES AND WEBSITES 

Anderson, T. E., Bershad. B. N., et al. “Scheduler Activations: Effective Kernel Support for the User-level 
Management of Parallelism”, Proceedings of the ACM Symposium on Operating Systems Principles, 
New York, ACM, pp. 95–109, 1991. 

Birrell, A. D. “An Introduction to Programming with Threads”, Technical Report, DEC–SRC, January, 1989. 
Available at www.research.compaq.com/SRC. 

Brinch Hansen, P. “Structured Multiprogramming”, Communications of the ACM, vol. 15, no. 7, pp. 574–578, 1972. 
Brinch Hansen, P. “The Programming Language Concurrent Pascal”, IEEE Transactions on Software 

Engineering, vol. 1, no. 2, pp. 199–207, 1975. 
Buhr, P., Frontier, M. “Monitor Classifcation”, ACM Computing Surveys, vol. 27, no. 1, pp. 63–107, 1995. 
Campbell, R. H., Habermann, A. N. “The Specifcation of Process Synchronization by Path Expressions”, in 

Operating Systems, Kaiser, C. (Ed.), Berlin, Springer-Verlag, 1974. 
Cheriton, D. “The V Kernel: A Software Base for Distributed Systems”, IEEE Software, vol. 1, no. 2, pp. 19–42, 

1984. 
Cheriton, D. “The V Distributed System”, Communications of the ACM, vol. 31, no. 3, pp. 314–333, 1988. 

http://www.routledge.com/9781032467238
http://www.research.compaq.com
http://www.routledge.com/9781032467238


 

 

 

 

 

218 Operating Systems 

Coffman, E. G., Elphick, M. J., Shoshani, A. “System Deadlocks”, Computing Surveys, vol. 3, pp. 67–78, 
1971. 

Dijkstra, E. W. Cooperating Sequential Processes. Eindhoven, Technological University, 1965. (Reprinted in 
Programming Languages, F. Genuys, ed., Academic Press, New York, 1968) 

Habermann, A. N. “Prevention of System Deadlocks”, Communications of the ACM, vol. 12, no. 7, pp. 373– 
377, 385, 1969. 

Hall, L., Shmoys, D., et al. “Scheduling to Minimize Average Completion Time Off-line and On-line 
Algorithms”, SODA: ACM–SIAM Symposium on Discrete Algorithms, New York, ACM, 1996. 

Havender, J. W. “Avoiding Deadlock in Multitasking Systems”, IBM Systems Journal, vol. 7, pp. 74–84, 1968. 
Hoare, C. A. R. “Monitors: An Operating System Structuring Concept”, Communication of the ACM, vol. 17, 

no. 10, pp. 549–557, 1974. 
Hofri, M. “Proof of a Mutual Exclusion Algorithm”, Operating Systems Review, vol. 24, no. 1, pp. 18–22, 

1990. 
Holt, R. C. “Some Deadlock Properties of Computer Systems”, Computing Surveys, vol. 4, pp. 179–196, 1972. 
Isloor, S., Mersland, T. “The Deadlock Problem: An Overview”, Computer, vol. 13, no. 9, pp. 58–78, 1980. 
Kay, J., Lauder, P. “A Fair Share Scheduler”, Communications of the ACM, vol. 31, no. 1, pp. 44–55, 1988. 
Kleinrock, L. Queuing Systems, vols. I and II, New York, Willey, 1975–1976. 
Lamport, L. “The Mutual Exclusion Problem Has Been Solved”, Communications of the ACM, vol. 34, no. 1, 

p. 110, 1991. 
Lampson, B. W., Redell, D. D. “Experience with Processes and Monitors in Mesa”, Proceedings of the 7th 

ACM Symposium on Operating Systems Principles, New York, ACM, pp. 43–44, 1979. 
Levine, G. “Defning Deadlock with Fungible Resources”, Operating Systems Review, vol. 37, no. 3, pp. 5–11, 

2003. 
Levine, G. “The Classifcation of Deadlock Prevention and Avoidance is Erroneous”, Operating System 

Review, vol. 39, pp. 47–50, 2005. 
Lipton, R. On Synchronization Primitive Systems, PhD thesis, Pittsburgh, PA, Carnegie–Mellon University, 1974. 
Marsh, B. D., Scott, M. L., et al. “First-class User-level Threads”, Proceeding of the Thirteenth ACM 

Symposium on Operating Systems Principles, New York, ACM, October, pp. 110–121, 1991. 
Mauro, J., McDougall, R. Solaris Internals: Core Kernel Architecture, London, Prentice Hall, 2007. 
Philbin, J., Edler, J., et al. “Thread Scheduling for Cache Locality”, Architectural Support for Programming 

Languages and Operating Systems, vol. 24, pp. 60–71, 1996. 
Reed, D. P., Kanodia, R. K. “Synchronization with Eventcounts and Sequencers”, Communications of the 

ACM, vol. 22, pp. 115–123, 1979. 
Robins, K., Robins, S. UNIX Systems Programming: Communication, Concurrency, and Threads, Second 

Edition, London, Prentice Hall, 2003. 
Rypka, D. J., Lucido, A. P. “Deadlock Detection and Avoidance for Shared Logical Resources”, IEEE 

Transactions on Software Engineering, vol. 5, no. 5, pp. 465–471, 1979. 
Schlichting, R. D., Schneider, F. B. “Understanding and Using Asynchronous Message Passing Primitives”, 

Proceedings of the Symposium on Principles of Distributed Computing, New York, ACM, pp. 141–147, 1982. 
Scrhrage, L. E. “The Queue M/G/I with Feedback to Lower Priority Queues”, Management Science, vol.13, 

pp. 466–474, 1967. 
Siddha, S., Pallipadi, V., et al. “Process Scheduling Challenges in the Era of Multi-core Processors”, Intel 

Technology Journal, vol. 11, 2007. 
Vahalia, U. UNIX Internals: The New Frontiers, London, Prentice Hall, 1996. 
Woodside, C. “Controllability of Computer Performance Tradeoffs Obtained Using Controlled–Share Queue 

Schedulers”, IEEE Transactions on Software Engineering, vol. SE-12, no. 10, pp. 1041–1048, 1986. 



DOI: 10.1201/9781003383055-5 219  

 

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Memory Management 5 
Learning Objectives 

• To defne the key characteristics of memory systems and basic requirements of primary 
memory. 

• To signify the use of memory hierarchy for access-time reduction. 
• To describe the basic requirements of memory management considering the sharing and 

separation of memory along with needed protection. 
• To explain the required address translation for both static and dynamic relocation. 
• To discuss the implementation and impact of memory swapping. 
• To defne the functions and responsibilities of memory management. 
• To mention the different memory management schemes being used along with their com-

parison parameters. 
• To describe the contiguous memory allocation schemes including different methods of 

memory partition (both static and dynamic), and various techniques used in their manage-
ment with each of their respective merits and drawbacks. 

• To implement noncontiguous memory allocation schemes using paged memory manage-
ment along with its related issues and respective merits and drawbacks. 

• To describe the various segmented memory management schemes and their related issues, 
including the support needed from the underlying hardware. 

• To illustrate different kernel memory allocation schemes along with real-life implementa-
tions as carried out in UNIX and Solaris. 

• To demonstrate the implementation of virtual memory with paging and its different aspects 
with related issues, along with its actual implementation in VAC (DEC), SUN SPARC, and 
Motorola systems. 

• To illustrate the signifcance of the translation lookaside buffer (TLB) and its different 
aspects in the performance improvement of paged memory management. 

• To demonstrate segmentation and segmentation with paging in virtual memory and also its 
actual implementation in real-life in the Intel Pentium. 

• To examine the various design issues that appear in the management of virtual memory 
and subsequently their impacts on its overall performance. 

• To describe in brief the real-life implementations of memory management carried out in 
UNIX, Linux, Windows, and Solaris separately. 

• To explain the objectives, principles, and various design issues related to cache memory. 

5.1 INTRODUCTION 

The one single development that puts computers on their own feet was the invention of a reliable form 
of memory: the core memory. A journey through the evolution of computers convincingly estab-
lishes the fact that due to important breakthroughs in the technological advancement in electronic 
industry, the size and the speed of the memory itself has constantly increased and greatly paved the 
way for succeeding generations of computers to emerge. Still, at no point in time in the past and even 
today, with sophisticated technology, is there ever enough main memory available to satisfy cur-
rent needs. In addition, as technology constantly advances, the speed of CPUs increases at a much 
faster rate than that of memory, causing a continuous increase in the speed disparity between CPU 

https://doi.org/10.1201/9781003383055-5


 

 

220 Operating Systems 

and memory, thereby adversely affecting the performance of the computer system as a whole. To 
negotiate such situations of space scarcity and speed disparity, computer memory came out with 
perhaps the widest range of type, technology, organization, and performance as well as its cost to 
keep the cost/performance of a computer system within an affordable limit. A typical computer 
system thus equipped with a diverse spectrum of memory subsystems maintaining a well-defned 
hierarchy; some are internal to the system to hold information that is directly accessible and refer-
enced by the CPU, called primary memory or physical memory, and some are external to the system 
to store information, called secondary memory, accessed by the CPU via an I/O module. When data 
and programs are referenced by the CPU for execution, they are loaded in primary memory from 
this secondary memory; otherwise they remain saved in secondary memory (on a storage device). 
Discussions of secondary memory are outside the domain of this chapter and will be provided in 
Chapter 6, “Device Management”. 

While primary memory has faster access times than secondary memory, it is volatile, and sec-
ondary memory, on the other hand, is comparatively slower in operation but is a long-term persis-
tent one that is held in storage devices, such as disk drives, tape drives, and CD-ROM. However, 
all processes (programs) must be resident in a certain portion of primary (main) memory before 
being activated. In other words, anything present in primary memory is considered active. The pri-
mary memory is therefore part of the executable memory (and is also sometimes called executable 
memory), since the CPU can fetch information only from this memory. Information can be loaded 
into CPU registers from primary memory or stored from these registers into the primary memory. 
As the size of the main memory in any computer system, whether large or small, is limited, a chal-
lenge is always faced at the time of application program development in respect to the size of the 
programs to be developed so that these programs or parts of them along with all associated infor-
mation could be accommodated in the available primary memory when they will be used by the 
CPU, and this information is then written back to the secondary memory soon after it has been used 
or updated. If this challenge could be met, the execution time of a process could then be reduced 
substantially. However, from now, we will always refer to primary memory or main memory by the 
term “memory or core memory”; otherwise we will specifcally use the term “secondary memory”. 

Memory in a uniprogramming system is basically divided into two parts: one part permanently 
holds the resident portion (kernel) of the operating system, while the other part is used by the cur-
rently active programs. In a multiprogramming/multitasking environment, this division of memory 
is even more complex; the user part (non-OS part) of memory is once again subdivided here to 
accommodate multiple processes (programs). The task of this subdivision and many other responsi-
bilities, such as allocation of fnite sizes of memory to requesting processes, assistance in managing 
the sharing of memory, minimizing the memory access time, and others, are carried out statically/ 
dynamically by the operating system, and this activity is known as memory management. In the 
hierarchical design of a layered operating system, as described in Chapter 3, memory management 
belongs to Level 2. The supporting operations of the secondary memory lie in the basic I/O system 
(devices) located in Level 4 in the hierarchical design of OS that shuttles portion of address spaces 
between primary and secondary memory while responding to requests issued by the memory man-
ager, and those are examined in details in the chapter on device management. 

Design of effective memory management is therefore an important issue, since the overall 
resource utilization and the other performance criteria of a computer system are greatly infuenced 
and critically affected by the performance of the memory management module, not only in terms of 
its effectiveness in handling merely memory but also as a consequence of its impact on and interac-
tion with the other resource managers. 

In this chapter, we will present the principles of managing main memory and then investigate 
different forms of memory management schemes, ranging from very simple to highly sophisticated. 
The ultimate objective is, however, to provide needed memory spaces to each individual program 
for its execution. We will start at the beginning from the point of the simplest possible memory 
management system and then gradually proceed to more and more elaborate forms of advanced 



Memory Management 221  

 

 

  

 

 

 
 

 
 
 
 

ones. An attempt is made to explore the salient features of these different types of memory manage-
ment schemes: their merits, their drawbacks, their limitations, and above all their implementations 
in contemporary representative computer systems whenever possible. 

5.2 KEY CHARACTERISTICS OF MEMORY SYSTEMS 

Location: It consists of internal processor memory, main memory, and external memory 
Storage Capacity: Memory consists of a number of cells, each of which can store a bit of 

information that contains a binary 0 or a 1. An 8-bit cell is called a byte. One byte can 
store one character. Bytes are grouped into words, which is commonly the natural unit of 
organization of memory. Common word lengths are 8, 16, 32, 48, and 64 bits (1, 2, 4, 6, and 
8 bytes, respectively). Each location (word) containing the same number of bits is identi-
fed by what is called its address by which programs can refer to it. If a location address 
consists of n (e.g. 32) bits, then the number of locations that can be addressed is 2n (232), 
which is the size of the memory. 

Addressable Unit: Each location (addressable unit) in memory is identifed (referred to) by 
its address. In many systems, the addressable unit is the word, and in some systems, the 
addressable unit is a byte. If an address contains m bits, the maximum number of locations 
(bytes) directly addressable is 2m (byte-oriented) that can store a maximum of 2m charac-
ters, which is the size of memory. If bytes are grouped into words and if a word consists 
of 4 bytes, (i.e. 32 bits), and this word is taken as an addressable unit, then with the same 
m-bit address, a memory of size 2m+2(4.2m = 2m+2) bytes can be addressed; that is, the same 
length of address bit can address a memory of greater capacity if it is accessed in terms of 
word units. This is an important factor to be considered at the time of memory organiza-
tion. For example, a computer with a 16-bit word has 2 bytes/word, whereas a computer 
with a 32-bit word has 4 bytes/word. The signifcance of a word is that most instructions 
operate on entire words. Thus, a 16-bit machine will have 16-bit registers and instructions 
for manipulating 16-bit words. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

5.3 PRIMARY MEMORY: ESSENTIAL REQUIREMENTS 

Memory is a vital resource without which programs (processes) and data would have no room 
for their execution. Hence, memory design and its organization is an important issue that has an 
immense impact on the entire design of both software and hardware. However, the design prin-
ciple must fulfll some basic requirements. First, the memory capacity must be as large as pos-
sible apart from using larger virtual memory to support it. Second, the memory access time must 
be as small as possible, close to the processor speed to make processor–memory handshaking 
faster so that the processor can operate at its optimal speed. Last, the cost of the memory must be 
within an affordable limit and must be reasonable in relation to that of other components of the 
computer system. 

Realization of faster single memory (similar to the register used as internal processor memory) 
is relatively very expensive; hence, modern CPUs typically contain a handful of registers (a modern 
RISC processor contains around 100 such registers) to reduce frequent CPU–memory interactions. 
Also, the computer system of today is typically equipped with a variety of memory units of very 
different physical characteristics and costs using a hierarchy of memory to negotiate this issue. With 
the advent of modern technology, access times (speed) for the primary memory unit have substan-
tially decreases but are still 1 to 4 times longer than the time to reference a register. Size-wise, the 
primary memory of today may have a few gigabytes, roughly a few million times more executable 
memory than that of CPU registers. Although these numbers change rapidly due to the continuous 

http://www.routledge.com/9781032467238


 

 

 

 

      

222 Operating Systems 

evolution of newer electronic technology, but the speed and size ratios still tend to remain relatively 
unchanged. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

5.4 MEMORY HIERARCHIES: ACCESS-TIME REDUCTION 

To achieve optimal performance, the memory system must be large enough and also be able to keep 
up with the CPU speed. But relatively fast memory with moderate size is comparatively expensive. 
That is why computer memory exhibits the widest range of types, technology, organization, perfor-
mance, and also cost. Technology-wise, the three key characteristics of memory, capacity, speed 
(access time), and cost, are considered as a tradeoff. From an application point of view, large-capac-
ity memory with low-cost per bit is an essential requirement. But to meet performance requirements, 
an expensive, relatively low-capacity memory with fast access time is also a must. To accommodate 
these diverse requirements in the design, a compromise is thus made which dictates that instead 
of using a single memory component or technology, a memory hierarchy using different types of 
memory components is to be employed to create the illusion of a large and fast memory, and that too 
at a low cost to realize cost-effective performance. A typical memory hierarchy is thus built based on 
trade-off parameters, such as; capacity, access time, cost/bit, and frequency of access by CPU. If the 
memory can be organized in this manner using different memory components, and if the instructions 
and data can be distributed across these different memory components, it is intuitively clear that 
this scheme will offer a desired level of performance with a substantial reduction in overall costs. 
However, it is to be noted that memory management is concerned with handling only executable 
(primary) memory and providing mechanisms to manually move information across the hierarchy. A 
virtual memory system automates the movement of information between the secondary and primary 
memories. The fle manager provides mechanisms to administer secondary memory according to 
the users’ demand. Since construction of a memory hierarchy in this fashion using different types 
of memory components is a matter of computer organization and architecture, interested reader can 
consult Chakraborty (2020) or any other standard textbook on this subject. 

More details on this topic with figures are given on the Support Material at www.routledge. 
com/9781032467238. 

5.5 MEMORY MANAGEMENT: SOME BASIC REQUIREMENTS 

Memory management has evolved with the evolution of operating systems and hardware technol-
ogy, and it resides at Level 2 in the hierarchical design of layered operating system, as described 
in Chapter 3. The memory manager usually performs a lot of responsibilities; a few of them are: 
allocation of a fnite capacity of memory to simultaneously requesting processes with adequate pro-
tection, assistance in managing the sharing of memory and minimizing memory access time, and 
similar tasks that are carried out statically or dynamically. Different memory management schemes 
in this regard have been designed that differ in policies as well as in underlying mechanisms, but 
memory management as a whole must satisfy at least some specifc requirements in order to carry 
out fault-free execution of programs. Some of the critical requirements are the following. 

5.5.1 SEPARATION AND SHARING: IMPORTANCE AND DIFFERENT APPROACHES 

Separation of address spaces and sharing of memory are, in fact, two conficting aspects of multiple 
coexisting active processes in a multitasking environment. Each process’s address space must be 
isolated (separated) to ensure its integrity and safeguard its contents (protection), and at the same 
time, the cooperating processes should be allowed to have controlled access to common areas of 
memory (sharing) without damaging the necessary separation. Different strategies in this regard 
have been devised by different memory management systems in contemporary operating systems to 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 223  

   

 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
  

fulfll these crucial requirements, at least to an acceptable extent for the sake of interprocess coop-
eration as well as to minimize the waste in memory space by avoiding redundancy. 

5.5.2 PROTECTION: IMPORTANCE AND IMPLEMENTATION 

Protection mechanisms in multiple coexisting active processes with separation in the address spaces 
commonly ensures that a program in one process cannot refer to any information of another process 
by any form of branching, and/or a process cannot normally access the data area of another process, 
but sharing of data, of course, can be allowed by means of some special arrangements. The resident 
portion of the OS should also be kept isolated and protected from any unauthorized intentional or 
unintentional tampering attempted by user processes. Memory protection is thus urgently required 
and must be implemented at the hardware level (processor or memory) rather than by the software 
(operating system). Many different methods to implement memory protection have been improvised 
using the hardware facilities available in the system, and many refnements to those approaches 
have also been made. Each such method, however, has been found to have several merits and also 
certain critical drawbacks, as usual. 

5.5.3 RELOCATION: ADDRESS TRANSLATION 

In a multitasking/multi-user environment, the available main memory, limited in size, is generally 
distributed among a number of active processes of different sizes, ftting them without overlap or 
wasting space. It is not possible to also predict which programs of what sizes are to be executed 
concurrently and how long they will run. Moreover, swapping in/out of active processes often to/ 
from memory for the sake of performance improvements usually changes their physical location 
from their earlier positions in memory. Due to all these reasons and more, it was decided that a pro-
gram must be allowed to load anywhere in memory whenever there is room for it. Consequently, the 
actual starting address of a program is not fxed and is therefore not known until load time. This act 
of placing a program anywhere suitable in memory irrespective of its previous location while it was 
compiled and linked or even swapped out is known as relocation, and it is carried out by a system 
program at the time of actual loading. 

Act of such relocations require appropriate changes in certain address portions in the program 
to match them with the current location after relocation. The processor hardware and operating-
system software must then somehow translate (map) such memory references found in the program 
code into actual physical memory addresses that refect the current location of the program in main 
memory. Memory-protection hardware also carries out various checks along with the required 
address translation. Although memory relocation makes management more effcient, fexible, and 
versatile, it is overall an expensive mechanism that will eventually lead to graceful degradation in 
performance caused by the added operational overhead. Different memory management schemes 
have thus evolved with different targets that differ in the relative complexity of address transla-
tion and the associated memory protection and consequently in the amount of generated runtime 
overhead that they usually pay. However, address translation, sometimes called memory mapping 
or program relocation, converts the logical address generated by a program into a corresponding 
physical address, and it arises in three different situations: object code generation (compilation), 
linking and loading, and execution time. Depending on when and how this mapping takes place in a 
given relocation scheme, two basic types of relocation are observed: static relocation and dynamic 
relocation. 

5.5.3.1 Static Relocation 
• At program generation time: The source program and its other modules written by dif-

ferent people, usually at different times, are compiled separately to create the respective 
object codes, and those are then linked together (by a system program called a linker) to 



 

 

 
 

 

224 Operating Systems 

form a single module (load module) that can then straightaway be loaded into memory and 
directly executed. While the single load module is created as output, each location-sensi-
tive address within each object module must then be changed (relocated) from its symbolic 
addresses to a reference to the starting address location of the created load module. This 
form of relocation refers to static relocation performed by a relocating linker, when dif-
ferent object modules are combined by the linker to create a load module. At loading time, 
the created load module (executable program) is now loaded by an absolute loader into 
memory starting strictly at the location pre-defned and specifed in the header of the load 
module with no address translation (relocation) at the time of loading. If the memory area 
specifed in the header of the load module is not free, then the program has to wait for the 
specifc memory slot to become free, although there are other slots available in memory. 
A relocating loader, however, removes this drawback by loading an executable module 
to any available slot and then translates all location-sensitive information within the mod-
ule correctly to bind to the actual physical location in which this module will be loaded. 
Since the software relocation involves considerable space and time complexity, systems 
with static relocation are commonly and practically not favored over only static binding 
of modules. 

5.5.3.2 Dynamic Relocation 
• At execution time: Dynamic relocation is carried out, which implies that address transla-

tion (mapping) from the logical (virtual) address space to the physical address space is to 
be performed using a base register provided by the CPU. The executable program code 
to be run in systems with dynamic relocation is prepared by a compiler or an assembler 
assuming that the program is to be loaded at location 0 in main memory without any 
relocation adjustments. Executable code stored on the secondary storage when loaded into 
main memory is without any address translation at some available memory slot which is 
large enough to hold the program, and the starting address of this given memory slot is 
saved in the PCB of the program belonging to the memory manager. The operating system 
simply sets the base register to this starting physical load address, called the base address, 
which is obtained from the PCB area of the executing program. Each memory reference 
generated by the executing process is then mapped into the corresponding physical address 
which is obtained by simply adding the contents of the base register to the present address 
of the current memory reference. 

5.5.3.3 Advantages 
The notable feature of this scheme is that the relocation process is free from any additional memory 
management strategies and is simply an hardware-only implicit base addressing implemented only 
at runtime (fnal stage). Moreover, here the logical (virtual) address space in which the processor-
generated addresses prior to relocation are logical (virtual) addresses is clearly separated from the 
physical address space containing the corresponding physical addresses generated by the mapping 
hardware used to reference the physical memory. This attribute nowadays facilitates designing 
a fexible form of an on-chip (earlier an optional off-chip) advanced memory-management unit 
(MMU) within the microprocessor CPU for the purpose of generating physical addresses along 
with other supports. Another distinct advantage is that it gives the OS absolute freedom by permit-
ting it to freely move a partially executed program from one area of memory into another, even in 
the middle of execution (during runtime) with no problem accessing information correctly in the 
newly allotted space. This feature is also very useful, particularly to support swapping programs in/ 
out of memory at any point in time. Consequently, this approach demands extra hardware to pro-
vide one or more base registers and some added overhead also involved in the additional computa-
tions required in the relocation process. Contemporary architectures, however, address these issues 



Memory Management 225  

   

 
 
 

   

 

 

 

supporting implicit base addressing; they provide a dedicated adder to allow address calculation to 
proceed in parallel with other processor operations, and with this overlapping, they minimize the 
impact on the effective memory bandwidth to an affordable limit. 

5.5.4 SWAPPING: IMPACT AND IMPLEMENTATION 

Swapping is an activity carried out by memory management that temporarily removes part or all 
of a partially executed preempted or suspended process from main memory to a specifed area 
on a disk (swap area/backing store) for the sake of creating space which can now be allocated to 
another deserving process waiting to enter the system for the purpose of better utilization of system 
resources. Movement of information of this type between memory and disk (swap area) is handled 
by the upper level of the two-level scheduler (medium-term scheduler), known as the swapper. The 
processes selected for swapping out are blocked (on a memory request) by the memory manager, and 
then their occupied memory spaces are made free (deallocated). The context block of a swapped-out 
process should indicate where it has been placed in the backing store. The context block itself is usu-
ally not swapped out. However, swapping should not be carried out very often since it involves lot 
of intricacy and additional overhead. Still, many different forms of modifed swapping are observed 
in virtual memory systems based on paging or on segmentation. 

The policy design and the mechanisms to implement swapping require some specifc provisions 
and necessary support from the operating system end. However, the major responsibilities per-
formed by a swapper mainly consist of: 

• Selection of processes to be swapped out 
• Selection of processes to be swapped in 
• Allocation, administration, and management of swap space 

While selecting a victim for swapping out, the swapper takes many relevant factors into account, 
such as the current status, memory residence time, size of each resident process, consideration of 
age to avoid thrashing, and similar other vital factors that could infuence the performance of the 
system as a whole. The selection of a process to be once again swapped in is usually based on the 
fulfllment of certain criteria: the priority of the process and the amount of time it spent in second-
ary storage (aging); otherwise this may invite the problem of starvation, the availability of resource 
for which it was swapped out, and fnally the fulfllment of minimum disk-resident time requirement 
from the instant of its being swapped out. This is specifcally required in order to exert control over 
forthcoming thrashing. 

• Swap fle: When a partially executed process is swapped out, its runtime process image, 
along with the runtime states consisting of the contents of the active processor registers, 
as well as its other data and stack locations, are temporarily saved in a swap fle. One of 
two types of swap fles is commonly used for this purpose and must be created, reserved, 
and allocated statically/dynamically before or at the time of process creation. Those are: 
• A system-wide single swap fle in a special disk (usually in system disk) for all active 

processes, to be created at the time of system generation. 
• A dedicated swap fle for each active process that can be created either statically at the 

time of program preparation or dynamically at the time of process creation. 

However, each of these two approaches has its own merits and also certain drawbacks. 

• Policy decisions: Swapping of a process is sometimes urgently needed and is thus favored, 
even after accepting that the cost of swapping is appreciable. That is why the operating 
system often enforces certain rules to designate a process as not swappable if it belongs to a 



 

 

     

     

 
 
 
 
 
 
 
 
 
 

 

 

226 Operating Systems 

given class of privileged processes and users. All other processes, however, may be treated 
as swappable by default. Sometimes, the memory management (operating system) decides 
the policy and implements it on its own when it fnds that a relatively large process in mem-
ory remains blocked over a considerable duration of time, when the other waiting processes 
that deserved to be run can be placed there for the sake of performance improvement. 

• Relocation: In systems that support swapping, re-placement of a swapped-out process in 
main memory when it is once again reloaded as a result of swap-in is carried out using 
dynamic allocation (already explained in the last section) whenever a suitable size of mem-
ory anywhere is found. Of course, this approach has comparatively high overhead and also 
requires some sort of additional hardware facilities. 

5.5.5 LOGICAL ADDRESSES AND LOGICAL ORGANIZATION 

The sequence of instructions and associated sets of data of a program have individual respective 
addresses within a program address space called logical addresses which are used to identify or 
locate them and usually are relative to the start of the program. A programmer assumes that the pro-
gram starts from 0 and extends to a maximum of N–1, where N is the maximum number of locations 
available in memory. A user presumes that most programs and their associated data are organized 
in the form of some sort of module (logical organization) written and compiled independently and 
that they may be placed at different locations in memory during runtime. Memory management, by 
some means, must ensure that all interactions between the modules are correctly maintained during 
runtime with needed protection, if there is any. 

5.5.6 PHYSICAL ADDRESSES AND PHYSICAL ORGANIZATION 

The actual address of a physical location in memory used by the CPU to access that particular mem-
ory location is called the physical address (or absolute address). Programs when written occupy 
contiguous memory locations in logical address space starting from address 0. When a program is 
ultimately run in the physical address space, this logical address space, by some means, has to be 
converted into actual physical address space and must be associated and bound to physical memory 
locations in the same way as indicated by the logical addresses generated by the program. When a 
program is saved in a secondary storage device (say, on a disk), only the contents of the memory with 
no address information are really saved. When it is once again loaded back into main memory at a 
later time for execution, it can be loaded anywhere in memory, wherever there is room for it. In this 
situation, the actual starting address of a program is not fxed and is therefore not known until load 
time. To run it successfully, all the location-sensitive addresses within the program must be modifed 
accordingly as per the actual physical starting address of the program being loaded in main memory. 

For more details on this entire section, with respective fgures, see “Memory Management: 
Some Basic Requirements” and “Memory Management: Some Fundamental Responsibilities” on 
the Support Material at www.routledge.com/9781032467238. 

5.6 MEMORY MANAGEMENT: FUNCTIONS AND RESPONSIBILITIES 

The memory manager consists of a number of modules which are basically concerned with the 
management of primary memory directly accessible by the processor. Besides many others, it is 
mainly concerned with fve basic functions. 

• Allocation of physical blocks of storage to requesting processes as needed and keeping 
track of the status of each location of primary memory, either allocated or free, in a coher-
ent way by creating appropriate data structures. It also provides mechanisms that allow 
information to migrate up and down in the memory hierarchy. 

http://www.routledge.com/9781032467238


Memory Management 227  

 

 

 

 

 

   

 

 
 

• Determining allocation policy for memory, that is, deciding to which process it should go, 
how much, when, and where. If primary memory is to be shared by one or more processes 
concurrently, then memory management must determine which process’s request needs to 
be served. 

• The allocation policy adopted by memory management along with the memory organi-
zation scheme being employed has a direct impact in the overall utilization of system 
resources. The overall system performance is also greatly affected by the way in which 
the memory-management policy and the job-scheduling policy infuence each other while 
allocating memory to different processes. The ultimate objective of memory management 
and job scheduling is to minimize the amount of memory wastage and maximize the num-
ber of processes that can be accommodated in the limited available memory space. 

• Allocation technique—once it is decided to allocate memory, the specifc locations must 
be selected and allocation information updated. 

• Deallocation technique and policy—handling the deallocation (reclamation) of memory. A 
process may explicitly release previously allocated memory, or memory management may 
unilaterally reclaim the memory based on a deallocation policy. After deallocation, status 
information must be updated. 

• Handling the virtual memory mechanism—keeping track of virtual memory allocation 
and also interacting with mass storage (device) handlers; to manage swapping on pre-
defned policies between main memory and disk when main memory is not large enough 
to hold all the processes. 

Apart from all these, memory management provides mechanisms that allow information to 
migrate up and down the memory hierarchy with the necessary binding of addresses, which is an 
essential requirement for information movement. It also employs numerous strategies to distribute 
a limited size of memory to many processes to load only once, thereby enhancing memory utiliza-
tion. While distributing memory, it also ensures the protection (integrity) of each active process 
when many such processes coexist in memory. To address all these issues, memory management 
must fulfll certain fundamental requirements in order to satisfy the basic demands of the operating 
environment. 

5.7 DIFFERENT MEMORY-MANAGEMENT SCHEMES: 
COMPARISON PARAMETERS 

Memory management modules should be as small as and also simple to fulfll the ultimate target 
of increasing user fexibility and system effciency. Several approaches to memory management 
have been devised based on contiguous allocation as well as noncontiguous allocation of memory. 
Contiguous allocation means that each logical object is placed in a set of memory locations with 
strictly consecutive addresses. A common approach with contiguous allocation is found in parti-
tioned memory management, both static and dynamic approaches, which will be discussed later in 
this chapter. Noncontiguous allocation means that memory is allocated in such a way that parts of a 
single logical object may be placed in noncontiguous areas of physical memory. Address translation 
is performed during the execution of the instruction that establishes the necessary correspondence 
between a contiguous virtual address space (in virtual memory) and the possibly noncontiguous 
physical addresses of locations where object item resides in physical memory at runtime. Paging is 
such a memory-management scheme that exhibits noncontiguous allocation of physical memory, 
removing the obligatory requirement of contiguous allocation of physical memory. The various 
types of techniques used to implement different memory management strategies are: 

• Single contiguous memory management 
• Fixed-partitioned memory management 



 

 
 
 
 
 
 

 
 
 

 

   

 
 
 
 
 

 
 
 
 

228 Operating Systems 

• Dynamic (relocation) partitioned memory management 
• Paged memory management 
• Demand-paged memory management in the case of virtual memory 
• Segmented memory management 
• Segmented and demand-paged memory management 
• Memory management with swapping and paging 

Each of these strategies while implemented exhibits some merits as well as certain drawbacks. 
Therefore, a comparison of these schemes involves analysis of each scheme informally with respect 
to certain essential parameters, such as: 

• Wasted memory 
• Overhead in memory access 
• Time complexity 

A brief discussion of this topic is given on the Support Material at www.routledge.com/9781032467238. 

5.8 MEMORY MANAGEMENT SCHEMES 

In the early days, different memory management strategies and related algorithms were mainly real-
ized exploiting the facilities offered by different hardware schemes used in memory organization. 
This situation has been, however, gradually changing with the introduction of separate memory 
management hardware units, and later on-chip MMUs in high-end microprocessors and RISC chips. 
On each such processor, the operating system designers developed a specifc memory management 
scheme ftting the hardware facilities available to them. Alternatively, they could develop the most 
appropriate type of memory management scheme and then choose the specifc hardware platform 
that was best suited. Whatever the line of thought, however followed, several approaches to memory 
management were devised that are broadly classifed as being contiguous allocation or noncontigu-
ous allocation of memory. Memory management initially evolved with the concept of contiguous 
allocation, and noncontiguous allocation came much later. That is why, following chronological 
order, the discussions here start frst with various strategies of memory management relating to 
contiguous allocation of memory. 

5.8.1 CONTIGUOUS MEMORY ALLOCATION 

Contiguous allocation means that each logical object (or a process) is entirely placed in a set of 
memory locations with strictly consecutive addresses in a single contiguous area in memory before 
the start of its execution (static). This strategy, however, subsequently gave rise to partitioning the 
available physical memory, and ftting partitions, if available, are then allocated to different memory 
requests. The partition approach itself again comprises two distinct classes: one is to defne and carry 
out the partition statically, say, during system generation or system installation (booting) at the begin-
ning of the day, and the other may be defned to carry out the partition dynamically (without having 
any physical partition in advance) in response to user demands as and when those arrive. Different 
schemes as proposed in this regard raise numerous types of different practical issues that have been 
identifed and then properly addressed to arrive at a fruitful solution. We now describe some of these 
popular schemes in brief in the following sections in chronological order of their appearance. 

In the early days, the bare machine had only the hardware, with no operating system (hence, no 
memory management or MMU) or any other supporting software or utilities. The entire machine 
was ultimately under the absolute control of the user, who had to write each and every program for 
their own applications as well as to drive and control the machine, and all these were written in 
absolute binary that was not only tedious to design but laborious to develop and equally error-prone. 

http://www.routledge.com/9781032467238


Memory Management 229  

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 

 
 
 
 
 
 
 

 

 

A brief discussion of this topic with a fgure is given on the Support Material at www.routledge. 
com/9781032467238. 

5.8.1.1 Single-User: The Resident Monitor 
The next simplest approach to memory management is the single-user fxed partitioning found in the 
resident monitor (the frst true operating system) approach, the forerunner of the modern operating 
system, already discussed in Section 1.6.2.1. In this system, memory management distinctly divides 
the entire memory into two contiguous areas (partitions). One of them is permanently allocated to the 
resident portion (core) of the operating system (monitor) at one extreme end of memory, whether top or 
bottom, and the other part of the OS; such as, the command-line interpreter and loader, are sometimes 
placed at the opposite end of the memory. This leaves a single, large contiguous area of free memory 
(second partition) in between for transient programs to use one after another, with all machine resources 
dedicated to one such single user (one program). The OS (resident monitor) here keeps track only of 
two addresses, which are the frst and the last locations available for the user processes. The PC-DOS 
operating system, the predecessor of popular MS-DOS, has followed this approach in general. 

When a transient process attempts to enter the system, the operating system used to check the size 
of the requesting process and whether it is within the bounds of the available user memory. Otherwise, 
loading of the program cannot be successfully completed, and instead, a trap is generated in the oper-
ating system that in effect fashes an error message to the user. But, if it is allowed to load, the process 
gets control from the operating system and starts executing until completion or abnormal termination 
due to the occurrence of an error condition. After completion, the process relinquishes its control 
and transfers it to the operating system that, in turn, loads another ftting program in waiting. Single-
process monitors creating single-process environments hardly ever support sharing of code and data 
in memory. Although the resident monitor is basically a single-user operating system, a certain level 
of multiprogramming can be simulated with the resident monitor by swapping out an active process 
waiting for a long time for its I/O completion, and meanwhile a new process or an already swapped-
out process can be entered from the backing store to make use of the CPU idle time. Of course, swap 
time (process switch time) should be here considered an essential parameter that often infuences the 
decision about whether the swapping is really proftable as far as CPU utilization is concerned. Many 
different approaches in this regard have been improvised and subsequently implemented. Last, this 
system must have a proper protection mechanism in memory to safeguard the resident monitor from 
any accidental or malicious tampering by user processes, failing which may lead to total collapse of 
the entire operating environment. The required protection mechanism is commonly realized by some 
sort of hardware assistance; two such mechanisms are generally in use: one is the use of a fence regis-
ter, and the other is to employ protection bits, discussed in the last section. 

The distinct advantages of the resident monitor scheme in its pure form are that it is simple to 
use, easy to implement, and usually requires as little as 1 Kbytes, or even a little bit more for a rela-
tively sophisticated one. Its main drawbacks are mainly poor utilization of memory, poor utilization 
of processor due to needless waiting for I/O, and user jobs being limited to the size of available 
main memory, with the exception perhaps of an overlay mechanism. However, due to the advent of 
advanced hardware technology, the resident monitor approach has overcome a few of its limitations, 
and thus was later modifed accordingly. But its major impact is that it laid the foundation and paved 
the way in the development of modern single-user operating systems used in the early version of 
today’s microcomputers. 

More details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

5.8.1.2 Partitioned-Memory Management 
Multiprogramming is supported by many memory-management schemes using numerous tech-
niques. One such is partitioning, which has been used with several variations in some now-obsolete 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

  

230 Operating Systems 

operating systems. This approach basically implies dividing the available physical memory into 
several partitions, which may be of the same or different sizes, each of which may be allocated to 
different processes. While allocating a partition of the memory to a process, many different strate-
gies could be taken that depend on when and how partitions are to be created and modifed. These 
strategies, in general, have different targets to achieve, with their own merits and drawbacks. This 
approach is again differentiated mainly in two ways: one that divides primary memory into a num-
ber of fxed partitions at the time the operating system is confgured before use, and the other one 
that keeps entire memory as it is and dynamically partitioned it into variable-sized blocks according 
to the demand of the programs during their execution. In this section, we will discuss fxed parti-
tioning with static allocation and variable partition with dynamic allocation. 

5.8.1.2.1 Fixed Partition: Static Allocation 
In fxed partitioning, the memory is divided into a number of fxed-size partitions at some time prior 
to the execution of user programs, and those partitions remain fxed thereafter. The number and 
sizes of individual partitions are usually determined at the time of system generation and mostly 
depend on the capacity of the available physical memory and also the typical size of processes that 
are most frequently handled in a given installation. Since only one process can reside and run in 
any partition at any point in time, the maximum number of distinct partitions at any instant sets the 
upper limit of degrees of multiprogramming that can be used. This type of partitioning memory 
considering specifc sizes of partitions and thereby creating a defnite number of partitions has a 
strong impact on the overall performance of the system. That is why some systems carry out willful 
manual partitioning, mainly by the operator, when the system is started up at the time of loading the 
operating system (booting) and not changed thereafter, or at any time when the system is running, 
the partition size is redefned according to the prevailing situation without going through further 
rebooting. 

The memory is partitioned into the same or different desirable sizes to accommodate both small 
or large jobs in which one partition is kept reserved for the resident portion of the operating system. 
Each such a partition can hold only one process at any instant, and the CPU then switches from one 
process to another in different partitions either in time-sharing fashion or another manner. Once the 
partitions are created and defned, the memory manager has to keep track of the attributes of all the 
partitions, including their current status, such as free or allocated, by using a data structure called 
a partition description table (PDT). When a process in one partition completes its execution, the 
status feld for that partition in the PDT is changed to ‘Free’, and the OS can place a suitable new job 
from the waiting job queue in that partition, and the status feld of the selected entry in the PDT is 
then marked ‘Allocated’. The process control block of the process is accordingly updated. In brief, 
whenever the operating system attempts to place a new job in the memory partition, either the PDT 
is searched for a suitable partition to match, or the job queue is searched for a suitable job to match 
the available partition. 

• Allocation strategy: A fxed-partition system requires that a process address space size 
(known from the process image) correlate with a partition of adequate size. Out of many 
available partitions, selection of a particular partition for allocation to a requesting process 
can be made in several ways; two common approaches are the frst ft and best ft. The 
frst-ft approach selects the frst free partition large enough to ft the requesting process 
for allocation. The best-ft approach, on the other hand, requires the smallest free partition 
out of many such that meets the requirements of the requesting process. Both algorithms 
need to search the PDT to fnd a free partition of adequate size. However, while the frst-
ft terminates upon fnding the frst such partition, the best-ft continues to go through the 
entire table to process all qualifying PDT entries to fnd the most appropriate (tightest) one. 
As a result, while the frst-ft attempts to speed up the execution, accepting costly memory 
wastage within the partition; the best-ft aims to optimize memory utilization, sacrifcing 



Memory Management 231  

 

 

 
 

 

 

 

even execution speed. However, the best-ft algorithm can be made proftable if the free 
partitions in the PDT are kept sorted by size; then the PDT could intuitively fnd a suit-
able partition ftting the requesting process quickly, thereby making the execution speed 
much faster. It is to be noted that the best-ft algorithm discriminates against small jobs as 
being unworthy of occupying a whole partition in order to attain better memory utilization, 
whereas usually, it is desirable to give the smallest jobs (assumed to be interactive jobs) the 
best service, not the worst. 

• Allocation method: The job scheduler chooses one job from the job queue for execution 
in response to the request issued either from the user end or due to the availability of one or 
more free partitions reported by the memory manager. In some situations, there may be a 
few free partitions, but none is found to accommodate the incoming job; the job in question 
will then have to wait until such a partition is available. Another job ftting the available 
partition will then be taken from the job queue for execution in order to keep the memory 
utilization high, even disobeying the ordering of process activations intended by the sched-
uling algorithm that, in turn, may affect the performance of the system as a whole. Another 
situation may happen when a high-priority job is selected for execution but no matching 
partition is available: the memory manager then decides to swap out one suitable process 
from memory to make room for this incoming job, even accepting the additional overhead, 
but its justifcation should be carefully decided beforehand. It is interesting to observe that 
although memory management and processor scheduling reside in separate domains of the 
operating system with different types of responsibilities and targets, operation of the one 
may often affect and infuence the normal operation of the other when static partitioning of 
memory is employed. However, the actions of memory management should be coordinated 
with the operation of processor scheduling in such a way as to extract the highest through-
put while handling an environment consisting of conficting situations. 

• Allocation Schemes: Although a number of allocation schemes are available for this kind 
of systems, two main approaches are common: 
1. Fixed memory partition with separate input job queues for each partition. 
2. Fixed memory partition with single input job queues for all the partitions. 

Each of these approaches has precise merits in some situations and also specifc drawbacks in other 
situations. 

• Protection: Different partitions containing user programs and the operating system should 
be protected from one another to prevent any kind of damage that may be caused by acci-
dental overwrites or intentional malicious encroachment. Adequate protection mechanisms 
are thus required that can be realized in many different ways, described in the last section. 

• Swapping: Swapping is carried out in this system mainly to negotiate an emergency, such 
as a high-priority job that must be immediately executed, or in situations when a job is 
waiting and idle for resources needed for its execution, thereby preventing other intended 
jobs from entering. Swapping- in is also done for an already swapped-out job in order to 
increase the ratio of ready to resident processes and thereby improve the overall perfor-
mance of the system. There are also other situations when swapping is urgently needed. 
The mechanisms required to implement swapping were discussed in a previous section. 

• Fragmentation: In a fxed-partition system, allocation of a process in a partition of ade-
quate size causes an amount of memory space to remain unused internally within the 
partition when the process is loaded. This phenomenon is called internal fragmentation, 
or sometimes internal waste. The extent to which internal fragmentation causes memory 
wastage in a given system varies depending on several factors, such as the number of 
partitions, the size of each individual partition, frequency of execution of processes of a 
specifc size, and average process size and variance. This waste also tends to increase due 



 

  

 
 
 

 

 

 
 
 

 

 

 

232 Operating Systems 

to the provision of one or two large partitions, usually required for large processes, but they 
mostly arrive infrequently, thereby causing these partitions to be mostly underutilized or 
poorly utilized. However, the sum of all such internal fragmentations that occur in each 
partition sometimes even exceeds the size of a specifc partition. Since internal fragmenta-
tion in fxed-partitioned system is inevitable and cannot be avoided, an effcient memory 
management strategy would thus always attempt to keep this internal fragmentation to a 
minimum affordable limit, of course, with no compromise in any way with the overall 
performance of the system. 

• Conclusion: Fixed-partition memory management is one of the simplest possible ways to 
realize multiprogramming with modest hardware support and is suitable for static environ-
ments where the workload can be ascertained beforehand. But the negative impact of inter-
nal fragmentation is one of its major drawbacks. It is equally disadvantageous in systems in 
which the memory requirement of the job is not known ahead of time. Moreover, the size of 
the executable program itself faces severe restrictions imposed by partition size. In addition, 
programs that grow dynamically during runtime may sometimes fnd this system unsuit-
able due to nonavailability of needed space in the partition thus allocated, and no operating 
system support is available at that time to negotiate this situation. Another pitfall of this sys-
tem may be of fxing the number of partitions that limits the degree of multiprogramming, 
which may have an adverse effect on the effective working of short-term (process) schedul-
ing and may create a negative impact on the overall performance of the system. With the use 
of swapping mechanisms, this situation may be overcome by increasing the ratio of ready to 
resident processes, but that can only be achieved at the cost of additional I/O overhead. Due 
to all these issues and others, timesharing systems as a whole thus required operating sys-
tem design to move away from fxed-partition strategies indicating a move towards handling 
of dynamic environments that could use memory spaces in a better way. 

Still, fxed-partition memory management was widely used in batch multiprogramming systems 
in the early days, particularly in OS/360, a versatile operating system used on large IBM main-
frames for many years. This system was a predecessor of OS/MVT (multiprogramming with vari-
able number of tasks) and OS/MFT, which, in turn, is a predecessor of MULTICS that ultimately 
became converted into today’s UNIX. 

More details on this topic with fgures are given on the Support Material at www.routledge.com/ 
9781032467238. 

5.8.1.2.2 Overlays 
An overlay mechanism used in software development is a technique by which a program larger than 
the size of the available small user area (partition) can be run with almost no restrictions in relation 
to the size of the offered area, without getting much assistance from the operating system in this 
regard. In the overlay technique, a user program can be subdivided by the developer into a number 
of modules, blocks, or components. Each such component is an entity in a program that consists 
of a group of logically related items, and each could ft in the available memory. Out of these com-
ponents, there is a main component (root segment) and one or more fxed-size components known 
as overlays. The root segment is always kept resident in the main memory for the entire duration 
of program execution. The overlays are kept stored on a secondary storage device (with extensions 
either .ovl or .ovr) and are loaded into memory as and when needed. Overlay 0 would start running 
frst; when it was done, it would call another overlay. Some overlay systems were highly complex, 
allowing multiple overlays to reside in memory at any point in time. 

In most automatic overlay systems, the developer must explicitly state the overlay structure in 
advance. There are many binders available that are capable of processing and allocating overlay 
structure. An appropriate module loader is required to load the various components (procedures) 
of the overlay structure as they are needed. The portion of the loader that actually intercepts the 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 233  

 

 

 
 
 
 
 

 

calls and loads the necessary procedure is called the overlay supervisor or simply the fipper. The 
root component is essentially an overlay supervisor that intercept the calls of the executing resident 
overlay components during runtime. Whenever an inter procedure reference is made, control is 
transferred to the overlay supervisor, which loads the target procedure, if necessary. 

The hardware does not support overlays. Checking every reference would be unacceptably slow 
in software. Therefore, only procedure calls are allowed to invoke new overlays. Procedure invoca-
tion and return are, however, more expensive than they usually would be, because not only must 
the status of the destination overlay be examined, but it may also have to be brought into secondary 
storage. However, the software, such as translators, like compilers and assemblers, can be of great 
assistance in this regard. 

The overlay concept itself opened a wide spectrum of possibilities. To run the program, the frst 
overlay was brought in and ran for a while. When it fnished, or even during its execution, it could 
read in the next overlay by calling it with the help of the overlay supervisor, and so on. The super-
visor itself undertakes the task of necessary input–output to remove the overlay or overlays that 
occupy the place the desired one needs to be loaded and then bring the required overlay into that 
position. To implement the overlay mechanism, the programmer had a lot of responsibilities, such 
as breaking the program into overlays, deciding where in the secondary memory each overlay was 
to be kept, arranging for the transport of overlays between main memory and secondary memory, 
and in general managing the entire overlay process without any assistance from the hardware or 
operating system. If, by some means, the entire burden of the overlay mechanism and its related 
management responsibilities could be shifted onto (entrusted with) the operating system, relieving 
the programmer from hazardous bookkeeping activities, we would nearly arrive at the doorstep in 
the emergence of an innovative concept now called paging. Paging is discussed in detail in a later 
section in this chapter. 

An overlay mechanism is essentially a more refned form of a swapping technique which swaps 
only portions of job’s address space and is called overlay management. Overlays work well only 
with applications where the execution of the program goes through well-defned phases, each of 
which requires different program units. Thrashing can result from the inappropriate use of overlays. 
Overlays, normally used in conjunction with single contiguous, partitioned, or relocatable parti-
tioned memory management, provide essentially an approximation of segmentation but without 
the segment address mapping hardware. Segmentation is discussed in a later section in this chapter. 

In spite of being widely used for many years with several merits and distinct advantages, the over-
lay technique is critically constrained due to the involvement of much work in connection with over-
lay management. To get out of it, a group of researchers in Manchester, England, in 1961 proposed a 
method for performing the overlay process automatically with no intimation even to the programmer 
that it was happening (Fotheringham, 1961). This method is now called virtual memory, in which all 
management responsibility is entrusted to the operating system, releasing the programmer from a lot 
of annoying bookkeeping tasks. It was frst used during the 1960s, and by the last part of the 1960s 
and early 1970s, virtual memory had become available on most computers, including those for com-
mercial use. Nowadays, even microprocessor-based small computer systems have highly sophisti-
cated virtual memory systems. Virtual memory is discussed in detail in later sections in this chapter. 

More details on this topic with a figure are given on the Support Material at www.routledge. 
com/9781032467238. 

5.8.1.2.3 Dynamic Linking 
The appearance of overlay concept eventually blooms out many sparkling ideas to emerge. One of 
them is that, instead of having an overlay structure, a mechanism could be developed by which link-
ing of external references and subsequent loading are postponed until execution time. That is, the 
translator (assembler/compiler) produces object code containing text, binding, and relocation infor-
mation from a source language deck. The loader loads only the main program. During runtime, if 
the main program should execute a transfer instruction to an external address or refer to an external 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 

 
 
 
 

  
 
 
 
 
 

 
    

  
 

234 Operating Systems 

variable, the loader is called and the segment containing the external references will only then be 
loaded and linked to the program at the point where it is frst called. This type of function is usually 
called dynamic linking, dynamic loading, or load-on-call (LOCAL). 

Dynamic linking and subsequent loading are powerful tools that provide a wide range of possibilities 
concerning use, sharing, and updating of library modules. Modules of a program that are not invoked 
during the execution of the program need not be loaded and linked to it, thereby offering substantial sav-
ings of both time and memory space. Moreover, if a module referenced by a program has already been 
linked to another executing program, the same copy can be linked to this program as well. This means 
that dynamic linking often allows several executing programs to share one copy of a subroutine or library 
procedure, resulting in considerable savings both in terms of time and memory space. Runtime support 
routines for the high-level language C could be stored in a dynamic link library (fles with extension .dll). 
A single copy of the routines in this library could be loaded into memory. All C programs currently in 
execution could then be linked to this one copy instead of linking a separate copy in each object program. 
Dynamic linking also provides an interesting advantage: when a library of modules is updated, any 
program that invokes a new module starts using the new version of the module automatically. It provides 
another means to conserve memory by overwriting a module existing in memory with a new module. 
This idea has been subsequently exploited in virtual memory, discussed in the following section. 

In an object-oriented system, dynamic linking is often used to refer software object with its allied 
methods. Moreover, the implementation of the object can be changed at any time without affecting 
the program that makes use of the object. Dynamic linking also allows one object to be shared by 
several executing programs in the way already explained. 

Dynamic linking is accomplished by a dynamic loader (a constituent of the OS services) which 
loads and links a called routine and then transfers the control to the called routine for its execution. 
After completion (or termination) of the execution, the control is once again sent back to the OS for 
subsequent necessary actions. The called routine, however, may be still in memory if the storage 
page supports that, so a second call to it may not require another load operation. Control may now 
simply be passed from the dynamic loader to the called routine. When dynamic linking is used, the 
association of an actual address with the symbolic name of the called routine is not made until the 
call statement is executed. Another way of describing this is to say that the binding of the name to 
an actual address is delayed from load time until execution time. This delayed binding offers greater 
fexibility as well as substantial reduction in storage space usage, but it requires more overhead since 
the operating system must intervene in the calling process. It can be inferred that this delayed bind-
ing gives more capabilities at the expense of a relatively small higher cost. 

More details on this topic with figures are given on the Support Material at www.routledge. 
com/9781032467238. 

5.8.1.2.4 Sharing of Programs 
Programs can be shared in two ways: static sharing and dynamic sharing. In static sharing, the 
program to be shared undergoes static binding by a linker that injects a copy of the shared program 
in each of all the other programs that want to use it. Static binding is done to create the load module 
(executable module, .exe fle) before the execution of a program begins. The identity of the shared 
program is then lost in each of the load modules thus produced by the linker. If more than one such 
load module at any instant are present simultaneously in memory, then more than one copies of the 
same shared program are in memory at the same time. However, static sharing of a program is easy 
to implement but adversely affects memory usage causing wastage by having multiple copies of the 
shared program during the execution of the programs that use the shared program. 

Dynamic sharing implies that a single copy of the shared program can be used by several other 
programs during their execution when they require it. It is done by dynamic linking carried out 
by a dynamic linker (loader, a part of OS). Here, the shared program has a different identity 
(a different fle extension, .dll) and it is known to OS. When this shared program is called for the 
frst time by any other calling program, a copy of the shared program is then brought in main 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 235  

  
 
 

 
 
 

 
 

 

 

 

  
 
 

 
 
 

memory from secondary storage, and it is then linked to the calling program at the point where the 
call occurs. When another calling program needs to use the same shared program, the kernel frst 
checks whether a copy of the shared program is already available in memory. If so, the kernel then 
links the existing shared program to this new calling program. Thus, there exists only one copy 
of the shared program in main memory, even when it is shared by more than one program. While 
dynamic sharing conserves memory space, it is at the cost of complexity in its implementation. 
Here, the kernel has to always keep track of shared program(s) existing in memory and perform the 
needed dynamic linking. The program be shared also has to be coded in a different way. It is written 
as a reentrant program to negotiate the mutual interference of programs that share it. 

Reentrant programs: When a shared program is dynamically shared by other sharing programs, 
the data created by one executing sharing program and embedded in the shared program should 
be kept protected by the shared program from any interference that may be caused by any of the 
other sharing programs while in execution. This is accomplished by allocating a separate data 
area dynamically for each executing sharing program and holding its address in a CPU register. 
The contents of these registers are saved as part of the CPU state when a process switch occurs 
and once again reloaded into the CPU registers when the program is brought back into main 
memory. This arrangement and related actions ensure that different invocations of the shared 
program by individual sharing programs will not interfere with one another’s data. 

More details on this topic with fgures are given on the Support Material at www.routledge.com/ 
9781032467238. 

5.8.1.2.5 Variable Partition: Dynamic Partition 
To alleviate the critical internal fragmentation problem and several other acute constraints attrib-
uted by fxed-size partition static allocation scheme, it was then required to redesign the memory 
manager so that instead of creating the partitions before the arrival of the processes, it could cre-
ate the partition dynamically by allocating space from the currently existing state of the system to 
ft the requirement of each requesting process at the time of its arrival. Likewise, when a process 
is completed, terminated, or even swapped out, the vacated space is returned to the pool of free 
memory areas so that the memory manager can proceed with further allocation of partitions from 
the available total memory areas whenever needed. In fact, the memory manager may continuously 
create more partitions to allocate the required amount of memory to newly arriving processes until 
all the physical memory is exhausted. Truly, there is no restriction on the maximum number of jobs 
that can reside in memory nor even on their sizes at any point in time, except the occurrence of 
some peculiar situations arising from certain restrictions on the part of OS design, particularly the 
limitations of available PCB queue lengths and other data structures used by the operating system. 

This differently defned memory management scheme is known as dynamic partitionor vari-
able partition, meaning that the partitions are to be created to jobs’ requirements during job pro-
cessing. Various types of approaches exist to accomplish dynamic partition allocation. Numerous 
specifcations of data structures are needed to support dynamic defnition and allocation of parti-
tions. Tables must be made with entries for each free area and each allocated partition specifying 
the size, location, and access restriction to each partition. 

• Operation Methodology: Initially the entire user area in memory is free and treated 
as a single big hole for allocation to incoming processes. Whenever a request arrives to 
load a process, the memory management then attempts to locate a contiguous free area of 
memory to create a partition whose size is equal to or a little bit larger than the request-
ing process’s size declared at the time of its submission or otherwise available (from the 
process image fle). If such a free area suitable for the requesting process is found, the 
memory management then carves out a contiguous block of memory from it to create 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

 

236 Operating Systems 

an exact-ft partition for the process in question, and the remaining free memory, if any, 
is then returned to the pool of free memory for further allocation later on. The block of 
memory or the partition thus created would then be loaded with the requesting process 
and is declared allocated by registering the base address, size, and the status (allocated) 
in the system PDT or its equivalent, as we will see next. As usual, a link to or a copy 
of this information is recorded in the corresponding process control block. The process 
is now ready for execution. If no such suitable free area is available for allocation, an 
appropriate error message is shown to user, or other appropriate actions are taken by 
the operating system. However, after successful allocation of a partition to a deserving 
process, if another request arrives for a second process to load, the memory management 
should then start attempting to locate a suitable free area immediately following the area 
already allocated to the frst process. This allocation, if possible, once made, is then 
recorded in the modifed PDT (an extension of the previously defned PDT). In this way, 
successive memory allocation to requesting processes is to be continued until the entire 
physical memory is exhausted, or any restriction is imposed by the system on further 
admission of any other process. Although all these partition-related information includ-
ing free memory areas are essentially remained unchanged as long as the process(es) 
resides in memory, but may sometimes need to be updated each time a new partition is 
created or an existing partition is deleted. 

When adequate room is not available for a new process, it can be kept waiting until a suitable 
space is found, or a choice can be made either to swap out a process or to shuffe (compaction, 
to be discussed later) to accommodate the new process. Generally, shuffing takes less time than 
swapping, but no other activity can proceed in the meantime. Occasionally, swapping out a single 
small process will allow two adjacent medium-sized free pieces to coalesce into a free piece large 
enough to satisfy the new process. A policy to decide whether to shuffe or swap could be based 
on the percentage of time the memory manager spends in shuffing. If that time is less than some 
fxed percentage, which is a tunable parameter of the policy, then the decision would be to shuffe. 
Otherwise, a segment would be swapped out. 

When a resident process is completed, terminated, or even swapped out, the operating system 
demolishes the partition by returning the partition’s space (as defned in the PDT) to the pool of 
free memory areas and declaring the status of the corresponding PDT entry “FREE” or simply 
invalidating the corresponding PDT entry. For a swapped-out process, in particular, the operating 
system, in addition, also invalidates the PCB feld where the information of the allocated partition 
is usually recorded. 

As releasing memory due to completion of a process and subsequent allocation of available 
memory for the newly arrived process continues, and since the sizes of these two processes are not 
the same, it happens that after some time, a good number of tiny holes is formed in between the 
two adjacent partitions, not large enough to be allocatable that are spread all over the memory. This 
phenomenon is called external fragmentation or checkerboarding, referring to the fact that all the 
holes in the memory area are external to all partitions and become increasingly fragmented, thereby 
causing only a simple waste. This is in contrast to internal fragmentation, which refers to the waste 
of memory area within the partition, as already discussed earlier. Concatenation or coalescing, 
and compaction, to be discussed later, are essentially two means that can be exploited to effectively 
overcome this problem. 

• Memory Allocation Model: Under this scheme, when a process is created or swapped in, 
the memory of a particular size that is allocated may not be suffcient when the process is 
under execution, since its data segments can grow dynamically and may even go beyond 
the allocated domain. In fact, the allocated memory used by an executing process essen-
tially constitutes of the following: 



Memory Management  237 

1.  Program code with static data to be executed. 
2.  Program-controlled dynamic data (PCD data) generated during execution. 
3.  A stack used by program that may grow during execution. 

The executable program code and its associated static data components are more or less constant 
in size, and this size information can be obtained from the directory entry of the program fle. The 
stack contains program data and also other data consisting of the parameters of the procedures, 
functions, or blocks in a program that have been called but have not yet been exited from, and also 
return addresses that are to be used while exiting from them. These data are allocated dynamically 
when a function, procedure, or block is entered and are deallocated when it exits, making the stack 
grow and shrink accordingly. The other kind of data that can grow dynamically are created by a 
program using features of programming languages, such as the new statements of Pascal, C++, and 
Java or the malloc and  calloc statements of C. Such data are called program controlled dynamic 
data. Normally, PCD data are allocated memory using a data structure called a heap. As execution 
proceeds, the size of the stack, the PCD data, and their actual memory requirements cannot be 
predicted, as they constantly grow and shrink. That is why a little extra memory is allocated for 
these two dynamic components whenever a process is newly created, swapped in, or moved (to be 
discussed in next section), as shown in Figure 5.1(a) using two such processes. 

To realize fexibility in memory allocation under this approach, an alternative form of memory 
allocation model, as depicted in Figure 5.1(b), is developed to accommodate these two dynamic 
components. The program code and its allied static data components in the program are allocated 
adequate memory per their sizes. The stack and the PCD data share a single large area at the top 
of its allocated memory but grow in opposite directions when memory is allocated to new enti-
ties. A portion of memory between these two components is thus kept free for either of them. In 
this model, the stack and PCD data components, however, do not have as such any individual size 
restrictions. Still, even if it is found that the single large area as offered to both stack and PCD data 
is not adequate and runs out, either the process will have to be moved to a hole with enough space 
(discussed next in dynamic allocation) or swapped out of memory until a beftting hole can be cre-
ated, or it ultimately may be killed. 

A program during execution when calls its needed procedures from the runtime library offered 
by the programming languages, these library routines themselves perform allocations/deallocations 
activities in the PCD area offered to them. The memory management is not at all involved in these 
activities, and in fact, it just allocates the required area for stack and PCD, and nothing else. 

Memory Memory 

OPERATING 
SYSTEM 

A 

B 

Area for 
growth 

Actually 
in use 

Area for 
growth 

Actually 
in use 

B-Program
and Static data 

OPERATING 
SYSTEM 

B-STACK 

B-PCD Data 

A-STACK 

A-PCD Data 
A-Program 

and static data 

Area for one 
growtharea 

one area Area for growth 

(a) (b) 

FIGURE 5.1  In variable–partitioned memory management, memory space allocation for;  a) a growing data 
segment, and b) as one free area for both a growing stack and a growing data segment. 



 

    
 
 
 
 
 
 
 
 

 

 

 

  

   

  

238 Operating Systems 

• Dynamic Allocation: Sill, the executing process often runs out of already-allocated space 
and then requests more memory for its ongoing computation. One simple way to negotiate this 
situation may be that the memory manager could then block the process until more adjacent 
space becomes available. But this strategy is not favored for many interactive users, since it 
might involve very long waits for service. Alternatively, the memory management could fnd 
a larger hole that matches the requirement and then move the process to the new hole, thereby 
releasing the currently used space. However (similar to compaction, to be discussed later), 
the system would then require some means of adjusting the program’s addresses accordingly 
when it moves to the new address space, and the additional overhead linked with it should 
be taken into account when such an attempt is made for the sake of tuning the performance. 

More details on this topic with fgures are given on the Support Material at www.routledge. 
com/9781032467238. 

• Space Management: In dynamically partitioned memory management, the memory man-
ager needs to constantly keep track of all the allocated partitions and free spaces (parti-
tions); the attributes of all these partitions always keep changing due to the dynamic nature 
of the scheme that eventually requires a data structure different from that used in a fxed-
partitioned scheme. 
1. Partition Description Table (PDT): In variable-partitioned scheme, a modifed PDT 

is used that keeps track only of allocated partitions and contains an entry for each such 
allocated partition which consists of two felds, the base address and the size. The sys-
tem refers to each of these entries (processes) using their addresses. Each entry in the 
PDT is linked to the corresponding process’s PCB. When a process is completed or 
terminated (aborted), the corresponding entry in the PDT along with its PCB is deleted. 
When a process is swapped out, the corresponding entry in the PDT along with the link 
in its corresponding PCB is removed. This space in the PDT now obtained can subse-
quently be used for newly created partitions offered to other incoming processes, and 
this information is accordingly recorded in the respective data structures (including the 
PCBs) of the newly arrived processes. However, the size of the PDT is limited by the 
maximum number of PCBs that the operating system provides in its design. 

To keep track of the free partitions that are constantly created when a job completes 
(terminates) or is swapped out, which are subsequently used up due to allocation of a 
newly arrived job, a linked list of all such available free partitions with all their informa-
tion is thus maintained in the form of a separate free list for the purpose of re-allocating 
them effciently. The free list is usually arranged in order of increasing memory address, 
and each entry in the free list will then contain the size of the current free space itself 
and a pointer to the next free location. An alternative approach may be to store this 
information within the current free space (hole) itself without creating a separate list. 
This approach normally uses the frst two words within each free partition for this pur-
pose. A pointer to the frst free partition is stored in a variable HEAD. This approach, 
however, does not impose any additional memory overhead. 

More details on this topic with fgure are given on the Support Material at www. 
routledge.com/9781032467238. 

2. Bit Maps: The entire memory here is conceived and divided up into allocation units. 
This unit may be considered as small as consisting of only few words, or may be as 
large as several kilobytes. When space is allocated to a job, it should be given in terms 
of an integral multiple of consecutive units. Corresponding to each allocation unit is a 
bit in the bit map, which is 0 if the unit is free and 1 if it is allocated (or vice-versa). The 
bit map is created using contiguous words, and the bits in the bit map are packed into 
these words. When a piece of memory is freed, the corresponding bits in the bit map 
are reset to 0 (or 1). A series of consecutive 0 bits (or 1) in the bit map is equivalent to a 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 239  

 

 

  

  

 

   

  
 

 

corresponding free space of respective size. Hence, it is not necessary to join the pieces 
to their neighbors explicitly. 
• One of the important design issues related to this scheme is the size of the allocation 

unit to be chosen. The smaller the allocation unit, the closer space to be allocated to 
the job’s required space and hence the less the memory wastage in internal fragmen-
tation, but the size of the bit map in that case will be larger. If the allocation unit is 
chosen to be large, the size of the bit map will be small, but there remains a possibil-
ity that an appreciable amount of memory may be wasted in internal fragmentation, 
particularly in the last allocated unit of each process, if the process size is not an 
exact multiple of the allocation unit. Hence, the tradeoff must be in the selection of 
the proper size of the allocation unit that should lie somewhere in between. 

• Implementation of the bit map approach is comparatively easy with almost no addi-
tional overhead in memory usage. The bit map provides a simple way to keep track 
of memory space in a fxed-sized memory because the size of the bit map depends 
only on the size of memory and on the size of the allocation unit. However, the main 
drawback of this approach is that when a job is required to be brought into memory, 
the memory manager must search the bit map for the needed free space to fnd a 
stream of needed consecutive 0 (or 1) bits of a given length in the map, which is 
always a slow operation. So, in practice, at least for this type of memory allocation 
strategy, bit maps are not often used and consequently fell out of favor. 

• More details on this topic with a fgure are given on the Support Material at www. 
routledge.com/9781032467238. 

3. Linked Lists: Another common approach to keep track of memory usage is by main-
taining a linked list of allocated and free memory segments, where a segment represents 
either a process or a hole (free area). Each entry in the linked list specifes a process (P) 
or a hole (H), the address at which it starts, the length (the number of allocation units), 
and a pointer to the next entry. The entries in the list can be arranged either in increasing 
order by size or in increasing order by address. Keeping the linked list sorted in increas-
ing order by address has the advantage that when a process is completed, terminated, 
or even swapped out, updating the existing list requires only replacing a P with an H. 
This process normally has two neighbors (except when it is at the very top or bottom of 
memory), each of which may be either a process or a hole. If two adjacent entries are 
holes, they can then be concatenated (coalesced) into one to make a larger hole that may 
then be allocated to a new process, and the list also becomes shorter by one entry. 

It is sometimes more convenient to use a double-linked list to keep track of allocated and free 
memory segments rather than a single-linked list, as already described. This double-linked struc-
ture makes it much easier for the departing process to locate the previous entry and see if a merge 
is possible. Moreover, the double-linked list of only free areas (free list) is otherwise advantageous 
too, since this organization facilitates addition/deletion of new memory areas to/from the list. In 
addition, if the entries in this list can be arranged in increasing order by size, then the “best pos-
sible” area to satisfy a specifc memory request can be readily identifed. 

More details on this topic with figures are given on the Support Material at www.routledge. 
com/9781032467238. 

• Allocation Strategy: At the time of memory allocation, two fundamental aspects in the 
design are: effcient use of memory and the effective speed of memory allocation. Effcient 
use of memory is again primarily associated with two issues: 
1. Overhead in memory usage: The memory manager itself uses some memory to accomplish 

its administrative operations, while keeping track of memory segments, and the memory 
usage by a requesting process, to only keep track of its own allocated memory as well. 

2. Effective use of released memory: When a memory segment is released by a process, the 
same can be reused by fresh re-allocation. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

 
 
 
 
 

240 Operating Systems 

Effcient use of memory is an important factor because the size of a fresh request for memory 
seldom matches the size of any released memory areas. Hence, there always remains a possibility 
that some memory area may be wasted (external fragmentation) when a particular memory area is 
re-allocated. Adequate care should be taken to reduce this wastage in order to improve memory 
utilization and to avoid additional costly operation like compaction (to be discussed later). Common 
algorithms used by the memory manager for selection of a free area for creation of a partition to 
accomplish a fresh allocation for a newly created or swapped-in process are: 

• First ft and its variant next ft 
• Best ft 
• Worst ft 
• Next ft 
• Quick ft 

The simplest algorithm is frst ft, where the memory manager scans along the free list of segments 
(holes) until it fnds one big enough to service the request. The hole is then selected and is broken up 
into two pieces: one to allocate to the requesting process, and the remaining part of the hole is put back 
into the free list, except in the unlikely case of an exact ft. First ft is a fast algorithm because it searches 
as little as possible. But the main drawback of this approach is that a hole may be split up several times, 
leading to successively smaller holes not large enough to hold any single job, thereby resulting in waste. 
Moreover, there is a possibility that a suffciently large hole may be used up by this technique that may 
deprive a large process from entering that is already in the job queue but came at a later time. 

Best ft is another well-known algorithm in which the entire list is searched and then selects the 
smallest hole that is adequate in size for the requesting process. Rather than breaking up a big hole 
which might be needed later, best ft tries to optimize memory utilization by selecting one close to the 
actual needed size, but it then constantly generates so many tiny holes due to such allocation that these 
holes eventually are of no further use. Best ft is usually slower than frst ft because of searching the 
entire list at every allocation. Somewhat surprisingly, it also results in more wasted memory than frst 
ft and its variant, next ft (to be discussed next), because it tends to constantly fll up memory with so 
many tiny, useless holes. First ft, in this regard, usually generates comparatively large holes on average. 

Next ft is basically a minor variation of frst ft. It works in the same way as frst ft does, except 
that it always keeps track of the position in the linked list when it fnds a suitable hole. The next 
time it is called, it starts searching the list for a suitable hole from the position in the list where it 
left off, instead of always starting at the beginning, as frst ft does. Simulations carried out by Bays 
(1977) reveals that next ft usually gives a little worse performance than frst ft. However, the next ft 
technique can also be viewed as a compromise between frst ft and best ft. While attempting a new 
allocation, next ft searches the list starting from the next entry of its last allocation and performs 
allocation in the same way as frst ft does. In this way, it avoids splitting the same area repeatedly 
as happens with the frst ft technique, and at the same time it does not suffer from allocation over-
head as found in the best ft technique, which always starts searching from the beginning of the list. 

Worst ft is the opposite of best ft. It always take the largest available hole that exceeds the size of 
the requesting process. Best ft, in contrast, always takes the smallest possible available hole matched 
with the size of the requesting process. The philosophy behind the worst ft technique is obviously to 
reduce the rate of production of tiny, useless holes that best ft constantly generates. However, studies 
based on simulation reveal that worst-ft allocation is not very effective in reducing wasted memory, 
particularly when a series of requests are processed over a considerable duration of time. 

Quick ft is yet another allocation algorithm which normally maintains separate lists of some 
of the most common sizes of segments usually requested. With this form of arrangement and using 
quick ft, searching a hole of the required size is, no doubt, extremely fast but suffers from the same 
drawbacks similar to most of the other schemes that sort by hole size; particularly when a process 
completes or terminates or is swapped out, fnding its neighbors to see whether a merge is possible is 



Memory Management 241  

 
 

 
 
 

 

  
 
 

 
 

 
 

 
 

 
 

extremely tedious. If merging cannot be carried out, it is quite natural that the memory will quickly 
fragment into a large number of tiny, useless holes. 

While working with experimental data, Knuth concluded that frst ft is usually superior to best 
ft in practice. Both frst ft and next ft are observed to perform better than their counterpart, best 
ft. However, next ft has a tendency to split all the areas if the system is in operation for quite a long 
time, whereas frst ft may not split all of the last few free areas, which often helps it allocate these 
large memory areas to deserving processes. 

To implement any of these methods, the memory manager needs to keep track of which pieces of 
physical area are in use and which are free using a data structure known as boundary tag (discussed 
later in “Merging Free Areas”). In this structure, each free area has physical pointers that link all free 
areas in a doubly linked list. They do not have to appear in order in that list. Also, each such area, 
whether free or in use, has the frst and last words reserved to indicate its status (free or busy) and its 
length. When a free block is needed, the doubly linked list is searched from the beginning or from 
the last stopping point until an adequate area is found. If found, it is then split up; if necessary, to 
form a new busy piece and a new free piece. If the ft is exact, the entire piece is removed from the 
doubly linked free list. When a piece is returned to free space, it is joined to the pieces before it and 
after it (if they are free) and then put on the free list. 

All four algorithms as presented can be further sped up by maintaining distinctly separated lists for 
processes and holes, and only the hole list can be inspected at the time of allocation. The hole list can again 
be kept sorted in ascending order by size that, in turn, enables the best ft technique to work faster, ensur-
ing that the hole thus found is the smallest possible required one. With this arrangement, both frst ft and 
best ft are equally fast, and next ft is simply blunt. On the other hand, this arrangement invites additional 
complexity and subsequent slowdown when deallocating memory, since a now-free segment has to be 
removed from the process list and inserted appropriately into the hole list, if required, with concatenation. 

Various other algorithms are also found, particularly to counter situations when the size of the 
requesting processes, or even the probability distribution of their need and process lifetimes, are not 
known to the system in advance. Some of the possibilities in this regard are described in the work 
of Beck (1982), Stephenson (1983), and Oldehoeft and Allan (1985). 

An Example: Illustration of All Four Techniques 
For example, take a part of memory with a free list that contains three free areas of size 200, 
150, and 500 bytes respectively. Processes make allocation requests for 130, 50, and 300 bytes in 
sequence. The four techniques are employed separately to satisfy these requests. 

The solution to this example with a figure is given on the Support Material at www. 
routledge.com/9781032467238. 

• Impact of External Fragmentation: An Estimation: External fragmentation causing 
memory wastage is obvious in systems with dynamic partitioning of memory irrespective 
of the allocation strategy (frst ft, best ft, etc.) being used while partitioning the memory. 
The primary reason for fragmentation is that the pattern of returns of free areas due to dif-
ferent lifetimes of resident objects is generally different from the arrival pattern of objects 
and hence the order of their allocations. Merging adjacent free areas reduces the amount of 
wasted memory to minimize fragmentation and its impact but is unable to solve this prob-
lem. However, sometimes after the commencement of operation, the system using dynamic 
allocation of memory tends to attain a state of equilibrium in which the memory wasted by 
a given allocation scheme can be estimated and can then be used for the purpose of com-
parison. With an appropriate calculation using simulation, it can be shown that, averaged 
over time, there must be half as many holes as processes in the memory region. This result is 
sometimes known as the ffty (50) percent rule. The rule highlights that approximately one-
third of memory, or around 33 percent, is wasted due to fragmentation, even though adjacent 
free areas are continuously merged whenever possible. However, this rule can be derived 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 

  
 
 
 
 
 

 
 

  

 
 
 
 
 
 

 
 

  
 

242 Operating Systems 

in many other different ways; one such useful derivation of it is the unused memory rule, 
whose explanation with mathematical computation is outside the scope of this discussion. 

The details of this topic with mathematical computation are given on the Support 
Material at www.routledge.com/9781032467238. 

• Merging Free Areas: External fragmentation results in the production of many useless tiny 
holes that may give rise to substantial wastage in memory, which eventually limits the system 
in satisfying all the legitimate demands that could otherwise be possibly met. Consequently, it 
affects the expected distributions of available memory among the requesting processes. Merging 
of free areas including many useless tiny holes is thus carried out to generate relatively large 
free areas that can now hold processes, thereby providing better memory utilization to improve 
system performance as well as neutralizing the evil effects caused by external fragmentation. 

Merging can be carried out whenever an area is released, and it is accomplished by checking the 
free list to see if there is any area adjacent to this new area. If so, this area can be merged with the 
new area, and the resulting new area can then be added to the list, deleting the old free area. This 
method is easy to implement but is expensive, since it involves a search over the entire free list every 
time a new area is added to it. Numerous types of techniques already exist to accomplish merging 
in various ways. Two generic techniques to perform merging that work most effciently, boundary 
tags and memory compaction, will now be discussed. 

• Boundary tags: Using boundary tags, both the allocated and free areas of memory can be 
tracked more conveniently. A tag is basically a status descriptor for a memory segment con-
sisting of an ordered pair (allocation status, size). Two identical tags containing similar infor-
mation are stored at the beginning and the end of each segment, that is, in the frst and last 
few bytes of the segment. Thus, every allocated and free area of memory contains tags near 
its boundaries. If an area is free, additional information, the free list pointer, follows the tag at 
the starting boundary. Figure 5.2 shows a sample of this arrangement. When an area becomes 
free, the boundary tags of its neighboring areas are checked. These tags are easy to locate 
because they immediately precede and follow the boundaries of the newly freed area. If any 
of the neighbors is found free, it is immediately merged with the newly freed area. Three pos-
sibilities (when the new free area has its left neighbor free, when the new free area has its right 
neighbor free, and when the new free area has both neighbors free) may happen at the time of 
merging, which is depicted on the Support Material at www.routledge.com/9781032467238. 

The details of this topic with a fgure and explanation are given on the Support Material at www. 
routledge.com/9781032467238. 

• Memory Compaction: In the variable partitioned memory management scheme, the 
active segments (processes) are interspersed with the holes throughout the entire memory 

FIGURE 5.2 In variable–partitioned memory management, use of boundary tags and free–area pointer to 
coalesce the free spaces to minimize the external fragmentation. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


0 
OS 

0 
OS 

0 
OS 

0 
OS 

(200K) (200K) (200K) (200K) 
200K 200K 200K 200K 

300K 

500K 

650K 

100K 
A 

(200K) 

150K 

400K 

A 
(200K) 

B 
(350K) 

450K 

650K 

(250K) 

A 
(200K) 

400K 

650K 

A 
(200K) 

(250K) 

B 750K B B 
(350K) (250K) 

(350K) (350K) 

1000K 1000K 1000K 1000K 

(a) (b) (c) (d) 

(a) Initial memory map. 
(b) A and B merged, Total 250K moved to compact. 
(c) From (a), when A moved downwards, total 250K moved to compact. 
(d) From (a), when A moved upwards, total 250K moved to compact. 

Memory Management  243 

in general. To get out of it, one way may be to relocate some or all processes towards one  
end of memory as far as possible by changing memory bindings such that all the holes can  
come together and be merged to form a single one big segment. This technique is known  
as memory compaction. All location-sensitive information (addresses) of all involved pro-
cesses has to be relocated accordingly. If the computer system provides a relocation register  
(base register), relocation can be achieved by simply changing the contents of the relocation  
register (relocation activity, already discussed separately in the previous section). During  
compaction, the processes involved (those processes to be shifted) must be suspended and  
actually copied from one area of memory into another. It is, therefore, important to care-
fully decide when and how this compaction activity is to be performed. Figure  5.3  is  self-
explanatory and illustrates the use of compaction while free areas are to be merged. 

Now the question arises of how often the compaction is to be done. In some systems, compaction 
is done periodically with a period decided at system generation time. In other systems, compaction 
is done whenever possible or only when it is needed, for example, when none of the jobs in the job 
queue fnds a suitable hole, even though the combined size of the available free areas (holes) in a 
scattered condition exceeds the needs of the request at hand. Compaction here is helpful and may 
be carried out to fulfll the pending requirement. An alternative is with some systems that execute 
memory compaction whenever a free area is created by a departing process, thereby collecting most 
of the free memory into a single large area. 

When compaction is to be carried out, it is equally important to examine all the possible options for  
moving processes from one location to another in terms of minimizing the overhead to be incurred while  
selecting the optimal strategy. A common approach to minimize the overhead is always to attempt to  
relocate all partitions to one end of memory, as already described. During compaction, the affected pro-
cess is temporarily suspended and all other system activities are halted for the time being. The compac-
tion process is completed by updating the free list (in linked-list approach) and the affected PDT entries.  
As the compaction activity, in general, is associated with excessive operational overhead, dynamic parti-
tion of memory is hardly ever implemented in systems that do not have dynamic relocation hardware. 

Details on this topic with a fgure and explanation are given on the Support Material at www.  
routledge.com/9781032467238. 

FIGURE 5.3  In variable–partitioned memory management, compaction of memory is used to reduce the 
effect of external fragmentation. An example of memory compaction is shown with different confguration in 
memory usage. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 
 
 

 
 
 
 
 
 

  
 

 

244 Operating Systems 

• Space Management with the Buddy System: Memory management with linked lists 
sorted by hole size made the allocation mechanism very fast, but equally poor in han-
dling merging after deallocation of a process. The buddy system (Knuth, 1973), in fact, 
is a space (memory) management algorithm that takes advantage of the fact that comput-
ers use binary numbers for addressing, and it speeds up the merging of adjacent holes 
when a process is deallocated. This scheme performs allocation of memory in blocks of 
a few standard sizes, essentially a power of 2. This approach reduces the effort involved 
in allocation/deallocation and merging of blocks, but it is extremely ineffcient in terms of 
memory utilization, since all requests must be rounded up to the nearest power of 2, which 
summarily leads to a substantial amount of internal fragmentation on average, unless the 
requirement of the requesting process is close to a power of two. 

The entire memory is here split and recombined into blocks in a pre-determined manner during 
allocation and deallocation, respectively. Blocks created by splitting a particular block into two 
equal sizes are called buddy blocks. Free buddy blocks can later be merged (coalesced) to recon-
struct the block which was split earlier to create them. Under this system, adjacent free blocks that 
are not buddies are not coalesced. Thus, each block x has only a single buddy block that either pre-
cedes or follows x in memory. The size of different blocks is 2n for different values of n ≥ t, where t 
is some threshold value. This restriction ensures that memory blocks are not uselessly small in size. 

To control the buddy system, memory management associates a 1-bittag with each block to indi-
cate the status of the block, that is, whether allocated or free. As usual, the tag of a block may be 
located within the block itself, or it may be kept separately. The memory manager maintains many 
lists of free blocks; each free list consists of free blocks of identical size, that is, all blocks of size 2k 

for some k ≥ t, and is maintained as doubly linked list. 
Operation methodology: Allocation of memory begins with many different free lists of block 

size 2c for different values of c ≥ t. When a process requests a memory block of size m, the system 
then inspects the smallest power of 2 such that 2i ≥ m. If the list of blocks with size 2i is not empty, 
it allocates the frst block from the list to the process and changes the tag of the block from free to 
allocated. If the list is found empty, it checks the list for blocks of size 2i+1. It takes one block off 
this list and splits it into halves of size 2i. These blocks become buddies. It then puts one of these 
blocks into the free list for blocks of size 2i and uses the other block to satisfy the request. If a block 
of size 2i+1 is not available, it looks in the list for blocks of size 2i+2. It then takes one block off this 
list and, after splitting this block into two halves of size 2i+1, one of these blocks would be put into 
the free list for blocks of size 2i+1, and the other block would be split further in the same manner 
for allocation as already described. If a block of size 2i+2 is not available, it starts inspecting the 
list of blocks of size 2i+3, and so on. Thus, several splits may have to be carried out before a request 
can be ultimately met. 

After deallocation of a process that releases a memory block of size 2i, the buddy system then 
changes the tag of the block to free and checks the tag of its buddy block to see whether the buddy 
block is also free. If so, it merges these two blocks into a single block of size 2i+1. It then repeats the 
check for further coalescing transitively; that is, it checks whether the buddy of this new block of 
size 2i+1 is free, and so on. It enters a block in the respective free list only when it fnds that its buddy 
block is not free. 

Buddy systems have a distinct advantage over algorithms that sort blocks (multiples of block 
size) by size but not necessarily at addresses. The advantage is that when a block of size 2x bytes is 
freed, the memory manager has to search its buddy block only from the free list of 2x block to see 
if a merge (coalesce) is possible. While other algorithms that allow memory blocks to be split in 
arbitrary ways, all the free lists (or a single list of all holes) must then be searched to fnd a merge 
which is more time consuming; the buddy system in this regard exhibits a clear edge over the others. 

The serious drawback of this approach is that it is extremely ineffcient in terms of memory 
utilization. The reason is that all the requests must be rounded up to a power of 2 at the time of 



Memory Management 245  

         

 

 
 
 
 
 

   
 

 
 
 

   

 
 
 

allocation, and it happens that the sizes of most of the requesting processes are not very close to 
any power of 2. This results in a substantial amount of internal fragmentation on average, which is 
simply a waste on the part of memory usage, unless the size of a requesting process comes close to 
a power of 2. 

Various authors (notably Kaufman, 1984) have modifed the buddy system in different ways to 
attempt to get rid of some of its problems. The UNIX 5.4 (SVR 4) kernel uses this basic approach 
for management of memory that is needed for its own use and, of course, adds some modifcations 
to the underlying existing strategy (a new one is the lazy buddy allocator). A brief discussion of this 
modifed approach is provided in a later section. 

The details of this topic with a fgure and explanation are given on the Support Material at www. 
routledge.com/9781032467238. 

Space Management with Powers-of-Two Allocation: This approach construction-wise resembles 
the buddy system but differs in operation. Similar to the buddy system, the memory blocks are also 
always maintained as powers of 2, and separate free lists are maintained for blocks of different sizes. 
But here an additional component is attached to each block that contains a header element, which is 
used for two purposes. This header element consists of two felds, as shown in Figure 5.4. It contains 
a status fag which indicates whether the block is currently free or allocated. If a block is free, another 
feld in the header then contains size of the block. If a block is allocated, the other feld in the header 
then contains the address of the free list to which it should be added when it becomes free. 

When a requesting process of size m bytes arrives, the memory manager starts inspecting the 
smallest free block that is a power of 2 but large enough to hold m bytes, that is, 2i ≥ m. It frst checks 
the free list containing blocks whose size is the smallest value x such that 2x ≥ m. If the free list is 
empty, it then checks the list containing blocks that are the next higher power of 2 in size, and so 
on. An entire block is always allocated to a request; that is, no splitting of blocks is carried out at 
the time of allocation. Thus, when a process releases a block, no effort is needed to merge (coalesce) 
adjoining blocks to reconstruct larger blocks: it is simply returned to its free list. 

Operation of the system starts by creating blocks of desired sizes and entering them in the corre-
sponding free lists. New blocks can be created dynamically whenever the system runs out of blocks 
of a requested size or when no available block can be allocated to fulfll a specifc request. The UNIX 
4.4 BSD kernel uses this approach for management of memory that is needed for its own use and, 
of course, adds some modifcations to the underlying existing strategy (a new one is the McKusick– 
Karels allocator). A brief discussion of this modifed approach is provided in a later section. 

Status size / address 

Free or Size of block or 
Allocated Address of free list 

FIGURE 5.4 In variable–partitioned memory management, space management is also done with allocation 
of space which is a powers-of-two in size, and a specimen of header element used in each such allocated space 
is shown. 

5.8.1.2.5.1 Comparison of Different Allocation Schemes Different allocation strategies can be 
compared by considering their merits and drawbacks based mainly on two parameters: speed of alloca-
tion, and effcient utilization of memory. In terms of allocation speed, the buddy system and powers-of-
two allocation scheme are superior to frst-ft, best-ft, next-ft, and worst-ft schemes since they do not 
require searching the free lists. The powers-of-two allocation scheme, in turn, is faster than the buddy 
system because it does not need to perform the splitting and subsequent merging. However, effective 
memory utilization can be achieved by computing a memory utilization factor that can be defned as: 

Memory in use 
Memory utilization factor = 

Total memory committted 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  
 
 

 

 
 
 

 

 

 

246 Operating Systems 

where memory in use is the amount of memory in actual use by the requesting processes, and 
total memory committed includes allocated memory, free memory available with the memory 
manager, and memory used by the memory manager to store its own data structures to manage 
the entire memory system. The larger the value of the utilization factor, the better the perfor-
mance of a system because most of the memory will then be in productive use, and the converse 
is the worst. 

In terms of this utilization factor, both the buddy system and powers-of-two allocation scheme 
stand to the negative side because of an appreciable internal fragmentation in general. These 
schemes also require additional memory to store the list headers and tags to control their operations 
and keys for protection. The powers-of-two allocation scheme, in addition, suffers from another 
peculiar problem. Since it does not merge free blocks to reconstruct large blocks, it often fails to 
satisfy a request to hold a job of suffciently large size even when free contiguous blocks of smaller 
sizes are available that could satisfy the request if they could be merged. In a buddy system, this 
situation rarely occurs, and it could happen only if adjoining free blocks are not buddies. In fact, 
Knuth (1973) reports that in simulation studies, a buddy system is usually able to achieve 95 percent 
memory utilization before failing to fulfll a specifc requirement. 

On other hand, the frst-ft, next-ft, and best-ft techniques although provide better memory utili-
zation, since the space in an allocated block is mostly used up, but the frst-ft and next-ft techniques 
may sometimes give rise to the appreciable internal fragmentation which is inherent in the nature of 
these two techniques. However, all these techniques also suffer from external fragmentation since 
free blocks of tiny sizes are continuously generated that are too small to satisfy any standard requests. 

5.8.1.2.6 Comparison: Dynamic Partition versus Fixed Partition 
In summary, both fxed partitioning and dynamic partitioning schemes exhibit merits as well as 
drawbacks. However, fxed partitioning is generally suitable for static environments where the 
workload can be ascertained beforehand with known sizes of frequently executing processes, and 
that is why it was widely used in batch multiprogramming systems. Dynamic partitioning is likely 
more conducive in environments where the workload is unpredictable or less well behaved. In fact, 
a compromise has been made in some systems in which a combined scheme has been used that sup-
ports both static and dynamic partitioning of memory at the same time. This means, a portion of 
memory maybe divided into a certain number of fxed partitions which can be used by the resident 
portion of the operating system and its supporting routines, like device drivers and portions of the 
fle systems. The remaining portion of memory may then be used to allocate other processes by 
using dynamic partitioning. 

Point-wise comparisons of these two approaches are briefy given on the Support Material at www. 
routledge.com/9781032467238. 

5.8.1.2.7 Contemporary Allocation Strategies 
Modern memory management techniques all use some form of variable partitioning in the form of 
allocating fxed-sized blocks (called “pages”, to be discussed in later sections) that greatly simpli-
fes the overall memory management and makes the management of the free list trivial. In contrast, 
the older dynamic partition approach uses variable-sized blocks of memory that require additional 
overhead to manage the memory and its optimal utilization. Under this scheme, the request for 
additional memory from the process during runtime is fulflled either by unloading the part of the 
program (or the entire program) to a ftting area in memory, or the program is allowed to grow, 
allocating the memory from the free list as it did with the original request when the process was 
started. However, in conjunction with variable-sized memory allocation, modern operating systems 
combine the program translation mechanisms (systems) and the associated advanced hardware sup-
port to provide an innovative alternative approach with space binding by using the loader (dynamic 
linking loader) to rebind addresses www.routledge.com/9781032467238. 

Brief details of this topic are given on the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Process P 
0K 

55,000 

120K 
(a) 

0 

100K 
130K 

400K 
450K 

650K 

730K 

830K 
900K 

1000K 

OS 

30K 

A 

50K 

B 

80K 

C 

70K 

D 

1 M  
(b) 

0 

100K 
130K 

400K 
450K 

650K 
690 K  
730K 

830K 
900K 

1000K 

OS 

A 

425000 

B 

C 

D 

1 M  
(c) 

30K 

50K 

40K 
40K 

70K 

P(1) 

P(2) 

P(3) 

Memory Management  247 

5.8.2  NONCONTIGUOUS  MEMORY  ALLOCATION 

Contiguous allocation of memory involving both unequal fxed-size and variable-size partitions is 
ineffcient mainly in the overall utilization of memory, thereby causing a critical negative impact 
of substantial memory wastage due to internal and external fragmentation of memory. Although 
this problem can be solved by an expensive memory compaction approach, sometimes it is also 
inconvenient. When the requirement of contiguous allocation of memory is relaxed, and several 
non-adjacent memory areas are allocated to a process to run, such a scheme of allocation of memory 
is called noncontiguous allocation. Here, none of these scattered areas is large enough to hold the 
entire executable code (including code, data, and stack) but still be able to run in noncontiguous 
locations. Out of several advantages obtained from this scheme, the most notable one is that a mem-
ory area which is not large enough to hold an entire process can still be used, thereby minimizing 
the ill effect of external fragmentation. This, in turn, also relieves the system from carrying out the 
expensive processing of merging free memory areas (memory compaction) that eventually reduces 
the add-on OS overhead. 

To illustrate how a noncontiguous allocation (multiple partition) is carried out to load a pro-
cess and subsequently its execution, let us consider how a process P of size 120K, as shown  
in Figure 5.5(a), is to be initiated. Four free memory areas of 30K, 50K, 80K, and 70K are  
at present available in the memory, as shown in Figure 5.5(b). It is assumed that process P is  
accordingly split into three components, P(1) = 30K, P(2) = 50K, and P(3) = 40K, so as to ft  
into three available non-adjacent free areas, 30K, 50K, 80K, and loaded into them as shown in  
Figure 5.5(c). After allocating 40K (P3) into the free area of 80K, a new free area of 40K will be  
generated. The area 70K located between process C and process D remains unused and could be  
allocated to some other process or to the component of some process with size ≤ 70K. The logi-
cal address space of process P extends from 0 to 120K, while the physical address space extends  
from 0 to 690K. Suppose that an instruction being referenced in process P has the address 55K.  
This is the logical address of the instruction. The process component P(1) in Figure 5.5(c) has  
a size of 30 Kbytes. Therefore, the referenced instruction will be available in component P(2)  
since the size of component P(2) is 50K and will be situated at an offset of (55K – 30K) = 25  
Kbytes from the beginning of P(2). Since P(2) is loaded in memory with the start address 400  

FIGURE 5.5  An example of noncontiguous–memory allocation scheme for a representative process P is 
illustrated. 



Table containing 
memory information of 

OS processes (As for 
Area example, of process P) 

Memory 
Management Instruction currently 

Unit being executed 
(MMU) 

Actual physical 
address 

Memory areas allocated 
to process P. 

Memory areas allocated 
to other processes 

248  Operating Systems 

FIGURE  5.6  A schematic representation of address translation used in non–contiguous memory allocation 
scheme is shown. 

Kbytes, the physical address of the referenced instruction will be (400K + 25K) = 425 Kbytes,  
as shown in Figure 5.5(c). 

•  Logical addresses, physical addresses, and address translation: In the case of non-
contiguous allocation, there is a clean separation between user’s logical address space and 
actual physical address space. The logical address space is the logical view of the process, 
and the real view of the active process in the memory is called the physical view of the 
process. During execution, the CPU issues the logical address and obtains the physical 
address of the corresponding logical address. The OS stores information about the memory 
areas allocated to different components of a process (here the process P) in a table created, 
managed, and controlled by the memory management unit. The table includes the memory 
start addresses and the sizes of each of the components of the process (here it is made of 
three components P(1), P(2), and P(3) of the process P). This is depicted in Figure 5.6. 
The CPU always sends the logical address of each constituent (instruction or data) of the 
process to the MMU, and the MMU, in turn, uses the table containing memory allocation 
information to compute the corresponding actual physical address, which is also called the 
effective memory address. The computing procedure using memory mapping hardware 
to derive the corresponding effective memory address from a logical address at execution 
time is called address translation. 

In general, a logical address issued by the CPU mainly consists of two parts: the id of the pro-
cess component containing the issued address and the specifc byte within the component (offset)  
indicating the particular location. Each referenced address will then be represented by a pair of  
the form: 

(compk, offsetk) 

Where offset offsetk is the displacement of the target location from the beginning of the process 
component  compk. The MMU computes the effective memory address of the target location (compk, 
offsetk) using the formula: 

Effective memory address of logical address (compk, offsetk) 
 = starting address of memory is allocated to compk + offsetk within  compk. 



Memory Management 249  

 

 
 

 
 
 
 
 
 
 
 
 

 

 
 

 

The OS (memory management) records the required memory information concerning any process 
(here, process P) in the table as soon as it schedules a process and provides that to MMU in order to 
carry out the required address translation whenever it is needed. 

Logical and physical organization in relation to this topic with a fgure are given on the Support 
Material at www.routledge.com/9781032467238. 

5.8.2.1 Implementation of Noncontiguous Memory Allocation 
Noncontiguous memory allocation is implemented by two popular approaches: 

• Paging 
• Segmentation 

5.8.2.1.1 Simple Paging: Paged Memory Management 
In case of contiguous memory allocation, the relocatable partition approach while uses memory 
compaction manifests the fact that the address space seen by a job is not necessarily the same when 
the program is actually executed. The multiple partition algorithms used in noncontiguous allocation 
while were able to relax the contiguity requirement, but it did not always decrease fragmentation. 
The overlay concept frst introduced the novel idea that a program can be subdivided into a number 
of mutually exclusive modules and that all the modules forming the program are not needed at the 
same time in main memory to start the execution. The presence of only a few modules in memory 
can easily begin the execution. Moreover, the different modules present in an application could be 
treated as a separate unit that may be swapped in or out during the execution of the program. 

All the nice features of these different existing memory management schemes, when combined 
into one scheme of memory management, give rise to an innovative approach of memory man-
agement, historically known as paged memory management. The paging system was frst intro-
duced in the ATLAS computer at the University of Manchester. It not only discards the mandatory 
requirement of contiguous allocation of physical memory but also solved the fragmentation problem 
without physically moving partitions. Paged memory management has been best exploited in an 
environment with the use of virtual memory, which will be discussed in a later section. 

A paging scheme also uses the notion of a process component (a part of a total process) discussed 
in the last section. Here, each process is divided into small fxed-sized components of the same size. 
Each such component is called a page, which is always a power of 2. The size of a page is defned 
and specifed in the architecture of memory organization and of the computer system. The entire 
memory can accommodate an integral number of pages in it. Memory allocation is performed in 
terms of a page as unit, meaning each such memory allocation is the same as the page size. As 
the pages are all the same size, no unused space in memory can be smaller than a page in size. 
Consequently, external fragmentation does not arise at all in the system. It can also be shown that 
the wasted space in memory due to internal fragmentation for each process will consist of only a 
fraction of the last page of a process at best. 

The operating system partitions the entire memory into equal fxed-size chunks of relatively 
small areas called page frames. Each page frame is same in size as a page (say, x bytes). Processes 
always use numeric logical addresses, and each such logical address is decomposed by the MMU 
into the pair (pk, bk), similar to (compk, offsetk), as explained in the last section, where pk is the page 
number and bk is the offset within pk (0 ≤bk <x). The physical address space of the process consists 
of page frames that may be scattered and non-adjacent throughout the memory allocated to pages of 
the process. In fact, paging is supposed to be entirely transparent to the user 

When a process of size s is required to be loaded, the operating system must allocate n free page 
frames so that n = s/p, where p is the page size and the value of n will always be an integral num-
ber. If the size s of a given process is not an exact multiple of a page size, the last page frames may 
be partly unused. This phenomenon is sometimes called page fragmentation or page breakage. 
The allocation of memory then consists of simply fnding any n free page frames, which may not 

http://www.routledge.com/9781032467238


 

 

 

 

       

 
 

  

250 Operating Systems 

be necessarily contiguous, and the policy for page frame allocation has practically no impact on 
memory utilization, like frst-ft, best-ft, and so on, since all frames ft all pages and any such ft in 
any order is as good as any other. 

Thus, we observed that simple paging, as described here, is very similar to a fxed-partition mech-
anism. The differences are that, with paging, the partitions are rather small and obviously of a fxed 
size, a program may occupy more than one partition, and these partitions also need not be contiguous. 

The consequences of making each page frame the same in size as a page are twofold. First, a page 
can be directly and exactly mapped into its corresponding page frame. Second, the offset of any 
address within a page will be identical to the offset in the corresponding page frame; no additional 
translation is required to convert the offset within a page in the logical address to obtain the offset 
of the corresponding physical address; only one translation is required, and that is to convert a page 
in the logical address into the corresponding page frame to derive the required physical address. 

Using a page size of a power of 2 has two important effects: the logical addressing scheme is 
much easier and convenient to use for the programmer and is also transparent to the developer of 
all system utilities like the assembler, the linker, and the database management system. Second, it 
is relatively easy to implement a mechanism in hardware that can quickly carry out the required 
address translation during runtime. 

An example of a simple paging system with illustrations is given on the Support Material at www. 
routledge.com/9781032467238. 

• Address translation: The mechanism to translate a logical address into its corresponding 
physical address uses the following elements: 

s: Size of a page. 
ll: Length of logical address. 
lp: Length of physical address. 
np: Maximum number of bits required to express the page number in a logical address. 
no: Maximum number of bits required to express the offset within a page. 
nf: Maximum number of bits required to express the page frame number in a physical address. 

Since the size of a page s is a power of 2, then s = (2 to the power no). Hence, the value of no depends 
on the size of the page, and the least signifcant no bits in a logical address give the offset bi. The 
remaining bits in a logical address form the corresponding page pi = np = ll —no. The values of bi 

and pi can be obtained by grouping the bits of a logical address as follows: 

← np → ← no → 

pi bi 

The effective memory address (physical address) is then generated using the following steps that are 
needed for address translation. 

• Extract the page number pi as the leftmost np bits of the logical address. 
• Use the page number as an index into the process page table to fnd the corresponding page 

frame number. Let it be qi, and the number of bits in it is nf. 

• The remaining rightmost no bits in the logical address that are the offset within the page 
are then simply appended (concatenated) on the right side of the of nf as already obtained 
to construct the needed physical address. 

Since each page frame is identical in size to a page, no bits are also needed as offset bi to address 
the location within a page frame. The number of bits needed to address a page frame in an effective 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 251  

       

  
 
 
 
 
 

 
 
 

  

  
 
 
 
 

 
 

 
 
 
 
 
 

memory address is nf = lp – no. Hence, an effective memory address (physical address) of a targeted 
byte bi within a page frame qi can be represented as: 

← → ← n →nf o 

qi bi 

The processor hardware after accessing the page table of the currently executing process carries 
out this logical-to-physical address translation. The MMU can then derive the effective memory 
address by simply concatenating qi and bi to generate the physical address lp number of bits. 

Conclusively, it can be stated that with simple paging, main memory is divided into many 
small frames of equal size. Each process is then divided into frame-size pages. When a process is 
loaded into memory for execution, all of its pages, if possible, are brought into available frames, 
and accordingly a page table is set up to facilitate the needed address translation. This strategy, in 
effect, summarily solves many of the critical issues causing serious problems that are inherent in a 
partitioned-memory management approach. 

An example of address translation with illustration is given on the Support Material at www. 
routledge.com/9781032467238. 

• Protection: Under the paging scheme, the dedicated page table for the running process 
is used for the purpose of address translation that prevents any memory reference of the 
process from crossing the boundary of its own address space. Moreover, use of a page table 
limit register which contains the highest logical page number defned in the page table of the 
running process together with the page table base register which points to the start address 
of the corresponding page table of the same running process can then detect, arrests, and 
confrm any unauthorized access to memory beyond the prescribed boundaries of the run-
ning process. Moreover, protection keys can also be employed in the usual way with each 
memory block (page frame) of a specifc size. In addition, by associating access-right bits 
with protection keys, access to a page may be made restricted whenever necessary, and it is 
particularly benefcial in situations when pages are shared by several processes. 

A brief description of this topic is given on the Support Material at www.routledge. 
com/9781032467238. 

• Sharing; Shared Pages: Sharing of pages in systems with paged memory management is 
quite straightforward and falls into two main categories. One is the static sharing that results 
from static binding carried out by a linker or loader before the execution of a program begins. 
With static binding, if two processes X and Y statically share a program Z, then Z is included 
in the body of both X and Y. As a result, the sizes of both X and Y will be increased and will 
consume more memory space if they exist in main memory at the same time. 

The other one is the dynamic binding that removes one of the major drawbacks of static binding, par-
ticularly in relation to redundant consumption of memory space. This approach can be used to conserve 
memory by binding (not injecting) a single copy of an entity (program or data) to several executing pro-
cesses. The shared program or data still retains its own identity, and it would be dynamically bound to 
several running processes by a dynamic linker (or loader) invoked by the memory management. In this 
way, a single copy of a shared page can be easily mapped to as many distinct address spaces as desired. 
Since each such mapping is performed with a dedicated entry in the page table of the related sharing 
process, each different process may have different access rights to the shared page. Moreover, it must 
be ensured by the operating system that the logical offset of each item within a shared page should be 
identical in all participating address spaces since paging is transparent to the users. 

A brief description of this topic with a fgure is given on the Support Material at www.rout-
ledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 

 

 

 

 

252 Operating Systems 

5.8.2.1.1.1 Conclusion: Merits and Drawbacks A paging system is entirely controlled and 
managed by the operating system that outright discards the mandatory requirement of contigu-
ous allocation of physical memory; pages can be placed into any available page frame in memory. 
It practically eliminates external fragmentation and thereby relieves the operating system of the 
tedious task of periodically executing memory compaction. Wasted space in memory due to internal 
fragmentation for each process is almost nil and will consist of only a fraction of the last page of a 
process. Since this system is quite simple in allocation and deallocation of memory, the overhead 
related to management of memory is appreciably lower in comparison to other schemes. Using a 
small size in the page, the main memory utilization may be quite high when compared to other 
schemes and that too in conjunction with process scheduling may optimize the usage of memory 
even more. 

The paging system, however, also suffers from certain drawbacks. It increases the space require-
ment overhead for the purpose of management of memory, and more time is spent to access the 
entities. Those are: 

• Creation of a memory-map table to keep track of the entire memory usage available with 
the computer system. 

• Creation of a page-map table per process. The storage overhead of the page-map table, 
also known as table fragmentation, may be quite large in systems with small page size and 
large main memory. 

• Although it is not a signifcant amount, it still wastes memory due to internal fragmenta-
tion that may happen in the last page of a process. If a good number of processes exist in 
the system at any instant, this may result in appreciable wastage in the main memory area. 

• The address translation process is rather costly and severely affects the effective memory 
bandwidth. Of course, this can be overcome by incurring extra cost with the use of addi-
tional dedicated address translation hardware. 

In addition, it is generally more restrictive to implement sharing in a paging system when compared 
with other systems, in particular with segmentation. It is also diffcult to realize adequate protection 
within the boundaries of a single address space. 

5.8.2.1.2 Segmentation: Segmented Memory Management 
If the average size of a request for memory allocation can be made smaller, the internal fragmenta-
tion and its effect will be almost eliminated; external fragmentation and its negative impact may 
still remain, but it will be mostly less. Since the operating system cannot contribute much in any 
way to reduce the average process size, there may be a way to reduce the average size of a memory 
request by simply dividing the address space of a process into chunks that are relatively small. This 
novel idea was frst introduced by the overlay concept in which a program can be subdivided into a 
number of mutually exclusive modules, and the different module during the execution of the pro-
gram could be treated as a unit that may be swapped in or out during runtime. However, the overlay 
approach suffers from the constraint that the to-and-fro journey of the module is always confned 
within the domain of a specifc area of overlay allocated in main memory. If this obligation can 
be waived so that the module is allowed to be loaded (or swapped in) into any noncontiguous area 
of memory, then this modifed strategy would give rise to another attractive memory management 
scheme called segmentation. 

A user program can be subdivided into a number of blocks (components), and each such block is 
called a segment. A segment is an entity in a program that consists of a group of logically related 
items together, can be loaded as a unit into any location of memory for execution, and can even be 
shared by other programs. Segments are a user-oriented concept exploited in the logical division 
of a process that consists of a set of segments in which individual segments are generally of dif-
ferent sizes, but within the confne of a certain permissible maximum length (size limit). Although 



Memory Management 253  

 

 
 

 

 

 

 

different segments of a process may be loaded in separate, noncontiguous areas of physical memory 
(i.e. base address of segments are different), but entities belonging to a single segment must be 
placed in contiguous areas of physical memory. Thus, segmentation can be described as a hybrid 
(dual) mechanism that possesses some properties of both contiguous (with regard to individual 
segments) and noncontiguous (with respect to address space of a process) approaches to memory 
management. Moreover, the segments thus generated are, in general, individually relocatable. 

From the operating system’s point of view, segmentation is essentially a multiple-base-limit ver-
sion of dynamically partitioned memory. Memory is allocated in the form of variable partitions; 
the main difference is that one such partition is allocated to each individual segment. It is normally 
required that all the segments of a process must be loaded into memory at the time of execution 
(except in the presence of overlay schemes and virtual memory, which will be described later). As 
compared to dynamic partitioning, a program with segmentation may occupy more than one parti-
tion, and these partitions also need not be contiguous. 

• Principles of Operation: The programmer declares the segments while coding the appli-
cation. The translator (compiler/assembler) generates logical addresses of each segment 
during translation to begin at its own logical address 0. Any individual item within a spe-
cifc segment is then identifed by its offset (displacement) relative to the beginning of the 
segment. Thus, addresses in segmented systems have two components: 
• Segment name (number) 
• Offset (displacement) within the segment 

Hence the logical address of any item in the segmented process has the form (sk, bk), where sk 

is the id of the segment (or segment number) in which the item belongs, and bk is the offset of the 
item’s specifc location within that segment. For example, assume that there is an instruction cor-
responding to a statement, call hra.cal, where hra.cal is a procedure in segment hraproc, may use 
the operand address (hraproc, hra.cal), or may use a numeric representation for sk and bk for that 
specifc statement. 

• Address Translation: Analogous to paging, since the logical address of a segmented 
system consists of a two-dimensional (two-part) representation, like (sk, bk), an address 
translation mechanism is then needed to convert this representation into its corresponding 
unidimensional physical equivalent. When a segmented process is loaded, the operating 
system attempts to allocate memory for the supplied segments present in the process and 
may create partitions to suit the needs of each particular segment. The base address of 
memory (as obtained while partition is created) and the size (specifed in the load mod-
ule) of a loaded segment are recorded as tuple called the segment descriptor. All segment 
descriptors of a given process are collected in a table called the segment descriptor table 
(SDT). The base address is recorded so that actual physical address of any item in a spe-
cifc segment can be calculated during runtime. The size of the segment is recorded so as 
to assure that invalid addresses, if referenced, will not be allowed during execution. When 
segment numbers and relative offsets within the segments are defned, two-component 
logical addresses uniquely identify all items within a process’s address space. 

Figure 5.7(a) illustrates the logical view of a load-module sample of a process P with all its seg-
ments. Figure 5.7(b) depicts a sample placement of this already-defned segments into physical 
memory with the resulting SDT [Figure 5.7(a)] already formed by the operating system in order to 
facilitate the needed address translation. Each segment descriptor (entry) in this table shows the 
physical base address of the memory area allocated to each defned segment, and the size feld of 
the same segment descriptor is used to check whether the supplied offset in the logical address is 
within the legal bounds of its enclosing segment. Here, the name of the segment is also included 



 

 

 
 

254 Operating Systems 

0 

base size 

0  40000 a 

1  48000 b 

2  60000 c 

3  30000 s 

Segment Descriptor 
Table 

˜ S (DATA) 
---------

(STACK) 

UPDATE 

(CODE) 

20000 

30000 

30500 

40000 

48000 

50000 

60000 

Max. 

+ 

3  500 

Logical address 

Seg. 
No. 

Offset 

Invalid 
reference 

No Yes 

(b) 
Address translation mechanism 

Segment Map 

a–1 
0 

b–1 
0 

c–1 
0 

500 
s–1 

Segment 
Number Name Size Address 

Segment table of P  

(a) 

(CODE) 

(STACK) 

(UPDATE) 

(Data) 
... (zzz) 

0  CODE  a 40000 

1  STACK b  48000 

2 UPDATE c  60000 

3  DATA  s 30000 

Memory 

FIGURE 5.7 A schematic representation of an example showing different memory segments and related 
address translation mechanism used in segmented memory management. 

in the respective segment descriptor but only for the purpose of better understanding. The MMU 
uses this SDT to perform address translation and uses the segment number provided in the logi-
cal address to index the segment descriptor table to obtain the physical base (starting) address of 
the related segment. The effective memory address is then generated by adding the offset bk of the 
desired item to the base address (start address) of sk of its enclosing segment. Thus, the address 
translation mechanism in the segmentation approach is defnitely slower in operation and hence 
more expensive than paging. 

Apart from the comparatively high overhead while carrying out address translation, segmenta-
tion of address space incurs extra costs due to additional storing of quite large segment descriptor 
tables and subsequently accessing them. Here, each logical address reference requires two physical 
memory references: 

• Memory reference to access the respective segment descriptor in the SDT. 
• Memory reference to access the target location in the physical memory. 

In other words, segmentation may reduce the effective memory bandwidth by half in comparison to 
the actual physical memory access time. 



Memory Management 255  

  
 
 
 
 
 
 
 
 
 

 

 

 
 

 
 

 

A brief description of this topic with an example is given on the Support Material at www. 
routledge.com/9781032467238. 

• Hardware Requirements: Since the size of the SDT itself is related to the size of the logi-
cal (virtual) address space of a process, the length of an SDT may vary from a few entries to 
several thousand. Tat is why SDTs may themselves be ofen assigned a separate special type 
of segment (partition) of their own. Te accessing mechanism of SDT is ofen facilitated by 
means of a dedicated hardware register known as a segment descriptor table base register 
(SDTBR), which is set to point the base (starting) address of the SDT of the currently running 
process. Another dedicated register called the segment descriptor table limit register (SDTLR) 
is set to mark the end of that SDT as indicated by SDTBR. Tis register actually limits the 
exact number of entries in the SDT, as there are an actual number of segments defned in 
a given process. As a result, any attempt to access a nonexistent segment (that may have a 
specifc segment number) may be detected and access will then be denied with exceptions. 

When a process is initiated by the operating system, the base and limit of its SDT are nor-
mally kept in the PCB of the process. Upon each process switch, the SDTBR and SDTLR are 
loaded with the base and length, respectively, of the corresponding SDT of the new running process. 
Moreover, when a process is swapped out, all the SDT entries in relation to the affected segments 
are invalidated. When a process is again swapped back in, the SDT itself is swapped back with 
required updating of the base felds of all its related segment descriptors so as to refect the new load 
addresses. Since this action is an expensive one, the swapped-out SDT itself is generally not used. 
Instead, the SDT of the swapped-out process may be discarded, and a new up-to-date SDT is created 
from the load-module map of the swapped-in process when it is once again loaded back in memory. 
In the case of memory compaction, if supported, when it is carried out, the segments of a process are 
relocated. This requires updating of the related SDT entries for each segment that is moved. In such 
systems, some additional or modifed data structures and add-on hardware support may be needed 
so as to identify the related SDT entry that points to the segment scheduled to be moved. 

Segment Descriptor Caching: To reduce the duration of time required for the slow address 
translation process in segmented system, some designers suggest keeping only a few of the most 
frequently used segment descriptors in registers (segment descriptor register, SDR) in order to avoid 
time-consuming memory access of SDT entries for the sake of mapping. The rest of the SDT may 
then be kept in memory in the usual way for the purpose of mapping. Investigations of the types of 
segments referenced by the executing process reveal that there may be functionally three different 
categories of segment, instructions (code), data, and stack. Three dedicated registers (for the purpose 
of mapping) may thus be used, and each register will contain the base (beginning) address of each 
of such respective segment in main memory and its size (length). Since, in most machines that use 
segmentation, the CPU emits a few status bits to indicate the type of each memory reference, the 
MMU can then use this information to select one of these registers for appropriate mapping. 

Segment descriptor registers are initially loaded from the SDT. In a running process, whenever an 
intersegment reference is made, the corresponding segment descriptor is loaded into the respective reg-
ister from the SDT. Since in a running process, different segments appear at different times, SDRs are 
normally included in the process state. When switching of process occurs, the contents of the SDRs of 
the departing process are stored with the rest of its context. Before dispatching the new running pro-
cess, the operating system loads the SDRs with their images, recorded in the related PCB. Use of such 
hardware-assisted SDRs has been found to accelerate the translation process satisfactorily; hence, they 
are employed in many segmented architectures, including Intel’s iAPX-86 family of machines. 

• Protection: Separation of the address spaces of distinctly diferent processes, placing them 
in diferent segments in disjoint areas of memory, primarily realizes protection between 
the processes. In addition, the MMU at the time of translating a logical address (sk, bk) 
compares bk with the size of the segment sk, available in a feld of each and every SDT entry, 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

  

 

  
 
 
 

256 Operating Systems 

thereby restricting any attempt to break the protection. However, protection between the 
segments within the address space is carried out by using the type of each segment defned 
at the time of segment declaration depending on the nature of information (code, data, or 
stack) stored in it. Access rights to each segment can even be included using the respective 
access-rights bits in the SDT entry. Since the logically related items are grouped in seg-
mentation, this is one of the rare memory-management schemes that permit fnely grained 
representation of access rights. Te address mapping hardware at the time of address trans-
lation checks the intended type of reference against the access rights for the segment in 
question given in the SDT. Any mismatch will then stop the translation process, and an 
interrupt to the OS is issued. 

One of the more sophisticated mechanisms to implement protection is to use a ring-protection 
structure (similar to level structure of operating system, Chapter 3) in which lower-numbered or 
inner rings enjoy greater privileges than high-numbered or outer rings. Typically, ring 0 is reserved 
for kernel functions of the operating system. All applications usually reside at a higher level. Some 
operating system services or utilities may occupy an intermediate-level ring. A ring system obeys 
the following two basic principles: 

1. A program may access only data that reside on the same ring or on a ring with lower 
privilege. 

2. A program may call services residing on the same or a more privileged ring. 

• Sharing: Shared Segments: Ease of sharing is the appealing beauty of the segmentation 
approach. Shared entities are usually placed in separate dedicated segments to make shar-
ing fexible. A shared segment may then be mapped by the appropriate segment descriptor 
tables to the logical address spaces of all processes that are authorized to use it. Te intended 
use of based addressing together with ofsets facilitates sharing, since the logical ofset of a 
given shared item is identical in all processes that share it. Each process that wants to use a 
shared object (segment) will have a corresponding SDT entry in its own table pointing to 
the intended shared objects that contains information including the base address, size, and 
their access-right bits. Tis information is used at the time of address translation. Diferent 
process may have diferent access rights to the same shared segment. In this way, segmented 
systems conserve memory by providing only a single copy of the objects shared by many 
authorized users rather than having multiple copies. Te participating processes that share 
a specifc object keep track of their own execution within the shared object by means of 
their own program counter, which is saved and restored at the time of each process switch. 

Sharing of segments, however, often invites some problems in systems that also support swap-
ping. When swapping out shared objects or any one of the participating processes which are autho-
rized to reference the shared objects are swapped in, they are always placed in currently available 
locations that may be different from their previously occupied locations. The OS should at least 
keep track of construction of the SDT before and after swapping of both shared segments and pro-
cesses that use them. It must ensure proper mapping of all logical address spaces of participating 
processes to the shared segments in main memory. 

A brief description of this topic with a fgure is given on the Support Material at www.routledge. 
com/9781032467238. 

5.8.2.1.2.1 Conclusion: Merits and Drawbacks Segmentation is one of the basic tools of mem-
ory management and permits the logical address space of a single process to break into separate 
logically related entities (segments) that may be individually loaded in noncontiguous areas of 
physical memory. The sizes of the segments are usually different, and memory is allocated to 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 257  

 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
 
 
 

 
 
 

 

 

 

 
 
 
 
 
 

 

the segments according to their sizes, thereby mostly eliminating the negative effect of internal 
fragmentation. As the average segment sizes are normally smaller than the average process sizes, 
segmentation can reduce the amount of external fragmentation and its bad impact as happens 
in dynamically partitioned memory management. Other advantages of segmentation have also 
been observed that include dynamic relocation, adequate protection both between segments and 
between the address spaces of different processes, easy sharing, and suffcient fexibility towards 
dynamic linking and loading. 

However, one of the shortcomings of the segmentation approach is its address translation 
mechanism. Address translation of logical-to-physical address in such systems is compara-
tively complex and also requires dedicated hardware support that ultimately enables a sub-
stantial reduction in effective memory bandwidth. In absence of overlay and virtual memory, 
another drawback of segmentation is that it cannot remove the problem that limits the size 
of a process’s logical address space by the size of the available physical memory. However, 
this issue has been resolved, and the best use of segmentation was realized as soon as virtual 
memory was introduced in the architecture of computer systems, which will be discussed in 
the following sections. Contemporary segmented architectures, implemented on the platform 
of modern processors, such as Intel X-86 or the Motorola 68000 series, support segment sizes 
on the order of 4 MB or even higher. 

5.8.2.1.3 Segmentation versus Paging 
Segmentation and paging differ both in approach (strategy) as well as in implementation. 
Segmentation is usually visible, and segments are a user-oriented concept, providing a means of 
convenience for organizing and logical structuring of programs and data. Paging, on the other 
hand, is invisible to the programmer and concentrates more on the management of physical mem-
ory. In a paged system, all pages are of fxed size in contrast to segments, which have variable 
size, and all page addresses form a linear address space within the logical address space. Since 
segments are usually of unequal sizes, there is no simple relationship between logical addresses 
and their corresponding physical addresses, whereas in paging, such a straightforward relation-
ship does exist. 

Each segment table entry therefore contains a complete physical memory address rather 
than a simple frame number, as in a paged memory system. The offset byte number bk is added 
to this address to compute the effective physical address. This step involves an addition cycle 
rather than mere concatenation as observed in paging. In addition, with a paged memory sys-
tem, a logical (virtual) address kkkk is specifed as a single number. After knowing the number 
of bits used to represent the page number and byte offset, the MMU extracts pk and bk from 
kkkk automatically. The logical address space is thus single-dimensional. If a CPU register 
holds the address of the last byte of a page, adding 1 to this address makes it “spill over” into 
the next page. This does not usually happen in a segmented memory, since the last byte of one 
segment and the frst byte of the next segment may (usually) not be necessarily adjoining bytes 
in the process. This difference bears important aspects that leads to signifcant implications at 
the time of allocation of main memory. This comparison equally holds in systems with virtual 
memory support. 

Placement strategies based on the methods of fnding a suitable area of free memory to load 
an incoming page/segment are somehow manageable in paging systems, but are quite complex in 
segmented systems, since the segments are usually of variable sizes, and within segments, memory 
contiguity requirements complicate the management of both main and secondary memories. That is 
why pure segmentation systems are increasingly rare in use. 

5.8.2.1.4 Segmentation with Paging 
When the segments are large, it may be inconvenient and even impossible to accommodate them 
entirely in the allotted limited main memory. This leads to the idea of dividing each segment into 



258 Operating Systems

pages, and an integral number of pages is then allocated to each segment so that only those pages 
that are actually needed have to be around. Paging and segmentation thus can be combined to gain 
the advantages of both, resulting in simplifying memory allocation and speeding it up, as well as 
removing external fragmentation. A page table is then constructed for each segment of the pro-
cess, and a field containing the address pointing to the respective page table is kept in the segment 
descriptor in the SDT. Address translation for a logical address in the form (sk, bk) is now carried 
out in two stages. In the first stage, the entry sk in the SDT is searched, and then the address of its 
page table is obtained. The byte number bk, which is the offset within the segment, is now split into 
a pair (psk, bpk), where psk is the page number within the segment sk, and bpk is the byte number 
(offset) within the respective page pk. The page table is now used in the usual way to determine the 
required physical address. The effective address calculation is now carried out in the same manner 
as in paging: the page frame number of psk is obtained from the respective page table, and bpk is 
then concatenated with it to determine the actual physical address.

Figure 5.8 shows process P of Figure 5.7 in a system that uses segmentation with paging. Each 
logical address is thus divided here into three fields. The upper field is the segment number, the 
middle one is the page number, and the lower one is the offset within the page. The memory map, 
as shown in Figure 5.8, consists of a segment table and a set of page tables, one of each segment. 
Each segment is paged independently, and the corresponding page frames again need not be con-
tiguous. The internal fragmentation, if exists, occurs only in the last page of each segment. Each 
segment descriptor in the SDT now contains the address that points to the respective page table 
of the segment. The size field in the segment descriptor, as usual, prevents any invalid reference, 

Segment Page Table
Number Name Size Address

0 CODE a •
1 STACK b •
2 UPDATE c •
3 DATA s •

Segment Descriptor Table of P

SK bK

Segment
Number

Offset

Logical Address

Segment
Number

Page
Number

Offset
within the page

0
1
2
3
4

0
1
2

0
1
2
3

0
1

Page Tables

Page
Frame

Offset

FIGURE 5.8 A schematic representation of segmentation with paging approach used in segmented–paged 
memory management.



Memory Management 259  

      

 

 

which facilitates memory protection. Different tradeoffs exist with respect to the size of the segment 
feld, the page feld, and the offset limit. The size of the segment feld being set puts a limitation on 
the number of segments that can be declared by users within this permissible range, the page feld 
that defnes the number of pages within each segment determines the segment size, and the size of 
the offset feld describes the page size. All three parameters are entirely determined by the design 
of the operating system, which depends mostly on the architecture of the computer system being 
employed. 

5.8.3 MEMORY ALLOCATION STRATEGY: FOR OS KERNEL USAGE 

The kernel continuously creates and destroys many data structures at different times during the 
course of its operation to manage and monitor user and system processes. These data structures are 
mostly small tables, arrays, buffers, and control blocks (such as process control block [PCB], I/O 
control block [IOCB], fle control block [FCB], and event control block [ECB]) that are employed 
to monitor the computing environment, including the allocation, execution, and managing of pro-
cesses as well as controlled use of resources in the system. These data structures are created only 
when the respective situations occur and consume memory space, and thus usage of memory and 
the related memory operation time together with the CPU time used by the OS constitute the OS 
overhead, which is a measure in the performance of the OS. Therefore, creation, maintenance, and 
deletion of the needed data structures by the kernel as well as its other associated operations related 
to memory usage must be fast, effcient, and also effective. 

In fact, the lifetimes of these data structures are tied to lifetimes of related entities like processes, 
events, or activities like I/O operation and fle operation. Hence, these data structures do not possess 
any predictable relationship with one another. This feature rules out the use of the kernel stack for 
creation of these data structures and subsequent use of them. The kernel in this situation must use 
a heap. Since the sizes of control blocks are mostly known while designing the OS, the kernel uses 
this feature to make memory allocation and management simple and effcient. When one control 
block is destroyed, the respective memory space is released, and it can then be allocated to create a 
similar control block in near future. To take advantage of this approach, a separate free list can be 
maintained for each and every type of control block to facilitate quick and effective allocation. For 
other types of data structures, such as buffers and small tables, which are mostly of variable sizes, 
the kernel requires dynamic memory allocation. For example, the allocb routine in UNIX allocates 
STREAMS buffers of arbitrary size. 

5.8.3.1 Case Study: Kernel Memory Allocators in UNIX and Solaris 
As the design goal of UNIX is to be platform (machine) independent, its memory-management 
scheme will vary from one system confguration to another. Earlier versions of UNIX simply used 
variable partitioning with no provision of virtual memory (to be discussed later) support. Current 
implementations of both UNIX and Solaris, however, use noncontiguous memory allocation with 
paging in the presence of virtual memory. 

In both UNIX SVR4 and Solaris, there are actually two separate memory-management schemes. 
The paging system in the presence of virtual memory is an established, effective memory-man-
agement scheme that allocates an integral number of required page frames in main memory to 
processes and also to disk block buffers to effectively use each page proftably. This paged virtual 
memory scheme is, however, less suited as a memory management scheme for memory allocation to 
the kernel. One of the main reasons is that the kernel frequently generates and destroys small tables, 
arrays, and buffers as well as creating many objects (such as process structures, vnodes, and fle 
descriptor blocks) dynamically at different times as and when needed during the course of execu-
tion. Each of these entities while requires dynamic memory allocation, but most of these entities 
are signifcantly smaller than the usual machine page size, and therefore, the paging mechanism 



 

 
 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 

 

260 Operating Systems 

would be ineffective and not appropriate for such dynamic kernel memory allocation. That is why 
a separate kernel memory allocatoris used, and three such kernel memory allocators are worth 
mentioning: 

• McKusick–Karels allocator 
• Lazy buddy allocator 
• Slab allocator 

The details of each of these three allocation strategies, with computations, are separately given 
on the Support Material at www.routledge.com/9781032467238. 

5.9 VIRTUAL MEMORY 

In the memory management schemes, both fxed and dynamic partitioning have the require-
ment of contiguous allocation of physical memory, while noncontiguous allocation schemes 
relieve the system of this stringent obligation. But both contiguous and noncontiguous allocation 
schemes, of course, require the entire executable code to be resident in the main memory before 
the execution begins, that ultimately limits the maximum possible size of the job which depends 
on the available space in the physical memory at program execution time. A noncontiguous 
allocation policy in the form of a paging and segmentation approach, however, divides a process 
into a number of components (pages and segments), and these process components do not need 
to be located in the contiguous memory area during execution. Moreover, these process compo-
nents are referenced by their logical addresses that are dynamically translated by the MMU into 
the corresponding actual physical addresses for execution during runtime. This provides total 
freedom in swapping a process in and out of main memory at different times, even during the 
tenure of execution, and it can be placed once again accordingly in any region of main memory 
at that moment. Subsequent developments combining paging and segmentation manifests that it 
is not even essential that all of the pages or segments of a process be resident in main memory 
during runtime. 

When a new process gets started, the operating system initiates the execution by bringing only 
one or a few process components into memory that include the initial part of the program and 
related data pieces to which those instructions refer. Other portions are brought into memory as 
and when a need arises, either into a free area in memory or by replacing a portion of the com-
ponent already existing in memory but not currently in use. The execution continues, and the 
processor keeps track of the availability of all memory references by using the respective page or 
segment table. If the processor encounters a logical address that is not available in main memory, 
the execution is temporarily halted, and the processor generates an interrupt indicating that a 
memory access fault occurred. The operating system now takes control, puts the interrupted pro-
cess in a blocked state, and attempts to fetch the needed portion of the process into main memory 
that contains the required logical address which causes the access fault so that the execution of 
the process can continue. By this time, the OS can initiate another process to run to make use of 
available CPU time while the interrupt servicing is in progress. Once the needed portion of the 
process is brought into main memory, the OS then places the affected blocked process back into 
the ready state. 

Although this approach requires a lot of additional administrative overhead when implemented, 
but offers two distinct advantages that ultimately result in increased system utilization. 

• Only a part of the process and not the entire one gets loaded to begin its execution, that ulti-
mately enables main memory to accommodate many other processes, thereby eventually 
increasing the degrees of multiprogramming that, in turn, effectively increases processor 
utilization. 

http://www.routledge.com/9781032467238


Memory Management 261  

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

 

 

• The mandatory requirement in the size of the program that must be restricted by the size 
of the available memory has now been waived without use of any sort of overlay strategy. 
The user now perceives a potentially larger memory allocated in a specifc area on the disk, 
and the size of such memory is related to disk storage. The operating system, in association 
with related hardware support, automatically loads parts of a process during runtime from 
this area into main memory for execution as and when required, and that too without any 
participation of the user or any notifcation to the user. 

The whole responsibility is now shouldered by the operating system in order to create an illusion 
to the user while providing such an extremely large memory store. Since this large memory is 
merely an illusion, it is historically called virtual memory, in contrast with the main memory, 
known as real memory(physical memory), which is the only place the actual execution of a 
process can take place. The details of virtual memory management are generally transparent to 
the user, and the virtual memory manager creates the illusion of having a much larger memory 
than may actually be available. It appears as if the physical memory is stretched far beyond 
the actual physical memory available on the machine. Virtual memory can thus be defned as 
a memory hierarchy consisting of the main memory of computer system and a specifed area 
on disk that enables the execution of a process with only some portions of its address space in 
main memory. The virtual memory model loads the process components freely into any avail-
able areas of memory, likely to be non-adjacent, for execution. The user’s logical address can 
then be referred to as a virtual address. The virtual address of every memory reference used by 
a process would be translated by the virtual memory manager (the part of the OS responsible 
for memory management) using special memory mapping hardware (a part of the MMU) into 
an actual address of the real memory area where the referenced entity physically resides. This is 
done on behalf of the user in a way transparent to the user. This model almost totally solves the 
memory fragmentation problem since a free area of memory can be reused even if it is not large 
enough to hold an entire process. 

While the other memory management techniques attempted to approximate 100 percent 
memory utilization, the implementation of the virtual memory concept attains a utilization logi-
cally greater than 100 percent. That is, the sum of all the address spaces of the jobs being mul-
tiprogrammed may exceed the size of physical memory. This feat is accomplished by removing 
the requirement that a job’s entire address space be in main memory at one time; instead, only 
portions of it can be loaded, and the image of the entire virtual address space of a process rests 
on the disk. In traditional memory management schemes, the user’s logical address space starts 
from 0 to a maximum of N, the size of the actual physical memory available to the user. Under 
virtual memory management, the user’s logical address space starts from 0 and can extend up to 
the entire virtual memory space, the size of which is decided by the machine’s addressing capa-
bility or the space available on the backing store (on the disk, to be discussed). For a 32-bit sys-
tem, the total size of the virtual memory can be 232, or approximately 4 gigabytes. For the newer 
64-bit chips and operating systems that use 48- or 64-bit addresses, this can be even higher. 

Virtual memory makes the job of the application programmer much simpler. No matter how 
much memory the application needs, it can act as if it has access to a main memory of that size and 
can place its data anywhere in that virtual space that it likes. Moreover, a program may run without 
modifcation or even recompilation on systems with signifcantly different sizes of installed memory. 
In addition, the programmer can also completely ignore the need to manage moving information 
back and forth between different kinds of memory. On the other hand, the use of virtual memory can 
only degrade the execution speed and not the function of a given application. This is mainly due to 
extended delays caused in the address translation process and also while fetching missing portions’ 
of a program’s address space at runtime. 

Brief details about this topic are given on the Support Material at www.routledge.com/ 
9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

 
 

 
 
 
 

 
 
 

 
 

 
 
 

    

 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

262 Operating Systems 

5.9.1 BACKGROUND AND HISTORY 

Before the development of the virtual memory technique, programmers in the 1940s and 1950s 
had to manage two-level storage (main memory or RAM and secondary memory in the form 
of hard disks or earlier magnetic drums) directly. Virtual memory was developed in approxi-
mately 1959–1962 at the University of Manchester for the Atlas Computer and completed in 
1962. However, Fritz-Rudolf Güntsch, one of Germany’s pioneering computer scientists and 
later the developer of the Telefunken TR 440 mainframe, claims to have invented the concept 
sometime in 1957. However, in 1961, Burroughs fnally released the B5000, the frst commer-
cial computer with virtual memory. Still, the inclusion of virtual memory and its acceptance 
were strongly challenged, and the debate in favor of its usefulness continued until 1969, when 
an IBM research team led by David Sayre showed that the virtual memory overlay system 
worked consistently better than the best manually controlled systems. In the 1970s, minicom-
puter models, such as VAX models running the VMS operating system, implemented virtual 
memory, and by the early 1970s, the triumph of virtual memory started. From then it became 
available on almost all computers. Early personal computers in the 1980s were developed with-
out virtual memory, mainly on the assumption that such issues were only applicable to large-
scale commercial computers. Virtual memory was fnally introduced for Microsoft Windows in 
Windows 3.0 (1990) and the Apple Macintosh starting with System 7 (1991). Nowadays, almost 
all microprocessors, including the Intel X-86 series and Motorola 68000 series, have highly 
sophisticated virtual memory systems. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

5.9.2 VIRTUAL MEMORY AND LOCALITY 

According to the principle of locality, execution of a program over any short period of time 
is observed to be confined to a small section of the program (e.g. a loop or a subroutine) and 
accesses perhaps only a small portion of data (a few arrays of data). Moreover, many programs 
are observed to have the tendency to favor specific portions of their address spaces during 
execution, thereby supporting the principle of locality. Experiments with processes in virtual 
memory environments unconditionally confirm this principle of locality, indicating that dur-
ing the lifetime of the process, references are mostly confined to a subset (a few components) 
of a program. If these components of a process can be made resident for most of the time in 
memory during the execution of a program, then the principle of locality suggests that a vir-
tual memory scheme may work most effectively. Since unused components are not present in 
main memory, swapping them in and out of memory is not often required and consequently 
lowers the rate of back-and-forth journey (thrashing) of the process components from and to 
the disk. This ultimately saves a substantial amount of time that summarily leads to a notable 
increase in the overall performance of the virtual memory system. In fact, in the steady state, 
practically all the main memory will then be occupied with useful process components of dif-
ferent programs so that the processor and the operating system can have direct access to as 
many processes as possible. The virtual memory handler actually uses special techniques that 
essentially ensure exploitation of the principle of locality of reference. In fact, the feasibility 
and practicality of virtual memory implementation primarily depend on two basic ingredients: 
first, to control the amount of memory allocated to a process to accommodate all its useful 
components, and second, the decisions about which parts (components) of a process are to be 
kept in memory, when to bring them, and where to place them. Both these tasks are, however, 
policy-dependent, and are thus performed by the software components of the virtual memory 
handler. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 263  

 

  5.9.3 BASIC CONCEPTS 

Virtual memory is normally created in a fxed disk drive or in a specifc reserved area on a disk 
drive. The virtual address space of a process containing its various components often exceeds the 
size of the available real memory. For the sake of multitasking, the real memory is then used by 
the currently needed components of different processes that are not necessarily in contiguous loca-
tions, as shown in Figure 5.9. Information about the memory areas where these components reside 
is maintained in a data structure of the virtual memory handler and is used by the MMU at the time 
of address translation. Other components of each of the processes to be executed are brought from 
the virtual memory into real memory as and when they are needed, and this operation is carried out 
as quickly as possible. 

During execution, if information (an instruction or data) contained in a particular process com-
ponent is required which is not present in memory, the execution is then temporarily halted, and the 
processor generates an interrupt indicating that a memory access fault occurred. The OS then takes 
the control, puts the interrupted process in a blocked state, and attempts to bring the needed process 
component into memory from the disk that contains the required virtual address which caused the 
access fault so that the execution of the blocked process can continue once again. For this purpose, 
the OS issues a disk I/O request. Once the needed component of the process is brought into main 
memory from the disk, the I/O issues an interrupt that enables the OS to get back control. The OS 
then places the affected blocked process back into the ready state and relinquishes control in favor 
of the processor to resume its ongoing execution with the user processes. 

The new component being brought from the virtual memory has to be accommodated some-
where in memory. If a free area is available, it can be placed there. In the absence of a free area, the 
virtual memory handler replaces a component from memory, often belonging to the same process, 
that is not in current use in order to make room for the new component to load. The component 
selected for replacement might have been modifed by this time after its admission in memory. The 
contents of the component in memory will be different from its original image in the virtual mem-
ory. In this situation, the component to be replaced is written back to its position in virtual memory, 
often without overwriting (depending on policy) the original image, as shown in Figure 5.10. If the 
content of the component selected for replacement remains unchanged, it can simply be rejected, 

Real 
memory 

A(0) 

B(1) 

A(2) 

C(0) 

B(3) 

C(2) 

process C  
C(0) 
C(1) 
C(2) 
C(3) 
C(4) 

process A  
A(0) 
A(1) 
A(2) 
A(3) 

process B  
B(0) 
B(1) 
B(2) 
B(3) 
B(4) 
B(5) 
B(6) 

Memory 
allocation 

information 
Virtual Memory (backing store) 

FIGURE 5.9 A schematic representation of basic operations of virtual memory management system, show-
ing presently required portions of currently executing processes loaded into main memory. 



 

  

   

 
 

 
 

 
 
 
 
 
 
 

 
  

 

264 Operating Systems 

FIGURE 5.10 In virtual memory management system, a new component is swapped in main memory from 
virtual memory, whenever required, by way of swapping out an existing component from main memory, not 
in use, to make room. 

and the new component brought from virtual memory can be immediately loaded in its place in 
memory. In this case, the overhead involved in writing back the component on the virtual memory 
is simply avoided, thereby saving a considerable time that may summarily result in an appreciable 
improvement in overall system performance. 

5.9.4 VIRTUAL MEMORY IMPLEMENTATION 

Two fundamental approaches used for successful implementation of virtual memory have been 
observed: 

• Paging 
• Segmentation 

Paging and segmentation differ both in approach (strategy) as well as in implementation, particularly 
in the manner in which the boundaries and size of process components are derived. Under the paging 
scheme, each process component is called a page, and all pages are identical in size. Page size is deter-
mined by the architecture of the computer system. Page demarcation in a process is implicitly also car-
ried out by architecture. Paging is therefore invisible to the programmer. In segmentation, each process 
component is called a segment. Segments are a user-oriented concept declared by the programmer to 
provide a means of convenience for organization and logical structuring of programs and data for the 
purpose of virtual memory implementation. Thus, identifcation of process components is performed by 
the programmer, and, as segments can have different sizes, there exists no simple relationship between 
virtual addresses and the corresponding physical addresses, whereas in paging, such a straightforward 
relationship does exist. Paging and segmentation in virtual memory systems, therefore, have different 
implementations for memory management and different implications for effective memory utilization. 

Paging and segmentation schemes when implemented in virtual memory system give rise to two 
different forms of memory management, paged virtual memory management and segmented virtual 
memory management respectively. Some operating systems often exploit a mechanism by combin-
ing segmentation and paging approaches called, segmented paged memory management, to extract 
the advantages of both approaches at the same time. Obviously, the address translation mechanisms 
of these schemes also differ from one another and are carried out by means of either page-map 
tables, segment descriptor tables, or both. 

5.9.4.1 Paging 
Paging is an obvious approach associated with systems providing virtual memory, although virtual 
memory using segmentation is also equally popular and will be discussed later. Paging is considered 



Memory Management 265  

 
 

   

 

 
 

                                 
                   

 

Prot. Other 
P R M info info page  Frame No. # 

FIGURE 5.11 In virtual memory management system with paging, a representa-
tive Page Table Entry is shown. 

the simplest and most widely used method for implementing virtual memory, or, conversely, the 
paging approach is found best implemented in virtual memory. In simple paging (without virtual 
memory), as already discussed, when all the pages of a process are loaded into main memory, the 
respective page table for that process is created and then loaded into main memory. Each page 
table entry contains the page frame number of the corresponding page in main memory. The same 
approach is also employed for a virtual memory scheme based on paging but with an important 
exception: in virtual memory systems, only some portions of the address space of the running pro-
cess are always present in main memory, and the rest need not be required to be in main memory. 
This makes the page table entries more complex than those of simple paging. 

As shown in Figure 5.11, the page table entry, in addition, contains a present (P) or valid bit, 
indicating whether the corresponding page is present in main memory. If the bit indicates that the 
page is in main memory, then the page table entry also includes the page frame number of that page. 
The referenced bit (R) indicates whether the page already present in memory is referenced. The 
bit R is set whenever the page is referenced (read or written). The page table entry also contains a 
modify or dirty bit (M) to indicate whether the contents of the corresponding page have been altered 
or modifed after loading in main memory. If the contents of the page remain unchanged, it is not 
necessary to write back the page frame of this page on the backing store when its turn comes to 
replace the page in the frame that it currently holds. The associated overhead can then be avoided. 
The protection information (Prot info) bit for the page in the page table indicates whether the page 
can be read from or written into by processes. Other information (Other info) bits are kept for the 
page in the page table for storing other useful information concerning the page, such as its position 
in the swap spaces. In addition, other control bits may also be required in the page table for various 
other purposes if those are managed at the page level. 

5.9.4.1.1 Address Translation 
During the execution of a program, the CPU always issues virtual addresses, but it has to be run in 
real address space. Thus, an address mapping is required that will convert these virtual addresses 
to the corresponding physical addresses. In paging systems, this address translation is performed 
at the page level. In particular, each virtual address consists of two parts: the (virtual) page number 
and the offset within the page, as shown in Figure 5.12. Since pages and page frames have identical 
sizes, offsets within each are identical and need not be converted. Thus, in a paging system, only 
the address translation of (virtual) pages to its corresponding page frames in memory is required, 
and that is performed with the aid of a mapping table, called the page-map table (PMT) or simply 
page table. The PMT is created at process loading time to establish the correspondence between the 
virtual and physical addresses. Since PMTs of different processes are of variable lengths, depending 
on the size of the processes, it is not expected that they will be held in registers. Instead, the PMT 
must be in main memory while in use. 

A sample format of the PMT corresponding to the assumed placement of pages in physical 
memory, along with the needed hardware implementation for address translation, is shown in 
Figure 5.12. As indicated, there is one PMT entry for each virtual page of a process. Besides other 
information, the content of each entry is the number of page frames (composed of the high-order, 
page-level bits) in the physical memory where the corresponding virtual page is actually located. 



 

 

 
 
 
 
 
 
 
 

 
 

 
 

 

 

266 Operating Systems 

Virtual address 

Page offset 

Register 

Page table 
base address 

n-bits 

Page table 

Pa
ge

 

frame 

MMU 
Program 

Physical address 

of
fs

et

pa
ge

fra
m

e 

+ 

< -
-- >

+ 

Paging mechanism 
Main 

Memory 

FIGURE 5.12 A schematic block diagram of address translation mechanism used in the management of 
virtual memory with paging system. 

Since the offsets of the virtual addresses being issued by the CPU are not mapped, the high-order 
bits of the physical address are obtained after translation; that is, the page frame number needs to be 
stored in a PMT. All other PMT entries are similarly flled with page frame numbers of the locations 
where the corresponding pages are actually loaded. 

The address translation mechanism in paged systems is illustrated in Figure 5.12. When a par-
ticular process is running, a register holds the starting (base) address of the page table for that cur-
rently running process. The page number (pk) of a virtual address is used to index that page table 
to obtain the corresponding frame number. This is then combined (concatenate) with the offset 
portion (bk) of the virtual address to produce the desired real (physical) address. It is obvious that 
the feld containing the page number in the virtual address is longer than the feld containing the 
frame number. 

In general, each process, even of average size, can occupy huge amounts of virtual memory, 
and there is only one page table for each process. If the size of the pages is considered moderate, 
a good number of page table entries are still required for each process. Consequently, the amount 
of main memory devoted to page tables alone could be substantially high and may severely affect 
and limit the space requirements for the execution of users’ applications. In order to overcome 
this problem, most virtual memory management schemes hold page tables in virtual memory 
instead of storing them in main memory. When a process is under execution, only a part of its 
page table containing few page table entries, including the currently executing page, are made 
available in main memory. 

5.9.4.1.2 Page Faults: Related Actions 
While performing address translation for a virtual (logical) address constituting of page number pk 

and offset bk, the MMU checks the valid bit P (as shown in Figure 5.12) of the page table entry of 
pk. If it indicates that pk is not present in memory, the MMU raises an interrupt called a page fault 
or missing page interrupt, and the related process that suffers a page fault is eventually blocked 
by the memory management until the required page is loaded into memory. The interrupt handler 



Memory Management 267  

 
   

 
 
 
 

 
 
 

 

 

 
    

   

 

 

now gets control and fnds that the interrupt is related to a page fault. It then invokes the virtual mem-
ory handler and passes it the page number pk that caused the page fault. The virtual memory handler 
then consults the page table to get the other-info feld (as shown in Figure 5.12) of the page table 
entry of page pk that contains the disk block address of page pk. After getting this address, the virtual 
memory handler looks up the free-frames list to fnd a currently free page frame. If no such free page 
frame is available, some other actions (to be discussed later) are taken so that a free page frame can 
be obtained. However, it now allocates the free page frame to page pk and starts an I/O operation to 
load pk in the free page frame. Note that page I/O is distinct from I/O operations performed by pro-
cesses, which are called program I/O. When the I/O operation is completed, the system updates page 
pk’s entry in the page table by setting the valid bit to 1, putting the free page frame number in the page 
frame # feld of page pk, and also marking the frame as being in a normal state. This ends the related 
procedures to be followed when a page fault occurs that ultimately bring the page pk into memory. 

The faulting instruction is now brought back to the state when the page fault occurred. All other 
actions that are required after interrupt servicing are then accordingly carried out to resume the 
execution of the faulting instruction, assuming that nothing has happened. 

A brief description of this topic is given on the Support Material at www.routledge.com/ 
9781032467238. 

5.9.4.1.3 Multi-Level Page Tables: Hierarchical Address Translation Tables 
As technology rapidly advances, the cost of the components constantly dropped, eventually mak-
ing it possible to provide a comparatively large 32-bit (232 = 4 GB) virtual address space on almost 
all contemporary computers, including the microcomputers of today. If this virtual address space 
is considered with 4K (212) page size, then the size of the page table will be large enough, with 220 

entries (232 ÷ 212 = 220) in its page table. In order to reduce the memory requirements of such a huge 
page table (sometimes containing thousands of pages) in memory all the time, many computers use 
a multi-level page table by paging the page table itself and loading its pages on demand just like 
pages of a process. In fact, those page tables that are only needed at any instant should be kept in 
memory, and the rest would remain in virtual memory as usual. In this two-tiered arrangement, a 
higher-level page table contains entries (pages) pointing to the page tables, and each page table con-
tains entries of different pages of a process. If the size of the higher-level page table itself is found 
too large, it could be then expanded to three, four, or even more levels to further reduce the memory 
commitment for page tables. Although implementation of additional levels offers more fexibility, 
but it is doubtful, due to additional complexity and time consumption associated with increases in 
page table levels, whether it is worth it to go beyond three levels. 

• Two-Level Paging: Under this scheme, there is a page directory (like that shown in Figure 
5.19) in which each entry points to a page table. Typically, the maximum size of a page 
table is kept restricted to be equal to one page. Tis strategy is used by the Pentium proces-
sor, for example. Here, an approach with a two-level paging scheme is considered, which 
employs typically a 32-bit addressing, using byte-level addressing, the page size assumed 4 
Kbytes (212) and the virtual address space taken as 4 Gbytes (232). Te number of pages now 
required to address this virtual memory is 220 (232 ÷ 212 = 220) pages. If each page table entry 
is taken as 4 bytes (22) in length, then the page table consisting of 220 page entries requires 
4 Mbytes (222). Te root directory is kept in one page (4 Kbytes = 212) with each entry 4 
bytes (22) in length, so it consists of 210 entries, and each such entry points to one user page 
table, which again consists of 210 page table entries. In this way, the total 220 virtual pages are 
mapped by the root page table with only 210 entries. It is to be noted that the root page table 
consisting of one page is always kept resident in main memory. 

Brief details about this topic are given on the Support Material at www.routledge.com/ 
9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   
 
 
 
 
 
 
 
 

  
 
 
 

 

  

 
 
 
 
 
 
 
 
 

   
 

 
 
 

268 Operating Systems 

5.9.4.1.3.1 Case Study: Two-Level Paging: VAX (DEC Systems) The 32-bit virtual addresses 
used in VAX providing a virtual space of size 232 = 4 gigabytes are split into three felds in which the 
high-order 2 bits (value = 00, 01, 10, 11) signifes the nature of the use (user space, OS space, etc.) 
of the respective virtual space. With the use of the leftmost 2 bits in the virtual address, the entire 
virtual space is actually partitioned into (22 =) four sections, and the size of each section is 232 ÷ 4 = 
230 = 1 Gb. Each such section starts from 0, 1, 2, and 3 Gb with the values of this 2 high-order bits in 
each sections are 00, 01, 10, 11 respectively. The page size is taken as 512 (= 29) bytes, and hence, the 
number of bits used to express offset within the page is then of 9 bits. The number of bits used in each 
entry (32 bits = 4 bytes in length) of the page table to express the number of virtual pages is, therefore, 
32—(2 + 9) = 21 bits. Hence, the number of pages present in the system 221 (= 2 million) pages, and 
as each page entry in the page table is 32 bits (or = 4 = 22 bytes) in length, that ultimately makes the 
size of the page table equal to 221 × 4, or 223 bytes (= 8 Mbytes), which is quite large. While managing 
to keep this huge size of page table in memory, designers eventually opted for a two-level page table 
scheme that allows user page tables to be themselves paged out when they are not currently needed. 

The paging structure and address translation mechanism of VAX are quite complicated but pos-
sess several distinct advantages. But it imposes the need for two memory references to the page 
tables on each user memory reference; the frst one is to the system page table, and the second is to 
the user page table, thereby causing a serious drawback due to repeated memory visits, which are 
quite time consuming. However, this shortcoming has been overcome with the use of special hard-
ware (associative memory, to be discussed later) support that enables bypassing the path most of the 
time, making it much lucrative and also practicable. 

The details of this topic with a fgure are given on the Support Material at www.routledge.com/ 
9781032467238. 

5.9.4.1.3.2 Case Study: Three-Level Paging: Sun SPARC The architecture of SPARC, a RISC 
processor introduced by SUN Microsystems, uses a three-level page table to realize a three-level 
paging mechanism. Under this scheme, when a process is loaded into memory, the operating system 
assigns it a unique context number, similar to a process-id, which is kept reserved and fxed for the 
process during its entire lifetime. A context table is built up with all the context numbers assigned to 
the processes available in the system and is permanently resident in hardware. In this way, it helps to 
avoid reloading the tables when switching from one process to another. MMU chips usually support 
such 4096 contexts in almost all models. 

When a memory reference is issued, the context number and virtual address are presented to the 
MMU, which uses the context number as an index into its context table to fnd the top-level page table 
number for that context (which is the context of currently executing process). It then uses Index1 to 
select an entry from the top-level page table. The obtained entry then points to the next level page table, 
and so on until the target page is found. If, during this translation process, any entry in the respective 
page table is not found, the mapping cannot be completed and a page fault occurs. The running process 
must then be suspended until the missing page-table page is brought in, and the affected instruction 
once again can be restarted. Too many memory references to access the respective page tables (three 
levels) on each user memory reference, however, make the system very slow due to repeated visits to 
slower memory. Hence, to speed up the lookup, special hardware with associative memory is provided. 

A brief description of this topic with a fgure is given on the Support Material at www.routledge. 
com/9781032467238. 

5.9.4.1.3.3 Case Study: Four-Level Paging: Motorola 68030 The four-level paging scheme 
used by Motorola on its 68030 chip is highly fexible and sophisticated. The beauty of this scheme 
is that the number of levels of page tables is programmable, from 0 to 4, controlled by the operat-
ing system. Moreover, the number of bits in the virtual address to be used at each level is also 
programmable. This chip determines the value of the feld widths that are written to a global 
translation control register (TCR). In addition, since many programs use far less than 232 bytes 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 269  

 

 
 
 
 
 
 
 

 

  

of memory, it is possible to instruct the MMU to ignore the uppermost n insignifcant bits. It 
should be noted that the operating system need not use all four levels if the job can be executed 
with fewer. Many other attractive features are found in this memory management scheme, but, 
at present, we restrict ourselves not to proceed anymore to enter any further details of its paging 
and associated address translation mechanism. Our sole intention is only to show that four-level 
paging is possible and that it is implemented in practice for commercial use. Interested readers 
can go through the respective manuals to get a clear understanding of its implementation and 
related operations. 

5.9.4.1.4 Inverted Page Table 
Use of multi-level page table organization to perform virtual address translation in a large virtual 
memory has produced alluring benefts along with overcoming the slower lookup process by using 
additional specialized hardware to make it faster. But, with the advent of RISC chips offering 64-bit 
virtual addresses spaces, it becomes really acute to organize such gigantic page tables, even with the 
deployment of a multi-level paging scheme in page table organization. It then insists to review the 
situation afresh, which eventually gives rise to the introduction of some other innovative approach. 
In traditional paging schemes of all forms, the page tables per process are created and kept sorted 
by virtual page number. For any virtual page x obtained from the issued virtual address, the cor-
responding page frame is then obtained from an entry in the respective page table that is used to 
form the target physical address. 

In the new alternative approach, the page table is organized on the basis of page frames. Here, 
the ith entry of the page table refers to the page frame i that contains information about the page 
currently occupying the page frame i. As a result, the number of entries in this table (i.e. the size of 
page table) is equal to the number of page frames in physical memory, irrespective of the number of 
pages in the virtual address space as well as of the number and sizes of processes being executed. 
Since the size of the memory is fxed in a computer system, which is much small in comparison to 
the size of the virtual address space, only a fxed portion of memory is required to store this smaller 
table. This structure of the page table as shown in Figure 5.13 is historically called an inverted page 
table (IPT). The page table’s structure is called inverted because it indexes page table entries by 
frame number rather than the usual virtual page number. Figure 5.13 illustrates a specimen imple-
mentation of the IPT approach. 

Page Offset 

Hash 
function 

Page # 
Process 

id 
Control 

bits frame# 
chain 

pointer 

frame  offset 

Real address 

Hash 
table 

Inverted page table 
(one entry for each physical page frame) 

FIGURE 5.13 A formal design approach of inverted page table structure and related address translation 
mechanism employing a hash table used in the management of virtual memory with paging system. 



 

 

 

  

 

  

270 Operating Systems 

Each entry in the page table includes the following: 

Page number: This is the page number portion of the issued virtual address. 
Process-id: The process that occupies this page. The combination of page number and pro-

cess-id uniquely identifes a page within the virtual address space of a particular process. 
Frame number: This is the page frame in memory which is owned by that particular process 

indicated by page number and process-id. 
Control bits: This feld includes many fags, such as valid, referenced, and modifed, protec-

tion, and locking information. 
Chain pointers: This feld is null (often indicated by a separate bit) if there are no chained entries 

for this entry. Otherwise, this feld contains the index value of the next entry in the chain. 

In Figure 5.13, each entry of IPT contains the process-id (P) and page number (p); the pair 
(P, p) is then used to carry out the required address translation. P is obtained when the scheduler 
selects a process for execution: it copies the id of the process (P) from its PCB into a register of the 
MMU. The page number portion (p) is taken from the virtual address as issued. This page p is then 
searched in IPT using a hashing mechanism that generates a hash value v from the supplied page 
number p. This hash value is then used as a pointer to the IPT. If the IPT entry as indicated by the 
pointer contains the page p, then this page exists, and the corresponding page frame number f pres-
ent in the indicated IPT entry is copied for use in address translation. With this type of hashing, 
collision may occur when more than one virtual address may map into the same hash table entry. A 
chaining technique (coalesced chaining) is thus used here for managing this overfow. The hashing 
technique used, however, normally results in chains of table entries that are typically short; hardly 
between one and two entries. These table entries are individually visited following the chain when 
searching of a particular page is carried out in order to obtain the corresponding page frame number 
before fnally declaring a page fault. Address translation in this way is then completed by combining 
the frame number f thus obtained with the offset b present in the virtual address. 

When a page fault occurs, the needed page is brought using a conventional page table that may 
be stored on disk instead of in main memory. This overhead is possibly unavoidable given the large 
size of the page table to handle the large amount of information in the system. An IPT is often orga-
nized with the use of associative memory to speed up the look-up operation. On a hit, the IPT is not 
needed. Only when a miss occurs, the page table is then consulted to fnd a match for the virtual 
page as required by the issued virtual address. The hash table look-up as described can be done 
either in hardware or by the operating system. As the software mechanism for look-up is compara-
tively slow, and if the look-up is done in software, care should be taken that this look-up not happen 
very often. Many systems, however, use IPTs, including the versatile IBM RS 6000 and AS 400 
(now called P-series) systems. The Mach operating system on the RT-PC also uses this technique. 
Variations in the approaches as well as implementations of IPTs have also been observed on the 
PowerPC, UltraSPARC, and IA-64 (Intel) architectures. 

A brief description of this topic is given on the Support Material at www.routledge.com/ 
9781032467238. 

5.9.4.1.5 Translation Lookaside Buffer 
In almost all paging schemes, every virtual memory reference, in principle, actually causes two 
physical memory accesses: one for accessing the page table entry and one to subsequently fetch the 
desired information. This ultimately results in doubling the memory access time, thereby causing 
a 50 percent reduction of the memory bandwidth. Due to the locality of references, it has been 
observed that a small fraction of page table entries are heavily in use, and the rest are relatively rare. 
Based on this fact, most virtual memory schemes thus provide high-speed associative memory used 
as a cache for storing a subset of frequently used page table entries that ultimately helps to avoid 
repeated costly memory visits to access the page table. This extra high-speed memory is used as 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 271  

 

Page# Offset 

Cache operation 

+ 

Miss 

Hit 
value 

Translation look aside buffer 

Main 
Memory 

Load 
page 

Secondary 
Memory 

TLB 
Hit 

TLB 
miss 

Page table 

Page fault 

value 

FIGURE 5.14 A schematic block diagram in which use of Translation Lookaside Buffer along with cache 
operation used in the management of virtual memory with paging system. 

a buffer and functions in the same way as a memory cache, dedicated to the use of only address 
translation mechanism; it is called a translation lookaside buffer (TLB). Each entry in the TLB 
must include the page number as well as the complete information of a page table entry. The search 
is carried out to inspect a number of TLB entries simultaneously to determine whether there is a 
match on page number. This technique is often referred to as associative mapping. 

Given a virtual address, the processor will frst inspect the TLB for the desired page table entry, 
as shown in Figure 5.14. If it is present (TLB hit), then the frame number from the entry is retrieved, 
and the physical address is formed in the usual manner. But, if the desired page table entry is not 
found (TLB miss), then the process will use the page number portion of the virtual address to exam-
ine the corresponding page table entry. If the “present or valid bit” is set, then the page is in main 
memory, and the processor can retrieve the respective frame number from the corresponding page 
table entry to form the physical address. If the present bit is not set in the page table, then a page 
fault will occur, the necessary actions will be taken to load the needed page in memory to resolve 
the page fault, and page table updating will be carried out in the usual manner, as already discussed. 
However, once the physical address is generated, and if the system supports memory cache system 
(not the TLB cache), the cache is then consulted to see if the cache block containing that word is 
present. If so, it is the content of the address thus referenced and hence is returned to the CPU for 
subsequent processing. If the cache does not contain that word (cache miss), the word is retrieved 
from main memory as usual. 



 

 
 
 
 

 
 

 

 

272 Operating Systems 

Associative memory is expensive; hence, its size is relatively small to accommodate this addi-
tional cost. It can contain only a few entries of the recently used pages referenced by a process as 
well as the ones most likely to be needed in the near future. Whenever the search for a page in the 
TLB fails, the hardware arranges the page from elsewhere as already described and stores it in the 
TLB. This may sometimes require displacing an existing entry from the TLB to make room for the 
new one. 

The presence of a TLB, however, can accelerate (speedup) the address translation, which can be 
shown by appropriate computations. But this performance improvement as obtained, on average, 
cannot be achieved due to a lot of hindrances including the decrease in the locality of references 
within a process, caused by many different practical factors. Moreover, while the effective mul-
tithreading approach is used in applications for yielding better performance, it may also result in 
abrupt changes in the instruction stream, thereby causing the applications to almost spread all over 
the entire address space, that eventually declines the locality of reference and its proftable use. As 
a result, with increasing requirements for memory by executing processes, and as locality of refer-
ences decreases, it is natural that, using a TLB of limited size, the hit ratio of TLB accesses tends to 
decline. Eventually, the presence of the TLB can itself create a potential bottleneck in performance. 
While the use of a larger TLB with more entries can improve TLB performance, but TLB size can-
not be increased as often as memory size is made, since the TLB size is closely related to the other 
aspects of hardware design, namely, cache memory and main memory, as well as the number of 
memory accesses per instruction cycle, which may create additional issues required to be resolved. 
An alternative approach may be to use a larger page size (superpage) so that each page table entry 
in the TLB can address a larger block of memory. But the use of a larger page size itself, can lead to 
performance degradation for many reasons (to be discussed later). 

Among many other alternatives, the use of multiple page sizes on the whole provides a reasonable 
level of fexibility for the effective use of a TLB. For example, program instructions in a process that 
occupies a large contiguous region in the address space may be mapped using a small number of large 
pages rather than a large number of small pages, while the threads, stacks, and similar other smaller 
entities could then be mapped using the small page size. Still, most contemporary commercial operat-
ing systems prefer and support only one page size irrespective of the availability of hardware support. 
One of the main reasons behind this is that many issues of the operating system are closely interrelated 
to the underlying page size, and thus a change to multiple page sizes may be a complex proposition. 

However, TLB is still an important and most expensive component in the address translation 
process that is managed using probabilistic algorithms, in contrast to the deterministic mapping of 
the register-assisted type, as already described. The typical strategies followed for TLB manage-
ment in paging systems, such as fetch, allocation, and replacement policies, are all OS issues and 
hence are to be carefully designed, and the entries are to be properly organized so as to make the 
best use of the limited number of mapping entries that the costly small TLB can hold. In fact, the 
solutions to all these issues must be incorporated in the TLB hardware, although that makes the 
TLB too machine specifc, but it is then to be managed in identical ways that any form of hardware 
cache design usually follows. 

A brief description of this topic is given on the Support Material at www.routledge.com/ 
9781032467238. 

5.9.4.1.6 Superpages 
Continuous innovation in technology in electronics engineering since the 1990s has abruptly modi-
fed and enhanced the traditional design and architecture of computer systems as well as their 
resources, mainly increasing capability, reducing size and cost, and increasing speed. Moreover, 
as user density has constantly increased, introducing a diverse spectrum of application areas, the 
number and size of processes executed by computer systems have rapidly grown. The increase in 
sizes of memory and processes has created critical problems in the proftable use of TLBs, since the 
size of TLBs cannot be increased equally and proportionately to the similar increase in memory 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 273  

 

 

 
 

 

 

and cache size, mainly due to cost. As a result, TLB reach, which is the product of page size and the 
number of entries in a TLB, has increased only marginally, but the ratio of TLB size to memory size 
has gone down by a factor of over 1000, which consequently lowers TLB hit ratios, thereby causing 
severe degradation in the overall performance of the system. In addition, processor caches have also 
become larger than TLB reach. This badly affects cache performance because access to instruc-
tions or data in a cache may be slowed due to frequent TLB misses and subsequent look-ups through 
page tables. However, to mitigate all these issues, one possible way may be to use a larger page size 
(superpage) so that TLB reach becomes larger. But, this approach, in turn, may invite some prob-
lems, namely larger internal fragmentation and more page I/O, apart from issues of additional cost. 

A superpage is similar to a page of a process, except that its size is a power-of-two multiple of 
the size of an usual page, and its start address in both the logical and physical address spaces is 
aligned on a multiple of its size. In spite of having some drawbacks (already discussed in last sec-
tion), this feature increases TLB reach, which, in turn, offers a higher TLB hit ratio without expand-
ing the size of the costly TLB. 

The sizes and number of superpages to be allocated in a process are generally adapted according 
to the execution characteristics of a process. The memory manager in some situations may combine 
pages of a process into a superpage of appropriate size if the pages are accessed very often and sat-
isfy the contiguity requirement as well as the address alignment in the logical address space. This 
action is called a promotion. For example, program instructions in a process that are often accessed 
and occupy a large contiguous regions in the address space may be mapped using a small number 
of superpages rather than a large number of small pages. A promotion thus increases TLB reach 
and releases some of the TLB entries that were assigned to individual pages of this new superpage. 
On the contrary, if the memory manager ever observes that some pages in a superpage are not used 
regularly, it may decide to disband the superpage into its individual pages. This action is called 
demotion that now enables memory manager to release some memory space which can then be 
used to load other useful pages that eventually may reduce the page fault frequency and thereby 
increase the desirable hit ratio. Several multiprocessor architectures, including Pentium, IA–64, 
Alpha, UltraSPARC, and MIPS 4000, support a few superpage sizes and allow a TLB entry for a 
page or superpage. 

5.9.4.1.7 Protection 
Most of the issues in regard to protection in paged virtual systems have already been discussed 
previously in Section 5.8.2.1.1. Those are mainly: 

• Protection against exceeding the size of a page. 
• Protection by including access bits in page table entries to restrict the access rights to 

specifed pages. 
• Protection keys to guard the pages in question. 

Protection in paged virtual memory, however, is analogous to that of the logical and physical address 
spaces, as discussed earlier in the section on simple paging. 

5.9.4.1.8 Sharing: Shared Pages 
Most of the issues in relation to sharing pages in paged virtual systems have already been discussed 
previously in Section 5.8.2.1.1. However, the virtual memory handler creates necessary entries in 
the page table of the calling program for pages of the called shared program and sets a fag in each 
of such page table entries to indicate that it is a shared page. When the shared program is called, 
the dynamic linker changes all location-sensitive addresses of the shared program being called. 
When a reference to an address that belongs to the shared program creates a page fault, the virtual 
memory handler checks whether the required page of the shared program is already in memory. If 
so, it puts the page frame number of the page in the relevant entry of the said page table; otherwise 



 

 

 

 

274 Operating Systems 

the page fault will be resolved in the usual way with necessary modifcation to the relevant entry of 
the respective page table. 

Management of pages involved in sharing could be implemented in a better way by maintaining 
the information of all shared pages in a separate shared page table and collecting all page reference 
information for all shared pages to store as page entries in this table. This arrangement will facili-
tate better management of this table separately for mapping shared pages. A related version of this 
technique is used in the Windows operating system. 

A brief description of this topic with a fgure is given on the Support Material at www.routledge. 
com/9781032467238. 

5.9.4.2 Segmentation: In Virtual Memory 
The segmentation strategy in the virtual memory environment also follows the same methodology 
used in simple segmentation (Section 5.8.2.1.2) that exploits a similar type of segment table, as 
shown in Figure 5.15, but here the segment table entries are more elaborate and also complex. One 
of the main reasons is that only some of the segments in a process may be in memory at any instant; 
an extra bit P is thus needed in each table entry to indicate whether the corresponding segment is 
currently present in main memory. If the bit is set, it indicates that the segment is in memory, so the 
entry also includes the starting address, the length of that segment, and other related control infor-
mation. Another control bit M in the table entry is a modify bit that indicates whether the contents 
of the corresponding segment have been altered or modifed since the segment was last brought 
into memory. If the contents of the segment in the frame remain unchanged, (i.e. the segment is not 
dirty), then it is not necessary to write this segment back to the backing store when the time comes 
to replace this segment in the frame that it currently holds. The associated overhead in this regard 
can be avoided. Other information bits are kept for the segment in the segment table for storing 

P M 
Other 

Control 
info. 

Base 
Addr. Length Other 

info. 

1 a1 - - - - - -- - -

Segment Table 

Segment 
missing 

needed 
actions 

Seg #  
S 

Offset 
=b 

Virtual address 

Register 

Segment 
table ptr 

+ 

+ a1+b  
Se

gm
en

t 

Main 
Memory 

a1b 

Virtual 
memory 

se
gm

en
t 

Program 
Address Translation in Segmentation 

FIGURE 5.15 A schematic representation of segmentation used in virtual memory implementation. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 275  

  

 

 

 

other useful information concerning the segment, such as its position in the swap spaces. In addi-
tion, other control bits may also be required in the segment table for various other purposes, such as 
protection or sharing, if those are mapped and managed at the segment level. 

Under segmentation, the virtual (logical) address space is inherently two-dimensional in nature. 
A logical address kkkk is specifed as a pair (sk, bk), where sk is the segment number (name) and 
bk is the offset within the segment. If n bits are used to represent sk, then a process can contain a 
maximum of 2n segments. If m bits are used to represent bk, then the maximum size of a segment is 
2m bytes or words. Once again it is to be noted that the size of individual segments is not fxed, and 
they are usually unequal but bounded within the limit of maximum size. 

When a specifc process is executed, the address translation starts using a register that holds the 
starting address of the segment table of that particular process. The segment number (sk) present 
in the virtual address as issued is used to index this table and look up the corresponding begin-
ning memory address of the segment. This address is then added to the offset portion (bk) of the 
virtual address to produce the desired physical address, as shown in Figure 5.15. When the required 
segment as indicated by the segment number (sk) in the virtual address is not present in memory, 
a “missing segment” fault is raised that activates certain actions to load the required segment in 
memory. If suffcient free memory is available, then the needed segment is loaded. Otherwise a 
segment-out operation (s) may have to be carried out in order to make room for the new segment 
to load before actual loading of the segment begins. Replacement of segments is a policy decision 
which is carried out by the memory management only at the time of each replacement. 

Since segments do not have fxed size, removing one segment from memory may not be suffcient 
for loading another segment (as opposed to paged virtual memory systems). So, many segments may 
need to be removed to make room for a new segment to load. Different segment sizes may be criti-
cal, but this also invites external fragmentation, which can, however, be negotiated either by means 
of memory compaction or by frst ft/best ft strategies. 

Segmented virtual memory, by virtue of its inherent two-dimensional nature, exhibits a nice fea-
ture. It permits a segment to grow or shrink dynamically in size. A segment can simply be allowed 
to grow in its present location if the adjoining memory area is free. Otherwise dynamic growth of 
a segment can be tackled by shifting it to a larger memory area with required relocation, thereby 
releasing the memory area already occupied by it. 

5.9.4.2.1 Protection and Sharing 
Protection and sharing in segmented virtual memory environments are analogous to the logical and 
physical address spaces, as discussed earlier (see Section 5.8.2.1.2). 

5.9.4.3 Segmentation with Paging 
Both segmentation and paging implementations in virtual memory have merits as well as drawbacks, 
and neither is superior to the other when compared on trade-off characteristics. Moreover, when the 
segments are large, it may be inconvenient and even impossible to accommodate them entirely in 
the allotted limited main memory. This leads to the idea of dividing each segment into pages, and an 
integral number of pages is then allocated to each segment so that only those pages that are actually 
needed are used. Paging and segmentation approaches thus are combined by providing the neces-
sary processor hardware and support of operating system software in order to extract the maximum 
benefts of both. This ultimately gave rise to a popular scheme known as segmentation with paging 
(segmented paging scheme), which essentially uses segmentation from the user’s point of view, but 
each segment is divided into pages of fxed size in order to realize more effective memory manage-
ment as opposed to assigning a contiguous larger block of memory to an entire segment. In this 
way, this combined system enjoys most of the advantages of segmentation by retaining it and at the 
same time eliminates the complicated issues of effective placements of segments in main memory 
for optimal utilization of memory, as well as realizing better management of secondary storage 



 

 

 

  

276 Operating Systems 

(virtual memory) by using a paging scheme. Under this scheme, only the needed portion of execut-
ing programs is maintained in memory in terms of pages rather than segments. The page faults are 
serviced as usual as in paged virtual memory systems. 

In this combined scheme, a user’s address space (virtual memory) is divided into a number of 
segments per the choice of the programmer. Each segment, in turn, is divided into a number of 
fxed-size pages, each page equal in length to page frames in main memory. In the case of a seg-
ment shorter in length than a page, the segment holds the entire page. It is important that from the 
programmer’s point of view, this scheme is nothing but true segmentation, and the logical (virtual) 
address is still in the form (sk, bk), where sk is the segment number and bk is the segment offset, 
which is the byte number within the segment. From the system’s point of view, the segment offset 
bk is viewed as being split into a pair (pk, bk), where pk is the page number within the segment sk and 
bk is the byte number (offset) within the respective page pk. So, the generalized logical address in 
combined segmentation with paging systems has the form (sk, pk, bk), where the symbols have their 
usual signifcance, as already described. 

Address translation in this system is carried out in two stages, as shown in Figure 5.16. In the frst 
stage, when a particular process is in execution, a register holds the starting address of its segment 
table. From the virtual address as presented, the processor uses the segment number portion sk to 
index the process segment table to obtain the particular segment table entry that will indicate the 
start of the respective page table (out of a number of existing page tables, one per process segment) 
for that segment. If the present bit in the segment table entry as obtained is not set, the target seg-
ment is absented from real memory, and the mapping hardware generates a segment-fault exception, 
which is processed as usual. Otherwise, if the present bit is set, then in the second stage, the page 
number portion pk of the virtual address is used to index the corresponding page table (as obtained 
from segment table entry) to fnd a specifc page table entry. If the present bit in the page table 
entry as obtained is set, the corresponding frame number is looked up. This frame number is then 
combined with the offset number bk of the virtual address to generate the real target address. If the 
present bit in the page table is not set, the target page is absent from real memory, and the mapping 
hardware generates a page-fault exception, which is processed as usual. At both stages of mapping, 

Program Paging mechanism Segmentation 
mechanism 

pa
ge

fra
m

e 

Main 
Memory 

Seg #  Page# Offset 
sk pk bk 

Segment 
table 

pointer 

Page 
table 
ptr 

+ + + 

se
g.

# 

Segment 
table 

Pa
ge

# 

Page 
Table 

FIGURE 5.16 A representative block diagram of address translation mechanism used in the management of 
virtual memory with segmented paging system. 



Memory Management 277  

 

 

 

  
  
  
  

 

 

the length felds in the respective table are used to confrm that the memory references of the run-
ning process are not violating the boundaries of its address spaces. 

With both the segment table entry and the page table entry having the same usual formats, many 
variations of this powerful scheme are possible depending on the types of information that are to 
be included in the respective tables. While the combination of segmentation and paging is certainly 
appealing, the address translation here involves two levels of indirection to complete the mapping 
of each virtual address: one through the segment table and the other through the page table of the 
referred segment. Hence, it requires two memory references if both tables are held in main memory, 
which may eventually reduce the effective memory bandwidth by two-thirds. This may be too much 
to tolerate even with all the added benefts. To help the operating system to speed up the translation 
process, address translation buffers (similar to TLB, as already explained) may be employed for 
both the segment and page table references. Alternatively, a single set of address translation buffers 
may be exploited, each containing a pair (sk, pk) and the corresponding page frame number. 

Memory sharing can be achieved in the usual way as performed in a segmented virtual mem-
ory scheme. Memory protection is carried out at the level of segments by including the protection 
information with each entry of the segment table. Address translation buffers may contain access 
validation information as copied from the segment table entries. If the access validation could be 
performed at the level of the segment, access validation at the page level is then not needed. 

Further brief details on this topic are given on the Support Material at www.routledge.com/ 
9781032467238. 

5.9.4.3.1 Case Study: Segmentation with Paging: Intel Pentium 
The Pentium, a 32-bit microprocessor, introduced in 1993, is equipped with direct hardware sup-
port for both segmentation and paging. Its real address space can be as large as 4 GB (232 bytes); 
however, the virtual address space can be an extremely large 64 TB (64 terabytes = 246 bytes). An 
on-chip MMU has a segmentation unit that performs address translation for segments ranging in 
size from 1 to 232 bytes. A separate paging unit handles address translation for pages of 4 KB or 4 
MB. The segmentation and paging unit both contain individual TLBs to reduce the delay in this 
two-stage address translation process. 

Any of the following four memory management mechanisms can be implemented under pro-
gram control: 

1. unsegmented and unpaged 
2. segmented and unpaged 
3. unsegmented and paged 
4. segmented and paged 

The output of the paging unit is a 32-bitreal address, while the output of the segmentation unit is 
a 32-bit word called a linear address. If both segmented and paging mechanisms are used, every 
memory address generated by a program goes through a two-stage translation process: 

Virtual address AV → Linear address N, → Real address AR 

Without segmentation, AV = N; without paging, N = AR 

By using the pipeline approach, overlapping the processing in the formation of virtual, linear, 
and real addresses as well as overlapping the memory addressing and fetching operation, the total 
amount of delay can be once again reduced to a large extent so that the next real address is ready by 
the time the current memory cycle is completed. In fact, the on-chip MMU has a segmentation unit 
that processes the virtual address AV, translating it to produce a linear address N as output, which is 
then fed to a paging unit that processes the linear address N to produce a real address AR. 

A brief description of this topic with a fgure is given on the Support Material at www. 
routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 

 

  

 

  

 

 

 

 

 
 

    

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

278 Operating Systems 

5.9.5 VIRTUAL MEMORY MANAGEMENT: DESIGN ISSUES 

Virtual memory, in general, is probably best exploited when organized using a segmentation with 
paging approach, and in this situation, most of the memory (virtual memory) management issues that 
are frequently faced by designers are related to the issues associated with paging. However, the key 
aspects here to be considered as listed below may actually be related to both segmentation and pag-
ing. In fact, the different strategies adopted to manage each of these key aspects of different natures 
always aim to reduce mostly the rate of page faults, because page faults, besides other issues, mainly 
invite considerable overhead that eventually causes severe degradation in overall system performance. 
Unfortunately, there exists no specifc policy associated with any aspect that works best. Moreover, if a 
specifc policy is found to work well with a particular aspect, the same one may have a negative impact 
on another policy employed for a different aspect. In addition, the performance of a set of derived 
policies depends largely on certain factors, such as the size of main memory and virtual memory, as 
well as their relative speed, the number of active processes in the system, and above all the execution 
pattern of each individual programs, which is again simply unpredictable and mostly depends on the 
type of application and the programming language used to code it, along with the intelligence of the 
compiler employed to translate it. Conclusively, it can be inferred that no set of policies is ever found to 
be universally acceptable. However, designers always still attempt to derive a set of policies that work 
well on average over a wide range of smaller systems that execute a diverse spectrum of applications. 
For large mainframe systems, the situation is even more acute, and that is why their operating systems 
are designed with the provision of adequate additional monitoring and control mechanisms that will 
enable the console operator to intervene in the execution in a crisis in order to tune the underlying poli-
cies embedded in the operating system to achieve satisfactory results within the confne of the existing 
environment. However, it can be inferred that the task of memory management in a paging environ-
ment is becoming immensely complex. The key aspects shown in Table 5.1 are considered part of the 
design issues used in deriving the memory management policies in virtual memory environment. 

A brief description of this topic is given on the Support Material at www.routledge.com/ 
9781032467238. 

TABLE 5.1 
Operating System Policies on Aspects for Virtual Memory Implementation 
• Page Size 

• Fetch Policy 
Prepaging 

Demand paging 

Anticipatory paging 

• Replacement Policy 

• Replacement algorithms 
Optimal 

Not–Recently–Used (NRU) 

First–in–First–Out (FIFO) 

Clock 

Least–Recently–Used (LRU) 

Least–Frequently–Used (LFU) 

Page Buffering 

• Working set theory 

• Working set Management 
Working set size 

Fixed 

Variable 

Replacement Scope 

Local 

Global 

Page–fault–frequency 

• Cleaning Policy 
Precleaning 

Demand 

• Placement Policy 

• Load Control 
Degree of 

multiprogramming 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 279  

 

 

 

 

5.9.5.1 Page Size 
The page size, usually decided by the OS designers, is a vital parameter with an immense impact 
on both storage utilization and the effective memory data-transfer rate, and it eventually becomes 
a factor in the management of virtual memory and its performance. In fact, whatever the page size, 
half of the allocated fnal page will remain unused (internal fragmentation). To minimize such 
waste, a smaller page size is thus always favored. But small pages need a larger page table, which, 
in turn, will consume a good amount of memory space. Moreover, transferring pages to and from 
virtual memory (disk) normally happens a page at a time, where transfer of a small page takes 
almost as much time as transferring a large page, and this happens more and more as the size of the 
page is smaller, ultimately giving rise to a substantial amount of delay with each operation. This 
particular fact argues in favor of having a larger page size. In addition, large pages tends to reduce 
table fragmentation. 

In general, the page-size trade-off is mostly technology dependent, and the decision in this 
regard tends to vary as the price and performance of individual components change. In addition, 
the page table on some machines is loaded into hardware registers or an on-chip cache (TLB) at 
the time of each and every process switch. On these machines, having a small page size requires 
relatively more space to accommodate the page table, and the time required to load the page table is 
also longer. However, if the page size is small, the hit ratio tends to increase with more pages avail-
able in memory, but it tends to decrease if the page size increases as fewer pages will then be present 
in a given size of memory. In fact, the effect of page size on hit ratio, which largely determines the 
performance of virtual memory, is complex and depends mostly on the page reference stream and 
the amount of space available in memory. 

Early implementation of virtual memory used a larger page size, mainly to reduce the cost of 
hardware support. In the late 1970s, a reverse swing was observed; the VAX architecture (one of 
the fnest in those days) adopted a small page size of 512 bytes, probably focused more on making 
the best use of the then new and very expensive semiconductor RAM. In the early 1990s, the trend 
once again favored using larger page sizes, mainly due to a drop in hardware costs, with 4 KB being 
typical. This was observed in MMUs and also in UNIX implementation. From this time onward, 
the page size has gradually become larger, and this change has occurred mainly in response to the 
increased capacities and affordability (sharp drops in price due to innovation in advanced hardware 
technology) of RAM, while disk and network access times have improved only incrementally. Most 
computers today thus use page sizes ranging from 2 to 8K, while the Pentium supports page sizes 
of 4K or 4 MB. 

A brief description with mathematical computation for a justifed value of page size is given on 
the Support Material at www.routledge.com/9781032467238. 

5.9.5.2 Fetch Policy 
The fetch policy decides when a page is to be brought from the backing store to primary memory. 
Basically, there are two different strategies relating to fetching: demand paging and prepaging. 

Demand paging: Here, processes are allowed to start up with none of their pages in memory, 
and thus a page fault occurs, since the respective page containing the frst instruction to be executed 
is not present. Subsequently, other page faults associated with it usually follow quickly, causing a 
furry of page faults. As a result, within a short span, more and more pages, which are currently 
needed and also required for near-future references, are now in memory. Over time, the execution 
gradually attains a stable state, after which only a few page faults may then occur. This strategy 
is so named because pages are loaded only on demand, not in advance. Demand paging actually 
slows down processing because of repeated page faults that result in considerable delay. However, it 
exhibits many other advantages. Here, a page will be admitted into the system only when there is an 
explicit demand for that specifc page. This characteristic matches well with the program behavior 
in which a program with a particular set of data may not always be using all its pages for a particular 

http://www.routledge.com/9781032467238


 

 

  

 

 

 

280 Operating Systems 

run. Consequently, this results in better memory utilization, thereby increasing degrees of multi-
programming, demonstrating better CPU utilization, and ultimately producing higher throughput. 

Another method in this category called clustering brings an additional few adjacent pages in 
at the same time as the required one with the expectation that the pages nearby will have a higher 
probability of being accessed soon. If adjacent pages in the virtual store are kept in adjacent loca-
tions on the backing store, the cost of bringing in a group of pages might be only slightly higher than 
bringing in just one. The source of this effciency is discussed in Chapter 6, “Device Management”. 
However, if these additional pages are not needed, they will simply be thrown out soon, since they 
have not been touched. 

Prepaging: Here, pages are loaded before letting processes run. This strategy makes use of 
the characteristics of most of the secondary memory devices, such as disks, in which the pages of 
a process are stored contiguously. Under this strategy, these contiguous pages can be brought in 
at one time rather than one at a time, thereby reducing the repeated disk access time (seek time + 
latency time), making this procedure more effcient as a whole. This strategy, of course, may fail 
or be ineffective if most of the extra pages that are being brought in are of no use. Observations 
on different forms of prepaging, however, do not yet confrm whether it matches with the normal 
working environment. 

Anticipatory fetching: This attempts to determine in advance which pages will be referenced 
within a short period. Those pages will then be brought into memory before they are actually 
referenced. 

Adviced paging: This is another method in which the process may inform the memory manager 
through a service call that a particular page is about to be accessed and thus should be brought in 
or that a particular page will not be used again for a long time and might as well be paged out. Such 
a call would have this form: Page Advice (starting address, ending address, direction), which tells 
the memory manager that the process is about to use the region in virtual space between the two 
addresses, so it might swap in the relevant pages (if direction is ‘in’) or that this region will not be 
accessed for a considerable period (if direction is ‘out’). 

Advised paging, however, takes advantage of the programmer’s or compiler’s knowledge of 
how the program works, knowledge that can be more accurate than that of the memory manager. 
However, the programmer has no knowledge at all of the other processes that are competing in the 
ready list, but the memory manager does know. It would be foolhardy for the memory manager to 
put too much credence in advice. At best, the memory manager might turn off the reference bit for 
a page that the process claims will be not used for a while, making it a candidate for page-out. For 
bringing in, the advice should most likely be ignored. 

5.9.5.3 Replacement Policy 
This strategy is concerned with deciding to select a page frame in memory to be replaced to make 
room for an incoming referenced page of an active process when no free area is available in the pri-
mary storage. This is required; otherwise the process suffering from page fault may be suspended 
for indefnite period until a memory area becomes available. Suspending such processes for no fault 
of their own would even have further adverse effects on their rescheduling and turnaround times 
that ultimately may degrade the performance of the entire system. Moreover, the presence of all 
such suspended inactive processes occupying their already-allocated page frames may likely lead 
to reduced availability of free frames for the other active processes to use. That is why the page 
replacement decision is an important activity in the management of a paged virtual memory system. 

A page frame selected for eviction by the replacement strategy may have had the contents modi-
fed after its arrival into memory from its respective page in virtual memory. When such a modifed 
page is selected for eviction, it must be written back to disk onto its earlier obsolete copy to have its 
latest version. However, when a frame selected for eviction has not been modifed during its stay in 
memory, it can simply be discarded, since its exact copy is already available on the disk. Thus, the 



Memory Management 281  

 
  

 

 

 

status of the page frame in this regard is required to be maintained, and this is done by the hard-
ware using a modifed bit (dirty bit) in the page table. When a page is loaded into memory, this bit 
is cleared (bit = 0) by the mapping hardware, and it is set by the mapping hardware whenever the 
page is written to (modifed). Whenever a frame is selected for eviction by the replacement strategy, 
this bit provided by the hardware is consulted for taking ftting action; otherwise all evicted pages 
would be unnecessarily copied to disk regardless of whether they have actually been modifed, 
thereby having an adverse effect on the management of virtual memory and the performance of the 
entire system. 

While it would be possible to select a page at random to replace at each page fault, better system 
performance can be attained if certain criteria are considered at the time of making the decision to 
replace a specifc page. A page replacement decision is sometimes found diffcult, since it involves 
several interrelated aspects that need to be addressed. Those are: 

• How many page frames are allowed to be allocated to each active process. 
• Whether the replacement should remain confned within the set of pages belonging to the 

requesting process that caused the page fault or involve all the page frames in main memory, 
which may sometimes increase the number of page frames already allocated to the process. 

• What criteria should be used to select a particular page for replacement when a new item 
is to be brought in and there is no free frame. 

Out of these three aspects, the frst two lie in the domain of working set management, which will 
be discussed in the following subsection. The third one is, of course, concerned with replacement 
policy, which is the subject of this subsection. 

Replacement of a page is a policy decision which is often infuenced and based on page-reference 
strings(memory reference information) derived from the actual memory references made by an 
executing program, and it can be kept track of with the assistance of the page table. The behavior of 
the various replacement policies can be suitably exhibited by means of the page-reference strings. 
Most of the policies that attempt to select a page for removal should choose the page likely to have 
a remote chance of being referenced in the near future. The principle of locality can be used as a 
guideline to reveal that there is a relationship between recently referenced history and near-future 
behavior. Thus, the design methodology of most of the policies relies on an objective in which future 
program behavior can be predicted on the basis of its past pattern. The related page-in and page-out 
in this regard is refected in the respective page table. 

Locking Page Frames: All the replacement policies have some limitations and must abide by 
certain restrictions at the time of selecting a page for replacement. Some of the page frames (e.g. 
kernel of the OS and key control structures, I/O buffers in memory engaged in I/O operation, etc.) 
needed to be locked in memory, and the corresponding page stored in that frame cannot be replaced. 
A few other frames with time-critical aspects may also be locked into memory. All the frames of 
these types are to be kept outside the domain of replacement activity. Locking is usually achieved 
by associating a bit to be set as locked (lock bit) with each such frame, and this bit can be included 
with each page table entry in the current page table. 

A brief description of locking page frames is given on the Support Material at www.routledge. 
com/9781032467238. 

Shared Page Frames: In a timesharing system, it is very common that several users are run-
ning the same program (e.g. a compiler, a database, a text editor) using shared pages to avoid having 
multiple copies of the same page in memory at the same time. These shared pages are typically 
read-only pages that contain program text and not pages that contain data. The problem arises when 
the pages of a specifc program are removed (page-out) along with the pages it is sharing that may, in 
turn, ultimately cause a large number of page faults to occur when other active programs in memory 
require those shared pages. Likewise, when a program is completed or terminated, it is essential to 
inspect all the page tables to fnd those shared pages that are still in use by other active programs so 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 
 
 
 

 
 
 

 

 

 
 
 

282 Operating Systems 

that their disk space (virtual memory) will not be freed by chance. Such checking over all the page 
tables is usually too expensive. Hence, special data structures or additional hardware support are 
needed to keep track of all such shared pages. 

5.9.5.4 Replacement Algorithms 
A large number of page replacement algorithms are available. The best possible page replacement 
algorithm is easy to describe but diffcult and perhaps impossible to implement. Much work has 
been done on this subject, and more than 300 papers have been published (Smith, 1978). Still, there 
are only a few basic interesting algorithms available that have been used for the selection of a page 
to replace. We will describe only a few of them. Each operating system, however, obviously has its 
own page replacement scheme. 

5.9.5.4.1 Optimal Replacement 
Optimal page replacement always attempts to make the page replacement decision in such a way 
that the total number of page faults during the execution of a program is as low as possible. This 
algorithm by Belady ensures that no other sequence of page replacement decisions can generate 
a smaller number of page faults and hence was proven to be optimal. In order to realize optimal 
page replacement at each page fault, this replacement policy should consider all possible alterna-
tive page replacement decisions, analyze their impact on future page faults, and then select the 
best possible alternative. Belady formulated a simple rule by which this can easily be achieved: 
At each page fault, select a page for replacement whose next reference is farthest in the page 
reference string. 

Belady’s formulation of this algorithm itself makes it unrealizable, because at the time of page 
fault, the operating system has no way of knowing in advance when each of the pages will be ref-
erenced next. However, from an academic point of view, by running a program on a simulator and 
keeping track of all page references, it is possible to implement optimal page replacement on the 
second run by using the page reference information already collected from the frst run with the 
simulator. It should be noted that the page reference history as collected, based on which this algo-
rithm operates is confned only to that specifc program. The signifcance of this algorithm is purely 
theoretical, and it is of no use in practical systems. However, this method can serve as a yardstick 
for comparisons and for evaluating other page replacement algorithms. 

Another way to implement this approach with a close approximation may be carried out as fol-
lows: When a page fault occurs, some set of pages is in main memory. One of these pages may be 
referenced at the very next instant; some of the other pages may not even be needed until a large 
number of instructions later. Each page thus can be labeled with the number of instructions that 
would be executed before that page is frst referenced. The optimal page replacement algorithm uses 
this label and simply says the page with the highest label will be selected for removal. 

An example to illustrate this approach with a fgure is given on the Support Material at www. 
routledge.com/9781032467238. 

5.9.5.4.2 Not Recently Used Page Replacement Algorithm (NRU) 
In computer systems that do not provide suffcient information with regard to the last use of a page, 
this method provides a mechanism that could achieve an equivalent effect. The operating system in 
most computers with virtual memory keeps track of the status of pages in memory, whether used 
or unused, with the help of two status bits associated with each page in the page table, as shown in 
Figure 5.11. The bit R is set when the page is referenced (read or written), and the bit M is set when 
the page is only modifed (i.e. written to). 

It is important that these bits be updated on every memory reference, so it is essential that 
they be set by the hardware. Once a bit has been set to 1, it remains 1 until the operating system 
resets it to 0 in software. If the hardware does not have these bits, they can be simulated by 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 283  

 
 

  
 

  

  
  

the software under the control of the operating system (memory management). However, the 
number of references made to a page or the order in which these references were made will not 
be known. 

The R and M bits combined can be used to build a simple effective page replacement algorithm. 
When a process is started, both these page bits are initially set to 0 by the operating system for all its 
pages. Periodically (e.g. on each clock interrupt), the R bit is cleared (set to 0) to distinguish pages 
that have not been referenced recently from those that have been. At each page fault, the operating 
system scans all the pages and divides them into four distinct categories based on the current values 
of the R and M bits. 

Class 0: Not referenced recently, not modifed (R = 0, M = 0; number = 00) 
Class 1: Not referenced recently, modifed (R = 0, M = 1; number = 01) 
Class 2: Referenced recently, not modifed (R = 1, M = 0; number = 10) 
Class 3: Referenced recently, modifed (R = 1, M = 1; number = 11) 

At frst glance, although class 1 pages seem impossible, they occur when a class 3 page has its 
R bit cleared by a clock interrupt. Clock interrupts, however, do not clear the M bit because this 
information is only needed to decide whether the page has to be rewritten to disk at the time of its 
removal for the sake of immediate time saving. 

The not-recently used (NRU) algorithm removes a page at random from the lowest numbered 
non-empty class. This algorithm implicitly indicates that it is always appropriate to remove a modi-
fed page that has not been referenced (R = 0, M = 1) in at least one clock (typically 20 msec.) than 
a clean page that is in heavy use (R = 1, M = 0). 

The distinct advantage and possibly the main attraction of NRU is that it is easy to understand, 
effcient to implement, and offers a performance that, while certainly not optimal, is often ade-
quate. Variations of this scheme are in use in different versions of UNIX. 

5.9.5.4.3 First-In, First-Out (FIFO) Algorithm 
FIFO is another low-overhead and simplest paging algorithm that selects a page for removal that 
has been in memory for the longest time, based on the consideration that it would have fallen out 
of use. This assumption is often found wrong. Moreover, the pages that are replaced due to only 
along stay in memory would often contain those regions of program or data that are heavily in use 
for the longest times throughout the tenure of a program execution. Removal of these pages may be 
expensive for repeated page-in and page-out by the FIFO algorithm. However, the implementation 
of FIFO can be carried out in many different ways. 

In one method, an additional feld can be introduced in the page table that records the time of 
arrival of a page when it is brought into memory. At the time of page replacement, the memory 
manager scans these entries in the page table and selects the oldest among the existing pages. In the 
second method, a linked list can be used to maintain the FIFO queue of page numbers according 
to their arrival, and the new page numbers are added only at the end of this queue. The page to be 
replaced is the one which is at the head of this queue. Another way may be that the columns in the 
page table are kept ordered (like a queue) so that the oldest page is always at the bottom and the 
newest page is at the top. In a page fault, the page at the tail is removed, and the new page is to be 
added to the top of the list. In actual implementation of FIFO removal, the clock value indicating 
when a page was loaded can be stored, and for removal, a search can be made for the oldest time. 
However, FIFO has three key disadvantages: 

1. If a page is frequently and continually used, it will eventually become the oldest and will 
be removed even though it will be needed again immediately. 

2. Some strange side effects can occur contrary to normal expectations. 
3. Others algorithms have been found more effective. 



 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

284 Operating Systems 

The most noted side effect, called the FIFO anomaly, or Belady effect, is that under certain 
circumstances, adding more physical memory can result in poorer performance when one would 
expect a larger memory to result in a better performance. The actual page traces that result in this 
anomaly are, of course, very rare. Nevertheless, this perverse phenomenon coupled with the other 
objections noted has ultimately caused FIFO in its pure form to drop from favor. 

Brief details about this section with examples and fgures are given on the Support Material at www. 
routledge.com/9781032467238. 

5.9.5.4.3.1 FIFO Approximations 
• Second Chance Page Replacement: A simple modifcation to FIFO is called second chance. 

Here, the page table is provided with two additional felds: a reference bit (R) feld and a time-
of-arrival feld. This replacement scheme avoids the problem of throwing out a heavily used 
page by inspecting the R bit of the oldest page. The R bit is set to 1 when a page is referenced. 
The R bit is set to 0 periodically over a suitable interval of time in software. When a page 
replacement is required, the memory manager scans the page table entries to look for the 
page with the smallest value in the time-of-arrival feld (the oldest page) and also examines its 
reference bit R. If R is 0, the page is both old and unused, so it is replaced immediately. If the 
R bit of the oldest page is 1, the page will not be replaced. Instead, its R bit is cleared to 0, its 
load time is updated to the current time, and the page is put at the end of the list of pages as if 
it had just arrived in memory. Then, the search continues for the next oldest page in a similar 
way from the front of the list. In the worst case, when all the pages have their referenced bit set 
1, each one will then be appended one after another to the end of the list, setting its R bit to 0, 
and the second chance in that situation will then simply degenerate into pure FIFO. 

• Clock Page Replacement: Second chance is reasonable in approach, but it is equally inef-
fcient, at least operationally, because it is constantly moving pages around on its list. A better 
approach is to keep all the pages on a circular list in the form of a clock. At any time, the hand 
of the clock will be pointing to a potential victim in the circular list. When a page is frst loaded 
into a frame in memory, the reference bit (R bit) in the page table for that frame is set to 1. When 
the replacement of a page is needed, the page being pointed to by the hand is inspected. If the 
R bit of this page is 0, the page will be selected for replacement and evicted, the new page is 
inserted into the clock in its place, and the hand is then advanced one position. If the R bit of the 
page is 1, it will be cleared (set to 0), the hand is advanced to the next page, and so on, until a 
page is found with R = 0. If all of the frames have an R bit of 1, then the pointer will make one 
complete cycle through the buffer, setting all the R bits to 0, and come to a stop at its original 
position, then fnally replace the page in that frame. Not surprisingly, this algorithm is called a 
clock policy because the page frames can be visualized as laid out in a circle. It differs from the 
second chance algorithm only in the implementation. A number of operating systems, includ-
ing Macintosh, have employed different variants of this simple clock policy. 

• Modifed Clock Algorithm: The clock algorithm can also be modifed to make it more 
effective by including a modify bit M in each page table entry along with the usual refer-
ence bit R. If the M bit is set, then the respective page is required to be written back into 
secondary memory when its turn comes for replacement. Usually, all processors that sup-
port paging provide this bit with every frame of main memory. However, if the hardware 
does not have these bits, they can be simulated by the software under the control of operat-
ing system. R and M bits in combination can be used to build the needed page replacement 
algorithms in a way similar to the NRU algorithm already described. The notable differ-
ence of this algorithm from NRU is that the referenced bit R is here reset at each page fault 
and when page replacement is required. In NRU, the R bit is always cleared periodically 
(e.g. on each clock interrupt) to distinguish pages that have not been referenced recently 
from those that have been, and this is done irrespective of any occurrence of page fault. 

Brief details of this section with examples and fgures are given on the Support Material at www. 
routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 285  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

5.9.5.4.4 Least Recently Used (LRU) Page 
One of the most popular page removal techniques with a good approximation of the optimal 
algorithm is called least recently used. This algorithm is based on the observation that pages that 
have been heavily used during the execution of last few instructions will have the chance to be 
used once again in the next few, according to the theory of locality. It thus legitimately selects 
a page for removal that has not been referenced for the longest time. FIFO, in contrast, removes 
the page that has been in memory for the longest time, regardless of how often and when it was 
referenced. The LRU policy is thus based on the theory that if a page is referenced, it is likely to 
be referenced again soon. Conversely, if it has not been referenced for a long time, it is unlikely 
to be needed in the near future. Hence, according to the LRU policy, when a page fault occurs, 
throw out the page that has been unused for the longest time. In LRU, the number of page faults 
is a non-increasing function of the number of frame allocation. Thus, it is possible for the LRU 
policy to combat thrashing (the to and fro journey of pages) by simply increasing the number of 
frames in main memory. 

Hence, an LRU page trace analysis can put the most recently referenced page on the top of a list 
M of all the frames in use. The least–recently used page thus falls to the bottom of the M list and is 
a candidate for removal. LRU has been found to possess many interesting theoretical properties; in 
particular, it is a member of a class of removal techniques called stack algorithms. This algorithm 
functions in such a way that increasing memory size can never cause the number of page faults (page 
interrupts) to increase, in contrast to the FIFO anomaly, and as such this algorithm guarantees that 
it never suffers from Belady’s anomaly. The details of the stack algorithm are beyond the scope of 
this book. The interested reader can fnd more details in Maekawa et al. (1987). 

Implementation of theoretically realizable LRU is not so easy. It is necessary to maintain a linked 
list of all pages in memory with the most recently used page at the front and the least recently used 
page at the rear. The diffculty is that the list must be updated on every memory reference. Finding 
a page in the list, deleting it, and then moving it to the front to post the newer one is an expensive, 
time-consuming operation. Either additional special hardware is needed or it must be realized with 
a cheaper approximation in software. But, even with hardware, switching and manipulating a linked 
list on every instruction is prohibitively slow. 

However, there are other ways to implement LRU with special hardware. One such way is to 
equip the hardware with a 64-bit counter C, which is automatically incremented after each instruc-
tion is referenced. Furthermore, each page table entry must also have a feld large enough to store 
the contents of counter C. After each memory reference, the current value of C is stored in the page 
table entry for the page just referenced. At the time of page replacement, all the counter values in the 
page table are examined to fnd the lowest one. That page is the least recently used and a candidate 
for removal. 

Incidentally, there are also other hardware-based ways to implement LRU. But, whatever imple-
mentation mechanism is employed, exact LRU is unfortunately expensive to implement. Additional 
hardware could certainly be designed and built to accomplish it, but it would be quite costly. Luckily, 
an exact implementation is not needed at all, because a simple variant of it works almost as well. 

Brief detail on this section with examples and fgures are given on the Support Material at www. 
routledge.com/9781032467238. 

5.9.5.4.5 Least Frequently Used (LFU) Page 
Here, an additional feld (a software counter), initially set to 0, is associated with each entry (page) 
in the page table that keeps count the number of times the respective page is referenced. Whenever a 
page is referenced, the content of this feld is incremented by 1. At the time of page replacement, the 
page with the lowest value in this feld will be chosen for removal. The logic behind the replacement 
of a page with the lowest value in this feld is really the replacement of the least actively used page, 
which certainly is a proper choice. 

Keeping the implementation arrangement of LFU intact, only a slight modifcation in its 
operation gives rise to another algorithm, known as the Not Frequently Used (NFU) algorithm. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 

 
 
 
 
 
 
 
 

 

 

 

 

 
 

 
 

 
 

286 Operating Systems 

Here, at each clock interrupt, the memory management scans all the frames in memory. For 
each page, the R bit, which is either 0 or 1, is added to the content of this additional feld (coun-
ter). In effect, the counter aims to keep track of how often each page has been referenced. When 
it comes time to replace a page, the page with the lowest value in this feld will be chosen for 
replacement. 

One of the serious drawbacks found with both LFU and NFU in certain situation that arises 
because of their keeping track of everything and not forgetting anything For example, when a 
multi-pass compiler runs, pages that were heavily used during pass 1 may still have a high count 
well into later passes. In fact, pass 1 usually has the largest programs and the longest execution 
time of all passes; the pages containing codes for subsequent passes when executed will always 
have lower counts than the pass 1 pages. Consequently, memory management, during the execution 
of pass 2 or subsequent passes, will remove useful current pages instead of pages (of pass 1) that 
are now no longer in use. However, NFU can be modifed in several ways. A small modifcation to 
NFU gives rise to a modifed algorithm known as aging, which is able to simulate LRU quite well. 

5.9.5.4.6 Most Frequently Used (MFU) Page 
In this case, the page with the largest value in the feld (counter) that keeps count of the number 
of references is replaced. The logic that works behind this is that the page with the smallest value 
in the feld (counter) might have been brought in just recently and expected to remain in use in the 
near future. 

5.9.5.4.7 Belady’s Anomaly and LRU 
Belady’s anomaly shows that offering more page frames sometimes (not always) causes more page 
faults, which is against expectations. In contrast, it can be shown in LRU that the number of page 
faults is a non-increasing function of the number of frame allocations. Thus, it is possible with this 
LRU policy to combat thrashing (to and fro journey of pages) by simply increasing the number of 
frames in main memory. 

An example and its corresponding fgures are given on the Support Material at www.routledge. 
com/9781032467238. 

5.9.5.4.8 Ad Hoc Algorithm: Page Buffering 
The optimal policy is simply impossible to implement, and although LRU and the clock policy 
(which is a close approximation to LRU) are superior to FIFO, but they both require additional hard-
ware support that FIFO does no need. Moreover, they both involve much complexity and overhead 
that FIFO does not. In addition, there is a common factor for all algorithms that the cost of replacing 
a page that has been modifed is always greater than replacing one that has not been, because the 
modifed page must be written back to secondary memory. 

Keeping all these facts in view, an innovative strategy can be designed using a simpler paging 
algorithm called page buffering that can summarily improve paging performance. This strategy 
exploits the pure FIFO algorithm for the replacement of pages, but subsequent actions are dif-
ferent and are implemented also in a different way. Instead of throwing a replaced page out of 
memory, this strategy, for the sake of performance improvement, assigns the replaced page to 
one of two lists: the free page list if the page has not been modifed or the modifed page list if 
the page is modifed. It is to be noted here that the replaced page is not physically removed from 
main memory; instead, the entry for the page in the page table is deleted and placed in either the 
free or modifed page list. 

The distinct advantage of this mechanism is that the page to be replaced remains still in memory. 
If the page is further referenced in the near future, it can be returned immediately to the resident set 
with only a little effort. Effectively, the free and modifed page lists act here like a cache of pages. 
The modifed page list, however, serves another useful function: When the device is idle, modifed 
pages are usually written out in clusters rather than one at a time, and the modifed bit of those 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 287  

 

 
 
 
 
 
 

 
 
 

 
 

 

pages is then set to 0, indicating that these frames are now available for use at the time of page 
replacement. This signifcantly minimizes the number of I/O operations and thereby reduces the 
total amount of time required for disk handling. The powerful VAX VMS (DEC system) is a repre-
sentative operating system that uses this approach, and a few other operating systems, including the 
Mach operating system (Rash 88) use this approach with a few variations. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

5.9.5.4.9 Comparison 
The results of an experiment as reported in Baer (1980) compares the four algorithms, FIFO, 
Clock, LRU, and OPT, and are depicted in Figure 5.17. While conducting the experiments, it was 
assumed that the number of pages assigned to a process is fxed. The experiments were carried 
out by running a FORTRAN program considering 0.25 × 106 references, using a page size of 256 
words. The experiment was run with different frame allocations, 6, 8, 10, 12, and 14 frames, and 
the page faults caused by these four algorithms were counted separately for each of these alloca-
tions of frame one at a time. Interesting situations were observed. With small allocations, the 
differences among the four policies were impressive, with FIFO having page faults almost double 
OPT. The curves show that, to realize effcient run, we would prefer to be on the right of the knee 
of the curve (which shows a small page fault rate) but at the same time keep a small frame alloca-
tion (as far as left of the knee of the curve). These two conficting constraints, while combined as 
a compromise, suggest that the most desirable, realistic mode of operation would be around the 
knee of the curve. 

Finkel also conducted a similar experiment in order to fnd the performance of various replace-
ment algorithms using 100 pages with 10,000 synthesized page references. He employed an expo-
nential distribution for the probability of referencing a specifc page so as to approximate the 
principle of locality. This experiment also revealed identical results as those reported in Finkel 
(1988). The outcome of this experiment confrmed that the maximum spread of page faults here was 
about a factor of 2. Apart from that, many other interesting and important conclusions were also 
derived from his experiment. 

5.9.5.5 Working Set Theory 
The set of pages that a process is currently using is mostly determined by the program’s locality at 
that instant. This set of pages is called the working set of the program at that time. The working set 
concept was introduced and popularized by Denning (1968, 1970, 1980) and has had a profound 
impact on the design of virtual memory management. He showed that the behavior of a program 

40 

35 

30 

25 

20 

15 

10 

0 

-

-

-

-

-

-

-

5 -

6 8 10 12 14 
Number of frames allocated 

FIFO 

CLOCK 

LRU 

OPT 

FIGURE 5.17 Graphical representation of comparison of four popular and commonly used replacement 
algorithms with fxed number of local page allocation. 

Pa
ge

 fa
ul

ts
pe

r 
10

00
 r

ef
er

en
ce

s 

http://www.routledge.com/9781032467238


 

 
 

 

 

 
 

288 Operating Systems 

during its execution inspired the working set theory to evolve, the basis of which is mainly the 
following: 

• An executing process prefers only a subset of its pages at any interval in time. 
• The typical patterns of the memory reference of an executing process exhibit a strong rela-

tionship between the recent-past and immediate-future memory references. 
• On average, the frequency with which a particular page is referenced mostly changes 

slowly with time. 

The notion of a working set, however, assists the virtual memory handler in deciding how many 
real page frames to be allocated to a given process and which pages of the process should be resi-
dent in memory at any given time to realize satisfactory performance by the process. In fact, when 
a program begins its execution and starts referencing more and more new pages, it actually builds 
up a working set gradually. Eventually, the process, due to the principle of locality, should fnally 
stabilize on a certain set of pages. Subsequent transient periods indicate a shift of the program from 
its existing locality to a new locality during its execution. It is interesting to note that during this 
transient phase, when the new locality has already started, some of the pages of the old locality still 
remain within the new evolving working set, causing a sudden increase in the size of the working 
set as new pages are continually referenced. Thereafter, within a short duration of time when the 
pages of the old locality start to be replaced by the referenced pages of the new locality, the working 
set size again begins to decline and fnally stabilizes when it contains only those pages from the 
new locality. Since the future references of the pages are not known, the working set of a program 
can be defned as the set of pages already referenced by the executing program during a predefned 
recent-past interval of time. This set is then probably able to predict the domain of future references. 

The working-set principle is basically a guideline for two important aspects of paging systems: 
allocation and replacement. It states that: 

• For a program to run smoothly, its working set must be in memory. 
• A page of an active process may not be removed from memory if it is a member of the 

working set of the process. 

The working set of each process is thus always monitored to ensure that it should be in memory 
so that the process can run without causing many faults until it moves to another execution phase 
(another locality) or completes. If the available memory is not large enough to accommodate the 
entire working set, the process will then naturally cause many page faults to occur and conse-
quently is said to be thrashing, ultimately requiring the system to spend most of its time shuttling 
pages between main and secondary memory. However, the two requirements, as mentioned, cannot 
always be religiously met due to various reasons, particularly when the degrees of multiprogram-
ming are relatively high for the sake of performance improvement. Still, many paging systems try 
to keep track of each process’s working set and attempt to hold it in memory as far as possible dur-
ing the execution of the process. This approach, called the working set model (Denning, 1970), is 
mainly designed to greatly reduce the page-fault rate. 

Strict implementation of the working set model is a costly affair, and that is why a close approxi-
mation of the realizable defnition of the working set is attempted instead. For example, when a pro-
gram is under execution, after a predefned interval of time, the referenced bits of its resident pages 
can be recorded and then cleared. Status (settings) of those bits prior to cleaning can be saved in 
counters or bit arrays, which may be provided with individual page entries in the page table. Using 
this counter or bit arrays, the working-set approximations can be made as a list of pages that have 
been referenced during recent past. 

Using this working-set approach, the clock algorithm can be effectively modifed to improve 
its performance. In clock algorithm, normally, when the hand points to a page whose R bit is zero, 



Memory Management 289  

 

 

 

  
 

 

 

 

 

 
 

   
 
 
 
 
 

 

the page is evicted. The improvement is in effect to further check to see if that page is part of the 
working set of the currently active process. If it is, the page is spared and kept out of eviction. This 
algorithm is called Wsclock. 

5.9.5.6 Working Set Management 
Working set theory is simply a guideline to the operating system with respect to page allocation and 
page replacement. It helps the system decide: 

• how many real page frames to be allocated to a given process, that is, what will be the 
size of the working set, 

• which pages of the process should be resident in memory; in other words, what will be 
the scope of replacement. 

• Allocation Policy: Working Set Size: With the limited size of memory in the system, 
the operating system must decide how much memory is to be allocated, that is, how 
many pages of a particular process are to be brought into memory for smooth execu-
tion. Several interrelated factors are to be considered that infuence the performance of 
the system: 
• The smaller the number of page frames allocated to a process, the greater the degree of 

multiprogramming that will eventually improve the performance of the system. 
• If a relatively small number of page frames is allocated to a process, then despite the 

principle of locality, it may result in a high rate of page faults, resulting in severe degra-
dation in the performance of the system. 

• The more page frames allocated to a process, intuitively, the fewer page faults a program 
will experience, which may result in a better performance. But observations reveal that 
beyond a certain number of page frames allocated to a process, any additional alloca-
tion of frames will have no noticeable effect on the page fault rate for that process, 
mainly because of the principle of locality. 

Considering all these factors and others and making a compromise among several conficting 
requirements, two different types of allocation policies have evolved that control the working 
set size. A fxed-allocation policy offers a fxed number of frames to a process during its entire 
tenure of execution. This number must be decided ahead of time; is often decided at initial load 
time; and may be determined based on the size, types, and other attributes of the process or 
even on advice issued from the user end. With this policy, whenever a page fault occurs and 
replacement of page is required in the execution of a process, one of the pages of that particular 
faulting process must be selected for replacement to make room for the new page to hold. This 
policy behaves quite well with those processes with high degree of principle of locality, show-
ing an exceptionally low page fault rate and thereby requiring only a small number of page 
frames. 

The other allocation policy is known as the variable-allocation policy, in which the number of 
page frames allocated to a process frequently varies during the entire tenure of its execution. This 
policy is suitable for those processes that exhibit a weak form of principle of locality during execu-
tion and constantly tend to result in high levels of page faults, thereby continually expanding their 
working set size. The variable-allocation policy appears to be the more powerful one, but, on the 
other hand, it often develops thrashing due to snatching page frames from other active processes 
that subsequently may create unnecessary extra page faults at their end through no fault of their 
own. For this reason, the intervention of the operating system is required every time to assess the 
behavior of the active processes that, in turn, demand adequate software intelligence to be embed-
ded in the operating system as extra overhead with the support of additional hardware mechanisms 
required. 



 

 

 

290 Operating Systems 

However, both allocation policies as described are closely related to replacement scope. 

• Replacement Scope: When a process gets a page fault, and there is no free page frame in 
memory, then if the policy chooses the victim only from the resident pages of the process 
that generates the page fault, it is called a local replacement policy. In this case, the algo-
rithm religiously obeys the fxed-allocation policy. All the replacement algorithms already 
discussed in the preceding subsection use this policy. On the other hand, if the policy con-
siders all unlocked pages in main memory as candidates for replacement irrespective of 
which process owns the particular page to be evicted, it is known as a global replacement 
policy. Tis algorithm implies a variable-allocation policy. Te clock algorithm is com-
monly implemented as a global replacement policy, since it considers all residential pages 
in a single list while it selects. Te problem with this global replacement policy (variable-
allocation) is actually the selection of a frame from all the unlocked frames in memory 
using any of the replacement policies, as already discussed. Te page to be selected for 
replacement can belong to any of the resident process; there is as such no defnite guideline 
to determine which process should lose a page from its working set. Consequently, the pro-
cess that loses its page may sufer from reduction in working set size that may afect it badly. 
One way to combat this potential problem is to use page bufering (as already discussed). 
In this way, the choice of which page to replace becomes less important, because the page 
can normally be reclaimed at any instant if it is referenced before the next time a block of 
pages is overwritten. 

A local replacement with variable allocation policy can alleviate the problems faced by the 
global replacement strategy. The improvement or enhancement that can be made over the existing 
local replacement with fxed allocation policy is to reevaluate the number of page frames already 
allocated to the process at a specifc interval of time and then change it accordingly to improve the 
overall performance. However, such planned attempt to be taken periodically for making decisions 
whether to increase or decrease the working set size of active processes actually requires a thorough 
assessment of their likely future demands of pages. Such an evaluation activity, in fact, is not only 
a time-consuming proposition, but it makes this approach more complex than a relatively simple 
global replacement policy. Still, it may probably yield overall better performance. However, the key 
to the success of this strategy is to determine the working set size at any instant that dynamically 
changes and also the timing of reevaluation to effect such changes. One particular strategy that 
seems to have received much attention in this area is the working set strategy. A true working set 
strategy would be diffcult to improvise and equally hard to implement for all practical purposes for 
each process, but it can serve as a yardstick for comparison. 

Local replacement policies tend to localize effects of the allocation policy to each particular 
process. They are easier to analyze and simple to implement with minimal overhead. But their 
major drawbacks are: when the working set grows, thrashing is inevitable, even if there are plenty of 
free page frames. If the working set shrinks, local algorithms simply waste memory. If the amount 
of allocations (number of page frames) tends to be too small, there will be a high probability of 
increased page fault rate. If the amount of allocations (number of page frames) tends to be unneces-
sarily large, the degree of multiprogramming will then be considerably reduced, thereby adversely 
affecting the performance of the entire system. 

Global replacement policies, on the other hand, increase the correlation and the degree of cou-
pling between replacement and allocation policies. In particular, pages allocated to one process by 
the allocation algorithm may be snatched away by a global replacement algorithm. This algorithm 
is more concerned with the overall state of the system and much less interested in the behavior of 
each individual process. By offering more page frames and thereby varying the number of frames 
in use by a given process, global replacement may badly affect the regions, based on which the logic 
and the attributes of the replacement algorithms are derived. Moreover, research results reveal that 



Memory Management 291  

 
 
 
 
 
 
 
 
 
 

 

the relationship between the frequency of page faults and the amount of real memory (number of 
page frames) allocated to a program is not linear. Despite all these facts, global replacement, not 
unnaturally, is still considered close to optimal. 

From this discussion, the important conclusion is that each program has a certain threshold 
regarding the proportion of real (page frame) to virtual pages. An amount of allocation below this 
threshold causes page faults to increase very quickly. At the high end, there seems to be a certain 
limit on the number of real pages above which any additional allocation of real pages results in very 
little or almost no noticeable performance improvement. It is thus suggested to allocate memory in 
such a way that each active program will get an amount that lies between these two extremes. In 
fact, these upper and lower bounds should probably not be fxed, they are mostly program-specifc 
and thus dynamically derived on the basis of the faulting behavior of the program at the time of 
its execution. Therefore, it is more judicious to keep track of the behavior of the active program 
rather than uselessly chase increasing the degree of multiprogramming for the sake of performance 
improvement. Therefore, improvising a good design of an allocation algorithm that will be stable 
and at the same time will not be inclined toward thrashing can be achieved by monitoring the page 
fault rate rather than keeping track of the working set size directly. 

Thus, the proposed algorithm will be based on the principle that a program that frequently experiences 
a large number of page faults, i.e. having a high page-fault rate which is above some maximum threshold, 
should be allocated more frames, if possible, without degrading the system or otherwise suspended it to 
allow other active processes to run smoothly. Similarly, for a program that exhibits a low page-fault rate 
below some minimum threshold, a few pages may be taken away from that process without causing any 
appreciable effect. Moreover, the number of frames to be allocated may be determined by the amount of 
available free memory, its priority, and other similar infuencing factors. However, when designing an 
algorithm to implement this approach, one practical diffculty is that it requires prior knowledge about the 
size of the working set of the process, in particular which specifc pages the process would really need at 
any instant during the course of its execution. However, this problem has been addressed and has a solution 
using a strategy known as the page-fault frequency algorithm that implements this approach. 

Brief details on this section with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

5.9.5.7 Page-Fault Frequency (PFF) 
The page-fault frequency (PFF) algorithm is applied to the allocation module to monitor and con-
trol the page replacement activities. The PFF algorithm uses a parameter F (critical page fault 
frequency) that may be defned as follows: 

F = 1/T 

where T is the critical interpage fault time, that is, the time between two consecutive page faults of a 
particular process and is usually measured in number of page faults per millisecond. The operating 
system defnes a system-wide (or sometimes per-process) critical page fault frequency F. 

To implement this algorithm, it requires a reference bit (R) to be associated with each page in 
memory. When a page is accessed, its reference bit is set to 1. When a page fault occurs, the operat-
ing system notes the virtual (process) time since the last page fault for that process. This could be 
accomplished by maintaining a counter of page references. The operating system stores the time of 
the most-recent page fault in the related process control block. Now, if the amount of time since the 
last page fault occurred is less than T (= 1/F) ms, the process is operating above the PFF threshold 
F, and a new page is added to the resident set of the process from the pool of free pages to hold the 
needed page. This triggers a growth in the resident set size. Otherwise, the process is operating 
below the PFF threshold F, and a page frame occupied by a page whose referenced bit and modi-
fed bit are not set is freed to make room for the new page. At the same time, the operating system 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 

292 Operating Systems 

sweeps and resets referenced bits of all resident pages. The pages that are not–referenced, unmodi-
fed, or not–shared since the last sweep are then released, and these freed page frames are returned 
to the pool of free pages for future use. 

PFF may be implemented as a global or local policy, although in its original proposal, PFF 
was described as a global policy. This strategy can be further extended for the sake of complete-
ness; some other policies are additionally needed to maintain the size of the pool of free frames 
within the specifed limits. Modifed pages should be written back to disk in an appropriate manner. 
Moreover, if the PFF algorithm is supplemented with page buffering, the resulting performance is 
quite appreciable. 

Implementation of PFF in this manner faces several problems. First, resetting of reference bits 
at the end of an interval would encroach on the page replacement decisions. If a page fault occurs 
in a process soon after the required actions being taken and the working set was determined, most 
pages of the process in memory would have their reference bits off, so memory management cannot 
differentiate between these pages for the purpose of page replacement. The consequences are even 
severe if processes either remain blocked or do not get an opportunity to execute for an entire inter-
val; their allocation would then shrink unnecessarily. As a result, it will be diffcult to decide on the 
needed size of the working set window. To alleviate this problem, an alternative is to use a working 
set window for each process individually. But this would rather invite additional complications in 
the operation of memory management and further increases its overhead. Moreover, it would not 
address the issues of interference with page replacement decisions. Apart from these, there are also 
other problems, such as the PFF approach possibly not performing properly during the transient 
periods (as already stated) when there is a shift from an existing locality to a new locality. This 
problem, however, has been resolved by modifying the existing PPF approach accordingly. 

More about this section is given on the Support Material at www.routledge.com/9781032467238. 

5.9.5.8 Cleaning Policy: Paging Daemons 
All the strategies and policies that are devised for different aspects of a paging system mainly aim to 
increase the performance effciency of the paging system. But they can only work well when plenty 
of free page frames are available that can be claimed when page fault occurs. To ensure a plentiful 
supply of free page frames, many paging systems employ a cleaning policy that is mostly con-
cerned with deciding when a modifed page should be written out to secondary memory. A cleaning 
policy is essentially the opposite of a fetch policy. Two types of cleaning policy are in common use: 
demand cleaning and precleaning. 

With demand cleaning, a page that is modifed is written out to secondary memory only when 
it has been selected for replacement and is thus evicted from memory. A precleaning policy writes 
modifed pages to secondary memory before their page frames are actually needed, and those pages 
can be written out in batches. In fact, many paging systems have a background process called a 
paging daemon that sleeps most of the time but is awakened periodically to inspect the state of 
memory. When only a few free page frames are available, the paging daemon starts working, select-
ing pages to evict using the chosen page replacement algorithm. If these pages have been modifed 
since being loaded, they are written out to disk. 

No policy is foolproof, and in fact, both policies have some drawbacks when strictly followed. 
With precleaning using paging daemons, while a page is written out, it remains in memory until 
the page replacement algorithm decides that it is to be removed. This facilitates that in the event 
when one of the evicted pages is once again needed before its frame has been overwritten, it can be 
reclaimed simply by restoring the status of the page in the page table and at the same time remov-
ing the page from the pool of free page frames. Precleaning always ensures a supply of free page 
frames and obviously yields better performance than visiting all of the memory and then trying 
to fnd a frame at the moment it is needed. At the very least, precleaning using paging daemons 
ensures that all the free frames are ready to use, so they need not be written to disk in a big hurry 
when they are required. But this act, instead of offering advantages, often turns out to be a serious 

http://www.routledge.com/9781032467238


Memory Management 293  

   
 

 
 
 
 
 

 

 

drawback. Precleaning allows the writing of pages in batches, and it makes little sense to write out 
hundreds or thousands of pages when the majority of them have been modifed again before they 
are actually replaced and fnally evicted. The precleaning action in this situation is thus redundant 
that simply waste the limited transfer capacity of the busy secondary memory with unnecessary 
cleaning operations. 

With demand cleaning, on the other hand, the modifed page is frst written back to the secondary 
storage before the reading in of a new page begins. Although this approach may reduce redundant 
page writes (as in precleaning), it goes through two page transfers when a page fault occurs that 
causes the faulty process to remain blocked for a considerable duration. This may, however, result 
in a noticeable decrease in processor utilization. 

The use of the page buffering technique can offer a better approach in page cleaning. The 
strategy to be followed is: Clean (remove) only those pages that need to be replaced. The 
cleaning and replacement operations are to be separated out, and they are treated individu-
ally. As usual with page buffering, the replaced pages can be placed on two lists: modified 
and unmodified. The pages on the modified list can be periodically be written out in batches 
and moved to the unmodified list. A page on the unmodified list is either reclaimed if it is 
referenced or thrown out from the list when its frame is assigned to another page. In this way, 
a good number of redundant page writes can be avoided, which is a compromise between two 
extremes. 

5.9.5.9 Placement Policy 
A placement policy determines where in main memory the program or part of a program is to be 
placed. In contiguous memory allocation, this is of course a vital issue and is handled with various 
strategies, such as frst-ft, next-ft, and best-ft. In the case of noncontiguous memory allocation, 
such as pure paging or paging combined with segmentation, the need of any strategy to choose a 
specifc portion of memory for the purpose of placement of particular information is simply irrel-
evant. The reason is that wherever the information is placed in any portion of memory, be it non-
contiguous, the address translation hardware and the memory access hardware can perform the 
address translation mechanism and other related functions with equal effciency that the page-frame 
allocation mechanism ultimately does. 

In multiprocessor environments, the architecture of the computer system comprises multiple 
CPUs capable of independently executing different tasks, and several different memory modules 
exist to support the activities of these CPUs. There exist various types of interconnections (as 
opposed to uniprocessors) between CPUs, and these different memory modules are not always 
necessarily located centrally, but how these memory modules will be interconnected to different 
CPUs is an important issue to be addressed when designing such computer systems. Many dif-
ferent forms of design and architecture of such systems have gradually evolved. On the so-called 
NUMA multiprocessor, the distributed memory of the machine, also shared, can be referenced by 
any processor (CPU) on the machine, but the time required to access a particular physical location 
varies according to numerous factors, including the distance between the specifc processor and the 
particular memory module that is accessed. Hence, the execution performance largely depends on 
the extent to which data reside close to the processors that use them. Numerous approaches have 
been devised to address this issue. For NUMA systems, it is desirable that an automatic placement 
strategy be devised so that the pages can be assigned to a memory module that can ensure possibly 
the best performance. 

5.9.5.10 Load Control 
Load control determines how many processes (degrees of multiprogramming) will be allowed to 
be in main memory at any instant. This policy is critical to devise and equally diffcult to imple-
ment for effective management of main memory. On the one hand, while it advocates for only few 

https://5.9.5.10


 

 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

294 Operating Systems 

processes to be in the system at any point in time, in many situations, it essentially reduces proces-
sor utilization by limiting process scheduling when most of the resident processes may be blocked, 
and much time will then be spent as overhead to resolve the situation (possibly by swapping) for 
effective processor utilization. On the other hand, if the policy accepts too many processes in mem-
ory at any instant, on average, the size of the resident set of each process may not be supported by 
the available size of memory, which eventually may cause frequent page faults to occur, leading to 
severe degradation in system performance. 

It is intuitive that, as the degree of multiprogramming increases from a small value, processor 
utilization is likely to increase and actually rise sharply because there are many active processes 
present in the system to use the processor. But the danger of this gradual increase in the degree of 
multiprogramming is that after a certain point, any attempt to further increase the degree of mul-
tiprogramming (the number of resident processes) may cause an adverse effect, mainly due to non-
availability of adequate memory space to hold the average resident set of all the active processes. 
From this point onward, the number of page faults rises abruptly, and consequently processor utili-
zation then begins to fall drastically. 

However, there are a number of approaches that resolve the problem of load control by determin-
ing how many active programs are to be resident in the existing system at any instant to yield the 
best performance. In fact, the working set theory or the page-fault frequency algorithm (especially 
the principle on which the algorithm is based) implicitly determine load control. It simply states that 
those processes are allowed to continue their execution if their resident set size is relatively large, 
and the needed memory should be provided to the resident set of each process to remain active. So 
this policy automatically controls and dynamically determines the number of active processes in 
the system at any point in time. 

Denning and his colleagues proposed another approach known as the L = S criterion, which 
adjusts the degree of multiprogramming so that the mean time between page faults (L) equals 
the mean time required to process a page fault (S). Numerous experiments based on this crite-
rion to study performances reveal that this is the point at which processor utilization reaches a 
maximum. 

Another approach devised by Carr (1984) describes a technique adapting the clock 
page replacement algorithm (Figure 5.73 on the Support Material at www.routledge.com/ 
9781032467238) using a global scope. This approach is based on monitoring the rate at which 
the hand traverses the circular buffer of frames. If the rate of traversal is below a given lower 
threshold, the degree of multiprogramming can be safely increased. On the other hand, if the 
rate of traversal exceeds a given upper threshold, it indicates either a high page-fault rate or 
limited number of pages available for replacement, which implies that the existing degree of 
multiprogramming is too high and should not be increased any more. 

To effect load control, the degree of multiprogramming is sometimes required to be increased 
or decreased. It can be increased by simply bringing in few more processes in the existing 
system and activating them. On the other hand, it is decreased using a common approach of 
merely suspending one or more currently resident processes and then swapping them out of 
main memory. The main categories of processes that can be suspended are: largest process, 
frequent faulting process, lowest-priority process, last process activated, and processes with 
largest remaining time. 

Like many other areas of operating system design that are mostly policy-dependent, the design 
issue related to the management of virtual memory is quite complex, because most of the issues 
in this area are closely interrelated to one another, and in many situations, they are conficting. 
The policy to be adopted here to achieve one’s goal is to be carefully selected, because it requires 
adequate support of both hardware and software and has a bearing on many other design factors 
related to other areas of the OS. A policy employed in this area may sometimes be lucrative, but it 
may have a negative impact in the operation of other areas of the OS. In addition, the design is often 
infuenced by the characteristics of the program to be run on the system. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 295  

 

  
 
 
 
 
 

  
 
 
 

 
 
 
 
 

 

 
 
 
 
 

   

 

5.10 CASE STUDY: MEMORY MANAGEMENT IN UNIX AND SOLARIS 

UNIX is intended to be machine independent with a high degree of portability and is available for 
machines with a diverse spectrum of system architectures and a variety of classes of processors 
ranging from microprocessors to supercomputers, along with widely different memory management 
units ranging from essentially nothing (IBM PC) to sophisticated paging hardware. Consequently, 
the memory-management scheme will vary from one system to the next. Early versions of UNIX 
used a simple variable-partition scheme with no virtual memory support. But current implementa-
tions of UNIX and Solaris make use of virtual memory with paging. Unfortunately, most computer 
systems are unable to provide adequate hardware support for good virtual memory management, 
and it is thus left to the virtual memory handler to make virtual memory practical and effective. This 
section refers to some common features of UNIX virtual memory along with a few attractive tech-
niques used in different versions of UNIX implementation that overcome defciencies in hardware 
support. A brief description of those, with fgures, is covered on the Support Material at www.routledge. 
com/9781032467238 to provide a clear view of the practical issues related to virtual memory imple-
mentation rather than to study in detail the virtual memory handler of a specifc UNIX version. 

The memory model of UNIX (SVR4) and Solaris supports a paging system for allocating page 
frames to processes and also allocating page frames to disk block buffers. Another memory man-
agement scheme along with the paging system, known as kernel memory allocator is employed for 
kernel memory allocation that has already been discussed in previous section. 

UNIX uses the idea of a unit called a region (or segment), which is a contiguous area in virtual address 
space comprising one or more pages that can be treated as a distinct entity. Every process (task) has an 
address space consisting of three separate regions, text or code, data, and stack; each region occupies 
a contiguous area of virtual memory, but separate regions belonging to a single task may be placed in 
noncontiguous areas of virtual memory. UNIX systems support shared text segments, but data and stack 
segments are never shared. Since text segments are never modifed, only data segments, user stacks, and 
swappable parts of process control blocks are actually copied to the swap area in secondary memory. 

• Page Table: UNIX manages paged virtual memory by means of a number of data structures 
that are more or less machine independent, but minor modifcations may be needed for some 
hardware platforms. Te data structure used for page table is one page table for each process, 
with one entry for each page in the virtual memory for that process. A specimen page table 
entry usually contains felds such as page frame number, age, modify, referenced, copy-on-
write, valid, and protect. Te page table, however, diferentiates between three kinds of pages: 
resident, un-accessed (age), and swapped-out. A resident page is available in memory that 
has been loaded on demand in response to a page fault. An un-accessed page has not been 
referenced even once during the execution of the process and hence has never been loaded in 
memory. A swapped-out page is available in swap space. If such a page is referenced, a page 
fault would occur that loads this page back into memory from its location in the swap area. 

To conserve memory space and swap area, the UNIX virtual memory handler uses the copy-on-write 
technique when a UNIX process (task) creates a child process via the FORK directive. The parent pro-
cess and its child process share a single physical copy of the data region. When either of them wants to 
modify data, a new physical page frame is provided to selectively replicate parts of the data space rather 
than the entire data space, and a separate physical copy of the original page prior to modifcation is made 
for the other party. This process of incremental page copying on an as-needed basis is often referred to as 
copy-on-write. It reduces the copying overhead as well as conserving memory, but it requires a somewhat 
more complex implementation of the mapping tables. The actual mechanism used to implement the copy-
on-write technique is given on the Support Material at www.routledge.com/9781032467238. 

• Hierarchical (multi-level) mapping tables: UNIX uses tables that facilitate implemen-
tation of the vital strategy of using allocations of noncontiguous regions for different 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

  
 
 

 
 
 

 

 

 

 

296 Operating Systems 

segments of a particular process in virtual address space and the important copy-on-write 
technique more effciently. For example, a parent and a child process while sharing a region 
need only maintain private frst-level tables that contain pointers to a single shared copy of 
the second-level page table in which the actual page table entries are stored. 

• Page Frame Data Table: Similar to a page table, this table describes each frame of real 
memory and is indexed by frame number (similar to page numbers in page tables) and 
ultimately facilitates the effective operation of the page replacement algorithm. Each entry 
of this page frame data table contains information such as page state, logical device, block 
number, reference count, and pointer. 

• Page Replacement: Different versions of UNIX use variations of the NRU page-replace-
ment algorithm (as discussed before) based on a global replacement policy that works bet-
ter with maintenance of longer page usage histories. UNIX maintains a list of free pages to 
reduce the page replacement overhead and offers the frst page in the free list when it needs 
to load a new page. To add new pages to this free list, it exploits the clock algorithm with 
one or two hands (used in UNIX SVR4) to identify the inactive eligible (not locked) pages 
to be taken out from memory using their reference (R) bit. The mechanisms used to imple-
ment one-handed clock and two-handed clock algorithms in this regard are separately 
described on the Support Material at www.routledge.com/9781032467238. 

• Paging Daemon: This is a vital module attached to the cleaning policy adopted by the 
virtual memory handler of the UNIX system. It is a background process that sleeps most 
of the time but starts working when it fnds that the number of frames in the free list has 
fallen below the low threshold and goes to sleep when it detects that this number exceeds 
the high threshold. The monitoring activity carried out by UNIX on daemon operation, 
and the way the paging daemon itself operates to support the page replacement activities 
are simply enormous. The details of the working procedures that the daemon follows are 
given on the Support Material at www.routledge.com/9781032467238. 

• Swapping: In UNIX, swapping is delegated to a separate kernel process, a scheduler known 
as a swapper, which is always process 0 in the system. However, swapping from memory 
to disk is generally initiated when the kernel runs out of free memory on account of many 
events or meeting specifc conditions. When it is found that swap-out is necessary, the swap-
ping activity is carried out by the page-out daemon that activates the swapper and, accord-
ing to its own defned policy, swaps out selected processes to produce a suffcient number 
of free page frames. The swapper also periodically checks to see whether suffcient free 
memory is available to swap-in processes selected per the defned policy. Free storage in 
memory and on the swap device is always tracked by using an appropriate data structure. 

• Swap-Use Table: For each swap device, there is one swap-use table. Each entry in this 
table is for each page on the device that contains information such as page/storage unit 
number, and reference count. 

• Disk Block Descriptor: This table describes the disk copy of the virtual page. Each entry 
in this table is for each page associated with a process that contains certain information, 
such as swap device number, device block number, and type of storage. 

• Kernel Memory Allocator: This portion was already described earlier in detail. 

More details about this section with fgures are given on the Support Material at www.routledge. 
com/9781032467238. 

5.11 CASE STUDY: MEMORY MANAGEMENT IN LINUX 

Linux has a close resemblance to UNIX, but since it attempts to accommodate a wide spectrum 
of diverse hardware platforms, its memory management scheme as implemented is quite complex. 
However, this narrative mainly covers a brief overview of some common features of Linux virtual 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management 297  

 

 

 

 

 

 

 
 

 
 
 
 

 

 

  
 

 
 
 

memory management with respect to two major areas, process virtual memory and kernel memory 
allocation. Here, the ultimate objective is to provide a clear view of the practical issues in virtual 
memory implementation rather than to study in detail the virtual memory handler of a specifc 
Linux version. 

Virtual Memory 
• Virtual Address Mapping: The design of Linux was actually intended to drive the 64-bit 

Alpha processor, which provided the needed hardware support for three levels of paging. It 
uses a hierarchical three-level page table structure that is platform- independent. This page 
table structure consists of the following types of tables. Each individual table has a size of 
one page. The three levels are: 
• Page global directory: Each active process has a single page global directory, and this 

directory must be resident in one page in main memory for an active process. Each 
entry in this directory points to one page of the page middle directory. 

• Page middle directory: Each entry in the page middle directory points to one page in 
the page table. This directory may span multiple pages. 

• Page table: As usual, each entry in the page table points to one virtual page of the pro-
cess. This page table may also span multiple pages. 

The virtual address of Linux is thus viewed as consisting of four felds to address this three-level 
page table structure; three of these are for the three levels, and the fourth one is the offset (byte num-
ber) within a page. The leftmost feld is used as an index into the global page directory. The next left-
most feld is used as an index into the page directory. The third feld serves as an index into the page 
table, and the fourth feld offers the offset within the selected page frame in main memory. Sixty-
four-bit Linux also accommodates two-level hardware (32-bit Intel X-86/Pentium processor) support 
by defning the size of the page middle directory as one. Note that all references to the extra level of 
indirection in addressing are handled at compilation time rather than at runtime. This not only makes 
it a platform-independent, but while running on a platform with two-level paging hardware, using of 
three-level generic Linux would not incur any additional cost as performance overhead. 

Similar to UNIX, the virtual (logical) address space of a process can consist of several regions, 
but each such region can have different characteristics of its own and is handled separately using 
separate policies for loading and replacement of pages. A page in a zero-flled memory region is 
flled with zeroes at its frst use. A fle backed region assists in mapping fles in memory with ease. 
The page table entries of its pages point at the disk buffers used by the fle system. In this way, any 
update in a page of such a region can be immediately refected in the fle that can allow concurrent 
users to use it with no delay. A private memory region is handled in a different fashion. When a 
fork system call creates a new child process, this new process is given a copy of the parent’s page 
table. At this time, the copy-on-write policy is enforced on the pages of a private memory region. 
When a process modifes such a page, only then is a private copy of the page made for it. 

• Page Allocation: Linux uses a page size of 4 Kbytes. It uses a buddy system allocator 
for speedy allocation/deallocation of contiguous page frames (for mapping of contiguous 
blocks of pages) with a group of fxed-size consisting of 1, 2, 4, 8, 16, or 32 page frames. 
The use of the buddy system allocator is also advantageous for traditional I/O operations 
involving DMA that requires contiguous allocation of main memory. 

• Page Replacement: Linux essentially uses the clock algorithm described earlier (see Figure 5.73 
on the Support Material at www.routledge.com/9781032467238), with a slight change that 
the reference bit associated with each page frame in memory is replaced by an 8-bit age vari-
able. Each time a page is accessed, its age variable is incremented. At the same time, in the 
background, Linux periodically sweeps through the global page pool and decrements the age 
variable for each page while traversing through all the pages in memory. By this act, lower 

http://www.routledge.com/9781032467238


 

 
 
 

 

 

  

 

 

 

298 Operating Systems 

the value of age variable of a page, the higher its probability of being removed at the time of 
replacement. On the other hand, a larger value of the age variable of a page implies that it is 
less eligible for removal when replacement is required. Thus, the Linux system implements a 
form of the least frequently used policy (LFU), already described earlier. 

A Linux system always tries to maintain a suffcient number of free page frames at all times so that 
page faults can be quickly serviced using one of these free page frames. For this purpose, it uses two 
lists called the active list and inactive list and takes certain approved measures to maintain the size 
of the active list at two-thirds of the size of the inactive list. When the number of free page frames 
falls below a lower threshold, it executes a series of actions until a few page frames are freed. As 
usual, a page frame is moved from the inactive list to the active list if it is referenced. 

Kernel Memory Allocation 
Kernel memory allocation in Linux also uses the buddy algorithm in units of one or more pages, 
in a way similar to the page allocation mechanism used for virtual memory management of users. 
Here, the minimum amount of memory allocated is one page. To satisfy the request for odd sizes of 
small and short-term memory requirements sometimes needed by the kernel, the memory alloca-
tor implements a different approach in addition to the existing one. To provide these small chunks 
of memory, Linux often uses a scheme known as slab allocation (the slab allocator was discussed 
earlier) that offers a small chunks of memory space less than the size of a page within an allocated 
page. The size of the slab is always a power of 2 and depends on the page size. On a machine based 
on the Pentium X-86 processor, the page size is 4 Kbytes, and the different sizes of slabs that can be 
allocated within a page may range from 32 to 4096 bytes. 

The slab allocator assigns all kernel objects (each object is a data structure) of the same class 
together to form a pool. A pool may consist of many slabs, and each slab may contain many small 
objects. However, all the objects in a slab are of only one kind. Linux maintains a set of linked 
lists, one for each size of slab. Slabs may be split and aggregated in a manner similar to the buddy 
algorithm and may be moved between lists accordingly. However, the algorithm used in slab alloca-
tion in Linux is relatively complex. The details of it are beyond the scope of this book. A thorough 
description of it can be found in Vahalia (1996). 

Brief details on this topic with a figure are given on the Support Material at www.routledge. 
com/9781032467238. 

5.12 CASE STUDY: MEMORY MANAGEMENT IN WINDOWS 

The memory manager of Windows is designed to operate over a wide spectrum of platforms with 
different system architectures. It provides both 32-bit and 64-bit logical addresses. With 32-bit 
addressing, it can allow a maximum of 232, that is, 4 Gbytes, of address space per process. In fact, 
the address space of a process is 2 Gbytes, with an option that allows user space to be extended to 
3 Gbytes; the remainder of the logical address space is reserved for the use of the OS shared by all 
processes. This feature enables the system architecture to include few gigabytes of RAM that can 
comfortably support execution of larger memory space-intensive applications. The default virtual 
address space as seen by a user process as shown in Figure 5.18 consists of four regions. 

• 0x00000000 to 0x0000FFFF: Set aside to help programmers catch NULL-pointer 
assignments. 

• 0x00010000 to 0x7FFEFFFF: Available user address space that is divided into pages for 
loading into main memory. 

• 0x7FFF0000 to 0x7FFFFFFF: This space is inaccessible to the user and is used by the 
system as a guard page that enables the operating system easier to check on out-of-bounds 
pointer references. 

• 0x80000000 to 0xFFFFFFFF: This space is dedicated for system use. It mainly contains 
the Windows microkernel, other executive systems, and device drivers. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Memory Management  299 

0 

2-Gbyte user address space 2-Gbyte for the operating 
(usable, unreserved) system (inaccessible) OXFFFFFFFF 

64-Kbyte 64-Kbyte 
for NULL- for bad-

pointer pointer 
assignments assignments 
(inaccessible) (inaccessible) 

FIGURE 5.18  A block diagram of Windows default virtual address space used in virtual memory manage-
ment of Windows (32-bit addressing). 

FIGURE 5.19  A representative diagram, showing two-level page table organization of Windows (32-bit 
addressing) used in the management of its virtual memory. 

Paging: 
Windows allows a process to occupy the entire user space of 2 Gbytes (minus 128 Kbytes)  
when it is created. This space is divided into fixed-size pages. But the sizes of pages may be  
different, from 4 to 64 Kbytes depending on the processor architecture. For example, 4 Kbytes  
is used on Intel, PowerPC, and MIPS platforms, while in DEC Alpha systems, pages are 8  
Kbytes in size. 

Address Translation: Windows provides various types of page table organization and  
uses different page table formats for different system architectures. It uses two-level,  
three-level, and even four-level page tables, and consequently the virtual addresses used  
for addressing are also of different formats for using these differently organized page  
tables. 



300  Operating Systems 

 FIGURE  5.20  A representative virtual (logical) address format of Windows (32-bit addressing) used in the 
management of its virtual memory. 

However, on an Intel X-86 architecture, windows uses a two-level page table organization, as 
shown in Figure  5.19. The higher level page table is called a page  directory  (PD), with a size of 1 
page (4 Kbytes) that contains 1024 entries of 4 bytes each. This requires 10 bits (210 = 1024) in the 
virtual address to identify a particular entry in page directory. Each such entry in the PD points to 
a page table (PT). The size of each page table is also 1 page that contains 1024 page table entries of 
4 bytes each. This also requires 10 bits (210 = 1024) in virtual address to identify a particular entry 
in a page table. Each such entry in the PT points to a page frame in main memory. The size of each 
page frame is 4 Kbytes (212 = 4 K); hence 12 bits is required in the virtual address to identify infor-
mation within a page frame. Each 32-bit virtual (logical) address is thus split into three components, 
as shown in Figure 5.20. 

At the time of translating such a 32-bit logical address, the PD index feld is used to locate  
the corresponding page table. The PT index feld is then used to select the corresponding page  
within the page table. This page points to a particular page frame in main memory. The byte 
index is then concatenated with the address of the page frame to obtain the desired physical  
address. 

Each page table entry in question is 32 bits (4 bytes). Out of these 32 bits, only 20 bits are used 
to identify the page frame containing a page. The remaining 12 bits are used for the following pur-
poses: 5 bits contain the protection feld, 4 bits indicate the paging fle (e.g. the disk fle to which 
pages are to be written when removing them from memory) that contains a copy of the page, and 3 
bits specify the state of the page. 

If the page is not in memory, the 20 bits of its page table entry specify the offset into the paging 
fle to identify the page. This address can be used to load the page in memory. If this page is a text 
(code) page, a copy of it already exists in a code fle. Hence, this type of page need not be included 
in a paging fle before it is loaded for the frst time. In this case, 1 bit indicates the page protection, 
and 28 bits point to a system data structure that indicates the position of the page in a fle containing 
the code. 

Use of the page state in the page table simplifes the accounting in page handling. A page can be 
in one of three states: 

Available: Pages not currently used by this process. 
Reserved: A set of contiguous pages that the virtual memory manager sets aside for a process 

but does not count that against the process’s memory quota until used. When a process or 
thread needs to write to memory, some space from reserved memory can then be quickly 
allocated to them. 

Committed: Pages for which the virtual memory manager has set aside space in its  
paging file. In this way, it keeps control over the free disk space being set aside for a  
particular process that can also be used by other processes if needed. A page frame  
can be in any one of eight states (requiring 3 bits to specify). Some of these states  
may be as follows: 

Valid: The page is in active use. 
Free: The page is not in active use. 
Zeroed: The page is cleaned out and available for immediate use. 

←10 bytes 10 bytes  12 bytes  

PD index PT index byte index (offset) 

→ ← → ← →



Memory Management 301  

 

 
 
 
 
 
 
 
 

  

 

  
 
 

Standby: The page has been removed from the working set of the process to which it was 
allocated, but it can be brought back (reassigned) to the process if it is referenced again. 

Modifed: The page is dirty and yet to be written out. 
Bad: The page cannot be accessed due to hardware failure. 

• Page Sharing: At the time of handling the sharing of pages, the pages to be shared are 
represented as section objects held in a section of memory. Processes that share the section 
object have their own individual view of this object. A view controls the part of the object 
that the process wants to view. A process maps a view of a section into its own address 
space by issuing a system (kernel) call with parameters indicating the part of the section 
object that is to be mapped (in fact, an offset), the number of bytes to be mapped, and 
the logical address in the address space of the process where the object is to be mapped. 
When a view is accessed for the frst time, the kernel allocates memory to that view unless 
memory is already allocated to it. If the memory section to be shared has the attribute 
based, the shared memory has the same virtual address in the logical address spaces of all 
sharing processes. 

Sharing of pages is supported by the copy-on-write feature. As usual, a single copy of the shared 
page is used by all sharing processes until any sharing process attempts to modify it. If a process 
wants to modify the shared page, then a private copy of the page is created for it. Copy-on-write 
is implemented by setting the protection feld of the page in the page table entry to read-only. A 
protection exception is raised when a process attempts to modify it, which is resolved by the virtual 
memory manager by making a private copy of the page for use by the process. 

Sharing of pages also uses a distinct feature which relates to a “level of indirection” to sim-
plify its implementation. Usually, all sharing processes individually include the shared pages in 
their own page tables, and all these entries of shared pages in all these page tables would have 
to be modifed when a page is loaded or removed from memory. To avoid this complication and 
to reduce the time-consuming overhead, a level of indirection is included while accessing page 
table entries for shared pages. A provision of an indirection bit is kept, which is set in the page 
table entries of the shared pages in each sharing process’s page table. The page table entry of the 
shared page points to a prototype page entry, which points to the actual page frame containing 
the page. When a shared page is loaded or removed from memory, only the prototype page entry 
needs to be modifed. 

• Replacement Scope: Windows uses the variable allocation, local scope scheme (see 
replacement scope, described earlier) to manage its resident set. As usual, when a process 
is frst activated, it is allocated a certain number of page frames as its working set. When 
a process references a page not in main memory, the virtual memory manager resolves 
this page-fault situation by adjusting the working set of the process using the following 
standard procedures: 

• When a suffcient amount of main memory is available, the virtual memory manager sim-
ply offers an additional page frame to bring in the new page as referenced without swap-
ping out any existing page of the faulting process. This eventually results in an increase in 
the size of the resident set of the process. 

• When there is a dearth of available memory space, the virtual memory manager swaps 
less recently used pages out of the working set of the process to make room for the new 
page to be brought into memory. This ultimately reduces the size of the resident set of 
the process. 



 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

302 Operating Systems 

5.13 CACHE MEMORY 

The processor executes information which is primarily fetched from main memory; hence, both the 
size and the speed of the main memory are always key factors in the performance of the system as a 
whole. The introduction of virtual memory has certainly resolved the space scarcity problem in main 
memory and thereby relieved the programmer by removing the restrictions imposed on the size of the 
address spaces of individual processes. But it also increases the execution time of the processes due 
to frequently needed dynamic translation of virtual addresses to physical addresses done by memory 
management, thereby causing a graceful degradation in overall system performance. In addition, the 
frequent occurrences of page faults require servicing of related interrupts that are again an added 
time-consuming event. As a result, the performance of the system is even more affected. 

As electronic technology continuously advances, CPU speed increases rapidly, and the speed of 
memory also increases, but relatively modestly due to its inherent design. As a result, the CPU–main 
memory speed disparity (gap between their speeds) has gradually increased instead of being reduced. 
This has become more predominant, especially at the time of their handshaking. In fact, the rate at 
which the processor can operate in a system is clearly hindered by the memory cycle time (the time 
it takes to read/write one word from or to memory), which eventually causes signifcant problems, 
leading to severe bottleneck in the operation of the system over the years. If the memory could be 
built up with the same technology as the processor registers, the memory cycle times would then be 
closely comparable to processor cycle times. But this proposition may be too costly. Hence, to obtain 
an acceptable solution, balance is required between these conficting parameters of memory, such as 
size, speed, and cost. A technique has been improvised that combines a small amount of costly faster 
memory with a larger size of comparatively slow and less costly main memory to attain a speed almost 
on the order of fast memory as well as the capacity of fairly large memory at an affordable price. This 
relatively small, comparatively fast, and a slightly costly memory placed between the processor and 
main memory that operates on the principle of locality is historically known as cache memory (from 
the French word cache, meaning to hide). Cache is considered the fastest component in the memory 
hierarchy, and approaches nearly the speed of CPU components. Cache memory was frst commer-
cially introduced in the IBM 360/85 system in 1968. The insertion of this element into the memory 
hierarchy has dramatically improved the performance of the entire system as a whole. 

The evolution of cache memory and its organization is purely a subject of computer organization 
and architecture. In fact, cache memory is solely used as a supporting module to main memory for 
improved performance (speed) during execution. Hence, this small, fast, and costly cache memory 
is placed between a processor and main memory and acts as a buffer, creating a two-level inter-
nal memory. In fact, cache–main memory handshaking is similar to that of main memory–virtual 
memory, at least in principle. But the cache is controlled and managed by the MMU and is also 
transparent to the programmer. Depending on the speed and application environment, the cache can 
also be implemented at one or multiple levels in the organization of the computer. 

While cache is now considered a vital resource, it is not visible to the operating system (the 
resource manager), which is why it is called the cache (to hide) and hence lies outside the jurisdic-
tion of operating-system activities. Since it lies within the memory hierarchy of the entire memory 
system of a computer, it often interacts with other memory-management hardware, and thus appears 
to be linked indirectly with the working of the operating system. Moreover, failure of the cache line 
(similar to a page fault) has an impact on memory management and thereby imposes an additional 
overhead on the operating system as a whole. Since cache memory has been introduced on the 
heels of virtual memory, many of the principles and strategies used in virtual memory schemes are 
equally applied in cache memory. In fact, the policy, management, and strategies used to monitor 
the cache are implemented within an additional in-built hardware called the cache controller, asso-
ciated with the cache memory chip. 

Since, the cache is invisible to the operating system, its presence or absence in the computer 
system does not affect the designs of operating systems or their implementations to realize different 
necessary activities. In fact, the design of the cache, its principles of operation, and its other working 



Memory Management 303  

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 

activities do not have any impact on the working of the underlying operating system, and hence 
are not included in the regular functioning of the operating system. Therefore, cache memory, as a 
whole, is kept set aside from the purview of any types of operating systems, in general. 

Brief details on this section, with all related issues supported by fgures, are given on the Support 
Material at www.routledge.com/9781032467238. 

SUMMARY 

This chapter presents the principles of managing the main memory, then investigates different 
forms of memory management schemes, ranging from very simple contiguous allocation of mem-
ory, including static (fxed) partition, dynamic (variable) partition, and overlay, to highly sophisti-
cated noncontiguous allocation of memory, including paging, segmentation, and segmentation with 
paging. In allocating space for processes using each of these schemes, various issues relating to 
management of memory were discussed. Static partition of memory, its allocation/deallocation, 
and space management are relatively simple and straightforward, although they suffer from critical 
internal fragmentation. Dynamic creation of partitions according to specifc needs and also to elim-
inate the problem of internal fragmentation requires more complex algorithms; particularly deal-
location of partitions and coalescing of free memory are needed to combat external fragmentation. 
The need for occasional compaction of memory is also a major issue in the increased time and space 
complexity of dynamic partitioning. However, both static and dynamic partitioning require almost 
identical hardware support to fulfll their aims. Sharing, in fact, is quite restrictive in both systems. 

Since physical memory in paging as well as in segmented systems retains its linear-array orga-
nization, an address translation mechanism is needed to convert a two-dimensional virtual-page 
address or virtual-segment address into its unidimensional physical equivalent. Both paging and 
segmentation in dynamically partitioned memory reduce the impact of external fragmentation, and 
the other advantages they mainly offer include dynamic relocation with needed dynamic linking and 
binding, fne-grained protection both within and between address spaces, and ease of sharing. 

The introduction of virtual memory alleviated to a large extent the main memory space scar-
city problem and also removed the restrictions on the size of address spaces of individual pro-
cesses due to limited capacity of the available physical memory. With virtual memory, paging 
simplifes allocation and deallocation of physical memory. Translation of virtual to physical 
addresses during runtime, usually assisted by the hardware, is used to bridge the gap between 
contiguous virtual addresses consisting of pages and discontinuous physical addresses compris-
ing page frames. Virtual memory is commonly implemented using segmentation with paging 
in which demand paging is used, which allows a process to run only with pages on demand. 
Since the capacity of main memory is far less than that of virtual memory, it is often necessary 
to replace pages from memory to make frames free for new pages. Numerous page-replace-
ment algorithms are used, out of which LRU replacement is an approximation of optimal page 
replacement but is diffcult to implement. However, the second-chance algorithm along with a 
few others are close approximations of LRU replacement. Besides, when a policy relating to 
fxing of number of frame-allocation to a process is formed, it exploits either local page replace-
ment, or dynamic using global page replacement. In addition, the working-set model approach 
is introduced as a guideline that shows the minimum number of page frames required for an 
executing process to continue with fewer page faults. 

Kernel processes typically require memory to be allocated using pages that are physically con-
tiguous. The McKusick–Karels allocator, lazy buddy allocator, and slab allocator are only a few 
methods described here that are used for this purpose in which memory wastage due to fragmenta-
tion is negligible and memory requests can also be satisfed speedily. 

Last, the salient features of memory management implemented in reality by popular, commer-
cially successful operating systems such as UNIX, Linux, Windows, and Solaris are illustrated 
here as case studies to explain the realization of different aspects of memory management that were 
theoretically discussed. 

http://www.routledge.com/9781032467238


 

  

  
 

  

  

  

  

  

  

  

  

  

 
 
 
 

  

  

  

  

304 Operating Systems 

EXERCISES 

1. What are the functions performed by the memory manager? What is meant by memory 
allocation? What are the physical address and logical address? 

2. What is meant by address translation? What are the different situations when address 
translation takes place? Explain how address translation takes place at: a. program genera-
tion time, b. loading time, c. execution time 

3. Name the different memory management schemes that are commonly mentioned. What 
are the parameters used while making a comparison between them? 

4. State the policy-decisions that are made to guide swapping actions. “Swapping, in turn, 
invites relocation”: give your comments. 

5. Explain with a diagram the multiple-user fxed partition scheme of memory management 
with a partition description table. Give its merits and drawbacks. 

6. What are the different approaches taken by the operating system in dynamic partitioning 
memory management while allocating memory to processes? Compare and contrast the 
merits and drawbacks of these approaches in light of keeping track of allocated partitions 
as well as free areas. 

7. What is meant by fragmentation of memory? State and explain the different types of frag-
mentation observed in contiguous allocation of memory. 

8. What is meant by compaction? When does it take place? What is the effect of compaction? 
What is the overhead associated with compaction? Selective compaction of memory in 
certain situations performs better than brute-force straightforward compaction: Give your 
comments. 

9. What is a bit map? How it can be used for keeping track of allocated and free space in main 
memory in a dynamic partition approach? Discuss its merits and drawbacks. 

10. A dynamic memory partitioning scheme is being used, and the following is the memory 
confguration at any given instant: 

15K 20K 60K 20K 45K 

P1 

H1 

P2 

H2 

P3 

H3 

P4 

H4 

P5 

H5 

P6 

H6 

20K 40K 50K 10K 30K 35K 40K 

The Ps are the processes already allocated with blocks; the Hs are the holes and are free 
blocks. The next three memory requests are for 35K, 20K, and 10K. Show the starting 
address for each of the three blocks using the following placement algorithms: 

a. First-ft 
b. Next–ft (assume the most recently added block is at the beginning of memory) 
c. Best-ft 
d. Worst–ft 

11. What is meant by overlay? Explain with a diagram the implementation of an overlay mech-
anism. What are the responsibilities performed by an overlay supervisor? “The concept of 
overlay opens a new horizon in the emergence of modern approaches in memory manage-
ment”. What are those innovative approaches? How they have been conceptually derived 
from the implementation of an overlay mechanism? 

12. Discuss memory fragmentation and its impact on the buddy system. Explain why free lists 
in a buddy system are made to be doubly linked. 

13. What are the distinct advantages that can be obtained in a power-of-two allocation system 
over its counterpart buddy system? 

14. Discuss the basic principle involved in noncontiguous memory allocation strategy. State 
the distinct advantages that can be accrued from this strategy. 



Memory Management 305  

  

  

  

  

  

    

  

  

  

  
   

 

  

   

  

  

  
 

   

15. State and explain the salient features of a simple paging system. How is address translation 
carried out in a simple paging system? 

16. Suppose you have a processor that supports 64-bit address space and 4 KB frame size. 
How many levels of paging do you need in that system if each page table/directory is 
restricted to a single frame? You may assume each page table entry (page descriptor) is 8 
bytes. 

17. State and explain segmentation in light of its principles of operation. What hardware sup-
port is required to implement segmentation? What is a segment descriptor table? When is 
it created? Where is it stored? 

18. Why is it said that the segment numbers are visible to processes (in a segmentation scheme), 
but page numbers are invisible/transparent to processes (in a paging scheme)? 

19. Consider a simple segmentation system that has the following segment table: 

Segment Base Length (bytes) 

0 220 500 

1 2300 50 

2 750 100 

3 1229 570 

4 1870 110 

For each of these logical addresses: a. 0, 390; b. 2, 90; c. 1, 19; d. 0, 590; e. 4, 22; f. 3, 590; g. 3, 
253, determine the corresponding physical address. Also check whether there is an invalid 
address specifcation for a segment fault to occur. 

20. What is demand segmentation? Why is it diffcult to implement compared to demand 
paging? 

21. What is the difference between simple paging and virtual memory paging? What elements 
are typically found in a page table entry? Briefy defne each element. Defne briefy the 
alternative page fetch policies. 

22. What is the purpose of a translation lookaside buffer (TLB)? Page tables are stored in 
physical memory, which has an access time of 100 ns. The TLB can hold eight page table 
entries and has an access time of 10 nanosec. During execution of a process, it is found that 
85 percent of memory references are found in the TLB and only 2 percent of the references 
lead to page faults. The average time for page replacement is 2 ms. Compute the average 
memory access time. 

23. How is a TLB different from hardware cache memory used to hold instructions/data? 
24. A machine has 48-bit virtual addresses and 32-bit physical addresses. Page sizes are 

8K. How many entries are needed for a conventional page table? For an inverted page 
table? 

25. Assume that a 32-bit address uses a two-level page table. Virtual addresses are split into a 
high-ordered 9-bit top-level page table feld, ant 11-bit second-level page table feld, and an 
offset. How large are the pages and how many are there in the virtual address space? 

26. If an instruction takes 1 microsec and a page fault takes an additional n microsec, develop 
a formula for the effective instruction time if page faults occur every k instructions. 

27. What different page replacement policies are commonly used? Write two page replacement 
policies for virtual memory. 

28. What is the relationship between FIFO and the clock page replacement algorithm? Explain 
why the two-handed clock algorithm for page replacement is superior to the one-handed 
clock algorithm. 

29. Consider the following page reference string. 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2 Using 
four frames that are all initially empty, how many page faults will occur under a. FIFO, b. 
Second-chance, c. LRU, d. NRU, e. Optimal? 



 

  

  

  

  

  

  

  

 

 
 

 

 

 

306 Operating Systems 

30. To implement the LRU approach, what are the modifcations required in the page table. 
Show that the LRU page replacement policy possesses the stack property. Discuss an alter-
native approach that can implement the LRU approach. 

31. What is meant by thrashing? How can it affect the performance of a system? Describe a 
strategy by which the thrashing can be minimized. 

32. What is the difference between a working set and a resident set? Explain with reasons and 
preferably with the help of examples why the working set size of a process may increase or 
decrease during the course of its execution. 

33. What is the advantage of a page fault frequency algorithm over the estimation of the work-
ing set using the window size? What is its disadvantage? 

34. State the different types of allocation policy and different types of replacement scope. How 
is the former related to the latter? 

35. Is it possible to page out page tables from the kernel space to the swap device? Justify your 
answer. 

36. “In a virtual memory system using a segmentation-with-paging scheme, the involvement 
of segmentation is limited to sharing. It does not really have any role in memory manage-
ment”. Justify and comment on this. 

More questions and problems are given at the end of the chapter on the Support Material at www. 
routledge.com/9781032467238. 

SUGGESTED REFERENCES AND WEBSITES 

Baer, J. L. Computer Systems Architecture, Rockville, MD, Computer Science Press, 1980. 
Bays, C. A. “Comparison of Next–ft, First–ft, and Best–ft”, Communications of the ACM, vol. 20, no. 3, 

pp. 191–192, 1977. 
Beck, L. L. “A Dynamic Storage Allocation Technique Based on Memory Residence Time”, Communication 

of the ACM, vol. 25, pp. 714–724, 1982. 
Bon wick, J., Adams, J. “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary 

Resources”, Proceedings of the 2001 USENIX Annual Technical Conference, pp. 15–34, 2001. 
Carr, R. Virtual Memory Management, Ann Arbor, MI, UMI Research Press, 1984. 
Chakraborty, P. Computer Organization and Architecture: Evolutionary Concepts, Principles, and Designs, 

Boca Raton, FL, CRC Press, 2020. 
Denning, P. J. “The Working Set Model for Program Behavior”, Communications of the ACM, vol. 11, no. 5, 

pp. 323–333, 1968. 
Denning, P. J. “Virtual Memory”, Computing Surveys, vol. 2, no. 3, pp. 154–189, 1970. 
Denning, P. J. “Working Sets: Past and Present”, IEEE Transactions on Software Engineering, vol. SE–6, 

no. 1, pp. 64–84, 1980. 
Finkel, R. A. An Operating Systems Vade Mecum, Second Edition, Englewood Cliffs, NJ, Prentice Hall, 1988. 
Fotheringham, J. “Dynamic Storage Allocation in the Atlas Computer Including an Automatic Use of a 

Backing Store”, Communications of the ACM, vol. 4, pp. 435–436, October, 1961. 
Kaufman, A. “Tailored-list and Recombination-delaying Buddy Systems”, ACM Transactions on Programming 

Languages and Systems, vol. 6, pp. 118–125, 1984. 
Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Second Edition, Reading, 

MA, Addison–Wesley, 1973. 
Maekawa, M., Oldehoeft, A. E., Oldehoeft, R. R. Operating Systems: Advanced Concepts, Menlo Park, CA, 

Benjamin/Cummings, 1987. 
Oldehoeft, R. R., Allan, S. J. Adaptive Exact-ft Storage Management”, Communication of the ACM, vol. 28, 

pp. 506–511, 1985. 
Smith, A. J. “Bibliography on Paging and Related Topics”, Operating Systems Review, vol. 12, pp. 39–56, 

1978. 
Stephenson, C. J. “Fast Fits: A New Method for Dynamic Storage Allocation”, Proceedings of the 9th 

Symposium on Operating Systems Principles, New York, ACM, pp. 30–32, 1983. 
Vahilia, U. Unix Internals, The New Frontiers, Prentice Hall, 1996. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


DOI: 10.1201/9781003383055-6 307  

 
 

 
 
 
 
 

 
 

 

 
 
 

 
 

 
 

 

 
 
 
 
 
 
 
 
 

Device Management 6 
Learning Objectives 

• To illustrate the general characteristics of different types of I/O devices. 
• To describe the I/O modules containing the I/O (device) controllers that connects the I/O 

devices to the hardware platform. 
• To describe generic I/O system organization to realize different types of I/O operations. 
• To discuss physical I/O operation at the device level. 
• To describe the device management module along with its objectives and functions. 
• To explain logical structuring of physical I/O and to organize its functions. 
• To outline the design principles of a generic device manager with constituents including 

I/O schedulers, interrupt handlers, and device drivers. 
• To describe different types of I/O buffering and its impact on system performance. 
• To describe the clock device along with the required hardware and software (clock device 

drivers). 
• To discuss the organization of magnetic disk I/O devices along with their physical charac-

teristics and different components being used. 
• To describe disk I/O operation along with its parameters. 
• To describe disk management in the context of its formatting and data organization. 
• To explain the disk-arm scheduling policies (disk-access time management) and the differ-

ent traditional methods used to implement these policies. 
• To describe different types of RAID arrangements of disks. 
• To defne the disk cache and its design considerations to improve the overall system 

performance. 
• To discuss the page cache and disk cache along with their merits and drawbacks. 
• Case study: to briefy describe individually the device management implemented in UNIX, 

Linux, and Windows. 

6.1 INTRODUCTION 

All types of computers include a set of I/O modules as one of their fundamental resources fol-
lowing the Von Neumann design concept. Computer devices of different classes often come 
with numerous brands and models from different vendors using diverse technologies. All such 
details are, however, kept hidden from the internal working of the system, and that is why it 
is said that I/O is transparent with respect to brand, model, or physical device type. Various 
types of such I/O (peripheral) devices in the form of I/O modules are interfaced to the main 
system for migration of data from the outside world into the computer or from the computer to 
the outside world. Each such I/O module is made up of its own logic that on the one hand works 
in tune with the main system (CPU and main memory) and on other hand establishes a physical 
connection with the outside electro-mechanical peripheral devices to execute the physical I/O 
operation. 

With the continuous introduction of more advanced technology, processor speed has enormously 
increased, and memory access time has decreased, mostly by the intelligent use of one, two, or 
even more levels of internal cache to manage growing processor speed. But the speed of the I/O 
modules has not improved to the extent (due to being mostly electro-mechanical) as to cope with 

https://doi.org/10.1201/9781003383055-6


 

 

 

 

 
 
 

308 Operating Systems 

this faster processor-memory bandwidth. As a result, it causes a severe bottleneck when interacting 
with the rest of the system that creates a strong challenge in the overall performance of the machine, 
particularly in the case of most important I/O module, disk storage. Even today, the speeds of I/O 
devices themselves, and I/O speed in general, are comparatively far lower than the overall speed of 
the processor–memory cluster. That is why modern computer systems provide adequate hardware 
assistance in the I/O area with proper support of event management mechanisms (such as interrupts) 
so that I/O operations can be overlapped with those of the CPU by allowing the CPU to continue 
with its own work while I/O operations are in progress in parallel in order to reduce the impact of 
slower I/O on the overall performance of the system. Along these lines, constant development in the 
design of more intelligent I/O modules and their allied interfaces continue, ultimately culminating 
in the introduction of a separate I/O processor to handle I/O modules on its own, thereby totally 
decoupling I/O activities from the clutch of the main system. But if there is an I/O processor, many 
standard issues in relation to the central processing unit, such as scheduling and interprocess syn-
chronization, are equally applicable to the I/O processor for its proper function. A large computer 
system, nowadays, is thus equipped with such powerful I/O modules that an I/O module itself can 
be treated as if it is a completely standalone, full-fedged computing system. 

In fact, the operation and working of all these numerous types of relatively slow I/O modules, in 
particular generic devices such as disks, tapes, printers, and terminals, are monitored and controlled 
by the operating system with respect to managing the allocation, isolation, sharing, and dealloca-
tion of these devices according to the prescribed policies as designed. The portion of the operating 
system performing all these responsibilities is known as the I/O system, device management, or 
sometimes I/O management. An amazingly large proportion of the instructions in the operating 
system, often 50 percent, are devoted only to handling devices. Although device management has 
gradually gained considerable importance due to the continuous increase in user density (the user 
interacts with the system only through I/O devices), it is still a relatively simple part of the overall 
OS design, because it is essentially defned mostly by the hardware design. 

Brief details on this section are given on the Support Material at www.routledge.com/ 
9781032467238. 

6.2 I/O DEVICES: GENERAL CHARACTERISTICS 

A typical computer system is equipped with numerous types of I/O devices (mainly electro-
mechanical) of the widest range of type, technology, organization, performance, and also cost to 
keep the computer system within an affordable limit. These devices may again be grouped into 
different classes, such as devices used for storage of information (magnetic disk, tape, CD-ROM, 
etc.), human readable devices (printers, video display units, keyboards), and other devices, such as; 
a mouse, modem (used for communication), network interface, or digital line driver. Other machine-
readable devices include clocks, sensors, actuators, and controllers. In fact, enough varieties are also 
observed within each class of these devices, ranging from slow, cheaper ones to fast, expensive ones. 
However, the key parameters among many such differences are mainly: unit of transfer (stream 
of characters/bytes or larger chunks of blocks), data rate (bits per sec; bps), data representation 
(character code and parity conventions), control mechanism (used to drive the device), and error 
conditions (nature and tolerance of errors). Moreover, the way a device is to be used also has an 
impact on the underlying policy and strategy of the operating system and its associated utilities. For 
example, a disk used for fles requires the support of a fle management system, whereas the same 
disk used in a virtual memory scheme depends largely on the hardware and software mechanisms 
controlling the virtual memory system. Similarly, it is applicable to terminals (when used for an 
ordinary user, by a console operator, or by a system administrator). These varied attributes in the 
characteristics of I/O devices pose a diffcult situation for both the operating system and the user 
processes while attempting to implement a uniform and consistent approach to I/O handling. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Device Management 309  

 

 
 
 
 
 

 
 
 
 

 

 
     

 
 

 

  

6.3 TYPES OF I/O DEVICES 

I/O devices can be roughly divided into two categories: (i) block-oriented devices and (ii) charac-
ter (stream)-oriented devices. A block-oriented device is one that stores information in fxed-size 
blocks; each such block has its own address, and read/write are done one block at a time at random 
independently of all others. Hard disk, CD-ROM, and tape are examples of block-oriented devices 
with block sizes commonly ranging from 128 to 4096 bytes. Only blocks of tape devices are accessed 
sequentially. A character (stream)-oriented device operates only on a stream of characters. It is not 
addressable. Terminals, line printers, communication ports, network interfaces, mice, and other point-
ing devices, and most other devices that are not secondary storage are usually character (stream)-
oriented devices. There are still other devices that do not belong to any of these categories. Clocks, for 
example, are neither block addressable, nor do they generate or accept character streams. All they do is 
to cause interrupts at well-defned intervals. Memory-mapped screens, also do not ft this model. Still, 
the model of a block or character devices is so general enough that it can be used as a basis to defne 
and design operating system software to be device independent while dealing with I/O. 

6.4 I/O CONTROLLERS: DEVICE CONTROLLERS 

The specifc piece of hardware organized to carry out specifc algorithms to constantly monitor a device 
carrying out its basic tasks is called an I/O controller or device controller or adapter. It provides a means 
of more modular and general design for controlling devices. One end of the controller is connected to 
the main system, and the other end is connected to the mechanical device by a cable. Nowadays, many 
controllers can individually handle two, four, or even more identical devices at the same time. 

As shown in Figure 6.1, there is a lower-level device-specifc interface between controllers and 
devices known as the controller–device interface (or hardware controller) that physically drives 
the device under the control of the software (high-level software interface) located in a level just 
above this interface (generic device controller) in the form of command to realize the desired opera-
tion. At the device end, this must be compatible with the respective operation to be carried out by a 
specifc device. Note that these are totally device-dependent and typically quite different from the 
standard traditional computer logic levels. Thus, standardization is required here so that devices 
manufactured by one vendor can be connected to a controller manufactured by another. Offcial 
standards, such as, ANSI, IEEE, or small computer serial interface (SCSI) or a de facto one are 
examples of such an interface. The presence of the controller–device interface creates a line of 
demarcation between the controller and device, because the operating system nearly always deals 
with the controller, not the device. 

Similarly, as shown in Figure 6.1, there is also an interface known as the controller–bus inter-
face that lies above the generic device controller and the bus of the main system to connect the 

FIGURE 6.1 An illustration of a representative model for connecting device I/O controllers and I/O devices with 
the main system. 



 

 
 
 

 

 

 
  

 
 

 

310 Operating Systems 

controller to the bus so that a device can be attached to a computer and then interoperate with other 
facilities in the main system. Nearly all small computers use the single bus model, as shown in 
Figure 6.1, for communication between the main system and controllers. Large systems often use 
multiple buses and specialized I/O processors (I/O channels) to relieve the CPU to a great extent 
from the burden of its required involvement in I/O activities. 

The operation of the device controller (at one end with the device and at other end with the main 
system) is manipulated by the software. The high-level software interface to a device controller is a 
middle layer, the generic device controller that defnes the interaction between the software and the 
controller. It states how software manipulates the hardware controller to cause the device to perform 
I/O operations. This software interface generally provides a uniform abstraction of I/O devices to 
software engineers. In particular, it makes every device appear to be a set of dedicated registers. 
These registers are accessible either directly as part of a physical store or indirectly via I/O instruc-
tions provided by the hardware. A set of such dedicated registers is usually called an I/O port. 

Controllers often incorporate a small amount of memory (hardware) called a buffer to temporarily 
hold data after it is read from the device or sent from the main system for subsequent needed actions. 
With its various forms, it plays a vital role (to be discussed later) in I/O operation and is mainly used 
to overlap the operation of the device and that of the main system to smooth out peaks in I/O demand. 

More about this with a fgure is given on the Support Material at www.routledge.com/ 
9781032467238. 

6.5 I/O SYSTEMS: I/O MODULES 

The I/O system performs the task of transferring information between main memory or the CPU 
and the outside world. It includes I/O modules, a link, and the external I/O devices. This link is 
used to communicate control, status, and physical data between the I/O modules and the external 
devices. Data are in the form of set of bits to be sent to or received from the I/O modules. Control 
signals determine the function that the device will perform. Status signals indicate the state of the 
device, whether the device is ready for operation. The I/O module thus includes a control unit that 
carries out all these responsibilities while operating the device, and the related software is designed 
to execute I/O operation. Figure 6.2 shows a model of an I/O system in which the I/O module stands 
as a mediator between the high-speed CPU or memory and the much slower electro-mechanical 
devices of different types. 

For computers used in process control environments like assembly line processing, industrial 
processes, etc., the status condition of the process being sent is in the form of a status signal 

FIGURE 6.2 A generic representative model of an I/O system including I/O interface and external device. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Device Management 311  

 

 

 

 

 

 
 

 
 
 

 
 
 
 
 

 

 

 

 
 
 
 
 

 

 

 
 
 
 
 

as input, and the corresponding control signal is obtained as output to monitor and control the 
process. 

Brief details on this section with a fgure are given on the Support Material at www.routledge.com/ 
9781032467238. 

6.6 I/O SYSTEM ORGANIZATION: TYPES OF I/O OPERATION 

I/O organization consisting of I/O systems lies in the domain of computer organization and architec-
ture (Chakraborty, 2020). The I/O system again depends on the intelligence of its attached I/O module, 
the amount of hardware available to communicate with its peripherals, and also the number of periph-
erals attached to it. In fact, I/O systems are usually distinguished by the extent to which the CPU is 
required to get involved in the execution of less important I/O-related activity. The CPU actually exe-
cutes the I/O instructions and may accept the data temporarily, but the ultimate source or destination 
is the memory unit while transfer of information takes place to and from external devices. However, 
the ultimate target of the I/O organization as gradually evolved is to relieve the CPU as much as pos-
sible from the relatively inferior time-consuming I/O-related activity and eventually to totally release 
the CPU, isolating it from I/O-related tasks as a whole. To achieve this goal, the evolution process in 
I/O organization that have passed through a series of developments starting from its most primitive 
form to the ultimate emergence of its latest modern version can be categorized in sequence as follows: 

1. Programmed I/O (PIO) 
2. Interrupt-driven I/O 
3. DMA 
4. I/O channel 
5. I/O processor (IOP) 

More details about this section are given on the Support Material at www.routledge.com/ 
9781032467238. 

6.7 PHYSICAL I/O OPERATION: DEVICE-LEVEL I/O 

The I/O operation carried out by the system on devices is implemented by issuing a specifc I/O 
instruction that contains the respective device address [like controller_id (c), device_id (d)] and the 
address (addr), where addr is the starting address of the location that contains the command for the 
required I/O operation, such as start, open, read, write, or close. The entire I/O function can then be 
formulated in a general way that executes the following operations in sequence: 

• Initiating an I/O operation 
• Checking device status 
• Performing I/O operations 
• Completion of an I/O operation 
• Handling interrupts 

More detail about this section are given on the Support Material at www.routledge.com/ 
9781032467238. 

6.8 DEVICE MANAGEMENT: OBJECTIVES 

Device management directly manipulates hardware devices, providing the frst-level abstraction of 
these resources used by applications to perform I/O. One of the major requirements in the design of 
device management is to effciently operate and utilize various types of I/O devices available in the 
system to realize optimized I/O device performance, thereby ensuring overall improved effciency 
of the operating system. It should also implement a generalized approach for different types of I/O 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 
 
 

 

 

 

 
 
 

 
 

 
 
 
 

 

 
 
 
 
 
 

312 Operating Systems 

devices with numerous patterns of characteristics present in the system to make it convenient while 
performing device-level I/O. This requires generality while handling different types of I/O devices 
and is achieved by defning certain methods that treat all these devices, such as disks, tapes, printers, 
and terminals, in the same uniform manner for the sake of simplicity and also freedom of handling 
various errors arising from all these devices. In fact, the overall generality can be mostly realized if 
physical I/O function can be structured logically in a modular fashion. This concept is considered one 
of the keys in the design of device management software, and is explained in detail later (Section 6.10). 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

6.9 DEVICE MANAGEMENT: FUNCTIONS 

The device management monitors and controls the devices, and while attempting to provide eff-
ciency in device utilization and generality in device handling, it performs the following basic 
functions: 

1. When initiating an I/O operation, the status of the device is to be checked. The status of 
all devices is being kept track with a special mechanisms using a database known as a 
unit control block (UCB) associated with each device. The module that keeps track of the 
status of devices is called the I/O traffc controller. 

2. In multiprogramming/multi-user environment, it decides the policy to determine which 
process from the waiting queue pending on a physical device gets a device, when, and for 
how long. A wide range of techniques are available for implementing these policies that is 
based on the objective of improved system performance. In general, three basic techniques 
are followed. Those are: 
a. Dedicated: a technique whereby a device is assigned to a single process. 
b. Shared: a technique whereby a device is shared by many processes. 
c. Virtual: a technique whereby one physical device is simulated on another physical 

device. 
3. Allocating: physically assigning a device to a process. 
4. Actions with regard to completion of I/O (interrupt servicing), error recovery, if there 

is any, and subsequently deallocating a device. Deallocation (policy-wise and technique-
wise) may be done on either a process or a job level. On the job level, a device is assigned 
for as long as the job exists in the system. On a process level, a device may be assigned for 
as long as the process needs it. 

In order to realize these basic functions, device management uses certain data structures that 
constitute the physical input–output control system (IOCS). Those are: 

• Physical device table (PDT) 
• Logical device table (LDT) 
• Unit control block (UCB) 
• I/O queue (IOQ) 

The physical device table (PDT) is a system-wide data structure that contains information on all 
physical devices present in the system. Each row of this table contains the information on one physi-
cal device that consists of several felds; some notable ones are device address, device type, and IOQ 
pointer. The logical device table (LDT) is a per-process data structure that describes assignments to 
the logical devices used by the process. One copy of the LDT exists for every process in the system, 
and this copy is accessible from the PCB of the process. Both the PDT and LDT are fxed tables and 
are accessed by device numbers as keys. The unit (device) control block (UCB) is a data structure 
that represents a unit (device) in the operating system. This data structure contains all information that 

http://www.routledge.com/9781032467238


Device Management 313  

 
 
 
 
 

   

 
 
 
 
 

 

  

describes the characteristics of the device pertaining to the generic set of I/O operations that are sup-
ported by the I/O system. When a device is confgured to the system, a UCB is created and inserted 
into the device list. An UCB is allocated only on demand when a process initiates an I/O operation and 
is destroyed when the I/O operation completes or terminates. The I/O queue (IOQ) is a waiting list of 
all processes pending for an I/O operations on a physical device when this device is busy with some 
other process. This wait queue contains a pointer to the corresponding UCB that, in turn, points to the 
corresponding queue of process control blocks of processes waiting for device access. 

The PDT, LDT, and IOQ data structures reside within the kernel. The process creates a UCB 
on demand in its own address space, initializes its felds, and uses some of its felds (device switch 
pointer, etc.) as parameters in the physical call to device-specifc I/O routines (device drivers) lying 
in the kernel space specifed by the I/O request. The presence of the UCB in the address space of a 
user’s process avoids many complexities, such as checking the status of an I/O operation, like “Get 
status info”, without having to invoke the implicit system call required to enter the kernel space. 

More details about all these tables with respective fgures are given on the Support Material at www. 
routledge.com/9781032467238. 

6.9.1 DEDICATED, SHARED, AND VIRTUAL DEVICES 

I/O devices can be broadly classifed into two distinct categories, dedicated devices and shared devices. 
Examples of dedicated devices are magnetic tapes and printers that are diffcult to share between pro-
cesses. A dedicated device is assigned to a job for the job’s entire duration (job-level assignment) and is 
normally released by the system after the completion of the job. As long as the device is assigned to a job, 
no other users can get access to the device. A dedicated assignment is only effective if it is used by the 
job continuously. Otherwise poor utilization of devices may cause problems that eventually lead to severe 
degradation in the performance of the I/O system and the system as a whole. 

Most direct access storage devices are sharable devices. Examples of shared devices are disk of 
all types and drums. Several processes can share access to a disk almost at the same time, because 
of the inherent direct-access nature of the disk system. If two or more processes simultaneously 
request a disk operation on a particular disk, all the requests will be accepted, and a scheduling 
mechanism based on a certain policy must then be employed to handle them in a specifed order. 
Proper scheduling of disk access to service various requests arriving from different users is a major 
criteria in the performance of the entire system. 

While processes have the beneft of virtual storage, they also have the benefts of virtual devices. 
These devices are actually simulated by the operating system, with data essentially kept either in 
the main store or on other devices, typically large disks. An example is the spooling systems, in 
which printer output is actually sent to a disk that waits for the printer to become available. The 
disk in this situation behaves like a virtual printer. When virtual devices are provided, the operating 
system must transparently deal with physical devices without any interference from processes. With 
the use of virtual devices, dedicated devices can be converted into shared devices through differ-
ent techniques, such as spooling. For example, the output of a process to a printer can be spooled 
onto a disk, allowing the same printer to be used by another process simultaneously. Later, when 
the printer becomes available, all the spooled output of different users can be sent to the printer 
one after another to get the hard copy printout. Since a disk can be shared, it effectively converts a 
dedicated device into a shared one, changing a single printer into many virtual printers. 

6.10 PHYSICAL I/O FUNCTION ORGANIZATION: 
LOGICAL STRUCTURING 

The bewildering variety of only one class (e.g. hard disk, tapes, or CD-ROM) of device manu-
factured by different vendors using different types of technology requiring completely different 
controlling programs (device controllers) for their operation and to attach these numerous devices 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 
 

 
 
 
 
 
 
 
 

  
 

 

   

 
 

 
 

 

 

314 Operating Systems 

to computers is one of the grand challenges of OS designers and developers. Each brand of disk, 
channel, tape, or communication device has its own control protocol, and new devices with diverse 
characteristics are frequently introduced in the market. It is thus essential to reduce this variety to 
some sort of order; otherwise, whenever a new device is to be attached to the computer, the operat-
ing system (device management) will have to be completely reworked to accommodate it. In order 
to get rid of this problem, it is required to organize the physical I/O function into a regular structure, 
at least at some level inside the kernel, that can work well across a wide range of different class of 
devices. The device-specifc parts of device control can then be sequestered into well-defned mod-
ules. This idea eventually gave rise to the concept of organizing the physical I/O function into an 
appropriate logical structure. 

The concept of hierarchical-level structuring as implemented in the design of an operating system 
(Chapter 3) can also be similarly mapped in the design of device management (I/O software) to realize 
the desired I/O functions. The ultimate objective of implementing this approach in the design of device 
management is to organize the software, decomposing it into a series of layers in which each layer in the 
hierarchy is entrusted with performing small manageable subfunctions of the whole. Each such layer 
has its own form of abstractions and relies on the next lower layer, which performs more primitive func-
tions, but it hides the details of these functions and the peculiarities of the hardware associated with the 
next lower layer. At the same time, it offers services to the next higher layer, and this upper one is more 
concerned with presenting a relatively clean, regular interface to the users. Conclusively, at the outset, 
this layered concept in the design and subsequent realization of device management still nicely matches 
with the environment, fulflls its primary requirement to interact at one end directly with the computer 
hardware, and communicates with the user processes through its other end. However, the number of 
layers involved in the organization used by most device management systems (not all) may vary from 
one device to another depending on the class of device and the application. Three such representative 
classes of devices present in the system are local peripheral devices (console, printer, etc.), communi-
cation devices (involved in network architecture using the ISO-OSI model or TCP/IP), and fle-based 
secondary devices (storage devices supporting the fle system). The layering in the design of the device 
management of each of these classes is obviously different. 

Brief details on different types of layering in the organization of these three different classes 
of devices with respective fgures are given separately on the Support Material at www.routledge. 
com/9781032467238. 

6.11 DEVICE MANAGER: ITS CONSTITUENTS AND 
DESIGN PRINCIPLES 

Each OS defnes an architecture for its own device management system, but that usually varies 
among systems, and as such there exists no universal organization. However, the design of a gen-
eralized device management system can be obtained following the concept described in the last 
section by logically structuring the physical I/O operation. In fact, this principle can be used as 
a guideline by mapping each layer of the logical structure into a corresponding software module, 
and in this way, the entire device management software can be developed that actually comprises 
of various constituent software at different levels, each one at certain level performing a specifc 
responsibility that ultimately gives rise to realize the entire I/O functions and facilities. 

Figure 6.3 illustrates a representative device management system design in a comprehensive and 
effcient way by structuring I/O software into different layers and indicates the principal functions 
that each layer performs. It is interesting to note that each layer in Figure 6.3 has an almost one-
to-one correspondence with each of the lower three layers as shown in Figure 6.8 on the Support 
Material at www.routledge.com/9781032467238. For example, logical I/O (Figure 6.8a on the 
Support Material at www.routledge.com/9781032467238) corresponds to device-independent soft-
ware (Figure 6.3). Similarly, device I/O corresponds to device drivers, and control I/O corresponds 
to scheduler and interrupt handler. The module user-level I/O software at the top of device manage-
ment is a part of device management but resides outside its domain and is critically linked to user 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Device Management 315  

 
 
 
 
 

 
 
 
 
 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FIGURE 6.3 Pictorial representation of layered structure of the generic Device Management system (I/O sys-
tem) and the main function of each layer. 

software and even runs outside the kernel. For example, when a user program attempts to read a 
block from a fle, device management (operating system) is invoked to carry out the operation. 
The device-independent software frst searches the cache, for example, to fnd whether the block is 
available. If the desired block is not present in the cache, it calls the device driver, which, in turn, 
issues the appropriate request to the hardware. The process is then blocked (sleep) until the related 
disk operation is completed. 

When the related disk operation is over, the device hardware generates an interrupt. The interrupt 
handler takes control, runs the respective interrupt service routine to resolve the interrupt that extracts 
the status from the device, checks whether the related disk operation is successfully completed, and 
if so fnally wakes up the sleeping process to fnish the I/O request and let the user process continue 
again. We now discuss each individual layer separately, as shown in Figure 6.3, one after another 
starting from the bottom, and show how the various layers of device management ft together. 

6.11.1 SCHEDULER AND INTERRUPT HANDLER 

When an I/O instruction in a user process is executed, an I/O request is issued. It is handled 
by device-independent software to identify the needed device driver, and the respective device 
driver process is then started. When the device driver issues an I/O command to access the 
respective device (hardware) for needed I/O operation, the driver process itself is blocked until 
the respective I/O operation is completed and the interrupt occurs. The scheduler will now come 
into action to schedule the already-received driver’s request in a queue if multiple requests have 
already arrived for the same device; otherwise the driver’s request is immediately attained. The 
I/O scheduler uses certain pre-defned policy to decide when an I/O module (or the IOP) is to be 
assigned to a request and sets up the path to the device. When the request is scheduled, its turn 
comes, it gains access to the device, and the needed I/O operation starts. After the completion 
of the I/O operation, an interrupt will be issued by the device controller of the respective device 
and is received by the interrupt handler, which services the interrupt using the respective ISR 
located very close to the hardware that, in turn, activates the blocked driver process. In this way, 
control fows upwards and ultimately allows the user process to continue its execution with the 
next instruction. 



 

  

 

 
 
 

 
 

   

 
 

 
 
 

 
 
 

 
 
 

 

 

 

 

316 Operating Systems 

6.11.2 DEVICE DRIVERS 

I/O instruction of very different sorts of requests, such as; open, read, write, and close, from user 
processes goes to the device-independent software that converts it to device-dependent code con-
sisting of specifc I/O operation code, including the device as requested, which ultimately goes to 
the layer device drivers. The specifc device driver is then invoked that ultimately carries out the 
needed I/O operation with the help of the device controller attached to the requested device. The 
functions that the I/O device driver performs are: 

• to determine the I/O command or create the channel program in order to perform the 
desired I/O operation, 

• to initiate I/O to the particular device through the respective I/O modules, 
• to handle the interrupts arrived from the device, and 
• to optimize its performance. 

In summary, from the user’s end, it appears that the device driver performs the entire physical I/O. 
The details of I/O operations executed by the device driver with a fgure are given on the Support 

Material at www.routledge.com/9781032467238. 

6.11.2.1 Case Study: UNIX Device Drivers 
The beauty of UNIX lies in its explicit attempts to simplify the application programming model for 
fles and devices as similar as possible. The upper part (as shown in Figure 6.10 on the Support 
Material at www.routledge.com/9781032467238) of the UNIX device driver (API) uses operation 
names similar to the fle interface, although they apply to physical devices rather than to an abstrac-
tion of storage. Device drivers here are intended to be accessed by user-space code. If an application 
accesses a driver, it uses one of two standardized interfaces: the block-oriented device interface or 
character-oriented device interface. Both interfaces defne a fxed set of functions, such as; open, 
read, write, close, and select. Any driver can implement a subset of the functions appropriate for 
that particular device according to the device characteristics, the strategies of driver design, and the 
requirements of the driver. When an application in the user space calls the driver, it performs a system 
call. The kernel then looks up the entry point for the device in the block or character indirect refer-
ence table (the jump table), then calls the entry point. The exact semantics of each function depends 
on the name of the device and the intent of the driver design. Hence, the function names provide only 
a purpose for each. In the UNIX family of systems, the logical contents of the jump table are kept in 
the system in the /dev directory. However, a UNIX driver comprises three main parts: 

• System initialization code 
• Code to initiate device operations 
• Device interrupt handlers 

The initialization code is run when the system is bootstrapped. It scans and tests for the physical pres-
ence of the devices and then initializes them. The upper part of the device driver (API) implements 
functions for a subset of entry points (as shown in Table 6.1). This part of the code also provides infor-
mation to the kernel (the lower part shown in Figure 6.10 on the Support Material at www.routledge. 
com/9781032467238) as to which functions are implemented. The device interrupt handler is called by 
the system interrupt handler that corresponds to the physical device causing the interrupt. 

The devices and the respective drivers are usually installed by the system people following cer-
tain steps. The information required at the time of installing a driver can be incorporated into a con-
fguration fle and then processed by the confguration builder tool, /etc/confg, to build a makefle 
capable of building the kernel. 

Table 6.1 containing BSD UNIX driver entry points is given on the Support Material at www. 
routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Device Management 317  

  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

6.11.3 DEVICE-INDEPENDENT SOFTWARE 

The design of device management is different in different operating systems, particularly in describ-
ing how a specifc operating system will identify its device resources so that the respective device 
driver can be invoked to execute the prescribed I/O operations. In spite of having many differences, 
almost all contemporary operating systems hide all device-specifc aspects and peculiarities from 
users and provide an abstraction of physical devices by a standard symbolic name known as a logi-
cal device to the users. Some systems often extend this view to the entire I/O system by treating I/O 
devices as fles (where all I/O devices appear to users as a set of fles, augmenting the fundamental 
notion of the fle as a linear array of character or records), possibly with some special attributes. For 
example, a text fle may be printed using a COPY operation where the destination “fle” is a printer 
device. Whatever it may be, this approach enables the user to access and manage both I/O devices 
and usual fles through a single unifed system call and fle manipulation services. This is often 
called device-independent I/O. The ultimate aim of this concept is to relieve the user process from 
the burden of explicitly mentioning the devices, irrespective of its actual physical identity. Device 
independence actually facilitates program portability and the added fexibility of changing devices 
and fles specifcations even at runtime. 

Implementation of this approach requires adequate support from the device management of the 
operating system, and that is accomplished by the device-independent software module, which is 
assumed to be the frst level of the device management system. This level performs its responsibili-
ties by creating a useful interface that maps the logical devices used in I/O instructions issued in 
the user space to each of their specifc machine-recognizable patterns, adding many device-related 
attributes that can ultimately be executed by the respective physical devices using their own device 
drivers and the particular device controller. In addition, the device-independent software performs 
the I/O functions that are common to all devices and provides a uniform interface to its upper layer, 
the user-level software, irrespective of the type of the devices. 

In different operating systems, the design of the device-independent software may be dif-
ferent, causing device management itself to be different. However, the specifc responsibilities 
(functions) that the device-independent software usually performs that are common to most of 
the operating systems are the following. But the exact boundary between device-independent 
software and device-dependent software (a device driver that resides just at its lower level) 
depends on its design criteria and therefore is system dependent. One possible reason for such 
differences in its design is that some functions that could be carried out in a device-independent 
way may actually be done in the drivers for the sake of increasing effciency or to meet some 
other goal. However, the functions that are typically common in most device-independent 
software are: 

• Uniform interfacing for its upper layer, user-level software 
• Uniform interfacing for its lower layers, device drivers 
• Device naming 
• Ensuring device-independent block size 
• Providing storage allocation on block devices 
• Allocating and releasing dedicated devices 
• Device protection 
• Error handling 
• Buffering 

Uniform naming of devices helps to identify the particular physical device and locate the respective 
driver. Symbolic device names may be used as parameters when invoking the respective drivers as 
well as the specifc operation (read or write) it will carry out on the device. 

Brief details on the different functions of this software are given on the Support Material at www. 
routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

 

 

 

318 Operating Systems 

6.11.4 USER-LEVEL I/O SOFTWARE 

I/O software that is responsible for managing and controlling devices is mostly confned within 
the domain of operating system and works in supervisor mode. However, a small portion of it that 
consists of libraries is closely related to user programs, and when linked with user programs during 
runtime, all these programs start running outside the kernel. In UNIX systems, system calls, includ-
ing I/O system calls, are normally made by library procedures. For example, when a C program 
contains a call like 

read (id, no_of_bytes, in_buffer) 

the corresponding library procedure in binary form is brought into memory and will be linked 
with the calling user program at runtime. All other similar procedures that involve I/O are collec-
tively contained in a standard I/O library, which is clearly a part of the operating system, but all run 
as part of the user programs outside the boundary of the operating system. Still, there is other user-
level software that is related to any such library procedure. Spooling is such an I/O function related 
to dedicated devices, such as; a printer, that permits any user process to open a character-special fle 
for the printer and then fll the fle with data to be printed, if the printer device is either busy or not 
available. A spooling mechanism is also often used in the network environment when transferring 
a fle over the network. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

6.12 I/O BUFFERING 

To accomplish an I/O operation, the simplest way is to issue an I/O command and then wait for the 
data to become available. This waiting may either be busy-waiting (continuously testing the device 
status) or, more practically, blocking of process on an interrupt until the entire I/O is completed and 
subsequent arrival of an interrupt from the device-end declaring the completion of I/O that unblocks 
the said process, apart from quite slow operation of the devices themselves. All these together cre-
ate a hindrance in the overall execution of the process and also badly affect the other operating-
system declared policies. The I/O wait time could only be reduced if the data are made available in 
memory whenever the process needs it and, if possible, if the input can be transferred in advance of 
requests being made and the output can be transferred sometime after the request is made. The basic 
approach in this regard would be to overlap the processing of one record with the reading of the 
next record (or writing of the previous record) that eventually could reduce the I/O wait time liter-
ally zero if I/O for the next (previous) record were completed by the time the previous (next) record 
is processed. To achieve this goal, the technique used is known as buffering. Different forms of 
buffering schemes exist that are supported by different operating systems to attain different objec-
tives, but all of them necessarily aim to ultimately improve the performance of their own system. 

An I/O buffer is usually a memory area temporarily used to store data involved in an I/O opera-
tion. Buffering is a technique which uses this I/O buffer to provide overlap of the I/O and allied 
subsequent CPU (or IOP) activities in a process that essentially reduces the I/O wait time. This 
means that the device manager, by means of using this technique, can keep slower I/O devices busy 
during times when a process does not really require I/O operations. As already mentioned, this can 
be achieved by 

• Input buffering: Pre-fetching an input record by having the input device read information 
into an I/O buffer before the process requests it, or 

• Output buffering: Post-writing an output record from an I/O buffer to the I/O device while 
the process continues its own execution. 

Input buffering can be started to read the next record on an I/O buffer sometime before the record 
is needed by the process. This may be carried out while the CPU (IOP) is processing the previous 

http://www.routledge.com/9781032467238


Device Management 319  

  

 

 

 
 
 
 

 
 
 

 
 

  

 

 
 

record. By overlapping a part of I/O operation time with CPU (or IOP) processing time, the actual 
time needed for completion of an I/O operation would be comparatively less and lead to less wast-
age. In the case of output buffering, the record to be written is simply copied into an I/O buffer when 
the process issues a write operation. Actual output can be conveniently performed from this I/O 
buffer to the destined location sometime later. It can also be overlapped with processing or a part of 
processing for the next record. 

The use of two system buffers, called double buffering, in place of a single buffer in the I/O 
operation can make the buffering mechanism even more effcient and effective, although there exists 
a distinct difference in the operation of a double buffer from that of a single buffer. But, sometimes 
it is found that even double buffering is not enough to reasonably reduce the problem of I/O waiting, 
especially in situations when the process enters rapid I/O bursts. That situation requires more than 
two buffers to smooth out I/O operation, and that is why multiple buffers are employed to handle 
this environment. 

While the buffering technique intuitively always attempts to smooth out peaks in I/O demand, 
the effect of buffering on performance depends mostly on the process’s characteristics. In the case 
of an I/O-bound process, use of buffers often yields substantial performance improvement, whereas 
for a CPU (compute)-bound process, the situation is exactly the reverse. However, in either case, no 
amount of buffering is adequate to allow an I/O device to keep pace with a process indefnitely, par-
ticularly in situation when the average demand of the process becomes greater than the I/O device 
can support. Nevertheless, generally in a multiprogramming environment, it has been observed 
that, within the system, there is a nearly homogeneous mixture of various I/O-bound and CPU-
bound processes to service. Buffering technique thus emerges as a powerful tool that can ultimately 
increase the performance of each individual process, and thereby enhance the effciency of the 
operating system as a whole. 

Different forms of I/O buffering and their operations with fgures are given on the Support 
Material at www.routledge.com/9781032467238. 

6.13 CLOCK 

In computer systems, the timing order in which events are to happen is critical, and the hardware in 
computers uses clocks that are different from usual clocks to realize synchronization. Clocks, also 
called timers, mainly prevent one process from monopolizing the CPU, among other things. The 
clock software generally takes the form of a device driver, even though a clock is neither a block 
device, like a disk, nor a character device, like a terminal or printer. A clock in this context is a cir-
cuit that emits series of pulses with a precise pulse width and specifed interval between consecutive 
pulses. The interval between corresponding edges of two consecutive pulses is called the clock cycle 
time. Pulse frequencies are commonly between 1 and 100 MHz or correspond to clock cycles of 1000 
nsec to 10 nsec. To achieve high accuracy, the clock frequency is usually controlled by a crystal oscil-
lator. The existing clock cycle can also be divided into subcycles. A common way of providing fner 
resolution than the basic clock is to tap the primary clock line and insert a circuit with known delay in 
it, thereby generating secondary clock signal that is phase-shifted from the primary (basic clock) one. 

6.13.1 CLOCK HARDWARE 

Clocks come in several styles. However, clocks used in computers are commonly of two classes. 
The simplest, a line clock, is tied to the 110- or 220-volt power line and causes an interrupt on every 
voltage cycle, at 50 or 60 Hz (i.e. the 50th or 60th part of a second). The other kind of clock in this 
class is built using an additional hardware circuit that generates a periodic signal of high accuracy. 
The other class of clock are programmable clocks, which typically have several modes of opera-
tion, one-shot mode, and square-wave mode. However, irrespective of its class, the time interval 
between two consecutive interrupts caused by the clock during its operation is called a clock tick. 

http://www.routledge.com/9781032467238


 

    

 
 
 
 
  
 

 

 

  

 
  

 
 

320 Operating Systems 

The advantage of a programmable clock is that its interrupt frequency (the time interval between 
two consecutive interrupts) can be controlled by software. If a 1-MHz crystal is used, then the coun-
ter will be pulsed every microsecond. With a 16-bit register, interrupts can be programmed to occur 
at rates from 1 to 65535 microsec. Programmable clock chips, however, usually contain two or three 
independently programmable clocks and have many other options as well. 

To implement a time-of-day clock, the software asks the user for the current time, which is then 
translated into the number of clock ticks. At every clock tick, the real time is incremented by one 
count. To prevent the current time from being lost when the computer’s power is turned off, some 
computers store the real time in a special register powered by a battery (battery backup). 

The hardware design of a clock with a fgure is given on the Support Material at www.routledge. 
com/9781032467238. 

6.13.2 CLOCK SOFTWARE (CLOCK DEVICE DRIVERS) 

The hardware of the clock is responsible only for generating interrupts at known intervals. Everything 
else involving time must be done by the software, the clock driver. The exact duties of the clock 
driver vary among operating systems but usually include most of the following: 

1. Maintaining the time of day. 
2. Allowing processes to run only for the specifed time they are assigned to. 
3. Handling the ALRAM system call made by user processes. 
4. Accounting for CPU and other resource usage. 
5. Providing watchdog timers for parts of the system itself. 
6. Doing profling, monitoring, and statistics gathering. 

Discussions on each mentioned point with fgures are given on the Support Material at www. 
routledge.com/9781032467238. 

6.14 MAGNETIC DISK I/O 

Disk is slower, cheaper, and usually much larger secondary (serial) memory using direct-access 
in contrast to random-access primary memories that hold the bulk of information, which is also 
persistent, meaning that the stored information is not lost even when the power is turned off. Its 
read–write circuitry is shared among different storage locations. The information is read from and 
written to the device a chunk of bytes or words at a time. These bytes or words are usually grouped 
into larger units called blocks. Hence, the disk is called a block-oriented device. In fact, the size of a 
block in a disk is mostly determined by the characteristics of the device and its controller. However, 
the disk is the most important secondary device, the performance of which greatly infuences the 
computer environment as a whole, and is a major factor that has an immense impact on the perfor-
mance of the entire system. We will describe here some of the major physical characteristics of the 
disk and will then highlight some of the key issues and a few of the most important approaches that 
can possibly enhance disk performance as a whole. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

6.14.1 PHYSICAL CHARACTERISTICS 

There are some typical important physical characteristics that make a difference among the various 
types of magnetic disks. Although this area actually lies in the domain of computer organization and 
architecture (Chakraborty, 2020), we will here mention all these in a nutshell for the sake of completeness. 

• Head/storage media movement: Fixed-head disk, movable-head disk 
• Platters: Single-platter, multiple-platter 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Device Management 321  

 
 
 

    

 

 
 
 
 
 
 
 
 

 
 

   
 
 
 

 

• Sides: Single-sided, double-sided 
• Portability: Non-removable disk, removable disk 
• Head mechanisms: Contact (magnetic tape), fxed gap, aerodynamic gap (Winchester) 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

6.14.2 DISK COMPONENTS AND ORGANIZATION 

Every disk is physically a fat circular object called a platter coated with an emulsion of magnetic 
material that is rotated around its own axis. As shown in Figure 6.4, the surface is organized by draw-
ing a set of fxed paths or tracks, which are concentric sets of rings (or sets of parallel lines in tapes), 
and each track consists of a sequence of cells, each cell capable of storing 1 bit of information. Each 
track is the same width as the head. There are thousands of tracks per surface. Adjacent tracks are 
separated by gaps known as intertrack gaps (Figure 6.4). The read–write head, fxed on an arm, can 
move radially over the platter due to the radial movement of the arm to perform read/write serially 
along a track on a surface. Each track is logically divided into several sectors, defned as an angular 
portion of the track that stores a physical block of information. Sectors may be of fxed or variable 
length, but they are always a power of 2 to optimize use of the disk surface as well as to ease the 
recording mechanism. In most contemporary systems, fxed-length sectors are used, with 512 (= 29) 
bytes being the nearly universal sector size for the sake of operational ease. However, the number of 
blocks stored on the disk is determined by the number of tracks with the number of sectors on each 
track present in the disk platter. Drawing of tracks on the surface, along with fxing the start and end 
points of every track and every sector, is done by means of generating control data (the system’s own 
data) on the disk accomplished at the time of formatting the disk. Hence, the disk cannot be used 
without formatting. These extra data recorded on the disk are used by the disk drive and not accessible 
to the user. In addition, adjacent sectors are also separated by intersector (similar to intertrack) gaps. 

FIGURE 6.4 A representative scheme showing data layout arrangement in magnetic disk (hard disk). 

http://www.routledge.com/9781032467238


 

 

 

 

 
 
 
 

 

 
 
 
 

 

322 Operating Systems 

Higher disk capacities are obtained by mounting many platters vertically, spaced at a defnite 
distance from each other on the same spindle to form a disk pack. The disk pack is provided with 
a single movable arm with many fxed branches. The number of branches present in such an arm 
depends on the number of platters available in the disk pack. Each branch of the arm holds two 
read/write heads, one for the lower circular surface of a platter and the other for the upper circular 
surface of the next platter of the disk pack. Because of engineering economics for devices, the read/ 
write heads attached to different branches of a single movable arm are positioned over a particular 
track on both sides of different platters (except possibly the topmost and the bottommost one) while 
the media rotates under/over the heads. All these identically positioned tracks (both top and bottom 
surface of each platter) on different platters’ surfaces together constitute what is called a cylinder 
of the disk. This notion of a cylinder is an important property in the I/O operation of a disk pack. If 
the records can be organized to be placed in the same cylinder (identical tracks on different platters), 
the I/O operations on such records can then immediately be carried out without further movement 
of the heads, thereby saving a substantial amount of time needed for the mechanical movement of 
the heads for the correct placement. The disk pack can now be looked upon as consisting of a set of 
concentric cylinders between the innermost cylinder, which consists of the innermost tracks of all 
surfaces, and the outermost cylinder, which consists of the outermost tracks of all surfaces. 

A physical disk record is normally stored in the disk pack on one track in one sector on one 
surface of the disk or may be extended on other sectors that may be on the same surface or on the 
other side of the platter or even on different platters depending on the nature of formatting, which 
does sector numbering (or interleaving). A record’s address is usually specifed as (cylinder num-
ber, surface number, record number), and the commands supported by a disk device are read/write 
[record–address, addr (I/O-area)] and seek (cylinder number, surface number). 

More about this topic with related fgures is given on the Support Material at www.routledge. 
com/9781032467238. 

6.15 DISK I/O OPERATION: PARAMETERS 

An I/O operation on a record using a record address actually depends mostly on the computer sys-
tem, the nature of the I/O channel and disk controller hardware, and also on the operating system 
being used. However, the following steps are, in general, involved when information is transferred 
to and from any disk after initiation of a disk I/O operation. 

1. Wait until the device is available, if it is busy. 
2. Wait until the channel is available, if it is busy. 
3. Wait until the read–write head is positioned on the desired track. 
4. Wait until the beginning of the desired sector on the accessed track comes under read– 

write head. 
5. Wait until the data are transferred serially and not in parallel to and from the disk. 

Each step will consume a certain amount of time (wait time), except for the frst one, if the disk is 
readily available. The total duration of time consumed by the steps 2 to 5 is considered device busy 
time. However, the actual time consumed to bring the disk to a position to begin the data transfer 
operation in any disk I/O is the sum of the times consumed by steps 3 and 4, and this is mandatory for 
any disk I/O operation to begin. However, the total time to be consumed for any disk I/O operation is: 

Time required to place the Time required only to Total time required to head at the beginning of the transfer the actualtransfer an information in = +target location [step 3 + 4] information (step 5)I/O operation (Access time) (Transfer time) 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Device Management 323  

 
 

 

 

 

   

 
 
 

The wait time in step 3 is the time required by the movable-head disk system to position the head at 
the right track to perform the needed data transfer. This is known as seek time. When step 3 is over, 
that is, the track is selected, and the head is positioned on the right track, step 4 starts. The wait time 
in step 4 is the time consumed by the disk controller until the target sector (which may be on the 
wrong part of the moving track) arrives just under the head so that data transfer can start. The aver-
age time needed for this movement to occur is called the rotational delay or rotational latency. 
After consuming these two mandatory times (steps 3 and 4), known as access time, the current 
position of the disk and the head can start physical data transfer. Now, the data transfer starts (step 
5) as the sector moves serially under the head. The time required for the transfer of all the needed 
information is the transfer time. This transfer time varies depending on the amount of information 
to be transferred (say, 40 bytes or 15 words) as well as on the data transfer rate that the specifc 
disk and its controller can provide. However, the data transfer rate can never be reduced by adopting 
any kind of policy/strategy unless the electronic technology used in the disk is modifed. That is 
why, apart from the size of the disk to take into account, the access time as well as its transfer time 
are considered vital parameters at the time of selection. 

Apart from the delays caused by the access time as well as the transfer time, there may be several 
other delays caused by queuing normally associated with a disk I/O operation in situations when a 
process issues an I/O request, but most of the time, it has to wait frst in a queue for the device to be 
available (step 1). Another form of delay may occur, particularly with some mainframe systems that 
use a technique known as rotational positional sensing (RPS). 

Seek Time (tS): This time is required by the disk to place its movable arm on the required track 
and mostly depends on two key factors; the initial startup time of the arm that is required for its 
movement and the time taken by the arm to pass over the tracks radialy to reach the target track once 
the access arm has taken up speed. The average seek time is tS to place the head on the right track. 

Rotational Delay: This delay mostly depends on the speed of rotation of the disk. Let the disk is 
rotating i.e. each track is rotating at the speed of r revolutions per second. The start of the block to 
be transferred may be just under the head or at any position on the track. Hence, on average, half a 
revolution is required to get to the beginning of the desired sector under the head. This time is the 
latency time, which is equal to (2r)–1 seconds. 

Transfer Time: The transfer time to and from the disk mostly depends on the data transfer rate 
in which the rotation speed of the disk is a dominating factor. To make a rough estimate of this 
transfer time, let us assume that each track has a capacity of N words that (i.e. the disk) rotates at 
the speed of r revolutions per second. The data transfer rate of the memory is r.N words per second. 
The size of the block to be transferred is n words. The time required to transfer n words is n ×(r.N)–1 

seconds. Hence, once the read–write head is positioned at the right track at the start of the desired 
block, the physical time to be taken only to transfer the desired block is n ×(r.N)–1 seconds. 

Hence, the total time required to transfer an information of a block of n words in a disk I/O 
operation can be expressed as 

tB = tS + (2r)–1.+ n ×(r.N)–1 seconds 

where the symbols here have their usual signifcances, as already mentioned. 
More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

6.16 DISK MANAGEMENT: DATA ORGANIZATION 
AND FORMATTING 

Data are organized on the sectors of the concentric tracks on the disk surface. In an I/O opera-
tion, data are transferred in a single block to and from memory using the buffering technique. In 
a read operation, the data transfer starts only after the entire block of data is read off the device. 
When this transfer is started and is in progress, the disk is continually revolving, and one or 

http://www.routledge.com/9781032467238


 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

   

 

 

324 Operating Systems 

more sectors may pass under the head by the time the transfer is completed. Hence, an attempt 
to read just the next consecutive sector cannot succeed in the same revolution of the disk. In the 
case of a write operation, the effect is the same: data transfer from the disk buffer takes place 
before writing of the data on the disk is initiated, and consequently data cannot be written into 
just the next consecutive sector in the same revolution. In both cases, the throughput of the disk 
device is severely affected. 

To avoid this problem caused by data transfer time, it may then be necessary to read one block 
and then skip one, two, or even more blocks. Skipping blocks to give the disk drive enough time to 
transfer data to and from memory is called interleaving. This technique separates consecutively 
numbered sectors on a track by putting other sectors between them. The expectation is that the 
data transfer involved in reading/writing a sector can be completed by the time before the next 
consecutively numbered sector passes under the head. Interleaving is realized when the disk is for-
matted, taking into account the interleave factor (inf), which is the number of sectors that separate 
consecutively numbered sectors on the same track of the disk. Numbering of sectors in this way 
by choosing a suitable interleaving factor would at least enable the disk drive to read consecutively 
numbered sectors with ease and still achieve the maximum speed, of course within the limits of the 
underlying hardware capability. 

Another problem is observed when the frst sector of any platter is to be read immediately 
after reading the last sector of the previous platter in the same cylinder. The read operation in this 
case is required to be switched between heads positioned on different platters. As a result, a delay 
is caused, known as head switching time. This is sometimes predominant, particularly in the 
processing of sequential fle when the last sector on a platter has been read before the next read 
operation starts. Such head skewing staggers the start of tracks on different platters in the same 
cylinder. One possible solution is that the times when the last sector of a track and the frst sector 
of the next track in the same cylinder pass under their respective heads must be separated by the 
head switch time. Still, one more problem is found in situations in which the head is required to be 
moved to the next cylinder, and this naturally consumes the needed seek time. Cylinder skewing 
is analogous to head skewing and similarly staggers the start of a track on consecutive cylinders 
to allow for the seek time. 

However, interleaving is not as important in modern disks, which are equipped with sophisticated 
controllers that can transfer data to and from memory at faster speeds and high rates. Modern disks are 
more concerned with head and cylinder skewing. Still, sector interleaving is important, since it offers an 
insight that provides a means to optimize disk throughput as far as possible by way of data staggering. 

More about this topic with a fgure is given on the Support Material at www.routledge.com/ 
9781032467238. 

6.17 DISK ACCESS TIME MANAGEMENT: DISK ARM 
SCHEDULING POLICIES 

The performance of a disk driver is ultimately concerned with the time to read or write a disk block, 
which again depends on three main elements, as already described: the seek time, the rotational 
delay, and the actual transfer time. Here, the third one entirely depends on both the data transfer 
rate and the amount of information to be transferred and hence is not considered a factor in disk 
management. The second one, rotational delay, is caused when accessing a specifc sector, and this 
sector access involves selection of tracks, which is linked to seek time. Moreover, seek times are 
usually an order of magnitude greater than rotational delay, and if track selection takes place at 
random, then the average seek time abruptly increases and the performance of the disk system will 
then drop drastically. That is why for most disks, the seek time dominates, so at the time of disk 
management, attempts should be made to ultimately reduce the average time spent on seeks, which 
can consequently improve the system performance substantially. Minimization of rotational delay, 
on the other hand, has very little effect on overall system performance. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Device Management 325  

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 

 
 

 
 

 
 
 
 
 

  

 

 
 

The seek time for a specifc disk block to service an I/O request depends on the position of 
the block relative to the current position of the disk heads. In a multitasking environment, there 
will normally be a number of I/O requests arriving from various processes to a single disk that 
are maintained in a queue and are serviced successively. This often requires access to random 
locations (tracks) on the disk, even if the items are selected (scheduled) from the queue at ran-
dom. Consequently, in a multitasking environment, the total seek time involved in servicing all 
I/O requests for a particular device abruptly increases. This indicates that the order in which 
these items are to be selected to perform their individual I/O operations eventually determines 
the total seek time needed to service all the I/O requests after visiting all the required tracks. 
Moreover, when the same disk pack is used both for secondary store (fles) and backing store 
(swap space), the swap space should be kept on the tracks halfway between the center and the 
edge, because the items in this location can then be accessed with the lowest average seek 
time. However, the main objective ultimately aims to always bring down the total seek time 
as much as possible so as to increase the throughput (which is the number of I/O operations 
performed per second) of a disk that, in turn, depends on the order in which I/O requests are 
to be serviced. 

Therefore, it is necessary to introduce suitable ordering in disk I/O operations that will ulti-
mately give rise to some specifc disk (track) scheduling policy to be obeyed by the physical IOCS 
and the device drivers. Since scheduling policies always attempt to minimize the wasted time in 
executing lengthy seeks, they will inevitably improve the throughput as well as the overall system 
performance, but individual requests sometimes may be affected adversely. In general, disk-head 
scheduling is defned based on the following assumptions: 

• There is only one disk drive. If there are several, each is to be scheduled independently. 
• All requests are for single, equal-sized blocks. 
• Requested blocks are randomly distributed on the disk pack. 
• The disk drive has only one movable arm, and all read/write heads are attached to that one 

arm. 
• Seek latency is linear in the number of tracks crossed (this assumption fails if the disk 

controller has mapped tracks at the end of the disk to replace ones that have bad sectors). 
• The disk controller does not introduce any appreciable delays. 
• Read and write requests take identical time to service. 

Disk scheduling requires a careful examination of pending requests to determine the most eff-
cient way to service all the requests. A disk scheduler examines the positional relationship among 
waiting requests. The queue of requesting processes is then reordered so that the requests can be 
serviced with minimum head movement. We now examine some of the common disk schedul-
ing policies that aim to optimize the total seek time for a number of I/O requests available in the 
queue at any instant. We assume a disk of 100 tracks or cylinders and that the disk request queue 
has random requests in it. Assume that a queue of requested tracks in the order as received by 
the disk scheduler is 20, 15, 30, 10, 45, 55, 35, 5, 95, 85. The various scheduling algorithms will 
now be explained based on this request queue, and each algorithm will use this queue to show its 
respective performance. 

6.17.1 RANDOM SCHEDULING 

If the item to be serviced is selected from the queue in any random order, it is called random 
scheduling. Under this policy, it can be expected that the tracks to be visited to service indi-
vidual requests will also occur randomly, thereby yielding poor performance most of the time. 
Random scheduling is otherwise useful as a benchmark against which other policies can be 
ranked (evaluated). 



 

  

 
 
 
 
 

 
 
 

 

 

326 Operating Systems 

6.17.2 FIRST-IN-FIRST-OUT/FIRST-COME-FIRST-SERVE 

The simplest form of disk scheduling is FIFO or FCFS scheduling, which processes items from the 
queue starting from the current item and proceeding in sequential order. As the requests arrive, they 
are placed at the end of the queue one after another according to their time of arrival. This policy 
is easy to implement and reasonably fair, because it ensures that every request will eventually be 
honored, and all the requests are serviced in the order they are received. However, every request 
here is likely to suffer from a seek operation. 

Figure 6.5 shows the working of FIFO considering the queue as already mentioned. Initially, the 
read/write head is on cylinder 20. In FIFO scheduling, the head will now move from cylinder (track) 
20 to cylinder 15, then from 15 to 30, then to 10, and so on, as shown in Figure 6.5. If t is the time 
taken to move the head from one track to the adjacent track, the total seek time in processing all the 
requests in the queue is: 

5t + 15t + 20t + 35t + 10t + 20t + 30t + 90t + 10t = 235t 

If there are only a few I/O requests in the queue, and if many of the requests are clustered closely in 
a disk region, then FIFO is expected to exhibit a moderately good performance. On the other hand, 
if there are many requests in the queue that are scattered, then the performance of FIFO will often 
become an approximation of random scheduling, and this performance may not always be acceptable. 
Thus, it is desirable to look at a more sophisticated scheduling policy that could yield a reasonable 
result. The principle and working of a number of such algorithms will now be considered and discussed. 

Although FCFS is not an attractive approach on its own, but its refnements once again illustrate the 
law of diminishing returns. However, there are many alternatives to FCFS, and they are all much better. 
For example, the Pickup method keeps the requests in FCFS order to prevent starvation, but on its way 
to the track where the next request lies, it “picks up” any requests that can be serviced along the way. 

6.17.3 PRIORITY 

The system that is designed on the priority principle will not consider the scheduling mechanism 
policy to lie under the domain of device management software. The aim of this approach is mostly 

FIGURE 6.5 A representative sample example showing the implementation of disk–arm scheduling using 
FCFS (First Come First Serve) scheduling algorithm in magnetic disk. 



Device Management 327  

 

 

 
 
 
 

to satisfy other objectives rather than to optimize disk throughput (performance). As in process 
scheduling, here also short batch jobs and interactive jobs are often given higher priority than longer 
jobs that require a longer time to complete their computations. In this way, this policy allows a lot of 
short jobs to leave the system quickly after fnishing their tasks and thus may exhibit a good inter-
active response time. Consequently, this approach requires longer jobs to wait long times and even 
excessively long times if there is a continuous fow of short batch jobs and interactive jobs, which 
may eventually lead to starvation. In addition, this policy could sometimes lead to countermea-
sures on the part of users, who may split their original jobs into smaller pieces to beat the system. 
Furthermore, when this policy is employed for database systems, it tends to offer poor performance. 

6.17.4 LAST-IN-FIRST-OUT 

This policy always immediately schedules the most-recent request irrespective of all the requests 
already lying in the queue. Surprisingly, it is observed to have some merit, particularly in transac-
tion processing systems, in which offering the device to the most recent user could result in little or 
almost no arm movement while moving through a sequential fle. Exploiting the advantage of this 
locality, it improves disk throughput and reduces queue lengths as long as a job actively uses the fle 
system. On the other hand, the distinct disadvantage of this approach is that if the disk remains busy 
because of a large workload, there is a high possibility of starvation. Once a job has entered an I/O 
request and been placed in the queue, it will fall back from the head of the line due to scheduling of 
the most-recent request, and the job can never regain the head of the line unless the queue in front 
of it empties. 

FIFO, priority, and last-in-frst-out (LIFO) scheduling policies are all guided by the desire of the 
requestor. In fact, the scheduler has no liberty to make any decision to schedule an item that may 
be appropriate to the existing position of the arm to optimize the throughput. However, if the track 
position is known to the scheduler, and the scheduler is free to select an item based on the current 
position of the arm, the following strategies can then be employed to carry out scheduling based on 
the items present in the queue, as requested. 

6.17.5 SHORTEST-SEEK (SERVICE)-TIME-FIRST 

In shortest-seek (service)-time-frst (SSTF) scheduling, the request closest to the current head posi-
tion is serviced frst. In other words, the request that requires the least movement of the disk arm 
from its current position is serviced, thereby spending the minimum seek time. Always choosing the 
minimum seek time per individual request does not, of course, give any guarantee the average seek 
time will be minimized when a number of I/O requests (and thereby several arm movements) are 
serviced. However, this algorithm in all situations should always offer better performance than FIFO. 

To explain the working of this policy, we are using the same queue as used in our last example 
of FCFS. The request for track 20 arrives frst. While this request is being processed, other requests 
arrive and are queued up. For selection of the next request to be processed, the request which 
involves the least head movement is selected. Here, the I/O request involving track 15 is likely 
the right choice. After processing this request, the next request that involves the least head move-
ment from the current head position (track 15) is now the request involving track 10 even though 
the request involving track 10 has arrived after the already-received request involving track 30. 
Successive choices are shown in Figure 6.6. The total seek time in this case is: 

5t + 5t + 5t + 25t + 5t + 10t + 10t + 30t + 10t = 105t 

Note that when the scheduling algorithm changes from FCFS to SSTF, there is a considerable 
reduction in seek time, from 235t to 105t. In fact, this algorithm, on average, cuts the total arm 
motion almost in half compared to FCFS. 



 

 

 

328 Operating Systems 

FIGURE 6.6 A representative sample example showing the implementation of disk–arm scheduling using 
Shortest Seek Time First (SSTF) scheduling algorithm in magnetic disk. 

The SSTF policy is analogous to the shortest job frst (SJF) policy of process scheduling. Hence, 
it achieves good disk throughput, but similar to the SJF algorithm, SSTF can cause starvation for 
some I/O requests. If a request is consistently bypassed, the disk must be incapable of keeping up 
with the disk requests in any case. 

In a real situation, more requests usually keep coming in while the requests shown in Figure 6.6 
are being processed. Consider the situation if, after moving to track 30 and while processing this 
request, a new request for track 25 arrives. So, after completing the request for track 30, it will take 
up the newly arrived request for track 25 (due to less arm movement), keeping the scheduled existing 
request for track 10 in the queue waiting. If another new request for track 15 then arrives while the 
request for track 25 is under process, then the arm will next go to track 15 instead of track 10. With a 
heavily loaded disk, it is observed that the arm will tend to stay in the middle of the disk most of the 
time, so requests at either extreme will have to wait indefnitely until a statistical fuctuation in the 
load causes there to be no requests near the middle. Thus, all requests that are far from the middle 
may suffer from starvation and receive poor service (not being attended). So the goals of minimal 
response time and fairness are in confict, though overall throughput of the disk increases. This kind 
of starvation is not as bad as the underlying problem, in which it is very likely that the main memory 
allocation policy itself will cause thrashing. 

However, SSTF always has the advantage of minimizing the total seek latency and saturating 
at the highest load of any policy. On the negative side, it tends to have a larger wait-time variance. 
Since this policy allows the arm to move in two directions at the time of selecting an item to service, 
a random tie-breaking algorithm may then be used to resolve cases of equal distances. In addition, 
SSTF and various other scan policies can be implemented more effectively if the request queues are 
maintained in sorted order by disk track number. 

6.17.6 SCAN 

In SSTF scheduling, the least movement of the arm in both directions for the purpose of selecting 
the right item is one of the reasons for starvation problem and can result in increasing seek time. 
Scan scheduling has been introduced to alleviate these problems of SSTF. In this method, the disk 
heads are required to move in one direction only, starting from one end of the disk (platter) and 
moving towards the other end, servicing I/O operations en route on each track or cylinder before 
moving on to the next one. This is called a scan. When the disk heads reach the last track in that 
direction (other end of the platter), the service direction of the head movement is reversed and the 
scan proceeds in the opposite direction (reverse scan) to process all existing requests in order, 



Device Management 329  

 
 
 
 
 
 
 
 

    

 
 
 

 FIGURE 6.7 A representative sample example showing the implementation of disk–arm scheduling using 
SCAN scheduling algorithm in magnetic disk. 

including new ones that have arrived. In this way, the head continuously scans back and forth across 
the full width of the disk. 

Let us now explain the SCAN scheduling technique with our example queue of the previous two 
sections. Before applying SCAN, we should know the direction of the head movement as well as the 
last position of the read/write head. Let us assume that the head will be moving from left to right and 
the initial position of the head is on track 20. After servicing a request for track 20, it will service a 
request for track 30, then track 35, and so on, until it services the request for track 95. After that, it 
continues to move forward in the same direction until it reaches the last track in that direction (track 
number 99), even though there is no request to service. After reaching 99, the head movement will 
then be reversed, and on its way, it will service requests for track 15, then track 10, and then track 5. 
Figure 6.7 shows the sequence of operation using the SCAN algorithm. The total seek time here is: 

10t + 5t +10t + 10t + 30t + 10t + 4t + 84t + 5t + 5t = 173t 

Time 4t indicates the time taken to move the head from track 95 (last request) to the last track (track 
number 99). As the head moves from left to right, servicing the requests on its path, new requests may 
arrive for tracks both ahead and behind the head. The newly arrived requests that are ahead of the 
current position of the head will be processed as usual as the head reaches the track of new requests 
during its forward journey. The newly arrived requests that are behind the head will be processed 
during the reverse journey of the head along with the pending older requests en route in order lying 
in the queue. These newly arrived requests may be processed before existing older ones, depending 
on the track position that the new items have requested. The older requests in this situation may have 
to wait longer than the newly arrived ones, leading to an increase in their response times. 

It is to be noted that the SCAN policy is biased against the area most recently traversed. Thus, it 
does not exploit locality as an SSTF or even LIFO attribute. It is also interesting to observe that the 
SCAN policy favors those jobs whose requests are for tracks nearest both innermost and outermost 
tracks and equally inclined to the latest-arriving jobs. The frst issue can be avoided by a circular 
SCAN, or C-SCAN, policy, while the second issue can be addressed by the N-step-SCAN policy. 

6.17.7 LOOK OR ELEVATOR ALGORITHM 

This algorithm is a slight variant of the existing SCAN algorithm. Here, the disk head keeps mov-
ing in the same direction until there are no more outstanding requests in the current direction. 
In practice, it appears more sensible, since the head only goes as far as the fnal request in each 
direction. The disk head at this point switches directions (instead of moving forward until the last 



 

 

 
 

  
 
 

    

    

 

 
 
 

 

330 Operating Systems 

FIGURE 6.8 A representative sample example showing the implementation of disk–arm scheduling using 
elevator scheduling algorithm in magnetic disk. 

track of the disk in that direction, as with SCAN) and then starts traversing in the reverse direc-
tion until the last request in this direction is met. This algorithm is known both in the disk world 
and the elevator world as the elevator algorithm. Often this algorithm is also called the LOOK 
algorithm, since it looks for a request before continuing to move in a given direction. The working 
of this algorithm requires the associated software to maintain 1 bit: the current direction bit, UP 
or DOWN. When a request completes, the disk or elevator driver checks the bit. If it is UP, the arm 
or cabin is moved to the next higher pending request, if any. If no request in the same direction is 
pending at higher position, the direction bit is reversed, and it is set DOWN; the movement of the 
head or cabin starts to move in the reverse direction to the next lower requested position, if any. 

Figure 6.8 shows the sequence of operation of the elevator algorithm with the same example 
queue of the previous two sections The total seek time here is: 

10t + 5t +10t + 10t + 30t + 10t + 80t + 5t + 5t = 165t 

6.17.8 CIRCULAR SCAN OR C-SCAN 

This scheduling policy performs a scan as in SCAN scheduling that again restricts scanning to one 
direction only. In fact, it is a variant of SCAN designed to produce a more uniform wait time. As 
with SCAN, the read/write head moves from one end to the other, servicing requests en route in 
order. Once it reaches the other end in one direction, it immediately jumps, returning to the begin-
ning of the opposite end without servicing any request on the return trip, and the scan begins once 
again and the head starts moving again to the other end. 

Figure 6.9 shows CSCAN scheduling for our representative example queue. The total seek time 
in this case is: 

10t + 5t +10t + 10t + 30t + 10t + 4t + 100t + 5t + 5t + 5t = 194t 

C-SCAN reduces the maximum delay experienced by new requests. With SCAN, if the expected 
time for a scan from the inner track to the outer track is T, then the expected service interval for 
tracks at the periphery is 2T. With C-SCAN, this interval is on the order of T + S , where S ismax max 

the maximum seek time. 

6.17.9 C-LOOK 

Similar to LOOK, which is a variant of SCAN algorithm, the C-LOOK algorithm is a variant of C-SCAN 
in the same fashion. Here, the disk head also keeps moving in the same direction until there are no 
more outstanding requests in the current direction. Once it reaches the last request in one direction, it 



Device Management 331  

 

 
 
 
 
 
 

 

 

  

  

 FIGURE 6.9 A representative sample example showing the implementation of disk–arm scheduling using 
Circular Scan or C-SCAN scheduling algorithm in magnetic disk. 

immediately switches its direction and returns to the frst-positioned request at the opposite end without 
servicing any request on the return trip, and the scan once again begins moving towards the other end. 

In practical situations, it is observed that one or a few processes sometimes have high access rates 
to one specifc track, thereby almost monopolizing the entire device by repeated requests to that track. 
High-density multi-platter disks, in particular, are likely to be very inclined to this type of functioning 
than their counterpart lower-density disks and/or disks with only one or two surfaces. To alleviate the 
problem of head movement remaining almost fxed on a specifc track while responding to successive 
requests, the disk request queue can be segmented such that only one such segment is permitted to be 
processed entirely at a time. The N-step-SCAN and FSCAN policies use this approach. 

6.17.10 N-STEP-SCAN 

The N-step-SCAN policy usually segments the disk request-queue into sub-queues, each of length 
N. Sub-queues are processed one at a time using the SCAN algorithm. While a queue is being 
processed, new requests may arrive, and those must be added to some other queue. If fewer than 
N requests are available at the end of a scan, then all of them are processed with the next scan. For 
large values of N, the performance of N-step-SCAN tends to approach that of SCAN. 

6.17.11 FSCAN 

This policy is similar to N-step-SCAN but uses only two sub-queues. All of the requests already 
arrived are in one of the queues. The other queue remains empty. The processing of the flled-queue 
begins using the SCAN algorithm, and during the processing of this flled-queue, all new requests 
that arrive are put into the other queue. This queue will be serviced only after the completion of the 
queue under process. In this way, service of the new requests is deferred until all of the old requests 
are processed, thereby attempting to produce uniform wait times for all the requests on average. 

6.17.12 DEADLINE SCHEDULING 

The strategy and implementation mechanism of this approach are discussed in detail in “Device 
Management in Linux”. 

6.17.13 ANTICIPATORY SCHEDULING 

The strategy used in this approach is a further extension of the existing deadline scheduling 
method to negotiate the problems arising from the presence of synchronous I/O and has been 



 

 

 
 
 

 
 

  

 

 

 

332 Operating Systems 

effciently implemented in advanced version of Linux (Linux 2.6). Its details can be seen in “Device 
Management in Linux”. 

6.18 RAID 

Over a couple of decades, the speed of disk storage devices by far exhibited the smallest improvement 
when compared to that of processors and main memory due to continuous advances in electronic 
technology. Yet there has been a spectacular improvement in the storage capacity of these devices. 
However, magnetic disks inherently have several drawbacks. The most important of them are: 

• They have relatively slow data-transfer rates. 
• Their electromechanical construction is such that they are prone to both transient and 

catastrophic failures. 

Computer users thus constantly clamor for disks that can provide larger capacity, faster access to 
data, high data-transfer rates, and of course, higher reliability. But those are generally expensive. 
Alternatively, it is possible to arrange a number of relatively low-cost devices in an array in which 
each one can act independently and also work in parallel with others to realize a considerable high 
performance at a reasonable cost. With such an arrangement of multiple disks, separate I/O requests 
can also be handled in parallel, as long as the data are located on separate disks. On the other hand, 
a single I/O request can be executed in parallel if the block of data to be accessed is distributed 
across multiple disks. Based on this idea, a storage system was proposed using small relatively inex-
pensive multiple disks (alternative to a single large one), called a redundant array of inexpensive 
disks (RAID), which offered a signifcant improvement in disk performance and also in reliability. 
Today, RAID technology is more appropriately called a redundant array of independent disks, 
adopting the term independent in place of inexpensive as accepted in the industry. 

The presence of multiple disks using a RAID arrangement in the confguration opens a wide vari-
ety of ways to organize data, and redundancy can also be included to improve reliability. However, 
it raises diffculties in developing schemes for multiple-disk database design that can be equally 
usable on a number of different hardware platforms and operating systems. Fortunately, the indus-
try has agreed on a standardized scheme to overcome this diffculty using RAID, which comprises 
seven universally accepted levels from zero through six, besides a few additional levels that have 
been proposed by some researchers. These levels do not indicate any hierarchical relationship; they 
rather designate different architectures in design that exhibit the following common characteristics: 

• RAID consists of a set of physical disk drives, but to the operating system, it is recognized 
as a single logical disk drive. 

• Data are distributed in different fashions across multiple physical disk drives present in 
the array. 

• Redundant disk capacity is used to store parity information, which enables recovery of 
data at the time of any transient or catastrophic failure of a disk. 

Different RAID levels differ essentially in the details of the second and third characteristics as men-
tioned above. But, only the third characteristic, however, is not supported by RAID 0 and RAID 1. 

The RAID arrangement distributes the data involved in an I/O operation across several disks and 
performs the needed I/O operations on these disks in parallel. This feature can consequently provide 
fast access or a higher data transfer rate, but it depends on the arrangement of disks employed. The 
performance of any of the RAID levels critically depends on the request patterns of the host system 
and the layout of the data. High reliability is achieved by recording redundant information; how-
ever, the redundancy employed in a RAID arrangement is different by nature from that employed 
in conventional disks. A traditional disk uses a cyclic redundancy checksum (CRC) written at the 



Device Management 333  

 
 

 

 
 
 

 
 
 
 
 
 
 
 
 

  

end of each record for the sake of providing reliability, whereas redundancy techniques in a RAID 
employ extra disks to store redundant information so the original data can be recovered even if some 
disks fail. Recording of and access to redundant information does not consume any extra I/O time 
because both data and redundant information are recorded/accessed in parallel. 

Disk striping: RAID technology uses a special technique known as disk striping that provides 
a way to achieve high data transfer rates during an I/O operation. A disk strip is a unit of data on 
a disk, which can be a disk block, a sector, or even an entire disk track. Identically positioned disk 
strips on different disks form a disk stripe. A fle may be allocated an integral number of disk 
stripes. The data located in the strips of the same stripe can be read/written simultaneously because 
they reside on different disks. If the array contains n disks, the data transfer rate is expected, at least 
theoretically, to be n times faster than that of a single disk. However, the real data transfer rates as 
obtained by this arrangement may not be exactly equal to n times due to the presence of several 
factors that prevent parallelism of I/O operations from occurring smoothly. In fact, the implemen-
tations of disk striping arrangements and the redundancy techniques employed differ signifcantly 
from one level to another in the proposed various RAID organizations. Two main important metrics 
that determine the performance differences among these levels are: 

• Data transfer capacity (rate), or ability to move data, and 
• I/O request rate, or ability to satisfy I/O requests. 

There are all together seven different RAID schemes, RAID 0 through RAID 6, each with its 
own disk arrangements and specifc data organizations along with allied redundancy techniques. . 
However, RAID level 0 +1, and RAID level 1 + 0 are actually hybrid organizations based on RAID 
0 and RAID 1 levels, and RAID level 5 is the most popular RAID organization. 

A comparison of the seven different levels of RAID organization on vital metrics in tabular form 
and also more details of this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

6.19 DISK CACHE 

The principle used in memory cache can be applied equally to disk memory to effectively improve 
disk access time that, in turn, enhance the performance of the entire system. A disk cache is essentially 
a buffer (dedicated area) in relatively fast main memory for specifed disk sectors. This cache usually 
maintains a copy of some of the most recently used sectors of the disk containing fle data and meta-
data. When an I/O request is initiated on a fle, the fle system checks whether the requested disk block 
exists in the disk cache (main memory). If so, the request results in a cache hit and is responded to via 
the disk cache, thereby effectively eliminating the delays and overhead associated with disk access, 
and a quick response via memory to the requesting process. Alternatively, if the requested block is not 
in the disk cache, a disk-cache miss occurs, and an I/O operation then involves in two copy operations, 
one between the requested disk block in disk and the disk cache, and the other between the disk cache 
and the target memory location in the address space of the process that initiated the I/O operation. As a 
result, the entire I/O operation becomes expensive to complete. But, because of the principle of locality 
of reference, it is expected that when a block of data is fetched into the disk cache to meet any single 
I/O request, it is highly probable that the same block may be referenced in the near future. 

6.19.1 DESIGN CONSIDERATIONS 

Several design issues in disk cache need to be addressed that infuence its performance along with 
several other aspects that may affect the performance of the entire system. Besides other targets, 
the ultimate objective is to obtain a high hit ratio by committing only a limited amount of memory 
to the disk cache. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

334 Operating Systems 

When an I/O request has a hit in the disk cache, the block of data in the disk cache (within main 
memory) is either transferred to the target memory location assigned by the user process or using 
a shared memory approach in which a pointer is passed to the appropriate slot in the disk cache, 
thereby avoiding a memory-to-memory transfer and also allowing other processes to enjoy shared 
accesses over the entire disk cache. 

The next design issue is the replacement strategy, similar to the memory cache, which is 
required when a new block is brought into the disk cache to satisfy an I/O request but there is 
no room to accommodate it; one of the existing blocks must be replaced. Out of many popular 
algorithms, the most commonly used algorithm is least recently used (LRU). In fact, the cache 
can be logically thought of as consisting of a stack of blocks, with the most recently referenced 
block on the top of the stack. When a block in the cache is referenced, it is taken from its existing 
position in the stack and put on the top of the stack. When a new block is fetched from secondary 
memory, the block at the bottom of the stack is removed to make room for the new one, and the 
incoming new block is pushed on the top of the stack. In fact, it is not necessary to actually move 
these blocks around in main memory; only a stack of pointers could be associated with the disk 
cache to perform these operations. The replacement strategy, however, can employ another useful 
algorithm known as least frequently used (LFU), which selects to replace the lowest–referenced 
block in the set. 

Disk caching, in principle, is ultimately involved in both reads and writes. The actual physical 
replacement of an entry from the disk cache can take place either on demand or preplanned. In the 
former case, a block is replaced and written to disk only when the slot (room) is needed, but if the 
selected block is only read, it is not modifed; hence, it is simply replaced, and it is not necessary to 
write it back to the disk. For preplanned, the disk block may be continually modifed by the running 
processes and remain in the disk cache (if slot is not required), and instant writing to disk for imme-
diate upgrade is temporarily postponed to perform later at a convenient time. This mode is related 
to write-back blocks, similar to memory cache, in which a number of slots are released at a time. 
This mode of writing is known as delayed write in UNIX. The main drawback of this approach is 
due to volatile main memory that may create potential corruption of the fle system, since unwritten 
buffers might be in memory that may be lost due to sudden power failure or system crashes for any 
other reason. 

Disk caches, unlike memory caches, are often implemented entirely in software, possibly with 
indirect assistance from memory management hardware when disk blocks are intelligently mapped 
in memory. This concept and basic principle of operation of disk cache, more specifcally a unifed 
disk cache (as explained later) to handle I/O operations, is implemented in UNIX as a buffer cache, 
which is discussed in detail later (“Device Management in UNIX”). 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

6.20 PAGE CACHE 

Like disk cache, the operating system along with disk cache also implicitly or explicitly maintains 
another cache, called the page cache. It usually contains all code and data pages that exist in mem-
ory, including any memory-mapped fles. When a page fault occurs, the required new page is loaded 
into this cache. The page size is typically a few disk blocks, so this operation involves reading a few 
blocks from a program fle or a swap fle. This is essentially a fle I/O. When disk blocks are fetched 
from disks, they are frst placed into the disk cache and then copied into the page cache. When a 
modifed page is removed from memory, it is frst copied into the disk cache, and from there, it is 
written to the disk according to the convenience of the operating system sometime in the future. 
But the serious drawbacks of this approach that adversely affect the performance of the system are: 
double copying of data in pages and two copies of the pages may exist in memory for sometime 
until either the copy in the disk cache or the copy in the page cache is overwritten. Moreover, the 
amount of memory to be allocated for each such cache cannot be predicted beforehand but should 

http://www.routledge.com/9781032467238


Device Management 335  

 

 

 
 
 
 

 

 

be judiciously decided to avoid memory wastage. To alleviate all these problems, the concept of a 
unifed data cache has been introduced. 

6.21 UNIFIED DISK CACHE 

Both disk cache and page cache in the system can be merged, giving rise to the concept of a unifed 
disk cache for the use of both paging and disk I/O. However, all the strategies to individually handle 
page cache and disk cache (as already discussed) are implemented together in a unifed disk cache 
that allows the size of individual caches to vary at will, of course within the limit of committed 
memory to suit each one’s various types of demands. The fle system converts the address issued 
by any I/O operation into a corresponding page number and an offset within the page. This page 
number is then passed to the unifed cache so that it can load the respective page from the disk in a 
manner similar to page cache. This unifed disk cache approach was implemented in Sun OS 4.0. 
Later, it was employed in UNIX SVR 4 (System V, release 4). LINUX implementations from ver-
sion 2.4 onward also exploit the unifed disk cache approach. 

• Merits and Drawbacks 

The disk caching technique exhibits a lot of advantages as well as serious drawbacks. Some of 
the potential advantages are: 

• Elimination of a number of time-consuming repeated disk accesses. 
• Improved effective disk-access time. 
• Improved response time to applications. 
• Reduced server and network loading with client disk caching in distributed systems run-

ning over networks of computers (not computer networks). 

The main disadvantage of disk caching is due to its use of a delayed write policy, which may result 
in potential corruption of the fle system if the power fails or system crashes occur due to other 
reasons. Moreover, it is sometimes critical to decide on the amount of memory to be committed to 
disk caches to realize satisfactory performance and set other parameters to implement it favorably. 
Failing this, it may result in poor performance in systems using disk caches in comparison to that of 
non-cached systems in certain situations. 

Considering all these aspects, the use of the disk caching technique is still relatively advanta-
geous, and it is also used by Berkley implementers with variants of UNIX. It has been claimed 
that elimination of 85% of disk accesses can be achieved when disk caching technique is used, in 
comparison to that of in same systems with no buffer cache. 

6.22 CASE STUDY: DEVICE MANAGEMENT IN UNIX 

UNIX treats each individual I/O device; disk drives, tape drives, printers, terminals, and commu-
nication lines, as a special fle. All types of I/O operations related to a device are carried out by the 
respective special fle associated with that device. These fles are managed by the fle system and 
are used in the same manner as user data fles. This arrangement helps to provide a clean, uniform 
interface to both processes and users. Thus, the fle subsystem that manages fles located on second-
ary devices also serves as a process interface to devices. Figure 6.10 shows a scheme of the logical 
structure of I/O facility in UNIX. 

All types of UNIX fles are only byte-stream sequential fles without any structure. These fles, 
when involved in any I/O operation, follow one of two modes, buffered or unbuffered. Buffered 
I/O uses system buffers. Unbuffered I/O typically includes the DMA facility (DMA also uses a 
buffer but of its own at the level of device controller, not provided by the operating system), which 



 

 

 
  

 

336 Operating Systems 

FIGURE 6.10 A formal design concept in logical structuring of I/O facility in UNIX. 

supports I/O to take place directly between the I/O module and the memory area assigned to the 
I/O process. 

Buffered I/O 

The buffering technique is used at the operating-system level in I/O operations on both block- 
and character-oriented devices. Although different forms of buffering schemes exist, 
UNIX uses the I/O buffering technique in its own way using two types of buffers: system 
buffer caches and character queues, in order to improve the performance of each indi-
vidual process and thereby enhance the effciency of the operating system as a whole. 

• Buffer Cache: UNIX implements a disk cache approach; essentially a unifed disk cache 
to handle disk I/O operations, called here a buffer cache managed by the kernel. It is a 
dedicated part of main memory blocks used mainly to store recently used disk blocks. The 
size of the entire buffer cache is typically determined during system confguration, but the 
size of each buffer in buffer cache is the same as that of a disk block (sector). A buffer is 
allocated to a disk block that can be shared by all other processes, thereby enabling differ-
ent processes to avoid repeated disk accesses for the same data. Similarly, many accesses 
made by a single process for some data more than once need not access the disk regularly. 
Since both the buffer cache and the user process I/O area are in main memory, the transfer 
of data between the buffer cache and the user process is simply a memory-to-memory copy, 
and moreover, it is always carried out using DMA, which uses only bus cycles, leaving the 
processor free to do other useful work. Each buffer in the buffer cache is either locked for 



Device Management 337  

 

 

use by other process(es) or free and available for allocation. Buffer cache management 
maintains three lists, Free list, Driver I/O queue, and Device list, to manage these buffers. 

When a large volume of data is processed, to minimize the disk-access delay, pre-fetching of 
data block on a per-process basis is carried out by initiating an I/O for the next disk block of the 
fle. Since records are usually ordered in blocks, an entire disk block I/O operation (read/write) is 
relatively faster even when only a specifc byte in it is required. 

• Character Queue: Block-oriented devices, such as tape and disk, are conducive to the 
buffer cache approach. Character-oriented devices, such as printers and terminals, can also 
be made suitable by a different form of buffering. A character queue is either written by the 
process and read by the device or written by the I/O device and read by the process. In both 
cases, the producer–consumer model explained in Chapter 4 is used. Since the character 
queues may only be read once, hence, as each character in this queue while is read and 
after its use, it is effectively destroyed. This is in contrast to the buffer cache, which can 
be read multiple times. 

Unbuffered I/O 

Unbuffered I/O is simply DMA that operates between devices (I/O module) and the reserved 
memory area assigned to a process. This is probably the fastest mode of I/O operation. 
However, the process executing unbuffered I/O is locked in memory and cannot be swapped 
out. This commitment may sometimes adversely affect the overall performance of the sys-
tem, since a part of the memory is always tied up that limits the advantages of swapping. 

Conclusion 

Disk drives are considered the most important devices for all contemporary modern operat-
ing systems, including UNIX, due to their immense potential to provide reasonably high 
throughput. I/O involving these devices may be unbuffered or buffered via buffer cache. 
Tape drives are operationally different but functionally similar to disks; hence, they use 
similar I/O schemes. In large UNIX installations, more than 100 disk blocks may be 
buffered. 

Terminal when involved in I/O is, by virtue, relatively quite slow in operational speed at the 
time of exchange of characters; character–queue approach is thus found to be most suit-
able for this device. Communication lines similarly require serial processing of bytes of 
data for input or output and hence can best be managed by the use of character queues. 
Likewise, I/O involving printers will generally depend on the speed of the printer. Slow 
printers generally use character queue, while a fast printer might employ unbuffered I/O; 
since the particular bytes of data proceeding to a printer are never reused, using a buffer 
cache for this device would mean useless overhead. 

More details on this topic, including the general organization of the buffer cache and its opera-
tion, with a fgure, are given on the Support Material at www.routledge.com/9781032467238. 

6.23 CASE STUDY: DEVICE MANAGEMENT IN LINUX 

The organization of Linux IOCS (kernel facility) bears a close resemblance to that of other UNIX 
implementations, including SVR4. Thus, all types of block, character, and network I/O devices are 
supported by Linux and are similarly treated like fles. The Linux kernel, as in UNIX, associates a 
special fle with each individual device driver. A buffer cache is here used to speedup fle process-
ing. However, I/O kernel specifcs in many Linux versions are different from that of UNIX. We 

http://www.routledge.com/9781032467238


 

 

 

 

 

 

 

 

338 Operating Systems 

mention some of them here before looking at several I/O features that contemporary Linux usually 
provides. 

• Linux kernel modules are essentially dynamically loadable. So a device driver has to be 
registered with the kernel when installed and de-registered at the time of its removal. 

• For devices, the vnode (similar to inode in UNIX) of the virtual fle system (VFS) contains 
pointers to device-specifc functions for the fle operation, such as; open, read, write, and 
close. 

• Similar to UNIX, each buffer in the disk cache also has a buffer header, but it is allocated 
in a slab offered by the slab allocator (already discussed). 

• Modifed buffers in the disk cache are written out when the cache is full, when a buffer is 
in the cache for a long time, or when a fle directs the fle system to write out its buffers in 
the interest of synchronization to yield better system performance. 

Disk Scheduling 

In Linux 2.4, the default disk scheduler, known as the Linux Elevator, is basically a variant of the 
LOOK algorithm discussed in Section 6.17.7. Linux 2.6, however, used innovative approaches in 
this area, replacing the one in its older version, 2.4, to further enhance I/O scheduling performance. 
Thus, the Elevator algorithm used in Linux 2.4 was augmented by two additional advanced algo-
rithms, deadline I/O scheduling and the anticipatory I/O scheduler. 

1. The Elevator Scheduler (Linux 2.4): The scheduler maintains a single queue sorted on 
the block number of all pending I/O requests (both read and write). As the disk requests 
are serviced, the drive as usual keeps moving in a single direction, servicing each request 
encountered on its way until there are no more outstanding requests in the current direction. 
To improve disk throughput, this general strategy is refned: it combines the new requests 
that arrive with the existing queue of pending requests whenever possible and uses four 
types of specifc actions (actions to be taken in order, as explained on the Support Material 
at www.routledge.com/9781032467238) while attempting to carry out this merging. 

In fact, Linux 2.6 provides four I/O schedulers. The system administrator can select the one that 
best matches the nature of the workload in a specifc installation. However, the No-Op scheduler is 
simply an FCFS scheduler. The other three schedulers are the following. 

2. Deadline Scheduler (Linux 2.6): The two critical problems as faced by the elevator sched-
uler are: requests from distant blocks may experience continuous delay, thereby resulting 
in starvation due to the arrival of a continuous stream of new requests in close vicinity 
to the currently servicing request. The second problem has the potential to be even more 
acute and is related to the operational differences between read and write requests. While 
a read operation takes less time, if the data do not exist in the buffer cache, a disk access 
is required, and consequently the process can get blocked until the read operation is com-
pleted. But the process issuing a write request does not get blocked, since a write request 
actually copies data into a buffer (memory-to-memory copy), and the actual write opera-
tion takes place sometime later as time permits. If such a stream of write requests (e.g. to 
place a large fle on the disk) arrives, it then blocks a read request for a considerable time 
and thereby blocks a process. Therefore, to provide better response times to processes, the 
IOCS adopts a design strategy allowing read operations to perform at a higher priority than 
write operations. 

The deadline scheduler also uses an elevator (LOOK) scheduling approach as its basis and incor-
porates a feature to avoid large delays (frst problem) in order to alleviate both these problems. 

http://www.routledge.com/9781032467238


Device Management 339  

 

 

It employs three queues. The frst one is, as before, the elevator queue containing the incoming 
requests sorted by track number, and the scheduler normally selects a request based on the current 
position of the disk heads. In addition, the same request is placed either at the tail of a read FIFO 
queue (second queue) for a read request or a write FIFO queue (third queue) for a write request. 
Thus, the read and write queues separately maintain lists of requests in the sequence in which these 
requests arrived. Since elevator scheduling faces an inherent problem when a process performs a 
large number of write operations in one part of the disk, I/O operations in other parts of the disk 
would be constantly getting delayed. Moreover, if a delayed operation is a read, it would cause fur-
ther substantial delays in the requesting process. To prevent such exorbitant delays, the scheduler 
assigns a deadline (expiration time) with a default value of 0.5 seconds to a read request (higher 
priority) and a deadline of 5 seconds to a write request. Each deadline for a read and write request 
is attached to each request in the respective FIFO queue. 

Normally, the scheduler dispatches requests from the sorted queue. When the task in relation to 
a request is completed, it is removed from the head of the sorted queue and also from the respec-
tive FIFO queue. However, when the item at the head of one of the FIFO queues becomes older and 
its deadline expires, then the scheduler next dispatches this request from that FIFO queue, plus a 
couple of the next few requests from this queue, out of sequence before resuming normal schedul-
ing. As each request is dispatched, it is also removed from the sorted queue. In this way, the deadline 
scheduler scheme resolves both the starvation problem and the read versus write problem. 

3. Completely Fair Queuing Scheduler (Linux 2.6): This scheduler maintains a separate 
queue of I/O requests for each process, and performs round robin between these queues. 
The ultimate objective of this approach is to offer a fair share that consequently avoids 
large delays for processes (see “UNIX Fair Share Scheduling”, Chapter 4). 

4. Anticipatory Scheduler (Linux 2.6): Both the original elevator scheduler and the deadline 
scheduler, like the other disk scheduling algorithms already discussed, keep dispatching a 
new request that appears close to the currently executing request as soon as the currently 
executing request is completed so as to obtain a better disk performance. Typically, a pro-
cess that performs synchronous read requests gets blocked (sleep) until the read operation 
is completed and the data are available. Then it wakes up. This process usually issues the 
next I/O operation immediately after waking up. When elevator or deadline scheduling is 
used, the small delay that happens between receiving the data for the last read and issuing 
the next read would cause the disk heads to probably pass over the track that contains the 
data involved in the next read operation. This may cause the scheduler to turn elsewhere 
for a pending request and dispatch that request. By virtue of the principle of locality, it is 
probable that successive reads from the same process will be to disk blocks that are close 
one another. As a result, the next read operation of the process could be serviced only in 
the next scan of the disk, causing more delays in the process and more movement of the 
disk heads. This problem can, however, be avoided if the scheduler were to delay a short 
period of time after satisfying a read request to see if a new nearby read request is made, 
so that this next read request could be immediately serviced, and in this way, the overall 
performance of the system could be enhanced. This strategy, as proposed, is exactly fol-
lowed in anticipatory schedulers and implemented in Linux 2.6. 

The anticipatory scheduler uses deadline scheduling as its backbone but also adds a feature to 
handle synchronous I/O. When a read request is dispatched, the anticipatory scheduler causes the 
scheduling system to delay for up to 6 milliseconds depending on the confguration. During this 
small delay, there is a high chance that the application that issued the last read request will issue 
another read request to almost the same region of the disk. This next read operation can then be 
serviced immediately in the same scan of the disk. If no such read request occurs, the scheduler 
resumes its normal operation using the prescribed deadline scheduling algorithm. 



 

 

 

  
 
 

 
 
 

 
 
 
 
 
 
 

 

 

340 Operating Systems 

Experimental observations on reading numerous types of large fles while carrying out a long 
streaming write in the background and vice-versa reveal the fact that the anticipatory scheduler 
exhibits dramatic performance improvement over the others. 

Linux Page Cache 

In earlier versions of Linux, up to version 2.2, the kernel used to maintain a page cache 
(already discussed in the last subsection) for all reads and writes of regular fles from 
the fle system as well as for virtual memory pages and a separate buffer cache for block 
I/O. Releases of Linux from version 2.4 onward started to use a single unifed page cache 
(already discussed in the last subsection) replacing the separate existence of two different 
caches, the disk cache and page cache, to handle all possible traffc between the disk and 
main memory. 

6.24 CASE STUDY: DEVICE (I/O) MANAGEMENT IN WINDOWS 

The Windows I/O manager is responsible for all I/O and provides a uniform interface to all types of 
drivers. The I/O manager essentially consists of the NTFS and the device driver for the disks. All 
information read from or written to the device is managed as a stream of bytes called a virtual fle. 
The I/O manager consists of basically four modules: 

• Cache manager: Windows uses a centralized cache manager to provide a caching service 
in main memory to all fle systems of the I/O manager, the virtual memory manager, and 
network components. The part of the fle held in a cache block (256 Kbytes) is called a 
view, and a fle is considered a sequence of such views. Each view is described by a vir-
tual address control block (VACB), and an array of such VACBs is set up by the cache 
manager when the fle is opened. This VACB actually helps quickly determine whether 
a needed part of a fle is in the cache at any instant, and also readily tells whether a view 
is currently in use. 

When an I/O request is issued, the I/O manager passes it to the cache manager, which consults 
the VACB array for the fle to ascertain whether the request is already a part of some view in 
the cache. If so, it readily serves the request and takes appropriate actions on respective VACB. 
Otherwise, it allocates a cache block and maps the view in the cache block. If the request is a 
read one, it copies the required data in the caller’s address space, maybe with the help of the VM 
manager. In addition, if a page fault occurs during the copy operation, the VM manager invokes 
the disk driver through NTFS to read the required page into the memory, and that is performed in 
a non-cached manner. 

The buffering of a fle is carried out by the cache manager, which analyzes the requests (read/ 
write), and if it observes that the previous few requests (read) indicate sequential accesses to a fle, 
it then starts prefetching subsequent data blocks. In the case of fle updates (writing), the data to be 
written into a fle are refected in the view of the fle held in the cache manager, which exploits two 
typical services to improve overall performance: 

• Lazy write: The system performs updates in the cache only, not on the disk. Later, when 
demand on the processor is low, the cache manager periodically nudges the VM manager 
to write out the changed data to the disk fle. If a particular cache block is once again ref-
erenced and updated in the meantime, there is a substantial savings, since disk access is 
not required. 

• Lazy commit: This is for transaction processing and is very similar to the lazy write. 
Instead of immediately marking a transaction as successfully completed, the system 



Device Management 341  

 

 

  
 
 
 
 

  

        
 

 

 

 

caches the committed information and later writes it at its convenience to the fle system 
log by a background process. 

• File system drivers: The I/O manager treats a fle system driver as just another device 
driver and routes certain volumes of messages to the appropriate software driver (such as 
intermediate and device drivers) for that particular device adapter (controller) to imple-
ment the target fle system. 

• Network drivers or flter drivers: Windows uses network drivers to support its integrated 
networking capabilities and enable distributed applications to run. This driver can be inserted 
between a device driver and an intermediate driver, between an intermediate driver and a fle 
system driver, or between the fle system driver and the I/O manager API to perform any kind 
of function that might be desired. For example, a network redirector flter driver can intercept 
fle commands intended for remote fles and redirect them to remote fle servers. 

• Hardware device drivers: These drivers access the hardware registers (controller’s reg-
isters) of the peripheral devices through entry points provided in Windows Executive 
dynamic link libraries (.dll). A set of these library routines exist for every platform that 
Windows supports; because the routine names are the same for all platforms, the source 
code of Windows device drivers is portable over different types of processor. 

Windows supports both synchronous and asynchronous I/O operation. With synchronous I/O, 
the application is blocked (sleep) until the I/O operation completes. In the case of asynchronous 
I/O, an application initiates an I/O operation and then can continue with other processing while the 
I/O operation is in progress in parallel. 

Windows supports two types of RAID confgurations: 

• Hardware RAID, in which separate physical disks are combined into one or more logical 
disks by the disk controller or disk storage cabinet hardware. In hardware RAID, redun-
dant information is created and regenerated entirely by the controller interface. 

• Software RAID, in which noncontiguous disk space is combined into one or more logical 
partitions by the fault-tolerant software disk driver, FTDISK. The software RAID facility 
is available on Windows servers, which implement RAID functionality as part of the oper-
ating system, and can be used with any set of multiple disks. It implements RAID 1 and 
RAID 5. In the case of RAID 1 (disk mirroring), the two disks containing the original and 
mirror partitions may be on the same disk controller or on different disk controllers. When 
they are on different disk controllers, it is often referred to as disk duplexing. 

SUMMARY 

Device management comprising I/O subsystems controls all I/O devices that implement a generic 
device interface for the rest of the operating system to access the I/O devices with relative ease. It 
allocates devices to processes, schedules I/O requests on the devices, and deallocates the devices 
when they are not needed. It also maintains data caches and page caches to hold data from block 
as well as character devices. It, along with numerous device drivers, occupies a major part of the 
operating system. I/O devices are connected to the host system through I/O controllers, each of 
which is interfaced with the operating system by a respective device driver. This driver converts 
the complex hardware interface to a relatively simple software interface for the I/O subsystem to 
easily use. A representative UNIX device driver is presented as a case study. Different types of I/O 
operation, programmed I/O, interrupt-driven I/O, DMA, I/O channels, and fnally I/O processors 
are described. Clocks, also called timers, are discussed with clock software that generally takes the 
form of a device driver, even though a clock is neither a block device, like a disk, nor a character 
device, like a terminal or printer. This chapter also presents in brief the magnetic disk with its 
physical characteristics and different components’ organization, along with the major parameters 



 

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

342 Operating Systems 

that are involved in disk operation. Disk management in relation to formatting and subsequent data 
organization is described. I/O requests are handled by a disk scheduler, and different types of disk-
arm scheduling policies with illustrative examples, along with their merits and shortcomings, are 
described. RAID technology is discussed that uses many identical disks in parallel as an array and 
is viewed as single “logical disk” controlled by a single “logical controller”. RAID enhances disk 
performance and reliability to a large extent. Disk cache, along with its design considerations, as 
well as page cache, and fnally the combination of the two to form a unifed cache was described, 
with its merits and drawbacks. Finally, device management as implemented in UNIX, Linux, and 
Windows is described fgures in brief to illustrate how this management is actually realized in prac-
tice in representative commercial systems. 

EXERCISES 

1. The transfer rate between a CPU and its attached memory is higher by an order of magni-
tude than mechanical I/O transfer. How can this imbalance cause ineffciencies? 

2. Explain the architectures of device controllers with the help of a block diagram. What are 
the specifc functions that a device controller performs? 

3. What is meant by device-level I/O? Discuss the steps it follows while carrying out an I/O 
operation physically. 

4. Why is device management becoming more important as a constituent in the design of a 
contemporary operating system? State and explain the main functions that device manage-
ment must perform, mentioning its common targets. 

5. With an approximate structure of a device (unit) control block, explain how it is used by 
the operating system while managing devices. Discuss the functions that are performed by 
its main constituents. 

6. What are interrupts? When a device interrupts, is there always a context switch? 
7. What are device drivers? Explain with a diagram the general functions usually carried out 

by a device driver. What is meant by reconfgurable device drivers? Explain why modern 
operating systems use such device drivers. 

8. What is meant by “device independence”? What is the role played by device-independent 
software? What is its usefulness? What are the main functions that are typically common 
in most device-independent software? 

9. What is meant by buffering technique as used by an operating system? Should magnetic 
disk controllers include hardware buffers? Explain your answer. 

10. Why would you expect a performance gain using a double buffer instead of a single buffer 
for I/O? 

11. Using double buffering exploited by the operating system, explain the impact of buffering 
on the runtime of the process if the process is I/O-bound and requests characters at a much 
higher rate than the device can provide. What is the effect if the process is compute-bound 
and rarely requests characters from the device? 

12. In a certain computer system, the clock interrupt handler requires 2 msec. (including pro-
cess switching overhead) per clock tick. The clock runs at 60 Hz. What fraction of CPU is 
devoted to the clock? 

13. State the main physical characteristics of a magnetic disk. How are data normally orga-
nized in such a disk? 

14. Write down the procedures and steps followed in an I/O operation involving a magnetic 
disk when transferring information to and from the disk after the initiation of an I/O 
operation. 

15. What are the parameters that infuence the physical disk I/O operation? How are they 
involved in such an operation? Compute the total time required to transfer the information 



Device Management 343  

  

   
 

  

  

  

  

  

  

  

 
  

 
  
  

 

 

  

  

of a block of n words in a disk I/O operation when the disk has a capacity of N words per 
track and each track is rotating at the speed of r revolutions per second. Write down the 
assumptions made, if any. 

16. What is meant by interleaving? When and how is the interleaving on a disk carried out? 
What is the role of interleaving in the organization of data on a disk? How does interleav-
ing facilitate data access on a disk? 

17. If a disk controller writes the bytes it receives from the disk to memory as fast as it 
receives them, with no internal buffering, is interleaving conceivably useful? Discuss with 
reasons. 

18. Explain the notion of interleaving: how it works and how it at affects the logical-to-physical 
translation of disk addresses. Should the knowledge of interleaving be confned only to the 
related disk driver? Explain with reasons. 

19. A disk is double interleaved. It has eight sectors of 512 bytes per track and a rotation rate 
of 300 rpm. How long does it take to read all the sectors of a track in order, assuming that 
the arm is currently positioned correctly and ½ rotation is needed to get sector 0 under the 
head? Compute the data rate. Now carry out the problem with a non-interleaved disk with 
the same characteristics. Compare and contrast interleaving and non-interleaving in this 
regard. 

20. Calculate how much disk space (in sectors, tracks, and surfaces) will be required to store 
logical records each of 120 bytes in length blocked 10/physical record if the disk is fxed 
sector with 512 bytes/sector, 96 sectors per track, 110 tracks per surface, and 8 usable sur-
faces. The fle contains 4440 records in total. Do not consider any fle header record(s) or 
track indexes, and assume that records cannot span two sectors. 

21. Discuss the delay elements that are involved in a disk read or write operation. Out of those, 
which element would you consider the most dominant and why? 

22. What does disk scheduling mean? Why is it considered an important approach that requires 
the operating system to include it? 

23. What scheduling algorithm is used by contemporary Linux operating system? Discuss the 
strategy and principles of its operation. 

24. The head of a moving-head disk system with 200 tracks numbered 0 to 199 is currently 
serving a request at track 15 and has just fnished a request at track 10. The queue of pend-
ing requests is kept in the order 8, 24, 16, 75, 195, 37, 55, 75, 153, 3. What is the total head 
movement required to satisfy these requests for the following disk scheduling algorithms? 
a. FCFS, b. SSTF, c. SCAN, d. LOOK, e. C-SCAN, f. C-LOOK. 

25. Disk requests arrive to the disk driver for cylinders 10, 22, 20, 2, 45, 5, and 35, in that order. 
A seek takes 6 msec. per cylinder movement. How much seek time is needed for: a. FCFS, 
b. SSTF, c. SCAN, d. LOOK, e. C-SCAN, f. C-LOOK? 

26. Discuss the impact of disk scheduling algorithms on the effectiveness of I/O buffering. 
27. An input fle is processed using multiple buffers. Comment on the validity of the following 

statements: 
a. “Of all the disk scheduling algorithms, the FCFS strategy is likely to provide the best 

elapsed time performance for the program”. 
b. “Sector interleaving is useful only while reading the frst few records in the fle; it is not 

so useful while reading other records”. 
28. Defne RAID. How does RAID handle several inherent drawbacks of a disk accessed for 

data transfer? What are the common characteristics that are observed in all RAID levels? 
Compare and contrast the performance of the seven RAID levels with respect to their data 
transfer capacity. 

29. What are the implications of using a buffer cache? Describe implications of the UNIX buf-
fer cache for fle system reliability. UNIX supports a system call fush to require the kernel 



 

  

344 Operating Systems 

to write buffered output onto the disk. Do you suggest using fush to improve the reliability 
of your fles? 

30. State and explain the different types of RAID confguration used in Windows. 

SUGGESTED REFERENCES AND WEBSITES 

Chakraborty, P. Computer Organization and Architecture: Evolutionary Concepts, Principles, and Designs, 
Boca Raton, FL, CRC Press, 2020. 



DOI: 10.1201/9781003383055-7 345  

 
 

 
 
 

 

 
 
 
 

 
 
 
 
 
 

 

 
 

File Management 7 
Learning Objectives 

• To introduce the concept of permanently storing information in the form of fles. 
• To describe the generic fle system, a major part of the operating system that entirely 

handles all types of fles, including their naming, structuring, operations, and different 
types of accesses made on various kinds of fles. 

• To elucidate different types of fle services that a respective fle server provides. 
• To outline the fle control block while handling the fles. 
• To discuss the fle management system, including its requirements, design issues, design 

principles, and functions. 
• To explain the different types of fle organizations along with their individual related spe-

cifc accesses. 
• To defne the fle directory and describe its different types of structures. 
• To introduce the concept of fle sharing by way of forming a graph directory structure. 
• To defne records and blocking of the records that constitute the fle. 
• To discuss different issues and approaches to fle allocation and subsequent different meth-

ods employed to store fles in secondary devices. 
• To describe different techniques that manage free spaces in secondary storage. 
• To illustrate a physical representation of fle organization. 
• To explain the various methods in implementing fle system reliability. 
• To defne and describe the virtual fle system (VFS) and pipes. 
• To introduce and describe the log-structured fle system. 
• Case study: to describe individually and separately in brief the fle management systems 

implemented in UNIX, Linux, and Windows. 

7.1 INTRODUCTION 

All computer systems ultimately process information, and storing this information in main memory 
within a specifc process’s address space is only a temporary measure at best for the duration the 
process remains active; the information is automatically lost when the process terminates or the 
computer is turned off or crashes. Also, adequate memory space is not available for this purpose. In 
addition, information confned within a specifc process’s address space cannot be accessed by other 
processes intending to simultaneously share it (or a part of it). All these facts, along with many other 
issues, dictate that information to be stored must be made independent, sharable, and also on a long-
term basis. In other words, the essential requirement is that the storage space must be large enough 
to permanently store the bulk of information, must be independent of any specifc process, and must 
survive for a long time except in the event of catastrophe. All these requirements can be satisfed 
only if the information is stored on secondary devices, such as disk, tape, or any other external 
media using a specifc form of units called fles. Processes can then operate independently on these 
fles at will. Files produced in this way must be persistent and have a life outside of any individual 
application that uses them for input/output as well as irrespective of the state of the process that uses 
it. A fle will then exist permanently unless and until it is explicitly removed by its owner. 

The concept of a fle is a central theme in the vast majority of computer applications, except for 
real-time applications and some other specialized applications which seldom use fles. In general, 

https://doi.org/10.1201/9781003383055-7


 

 
 
 
 
 

 
 
 

 

 
 
 

 

 

346 Operating Systems 

applications use one or more fles to input information, process data, and fnally produce output virtu-
ally in the form of fles that are permanently saved for further future use. The ultimate objective of 
having fles in this manner is to enable the owner of the fle to access it, modify it, and save it and also 
to authorize them to protect the fle’s integrity. To implement the underlying objectives, a part of the 
operating system is solely entrusted with managing and controlling fles and their contents located 
on secondary storage. This part known, as the fle management system, is primarily concerned with 
structuring, naming, accessing, using, and protecting fles, along with other major topics related to fles. 

Files are usually stored on any type of physical devices, such as disk drives, magnetic tapes, 
and similar other peripheral devices or semiconductor memory. These storage devices vastly differ 
in the nature of their physical organization as well as operations. To relieve the users from all the 
peculiarities of the underlying storage devices, the operating system hides everything and provides 
the user a uniform logical view of the stored information for the sake of convenience. Irrespective 
of the specifc storage volume that contains a given fle, the fle is designated as online or offine. 
When the combined size of all fles in use in the system exceeds the online capacity of the avail-
able storage devices, then volumes (disks or tapes media) may be dismounted, and new volumes are 
added to allow ongoing fle operations to continue. This chapter, however, emphasizes mostly the 
management of online fles, or abbreviated as fles. 

The fle management system is supposed to hide all device-specifc aspects of where the fle resides 
and offer a clean abstraction of only a simple, uniform space of named fles. Some systems extend this 
view with a further abstraction of even an input/output system in which all I/O devices appear to the 
user as a set of fles. However, the primary concern is after all the various services that the fle manage-
ment system offers for both usual fles and fles related to I/O device management. There are lots of 
other issues related to the fle management system that are differently implemented by different oper-
ating systems. This chapter will only discuss all the topics related to fle and fle management systems 
(FMS) common to any generic operating system. At the end, the FMS of contemporary representative 
popular operating systems, such as UNIX, Linux, and Windows, are separately discussed in brief to 
give an overview of different types of actual FMS that are implemented in practice. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.2 FILES 

A fle is essentially a container for a collection of logically related pieces of information that are 
physically stored normally on any type of peripheral device for long-term existence but presented 
by most operating systems as device-independent. A fle often appears to users as a linear array of 
characters or record structures with a collection of similar records stored somewhere in the system. 
To users and applications, a fle is treated as a single entity and may be referenced by name. Files 
can be created, read, written, and even removed using various system calls. File thus created can 
also include access permissions (at fle level) that allow controlled sharing by many concurrent 
processes. In some sophisticated systems, such access controls can be enforced at the record level 
or even lower at the feld level. A fle can be used for read/write only after it is open, and similarly, 
after its use, it should be closed using system calls. 

7.3 FILE SYSTEMS 

Files are managed by operating systems. The naming, structuring, accessing, using, protection, and 
implementation of fles, with little or no interpretation of information stored within them, are the 
major tasks of the operating system. The way in which these tasks are achieved by the operating sys-
tem is different for different operating systems and is an attribute of the operating system injected 
into it at the time of its design. The part of the operating system entrusted with the responsibility 
of dealing with fles is known as the fle system. It hides all peculiarities and device-dependent 
details from the users and provides them with a consistent and simple logical picture of the stored 

http://www.routledge.com/9781032467238


File Management 347  

 
 
 
 

 
 

 
 

 

 

 
 

 
 

  

 

  

information. However, a fle system maintains a set of attributes associated with the fle that include 
owner, creation time, time last modifed, access privileges, and similar other information. 

The fle system viewed from the user’s end mainly consists of: 

1. What constitutes a fle 
2. How fles are named 
3. What different types of operations are allowed on fles 
4. How fles are to be protected with access privileges 

The fle system viewed from designer’s end consists mainly of: 

1. How the fles will be stored 
2. Whether linked lists or bit maps are used to keep track of free storage, how many sectors 

there are in a logical block, and so on 
3. What runtime calls would manipulate most of the fles and directories 
4. How an executing program would bind a given fle at runtime if it intends to access it 

[OPEN system service (call)] 
5. What arrangements optimize access to actively used fles shared by many concurrent pro-

cesses [by means of the OPEN system service (call)] 

and similar other relevant things. 
A fle is stored on device as a linearly addressed block of bytes. The fle system provides an 

abstraction from storage blocks to appropriate data structures suitable for use by application pro-
grams. At the least, the fle system provides an abstraction that links (maps) blocks of the stored ele-
ment together to form a logical collection of information, commonly called stream-block translation. 
Consequently, such a translation conceptually allows one to store (and retrieve) an arbitrary stream 
of linearly addressed bytes on the block-oriented storage system (disk-like or tape devices). When the 
data are retrieved, they will be read block by block, converted into a stream of bytes, and then con-
verted back into the application-level data structure. If an OS (fle system) provides only stream-block 
translation facilities, it is said to provide a low-level fle system. UNIX, Linux, and Windows belong 
to this category. On the other hand, if the OS (fle system) provides record-stream translation facili-
ties, it is said to have a structured (or high-level) fle system. IBM mainframe operating systems 
(OS/370 or MVS) and to some extent Apple Macintosh system belong to this category. 

File systems that support multimedia documents for storage and retrieval of information must 
be able to handle the information that represents, for example, numerical data, typeset textual data, 
graphics, images (videos), and audio information. Ordinary low-level fle systems are not designed 
to accommodate these types of multimedia documents because different types of media potentially 
require different access mechanisms and modifcation strategies for effcient handling of I/O. For 
example, the technique for effcient access of an image signifcantly differs from that of accessing 
a textual data. In fact, application domains require the OS to provide fexible, high-performance 
access methods suitable for use with multimedia data, where the methods are defned by the pro-
grammers themselves. 

More details on this topic with a figure are given on the Support Material at www.routledge. 
com/9781032467238. 

7.3.1 FILE NAMING 

File systems shield the user from the details of how and where the information is stored and how 
the physical devices actually work. This abstraction mechanism is realized and managed by one of 
the ways, such as, naming a fle. When a process creates a fle, it gives the fle a name. When the 
process terminates, the fle still exists and can be accessed by other processes using its name. The 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 

 
 
 
 
 

  

 

348 Operating Systems 

exact rules for fle naming vary somewhat from system to system, but almost all operating systems 
allow strings of letters or a combination of letters and digits or even special characters as valid fle 
names. Some fle system distinguish between uppercase letters and lowercase letters, whereas oth-
ers do not. UNIX falls into the frst category. 

Many operating systems support two-part fle names with the two parts separated by a period, like 
ABC.TXT. The part following the period is called the fle extension and usually indicates something 
about the fle. Here, .TXT simply reminds the owner that it is a text fle rather than conveying any 
specifc information to the computer. On the other hand, a COBOL compiler will require that a fle 
submitted for compilation must have the extension .COB; otherwise it will not be accepted for com-
pilation. Different operating systems follow different conventions in fle naming both with respect 
to length of fle name as well as the length and number of extensions to be used in a fle name. For 
example, in MS-DOS, fle names are 1 to 8 characters plus an optional extension of 1 to 3 characters. 
In UNIX, the size of the extension, if any, is up to the user, and a fle may even have two or more 
extensions, as in prog.c.z, where c indicates that it is a C program fle and z is commonly used to 
indicate that the fle (prog.c) has been compressed using the Ziv–Lemple compression algorithm. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.3.2 FILE STRUCTURE 

When applications operate on data, they rely on the structure present in the data, represented as col-
lection of records, each of which contains typed felds of information. For example, a collection of 
all employee information is a fle in which all the information relating to each individual employee 
is a record in the fle; the employee’s record may contain different felds, such as name, address, 
basic pay, DA, and so on. There may also have application domain-specifc structure in the data in 
the fles that refects numerical/non-numerical data, images, and audio information. Files can be 
structured in any of several ways decided by the operating system under which it is running. 

When the fle is structured as a sequence of fxed length records, the read operation returns 
one record, and the write operation overwrites or appends one record. However, the length of this 
fxed-length record can also be changed by defning the record length as needed, and it is declared 
accordingly in the respective application program. On the other hand, the fles can also be defned in 
an unstructured sequence of bytes. In effect, the operating system does not know or even care what 
is in the fle. All it sees is a stream of bytes. Any meaning must be imposed by user-level applica-
tion programs. Both UNIX and Windows (NTFS) use this approach. Since the operating system 
regards fles as nothing more than byte sequences, this approach provides maximum fexibility. 
User programs can put anything they want in a fle and can name them any way they like. For users 
who want to do unusual things, this approach can be very important; the operating system, however, 
does never interfere in this regard. 

Another kind of fle structure to represent a fle consists of a tree of records, not necessarily all 
the same length, each containing a key feld in a pre-defned position in the record. The tree is stored 
on the key feld to enable rapid searching for a particular key. The basic operation here is to get the 
record of a specifc key, but “next record” can also be available. Furthermore, when new records are 
added, they are accordingly placed by the operating system. This type of record-based arrangement 
makes the fle system most fexible and hence is widely used in large mainframe systems engaged 
in bulk volume commercial data processing. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

7.3.3 FILE TYPES 

All contemporary operating systems support several types of fles. They have regular fles, directo-
ries, character-special fles, and block-special fles. For example, UNIX and Windows have regular 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


File Management 349  

 

   

 

 

fles and directories. UNIX also uses character-special and block-special fles. Windows also has 
metadata fles. We will defne metadata in the section “File Attributes”. 

• Regular fles are generally ASCII fles (text) or binary fles containing user information. 
The distinct advantage of ASCII fles is that they can be displayed and printed as it is, and 
they can be edited with an ordinary text editor. Furthermore, if a large number of programs 
are ASCII fles for input and output, it is easy to connect the output of one program to the 
input of another (as found in UNIX pipes). 

• Binary fles just means that they are not ASCII fles. Listing them on a printer or display-
ing them on a terminal gives an incomprehensible listing, apparently full of random junk. 
Usually they have some internal structure. Although the fle is nothing but a sequence of 
bytes, the binary fle, if it is an executable fle, must have a defnite format that is differently 
defned in different operating systems. In general, it has fve sections: the frst section is a 
header which consists of a magic number identifying the fle as an executable fle as well 
as other necessary related information, and the other sections are text, data, relocation bits, 
and a symbol table, as shown in Figure 7.1a. 

• Another example of a binary fle is an archive found in many contemporary modern oper-
ating systems. A representative format of such a fle is depicted in Figure 7.1b. It consists 
of a collection of library procedures (modules) already compiled but not linked. Each one 
is prefaced by a header telling its name, creation date, owner, protection code, and size. 
Similar to an executable fle, the module headers are full of binary numbers. 

FIGURE 7.1 A pictorial representation of the formats of an (a) executable fle and (b) archive fle created by 
a generic modern operating system. 



 

 

 

  

 
 
 
 
 
 
 

 

 

 

 

 

   

350 Operating Systems 

All operating system must recognize one fle type: their own executable fle, but some recognize 
more. They sometimes even go to the extent of inspecting the creation time of an executable fle. 
Then it locates its corresponding source fle and sees if the source has been modifed since the 
binary fle was made. If it has, it automatically recompiles the source. In UNIX, the term “make 
program” has been built into the shell. Here, fle extensions are mandatory so as to enable the oper-
ating system to decide which binary program was derived from which source. 

• A directory is a system fle associated with the fle management system for maintain-
ing the structure of the fle system and consists of a collection of fles and directories. 
Directories and their various types of structures will be discussed later. 

• Character-serial fles are related to input/output and are used to model serial I/O devices, 
such as terminals, printers, and networks. Block-special fles are used to model disk-like 
media, tapes, and so on. 

7.3.4 FILE ATTRIBUTES 

Every fle has a name for its identifcation and data. In addition, all operating systems attach various 
types of other information to fles, such as, the date and time the fle was created and the fle’s size. 
These extra items are called the fle’s attributes, or metadata. The different types of attributes that are 
offered by the fle manager (operating system) vary considerably from one operating system to another. 
Some of the most common attributes are discussed here, but other ones also exist. No existing operating 
system provides all of these, but each one present in some system (or is able to be provided on request). 
The fle system maintains a data structure for each fle called a fle descriptor in which it stores detailed 
information relating to the current attributes of the fle. Common attributes that are maintained are: 

External name, owner, user, current size, maximum size, record length, key position, key length, 
time of creation, time of last change, time of last access, read-only fag, hidden fag, ASCII/bi-
nary fag, system fag, archive fag, temporary fag, random access fag, lock fags, current state, 
sharable, protection settings, password, reference count, storage device details, and so on. 

Most minicomputer and microcomputer (desktop computer) by this time get enough matured, 
and thus do not require all these items in their fle systems to handle the fles. 

Brief details on fle descriptors with these attributes are given on the Support Material at www. 
routledge.com/9781032467238. 

7.3.4.1 Case Study: UNIX File Descriptor 
The UNIX fle descriptor is called an i-node (an abbreviation for index node). The i-node for a fle 
is kept with the fle on the storage device. The i-node lists the fle’s attributes and disk addresses of 
the fle’s block. The way in which the i-node is used to locate the fle’s block will be discussed in 
a later section. The i-node is augmented with other information when the fle is actually opened. 

A representative BSD UNIX i-node file descriptor is given (Table 7.1) on the Support 
Material at www.routledge.com/9781032467238. 

7.3.5 FILE OPERATIONS: SYSTEM CALLS 

Different fle systems provide different types of operations on fles for storing and retrieval of data. 
Typical functions (operations) that are most common and must be supported using respective system 
calls include the following: 

Create/Creat: A new fle is defned and created with no data, positioned within the structure 
of fles. The purpose of the call is to announce that the fle is being created and to set some 
of the attributes. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


File Management 351  

 

 

 

  

 

Delete: A fle is removed from the fle structure and destroyed when it is not required. In addi-
tion, some operating systems automatically delete any fle that has not been used in n days. 

Delete_One: This deletes an existing record from the currently positioned location of the fle, 
sometimes for the purpose of preserving the existing fle structure. 

Open: This function opens the fle before being used and allows the system to fetch the 
attributes and to refect in the fle descriptor that the fle is in use. It locates the address of 
the referenced fle by searching through the directories, lists disk addresses of the fle in 
main memory, allocates buffers in the main memory, and establishes a runtime connection 
between the calling program and called fle to perform subsequent operations on the fle. 
A possible format of the OPEN system call is: 

OPEN (fle-name, access-mode) 

While invoking the OPEN service, the user specifes the fle name and the access mode. The fle 
system verifes the user’s authority to access the fle in the intended mode before opening the fle. 

Close: The fle should be closed with respect to a process to free up internal table space used 
to keep attributes and disk addresses, if permissible. The process may no longer perform 
functions on the fle until the process opens the fle once again. Many systems encourage 
this by imposing a maximum number of open fles on processes. 

Read: This system call (operation) copies all or a portion of the data (a byte or a block of 
bytes) beginning at the current fle position from a fle into the respective buffer of the cor-
responding fle. The caller must specify the amount of data needed. If the fle position is 
L bytes from the end when read is invoked, and the number of bytes to be read is greater 
than L, an end-of-fle condition is returned. The possible format of a READ system call is: 

READ (fle-name, no-of-bytes, in-buffer) 

Write: Data are written to the fle at the current position. If the current position is the end of 
the fle, the fle’s size increases. If the current position is anywhere within the fle, existing 
data are overwritten and lost forever. One possible format of a WRITE system call is: 

WRITE (fle-name, no-of-bytes, out-buffer) 

Rename: This system call changes the name of an existing fle. 
Seek: For random access fles, a method is needed to specify from where to take the data. One 

common approach is a system call seek that repositions the current position to a specifc 
place in the fle. After the call has completed, data can be read from or written to that spe-
cifc position. No I/O can be invoked when a Seek call is executed. A representative format 
of SEEK system call is: 

SEEK (fle-name, logical position) 

Many other useful operations are provided by almost all fle systems. However, the nature of operations 
that are to be performed on a fle entirely depend on, and have an impact on the organization of the fle. 

Brief details on many other common useful operations for fles are given on the Support 
Material at www.routledge.com/9781032467238. 

7.3.6 FILE ACCESS 

The mechanism by which a fle is (or its records are) accessed is closely related to the organiza-
tion of the fle. The fle organization itself simply means how the records of a fle are logically 

http://www.routledge.com/9781032467238


 

 

 

 
 

 

 

 

 

 

 

352 Operating Systems 

structured in the fle. The “record access pattern” thus depends on the fle organization that 
describes the order in which records in a fle are accessed by a process. The application pro-
grammer defnes the format for logical records and also the access routines for reading and 
writing records. The fle system invokes the programmer-supplied access routines when read-
ing from and writing to the fle. Different types of organization of fles and their related access 
mechanism exist, and each one is equally popular, but the selection of a particular one mostly 
depends on the environment and the type of the application that uses the fle. Since fle organiza-
tion and fle access are directly linked to one another, they will be discussed separately in detail 
in the following subsection. 

7.4 FILE SERVICE: FILE SERVERS 

The fle system always provides the user with a higher-level abstraction and also a uniform logi-
cal view of the information stored in the form of a fle on secondary storage devices. This view is 
actually provided by the fle system using some of its services. The fle service is essentially the 
specifcations of what the fle system offers to its users. It describes the primitives available with the 
actions they perform and similar other things. To the users, the fle service precisely defnes what 
services they can count on, but it says nothing about how it is implemented. In effect, the fle service 
specifes the fle system’s interface to the clients. Depending upon the mode in which the fle system 
services are invoked, the users of the fle system can be grouped into two distinct categories: com-
mand language users and system call users. 

Command language users are interactive users who type commands on the keyboard that the fle 
system can recognize and get numerous services that the fle system offers. These services include 
listing the contents of the fle/directory, making new directories, copying/deleting a fle, changing 
a directory, changing the name of a fle, changing the access control permission of a fle, and many 
other useful services. The same services, however, can also be obtained in batch mode by invoking 
the existing command fles (batch fles) from the keyboard. 

The second category of users are those who get fle services from the fle system by using pro-
grams, application programs as well as system programs. Programs include simple statements 
(relating to the available fle services) that are interpreted by the fle system and then invoke services 
through a set of related runtime system calls for the manipulation of fles. The services that a fle 
system usually provides to its system call users can be broadly classifed as follows: 

• File-related services: create fles, open fles, read fles, write into fles, copy fles, rename 
fles, link fles, delete fles, seek records, and so on. 

• Directory-related services: make directory, list directory, change directory, rename 
directory, and so on. 

• Volume-related services: initialize the volume, mount the volume, dismount the volume, 
verify the volume, backup the volume, compact the volume, and so on. 

A fle server is essentially just a user process, or sometimes a kernel process, running on a machine 
that implements the fle services. A system may have one fle server or several servers, each one 
offering a different fle service, but the user should not be aware of how many fle servers there are 
or what the location or function of each one is. All they know is that when they call the procedures 
specifed in the fle service, the required work is performed somehow. A system, for example, may 
have two services that offer UNIX fle service and Windows fle service, respectively, with each 
user process using the one appropriate for it. It is hence possible to have a terminal with multiple 
windows, with UNIX programs running in one window and Windows programs running in another 
window, with no conficts. The type and number of fle services available may even change as the 
system gradually improves. 



File Management 353  

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 

 
 

 

 

7.5 FILE CONTROL BLOCKS 

When a fle-related operation, such as OPEN, READ or WRITE, is required, the fle directory in 
which the fle is stored on the secondary device (disk) is searched. The directory information asso-
ciated with an actively used fle is always kept in the main memory using a data structure called a 
fle control block (FCB). A FCB usually contains all information derived from a variety of sources 
concerning fle processing activity, like symbolic flename, system-assigned identity, type, starting 
disk address, size, access permits, and similar information that may be required in processing fle-
related services. When a program is compiled, the compiler creates the FCB in its object code and 
records all this information in the FCB. 

When an executing program issues the fle-service system call OPEN to access a specifc fle 
before beginning a fle-related operation, the FCB of the fle is created in a specifed area in main 
memory, possibly in a place in the process control block (PCB) of the process. When the OPEN call 
is executed, the operating system fnds the related fle in the fle directory and copies all the required 
information about the fle from the respective fle directory into FCB. The recorded fle-access per-
mission as given in FCB is then checked with the requested access mode given in the OPEN system 
call to verify the user’s authority to access the fle. If it matches, the program would continues; other-
wise the execution of the program will be aborted. A buffer area is then accordingly created and kept 
reserved, and the starting address of this buffer area is stored in the FCB in the buffer address place. 
The current fle position is set 0 when the fle is opened. In this way, several fles can be opened by 
a single program. But the number of fles that can be opened at any instant by any single process is 
restricted by the operating system, since the FCB is placed in the PCB, and the PCB is of fxed size. 

In the case of a shared fle, the same fle can be opened by several programs, even if it is already 
opened. At the time of opening a fle, each program creates a FCB for the same fle with its own con-
nection-identity, current–fle–position, and buffer. Thus, different programs can access the same fle 
at different fle offsets. One program may be reading and processing a specifc record of a fle while 
another program may be reading and processing another record of the same fle. When one program 
closes the fle, its corresponding FCB and the connection–identity are removed, and the related buffer 
is released. However, the other programs can still continue their needed operations on the same fle. 

Brief details of this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

7.6 FILE MANAGEMENT SYSTEMS: REQUIREMENTS 

The fle management system is a part of the operating system consisting of a set of system software 
that provides services needed by the users and applications for controlling and using their fles, 
thereby relieving the users from the tedious task of developing every time the different types of 
special-purpose software on their own for each of their applications to execute. To perform these 
responsibilities, the fle management system must fulfll certain minimum requirements that include 
the following: 

• To provide a mechanism in storing data in such a way so that the users can perform differ-
ent types of operations (as mentioned before) on their fles. 

• To ensure the validity of data stored in the fles. 
• To offer the users the needed I/O support while using various types of different storage 

devices. 
• To provide a standardized set of I/O interface routines while actual physical devices are 

to be used. 
• To provide needed I/O support to multiple users for the purpose of sharing and distribution 

of fles in the case of multi-user systems. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 

   

 
 
 
 
 
 

  

354 Operating Systems 

• To safeguard the data as far as possible from any sort of accidental loss or damage. 
• To attain optimum I/O performance both from the standpoint of the system with respect 

to overall throughput, as well as from the user’s point of view in terms of response time. 

7.7 FILE MANAGEMENT SYSTEMS: FUNCTIONS AND 
DESIGN ISSUES 

A representative conceptual level–wise hierarchical approach is depicted in Figure 7.2 that demon-
strates the involvement and working of the fle management system while providing necessary support 
in the input–output operations of users and application programs by means of performing various 
functions. The essence of this structure is to exhibit a clear separation between process-level which is 
concerned to provide effcient implementation of an I/O operation (fle processing) and device-level 
(physical input–output control system) which aims to provide high device throughput. The division of 
layers as considered here is somewhat arbitrary, and the number of layers with their interfaces that are 
actually used varies across different systems in practice, and hence, may use various other approaches. 

Users and application programs often interact with the fle system by issuing legible commands 
or instructions provided by the fle system in order to execute certain permissible operations on 
fles. In response, the fle system, before performing any operation on fle, must identify and locate 
the selected fle (or directory and then the fle) and consult with its already-recorded associated 
attributes to decide whether the operation as issued is allowed. In this way, the fle system ensures 
access control (sharing and protection) on particular fle to only authorized users in shared systems 
(for both single as well as multiple users). The basic operations that a user or application may intend 
to perform on a fle are carried out at the record (or character) level. The user or application views 
the fle as having some sort of structure that organizes the record (or a stream of characters). To 
translate the user-supplied commands or instructions into corresponding specifc fle manipulation 
commands, the fle management system employs the related access method applicable to this exist-
ing fle structure that provides effcient fle processing. 

The physical I/O, however, is done on a block-basis, while users and applications are only con-
cerned with records (or a stream of characters). Therefore, the records of a fle must be blocked for 

FIGURE 7.2 A block diagram of a representative scheme of fle management system with its required 
elements used in a generic modern operating system. 



File Management 355  

 
 

 

  

output and unblocked after input. To support block-I/O of fles, several functions are needed, and 
those are carried out at the physical I/O level (physical IOCS). The physical IOCS layer, which is 
a part of the kernel in most operating systems, implements device-level I/O (discussed in Chapter 6). 
We assume that the physical IOCS is invoked through system calls, and it also invokes other 
functionalities of the kernel through system calls. The part of physical IOCS which belongs to the 
operating system implements different policies and strategies by using several modules, such as disk 
scheduling and fle allocation, to achieve many different targets, including high device-throughput. 
These modules, in turn, invoke physical IOCS mechanisms to perform actual I/O operation. In fact, 
process-level mechanisms that implement fle-level I/O use physical IOCS policy-modules to realize 
effcient device-level I/O. Finally, blocking and I/O buffering although are shown as separate layers 
in the interest of clarity, but sometimes they exist in the access-method layer and are available only 
to access-method policy-modules and not allowed to access directly from the fle system layer. 

This hierarchical level–wise division at least suggests what would be the concern of the fle 
management system, and which would go in the domain of the operating system kernel. In fact, this 
division proposes that the fle management system should be developed as a separate system utility 
that would use the kernel support to realize the needed fle-I/O operations. 

7.8 FILE MANAGEMENT SYSTEMS: DESIGN PRINCIPLES 

File system design principles can be described in many ways, and principles themselves differ sig-
nifcantly from one system to another depending on the objectives, but the basic principle involved 
in the organization of system software to conceptually derive any fle system follows a standard 
methodology consisting of a series of hierarchical layers. Each layer, in turn, can be realized by 
using one or more software modules in order to achieve a specifc target. However, a reasonable 
representative structure of such an organization is depicted in Figure 7.3. 

FIGURE 7.3 A schematic block diagram of a representative fle system software architecture of a generic 
modern operating system. 



 

 

356 Operating Systems 

At the lowest level is the device driver, which is a physical IOCS that communicates directly 
with hardware peripheral devices or the associated controllers or channels to implement certain 
mechanisms at the device level, such as I/O initiation on a device, providing I/O operation status, 
processing the completion of an I/O request, and recovery of error, if any. The policy employed by 
the device driver is to optimize the performance of the related I/O device. Device drivers are com-
monly considered part of the operating system. 

The next higher level is referred to as basic fle system, which is also a part of physical IOCS. 
This level is the frst interface that deals with blocks of data defned outside the computer system 
environment that are to be exchanged with secondary devices, mostly disk or tape systems. It is thus 
involved only in the placement of those blocks on secondary storage devices and the buffering of 
those blocks in main memory. It is not at all concerned about the content or meaning of the data, nor 
the structure of the fles involved. The basic fle system (a part of physical IOCS) is also considered 
part of the operating system. 

The basic I/O supervisor is responsible for implementing certain mechanisms at the fle level, 
such as fle-I/O initiation and termination. It selects the device on which the prescribed fle resides 
to perform fle-I/O and is also concerned with scheduling device access (such as disk or tapes) to 
optimize fle access performance. To achieve all this, specifc structures are maintained that control 
fle-I/O by way of dealing with device-I/O and other related aspects, and fle status. Assignment 
of I/O buffers and allocation of secondary memory space are also carried out at this level, but the 
actual placement is done at the next level. The basic I/O supervisor is also considered part of the 
operating system. 

Logical I/O is entirely related to users and applications. This module deals with everything with 
the records of a fle with respect to their organization and access. In contrast to the basic fle system 
that deals with blocks of data, logical I/O is concerned with the fle records that are defned and 
described by users and applications. The structuring of a directory to enable a user to organize the 
data into logical groups of fles as well as the organization of each individual fle to maintain basic 
data about fles are provided at this level. In fact, logical I/O is engaged to the extent of providing 
general-purpose record I/O capability. 

Access method is perhaps the frst level of the fle management system that directly interacts 
with the user. This level provides the primary standardized interface between the application and 
the fle system and consequently with the devices that physically hold the data. Different types of 
access methods exist that describe different ways of accessing and processing the data residing in 
a particular fle. Each type of access method, in turn, tells something about the corresponding fle 
structure that can be the best ft for effective storing of data. Some of the most commonly used 
access methods are shown in Figure 7.3, and those are explained separately in a later subsection. 

7.9 FILE ORGANIZATION AND ACCESS: STRUCTURED FILES 

File organization defnes the logical structuring of records in a fle in a way that determines how 
they are to be accessed to effciently make use of the I/O medium. This, in turn, demands certain 
important criteria while choosing a specifc fle organization that mainly include: minimal storage 
area, short access time, ease of handling, easy maintenance, and above all reliability. However, 
these criteria appear to confict with one another. For example, minimal storage area demands mini-
mum redundancy in the data. On the other hand, redundancy is a useful way to increase the speed 
of data access. An example of this is the use of indexes. Hence, including all these criteria equally 
and favorably in any fle organization is simply impossible, and therefore, which of these criteria 
are to be given more priority is to be decided beforehand in order to fulfll targeted objectives when 
designing a suitable fle organization. 

Many different types of fle organization exist in reality. A fle system usually provides several 
alternative fle organization methods so that a program can select a specifc fle organization that 
best fts its environment and suits its requirements. However, we confne ourselves to the discussion 



File Management 357  

 
 
 
 
 

  

 
 
 

 
 
 
 

  

 

 
 

of only fve fundamental organization schemes. Most real-life systems use structures that fall into 
one of these categories or some other structures that may be realized with a combination of these 
organization types. The fve fundamental organization methods for fles are: 

• The pile 
• The sequential fle 
• The indexed-sequential fle 
• The indexed fle 
• The direct or hashed fle 

7.9.1 THE PILE 

The pile is perhaps the simplest form of fle organization. It saves data in any manner, mostly in the 
order in which they entered. Each record simply consists of one burst of data. The records may have 
different felds, different numbers of felds, or even similar felds in different orders. Each feld here 
contains everything, such as feld name, length, contents, and type, and all these are included as sub-
felds indicated by delimiters within the feld. A schematic representation of a pile is shown in Figure 7.4a. 
As this form has no specifc structure, record access in a pile fle is carried out by passing through 
each individual record, which is an exhaustive search. To fnd a record that contains a particular feld 
with a particular value, or to fnd all records that contain a particular feld, in any case, it is necessary 
to inspect each record in the pile until the desired record is found or the entire fle has been examined. 

This type of fle organization is most suitable in situations when the collected data are not easy 
to organize. From the point of view of space usage for storing data that vary in size and structure, 
this type of organization seems to be useful. But one of its major drawbacks is that it often requires 
exhaustive searches for some types of fle operations. For having limited scope in handling only 
some specifc environments, this type of fle organization is otherwise unsuitable for most applica-
tions and hence has fallen out of favor. 

7.9.2 THE SEQUENTIAL FILE 

Many applications need to convert information from a simple byte stream into a stream of records 
with application-specifc data structures. They format each information in a unit called a record, the 
various parts of which are called the felds of the record. The most common form of fle structure 
that contains a collection of named sequences of logical records arranged in a particular order is 
known as sequential fle. In this fle, all records are of the same length with a fxed format, consist-
ing of the same number of fxed-length felds in a specifed order, as depicted in Figure 7.4b. Here, 
the physical organization of the fle on the media directly matches the logical organization of the 
fle. Each record is allocated with k bytes to contain all its information plus an additional H bytes 
for record descriptor information. The name of the feld, length, and type of each feld are attributes 
of this fle organization. 

One of the felds (usually the frst feld, but not always) in each record is referred to as the key 
feld (primary), and that is applicable for all the records in the fle. The signifcance of the key feld 
is that it uniquely identifes a record, and the values of the key feld are usually different for differ-
ent records (if the same for some records, then another particular feld known as the secondary key 
will be considered for unique identifcation). The fle is organized with the records that are stored 
in any specifc key sequence (mostly sorted on keys). Similar to byte-stream fles, here access to 
the fle is defned by a fle position and the position that indexes records arranged on keys in the fle 
instead of bytes. 

Sequential fles are highly conducive to and generally optimum for batch processing appli-
cations in which accessing and subsequent processing of the records in a fle are involved in 
order (sequence), starting from any specifc position (usually from the beginning), but are not 



 

 

358 Operating Systems 

FIGURE 7.4 Representative block diagrams of different types of commonly used fle organization employed 
in generic modern operating systems. 



File Management 359  

 
 
 
 
 

  

normally skipped around or processed out of order. Sequential fles can be built on most I/O 
devices; hence these fles are not critically dependent on device characteristics. Consequently, a 
sequential fle can be migrated easily to a different kind of device. Since sequential fles can be 
rewound, they can be read as often as needed. Therefore, sequential fles with large volume are 
mostly convenient when the storage medium is magnetic tape, but they can be stored easily on 
any type of disk media. 

Sequential fles exhibit poor performance for interactive applications in which queries and 
updates of individual records when carried out require a sequential search of the fle, record by 
record, for a key match to arrive at the desired record, if present. Consequently, it causes a substan-
tial delay in accessing the target record if the fle is a relatively large one. Additions/deletions to the 
fle also pose similar problems. However, the procedure normally followed in this case is to create 
a separate transaction fle with the new records to be added/deleted, sorted in the same order on the 
key feld as the existing master fle. Periodically, a batch update program is executed that merges 
the new transaction fle with the existing master fle based on the keys to produce a new up-to-date 
master fle, with the existing key sequence remaining unchanged. 

7.9.3 INDEXED SEQUENTIAL FILES 

The drawbacks in handling sequential fles, particularly when the fle operation is concerned with a 
specifc single record rather than with every record in the fle, was overcome with the introduction 
of another popular approach known as an indexed sequential fle. This fle system maintains the key 
characteristics of the sequential fle and is able to read from or write to a specifc record independent 
of the record’s location in the fle. While providing this capability, this fle system also retains the 
ability to access records sequentially. 

Records in an indexed sequential fle are organized in sequence based on a key feld, and each 
record header includes an integer index feld. This fle system uses two additional features: an index 
fle, which is usually a simple sequential fle that provides a quick lookup capability to reach the 
close vicinity of the desired record in the main fle by way of randomly accessing the main fle, and 
an overfow fle, which is integrated to the main fle and contains records that can be located by 
following a pointer from its predecessor record. The way the overfow fle is employed is described 
later in this chapter. 

A schematic view of an indexed sequential fle organization is shown in Figure 7.4c. Several 
levels of indexing can be employed to locate a record in the main fle with an indexed- sequential 
structure. But, in its simplest form, a single level of indexing is commonly used. The index fle con-
tains records, and each record consists of two felds: a key feld, which is the same as the key feld 
in the main fle, and a pointer to the main fle. To locate a specifc record in the main fle, the index 
fle is searched to fnd the highest key value that is equal to or precedes the desired key value. Using 
the respective pointer as indicated in the index fle entry thus obtained, the target area in the main 
fle is accessed, and then the search continues sequentially in the main fle until the desired record 
is obtained, if present. 

Indexed sequential fles are widely used in business computing for fles that contain very large 
numbers of records, particularly if the records are often referenced in a non-sequential manner. To 
get an estimate of its effectiveness, consider a sequential fle with 1 lakh records. To search a record 
for a particular key value requires on average one-half lakhs or 50,000 record accesses. Now, con-
sider this fle an indexed-sequential one with an index fle that contains 500 entries with the keys in 
the index more or less evenly distributed over the main fle. To search a record for a particular key 
value in this fle will now take on average 250 accesses to the index fle followed by 100 accesses 
(number of records per block in main fle = 100,000/500 = 200; now 200/2 = 100) to the main fle. 
The average search length now becomes 250 + 100 = 350, which is a sharp drop from the 50,000 of 
its corresponding sequential organization; a straightaway proftable proposition than its counterpart, 
the ordinary sequential fle. 



 

 
 
 
 
 

 

360 Operating Systems 

However, addition of records to this fle is carried out in a different way. Each record in the main 
fle contains a link feld offered by the fle system, not visible to the application, used as a pointer 
to the overfow fle. When a new record is to be inserted into the fle, it is added to the overfow 
fle. The record in the main fle that immediately precedes the new record in logical sequence is 
accordingly updated to contain a pointer that will indicate the new record in the overfow fle. If 
the immediately preceding record is itself in the overfow fle, then the pointer associated with that 
record will be updated accordingly. Similar to the sequential fle, the indexed sequential fle also is 
occasionally merged with the overfow fle in batch mode. 

While preserving all its merits over sequential organization, indexed-sequential organiza-
tion also has a sequential nature without sacrificing anything and permits sequential process-
ing, particularly when the application requires processing almost every record in the file that 
is indexed sequentially. To process the entire file sequentially, the records of the main file are 
processed in sequence as usual until a pointer to the overflow file is found. In that situation, 
accessing and subsequent processing then continue in the overflow file until a null pointer is 
encountered, at which time accessing of the main file is resumed once again from the point 
where it left off. 

When the main fle is huge, the index fle becomes larger, and searching for a key over such a 
larger index fle may be expensive. In order to realize greater effciency in access for such a large 
main fle, multiple levels of indexing can be employed. Here, the lowest level of the index fle is 
operated as a sequential fle, and a higher-level index fle is created for that fle. Searching for a 
record in the main fle starts from the lowest level and continues to move to the upward levels until 
the target record in the main fle is obtained, if present. In this way, a substantial reduction in aver-
age search length can be attained. But searching many index fles one after another at different 
levels may also be time-consuming and add proportionately to the total access time. This aspect 
should be taken into consideration while designing a multi-level indexed sequential fle that deter-
mines how many different levels of index fle will be created, and this may be one of the trade-offs 
in the design considerations. 

7.9.4 INDEXED FILES: INVERTED FILES 

In spite of having several advantages, indexed sequential fles, like their predecessor, sequential 
fles, suffer from certain limitations. One major limitation is that effective access to the record and 
subsequent processing of the fle are mainly confned to that based on a single feld (key) of the 
record constituting the fle. When it is necessary to search for a record on the basis of an attribute 
other than the key feld, it appears that neither form of sequential organization is helpful. In fact, 
many applications demand this fexibility while organizing their respective fles. 

In the case in which the application needs to search with different criteria, such as name of the 
customer or account number in a personnel inventory fle, it suggests that each record might have 
two or more index felds. One feld links the records together by name and the other by account 
number. This means that a composite structure is needed that employs each type of feld that may 
be the subject of a search. This can be implemented by preparing one index table with names and 
another with account numbers. Searches can take place on the appropriate table, and the record 
can be accessed from the respective storage device. A schematic representation of an indexed fle 
organization is shown in Figure 7.4d. The net effect is that there is no restriction on the placement of 
the records as long as a pointer present in at least one index refers to that record. Moreover, variable-
length records are also supported by this organization. 

Indexed fles can thus be generalized to support multiple index felds, each with its own index 
into the records. Two types of indexes are used. An exhaustive index fle contains one entry for 
every record in the main fle. This index fle itself is normally organized as a sequential fle for 
convenience of searching. A partial index fle contains entries to records where the feld of inter-
est exists. With the main fle having variable-length records, some records may not contain all the 



File Management 361  

 
 

   

 
 
 

 
 

 

  

 

 
 
 
 
 

felds, thereby saving storage space. However, the table storage requirements are increased. The 
overhead to manage the indexes also increases, as the addition of a new record to the existing main 
fle requires that all of the respective index fles must be updated. Similarly, record deletions can be 
expensive, because of removal of dangling pointers from the respective indexes. Above all, access 
times can be appreciably reduced by using this fle organization. 

Index fles are important mostly with applications which are query-based, interactive in nature, and 
time-critical. Here, exhaustive processing of records rarely happens. Representative examples of such 
application areas are railway reservation systems, banking operations, and inventory control systems. 

7.9.5 THE DIRECT (OR HASHED) FILE 

Direct fle organization provides the capability to directly access any record of known address from 
a block of disk-like media. Similar to sequential and index-sequential fles, a key feld here is also 
required to be associated with each record by which the record is directly (randomly) accessed. 
Hence, access to a record is independent of which record was accessed prior to it, so there is no 
notion of any sequential ordering of records. Direct access avoids any form of sequential access, 
which makes it both convenient and effcient. 

In direct access organization, the process provides a key value which is transformed by this 
organization to the key value to generate a (track-no, record-no) address. The disk heads are now 
positioned on track-no track before issuing any read/write command on record-no record. The direct 
fle may sometimes make use of hashing technique on the key value to make this organization even 
more attractive. One of the hashing techniques, such as linear hashing or coalesced chaining, can 
be employed for this purpose. 

Direct fle organization provides high effciency in access when fxed-length records are used and 
records are accessed and processed one at a time at random. Representative examples are employee 
inventory, examination processing, pricing tables, and directories. In spite of having several merits, 
this organization, however, exhibits two main drawbacks when compared to a sequential fle: 

• Record address computation consumes some CPU time. 
• Dummy records sometimes need to be inserted to make this organization more versatile, 

which may lead to poor utilization of I/O media. 

Another drawback observed in the use of direct fles is excessive device dependence. Characteristics 
of an I/O device are explicitly assumed and used by the fle system while address calculation is car-
ried out. Rewriting the fle on another device with different characteristics, such as different track 
capacity, implies modifcation of the address calculation method and its related formulas. In addi-
tion, it is also observed that sequential processing of records in a direct fle is a detrimental one 
when compared with similar processing of records carried out on a sequential fle or even on an 
indexed-sequential fle. 

7.9.6 ACCESS METHODS 

An access method is a module of the IOCS that implements access to a class of fles using one of the 
specifc fle organizations mentioned previously. There exist several access mechanisms when access-
ing records in a fle, but whether the mechanism to be used is a sequential search or an address trans-
lation method is entirely determined by the organization of the corresponding fle. In fact, the access 
method used for a fle mostly complements the organization of the fle, and it is thus always chosen in 
such a way to favorably exploit the fle organization while accessing records from the respective fle. 
In addition, the fle access mechanism may use advanced techniques in I/O programming to make fle 
processing more effcient and effective. Two popular techniques are buffering, which was discussed in 
Chapter 6, and blocking of records, which is discussed in the following section. 



 

 

 

 
 
 
 

 

 

 
  

 

362 Operating Systems 

7.10 FILE DIRECTORIES 

A fle system includes various fles owned by several users. Any fle management system uses the 
concept of the directory as a way of grouping collections of fles (mostly related fles) together to 
keep track of fles. Thus, a directory contains information about a group of fles, usually related 
fles, and may even contain other directories. In fact, a directory itself is actually a fle and can be 
viewed essentially as a symbol table in which each entry concerning one fle is a record occupy-
ing one row of the table. As shown in Figure 7.5, each record consists of different types of felds 
containing various information that includes attributes, location, type, ownership, fags, and usage 
information, as well as the manner in which it may be accessed by other users in the system. Much 
of this information, especially that related to storage, is managed by the operating system. Some of 
the information available in directories is generally provided to the users and applications indirectly 
by the system routines. However, each such feld, in turn, contains several fundamental felds, such 
as; name of the fle, fle type, and fle organization. 

The directory will be created before putting fles into it. A directory can similarly be removed 
when it is not required. Various types of system calls are provided to create a directory, to 
remove a directory, to put an existing fle in a directory, and to remove a fle from a directory. 
Directory entries may be either fles or directories. All these give rise to the total entity of the 
fle system. 

Brief details of different elements in a fle directory (Table 7.2) are given on the Support 
Material at www.routledge.com/9781032467238. 

7.10.1 STRUCTURE 

A fle system normally contains several directories. The format of the directory and the types of 
information to be kept in each directory entry (an example is shown in Table 7.2 on the Support 
Material at www.routledge.com/9781032467238) differ widely among various operating systems. 
Some of this information may often be included in a header record associated with the fle, thereby 
reducing the amount of storage required for the directory that makes it convenient to keep it in main 
memory either partly or entirely for the sake of performance improvement. However, the directory 
structure of the fle system broadly falls into two categories. The simplest form of the structure for 
a directory is a single-level directory or fat directory. The other one, based on a more powerful 
and fexible approach, is almost universally adopted, the hierarchical or tree-structured directory. 

7.10.1.1 Single-Level (Flat) Directories 
Some operating systems in the early days (in single-user systems) used one master directory con-
taining a list of entries, one entry for each fle, for all fles present in a given storage volume. This 
structure could be viewed as a simple sequential fle, with the name of the fle serving as the key 
and the other information (attributes) of the corresponding fle forming each such record. Each 
fle in the directory should have a unique name. The fle name, fle name extension, and version 
number (if supported) will uniquely identify a fle. Since all fle names appear in a single directory, 
it is said that the directory has one level. As all fle names are searched by the same method, we 
say, the directory is fat. Such a directory structure is shown in Figure 7.6, with a number of entries 

Preliminary Info Location Info. Access Control Info. Flags Usage Info.

 . . . . . .. . . . .  . . . . . .. . . . . .  . . . . . .. . . . . . . . . . . .  . . . . . . . 

FIGURE 7.5 A pictorial representation of a typical directory entry used in generic modern operating system. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


File Management 363  

 
 
 

 
 

 

 

 

  FIGURE 7.6 Schematic block diagrams of representative structuring of one-level (fat) directories used in generic 
modern operating systems; (a) Attributes in the directory entry, and (b) Attributes lying elsewhere outside directory. 

containing fle names and other attributes; one entry per fle is stored in a master directory. Two 
possible structures may exist. One approach as shown in Figure 7.6a, in which each entry contains 
the fle name and all other attributes, including the disk addresses where the data are stored. The 
other possibility is shown in Figure 7.6b. Here, the directory entry holds the fle name and a pointer 
to another data structure where the attributes and the disk addresses are found. Both these systems 
are equally and commonly used. 

When a fle is opened, the fle management searches its directory until it fnds the name of the 
fle to be opened. It then extracts the attributes and disk addresses, either directly from the directory 
entry or from the data structure pointed to, and puts them in a table in main memory. All subsequent 
references to the fle then use this table to get the required information of the fle. 

While fat directories are very conducive to single-user systems, they have some major drawbacks 
even in those systems, particularly when the total number of fles is huge enough that it poses trouble 
in unique naming of the fles, and searching a directory for a particular fle requires signifcant time. 
Moreover, there is no provision for organizing these fles in a suitable way, such as type-wise, applica-
tion-wise, or user-wise, for multiple users or in a shared system. Last but not least, since a fat directory 
has no inherent structure, it is diffcult to conceal portions of the overall directory from users, even if 
it is sometimes critically required. Thus, the fat directory as a whole is most inconvenient and inad-
equate when multiple users share a system or even for single users with many fles of different types. 

• Two-Level Directories 

The problems being faced by fat directories have been alleviated with the use of a two-level 
directory structure in which there is a master fle directory (MFD), and every account is given a 
private directory, known as a user fle directory (UFD). The master directory has an entry for each 
user directory, providing the address and access control information. Each user directory is a simple 
list of the fles of that user in which each fle is described by one entry. A user who wants to separate 
various types of fles can use several accounts with different account names. Although this structure 
certainly offers some distinct advantages compared to the straightforward fat directory structure, 
it still provides users with no help in structuring a collection of a large number of fles, in general. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge.com/ 
9781032467238. 

7.10.1.2 Hierarchical Directories 
To fnd a generalized solution to this problem, the two-level directory structure was extended to an 
arbitrary number of levels that can be implemented in many interesting ways to provide better sup-
port to users. This ultimately gave rise to a more powerful, fexible, and almost universally accepted 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 
 
 
 

  

 

  
 
 
 

 

364 Operating Systems 

approach, the hierarchical or tree structure, which is basically an uprooted tree. Here, the root of the 
tree is a master directory that may have two types of nodes: directories and ordinary fles. A direc-
tory can have children (sub-nodes); a non-directory cannot. Directories may be empty, and are usually 
user directories. Each of these user directories, in turn, may have subdirectories and fles. Files are not 
restricted to a particular level in the hierarchy; that is, they can exist at any level. However, the top few 
levels of the directory structure usually tend to have a lot of directories, but ordinary fles can reside 
there, too. Now, the obvious question thus arises as to how this hierarchical structure will be organized. 

• The frst aspect concerns the number of levels when the fle system may provide a fxed 
multi-level directory structure in which each user has a user directory (UD) containing 
a few directories, and some of these directories may contain other directories, too. A user 
can then group the fles based on some functionally related meaningful criterion, such as 
the name of activities to which they pertain. However, this approach is not adequate and 
relatively lacks fexibility, since it provides a fxed number of levels in the hierarchy and a 
fxed number of directories at each such level. 

• The second approach provides more generalization with better fexibility in which a direc-
tory is treated as a fle, and it can be created in a similar way to how a fle is created. Here, 
the directory may appear as an entry in another directory with its fag feld (Figure 7.5) 
with a value D to indicate that it is a directory fle. The root directory as usual contains 
information about the user directories of all users. A user creates directory fles and ordi-
nary fles to structurally organize their information as needed. Figure 7.7 shows the direc-
tory tree for a user (say, Y), and in this way, the directory trees of all such users together 
constitute the directory tree of the fle system. 

• The next aspect is naming, by which fles can be unambiguously accessed following a path 
from the root (master) directory down various branches until the desired fle is reached. The 
path that starts from the root directory and then traverses in sequence through the directory 
hierarchy of the fle system up to the targeted fle will constitute a pathname consisting of the 
directory names thus traversed in sequence for the fle, known as the absolute pathname. 

FIGURE 7.7 A representative sample example showing the implementation of a tree–structured directory 
for fles used in generic modern operating system. 



File Management 365  

 
 

 
 
 
 
 
 
 

 

 

 
 

 

 

Several fles with the same fle name belonging to different directories are permitted, since 
they have unique pathnames or differ in their absolute pathnames. While absolute pathname 
can uniquely locate the desired fle, it often appears inconvenient to spell out the entire path-
name to locate a fle every time it is referenced. Alternatively, the pathname for a fle can 
be started from the user’s current directory and then traverse down various branches until 
the desired fle is reached, called a relative pathname, which is often short and convenient 
to use. However, relative pathname can sometimes be confusing because a particular fle 
may have a different relative path name from different directories. Moreover, a user during 
execution may change the current directory to some other working directory by navigating 
up or down in the tree using a change–directory command. To facilitate this, each directory 
stores information about its parent directory in the directory structure. 

Brief details on naming are given on the Support Material at www.routledge.com/9781032467238. 

7.11 GRAPH DIRECTORY STRUCTURE: FILE SHARING 

The use of a tree structure in organizing the directory structure of a fle system certainly exhibits 
several advantages by providing each fle exactly one parent directory, creating a total separation of 
different users’ fles, thereby offering complete naming freedom to users. However, this directory 
structure is inadequate and rather cumbersome when the fle is required to be shared. In multi-user 
systems, there is always a high requirement to allow fles to be shared among a number of users. 
Many issues arise in this regard; the most noted ones are: 

• How the shared fles can be accessed more conveniently by users in the existing tree-type 
directory structure. 

• How the access rights to the fle to be shared are to be offered to the other users. 
• The management of simultaneous access over shared fles by different users. 

Use of the tree structure leads to a fundamental asymmetry when different users access a shared 
fle. The fle would always exist in some directory belonging to one of the users who can access 
it with a shorter pathname than other users. A user wishing to access a shared fle of another user 
can do so by visiting a longer path through two or more directories. This problem can be resolved 
by organizing the directories in an acyclic graph structure in which a fle can have many parent 
directories; hence, a shared fle can be pointed to by directories of all those users who have rights 
to access it. To implement this, links can be used, which gives rise to the construction of an acyclic 
graph structure. 

• Links: A link (sometimes called a hard link) is a directed connection between two exist-
ing fles (a directory is also a fle) in the directory structure. The link is created using the 
appropriate command in which a link name is given that links the target shared fle (or 
directory) to be accessed. Once the link is established, the target fle can be accessed as if 
it were a fle with a name (link name) in the current directory. The link name entry in the 
current directory is identifed by the value L in its fag feld. 

When the link mechanism is used, the fle system normally maintains a count indicating the 
number of links pointing to a fle. The UNIX fle system uses inodes that contain a feld to maintain 
a reference count with each fle to indicate the number of links pointing to it. The content of this 
count feld (reference count) is incremented or decremented when a new link is added or deleted, 
and the concerned directories and shared fle are also required to be accordingly manipulated. A fle 
can be deleted only if its reference count is 0. Thus, if a fle has many links to it, it cannot be deleted 
even if its owner intends to do so by executing a delete operation. 

http://www.routledge.com/9781032467238


 

    
  

 

 

  

 
 
 
 
 
 

 

 

 
 

 

366 Operating Systems 

A major limitation in using hard links for fle sharing is that directories and inodes are data structures 
of a single fle system (partition), and hence cannot point to an inode on another fle system. Moreover, 
a fle to be shared can have only one owner and one set of permissions, and thus all the responsibilities 
relating to the fle are entrusted only to its owner, even including the disk space held by it. 

An alternative way to share fles is to create a symbolic link, which is itself a fle and contains 
a pathname of another fle. Thus, if a fle X is created as a symbolic link to a shared fle Y, then 
fle X will contain the pathname of Y provided in the link command. The directory entry of fle 
X is marked as a symbolic link, and this way the fle system knows how to interpret its contents. 
Symbolic links can create dangling references when fles are deleted. One interesting feature of 
this kind of link is that it can work across mounted fle systems. In fact, if a means is provided for 
pathnames to include network addresses, such a link can then refer to a fle that resides on a dif-
ferent computer. UNIX and UNIX-like systems call it a symbolic link, whereas in Windows, it is 
known as shortcut, and in Apple’s Mac OS, it is called alias. However, one of the disadvantages of 
symbolic links is that when a fle is deleted, or even just renamed, the link then becomes an orphan. 

• Access Rights: The fle system should provide an adequate and a suffciently fexible 
mechanism for extensive sharing of fles among many different users, of course, providing 
suitable protection mechanisms to amply secure and control the usage of these shared fles. 
Typically, the fle system provides a wide range of access rights to the users of shared fles. 
Different types of access rights are provided by different operating systems (fle systems); 
however, the rights being offered normally constitute a hierarchy in the access control list 
(to be discussed later), meaning that each such right implies those that precede it. Thus, 
for example, if a particular user is offered the right to append a specifc fle, it is implied 
that the same user can automatically enjoy the rights that precede it, such as acquaintance, 
execution, and reading. 

• Concurrent Access: When different users with the same access rights on a particular fle 
attempt to execute one of the permitted operations on the fle simultaneously, the fle manage-
ment system must impose certain rules in order to keep them mutually exclusive for the sake of 
needed interprocess synchronization (already discussed in Chapter 4). Several useful methods 
are available to negotiate such situations, and one such simple approach may be to lock the 
entire fle while it is under use, thereby preventing other users from accessing it simultaneously. 
Another approach may be relatively fne-grained control in which the respective record(s) under 
use is only locked and not the entire fle. Manipulation of fles with the same command being 
issued simultaneously by different users may also lead to a situation of deadlock. But those situ-
ations can be easily handled by the fle management system using additional simple methods 
that can ensure prevention of deadlocks (already discussed in Chapter 4). 

Brief details on links with a fgure, and also different access rights, are given on the Support 
Material at www.routledge.com/9781032467238. 

7.12 BLOCKING OF RECORDS: LOGICAL TO PHYSICAL 

A structured fle is organized, accessed, and processed in terms of logical units known as records 
defned by the creator, whereas a block is the physical record that is the unit of data transfer to or 
from an I/O medium. To perform I/O, the records must be organized in terms of blocks. A fle is 
said to exploit blocking of records if a physical record (block) contains more than one record (logi-
cal record). The number of logical records contained in one physical record is called the blocking 
factor of a fle. The blocking factor thus depends on the length of the block, which is decided mostly 
by the fle management system, and also on the size of the record, which is defned by the user. If 
records are blocked, and m is the blocking factor, then a read operation on a fle transfers m logi-
cal records to the memory at a time. Consequently, the total number of I/O operations required for 

http://www.routledge.com/9781032467238


File Management 367  

 

  

   

 
 
 
 
 

   

processing a fle is substantially reduced, thereby improving not only the fle processing effciency 
but also utilization of space on secondary storage and thereby throughput of a device. On the other 
hand, actions for extracting a particular logical record from a block thus accessed for processing are 
collectively called deblocking actions. However, many issues now need to be addressed, apart from 
deciding what size of block is suitable for overall use. 

First, the block may be considered fxed or variable length. Fixed-length blocks offer several 
advantages, such as; making data transfer easy to or from a secondary device, straightforward buf-
fer allocation in main memory and memory commitment for fle buffers, and simple organization of 
blocks in secondary storage that requires no additional overhead. 

The second consideration is about the size of the block to be chosen, which, in turn, is related to 
the blocking factor when compared to the average size of a record. Intuitively, the larger the block, 
the more sequential records can be handled in one I/O operation, thereby resulting in a reasonable 
reduction in the total number of I/O operations needed to process a fle. However, if the records 
are being accessed randomly with no particular locality of reference, then larger blocks result in 
the unnecessary transfer of useless records. Moreover, larger blocks require larger I/O buffers, and 
management of larger buffers itself creates other diffculties. Another serious drawback of using 
a larger block irrespective of any type of access is that if such a block fails in an I/O operation, 
it requires all the records that are now quite large in number contained in the block to be created 
afresh, thereby requiring more additional overhead in order to make the fle workable again. In 
general, for a given size of a block, there are three methods of blocking. 

7.12.1 FIXED-LENGTH BLOCKING 

Here, the block size is usually an integral multiple of fxed-length record size. Sometimes the record 
size is even slightly increased by adding a small unused space at its end to make the record size an 
exact divisor of the block size. This unused additional space can also be used by the record in the 
future in many ways if needed. In summary, the fxed-length blocking approach is the most com-
mon one, especially for sequential fles with fxed-length records, and offers a lot of advantages, as 
already discussed. 

7.12.2 VARIABLE-LENGTH SPANNED BLOCKING 

Here, variable-length records are stored after being packed into blocks with no space remaining 
unused. Consequently, some records may span over two blocks, with the continuation indicated by a 
pointer to the successor block. However, this approach, while providing better storage usage and no 
constraint on the size of records, causes diffculties at the time of implementation, mainly in updating 
of records, which is tedious and also time-consuming irrespective of the type of organization being 
used. Also, for records that are spread over two blocks, each one requires two expensive I/O operations. 

7.12.3 VARIABLE-LENGTH UNSPANNED BLOCKING 

In this method, variable-length records are stored, but spanning is not allowed. As a result, there 
may be unused (wasted) space in most of the blocks, because the next record is often larger than the 
available unused remaining space. This approach results in wastage of space and thereby requires 
limiting record size to be nearly the size of a block. In virtual memory environments, while the 
small page is used as the basic unit of data transfer operation, this method is often implemented by 
combining multiple pages to create larger blocks as units for the sake of effcient I/O operation. In 
fact, this approach is proftably employed for VSAM fles used in the IBM OS/370 ESA and in the 
OS/390 versatile operating system to drive large IBM mainframes. However, irrespective of differ-
ent blocking schemes, as mentioned, the effect of blocking is unaltered even while the spaces on 
secondary devices are managed by different fle allocation schemes. 



 

   

 

 

   

 

 
 
 
 
 

 
 

 

 

368 Operating Systems 

7.12.4 CHOICE OF BLOCKING FACTOR 

The right choice of a blocking factor could be considered a dominant parameter in I/O processing 
carried out by the fle management system. To demonstrate this, let us consider that sr and sb rep-
resent the size of a record (logical record) and block (physical record), respectively; then sb = m. sr, 
where m is the blocking factor. The total I/O time per block (tio)b, and the I/O time per record (tio)r, 
can then be computed as 

(tio)b = ta + m. tx . . . (a) 
(tio)r = (ta / m ) + tx . . . (b) 

Where t and t are the access time per block and transfer time per record, respectively. If t = a x a 

8 msec., data transfer rate = 1000 Kbytes/sec, record length sr = 200 bytes. So the transfer time per 
record (logical record), that is, tx = 200/1000 msec. = 0.2 msec. The values of (tio)b and (tio)r can be 
computed using Equations (a) and (b) for a given value of m. 

If the CPU time spent in processing a record t is 2.5 msec. and m = 4, then (tio) < t . This shows p r p 

that the next record is available to the CPU before the processing of the current record is completed, 
thereby totally eliminating CPU idle time waiting for the next record to arrive. In fact, proper block-
ing of records and related buffering, when combined, ensure that the process does not suffer any I/O 
waits after the initial start-up phase. 

Brief details on this topic, with Table 7.3, are given on the Support Material at www.routledge. 
com/9781032467238. 

7.13 MANAGEMENT OF SECONDARY STORAGE 

Disk being a prime secondary storage device, a major issue is its space management which is car-
ried out effciently and reliably by the fle management system, primarily following the line similar 
to those used in memory management. Like a fle, which is considered to consist of a collection of 
logical blocks containing long sequences of bytes, the disk space is also divided into logical disk 
blocks, and the size of the logical block is the same as the logical disk block. The size of this logical 
disk block, on the other hand, is also equal to the size of the logical sector. 

Disk blocks are consumed by fles, and as fles are manipulated by the fle management system, so 
are disk blocks allocated/deallocated to fles. This, in turn, gives rise to several issues. First, limited 
space on secondary storage must be properly allocated to fles, and second, it is necessary to keep 
track of the available free space for additional allocations due to growth of existing fles as well as for 
fresh allocations to new fles. Moreover, when a fle is deleted, the disk blocks occupied by the fle are 
to be released, and this space must then be added to the existing free space by using a suitable strat-
egy. All these issues are closely interrelated to one another; that is, the approach taken for fle alloca-
tion may have an impact on the approach taken for free space management. On the other hand, all the 
free space management strategies may not go well with all the fle allocation strategies. In addition, 
it has been observed that there is a strong interaction between fle structure and allocation policy. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.14 FILE ALLOCATION: DIFFERENT ISSUES AND APPROACHES 

When allocating space to a fle, different strategies involving several issues have been tested; some 
primary issues are: 

• What is the amount of space to be allocated to a fle when a new fle is frst created? 
Whether the maximum space is to be provided at a lot that is requested at the time of its 
creation? 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


File Management 369  

 

 
 
 
 

   

 

 

 

• The other approach suggests allocating space to store an entire fle as a collection of pieces, 
each one with contiguous areas; these pieces themselves may not normally be contiguous. 
Now, the obvious question is, what will be the size of these pieces used as a unit for fle 
allocation? The size of a piece can range from a single disk block to even the entire fle. 

Whatever method of allocation is considered, the key issue in storing fles is how to keep track 
of the space allocated to a fle and what sort of data structure or table is to be used for this 
purpose. Various methods are, however, used in different systems. An example of such a data 
structure is the inode used in UNIX or fle allocation table (FAT) used in Windows and some 
other systems. 

7.14.1 STATIC (PRE-ALLOCATION) AND DYNAMIC ALLOCATION 

Early fle systems used to allocate a large enough single contiguous disk area to a fle. This scheme 
is simple to implement, and only the disk address of the frst block (starting address) of the fle is 
required to handle the entire fle. The performance is also superb due to inherent speedy access of 
the fle from the disk. However, contiguous allocation also suffers from several critical drawbacks. 
Under this scheme, the space to be allocated to a fle is usually its maximum size or an estimate of it 
(a reliable estimate is, however, diffcult to achieve) or often inclined to an overestimation in fle size 
due to apprehension about running out of space. Whatever it may be, it eventually invites a handful 
of waste in secondary storage space and both internal and external fragmentation of disk space that 
might have been otherwise used. Compaction of the disk removes external fragmentation, but it is 
usually prohibitively expensive. Besides, a contiguous allocation scheme also faces other diffculties 
(due to the presence of bad blocks) and requires complicated arrangements when allocating spaces 
to a disk. 

Contemporary FMS avoid all these problems by adopting the noncontiguous memory allocation 
model (see Chapter 5) to disk space allocation. This approach avoids external fragmentation. Fixed-
sized or variable-sized disk blocks are allocated on demand at the time of fle creation or updating 
a fle. This reduces the average fragmentation (internal) per fle to half the size of a disk block (in 
the last allocated disk block). As usual, access to data requires the equivalent of “address transla-
tion” (see Chapter 5) that needs appropriate data structures or tables containing several information, 
particularly about disk blocks allocated to a fle. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.14.1.1 Different Options 
Noncontiguous allocation is closely related to the size of the piece of disk area to be allocated to a 
fle. At one end, a piece may be taken that is large enough to hold the entire fle. At the other end, 
space is to be allocated on disk one block at a time. Whatever it may be, selection of the size of 
a piece is a critical one, and several factors decide the tradeoff between effciency with regard to 
a single fle operation versus the entire system’s effciency as a whole. The factors suggested by 
Wiederhold (1987) in this regard, as listed in the following, are of primary importance. These fac-
tors are interrelated to one another but are to be minutely considered individually at the time of 
deciding the tradeoff. 

• Having a large piece provides contiguity of space that eventually increases performance 
while writing a fle in a single blow as well as for read/modify operations in transaction-
oriented processing systems. 

• Using a large number of small pieces provides allocation fexibility and better space utili-
zation but at the same time increases the size of the tables employed to manage the alloca-
tion information. 

http://www.routledge.com/9781032467238


 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

    
 

  

 
 
 
 

 
 
 
 
 
 
 
 
 

370 Operating Systems 

Now, the consideration is whether fxed-size or variable-sized pieces of the disk area are to be 
used in each of these two approaches; such as, small number of moderately large pieces or large 
number of small pieces. However, considerations of the size of the pieces as well as the number 
of pieces to be used altogether on permutations give rise to several options, each of which is 
equally conducive to both pre-allocation and dynamic allocation, but each one, in turn, has also 
its own merits and similarly drawbacks. While moderately large and variable-sized contiguous 
pieces of disk area normally provide better performance with less wastage of space (fragmenta-
tion), managing these pieces with the existing free spaces and minimizing of fragmentation raises 
some issues. Those can be resolved by adapting the noncontiguous memory allocation model (see 
Chapter 5) to disk space allocation. The most viable alternative strategies in this regard are, frst 
ft, best ft, and nearest ft. Each of these strategies has its own strengths and drawbacks; hence, 
it is very diffcult to decide which one is superior, because numerous factors interact with one 
another in a critical fashion. The factors that infuence choosing a particular strategy are types 
of fles, structure of fles, access mechanism to be employed, disk buffering, disk caching, disk 
scheduling, and many other performance metrics in the system that are closely associated with 
I/O operation. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.15 FILE ALLOCATION: DIFFERENT METHODS 

After considering all the issues, as discussed, two distinct categories relating to space allocation to a 
fle ultimately emerge: contiguous allocation and noncontiguous allocation. Noncontiguous alloca-
tion uses two common methods: chained (or linked) allocation and indexed allocation. 

7.15.1 CONTIGUOUS ALLOCATION 

This method is used mostly in a pre-allocation strategy in which a single contiguous set of blocks 
is allocated to a fle. Thus, adjacent logical blocks occupy adjacent physical blocks. It is simple 
to implement and easy to maintain, because the FAT for keeping track of fle blocks needs just 
a single entry for each fle, showing only the address of the starting block and the length of the 
fle. This method is excellent for processing individual sequential fles in which multiple physi-
cally adjacent blocks can be accessed at a time with minimum disk head movement resulting 
in faster access, thereby yielding notable improvement in I/O performance. No other scheme 
even comes close. Multi-sector transfers also are conducive, since there is no intervening disk 
access. Random access to contiguous blocks is also quite easy and fast, because the address of 
the required disk block can be easily calculated on the basis of the fle’s starting address recorded 
in the directory. For example, if the address of the starting block of a fle is n and the kth block 
is required, its address on secondary storage is simply n + k – 1, and this can be accessed from 
the disk very quickly. However, the performance of multi-sector transfers in random-access mode 
depends mostly on the number of consecutive blocks that are accessed between successive seek 
operations. 

The second approach in the implementation of a contiguous allocation scheme is that once the 
initially allocated space is full, the fle system searches for another bigger contiguous free area. The 
partially created fle is then copied into this area, and the remaining space of this newly allocated 
area can then be used by the fle if it grows. The initially allocated area is released. All these activi-
ties are, however, carried out by the fle system in a way transparent to the user with no notifcation, 
except that a slight delay may be experienced. 

A third method of contiguous allocation is that once the initially allocated space is full, the rest 
of the fle will be placed in some other contiguous free area, commonly called overfow. This over-
fowed fle can later be reconstructed offine by another operation, such as COMPACT. 

http://www.routledge.com/9781032467238


File Management 371  

   

 
 
 
 
 
 

 
 
 
 
 
 
 

 

The contiguous allocation scheme has its own merits and drawbacks, already discussed in detail 
in a previous section. External fragmentation is an obvious consequence of the contiguous alloca-
tion scheme that makes it diffcult for the fle system to fnd a suffcient number of contiguous blocks 
to satisfy the new requests. It will then be necessary to perform a compaction (defragmentation) 
algorithm to coalesce the scattered free space on the disk to a contiguous space for further use. 

Briefs detail on this topic with figures are given on the Support Material at www.routledge. 
com/9781032467238. 

7.15.2 NONCONTIGUOUS ALLOCATION: LINKED (OR CHAINED) ALLOCATION 

The major problem of contiguous allocation is fragmentation of both types, especially external frag-
mentation, which consequently reduces the percentage of disk space usage. However, one solution 
to this predicament is linked allocation, which is essentially a disk version of a linked list and hence 
does not require the fle size to be declared in advance. 

Here, disk space is allocated on an individual block basis, and a fle is represented by a linked list 
(or chaining) of allocated disk blocks together. Each block contains two felds: the data which is to 
be written into the fle and the control information, which contains the address of the next disk block 
(i.e. a pointer to the next block in the chain) allocated to the fle. Here, the directory (FAT) needs just 
a single entry for each fle, showing the starting block (the Loc info. feld of the directory entry for the 
fle points to the frst disk block; see Figure 7.5) and the length (number of blocks) of the fle. Other 
blocks are accessed one after another by following the pointer given in the current block using the clas-
sical linked allocation mechanism. Although this method supports pre-allocation, it is more common 
to simply allocate blocks on an as-needed basis. When an additional disk block is needed to append 
new information to a fle, any free block can be added to a chain, even in the middle of an existing 
fle, a feature not offered by any other space allocation policies. Searching (or selecting) an individual 
block of a fle requires only tracing through the chain to the target block. There is almost no external 
fragmentation, if any; it is only on the last allocated block and then only half the size of the block, on 
average. To delete a fle, the list of disk blocks allocated to the fle is taken off and is simply added to 
the list of free blocks. In this way, it saves a lot of processing time required for fle deletion. 

This type of organization of fles is most suitable and effcient for sequential fle processing in 
both single-user and multi-user shared systems, but random access is extremely slow because locat-
ing a given block requires accessing all the intervening blocks in the chain. Moreover, as there exists 
no principle of locality, if it is required to access several blocks of a fle at a time (as in sequential 
processing), then a series of accesses to different parts of the disk are required, which eventually 
increases the disk I/O. This problem has been resolved in some systems by periodically consolidat-
ing fles (reordering allocated blocks to consecutive blocks and then chaining). In addition, the use 
of a pointer associated with each disk block of a fle to indicate its own next block leaves an amount 
of space in a block for data storage that is no longer a power of two because the pointer takes up a 
few bytes. While it is not fatal to have such a peculiar size, it is less effcient because many programs 
are used to read and write in blocks whose size is a power of two. Another serious drawback of 
linked allocation is its sensitivity to chaining to damaged pointers. 

Reliability with this organization is also poor due to its sensitivity to chaining to damaged point-
ers, which can make the remaining blocks inaccessible, leading to total loss of data in the entire fle, 
and recovering chained fles is an extremely painful experience. Similarly, if a pointer in the free 
list is corrupted, the operation of the fle system may be disrupted. However, some designs negotiate 
this problem by storing pointers in a separate dedicated fle and making redundant copies of it to 
counter this fatal situation and allow subsequent safer recovery. This idea of keeping a copy of the 
list of chains of the active fles into the main memory facilitates faster access, especially for random 
fle access. Some versions of the popular MS-DOS operating system use a similar approach. 

More on this topic with fgures is given on the Support Material at www.routledge.com/ 
9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 

 
 
 
 
 
 
 
 
 
 

 

 

 

372 Operating Systems 

7.15.3 INDEXED ALLOCATION 

Many of the negative factors experienced with contiguous and noncontiguous chained allocation 
methods are duly addressed in the indexed allocation method. In its simplest form, the directory 
(FAT) entry of each fle points to a separate one-level index known as a fle map table (FMT) for 
each fle. The index in the FMT has one entry for each portion allocated to the fle, and each cor-
responding allocated disk block contains a single feld: the only data feld. Typically, the fle indexes 
(FMTs) are not physically kept as part of the directory (FAT). Rather, the fle indexes (FMTs) for a 
fle are kept in a separate block, and the loc. info feld (see Figure 7.5) of a directory entry points to 
the FMT for a fle, as shown in Figure 7.8. 

Allocation of disk space to a fle is performed on an as-needed basis when a fle is created or 
updated using either fxed-size blocks, as shown in Figure 7.8, or variable-sized blocks (with two 
felds in FMT, the starting address of the block and the length of the respective block). Allocation by 
fxed-size blocks eliminates fragmentation, whereas allocation by variable-sized blocks improves 
locality (access to successive blocks). Whatever the case, the fle consolidation operation may also 
need to be carried out periodically to reduce the size of the index in the case of variable-sized 
blocks, but it shows no effect in the case of fxed-size block allocation. To locate a free block, the 
disk status map (DSM) or free list (to be discussed in next section) is searched, and if this free 
block is allocated to a fle, the address of this block is added to the FMT of the respective fle. 
Deallocation is performed when the fle is deleted, and all disk blocks pointed to by the FMT of the 
fle are marked free before the FMT and the directory entry of the fle are erased. Indexed alloca-
tion supports both sequential access and direct access to the fle, be it small, medium, or large, and 
therefore is accepted as the most common and useful form of fle allocation. 

Generally, for a small fle, the FMT itself can be accommodated in the directory entry to realize 
improved effciency with better accessibility. But for a medium or large fle, the FMT is quite large; 
hence, multi-level indexed allocation is commonly used. The directory entry still contains a part 
of the FMT. The frst few entries in the FMT, say, k entries, may point directly to data blocks as is 
found in traditional indexed allocation. Other entries of FMT point to special blocks, commonly 
called index blocks, which contain pointers to data blocks that are accessed through two levels of 
indirection. The frst level of indirection is from the FMT to the respective index block, and the 
second level of indirection is from the index block to the target data block. This type of arrangement 
is quite useful for small fles, as the FMT itself is found in the directory entry, and even for medium-
sized fles containing k or fewer data blocks which can be accessed directly through FMT with no 
need for any index blocks. Only moderately large and very large fles have to visit multiple levels of 

FIGURE 7.8 A schematic block diagram illustrating the mechanism of indexed allocation method used in 
fle management of a generic modern operating system. 



File Management 373  

 
 
 
 
 

 

     

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

indirection in which one disk access per level of indexing is required to reach the target data block 
and thus face a marginal degradation in their access performance. However, successive accesses to 
fle blocks within the addressing range of the current index blocks need not face this overhead if 
recently used index blocks are kept in memory. Naturally, sequential access is more likely to beneft 
from buffering of index blocks. However, the nature of noncontiguous allocation is such that it is 
unlikely to fnd adjacent logical blocks in consecutive physical disk blocks (or sectors). In order to 
reduce latency in disk access, systems using noncontiguous allocation occasionally make their fle 
contiguous by means of performing defragmentation or consolidation or by another similar useful 
approach. 

Conclusion: File organization using indexed allocation is less effcient for sequential fle process-
ing when compared to the linked allocation scheme, since the FMT of a fle has to be accessed, and 
then a series of accesses to different parts of the disk are required that eventually increases the disk 
I/O. Random access, however, is comparatively more effcient, since the access to a particular record 
can be carried out directly by way of obtaining the specifc address of the target block from the 
FMT. Reliability in indexed allocation is comparatively less damaging than linked allocation. This 
is because any corruption in an entry of an FMT or DSM may lead to a situation of limited damage. 

Indexed allocation with variable-length blocks and multiple-level index allocation with fgures 
are given on the Support Material at www.routledge.com/9781032467238. 

7.16 FREE SPACE MANAGEMENT: DIFFERENT TECHNIQUES 

Spaces on the disk not currently allocated and spaces released by a fle when it is deleted together 
constitute the free space on the disk. Free space management is closely related to each of the fle 
allocation techniques just described and is a major issue in the performance of a system as a whole. 
While fle allocation techniques are mostly concerned with the FAT, free space management needs 
a different type of table known as a disk allocation table. Various techniques related to free space 
management exist, but we will describe here only a few popular techniques that have been used in 
many reputed contemporary system. 

7.16.1 DISK STATUS MAP OR BIT TABLES 

The status of disk blocks can be recorded by adapting the bit map scheme used for noncontiguous 
memory allocation in memory management (see Chapter 5). While managing disk block status, a table 
called the DSM or bit tables is used. The DSM is similar to a bit map; it has one entry of only one bit 
for each disk block that indicates whether the disk block is free or has been allocated to a fle. When 
the bit is 1 in an entry, it indicates that the corresponding disk block is allocated. Similarly, when the 
bit is 0 in an entry, it indicates that the corresponding disk block is free to use. Figure 7.9 illustrates a 
DSM. Every time a new block needs to be allocated to a fle, the DSM is consulted. An alternative to 
the use of a DSM may be to use a free list of disk blocks (to be discussed in the next section). 

This method is easy to implement, and it is relatively simple to locate one or a contiguous group 
of free blocks, and subsequent allocation and deallocation of blocks can be carried out quickly by 
setting and resetting the corresponding bits of the map. It also performs equally well with any of 
the fle allocation techniques just described. But the size of a bit map for even a moderate size of 
disk is so large that it cannot be stored even in today’s most common memory sizes for speedy 
operation. Moreover, searching of bit tables while in memory is so time-consuming that it badly 
affects the overall system performance to an unacceptable degree on average. On the other hand, if 
the same bit table is stored on disk, it would require such a large number of disk blocks that search-
ing of this amount of disk space every time a block is needed is a huge time-consuming operation 
that cannot be afforded. So, this proposition is outright rejected, and a bit table resident in main 
memory is indicated. In fact, systems that employ bit tables in main memory maintain auxiliary 

http://www.routledge.com/9781032467238


      

  

  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

. . .. . . .  0 1 1 0 0 1 0 1 1 . . . . . .. . . . . . . . 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ ↓ _ _ _ _↓ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

↓ ↓ 
Disk block Disk block 

is free is allocated 

374  Operating Systems 

FIGURE   7.9  An example relating to management of disk free space using disk status map (DSM) or bit 
tables employed by a generic modern operating system. 

data structures that summarize the contents of the bit tables by logically dividing them into almost  
equal-sized subranges, and a summary can be made for each such subrange that mainly includes  
the number of free blocks and the maximum-sized contiguous number of free blocks. When the  
fle management needs a particular number of contiguous blocks, it can go only through the sum-
mary table to fnd an appropriate subrange and then search that particular subrange to fnd the  
desired one. 

7.16.2  CHAINED FREE  BLOCKS  AND GROUPS  OF  BLOCKS 

Systems with noncontiguous allocation follow a philosophy which presumes that the fles usually 
grow incrementally and thus allocate only a single block or groups of blocks to them in the form 
of pieces. Chaining of free pieces is rather simple and convenient. These pieces may be chained 
together by using only a pointer and length-value in each free piece. Allocation of free spaces 
by variable-length pieces may be carried out using the frst-ft algorithm. The headers from the 
pieces are fetched one at a time to determine the suitable free piece in the chain. After obtaining 
the required piece, pointers and length values are adjusted. One of the distinct advantages of this 
method is its negligible storage overhead, because there is no need to have a disk allocation table, 
merely to use a pointer to indicate the beginning of the chain and the length of the frst piece. Since 
disk space needed for pointers and length-value is usually less than 1 percent, its impact on disk 
utilization is of little practical concern. This method is thus suited to all types of fle allocation tech-
niques. Another advantage of this approach is that new free pieces obtained upon deletion of fles 
can be appended to the existing free chain by simply updating the link of the tail block, and this can 
be performed with only a single disk access. 

When free space management is performed on a block-basis, and if allocation is made one block 
at a time, simply choose the free block at the head of the chain and adjust the frst pointer or length-
value accordingly. One serious problem is that every time a block is allocated, it is necessary to read 
the block frst to recover the pointer to the now-new frst free block before writing data to that block. 
If many such individual blocks need to be allocated one at a time for a fle operation, this may slow 
down the fle creation process to a great extent and make the fle highly fragmented. Consequently, 
deletion of a highly fragmented fle requires one disk access per each block freed to update the 
pointers that, in turn, makes the entire fle-deletion process very time-consuming. Block-basis allo-
cation, however, does not give rise to any external disk fragmentation; hence, disk compaction may 
not be needed. Moreover, chaining on a block-basis allows easy handling of bad blocks by simply 
overwriting them from both fle and free chains. 

7.16.3  INDEXING 

Indexing of free space may be cumbersome. This approach treats the free space as a fle and simi-
larly uses an index table as already described in the fle allocation method. In a freshly initialized 



File Management 375  

    

 
 

 
 
 
 
 

 
 

 
 
 

volume with a very large number of free blocks, this approach requires multiple levels of indexing 
when it intends to access many or all of them, thereby consuming an unacceptable amount of pro-
cessing time. As new fles are gradually created, the number of free blocks may automatically be 
decreased, but allocations and deallocations of blocks may require high overhead due to multiple 
levels of indexing. That is why some designs propose keeping at least one index block of the free list 
in memory that can speed-up the allocation of up to n free blocks, where n is the number of indices 
in an index block. However, the outcome obtained is still not acceptable. For the sake of effciency, 
the index should be maintained on the basis of variable-sized pieces rather than on a block-basis. 
This requires only one entry in the index table for every free piece on the disk. This approach 
appears to mostly offer adequate support for all types of fle allocation methods. 

7.16.4 FREE LIST OF BLOCKS 

This approach can be viewed in two ways: 

• free space in the form of each individual block-basis, and 
• free space as a collection of different clusters of contiguous free blocks. 

In an individual block-basis approach, each free block is identifed by assigning it a serial number 
(or by its address), and the list of numbers (or addresses) of all free blocks can then be recorded in 
a separate list. With a disk of common size today, the size of the number (or address) to represent 
(identify) each free block in the free list will require in the range of 32 bits (232 = 4 GB). Such a huge 
free list cannot be maintained in main memory and hence must be stored on disk. Now, the problem 
is that every time a free block is needed, a corresponding slower disk access will then be required, 
and this will eventually affect the overall system performance adversely. To avoid this problem, 
some designers suggest two effective techniques that store a small part of the list in main memory 
so that the block request can be quickly responded to. 

One such technique is to fetch a part of the list into main memory and treated it as a push-down 
stack. Whenever a new block is required to be allocated, it is popped off the top of the stack, and 
similarly when a block is deallocated, it is pushed on to the top of the stack. In this way, all the 
requests can be responded to with no delay except in the situation when the stack (part of the list) 
in memory is either full or exhausted. At that time, only one appropriate transfer of a part of the list 
between disk and memory is required to resume stack operations. The other technique is similarly 
to fetch a part of the list into main memory, and it would now be treated as a FIFO queue and be 
operated in a similar way to a push-down stack but obeying the traditional queue operations. To 
make each of these approaches more attractive and effective, a background process (or thread) can 
be slowly run whenever possible to sort the list in memory by serial number (or by address) to enable 
each of these approaches to be applicable for contiguous allocation of blocks as far as possible. 

The second approach is allocation of free space from a collection of different clusters of con-
tiguous free blocks, and it requires keeping track of such clusters and also implementation of a 
policy for allocation and deallocation of blocks. Addresses and sizes of free disk areas can be 
maintained as a separate list or can be recorded in unused directory entries. For example, when 
a fle is deleted and subsequently deallocated, its entry in the basic fle directory can be marked 
as unused, but its address and size in terms of blocks can be left intact. At the time of creation of 
a new fle, the operating system can inspect unused directory entries to locate a free area of suit-
able size to match the current request. The frst-ft and best-ft algorithms could be used for this 
purpose. Depending on the portion of the directory that is kept in main memory, the trade-off 
between frst-ft and best-ft may go either way. While frst-ft may sometimes give rise to a sub-
stantial amount of internal fragmentation, it requires fewer entries of the directory to be looked 
up and may be preferable when very few directory entries are available in main memory and most 
of the directory entries are on the disk. On the other hand, if most of the directory entries are 



 

 
 

 

 

 

 

 

 

 

 

376 Operating Systems 

available in main memory, the best-ft algorithm provides a better performance since it tends to 
reduce internal fragmentation by carrying out a closer match of the requested size to the size of 
the allocated disk area. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.17 FILE ORGANIZATION: PHYSICAL REPRESENTATION 

There are many ways to organize fles on disk. A few principles seem to be universal. 

• Disk blocks have numbers, and complex structures can be placed on the disk by having 
data in one block refer to another block by number. 

• Each fle is described by a fle descriptor, which tells how the fle is physically arranged 
on the disk. 

• Each physical disk is described by a disk descriptor, which tells how the disk is arranged 
into areas and which parts are currently unused. The disk descriptor is stored at a well-
known location on the disk. 

• Information may be stored redundantly on the disk to allow programs to try to restruc-
ture the disk if it gets confused. Confusion is the typical result of unscheduled operating-
system failures, because the structure may be undergoing modifcation at the time of the 
failure. Even worse, the disk may be in the middle of writing a block when failure occurs. 
Restructuring a garbage disk is called salvaging. 

• The basic unit of allocation is the single disk block, although entire tracks or cylinders may 
be allocated at a time to keep large regions in a fle contiguous on the disk. This attempt to 
keep fles in local regions on the disk is called clustering. It is based on the cache principle, 
since it is faster to read or write on the disk at cylinders close to the current position, and 
the most likely request to come after one fle request is another request on the same fle. 
Clustering may also be attempted to keep fles that are in the same directory positioned 
close together on the disk. Another form of clustering, called skewing, that spaces con-
secutive blocks of a fle by a few sectors apart. As a result, a typical process reading the 
entire fle will fnd the next fle block under the disk read/write head at the time it needs 
it. Some disk controllers interleave sectors to place consecutively numbered ones some 
distance apart from each other on the same track. In this case, the fle manager most likely 
should not attempt skewing. 

• Searching fle structures and allocating free blocks would be too time consuming if the 
information were stored only on the disk. In accordance with the cache principle, some 
structure and allocation information may be duplicated in the main store. But, as is typi-
cally the case with caches, the cached (main-store) data and the actual (disk) data will 
possibly be out of step. Operating system failures (crashes) then become even more serious 
than they seem to be, because they may lose recent changes. To mitigate the danger, all 
main-store caches are occasionally (perhaps every minute) archived to the disk. Perhaps 
the worst time for a catastrophic failure is during archiving. 

The facilities provided by the fle service mostly determine the structures that must be used. For 
example, direct access of arbitrary positions in a fle requires different structures than sequential 
access. Hierarchical directories and fat directories require different structures. Different methods 
of access control also need different structures. 

7.18 FILE SYSTEM RELIABILITY 

The fle system never provides any protection to data against physical damage to the devices and 
media but can only help to secure the information. Consequently, damages with a fle system, if 

http://www.routledge.com/9781032467238


File Management 377  

 
 

  

 
 
 

 

   

 
 
 
 
 
 
 
 

  

result in irrevocable lost for some reasons, then restoring all the information will be not only time-
consuming and painstaking, but equally diffcult, and in many situations, seems to be practically 
impossible, and may even be catastrophic. However, there are some commonly used methods, such 
as bad block management, and backups, that help to offer safeguards to the fle system. That is why 
the reliability of the fle system is urgently sought. The fle system is said to be reliable if it can guar-
antee that the functions of the fle system will work correctly despite the different types of faults that 
may occur in the system. The reliability of fle system concerns two main aspects: 

• To ensure correctness of all types of fle operations. 
• To adequately guard against any type of error that may damage the data and thereby cause 

loss of data in fles. 

Reliability is closely associated with the terms fault and failure. A fault is commonly a defect in 
some part of the system causing an error in the system state. When an error causes unexpected behav-
ior or an unusual situation in the system, it is termed a failure. In other words, a fault is the cause of a 
failure. For example, crashing of I/O devices due to a power outage or corruption of a disk block is a 
fault, whereas inability of the fle system to read such a block is a failure. Faults are of various types, 
and any one of them may affect the entire computer system or hardware components such as proces-
sor, memory, I/O devices, and communication links. But we will concentrate here only on some of 
those issues of fault and the respective approaches to prevent them that are related to FMS. 

Reliability problems in fle systems that are most common are mainly system crashes due to 
power interruptions and data corruption by viruses leading to loss of data in fles or loss of fle 
system control data (various data structures needed by the fle system, to be described in the follow-
ing discussion) stored on disk. If the control data are either lost or become inconsistent, the injury 
is fatal, and the fle system may not be able to work at all. On the other hand, damage caused by 
loss of only data in a fle due to data corruption is relatively less serious, since it is limited to only 
a single fle. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.18.1 FILE SYSTEM INTEGRITY: IMPORTANCE 

Integrity of the fle system ensures the correct and consistent operation of the fle system. Loss of 
integrity arises mostly due to the loss of or damage to the control data of the fle system that mainly 
includes the table of active fles, namely FCBs of open fles, parts of the free list of disk blocks or 
DSM, and fle map tables of open fles. Some of these control data, like the fle map table and others, 
are written back to disk only when a fle is closed. Other control data, like the DSM and free lists, 
may be copied to disk by the system only periodically. Such an arrangement may lead to a situation in 
which disk copies of control data at any instant may not be identical to their corresponding memory 
contents during system operation; hence, the latest control data may be lost due to erasure of memory 
if the power fails. Similarly, control data not being maintained in memory are lost when a disk crashes. 

Brief details on this topic with an example are given on the Support Material at www.routledge. 
com/9781032467238. 

7.18.2 RELIABILITY IMPLEMENTATION: DIFFERENT TECHNIQUES 

File management systems (operating systems) often use two popular approaches to ensure fle integ-
rity, thereby ensuring that the data are reliably stored over a period of time. Those are: 

Recovery: This is a classic approach implemented using different techniques when a failure 
occurs. It attempts to restore the damaged data in fles and inconsistent control data of 
the fle system to some near-past consistent state so that the fle system can once again 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 

 

  

378 Operating Systems 

resume its normal operation from the new state. While this action rescues fles from a 
damaged state, deviations from the expected behavior may also be observed. Appropriate 
manipulation measures in system operation can then accordingly be taken by noticing the 
deviations that happened. 

Fault tolerance: This is another effective approach that uses some commonly used tech-
niques in order to guard the fle system against any loss of integrity. Its objective is to keep 
the operation of fle system consistent, uninterrupted, and perfectly correct, even in the 
event of failure, at all times. 

7.18.2.1 Recovery Techniques 
One effective method often used to recover a fle system in the event of failure is periodically mak-
ing a backup of all user and control data in the fle system. When a system failure occurs, the fle sys-
tem is restored to the state recorded in its latest backup. However, all the actions performed between 
the last backup and the instant of failure are not really recoverable and are lost. So all the actions 
executed during this interval are required to be executed afresh just after recovery to bring the fle 
system to the correct state. This approach requires two main kinds of overhead: one due to creating 
backups at regular intervals, thereby investing both extra time and extra space, and the other for 
reprocessing the part of the fles whose updates were lost, which mainly means extra time. But, for a 
large disk, blindly backing up the entire drive including unused disk blocks on any specifed device, 
called a physical dump (full backup), is awkward and heavily time consuming. Although the full-
backup approach has been further modifed to make it reasonably acceptable, and many variants of 
it have been devised to make it more foolproof using extra devices, still due to many adverse reasons 
coupled with other issues makes this approach ultimately to fell out of favor. 

An alternative approach to a full backup of the entire fle system at regular intervals is to make 
incremental backups, which are dumps (copy) of only those fles and data structures that have been 
modifed since the last full or incremental backup was created. This approach reduces both space 
and time overhead to an acceptable level. 

An effective and elegant way to reduce overhead is to use a combination (hybrid) of incremental 
and full backups of a fle system. Here, the fle system creates full backups at relatively large inter-
vals of time, such as a few days or a week. Incremental backups are created at shorter intervals, such 
as at every fle close operation, and are discarded when the next full backup is made. Although this 
approach sounds good and appears foolproof, it increases both space and time overhead because of 
the creation and coexistence of both full and incremental backups, and, in addition, some fles may 
exist in more than one incremental backup. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

7.18.2.2 Fault-Tolerance Techniques 
Another important way the reliability of a fle system can be improved is implementing techniques 
which provide adequate prevention that can: 

• safeguard loss of data due to malfunctioning of devices caused by physical damage to the 
devices or media or by other types of faults caused by numerous reasons. 

• ensure fle system consistency by preventing inconsistency of control data resulting from 
system crashes. 

These techniques are commonly known as fault-tolerance techniques that primarily attempt 
to implement some precautionary measures which can safeguard the fle system from any unfore-
seen damage. Two such techniques, stable storage and atomic actions, can be mentioned in this 
regard. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


File Management 379  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 
 

 

 
 

 
 

• Stable storage: This simple technique, named disk mirroring by Lampson, uses redun-
dancy by creating two copies of a record, called its primary and secondary copy, that are 
maintained on disk to negotiate only a single failure occurrence. This disk mirroring is quite 
different from the disk mirroring technique used in RAID, as described in Chapter 6. For a 
fle write operation, it updates both copies: the primary copy frst, followed by the secondary 
copy. For a fle read operation, the primary copy of the disk block(s) is frst accessed. If it is 
all right, there is no problem, but if it is not readable, the secondary copy is accessed. While 
this technique guarantees total survival even after a single failure and is thus applied to all 
the fles for general use in the fle system, it is very expensive; still, it can be made proftable 
when processes selectively use it to protect their data. However, one of the serious drawbacks 
of this approach is that it fails to indicate whether a value is the old or new version (both the 
copy contains old version when the failure occurs before the primary copy is updated, both 
the copy contains new version when the failure occurs after both copies have been updated). 
So the user is confused and cannot ascertain defnitely whether to re–execute the operation 
which was ongoing at the time of failure while restoring the system to normalcy. The atomic 
action described next, however, addresses this issue and accordingly overcomes this problem. 

• Atomic action: An action may consist of several sub–actions, each of which may involve 
in some operation that intends to manipulate either control data (data structures) of fle 
system or updating data of fles. Any failure during the course of such an operation inter-
rupts its execution and eventually may make the fle system inconsistent and cause errors. 
For example, consider an inventory control system that involves transferring spares from 
one account to another. If a failure occurs during the transfer operation, it interrupts its 
execution; spares may have been debited from one account but not credited to the other 
account, or vice-versa. The inventory control fle system would then be in an inconsistent 
and erroneous state. The ultimate objective of atomic action (very similar in nature to the 
atomic action used in interprocess synchronization, as described in Chapter 4) aims to 
avoid all such ill effects of system failure. In fact, any action Xi consisting of a set of sub-
actions {xik} is said to be an atomic action if, for every execution of Xi, either 

1. Executions of all sub-actions in {xik } are completed, or 
2. Executions of none of the sub-actions in {xik } are completed 

An atomic action succeeds when it executes all its sub-actions without any interruption or interfer-
ence. In that situation, it is said to commit. An atomic action fails if a failure of any type occurs or 
an abort command is executed before all its sub-actions are completed. If it fails, the state of fle 
system, the state of each fle, and each variable involved in the atomic action should remain as it was 
prior to the beginning of the atomic action. If an atomic action commits, it is guaranteed that all the 
actions already taken by it will survive even if a failure occurs. 

Brief details on the implementation of atomic actions with an algorithm are given on the Support 
Material at www.routledge.com/9781032467238. 

7.19 VIRTUAL FILE SYSTEMS 

The objectives of a fle system are to meet a diverse spectrum of requirements as demanded from 
both the system and the users: high reliability, effcient and effective response, easy and fast access 
to fles located on other computer systems, and above all a friendly interface for the sake of conve-
nience. It is obvious that no fle system design can offer all these features at the same time, and that is 
why an operating system (fle management system) aims to provide a virtual fle system (VFS) that 
enables several different fle systems to operate simultaneously to realize different useful features. 

A VFS is an abstraction that supports a generic fle model and is implemented using a VFS layer 
that resides between a process and a fle system to support many different fle systems simultaneously 

http://www.routledge.com/9781032467238


 

   

 
 

 
 

 

380 Operating Systems 

FIGURE 7.10 A generalized block diagram illustrating a schematic representation of virtual fle system used 
in a generic modern operating system. 

(similar to the virtual machine layer that resides between the operating systems and bare hardware 
to support many different operating systems running simultaneously on the same piece of hard-
ware), as shown in Figure 7.10. The VFS layer also has two interfaces: the upper interface that inter-
acts with the processes above and the lower interface for the target fle systems lying below. Any 
fle system that conforms to the specifcation of VFS fle system interface can be installed to run 
under VFS. This feature helps to add a new fle system easily to the existing environment. The VFS 
process interface (upper interface) provides functionalities to perform generic open, close, read, 
write, and other common operations on fles, and mount and unmount operations on fle systems. 
These functionalities are invoked through respective system calls. The VFS fle system interface 
(lower interface) determines under which fle system a particular fle actually belongs and invokes 
the respective functionalities of the corresponding fle system as needed. This interface also invokes 
functions of the specifc fle system to implement mount and unmount operations. 

As shown in Figure 7.10, many different fle systems initiated by different processes can be 
run simultaneously using the VFS interface. In addition, the VFS can also be used to compose a 
heterogeneous fle system. For example, a user can mount a fle system of type A in a directory of 
a fle system of type B. This feature is particularly useful with removable media like CDs; it per-
mits a user to mount the fle system that resides in a CD in his current directory and access its fles 
without any concern for the fact that the fle data are recorded in a different format. This feature 
is also important when used in a distributed environment for mounting a remote fle system into a 
fle system of a different type. For example, the Sun Network File System (NFS) uses a VFS layer 
to permit mounting of different fle systems and provides sharing of these different fle systems in 
nodes operating under the Sun OS operating system, which is a version of UNIX. 

The VFS, in essence, does not contain any fle data; rather it contains merely data structures that 
constitute VFS metadata. Each fle system that runs under it contains its own metadata and fle data. 
The VFS layer implements a complete system-wide unique designator for each fle by creating a key 
data structure of the fle used by VFS. This data structure is known as virtual node, popularly called 
vnode. The vnode is essentially a representation of a fle in the kernel. It can be looked upon as a fle 
object with the following three parts: 

• File system-independent data 
– such as a fle id that is unique within the domain of the VFS, which may be an indi-

vidual computer system or a network; 
– the fle type, such as directory, data fle, or special fle; 
– other felds, such as open count, lock, fags, and so on; 



File Management 381  

 
 

 

 

 

 

• File-system-specifc data, such as the fle map table; 
• Addresses of functions in the fle system which contains this fle. These functions imple-

ment the open, close, read, and write operations on fles of this type. 

Eliminating the VFS layer from this approach will indicate that all the processes will be running 
under one fle system, and in that case, all the nodes will be treated as physical nodes. Many con-
temporary modern operating systems have provided VFSs since the 1990s. Some of the notable 
ones among them are UNIX SVR4, UNIX 4.2 BSD, Linux, and Sun OS. 

7.20 PIPES 

A pipe is a sort of pseudo-fle that can be used to connect two processes together. When process 
P1 wants to send data to process P2, it writes at one end of the pipe as though it were an output 
fle. Process P2 can read the data by reading from the other end of the pipe as though it were an 
input fle. Thus, communications between processes looks very much like ordinary fle reads and 
writes. The pipe acts here as a virtual communication channel to connect two processes wishing to 
exchange a stream of data. That is why some systems often implement interprocess communication 
mechanism via pipe, which is similar to messages but can be programmed using the standard set 
of fle and I/O services. It can also be used to link external devices or fles to processes. The two 
processes communicating via a pipe can reside on a single machine or on different machines in a 
network environment. 

The operating system usually provides automatic buffering for the data within a pipe and implicit 
synchronization between the processes communicating via a pipe. A user, for example, intending to 
write on a pipe may be delayed while the pipe is full, and similarly a process wishing to read from 
an empty fle may be suspended until some data arrive. Pipes can be handled at the system-call level 
in exactly the same way as fles and device-independent I/O, and, in particular, can use the same 
basic set of system calls that may also be used for handling devices and fles. This generality in 
approach enables pipes to use even at the command-language level that can establish an additional 
form of inter-program communication. That is why pipes are often found in use to output from one 
program or device to input to another program or directly to a device without any reprogramming or 
the use of temporary fles. By allowing this form of redirection, applications that are not specifcally 
developed to work together, such as a spellchecker and a text formatter, can be combined to perform 
a new complex function without any reprogramming. In this way, several independent utilities can 
be cascaded, which can then enable users to construct powerful functions out of simple basic utili-
ties, functions that can even go beyond the limit of their designers’ vision. The pipe is, therefore, a 
powerful tool that is exploited in many operating systems, including UNIX. More about pipes can 
be found in Chapter 2 and in Chapter 4, where it is explained in detail. 

7.21 FILE SYSTEM PERFORMANCE 

The performance of a fle system depends on various factors; each such factor, in turn, requires the 
appropriate techniques to yield good performance. When all such techniques are incorporated into 
the design of a fle system, it is expected that the developed fle system can offer relatively good 
performance. Some common and notable factors that can infuence the performance of a fle system 
are listed in Table 7.1 along with the corresponding techniques that are generally used to enhance 
the performance of each of these factors individually. However, all the techniques mentioned in the 
table are also described separately in detail in the preceding sections. 

Caching and buffering are the most common techniques used to speed up access to metadata and 
fle data. A fle map table is usually buffered in memory when the fle is frst opened, but buffering 
may not be feasible if the FMT (or FAT) is large in size; in that case, only the active part of it may be 
cached in memory. Directories (may be partly) are usually cached in memory when accessed for the 



 

   

 

  

 

 
 
 
 
 

 
 
 

 
 

382 Operating Systems 

TABLE 7.1 
Factors Infuencing File System Performance 

Factor Techniques Used to Address the Factor 

• Accessing fle map table or FAT • File map table cache in main memory 
• Directory access • Hash tables, B+ trees 
• Accessing a disk block • Disk block cache in main memory 
• Accessing data Disk scheduling 
• Writing data Cylinder groups and extents 

Disk block cache in device 
• Blocking and buffering data 
• Different approaches to when the computed data is to be written on disk 

frst time. When a directory is used to resolve a pathname, it is retained in a memory cache known 
as the directory names cache to speed up future references to fles located in it. Disk-arm move-
ment is an important issue when a disk block is accessed and, in turn, becomes a dominant factor in 
the performance of fle system. To minimize this movement, several useful techniques are used with 
respect to accessing the free blocks and subsequent allocation of them. Sometimes a free list is also 
arranged in the form of block-clustering by grouping consecutive blocks to considerably improve 
disk I/O performance. Some modern systems, especially Linux, use this approach. When allocating 
blocks, the system attempts to place consecutive blocks of a fle in the same cylinder. 

Another performance bottleneck in systems that use inodes or anything equivalent to inodes is 
that reading even a short fle requires two disk accesses: one for the inode and one for the data block. 
Usually inodes are placed near the beginning of the disk, so the average distance between an inode 
and its blocks will be about half the number of cylinders, thereby requiring appreciably long seeks. 
To improve the performance, inodes are placed in the middle of the disk instead of at the beginning, 
thereby reducing the average seek between the inode and its pointed frst block by a factor of two. 
Another approach may be to divide the disk into cylinder groups, each with its own inodes, blocks, 
and free list (McKusick, et al., 1984). When creating a new fle, any inode can be chosen, but an 
attempt is made to locate a block in the same cylinder group as the inode. If no such block is avail-
able, then a block close to the cylinder group is used. 

Still, an important issue remains; at what time the data is to be written back from the cache (or 
memory) to the disk. The notion of delayed writes (write-back) tends to improve the effective speed 
of writing and response time, eliminate redundant disk writes, and also reduce the network and 
server load in distributed systems, but, of course, sometimes at the cost of gross data loss in the 
event of system failure. In this regard, UNIX uses a system call, sync, that forces all the modifed 
blocks out onto the disk immediately. In fact, when the UNIX system is started up, a program, usu-
ally called update, is started up in the background to sit in an endless loop issuing sync calls, sleep-
ing for 30 seconds between two successive calls. As a result, no more than 30 seconds of work is lost 
if a system crash occurs. This sounds quite comfortable for many users. The Windows approach is 
normally to use write-through caches that write back all modifed blocks to the disk immediately. 
When a large fle is handled, the disk I/O time taken by Windows is thus appreciable. 

As technology advances, operating systems are also gradually modernized, and these advanced 
systems provide device-independent I/O, where fles and logical I/O are treated by a single, unifed 
set of system services at both the command-language and system-call levels. In such systems, user 
processes can be interchangeably connected to pipes, fles, or I/O devices. This facility is often 
coupled with runtime binding of processes to devices that summarily makes compiled programs 
insensitive to confguration changes and provides considerable fexibility in managing resources and 
thereby speeding up computer systems. Moreover, the recent trend to further enhance fle system 



File Management 383  

 

 
 
 

performance is to implement all the speed-up techniques in hardware that were previously realized 
by software. In addition, modern I/O device technology also incorporates some of the techniques 
mentioned in Table 7.1. Thus, SCSI disks provide disk scheduling in the device itself. RAID units, 
as already discussed in previous section, today contain a disk block buffer which can be used to both 
buffer and cache disk blocks. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.22 LOG-STRUCTURED FILE SYSTEMS 

With the advent of modern technology, CPU speed is continuously getting faster, the size of mem-
ory is growing exponentially, their speed is moderately increasing, and disks are also getting much 
bigger and cheaper but not much faster in operation. The net effect of these factors all together 
creates an overall performance bottleneck arising from the considerably slower disk I/O operation 
that eventually has a negative impact on the performance of current fle systems. Many innovative 
ideas have emerged, and fnally the research carried out at Berkeley made an attempt to alleviate 
this problem by designing a completely new form of fle system, known as a log-structured fle 
system (LFS). This section briefy describes the working of an LFS. For more details, the paper by 
Rosenblum and Ousterhout (1991) can be consulted. 

As CPUs get faster and RAM gets larger, the size of disk caches have consequently also rap-
idly increased to improve overall performance. These facts primarily infuence the design of LFS 
to evolve which claims that it is now feasible to satisfy a substantially large fraction of all read 
requests, which normally go to a disk, can now be directly obtained from the fle–system–cache 
with no disk access needed, thereby ultimately reducing the total number of disk accesses required 
for read operations. This observation led to the conclusion that in the future, most disk accesses will 
be mainly confned to disk-write operations and the associated disk head movement. It also indi-
cates that the read-ahead policy used by some fle systems to fetch blocks before they are actually 
needed does not really contribute much to fle system performance. 

While disk head movement can be minimized to improve disk performance through disk sched-
uling and also with the use of cylinder groups at the time of disk space allocation for fles, they are 
found useless or less effective, particularly when fles located in different parts of a disk are pro-
cessed simultaneously in a shared computing environment. For example, in a UNIX system, write 
operations to a disk take only about 10% of the disk time, and the rest of the time is mostly spent in 
disk arm movement that mainly causes poor disk throughput. However, this problem arising mainly 
from disk head movement has been properly addressed, and to minimize the needed disk head 
movement, the concept of a log-structured fle system has been introduced, which uses a radically 
different fle organization. 

In LFS, all writes are initially buffered in memory, and periodically all the buffered-writes of 
fle data of all fles together are written to the disk in a single sequential structure that resembles a 
journal. This is called the log fle. When an update or write operation is performed on any fle, the 
new data are simply added to the end of the log fle. Hence, little disk head movement is involved 
in this operation. The fle system keeps and writes special index blocks into the log fle that contain 
metadata (pointer, fle structure, etc.) about the location of each fle’s data in the log fle. The index 
blocks are consulted when the fle data have to be read off the disk. Thus, little disk head move-
ment is required for reading data that were written into a fle recently; however, older data require 
more disk head movement. Measurements and performance studies on the Sprite log-structured fle 
system revealed that disk head movement accounted for only 30 percent of the disk time consumed 
during fle processing. Its performance was observed to be superior to its counterpart traditional fle 
systems for small writes. 

Figure 7.11 illustrates in a simplifed way the arrangement made in a log-structured fle, at least 
schematically, and assuming quite a few things that are usually involved in the working of a fle 
system. For the sake of simplicity, we frst assume that the metadata and fle data blocks of a single 

http://www.routledge.com/9781032467238


 

 
 
 
 
 
 
 
 
 

 
 
 

  
 
 
 

 
 
 
 
 
 
 

 

384 Operating Systems 

FIGURE 7.11 A representative scheme of fle–update mechanism used in a log–structured fle system 
employed by a generic modern operating system. 

fle are in the log fle, and the data blocks in the log fle are numbered as shown in Figure 7.11(a). 
In actual implementation, the index block contains the pointer that points to the respective fle data 
blocks. The directory entry of a fle points to the respective index block in the log fle; it is assumed 
here that the index block contains the FMT (FAT) of the fle. When the fle data contained in block 1 
is modifed (updated), the new values are written into a new disk block, say, block 4. This is depicted 
in Figure 7.11(b). Similarly, when the data in block 3 are updated, some of its fle data are written into 
disk block 5. The fle system now writes a new index block that contains the updated FMT of the fle 
and sets the FMT pointer in the directory of the fle to point to the new index block. The new FMT 
now contains pointers to the two new data blocks and to data block 2, which has not been changed, as 
shown in Figure 7.11(b). The old index block and disk blocks 1 and 3 are now released. 

Since disk fles are written as a sequential-access fle, all the fnite disks will be quickly occu-
pied by the log fle, leaving almost no space for new segments to write, although there may still be 
many blocks that are no longer needed. As shown in Figure 7.11b, if a fle is updated, a new index 
block is written, but the old one, though currently of no use, will still occupy space in previously 
written areas. 

To deal with this problem, LFS exploits the service of a cleaner thread that scans the log circularly 
to compact it, similar to memory compaction (see Chapter 5). It starts out by reading the summary of 
the frst segment in the log to see which index blocks are still current and fle blocks are still in use. 
If they are not, that information is discarded, and the spaces occupied by them will be released. The 
index blocks and fle blocks that are still in use go to memory to be written out in just the next avail-
able segment. The original segment is then marked as free, and the log can use it to store new data. 
In this way, the cleaner moves along the log, removing old segments from the back and putting any 
live data into memory for rewriting in the next segment. Consequently, a large free area on the disk 
is available for the log fle. The entire disk can now be viewed as a big circular buffer, with the writer 
thread adding new segments to the front and the cleaner thread removing old ones from the back. 
This operation involves considerable disk head movement that determines the disk usage; however, 
the cleaner and writer threads perform their operations (i.e. compaction) as a background activity 



File Management 385  

 
 

 

 
 

 

 

without affecting the actual fle processing activities. Performance results reveal that all this com-
plexity is worthwhile. Measurements offered in the paper mentioned in the beginning of this section 
show that LFS clearly outperforms UNIX by an order of magnitude on small writes while exhibiting 
performance as good as or even better than UNIX for reads and large writes. 

7.23 CASE STUDY: FILE MANAGEMENT SYSTEMS IN UNIX 

The UNIX fle system originated, from and was greatly infuenced by its predecessor, the MULTICS 
fle system (Chakraborty, 2020). Different versions of UNIX differ in features of the fle system, but only 
a brief discussion of some of the common features available to almost all UNIX versions is given here. 

Files: In UNIX, a fle is nothing but a sequence of bytes (byte-stream), and as such is only 
streams of characters with no specifc structure. Each individual fle must completely reside on a 
single volume. Sequential access is supported for all fles; random access is possible only to fles 
stored on block-structured devices. 

Types of Files: In UNIX, there are six types of fles: regular or ordinary (ASCII fles), directory 
(tree-structured hierarchically organized), special (physical devices mapped to fle names), pipes 
(named), links (an alternative fle name for an existing fle), and symbolic links (data fles containing 
the name of the fle it is linked to). 

Inodes, File Structures, and File Descriptors: The generic arrangement of fle processing is 
mostly organized around the use of directory entries, FCBs, and internal ids with the use of data 
structures such as inodes, fle structures, and fle descriptors. 

In UNIX, the directory entry is 16 bytes (in System V and Version 7): the inode is 2 bytes, and 
the fle name is contained in the remaining 14 bytes. An inode is a control structure that contains 
key information about a particular fle. Several fle names may be associated with a single inode, but 
an active inode is associated with exactly one fle, and each fle is controlled by exactly one inode. 
The inode data structure is maintained on disk, and there is an inode table or inode list that contains 
the inodes of all the fles in the fle system. When a fle is opened, its inode is brought from disk into 
main memory and stored in a memory-resident inode table. 

The fle structure contains two felds: current position in an open fle, which is in the form of an 
offset from start of the fle, and a pointer to the inode for the fle. A fle descriptor points to a fle 
structure. Its use is very similar to that of the internal id of a fle in the generic arrangement. Figure 7.12 
shows the arrangement of fle descriptor, fle structure, and inode in memory. A directory-lookup 
cache holds information concerning a few fles on an LRU basis which is searched at the time of 
opening a fle. A successful search can relieve the system from tedious and time-consuming direc-
tory lookups. When a fle is opened, the fle descriptor is passed to the process that opened the fle. 
When a process creates a child process, a table of descriptors is created for the child process, and 

FIGURE 7.12 A schematic block diagram consisting of relevant data structures used in UNIX fle manage-
ment system. 



 

 

 
 
 
 
 

 
 
 

 

 

 
 

386 Operating Systems 

the fle descriptors of the parent process are copied into it. Thus, many fle descriptors may share 
the same fle structure. Processes owning the descriptors share the fle offset. 

• Disk Space Allocation: Each fle has a FAT analogous to FMT, and this information is 
obtained from the contents of the inode. File allocation is carried out dynamically on a 
block basis; hence, the allocated blocks of a fle on disk are not necessarily contiguous. An 
indexed allocation method is used to keep track of each fle, with part of the index stored in 
the inode of the fle. The inode includes 39 bytes of allocation address information which 
is organized as thirteen 3-byte addresses or pointers. The frst 10 addresses point to the 
frst 10 data blocks of the fle. If the fle is still longer than 10 blocks long, then one or more 
levels of indirection is used. 

The total number of data blocks in a fle depends on the size of the fxed-size blocks in the 
system. In UNIX System V, the length of a disk block is 1 Kbyte (210), and thus each such block 
can hold a total of 256 (28) block addresses; each block address is of 4 bytes (= 22). Hence, the 
maximum number of disk blocks that can be addressed using triple levels of indirection are 256 
× 256 × 256 = 224 disk blocks. Each disk block is 1 Kbytes = 210 bytes. Hence, the maximum size 
of a fle with this scheme is 224 × 210 bytes = 234 bytes = 16 Gbytes. Similarly, two levels of indi-
rection needs 256 × 256 = 216 disk blocks, that is, 216 × 210 bytes = 64 Mbytes, and with a single 
level of indirection, the maximum size of the fle would be 256 = 28 disk blocks, that is, 28 × 210 

bytes = 256 Kbytes, and the direct (i.e. zero level of or no indirection) would require simply 10 
× 1 Kbytes = 10 Kbytes. 

For fle sizes smaller than 10 Kbytes, this arrangement is as effcient as the fat allocation dis-
cussed in a previous section. Such fles also have a small allocation table that can ft into the inode 
itself with no indirection. Not much bigger fles, while using one level of indirection, may be 
accessed with little extra overhead, but as a whole, reduce processing and disk access time. Two or 
more levels of indirection permit fles to grow to very large sizes, virtually satisfying all applica-
tions, although their access involves extra time consumption while traversing through the different 
levels of indirection in the FAT. 

• Free Space Management: In its simplest form, the UNIX fle system maintains a list of 
free disk blocks in a way similar to linked allocation in which each block points to the next 
block in the list. To avoid the high overhead inherent in this approach, UNIX employs an 
indexed allocation scheme but implemented differently. Here, free space is managed by 
means of a chained list of indices to unused blocks. In particular, approximately 50 point-
ers to free blocks are collected in one index block. The index blocks in the free list are 
chained together so that each points to the id of the next one in line in the free list. The 
frst index block is normally kept in main memory. As a result, the system has immediate 
access to addresses of up to 50 free blocks and to a pointer to an index block on the disk 
that contains 50 more pointers to free blocks. With this arrangement, the overhead of add-
ing disk blocks to the free list when a fle is deleted is greatly minimized. Only marginal 
processing is needed for fles smaller than 10 Kbytes (or multiples of 10 Kbytes depending 
on the size of data blocks) in size. However, while disk blocks are added and deleted from 
the free list, race conditions may occur, and that is why a lock variable is used with the free 
list to avoid such situations. 

• Sharing of Files: UNIX provides fle sharing with the use of a single fle image. As illus-
trated in Figure 7.12, every process that opens a fle points to the copy of its inode using 
its fle descriptor and fle structure. Thus, all processes that share a fle use the same copy 
of the fle; changes made by one process are at once visible to other processes sharing the 
fle. As usual, race conditions may exist while accessing an inode; hence, to ensure mutual 
exclusion, a lock variable called an advisory lock is provided in the memory copy of an 



File Management 387  

 

 
 

 

  

 

 

 
 

 
 
 
 
 

  
 

 
 
 
 

   

 

inode that is supposed to be heeded by processes; however, the fle system does not enforce 
their use. A process attempting to access an inode must go to sleep if the lock is set by 
another process. Processes that concurrently use a fle must do their own planning to avoid 
race conditions on the data contained in the fle. 

• Directories: Directories are tree-typed and hierarchically organized. A directory is also 
simply a fle that contains a list of fle names and/or other directories plus pointers (inode 
number) to associated inodes. When the fle or directory is accessed, the fle system must 
take its inode number from the related directory and use it as an index to the respective 
inode table to locate its disk blocks. 

• Volume Structure: A UNIX fle system resides on a single logical disk or disk partition, 
and all such disks that contain UNIX fle systems have the layout depicted in Figure 7.13, 
with the following elements: 
• Boot Block: Block 0 is not used by UNIX and often contains code to boot the 

computer. 
• Superblock: Block 1 is the superblock that contains critical information about the lay-

out of the fle system, the number of inodes, the number of disk blocks, and the start of 
the list of free disk blocks (typically a few hundred entries). Damage to or destruction 
of the superblock will render the fle system unreadable. 

• Inode Tables: The collection of inodes for each fle. They are numbered from 1 to some 
maximum. 

• Data Blocks: All data fles and directories/subdirectories are stored here. 
• Multiple File Systems: Many fle systems can exist in a UNIX system. When a physi-

cal disk is partitioned into many logical disks, a fle system can be constructed on each 
of them and can exist only on a single logical disk device. In other words, a logical disk 
contains exactly only one fle system. Hence, fles also cannot span different logical 
disks. While a disk is partitioned, it provides some protection and also prevents a fle 
system from occupying too much disk space. Each fle system consists of a superblock, 
an inode list, and data blocks. The superblock itself contains the size of the fle system, 
the free list, and the size of the inode list. The superblock, which is the root of every fle 
system, is maintained by UNIX in main memory for the sake of effciency. The super-
block is copied onto the disk periodically. Some part of the fle system may be lost if the 
system crashes after the superblock is modifed but before it is copied to the disk. Some 
of the lost state information can be reconstructed by the fle system, such as the free list, 
by simply analyzing the disk status. This is, of course, carried out as part of the system 
booting procedure. 

A fle system can be mounted in any directory in a logical disk device by using a fle system 
program mount with the parameters of a device-special fle name (for the fle system) and the path-
name of the directory in which it is to be mounted. Once the fle system is mounted, the root of the 
fle system has the name given by the pathname, and the superblock of the mounted fle system is 
then loaded in main memory. Disk block allocation for a fle in the mounted fle system must now be 

FIGURE 7.13 A schematic block diagram showing a representative layout of volume structure of a disk used 
in traditional UNIX system. 



 

 

 

 
 
 
 

 
 

  
 
 
 
 
 
 
 

 
 

 
 
 
 

388 Operating Systems 

performed within the logical disk device on which the fle system exists. All the fles in a mounted 
fle system are then accessed in the usual way. 

• Other Features: UNIX provides extensive buffering of disk blocks in order to reduce 
physical I/O and effective disk access time. However, buffers are not allocated at the level 
of a fle or a process. This arrangement facilitates implementation of concurrent fle shar-
ing with the use of only a single fle image and also reduces the disk access overhead when 
a fle is processed simultaneously by two or more processes. UNIX supports two kinds 
of links: a hard link, already described in Section 7.11, and a symbolic link, which was 
described in Section 7.11. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.24 CASE STUDY: FILE MANAGEMENT SYSTEMS IN LINUX 

The fle management system of Linux provides versatile and a powerful fle handling that supports 
a wide variety of many different FMS and fle structures. This approach makes use of a VFS, as 
already described in Section 7.19, which presents a single, uniform fle system interface to user 
processes and provides a common fle model that is capable of representing the general features 
and behavior of any conceivable fle system. The Linux fle model closely resembles the UNIX fle 
model and is implemented using UNIX-like data structures, such as superblocks and inodes. The 
standard fle system of Linux is called ext2. The fle system ext3 incorporates journaling, which 
provides integrity of data and metadata and fast booting after an unclean shutdown. 

The VFS in Linux is an object-oriented scheme. It assumes that fles are objects in a computer’s 
mass storage memory that share basic properties regardless of the target fle system or the underlying 
processor hardware. Files have symbolic names and other related attributes that enable them to be 
uniquely identifed within a specifc directory in the fle system. The VFS scheme actually maps and 
translates the functions that the user has submitted to the corresponding target fle system activities. 

The key components of Linux fle system are depicted in Figure 7.14, in which a VFS layer is placed 
between a process and a fle system that, in turn, simultaneously support many different fle systems. In 
a VFS fle scheme, when a user process issues a fle operation, such as read or write, which is basically 
a fle system call, the VFS converts this into an internal (to the kernel) fle system call that is passed to 
a mapping function for a specifc target fle system (e.g. HP FS). In most cases, this mapping function 
simply maps the fle system functional calls from one scheme to another. The original user fle system 
call is simply translated into a call that is native to the target fle system. The target fle system software 
is then invoked and converts the fle system request into device-oriented instructions which are passed 
to a device driver by means of page cache functions. The requested operation is then performed under 
its control and secondary storage. The results of the execution are communicated back to the user in a 
similar manner. VFS is truly independent of any fle system, so the implementation of a mapping func-
tion must be part of the implementation of a fle system on Linux. Any fle system that conforms to the 
specifcation of the VFS-fle system interface can be installed to run under it. This feature enables a new 
fle system to be added easily in the environment. 

Since VFS is written in C, rather than a traditional object-oriented programming language (such 
as C++ or Java), VFS objects are implemented simply as C data structures. Each object contains 
both data and pointers to the fle-system-implemented functions that operate on data. VFS objects 
are essentially of four types: 

• Superblock object: This represents a specifc fle system that is mounted. 
• Inode object: This represents a specifc fle. 
• Dentry object: This represents a specifc directory entry. 
• File object: This represents an open fle associated with a process. 

http://www.routledge.com/9781032467238


File Management  389 

System call 

User Process 

System calls interface 

Linux 
Kernel 

Page cache 

Device Drivers 

Virtual file 
system (VFS) 

Disk 
Controller 

Tape 
Controller 

Devices Devices 

Hardware 

Windows 
FS 

IBM 
JFS 

HP 
FS 

ext2 
FS 

I/O request 

FIGURE 7.14  A schematic representation of Linux virtual fle system used in today’s Linux operating 
systems. 

Since the Linux fle management scheme is mostly derived from the concepts used in UNIX  
fle systems, the Linux fle system, similarly to UNIX, also employs a tree-typed hierarchical  
organization of directories, in which each directory may contain fles and/or other directories. A  
path from the root through the tree consists of a sequence of directory entries, ending in either a  
directory entry (dentry) or a fle name. Thus, fle operations can be equally performed on either  
fles or directories. 

•  The Superblock Object: This object stores information describing a specifc fle system. 
Typically, the superblock corresponds to the fle-system superblock or fle-system control 
block, which is stored in a specifc sector on a disk. The superblock object consists of a 
number of key data items, including a list of superblock-operations that refer to an opera-
tion-object which defnes the object methods (functions) that the kernel can invoke against 
the superblock-object. Some of the notable methods defned for the superblock-object are 
read_inode, write_inode, remount_fs, write_super, and clear_inode. 

•  The Inode Object: As in UNIX, an inode is associated with each fle. The inode-object  
holds all the information about a named fle except its name and the actual data contents 
of the fle. Items contained in an inode-object include owner, group, permissions, access 
times for a fle, size of data, and number of links. However, the inode-object also includes 
an inode-operations-object that describes the fle system’s implemented functions that the 



 

  

  
  

 

 
 

 
 
 
 
 
 

  

 

  
 
 
 
 
 
 
 
 

390 Operating Systems 

VFS can invoke on an inode. A few of the methods (functions) defned for the inode-object 
include the following: 
• * create: Create a new inode for a regular fle associated with a dentry object in some 

directory. 
• * lookup: Search a directory for an inode corresponding to a flename. 
• * mkdir: Create a new inode for a directory associated with a dentry object in some 

directory. 
• The Dentry Object: A dentry (directory entry) is simply a specifc component in a path. 

The component may be either a directory entry or a fle name. When a fle is opened, the 
VFS transforms its directory entry into a dentry object. Dentry objects facilitate access 
to fles and directories and are cached (in a dentry cache) so that the overheads of build-
ing them from the directory entry can be avoided if the fle is opened repeatedly during a 
computing session. 

• The File Object: The fle object is used to represent a fle opened by a process. The object 
is created in response to the open() system call and destroyed in response to the close() 
system call. The fle object consists of a number of items, including the following: 
• dentry object associated with the fle 
• fle system containing the fle 
• fle object usage counter 
• user’s user-ID 
• user’s group-ID 
• fle pointer, which is the current position in the fle from which the next operation on 

the fle will take place 

The fle object also includes an inode-operations-object that describes the fle system’s implemented 
functions that the VFS can invoke on a fle object. The methods (functions) defned for fle object 
include read, write, open, release, and lock. 

• Locks: The standard fle system of Linux is ext2, which was infuenced by the design 
of UNIX BSD. This ext2 provides a variety of fle-locks for process synchronization. 
Advisory locks are those that are supposed to be heeded by processes to ensure mutual 
exclusion; however, the fle system does not enforce their use. UNIX fle-locks belong to 
this category of locks. Mandatory locks are those that are checked by the fle system; 
if a process attempts to access data that is protected by a mandatory lock, the process is 
blocked until the lock is reset by its holder. A lease is a special kind of fle-lock which is 
valid for a specifc amount of time after which another process that tries to access the data 
protected by it can get it. It is implemented in the following way: if a process attempts to 
access data protected by a lease, the holder of the lease is alerted by the fle system. It now 
has a stipulated interval of time to fnish accessing the fle and then frees the lease. If it 
fails to do so, its lease is broken and access to the data protected by the lease is awarded to 
the process that was attempting to access it. 

• Disk Space Allocation: ext2, similar to UNIX BSD’s fast fle system, employs the notion of 
a block group consisting of a set of consecutive disk blocks to reduce the movement of disk 
heads when fle data are accessed. It uses a bitmap to keep track of free disk blocks in a block 
group. When a fle is created, it tries to allocate disk space for the inode of the fle within the 
same block group that contains its parent directory and also includes the fle data within the 
same block group. Every time a fle is extended due to the addition of new data, it searches 
the bitmap of the block group to fnd a free disk block that is close to a target disk block. If 
such a disk block is found, it checks whether a few adjoining disk blocks are also free and 
preallocates a few of these to the fle with the assumption of its forthcoming requirements. 



File Management 391  

 
 
 
 
 

 

 
 

 
 
 
 
 

 

 

 

   
 

 
 
 

 

 

 
 

  

If such a free disk block is not found, it preallocates a few contiguous disk blocks located 
elsewhere in the block group. In this way, it is comfortably possible to read large sections of 
data without having much movement of the disk head. When the fle is closed, preallocated 
but unused disk blocks are also released. This strategy of disk space allocation that makes 
use of (almost) contiguous disk blocks for contiguous sections of fle data provides notably 
increased performance in fle access, even when fles are created and deleted at a high rate. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

7.25 CASE STUDY: FILE MANAGEMENT SYSTEMS IN WINDOWS 

Windows provides a number of fle systems, including the FAT, which are mostly based upon the 
MS-DOS fle system and inherit many of its properties. In addition, the developers of Windows 
also designed Windows NT, Windows XP, Windows Vista, and Windows 2000 and their con-
tinuously upgraded versions. All these upgraded systems have a native fle system, NTFS, that 
has different properties and is designed to meet different objectives. NTFS is mainly intended 
to meet the high-end requirements of fle systems for servers and workstations so that it can 
provide support to network applications for large systems of corporate entities and client–server 
applications for fle servers, compute servers, and database servers. This section provides an 
overview of NTFS. 

• Salient Features of NTFS: The design objective of NTFS is to offer adequate fexibility; 
although it is built on a simple fle system model but is itself a powerful fle system. Some 
of the notable features of NTFS include the following: 
• Large disk device and large fles: It supports a very large disk device and very large 

fles. 
• Security: It uses security descriptors containing many security attributes as well as 

providing features such as a sophisticated protection system, encryption, and data 
compression. 

• Recoverability: NTFS can restore the damaged data in fles and also metadata by 
reconstructing disk volumes in the event of any type of system crashes. To provide 
full recoverability, including user data, it requires to incorporate much more elabo-
rate and resource-consuming recovery facilities. Moreover, it employs redundant 
storage (backup) for critical fle-system data that describes the structure and status 
of the fle system. In addition, it may use a RAID architecture to avoid any loss of 
user fles. 

• Multiple data streams: In NTFS, a fle is a collection of attributes, and each attribute 
is considered an independent byte stream. The data in a fle are also treated as a stream 
of bytes while it is even considered to be an attribute. In NTFS, it is possible to defne 
multiple data streams for a single fle. Use of such multiple data streams provides enor-
mous fexibilities; for instance, a large graphic image may have a smaller thumbnail 
associated with it. Such a stream at one end can contain a maximum of 248 bytes, and 
at the other end, at least, only a few hundred bytes. 

• Indexing of attributes: The descriptions of the attributes associated with each fle are 
organized by NTFS as a relational database so that they can be indexed by any attribute. 

• NTFS Volume: NTFS considers disk storage in the following way: 
• Sector: It is the smallest possible storage unit on the disk. Its data size in bytes is a 

power of 2 and is almost always 512 bytes. 
• Cluster: A collection of one or more contiguous (one after another on the same track) 

sectors, and its size in terms of sectors is always a power of 2. 

http://www.routledge.com/9781032467238


 

 

 

  

 
 

 

 

 

392 Operating Systems 

• Volume: A volume is usually a logical partition on a disk or all of a single physical 
disk, or it can even be extended across multiple physical disks consisting of one or more 
clusters and controlled by a fle system. A volume at any instant consists of fle system 
information, may have a collection of fles, and may have any additional unallocated 
space remaining on the volume that can be allocated to fles. A bitmap fle is used to 
indicate which clusters in a volume are allocated and which are free. A bad-clusters fle 
is used to keep track of clusters that are unusable due to hardware problems. Large fles 
that exceed the capacity of a partition are supported using the notion of a volume set, 
which can contain up to 32 volumes. If hardware or software RAID 5 is employed, a 
volume consists of stripes that can span multiple disks. However, the maximum volume 
size that NTFS supports is 264 bytes. 

• Volume Layout: NTFS organizes information on a disk volume in a simple structure that 
nicely arranges a few general-purpose functions as well as managing the fle system as a 
whole. The layout of an NTFS volume consists of four regions, as depicted in Figure 7.15. 
The frst few sectors (it can be up to 16 sectors long) are occupied by the partition boot 
sector, which contains information about the volume layout and the fle system structures 
as well as boot startup information and code. The existence of the boot sector makes every 
volume bootable. The next region is occupied by the master fle table (MFT), the key data 
structure and the heart of the Windows fle system, which contains information about all 
the fles and folders (directories) on this NTFS volume as well as information about unused 
areas on the volume. The MFT essentially is a list of all contents on the NTFS volume, 
organized as a set of variable-length rows in a relational database structure. This structur-
ing of the MFT resembles the structure of the FAT, as discussed in the preceding sections. 
After the MFT region, the next region, typically 1 Mbyte in length, contains the system 
fles, the notable ones are: MFT2 (a mirror of the frst three rows of the MFT to be used in 
the event of a single-sector failure), Cluster bitmap (a bitmap showing which clusters are 
in use in the entire volume), Log fle, and Attribute defnition table. 

• Directories: A folder in NTFS is essentially a directory. NTFS implements it using an 
index fle. The directory hierarchy is formed by allowing folders to contain fles as well 
as other folders. This hierarchy is realized by organizing the directory as a B+ tree with 
fles as its leaf nodes. The B+ data structure possesses the property that the length of each 
path in the tree is the same, which facilitates effcient search for any entry in the directory. 

• Disk Space Allocation: NTFS disk space management uses the cluster (not sector) as the 
fundamental unit of allocation and is independent of physical sector sizes, which, in turn, 
enables NTFS to easily support nonstandard disks that do not have a 512-byte sector size. 
The clusters allocated to a fle need not be contiguous; a fle, in fact, is allowed to be frag-
mented on the disk. At present, the maximum fle size supported by NTFS is 232 clusters; 
each cluster can have at most 216 bytes. Again, the use of larger cluster sizes for very large 
fle helps the bitmap fle be effciently managed, for it contains fewer elements to keep 
track of cluster allocation to each such fle. However, the default cluster sizes for NTFS 
depend on the size of the volume. In fact, the cluster size to be used for a particular volume 
is established by NTFS at the time of formatting the disk. 

• Other Features: NTFS treats each operation that alters the fle-system data structure as 
atomic transactions, which are implemented using a write-ahead log fle. While attempt-
ing to modify its own data structures, NTFS frst writes the steps involved (i.e. its inten-
tions) in the modifcation of the volume structure into the log fle residing in the cache. 
NTFS then modifes the volume (in the cache). The cache manager calls the log fle system 
to prompt it to fush the log fle to a disk to ensure that log records are not lost if a crash 
occurs. Once the log fle updates are safely on disk, the required modifcation of the data 
structures is performed. The log can now be discarded (not erased). If a crash occurs any 
time after the log is written to the disk, the log fle is used to complete the transaction. 



File Management 393  

 

 
 
 
 
 

 
 
 
 

 
 
 

 
 

  
  

  

  

  

 

Partition boot sector Master fle table System and user fles File area 

FIGURE 7.15 A representative block diagram of volume layout used in Windows NT fle system. 

Hence, while recovering from a failure, it checks whether a transaction was in progress at 
the time of failure. If so, it completes the transaction as mentioned before resuming opera-
tion. However, to totally avoid loss of fle system data due to a crash and to cover the risk of 
such loss of data, the log is not discarded immediately after completing an update. Instead, 
NTFS usually takes a checkpoint every 5 seconds and then discards the log fle. In the case 
of a crash, the fle system can then be restored by copying the checkpoint and processing 
records, if any, in the log fle. 

More details about this topic with a fgure and tables are given on the Support Material at www. 
routledge.com/9781032467238. 

SUMMARY 

The FMS described in this chapter primarily carryout the responsibilities to create, manipu-
late, and maintain data in the form of a fle put in a persistent storage medium for practical 
use. A fle is merely an organized collection of related records that are encapsulated in the fle 
system, which is the most visible interface for users and can be conceived as a tree of two basic 
abstractions: directories and fles (leaves), where each directory may contain subdirectories 
and fles. In essence, a fle system is a logical view of data stored on a device such as disk, CD, 
fash drive, or tape. 

The FMS organizes fles, directories, and control information (metadata); provides convenient and 
secure access to fles and directories; and implements many operations, like create, delete, open, read, 
write, and close, that users can apply on fles and directories to manage their contents. This chapter 
also explains how the space on block devices (disks) is organized to hold fle systems and describes 
some space management techniques. The space allocated to a fle might be contiguous or noncontigu-
ous arranged in the form of a linked list, index-sequential, and so on. Different free space manage-
ment techniques, including bitmap schemes, are also discussed. Many runtime data structures that 
reside in the kernel space and how they are interlinked to each other are also described. In addition, 
this chapter also shows the importance of reliability, protection, concurrency control, and journaling, 
and discusses different fault-tolerant techniques and recoverability. A presentation of a modern log-
structured fle system is included. This chapter also briefy discusses VFSs that can allow many real 
fle systems to coexist under the umbrella of a single VFS. Finally, a brief overview of the actual and 
practical implementation of UNIX, Linux, and Windows fle systems is presented as a case study. 

EXERCISES 

1. Describe the user’s view as well as the designer’s view while developing a fle system. 
2. Defne fle system. Describe the user’s view of the fle system. Describe the view that the 

designer uses while developing a fle system 
3. What is meant by fle types? What are the various methods employed to specify the fle 

type? What are the advantages obtained by specifying the type of a fle? 
4. What is meant by fle attribute? State its signifcance. State and explain those fle attributes 

that are mainly used by most operating systems. 
5. “Different fle operations are realized by using respective system calls”. Give your views, 

with suitable examples. Explain with an example the operation of at least one such system 
call to realize the respective fle operation. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

  

  

  

  
  

  

  

  

  

  

  

  

  
 

  

  

  

394 Operating Systems 

6. “An operating system is categorized by the different fle services it offers”. Justify this, 
giving the different classifcation of services that a fle system usually offers to its system 
call users. What relationship exists between the fle services and fle server? 

7. Explain the purpose and the benefts derived from a fle control block with an approximate 
functional specifcation of its structure. What is the signifcance of the current fle pointer 
feld in the fle control block? 

8. When a fle is opened concurrently by several processes, should each process construct a 
separate fle control block of its own to connect to the shared fle, or should the involved 
processes share a single FCB? Discuss the relative merits of each approach and propose a 
strategy for managing the sharing of fles. 

9. State the minimum requirements that fle management systems must meet to perform their 
responsibilities. 

10. Describe with a diagram the design principles involved in a generic fle system. 
11. Why is the average search time to fnd a record in a fle less for an indexed sequential fle 

than for a sequential fle? 
12. An index sequential fle contains 5000 records. Its index contains 100 entries. Each index 

entry describes an area of the fle 50 records. If all records in the fle have the same prob-
ability of being accessed, calculate the average number of operations involved in accessing 
a record. Compare this number with the number of disk operations required if the same 
records were stored in a sequential fle. 

13. “An indexed (inverted) fle exhibits certain advantages and beat out indexed-sequential 
fles in some situations of fle processing”. Give your comments. 

14. What does fle structuring mean? Some operating systems design a fle system as tree-
structured but limit the depth of the tree to a small number of levels. What effect does this 
limit have on users? What are the advantages of this type of structuring? How does this 
simplify fle system design, if it does at all? 

15. What are the typical operations performed on a directory? Discuss the relative merits and 
demerits of a system that provides a two-level directory in comparison to single-level (fat) 
directory system 

16. The use of hard links (or simply links) poses some inconveniences at the time of sharing 
fles. What are the major limitations that are faced in this arrangement? Symbolic links are 
supposed to alleviate these limitations: discuss. 

17. What is a graph directory structure? How does this structure overcome the problems faced 
by a tree-structured directory when a fle is shared? State the specifc access rights pro-
vided under this structuring by most OSs at the time of fle sharing. 

18. State the different methods of blocking that are generally used. Given; B = block size, R = 
record size, P = size of block pointer, and F = blocking factor, that is, the expected number 
of records within a block, derive a formula for F for all the methods of blocking you have 
described. 

19. State and explain the different disk space allocation techniques that are used in noncon-
tiguous memory allocation model. Which technique do you fnd suitable and in what 
situation? 

20. The logical disk block is of size 512 bytes. Under contiguous allocation, a fle is stored 
starting at logical disk block 40. To access the byte at fle address 2000, which is the logical 
disk block to be read into the memory? To read 100 bytes from the fle at fle address 2000, 
how many disk accesses are required? 

21. State and explain the relative merits and drawbacks of the linked (or chained) allocation 
scheme on secondary storage space. 

22. For what type of fle processing is indexed allocation found suitable? Explain. What are the 
merits and drawbacks to an indexed allocation scheme? 



File Management 395  

  

  

  
 
 

  

  

  

 

 
  

  

   

  

  

  
  

23. Calculate the number of disk accesses needed to read 20 consecutive logical blocks of a 
fle in a system with: a. contiguous allocation, b. chained allocation, and c. indexed alloca-
tion of space. Discuss your fndings, using an appropriate fgure for illustrative purposes, 
if necessary. Explain the timing difference in this regard between logical block accessing 
and physical block accessing. 

24. Free disk space can be tracked by using a free list or a bitmap. Disk addresses require D 
bits. In a disk with B blocks, F of which are free, state the condition under which the free 
list uses less space than the bitmap. For D with a value of 32 bits, express your answer as a 
percentage of the disk that must be free. 

25. Consider a hierarchical fle system in which free disk space is maintained in a free list. 
a. Suppose the pointer to free space is lost. Can the system reconstruct the free space list? 
b. Suggest a scheme to ensure that the pointer is never lost as a result of a single memory 

failure. 
26. How many device operations are required to add a released node to a free list when the disk 

(block) status map approach is used to implement the free list? 
27. A fle system implements multi-level indexed disk space allocation. The size of each disk 

block is 4 Kbytes, and each disk block address is 4 bytes in length. The size of the FMT 
is one disk block. It contains 12 pointers to data blocks. All other pointers point to index 
blocks. What is the maximum fle size supported by this system? 

28. A sequential fle ABC contains 5000 records, each of size 4 Kbytes. The fle accessing 
parameters are: 
Average time to read a disk block = 2 msec. 
Average time to process a record = 4 msec. 
Calculate the time required by a process that reads and processes all records in the fle 

under the following conditions: 
a. The fle system keeps the FMT in memory but does not keep any index blocks in mem-

ory while processing the fle. 
b. The fle system keeps the FMT and one index block of the fle in memory. 

29. State the major aspects that are to be taken into account when the reliability of the fle 
system is considered of prime importance. 

30. “File system integrity is an important issue to both users and computer systems”. Give your 
views. 

31. What are the different methods of back-ups used to recover a fle system? What are the various 
overheads associated with them? Which back-up method seems to be preferable and why? 

32. Discuss how the stable storage technique can be used to prevent loss of fle system integ-
rity. What are the drawbacks of the stable storage technique? 

33. Discuss how the atomic-action mechanism can be used to prevent loss of fle system integ-
rity. In what way does it remove the drawbacks of the stable storage technique? 

34. Defne virtual fle system. Explain with a diagram how it abstracts the generic fle model. 
35. State and describe the log-structured fle system. Discuss its salient features and the areas 

in which it has offered great benefts. 

SUGGESTED REFERENCES AND WEBSITES 

Ghemawat, S, Gobioff, H., et al. “The Google File System”, Proceedings of the ACM Symposium on Operating 
Systems Principles, New York, ACM, 2003. 

Koch, P. D. L. “Disk File Allocation Based on the Buddy System”, ACM Transactions on Computer Systems, 
vol. 5, no. 4, pp. 352–370, 1987. 

Larson, P., Kajla, A. “File Organization: Implementation of a Method Guaranteeing Retrieval in One Access”, 
Communications of the ACM, vol. 27, no. 7, pp. 670–677, 1984. 



 396 Operating Systems 

McKusick, M. K., Joy, W. N., et al. “A Fast File System for UNIX”, ACM Transactions on Computer Systems, 
vol. 2, no. 3, pp. 181–197, 1984. 

Rosenblum, M., Ousterhout, J. K. “The Design and Implementation of a Log-Structured File System”, 
Proceedings of the 24th ACM Symposium on Operating Systems Principles, New York, ACM, pp. 1–15, 
1991. 

Rubini, A. “The Virtual File System in Linux”, Linux Journal, vol. 1997, no. 37es, pp. 21–es. 
Seltzer, M. I., Smith, K. A., et al. “File System Logging Versus Clustering: A Performance Comparison”, 

USENIX Winter, pp. 249–264, 1995. 
Wiederhold, G. File Organization for Database Design. McGraw-Hill, New York, 1987. 
Yeong, W., Howes, T., et al. “Lightweight Directory Access Protocol”, Network Working Group, Request for 

Comments, 1995. 



DOI: 10.1201/9781003383055-8 397  

 
 
 
 

 
 

 
 

 
 
 
 
 

 

 
 

 

 

 
 
 
 
 
 

 

Security and Protection 8 
Learning Objectives 

• To give an overview of what is meant by security and protection. 
• To describe the objectives of security and protection to negotiate security threats. 
• To articulate the various types of security needed to handle different types of threats. 
• To demonstrate the different types of active and passive security attacks attempted on dif-

ferent assets of computer systems. 
• To explain the design issues relating to security policies and mechanisms. 
• To demonstrate a spectrum of approaches that provides appropriate protections for the 

system. 
• To describe memory (both primary and secondary) protection. 
• To describe different types of access control mechanisms, including the access control 

matrix (ACM), access control list (ACL), and capabilities in describing protection structure. 
• To describe in brief the domain and range of protection. 
• To explain the role and use of locks and keys in implementing protection. 
• To mention the different types of intruders who attempt to break security. 
• To explain different proven methods to prevent intruders from breaking security. 
• To show the different types of malicious programs (malware), worms, and viruses that can 

damage or destroy security. 
• To demonstrate different types of encryption mechanisms and schemes (both symmetric 

and asymmetric) to prevent intruders from entering the system. 
• To articulate various types of attacks attempted on cryptographic systems. 
• To describe in brief the actual implementation of security and protection in UNIX, Linux, 

and Windows in real-life situations as case studies. 

8.1 INTRODUCTION 

To safeguard the valuable, sensitive, and confdential information of the user/system as well as the 
precious assets in the computing environment from unauthorized access, revelation, or destruc-
tion of data/programs; adequate protection mechanisms are inevitably required. Thus, protection 
is concerned with threats that are internal, whereas security, in general, deals with threats to 
information that are external to a computer system. As the user density is continuously increased, 
sharing of programs and data, remote access, and connectivity become unavoidable and obvious, 
thereby making the system entirely exposed to the outside world that ultimately causes major 
security weaknesses and likely points of penetration in improperly designed systems. In fact, the 
area of computer protection and security is a broad one and encompasses physical and administra-
tive controls as well as controls that are automated with the use of tools that implement automated 
protection and security. 

While designers of computer systems and related software developers enforce extensive secu-
rity measures to safeguard the computing environment as much as possible, those, in turn, can 
increase the cost and complicate the computing environment to such an extent that it may eventually 
restrict the usefulness and user-friendliness and above all badly affect the overall performance of 
the entire computer system. Thus, a good balance in this regard is required while making the com-
puting environment suffciently effcient and effective, but again with no compromise on security 
aspects. Therefore, the computer and especially the operating system must be suffciently equipped 

https://doi.org/10.1201/9781003383055-8


 

 

 

 

 
 

 

 
 

398 Operating Systems 

to provide an adequately fexible and functionally complete set of protection mechanisms so that the 
ultimate objectives of enforcing security policies can be effectively attained. This chapter is devoted 
to discussing a variety of issues and approaches related to security and protection of standalone sys-
tems that are also equally applicable to large mainframe systems as well as to timesharing systems 
comprising a set of small computers connected to shared servers using communication networks. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.2 SECURITY AND PROTECTION: AN OVERVIEW 

Although the terms “security” and “protection” are often used interchangeably to mean restriction 
of unauthorized access, still there exists a sharp distinction between them. Security, in general, 
refers to the overall problems causing threats, whereas protection refers to the specifc operating 
system mechanisms to secure information in the computer system. For example, if you install a 
door, you are protecting your house, but it is only secure if you put a lock (security) on the door 
(protection mechanism). If there is no door, the house is open; you have no provision to put a lock. 
This means that security is realized only with the use of the protection mechanism offered by the 
owner (operating systems). The nature of the threat being faced, however, depends on the type of the 
resource and the manner in which it is used. Some strategies employed to counter the threats related 
to a specifc resource are equally applicable for other resources as well. However, operating systems 
defne two sets of distinctly different techniques to counter threats and safeguard information: 

• Security is concerned with guarding a user’s resources against interference by persons or 
entities external to a system, like non-users. 

• Protection involves guarding a user’s resources against interference by other users (inter-
nal to) of the system. 

Security system is actually built using the protection mechanisms that the operating system (fle 
management) provides. The two key methods used by the operating system to implement protection 
and thereby enable users to secure their resources are authentication and authorization. 

Authentication is commonly the method of verifying the identity of a person intending to use 
the system. Since physical verifcation of identity is not practicable in contemporary operating envi-
ronments, computer-based authentication is provided using a set of specifc assumptions. One such 
assumption is that a person is the user they claim to be if they know a thing or things that only the per-
missible user is supposed to know. This is called authentication by knowledge (password-based). The 
other method is to assume a person is the claimed user if they have something that only the allowed 
user is expected to possess. An example of this approach is biometric authentication, like authentica-
tion based on a unique and inalterable biological feature, such as the fngerprints, retina, or iris. 

Authorization, on the other hand, is the act of verifying a user’s right to access a resource in a 
specifc manner. This means that it is the act of determining the privileges of a user. These privi-
leges are ultimately used to implement protection. 

While the security setup consists of the authentication service and the authentication database, 
the protection setup consists of the authorization service, the authorization database, and the service 
and resource manager. The authentication service generates an authentication token after it has veri-
fed the identity of a user. It passes this token containing a pair of the form (authentication token, 
privileges) to the authorization service that uses the authorization database of every registered user 
of the system. It consults the database to fnd the privileges already granted to the user and passes 
this information to the service and resource manager. Whenever the user or a user process issues 
a request for a specifc service or resource, the kernel attaches the user’s authentication token to it. 
The service and resource manager then checks whether the user has been authorized to use the ser-
vice or resource. It grants the request if it is consistent with the user’s privileges. Figure 8.1 shows 
an explanation of this approach. 

http://www.routledge.com/9781032467238


Security and Protection 399  

  
 
 
 
 

 
 
 
 
 

  FIGURE 8.1 A schematic block-wise illustration of a representative generic security and protection set-up 
used in a generic operating system. 

The distinctive difference between protection and security provides a neat separation that con-
cerns the operating system. In a conventional operating system, the security aspect is limited to 
ensuring that only registered users can use an OS. When a user logs in, a security check is per-
formed to determine whether the user is a registered user of the OS, and if so, obtain their user-id. 
Following this check, all threats to resources in the system are of protection concern; the OS uses 
the user-id of a person to decide whether they can access a specifc resource under the OS. In a 
distributed system, security aspects are relatively complex due to the presence of a set of computers 
connected with networking components. Therefore, we confne our discussion about this aspect in 
this section to only conventional uniprocessor operating systems. 

• Policies and mechanisms: Security policies state whether a person should be allowed to use 
a system. Protection policies, on the other hand, specify whether a user should be allowed to 
access a specifc resource (fle). Both these policies are enforced outside the domain of the 
OS. A system administrator decides whether a person should be allowed to become a user of 
a system. Likewise, while creating a new fle, the fle-creator specifes the set of users who 
are permitted to access it. These policies are implemented by using certain security and pro-
tection mechanisms which perform a set of specifc checks during the operation of the sys-
tem. The security policy can be determined by defning it in the user space, although many 
operating systems do layer the functionality. A very small part of the OS implements the 
mechanisms, while the other parts of the OS, system software and utilities, or user software 
determine the policy. As a result, protection and security frst depend on the OS protection 
mechanisms and then on the security policies chosen by the designers and administrators. 
The separation of policy and mechanism has been discussed by Sandhu (1993). Our objec-
tive, however, will be to emphasize more on mechanisms and less on policies. 

Security mechanisms have provisions to add new users or verify whether a person is an autho-
rized user of the system. The latter mechanism is called authentication, and it is invoked whenever 



 

 

 

 

   

 

 

 

 

 
 

400 Operating Systems 

a person attempts to log in to an OS. Protection mechanisms set protection information for a fle or 
check whether a user can be allowed to access a fle. This mechanism is called authorization; it is 
invoked whenever a person attempts to access a fle or when the owner of a fle wishes to alter the 
list of users who are allowed to access it. 

8.3 GOALS OF SECURITY AND PROTECTION: SECURITY THREATS 

To explain major types of threats to security as perceived by users and providers of computer-
based systems, it is necessary to defne what is meant by security requirements. The following fve 
requirements are ultimately the goals that are to be addressed and ensured by computer and network 
security. 

• Confdentiality or Secrecy: This requires that the information in a computer system only 
accessible only by authorized parties. Disclosure of information to unauthorized parties 
may lead to catastrophic losses depending on the nature of the information in question. 
Secrecy is defnitely a security concern, because it is threatened by entities or parties out-
side an operating system. An OS negotiates it using an authentication service. 

• Privacy: This means that the information should be used only for the purposes for which 
it is intended and shared. Privacy is a protection concern that guards individuals from mis-
use of information. An OS negotiates privacy through the authorization service that deter-
mines privileges of a user, and the service and resource manager disallows all requests that 
belong outside a user’s privileges. It is up to the users to ensure privacy of their information 
using this setup, and they can then allow other users to share the information by accord-
ingly setting the authorization for the information. It can also be called controlled sharing 
of information. It is based on the need-to-know principle. 

• Authenticity: This requires that the computer system be able to verify the identity of the 
source or sender of information and also be able to verify that the information is preserved 
in the form in which it was created or sent. 

• Integrity: This requires and ensures that the computer system assets can be modifed only 
by authorized parties. Modifcation usually includes writing content, changing content, 
changing status, creating and deleting, and so on. This way, unauthorized modifcation 
by means of unlawful penetration to destroy or corrupt the information can be prevented. 

• Availability: This requires that the computer system assets always be available to autho-
rized parties, and nobody can be able to disturb the system to make it unusable. Such 
denial of service (DoS) attacks are becoming increasingly common. For example, if a 
computer is used as an internet server, sending a food of requests to it may cripple it by 
eating up all of its CPU time simply for examining and discarding incoming requests. If 
it takes, say, 100 msec. to process an incoming request, then anyone who manages to send 
10,000 requests/sec can straightaway wipe it out. 

Reasonable models and technology for dealing with attacks on confdentiality, authenticity, and 
integrity are available, but handling denial-of-service attacks is much harder. In fact, confdentiality 
(secrecy), authenticity, and integrity are both protection and security concerns. Elaborate arrange-
ments are thus needed to handle these concerns. However, the security aspect is actually more of 
an issue in distributed OSs, and of course, comparatively less in uniprocessor-based traditional 
operating systems. Moreover, all these concerns are relatively easy to suit as protection concerns 
on any type of operating system, because the identity of the user has already been verifed before 
the authorization and validation of a request are being carried out which are considered a part of 
the protection set–up as already shown in Figure 8.1. Last but not least, security threats, as a whole, 
are more severe and can appear more easily in a distributed OS, since it is mostly exposed to the 
outside world. For example, when an interprocess message travels over open communication links, 



Security and Protection 401  

 

 

 

 

 

 

   

 

  

 

 

including public links, it is quite possible for external entities to enter this domain to tamper with 
messages. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.4 SECURITY: TYPES OF THREATS 

In a computing environment, while information, in general, fows from a source to a destination, an 
unauthorized entity normally uses this area as an easy hunting place and mobilizes threats on the 
security of a computer or a network. The different types of attacks that are launched here on security 
are of four general types. Those are: 

• Interception: An attack on confdentiality launched by a person, a program, or even a 
computer. Examples include wiretapping to capture data in a network. 

• Modifcation: This is an attack on integrity by way of tampering with an asset after gain-
ing access. Examples include modifying the contents of messages, values of data in a data 
fle, altering a program being transmitted over a network. 

• Fabrication: This is an attack on authenticity by injecting counterfeit (fake) objects into 
the system. Examples include addition of records in a fle or injection of spurious messages 
in a network. 

• Interruption: This is an attack on availability, causing an asset of the system to be 
destroyed or become unavailable or unusable. Examples include damaging of a piece of 
hardware, destroying a communication line, or disabling the fle management system. 

More about this topic with a fgure is given on the Support Material at www.routledge.com/ 
9781032467238. 

8.5 SECURITY ATTACKS: PENETRATION ATTEMPTS ON 
COMPUTER SYSTEM ASSETS 

A security attack, in general, can be defned as an act attempted by a person or an entity called an 
intruder or adversary that causes adverse effects by breaching the security of a system composed of 
hardware, software, data, and communication links and networks. The nature of the threats faced 
by each category of system assets is: 

• Hardware: The main threat to the system hardware is mostly in the area of availability 
and includes deliberate damage and accidental mishap, as well as theft. A logged-on ter-
minal left unattended, when accessed by an intruder, eventually results in their gaining 
full access to all the system resources available to the legitimate user whose identity is 
assumed. Introduction of networking facilities together with a rapid increase in user den-
sity add further fuel that ultimately increases the potential of such damage in this area. As 
this domain is least conducive to automated controls, appropriate physical and administra-
tive measures are required to negotiate all these attacks. 

• Software: A key threat to both system and application software is an attack on its 
integrity/authenticity by way of making unauthorized modifcations that cause a working 
program either to result in execution failure or still function but start to behave erratically. 
Computer viruses, worms, Trojan horses, and other related attacks belong to this category 
and are discussed later (“Malicious Programs”) in this chapter. Another type of attack 
launched is by using trap doors, which are the secret points of entry in the software to 
gain access to it without going through the usual security access procedures. Trap doors 
are deliberately left by software designers themselves for many reasons, presumably to 
allow them to access and possibly modify their programs after installation for produc-
tion use. Trap doors can be abused by anyone who is already aware of them or acquires 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

  

 

 

  

402 Operating Systems 

knowledge of their existence and the related entry procedure. Another diffcult problem 
commonly faced is software availability. Software is often deliberately deleted or is altered 
or damaged to make it useless. To counter this problem, careful software management 
often includes a common approach that always keeps backups of the software’s most recent 
version. 

• Data: Data integrity/authenticity is a major concern to all users, since data in fles or any 
other form is a soft target for any type of security attack. Malicious attempts to modify 
data fles can have consequences that may range from inconvenience to catastrophic losses. 
Attacks on availability of data are concerned with the destruction of data fles and can 
either happen unintentionally, accidentally, or maliciously. 

• Communication Links and Networks: Since a communication link is a vulnerable com-
ponent of a computing environment, many attacks are launched in this area, although they 
are mainly found in distributed operating systems and can result in severe consequences. 
They have been also observed to be equally damaging to non-distributed conventional 
operating systems. Network security attacks can generally be classifed more effectively 
in terms of passive attacks and active attacks. A passive attack only attempts to obtain or 
make use of information from the system and does not alter or affect system resources. An 
active attack, on the other hand, attempts to directly damage or alter the system resources 
or can even affect their normal operations. 

8.5.1 PASSIVE ATTACKS 

They are accomplished by means of eavesdropping on, or monitoring of, or active wire–taps on, 
or electromagnetic pickup of screen radiation of, transmissions. Here, the ultimate objective of the 
opponent is only to obtain information or at least guess the nature of the communication under 
transmission. Two types of common passive attacks are: 

• Release of message contents: Confdential or sensitive information in the form of either a 
telephonic conversation or an electronic mail message or a transferred fle or database are 
the main targets of such attacks. An all-out effort in this regard must be made to prevent 
an opponent from obtaining the contents of these vital transmissions. 

• Traffc analysis: This is another layer of passive attack. Even if the information traffc 
is masked (say, by encryption), the opponent, after trapping a message, while could not 
be able to decipher it but might still be able to observe the pattern and nature of the mes-
sages. Consequently, the opponent may be in a position to detect the location and identity 
of the communicating hosts and could observe the frequency and length of messages being 
exchanged. All this information together might be useful to the opponent in guessing the 
nature of the communication taking place. 

Passive attacks are hard to detect because they do not cause any alteration of data, and their pres-
ence cannot even be guessed beforehand. They give no indication that a third party is prying to 
capture messages or at least to obtain an observed traffc pattern. However, it is not impossible to 
prevent the success of such attempts, generally by means of using encryption. Thus, the major aim 
in dealing with passive attacks is to ensure prevention rather than detection. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

8.5.2 ACTIVE ATTACKS 

These attacks always left a footprint because they make some form of modifcation to the data 
stream or create a false stream. These types of security attacks can be subdivided into four different 
categories: 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Security and Protection 403  

 

  

 

 

 

• Masquerading: In a masquerade attack, an opponent could access resources of a registered 
user of a system, or, even worse, could corrupt or destroy information released from the 
actual sender, as shown in Figure 8.2(a). One obvious way to launch a masquerade attack 
is to break the password of a user and use this knowledge to pass the authentication test at 
log-in time. It will then be possible to impersonate an authorized entity with few privileges, 
and that, in turn, could enable the attacker to obtain more privileges. Another more subtle 
approach to a masquerade is by means of malicious programs that are imported into a soft-
ware environment. This approach will be discussed in a later subsection. 

• Replay: This involves capturing data by a passive means and subsequent retransmission of it 
in a form that eventually produces an intended damage effect. This is shown in Figure 8.2(b). 

• Modifcation of messages: This acts by capturing a portion of a genuine actual message 
and altering, or messages are delayed, suspended, or even reordered to produce a destruc-
tive effect, leading to a sudden calamity [Figure 8.2(c)]. For example, a message that says, 
“Allow Amal to immediately go through the confdential contract fle”, is intentionally 
modifed to say, “Allow Kamal to immediately go through the confdential contract fle”. 
Such a modifcation might have a catastrophic effect in the organization. 

• Denial of service: This attack is launched by exploiting a weakness in the design or opera-
tion of an OS and attempts to prevent or inhibit the normal use of resources or manage-
ment of communication facilities [Figure 8.2(d)]. A DoS attack can be launched by several 
means; some of these means can be employed only by users of a system, while others may 
be exploited by intruders located in other systems. Many DoS attacks can be launched 
through legitimate means, which makes them easy to launch and equally diffcult for an 
OS to detect and prevent them. 

A DoS attack may be launched with a specifc target in view. For example, it can corrupt a particu-
lar program that offers a specifc service. It can damage or destroy some confguration information 
that resides within a kernel; for example, access to an I/O device can be denied by simply chang-
ing its entry in the physical device table of the kernel. Another class of DoS attacks are launched 
by overloading a resource using phantoms to such an extent that genuine users of the resource are 
denied its use. A network DoS attack may be launched by disrupting an entire network, either by 
disabling the network or by overloading (fooding) it with messages so that network bandwidth is 
denied to genuine messages, leading to an inability to respond to any messages that eventually 
causes severe degradation in system performance. A distributed DoS attack is one that is launched 

FIGURE 8.2 A generalized representation of different types of active attacks launched on security system 
of a generic operating system. 



 

 

404 Operating Systems 

FIGURE 8.2 (Continued) 

by a few intruders located in different hosts in the network; it is perhaps the most diffcult to detect 
and equally hard to prevent. 

Active attacks exhibit exactly the opposite characteristics of passive attacks. While passive 
attacks are diffcult to detect, there are certain means and measures that are able to prevent their 
success. Active attacks, on the other hand, cannot be absolutely prevented because it would require 



Security and Protection 405  

 

 

 
 
 

 

  

strict physical protection mechanisms and vigilance on all communication facilities and paths at 
all times. Therefore, the goal while negotiating such active attacks should be simply to go for their 
detection and subsequently to recover by any means from any disruption or delays caused by them. 
Although the detection procedure may create a hindrance in normal operation and may have certain 
deterrent effects, still then it may also contribute to prevention. 

8.6 SECURITY POLICIES AND MECHANISMS: DESIGN ISSUES 

A variety of ingenuous attacks may be organized to breach security, so it is mandatory to have a 
completely comprehensive security model, the foremost requirement of which is that the security 
policies be clearly defned in terms of desired protection and security. Security mechanisms are 
actually the implementation of certain specifc steps that describe how to realize the underlying 
security policies using the tools (protection facilities) provided by the system. However, establish-
ing a precise policy is very hard, since it requires that a precise set of software requirements be 
specifed, in addition to a set of “laws” without loopholes to control actions taken by human users. 

The primary objective in the design of operating systems and of system software and utilities 
is to include the needed security components that will ultimately provide a fexible and function-
ally complete set of security mechanisms to permit authorized users and owners of information to 
enforce security policies as deemed ft. This arrangement consequently will foil most or all of the 
security attacks that may be launched by an intruder. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

• Policies 

Security policies must address both external and internal threats. Since most threats are orga-
nized by insiders, the policies primarily encompass procedures and processes that specify: 

• How information can enter and exit the system. 
• In which way the information will be permitted to fow within the system. 
• Who is authorized to access what information and under what conditions. In other words, 

whose data are to be protected from whom. 

Additional aspects can be included to expand the security domain to limit other possibilities of 
danger. However, security policies are often based on some well-accepted time-proven basic prin-
ciples. Those are: 

Least privilege: Every object is to be allowed to access just the information required to com-
plete the tasks that the subject is authorized to. For example, the accountants in a factory 
need not have access to the production data, and similarly, factory supervisors should not 
be allowed to access the accounting data 

Rotation in responsibilities: Sensitive and confdential operations should not be permanently 
entrusted to the same personnel or the same group of personnel. Some rotation can often 
be used to prevent foul play or wrongdoing. 

Isolation in duties: In the case of critical operations that can put an organization at risk, then 
two or more people with conficting interests should be involved in carrying it out. In 
other words, two people with different involvement should be given charge of two differ-
ent keys to open the vault. 

The selection of an adequate security policy for a given installation and for specifc data therein 
is commonly a trade-off between the perceived risk of exposure, the potential loss due to the dam-
age or leakage of information, and the cost to be incurred to implement a required level of security. 

http://www.routledge.com/9781032467238


 

 
 
 

 

 

 

406 Operating Systems 

The selection process will analyze the risk assessment and the related assessment of cost, which 
includes cost of equipment, personnel, and performance degradation due to the implementation of 
security measures. Once the analysis process is over, the suitable and appropriate security policies can 
then be chalked out. Most computer-related security policies belong to one of two basic categories: 

• Discretionary Access Control (DAC): Under this category, policies are usually defned 
by the creator or the owner of the data, who may permit and specify access rights to 
other users. This form of access control is quite common in fle systems. It is, how-
ever, vulnerable to the Trojan horse (to be discussed in later subsections) attack, where 
intruders pose themselves as authorized and legitimate users. 

• Mandatory Access Control (MAC): In this scheme, users are classifed according to 
level of authority or permissions to be awarded. Data are also categorized into security 
classes according to level of sensitivity or confdentiality, and stringent rules are then 
specifed that should be strictly followed regarding which level of user clearance is 
required for accessing the data of a specifc security class. Mandatory access restric-
tions are thus not subject to user discretion and hence limit the damage that the Trojan 
horse can cause. For example, military documents are usually categorized as secret, top 
secret, confdential, and unclassifed. The user must have clearance equal to or above 
that of the document in order to gain access to it. MAC also appears in other systems, 
perhaps in less obvious forms. For example, a university authority cannot pass the right 
to modify grade records to students. 

• Mechanisms and Design Principles 

Security measures, in general, must address both external and internal security. External or 
physical security includes the standard age-old techniques of fencing, surveillance, authentication, 
attendance control, and monitoring. Physical security also demands replication of critical data for 
recovery from disasters (such as accidental system crashes, fre, or food), access restrictions to 
computer systems, and also safe storage areas used for maintaining backups. 

Major efforts are, however, exerted to realize internal security mechanisms, which encompass 
issues primarily related to the design of the OS that will actually lay the basic foundation of the 
mechanisms to implement security policies. Saltzer and Schroeder (1975) have identifed several 
general principles that can be used as a guideline to designing secure systems. A brief summary of 
their ideas (based on experience with MULTICS) is given here: 

Least privilege: Give each process the least privilege to enable it to complete its task. For 
example, if an editor has only the clearance to access the fle to be edited (specifed when 
the editor is invoked), then editors already infected with Trojan horses will not create much 
damage. This principle effectively advocates for support of small protection domains that 
imply a fne-grained protection scheme. It also provides switching of domains when the 
access needs to be changed. 

Separation of privilege: Whenever possible, privilege with respect to access to objects should 
be granted in such a way so that it has to satisfy more than one condition (in other words, 
two keys to open the vault). 

Least common mechanism: Minimize the amount of mechanism that is common to and 
depends upon multiple users. The designed mechanism will incorporate techniques for 
separating users, such as logical separation via virtual machines and physical separation of 
different machines present in distributed systems. 

Complete mediation: Every access right should be checked for authorization. The checking 
mechanism should be effective and effcient, since it has an immense impact on the per-
formance of the system. 



Security and Protection 407  

  

 

 
  

 

 

 

 

Squirrel checking: Every access should be checked for current authority. The system should 
check for permission, determine that access is permitted, and then squirrel away this infor-
mation for subsequent use. Many systems check for permission when a fle is opened and 
not afterward. This means that a user who opens a fle and keeps it open for weeks will 
continue to have access, even if the owner has long since changed the fle protection. 

Fail-safe default: Access rights should be acquired by explicit permission only, and the 
default should be to have no access. Errors in which legitimate access is refused will be 
reported much faster than the errors that may result from an unauthorized access. 

Open design: The design of a security mechanism should not be secret; rather it should be 
public. It should not depend on the ignorance of attackers. Assuming that the intruder will 
not know how the system works serves only to delude the designers. 

Economy of mechanisms: The design should be kept as simple and uniform as possible to 
facilitate verifcations and correct implementations. It should be built into the lowest layers 
of the system. Trying to retro-ft security to an existing insecure system is nearly impos-
sible. Security, like correctness, is not an add-on feature. 

User acceptability: The scheme to be chosen must be psychologically acceptable. The mech-
anism should provide ease of use so that it is applied correctly and not circumvented by 
users. If users feel that protecting their fles involves too much work, they just will not do 
it. Moreover, they may complain if something goes wrong. Replies of the form “It is your 
own fault” will generally not work or be well received. 

8.7 PROTECTION 

The original motivation for protection mechanisms started to evolve with the introduction of mul-
titasking systems in which resources, such as memory, I/O devices, programs, and data, are shared 
among users. The operating system was designed to prevent others from trespassing in the users’ 
domain and thereby absolutely protected the users’ interests as a whole. In some systems, protection 
is enforced by a program called reference monitor that checks the legality of accessing a potential 
resource by consulting its own policy tables and then makes a decision that enables the system 
to correctly proceed. We will discuss later in this section some of the environments in which a 
reference monitor is expected to be involved. Pfeeger (1997) identifes the following spectrum of 
approaches used by a user along which an operating system may provide appropriate protection. 

• No protection: This approach is workable if sensitive procedures can be run at separate times. 
• Isolation: This implies that each process is a standalone one that operates separately from 

other processes with no dependency, with no sharing and communication. Each process 
has its own address space, fles, and other objects to complete its task. 

• Share all or share nothing: This states that the owner or creator of an object (program, 
data, or memory area) can declare it to be public or private. In the former case, any other 
process may access the object, whereas in the latter, only the owner’s processes may access 
the object. 

• Share via access limitation: This option tells the OS to check the legality of each access 
when it is made by a specifc user to a particular object. This ensures that only authorized 
access is permissible. 

• Share via dynamic capabilities: This allows dynamic creation of sharing rights for 
objects. 

• Limited use of an object: This approach provides a form of protection that limits not just 
access to an object but the way in which the object may be used. For example, a user may 
be allowed to display a confdential document to view but not permitted to print it. Another 
example is that a user may have permission to access a database to get information but no 
rights to modify it. 



 

 

 

 
 

 

408 Operating Systems 

The preceding items are arranged roughly in increasing order of diffculty when implemented, but 
at the same time, this shows an increasing order of the fneness of protection that they provide. One 
of the design objectives of an operating system is thus to create a balance while allowing sharing of 
resources by many users to enhance resource usage and at the same time to ensure the protection of 
users’ vital resources from any unauthorized access. An operating system when designed and devel-
oped may incorporate different degrees of protection for different users, objects, or applications. 
We will discuss here some of the most commonly used protection mechanisms that many operating 
systems employ to realize protection for their objects. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

8.8 PROTECTION OF MEMORY 

In a multiprogramming/multi-user environment, protection of primary storage is essential not only 
from the standpoint of security but for the sake of preventing overlap of one process on another in 
the same memory space, thereby enabling simultaneously active various resident processes to run 
correctly. Usually, protection in primary storage is essentially adjunct to address translation. 

Memory protection in systems with contiguous allocation of memory is usually carried out with 
the aid of some sort of limit register (see Chapter 5). In systems supporting virtual memory, the 
separation of memory space of various processes is easily accomplished by either paging, seg-
mentation, or a combination of both. Protection in secondary storage is usually effected by means 
of user-defned access rights that are associated with fles and managed by the fle system. Some 
systems, for the sake of effciency, defne access lists in abbreviated form. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.9 PROTECTION STRUCTURE: ACCESS CONTROL 

The basic underlying issues and principles of protection mechanisms are obscure. To unfold them, 
there is a need to explain how a protection mechanism is to be defned that, in turn, requires describ-
ing a protection structure that would represent the access-control information in some pattern and 
subsequent proper use of it. This section introduces the access-matrix model of protection which 
perhaps serves as a useful abstraction for describing the protection mechanisms used in computer 
systems. Here, the system can be viewed as essentially consisting of a set of subjects, such as users 
or processes, that operate on or manipulate a set of hardware objects, namely the CPU, memory 
segments, peripheral devices, and so on, and software objects, such as fles, databases, and sema-
phores. Access control can be classifed into two distinct categories: 

• those associated with the subject or user, and 
• those associated with the objects. 

A user may be permitted to access a set of objects, and an object may be accessible by a set of users. 
A protection structure contains information that indicates which users can access which objects and 
in what manner. 

8.9.1 USER-ORIENTED 

The access control imposed on users is, unfortunately, sometimes referred to as authentication, 
since this term is widely used nowadays in the sense of message authentication. We will, however, 
strictly refrain from applying it here. 

The most common technique widely used for user access control on shared systems are user 
log-on details containing a user identifer (ID) and a password. But the ID/password system is seem-
ingly unreliable, because enough expertise has emerged that can guess the IDs of users as a whole. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Security and Protection 409  

 
 
 
 
 
 

 
 
 
 

 

 

 

  

Moreover, in some systems, the ID/password fle is accessible by skilled hackers, and as a result, 
this fle becomes a soft target of penetration attempts. Modern protection systems may even resort 
to methods such as fngerprint or eye scan identifcation. Besides, certain other means and measures 
are now available to counter these attempts, and those will be discussed later in this section. 

In a distributed environment, user access control is either centralized or decentralized. In 
a centralized approach, the network system provides a log-on service that determines who is 
allowed to access the network and to whom the user is allowed to connect. In a decentralized 
approach, the network is treated by user-access-control as a transparent communication link, 
and the usual log-on procedure is carried out by the destination host. Of course, transmitting 
passwords over the network concerning security must still be further addressed. In addition, 
many networks may have the provision of two–levels of access control. In that system, indi-
vidual hosts may be provided with a log-on facility to guard host-specifc resources and applica-
tions. Besides, the network itself as a whole may also provide some protection to limit network 
access to authorized users. This two-level facility is desirable for the common case in which 
the network connects disparate hosts and simply provides a convenient means of terminal–host 
access. In a more uniform network of hosts, an additional centralized access policy could also 
be enforced in a network-control center. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.9.2 DATA-ORIENTED 

Following successful log-on, the user has been granted access to objects, such as to one or a set of 
hosts (hardware) and applications. Every object has a name by which it is referenced and an access 
privilege, which is a right to carry out a specifc fnite set of operations (e.g. read and write opera-
tions to a fle and up and down on a semaphore). 

It is now obvious that a way is needed to prohibit processes (users) from accessing objects that 
they are not authorized to. Associated with each user, there can be a profle provided by the OS that 
specifes permissible operations or a subset of the legal operations and fle accesses when needed. 
For example, process A may be entitled to read fle F but not write to it. An access descriptor 
describes such access privileges for a fle. Common notations are used, like r, w, and x, to represent 
access privileges to read, write, and execute the data or program, respectively in a fle. An access 
descriptor can also be represented as a set; for example, the descriptor {r, w} indicates privileges to 
only read and write a fle. Access control information for a fle is a collection of access descriptors 
for access privileges held by various users. 

Considerations of data-oriented access control in network parallel those for user-oriented access 
control. This means that if only certain users are permitted to access certain items of data, then 
encryption may be useful and needed to protect those items during transmission to authorized target 
users. Typically, data access control is decentralized. It is usually controlled by host-based database 
management systems. If a database server exists on a network, then data access control is monitored 
and becomes a function of the network. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.9.2.1 Access Control Matrix 
A general model of access control as exercised by a fle or a database management system is an 
access control matrix (ACM), as shown in Figure 8.3, which stores protection information consist-
ing of access privileges of users and access control information for fles and databases. The basic 
elements of the model are: 

• Subjects: A row in ACM represents a process (or user) with access privileges of accessing 
different objects. In fact, any user or application gains access to an object by means of a 
process which represents that user or application. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 

   

  

   
    

 

410 Operating Systems 

FIGURE 8.3 A schematic illustration of a representative format of access control matrix (ACM) used in the 
protection mechanism built in a generic modern operating system. 

• Objects: A column describes access control information for anything (fle, database, etc.) 
to which access is controlled. Examples include fles, portions of fles, programs, segments 
of memory, and software objects (e.g. Java objects). 

• Access rights: The way in which an object is accessed by a subject. Examples include 
read, write, execute, copy, and functions in software objects. 

The subjects of ACM typically consist of individual users, or user groups, although they can 
include terminals, hosts, or applications instead of or in addition to users for access control. Similarly, 
the objects, at the fnest level of detail, may be individual data felds. But more aggregate group-
ings, such as records, fles, or even the entire database, may also be objects in the matrix. Moreover, 
access descriptors can be made bit-oriented instead of a character of one access right (bit = 1, i.e. 
present, and bit = 0, i.e. absent) for reduced memory usage as well as for access effciency. 

• Resolution (or Granularity) of Protection: The degree of control over protection of 
objects can be made varied. This is known as granularity of protection. Three levels of 
granularity are in common. Coarse granularity in ACM signifes that the owner of a fle 
specifes access privileges to groups of users. Medium granularity in ACM specifes access 
privileges for each individual user in the system. Fine granularity in ACM specifes access 
privileges for a process or even for a phase of execution of a process. This way, different 
processes created by the same user may possess different access privileges for a fle, or the 
same process may possess different access privileges at different times. Fine granularity 
provides users with much more resolution than coarse-grained or medium-grained protec-
tion. The implications of granularity of protection can be justifed in a better way, which 
we will discuss in “Protection Domain”. 

• Disadvantages of ACM: The access control matrix provides a simple, effective, and eff-
cient means of accessing protection information. But if an OS contains np users and nf 

fles, then the size of access–control matrix (ACM) would be np × nf, which will be, or 
even a part of it will then consume a large memory area during operation. But typical user 
processes mostly use access–privileges for few fles, causing most entries in the ACM to 
contain null information (sparse matrix); hence, the amount of actual access control infor-
mation needed is usually much smaller than the total size of the ACM. 

One way to alleviate this problem is to reduce the size of access control information, and that 
reduction can be realized in two ways: by reducing the number of rows in the ACM or simply by 
eliminating the null information. Attempting to reduce the number of rows means to assign access 



Security and Protection 411  

 
 

 

 

 
 
 
 

 
 

privileges to groups of users rather than to individual users, but forming such groups may not always 
be feasible in practice. In fact, it will compromise the granularity of protection that will eventu-
ally mar the actual objectives of protection provision. The other alternative is by eliminating null 
information in the ACM. Here, the information stored in the ACM is in the form of lists instead of 
a matrix. This approach while does not affect the granularity of protection but reduces the size of 
protection information, since only non-null entries of an ACM need to be present in a list. Two such 
list structures are commonly used in practice: 

• Access control lists (ACLs) 
• Capability lists (C-lists) 

An access control list stores the non-null information from a column of the ACM. Thus, it essen-
tially consists of a (ordered) list of access control information for one object (fle or account) cover-
ing all the users present in the system. A capability list (C-list) stores the non-null information of 
a row of the ACM. It thus describes all access privileges held by a user. While ACL can provide 
coarse- or medium-grained protection, the C-list provides only medium-grained protection. These 
two approaches will be discussed in the next section. Fine-grained protection can be obtained by 
using a protection domain, which will be discussed later. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

8.9.2.2 Access Control Lists 
The access control list of a particular object (a fle) lists users and their permitted access rights, 
indicating which users can access the object and in what manner. When a user creates a fle, the 
fle’s access control information as provided by the creator (or owner) is registered with the system. 
It is typically stored in the directory entry of the fle in the form of {(user-id, access–privileges), . . .}. 
Whenever a process attempts to open a fle, the OS (actually, the fle system) fnds the id of the user 
that initiated the process and checks with the ACL whether the user’s access privileges permit the 
intended mode of access, and accordingly, the access is permitted or denied. In most fle systems, 
the owner gets certain access privileges by default. In UNIX, these access privileges are controlled 
by the user mask. 

ACL has some inherent drawbacks that give rise to some problems when realized in practice. 
The presence of a huge number of users in a system results in a large ACL size that requires a large 
memory space to hold it, and the time required is also high while searching it to validate fle access. 
However, this problem can be minimized by storing protection information only for groups of users 
rather than for individuals, thereby offering only coarse-grained protection. 

With ACL, it is relatively straightforward to revoke a previously granted access given to a user 
or a group by simply editing the ACL to make the needed changes. But the problem is that in many 
systems, the ACL is checked for permission only when a fle is opened and not afterward. This 
means that a user who opens a fle and keeps it open for weeks will continue to have access, even 
if the owner changes the access privileges. Any fle that is already open will continue to enjoy the 
rights it had when it was opened, even if the user is no longer authorized to access the fle at all. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.9.2.3 Capability List (C-Lists) 
A capability simply represents the access privileges of a user (process) for one object (fle). Each 
capability grants the owner certain rights on a certain object. Associated with each user is a set 
of capabilities that the user possesses, which is stored in a list known as a capability list (C-list). 
The C-list stores the non-null information of a row of the ACM which is thus a set of pairs {(fle-
id, access-privileges), . . .}. In a UNIX-like system, the fle-id in the pair that represents capabil-
ity would probably be the i-node number. Whenever any user attempts to access an object, the 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 

 

 

 

 

412 Operating Systems 

corresponding C-list of that user is searched to make a decision. C-lists are usually small in size, 
which limits the space and time overhead in using them to control fle accesses. In fact, C-lists 
are themselves objects and may be pointed to or from other C-lists, thereby facilitating sharing 
of sub-domains. 

Brief details on this topic with a figure are given on the Support Material at www. 
routledge.com/9781032467238. 

• Protection of capabilities 

Like any other objects, since capability lists is shared, they must also be kept protected from any 
form of tampering attempted by the user. Four methods of protecting them are commonly known. 
The frst method requires a tagged architecture in the hardware design in which each memory word 
has an extra (or tag) bit that specifes whether the word contains a capability. The tag bit is set by 
OS, can be accessed only in kernel mode, and cannot be modifed by any user instructions. When 
an operation OPj is to be performed on an object OBk, the CPU checks the compatibility of OPj 

with OBk’s tag and performs the operation only if the two are compatible’ otherwise the attempt at 
executing OPj fails. For example, a fxed-point operation will fail if applied to a foat value. Tagged 
architecture machines have been built and found to work satisfactorily. IBM AS/400 (now called 
p-series) systems are a popular example of this kind. The second method is to maintain the C-list 
inside the operating system. Capabilities are then referred to by their position in the capability list. 
A process might then say: “Read 2 KB from the fle pointed to by capability 5”. File descriptors 
in UNIX are found to use similar form of addressing. Hydra also worked this way as described by 
Wulf. The third method is to keep the C-list in the user space, but the capabilities are managed 
cryptographically so that users cannot tamper with them. This approach is particularly suited to 
distributed systems and has been found to work well. The fourth approach is extended using the 
popular segment-based memory management scheme by introducing a third kind of segment, a 
capability segment in which capabilities are inserted only by the kernel using a privileged instruc-
tion. To access the desired object, the operand feld of an instruction contains two felds: the id of a 
capability segment and an offset (to reach the desired object in C-list) into this segment. The address 
of the object is now obtained using an object table in which each row has two felds: one feld con-
tains the object-id, and the other feld contains the object in the computer’s primary or secondary 
memory. Protection of capabilities is implicit in the fact that a store operation cannot be performed 
in a capability segment. This feature prevents tampering with and forgery of capabilities. 

ACLs and capabilities are observed to have somewhat complementary properties. Capabilities 
are very effcient, and no checking is needed because they can be referred to by their positions in the 
capability list. With ACLs, a search of long list is required to ascertain the access–privilege of a cer-
tain object if groups are not supported. Capabilities also allow a process to be easily encapsulated, 
whereas ACLs do not support this. On the other hand, ACLs allow selective revocation of rights if 
needed, which capabilities do not. Last but not least, if an object is removed and the capabilities are 
not, or the capabilities are removed and an object is not, problems arise in both situations. ACLs, 
however, do not face such a problem. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

• Software Capabilities 

An operating system that runs on computer systems with non-capability architecture can imple-
ment capabilities in the software by a component of the kernel called an object manager (OM). 
When a program intends to manipulate its objects, it indicates its requirements to the OM by mak-
ing a system call: 

OM (<opk>, Cap (objk)) 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Security and Protection 413  

 

 

 

 

 

 

 
 

 

 

Before beginning the execution of <opk>, the OM verifes that Cap(objk) contains the necessary access 
privileges in the C-list. But software implementation of capabilities gives rise to two major issues: 

• A process may be able to bypass the capability-based protection arrangement while access-
ing objects. 

• A process may be able to fabricate or tamper with capabilities. 

To counter the frst issue, one way may be to hide objects from the view of user processes by 
encrypting the system-wide object table, in which each row of the table contains the object-id and 
object address feld that indicates the location address of the corresponding object in the computer’s 
primary and secondary memory. Now, processes intending to access the object will not be able to 
locate the objects because the locations of the objects are not known to them, so they have to depend 
on the OM (object table) to perform object manipulation. The second issue in relation to preventing 
fabrication or tampering capabilities can also be addressed and negotiated using encryption. This 
approach has been successfully implemented in the capability protection scheme used in the distrib-
uted operating system, Amoeba. 

The distinct advantage of software capabilities, that is, its independence from the underlying 
hardware is also appeared as its major drawback. Here, every operation opk on an object requires 
a costly, time-consuming system call to invoke the OM to verify its access privilege in the C-list. 
Moreover, prevention of tampering requires validation of a capability every time before use, thereby 
also causing substantial time overhead. All these requirements summarily lead to appreciable over-
head, resulting in signifcant degradation in the overall system performance. 

More on this topic is given on the Support Material at www.routledge.com/9781032467238. 

• Use of Capabilities: Practical Diffculties 

Although capabilities are very effcient, implementation of them in hardware or software incurs 
a high cost. Apart from that, use of these capabilities faces some other practical diffculties when 
implemented. Three such diffculties out of many are: 

• Need for garbage collection: When can an object be destroyed? 
• Confnement of capabilities: How to ensure and enforce that processes do not pass capa-

bilities to other processes indiscriminately? 
• Revocation of capabilities: How to withdraw access privileges or cancel a capability con-

ferred by them? 

Details on each of the bullet points are described on the Support Material at www.routledge. 
com/9781032467238. 

8.9.2.4 Protection Domain 
Use of an ACM or its variants like ACLs and C-lists as provided by an operating system confers 
access privileges on users that typically address the secrecy aspect of protection. One peculiarity 
of this arrangement is that every process created by a user has the same access privileges! The 
arrangement serves the secrecy concern in protection, because only authorized users can access a 
fle; however, it is unable to adequately address the privacy concern, because it does not differentiate 
between different processes created by a user. 

Privacy between the processes created by a user may be violated in many ways. Consider the 
case: An access privilege is granted to a user, because some process initiated by the user requires 
it. However, any process created by the same user can use (or enjoy) the same access privilege, so a 
process initiated by the user may put the information to an unintended or malicious use. Such usage 
violates the privacy requirement. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 

  

414 Operating Systems 

FIGURE 8.4.a A schematic layout of ring–type protection domains used in building up the protection 
mechanism of a generic modern operating system. 

The notion of a protection domain addresses the privacy aspect. Figure 8.4a(i) is a pictorial visu-
alization of two protection domains in the form of rings. The inner domain represents programs that 
are executed in the supervisor mode in the context of protection; the process is said to execute in 
the supervisor domain. The outer ring is the user domain in which the programs are executed in the 
user mode. Obviously, programs operating in the supervisor domain enjoy additional access rights 
compared to programs operating in the user domain. 

The generalization of this two-level domain is a set of N concentric rings called a domain, ring 
architecture for protection as shown in Figure 8.4a(ii). This ring architecture was frst introduced 
in MULTICS (the predecessor of UNIX) which provides 64 such protection domains that were 
organized as concentric rings in a similar way as that shown in Figure 8.4a(ii). Under this scheme, 
out of N rings of protection, rings R0 through RS support the operating system domain, and rings 
RS+1 through RN–1 are used by applications. Thus, i < j means that Ri has more rights than Rj. In other 
words, the farther in the ring, the more privileges. The most critical part of the kernel in terms of 
protection executes in R0. The next most secure level of the OS executes in R1, and so on. The most 
secure level of user programs executes in ring RS+1, with successively less secure software executing 
in outer rings. The hardware supervisor mode in this model would ordinarily be used when software 
executes in the lowest-numbered rings, perhaps only in R0 (as was the case in MULTICS). This part 
of the OS is to be designed and implemented most carefully and is presumably proved to be correct. 

A protection domain conceptually is an “execution environment”. Software located in a fle 
that executes in a ring is assigned to that ring. A process operates in a protection domain. Access 
privileges are granted to a protection domain rather than to a user. By default, the initial execution 
domain of a process does not possess any access privileges. This way, a process cannot access any 
resources while it executes in this domain, even if the resources are owned by the user who initiated 
this process. In order to access any specifc resource, the process must “enter” a protection domain 
that possesses access privileges for that resource. This says that a process may switch between dif-
ferent protection domains in the course of its execution, and the protection mechanism provides a 
means by which a process can safely change domains, that is, can cross rings. If a process executes 
a fle in Ri, then the same process can call any procedure in Rk, (k ≥ i) without special permission, 
since that call represents a call to a lower protection domain. 

The operating system (kernel) provides system calls through which a process may issue request 
for entry into an inner protection domain. Each attempted crossing of an inner ring causes an internal 



Security and Protection 415  

 
 
 
 

  

 

 
 
 

 
 

 

 

 FIGURE 8.4.b An example with a representative format of protection domains created for the different 
activities of a user made by a generic modern operating system. 

authorization mechanism to validate the respective procedure call. A set of conditions would be 
defned for the legality of such an entry request. The kernel would apply the conditions and either 
honor the request for change of protection domain or abort the process for making an illegal request. 
Domains themselves, in general, need not be static; their elements can change as objects are deleted 
or created, and the access rights are modifed. Domains may even overlap; a single object can partici-
pate in multiple domains, possibly with different access rights defned therein. 

Figure 8.4(b) shows three protection domains, D1, D2, and D3, for different objects (fles) as 
mentioned. Domains D1 and D2 overlap over the object “accounts”, while domain D3 is disjoint 
with both of them. Assume that a user U1 executes three computations, leave, salary, and job, 
related in domains D1, D2, and D3, respectively. Thus, salary can access only fle accounts and can 
only read it. Now consider an OS that does not use protection domains. User U1 would need read and 
write access rights to fles personnel, accounts, inventory, and mails and read access rights to the 
fle project. When user U1 executes the program salary that is owned by user U2, the program salary 
will be able to modify many fles accessible to user U1! This is not fair and is not desirable at all. 

This example demonstrates a protection arrangement involving the use of protection domains 
that facilitate implementation of the need-to-know principle with a fne-grained granularity of pro-
tection. Only processes that need to access a resource are granted access to it. It also illustrates how 
this approach provides privacy of information and thereby improves data integrity and reliability. 

The generalized ring structure does not need to support inner ring data accesses; rather it requires 
only procedure calls. Data kept in inner rings can then be accessed using a corresponding inner ring 
access procedure, similar to the way an abstract data type allows references to its felds only through 
public interfaces. 

Ring structures are equally applied in hardware in contemporary computer architecture. In the 
Intel 80386 microprocessor, for example, a four-level structure is incorporated that exhibits some simi-
larities to the one described here. In the Intel case, there were three levels of instruction sets. Level 2 
and 3 instructions were the normal application program instruction sets, although non-critical portions 
of the OS code were also assumed to execute at level 2. Level 1 instructions included I/O instructions. 
Level 0 instructions manipulated segmented memory using a system global descriptor table and per-
formed context switching. This architecture and its successors, such as 80486 and Pentium micropro-
cessors, are intended to support memory segment management at level 0, while I/O operations execute 
at a relatively higher security level: a higher ring number. The main body of the OS, however, operates 
at level 2, where the segments are appropriately protected by the ring structure. 

8.9.2.5 Locks and Keys 
The locks-and-keys mechanism essentially combines aspects of access lists and ticket-oriented pro-
tection systems. In this approach, each object is associated with a list of locks and access rights. A 
process P is given a key Ki to lock Li only if it has the access right ri to the related object. A lock list 
is effectively a column in the access control matrix where identical nonempty entries can be repre-
sented by a single pair (Li,ri). A key for a lock is essentially a capability that entitles the owner to 



 

 

 

 

 

 

 

  

 

 

416 Operating Systems 

access the object, provided that the key matches the related lock. The owner of the object can also 
revoke the access rights of all processes that share the key Ki by simply deleting lock entry Li. This 
method has a close resemblance to the storage keys introduced in the IBM 360 systems. 

8.10 INTRUDERS 

One of the two most commonly observed threats to security is the intruder, and the other is, of 
course, the virus. In security literature, people who are nosing around places where they have no 
business are called intruders or sometimes adversaries, or they are referred to as hackers or crack-
ers. Intruders act in two different ways. Passive intruders just want to read fles they are not autho-
rized to read. Active intruders are more dangerous; they want to make unauthorized modifcations 
that may lead to fatal consequences, disrupting the entire system. The main objective of the intruder, 
in general, is to somehow gain access to a system or to increase the range of privileges accessible on 
a system. Intruders of different classes with different natures and characteristics have been found in 
practice. Some common categories are: 

• Nontechnical users: Some people have bad habits of reading other fles and documents 
simply by curiosity without having any defnite reasons if no barriers are found in the way. 
Some operating systems, in particular most UNIX systems, have the default that all newly 
created fles are publicly readable, which indirectly encourages exercising this practice. 
They are mostly insiders. 

• Snooping by insiders: A genuine relatively skilled user, often take it a personal chal-
lenge with no specifc intention, exercise their expertise to just only break the security of 
a local system in order to access data, programs, or resources when such accesses to these 
resources are not authorized. 

• Misusers: A legitimate user often accesses data, programs, or resources for which access 
is not authorized, or they are even authorized for such accesses but misuse their rights and 
privileges. Such a user is generally an insider. 

• Masqueraders: An individual or sometimes a group who is not authorized to use the com-
puter system but still attempts to penetrate a system’s access control in order to intention-
ally acquire a legitimate user’s account. A masquerader is likely to be an outsider 

• Clandestine user: An individual who steals or by some means seizes supervisory control 
of the system and uses this control to evade or to suppress authentication or authorization. 
This category of user can be either an insider or an outsider. 

8.11 USER AUTHENTICATION 

Intruders, in general, always attempt to acquire information that can be used to break the security 
schemes developed by the user employing the protection mechanisms offered by the system. Most 
systems use security mechanisms that are based on the assumption that the system knows the iden-
tity of each legal user. Identifcation of users when they log in is called user authentication, and its 
primary objective is to allow access to legitimate system users and to deny access to unauthorized 
parties. The principle involved in developing one-way authentication methods is mostly based on 
identifying something the user knows (possession of a secret, say, a password), something the user 
has (possession of an artifact, such as badge or smart card), or something the user is (some unique 
physiological or behavioral characteristic of the user). 

8.11.1 PASSWORDS 

The most common popular form of authentication widely in use based on sharing of a secret is the 
user password, possibly initially assigned by the system or an administrator. Typically, a system 



Security and Protection 417  

 
 

 
  

 
 
 
 

 
 
 
 

 

must maintain a fle or a password table as the authentication database in which each entry is in the 
form (login id, <password-info>) for each legitimate user to identify at the time of login. Many sys-
tems also allow users to subsequently change their passwords at will. Since, password authentica-
tion offers limited protection and is easy to defeat, the password table (fle) should be kept protected, 
and that can be done in one of two ways: 

• Access Control: Access to the password fle is limited to one or a very few accounts. 
• One–Way Encryption: The system stores only an encrypted form of the users’ passwords 

in the fle. When a user presents a password at the time of login, the system immediately 
performs encryption of the password by using it as an input for the encryption function in 
a one-way transformation (not reversible) to generate a fxed-length output, which is then 
compared with the stored value in the password fle. 

If one or both of these countermeasures are applied, then it is obvious that password cracking will 
not be so easy and that some extra effort is then still needed even for a potentially skilled intruder 
to obtain passwords. However, the intruder may still launch a variety of ingenious attacks, mainly 
based on an unlimited license to guess using numerous techniques to breach/crack security or learn 
passwords. Sometimes, use of a Trojan horse (to be described later) to bypass restrictions on access, 
and wire-tapping the line between a remote user and the host system can be fruitful to reach the 
desired target. 

These and other commonly used purely password-related schemes possess certain merits, but the 
password itself is always the face of all types of threats as a soft target that attempts to destroy the 
security system. It will then be wise to concentrate more on how to protect passwords so that attacks 
launched on passwords or any form of intrusion can be prevented. Still, all possible measures to 
restrict intrusion can fail, so the system must have a second line of defense, which is intrusion detec-
tion, so that the appropriate measures can be taken. Detection is always concerned with obtaining 
the nature and type of the attack, either before or after its success. 

Prevention, as a whole, in computer folklore is a challenging aspect and an uphill battle at all 
times and, in fact, becomes a challenging security goal when considered in the context of protec-
tion mechanisms offered to users. The problem is that defenders are always at the receiving end and 
hence must always attempt only to foil all possible attacks organized from the end of the offenders. 
But, the attacker is free to play, always trying to fnd the weakest link in the chain of defense and 
improvise different strategies to mobilize attacks. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.11.1.1 Password Protection 
Password systems consist of a user-id and password together submitted to login to the computer; 
the user-id determines the authorization of the user along with the level of privileges already 
assigned to the user, and the password authenticates the user-id of the individual. This password 
system is considered the most important frontline defense of the user and also the proverbial 
weakest link in the security chain for intruders attempting to break the security. Use of simple 
passwords and also passwords of shorter length that are easy to remember by the user is most vul-
nerable and actually helps crackers easily guess them with almost no diffculty. To alleviate this 
problem, some systems often require passwords a specifc number of characters in length. In fact, 
use of poor passwords is considered one of the main factors of large number of security problems. 
Several techniques thus have been proposed to defeat attacks on passwords. A few popular and 
effective techniques are: 

• Password aging: This requires or encourage users to regularly change their passwords to 
create an obstacle to intruder attack and make passwords relatively secure. Another alter-
native may be to use “good” passwords and advise users to keep them unchanged. Then, 

http://www.routledge.com/9781032467238


 

 

 

 

418 Operating Systems 

the amount of time and effort to be exerted by the intruders to break them will frustrate 
them and make it mostly infeasible for them. 

• Encryption of passwords: An encrypted form of a password known as ciphertext is a 
standard technique to protect the password fle (authentication database) stored in a system 
fle and is usually visible to all users in the system. An intruder in the guise of a regis-
tered user (insider) would then try a chosen plaintext attack by changing their own pass-
word repeatedly, perhaps creating thousands of possible passwords, and then analyze the 
encrypted forms with little resource consumption. On the other hand, an outsider would 
have to use an exhaustive attack by trying to login with various types of different pass-
words. But if the encrypted password fle is invisible to anybody other than the root, any 
intruder within or outside the system would have to launch an exhaustive attack through 
repeated login attempts. This strategy, although seemingly attractive and reasonable, suf-
fers from several faws, as pointed out by many researchers. A few of them are: Any type 
of an accident of protection might expose the password fle and render it readable, thereby 
compromising all the user accounts. Second, it has been observed that some users in one 
machine have accounts on other machines in other protection domains, and they often use 
the same password. Thus, if the password is read by anyone on one machine, a machine in 
another location in another protection domain could be easily accessed. 

Both UNIX and Linux perform encryption on passwords. UNIX uses DES encryption (to be 
discussed next), whereas Linux uses a message digest (MD) technique which is simply a one-way 
hash function that generates a 128- or 160-bit hash value from a password. This technique also 
has many variants, called MD2, MD4, and MD5. Linux uses MD5. In addition, both UNIX and 
Linux provide a shadow password fle option. When this option is considered, the ciphertext form 
of passwords is stored in a shadow fle that is accessible only to the root. This arrangement creates a 
situation that requires an intruder to go through a process of an exhaustive attack, which is not only 
expensive but also time-consuming. 

Thus, it can be concluded that a more effective strategy would be to always require users to select 
good passwords that would normally be diffcult to guess. Several password selection strategies 
exist, and the ultimate objective of all of them is to eliminate guessable passwords while allowing 
the user at the same time to select a password that is memorable. 

• Other Methods: One approach is to change the passwords regularly by using a one-time 
password (OTP) which is provided by the system to the user through a book that contains 
a list of passwords. Each login uses the next password in the list. If an intruder, by any 
chance, ever discovers a password, it will not serve their purpose, since next time a differ-
ent password must be used. But the user here must be very careful about the password book 
and maintain the book with utmost secrecy. 

One other method exists which is based on a variation on the password ideas in which each new 
user is provided a long list of questions, and their answers are stored in the computer in encrypted 
form. The questions should be chosen so that the user does not need to write the answers down. In 
other words, they should be things no one forgets. Typical questions look like: 1. Who is Kamal’s 
brother? 2. On what street was your maternal uncle’s house? 3. What did Mr. Paul teach in your 
secondary school? At the time of login, the computer asks one of those at random and checks that 
with the existing answer. 

Still another variation of the password idea is known as challenge–response. This technique is 
to have the system issue a dynamic challenge to the user after login. The user picks an algorithm 
when signing up as a user that is to be applied as a secret transformation, such as x × 2 or x + 3. 
When the user logs in, the computer types a random number as an argument, say, 5, in which case 
the user types 10 or 8, or whatever the answer is. Failure to do so may be used to detect unauthorized 



Security and Protection 419  

  

 

 

 

users. The algorithm can be different in the morning and afternoon, on different days of the week, 
even from different terminals, and so on. 

8.11.2 ARTIFACT-BASED AUTHENTICATION 

All the schemes relating to passwords used in protection mechanisms have lots of merits and also 
certain drawbacks apart from several minor limitations faced while implemented, but even then 
rarely transcend the inherent limitations of password-based authentication as a whole. Mechanisms 
that are based on the possession of an artifact can reduce the false acceptance rate, of course, incur-
ring an additional cost. 

The approach relating to the use of an artifact for user authorization checks to see if the user has 
some item, normally a machine-readable plastic card with a magnetic stripe on it, and also various 
incarnations of electronic smart cards. The card is inserted into the nearby installed card reader or 
in a nearby terminal for the sake of authentication. In many systems, artifact identifcation is cou-
pled with the use of a password. That is, the user must insert the card and then supply the password. 
A user can only login if they have the card and know the password. This form of authentication is 
quite common with ATMs. Artifact-based systems are well-suited in environments where the arti-
fact is also used for other purposes. 

In most companies of today, users are required to swipe their ID cards on doors with an optical 
mechanism in order to gain access to the work premises. The use of such a card as an artifact for 
computer access and authentication can likely reduce the loss of the artifact. Smart cards also can 
augment this scheme by keeping even the user’s password secret from the system. The unique user 
password can be stored in an unreadable form within the card itself, which provides authentication 
without storage of passwords in the computer system. This will make it relatively diffcult for an 
intruder to uncover user passwords. 

8.11.3 BIOMETRICS 

There exists another major group of authentication mechanisms which are based on the unique 
characteristics of each user that are hard to forge. Some user characteristics are so naturally unique 
and completely users’ own that they can be exploited to realize a protection mechanism in the form 
of biometric techniques. These user characteristics fall into two basic categories: 

• Physiological characteristics, such as fngerprints, fnger length or hand geometry, capil-
lary patterns in the retina, and facial characteristics. 

• Behavioral characteristics, such as signature patterns or dynamics of pen while writing 
the signature, voice patterns, and timing of keystrokes. 

Many other methods can be cited that can provide a foolproof identifcation, for example, urinalysis, 
often used by dogs, cats, and other animals to mark their territory by urinating around its perimeter. 
In our case, each terminal could be equipped with a specifc device along with a sign: “For login, 
please deposit your sample here”. This might be an absolutely unbreakable system, but it would 
probably give rise to fairly serious objections from the user end. After all, whatever authentication 
scheme is employed, it must be psychologically acceptable to the user community. 

Behavioral characteristics, in general, can vary with a user’s physical and mental state and thus 
may be susceptible to higher false acceptance and rejection rates. For example, signature pattern 
and keystroke rate mostly depend on and may vary with user stress level and fatigue. 

However, detection devices to be used as an attachment to the computer system should usually be 
self-contained, easily pluggable with the existing system, and independent of the computer system, 
which defnitely improves the potential for tamper-proofng. The distinct advantages of biometric 
authentication lie in its increased accuracy in the process of authentication and similarly reduction 



 

 

  

 

420 Operating Systems 

of false acceptance in security-sensitive environments. However, the drawbacks of this approach 
include the additional cost factor, potential invasion of privacy, and sometimes non-acceptance by 
the user community. 

8.12 MALICIOUS PROGRAMS 

Another category of threats that damage or destroy security is malicious programs, sometimes 
called malware, which is software written by a person(s) (intruder) with high skills and released 
into the world. The person(s) here does not actively involve like an intruder directly, but entwined 
otherwise. Some malware is created with an objective just to cause damage, but other malware 
targets specifc goals. Whatever it is, malwares create a huge problem in computing environments, 
and negotiating it is a constant and critical issue. Lot of works has already been carried out (Aycock, 
2005; Cerf, 2005; Ledin, 2005; McHugh, 2005; Treese, 2004; Weiss, 2005) and is still continuing to 
counter evermore intelligent attacks and to foil all their destructive attempts. A useful taxonomy of 
malicious software is shown in Figure 8.5, with a rough division of two distinct categories, although 
logic bombs or Trojan horses, as shown in the fgure, in particular, may be part of a virus or worm. 

These are essentially fragments of programs that cannot exist independently but need a host 
program and are only activated when the host program is invoked to run. These fragments cannot 
replicate themselves to produce one or more copies. The other category consists of either a pro-
gram fragment (virus) or an independent and self-contained program (worm, zombie) which can be 
regularly scheduled and run by the operating system like any other program and replicate itself on 
the same system or on some other system whenever it gets a suitable opportunity to produce one or 
more copies. 

8.12.1 TRAP DOOR 

A trap door is a secret point of entry in the software to gain access to it without going through the 
usual security access procedures. The system developers often follow a usual practice to intention-
ally keep a trap door in their product at the time of its development for many reasons, presumably to 
allow them to get access and then possibly modify and debug their programs after installation and 
production use without going through the stringent process of setup and authentication. Sometimes, 
the programmer may also want to ensure that there are some mechanisms of activating the program, 
should something go wrong with the built-in authentication procedure of the application. The trap 

FIGURE 8.5 A schematic block–wise representation of the taxonomy of generic malicious programs used to 
launch threats on modern operating systems. 



Security and Protection 421  

 

 
 

 
 
 
 

  

  

door is basically code that recognizes a special sequence of input or is triggered by being run from 
a certain user-id or by an unlikely sequence of events in order to activate the program or different 
parts of the program. 

A trap door can be abused by anyone who is already aware of it or acquires knowledge of its 
existence and the related entry procedure. Trap door attack is so vulnerable that it defeated the 
most strongly secured system of those days, MULTICS equipped with 64 hierarchically orga-
nized protection domains, numbered from the innermost to the outermost; each one had a set of 
specifc access privileges, including access privileges to all higher numbered domains. An Air 
Force “tiger team” (simulating intruders) launched a threat to MULTICS through a trapdoor so 
accurately that the MULTICS developers could not detect it, although they were later informed 
of its presence. 

Trap door attacks are dangerous, and it is extremely hard to prevent them even by implementing 
an adequate security system using operating-system controls to counter them. It is thus suggested 
that software developers put more emphasis on implementing appropriate security measures at the 
time of system design and development and/or update activities. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.12.2 LOGIC BOMB 

Another kind of malware is the logic bomb, which is perhaps one of the oldest types of program 
threat, predating viruses and worms. The device is basically a piece of code written by one of a 
company’s current employees and secretly inserted in a legitimate program that is set to “explode” 
when certain conditions are met. Examples of conditions that can be used as triggers for a logic 
bomb to “explode” are the absence of certain password regularly provided, the presence or absence 
of certain fles, a particular date or day of the week, or a particular user running the application in 
which the logic bomb is embedded. For example, the condition being set as trigger might be the 
absence of a certain password being regularly entered. As long as the employee gives the logic 
bomb its daily password, it does nothing. However, if the employee is suddenly fred and physically 
removed from the premises without warning, the next day the logic bomb does not get its password, 
so it explodes. The explosion of a logic bomb may clear the disk, erase fles at random, make hard-
to-detect changes to key programs, encrypt essential fles to cause a machine halt, or do similar 
things that ultimately culminate in fatal damage. 

More about this topic is given on the Support Material at www.routledge.com/9781032467238. 

8.12.3 TROJAN HORSE 

This is a useful, or apparently useful, program or command procedure that performs a legitimate 
function which is known to the OS or its users and also has a hidden component that can be used for 
nefarious purposes like launching a worm or virus, performing attacks on message security, imper-
sonation, or performing one of the other harmful or unwanted functions of malware. 

A Trojan horse program written with the intention to cause havoc in a computer system accom-
plishes many damaging functions indirectly that an unauthorized user cannot accomplish directly. 
For example, in a shared system, in order to gain access to a fle of another user, a Trojan horse 
program could be created by one user that when executed changes the invoking user’s fle permis-
sion so that the fles are now readable by any user. The Trojan horse creator could then induce the 
user community to run the program by placing it in a common directory and naming it in such a way 
that it appears to be a useful utility, thereby provoking users to use it. Another example is to write 
a program that ostensibly produces a listing of the user’s fles in a desirable (legible) format. After 
the execution of this program by a user, the Trojan horse creator can then easily access the useful 
information in the target user’s fles. The Trojan horse can also monitor traffc between a user and 
other processes to collect information for masquerading or initiate a spurious conversation with the 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 
 
 
 

422 Operating Systems 

same intent. Many other examples can be cited to illustrate various types of damaging functions that 
are performed by different types of Trojan horse programs. 

More advanced versions of sophisticated Trojan horse programs can make themselves even 
harder to detect by fully emulating the utility that they are meant to impersonate with the additional 
provision of creating many types of damage, such as forwarding data of interest to a perpetrator 
or quietly erasing the hard disk, deleting the user’s fle. This is a severe violation of the integrity 
requirement or forces a system to crash or slow down that amounts to denial–of–service. Another 
typical example of a Trojan horse activity is a spoof login program that provides a fake login prompt 
to fool a program into revealing password information. 

One of the relatively diffcult-to-detect Trojan horse programs is a compiler that modifes certain 
programs by injecting additional code into them when they are compiled, such as a system-login 
program. This code creates a trap door in the login program that permits the Trojan horse creator to 
log on to the system using a special password. This Trojan horse can never be discovered by reading 
the source code of the login program. The Trojan horse was even implanted in a graphics routine 
offered on an electronic bulletin board system. Finally, it is worthwhile to mention that, since a 
Trojan horse is loaded explicitly by a user, its authorship or origin cannot be completely concealed; 
hence it is not diffcult to track. 

8.12.4 VIRUSES 

The most well-known kind of malware is the virus, which, in recent years, has become a signif-
cant part of the software industry, particularly because of the evolution of two aspects of comput-
ing. First, the compact disk (CD) and pen drive were widely circulated among personal computer 
users and users of distributed computing environments, including client–server systems. These 
devices are an ideal carrier for a virus, since the recipient mounts the device and then runs its 
programs. Second, the emergence of the internet and its wide use make it a prolifc breeding 
ground for viruses, particularly because it offers a broad variety of mail, Web pages, newsgroups, 
and free software. 

Basically, a virus is a piece of code (it behaves like a parasite) that can attach itself to other 
programs in the system and also spread to other systems to “infect” them when virally affected 
programs are copied or transferred. Analogous to its biological counterpart, a computer virus also 
carries in its instructional code the recipe for making many perfect copies of it. In a network envi-
ronment, when a host computer is logged in, the typical virus takes temporary control of the com-
puter’s operating system. After that, whenever an uninfected piece of software comes into contact 
with the virally affected computer, a fresh copy of the virus passes into the new incoming program. 
In this way, infections are spread from program to program, from one computer to another, without 
giving any indication to the users who are dealing with virally affected systems or programs over 
network. The ability to share data, applications, and system services on other computers as provided 
in a cluster of interconnected computers establishes a perfect culture for the spread of a virus. 

A virus can do anything that other programs do. The only difference is that it attaches itself to 
another program and executes secretly when the host program is run. While attaching itself to a 
program, a virus puts its own address as the execution start address of the program. This way it gets 
control when the program is activated and infects other programs on a disk in the system by attach-
ing itself to them. After that, it transfers control to the actual program for execution. The infection 
step usually does not consume much CPU time; hence, a user receives no indication and practically 
has no way of knowing beforehand that the program being executed carries a virus. Its presence 
is felt only after its success. In fact, the way a virus attaches itself to another program makes it far 
more diffcult to track than a Trojan horse. 

Most viruses perform their tasks by exploiting the support and services offered by the underlying 
operating system and often are mostly specifc to a particular operating system. In some cases, they 
carry out their work in a manner that is also specifc to a particular hardware platform. Thus, they 



Security and Protection 423  

 

 

 

 

 

 

 

 

  

 

 

are designed mostly by keeping in view the specifc operating environment as a whole so that the 
details and weaknesses of particular systems can be willfully exploited. 

• The Nature of Viruses 

Once a virus begins execution, it can perform any function that is permitted by the privileges of 
the current user. During its lifetime, a typical virus usually goes through the following four stages. 

• Dormant state: The virus is idle and will be activated only when a certain event occurs. 
Not all viruses have this state. 

• Propagation state: Each infected program contains a clone of the virus and places an 
identical copy of itself into other uninfected programs, thereby it itself enters a propaga-
tion state. 

• Triggering state: The triggering state is attained when certain event occurs or can be 
caused by the presence of a variety of system events, including a count of the number of 
times that this copy of the virus has already made copies of itself. 

• Execution state: The virus now performs its intended function, which is usually harmful, 
damaging, and destructive. 

• Types of Viruses 

Different types of viruses are emerging very often with inherent advantages and are always at the 
offending end, whereas antivirus software is always at the defending end and attempts only to foil 
all possible attacks organized from the end of the offenders. Hence, there is a war between virus and 
antivirus, and there has been an arms race continuously going on between virus creators and anti-
virus developers. Antivirus software developed using numerous techniques is now quite matured 
to counter almost all types of existing viruses, and that is why more and more new types of viruses 
with numerous characteristics are continuously being developed and introduced to outmaneuver 
existing antivirus software. Different types of viruses presently exist and have been classifed, and 
the following are the most signifcant types of viruses: 

• Parasitic virus: This is perhaps the most common form and traditional type of virus, 
which attaches itself to executable fles and replicates itself, attempting to infect other 
executable uninfected fles, when the infected host program is executed. 

• Boot sector virus: This virus implants itself in the boot sector of a disk device and 
infects a master boot record. It gets an opportunity to execute when the system is booted 
and then spreads from the disk containing the virus. Similarly, it gets an opportunity to 
replicate when a new disk is made. 

• Memory-resident virus: This virus lodges in main memory as part of a resident sys-
tem program and starts infecting other programs whenever a program is brought into 
memory for execution. 

• Stealth virus: This is a form of virus explicitly designed to hide itself from detection 
carried out by antivirus software. A common example of a stealth virus is one that uses 
compression techniques so that its presence in the infected program cannot be detected, 
since the length of both the infected program and its counterpart uninfected version are 
same. Far more sophisticated techniques can be used. For example, a virus can place 
intercept logic in disk I/O routines so that when the antivirus attempts to read a sus-
pected portion of the disk, the virus will present the original uninfected program to foil 
the attempt. That is why stealth, more specifcally, is not a term that applies to a type of 
virus as such; rather it can be considered a technique used by a virus at the time of its 
creation to evade detection. 



 

 

   

 
 
 
 

 

 

 

 

424 Operating Systems 

• Polymorphic virus: A polymorphic virus is one that mutates with every infection. This 
makes identifcation of the virus by the “signature” during detection almost impossible. 
When replicating, this virus creates copies that are functionally equivalent but contain 
distinctly different bit patterns. The ultimate target is to evade detection or defeat the 
actions taken by antivirus programs. In this case, the “signature” of the virus will vary 
with each copy. To realize this variation, the virus may randomly insert fake instruc-
tions or change the order of independent instructions in its own program. A far more 
effective approach may be to use encryption. A portion of the virus, generally called a 
mutation engine, creates a random encryption key to encrypt the remaining portion of 
the virus. The key is stored with the virus, and the mutation engine itself is altered dur-
ing replication. When an infected program is invoked, the virus uses the stored random 
key to decrypt the virus. When the virus replicates, a different random encryption key 
is selected. Like the stealth virus, this term cannot be applied to a type of virus as such; 
rather it can be considered a technique used by a virus at the time of its formation to 
evade detection. 

Virus-writers often use available virus-creation toolkits which enable beginners to 
quickly create a number of different viruses, although the products are not as sophisti-
cated as others that are developed from scratch using innovative schemes, but success 
encourages them to stay with this practice, and they soon become expert. Virus–writers 
sometimes use another tool: a virus exchange bulletin board that offers copies of viruses as 
well as valuable tips for the creation of more intelligent viruses, and these can be directly 
downloaded. A number of such boards exist in The United States and other countries. 

• E–Mail Viruses: One of the latest developments in the world of malicious software is 
perhaps the e-mail virus. The frst rapidly spreading viruses, such as Melissa, made use 
of a Microsoft Word macro embedded in a mail attachment. When the e-mail attachment 
is opened by a recipient, the Word macro is activated, and the following actions are then 
started. 
• The e-mail virus present in the attachment sends itself to everyone on the mailing list 

in the user’s e-mail package. 
• The virus starts local damage. 

A more powerful version of an e-mail virus emerged in late 1999 using the Visual Basic scripting 
language supported by the e-mail package. This newer version provides activation when the e-mail 
containing the virus is merely opened rather than waiting for the opening of an attachment. 

The emergence of e-mail viruses opened a new generation of malware that exploits existing 
email software features and replicates to spread across the internet. The virus begins propagating 
itself as soon as it is activated (whether by way of opening an e-mail attachment or simply by open-
ing the e-mail itself) to all of the e-mail addresses already known to the infected host. This virus 
accomplishes its task within hours, whereas other viruses used to take months or years to propagate. 
Consequently, it is becoming very diffcult for antivirus software to respond before much damage is 
done. A greater degree of security measures is hence urgently needed and must be embedded into 
internet utility and application software to counter these types of constantly growing intelligent 
threats. 

• Antivirus 

Propagation of viruses and their subsequent attacks on the system cannot be stopped. Even pre-
venting them from getting into the system is impossible to achieve. Hence, to protect the system 
from the threats of viruses, countermeasures are required. One possible solution may be to prevent 
them from entering the system by exerting the best effort, and even if the system is ever found 



Security and Protection 425  

 

 

 
 
 

 
 

 
 

 

virally infected despite this effort, destroy the virus immediately before any major damage is done. 
To accomplish this task, some useful actions, as given in the following, are to be taken in an orderly 
way to eventually bring the system back to normalcy. 

Detection: If the system is infected, be sure that the infection has really occurred and locate 
the virus. 

Identifcation: Once detection is successfully done, identify the specifc virus that caused 
the infection. 

Removal: Once the specifc virus has been identifed, take all possible measures to remove 
all traces of the virus from infected programs to bring them back to their original state. 
Finally, remove the virus drastically from all infected systems to prevent its further propa-
gation. The removal process destroys the virus so that it cannot spread once again. 

In situations when a virus is detected, but its identifcation or removal is not possible at the 
moment, one relatively safe alternative may be to abandon the infected program and use a clean 
backup version of it. But this approach never gives any guarantee that the system or the other pro-
grams in the system will remain safe and unaffected henceforth. 

Declared war between virus and antivirus continues, and becomes more virulent as the technol-
ogy, and tricks and techniques used in both the areas are gradually getting matured. Advancement 
and numerous innovations are observed to happen at a high pace, and there is no indication of any 
ceasefre; rather one always attempts to dominate the other. Early viruses or their early versions 
were relatively simple code fragments, were comparatively easy to identify, and were purged with 
relatively simple antivirus software. As the virus arms race began, both camps organized them-
selves and started to develop more advanced, complex, and sophisticated products. Antivirus prod-
ucts with increasingly sophisticated approaches continue to appear. Two of the most important are 
generic decryption, and digital immune systems, developed by IBM. Detailed description of them is 
beyond the scope of this book. Interested readers are advised to go through the respective write-ups 
to acquire a clear understanding of these two approaches. 

8.12.5 WORMS 

Worms are closely related to viruses, but they are distinguished from viruses because a worm is a 
free-standing, active penetrating entity. A worm is a program which may enter the machine as a fle, 
but it will begin its execution on its own and replicate itself, spreading to other computer systems by 
exploiting the holes in their security setup. Once a fle containing a worm has been placed in the fle 
system, the worm fnds a loophole in the process manager in order to execute itself. For example, 
one well-known worm program, “Morris’s worm”, was developed to penetrate UNIX systems by 
taking advantage of the fnger command. 

Network worms normally spread by using network connections to transmit their copies 
to other computers. Once active within a system, the effects of a worm can be the same as 
those of a virus. It could implant Trojan horse programs or perform any type of unwanted and 
destructive actions. Worms are known to replicate at unimaginably high rates, thereby creat-
ing congestion in the network and consuming appreciable CPU time during replication. While 
replicating itself, a network worm makes use of the facilities and support that network provides. 
Some examples are: 

• E-mail facility: A worm often mails a copy of itself to another known system. 
• Remote login capability: A worm logs onto a remote system as a legitimate user, then 

uses commands to copy itself from one system to another. 
• Remote execution capability: A worm on its own can execute a copy of itself on another 

system. 



 

 
 

   

 

 
 

 

 
 
 
 
 

 

 

 
 
 

 
 
 

  

  
 

  

426 Operating Systems 

The characteristics of a network worm are similar to those of a computer virus. It also goes 
through four stages during its lifetime: a dormant stage, a propagation stage, a triggering 
stage, and an execution stage. During its journey through different stages, it performs stage-
specific functions. For example, the propagation phase performs the following functions in 
general: 

• Search for other systems to infect by inspecting host tables or similar other repositories of 
remote system addresses. 

• Establish a connection with a remote system obtained from such a search. 
• Determine whether the connected system has already been infected before copying itself 

to the system. If so, the copy operation is abandoned. If not, copy itself to the remote sys-
tem and perform related actions to run the copy. 

The behavior of a worm can be the same as that of a virus. Indeed, the distinction between a worm 
and a virus in activity cannot always be clearly demarcated; some malware thus often uses both 
methods to spread. Due to its self-replicating nature, a worm is even more diffcult to track than a 
virus. However, properly designed security measures implanted in both network systems and single-
computer systems can reasonably minimize the threats caused by worms. 

8.12.6 ZOMBIES 

A zombie is a program that secretly takes over another computer connected to the internet and 
then uses that computer to launch various types of attacks that are diffcult to trace. Zombies are 
purposely used mostly in denial-of-service attacks, typically against targeted Support Materials at 
www.routledge.com/9781032467238. The zombie is normally planted on hundreds of computers 
belonging to innocent (unsuspecting) third parties and then is used to overwhelm the target Support 
Material at www.routledge.com/9781032467238 by launching a devastating attack on internet traffc. 

There are still other forms of malware, such as spyware. These are mostly related to Support Materials 
at www.routledge.com/9781032467238 and mainly operate between web browsers and web servers. 

Apart from using malware to disrupt or destroy the environment, it is often created to make a 
proft. Malware in a for-proft scheme installs a key logger on an infected computer. A key logger 
records everything typed at the keyboard. It is then not too diffcult to flter these data and extract 
needed information, such as; username–password combinations, credit card numbers and expira-
tion dates, and similar other things. This information can then be supplied to a master, where it can 
be used or sold for launching criminal activities. 

8.13 ENCRYPTION 

Encryption is essentially a technique for protecting all automated network and computer 
applications and related data. File management systems often use it to guard information 
related to users and their resources. The branch of science that deals with encryption is called 
cryptography. 

Encryption is the application of an algorithmic transformation Ek to data, where E is the 
encryption algorithm with a secret key k as input, called an encryption key. The original form 
of data on which encryption is carried out is called plaintext, and the transformed data are 
called encrypted or ciphertext. The encrypted data are once again recovered by applying a 
transformation Dk ′, where k′ is a decryption key. Dk ′ is essentially an encryption algorithm 
with the secret key k′ run in reverse. It takes the ciphertext and the secret key k′ as input and 
produces the original plaintext. A scheme that uses k = k′ is called symmetric encryption or 
conventional encryption, and one using k ≠ k′ is called asymmetric encryption or public-key 
encryption. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Security and Protection 427  

 

  

 
 
 
 
 

 
 

 

 

 

 

 

8.13.1 ENCRYPTION TECHNIQUES 

Encryption techniques differ in the way they try to defeat a series of attempts by an intruder at guess-
ing Dk′. The fundamental approach is to mask the features of plaintext using the encryption algo-
rithm E with a specifc secret key k in such a way that it ensures that the corresponding scrambled 
message produced as output, the ciphertext, does not reveal features of its plaintext, without using 
a high cost of encryption. The exact substitutions and transformations performed by the algorithm 
E depend on the key k. For a given plaintext, two different keys with the same E will produce two 
different ciphertexts. 

8.13.1.1 Symmetric Encryption 
Symmetric encryption is the simplest form of encryption in which encryption is performed by applying 
an encryption algorithm E that performs various substitutions and transformations on plaintext with 
a specifc secret key k, which is also input to the encryption algorithm. The exact substitutions and 
transformations performed by the algorithm E depend on the key k. The encryption algorithm E with a 
specifc key k applied on plaintext produces ciphertext, which, in turn, can be decrypted using a decryp-
tion algorithm D with the same key k to obtain its plaintext form. If d is the plaintext, then functions Ek 

and Dk must satisfy the relation: Dk(Ek(d)) = d, for all d. Here, Dk is essentially the inverse of Ek. 
The secure use of symmetric encryption is based on two basic assumptions. The frst is that the 

encryption algorithm should be strong enough that even if an opponent knows the algorithm, they 
should not be able to decrypt the ciphertext or discover the key in spite of having in possession of a 
number of ciphertexts together with the respective plaintext that produced each ciphertext. It would 
be tediously impractical for an intruder to determine the encryption key simply by trial and error. 
Decryption is commonly considered unsuccessful if it yields unintelligible data. The second one is 
more vital: the sender and receiver must obtain copies of the secret keys in a most secure manner, 
and they must be kept secret and secure, because if those are divulged, or if someone can discover 
the key by chance and already knows the algorithm, then all communications made by the sender 
and receiver using the key will no longer be secured and will be readable to the third party. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

8.13.1.1.1 Attacks on Cryptographic Systems 
Various types of attacks launched on a cryptographic systems by an opponent, be it an internal or 
external entity, are targeted to discover the decryption function Dk, which is essentially the inverse 
of Ek. Hence, the ultimate objective of an encryption technique is always fnd a low-cost good Ek to 
perform high-quality encryption, and the encryption function Ek should always be a one-way func-
tion; that is, the computation of the inverse of Ek (i.e. Dk) would be extremely diffcult to realize. 
Even if it is possible, this would involve an impractical amount of effort and time. However, the 
nature of an attack to be launched depends largely on the position an opponent can occupy within 
the system. In general, there are two main approaches to attacking a symmetric encryption scheme. 

The frst method is commonly known as a brute–force attack, when the intruder cannot invoke 
the encryption function and is in possession of only the ciphertext. The trial-and-error approach is 
then repeatedly carried out by the intruder on the piece of ciphertext in their possession until an 
intelligible translation into plaintext is obtained. This certainly involves a very large number of 
trials when various key sizes are considered to achieve any success. This attack is also sometimes 
called an exhaustive attack because all possibilities for Dk may have to be tried out. 

The second nature of attack is known as cryptanalysis that consists of a set of similar types of 
different nature of attacks: 

• Ciphertext-only attack: While attempting to guess Dk, an intruder relies on the nature 
of the algorithm Ek already known to them and perhaps some knowledge of the general 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 

  

  

 
 

428 Operating Systems 

characteristics of the plaintext, such as the frequency with which each letter of the alpha-
bet appears in English text. If it is known that Ek replaces each letter in a plaintext with 
another letter of the alphabet (a method called a substitution cipher), an intruder may use 
this information to guess Dk. A ciphertext attack, in essence, is perhaps more effcient than 
its counterpart, an exhaustive attack, if a characteristic feature of plaintext can be success-
fully identifed. 

• Known plaintext attack: An intruder here knows the plaintext corresponding to a cipher-
text. This attack is possible to launch if an intruder can gain a position within the OS, 
which is not very diffcult to occupy, from where both a plaintext and its corresponding 
ciphertext can be observed. In this way, an intruder can collect a suffcient number of 
(plaintext, ciphertext) pairs that can guide them, which may make determining Dk easier. 

• Chosen plaintext attack: An intruder here is able to supply the plaintext and examine its 
encrypted form. This possibility helps the intruder to systematically build a collection of 
(plaintext, ciphertext) pairs that eventually helps them arrive at an approximate guess and 
thereby make repeated refnements to guesses to determine an exact Dk. 

In summary, all these types of attacks actually exploit the characteristics of the algorithm Ek in 
attempting to deduce a specifc plaintext or the key being used. If the attack succeeds in deducing 
the key, the result is catastrophic. All future and past messages encrypted with that key can then be 
easily obtained. 

Quality of encryption to thwart attacks is believed to be improved with the use of an increased 
number of bits in key k. For example, use of a 56-bit key in an encryption scheme requires 255 trials 
guessing Dk to break it. This large number of trials was believed to make such a scheme computa-
tionally secure from exhaustive attacks. However, exploiting powerful mathematical techniques like 
differential analysis can make this approach to guessing Dk much easier than an exhaustive attack. 
In addition, making use of today’s computers with massively parallel organizations of microproces-
sors, it may now be possible to achieve processing rates many orders of magnitude greater. Coupling 
all such tools and support, the performance of such attempts reaches a level that a one-way function 
Ek with a 56-bit key can no longer be considered computationally secure. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

8.13.1.1.2 Encryption Schemes 
The simplest encryption technique is the classical substitution cipher in which each letter in a 
plaintext is replaced by another letter of alphabet. This technique does not mask many features of 
plaintexts, so it is relatively easy to decipher based on analysis of the ciphertext and hence vulner-
able to an attack. Shamon (1949) proposed two principles for designing high-quality encryption 
techniques: confusion and diffusion. The confusion principle states that it should not be easy to fnd 
changes caused in the ciphertext due to a change made in the plaintext. This principle makes it dif-
fcult for an intruder to fnd correlations between a plaintext and its corresponding ciphertext. The 
diffusion principle states that the effect of a small substring in the plaintext should be spread across 
the ciphertext as much as possible. A high level of diffusion changes many parts of the ciphertext for 
a small change in the plaintext, which makes it somewhat diffcult for an intruder to discover useful 
patterns in a ciphertext; hence, more attempts are required when a frequency-analysis-based attack 
is conducted to discover plaintext. 

The two most common strategies used in symmetric encryption are the block cipher and stream 
cipher. The block cipher strategy is attributed to the two most important symmetric algorithms, 
the Data Encryption Standard (DES) and the Advanced Encryption Standard (AES). These 
schemes will now be described along with their confusion and diffusion properties. 

• Block cipher: This strategy is essentially an extension of the classical substitution cipher. 
A block cipher processes the plaintext input of fxed-size blocks with a key k and produces 

http://www.routledge.com/9781032467238


Security and Protection 429  

 

  

 

 

  

  

 

a block of ciphertext of equal size for each plaintext block. These produced blocks are 
then assembled to obtain the ciphertext. The block cipher strategy is easy to handle and 
simple to implement. While it introduces some confusion, it does not introduce suffcient 
diffusion, so identical blocks in a plaintext produce identical blocks in the ciphertext. This 
feature is a weak point of this approach that makes it vulnerable to an attack based on 
frequency-analysis and known or chosen plaintext attacks. The chances of such attacks to 
succeed can be reduced by using a relatively large number of blocks. 

• Stream cipher: A stream cipher treats a plaintext as well as the encryption key as streams 
of bits. Encryption is performed using a transformation that involves a few bits of the plain-
text and an equal number of bits of the encryption key. Transformation operations may be 
of various types, but a popular choice may be a bit-by-bit transformation of a plaintext, 
typically by performing an operation like Exclusive-OR on a bit of the plaintext and a bit 
of the encryption key. 

A stream cipher is operationally faster than a block cipher. When a bit-by-bit transfor-
mation is used, it does not provide confusion or diffusion. However, out of many variants 
of stream ciphers, one is a ciphertext autokey cipher, an asynchronous stream cipher or a 
self-synchronizing cipher that introduces diffusion. It employs a key-stream generator that 
uses a function of the key stream and the last few bits of the ciphertext stream generated 
so far. In practice, the key stream is used to encrypt the frst few bits of the plaintext. The 
ciphertext thus generated corresponding to these bits of the plaintext is then used as a key 
stream to encrypt the next few bits of the plaintext, and this process goes on until the entire 
plaintext is encrypted. In this way, diffusion is obtained, since a substring in the plaintext 
always infuences encryption of the rest of the plaintext. 

• The Data Encryption Standard: DES, essentially a block cipher developed by IBM in 
1977, was a dominant encryption algorithm. It uses a 56-bit key to encrypt 64-bit data 
blocks, and for being a block cipher, it possesses poor diffusion. To overcome this short-
coming, DES incorporates cipher block chaining mode, which uses the frst block of 
plaintext to be combined with an initial vector by an Exclusive-OR operation and then 
enciphered. The resulting ciphertext is then combined with the second block of the plain-
text using an Exclusive-OR operation and then enciphered. This process goes on until the 
entire plaintext is encrypted. In this algorithm, there are three steps that explicitly incor-
porate diffusion and confusion. Diffusion is introduced using permutation of the plaintext. 
Confusion is realized through substitution of an m bit number by an n bit number by selec-
tively omitting some bits and then using this n bit number in the encryption process. These 
steps eventually obscure the features of a plaintext and the encryption process to such an 
extent that it forces the intruder to resort to an extensive variant of the exhaustive attack to 
break the cipher. 

DES eventually fzzled out, primarily because it used only a small key length of 56 bits, 
since more and more versatile computers with increased speed and lower cost have been 
started to introduce that became successful to break DES-based encryption. The life of 
DES was extended by the use of a triple DES (3DES) algorithm that employed a key of size 
112 bits and could effectively use keys up to 168 bits in length, which was considered suf-
fciently secure against attacks for only a few years and hence was endorsed as an interim 
standard until a new standard was adopted. 

The principal drawback of 3DES is that the algorithm is relatively sluggish in software. 
Moreover, both DES and 3DES use a 64-bit block size, which was not ftting from the 
perspective of both effciency and security; a larger block size was thus desirable. Work 
continued in the quest for a new standard, and ultimately the AES was introduced, adopted 
in 2001. 

• Advanced Encryption Standard: Reviewing all these drawbacks, even 3DES, was not 
considered a dependable candidate for long-term use. Consequently, the National Institute 



 

  

  

 

 
 
 
 
 
 
 

 
 
 
 
 
 

430 Operating Systems 

of Standards and Technology (NIST) in 1997, along with others, proposed the new AES, 
which was stronger than 3DES and essentially a symmetric block cipher of blocklength 
128 bits and support for key lengths of 128, 192, and 256 bits. Finally, NIST released AES 
in 2001 as a Federal Information Processing Standard (FIPS) that mostly fulflled all the 
criteria, including security, computational effciency, memory requirements, hardware and 
software suitability, and fexibility. 

AES uses a block size of 128 bits, and keys of 128, 192, or 256 bits. It is essentially a 
variant of Rijndael, which is a compact and fast encryption algorithm employing only 
substitutions and permutations with use of the key and block sizes in the range of 128–256 
bits that are multiples of 32 bits. AES uses an array of 4 × 4 bytes, called a state, which is 
a block of plaintext on which several rounds of operations are carried out. The number of 
rounds to be performed depends on the key length; 10 rounds are performed for keys of 
128 bits, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. Each round consists 
of a set of specifed operations: byte substitution, shifting of rows, mixing of columns, and 
key addition. 

To enable both encryption and decryption to be performed using the same sequence of 
steps, a key addition is performed before starting the frst round, and the step involving 
mixing of columns is skipped in the last round. 

More details on each of the schemes with a fgure are given on the Support Material at www. 
routledge.com/9781032467238. 

8.13.1.2 Public-Key Encryption: Asymmetric Encryption 
The frst truly revolutionary advancement in the encryption mechanism in literally thousands of 
years was due to Diffe and Hellman, who frst formally proposed public-key encryption in 1976. 
Public-key algorithms signifcantly differ from symmetric encryption in that they are based on 
mathematical functions rather than on simple operations on bit streams. More signifcantly, it is 
asymmetric encryption involving the use of two separate keys in contrast to symmetric encryption 
that uses only one secret key. The use of two keys has laid a foundation of encryption that gave rise 
to profound security by having better key distribution with associated mathematical operations. 

A public-key encryption scheme includes six ingredients. Those are: plaintext, encryption algo-
rithm, public and private key, ciphertext, and decryption algorithm. The encryption algorithm per-
forms various transformations on the plaintext. The public and private key are simply a selected 
pair of keys provided as input in which one is used for encryption and the other for decryption. The 
exact transformation to be performed by the encryption algorithm depends on this public or private 
key. For a given plaintext, two different keys will produce two different ciphertexts. The decryption 
algorithm accepts the ciphertext and the matching key as input and produces the original plaintext 
as output. 

A general-purpose public-key encryption algorithm uses one key, which is essentially a public 
key for encryption known to all users, and a related different private (secret) key for decryption. The 
consequence is that even with knowledge of the cryptographic algorithm and also the encryption 
key in possession, it is computationally almost infeasible to discover the decryption key. Moreover, 
there is no hard and fast rule in using the keys; either of the two related keys can be used for encryp-
tion, and the other would be used for decryption. However, several basic steps are required to realize 
a public-key cryptographic system. 

The beauty and strength of this approach are that all participants are allowed to create their 
own (public, private) key, and all such public keys are accessible to all participants, but private 
keys are created locally by each user and therefore need never be distributed. As long as the 
private key is kept protected, the incoming message is secure. Moreover, a user can change 
the private key at any time and then announce the related new public key to replace the old 
one. Although the private key is required to be kept secret, it is always referred to as a private 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Security and Protection 431  

 

 

 

 

 

 

key rather than a secret key to avoid confusion with symmetric encryption, in which the key is 
always referred to as a secret key. 

Finally, it is worthwhile to mention that it should not be thought that public-key encryption is 
more secure from cryptanalysis than symmetric encryption. In fact, the strength of any encryption 
scheme to withstand attacks depends mostly on the length of the key and the computational work 
involved to break the cipher. Truly speaking, there is as such no basis, at least, in principle about 
either symmetric or public-key encryption that can decide one superior than other from the end of 
resisting cryptanalysis. Moreover, there is no reason to believe that public-key encryption for being 
a general-purpose and an asymmetric technique has elbowed out symmetric encryption and made it 
obsolete. On the contrary, due to computational overhead involved in today’s public-key encryption 
schemes, there seems no foreseeable likelihood that symmetric encryption will be considered to be 
discarded. In fact, symmetric encryption can outperform public-key encryption in many aspects, 
particularly in the area of key distribution. 

• RSA algorithm: Public-key encryption schemes have been implemented in many ways. 
One of the frst public-key encryption schemes was developed by Ron Rivest, Adi Shamir, 
and Len Adleman at MIT in 1977. The RSA scheme then started to dominate, and since 
that time has reigned supreme as the only widely accepted and implemented approach to 
public-key encryption. In fact, RSA is a cipher in which both the plaintext and the cipher-
text are integers between 0 and n – 1 for some n. Encryption uses modular arithmetic. 
However, the secret of its success is the strength of the algorithm, which is mostly due to 
the diffculty of factoring numbers into their prime factors, based on which the algorithm 
was constructed. 

8.14 CASE STUDY: UNIX SECURITY 

UNIX systems allow each user to select a password of a maximum of eight printable characters 
in length. This is converted into a 56-bit (using 7-bit ASCII) value that serves as the key input to 
an encryption routine, known as crypt (3), based on the Data Encryption Standard, as discussed 
earlier. The DES algorithm is modifed by a 12-bit “salt” value, known as salting the password. 
Typically, this value is related to the time at which the password is assigned to the user. The modi-
fed DES algorithm is then exercised with a data input consisting of a 64-bit block of zeros. The out-
put of the algorithm then serves as input for next second encryption. This process is repeated for a 
total of 25 encryptions. The resulting 64-bit output is then translated into an 11-character sequence. 
This ciphertext password is then stored together with a plaintext copy of the salt in the password fle 
for the corresponding user-id. The salting process injected into the UNIX password security scheme 
serves many other useful purposes. 

To log on to a UNIX system, the user provides an ID and a password. The operating system then 
uses the ID to index the password fle and retrieve the salt and the encrypted password. The salt 
value and the user-given password are then used as input to the encryption routine to generate the 
encrypted password, which is then compared with stored password value. If the result matches, only 
then is the password accepted. 

While having several merits, software implementations of DES when coupled with 25 iterations 
make it substantially slow compared to its counterpart hardware version. However, two notable 
changes have occurred since its inception. First, newer implementations of the algorithm itself have 
resulted in speedups. Second, with the advent of newer modern hardware, the hardware performance 
constantly increases and ultimately provides much faster execution of any software algorithm. 

• Access Control: UNIX defnes three user classes: fle owner, user group, and other users. 
The ACL needs to record only the presence of three access rights: r, w, and x, which rep-
resent read, write, and execute, respectively, in bit-encoded form for each of the three user 



 

 

      

 

 

 

 

432 Operating Systems 

classes. When any bit of 3 is 1, the respective access is permitted; otherwise it is denied. 
Three sets of such 3-bit groups (3 × 3 = 9 bits), like (rwx) (rwx) (rwx), one set for fle owner, 
one set for user group, and one set for other users, are used in the access control list of any 
specifc fle. While the 9-bit UNIX scheme is clearly less general than a full-blown ACL 
system, in practice, it is adequate, and its implementation is much simpler and cheaper. 
The directory entry of a fle, however, contains the identity of the fle owner in one feld, 
and bit-encoded access descriptors (r, w, x) for each user class are stored in another feld. 

The access privileges of a UNIX process are determined by its uid. When a process is created 
by the kernel, the kernel sets the uid of the process to the id of the user who created it. However, 
temporarily changing the uid of a process is possible, and that is accomplished with the use of the 
system call setuid<id> to change its uid to <id> and another setuid system call with its own id to 
revert to its original uid. The setgid feature analogously provides a method of temporarily changing 
the group-id of a process. 

More details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

8.15 CASE STUDY: LINUX SECURITY 

Linux systems also employ encryption of passwords for security. This authenticates a user at login 
time by adding a “salt” value to the password and uses a MD technique, which is simply a one-way 
hash function that generates a 128- or 160-bit hash value from a password. This technique has many 
variants, such as MD2, MD4, and MD5, but Linux uses MD5. 

Alternatively, Linux provides pluggable authentication modules (PAMs) by which an applica-
tion can authenticate a user at any instant through a dynamically loadable library of authentication 
modules. This feature helps users avoid recompilation of the application when the authentication 
used in an application needs to be changed. Application developers can exploit PAM support to 
improve application security in several ways: to permit specifc users to login at specifc times 
from specifc places, to set resource limits for users so that they cannot launch denial-of-service 
attacks, and above all to employ a specifc password encryption scheme of their choice. PAM per-
mits several authentication modules to be “stacked”; these modules are invoked one after another. 
An application can use this facility to authenticate a user through several means, such as passwords 
and biometrics, to further strengthen security. 

• Access Control: Linux protects fle access through the user-id and group-id of a process; 
even when NFS (essentially a server) accesses a fle on behalf of a user, the server’s own 
fle protection mechanism would not be used. To enable the server to temporarily gain 
access rights of users, Linux provides the system calls fsuid and fsgid through which a 
server can temporarily assume the identity of its client. 

The Linux kernel provides loadable kernel modules through which the improved access controls can 
be realized; one is called Linux Security Modules (LSMs), which supports many different security 
models. In fact, the Security Enhanced Linux (SELinux) of the US National Security Agency has 
built additional access control mechanisms through LSM that provide mandatory access control. 

More details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

8.16 CASE STUDY: WINDOWS SECURITY 

The Windows security model provides a uniform access control facility applicable to semaphores, 
threads, processes, fles, windows, and other objects. It has several elements of C2- and B2-class 
systems, according to the Trusted Computer System Evaluation Criteria (TCSEC) of the US 
Department of Defense. Access control is based around two entities: an access token associated 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Security and Protection 433  

 

 
 

 
 
 
 
 
 

 

 

  

 
 
 

 
 
 

with each process, which is analogous to capabilities, and a security descriptor associated with 
each object that also enables interprocess accesses. An important aspect of Windows security is 
the concept of impersonation, which simplifes the client–server interaction when it is over a RPC 
connection. Here, the server can temporarily assume the identity of the client so that it can evaluate 
a client’s request for access relative to that client’s rights. After the access, the server automatically 
reverts to its own identity. 

• Access Token: When the logon in a Windows system is successful using the name/ 
password scheme, a process object is created with an access token that determines 
which access privileges the process may have and bears all necessary security informa-
tion as well as speeding up access validation. A process can create more access tokens 
through the LogonUser function. Generally, the token is initialized with each of these 
privileges in a disabled state. Subsequently, if one of the user’s processes needs to 
perform a privileged operation, the process may then enable the appropriate privilege 
and attempt access. In fact, the general structures of access tokens include the main 
parameters (felds), such as Security ID (SID), Group SIDs, Privileges, Default Owner, 
and Default ACL. 

• Security Descriptors: For each object, such as a fle when is created, its access token 
is assigned by the creating process with its own SID or any group SID that makes inter-
process access possible. Each object is associated with a security descriptor in which the 
chief component is an access control list that mainly includes parameters (felds) such as 
Flags, Owner, Discretionary Access Control List (DACL), and System Access Control List 
(SACL) in order to specify access rights for various users and user groups for this object. 
When a process attempts to access this object, the SID of the process is compared against 
the ACL of the object to determine if access is permitted. 

• Access Control List: The access control lists at the heart of Windows provide access con-
trol facilities. Each such list consists of an overall header and a variable number of access 
control entries (ACEs). Each entry specifes an individual or group SID and an access 
mask that defnes the rights to be granted to the SID. When a process attempts to access an 
object, the OM in the Windows executive reads the SID and group SIDs from the access 
token and then scans down the object’s DACL. If a match is found, that is, if an ACE is 
found with a SID that matches one of the SIDs from the access token, then the process 
has the access rights specifed by the access mask in that ACE. The access mask has 32 
bits, in which each bit or a group of consecutive bits contains vital information in relation 
to access rights applicable to all types of objects (generic access types) as well as specifc 
access types appropriate to a particular type of object. 

The high-order half (16 bits) of the mask contains bits relating to four generic access types that 
apply to all types of objects. These bits also provide a convenient way to set specifc access types to 
a number of different types of object. The lower 5 bits of this high-order half refer to fve standard 
access types: Synchronize, Write owner, Write DAC, Read control, and Delete. The least signifcant 
16 bits of the 32-bits specify access rights that apply to a particular type of object. For example, bit 
0 for a fle object is File_Read_Data access, whereas bit 0 for an event object is Event_Query_Status 
access. 

Another important feature in the Windows security model is that applications and utilities 
can exploit the Windows security framework for user-defned objects. A database server, for 
example, might create its own security descriptors and attach them to specifc portions of a 
database. In addition to normal read/write access constraints, the server could secure database-
specifc operations, such as deleting an object or performing a join. It would then be the server’s 
responsibility to defne the meaning of special rights and carry out all types of access checks, 
and such checks would occur in a standard way, considering system-wide user/group accounts 
and audit logs. 



 

 
 
 

 
 
 
 
 
 
 
 
 
 

  
  

  

  

  

  

  

  

  

  

  

  

  

434 Operating Systems 

SUMMARY 

The operating system offers protection mechanisms based on which users implement security 
policies to ultimately protect the computer system. System security is scrutinized from different 
angles to reveal the numerous types of security attacks launched and to estimate the role and 
effect of malicious programs as major security threats, and subsequently approaches are imple-
mented to counter all such threats to protect the related resources. Two popular access-control-
based security systems used are access control lists and capability lists. Both are implemented 
by most popular systems in which ACLs maintain static information, and capabilities are created 
by the system at runtime. Different types of authentication strategies, including password-based 
schemes widely employed to keep illegitimate users away from systems, are discussed. Various 
types of encryption-decryption-based approaches, including symmetric encryption (private-key 
encryption) and asymmetric encryption (public-key encryption) schemes, are demonstrated. 
Viruses, the fagship security attackers causing numerous threats, are discussed in detail. Last, 
the different types of protection mechanisms offered by the most popular operating systems, 
UNIX, Linux, and Windows, to meet each one’s individual objectives and subsequently how 
security systems are built by users separately on each of these platforms are narrated as case 
studies in brief. 

EXERCISES 

1. Describe the distinctive differences between security and protection 
2. Protection is implemented by the operating system using two key methods, authentication 

and authorization; discuss with your own comments. 
3. What is the difference between policies and mechanisms with respect to both security and 

protection? 
4. Discuss the common requirements or goals that an operating system must meet to prevent 

generic security threats. 
5. State and characterize the different types of attacks that may be launched on security of a 

system. 
6. “It is not the data alone but the entire computer system that is always exposed to threats in 

security attacks”. Justify the statement. 
7. What is the difference between passive and active security attacks? Discuss briefy the dif-

ferent categories that are commonly observed in active security attacks. 
8. What is the spectrum of approaches used by a user in which an operating system may pro-

vide appropriate protection? 
9. Dynamic relocation hardware is usually considered a basic memory protection mecha-

nism. What is the protection state in relocation hardware? How does the operating system 
ensure that the protection state is not changed indiscriminately? 

10. Give your argument for conditions under which the access control list method is superior 
to the capability list approach for implementing the access matrix. 

11. An OS performs validation of software capabilities as follows: When a new capability is 
created, the object manager stores a copy of the capability for its own use. When a process 
wishes to perform an operation, the capability presented by it is compared with stored 
capabilities. The operation is permitted only if a matching capability exists with the object 
manager. Do you think that this scheme is foolproof? Using this scheme, is it possible to 
perform selective revocation of access privileges? 

12. Use of capabilities is very effcient to realize protection mechanisms. What are the practi-
cal diffculties at the time of its implementation? 

13. Passwords are a common form to implement user authentication. Briefy, state the ways in 
which the password fle can be protected. 



Security and Protection 435  

  

  

  

  

  
  

  

  
  

  
  
  

  
  

  
 

  
  
  
  

 

14. Write down the numerous techniques by which an intruder may launch a variety of inge-
nious attacks to breach/crack security or to learn passwords. 

15. What are the popular and effective techniques that have been proposed to defeat attacks on 
passwords? 

16. Password-based authentication often suffers from inherent limitations. What are other 
ways by which user authentication can be checked? 

17. What is meant by malicious software? How are the threats launched by them differenti-
ated? Write down the different types of malicious software that are commonly found in 
computer environments. 

18. Can the Trojan horse attack work in a system protected by capabilities? 
19. What is meant by virus? What is the common nature of viruses? Write down the type of 

viruses you are aware of. 
20. What is an e-mail virus? How do they work? What are their salient features that differenti-

ate them from other members? 
21. What is the difference between a virus and a worm? How do they each reproduce? 
22. What is antivirus? How do they work? Write down the steps they take to restore the system 

to normalcy. 
23. List the security attacks that cannot be prevented by encryption. 
24. What are the two general approaches to attacking a conventional encryption system? 
25. Assume that passwords are limited to use of the 95 printable ASCII characters and all 

passwords are allowed to use 10 characters in length. Suppose a password cracker is 
equipped with an encryption rate of 6.5 million encryptions per second. How long will it 
take, launching an exhaustive attack, to test all possible passwords on a UNIX system? 

26. What are DES and Triple DES? Discuss their relative merits and drawbacks. 
27. The encryption scheme used for UNIX passwords is one way; it is not possible to reverse 

it. Therefore, would it be more accurate to say that this is, in fact, a hash code rather than 
an encryption of the password? 

28. It was stated that the inclusion of the salt in the UNIX password scheme increases the dif-
fculty of guessing by a factor of 4096 (212 = 4096). But the salt is stored in plaintext in the 
same entry as the corresponding ciphertext password. Therefore, those twelve characters 
are known to the attackers and need not be guessed. Therefore, why is it asserted that the 
salt increases security? 

29. How is the AES expected to be an improvement over triple DES? 
30. What evaluation criteria will be used in assessing AES candidates? 
31. Describe the differences among the terms public key, private key, and secret key. 
32. Explain the difference between conventional encryption and public-key encryption. 

SUGGESTED REFERENCES AND WEBSITES 

Aycock, J., Barker, K. “Viruses 101”, Proceedings of the Technical Symposium on Computer Science 
Education, Education, New York, ACM, pp. 152–156, 2005. 

Cass, S. “Anatomy of Malice”, IEEE Spectrum, November, New York, IEEE, 2001. 
Cerf, V. G. “Spam, Spim, and Spit”, Communications of the ACM, vol. 48, pp. 39–43, 2005. 
Eastlake, D. “Domain Name System Security Extensions”, Network Working Group, Request for Comments: 

2535, 1999. 
Kent, S. “On the Trail of Intrusions into Information Systems”, IEEE Spectrum, December, New York, IEEE, 

2000. 
Kephart, J., Sorkin, G., et al. “Fighting Computer Viruses”, Scientifc American, 1997. 
Ledin, G. Jr. “Not Teaching Viruses and Worms is Harmful”, Communications of the ACM, 48, p. 144, 2005. 
Pfeeger, C. Security in Computing, Upper Saddle River, NJ, Prentice-Hall PTR, 1997. 
Mchugh, J. A. M., Deek, F. P. “An Incentive System for Reducing Malware Attacks”, Communications of the 

ACM, vol. 48, pp. 94–99, 2005. 



 

 

436 Operating Systems 

Saltzer, J. H., Schroeder, M. D., et al. “The Protection of Information in Computer Systems”, Proceedings of 
the IEEE, New York, IEEE, pp. 1278–1308, 1975. 

Sandhu, R. S. “Lattice-Based Access Controls Models”, Computer, vol. 26, pp. 9–19, 1993. 
Shamon, C. E. “Communication Theory of Secrecy Systems”, Bell Systems Journal, 1949. 
Schneier, B. Applied Cryptography, New York, Wiley, 1996. 
Treese, W. “The State of Security on the Internet”, NetWorker, vol. 8, pp. 13–15, 2004. 
Weiss, A. “Spyware Be Gone”, NetWorker, vol. 9, pp. 18–25, 2005. 
Wright, C., Cowan, C., et al. “Linux Security Modules: General Security Support for the Linux Kernel”, 

Eleventh USENIX Security Symposium. 

RECOMMENDED WEBSITES 

AntiVirus On-line: IBM’s site about virus information. 
Computer Security Resource Center: Maintained by National Institute on Standards and Technology 

(NIST). It contains a wide range of information on security, threats, technology and standards. 
Intrusion Detection Working Group: Containing all of the documents including the documents on Protection 

and Security generated by this group. 
CERT Coordination Center: This organization evolves from the computer emergency response team formed 

by the Defense Advanced Research Projects Agency Site offers good information on Internet security, 
vulnerabilities, threats, and attack statistics. 



DOI: 10.1201/9781003383055-9 437  

 

 

 
 
 

 

 

 
 
 

 

 

 

 
 

 

 

 

 

 

  

 

Distributed Systems 9 
An Introduction 

Learning Objectives 

• To describe the evolution of distributed computing systems and their advantages and dis-
advantages, including different forms of their hardware design. 

• To describe the forms of software that drive the distributed computing systems. 
• To demystify the generic distributed operating system and its design issues. 
• To discuss generic multiprocessor operating systems with numerous considerations used in 

different forms of multiprocessor architecture. 
• To elucidate different management systems of OSs with emphasis on processor manage-

ment, including the different methods used in processor scheduling, process scheduling, 
and thread scheduling in multiprocessor environments. 

• To present separately in brief the Linux OS and Windows OS in multiprocessor environ-
ments as case study. 

• To present the multicomputer system architecture and its different models. 
• To discuss the design issues of generic multicomputer operating systems. 
• To introduce the concept of middleware and its different models in the design of true dis-

tributed systems, including its services to different application systems. 
• To present a rough comparison between various types of operating systems running on 

multiple-CPU systems. 
• To introduce the concept of distributed systems built in the premises of networks of com-

puters with their related networking issues. 
• To present as a case study a brief overview of AMOEBA, a traditional distributed operat-

ing system. 
• To discuss in brief internetworking with all its related issues. 
• To discuss in brief the design issues of distributed operating systems built in the premises 

of workstation–server model. 
• To discuss the remote procedure call and the implementation of generic RPCs as well as 

the implementation of SUN RPC, presented here as case study. 
• To present a brief overview of distributed shared memory as well as its design issues and 

implementation aspects. 
• To discuss the different aspects of distributed fle systems (DFSs) and their various design 

issues, along with a brief description of their operation. 
• To briefy describe the implementation of the Windows DFS, SUN NFS, and Linux GPFS 

as case studies. 
• To present a modern approach to distributed computer system design, the cluster, along 

with its advantages, classifcations, and different methods of clustering. 
• To briefy describe the general architecture of clusters and their operating system 

aspects. 
• To briefy describe the different aspects of implementation of Windows and SUN clusters 

as case studies. 

https://doi.org/10.1201/9781003383055-9


 

 

 
  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

438 Operating Systems 

9.1 DISTRIBUTED COMPUTING SYSTEMS: EVOLUTION 

Early computers from the date of the frst generation (1945) to the era of modern computers until 
about 1985 introduced several notable concepts, including multiprogramming with time-sharing 
using centralized large mainframe systems. This concept was further advanced one step by attach-
ing dumb (non-intelligent) terminals located geographically apart from the main computer sys-
tem, thereby allowing multiple users to simultaneously use the system by directly sharing system 
resources to execute their jobs. The complex design of this approach, however, was formalized by 
the early 1970s, and cost also came down to an affordable range. This time-sharing system could 
be considered the frst stepping stone toward distributed computing systems, since it implemented 
two important concepts of modern distributing systems: that multiple users can share the computer 
resources simultaneously, and they may be located away from the main computer system. With the 
advent of microprocessor technology in the 1970s, dumb terminals were eventually replaced by 
intelligent ones with some processing power so that the concept of offine processing by these ter-
minals as well as online time sharing in the main system were combined to realize the advantages 
of both concepts with only a single system. 

Microprocessor technology continued to advance rapidly and ultimately opened a new hori-
zon, giving rise to the emergence of a different class of general-purpose machine called personal 
computers. The continual advancement in hardware technology ultimately promoted these per-
sonal computers to grow into more sophisticated systems, making them more fexible and faster, 
and fnally equipped them for use in a different environment as workstations in the early 1980s. 
A workstation itself typically consists of a faster, more powerful processor, larger capacity of 
memory, larger disk storage, and high-resolution graphic display unit and usually connects to 
systems (servers) with more resources than a personal computer. As a result, most users could 
perform their jobs at their own computers while allowing a large number of other users to simul-
taneously share the main computer (server) to which it is attached. One of the main drawbacks of 
this time-sharing system was that the terminals attached were connected to the main system using 
ordinary cables, and as such they could not be placed very far from the main system. However, 
advancements in computer technology continued in parallel that ultimately gave rise to another 
breakthrough with the invention of networking technology in the early 1970s that emerged as 
two key network types, local area networks (LANs) and wide area networks (WANs). LAN 
technology provided interconnections of several computers located within a small geographical 
range, and small amounts of information could be transferred between machines in a millisecond 
or so. Large amounts of data could be moved between machines at rates of 10 Mbps (million bits 
per sec) or even more. The frst high-speed LAN was the Ethernet, from Xerox PARC in 1973. 
WAN technology, on other hand, allowed interconnections of several computers located far from 
each other (in different cities, countries, or even continents) in such a way that these machines 
could exchange information with one another at data rates of about 56 Kbps (Kilobits per sec). 
The frst WAN was the ARPANET (Advanced Research Projects Agency Network) developed by 
the U.S. Department of Defense in 1969. 

The ultimate result of the emergence of these two technologies: the appearance of low-cost small 
computers with the computing power of a decent-sized mainframe (large), and the introduction 
of networking technology; when combined together made it possible to realize an arrangement 
consisting of many computing systems with a large number of CPUs connected by a high-speed 
network. These are usually called distributed computing systems, in contrast to the previous cen-
tralized systems consisting of a single CPU, its memory, peripherals, and some terminals. 

A distributed computing system, in short, can be roughly defned as a collection of processors 
interconnected by a communication network in which each processor has its own local memory and 
other peripherals, and the physical communication between processors is done by passing messages 
across the communication network that interconnects the processors. For a particular processor, all 
its own resources are local, whereas the other processors and their resources as connected to it are 



Distributed Systems: An Introduction 439  

    

   

 

 

 

 

remote. Often, a processor together with its allied resources is referred to as a node, site, or even 
machine of the distributed computing system. 

Advancements in many areas of networking technology continued, and as a result, another major 
innovation in networking technology took place in the early 1990s with the introduction of asyn-
chronous transfer mode (ATM) technology, which offered very high-speed data transmission on 
the order of 1.2 gigabits in both LAN and WAN environments. Consequently, it made it possible to 
support a different new class of distributed computing, called multimedia applications, that handles 
a mixture of information, including, voice, video, and ordinary text data. These applications were 
simply beyond imagination with the existing traditional LANs and WANs. 

Distributed systems although appeared in the late 1970s and were well defned from the stand-
point of the hardware, but the appropriate software (mainly the operating system) that could extract 
its total power to the fullest extent was not available. They need radically different software than 
that used for centralized systems. Although this feld is not yet mature, extensive research already 
carried out and still in progress has provided enough basic ideas to evolve a formal design of these 
operating systems. Commercial distributed operating systems (DOSs) of different forms have 
emerged that can support many popular distributed applications. Distributed computing systems 
that use DOSs are referred by the term true distributed systems or simply distributed systems. 
The term “distributed system” means the presence of a DOS on any model of a distributed comput-
ing system. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

9.2 CHARACTERISTICS OF DISTRIBUTED 
COMPUTING SYSTEMS: ADVANTAGES 

Distributed systems involve the distribution of computing facilities, processing as well as related 
data. Some of their distinct advantages are: 

• Responsiveness: It provides appropriate resources to fulfll the local requirements at 
respective ends within its premises and imposes local management in a way superior than 
those obtained from a centrally located facility, but still is aimed to fulfll the total demand 
of the entire computing environment of the arrangement. 

• Resource sharing: Expensive computing resources can be shared among users for the 
sake of better utilization. Data fles to be shared inherent to some applications can be 
provided to individual users for local computing but can be centrally managed and main-
tained for all users’ access. In addition, distribution of critical programs and databases is 
often needed, and that can be developed in a way for all users’ access individually at their 
respective ends in order to disperse facilities. 

• Higher reliability and availability: Reliability often refers to the degree of tolerance 
against errors and component failures in a system. It is also sometimes defned in terms 
of availability, which refers to the fraction of time within which a system is available for 
use. Reliability and also availability can be realized by distributing the workload over 
multiple interconnected systems, and the instance of a single machine failure may then at 
most affect only the respective machine, leaving the rest intact to function normally with 
almost no indication to the users, except with some degradation in performance. To negoti-
ate catastrophic failure, key system resources and critical applications can be replicated 
so that a backup system can quickly take up the load; otherwise this failure may cause 
devastation. However, geographical distribution of system resources can limit the scope 
of failures caused by natural disasters. Thus, the consideration of higher reliability and 
increased availability is a dominant aspect, but it is often realized against incurring addi-
tional cost and also at the price of performance. Hence, it is most important to maintain a 
balance between them. 

http://www.routledge.com/9781032467238


 

 

 
 

 

 

 

440 Operating Systems 

• Extensibility and incremental growth: Incremental growth is urgently required, mainly 
to handle increased workload or the need to have a totally new set of applications. In a 
centralized system, this may often require a major upgrade both in hardware and soft-
ware and possibly major alteration and appropriate conversion of existing applications 
for the changed environment, along with perhaps the risk of major havoc and probably 
degraded performance. In addition, all these together ultimately incur substantial costs and 
more time. In contrast, with a distributed system, it may be possible to simply add more 
resources gradually to the system and replace applications or systems step by step, avoid-
ing the “all-or-nothing” approach, thereby allowing it to expand regularly on an as-needed 
basis. Distributed computing systems that are properly designed to have the property of 
easy extensibility are commonly called open distributed systems. 

• Increased user involvement and control: The presence of smaller, low-cost, and more man-
ageable resources available directly to users enables them to straightaway involve at ease in 
the operational environment and also offers them greater freedom to interact with the system. 

• Shorter response times and higher throughput (productivity): Since each piece of full 
equipment in the distributed computing systems is available at the end of each individ-
ual user to manage different respective tasks with comparatively small amount of load; 
this would certainly yield relatively better response time to each user, and also increases 
the total throughput of the entire arrangement. In addition, distributed systems while are 
equipped with very fast communication networks can be used as parallel computers; many 
users can then work together on a specifc complex task, and each one at his own end can 
run the respective portions of the total task concurrently with others to rapidly complete 
the task. Another approach often used is to distribute the load more evenly among exist-
ing multiple processors by moving jobs from currently overloaded processors to relatively 
lightly loaded ones for the sake of achieving better overall performance. 

• Better cost/performance ratio: With the advent of rapidly increasing power as well as 
sharp reduction in the price of microprocessors, a large number of CPUs, when harnessing 
the increasing speed of communication networks, can not only yield a better price/perfor-
mance ratio than a single large (mainframe) system but may yield an absolute performance 
that no large system of the same price can achieve. A distributed system, in effect, gives 
more bang for the buck, which is one of the main reasons for the growing popularity of 
distributed computing systems. 

It is to be noted that all these advantages are actually extracted by the appropriate operating system 
to be carefully designed that would drive the well-organized machines in distributed computing sys-
tems and manage all the processes in a way to make them properly ft in a distributed environment. 

Since the entire distributed environment is exposed and available to many users, security in such 
systems is certainly a critically central issue. Moreover, the continuous increase in user density and 
explosive growth in the emergence of different models of distributed systems and applications have 
made this part more vital. Distributed systems, however, amplifed the dependence of both orga-
nizations and users on the information stored and communications using the interconnections via 
networks. This, in turn, means a need to protect data and messages with respect to their authenticity 
and authority as well as to protect the entire system from network-based attacks, be it viruses, hack-
ers, or fraud. Computer security, fortunately, by this time has become more mature; many suitable 
means and measures, including cryptography, are now available to readily enforce security. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

9.3 DISTRIBUTED COMPUTING SYSTEMS: DISADVANTAGES 

Although distributed computing systems have their strengths in many respects, they also equally 
have certain weaknesses, some of them are inherent. However, a potential problem is absolute 

http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 441  

 

 

dependence on a communication network, which may cause data or messages to be lost during 
transmission across the network, requiring the intervention of additional special software to handle 
the situation that, in turn, results in appreciable degradation of the overall system performance and 
responsiveness to users. Moreover, when traffc on the network continues to grow, it exhausts the 
network capacity; the network saturates and becomes overloaded; users on the network may then 
come to a stall. Either special software is needed to negotiate this problem, or the communication 
network system must be upgraded to higher bandwidth (maybe using fber optics), incurring a huge 
cost. All these along with other perennial problems ultimately could negate most of the advantages 
the distributed computing system was built to provide. 

The other problem comes from one of the system’s advantages, which is the easy sharing of data 
that exposes these data to all users, and consequently, this gives rise to a severe security problem. 
Special security measures are additionally needed to protect widely distributed shared resources 
and services against intentional or accidental violation of access control and privacy constraints. 
Additional mechanisms may also be needed to keep important data dedicated, isolated, and secret 
at all costs. Fortunately, several commonly used techniques are available today to serve the purpose 
of designing more secure distributed computing systems. 

Last but not least is the lack of availability of suitable system software, which is inherently 
much more complex and diffcult to build than its counterpart, traditional centralized systems. This 
increased complexity is mainly due to the fact that apart from performing its usual responsibilities 
by effectively using and effciently managing a large number of distributed resources, it should 
also be capable of handling the communication and security problems that are very different from 
those of centralized systems. In fact, the performance and reliability of a distributed computing 
system mostly depends to a great extent on the performance and reliability of the large number of 
distributed resources attached to it and also on the underlying communication network, apart from 
the performance of the additional software, as already mentioned, to safeguard the system from any 
possible attack to keep it in normal operation. 

Despite all these potential problems, as well as the increased complexity and diffculties in build-
ing distributed computing systems, it is observed that their advantages totally outweigh their dis-
advantages, and that is why the use of distributed computing systems is rapidly increasing. In fact, 
the major advantages, economic pressures, and increased importance that have led to the growing 
popularity of distributed computing systems will eventually bring about a further move one step 
forward to connect most of the computers to form large distributed systems to provide even better, 
cheaper, and more convenient service to most users. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

9.4 DISTRIBUTED COMPUTING SYSTEMS: HARDWARE CONCEPTS 

Multiple-CPU computer systems are recognized by Flynn’s classifcation of computers, which 
places them in the category of multiple instructions multiple data (MIMD), and the classifcation 
process ended there. Later on, further classifcations of this category were introduced. The most-
frequently used taxonomy in this regard is cited in Figure 9.1. All MIMD computers are divided 
into two distinct categories: those MIMDs that use shared primary memory, usually called multi-
processors, and those that do not, sometimes called multicomputers, private memory computers, 
or even disjoint memory computers. The primary difference between them is essentially that in a 
multiprocessor, there is usually a single virtual address space that is shared by all CPUs. All the 
machines share the same memory. 

In a multicomputer, in contrast, each individual machine consisting of a processor–memory– 
I/O module forms a node which is essentially a separate stand-alone autonomous computer in this 
arrangement. These machines are then grouped together by using communication networks with 
physically separated memory as well as I/O distributed among the processors; hence, this whole 
arrangement is rightly called multicomputers. Such machines usually yield cost-effective higher 

http://www.routledge.com/9781032467238


 

 

 

 

 

442 Operating Systems 

FIGURE 9.1 A schematic block–wise representation relating to the taxonomy of the parallel and distributed 
computing systems. 

bandwidth, since most of the accesses made by each processor are to its local memory, thereby 
reducing the latency that eventually results in an increase in processor performance. The nodes 
in the machine are equipped with communication interfaces so that they can be connected to one 
another through an interconnection network. 

Due to the advent of more powerful VLSI technology in the mid-1980s, it became feasible to 
develop powerful one-chip microprocessors and larger-capacity RAM at reasonable cost. Large-
scale multiprocessor architectures with radical changes then started to emerge with multiple memo-
ries that are now distributed with the processors. As a result, each CPU can now access its own 
local memory quickly, but accessing the other memories connected with other CPUs and also the 
separate common shared memory is also possible but is relatively slow. That is, these physically 
separated memories can now be addressed as one logically shared address space, meaning that any 
memory location can be addressed by any processor, assuming it has the correct access rights. This, 
however, does not discard the fundamental shared memory concept of multiprocessors but supports 
it in a broader sense. These machines are historically called distributed shared memory systems 
or the scalable shared memory architecture model using non-uniform memory access (NUMA). 
The distributed shared memory (DSM) architecture, however, can be considered a loosely coupled 
multiprocessor, sometimes referred to as a distributed computing system in contrast to its coun-
terpart, a shared memory multiprocessor (uniform memory access (UMA)), considered a tightly 
coupled multiprocessor, often called a parallel processing system. 

Tightly coupled systems tend to be used to work on a single program (or problem) to achieve 
maximum speed, and the number of processors that can be effectively and effciently employed is 
usually small and constrained by the bandwidth of the shared memory, resulting in limited scalabil-
ity. Loosely coupled systems (multicomputers), on the other hand, often referred to as distributed 
computing systems, are designed primarily to allow many users to work together on many unre-
lated problems but occasionally in a cooperative manner that mainly involves sharing of resources. 
These systems for having loosely coupled architecture are more freely expandable and theoretically 



Distributed Systems: An Introduction 443  

  

 

 

    

can contain any number of interconnected processors with no limits, and these processors can 
even be located far from each other in order to cover a wider geographical area. Tightly coupled 
multiprocessors can exchange data nearly at memory speeds, but some fber-optic-based multicom-
puters have been found also to work very close to memory speeds. Therefore, the terms “tightly 
coupled” and “loosely coupled” although indicate some useful concepts, but any distinct demarca-
tion between them is diffcult to maintain because the design spectrum is really a continuum. 

Both multiprocessors and multicomputers individually can be again divided into two categories 
based on the architecture of the interconnection network; bus and switched, as shown in Figure 9.1. 
By bus, it is meant that there is a single network, backplane, bus, cable, or other medium that con-
nects all the machines. Switched systems consist of individual wires from machine to machine, with 
many different wiring patterns in use, giving rise to a specifc topology. Usually, messages move 
along the wires, with an explicit switching decision made at each step to route the message along 
one of the outgoing wires. 

Distributed computing systems with multicomputers can be further classifed into two different 
categories: homogeneous and heterogeneous. In a homogeneous multicomputer, all processors are 
the same and generally have access to the same amount of private memory and also only a single 
interconnection network that uses the same technology everywhere. These multicomputers are used 
more as parallel systems (working on a single problem), just like multiprocessors. A heterogeneous 
multicomputer, in contrast, may contain a variety of different independent computers, which, in 
turn, are connected through different networks. For example, a distributed computing system may 
be built from a collection of different local-area computer networks, which are then interconnected 
through a different communication network, such as a fber-distributed data interface (FDDI) or 
ATM-switched backbone. 

Multiprocessors that usually give rise to parallel computing systems lie outside the scope of this 
chapter. Multicomputers, whether bus-based or switch-based, are distributed computing systems, 
although not directly related to our main objective, DOSs, but they still deserve some discussion 
because they will shed some light on our present subject, as we will observe that different forms of 
such machines use different kinds of operating systems. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

9.5 DISTRIBUTED COMPUTING SYSTEMS: DIFFERENT FORMS 

Even though all distributed computing systems consist of multiple CPUs, there are several different 
ways the hardware can be organized, especially in terms of how these CPUs are interconnected and 
how they communicate with one another. Various models have been proposed in this regard that can 
be broadly classifed into fve categories. A brief description of each of them follows. 

9.5.1 SYSTEMS CONSISTING OF MINICOMPUTERS 

The minicomputer model (peer-to-peer) usually consists of a few minicomputers (they may even 
be large supercomputers as well) interconnected by a suitable communication network. Here, each 
computer can have several interactive terminals that can support multiple users simultaneously at 
their own end. An interactive terminal of a specifc machine can normally access and communicate 
with any other remote machines (and also terminals). Any user currently logged on to any machine 
within the arrangement can use any resource attached to any of the machines present in the col-
lection with the help of the network irrespective of what machine the user is currently logged in to. 
Many users, in this way, can individually work concurrently on many unrelated problems at their 
respective machines with needed interaction, if required. Distributed applications, on the other 
hand, may be composed of a large number of peer processes running on separate computers, and 
the pattern of communication between them depends entirely on application requirements. A large 
number of data objects are shared; an individual computer (or node) holds only a small part of 

http://www.routledge.com/9781032467238


 

  

   

444 Operating Systems 

the application database; and the storage, processing, and communication workloads for access to 
objects are distributed across many computers with communication links. Each object is replicated 
in several computers to further distribute the load and to provide resilience in the event of individual 
machine faults or communication link failure (as is inevitable in the large, heterogeneous networks 
in which peer-to-peer systems exist). The need to place individual objects and retrieve them and to 
maintain replicas among many computers render this architecture relatively more complex than its 
counterparts in other popular forms of architecture. This form of distributed computing system was 
used in the early ARPANET and is found to be appropriate for the situations in which resource shar-
ing, such as sharing of fles of different types, with each type of fle located on a different machine, 
is needed by remote users. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

9.5.2 SYSTEMS CONTAINING WORKSTATIONS 

Multicomputers based on the workstation model consist of several workstations (homogeneous 
or heterogeneous) that are scattered over a wide area and are interconnected by a communication 
network (a high-speed LAN). A workstation here is simply a stand-alone small computer system 
(usually PCs) equipped with its own disk and other peripherals that serves as a fairly autonomous 
single-user environment with a highly user-friendly interface but might provide services to others 
on request. Processes which run on separate machines can communicate data with one another 
through the network. One of the main objectives of this model is to increase the resource utilization 
so that at times the job submitted on a specifc workstation can be shifted to a more appropriate one 
to get it executed. In addition, the system often attempts to maintain a load balance by distributing 
processes located at the heavily loaded workstations to others for execution that are relatively less-
loaded using the high-speed LAN that connects them. However, the result of the execution is fnally 
returned to the home workstation where it was submitted. Each workstation may have its own local 
fle system, and therefore, different mechanisms are needed to access local as well as remote fles. 
However, implementation of this system faces several critical issues while attempting to extract 
all its useful features that need to be resolved using different approaches. Details of those aspects 
belong to the domain of computer organization and architecture and hence lie outside the scope of 
this chapter. An example of this kind of distributed computing system is an experimental system 
developed by Xerox PARC (Shoch and Hupp, 1982) using several interconnected workstations. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

9.5.3 WORKSTATION–SERVER MODEL: CLIENT–SERVER MODEL 

Multicomputers based on the client–server model consist of one or a few minicomputers used 
as servers and several clients (workstations), most of which may be diskless, but a few may be 
diskful, and all are interconnected as usual by a communication network. With the availability of 
relatively low-cost high-speed networks, diskless workstations in this model are preferable, since 
they are easier to maintain, and upgrades of both hardware and system software can simply take 
place on only a few large disks at the minicomputer end rather than on many small disks attached 
to many diskful workstations geographically scattered over a large area as in the ordinary worksta-
tion model, already discussed. But a diskful workstation in this model is otherwise advantageous, 
since it additionally provides temporary storage for useful information that is frequently accessed, 
thereby minimizing repeated to and fro visits to the server machine resulting in a notable increase 
in overall system performance. However, normal computation activities required by the user’s pro-
cesses are performed at the user’s home workstation, but requests for needed services are sent to a 
server (minicomputer) providing one or more types of a set of shared services or to a specifc appro-
priate server (such as a fle server or a database server) that performs the user’s requested activity 
and returns the outcome (result) of the processing of the request to the user’s workstation. Therefore, 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 445  

 
 

 
 

 
 

 

 
 

 

this model does not require any migration of the user’s processes to the target server machine for 
getting the work executed by those machines. 

With passing of days, this model has become increasingly popular, mainly for providing an 
effective general-purpose means of sharing information and resources in distributed computing 
systems. However, it can be implemented in a variety of hardware and software environments, and 
possesses a number of characteristics that make it distinct from other types of distributed computing 
systems. Some of the variations on this model involve consideration of the following factors: 

• deployment of multiple servers and caches to increase performance and resilience; 
• use of low-cost computers with limited hardware resources to fulfll users’ need and be 

equally simple to manage; 
• the use of mobile code and mobile agents; 
• to add or remove mobile devices in a suitable manner as and when required. 

The term mobile code is used to refer to code that can be sent from one computer to another and run 
at the destination. Java applets are a well-known and widely used example of mobile code. Code ft 
to run on one computer may not be necessarily suitable to run on another, because executable pro-
grams are normally specifc both to the instruction set (hardware) and the host operating system. The 
use of the software virtual machine approach (such as Java virtual machine, JVM), however, pro-
vides a way to make such code executable on any environment (hardware and OS). A mobile agent 
is a running program (consisting of both code and data) that travels from one computer to another in 
a network carrying out a task (such as collecting information) on someone’s behalf, eventually return-
ing with the results. A mobile agent may issue many local resources at each site it visits. 

Moreover, it has been also observed that both client and server processes can sometimes even 
run on the same computer, and it is perhaps diffcult at times to strictly distinguish between a server 
process and a client process. In addition, some processes are also found as both client and server 
processes; a server process may sometimes use the services of another server (as in the case of 
three-tier architecture), thereby appearing as a client to the latter. 

FIGURE 9.2 A representative scheme of a three–tier architecture used in the client–server model formed 
with computer systems in the premises of computer networks. 



 

 

    

 

 
 
 
 
 
 
 
 
 
 
 
 

446 Operating Systems 

Three-tier client–server architecture: The concept of three-tier architecture in the traditional 
client–server model is becoming increasingly popular and playing a dominant role in the orga-
nization of modern computers, especially in the realization of cluster architecture. In contrast to 
usual client–server architecture which has two levels or tiers, a client tier and a server tier, in this 
architecture, the application software is usually distributed among three types of machines, a user 
machine, a middle-tier server, and a backend server, as shown in Figure 9.2. The user machine in 
this model is typically a thin client. The middle-tier machines playing a major role are separate 
servers that contain programs which form part of the processing level, convert protocols, map one 
type of database query to another, also integrate/merge results from different data sources, and are 
supposed to be essentially gateways between the thin clients and a variety of backend servers. In 
effect, the middle-tier machines works as an interface between the desktop applications and the 
background legacy applications (or evolving corporate-wide applications) by mediating between 
the two different worlds. In fact, the interaction between the middle-tier server and the backend 
server also follows the client–server model in which the middle-tier server acts as a client to the 
backend server. Thus, the middle-tier system acts both as a client as well as a server. Finally, it can 
be inferred that this model actually offers a deeper vertical distribution. Many examples of a dis-
tributed computing systems based on the workstation–server model can be cited; the earliest one is 
the V-System (Cheriton, 1998). 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

9.5.4 SYSTEMS WITH PROCESSOR POOLS 

While the workstation–server model nicely fts with the most common environment, but there are 
some applications that sometimes demand a massive amount of computing power for a relatively 
short duration of time. The processor-pool model can handle such an environment in which all the 
processors are clubbed together to be shared by users as and when needed. The pool of proces-
sors can be built with a large number of microcomputers and minicomputers (small mainframes) 
interconnected with one another over a communication network, and each such processor is able to 
independently execute any program of the distributed computing system. 

Usually, in the processor-pool model, no terminal is directly attached to any processor; rather 
all the terminals are attached to the network via an interface, a special device (terminal control-
ler). Here, the user can access the entire system from any of the terminals, which are usually 
small diskless workstation or may be graphic terminals, such as X-terminals. The user here 
never logs onto a particular machine but to the system as a whole; therefore, this model has no 
concept of a home machine, in contrast to other models (already described) in which each user 
has a home machine to log on to and runs most of the programs at will by default. In this model, 
when a job is submitted, there exists a special server (commonly called a run server, a part of the 
related operating system) that manages, schedules, and allocates one or an appropriate number 
of processors from the pool to different users depending on the prevailing environment or on an 
on-demand basis. In some situations, more than one processor can be allocated to a single job 
that can run in parallel, if the nature of the job supports it (i.e. if the job can be decomposed into 
many mutually exclusive segments, one processor can then be assigned to each such segment, 
and all these segments can eventually run in parallel). As usual, processors are deallocated from 
the job when it is completed and returned to the pool for other users to make use of them. 

The processor-pool model exhibits effectively better utilization of the total available process-
ing power of a distributed computing system than any other model that possesses a home-machine 
concept (in workstation models, with the use of load balancing, better utilization of processing 
power can be attained, but there are several constraints that should be negotiated at the time of its 
implementation). For any logged-on users, here the entire processing power of this system is avail-
able, if needed. Despite having many other advantages, one of the major shortcomings of this model 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 447  

  

 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

is the relatively slow-speed interconnection network that communicates between the processors 
where the jobs are to be executed and the terminals via which the users talk with the system. That 
is why this model is usually considered not suitable for the general environment in which typically 
high-performance interactive applications run. However, distributed computing system based on the 
processor-pool model has been implemented in a reputed distributed system, Amoeba (Mullender 
et al., 1990). 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

9.5.5 HYBRID SYSTEMS 

Each of the forms of distributed computing systems as described has its own merits as well as 
certain drawbacks, mostly depending on the environments where they will be employed. Out of 
all these models, the workstation–server (client–server) model appears to have comparatively more 
advantages than the others, and it is the most widely used model for building distributed computing 
systems, since it supports an environment in which most of the common users, of whom there are 
many, often run simple interactive jobs (copy, edit, placing queries, and sending mail) apart from 
executing their small batch jobs. On the other hand, for users who deal with computation-intensive 
jobs, use of the processor-pool model will be more appropriate. 

A new trend started to evolve, attempting to extract all the advantages of these two models and 
combining them to give rise to an innovative concept of a hybrid model that may be used to build 
a distributed computing system. This model introduced several salient features that exhibit a nice 
balance in the mixture of most of the advantages of these two potential models. The hybrid model is 
basically a workstation–server model but includes a pool of processors. The processors in the pool can 
be allocated dynamically on an as-needed basis for computation-intensive jobs that are too large for 
the workstations to handle or that inherently require concurrent use of several computers for effcient 
execution. In addition, the hybrid model also ensures quick response to interactive jobs by allowing 
them to be executed on the home or local workstations of the users. It is to be noted that this hybrid 
model, while providing nice features of both models, will naturally be more expensive in all senses 
to implement and maintain than the individual workstation–server model or processor-pool model. 

9.6 DISTRIBUTED COMPUTING SYSTEMS: SOFTWARE CONCEPTS 

Hardware is the fundamental structure of any machine, and system software is nothing but nice 
clothing over it that casts an image of a system to the users and extracts the highest potential out 
of it. The same hardware when wrapped in different software presents a different favor of the 
system. Therefore, although hardware for distributed computing systems is important, but it is the 
software associated with it that largely determines the potentials of the system. The frst aspect of 
the software related to such a system is similar to centralized system; here the software also acts 
as a resource manager that controls user accesses to various resources of the system and also 
determines the ways these resources are to be granted to comply with the requests of the users. The 
second aspect of the software is perhaps more vital that always attempts to hide the intricacies and 
heterogeneities of the underlying hardware from users by providing a virtual machine interface on 
which the applications can be executed. 

OS software systems developed and used to manage all forms of computing systems with mul-
tiple CPUs can also be roughly classifed into two distinct categories: tightly coupled and loosely 
coupled. Nowadays, it is almost the case that loosely and tightly coupled software are roughly anal-
ogous to loosely and tightly coupled hardware. Thus, there exist two kinds of distributed hardware, 
as already discussed, and two kinds of distributed software, and there is a total of four different 
combinations of such hardware and software. Figure 9.3 illustrates these combinations, along with 
their respective implications. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 

448 Operating Systems 

FIGURE 9.3 A schematic representation of the taxonomy of different combinations of MIMD category 
hardware and related software used in the domain of different types of interconnected multiple–CPU com-
puter systems. 

In tightly coupled hardware systems, the OS software system essentially tries to maintain a 
single, global view of the resources it manages. In loosely coupled hardware systems, the individual 
machines are clearly distinguishable and fundamentally independent of one another, each running 
its own operating system to execute its own job. However, these operating systems often interact to 
a limited degree whenever necessary and work together to offer their own resources and services 
to others. 

A tightly coupled operating system, when used for managing tightly coupled multiprocessors, 
is generally referred to as multiprocessor operating system, which, when combined with the 
underlying architecture of the computing system, gives rise to the concept of a parallel system. 
Numerous issues in regard to this system need to be addressed, but a detailed discussion of such an 
operating system is outside the scope of this book. However, some important issues in regard to this 
system are discussed in brief later in this chapter. 

A tightly coupled operating system, when used for managing a loosely coupled multiprocessor 
(DSM) and homogeneous multicomputers, is generally referred to as a distributed operating sys-
tem, which, when combined with the underlying architecture of the computing system, gives rise 
to the concept of a distributed system. Distributed operating systems are homogeneous, implying 
that each node runs the same operating system (kernel). Although the forms and issues relating 
to implementation of DOSs that drive the loosely coupled multiprocessor and those that manage 
homogeneous multicomputers are quite different, but their main objectives and design issues hap-
pen to be the same. Similarly to conventional uniprocessor operating systems, the main objectives 
of a DOS are, however, to hide the complexities of managing the underlying distributed hardware 
such that it can be enjoyed and shared by multiple processes. 

A loosely coupled operating system, when used for managing loosely coupled hardware, such 
as a heterogeneous multicomputer system (LAN-and WAN-based), is generally referred to as a 



Distributed Systems: An Introduction 449  

   

 

 

 
 
 
 
 
 
 
 
 
 

network operating system (NOS). Although a NOS does not manage the underlying hardware in 
the way that a conventional uniprocessor operating system usually does, but it provides additional 
supports in that local services are made available to remote clients. In the following sections, we 
will frst describe in brief the loosely coupled operating system and then focus on tightly coupled 
(distributed) operating systems. 

Out of many different forms of loosely coupled hardware, the most widely used one is the cli-
ent–server model using many heterogeneous computer systems, the benefts of which are mainly 
tied up with its design approach, such as its modularity and the ability to mix and match different 
platforms with applications to offer a business solution. However, there is a lack of standards that 
stands to prevent the model managed by a NOS from being a true distributed system. To alleviate 
these limitations, and to achieve the real benefts of the client–server approach to get the favor of 
an actual distributed system (general-purpose services) that would be able to implement an inte-
grated, multi-vendor, and enterprise-wide client–server confguration, there must be a set of tools 
which would provide a uniform means and style of access to system resources across all platforms. 
Enhancements along these lines to the services of NOSs have been carried out that provide distribu-
tion transparency. These enhancements eventually led to introduce what is known as middleware 
that lies at the heart of modern distributed systems. Middleware and its main issues will be dis-
cussed later in this chapter. 

9.7 NETWORK OPERATING SYSTEMS AND NFS 

A NOS, the earliest form of operating system for distributed architecture, is a loosely coupled 
software system that runs on loosely coupled hardware. The hardware is usually constructed from 
a collection of uniprocessor systems; each runs with its own operating system with high degree of 
autonomy and also may have one or more “server” machines in the collection, as schematically 
shown in Figure 9.4. These machines and their operating systems in this collection may be the same 
or different (a heterogeneous mixture), and there is essentially no coordination at all among these 
machines, but they are all connected to an interconnection (computer) network so as to fulfll a 
few system-wide requirements. Introduction of low-cost personal computers that support a variety 
of user-friendly single-user applications further facilitates this approach to a compact form within 
an affordable range. However, such a combination is only possible as long as all machines support 
the same communications architecture (software) and use a mutually agreed-on communication 
protocol. The server machines usually provide network-wide services or applications, such as; fle 
storage, sophisticated database management, information system software, printer management, 
and so on. Since each computer in this arrangement has its own private operating system, it can 
function independently of other computers and manage its local resources. Here, the NOS is sim-
ply an adjunct to the local operating system, the goal of which is to provide resource sharing by 
enabling users to make use of the facilities and services available on any other specifc machine or 
a server apart from their own. Of course, the user is quite aware that there are multiple independent 
computers and must deal with them explicitly. Typically, a common communications architecture 
(protocol) is used to make use of these network applications. 

The network OS layer, as shown in Figure 9.4, resides between the kernel of the local OS and 
user processes. Processes interact with the network OS layer rather than with the kernel of their 
own local OS. If a process issues requests to access a non-local (remote) resource, the network OS 
layer of the requesting process contacts the network OS layer of the node that contains the resource 
and implements access to the resource with its help. When a process on a machine requests access 
to a local resource, the corresponding network OS layer on that machine then simply passes the 
request to the kernel of the local OS. Here, the resource requests should be explicit and require 
users to be completely aware of where all resources are located and where all requests (commands) 
are to be processed. While this form of communication is observed to be extremely primitive, a 
more convenient forms of communication and information–sharing can be made by providing, 



 

  

  

 
   

 

450 Operating Systems 

FIGURE 9.4 A representative block diagram of general structure of a network operating system used in the 
premises of computer networks formed with multiple computers (each one may be of single CPU or multiple CPU). 

FIGURE 9.5 A block–structured illustration of a representative scheme consisting of autonomous clients and 
a server operated under a network operating system used in computer networks formed with multiple computers. 

for example, a shared, global fle system that can be accessible from all client’s machine. The fle 
system may be supported by one or more machines called fle servers that accept all requests from 
user programs running on other machines (non-servers). Each such incoming request is then exam-
ined and executed at the server’s end, and the reply is sent back accordingly. This is illustrated in 
Figure 9.5. 

File servers usually maintain hierarchical fle systems, each with a root directory containing sub-
directories and fles. Each machine (or client) can mount these fle systems, augmenting their local 
fle systems with those located on the servers. It really does not matter where a server is mounted by 
a client in its directory hierarchy, since all machines operate relatively independently of others. That 
is why different clients can have a different view of the fle system. The name of the fle actually 
depends on where it is being accessed from and how that machine has built its fle system. 

Many NOSs have been developed by different manufacturers on top of UNIX and other operating 
systems, including Linux and Windows. One of the best-known and most widely used commercial 



Distributed Systems: An Introduction 451  

 

networking systems is Sun Microsystem’s Network File System, universally known as NFS, that 
was primarily used on its UNIX-based workstations, although it supports heterogeneous systems; 
for example, Windows running on Intel Pentium gets service from UNIX fle servers running on 
Sun SPARC processors. 

A network OS is easier to implement but is clearly more primitive than a full-fedged distrib-
uted OS. Still, some of the advantages of NOS as observed compared to DOSs are that it allows 
machines (nodes) to maintain total autonomy and to remain highly independent of each other; it also 
facilitates safely adding or removing a machine to and from a common network in the arrangement 
without affecting the others except only to inform the other machines in the network about the exis-
tence of the new one. The addition of a new server to the internet, for example, is done in this precise 
way. To introduce a newly added machine on the internet, all that is needed is to provide its network 
address or, even better, the new machine can be given a symbolic name that can be subsequently 
placed in the Domain Name Service (DNS) along with its network address. 

A few of the major shortcomings of a network OS are that it allows the local operating systems 
to be independent stand-alone, retaining their identities and managing their own resources, so they 
are visible to users, but their functioning cannot be integrated. Consequently, this lack of transpar-
ency in a network OS fails to provide a single, system-wide coherent system view, and it cannot 
balance or optimize utilization of resources, because the resources are not under its direct control. 
In addition, all access permissions, in general, have to be maintained per machine, and there is 
no simple way of changing permissions unless they are the same everywhere. This decentralized 
approach to security sometimes makes it vulnerable and thereby makes it equally hard to protect the 
NOS against malicious attacks. There remain other issues that stand as drawbacks of an NOS, and 
all these together draw a clean demarcation between an NOS and its counterpart, a DOS. However, 
there are still other factors that make DOS distinctly different from NOS. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

9.8 DISTRIBUTED OPERATING SYSTEMS 

A distributed computing system when managed by a DOS is commonly called a distributed system. 
Various defnitions of distributed systems have been proposed, but none of them have been abso-
lutely satisfactory. However, a rough characterization may be: 

A distributed system is one that runs on a collection of interconnected independent computers which 
do not have shared memories yet appears to its users as a single coherent system. 

This characteristic is also sometimes referred to as the single system image (SSI). A slightly differ-
ent notion of a distributed system is that it is one that runs on a collection of a networked machine 
but acts like a virtual uniprocessor. No matter how it is expressed, the leading edge in quest of 
distributed systems and its development is mainly focused on the area of DOSs. Although some 
commercial systems have already been introduced, fully functional DOSs with most of their neces-
sary attributes are still at the experimental stage in the laboratory. However, the defnition of a DOS 
can be presented in the following way: 

A distributed operating system is one that casts a view to its users like an ordinary centralized oper-
ating system but controls operations of multiple independent central processing units (nodes) in a 
well-integrated manner. The key concept here is transparency. In other words, the use of multiple pro-
cessors should be invisible (transparent) to the user, who views the system as a “virtual uniprocessor”, 
not as collection of distinct machines (processors). 

However, the functionality of DOSs is essentially identical to that of traditional operating systems 
for uniprocessor machines with the exception that they manage multiple CPUs. The advantages of 
distributed computing systems, as mentioned in Section 9.2, are exploited by using a DOS that takes 

http://www.routledge.com/9781032467238


 

  

 
 
 

 
 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

     

 
 

   

452 Operating Systems 

advantages of the available multiple resources and thereby disperses the processes of an applica-
tion across various machines (or CPUs) in the system to achieve computation speed-up, effective 
utilization by sharing and effciency of underlying resources whenever possible, communication 
and cooperation between users via the existing network, and above all to provide reliability when-
ever necessary. However, there remains a possibility of communication network failures or break-
down of individual computer systems that sometimes complicates the functioning of the underlying 
operating system and necessitates use of special techniques in its design to negotiate these situa-
tions. Users of these operating systems also often require special techniques that facilitate access to 
resources over the existing network. 

Users of a DOS have user ids and passwords that are valid throughout the system. This 
feature makes communication conveniently possible between users in two ways. First, commu-
nication using user-ids automatically invokes the security mechanisms of the OS to intervene 
and thereby ensures the authenticity of communication. Second, users can be mobile within the 
domain of the distributed system and still be able to communicate with other users of the system 
with ease. 

Distributed operating systems can be classifed into two broad categories: An operating 
system in multiprocessors (DSM) manages the resources of a multiprocessor. The other 
one is an operating system in multicomputers that is developed to handle homogeneous 
multicomputers. 

9.9 DISTRIBUTED OPERATING SYSTEMS: DESIGN ISSUES 

Following the accepted defnition of the DOS, as given earlier, it is expected that data, resources, 
users, and their computations should be effectively distributed among the nodes (processors) of 
the system to meet its ultimate goal. Designing a distributed system is, however, more diffcult 
than designing a centralized operating system for several reasons; the resources are physically 
separated, there is no common clock among multiple processors (nodes), and communication 
between them in the form of messages may be delayed and could even be lost. Due to all these 
and several other relevant reasons, a DOS does never have the latest consistent knowledge with 
respect to the state of the various resources of the underlying distributed system, which even-
tually may affect many things, such as management of resources, scheduling of threads and 
processes, and synchronization of concurrent competitive and cooperating activities, etc. That is 
why a distributed system must be designed keeping in view that complete information about the 
system environment will never be available beforehand, but the user at the same time should be 
given a view of the distributed system as a virtual centralized system that is fexible, effcient, 
secure, reliable, scalable, and above all easy to use. To meet all these requirements, the designer 
of the system must deal with several design issues. Some of the key design issues are described 
in the following. 

9.9.1 TRANSPARENCY AND ITS DIFFERENT ASPECTS 

This implies that the existence of a collection of distinct machines (processors) that are connected 
by a communication network to constitute the system must be made invisible (transparent) to its 
users, providing them only a view of virtually a single uniprocessor system image. Complete trans-
parency in this respect is, however, diffcult to realize, since it includes several different aspects 
of transparency that must be supported by the DOS. The eight forms of transparency as pointed 
out by the ISO Reference Model for Open Distributed Processing (ISO, 1992) are: location trans-
parency, access transparency, replication transparency, migration transparency, concurrency 
transparency, failure transparency, performance transparency, and scaling transparency. Each 
transparency aspect has its own important role that comes into play to provide all the advantages of 
a distributed system to its users. We, however, present here only a brief overview, covering almost 



Distributed Systems: An Introduction 453  

 

   

 

 

 

  

 

 

all the transparency aspects together that summarily explain the different transparency facets and 
their respective implications. 

• Location and access transparency : Resources and services are usually made transpar-
ent to the users by identifying them simply by only their names and do not depend on 
their locations in the system. This aspect also facilitates migration transparency, which 
ensures that the movement of the data is handled automatically by the system in a user-
transparent manner. Distributed fle systems (DFS) also exploit this transparency aspect 
favorably when they store system and user fles in different location (nodes) to mostly opti-
mize disk space usage and network traversal time, and that is also done with no indication 
to the user. 

• Replication transparency: This is related to the creation of replicas of fles and resources 
to yield better performance and reliability by keeping them transparent to the user. Two 
important issues related to replication transparency are naming of replicas and replication 
control, which are automatically handled by the replication management module of the 
distributed system in a user-transparent manner. 

• Failure transparency: In the face of a partial system failure, such as a machine (node or 
processor) failure, a communication link failure, a storage device crash, or other types of 
similar failures, the failure transparency attribute of a DOS will keep all these failures 
transparent from the user and still enables the system to continue to function, perhaps only 
with degraded performance. The OS realizes this by typically implementing resources as a 
group cooperating with each other to perform their respective functions so that in the event 
of the failure of one or more same resource, the user is still remained unaffected and will 
not notice the failure. The user can still get going on with the service of the resource even 
in the situation when only one of the resources in the group is up and working. Complete 
failure transparency is, however, not possible to achieve with the current state of the art 
in DOSs, because all types of failures cannot be handled in a user-transparent manner. 
Communication link failure, for example, in a system cannot be kept beyond the notice of 
the user, since it directly hampers the work of the user. Hence, the design of such a distrib-
uted system is theoretically possible but is not practically feasible. 

• Performance transparency: This aims to improve the performance of the system by 
enabling the system to be automatically confgured as loads vary dynamically. This is 
often carried out by rescheduling and uniformly distributing the currently obtainable pro-
cessing capacity of the system among the jobs present within the system using the support, 
such as resource allocation ability or data migration capability, etc. of the system. 

• Scaling transparency: This is related to the scalability of the system that allows expan-
sion of the system in scale without affecting the ongoing activities of users. This requires 
the system to have an open-system architecture and make use of appropriate scalable algo-
rithms in the design of the components of the DOS. 

9.9.2 RELIABILITY 

Reliability of a system is closely associated with the availability of its resources, which is ensured by 
protecting them against likely faults. Though the presence of multiple instances of the resources in 
distributed system are generally assumed to make the system more reliable, but the reality is entirely 
different; it rather tells that the distributed OS must be designed in such a way so that the full advan-
tage of a distributed system can be realized with equal increase in the reliability of the system. 
However, system failure results when a fault occurs in a system, and this failure can be categorized 
into two types depending on the behavior of the failed system. The frst one is fail–stop failure, 
which causes the system to stop functioning after changing to a state in which its cause of failure 
can be detected. The second one is popularly known as Byzantine failure that causes the system to 



 

   

 

 
  

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  

 
 
 
 

 

 
 
 
 

454 Operating Systems 

continue its function but generates erroneous results. Software bugs that remain undetected often 
cause Byzantine failure, which is more diffcult to handle than fail-stop failure. 

Distributed operating systems thus must be designed properly to realize higher reliability, such 
as to avoid faults, to tolerate faults, to detect faults, and to subsequently recover from faults. Various 
popular methods in this regard are available to deal each of these issues separately. 

• Fault avoidance: This is mostly accomplished by designing the components of the system 
in such a way that the occurrence of the faults is minimized. Designers of the distributed 
OS must test the various software components thoroughly before use to make them highly 
reliable. 

• Fault tolerance: This is the capability of a system to continue its proper functioning even 
in the event of partial system failure, albeit with a little degradation in system performance. 
A distributed OS can be equipped with improved fault-tolerance ability by using concepts 
such as redundancy techniques and distributed control. 
• Redundancy techniques: These essentially exploit the basic principle of replication 

of critical hardware and software components in order to handle a single-point of 
failure so that if one component fails, the other can be used to continue. Many differ-
ent methods to implement the redundancy technique are used for dealing with differ-
ent types of hardware and software resources. Link and node faults are tolerated by 
providing redundancy of resources and communication links so that the others can 
be used if a fault occurs in these areas. Similarly, a critical process can be executed 
simultaneously on two nodes so that if one of the two nodes fails, the execution of the 
process can continue to completion at the other node. Likewise, a fle is replicated on 
two or more nodes of a distributed system. Additional disk space is then required, and 
for correct functioning, it is often necessary that all copies of the fles be mutually 
consistent. Note that what is common to all these approaches is that additional over-
head is required in each case to ensure reliability. Therefore, a distributed OS must be 
designed in such a way as to maintain a proper balance between the required degree 
of reliability and the amount of overhead incurred. A replication approach in some 
situations needs appropriate concurrency control mechanisms. Concurrency of data 
becomes a critical issue when data are distributed or replicated. When several parts 
of a distributed data are to be modifed, a fault should not put the system in a state in 
which some parts of the data have been updated but others have not due to a hardware 
fault or a software error. A centralized conventional uniprocessor OS generally uses 
the technique of atomic action to satisfy this requirement. A distributed OS handling 
distributed data employs a technique called two-phase commit (2PC) protocol for 
this purpose. 

• Distribution of control functions: Control functions in a distributed system such 
as resource allocation, scheduling, and synchronization and communication of pro-
cessors and processes, if implemented centrally, may face several problems. Two of 
them are quite obvious. The frst one is due to communication latency that frequently 
prevents the system from obtaining the latest information with respect to the current 
state of processes and resources in all machines (nodes) of the system. The second 
one is that a centralized control function often becomes the cause of a potential per-
formance bottleneck and the root of a threat to system reliability for being a single-
point of control, the failure of which may be sometimes fatal to the system. Due to 
these factors and for many other reasons, a distributed OS must employ a distrib-
uted control mechanism to avoid a single-point of failure. A highly available DFS, 
for example, should have multiple and independent fle servers controlling multiple 
and independent storage devices. In addition, a distributed OS implements its control 
functions using a distributed control algorithm, the notion of which is to perform 



Distributed Systems: An Introduction 455  

 
 

 

 

  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

needed functions in different respective machines (servers or nodes) independently, 
but in a coordinated manner following an appropriate way. Otherwise, the reliability 
will become worse instead of getting better. 

• Fault detection and recovery: This approach discovers the occurrence of a failure and 
then rectify the system to a state so that it can once again continue its normal operation. If 
a fault (hardware or software failure) occurs during the ongoing execution of a computa-
tion in different nodes of the distributed system, the system must be then able to assess 
the damage caused by the fault and judiciously restore the system to normalcy to continue 
the operation. Several methods are available to realize this. Some of the commonly used 
techniques implemented in DOSs in this regard are: 
• Atomic transactions: These are computations consisting of a set of operations that are 

to be executed indivisibly (atomic action) in concurrent computations, even in the face 
of failures. This implies that either all of the operations are to be completed success-
fully, or none of their effects prevail if failure occurs during the execution, and other 
processes executing concurrently cannot enter the domain of this computation while it 
is in progress. In short, it can be called an all-or-nothing property of transactions. This 
way, the consistency of shared data objects is made preserved even when failure occurs 
during execution, which eventually makes recovery from crashes much easier. 

• A system equipped with such a transaction facility, when it halts unexpectedly due to 
the occurrence of a fault or failure before a transaction is completed, the system sub-
sequently restores any data objects (that were undergoing modifcation at the time of 
failure) to their original states by restoring rationally some of the subcomputations to 
the previous states recorded already in the back-ups (archives). This action is commonly 
known as roll back, and the approach is called recovery. If a system does not support this 
transaction mechanism, sudden failure of a process during the execution of an operation 
may leave the system and the data objects that were undergoing modifcation in such an 
inconsistent state that, in some cases, it may be diffcult or even impossible to restore 
(roll back) them to their original states. Atomic transactions are, therefore, considered a 
powerful tool that enables the system to come out of such a critical situation. 

• Acknowledgements and timeout-based retransmission of messages: Interprocess commu-
nication mechanisms between two processes often use a message-passing approach in which 
messages may be lost due to an unexpected event of system fault or failure. To guard against 
loss of messages in order to ensure reliability, and to detect the lost messages so that they can 
be retransmitted, the sender and receiver both agree that as soon as a message is received, the 
receiver will send back a special message to the sender in the form of an acknowledgement. If 
the sender has not received the acknowledgement within a specifed timeout period, it assumes 
that the message was lost, and it may then retransmit the message (duplicate message), which 
is usually handled involving a mechanism which automatically generates and assigns appro-
priate sequence numbers to messages. A detailed discussion of the mechanism that handles 
acknowledgement messages, timeout-based retransmission of messages, and duplicate request 
messages for the sake of reliable communication is provided in Chapter 4. 

• Stateless servers: In distributed computing systems in the form of a client–server 
model, the server can be implemented by one of two service paradigms: stateful or 
stateless. These two paradigms are distinguished by one salient aspect: whether the 
history of the serviced requests between a client and a server affects the execution of 
the next service request. The stateful approach depends on the history of the serviced 
requests, whereas the stateless approach does not. A stateless server is said to be one 
that does not maintain state information about open fles. Stateless servers possess a 
distinct advantage over stateful servers in the event of a system failure, since the state-
less service paradigm makes crash recovery quite easy because no client information 



 

 

 

 

 

 

456 Operating Systems 

is maintained by the server. On the contrary, the stateful service paradigm requires 
complex crash recovery procedures since both the client and server need to reliably 
detect crashes. Here, the server needs to detect client crashes so that it can abandon any 
state it is holding for the client, and the client must detect server crashes so that it can 
initiate necessary error-handling activities. Although stateful service is inevitable in 
some cases, the stateless service paradigm must be used whenever possible in order to 
simplify failure detection and recovery actions. 

However, the major drawback in realizing increased reliability in a distributed system lies in the 
costly extra overhead involved in implementing the mechanism, whatever it is. It consumes a good 
amount of execution time that may eventually lead to a potential degradation in the performance 
of the system as a whole. Obviously, it becomes a hard task for designers to decide to what extent 
the system can be made reliable so that a good balance of cost versus mechanism can be effectively 
implemented. 

9.9.3 FLEXIBILITY 

For numerous reasons, one of the major requirements in the design of a distributed OS is its fex-
ibility. Some of the important reasons are: 

• Ease of implementation: The system design of a distributed OS should be as simple as 
possible so that it can be easily implemented. Many issues come across while formulating 
the design of a distributed OS, but only those are to be incorporated in the design after 
proper negotiation that require minimum complications at the time of their implementation. 

• Ease of modifcation: It has been felt from the experiences that some parts of the design 
often need to be modifed, enhanced, or even replaced either due to the detection of some 
bugs in the design or sometimes the design itself fails to accommodate the changed envi-
ronment/user requirements or latest product with new hardware innovation has arrived for 
inclusion. Therefore, the existing design of the system would be such that it would allow 
easy incorporation of the required changes in the system, keeping the user completely 
transparent in this regard making the changes as quickly as possible to cause minimal 
hindrance at the user end. 

• Ease of enhancement: Every system when being designed must have the provision that 
new functionalities and services can be easily included as and when needed to make it 
more versatile and also simple–to–use. Therefore, the design of the system would be such 
that it will permit new features be added quickly with minimal or almost no changes over 
the existing system; or at best the new inclusion may have very little effect or, even better, 
no effect, without hampering the system to continue as it is. 

The fexibility of a distributed OS is critically infuenced mostly by the design model of the kernel 
because it is the central part of the system that controls and provides basic system facilities which, in 
turn, offer user-accessible features. Different kernel models are available, and each one has its own 
merits and drawbacks based on which different distributed OS has been built. The ultimate objec-
tive is then to formulate the design of the OS in such a way that easy enhancement in and around 
the existing kernel will be possible with minimum effort and less hindrance irrespective of the type 
of model chosen. 

9.9.4 SCALABILITY 

Scalability is one of the most open features for open distributed systems and refers to the ability 
of a given system to expand by adding new machines or even an entire sub-network to the existing 



Distributed Systems: An Introduction 457  

 

 

 

 

 

 

 

 

 

system so that increased workload can be handled without causing any serious disruption of services 
or notable degradation in system performance. Obviously, there exist some accepted principles that 
are to be followed as guidelines when designing scalable distributed systems. Some of them are: 

• Try to avoid using centralized entities in the design of a distributed system because the 
presence of such entities often creates hindrance in making the system scalable. Also, as 
the existence of such an entity is a single point, it often makes the system suffer from a 
bottleneck, which is inherent in such a design as the number of users increase. In addition, 
in the event of failure of this entity, the system may go beyond the fault-tolerance limit and 
ultimately break the entire system totally down. 

• Try to avoid using centralized algorithms in the design of a distributed system. A central-
ized algorithm can be described as one that operates on a single node by collecting infor-
mation from all other nodes and fnally distributes the result to them. Similar to the reasons 
that disfavor the use of any central items in the design of a distributed system, here also the 
presence of such algorithms in the design may be disastrous, particularly in the event of 
failure of the central node that controls the execution of all the algorithms. 

• It is always desirable to encourage client-centric execution in a distributed environment, 
since this act can relieve the server, the costly common resource, as much as possible from 
its increasing accumulated load of continuously providing services to several clients within 
its limited time span. Although client-centric execution inherently possesses certain draw-
backs, which may give rise to several other critical issues that need to be resolved, still it 
enhances the scalability of the system, since it reduces the contention for shared resources 
at the server’s end while the system gradually grows in size. 

9.9.5 PERFORMANCE 

Realization of good performance from a distributed system under prevailing load conditions is 
always an important aspect in design issues, and it can be achieved by properly designing and 
organizing the various components of the distributed OS, with the main focus mostly on extracting 
the highest potential of the underlying resources. Some of the useful design principles considered 
effective for improved system performance are: 

• Data migration: Data migration often provides good system performance. It is employed 
mostly to reduce network latencies and improve response times of processes. 

• Computation migration: This involves moving a computation to a site mostly because the 
data needed by the computation is located there. Besides, this approach is often employed 
to implement load balancing among the machines (CPUs) present in the system. 

• Process migration: A process is sometimes migrated to put it closer to the resources it is 
using most heavily in order to mainly reduce network traffc, which, in turn, avoids many 
hazards and thereby improves system performance appreciably. A process migration facil-
ity also provides a way to cluster two or more processes that frequently communicate with 
one another on the same node of the system. 

• Use of caching: Caching of data is a popular and widely used approach for yielding overall 
improved system performance, because it makes data readily available from a relatively 
speedy cache whenever it is needed, thereby saving a large amount of computing time 
spent for repeated visits to slower memory and thereby preserving network bandwidth. 
Use of the caching technique, in general, including fle caching used in DFSs, also reduces 
contention for centralized shared resources. 

• Minimize data copying: Frequent copying of data often leads to sizeable overhead in 
many operations. Data copying overhead is inherently quite large for read/write operations 
on block I/O devices, but this overhead can be minimized to a large extent by means of 



 

 

 

 

 

 

 
 
 
 
 

458 Operating Systems 

using a disk cache. However, by also using memory management optimally, it is often pos-
sible to signifcantly reduce data movement as a whole between the participating entities, 
such as; the kernel, block I/O devices, clients, and servers. 

• Minimize network traffc: Reduced traffc load on the network may also help to improve 
system performance. One way of many to minimize network traffc is to use the process 
migration facility, by which two or more processes that frequently communicate with each 
other can be clustered on the same node of the system. This will consequently reduce 
the redundant to and fro journey of the processes over the network. In addition, this will 
reduce the other effects caused by network latencies. Process migration activity as a whole 
can also resolve other critical issues, as already discussed, that eventually reduce overall 
network traffc. In addition, avoiding collection of global state information, whenever pos-
sible, for making decisions using the communication network may also help in reducing 
network traffc. 

• Batch form: Transferring data across the network in the form of batching it as a large 
chunk rather than a single individual page is sometimes more effective and often greatly 
improves system performance. Likewise, piggybacking acknowledgement of previous 
messages with the next message during transmission of a series of messages between com-
municating entities also exhibits improved system performance. 

9.9.6 SECURITY 

Security aspects gain a new dimension in a distributed system, and is truly more diffcult to enforce 
than in a centralized system, mainly due to the lack of a single point of control and the presence 
of insecure networks attached to widely spread systems for needed communication. Moreover, in 
a client–server model, a frequently used server must have some way to know the client at the time 
of offering services, but the client identifcation feld in the message cannot be entirely trusted 
due to the likely presence of an intruder and their impersonation activities. Moreover, interprocess 
messages may sometimes pass through a communication processor that operates under a different 
OS. An intruder can at any point gain control of such a computer system during transmission and 
either tamper with the messages passing through it or willfully use them to perform impersonation. 
Therefore, a distributed system as compared to a centralized system should enforce several addi-
tional measures with respect to security. 

Similar to the aspects and related mechanisms discussed in Chapter 8 (“Security and Protection”), 
designers of a distributed system should equally address all the protection issues and incorporate 
different established techniques, including the well-known practical method of cryptography, to 
enforce security mechanisms as much as possible to safeguard the entire computing environment. 
In addition, special techniques for message security and authentication should be incorporated to 
prevent different types of vulnerable attacks that might take place at the time of message passing. 

9.9.7 HETEROGENEITY 

A heterogeneous distributed system is perhaps the most general one, and it consists of interconnected 
sets of dissimilar hardware and software providing the fexibility of employing different computer 
platforms for a diverse spectrum of applications used by different types of users. Incompatibilities in 
heterogeneous systems also include the presence of a wide range of different types of networks being 
interconnected via gateways with their own individual topologies and related communication protocols. 
Effective design of such systems is, therefore, critically diffcult from that of its counterpart, homoge-
neous systems, in which closely related hardware is operated by similar or compatible software. 

Heterogeneous distributed systems often make use of information with different internal for-
mats, and as such need some form of data conversion between two incompatible systems (nodes) 
at the time of their interactions. The data conversion job, however, is a critical one that may be 



Distributed Systems: An Introduction 459  

 

 
 

  

  

 
 
 
 

performed using a specifc add-on software converter either at the receiver’s node that will be able 
to convert each format in the system to the format used on the receiving node or may be carried out 
at the sender’s node with a similar approach. The software complexity of this conversion process 
can be reduced by choosing an appropriate intermediate standard format, supposed to be the most 
common format of the system that can minimize the number of conversions needed at the time of 
interactions among various types of different systems (nodes). 

Another heterogeneity issue in a distributed system is related to the fle system that enables the 
distributed system to accommodate several different storage media. The fle system of such a dis-
tributed system should be designed in such a way that it can allow the integration of a new type of 
workstation or storage media in a relatively simple manner. 

9.10 MULTIPROCESSOR OPERATING SYSTEMS 

Every parallel computer consists of a set of n > 1 processors (CPUs) P1, P2, P3, . . ., Pn and m > 0 
shared/distributed (main) memory units M1, M2, .  .  ., Mm that are interconnected using various 
forms of design approaches. Several types of processor–processor interconnections and proces-
sor–memory interconnections have been rigorously exploited in the MIMD category. In fact, the 
MIMD category itself has been split into machines that have shared primary memory, called mul-
tiprocessors, and those that do not, called multicomputers. In this section, we are only concerned 
with multiprocessor systems, and that too the classifcation of them considered here is a broad view, 
deliberately avoiding a spectrum of possibilities in the details. 

9.10.1 MULTIPROCESSOR ARCHITECTURE 

Classifcation of multiprocessors can be done in a number of ways and is a subject matter of com-
puter architecture (Chakraborty, 2020). We, however, confne our discussion only to multiprocessors 
that are classifed mostly by the organization of their memory systems (shared memory and distrib-
uted memory) as well as by their interconnection networks (dynamic or static). Shared-memory 
and distributed-memory multiprocessors are sometimes referred to as tightly coupled and loosely 
coupled, respectively, describing the speed and ease with which they can interact on common tasks. 
Shared-memory multiprocessors are mostly unscalable and use centrally shared global memory as 
a single address space that is accessed by all processors. Distributed shared-memory multiproces-
sors are scalable, and individual processors have private memories. This division, however, is not 
very stringent, and there are hybrid systems that have both per-processor private as well as shared 
global memory that many or all processors can access. Apart from having shared common memory 
or distributed memory, these processors also share resources, such as I/O devices, communication 
facilities, system utilities, program libraries, and databases; all are operated under the control of an 
integrated operating system that provides interaction between processors and their programs at the 
job, task, fle, and even data element level. 

Shared-memory multiprocessors are sometimes referred to as tightly coupled, since high-band-
width communication networks are used to extract a high degree of resource sharing. The intercon-
nection network used to construct a multiprocessor (both tightly coupled as well as loosely coupled) 
may be in the form of a: 

• Common (hierarchical) bus, known as bus-oriented systems 
• Crossbar switch 
• Hypercubes 
• Multistage switches (network) or in some other form 

Shared-bus systems are relatively simple and popular, but their scalability is limited by bus and 
memory contention. Crossbar systems while allow fully parallel connections between processors 



 

  
 
 
 
 

 
 

 
 

  
 

460 Operating Systems 

and different memory modules, but their cost and complexity grow quadratically with the increase 
in number of nodes. Hypercubes and multilevel switches are scalable, and their complexities grow 
only logarithmically with the increase in number of nodes. However, the type of interconnection 
network to be used and the related nature of this interconnection path has a signifcant infuence on 
the bandwidth and saturation of system communications apart from the other associated important 
issues, such as cost, complexity, interprocessor communications, and above all the scalability of 
the presented architectures that determines to what extent the system can be expanded in order to 
accommodate a larger number of processors. 

In multiprocessors, multiple processors communicate with one another and with the non-local 
(local to some other processor) memory as well as with commonly shared remote memory in the 
form of multiple physical banks using communication networks. Peripherals can also be attached 
using some other form of sharing. Many variations of this basic scheme are also possible. These 
organization models, however, may give rise to two primary points of contention, the shared mem-
ory and the shared communication network itself. Cache memory is often employed to reduce con-
tention. In addition, each processor may have an additional private cache (local memory) to further 
speed up the operation. Here, shared memory does not mean that there is only a single centralized 
memory which is to be shared. Multiprocessors using shared memory give rise to three different 
models that differ in how the memory and peripheral resources are connected; shared, or distributed. 
Three such common models are found: UMA, NUMA, and no remote memory access (NORMA). 

Symmetric Multiprocessors (SMPs); UMA Model: An SMP is a centralized shared memory 
machine in which each of n processors can uniformly access any of m memory modules at any 
point in time. The UMA model of multiprocessors can be divided into two categories: symmetric 
and asymmetric. When all the processors in the bus-based system share equal access to all IO 
devices through the same channels or different channels that provide paths to the same devices, the 
multiprocessor is called a SMP. When the SMP uses a crossbar switch as an interconnection net-
work, replacing the common bus, then all the processors in the system are allowed to run IO-related 
interrupt service routines and other supervisor-related (kernel) programs. However, other forms 
of interconnection network in place of a crossbar switch can also be used. In the asymmetric cat-
egory, not all but only one or a selective number of processors in the multiprocessor system are 
permitted to additionally handle all IO and supervisor-related (kernel) activities. Those are treated 
as master processor(s) that supervise the execution activities of the remaining processors, known 
as attached processors. However, all the processors, as usual, share uniform access to any of m 
memory modules. 

The UMA model is easy to implement and suitable in general-purpose multi-user applications 
under time-sharing environments. However, there are several drawbacks of this model. The dispar-
ity in speed between the processors and the interconnection network consequently results in appre-
ciable degradation in system performance. Interconnection networks with speeds comparable with 
the speed of the processor are possible but are costly to afford and equally complex to implement. 
Inclusion of caches at different levels (such as L1, L2, and L3) with more than one CPU improves 
the performance but may lead to data inconsistencies in different caches due to race conditions. The 
architecture should then add the needed cache coherence protocol to ensure consistencies in data 
that, in turn, may increase the cost of the architecture and also equally decrease the overall system 
performance. In addition, bus-based interconnection networks in the UMA model are not at all 
conducive to scalability, and the bus would also become an area of bottleneck when the number of 
CPUs is increased. However, use of a crossbar switch while would make it scalable, but only moder-
ately, and the addition of CPUs requires proportionate expansion of the crossbar switch, whose cost 
may not vary linearly with the number of CPUs. Moreover, the delays caused by the interconnection 
network also gradually increase, which clearly indicates that the SMP is not suitable to reasonably 
scale beyond a small number of CPUs. 

In the UMA model, parallel processes must communicate by software using some form of mes-
sage passing by putting messages into a buffer in the shared memory or by using lock variables 



Distributed Systems: An Introduction 461  

 
 

 
 
 

 
 
 
 
 
 

 

   

 
 
 

 
 
 
 
 
 

 

in the shared memory. The simplicity of this approach may, however, lead to a potential resource 
confict, which can be resolved by injecting appropriate delays in the execution stages but, of course, 
at the price of slight degradation in system performance. Normally, interprocessor communication 
and synchronization are carried out using shared variables in the common memory. 

Distributed Shared Memory Multiprocessors: NUMA Model: A comparatively attractive alter-
native form of a shared-memory multiprocessor system is a NUMA multiprocessor, where the shared 
memory is physically distributed (attached) directly as local memory to all processors so that each proces-
sor can sustain a high computation rate due to faster access to its local memory. A memory unit local to a 
processor can be globally accessed by other processors with an access time that varies by the location of 
the memory word. In this way, the collection of all local memory forms a global address space shared by 
all processors. NUMA machines are thus called distributed shared-memory (DSM) or scalable shared-
memory architectures. The BBN TC-2000 is such a NUMA machine using a total of 512 Motorola 88100 
RISC processors, with each local memory connected to its processor by a butterfy switch (Chakraborty, 
2020). A slightly different implementation of a NUMA multiprocessor is with a physical remote (global) 
shared memory in addition to the existing usual distributed memory that is local to a processor but global 
to other processors. As a result, this scheme forms a memory hierarchy where each processor has the 
fastest access to its local memory. The next is its access to global memory, which are individually local to 
other processors. The slowest is access to remote large shared memory (Chakraborty, 2020). 

Similar to SMP, the NUMA model architecture must also ensure coherence between caches 
attached to CPUs of a node as well as between existing non-local caches. Consequently, this require-
ment, as usual, may cause memory accesses to be slowed down and consume part of the bandwidth 
of interconnection networks, apart from increasing the cost of the architecture and also equally 
decreasing overall system performance. 

Usually, the nodes in a NUMA (DSM) architecture are high-performance SMPs, each contain-
ing around four or eight CPUs to form a cluster. Due to the presence of a non-local communication 
network to connect these clusters, performance of such NUMA architecture is scalable when more 
nodes are added. The actual performance of a NUMA system, however, mostly depends on the non-
local memory accesses made by the processes following the memory hierarchy during their execu-
tion. This issue falls within the domain of OS and will be addressed in the next section. 

Multiprocessor systems are best suited for general-purpose multi-user applications where major 
thrust is on programmability. Shared-memory multiprocessors can form a very cost-effective 
approach, but latency tolerance while accessing remote memory is considered a major shortcoming. 
Lack of scalability is also a major limitation of such a system. 

Brief details on this topic with figures are given on the Support Material at www. 
routledge.com/9781032467238. 

9.10.2 OPERATING SYSTEM CONSIDERATIONS 

Whatever model is followed in the design of a multiprocessor system, it consists of multiple CPUs 
that ultimately provide high throughput as well as computation speed-up. Like uniprocessor OSs, 
a multiprocessor operating system similarly manages the available resources and augments the 
hardware functionality to provide an abstraction that facilitates program execution and user inter-
action. As usual, here also the system consists of three basic types of resources; processors, 
memory, and I/O devices, that need to be managed by their respective management modules. To 
extract the total strength that a multiprocessor system usually possesses to foster multiprocessing: 
the CPUs must be used effectively to realize parallelism in a way transparent to the application(s), 
and effcient creation and management of a large number of units of activity, such as processes 
or threads in a way, so as to enable them to interact in harmony. The latter aspect is important, 
since parallelism is often accomplished by splitting an application into mutually exclusive, sepa-
rate, and individually executable tasks that can then be allocated to different processors to run 
simultaneously. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 
 

 

 

 

462 Operating Systems 

9.10.2.1 Processor Management 
The management of processors in multiprocessor operating system is aimed mostly to satisfy all the 
critical issues described, apart from many of other objectives to fulfll, as well as to mainly ensure 
effcient use of the processors allocated to an application. All these together, especially the method 
of functioning while handling interrupts and responding to system calls, highlight the following 
major areas in processor management of multiprocessor operating systems that need to be clearly 
addressed. Those are: kernel structure, interprocess synchronization, process scheduling, proces-
sor scheduling, and interprocessor synchronization of multiple processors. 

Transparency is otherwise related to process synchronization, and the realization of such trans-
parency is relatively easy, because communication between different applications or different parts 
of an application uses the same primitives as those in multitasking uniprocessor operating systems. 
The only difference is that all communication here is to be done by manipulating data at shared 
memory locations and all are to do is to protect those data from simultaneous access to synchro-
nize processes. Protection of these data for the sake of process synchronization, however, can be 
implemented through the use of two important (and of course equivalent) primitives: semaphores 
and monitors. 

9.10.2.1.1 Kernel Structure 
The presence of multiple CPUs may involve all the CPUs in a competition to execute kernel code 
almost simultaneously. The kernel structure would be such that it should enable multiple CPUs to 
execute kernel code concurrently as much as possible to realize each one’s desired kernel functions. 
Multiprocessor operating systems, at the time of their inception, functioned mainly in master–slave 
mode in which one CPU was the master, which was entrusted only with executing all the kernel 
codes on behalf of the slave CPUs as required by them according to the predefned policy, and 
the related outcomes were then communicated to the respective slave CPUs through interproces-
sor interrupts (IPIs). This form of OS design naturally caused a bottleneck at the master CPU’s 
end while satisfying various requirements of the slave CPUs happening almost simultaneously. To 
alleviate this problem, the kernel was then restructured in a different way so that many CPUs can 
execute the kernel code on their own, almost in parallel. 

• UMA kernel on SMP: The fundamental requirement of the operating system driving an 
SMP architecture suggests that any CPU present in the system is permitted to execute OS 
kernel code at any instant, and different CPUs can execute OS code almost in parallel or at 
different times. Temporarily, the processor that executes the OS code has a special role and 
acts as a master in the sense that it schedules the work of others. The OS is, however, not 
bound to any specifc processor; it foats from one processor to another. Hence, symmetric 
organization is sometimes called foating master. The operating system here is more or 
less a single, large critical section and is mostly monolithic; very little of its code, if any, is 
executed in parallel. This, in turn, requires that there be suffcient provision for any CPU 
to equally communicate with the other CPUs in the system, and any CPU should be able 
to initiate an I/O operation of its own on any device in the system at any point in time. 
Otherwise, if only one or just a few CPUs have access to I/O devices, the system becomes 
asymmetric. To satisfy the condition that each CPU be able to carry out its own I/O opera-
tion, the interconnection network that connects the CPUs in the system must provide some 
arrangements to connect the I/O also so that the I/O interrupts are directed to the respec-
tive CPU that initiated the I/O operation or to some other processor in the system that is 
kept dedicated to this purpose. 

To fulfll the requirement for communication between the CPUs, the kernel reserves an area 
in its memory known as communication area (similar to uniprocessor architecture when the CPU 
communicates with a separate I/O processor [Chakraborty, 2020]). Whenever a CPU C1 intends to 



Distributed Systems: An Introduction 463  

communicate with another CPU C2, it places needed information in C2’s communication area and 
issues an IPI in C2. The processor C2 then picks up this information from its own communication 
area and acts on it accordingly. 

As the SMP kernel can be accessed and shared by many CPUs in the system at any point in 
time, the OS code should be reentrant (see Section 5.8.1.2.4). Some parallelism may be introduced 
at the OS level by identifying routines that can access shared data structures concurrently and by 
protecting them with the appropriate interlocks. Since all communication is to be done by manipu-
lating data at shared memory locations (communication area), it is thus essential to ensure mutual 
exclusion over these kernel data structures so as to protect those data from simultaneous access to 
synchronize processes. This can be accomplished with the use of semaphores, possibly with count-
ing semaphores, but especially with binary semaphores (see Section 4.2.1.4.9), sometimes referred 
to as mutex locks (variables), or this can be achieved with the use of monitors to carry out lock 
and unlock operations. The mutex lock can only take on the values 0 and 1. Locking a mutex will 
succeed only if the mutex is 1; otherwise the calling process will be blocked. Similarly, unlocking a 
mutex means setting its value to 1 unless some waiting process could be unblocked. The semaphore 
operation itself also must be atomic, meaning that once a semaphore operation has started, no 
other process can access the semaphore until the ongoing operation is completed (or until a process 
blocks). 

The number of locks to be used in the system to enforce needed mutual exclusion is a vital design 
issue, since it directly affects the performance of the system. If a single lock is used to control access 
of all kernel data structures, then at any instant, only one processor can be allowed to use the data 
structures. If separate locks are provided to control individual data structures, then many processors 
could access different data structures in parallel, thereby obviously increasing system performance. 
However, the use of many locks may invite a situation of deadlock when a processor attempts to 
access more than one data structure. Necessary arrangements should thus be made to ensure that 
such deadlocks do not arise. 

An SMP kernel is a natural frst step in OS implementation and relatively easy to realize. It is 
equally easy to port an existing uniprocessor operating system, such as UNIX, to a shared-memory 
UMA multiprocessor. The shared memory contains all of the resident OS code and data structures. 
The largely monolithic UNIX kernel may then be executed by different processors at different 
times, and process migration is almost trivial if the state is saved in shared memory. Simultaneous 
(parallel) executions of different applications is quite easy, and can be achieved by maintaining a 
queue of ready processes in shared memory. Processor allocation then consists only of assigning the 
frst ready process to the frst available processor unless either all processors are busy or the ready 
queue of the processes is emptied. In this way, each processor, whenever available, fetches the next 
work item from the queue. Management of such shared queues in multiprocessors is, however, a 
different area, and precisely a subject matter of processor synchronization which will be discussed 
next. 

Further improvement in the performance of the operating system can be realized if the operating 
system is designed and developed by organizing it as a set of cooperating threads, and subsequent 
scheduling of such threads and synchronization of them using the proper mechanisms, such as 
semaphores or messages, as already discussed, can be carried out, In this environment, threads can 
be used to exploit true parallelism in an application. If the various threads of an application can be 
made to run simultaneously on separate processors, potential parallelism in the OS can be attained. 
Consequently, this will not only yield dramatic gains in performance but at the same time enable the 
OS to be ported to different equivalent hardware platforms, including tightly coupled and loosely 
coupled. 

One of the distinct advantages of SMP is that it can continue its normal operation, even in the 
event of certain failures of some CPUs, but, of course, affecting only with a graceful degradation 
in the performance of the system. Failure of a processor in most situations is not so severe to the 
operation of other processors present in the system if it is not executing the kernel code at the time 



 

 

 

 

464 Operating Systems 

of failure. At best, only the processes using the service of the failed processor would be affected, 
and the other processes henceforth would be barred from getting the service of the failed processor, 
which may affect the total performance of the entire system only to some extent. 

• NUMA kernel with DSM: The NUMA scheme forms a memory hierarchy where each 
CPU has the fastest access to its local memory. The next is access to global memories 
which are individually local to other CPUs. The slowest is access to remote shared memory. 
The actual performance of a NUMA system thus mainly depends on non-local memory 
accesses made by the processes following the memory hierarchy during their execution. 
That is why every node in the system must be given its own kernel that can control the pro-
cesses in local memory of the CPUs within the node. This ensures that processes consume 
relatively less time in memory accesses, thereby yielding better performance, since most 
of their accesses are only to local memory. 

Providing a separate kernel to each node in the system exhibits several advantages. The entire 
system is then divided into several domains, and there is a separate dedicated kernel that admin-
isters each such domain. The kernel in an individual node should always schedule a process on its 
own CPU. This approach is expected to yield better system performance, since it ensures a high hit 
ratio in the individual CPU’s own (L1) cache. Similarly, a high hit ratio in the L3 cache (the cache 
within the cluster of a group of CPUs forming a node) could also be obtained if the memory is allo-
cated to a process within a single local memory unit. 

The kernel of a node always attempts to allocate memory to all processes of a specifc application 
in the same memory unit and assigns those to the same set of a few CPUs for their execution. This 
idea forms the notion of an application region that usually consists of a resource partition and the 
executing kernel code. The resource partition contains one or more CPUs, some local memory units 
and a few available I/O devices. The kernel of the application region executes processes of only one 
application. In this way, the kernel can optimize the performance of application execution through 
willful scheduling and high cache-hit ratios with no interference from the processes of other appli-
cations. Most of the operating systems developed for the NUMA model exploit this approach or an 
equivalent one. 

The introduction of a separate kernel concept for a node in NUMA architecture or the inclu-
sion of the application region model can equally cause some disadvantages. The separate kernel 
approach suffers from several inherent problems associated with such types of partitioning that 
cause underutilization of resources, because resources remaining idle belonging to one partition 
cannot be used by processes of other partitions. Similarly, the application region concept affects 
reliability because failure of resource(s) in one partition may cause delays in processing or may even 
require abnormal termination or require the support of resources belonging to other partitions that 
are not possible to provide immediately to compensate for the loss due to such failure. In addition, 
non-local memory may become a region of bottleneck and access to them become more complex, 
since they are used by the domains of more than one kernel. 

9.10.2.1.2 Process Synchronization 
In multiprocessor systems, synchronization and communication aspects prevail in two different 
areas: processor–processor (interprocessor) and process–process (interprocess). In tightly coupled 
multiprocessors, shared memory is fundamental for interprocessor communications and synchroni-
zation, but in loosely coupled systems, message–passing is usually the primary mechanism for both 
interprocessor synchronization and communications. Multiprocessor operating systems often use a 
different basic approach to synchronize process executions. Since many CPUs exist in the system, 
it is not always necessary to preempt a process to block it for the sake of process synchronization. 
Multiple CPUs should be used in such a way as to reduce the overhead due to switching between 
processes to attain synchronization, thereby minimizing synchronization delays. Use of multiple 



Distributed Systems: An Introduction 465  

 

 
 

 
 
 
 
 

  
 
 
 

 

  

 
 
 
 
 

CPUs in a multiprocessor system can reduce the synchronization delay that usually happens with 
traditional uniprocessor systems in the form of busy waiting (to let a process loop until the synchro-
nization condition is met) and blocking of a process (wait and signal). 

In a multiprocessor system, processes can run in parallel on different CPUs. At the time of syn-
chronization, it is sometimes preferable to let a process loop rather than blocking it if the CPU over-
head for blocking the process and scheduling another process, followed by activating the blocked 
process and rescheduling it again, exceeds the amount of time for which the process would loop. 
In short, only when there is a reasonable expectation under certain conditions that the busy–wait 
will be of relatively shorter duration, and is thus preferred; since the shared resources for which the 
looping (busy–waiting) begins may be quickly released by processes executing on other CPUs or 
the time needed by the other CPU to execute its critical section is comparatively quite small. This 
situation arises if a process looping for entry to a critical section and the process holding the critical 
section are scheduled almost in parallel. 

Additional details on process synchronization are given on the Support Material at www. 
routledge.com/9781032467238. 

Implementation of process synchronization (concurrency control) also follows a similar course of 
action as a uniprocessor system, which uses lock variables or synchronization lock, or simply lock, 
to control the entry of processes into critical sections or execute indivisible (atomic) signaling opera-
tions, that is, by setting a lock. If the lock variable is closed, the requesting process must wait until the 
value of the lock variable is changed to open and entry is allowed. However, the presence of multiple 
CPUs and the safe use of locks may allow many processes to execute in parallel, which may give rise 
to another issue in process synchronization as to what type of locks and how many such locks there 
are for smooth operation and better performance of the system. This feature is sometimes related to 
what is known as the scalability of a lock, which implies that the execution of an application using the 
lock would not be dependent on the number of processes present in the application and the number of 
CPUs available in the system. Many other important issues are also associated with such locks; one 
such feature is whether a CPU can be allowed to service interrupts when a process already scheduled 
to run on itis engaged in trying to set (indivisible operation) a lock. 

Many types of synchronization locks are in use. Three such locks are introduced here, as illus-
trated in Figure 9.6. Let us assume that a process Pi is being executed on CPU Ck and a lock L is 
used to control the entry of processes into a critical section. When the lock is set, it is indicated by 
a rectangular box with a × inside. This is depicted in Figure 9.6(a). Similarly, when a process is in a 
blocked state, it is indicated by a circle with a × inside, as shown in Figure 9.6(b). 

• Queued lock: The traditional lock used in uniprocessor systems for process synchronization is 
known as a queued lock. When a process Pi executing on CPU Ck attempts to enter a critical sec-
tion, the operating system performs certain actions on the corresponding lock L. The Lock L is 
tested. If it is available (not set), the kernel sets the lock and allows process Pi to enter the critical 
section to perform its execution. If the lock is not available (already set by other process), process 
Pi is preempted, and its request for the lock is recorded in a queue (wait and signal mechanism). 
Some other process is then scheduled by OS on CPU Ck for execution. Since the action of this 
lock is to put the processes in a queue that is kept waiting, the lock is called a queued lock. 

Figure 9.6(b) shows that process Pi is blocked for non-availability of the lock, its id is recorded 
in the queue of lock L, and some other process Px is then scheduled to run on Ck. When the process 
that is using the lock completes its execution in the critical section, the lock is released and some 
other process lying in L’s queue will be awarded with the lock and be activated. The entire activity 
is supervised and carried out by the kernel. A semaphore can be used to implement a queued lock in 
a multiprocessor system. The semaphore is declared as a shared variable and is updated as required 
by the semaphore defnition with the aid of instructions to implement wait and signal mechanism. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 

466 Operating Systems 

FIGURE 9.6 A schematic graphical representation of queued, spin, and sleep locks used in multiprocessor sys-
tem to realize process synchronization. 

The average length of the queue of blocked processes for a lock determines whether the solution is 
scalable. If the processes do not require locks very often, the length of the queue is relatively small 
and is usually limited by a constant value, say, m, so increasing the number of CPUs or the processes 
in the system in this situation will not affect (increase) the average delay in gaining access to the 
lock. This solution is said to be scalable. But when processes require locks very often, the length of 
the queue may be relatively large and will become proportional to the number of processes present 
in the system. The solution in this situation is said to be not scalable. 

• Spin lock: While a queued lock provokes a wait and signal mechanism, the spin lock is 
quite different and supports busy waiting, as already observed in traditional uniprocessor 
operating systems. When a process Pi attempts to acquire a lock and is unsuccessful to 
set it, because it is already set by another process, the process Pi will not be preempted to 
relinquish the control of the CPU on which it is executing. Instead, it keeps continuously 
checking the lock with repeated attempts to see whether it is free until it succeeds. In this 
way, the CPU is not doing any productive work but remains busy with testing the lock con-
tinually, moving around a loop spinning over the lock. That is why such a lock is called a 
spin lock. This is depicted in Figure 9.6(c) in which Pi is not relinquishing control of CPU 
Ck, which now spins on lock L, as shown by an arrow. MontaVista Linux Professional 
Edition, a derivative of the Linux 2.4 kernel with a full preemptive scheduler, has a fne-
grained locking mechanism inside the SMP kernel for improved scalability. The design 
of this kernel exploits these services that allow user tasks to run concurrently as separate 
kernel-mode threads on different processors. Threads in Windows running on SMP use 
spin locks to implement mutual exclusion when accessing kernel data structures. To guar-
antee that kernel data structures do not remain locked for a prolonged period of time, the 
kernel never preempts a thread holding a spin lock if some other thread tries to acquire the 
spin lock. This way, the thread holding the lock can fnish its critical section and release 
the lock at the earliest possible time. 

• TSL instruction: The atomic implementation of a test-and-set-lock instruction with the 
aid of the indivisible memory read-modify-write (RMW) cycles, as introduced in unipro-
cessor synchronization, using a spin lock mechanism can extend its TS functionality to 
shared-memory multiprocessors. A semaphore can be implemented for this purpose in a 
multiprocessor system by declaring it as a shared variable and updating it as required by 
the semaphore defnition with the aid of a test-and-set instruction. 



Distributed Systems: An Introduction 467  

 

 

 
 
 
 
 

 

The use of spin lock in many situations is disfavored for creating severe degradation in system 
performance, mainly for keeping the CPU engaged with no productive work and at the same time 
denying the other deserving processes to get its service. Besides, use of spin lock often creates 
traffc on memory bus and consumes the bandwidth of the links that connects processors to shared 
memory. In addition, several processors while spinning on a lock can cause contention at the mem-
ory module containing the semaphore variable, and thus impair access by other processors to the 
enclosing memory bank. In multiprocessor systems, multiple caches are often used for the sake of 
performance improvement. Use of spin locks in such systems can result in increased bus traffc 
needed to maintain consistency among copies of the semaphore variable that reside in individual 
caches of the competing processors. Depending on the type of the cache–coherence scheme being 
used, additional cache–related problems may grow that consequently may further cause to badly 
affect the system performance. 

The use of spin locks in NUMA systems may sometimes exhibit a critical situation commonly 
known as lock starvation. In this situation, a lock might be denied for a considerable duration of 
time, possibly indefnitely. Assume that a process Pi attempts to set a lock L residing in its non-local 
memory. Let two other processes Pk and Pm which exist in the same node as the lock also attempt 
to set it. Since access to local memory is much faster than access to non-local memory, processes 
Pk and Pm spin much faster on the lock than process Pi does. Hence, they will always get an oppor-
tunity to set the lock before Pi. If they repeatedly set and use the lock, Pi may not be able to get its 
turn. The situation may become worse if many other processes arrive by this time that are local to 
the lock; process Pi will then be even further delayed in getting its turn to gain access to the lock, 
thereby waiting for a considerable duration of time and facing acute starvation. To avoid such star-
vation, many effective schemes have been proposed, the details of which are outside the scope of 
our discussion. 

However, the use of spin locks has some advantages in certain situations. When the number 
of processes does not exceed the number of CPUs present in the system, there is no justifcation 
and simply unnecessary to preempt a process, rather it is preferred to allow the CPU to spin on 
the lock until it succeeds. In addition, it is sometimes proftable to let a process loop rather than 
blocking it, as already discussed earlier in this section. Preemption in this situation is simply 
counter-productive. 

Real-time applications, on other hand, however, prefer the use of spin locks to synchronize pro-
cesses. The reason is that while a CPU spinning on a lock can handle incoming interrupts, and the 
process executing on this CPU can equally handle signals. This feature is essentially important in 
real-time environments in which processing of interrupts and signals are highly time-critical, and 
any delay in this regard may miss the deadline. However, as spin locks often generate traffc on the 
memory bus or across the network while the CPU continues spinning on the lock, so it is considered 
not scalable. 

• Sleep lock: When a process Pi attempts to acquire a sleep lock which is already set by 
another process, the CPU associated with process Pi is not released but is put in an unusual 
state called a sleep state. In this state, the CPU neither executes any instructions nor 
responds to any interrupts except interprocessor interrupts (IPIs). The CPU simply waits 
for the release of the lock to be reported by the kernel and hence generates no additional 
traffc on the memory bus or across the network. This is illustrated in Figure 9.6(d) with 
an × mark against all interrupts except IPIs. Sleep locks are sometimes preferred when the 
memory or network traffc is already high. 

The CPU that sets the lock and later releases it has the responsibility to send IPIs to all the CPUs 
that are sleeping on the lock. This obligation, in turn, involves increasing administrative overhead, 
since they require a context switch and execution of associated kernel code to generate IPIs as well 
as related servicing of the IPIs. The sleep lock, however, yields poor performance if there is heavy 



 

 

 

 

 

468 Operating Systems 

contention for a lock, but the performance is found moderately good, if the traffc density over the 
lock is comparatively low. The use of sleep locks may be hazardous in real-time applications, since 
the response time may exceed the specifed deadline. 

• Adaptive lock (scheduling-based synchronization): Use of this lock is effective only 
when the processes involved for synchronization are scheduled to run in parallel. This type 
of lock is used by Solaris operating systems for SUN systems. A process waiting to gain 
access to the lock spins on it if the holder of the lock is scheduled to run in parallel (i.e. to 
be in the running state); otherwise the waiting process is preempted and is queued, as is 
done in queued locks. The kernel implements this lock by checking whether the holder of 
the lock is currently in the running state. 

Each and every type of lock, as discussed in process synchronization, provides certain advan-
tages in some situations and equally creates some problems in other situations. Additional hardware 
components can be used in the system architecture to avoid the performance problems caused by 
different types of locks while retaining all the advantages they usually offer. 

9.10.2.1.3 Additional Hardware Support 
Some systems use special hardware to alleviate the performance problems created by locks while in 
use to synchronize processes. One such is the use of a system link and interface controller (SLIC) 
chip that provides a special SLIC bus dedicated to the purpose of synchronization of processes. 

A SLIC essentially consists of a special 64-bit register in each CPU present in the system. These 
registers associated with different CPUs are connected by the SLIC bus, as shown in Figure 9.7. 
Each bit in the register represents a spin lock; hence, SLIC can support 64 such locks. When a CPU 
Ck attempts to set a lock Lm, it tries to set the corresponding bit, say, bm, in its special register. If the 
bit is found to already be set by another CPU, the requesting CPU faces failure and starts spinning 
on this lock, that is, on bit bm of its special register, until it succeeds. On the other hand, if the bit is 
not set (i.e. available), the requesting CPU attempts to set it and communicates its intention to all 
other CPUs over the SLIC bus. If no other CPU is interested in setting the same bit at the same time, 
the lock is eventually awarded to the CPU Ck, and bit bm of the special register of each CPU is set. 
CPU Ck is now allowed to enter the critical section to continue its execution. After completion, CPU 
Ck will release the lock, bit bm of the special register of each CPU will be reset to enable the other 
CPUs (waiting processes) to gain the lock. If two or more CPUs now attempt to set the same lock 

FIGURE 9.7 A representative illustration of SLIC bus used as an additional hardware support in multipro-
cessor system to implement process synchronization. 



Distributed Systems: An Introduction 469  

 

 

  

 

simultaneously, an arbitration mechanism will be used by the hardware to select one of the CPUs to 
award the lock to. SLIC has been successfully implemented in the Sequent Balance system. 

Use of the SLIC approach provides several advantages: First, the presence of a dedicated special 
synchronization SLIC bus relieves the memory bus from carrying additional load, thereby reducing 
congestion of traffc on it. Second, the use of a spin lock rather than a sleep lock helps avoid the need 
of generating and subsequently servicing IPIs, thereby alleviating the severity of additional admin-
istrative overhead and relieving the system from signifcant performance degradation. Last but not 
least, the CPU here spins on a local lock. Since access to local memory is always much faster than 
access to non-local memory, it improves system performance and at the same time does not generate 
any additional memory or network traffc. 

9.10.2.1.4 Compare-and-Swap Instruction 
Instead of using a lock mechanism for the synchronization of processes, the compare-and-swap 
(CS) instruction can be exploited using the indivisible read-modify-write memory cycle that pro-
vides a basis for optimistic concurrency control in multiprocessors. Apart from the normal use of 
CS instruction to update a shared variable without locking, another common use of it is to add and 
remove items from lists, which is equivalent to enqueue and dequeue operations on a shared queue. 
The shared lists and queues that are commonly used, for example, include semaphore queues, 
shared-resource queues, mailboxes, etc. 

The creation of shared lists and queues, especially their management, is an important aspect and 
a frequently executed task in multiprocessor operating systems. In shared-memory systems, a list of 
ready processes is usually maintained in shared memory as part of a common scheduling technique 
that can be used by idle processors to fnd a process for execution. Several types of operations on 
such shared lists and queues, however, exist that can be adopted to manage and willfully manipulate 
them. In addition, access to shared queues needs to be controlled so that inconsistent manipulation 
by concurrent activities initiated by different processors can be prevented. Also, the CS instruction 
is suitable for optimistic concurrency control in a class of applications such as updating a shared 
variable and concurrent enqueue and dequeue operations, and thus is considered to offer a good 
mechanism for queue manipulation without the use of any locks. 

9.10.2.1.5 Processor/Process Scheduling 
Multiprocessor, as being different from uniprocessor, containing many processors, however, raises 
several other issues while scheduling function is carried out. In most conventional multiprocessor 
systems, processes are not dedicated to specifc processors. Instead, there is a single queue of pro-
cesses for all processors, or if some sort of priority scheme is used, there can be multiple queues 
based on priority; all are eventually fed into the common pool of processors. Thus, any process can 
be executed on any CPU in the multiprocessor system. However, many issues come up when sched-
uling a process or a processor that often infuence system performance to a great extent. Processor 
allocation, in fact, may become a considerable problem in massively parallel systems. The appro-
priate choice of a particular processor for executing a specifc process can remarkably improve the 
performance of process execution. Similarly, willful selection of a set of related processes that often 
synchronize and communicate regularly with one another can improve the execution performance if 
can be scheduled intelligently regarding as to when and how these processes will be executed. Some 
of the issues involved in formulating such policies and making the subsequent necessary decisions 
are as follows: 

• Processor scheduling (allocation of processing resources): One way of keeping track 
of a large number of processes or threads (schedulable entities) is to organize them in a 
logical hierarchy. Some of the processors in the system can be designated as managers, 
while the others are simply workers. A manager is dedicated to keep track of the state and 
activity of a collection of worker processors. Managers themselves can also be organized 



 

 

 

 

 

470 Operating Systems 

in a hierarchy extending upward by assigning second-level managers who can oversee 
groups of frst-level managers, and so forth. For the sake of reliability, the top level of such 
a hierarchy can be a group of processor nodes rather than a single node, because failure 
of a single node could lead to a fatal situation that may end in total collapse of the system. 
This arrangement when implemented results in a system called wave scheduling. 

Under this arrangement, individual processors are dedicated to only one task at a time. Each 
manager keeps track of the number of its available workers. A work request can be submitted to a 
manager at any level of the hierarchy. Upon receiving a work request calling for R processor, the 
respective manager (processor) must secure R or more processors, since some of them may fail. If 
the selected manager does not fnd a suffcient number of worker processors, it calls on its manager 
at the next higher level for help. This course of action continues until the request is satisfed (i.e. a 
suffcient number of available processors is secured) or the top of the hierarchy is reached. If the 
request cannot be flled even after reaching the top level, the request may be set aside for the time 
being pending availability of the required amount of resources. 

Such a hierarchical allocation of processors nicely fts a robust implementation, and scales well 
due to the relatively limited amount of generated traffc. The fault tolerance of both the master and 
worker processors is found to attain the desired level modestly. The work of a failed master can be 
assigned to one of its siblings, to one of its subordinates, or even to another processor as assigned 
by its superior. Failure of a processor residing at the top of the hierarchy can likewise be negotiated 
by the selection (election) of a suitable successor. Similarly, the failure of a worker processor would 
not cause any major hazards, since it can be handled by migrating its work to some other processor 
(node) and can then be resumed in a suitable manner. 

In spite of having several advantages, the wave scheduling, exhibits some practical diffculties 
while implemented. First of all, the manager must always be equipped with the latest status of its 
available workforce when attempting to allocate processors. This requires additional overhead each 
time in the calculation of estimates, and, moreover, use of estimates may lead to ineffciencies if 
they are too conservative or to allocation failures if they are too optimistic. Moreover, since multiple 
allocation requests arrive almost simultaneously and granting activity may occur at nearly the same 
time, the resources as estimated to be available may turn out to be snatched by another party when 
a processor allocation is actually about to occur. 

• Scheduling of processes: As already mentioned, scheduling of processes is often infu-
enced by the selection of CPU on which a scheduled process is to be executed. In general, 
when a process Pk is executed on a CPU Ci, some of its address space is obviously available 
for the L1 cache of CPU Ci. When this CPU is switched to execute another process, some 
of the contents of L1 cache related to process Pk are overwritten by parts of the address 
space of the new process; however, some parts of process Pk’s address space may still sur-
vive in the L1 cache of CPU Ci over a certain duration of time. A process is said to have an 
affnity for a CPU if it has a residual address space in the cache of the CPU even when it 
is not running on the CPU. A process with an affnity to a specifc CPU exhibits a higher 
hit ratio than running on a CPU for which it does not have any affnity. Scheduling of pro-
cesses when carried out based on affnity usually provides faster execution of processes as 
well as less traffc on the memory bus. However, affnity-based scheduling often affects 
load balancing across CPUs, since processes are attached to specifc CPUs. Moreover, 
affnity-based scheduling in many operating systems may sometimes result in scheduling 
anomalies, which refers to the situation when a higher-priority process remains set aside 
and is not in the running state (possibly in a ready state), even though a lower-priority 
process has been scheduled for execution. This has been observed, especially in Windows 
system. However, scheduling anomalies may be rectifed by shuffing processes between 
CPUs, but it ultimately carries a high administrative scheduling overhead and becomes 



Distributed Systems: An Introduction 471  

 
 

 
 
 
 
 
 

  
 
 
 

 

 
 

 

 

even more signifcant in systems with a large number of CPUs. That is why some operat-
ing systems do not favor a process shuffing approach to mitigating scheduling anomalies. 
These anomalies may also be observed in some SMPs when each individual CPU is given 
the power to execute the kernel code independently so as to avoid bottlenecks in kernel 
code execution and to yield improved performance. 

Process scheduling often includes scheduling of different processes of a specifc application con-
currently on different CPUs to achieve computation speed-up exploiting the principle of parallelism. 
Synchronization and communication among these processes then becomes a vital consideration 
that infuences in deciding scheduling policy, since it directly affects the performance of a system. 
While synchronization of these processes mostly needs the service of a spin lock when several pro-
cesses of an application are scheduled on different CPUs (co-scheduling), communication among 
these processes usually employs the message passing technique. Again, the way this technique 
will be implemented should be chosen very carefully; otherwise it may sometimes thwart the co-
scheduling itself to operate. However, different approaches are used by different operating systems 
in this regard, and the kernel is then designed in such a way so that it can make appropriate decisions 
to effectively implement co-scheduling. 

9.10.2.1.6 Thread Scheduling 
The concept of threads in uniprocessor systems was introduced mainly to avoid relatively costly 
process-switch overhead as well as to overlap I/O operation with processing. While thread switch-
ing is certainly less costly, the actual strength of the thread concept is possibly best utilized when 
implemented in multiprocessor system that essentially spreads a different favor. In fact, threads 
of an application when executed in a multiprocessor system offer true parallelism. When threads 
are used, each application is implemented as a separate process, and its concurrent portions are 
coded as separate threads within the enclosing process. Threads belonging to a single process 
share the memory and all other resources acquired by the process. Some operating systems often 
provide specialized calls for effcient synchronization of threads that belong to the same pro-
cess. Communication among threads of the same process, however, is normally not a critical 
issue, since threads share common memory. If various threads of a specifc application can be 
run simultaneously on separate processors, potential parallelism can be achieved that eventually 
gives rise to signifcant gains in performance. Consequently, it becomes evident that scheduling 
of threads is an important issue to facilitate multiprocessing. With the aid of adequate informa-
tion about processes and threads, the scheduler can attempt to co-schedule the related threads and 
thereby can reduce the probability of performance degradation caused by out-of-phase schedul-
ing of closely related parties. As thread scheduling becomes a sensitive issue, it is thus obvious 
that a little alteration in management of threads and related scheduling can cause a signifcant 
impact on the performance as a whole. However, many different approaches with regard to sched-
uling of threads and related assignment of processors have been proposed. Generalization of 
them essentially reveals the following: 

1. Sharing loads 

As already mentioned, processes in multiprocessor system are not assigned to a specifc proces-
sor. Simultaneous (parallel) executions of different threads is quite easy and can be achieved by 
maintaining a queue of ready threads. Processor allocation is then simply a matter of assigning the 
frst ready thread to the frst available processor unless either all processors are busy or the ready 
queue of the threads is emptied. In this way, each processor, whenever available, fetches the next 
work item from the queue. This strategy is known as load sharing and is distinguished from the 
load balancing scheme in which the work is allocated for a relatively longer duration of time (a more 
permanent manner). Load sharing is a natural choice and possibly the most fundamental approach 



 

 
 

 

  

 

  
 
 

 

 

 

 

472 Operating Systems 

in which the existing load is distributed almost evenly across the processors, thereby offering sev-
eral advantages. Some of them are: 

• It ensures that no processors remain idle when executable work is present in the system. 
• No additional scheduler is needed by the operating system to handle all the processors. The 

existing scheduler routine is simple enough that it can be run only on the available proces-
sor to choose the next thread to execute. 

• The arrangement and management of global queues of threads do not require any addi-
tional mechanism. It can be treated as if it is running on uniprocessor system and hence 
can be readily implemented along the lines of an existing proven mechanism, such as 
priority-based execution history (SJF), etc. as used in uniprocessor operating systems. 

Similar to the strategies employed in process scheduling, as discussed in Chapter 4, there are 
different types of thread scheduling almost in the same line, out of which three types of thread 
scheduling algorithms are of common interest. Those are: 

• First Come First Served (FCFS): When a process arrives, all of its threads are placed 
consecutively at the end of the ready queue of the threads. When a processor is available, 
the thread at the front of the ready queue is assigned to the processor for execution until it 
is completed or blocked. 

• Smallest Number of Threads First (SNTF): This concept is similar to SJF in process 
scheduling. Here, the threads of the jobs with the smallest number of unscheduled threads 
will be given highest priority and hence are placed at the front of the ready queue. These 
threads are then scheduled for execution until they are completed or blocked. Jobs with 
equal priority will then be placed in the queue according to their time of arrival (FCFS). 

• Preemptive SNTF (PSNTF): This one is almost similar to the last. Here, also the threads 
of the jobs with the smallest number of unscheduled threads will also be given the highest 
priority and are placed at the front of the ready queue to be scheduled for execution. The only 
exception here is that the arrival of a new job with a smaller number of threads than an exe-
cuting job will preempt the executing thread of the currently running job, and the execution 
of the threads of the newly arrived job will then be started until it is completed or blocked. 

Each of the strategies, as usual, has several merits and certain drawbacks. However, the FCFS 
strategy is perhaps superior to the other two when a load-sharing approach is employed over a large 
number of jobs with a diverse spectrum of characteristics. However, the load-sharing approach also 
suffers from several disadvantages. Those are mainly: 

• Since the single shared ready queue is accessed by all processors and may be accessed 
by more than one processor at the same time, a bottleneck may be created at that end; 
hence, some additional mechanism is needed to ensure mutual exclusion. With a small 
number of processors in the computer system, this problem is not noticeable. However, 
with multiprocessors with a large number of processors, this problem truly persists and 
may be acute in some situations. 

• Thread switching leads to a small increase in overhead, but in totality it cannot be 
ignored. Moreover, the threads being preempted are less likely to be scheduled once 
again on the same processor when it resumes its execution. Consequently, caching 
becomes less effcient if each processor is equipped with a local cache, and the potential 
of affnity-based scheduling cannot be then utilized. 

• Since the load-sharing approach uses a central global queue of threads of all the ready 
processes, and those are usually scheduled at different times, likely to different pro-
cessors as and when those processors are available, it is highly probable that all of the 



Distributed Systems: An Introduction 473  

  

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 

threads of a specifc program will be assigned to different processors at the same time. 
As a result, a program with a high degree of coordination among its threads may not be 
executed in the desired order at an appropriate time. This requires additional commu-
nication overhead and also the cost of extra process switches that may eventually affect 
the overall performance adversely. 

In spite of having a lot of disadvantages, its potential advantages, however, legitimately outweigh 
them, and that is why this approach is favored as one of the most commonly used schemes in con-
temporary multiprocessor systems. A further refnement of the load-sharing technique has been 
made to alleviate some of its potential disadvantages to effectively ft it into the environment. Those 
modifcations have been implemented in the Mach operating system developed at Carnegie Mellon 
University using a platform of an SMP kernel structure. 

For brief details on thread-processor scheduling in Mach OS, see the Support Material at www. 
routledge.com/9781032467238. 

2. Gang scheduling 

This strategy is derived based on the traditional (it predates the use of threads) concept in which a 
set of processes is scheduled to run simultaneously on a set of processors, giving rise to the concept 
of group scheduling that exhibits several advantages. Out of many, a few notable ones are: 

• It is apparent that while a single action includes many processors and processes at one shot, 
scheduling overhead is naturally reduced since it avoids individual scheduling of those 
processors and the processes that would otherwise yield substantial scheduling overhead. 

• It helps execute closely related processes in parallel on different processors, which con-
sequently may reduce blocking required at the time of synchronization, thereby avoiding 
costly process switching that ultimately improves the performance as a whole. 

A similar approach is found in massively parallel processing (MPP) systems (Chakraborty, 
2020), such as the connection machine (CM*) model that uses a co-scheduling approach in which 
scheduling a related set of tasks called a task force is carried out. Here, the amount of work in 
individual elements of a task force is often quite small and hence bears a close resemblance to the 
concept of a thread. 

Following the concept of group scheduling on processes as well as co-scheduling on tasks, a gang 
scheduling is applied to a set of related threads, which can be simultaneously scheduled on a set of 
processors to run on a one-to-one basis. Gang scheduling usually provides medium-grained to even 
fne-grained parallelism, and that is why it is highly conducive to parallel processing, even with those 
applications which are not so performance sensitive. As gang scheduling establishes its importance in the 
multiprocessor environment, it has been widely implemented on a variety of multiprocessor operating 
systems running on different hardware platforms. However, gang scheduling can also be used to improve 
the performance of even a single application by simultaneously scheduling cooperative threads of the 
process, thereby reducing the needed number of process switches. It also saves time while resources 
(such as fles) are allocated, since multiple willing threads can be scheduled simultaneously on the same 
resource without using a locking mechanism, thereby avoiding related administrative overhead. 

Instead of uniformly distributing the total processing power available in the system among ready 
applications, gang scheduling attempts to use judicious distribution of processors on the existing 
applications in the system with the intention of effective utilization of processing resources. An 
effcient scheduling mechanism is then employed that would schedule the application offering a 
proportionate amount of time using time slicing and the needed processing resource for its execu-
tion that is weighted by the number of threads present in the application. This strategy will defnitely 
reduce processor waste caused by remaining idle most of the time. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 

474 Operating Systems 

Gang scheduling yields good performance if used intelligently. It sometimes requires prior 
knowledge of job characteristics for its proper handling. This refers to how many processors to 
assign to a program at a given time to make acceptable progress. Consequently, gang scheduling in 
some specifc forms is observed to be superior to a load sharing approach in general. 

3. Assignment of dedicated processors 

This strategy is just the reverse of the load-sharing scheme and close to the gang scheduling 
scheme. Here, each program is allocated a number of processors equal to the number of threads 
in the program, and they are kept dedicated for the entire duration of the program execution. The 
scheduling of threads here is straightaway implicit, simply defned by the assignment of threads to 
processors. When the program is completed or terminated, all the processors are deallocated and 
return to the pool of processors for subsequent use by other programs. It is evident that this approach 
appears to suffer from severe drawbacks as far as processor utilization is concerned. First, there is 
no scope of multiprogramming on any of the processors, thereby restricting the other processes 
to share the processors if available during the lifetime of the executing program. Second, if the 
running thread of an application is somehow blocked, maybe due to I/O waiting or for the sake of 
synchronization with another thread, then the costly processor dedicated to that particular thread 
will simply remain idle, yielding no productive output. However, counterarguments directly in favor 
of this approach in terms of two distinct advantages can also be made: 

• Since the processors are dedicated to different threads during the entire tenure of program 
execution, there is no need to have any process switch that, in turn, speeds up the execution 
and thereby defnitely improves the performance as a whole. 

• Systems having large number of processors in which cost of the processors is appreciably 
small compared to the total cost of the system; utilization of processors and processor– 
time wastage is usually considered not a dominant parameter in evaluating performance 
or effciency of such a system. In fact, highly parallel application having tight coordination 
among threads will then be properly ftted in such system following the stated approach 
and be proftably effective for its execution. 

A dedicated processor assignment strategy works effciently and processor resources are used 
effectively if the number of active threads of an application could be made limited or even kept 
lower than the number of processors available in the system. Furthermore, the higher the number 
of threads, the worse the performance, because there exists a high possibility of frequent thread 
preemption and subsequent rescheduling, and also due to many other reasons, that eventually makes 
the entire system ineffcient. 

The scheduling issues of both the gang scheduling approach and assignment of dedicated pro-
cessors ultimately culminate in the subject matter of processor allocation. The problem relating to 
processor allocation in multiprocessors is very similar to memory management on a uniprocessor 
rather than scheduling issues on a uniprocessor. The issue now fnally converges as to how many 
processors are to be assigned to a program at any given instant to make execution effcient, which 
is analogous to how many page frames to allocate to a given process for its smooth execution. It 
has thus been proposed to defne a term, activity working set, analogous to virtual memory work-
ing set, that indicates the minimum number of activities (threads) which must be simultaneously 
scheduled on processors for the application to reach a desired level of progress. Similar to memory-
management schemes, if all of the elements of an activity working set cannot be simultaneously 
scheduled on respective processors, it may give rise to a vulnerable situation, what is known as 
processor thrashing. This normally happens when the execution of some threads are required and 
thus scheduled, but induces de-scheduling of other threads whose services may soon be needed. 
Another situation what is commonly called processor fragmentation also encompasses processor 



Distributed Systems: An Introduction 475  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

scheduling issues. This occurs when some processors are allocated while a few others are left over. 
The leftover processors are neither suffcient in number, nor are they properly organized to fulfll 
the requirements of the waiting processes for execution. As a result, a good amount of processor 
resources are simply left idle. Both of these scheduling strategies under discussion suffer from many 
such drawbacks and thus require to properly address all these issues in order to avoid the problems 
created by them. 

4. Dynamic scheduling 

This permits the number of threads in a process to be altered dynamically during the tenure of 
the execution of the process so that the operating system can adjust the load for the sake of improve-
ment in processor utilization. 

The scheduling decisions involved in this approach area is a joint venture of the operating 
system and related application. The operating system is simply responsible for creating various 
groups of processors among the jobs. The number of processors in a group may also change 
dynamically, monitored by the OS, according to the requirements of the job running currently. 
The responsibility of the operating system is primarily limited to processor allocation. Each 
job uses its own group of processors to execute a subset of its runnable tasks by mapping these 
tasks to corresponding threads as usual. The application which is being run mostly depends on 
the policy and mechanism of thread scheduling. The policy decides which subset of task is to 
run, which thread is to be suspended when a process is preempted, and similar other choices. 
The mechanism to implement the policy is perhaps built using a set of runtime library routines. 
Not all applications works well with this strategy; some applications that have a single thread 
by default respond well to this strategy, while others although do not ft straightaway but could 
be programmed in such a way so as to advantageously exploit this particular feature of the 
operating system. 

The processor allocation being done by the OS is mostly carried out in the following way: For 
newly arrived jobs, only a single processor is allocated, and it is managed by taking one away 
from any currently running job that has been allocated more than one processor. When a job 
requests one or more processors, if there are idle processors, allocate them to satisfy the request; 
otherwise the request cannot be serviced at that point in time and is set aside until a processor 
becomes available for it, or sometimes the job on its own no longer fnds any need for an extra 
processor. 

This strategy requires a considerable high overhead since both the OS and application are jointly 
involved in the desired implementation with needed operations. This shortcoming often negates the 
performance advantages that may be accrued from this strategy. However, with applications that 
can be designed and developed so as to take the advantage of dynamic scheduling, this approach in 
that situation is clearly superior to its strong contenders (alternative), gang scheduling, or the dedi-
cated processor assignment strategy. 

9.10.2.2 Memory Management 
Management of memory in multiprocessor systems is directly related to the memory organization 
of the underlying architecture of the system and the type of communication network being used. In 
loosely coupled multiprocessor systems (such as in machines using DSM), memory is usually han-
dled independently, on a per-processor basis. In tightly coupled multiprocessors, memory organiza-
tion is inherently based on a shared memory mechanism. The operating systems in such machines 
must provide a fexible memory model in order to control safe and effcient access to entities in 
shared memory. In this type of system, allocation and deallocation of segments of shared memory 
is carried out by the OS using additional primitives. Systems that provide support of shared virtual 
memory may have several TLBs attaching with different processors which may contain mapping 
details for pages that belong to a shared segment. Presence of many TLBs consequently gives rise 



 

 

 
 
 

 

 
 
 
 
 
 
 
 
 

 

 

 

476 Operating Systems 

to usual coherence problem that can, of course, be negotiated by employing some variation of the 
standard techniques used to handle cache coherence problem. 

Shared memory organization also helps enhance the message passing technique that eventually 
improves the performance of interprocess communication. This improvement is, however, realized 
by simply avoiding the copying of messages when senders and receivers have access to the same 
physical shared memory. But one of the serious drawbacks of this approach is that any modifca-
tion of the message, if carried out by either party would ultimately go against the fundamental 
requirement of message passing mechanism; hence, to get out of this problem, it ultimately needs 
to have a separate copy for each party, which is again time consuming. This problem, however, can 
be alleviated by employing the most common cost-effective copy-on-write technique so that high 
effciency can ultimately be attained. Mach OS, in particular, exploited the copy-on-write technique 
rigorously to handle most of the issues in relation to interprocess communication. There are also 
some operating systems for loosely coupled multiprocessors (such as machines using DSM) that 
provide the shared memory abstraction and implement the copy-on-write technique while using the 
message-passing facility. 

The existence of shared memory also encourages to effectively extend the fle system by map-
ping fles into process virtual spaces, and that is accomplished by using some form of appropriate 
primitives. This often helps to realize a potentially effcient mechanism for sharing open fles. 

9.10.2.3 Device Management 
Involvement of I/O in the environment using multiprocessor systems of early days has got less 
importance, since the type of most of the applications being executed were CPU-bound that do 
not require much I/O after the initial loading. The whole intention in the use of multiproces-
sor systems was to essentially speedup the execution of these types of applications by breaking 
each of them into parts in such a way that each part of an application, in turn, could simultane-
ously run in a mutually exclusive manner on different processors to shorten the relative total 
turnaround time. As multiprocessor usage gradually entered the arena of more general-purpose 
applications, the requirement of I/O–participation in the environment gradually increased; 
hence, I/O can no longer be set aside. In fact, the performance of I/O became a factor that started 
to affect throughput and speedup that could be realized. Work on disk arrays has resolved some 
of the issues, and many other innovative techniques have been introduced to extract considerable 
enhancement in I/O performance, but the speed of individual I/O devices remains essentially 
unchanged (for devices composed mostly of mechanical and electro-mechanical components). 
It has been observed that multiprocessing techniques when applied to I/O, such as connecting a 
good number of similar devices together and then operating them in parallel using an appropri-
ate scheduling algorithm, would start to yield better performance that tend to closely match the 
underlying environment. 

9.10.2.4 File Management 
The organization of the fle system in multiprocessor (tightly coupled) environment differs appre-
ciably from that of a network or a distributed system. The operating system, in essence, normally 
contains a traditional uniprocessor fle system, including a single, unifed blocked cache. When any 
process executes a READ system call while attempting to access a shared fle or a central table, 
the operating system carries it out, making the necessary arrangements to lock out other CPUs 
using standard synchronization tools. Similarly, when a WRITE system call is done, the central 
block cache is locked, the new data are then entered the cache, and the lock is fnally released. 
Any subsequent READ call will now see the new data, similar to a uniprocessor system. On the 
whole, here the fle system is more or less the same and hardly differs from the fle system used in 
a single-processor machine. Some of the distinctive differences between the three kinds of systems, 
as already discussed, are illustrated in Table 9.1. 



Distributed Systems: An Introduction 477  

    

 
   

  

TABLE 9.1 
Comparison of Three Different Operating Systems on Machines with Different 
Organizations of N CPUs. A representative table showing the comparison of salient 
features between multiprocessor operating systems, network operating systems and 
distributed systems (multicomputer using middleware) 

Multiprocessor (Tightly 
Item Network OS Distributed OS Coupled) OS 
Does it appear as a virtual No, collection of distinct Yes, single-system image Yes, single-system image 

uniprocessor? machines 

Do all have to run the same No Yes Yes 
operating system? 

How many copies of the N N 1 
operating system are there? 

Is there a single run queue? No No Yes 

How is communication Shared Messages Shared 
achieved? fles memory 

Does it require any Yes Yes No 
agreed-upon 
communication protocols? 

How is memory organized? On an individual machine Distributed shared memory Shared memory 
basis 

How are devices organized? Usually on an individual Pool of same Pool of same type of 
machine basis type of devices devices shared 

shared 

How is fle sharing carried Usually requires no Does require well-defned Does require well-
out? pre-defned semantics semantics defned semantics 

9.10.3 CASE STUDY: LINUX IN MULTIPROCESSORS 

Many features of Linux 2.0 introduced to manage multiprocessor systems were enhanced in Linux 
2.4 and onwards, that include a fner locking mechanism to synchronize kernel data structures 
to prevent race conditions, stepwise modifcations in non-preemptible scheduling algorithms, and 
removing many other limitations to increase its capabilities. The Monta Vista Linux Professional 
Edition, a derivative of the Linux 2.4 kernel with a full preemptive scheduler and a fne-grained lock-
ing mechanism inside the SMP kernel for improved scalability has also enabled tasks to run con-
currently as separate kernel-mode threads on different processors. The Linux 2.6 kernel released in 
2003 removed many of the limitations of its recent past versions up to version 2.5 and also enhanced 
its existing capabilities in several ways. In fact, the Linux 2.6 kernel was made preemptible and also 
employed a very fne-grained locking mechanism to implement even better parallelism. However, 
kernel operations should not be preempted all the time; particularly, it is diffcult when it saves its 
state or when it is engaged in performing some other sensitive operations, so the kernel enables and 
disables its own preemptibility to negotiate certain situations by using some special functions. 

The Linux kernel uses several types of locks for different purposes. It provides spin locks for 
locking data structures in general. It also provides a special reader-write spin lock that permits 
only reading of any number of reader processes to use the lock while accessing the kernel data and 
not allowing them to modify the data in any way, but permitting only one writer process to modify 
the data, if needed at any point in time. A sequence lock is another type of lock used by the Linux 
kernel having low overhead, and at the same time, it is scalable. A sequence lock assumes integer 
values, it is used as a sequence counter, and is updated by an increment instruction in an atomic 



 

   

 

478 Operating Systems 

manner. Whenever a process wishes to use a kernel data structure, it simply increments the value in 
the sequence lock associated with the data structure, makes a note of its new value, and then starts 
to perform its own operation. After completing the operation, it checks whether the value in the lock 
has changed. If so, the operation just performed is deemed to have failed, so it invalidates the opera-
tion just executed and attempts to run it again, and so on until the operation succeeds. 

The advanced version of Linux 2.6 includes a substantially improved scheduler for traditional 
non–real-time processes, and mostly the same real-time scheduling capability of version 2.4 and 
earlier. Within the domain of real-time scheduling in the scheduler, Linux defnes three scheduling 
classes: 

SCHD_FIFO: First-in-frst-out real-time threads. 
SCHD_RR: Round-robin real-time threads. 
SCHD_OTHER: Other non–real-time threads. 

Besides, Linux 2.6 also describes a completely new scheduler known as the O(1) scheduler (an 
example of “big-O” notation used for characterizing the time-complexity of algorithms) in which 
certain limitations of the Linux 2.4 scheduler have been substantially removed, particularly with 
respect to the SCHD-OTHER class, which did not scale well with an increasing number of proces-
sors and processes. Moreover, the Linux scheduler is designed to put more thrust on I/O-bound 
tasks over CPU-bound tasks. But the scheduler is designed in such a way that the time to select the 
appropriate process and assign it to a deserving processor is almost constant, irrespective of the 
total load or the number of available processors in the system. 

9.10.4 PRIORITIES AND TIME SLICES 

Multiple priorities may be used within each class, with priorities in the real-time classes always 
higher than the priorities for the SCHD-OTHER class. The default values for real-time priority 
classes range from 0 to 99 inclusive, and those for SCHD-OTHER classes range from 100 to 139 
with a lower number always indicating a higher priority. An initial priority for each non–real-time 
task is often assigned with a default priority of 120. This is the task’s static priority, and as the 
execution continues, a priority is determined dynamically based on the task’s static priority and its 
execution behavior. The method used by Linux while computing the dynamic priority is based on 
mainly keeping a note of how much time a process waits (for an event) and how much time a pro-
cess runs. In principle, a task that suffers most in waiting is offered a relatively high priority. Time-
slices are assigned to a task according to its priority, and as such higher-priority tasks are obviously 
assigned larger time-slices. 

The scheduling procedure is straightforward and effcient. As a process becomes ready, it is 
assigned to the appropriate priority queue in the active queues structure and is assigned the deserved 
time-slice. If a task is preempted before it completes its time-slice, it is returned to an active queue. 
When a task completes its time-slice but is not itself completed, it is placed into the appropriate 
queue in the expired queue structure and assigned a new time-slice. All scheduling, however, is 
carried out from the active queues structure. When the active queues structure is empty, expired 
queues are only then involved to continue scheduling. On a given processor, the scheduler chooses 
the highest-priority nonempty active queue. If multiple tasks are present in that queue, the tasks are 
simply scheduled using a round-robin approach. 

Linux used in multiprocessor systems uses an affnity-based scheduling mechanism. A user 
here can specify a hard affnity for a process by indicating a set of processors on which it must 
run, and similarly, a process possesses a soft affnity for the last processor on which it was run. 
Since scheduling is performed on a per-CPU basis, Linux includes a mechanism for moving a task 
from the queue lists of one processor to that of another, thereby performing what is known as load 
balancing, which ensures that computational loads entrusted to different CPUs are more or less 



Distributed Systems: An Introduction 479  

    

 

    

 

 

comparable. This task is performed by a CPU which fnds that its ready queues are empty; it is also 
performed periodically by the scheduler, which checks to see if there is a substantial imbalance 
among the number of tasks assigned to each processor, typically using an interval of every 1 msec. 
if the system is idle and every 20 msecs. otherwise. To balance the load, the scheduler can transfer 
some tasks by invoking the load_balance function with the id of the under-loaded CPU as a param-
eter. The highest-priority active tasks are selected for such transfer, because it is important to fairly 
distribute high-priority tasks. 

Another salient feature of the Linux 2.6 kernel is that it can also support system architectures that 
do not provide a memory management unit, which makes the kernel capable of supporting embed-
ded systems. Thus, the same kernel can now be employed in multiprocessors, servers, desktops, 
and even embedded systems. Since the kernel modules are equipped with well-specifed interfaces, 
several distinct features, such as better scalability, an improved scheduler, speedy synchronization 
mechanism between processes, and many other notable attributes have been incorporated into the 
kernel. 

9.10.5 CASE STUDY: WINDOWS IN MULTIPROCESSORS (SMP) 

Threads of a process in multiprocessor use spin locks to implement mutual exclusion while access-
ing kernel data structures. In order to ensure that the kernel data structure should not be kept locked 
for a long time, the kernel never preempts a thread holding a spin lock if some other thread by this 
time attempts to acquire the same spin lock. In this way, the thread holding the lock can fnish its 
execution of its critical section and release the lock as soon as possible. 

Windows running on uniprocessor systems (non–real-time) uses multiple-level queues (with 
feedback) in which the highest-priority process (thread) is always active unless it is sleeping (wait-
ing) on an event. If there is more than one process (thread) with the highest priority, then the 
single processor time will be distributed among all the processes (threads) at that priority level in 
a round-robin manner. An interesting feature of Windows in multiprocessor (SMP) systems with N 
processors is that it reserves one processor for the purpose of scheduling all tasks, and the others are 
all engaged in executing processes. Effectively, in a multiprocessor system with N processors, the 
N – 1 highest-priority ready threads are always executed on N – 1 processors for exclusive run. All 
the remaining lower-priority threads share the single remaining processor for their execution. For 
example, if there are six processors, at best fve highest-priority threads can run on fve processors, 
while all remaining lower-priority threads will be run on the remaining single processor. 

But this principle of scheduling is directly affected, since the Windows scheduling policy incor-
porates affnity-based scheduling that attach a processor-affnity attribute to a thread. With this 
emerging policy, if a thread is ready to execute, but the only available processors are not in its 
processor-affnity state, then the thread is forced to wait, and the scheduler chooses the next avail-
able matching thread for execution. However, processor-affnity-based scheduling has advantages 
that assist to achieve good memory-access performance for a thread by utilizing its residual address 
space held in the cache of a processor, in particular. In addition, the thread-processor-affnity attri-
bute of a particular thread entity, in conjunction with the default-processor-affnity attribute of the 
process object containing the said thread defnes an affnity set for a thread. If this affnity set is 
non-null, a thread is always executed on a processor that belongs in the affnity set. This form of 
scheduling is known as hard-affnity-based scheduling. On the other hand, if the affnity set of a 
thread is null, the kernel uses soft-affnity-based scheduling in which a thread is scheduled on the 
same processor on which it executed last time. 

Hard-affnity-based scheduling sometimes gives rise to anomalous behavior, leading to a serious 
problem known as priority inversion. For example, consider a system in which N threads are being 
executed on N processors. Let a thread Tk make a transition to the ready state due to the occurrence 
of an interrupt, and let the priority of this thread be higher than the priorities of some other running 
threads. Thread Tk may be forced to wait if the processor for which it has a hard affnity is engaged 



 

 

 

  

 

480 Operating Systems 

in executing a thread whose priority exceeds Tk’s (lower priority). In fact, Tk could have been sched-
uled on some other processor if it were a real-time thread. 

9.11 MULTICOMPUTER OPERATING SYSTEMS 

Multicomputers consisting of a set of n > 1 processors (CPUs) P1, P2, P3, . . ., Pn and m > 0 shared/ 
distributed (main) memory units M1, M2, . . ., Mm are interconnected using various forms of design 
approaches. In fact, there are several different ways the hardware can be organized, especially in 
terms of processor–processor interconnections and processor–memory interconnections and also 
how they communicate with one another. Various hardware design models have been proposed in 
this regard that can be broadly classifed into fve categories (see Section 9.5). We will discuss here 
multicomputer systems in broad terms only, deliberately avoiding their spectrum of possibilities in 
details. It is evident that different models (forms) of such machines use different kinds of operating 
systems. 

9.11.1 MULTICOMPUTER ARCHITECTURE 

A multicomputer system often consists of a collection of several autonomous individual homoge-
neous, heterogeneous, or a combination of both computer systems in which each computer system 
consisting of processor–memory–I/O module forms a node. Thus, many resources of a kind, such 
as CPUs, memory, and I/O devices, exist. Moreover, a single node of a multicomputer (distributed) 
system may even be a cluster of computers that work together in an integrated manner in which each 
individual system within the cluster is typically referred to as a host. Each host shares disk storage, 
which could be either a multi-host RAID that offers both a high transfer rate and high reliability or 
a network of storage area that provides incremental growth. In addition, each host in the cluster is 
connected to two networks: a private LAN to which only the hosts in the same cluster are connected, 
and a public network through which it can communicate with any other host of any other cluster in 
the entire distributed system. The cluster software having several features similar to those of a DOS 
actually controls the operation of all hosts present in a cluster. 

In multicomputers, multiple computers communicate with each other and with non-local (local 
to some other computer) memory using high-bandwidth communication networks to extract a high 
degree of resource sharing. Peripherals can also be attached using some other forms of sharing. 
Many variations of this basic scheme exist. A private cache is often offered to the processor on each 
individual computer not only to further speed up the entire operation but also to reduce contention 
for distributed memory and on the shared communication network. The type of communication 
network to be used and the related nature of this communication path have a signifcant infuence on 
the bandwidth and saturation of system communications, apart from the other associated important 
issues, such as cost, complexity, inter-system communications, and above all the scalability of the 
architectures. 

Architecturally, multicomputer systems (networks of computers) are loosely coupled systems. 
When this system is managed by tightly coupled software, that is, by a single operating system 
to control all the individual machines present in the collection, this gives rise to the concept of a 
distributed system. When multicomputer systems (networks of computers) consist of autonomous 
machines (run with their own operating systems) that are driven by loosely coupled software and 
often run under separate management, this eventually forms computer networks. A modern trend 
toward less expensive multicomputer systems has led to the emergence of the workstation concept: 
a powerful single-user computer, usually with a small local disk and a high-quality display is gener-
ally linked to others by an interconnection network so that they can share expensive devices like 
printers and a large secondary store. All workstations use the same operating system, but each has 
its own copy and is mostly autonomous. However, each might provide services to the others on 
request, and processes which run on separate machines can communicate data with one another 



Distributed Systems: An Introduction 481  

 

 
 
 
 
 

 
 
 
 
 
 

 
 

   

through the network. Except for that facility, the operating systems on the workstations are fairly 
traditional. Workstation networks, however, occupy a place and play a role somewhere in between 
computer networks and true multicomputers (distributed systems). 

9.11.1.1 Multicomputer Systems: Different Models 
Many variations of the basic scheme to construct multicomputers are used to build various models 
of this system, as already discussed in detail in Section 9.5. However, it is again mentioned here 
those models that can be broadly classifed into many categories, such as: 

• Systems consisting of minicomputers 
• System comprising workstations 
• Workstation–server model: client–server model 
• Systems comprising processor pools 
• Hybrid systems 

Multicomputers thus designed are best suited primarily for general-purpose multi-user applications 
in which many users are allowed to work together on many unrelated problems but occasionally in 
a cooperative manner that involves sharing of resources. Such machines usually yield cost-effective 
higher bandwidth, since most of the access made by each processor in individual machines are to its 
local memory, thereby reducing latency that eventually resulting in increased system performance. 
The nodes in the machines are, however, equipped with the needed interfaces so that they can 
always be connected to one another through the communication network. 

In contrast to the tightly coupled multiprocessor system, the individual computers forming 
the multicomputer system can be located far from each other and thereby can cover a wider 
geographical area. Moreover, in tightly coupled systems, the number of processors that can be 
effectively and effciently employed is usually limited and constrained by the bandwidth of the 
shared memory, resulting to restricted scalability. Multicomputer systems, on the other hand, 
with a loosely coupled architecture, are more freely expandable in this regard and theoretically 
can contain any number of interconnected computers with no limits as such. On the whole, multi-
processors tend to be more tightly coupled than multicomputers, because they can exchange data 
almost at memory speeds, but some fber-optic-based multicomputers have also been found to 
work at close to memory speeds. 

9.11.2 OPERATING SYSTEM CONSIDERATIONS 

Multicomputer systems architecturally are loosely coupled systems with different structures and 
forms depending on the interconnections among their constituent computing systems (nodes). They 
belong to the category of distributed computing systems, which can be governed either by loosely 
coupled software known as a NOS or by tightly coupled software known as a DOS. 

Whatever model is being followed in the design of a multicomputer system, it essentially con-
sists of multiple autonomous computer systems that ultimately provide high throughput as well 
as computation speed-up. As usual, here also each individual system consists of three basic types 
of resources, processors, memory, and I/O devices, that need to be managed locally at their own 
ends by respective management modules. Like uniprocessor OSs, a multicomputer operating system 
similarly manages the available resources and augments the system and hardware functionality in 
such a way that many users can individually work concurrently on many unrelated problems at their 
respective machines with needed interaction but occasionally in a cooperative manner among users 
on different machines, which mainly includes sharing resources. That is why operating systems that 
manage multicomputers have a totally different structure and complexity than their counterpart 
multiprocessor operating systems. This is due to the fact that the data structures required for system-
wide resource management can no longer be easily shared by merely placing them in physically 



 

 

 

 

482 Operating Systems 

FIGURE 9.8 A representative general structure of a multicomputer operating system. 

shared memory. Instead, the only means of communication is by means of message passing. A 
representative scheme of multicomputer operating system organization is depicted in Figure 9.8. 

As already mentioned, each machine (node) in the multicomputer system (as shown in Figure 9.8) 
has its own kernel that contains different modules for managing its various local resources, such 
as local CPU, memory, a local disk, and other peripherals. In addition, each machine has a sepa-
rate module for handling interprocessor communication, which is carried out mostly by sending 
and receiving messages to and from other machines. The message-passing technique being used 
here may itself widely vary semantically between different forms of systems, giving rise to several 
issues, such as whether the messages between processes should be buffered and whether the partici-
pating processes are made blocked or unblocked during the course of message-passing operations. 
Whatever decision is made in this regard at the time of designing the OS, it depends largely on the 
underlying system architecture that consequently determines the reliability aspects of the com-
munication thus made between machines. In fact, the presence or absence of buffers, for example, 
at the sender’s or receiver’s end ultimately decides whether reliable communication is guaranteed, 
which, in turn, put a tremendous impact on the performance of the system as a whole. 

Within the multicomputer operating system, there exists a common layer of software (a utility 
process, as shown in Figure 9.8) just above the local kernel that acts as a virtual machine monitor 
implementing the operating system as a virtual machine, thereby multiplexing different underly-
ing kernels to support parallel and concurrent execution of various tasks. By using the available 
interprocessor communication facilities, this layer provides a software implementation of shared 
memory. The services that are commonly offered by this layer are, for example, assigning a task to 
a processor, providing transparent storage, general interprocess communication, masking hardware 
failures, and other standard services that any operating system usually provides. Some of the salient 
features of multicomputer operating systems are: 

• Each machine (node) has a copy of the code necessary for communication and primitive 
service to processes (such as setting up mapping registers and preempting at the end of a 
quantum). This code is the kernel of the operating system. 



Distributed Systems: An Introduction 483  

 

 

 

 

 

 

 

 

 

 

 

• Computation speed-up is normally achieved by executing sub-tasks of an application in 
parallel in different computer systems. 

• The environment of a process essentially includes the communication ports it has access to 
and the processes that serve those ports. 

• It makes no difference to a process as to on what machine it runs, except for its speed of 
execution and communication. Processes that deal directly with devices are an exception 
to this rule. 

• Policy decisions, such as on which machine to run a new process, are made outside the 
kernel and carried out by utility processes. 

• Resources attached to any computer system (node) may be used by any applications run-
ning under different computer systems (nodes). 

• The OS services as provided should enable users or their subcomputations located on dif-
ferent nodes to communicate reliably at ease. 

• Utility processes are also used for accessing fles and performing I/O. Services are there-
fore represented by open ports to these utility processes. 

• There should be no hindrance in adding new subsystems (incremental growth) to a mul-
ticomputer system and that too without hampering existing subsystems in anyway. This 
will simply make the cost of enhancing the capability of a multicomputer system to be 
straightaway proportional to the additional capability desired. 

• A multicomputer system should be reliable, which means that it should provide availabil-
ity, that is, continuity of services, despite faults and failures. When one machine fails, the 
performance of the entire operating system is simply degraded, and only the work that was 
underway on the failed machine is actually lost. Suitable redundancies in resources, exist-
ing networks, and offered OS services can be utilized to ensure that nothing at all is lost. 

In fact, many of the features and issues required to be included in the design of a multicomputer 
operating system are equally needed for any distributed system. However, the main difference 
between multicomputer operating systems and distributed systems is that the former generally 
assume that the underlying hardware is homogeneous and is to be fully controlled. On the other 
hand, one important feature of a distributed operating system is migration of processes from one 
machine to another to improve the balance of load and to shorten communication paths. Migration 
requires a mechanism to gather load information, a distributed policy that decides that a process 
should be moved, and a mechanism to effect the transfer. Migration has been demonstrated in a few 
UNIX-based DOSs, such as Locus and MOS, and in communication-based DOSs, like Demos/MP. 
Many distributed systems nowadays, however, are built on top of existing operating systems. 

9.11.3 MIDDLEWARE 

The defnition of a true distributed system is given in Section 9.8. Neither a NOS nor a DOS truly 
meets the criteria of a real distributed system. The reason is that a NOS never casts a view of a 
single coherent system, while a DOS is not aimed to handle a collection of independent comput-
ers (mostly heterogeneous). The obvious question now arises as to whether it would be possible to 
develop a distributed system that could have most of the merits of these two different worlds: the 
scalability and openness properties of NOSs and the transparency attributes of DOSs. Probably the 
most diffcult problem in designing such distributed systems is the need to support network trans-
parency. The solution to this problem can be obtained by injecting an additional layer of software on 
top of a NOS to essentially mask (hide) the heterogeneity of the collection of underlying platforms 
(such as networks, hardware, operating systems, and many other things) in order to offer a single 
coherent system view (network transparency) as well as to improve distribution transparency. Many 
contemporary modern operating systems are constructed following this idea by means of including 
an additional layer between applications and the NOS, thereby offering a lower-level of abstraction 



 

  

 

484 Operating Systems 

what is historically called middleware. This layer would eventually implement a convenient gen-
eral-purpose services to application programmers. The following discussion on this topic is almost 
along the same lines as that of modern approaches (Tanenbaum, 1995). 

NOSs often allow processes of distributed applications on different machines to communicate 
with each other by passing messages. In addition, several distributed applications, on the other 
hand, make use of interfaces to the local fle system that forms part of the underlying NOS. But the 
drawback of this approach is that distribution is hardly transparent, because the user has to specif-
cally mention the destination point at which this action will be carried out. In order to negotiate 
this drawback of NOS (i.e. lack of network transparency) to make it use as a distributed system, a 
solution is then to place an additional layer of software between applications and the NOS, thereby 
offering a higher level of abstraction. This layer is thus legitimately called middleware. Middleware 
is essentially a set of drivers, APIs, or other software that improves and makes ease of connectivity 
between a client application (that resides on top of it) and a server process (that exists below the level 
of middleware). It provides a uniform computational model for use by the programmers of servers 
as well as distributed applications. 

Local operating systems running on heterogeneous computers are totally dedicated to perform-
ing everything with regard to their own resource management as well as carrying out simple means 
of communication to connect other computers. Middleware never manages an individual node pres-
ent in the network system, but it provides a way to hide the heterogeneity of the underlying plat-
forms from the applications running on top of it. Many middleware systems, therefore, offer almost 
a complete collection of services and discourage using anything but only their interfaces to those 
services. Any attempt to bypassing the middleware layer and directly invoking the services of one 
of the underlying local operating systems is often considered an out–of–way shot. Consequently, 
there is a need to build a set of higher-level application-independent services to put into systems so 
that networked applications can be easily integrated into a single system. This requires defning a 

FIGURE 9.9 A representative block diagram of the general structure of a distributed system realized with 
the use of a middleware. 



Distributed Systems: An Introduction 485  

 
 

 

 

 

   

   
 
 
 

    

common standard for middleware solutions. At present, there are a number of such standards, and 
these available standards are generally not compatible with one another. Even worse, products that 
implement the same standards but were introduced by different vendors are rarely interoperable. 
Again to overcome this undesirable drawback, placement of upperware on top of this middleware 
is thus urgently needed. 

9.11.3.1 Different Middleware Models 
Various middleware models have been proposed that could make development and integration of 
distributed applications as simple as possible. Each model casts a specifc image of the upper level 
to the downward level (NOS services) so that the downward level appears to be a distributed one to 
the upper level. 

• A relatively simple model is treating everything, including I/O devices, such as mouse, 
keyboard, disk, network interface, and so on, as a fle along the lines of UNIX and more 
rigorously as Plan 9. Essentially, whether a fle is local or remote makes no difference. 
All are; that an application opens a fle, reads and writes bytes, and fnally closes it again. 
Because fles can be shared by many different processes, communication now reduces to 
simply accessing the same fle. 

• Another middleware model following a similar line as Plan 9, but less rigid, is centered 
around DFS. Such middleware supports distribution transparency only for traditional fles 
(i.e. fles that are used merely for storing data). For example, processes are often required 
to be started explicitly on specifc machines. This type of middleware is reasonably scal-
able, which makes it quite popular. 

• Middleware based on remote procedure calls (RPCs) and group communication sys-
tems such as lists (discussed later) was an important model in the early days. This model 
puts more emphasis on hiding network communication by allowing a process to call a pro-
cedure, the implementation of which is located on a remote machine. At the time of calling 
such a procedure, parameters are transparently shipped to the remote machine where the 
procedure is actually to be executed, and thereafter the results are sent back to the caller. It 
therefore appears to the caller as if the procedure call was executed locally, but it actually 
keeps the calling process transparent about the network communication that took place, 
except perhaps with a slight degradation in performance. 

• Another model based on object orientation is equally popular today. The success of RPC 
established the fact that if procedure calls could cross the machine boundaries, so could 
objects, and it would then be possible to invoke objects on remote machines in a transpar-
ent manner too. This led to the introduction of various middleware systems based on the 
notion what is called distributed objects. The essence of this concept is that each object 
implements an interface that hides all its internal details from its users. An interface essen-
tially consists of the methods that the object implements. The only thing that a process 
can see of an object is its interface. Object-oriented middleware products and standards 
are widely used. They include Common Object Request Broker (CORBA), Java Remote 
Method Invocation (RMI), Web Services, Microsoft’s Distributed Component Object 
Model (DCOM), and so on. CORBA provides remote object invocation, which allows an 
object in a program running on one computer to invoke a method of an object in a program 
running on another computer. Its implementation hides the fact that messages are passed 
over a network in order to send the invocation request and its reply. 

Distributed objects are often implemented by having (placing) each object itself located 
on a single machine and additionally making its interface available on many other machines. 
When a process (on any machine except the machine where the object is located) invokes 
a method, the interface implementation on the process’s machine simply transforms the 
method invocation into a message, which is ultimately sent (request) to the object. The 



 

 

 

  
 
 
 
 
 

 

  

 

486 Operating Systems 

object executes the requested method and sends (reply) back the result. The interface 
implementation on the process’s machine transforms the reply message into a return value, 
which is then handed over to the invoking process. Similar to RPC, here also the process 
may be kept completely in the dark about the network communication. 

• This approach was further refned to give rise to a model based on the concept of dis-
tributed documents, which is probably best illustrated by the World Wide Web. In the 
Web model, information is organized into documents, where each document resides on 
a machine somewhere in the world. The exact location of the document is transparent to 
the user. Documents contain links that refer to other documents. By following a link, the 
specifc document to which that link refers is fetched from its location and displayed on the 
user’s screen. The documents in question may be of any type, such as text, audio, or video, 
as well as all kinds of interactive graphic-based articles. 

9.11.3.2 Middleware Services to Application Systems 
Middleware can provide services (through APIs) for use by application programs. They are infra-
structural services that are tightly bound to the upper layer, that is, a distributed programming 
model (distributed applications) provided by the middleware. That is why the middleware systems 
developed based on any one of the models described or using any other suitable approaches custom-
arily provide a lot of specifc services mostly common to all of the models. The services in the top 
layer of Figure 9.9 are the domain-specifc services that utilize (are provided by) the middleware: its 
communication operations and its own services. Some of them are: 

• Communication facilities: These are offered at a higher level (middleware level) to 
hide the low-level message passing mechanism carried out at the level of computer 
networks in order to implement access transparency. The programming interface to 
the transport layer as offered by NOS is thus entirely replaced by other facilities which 
mostly depends to a large extent on the specifc model of distribution (such as RPCs 
and distributed objects, etc. as already discussed) the middleware offers to its users or 
applications. 

• Naming: Naming is one of the most common services provided by all middleware. This 
service (similar to directory look-up) enables entities to be looked up, identifed, accessed, 
and shared. Naming looks very simple but causes much diffculties with systems that are 
scalable. The reason is that as the system gradually expands, an effcient look-up for a spe-
cifc name in the relatively large-scale system is problematic, and that is why it is assumed 
that the location of the entity that is named is always kept fxed. This assumption is reli-
giously followed on the World Wide Web in which each and every document is named by 
means of an URL. A URL contains the name of a server where the document to which 
the URL refers is stored with an unique name. If the document is by any chance moved 
to another server, the URL will not be able to identify the document, and consequently it 
fails to work. 

• Persistence: Many middleware systems are found to include a special feature known 
as persistence, which means some facilities for storage. Persistence was usually offered 
through a DFS in its early days, but modern advanced middleware goes further to even 
make databases integrated into the systems or otherwise provides some other means for 
applications to connect to their needed databases. 

• Distributed transactions: Many modern middleware systems include a feature that offers 
facilities for distributed transactions, which operate on data that may be located on mul-
tiple machines spread across a geographical area. A notable property of a transaction is 
that it allows multiple read and write operations to be carried out atomically. Here, atomi-
city implies that the transaction either succeeds, so that all its write operations are legibly 
performed, or it fails, leaving all referenced data unaltered. 



Distributed Systems: An Introduction 487  

 

   

 

 

    

• Security: A middleware system is attached to geographically dispersed multiple com-
puter systems connected by NOSs. Although these NOSs usually extend their own security 
measures, but they are often not adequate that middleware can rely on them to protect the 
entire network domain. That is why all middleware systems virtually provide facilities to 
effect security from their own end by, at least, partly implementing it in their own layer. 
Scalability and openness are the primary requirements for a system to be distributed, and 
the middleware system thus injected must support them. When this need combined with 
security aspects, it turns out to be a grand challenge to middleware while attempting to 
implement a fairly secure distributed system. 

In spite of having tremendous strength, middleware does have several limitations. Many distributed 
applications rely entirely on the services provided by the underlying middleware to support their 
needs for communication and data sharing. For example, an application that is suitable for a cli-
ent–server model, such as a database of names and addresses, can rely on a model of middleware 
that provides only remote method invocation. Many other examples can also be cited in this regard. 
Although much has already been achieved in simplifying the programming of distributed systems 
through the development of middleware support, still then some aspects of the dependability of 
systems require support at the application level. In addition, some communication-related functions 
that are carried out at the lowest level can be completely and reliably implemented only with the 
knowledge and help of the application standing at the upper end point of the communication system. 
Therefore, providing that function additionally at the application level as a feature of the communi-
cation system itself is not always wise and sensible. Consequently, this runs counter to the view that 
all communication activities can be abstracted (hidden) away from the programming of applications 
by the introduction of appropriate middleware layers. 

9.12 COMPARISON BETWEEN VARIOUS TYPES OF 
OPERATING SYSTEMS 

Up until now, we have discussed various types of operating systems that run on varied hardware plat-
forms, essentially consisting of multiple CPUs, such as NOSs, DOSs, and distributed systems (mid-
dleware-based). Let us now look at a brief comparison between those operating systems with respect 
to some important attributes for a better understanding of them. This is summarized in Table 9.2. 

TABLE 9.2 
A comparison of salient features between multiprocessor operating systems, multicomputer 
operating systems, network operating systems and distributed systems (middleware-based.) 

Distributed Operating System Network Operating Middleware-based 
Item Multiproc. Multicomp. System Distributed System 

Same OS on all nodes Yes Yes No No 

Number of copies of OS 1 N N N 

Basis for Communication Shared Messages Files Model specifc 
memory 

Resource Management Global, Global, Per node Per node 
Central distributed 

Degree of Tranaparency Very high High Low High 

Scalability Very low Moderately Yes Varies 

Openness No (Closed) No (Closed) Open Open 

* N → Number of processing systems or processing nodes. 



 

 

 
 
 

 
 

 
 
 
 
 

 
 
 
 
 

   

 
 

 
 
 
 

 
 

488 Operating Systems 

One aspect with regard to the last row of the Table 9.2 needs to be explained. Regarding open-
ness, both NOSs and distributed systems have an edge over the others. One of the main reasons 
is that the different nodes of these systems running while under different operating systems, in 
general, support a standard communication protocol (such as TCP/IP) that makes interoperability 
much easy. But one practical aspect that goes against this desirable feature is that of using many 
different operating systems, which causes severe diffculties in porting applications. In fact, DOSs, 
in general, are never targeted to be open. Instead, they are often designed with more emphasis on 
performance optimization, which eventually led to the introduction of many proprietary solutions 
that ultimately stand in the way of an open system. 

9.13 DISTRIBUTED SYSTEMS: NETWORK OF COMPUTERS 

A distributed system is often built on a network of computers whose nodes (hosts, sites, 
end-systems) have their own local memory and may also have other hardware and software 
resources. These nodes often vary in size and function; size-wise: a node may be as small as 
a personal computer, a workstation, a minicomputer, a mainframe, or even a large supercom-
puter. Function-wise; a node may be a single-user personal computer, a general-purpose time-
sharing system, or a dedicated system (such as a database server, a fle server, or a print server), 
usually without the capability to handle interactive users. A computer network is essentially a 
communication system built on a network of computers that connects the nodes by communica-
tion links and software protocols in order to exchange data between two processes running on 
different nodes of the network. A distributed system, therefore, heavily relies on the underlying 
communication architecture of the network of computers for the communication of data and 
control information between the nodes present in the system. More precisely, a stripped-down 
set of communications functions is incorporated into the distributed system to effciently run 
the network of computers. Consequently, the performance and reliability of a distributed sys-
tem depend to a large extent on and are infuenced by the performance and reliability of the 
underlying computer network. Hence, a basic knowledge (not a comprehensive treatment) of 
computer networks is required to study them and to have a clear understanding of DOSs. That 
is why the following section deals only with the most important aspects of networking concepts 
and designs, with more emphasis on those aspects that are needed as a basis for designing and 
describing DOSs. 

9.13.1 NETWORKING: CONCEPTS AND ISSUES 

Networking takes account of both network hardware as well as network software. It consists of 
network technology, the design and implementation of computer networks, and also deals with 
all the software aspects, especially the communication policy and subsequent implementation of 
appropriate mechanisms between pairs of processes. The fundamental issues (factors) that are to be 
considered primarily in defning and describing networking are (summarized in Table 9.3 and given 
on the Support Material at www.routledge.com/9781032467238): 

• network type (LAN or WAN) 
• network topology (arrangement of nodes and the associated communication links present 

in a network) 
• networking technology (how the data will be transmitted over the network) 
• connection strategy (setup of data paths) 
• routing strategy (route of travel of information through the system) 
• communication (network) protocols (a hierarchy of protocols describing a set of rules, 

regulations, and conventions) 
• naming of processes (IP address, process-id) 
• network bandwidth and latency. 

http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 489  

 
 
 

 

 
 

 
 

 
 
 
 
 
 

  

 
 
 

 

 

 

 

Out of these, the frst three issues, network type, network topology, and networking technol-
ogy are concerned what is known as the design of networks; all the other issues mentioned (all 
other rows of Table 9.3 on the Support Material at www.routledge.com/9781032467238) above 
are concerned mostly with message communication and its related aspects. We will now discuss 
all the issues mentioned above (described in Table 9.3 in Support Material at www.routledge. 
com/9781032467238) in brief. 

Details on fundamental issues related to networking are given in Table 9.3 on the Support 
Material at www.routledge.com/9781032467238. 

9.13.1.1 Network Types: LAN versus WAN 
Networks are broadly classifed into two types: local-area networks (LANs) and wide-area networks 
(WANs), also referred to long-haul networks. There is another type of networks known as metro-
politan area networks (MANs). While a LAN is normally implemented to connect machines located 
within a limited geographic area (a few kilometers) for the exclusive use of a few users, a WAN spans 
greater distances (may extend several thousand kilometers), and a MAN usually covers a larger geo-
graphical area than a LAN. However, one of the main objectives of MANs is to interconnect LANs 
(as nodes), normally located in different areas. A few LANs are also sometimes connected to WANs, 
and nowadays it is a common practice to connect LANs and WANs to the internet. While LANs and 
MANs nearly satisfy the performance requirements of a distributed system (at least, they are not 
appreciably worse than a uniprocessor system executing a particular application) in many respects, 
WAN was not at all considered fully adequate to meet the needed level of performance of a distributed 
system. But, nowadays, with the use of modern high-bandwidth networks, such as broadband inte-
grated services digital network (B-ISDNs) and ATM technologies, WAN-based distributed systems 
equipped with these facilities are now fully adequate to support a wide range of distributed applica-
tions, like multimedia applications involving high-quality audio/video and bulk data transmissions. 

A LAN usually consists of microcomputers (PCs), workstations, and sometimes even minicom-
puters, along with other peripherals and often a fle server; these machines are usually connected 
to one another by high-speed cables, such as fber-optic cables, Cat-5 (Category 5), or similar other 
things for realizing high data transfer rates. A WAN, on the other hand, is usually a full-fedged 
computer connected to two or more networks and is sometimes equipped with special-purpose com-
munication processors (CPs) that facilitate communication of messages between distant hosts. WANs 
often use low-cost public lines to effectively keep the entire system within the affordable limit. 

More details on this topic, with a comparison given in Table 9.4, are provided on the Support 
Material at www.routledge.com/9781032467238. 

9.13.1.2 Network Topology 
Five types of commonly used topologies for constructing LAN networks are multi-access branch-
ing bus, star, ring, fully connected, and partially connected. Each has its own merits and drawbacks, 
and they mainly differ in speed of communication, cost of hardware to construct the network, and 
of course reliability (Chakraborty, 2020). A WAN of computers, in general, has no fxed regular 
network topology to interconnect component computers, since those computers are separated by 
large distances. Moreover, different communication media may be used for different links of a 
WAN, such as coaxial cables (telephone lines), satellite communication, etc. that mostly depends on 
at what distances the component computers are located. 

Moreover, the computers in a WAN are not connected directly to the communication media 
(channels) but are rather connected to hardware devices called packet-switching exchanges (PSEs), 
which are essentially special-purpose computers dedicated to the task of data communication across 
the network. In essence, the communication channels of the network interconnect the PSEs, and any 
computer in a WAN interacts only with the respective PSE of the WAN to which it is connected to 
exchange information with other computers in the WAN. 

The details of LAN and WAN topologies with fgures are given on the Support Material at www. 
routledge.com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

  
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 

 

  

 

490 Operating Systems 

9.13.1.3 Networking Technologies 
Out of many available networking technologies, we discuss here only ethernet and token ring 
technologies that are widely used for LAN and ATM technology, which is used for ISDN (WAN) 
networks. 

• Ethernet: This is the most widely used multi-access branching bus topology network using 
a circuit that consists of cables linked by repeaters (similar to Figure 9.18 on the Support 
Material at www.routledge.com/9781032467238) for building distributed systems, because it 
is relatively fast and economical. Information is transmitted from one station (node) to another 
by breaking it up into units (packets) called frames. Each frame contains the addresses of its 
source and destination and a data feld. Each station listens to the bus at all times, and it cop-
ies a frame in a buffer if the frame is meant for it; otherwise it simply ignores the frame. A 
bridge used to connect Ethernet LANs is essentially a computer that receives frames on one 
Ethernet and, depending on the destination addresses, reproduces them on another Ethernet 
to which it is connected. Every Ethernet hardware interface is always assigned by the manu-
facturer a unique address of a maximum of 48 bits authorized by the IEEE to uniquely 
identify a specifc Ethernet in the set of interconnected Ethernets forming the site. Since, the 
basic Ethernet topology is a bus-based one, only one connection can be in progress at any 
time using carrier sense multiple access with collision detection (CSMA/CD) technology 
(protocol). However, if many stations fnd no signal on the cable and start transmitting their 
frames almost at the same time, their frames would interfere with one another, causing what 
is called a collision, which can then be resolved using appropriate algorithms. A collision is 
normally detected by an increase in the size of the frame that must exceed a minimum of 512 
bits for 10- and 100-Mbit Ethernets and 4096 bits for gigabit Ethernets. 

• Token Rings: A network with a ring topology is a well-understood and feld-proven tech-
nology in which a collection of ring interfaces are connected by point-to-point links using 
a cheap twisted pair, coaxial cable, or fber-optics as the communication medium and have 
almost no wasted bandwidth when all sites are trying to send. Since a ring is fair and also 
has a known upper bound on channel access, that is why and for many other reasons, IBM 
chose the ring network as its LAN and adopted this technology as a basis for its distributed 
system products. The IEEE has also included token ring technology as the IEEE 802.5 
standard that eventually became another commonly used LAN technology for building 
distributed systems. A ring topology that uses the notion of a token, which is a special 
bit pattern containing specifc message, is called a token ring network, and the medium-
access control protocol used is the token ring protocol. Here, a single token of 3 bytes, 
which may either be busy or free, circulates continuously around the ring. When a station 
wants to transmit a frame, it is required to seize the free token and remove it from the ring 
and then attach its message to the token, changing its status to busy before transmitting. 
Therefore, a busy token always has a message packet attached to it, and the message can be 
of any length and need not be split into frames of a standard size. Since there exists only 
one token, only one station can transmit, and only one message can be in transit at any 
instant. However, ring interfaces have two operating modes: listen and transmit. In listen 
mode, every station that fnds a message checks whether the message is intended for it; if 
it is, the destination station copies the message and resets the status bit of the token to free. 
Operation of the token ring comes to a halt if the token is lost due to communication errors. 
One of the stations is responsible for recovering the system; it listens continuously to the 
traffc on the network to check for the presence of a token and then creates a new token if 
it fnds that the token has been lost. 

• Asynchronous Transfer Mode (ATM) Technology: ATM is a high-speed connection-
oriented switching and multiplexing technology that uses short, fxed-length packets called 
cells to transmit different types of traffc simultaneously. It is not synchronous (only tied 

http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 491  

 

 

 
   

 

 

 

 

 

 

 

 

to a master clock) in that information can be sent independently without having a common 
clock, as most long-distance telephone lines are. ATM has several salient features that put 
it at the forefront of networking technologies. Some of the most common are: 
• It provides data transmission speeds of 622 Mbps, 2.5 Gbps, and even more, which 

facilitates high bandwidth for distributed applications, such as those based on video-on-
demand technique, video–conferencing applications, and several other types of applica-
tions that often need to access remote databases. 

• ATM exploits the concept of virtual networking to allow traffc between two locations 
that permits the available bandwidth of a physical channel to be shared by multiple 
applications, thereby enabling them to simultaneously communicate at different rates 
over the same path between two end points. This facilitates the total available band-
width being dynamically distributed among a variety of user applications. 

• ATM uses both fundamental approaches to switching (circuit switching and packet 
switching) within a single integrated switching mechanism called cell switching, which 
is fexible enough to handle distributed applications of both types, such as those that 
generate a variable bit rate (VBR; usually data applications), which can tolerate delays 
as well as fuctuating throughput rates, and those that generate a constant bit rate (CBR; 
usually video, digitized voice applications) that requires guaranteed throughput rates 
and service levels. Moreover, digital switching of cells is relatively easy compared to 
using traditional multiplexing techniques in high-speed networks (gigabits per sec), 
especially using fber-optics. 

• ATM allows the use of only a single network to effciently transport a wide range of 
multimedia data comprising text, voice, video, broadcast television, and several other 
types. Normally, each type of these data requires the use of a separate network of dis-
tinct technology, and that to be simultaneously provided for effective transportation at 
a time. ATM, with one single network, replaces the simultaneous use of many different 
types of networks and their underlying technologies, thereby straightaway simplifying 
the design of communication networks as well as providing substantial savings in costs. 

• In ATM, it is possible to offer only a specifc portion of as big or as small chunk of the 
capacity of network bandwidth as is needed by a user, and the billing is also then be 
made only on the basis of per-cell usage (perhaps on a giga-cell basis). 

• ATM, in addition to point-to-point communication in which there is a single sender and 
single receiver, also supports a multicasting facility in which there is a single sender 
and multiple receivers. Such a facility is required for many collaborative distributed 
applications, such as transmitting broadcast, television (video conferencing) to many 
houses (users) at the same time. 

• ATM technology is equally applicable in both LAN and WAN environments with 
respect to having the same switching technology (cell switching) and same cell format. 

• The technology used in ATM is nicely scalable both upward and downward with respect 
to many parameters, especially data rates and bandwidths. 

• ATM technology, by virtue of its having enormous strength, eventually has been inter-
nationally standardized as the basis for B-ISDN. 

ATM, by virtue of having many attractive features (already mentioned) is now in a position of 
having created an immense impact on the design of future distributed systems; hence, it is often 
legitimately described as the computer networking paradigm of the future, in spite of accepting the 
fact that there still remain several problems with this technology for network designers and users 
that have yet to be solved. 

Brief details on ethernet, token rings, and ATM, with figures, are given on the Support 
Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238


 

 

 

 

 

 

492 Operating Systems 

9.13.1.4 Connection Strategies 
Connection between relevant processes is simply the communication (a data path) between them. 
A connection strategy, also sometimes called a switching policy and mechanism, actually deter-
mines when a connection should be set up between a pair of relevant processes and for how long. 
The switching technique used often infuences network latency and has an immense impact on the 
effciency of communication between a pair of processes as well as on the throughput of commu-
nication links. The three most commonly used schemes, circuit switching, packet switching, and 
message switching, are described here. The notation mk is used for a message and px (my) for the x-th 
packet of message my. 

• Circuit switching: A circuit is essentially a connection used exclusively for message pass-
ing by an intending pair of communicating processes, and the related physical circuit is set 
up during the circuit set–up phase, that is, before the frst message is transmitted, and is 
purged sometime after the last message has been delivered. Circuit set–up actions involve 
deciding the actual network path that messages will follow, reservation of the channels 
constituting the circuit, and other communication resources. Exclusive reservation of the 
channels ensures no need of any buffers between them. Each connection is given a unique 
id, and processes specify the connection id while sending and receiving messages. 

The main advantage of the circuit-switching technique is that once the circuit is established, the 
full capacity of the circuit is for exclusive use by the connected pair of hosts with almost no delay in 
transmission, and the time required to send a message can be estimated and guaranteed. However, 
the major drawbacks of this technique are that it requires additional overhead and delays during 
circuit setup/disconnection phases to tie–up/disconnect a set of communicating resources. Channel 
bandwidth may also be wasted if the channel capacities of the path forming the circuit are not uti-
lized effciently by the connected pair of hosts. This method is, therefore, justifed only if the overall 
message density in the system is low, but not for long continuous transmissions, especially, when 
medium-to-heavy traffc is expected between a pair of communicating hosts. It is also considered 
suitable in situations where transmissions require guaranteed maximum transmission delay. This 
technique is, therefore, favored particularly for transmission of voice and real-time data in distrib-
uted applications. 

• Packet switching: Here, a message is split into parts of a standard size called packets, and 
the channels are shared for transmitting packets of different sender–receiver pairs instead 
of using a dedicated communication path. For each individual packet, a connection is set 
up, and the channel is then occupied by a single packet of the message of a particular pair; 
the channel may then be used for transmitting either subsequent packets of the same mes-
sage of the same pair or a packet of some other message of a different pair. Moreover, pack-
ets of the same message may travel along different routes (connections) and may arrive out 
of sequence at the prescribed destination site. When packet switching is used, two kinds of 
overhead is primarily involved; frst, a packet must carry some identifcation in its header: 
the id of the message to which it belongs, a sequence number within the message, and ids 
of the sender and destination processes. Second, the packets that have arrived at the des-
tination site have to be properly reassembled so that the original message can be formed. 

Packet switching provides effcient usage of channels (links), because the communication band-
width of a channel is not monopolized by specifc pairs of processes but are shared to transmit 
several messages. Hence, all pairs of communicating processes are supposed to receive fair and 
unbiased service, which makes this technique attractive, particularly for interactive processes. This 
technique, as compared to circuit switching, is more appropriate in situations when small amounts 
of burst data are required to be transmitted. Furthermore, by virtue of having fxed-sized packets, 



Distributed Systems: An Introduction 493  

 

  
 
 
 
 
 

 
 

 

 

 

this approach reduces the cost of retransmission when an error occurs in transmission. In addition, 
the dynamic selection of the actual path to be taken by a packet ensures considerable reliability 
in the network, because alternate paths in the network could be used in transmission in the event 
of channel or PSE failure. However, several drawbacks of this method have also been observed. 
Apart from consuming time to set up the connection before transmission, this technique needs to 
use buffers to buffer each packet at every host or PSE and again to reassemble the packets at the 
destination site; the additional overhead thus incurred per packet is large and eventually makes this 
method ineffcient for transmitting large messages. Moreover, there is no guarantee as to how long 
it takes a message to travel from a source host to its destination site because the time to be taken 
for each packet depends on the route chosen for that packet, in addition to the volume of data to be 
transferred. 

• Message switching: This approach requires a connection to be established before exchange 
of every message between a pair of processes. Messages between the same pair of processes 
can travel over different paths available in the system. Message switching, similar to other 
switching strategies, incurs repetitive overhead due to consumption of a certain amount of 
time to set up every connection before the commencement of actual physical transmission. 
This may cause considerable delays, and that is why its use is justifed only if the message 
traffc between any pair of processes is relatively light. Since channels (links) and other com-
municating resources are not monopolized by any pair of specifc processes, other processes 
can use the same connection for their own communications. This facilitates better utilization 
of resources, and that can only be attained if there is intense traffc in the network. 

In order to alleviate the additional cost required in any form of connection strategy to set up the 
connection between the sender and receiver before the start of actual transmission, connection-
less protocols are often used in practice for transmitting messages or packets. In such a protocol, 
the originating node simply selects one of its neighboring nodes or PSE (see Figure 9.18 given in 
Support Material at www.routledge.com/9781032467238) and sends the message or the packet to it. 
If that node is not the destination node, it saves the message or the packet in its buffer and decides 
which of the neighbors to send it to, and so on until the message or packet reaches the ultimate des-
tination site. In this way, the message or the packet is frst stored in a buffer and is then forwarded 
to a selected neighboring host or PSE when the next channel becomes available and the neighboring 
host or PSE also has a similar available buffer. Here, the actual path taken by a message or packet 
to reach its fnal destination is dynamic because the path is established as the message or packet 
travels along. That is why this method is also sometimes called store-and-forward communication: 
because every message or packet is temporarily stored by each host or PSE along its route before it 
is forwarded to another host or PSE. 

Connection-less transmission can accommodate better traffc densities in communication chan-
nels (links) than message or packet switching, since a node can make the choice of the link when 
it is ready to send out a message or a packet. It is typically implemented by maintaining a table in 
each node (essentially a subset of an adjacency matrix for each node) that indicates which neighbor 
to send to in order to reach a specifc destination node along with the exchange of traffc information 
among the present nodes. As usual, each node should be equipped with a large buffer for the sake of 
temporary storing and later transmission of messages or packets at convenient times if its outgoing 
channels are busy or overloaded at any instant. 

Brief details on this topic with figures are given on the Support Material at www. 
routledge.com/9781032467238. 

9.13.1.5 Routing Strategies (Techniques) 
The routing strategy determines the actual path out of existing multiple paths between a pair of 
nodes to be used to transfer the message. To implement a specifc strategy, the corresponding routing 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

  

   

494 Operating Systems 

function (technique) is invoked whenever a connection is to be set up. The choice of routing strategy 
has an impact on the ability to adapt to changing traffc patterns in the system and consequently is 
crucial to the overall performance of the network. A routing strategy is said to be effcient if the 
underlying routing decision process is as fast as possible so that network latency must be minimal. 
A routing algorithm describes how routing decisions are to be specifed and how often they are to 
be modifed and is commonly said to be good if it could be easily implemented all in hardware. In 
LANs, sender–receiver interaction takes place on the communication channel; hence, there is no 
need to have any routing strategies, as there is no provision to choose the path to be taken for trans-
mitting the message. 

• Fixed (deterministic) routing: In this method, the entire path to be taken for communica-
tion between a pair of nodes is permanently specifed beforehand. Here, the source nodes 
or its PSE selects the entire path and also decides which of all other intermediate PSEs 
should be used to reach its destination. Each node is equipped with a fairly comprehensive 
table and other information about the network environment that indicates paths to all other 
nodes in the system at present. All routing information is, however, included along with the 
message. When processes running in these nodes intend to communicate, a connection is 
set up using this specifed path. A fxed routing strategy is simple and easy to implement. 
The routing decision process is somehow effcient because the intermediate PSEs, if any, 
need not make any routing decision. However, this strategy fails to provide fexibility when 
dealing with fuctuating traffc densities as well as not being able to negotiate the situation 
in the event of node faults or link failures, because the specifed path cannot be changed 
once the information (or packet) has left the source computer (or its PSE). Consequently, 
it makes poor use of network bandwidth, leading to low throughputs and also appreciable 
delays when a message (or packets) is blocked due to faults or failures of components, even 
when alternative paths are still available for its transmission. 

• Virtual circuit: This strategy specifes a path selected at the beginning of a transmis-
sion between a pair of processes and is used for all messages sent during the session. 
Information relating to traffc densities and other aspects of the network environment in 
the system are taken into consideration when deciding the best path for the session. Hence, 
this strategy can adapt to changing traffc patterns, rendering this method not susceptible 
to component failures. It therefore ensures better use of network bandwidth and thereby 
yields considerably improved throughput and enhanced response times. 

• Dynamic (adaptive) routing: This method selects a path whenever a message or a packet 
is to be sent, so different messages or even different packets of a message between a pair 
of processes may use different paths. This strategy is also known as adaptive routing, 
because it has a tendency to dynamically adapt to the continuously changing state of the 
network in normal situation, as well as changing its traffc patterns to respond more effec-
tively in the event of faulty nodes or congested/failed channels. Since this scheme can use 
alternative paths for packet transmission (packet switching in connection strategies), it 
makes more effcient use of network bandwidth, leading to better throughput and enhanced 
response times compared to when a virtual circuit is used. Its ability to adapt to alternative 
paths makes it resilient to failures, which is particularly important to large-scale expand-
ing architectures in which there is a high probability of facing faulty network components 
very often. Under this scheme, packets of a message may arrive out of order (as already 
described in the packet-switching approach) at the destination site; proper reassembling of 
packets thus needs to be carried out based on the sequence number appended already to 
each packet at the time of its transmission. 

Here, the policy used in the selection of a path may be either minimal or nonminimal. In 
the case of a minimal policy, the path being selected is one of the shortest paths between 
a source–destination pair of hosts, and therefore, each packet while visiting every channel 



Distributed Systems: An Introduction 495  

 

 
 

 

 
 
 
 
 

 

comes closer to the destination. In the nonminimal policy, a packet may have to follow a 
relatively long path in order to negotiate current network conditions. In the ARPANET, 
which was the progenitor of the internet, network information relating to traffc density 
and other associated aspects of the network environment along with every link in the sys-
tem was constantly exchanged between nodes to determine the current optimal path under 
prevailing condition for a given source–destination pair of nodes. 

• Hybrid routing: This method is essentially a combination of both static and dynamic 
routing methods in the sense that the source node or its PSE specifes only certain major 
intermediate PSEs (or nodes) of the entire path to be visited, and the subpath between any 
two of the specifed PSEs (or nodes) is to be decided by each specifed PSE (or node) that 
works as source along the subpath to select a suitable adjacent ordinary PSE (or node) to 
transmit to that PSE (node). This means that each major specifed PSE (or node) maintains 
all information about the status of all outgoing channels (i.e. channel availability) and the 
adjacent ordinary PSE (i.e. readiness of the PSE to receive) that are to be used while select-
ing the subpath for transmitting the packet. As compared to the static routing method, this 
method makes more effcient use of network bandwidth, leading to better throughput and 
enhanced response times. Its ability to adapt to alternative paths also makes it resilient to 
failures 

Brief details of this topic with respective fgures are given on the Support Material at www. 
routledge.com/9781032467238. 

9.13.1.6 Communication Protocols 
Communications between intending parties over a network are defned and implemented using 
certain agreements in terms of rules and conventions, commonly referred to as a protocol. While 
communication between parties is being implemented, several aspects need to be addressed, 
such as naming of sites in the system, effcient name resolution, ensuring communication eff-
ciency, and dealing with faults. As already mentioned, distributed systems (may be compris-
ing networks of computers) are fundamentally different from conventional computer networks. 
Therefore, the requirements of the communication protocols of these two types of systems 
are also different. For network systems, the basic goal of communication protocols is to allow 
remote computers to communicate with each other and permit users to access remote resources. 
On the other hand, the basic goal of communication protocols for distributed system is not only 
to allow users to access remote resources but to do so in a manner transparent to the users. 

Several accepted standards and well-implemented protocols for computer network systems are 
already available. For wide-area distributed systems, these protocols often take the form of multiple 
layers, each with its own goals and rules. However, well-defned protocols for distributed systems 
are still not mature, and as such no specifc standards covering essential aspects of distributed 
systems are yet available. A few standard network protocols are described here. The next section 
describes the essential requirements that are needed by protocols for distributed systems and then 
a few standard communication protocols that have been designed covering those issues. The col-
lection of protocols (of all layers) used in a particular network system is normally referred as the 
protocol suite, protocol family, or protocol stack. 

9.13.1.6.1 Network Protocols 
Computer networks are implemented using the concept of a series of layered protocols organized 
hierarchically, mainly to provide a separation of concerns. According to this concept, each layer 
contains certain protocols that addresses one or more aspects in communication and provides an 
interface to the layers of protocols above and below it in the hierarchy to interact in a physical sense 
by passing parameters, such as headers, trailers, and data parameters. The layers of protocols at 
higher levels in the hierarchy deal with semantic issues that relate to applications, while protocols 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 

 
 
 
 
 

 
 
 

  
 

 
 
 
 
 
 
 
 

496 Operating Systems 

at lower levels deal with data transmission-related aspects. The concept of layering the protocols in 
network design provides several advantages, dividing up the problem into manageable pieces, each 
of which can be handled independently of the others, and an entity using a protocol in a higher layer 
need not be aware of details at its lower layer. 

• The ISO/OSI Reference Model: The International Standards Organization (ISO) has 
developed the Open Systems Interconnection reference model (OSI model) for communica-
tion between entities in an open system, popularly known as ISO protocol, ISO protocol 
stack, or OSI model. This model identifes seven standard layers and defnes the jobs to be 
performed at each layer. It is considered as a guide and not a specifcation, since it essen-
tially provides a framework in which standards can be developed for the needed services 
and protocols at each layer. It is to be noted that adherence to the standard protocols is 
important for designing open distributed systems, because if standard protocols are used, 
separate software components of distributed systems can be developed independently on 
computers having different architectures and even while they run under different operating 
systems. 

Following the OSI model, the information to be transmitted originates at the sender’s end in an 
application that presents it to the application layer. This layer adds some control information to it 
in the form of a header feld and passes it to the next layer. The information then traverses through 
the presentation and session layers, each of which adds its own headers. The presentation layer 
performs change of data representation as needed as well as encryption/decryption. The session 
layer adds its own header and establishes a connection between the sender and receiver pro-
cesses. The transport layer splits the message into packets and hands over the packet to the next 
layer, the network layer, which determines the link via which each packet is to be transmitted 
and hands over a link-id along with a packet to the data link layer. The data link layer treats the 
packet simply as a string of bits, adds error detection and correction information to it, and hands 
it over to the physical layer for actual necessary transmission. At the other end when the message 
is received, the data link layer performs error detection and forms frames, the transport layer 
forms messages, and the presentation layer puts the data in the representation as desired by the 
application. All seven layers of the ISO protocol and their respective functions are briefy sum-
marized in Table 9.3. 

TABLE 9.3 
Layers of the ISO Protocol 

Layer Function 
1. Physical layer Provides various mechanisms for transmission of raw bit streams between two sites over a physical 

link. 

2. Data link layer Forms frames after organizing the bits thus received. Performs error detection/correction on 
created frames. Performs fow control of frames between two sites. 

3. Network layer Encapsulates frames into packets. Mainly performs routing and transmission fow control. 

4. Transport layer Forms outgoing packets. Assembles incoming packets. Performs error detection and, if required, 
retransmission. 

5. Session layer Establishes and terminates sessions for communications. If required, it also provides for restart and 
recovery. This layer is not required for connectionless communication. 

6. Presentation layer Represents message information implementing data semantics by performing change of 
representation, compression, and encryption/decryption. 

7. Application layer Provides services that directly support the end users of the network. The functionality implemented 
is application-specifc. 



Distributed Systems: An Introduction 497  

  
 
 

 
  

 

 
 
 
 

 

 

It is to be noted that in actual implementation, out of the seven layers described, the frst three 
layers are likely to be realized in hardware, the next two layers in the operating system, the pre-
sentation layer in library subroutines in the user’s address space, and the application layer in the 
user’s program. 

Brief details on this topic with fgures and an example are given on the Support Material at www. 
routledge.com/9781032467238. 

• TCP/IP Protocol: The transmission control protocol/internet protocol (TCP/IP) reference 
model is a protocol suite that consists of a collection of a large number of protocols which 
have been eventually issued as internet standards by the Internet Activities Board (IAB). 
There is as such no offcial model of TCP/IP. However, based on the protocol norms and stan-
dards that have already been developed, it is possible to organize the communication tasks 
that TCP/IP performs into four relatively independent layers, so this model has fewer layers 
than the ISO protocol; hence, it is more effcient and equally complex to implement. Figure 
9.10(a) shows details of its layers, comparing them to the ISO protocol, from bottom to top: 
• Network-access layer (host-to-network) 
• Internet layer 
• Transport layer (or host-to-host) 
• Application layer 

The lowest layer, the network-access layer or host-to-network layer, is essentially a combina-
tion of the physical and data-link layers of the ISO model [Figure 9.10(a)] that covers the whole 

FIGURE 9.10 A schematic block diagram of TCP/IP reference model; a) in comparison to OSI model, and 
b) also showing its protocols and different related networks used. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 

   

498 Operating Systems 

physical interface between a data transmission device (computers, workstations, etc.) and a trans-
mission medium or network. This layer specifes the nature of the signals, the characteristics of the 
transmission medium, the data rate, and similar other related aspects. This layer is also concerned 
with access to and routing data through a network for the exchange of data between two end sys-
tems (workstation, server, etc.) attached to the same network. The sending computer must provide 
the network with the address of the destination computer to enable the network to route the data to 
the targeted destination. The sending computer may invoke some specifc services (such as priority) 
that might be provided by the network. The specifc software used at this layer relies on the type 
of network to be used; different standards in this regard have been introduced for circuit switch-
ing/packet switching (e.g. frame relay), LANs (e.g. Ethernet), WANs (e.g. Satnet), and others. This 
is illustrated in Figure 9.10(b). Thus, it makes sense to separate those functions that are related to 
network access into a separate layer. By doing this, the remainder of the communication software 
above this network-access layer need not be at all concerned about the peculiarities and the charac-
teristics of the network to be used. Consequently, this higher-layer software can function in its own 
way regardless of the specifc network to which the hosts are attached. 

In cases where two devices intending to exchange data are attached to two different networks, 
some procedures are needed so that multiple interconnected networks can enable data to reach 
their ultimate destination. This function is provided by the internet layer that defnes an offcial 
packet format and protocol called Internet Protocol, which is used at this layer to provide the rout-
ing function across multiple networks [see Figure 9.10(b)]. The IP can run on top of any data-link 
protocol. This protocol can be implemented not only in end systems but often also in intermediate 
components on networks, such as routers. A router is essentially a processor that connects two 
networks and whose primary function is to relay data from one network to the other on a route from 
the source to the destination end system. 

Packet routing is clearly the major issue here, as is to avoid congestion. In most situations, pack-
ets will require multiple hops (using one or more intermediate routers) to make the journey, but 
this is kept transparent to users. For these and other reasons, it is reasonable to say that the TCP/IP 
internet layer is quite similar in functionality to the OSI network layer. Figure 9.10(a) illustrates this 
correspondence. The message comes down to TCP from the upper layer with instructions to send it 
to a specifc location with the destination address (host name, port number). TCP hands the message 
down to IP with instructions to send it to a specifc location (host name). Note that IP need not be 
told the identity of the destination port; all it needs to know that the data are intended for a specifc 
host. IP hands the message down to network access layer (e.g. ARPANET) with instructions to send 
it to the respective router (the frst hop on the way to its destined location) present in the network. 
The IP performs data transmission between two hosts (host-to-host communication) on the internet. 
The address of the destination host is provided in the 32-bit IP address format. Protocols in the 
next higher layers provide communication between processes; each host assigns unique 16-bit port 
numbers to processes, and a sender process uses a destination process address, which is a pair (IP 
address, port number). The use of port numbers permits many processes within a host to use send 
and receive messages concurrently. Some well-known services, such as FTP, Telnet, SMTP, and 
HTTP, have been assigned standard port numbers authorized by the Internet Assigned Numbers 
Authority (IANA). IP is a connectionless, unreliable protocol; it does not give any guarantee that 
packets of a message will be delivered without error, only once (no duplication), and in the correct 
order (in sequence). 

The transport layer is placed just above the internet layer in the TCP/IP model [see Figure 
9.10(b)] and is designed to allow peer entities on the source and the destination hosts to carry on a 
conversation, the same as in the OSI transport layer. Two end-to-end protocols are defned. The frst 
one, TCP, is a connection-oriented reliable protocol. It employs a virtual circuit between two pro-
cesses that allows to transmitting a byte stream originating on one machine to be reliably delivered 
to any other machine in the internetworks. The second protocol [see Figure 9.10(b)] in this layer, 
UDP (User Datagram Protocol), is an unreliable, connectionless protocol for applications that do 



Distributed Systems: An Introduction 499  

 

 

 

      

 

not want TCP’s sequencing or fow control and wish to provide their own. It incurs low overhead 
compared to the TCP, because it does not need to set up and maintain a virtual circuit or ensure 
reliable delivery. UDP is employed in multimedia applications and in video conferencing, because 
the occasional loss of packets is not a correctness issue in these applications; it only results in poor 
picture quality. These applications, however, use their own fow and congestion control mechanisms 
by reducing the resolution of pictures and consequently lowering the picture quality if a sender, a 
receiver, or the network is overloaded. 

On top of the transport layer, the topmost layer in the TCP/IP model is the application layer 
that corresponds to layers 5–7 in the ISO model. This is depicted in Figure 9.10(a). This layer essen-
tially contains the logic needed to support the various user applications. For each different type of 
application, such as fle transfer, a separate module is needed that is specifc to that application. 
Therefore, this layer should be equipped with all the higher-level protocols. The protocols used in 
this layer in the early days included virtual terminals (TELNET), fle transfer (FTP), and electronic 
mail (SMTP), as shown in Figure 9.10(b). Many other protocols have been added to these over the 
years, such as the DNS for mapping host names onto their network addresses; HTTP, the protocol 
used for fetching pages on the World Wide Web; and many others. 

More about the ISO/OSI model and TCP/IP protocol, with fgures, is given on the Support 
Material at www.routledge.com/9781032467238. 

9.13.1.7 Network Bandwidth and Latency 
When large numbers of computers are connected together and data are to be exchanged between 
the nodes, two aspects that defne, describe, and determine network performance are how quickly 
the data can reach the targeted destination node and at what rate the data can be delivered. Network 
bandwidth is defned as the rate at which data is transferred over a network. It encompasses numer-
ous factors and depends on several issues, such as capacities of network links, delays at routers, 
bridges, gateways, communicating processors, and many similar things that are involved in the 
architecture of networks of computers. Peak bandwidth is the theoretical maximum rate at which 
data can be transferred between two nodes but cannot be attained in practice due to several fac-
tors present in the network environment. Effective bandwidth, on the other hand, is the realized 
bandwidth that may be lower than the peak bandwidth due to various reasons, such as congestion 
caused by temporary overloads over links, data transmission errors that lead to time-outs and sub-
sequent needed retransmissions, structural resource imbalance, etc. Network latency is the elapsed 
time (interval) between sending a byte of data by a source node and its receipt at the destination node 
after completing its journey through the network. It is typically computed for the frst byte of data 
to be transferred. Several aspects contribute to network latency, mainly the processing time required 
by the layers of a network and delays caused by congestion in the network. 

9.13.2 COMMUNICATION PROTOCOLS FOR DISTRIBUTED SYSTEMS: ESSENTIAL REQUIREMENTS 

While the network protocols (as described) commonly used today are adequate for most conven-
tional network-based applications, such as electronic mail, fle transfer, remote login, and remote 
job entry, but they are not equally applicable to suit distributed environments consisting of distrib-
uted systems and distributed applications. The reasons behind, that distributed systems, by defni-
tion and principle (see Section 9.8 and Table 9.1) have to fulfll several specifc requirements that 
totally differs when compared to traditional network systems. Some of them are: 

• Transparency: Distributed systems usually support process migration facility for effcient 
utilization of resources. But communication (network) protocols meant for network systems 
use location-dependent process-ids (such as port addresses that are unique only within a 
node) that severely hinder the process migration implementation, because when a process 
migrates, its process-id changes. Therefore, these protocols cannot be used in distributed 

http://www.routledge.com/9781032467238


 

 

 

 

 

 

 

 

   

500 Operating Systems 

systems and, in fact, communication protocols for distributed systems must use location-
independent process-ids that will remain unchanged even when a process migrates from 
one location to another within the domain of distributed system. 

• System-wide communication: Communication protocols used in network systems are 
mainly employed to transport data between two nodes of a network and mostly serve the 
purpose of input/output activities. However, most communications in distributed system 
which consists of networks of computers, and particularly, when it is based on client–server 
model that makes use of a server in which a client issues a request to server to provide some 
specifc service for it by sending a message to the server and then keeps on waiting until 
the server receives it, and sends back a due acknowledgement. Therefore, communication 
protocols in distributed systems must have a simple, connectionless protocol equipped 
with features that support such request/response activities. 

• Group communication: Distributed systems often make use of group communication 
facilities to enable a sender to reliably send a message to n receivers. Many network sys-
tems although provide certain mechanisms to realize this group communication by means 
of multicast or even broadcast at the data-link layer, but their respective protocols often 
hide these potential facilities from applications. Moreover, when the broadcast mechanism 
is employed to send n point-to-point messages and subsequently to wait for n acknowl-
edgements, this badly wastes bandwidth and severely degrades the performance of the 
corresponding algorithm and makes it ineffcient. Communication protocols for distrib-
uted systems, therefore, must provide certain means to offer more fexible and relatively 
effcient group communication facilities so that a group address can be mapped on one 
or more data-link addresses, and the routing protocol can then use a data-link multicast 
address to send a message to all the receivers belonging to the group defned by the mul-
ticast address. 

• Network management: Management of computer networks often requires manual interven-
tion to update the network confguration (e.g. add/remove a node from a network, alloca-
tion of new address, etc.) to refect its current state of affairs. The communication protocol 
is expected to be able to automatically handle network management activities by changing 
the network confguration dynamically as and when needed to refect its present state. 

• Network security: Security in a network environment is a burning problem, and network 
security is a vital aspect that often uses encryption mechanisms to ensure protection of 
message data from any types of threat as far as possible when the data traverses across a 
network. Encryption methods although are expensive to use, but it is also true that all com-
munication channels and nodes do not always face a threat for a particular user and hence 
as such have no need of any encryption. Thus, encryption is needed only when there is a 
possibility of a challenge of threat on a critical message while in transit from its source 
node to the destination node through an untrustworthy channel/node. Hence, a communi-
cation protocol is particularly required that would provide a fexible and effcient mecha-
nism in which a message is encrypted if and only if the path it uses across the network 
during its journey is not trusted and is critically at the face of any possible attack. 

• Scalability: The communication protocol for distributed systems must not be thwarted 
but equally provide effcient communication in both LAN and WAN environments, even 
when they are well extended to cover a larger domain. In addition, a single communication 
protocol must be workable as far as possible on both types of networks (LAN and WAN). 

9.13.3 STANDARD COMMUNICATION PROTOCOLS 

Several communication protocols have been designed; two of them, versatile message transport 
protocol (VMTP) and fast local internet protocol (FLIP), to address many of the requirements (as 
mentioned) that a distributed system needs, along with a target of achieving higher throughput and/ 



Distributed Systems: An Introduction 501  

  

 

 

or quick response. VMTP is designed to provide group communication facilities and implements 
a secure and effcient client–server-based protocol (Cheriton and Williamson, 1989). FLIP, on the 
other hand, provides transparency, effcient client–server-based communication, group communica-
tion, security, and easy network management (Kaashoek et al., 1993). 

• VMTP: VMTP is essentially a connectionless transport protocol designed mainly for dis-
tributed operating systems based on the concept of a message transaction with special fea-
tures to support request/response activity and was used in V-System. A client here when 
sends a message to one or more servers followed by zero or more response messages sent 
back to the client by the servers, it is mostly a single request message and a single response 
message involved in such message transactions, but at most one per server. 

Transparency and group communication facilities are provided by using 64-bit identifers (a 
portion of which is reserved for group identifcation entities) to entities that are unique, stable, and 
particularly independent of host addresses, and these enable entities to be migrated and handled 
independently of network layer addressing. A group management protocol is provided for the pur-
pose of creating new groups, adding new members, or deleting members from an existing group, as 
are various types of querying and related information about existing groups. 

VMTP provides a selective retransmission mechanism to yield better performance. The packets 
of a message are divided into packet groups containing a maximum of 16 kilobytes of segment data. 
When a packet group is sent and is received, the receiver creates some form of information that indi-
cates which segment blocks are still outstanding. An acknowledgement is sent accordingly from the 
receiver to the sender, and the acknowledgement packet contains information that helps the sender 
to selectively retransmit only the missing segment blocks of the packet group. 

Many other important and interesting features are present in VMTP. In fact, VMTP provides 
a rich collection of optional facilities that extend its functionality and improved performance in 
diverse spectrum of situations. One important feature which is useful in real-time communication is 
the facility of conditional message delivery. A client in a time-critical situation can use this facility 
to ensure that its message is delivered only if the server is able to process it immediately or within a 
specifed short duration of time. Such optional facilities that sometimes need to be included should 
be designed carefully so that their inclusions will only offer critical extensions to the existing basic 
facilities without degrading the performance, especially while executing the majority of common 
cases which happen very often. 

• Fast Local Internet Protocol (FLIP): FLIP was developed for DOSs and is used in the 
Amoeba distributed system. It is a connectionless protocol that includes several salient 
features, such as transparency, effcient client–server-based communication facility, group 
communication facility, security, and easy network management. A brief overview of FLIP 
is given here describing some of its important features, and further details of this protocol 
can be found in Kaashoek et al. (1993). 

Transparency is provided by FLIP using location-independent 64-bit identifers to entities which are 
also called network service access points (NSAPs). Sites on an internetwork can have more than one 
NSAP, typically one or more for each entity (e.g. process). Each site is connected to the internetwork 
by a FLIP box that either can be a software layer in the operating system of the corresponding site or 
can be run on a separate communication processor (CP). Each FLIP box maintains a routing table, 
basically a dynamic hint cache that maps NSAP addresses to data-link addresses. Special primitives 
are provided to dynamically register and unregister NSAP addresses into the routing table of a FLIP 
box. An entity can register more than one address in a FLIP box (e.g. its own address to receive 
messages directed to the entity itself and the null address to receive broadcast messages). FLIP uses 
a one-way mapping between the private address used to register an entity and the public address 



 

 

 

 

 

502 Operating Systems 

used to advertise the entity. A one-way encryption function is used to ensure that one cannot deduce 
the private address from the public address. Therefore, entities that know the (public) address of an 
NSAP (because they have communicated with it) are not able to receive messages on that address, 
because they do not know the corresponding private address. 

A FLIP message may be of any size up to 232 – 1 bytes that is transmitted unreliably between 
NSAPs. If a message is too large for a particular network, it is fragmented into smaller chunks, 
called fragments. A fragment typically fts in a single network packet. The basic function of FLIP is 
to route an arbitrary-length message from the source NSAP to the destination NSAP. The policy on 
which a specifc path is selected for routing is based on the information stored in the routing tables 
of each FLIP box about the networks to which it is connected. Two key parameters used for this 
purpose are the network weight and a security list. A low network weight means that the network is 
currently suitable for a message to be forwarded. The network weight can be determined based on, 
for example, physical properties of the network, such as bandwidth and delay (due to congestion). 
The security bit, on the other hand, indicates whether sensitive data can be sent unencrypted over 
the network. 

Both point-to-point and group communication facilities are provided by FLIP for sending a mes-
sage to a public address. In fact, FLIP provides three types of system calls, fip_unicast, fip_multi-
cast, and fip_broadcast, The group communication protocols heavily use fip_multicast. This has 
the advantage that a group of n processes can be addressed using one FLIP address, even if they are 
located on multiple networks. 

FLIP implements security without making any encryption of messages by itself. It provides two 
mechanisms to impose security when the messages are delivered. In the frst mechanism, a sender 
can mark its message sensitive by using the security bit. Such messages are routed only over trusted 
networks. The second mechanism is that messages while routed over an untrusted network by a 
FLIP are marked unsafe by setting the unsafe bit. When the receiver receives the message, it can tell 
the sender by checking the unsafe bit whether there is any safe route between them. If a safe route 
exists, the sender then tries to send the sensitive messages in unencrypted form but with the secu-
rity bit set. If no more trusted path is available for the message at any point in time during routing 
(which can only happen due to changes in network confguration), it is returned to the sender with 
the unreachable bit set. If this happens, the sender encrypts the message and retransmits it with 
security bit cleared. Therefore, message encryption is done only when it is required and that too by 
the sender, and not by FLIP. 

FLIP handles network management easily because dynamic changes in network confguration 
are taken care of automatically. Human intervention is seldom used in this regard, and even if it is, 
it is required only to declare specifcally which networks are trusted and which are not. The sys-
tem administrator exactly performs this task while working on FLIP and should precisely declare 
whether network interfaces are to be trusted, since FLIP on its own cannot determine which inter-
face is trustworthy. 

One of the shortcomings of FLIP is that it is unable to provide full-fedged support in wide-area 
networking. Although FLIP has been successfully implemented in smaller WAN environments, but 
it is not adequate and suitable enough to be used as a standard WAN communication protocol in a 
moderately large WAN environment. The root of this shortcoming might be due to one of the rea-
sons that the designers of FLIP were mostly inclined to trade it more functionally scalable, and also 
assumed that wide–area communication should be mainly carried out at a relatively higher layers, 
and not at network layer in which FLIP belongs. 

9.13.4 SOCKETS 

Sockets and socket programming were developed in the 1980s in the Berkley UNIX environment. 
A socket is essentially a mechanism that enables communication between a client and server pro-
cess and may be either connection-oriented or connectionless. A socket is simply one end of a 



Distributed Systems: An Introduction 503  

 

 

 
 
 

 

 

 
 

    

  

communication path. A client socket in one computer uses an address to call a server socket on 
another computer. Once the proper sockets are engaged, the two computers can then exchange 
data. Sockets can be used for interprocess communication within the UNIX system domain and 
in the internet domain. Typically, computers with server sockets keep a TCP or UDP port open for 
unscheduled incoming calls. The client typically determines the socket identifcation of the targeted 
server by fnding it in a domain name system (DNS) database. Once a connection is made, the server 
switches the dialogue to a different available port number to free up the main port number in order 
to allow more additional incoming calls to enter. 

Sockets can be used in internet applications, such as TELNET and remote login (rlogin) in which 
all the details are kept hidden from the user. However, sockets can be constructed from within a 
program (such as in C or Java), thereby enabling the designer and programmer to easily include 
semantics of networking functions that consequently permit unrelated processes on different hosts 
to communicate with one another. 

Sockets while used in a connection-based mode of operation, the processes using the sockets are 
either clients or servers. Both client and server processes create a socket. These two sockets are then 
connected to set up a communication path that can be used to send and receive messages. The nam-
ing issue is handled in the following way: The server binds its socket to an address that is valid in 
the domain in which the socket will be used. This address is now widely advertised in the domain. A 
client process uses this address to perform a connect between its socket and that of the server. This 
approach, however, avoids the necessary use of process-ids in communication. 

The socket mechanism provides suffcient fexibility so that processes using it can choose a mode 
of operation that best suits the intended use. For applications in which low overhead is important, 
the communicating process can use a connectionless mode of operation using datagrams. But for 
applications that critically demand reliability, processes can use a connection-based mode of opera-
tion using a virtual circuit for guaranteed reliable data delivery. The Berkley Sockets Interface is the 
de facto standard API for developing networking applications which run over a wide range of dif-
ferent operating systems. The sockets API provides generic access to interprocess communications 
services. Windows sockets (WinSock) is, however, essentially based on Berkley specifcations. 

A socket used to defne an application program interface (API) is a generic communication 
interface for writing programs that use TCP or UDP. In practice, when used as an API, a socket is 
identifed by the triple: 

(protocol, local-address, local-process) 

The local-address is an IP address, and the local-process is a port number. Because the port num-
bers are unique within a system, the port number implies the protocol (TCP or UDP). However, for 
clarity and implementation, sockets used for an API include the protocol as well as the IP address 
and port number in defning a unique socket. 

Corresponding to the two protocols (TCP and UDP), the Sockets API mainly recognizes two 
types of sockets: stream sockets and datagram sockets. Stream sockets make use of TCP, which 
provides a connection-based, reliable, guaranteed data transfer of all blocks of data sent between a 
pair of sockets for delivery that arrive in the same order that they were sent. Datagram sockets make 
use of UDP, which provides connectionless features; therefore, use of these sockets never gives 
guaranteed delivery of data, nor is the order of data necessarily preserved. There is also a third type 
of socket provided by the Sockets API known as raw sockets, which allows direct access to lower 
layer protocols, such as, IP. 

For stream communication, the functions send() and recv() are used to send and receive data 
over the connection identifed by the s parameter. In the recv() call, the buf parameter (similar to 
message in send call) points to the buffer for storing incoming data, with an upper limit on the num-
ber of bytes set by the message-length parameter. The close() and shutdown() calls are described on 
the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238


 

   
 

    

 
 

 

 
 
 
 

 
 
 
 

 
  

504 Operating Systems 

For datagram communication, the function sendto( ) and recvfrom( ) are used. The sendto 
( ) includes all the parameters of the send( ) call plus a specifcation of the destination address (IP 
address and port). Similarly, the recvfrom( ) call includes an address parameter, which is flled in 
when data are received. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

9.13.5 A TRADITIONAL DISTRIBUTED OPERATING SYSTEM: AMOEBA 

Amoeba originated at Vrije University, Amsterdam, and was introduced in the early 1980s is a 
DOS, and Amoeba 1.0 was introduced by 1983. The system evolved for several years with the intro-
duction of many different enhanced versions (such as Amoeba 5.0), maintaining downward compat-
ibility. Its primary objective is to build a transparent distributed OS using multiple machines spread 
over the network with the look and favor of a standard time-sharing OS like UNIX. Another goal 
is to provide a testbed for distributed and parallel programming. The hardware design of Amoeba is 
somewhat different from what most system organizations presently follow. The system architecture 
of Amoeba has three main components: 

• X-terminals, 
• A processor pool consisting of a very large number of CPUs, each with tens of megabytes 

of memory, and 
• Servers such as fle and print servers. 

The X-terminal is a user station consisting of a keyboard, a mouse, and a bit-mapped terminal con-
nected to a computer. The nodes in the system use the processor pool model, which has the features 
described in Section 9.5. The object concept is central to Amoeba, and the objects supported this way 
are fles, directories, memory segments, screen windows, processors, disks, and tape drives. This 
uniform interface to all objects provides generality and simplicity. Servers handle all objects in the 
system; both hardware and software, and objects are named, protected, and managed by capabilities. 

An important feature of Amoeba, unlike most other distributed systems, is that it has no concept 
of a “home machine”. The entire system is present to a user as a whole. Machines do not have own-
ers. The initial shell starts up at login and runs on some arbitrary machine (processor), but as com-
mands are started, in general, they do not run on the same machine as the shell. Instead, the system 
automatically looks for the most lightly loaded machine to run each new command on. Similarly, 
pool processors are not “owned” by any one user. When a user submits a job, the OS dynamically 
allocates one or more processors from the pool instead of allowing it to use any specifc workstation. 
Thus, a user’s computation is spread across the hosts in a system that totally disregards any machine 
boundaries. This is possible since all the resources in the system are tightly integrated. When the 
job is completed, the allocated processors are subsequently released and go back to the pool. In the 
event of shortage in the availability of processors, individual processors may be timeshared. 

The Amoeba operating system model consists of two basic pieces: one piece is a microkernel, 
which runs on every processor of the pool processors and servers, and the other piece is a collec-
tion of servers that provide most of the traditional operating system functionality. The microkernel 
performs four primary functions: 

• Managing processes and threads 
• Providing low-level memory management support 
• Supporting communication 
• Handling low-level I/O 

Like most other operating systems, Amoeba supports the concept of a process. In addition, it also 
supports multiple threads of control within a single address space. The thread concept is extended 

http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 505  

 
 
 
 

 

 
 

 

   

 

up to the kernel level. A process with one thread is essentially the same as a process in UNIX. Such 
a process has a single address space, a set of registers, a program counter, and a stack. Multiple 
threads might be used in a fle server in which every incoming request is assigned to a separate 
thread to work on; each such thread can be absolutely sequential, even if it has to block waiting 
for I/O. 

Amoeba provides two communication protocols. One protocol supports the client–server com-
munication model through RPC, while the other protocol provides group communication by using 
either multicasting or reliable broadcasting. For actual message transmission, both these protocols 
use an underlying Internet protocol called FLIP, already discussed in Section 9.13.3, which is a 
network layer protocol in the ISO protocol stack. 

Many functions performed by traditional kernels are implemented through servers that run on 
top of the kernel. Thus, actions like booting, process creation, and process scheduling are per-
formed by servers. The fle system is also implemented as a fle server. This approach reduces the 
size of the microkernel and makes it suitable for a wide range of computer systems from servers to 
pool processors. 

As usual, Amoeba also has a fle system. However, unlike most other operating systems, the 
choice of the fle system is not dictated by the operating system. The fle system runs as a collec-
tion of server processes. Users who do not like the standard ones are free to write their own. The 
kernel does not know, and really doesn’t care or want to know, which one is the “real” fle system. 
In fact, different users, if desired, may use different incompatible fle systems at the same time. The 
standard fle system consists of three servers. The bullet server handles fle storage, the directory 
server takes care of fle naming and directory management, and the replication server handles fle 
replication. The fle system has been split into three components to achieve increased fexibility, and 
make each of the servers straightforward to implement.

 Amoeba supports various other servers. One such is the boot server, which is used to provide a 
degree of fault tolerance to Amoeba by checking that all servers that are supposed to be running are 
in fact really running and taking corrective action when they are not. A server capable to survive 
crashes can be included in the boot server’s confguration fle. Each entry tells how often the boot 
server should poll and how it should poll. As long as the server responds correctly, the boot server 
has nothing to do and takes no further action. Similarly, although Amoeba uses the FLIP protocol 
internally to achieve high performance, sometimes it is necessary to speak CP/IP, for example, to 
communicate with X-terminals, to send and receive mail to non-Amoeba machines, and to interact 
with other Amoeba systems via the Internet. To enable Amoeba to do such so many other things, a 
TCP/IP server has been thus provided. Apart from these servers, Amoeba includes a disk server 
(used by the directory server for storing its arrays of capability pairs), various other I/O servers, a 
time–of–day server, and a random number server (useful for generating port, capabilities, and 
FLIP addresses). The so-called Swiss Army Knife server deals with many activities that have to be 
done later by starting up processes at a specifed time in the future. Mail severs deal with incoming 
and outgoing electronic mail. 

9.13.6 INTERNETWORKING: CONCEPTS AND ISSUES 

Distributed systems realized by multicomputer organization using any of the models already 
described (see Section 9.11.1.1) and structured either in the form of a network (cluster) of computers 
or a network of computer networks must exhibit two essential features, extensibility and openness, 
that require integration of several networks. When two or more networks (each network, in turn, 
has a cluster of interconnected computers) with the same or different network standards are inter-
connected to form a single network, this resulting single network is called an internetwork, and the 
method to realize the same is called internetworking. Internetworks made it possible for computers 
to communicate with one another when they are attached to different networks. Apart from a tradi-
tional WAN, internetworks of multiple LANs that form a WAN can be used as a distributed system. 



 

 

 

  

 

506 Operating Systems 

The collection of networks constituting an internetwork often includes heterogeneous networks 
composed of several network segments that may have different networking standards (essentially 
topology and protocol) and may have been supplied from different vendors. The objective of inter-
networking is to allow these relatively unrelated networks to evolve into a single working system 
hiding all the peculiarities of the underlying physical networks so that the resulting internetwork 
can function as a single coordinated unit with a single unifed addressing scheme that enables pack-
ets to be addressed to any host connected to any network segment (subnet). A suitable protocol 
is then needed to defne the format of internetwork packets and give rules according to which 
they will be handled. Several internetworking issues arise while interconnecting multiple networks 
(often heterogeneous) to form a single network, and these issues are relatively easier to handle if 
the network segments of the resulting internetwork are designed using widely accepted standards 
instead of proprietary topologies and protocols. Some of the important interconnection issues when 
multiple networks are hooked up to realize an internetwork are given here in brief. 

9.13.6.1 Interconnection Technologies 
Interconnection of similar networks is relatively easy. But when two dissimilar networks with dif-
ferent topologies and protocols are interconnected, it requires an internetworking scheme to develop 
that will ultimately provide some common points of reference for the two dissimilar networks to 
communicate with each other. The point of reference might be a high-level protocol common to the 
two networks, a device that permits interconnection of different topologies with different physi-
cal and electrical characteristics, or a protocol that allows operating environment differences to 
be ignored. The most commonly used approach in this regard is to make use of common high-
level protocols for moving data between common layers on a communication model, such as OSI 
and TCP/IP suites. Internetworking tools, such as; bridges, routers, brouters, and gateways make 
extensive use of this approach while interconnecting similar or dissimilar networks to form a single 
network system. 

• Bridges: Bridges essentially operate at the bottom two layers of the ISO model (data-link 
and physical) and hence can be used to connect networks that use the same communica-
tion protocols above the data-link layer, but may not have the same protocols at the data-
link and physical layers. In other words, bridges feature high-level protocol transparency. 
Bridges, for example, may be used to connect two networks, one of which uses fber-optics 
communication medium and the other of which uses coaxial cables, but both networks 
must use the same high-level protocols, such as TCP/IP, for example. The use of similar 
protocols at higher levels implies that bridges do not intervene in the activities carried out 
by those protocols in different segments. This means that bridges do not modify either the 
format or the contents of the frames when they transfer them from one network segment 
to another. In fact, they simply copy the frames, and while transferring data between two 
network segments, they can even use a third segment in the middle of the two that can-
not understand the data passing through it. In this case, the third intermediate segment 
simply serves the purpose of only routing, Bridges are also useful in network partitioning. 
When network traffc becomes excessive, the performance of a network segment starts to 
degrade; the network segment can be broken into two segments, and a bridge is used in 
between to interconnect them. 

• Routers: Routers operate at the network layer of the OSI model and use the bottom three 
layers of the OSI model. They are usually employed to interconnect those networks that 
use the same high-level protocols above the network layer. It is to be noted that protocols 
used in data-link and physical layers are transparent to routers. Consequently, if two net-
work segments use different protocols at these two layers, a bridge must be used to con-
nect them. While bridges are aware of the ultimate destination of data, routers only know 
which is the next router for the data to be transferred across the network. However, routers 



Distributed Systems: An Introduction 507  

 

 

 

 
 
 
 

 

are more intelligent than bridges in the sense that a router is essentially a processor that 
not only copies data from one network segment to another, but whose primary function is 
to relay the data from the source to the destination system on a best-possible route being 
chosen by using information in a routing table. A router, therefore, is equipped with a fow 
control mechanism that negotiates traffc congestion by making decisions to direct the traf-
fc to a suitable less-congested alternative path. 

• Brouters: To make the internetwork more versatile; network segments, apart from using 
routers, often use bridges to accommodate multi-protocols so that different protocols can 
be used at the data-link and physical layers. This requirement eventually resulted in a 
design of a kind of devices that are a hybrid of bridges and routers called brouters. These 
devices provide many of the distinct advantages of both bridges and routers. Although 
these devices are complex in design, expensive to afford, and diffcult to install, but are 
most useful for very complex heterogeneous internetworks in which the network segments 
use the same high-level communication protocol to yield the best possible internetworking 
solution in some situations. 

• Gateways: Gateways operate at the top three layers of the OSI model. They are mainly 
used for interconnecting dissimilar networks that are built on totally different communi-
cation architecture (both hardware- and software-wise) and use different communication 
protocols. For example, a gateway may be used to interconnect two incompatible networks, 
one of which may use the TCP/IP suite and the other of which may use IBM’s SNA (System 
Network Architecture) protocol suite. Since gateways are used to interconnect networks 
using dissimilar protocols, one of the major responsibilities of gateways is protocol transla-
tion and necessary conversion, apart from also occasionally performing a routing function. 

9.13.6.2 Communication Media 
The communication medium to be selected to connect two networks in order to implement an inter-
network is a major issue, since the throughput and the effciency of the internetwork heavily rely 
on it. Such selection again depends mostly on the locations of the two networks and the throughput 
wanted. 

To interconnect LANs that are located within a close vicinity (say, within a circle of about 100 
meters diameter), the Fiber Distributed Data Interface (FDDI) specifed by ANSI operates at a 
speed of 100 Mbps may be selected as an ideal high-bandwidth communication medium. 

If the two networks are located a little far from each other (say, in nearby cities), they may then 
be connected by either leased or dedicated telephone lines, depending on whether the traffc load is 
low or heavy as well as whether the information being sent is ordinary or sensitive. 

If the two networks are located very far from each other (say, in different countries), then they 
may be interconnected using communication channels of public data networks, such as telephone 
lines or communication satellites, but these channels while being used may give rise to inconsistent 
traffc and also create issues related to system reliability that eventually infuence the data through-
put between the two networks. Security issues are also a signifcant problem in this case that can be 
otherwise negotiated using additional techniques. Improvement to some extent in data throughput 
may, however, be obtained by using a suitable method of traffc routing, thereby directing the traffc 
to a suitable less-congested alternative path at the time of heavy congestion on the scheduled path. 

9.13.6.3 Network Management 
Management of an internetwork is more complex than management of a simple independent 
network of computers (such as a LAN) used as a distributed system. One of the main reasons is 
that several local problems become global problems when numerous LANs are interconnected 
to form an internetwork, and the management tools already available to handle simple indepen-
dent networks are either not suitable, inadequate, or not at all able to manage the internetwork. 



 

 
 
 

 
 
 
 

 

 

  

 

   

508 Operating Systems 

In addition, if the internetwork is heterogeneous in nature, which is usual, then building widely 
acceptable tools to manage an internetwork is equally diffcult to realize. However, several 
organizations, like the ISO, the Internet Engineering Task Force (IETF), the Open Software 
Foundation (OSF), and others are engaged in defning certain management standards for com-
munications networks that would be interoperable on multivendor networks. These standards 
are, however, developed based on several popular reference models and a few already-defned 
network management frameworks. Out of many, three notable standards eventually came 
out that can be used as network management tools: Simple Network Management Protocol 
(SNMP), Common Management Information Protocol (CMIP), and Distributed Management 
Environment (DME). 

• The SNMP (Shevenell, 1994; Janet, 1993) standard, introduced in the late 1980s, is essen-
tially a simple and low-cost client–server protocol to monitor and control networks that 
use the IP suite. SNMP-based tools have been developed by most of the vendors deal-
ing with network management element. SNMP version 2 uses IETF in order to make 
itself more speedy and secure and at the same time capable to handle manager–manager 
communication. 

• CMIP (Janet, 1993), developed by OSI (ISO/CCITT), is a network management stan-
dard to facilitate interoperability and true integration in which a large number of separate, 
isolated network management products and services offered by multi-vendors are pres-
ent. CMIP is essentially based on a manager-agent model that facilitates communication 
between managing systems. CMIP-based products are comparatively costly, more com-
plex, and require relatively more processing power to implement. That is why these prod-
ucts, in spite of having several nice features and providing richer functionality, have failed 
to attain the expected level of growth. 

• The DME from the OSF is a set of standards designed based on SNMP, CMIP, and other 
de facto standards and has been specifed for distributed network management products 
that provide a framework to realize a consistent network management scheme across a 
global multi-vendor distributed environment. Several products based on DME, as reported, 
are still in the process of enhancement and further development. 

9.14 DISTRIBUTED OPERATING SYSTEMS: 
WORKSTATION–SERVER MODEL 

A truly DOS exhibits distribution of resources and services that are fully transparent to the applica-
tion programs executing on different nodes (sites). File names are made global, and there is a single 
set of system primitives to access them regardless of their geographic location with respect to the 
requesting client. Likewise, the use of a uniform procedure call mechanism evades the syntactic 
differences between local and remote calls. As a result of these and the implementation of other 
techniques to achieve full distribution transparency, the entire networked system appears to its users 
as a single coherent computer system. All its devices and services are available to every application 
of authorized users. The derived operating system is now free to migrate resources, such as fles and 
processes, in order to optimize the system’s performance while negotiating demand, balancing of 
load, and variations in the availability of the components. 

The workstation–server model is typically a distributed system in which computing is essentially 
distributed. Users, applications, and resources are distributed in response to business requirements 
and linked by a single LAN or WAN or by an internet of networks. Architecturally, individual 
computers in the cluster may be workstations or multi-user systems, each running its own software 
to deal mostly with its own applications. When a user submits a program for execution, the system 
chooses a suitable computer to run it, usually one with an affnity to the requesting site. The system 
then locates the chosen site (node) and loads the executable program to run it. In essence, distributed 



Distributed Systems: An Introduction 509  

 

  

 

 
 

 

 

systems may enjoy and exploit most of the advantages that the workstation/server model usually 
offers. 

The operating system that supports multiple systems to act cooperatively often faces several 
requirements to fulfll that this architecture places on it. Those span across three basic dimen-
sions: hardware, control, and data. To satisfy these requirements, several issues and the related 
mechanisms to address them need to be included in the DOS at the time of its development. In the 
following section, we will discuss some of the most common issues and the related frequently used 
mechanisms that the distributed environment demands for smooth operation. 

9.14.1 NAMING 

Distributed operating systems manage a number of user-accessible entities, such as nodes, I/O 
devices, fles, processes, services, mailboxes, and so on. Each object is assigned a unique name and 
resides at some location. At the system level, resources are typically identifed by numeric tokens. 
Naming is essentially a lookup function, and its mechanism provides a means of mapping between 
the symbolic/user-given names and the low-level system identifers used mainly in operating-system 
calls. Basically, a name is assigned that designates the specifc object of interest, a location that 
identifes its address, and a route that indicates how to reach it. Each host is assigned a system-wide 
unique name, which can be either numeric or symbolic, and each process or resource in a host is 
assigned an id that is unique, at least in the host. This way, the pair (<host-name>,<process-id>) used 
as a token uniquely identifes each specifc process (object) at the chosen host and hence can be used 
as its name. When a process wishes to communicate with another process, it uses a pair like (xx, 
Pk) as the name of the destination process, where xx is the name of a host to which the process Pk 

belongs. In some distributed systems, low-level tokens are globally unique at the system level. This 
helps to fully decouple names from locations. This name, however, should be translated into a net-
work address to send a message over a network. The name service in a distributed system possesses 
certain desirable properties that mainly include: 

• Name transparency, which means that an object name should not divulge any hint about 
its actual location. 

• Location transparency implies that a name or a token should not be changed when the 
related object changes its residence. 

• Replication transparency ensures that replication of an object is to be kept hidden from 
users. 

• Dynamic adaptability to changes of the object’s location by replication facilitates migra-
tion of objects and thereby dynamically changes its address that seems to be sometimes 
essential in the event of load sharing, availability, and fault tolerance. 

A distributed name service is essentially a mapping that may be multi-level and multi-valued. It 
may be organized as a hierarchy in which certain parts of prefxes designate a specifc sub-domain. 
The internet service represents an example of a naming hierarchy where each host connected to the 
internet has a unique address known as the IP (Internet Protocol) address. The IP address of a host 
is provided with a given name by the domain name system (DNS), which is actually a distributed 
internet directory service. DNS provides a name server in every domain, whose IP address is known 
to all hosts belong to that domain. The name server contains a directory giving the IP address of 
each host in that domain. When a process in a host wishes to communicate another process with the 
name (<host-name>, <process-id>), the host performs name resolution to determine the IP address 
of <host-name>. If <host-name> is not its own name, it sends the name to the name server in its 
immediate containing domain, which, in turn, may send it to the name server in its immediate 
containing domain, and so on, until the name reaches the name server of the largest domain con-
tained in <host-name>. The name server then removes its own name from <host-name> and checks 



 

  

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

510 Operating Systems 

whether the remaining string is the name of a single host. If so, it obtains the IP address of the host 
from the directory and passes it back along the same route from which it received <host-name>; 
otherwise the remaining name string contains at least one domain name, so it passes the remaining 
name string to the name server of that domain, and so on. Once the sending process receives the 
IP address of <host-name>, the pair (<IP address>, <process-id>) is used to communicate with the 
destination process. 

Since name resolution using name servers, in general, can be quite lengthy, many distributed 
systems attempt to improve performance by caching in each workstation a collection of its recently 
requested name-token translations. This technique speeds up repeated name resolution (the same 
way a directory cache speeds up repeated references to the directory entry of a fle) when hits in 
the name cache result in quick translations that bypass the name server. The diffculty with client 
caching in distributed systems is that object migrations can invalidate the cache names. In addition, 
the name server of a domain is often replicated or distributed to enhance its availability and to avoid 
contention. 

Apart from the name server that implements a naming service in a DOS, there are a variety of 
other methods, including static maps, broadcasting, and prefx tables. For more details, interested 
readers can consult Milenkovic (1992). 

9.14.2 PROCESS MIGRATION 

Process migration in distributed system is considered a potential activity that refers to the transfer 
of an active process from one workstation (site) to another. Migration of processes involves transfer-
ring everything with regard to process’s state so that the migrated process can continue its execution 
on the destination node from the point at which it was transferred. Process migration is carried out 
by the system in order to attain mainly the following: 

• Balancing of existing load to increase throughput 
• Better utilization of system resources 
• Improved fault tolerance 
• Increased performance 

Load balancing refers to the distribution of processes located at heavily loaded workstations to 
some other one for execution that are relatively lying idle using the high-speed interconnection 
networks that connect them. When process migration decides to balance the load, it requires a 
mechanism to gather load information: a distributed policy which decides that a process should 
be moved and a mechanism to effect the transfer. The load-balance function is invoked by the 
scheduler that can dynamically reassign processes among nodes to negotiate load variations. 
Fault tolerance can be assisted by maintaining multiple copies of critical code at strategic 
points in the system. In this arrangement, execution and service can be restored and continued 
fairly quickly in the event of a server failure by migrating the runtime state and reactivating 
the affected process at one of the backup nodes. Performance can be improved by distribut-
ing certain applications across the relatively idle workstations. In addition, performance may 
sometimes be improved by migrating processes to their related data sites when operations on 
large volumes of data are involved. System resources can be better utilized by using the process 
migration facility, in particular in situations when some special-purpose resources are needed 
by a process but cannot be revoked remotely. In such cases, the requesting process itself can be 
migrated to the home site of the requesting resource so that it can execute appropriate routines 
locally at that end. 

While process migration is considered a powerful mechanism and is used often to realize the 
ultimate objectives of a distributed environment, but it may sometimes affect the other parts of the 
system; therefore, the utmost care should be taken so that it can only interfere into the rest of the 



Distributed Systems: An Introduction 511  

 

 
 

 
 

 

      

system as little as possible. In particular, when process migration is being effected, the ultimate 
aims of the system are: 

• to minimize the specifc time during which the migrating process is in transit and before 
being operational, 

• to reduce the additional load imposed on other nodes for executing such an activity, and 
• to decrease the residual dependencies. 

In spite of having several merits, the implementation of process migration suffers from several 
diffculties; the three major ones are: 

• a considerably large volume of process states may need to be moved, 
• it is quite diffcult to migrate the entire current residential working environment along with 

the process, and 
• communications and invocations of the migrated process have to be redirected to its new 

residence after it is migrated. 

Systems equipped with virtual memory at individual nodes are quite conducive to process migra-
tion to implement. Its main attractions are the built-in mechanism for demand loading of pages and 
the runtime virtual-to-physical address translation mechanism. This approach accelerates process 
migration activity, since it involves moving only a skeletal portion of the state that is actually refer-
enced, along with only a few pages. Consequently, it results in minimizing loading of the network 
considerably. The rest of the state, however, can be page-faulted as usual across the network in the 
course of execution of the process at the destination node. The savings are thus appreciable, since 
only a fraction of the total size of a program’s virtual memory is actually involved in migration in 
a given execution. A potential drawback of the paging scheme across the network is its increased 
load on a network in normal operation caused by the page traffc between the workstations and the 
backing store (fles, block servers, etc.). 

Process migration, however, essentially requires a total relocation of the execution environment. 
This involves relocation of sensitive addresses present in the process, program-transparent redirec-
tion of fle and device references, proper directing of routing of messages and signals, appropriate 
management of remote communications and invocations made during and after the migration, and 
similar other aspects. In fact, effcient and effective implementation of process migration often 
depends to a large extent on naming and location transparency, apart from relying on many other 
aspects. 

9.14.3 COMMUNICATION IN DISTRIBUTED SYSTEMS: DISTRIBUTED MESSAGE PASSING 

The communication between processes in distributed systems is quite different from that in a 
uniprocessor system. One of the main reasons is that most interprocess communication (IPC) in 
uniprocessor systems implicitly assumes the existence of a shared memory that acts as a bridge 
between two communicating processes. Since distributed systems do not have any concept of 
shared memory, the nature of interprocess communication in such a system is entirely different and 
should be redefned. When communication between parties is implemented, several aspects need to 
be addressed, such as naming of sites in the system, effcient name resolution, ensuring communi-
cation effciency, and dealing with faults. In fact, communicating processes in such a system must 
adhere to certain rules known as IPC protocols that enable one to communicate with another. As 
already mentioned, distributed systems (maybe comprising networks of computers) are fundamen-
tally different from computer network systems. Therefore, the requirements of the communication 
protocols of these two types of systems are also different. For network systems, the basic goal of 
communication protocols is to allow remote computers to communicate with one another and to 



 

 

 

 

 

 

 

512 Operating Systems 

permit users to access remote resources. On the other hand, the basic goal of communication pro-
tocols for distributed systems is not only to allow users to access remote resources but to do so in a 
manner transparent to the users. 

Several accepted standards and well-implemented protocols for network systems are already 
available. For wide-area distributed systems, these protocols often take the form of multiple layers, 
each with its own goals and rules. However, well-defned protocols for distributed systems are still 
not mature, and as such no specifc standards covering essential aspects of distributed systems are 
yet available. A few standard network protocols were described in a previous section. The essential 
requirements for protocols for distributed systems were already explained (Section 9.13.2), and a 
few standard communication protocols (Section 9.13.3) have been designed covering those aspects. 

Interprocess communication between processes located in different nodes (sites) in a distributed 
system is often implemented by exchanging messages. The message-passing mechanism in a dis-
tributed system may be the straightforward application of messages as they are used in a uniproces-
sor single system. A different type of technique known as the RPC exists that relies on message 
passing as a basic function to handle interprocess communication. Once the location of a destina-
tion process is determined, a message meant for it can be sent over the interconnection network. 
Message delivery is also prone to partial failures that may be due to failures in communication 
links or faults in nodes located in network path(s) to the destination process. Hence, it is expected 
that processes must make their own arrangements to ensure reliable fault-free delivery of messages. 
This arrangement is in the form of an interprocess communication protocol (IPC protocol), which is 
nothing but a set of rules and conventions that must be adhered to in order to handle transient faults. 
Reliable message exchange between processes usually follows steps like: 

• Transmission: A process intends to communicate another process often sends a message 
to its target process. 

• Acknowledgement: When the target process receives a message, it sends an acknowledge-
ment to the sender of the message. 

• Timeout: The protocol provides a specifc interval of time within which the sender process 
is expected to receive an acknowledgement from the receiving process. A timeout is said to 
happen if the acknowledgement is not received within this specifc interval. 

• Retransmission: A sender process retransmits its message if a time-out interrupt occurs 
before it receives an acknowledgement. 

• Reply: The receiving process returns a reply message containing the result of processing of 
the requested message to the sending process. 

• Acknowledgement: When the sender process receives the reply, it sends an acknowledge-
ment to the receiving process. If the acknowledgement is not received within the timeout 
period, the receiving process retransmits the reply message. 

When a process sends a message, the protocol issues a system call at the sender’s site that raises an 
interrupt at the end of a specifc time interval. This interrupt is commonly called a timeout inter-
rupt. When the message is delivered to a process, the destination process sends a special acknowl-
edgement message to the sender process to inform it that the message has been clearly received. If 
the timeout interrupt occurs before an acknowledgement is received, the protocol retransmits the 
message to the destination process and makes a system call to request another timeout interrupt. 
These actions are repeated for a certain number of times, and then it is declared that there has been 
a fault, either due to a failure in the communication link or a fault at the destination node. 

Now consider what happens if the message itself is received correctly, but the acknowledgement 
is lost. The sender will retransmit the message, so the receiver will get it twice. It is thus essential 
that the receiver be able to distinguish a new message from the retransmission of an old one. Usually 
this problem is solved by putting consecutive sequence numbers in each original message. If the 
receiver gets a message bearing the same sequence number as the previous message, it identifes that 



Distributed Systems: An Introduction 513  

 

 

 

 

 

 
 
 

 

 
 
 
 

the message is a duplicate one and hence ignores it. A similar arrangement may be used to ensure 
that a reply sent by the receiver process reaches the sender process. The message passing mecha-
nism was discussed in detail in Chapter 4. Distributed message passing and its associated several 
design issues are explained in the following subsections. 

9.14.3.1 IPC Semantics 
The IPC protocol is constructed with a set of properties called IPC semantics. The semantics depend 
mostly on the strategies to be taken in relation to acknowledgement and retransmission used in an 
IPC protocol. The most commonly used IPC semantics are: 

• At-most-once semantics: A destination process either receives a message once or does not 
receive it. These semantics are realized when a process receiving a message does not send 
an acknowledgement and a sender process does not perform retransmission of messages. 

• At-least-once semantics: A destination process is guaranteed to receive a message; how-
ever, it may receive several copies of the message. These semantics are realized when a 
process receiving a message sends an acknowledgement and a sender process retransmits a 
message if it does not receive an acknowledgement before a time-out occurs. 

• Exactly once semantics: A destination process receive a messages exactly once. These 
semantics are obtained when sending of acknowledgements and retransmissions are per-
formed as in at-least-once semantics, but the IPC protocol recognizes duplicate messages 
and subsequently discards them. 

The implications of these three semantics signifcantly differ, and their applications also vary, 
depending mostly on the situations where they will be used. 

At-most-once semantics result when a protocol does not use acknowledgements or retrans-
mission. Generally, these semantics are used if a lost message does not create any serious problem 
in the correctness of an application or the application itself knows how to get rid of such diffcul-
ties. For example, an application that receives regular reports from other processes is quite aware 
when a message is not received as expected, so it may itself communicate with a sender whose 
message is lost and ask it to resend the message. These semantics are usually accompanied by 
communication mechanisms with high effciency because acknowledgements and retransmis-
sions are not employed. 

At-least-once semantics result when a protocol uses acknowledgements and retransmission, 
because a destination process receives a message more than once if the acknowledgement is lost in 
transit due to communication failure or getting delayed as a result of network contention or conges-
tion. A message being received for the second or subsequent time is treated as a duplicate message. 
An application can use at-least-once semantics only if the presence and processing of duplicate 
messages will not cause any serious effect in relation to correctness of the applications, such as 
multiple updates of data instead of a single update over a database. Adequate arrangements should 
be made in such processing accompanying the database so that the situation of multiple appearances 
of messages can be detected before causing any bad effects. 

Exactly–once–semantics result when a protocol uses acknowledgements and retransmissions 
but discards duplicate messages. These semantics hide transient faults from both sender and receiver 
processes, because the IPC protocol is ready to afford high communication overhead that results 
from handling of faults and treating duplicate messages. 

9.14.3.2 IPC Protocols 
An IPC protocol places certain actions that should be performed at the sites of sender and receiver 
processes so that a message from a sender process is delivered to a destination process and its 
reply is delivered to the sender process. IPC protocols are mainly categorized on the basis of their 



 

 

 
    

 

 

 
 
 
 
 
 
 
 
 

  

 

514 Operating Systems 

reliability properties as well as on the ability of a sender process to perform actions after send-
ing a message (as well as on the nature of actions performed by a sender process after sending a 
message). 

Reliable and Unreliable Protocols: A reliable message-passing protocol is one that guar-
antees delivery of a message, or its reply if possible; in other words, it would not be lost. It 
achieves this through at-least-once or exactly–once semantics for both messages and their 
replies. To implement this semantic, it makes use of a reliable transport protocol or similar 
logic and performs error-checking, acknowledgement, retransmission, and reordering of dis-
ordered messages. Since delivery is guaranteed, it is not necessary to let the sending process 
know that the message was delivered. However, it might be useful to provide an acknowl-
edgement to the sending process so that the sending process is informed that the delivery has 
already been carried out. If the facility, however, fails to perform delivery (either in the event 
of communication link failure or a fault in the destination system), the sending process is 
alerted accordingly about the occurrence of the failure. Implementation of a reliable protocol 
is comparatively complex and expensive due to having substantial communication overhead for 
providing needed acknowledgements and required retransmissions of messages and replies. At 
the other extreme, an unreliable protocol may simply send a message into the communication 
network but will report neither success nor failure. It does not guarantee that a message or its 
reply will not be lost. It provides at-most-once semantics either for messages or their replies. 
This alternative approach, however, greatly reduces the complexity, processing, and communi-
cation overhead of the message-passing facility. 

Blocking and Non-Blocking Protocols:Blocking and non-blocking protocols are also called 
process-synchronous and process-asynchronous protocols, respectively. As already explained in 
Chapter 4, it is common and customary to block a process that executes a Receive system call unless 
no other message is sent to it. At the same time, there are no defnite reasons to block a process that 
executes a Send system call. Thus, with non-blocking Send, when a process issues a Send primi-
tive, the operating system returns control to the process as soon as the message has been queued 
for transmission or a copy has been made to its buffer. If no copy is made, any changes made to the 
message by the sending process before or while it is being transmitted cannot take effect and are 
then made at the risk of the related process. When the message has been transmitted or copied to a 
safe place for subsequent transmission, the sending process is then interrupted to only inform that 
the message has been delivered or that the message buffer may be reused. Interrupt(s) may also be 
generated to notify the non-blocking sending process of the arrival of a reply or an acknowledge-
ment so that it can take appropriate action. Similarly, non-blocking Receive is issued by a process 
that then proceeds to run, and when a message arrives, the process is informed by an interrupt, or 
it can poll for status periodically. 

Non-blocking primitives (Send, Receive) when used in message-passing mechanism, however, 
makes the system quite effcient and also fexible. But, one of the serious drawbacks of this approach 
is that it is diffcult to detect faults, and thereby equally hard to test and debug programs that use 
these primitives. The reason is that it is irreproducible, and timing-dependent sequences can create 
delicate and diffcult problems. 

On the other hand, there are blocking or synchronous primitives. A blocking Send does not 
return control to the sending process until the message has been transmitted (unreliable service) or 
until the message has been sent and a due acknowledgement is received (reliable service). Blocking 
of a sender process, however, may simplify a protocol, reduce its overhead, and also add some desir-
able features (salt) to its semantics. For example, if a sender process is blocked until its message is 
delivered to a destination process, the message would never have to be retransmitted after the sender 
is activated, so the message need not be buffered by the protocol when the sender is activated. Also, 
blocking of the sender helps provide semantics that are similar to the relatively easy conventional 
procedure call. Similarly, a blocking Receive does not return control until a message has been 
placed in the allocated buffer. 



Distributed Systems: An Introduction 515  

 

 

 

 

• The Request (R) Protocol 

This protocol is a non-blocking (asynchronous) and unreliable one and is used by processes in 
which the destination process has nothing to return as a result of execution and the sending end 
requires no confrmation that the destination has received the request. Since no acknowledgement 
or reply message is involved in this protocol, only one message per call is transmitted (from sender 
to receiver). The sender normally proceeds immediately after sending the request message, as there 
is no need to wait for a reply message. The protocol provides may–be–call semantics and requires 
no retransmission of request message. This semantic, therefore, does not offer any guarantees; 
although it is the easiest to implement but also probably the least desirable. Asynchronous mes-
sage transmission with unreliable transport protocols is generally useful for implementing periodic 
update services. A node that misses too many update messages can send a special request message 
to the time server to get a reliable update after a maximum amount of time. 

• The Request–Reply Acknowledgement Protocol 

One of the reliable protocols for use by processes that exchange requests and replies is the 
request–reply acknowledgement (RRA) protocol. Receipt of replies at the sending end ensures that 
the destination process has received the request, so a separate acknowledgement of the request is not 
required. The sender, however, sends an explicit acknowledgement of the reply. 

The sender process is made blocked until it receives a reply, so a single request buffer at the 
sender site is suffcient irrespective of the number of messages a process sends out or the number 
of processes it sends them to. The destination process is not blocked until it receives an acknowl-
edgement, so it could handle requests from other processes while it waits for acknowledgement. 
Consequently, the destination site needs one reply buffer for each sender process. The number of 
messages can be reduced through piggybacking, which is the technique of including the acknowl-
edgement of a reply in the next request to the same destination process. Since a sender process is 
blocked until it receives a reply, an acknowledgement of a reply is implicit in its next request. That 
is why the reply to the last request would require an additional explicit acknowledgement message. 

The RRA protocol essentially follows at-least-once semantics because messages and replies can-
not be lost; however, they might be delivered more than once. At the same time, duplicate requests 
would have to be discarded at the destination site to provide exactly–once semantics. 

• The Request–Reply Protocol 

The request–reply (RR) protocol simply performs retransmission of a request when a timeout 
occurs. One of the shortcomings of a non-blocking version of the RR protocol is that the destina-
tion process has to buffer its replies indefnitely because a sender does not explicitly acknowledge 
a reply; moreover, unlike the RRA protocol, an acknowledgement is not implicitly piggybacked on 
the sender’s next request, because the sender may have issued the next request before it received the 
reply to its previous request. Consequently, this protocol requires very high buffer space to accom-
modate the logic. 

The RR protocol essentially follows at-least-once semantics. Consequently, duplicate requests 
and replies are to be discarded if exactly–once semantics are desired. If requests issued by a sender 
are delivered to the destination process in the same order, the duplicate identifcation and subse-
quent discarding arrangement of the RRA protocol can be used with minor changes. A destination 
process preserves the sequence number and replies of all requests in pool of buffers. When it rec-
ognizes a duplicate request through a comparison of sequence numbers, it searches for the reply to 
the request in the buffer pool using the sequence number and then retransmits the reply if found 
in a buffer; otherwise it simply ignores the request since a reply would be sent after processing the 
request in near future. 



 

 

 

 

  

 
 
 

 
 
 

 

 
 
 
 
 

 
 

 

 
 

 
 
 

516 Operating Systems 

The non-blocking RR protocol has relatively little overhead and can be simplifed for use in 
applications involving idempotent computations. A computation is said to be idempotent if it pro-
duces the same result if executed repeatedly. For example, the computation k:= 5 is idempotent, 
whereas the computation k:= k + 1 is not. When an application involves only idempotent compu-
tations, data consistency would not be affected if a request is processed more than once, so it is 
possible to exclude arrangements for discarding duplicate requests. Similarly, read and write (not 
updating) operations performed in a fle are idempotent, so it is possible to employ the simplifed 
RR protocol when using a remote fle server. It has the additional advantage that the fle server need 
not maintain information about which requests it has already processed, which helps it to be state-
less and more reliable. 

Brief details on R, RRA, and RR protocols with fgures are given on the Support Material at www. 
routledge.com/9781032467238. 

9.14.3.3 Group Communication 
Until now, we have discussed the pair-wise exchange of messages in interprocess communication, 
which is the most elementary form of message-based interaction that involves only two parties, the 
single–sender and the single-receiver, and is a one-to-one communication, also known as point-
to-point or unicast. However, for the sake of performance improvement and ease of programming, 
several highly parallel distributed applications often require that a message-passing system should 
also provide a group communication facility, for example, when a service is implemented with a 
number of different processes located on different sites, perhaps to provide fault-tolerance or to 
enhance availability. Depending on single or multiple senders and receivers, the following three 
types of group communication are possible. 

• One-to-many (single sender and multiple receivers) 
• Many-to-one (multiple senders and single receiver) 
• Many-to-many (multiple senders and multiple receivers) 

Group communication supported by systems can also be viewed in other ways. These systems can 
be divided into two distinct categories depending on who can send to whom. Some systems support 
closed groups, in which only the members of the group can send to the group. Outsiders cannot send 
messages to the group as a whole, although they may be able to send messages to individual mem-
bers. In contrast, other systems support open groups, in which any process in the system can send 
to any group. The distinction between closed and open groups is often made for implementation rea-
sons. Closed groups are typically used for parallel processing. For example, a collection of processes 
working together to play a chess game might form a closed group. These processes have their own 
goal and do not intend to interact with the outside world. On the other hand, when the implementation 
of the group idea is to support replicated servers, it becomes important that processes that are not 
members (clients) can send to the group. In addition, the members of the group themselves may also 
need to use group communication, for example, to decide who should carry out a particular request. 

Out of the three types of group communication as mentioned, the frst is the one-to-many 
scheme, which is also known as multicast communication, in which there are multiple receiv-
ers for a message sent by a single sender. A special case of multicast communication is broad-
cast communication, in which the message is sent to all processors connected to a network. 
Multicast/broadcast communication is very useful for several practical applications. For exam-
ple, to locate a processor providing a specifc service, an inquiry message may be broadcast. 
The specifc processor along with the others will respond, and in this case, it is not necessary to 
receive an answer from every processor; just fnding one instance of the desired service is suff-
cient. Several design issues are related to these multicast communication schemes, such as group 
management, group addressing, group communication primitives, message delivery to receiver 
processes, buffered and unbuffered multicast, atomic multicast, various types of semantics, and 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 517  

 

 

 

 

 
 

   

 

fexible reliability, etc. Each such issue requires implementation of different types of strategies 
to realize the desired solution. 

The many-to-one message communication scheme involves multiple senders but a single 
receiver. The single receiver, in turn, may be categorized as selective or nonselective. A selec-
tive receiver specifes a unique sender; a message exchange takes place only if that sender sends 
a message. On the contrary, a nonselective receiver specifes a set of senders, and if any one of 
them sends a message to this receiver, a message exchange occurs. Thus, the receiver may wait, if 
it wants, for information from any of a group of senders rather than from one specifc sender. Since 
it is not known in advance which member(s) of the group will have its information available frst, 
this behavior is clearly nondeterministic. In some situations, this fexibility is useful to dynami-
cally control the group of senders from whom to accept the message. For example, a buffer process 
may accept a request from a producer process to store an item in the buffer when the buffer is not 
full; it may otherwise also accept a request from a consumer process to get an item from the buffer 
whenever the buffer is not empty. To realize this behavior through a program, a notation is needed 
to express and control this type of nondeterminism. One such construct is the guarded command 
statement introduced by Dijkstra (1975). Since this issue is more related to programming languages 
rather than operating systems, it is not discussed further here. 

The many-to-many message communication scheme involves multiple senders and multiple 
receivers. Since this scheme implicitly includes one-to-many and many-to-one message communi-
cation schemes, all the issues related to these two schemes are equally applicable to many-to-many 
communication scheme also. Moreover, the many-to-many communication scheme itself has an 
important issue, referred to as ordered message delivery, which ensures that all messages are deliv-
ered to all receivers in an order acceptable to an application for correct functioning. For example, 
assume that two senders send messages to update the same record of a database to two server pro-
cesses with a replica of the database. If the messages sent from the two senders are received by the 
two servers in different orders, then the fnal values of the updated record of the database may be 
different in the two replicas. This shows that this application requires all messages to be delivered 
in the same order to all receivers (servers) for accurate functioning. 

Ordering of messages in the many-to-many communication scheme requires message sequenc-
ing because many different messages sent from different senders may arrive at the receiver’s end at 
different times, and a defnite order is required for proper functioning. A special message-handling 
mechanism is thus required to ensure ordered message delivery. Fortunately, there are some com-
monly used semantics for ordered delivery of multicast/broadcast messages, such as absolute order-
ing, consistent ordering, and casual ordering. The details of these schemes are outside the scope 
of this book. 

Many other different aspects need to be addressed concerning group communication, especially 
in relation to formation of groups and its different attributes. Some of them are: how the groups will 
be formed, whether it will be peer groups or hierarchical groups, how group membership will be 
described and implemented, how a group will be addressed, whether the message-passing mecha-
nism will obey atomicity, and last but not least, is the fexibility and scalability of the groups. Many 
other aspects still remain that need to be properly handled to realize effective and effcient group 
communication as a whole. 

9.14.4 REMOTE PROCEDURE CALLS 

Although the workstation–server model provides a convenient way to structure a DOS, but it suf-
fers from several crucial shortcomings. One such is that the workstation–server paradigm, in prac-
tice, is used extensively for non-computational (input/output) roles in a LAN environment using 
message-passing mechanisms (send and receive), such as accessing fles or evaluating database que-
ries. Based on these existing message-passing mechanisms, an IPC protocol can also be developed 
that would be adequate to effciently handle the interprocess communication part of a distributed 



 

 

 

 

518 Operating Systems 

application. But the fact is that an IPC protocol, when developed independently, may often be found 
ft to a specifc application but does not provide a foundation on which a variety of distributed appli-
cations can be built. Therefore, a need was felt to have a general IPC protocol that can be employed 
to design various distributed applications. The concept of RPC came out at this juncture to cater 
to this need, and this facility was further enhanced to provide a relatively convenient mechanism 
for building distributed systems, in general. Although the RPC facility never provides a universal 
solution for all types of distributed applications, still it is considered a comparatively better commu-
nication mechanism that is adequate for building a fairly large number of distributed applications. 

The RPC has many attractive features, such as its simplicity, its generality, its effciency, and 
above all its ease of use that eventually have made it a widely accepted primary communication 
mechanism to handle IPC in distributed systems. The idea behind the RPC model is to make it 
similar to the well-known and well-understood ordinary procedure call model used for transfer of 
control and data within a program. In fact, the mechanism of RPC is essentially an extension of the 
traditional procedure call mechanism in the sense that it enables a call to be made to a procedure 
that does not reside in the same address space of the calling process. The called procedure, com-
monly called a remote procedure, may reside on the same computer as the calling process or on 
a different computer. That is why the RPC is made to be transparent; the calling process should 
not be aware that the called procedure is executing on a different machine, or vice versa. Since the 
caller and callee processes reside on disjoint addresses spaces (possibly on different computers), 
the remote procedure has no access to data and variables in the caller’s environment; therefore, the 
RPC mechanism uses a message-passing scheme to exchange information between the caller and 
the callee processes in the usual way. 

Remote procedures are found a natural ft for the client/server model of distributed computing. 
The caller–callee relationship can be viewed as similar to a client–server relationship in which 
the remote procedure is a server and a process calling it is a client. Servers may provide common 
services by means of the public server procedures that a number of potential clients can call. The 
server process is normally dormant, awaiting the arrival of a request message. When one arrives, 
the server process extracts the procedure’s parameters, computes the result, sends a reply message, 
and then awaits the next call message to receive. This concept is exactly like shared subroutine 
libraries in single-computer (uniprocessor) systems. Thus, in both environments, the public routines 
being used must be made reentrant or otherwise be kept protected from preemption by some form 
of concurrency control, such as mutual exclusion. However, several design issues associate with 
RPCs must be addressed; some common ones follow. 

9.14.4.1 Parameter Handling 
Defning parameters and representing them in a suitable format so that they can be passed across 
various types of machines is a vital matter of concern for the RPC to succeed. This aspect is divided 
into the two following main subjects: 

• Parameter Passing: Parameters are commonly passed in most programming languages 
either as values (call by value) or as pointers to a location that contains the value (call by 
reference). Call by value is relatively a simple mechanism in RPC in which the parameters 
are simply copied into the message and sent to the remote system. Call by reference, on 
the other hand, is a complicated one to implement, since a unique, system-wide pointer 
is needed for each object. The overhead thus associated with this mechanism may not be 
considered worth the effort. 

• Parameter Representation: Another critical issue is how to represent the parameters as 
well as the results (obtained from procedure execution) in messages. If the calling and 
called programs are written in identical programming languages and run on the same 
type of machines managed by the same operating system, then the representation may 
as such face no problems. But if there are any differences in these areas, then there will 



Distributed Systems: An Introduction 519  

 
 

 

 

probably be many differences in the ways in which the messages (including text as well as 
data) are to be represented. If a full-fedged communication architecture is used to con-
nect the machines, then this aspect can be handled by the presentation layer. However, in 
most cases, the communication architecture provides only a basic communication facility, 
entrusting the conversion responsibility entirely to the RPC mechanism. However, one of 
the best approaches to negotiate this problem is to provide a standardized format (probably 
ISO format) for the most frequently used objects, such as integers, foating-point numbers, 
characters, and strings. Parameter representation using this standardized format can then 
be easily converted to and from the native (local) format on any type of machine at the time 
of passing a parameter and receiving the results. 

9.14.4.2 Synchronous versus Asynchronous 
The concepts of synchronous and asynchronous RPCs are almost analogous to the concepts of 
blocking and non-blocking messages. The conventional RPC is synchronous, which requires that 
the calling (client) process waits until the called (server) process returns a value. Thus, synchronous 
RPC behaves much similarly to a subroutine call and uses a blocking communication protocol. The 
behavior of synchronous RPC is relatively simple and predictable; therefore, it is comparatively easy 
to use. However, its use in a distributed environment results in relatively poor performance, since 
its inherent behavior limits parallelism, which is a primary requirement in distributed applications. 

On the other hand, asynchronous RPCs do not block the caller, and replies can be received as 
and when they are needed, thereby allowing the caller (client) to proceed locally to do other useful 
work in parallel with the invocation of the callee (server). The use of asynchronous RPC provides 
greater fexibility while retaining its simplicity and familiarity. Its behavior inherently supports in 
achieving a greater degree of parallelism; hence, it is most suitable to use in a distributed environ-
ment using mainly non-blocking communication protocols. 

Although the traditional model (synchronous) of RPC implies that only one of the two processes 
remain active at any instant, however the RPC protocol, in general, has as such no restrictions on 
the implementation of the concurrency model; therefore, the other models (asynchronous) of RPC 
are possible but, of course, depending on the details of the parallelism of the caller’s and callee’s 
environments and the related RPC implementation. For example, an implementation may choose 
to make RPC calls asynchronous so that the client may do other useful work while waiting for the 
reply from the server to arrive. Another type of implementation may be to enable the server to create 
a thread to execute an already-arrived incoming request so that the server can be free to entertain 
other requests. Asynchronous RPCs in some situations require no reply from the server (callee), and 
the server also does not send a reply message (R protocol). Other schemes involving asynchronous 
RPCs either require or allow a reply but, in effect, the client (caller) does not wait for the reply. 

9.14.4.3 Caller–Callee Binding 
Part of the complexity in the implementation of RPC lies in binding the caller–callee processes. 
Binding commonly denotes the relationship that a remote procedure and the calling program 
exhibit. A binding is established as and when two applications logically connect each other to 
exchange commands and data. A binding is said to be nonpersistent when a connection is estab-
lished only when a RPC is initiated, and it tends to exist until the values (after execution of the 
remote procedure) are returned; the connection is then dismantled. While this connection is active, 
state information on both ends is maintained, including the resources that are attached. This style 
is, therefore, useful when resources are required to be conserved. On the other hand, as established 
connections always involve considerable overhead, this style is not very suitable, particularly in situ-
ations in which the same remote procedures are often called by the same caller. 

A binding is said to be persistent in which a connection is set up when a RPC is initiated and 
tends to continue even after the values (after execution of the remote procedure) are returned; the 



 

 

  

 

520 Operating Systems 

connection thus established can then be used for near-future calls. If a given time interval passes 
with no activity on the established connection, then the connection is automatically terminated. In 
situations where there are many repeated calls to the same procedure within the specifed interval, 
persistent binding exploits the existing connections to execute the remote procedure, thereby avoid-
ing the overhead required to establish a new connection. 

9.14.4.4 Case Study: RPC Implementation 
The RPC, in essence, is a programming language construct designed for distributed computing. 
Its syntax and semantics closely resemble those of a local procedure call, thereby making RPC 
effectively indistinguishable from a local procedure call to programmers (syntactic and semantic 
transparency). The common syntax of a RPC is: 

call <proc-id> (< message >); 

where <proc-id> is the id of a remote procedure, <message> is a list of parameters, and the call is 
implemented using a blocking protocol. The result of the call may be passed back through one of 
the parameters or through an explicit return value. Implementation of an RPC mechanism usually 
involves the fve elements: client, client stub, RPCRuntime, server stub, and server. All these are 
used to perform name resolution, parameter passing, and return of results during a RPC. 

The beauty of the entire mechanism lies in keeping the client completely in the dark about the 
work which was done remotely instead of being carried out by the local kernel. When the client 
regains control following the procedure call that it made, all it knows is that the results of the execu-
tion of the procedure are available to it. Therefore, from the client’s end, it appears that the remote 
services are accessed (obtained) by making ordinary (conventional) procedure calls and not by 
using send and receive primitives. The entire details of the message-passing mechanisms are kept 
hidden in the client stub as well as in the server stub, making the steps involved in message passing 
invisible to both the client and the server. 

The RPC is a powerful tool that can be employed as a foundation by using it to make the build-
ing blocks for distributed computing. It has several merits, and its advantages over the conventional 
client–server paradigm are especially due to two factors. First, it may be possible to set up a remote 
procedure by simply sending its name and location to the name server. This is much easier than set-
ting up a server. Second, only those processes that are aware of the existence of a remote procedure 
can invoke it. So the use of remote procedures inherently provides more privacy and thereby offers 
more security than use of its counterpart client–server paradigm. Its primary disadvantages are 
that it consumes more processing time to complete as well as its lack of fexibility, and the remote 
procedure has to be registered with a name server, so its location cannot be changed easily. 

Brief details on RPC implementation with a fgure are given on the Support Material at www. 
routledge.com/9781032467238. 

9.14.4.5 Case Study: SUN RPC Implementation 
RFC 1831 (Srinivasan, 1995) describes the Sun RPC, also called the Open Network Computing 
(ONC) RPC, which was designed for client–server communication in the Sun NFS (Network File 
System) and is supplied as part of the various Sun UNIX operating systems. It has options for use 
over either UDP/IP or TCP/IP. The fle processing in NFS is modeled as idempotent actions; there-
fore, the Sun RPC provides at-least-once semantics for its effcient and effective use. But if exactly– 
once semantics are desired, then the applications using RPCs have to make their own arrangements 
to discard duplicates. 

To use a remote procedure, the Sun RPC system provides an interface language called XDR 
(eXternal Data Representation) with a stand-alone executable interface compiler called rpcgen writ-
ten in its own language (RPC language or RPCL), and is intended for use with the C programming 
language. While using a remote procedure, a user has to write an interface defnition using XDR, 
which is actually a data abstraction needed for machine-independent communication. The client 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 521  

 
  
 
 

 

 
 
 
 
 

   
 

 
 
 

 
 

and server need not be machines of the same type. The interface defnition, however, contains a 
specifcation of the remote procedure and its parameters that are required to be compiled by rpcgen, 
which reads special fles denoted by an x prefx. So, to compile a RPCL fle, simply enter 

rpcgen rpcprog.x 

The output of this compilation produces the following four fles: 

1. rpcprog_clnt.c (the client stub procedures) 
2. rpcprog_svc.c (server main procedure, despatcher, and server stub procedures) 
3. rpcprog_xdr.c (XDR flters) 
4. rpcprog.h(the header fle needed for any XDR flters) 

The Sun RPC schematic does not use the services of a name server. Instead, each site contains 
a port mapper that is similar to a local name server. The port mapper contains the names of pro-
cedures and their port ids. A procedure that is to be invoked as a remote procedure is assigned a 
port, and this information is registered with the port mapper. The client frst makes a request to the 
port mapper of the remote site to fnd which port is used by the remote procedure. It then calls the 
procedure at that port. However, a weakness of this arrangement is that a caller must know the site 
where a remote procedure exists. 

9.14.4.6 Case Study: JAVA RMI 
Java provides a remote method invocation (RMI) facility which is language-specifc in nature. RMI 
allows applications to call object methods located remotely, sharing resources and processing loads 
across systems. Unlike other systems for remote execution that require that only simple data types 
or defned structures be passed to and from methods, RMI allows any Java object type to be used, 
even if the client or server fnds it new and has never encountered it before. That is, RMI allows 
both client and server to dynamically load new object types as required, which is considered an 
extremely powerful feature. In fact, RMI helps object function calls to happen between Java virtual 
machines located on separate computers by allowing one JVM to invoke methods belonging to an 
object stored (or new objects to be stored) in another JVM. 

A server application running on a host creates a special type of object called a remote 
object, whose methods may be invoked by clients operating on other hosts. The server selects 
a name for the service that is to be offered by a method of the remote object and registers it 
with a name server called rmiregistry that runs on the server’s host. The rmiregistry typically 
listens on the standard port for registration and invocation requests. The interested clients 
of the service are already aware of the IP address of the server’s host. A client consults the 
rmiregistry in the server’s host to locate a service with a given name. The rmiregistry returns 
an object handle for the remote object providing the service, and the client uses this object 
handle to invoke the service. The syntax used in this invocation, however, resembles an opera-
tion similar to a local object. The scheme used in the revocation of remote service is similar 
to the one described in Section 9.14.4. javac (compiler) is used to compile the source files 
containing the server and client programs, and the rmic compiler is used to generate the server 
and client stubs. 

A client can pass special types of objects called serializable objects as parameters of the remote 
method. The Java RMI passes the code and data of such objects to the invoked remote method. This 
code is dynamically loaded in the server’s host while unmarshaling (converting) the parameters; 
it may be invoked by the object offering the remote service. A server registers a remote service 
r_eval that takes a serializable object, say, alpha, as a parameter and simply invokes the method, 
say, alpha.beta(). If a client creates a serializable object and passes it as a parameter in an invoca-
tion of r_eval, then r_eval would load the code of the object and invoke its method beta. In effect, 



 

 

 

 

 
 
 
 
 
 

  

 
 
 

522 Operating Systems 

the beauty of RMI is that the client would have achieved execution of some of its own code at the 
server’s site. Different clients running on different JVMs can use the same service r_eval to get dif-
ferent codes executed at the server’s site 

9.14.4.7 RPC versus Message Passing 
RPC is essentially a powerful technique for constructing a distributed client–server model of com-
puting based on extending the notion of a conventional or local procedure calling mechanism across 
multiple machines. Message passing, on the other hand, is basically an interprocess synchronization 
and communication mechanism suitable for use by competing and cooperating but separate and 
mostly autonomous processes which may reside on the same machine or on two distinctly separate 
machines. Thus, the two mechanisms serve somewhat different purposes and are not directly com-
parable and also not direct substitutes for each other. 

However, when one of these mechanisms is employed for something other than its primary usage, 
some form of overlap exists, and a proper choice between them may have to be made. One such case 
may be, for example, when the distribution facility is used for bulk data transfers, such as fles, or 
when a programming style and the interprocess communication mechanism (IPC) are contemplated 
for a new distributed applications. Therefore, some of the major issues that are of primary interest 
to compare them are: 

• Transfer of control: Both RPC and message–passing normally communicate between 
two different machines. RPCs may be synchronous or asynchronous, analogous to the 
concepts of blocking and non-blocking messages which use varieties of the sender/receiver 
relationship. Asynchronous messages can improve concurrency and provide greater fex-
ibility while retaining their simplicity and familiarity. This behavior inherently supports 
a greater degree of parallelism and hence is found suitable in a distributed environment 
using mainly non-blocking communication protocols. 

• Binding: RPC requires needed binding at runtime for proper execution of remote process 
invocation in multi-machine environment. Message–passing, on the other hand, generally 
does not require any such binding, but needs only a target port or a defnite receiver to be 
identifed by the naming mechanism at runtime. While RPC is bound to one destination 
machine (server), it is not commonly convenient for implementing broadcasts and multi-
casts, which messages can handle naturally with ease. 

• Data transfer: At the time of the call, RPC enforces some syntax and semantics in param-
eter passing, closely resembling those of a local procedure call. Messages are relatively less 
structured and use a free data format, actually byte streams that appear to be easier and less 
costly to adapt to environments consisting of heterogeneous machines. Many contemporary 
RPC mechanisms (such as Java RMI) not only ft nicely into a heterogeneous environment 
but enable the sender (client) to pass some of its own objects as parameters in an invocation. 
The receiver (server) would then load the code of the sender’s object dynamically and exe-
cute it. In this way, the client achieves execution of some of its own code at the server’s site. 

• Fault tolerance: Fault and failure are equally diffcult to handle in both environments. 
However, in the case of messages, a receiver can correctly act on an already-received mes-
sage even in the event of a sender’s failure. In the case of the RPC model, this situation is 
somewhat different and crucial, the failure of the client causes a process to be orphaned 
and need a specifc recovery mechanism at the receiver’s (sender’s) end. In fact, there is a 
wide spectrum of different types of fault and failures in the RPC model, requiring different 
types of recovery mechanisms to negotiate each type of case. 

Finally, the RPC model offers more fexibility and versatility while retaining its simplicity. 
Message-passing mechanisms, on the other hand, are relatively tedious, and moreover, the use of 
message primitives is somewhat unnatural and also confusing. That is why the RPC mechanism, 



Distributed Systems: An Introduction 523  

 

   

 
 
 

 

 
 

among other reasons, is always preferred to a message-passing mechanism, at least for the sake 
of convenience. 

9.14.5 DISTRIBUTED SHARED MEMORY 

A uniprocessor system while implicitly assumes the existence of shared memory to use the shared-
memory paradigm by existing processes (for example, to act as a bridge between two communicat-
ing processes), but the use of the shared-memory paradigm is also natural for distributed processes 
running on tightly coupled multiprocessors. Loosely coupled distributed systems (both multiproces-
sor and multicomputer), on the other hand, do not have any such provision of similar shared mem-
ory, although distributed shared memory (DSM) is essentially an abstraction of shared memory 
implemented in these distributed systems. Since a distributed system comprises loosely coupled 
systems with no physically shared memory, this familiar abstraction of (globally) shared memory 
gives these systems the illusion of physically shared memory and enables application programmers 
to use the shared-memory paradigm by simple read and write operations. In fact, distributed shared 
memory, at least conceptually, extends the local address across the host boundaries in a distributed 
computer systems. To provide a shared-memory abstraction to programmers, contemporary loosely 
coupled distributed-memory systems have thus implemented an additional software layer on top 
of the message-passing communication system. This software layer can be implemented in the OS 
kernel, or it may be placed as a separate runtime subsystem (library routines) with proper system 
kernel support that operates below the application layer. Such an arrangement will help applications 
to make use of the familiar abstraction of (globally) shared memory that can be easily operated by 
simple read and write instructions. In effect, distributed shared memory (DSM) refers to the shared-
memory paradigm applied to loosely coupled distributed memory systems. 

DSM provides a virtual address space shared among processes running on loosely coupled sys-
tems. In fact, DSM is basically an abstraction that integrates the local memory associated with dif-
ferent machines by a communication network in a network environment into a single logical entity 
shared by cooperating processes in an unrestricted form of data movement running on multiple 
sites. It is assumed at least in theory, that single-site programs developed using the shared-memory 
model may be straightforwardly “ported” to a distributed environment without any modifcation if it 
supports distributed shared memory. Another distinct advantage is that shared data may be allowed 
to persist even beyond the lifetimes of the participating processes. Proponents of this scheme yet 
move one step forward arguing also that DSM may improve performance compared to direct (tradi-
tional) message passing, in some cases by moving data in blocks and that too only on demand, when 
actually referenced by an executing application. It is to be noted that this relatively large shared-
memory space itself exhibits and exists only virtually and is provided to processors of all nodes. 
Therefore, the application programs can use it in the same way as a traditional virtual memory, 
except, of course, that processes using it can run on different machines in parallel. Here, each node 
must have a software memory-mapping manager routine that would map the local memory onto 
the shared virtual memory. To facilitate this mapping operation, the shared-memory space is parti-
tioned into blocks. Due to the virtual existence of shared memory, DSM is also sometimes referred 
to as distributed shared virtual memory (DSVM). 

From the performance point of view, distributed shared memory should be incorporated into 
systems that are equipped with high-bandwidth and low-latency communication links so that 
reduced network latency can be attained. While some types of local networks are available that 
provide such kind of links, they are seldom supported by WANs in general. To alleviate this short-
coming from network latency, data caching is a well-known solution to negotiate memory access 
latency. The idea is that the main memory of individual nodes is used to cache pieces of shared-
memory space. The memory-mapping manager of each node then views its local memory as a big 
cache of the shared-memory space for its associated processors. The basic unit of caching may be 
a memory block. 



 

 

 

 

   

 

 

524 Operating Systems 

The general approach in data access and related caching of data works as follows: when a pro-
cess on a node attempts to access data from a memory block on the shared-memory space, the local 
memory-mapping manager takes the control to service its request. If the memory block containing 
the requested data is resident in the local memory, the request is serviced by supplying the data as 
asked for from the local memory. Otherwise a network block fault (similar to page fault in virtual 
memory) is generated and control is passed to the operating system. The OS then sends a message 
to the node on which the desired memory block is located to get the block. The targeted block is 
migrated from the remote node to the client process’s node, and the operating system maps it into 
the application’s address space. The faulting instruction is restarted and can now proceed toward 
completion as usual. This shows that the data blocks keep migrating from one node to another 
only on demand, but no communication is visible to the user processes. In other words, to the user 
processes, the system looks like a tightly coupled shared-memory multiprocessor system in which 
multiple processes can freely read and write the shared memory at will. Caching of data in local 
memory eventually reduces the traffc on network substantially for a memory access on cache hit. 
Signifcant performance improvement can thus be obtained if network traffc can be minimized 
by increasing the cache hit, which can be attained by ensuring a high degree of locality of data 
accesses. 

9.14.5.1 Design Issues of DSMs 
Several issues are involved in the design and implementation of DSM systems. Some important fac-
tors that infuence the shared-memory system are: 

• Structure: This refers to the layout of the shared data in memory. In fact, the structure of 
the shared-memory space of a DSM system is not universal but varies, normally depending 
on the type of application the DSM system is going to support. 

• Block Size: The block size of a DSM system is sometimes also referred as granularity. 
Possible units of a block are a few words, a page, or even a few pages, which are considered 
the unit of data sharing and the unit of data transfer across the network. Proper selection of 
block size is a major issue that determines the granularity of parallelism and the generated 
load in network traffc in the event of network block faults. 

• Memory Coherence: DSM systems that allow replication of shared data items in the 
main memories of a number of nodes to handle many different situations often suffer 
from memory coherence problems (similar to the well-known cache coherence problem 
in uniprocessor systems and traditional multi-cache coherence problem in shared memory 
multiprocessor systems) that deal with the consistency of a piece of shared data lying in the 
main memories of two or more nodes. To negotiate this problem, different memory coher-
ence protocols can be used that depend on the assumptions and trade-offs that are made 
with regard to the pattern of memory access. 

• Memory Access Synchronization: Concurrent accesses to shared data in DSM system 
are a regular feature that require proper synchronization at the time of data access to 
maintain the consistency of shared data apart from using only the coherence protocol. 
Synchronization primitives, such as lock, semaphores, event counts, and so on are thus 
needed to negotiate situations of concurrent accesses over shared data. 

• Replacement Strategy: Similar to the cache replacement strategy used in uniprocessor 
systems, the data block of the local memory sometimes needs to be replaced in some situ-
ations using an appropriate strategy. In situation, when the local memory of a node is full 
and the needed data are not present in the memory (similar to the occurrence of a cache 
miss) at that node, this implies not only a fetch of the needed data block from a remote node 
but also a suitable replacement of an existing data block from the memory of the work-
ing node in order to make room for the new (fetched) one. This indicates that a suitable 
replacement strategy is urgently needed when a DSM system is designed. 



Distributed Systems: An Introduction 525  

 

 

 

 

 

 

• Thrashing: In DSM systems, data blocks are often migrated between nodes on demand. 
Therefore, if two nodes compete for simultaneous write access to a single data item, the 
corresponding data block may then experience a back-and-forth transfer so often that much 
time is spent on this activity, and no useful work can then be done. This situation in which 
a data block is involved in back-and-forth journey in quick succession is usually known as 
thrashing. A DSM system, therefore, must be designed incorporating a suitable policy so 
that thrashing can be avoided as much as possible. 

• Heterogeneity: When a DSM system is built for an environment in which the set of com-
puters is heterogeneous, then it must be designed in such a way that it can address all 
the issues relating to heterogeneous systems and be able to work properly with a set of 
machines with different architectures. 

9.14.5.2 Implementation Issues: Common Algorithms 
Different approaches in the implementation of DSM are observed. Variations in these approaches 
mostly depend on which of the design issues already mentioned are given more importance at the 
time of DSM implementation. However, the implementations, in general, are often infuenced by 
three major aspects: sharing of memory, whether the DSM system allows replication and/or migra-
tion of shared-memory data blocks; maintenance of memory coherence and access synchroniza-
tion (similar to cache coherence in shared-bus tightly coupled multiprocessors); and distributed 
fle caches. However, the common algorithms to handle all these aspects of DSM implementation 
include: 

• Migration: The principle involved in the migration algorithm maintains only a single 
physical copy of the shared memory, and migration of it, whenever required, is carried 
out by making a copy to the site where access is desired. The foating copy of the shared 
memory may be relatively easily integrated into the virtual-memory addressing scheme of 
its resident host. Implementation of shared memory in this way appears to be simple, but it 
exhibits poor performance, particularly when the locus of shared memory activity tends to 
move quickly among hosts. In addition, when two or more hosts attempt to access shared 
memory within the same time frame, apart from using an appropriate synchronization 
mechanism to mitigate the situation, it causes excessive migration of data that eventu-
ally leads to thrashing. This is especially troublesome when the competing hosts actually 
access non-overlapping areas of shared memory. 

• Central Shared Memory: This approach is basically to have shared memory that can 
be maintained centrally, with only a single physical copy using a central server. In this 
scheme, reads and writes to shared memory performed at any other site are converted to 
messages and sent to the central server for any further processing. In the case of reads, 
the server returns requested values. For writes, the server updates the master copy of the 
shared memory and returns an acknowledgement as usual. This implementation makes the 
operations on shared memory relatively easy, as there is centrally only single-site seman-
tics of reads and writes where any target memory object always contains the most-recent 
current value. 

• Read Replication: This scheme allows the simultaneous coexistence of multiple read-
copies of shared memory at different hosts. At most one host is allowed to have write 
access to shared memory. Hence, its operation is similar to a multiple-reader, single-writer 
scheme (traditional readers/writers problem). A host intending to read shared memory 
obtains a local copy exercising its read access and is then able to satisfy repeated read 
queries at its own end only locally. In order to maintain consistency, active reading must 
preclude (exclude) writing by invalidating and temporarily withholding write-access rights 
to shared memory elsewhere in the system. Naturally, multiple concurrent read copies are 
permitted that are commonly used in the implementation of distributed shared memory. 



 

 

 

  

 
 
 
 
 

 

 

 

 

 

 

 

526 Operating Systems 

When the DSM design allows read replication, for the sake of performance improvement, 
it often divides the shared memory into logical blocks in which each block is assigned to 
an owner host, and reading and writing is then performed on a per-block basis in a manner 
as described. 

• Full Replication: This scheme allows simultaneous coexistence of multiple read and write 
copies of portions of shared memory. Consistency in these copies is maintained by means 
of using appropriate protocols that broadcast write to all read and write copies, and only 
the affected blocks modify themselves accordingly. Global writes are handled in a differ-
ent way considered to be deemed ft. 

Different systems, however, enjoy the freedom to implement their own patterns of distributed shared 
memory suitable for the system as well as the environment in which they are being used. Besides, 
there are some other factors that effectively infuence such implementations are mainly: frequency 
of reads versus writes, computational complexity, locality of reference of shared memory, and the 
expected number of messages in use. 

9.14.6 DISTRIBUTED FILE SYSTEMS 

A traditional fle system in a single-processor machine provides a convenient mechanism by abstraction 
of a storage device in which storing and retrieving as well as sharing of information (fle is created by 
one application and then shared with different applications at a later time) are carried out. A distributed 
fle system (DFS) similarly provides an abstraction of a distributed system to users and makes it simple 
for them to use fles in a distributed environment. There are many issues entwined in relate to designing 
and implementing a DFS that altogether make it relatively complex compared to a traditional fle sys-
tem, mainly due to the fact that users and storage devices are physically dispersed. In order to provide 
convenience, reliability, and performance to users, a DFS normally supports the following: 

• Transparency: A DFS allows fles to be accessed by processes of any node of the system, 
keeping them completely unaware of the location of their fles in the nodes and disks in 
the system. 

• Remote information sharing: A process on one node can create a fle that can be accessed 
by other processes running on any other nodes at different locations at any point in time 
later on. 

• File sharing semantics: These specify the rules of fle sharing: whether and how the 
effect of fle modifcations made by one process are visible to other processes using the 
fles concurrently. 

• User mobility: A DFS normally allows a user to work on different nodes at different times 
without insisting to work on a specifc node, thereby offering the fexibility to work at will 
with no necessity of physically relocating the associated secondary storage devices. 

• Diskless workstation: A DFS, with its transparent remote fle-access capability, allows 
a system to use diskless workstations in order to make the system more economical and 
handy, tending to be less noisy and thereby having fewer faults and failures. 

• Reliability: A fle accessed by a process may exist in different nodes of a distributed sys-
tem. A fault in either a node or a communication link failure between the two can severely 
affect fle processing activity. Distributed fle systems ensure high reliability by providing 
availability of fles through fle replication that keeps multiple copies of a fle on different 
nodes of the system to negotiate the situation of temporary failure of one or more nodes. 
Moreover, through the use of a stateless fle server design, the impact of fle server crashes 
on ongoing fle processing activities can be minimized. In an ideal design, both the exis-
tence of multiple copies made by fle replication and their locations are kept hidden from 
the clients. 



Distributed Systems: An Introduction 527  

 

 

 

 
 
 

  
 
 
 
 

 
 

  
 
 
 

 

 

 

 

• Performance: Out of many factors that affect performance, one is network latency, which 
is mostly due to data transfer caused by processing of remote fles. A technique called fle 
caching is often used to minimize frequent network journeys, thereby reducing network 
traffc in fle processing. 

• Scalability: This specifes the ability to expand the system whenever needed. But when 
more new nodes are added to the existing distributed system, the response time to fle 
system commands normally tends to degrade. This shortcoming is commonly addressed 
through techniques that localize data transfer to sections of a distributed system, called 
clusters, which have a high-speed LAN. 

9.14.6.1 Design Issues in Distributed File Systems 
A DFS normally stores user fles in several nodes and is often accessed by processes resident in 
different nodes of the distributed system. In fact, the users and the storage devices are normally 
dispersed physically. This gives rise to several issues that must be considered at the time of design-
ing a DFS: 

• Transparency of fle system: This means a user need not know much about the loca-
tion of fles in a system, and the name of a fle should not reveal its location in the fle 
system. The notion of transparency has four desirable facets that address these issues. 
Those are: 
• Location transparency: This specifes that the name of a fle should not reveal its 

location. In fact, a user should not know the locations or the number of fle servers 
and storage devices. In addition, the fle system should be able to change the location 
of a fle without having to change its name (path name). This is commonly known as 
location independence that enables a fle system to optimize its own performance. 
For example, when fles are accessed from a node presently experiencing heavy net-
work congestion, it can result in poor performance. The DFS in this situation may 
move a few fles from the affected node to other nodes. This operation is called 
fle migration. Location independence can also be used to improve utilization of 
storage devices in the system. Most DFSs provide location transparency, but they 
seldom offer location independence. Consequently, fles cannot be migrated to other 
nodes. This restriction deprives the DFS of an opportunity to optimize fle access 
performance. 

• Access transparency: This implies that both local and global fles should be accessed in 
the same way, and the fle system should not make any distinction between them. The 
fle system should automatically locate the target fle and make necessary arrangements 
for transfer of data to the requested site. 

• Naming transparency: This means the name of a fle should give no hint as to where the 
fle is physically located. In addition, a fle should be allowed to move from one node 
to another within the jurisdiction of a distributed system without changing the name of 
the fle. 

• Replication transparency: If multiple copies of a fle exist on multiple nodes, both the 
existence of multiple copies and their locations should be hidden from the users. 

• User mobility: A DFS normally should allow a user to work on different nodes at different 
times without enforcing work on a specifc node, thereby offering the fexibility to work 
at will with no need to physically relocate the associated secondary storage devices. The 
performance characteristics of the fle system in this situation should not discourage users 
from accessing their fles from workstations other than the one at which they usually work. 
One way to support user mobility may be to automatically bring a user’s environment 
(user’s home directory and similar other things) at the time of login to the node where the 
user logs in. 



 

 

 

 

 

  
 
 
 

   

 

528 Operating Systems 

• Performance: The performance of a fle system is normally measured in terms of average 
response time to fle system commands. Out of many factors that affect performance of 
a DFS, one critical factor is network latency, which starts to dominate when data transfer 
begins due to processing of remote fles. Although optimal performance is hard to quan-
tify, but the performance should at least be as close as possible to that of a centralized 
system. In fact, performance of a DFS has two facets: 
• Effciency: In general, it implies that how quickly a fle processing activity can be com-

pleted, and network latency in this regard is a prime factor that normally infuences 
effciency. Network latency often typically exceeds the processing time of a fle record, 
so, unlike I/O device latency, it cannot be masked by blocking and buffering of records. 
That is why a DFS employs fle caching, which keeps a copy of remote fles in the node 
of a process that uses the fle. In this way, even repeated accesses to the fle do not much 
affect the network traffc, thereby reducing network latency, though staleness of data in 
a fle cache has to be prevented through the use of cache coherence techniques. 

• Scalability: It is desirable that a distributed system will grow with time by expanding 
the network and adding new machines or interconnecting two or more networks in gen-
eral. A good DFS should be designed so that it can easily accommodate growth of nodes 
and users in the system. Moreover, such growth should not cause serious disruption of 
service, and scalability of a DFS requires that response times not degrade to the extent 
that it causes loss of performance to users. In effect, a proper scalable design should 
ensure easy integration of added resources to cope with the growth of user community 
and also sustain a high service load with as such no degradation in system performance. 

A distributed system usually consists of set of computers connected by high-speed communica-
tion networks, so caching a single copy of a fle within a set is adequate to reduce inter-set network 
traffc and provides scalability of DFS performance. But when several processes attempt to access 
the same fle in parallel, a mechanism known as distributed locking techniques are employed to 
ensure the synchronization of fle processing activities that scale well in spite of when the system 
size increases. 

• High availability: A DFS should continue to function even in the event of partial failures 
of the system, mainly either due to node faults, communication link failure, or crashes of 
storage devices. However, such failure may sometimes cause a temporary loss of service to 
small groups of users and may result in an overall degradation in performance and func-
tionality over the entire system. To realize high availability, the DFS must have multiple 
independent fle servers (in contrast to a central data repository that may be a cause of 
performance bottleneck), and each must be equipped with multiple independent storage 
devices. Replication of fles at multiple servers is a frequently used primary mechanism to 
ensure high availability. 

• High reliability: A DFS should have the proper arrangement to safeguard the system 
as far as possible even when stored information is lost. That is why the system should 
automatically generate backup copies of critical data that can help the system continue 
to function even in the face of failure of the original. Out of many different available 
techniques, stable storage is a popular one used by numerous fle systems to attain high 
reliability. 

• Data integrity: Multiple users in a DFS often compete to access a shared fle concurrently, 
thereby causing the probability of a threat in the integrity of data stored in it. In this situa-
tion, requests from multiple users attempting to concurrently access a fle must be properly 
synchronized by any means using some form of concurrency control mechanism. Many 
different proven techniques are, however, available that can be used by a fle system to 
implement concurrency control for the sake of data integrity. 



Distributed Systems: An Introduction 529  

 

 

 

 

 

 

 

  

• Security: A DFS for accessing distant resources and communicating with other processes 
relies on a communication network which may include public communication channels or 
communication processors that are not under the control of the distributed OS. Hence, the 
DFS is always exposed to different forms of threats and apprehends attacks on any of its 
nodes and attached resources. That is why a DFS should be made secured, so that its users 
can be assured with regard to the confdentiality and privacy of their data. Necessary secu-
rity mechanisms must thus be implemented so that the information stored in a fle system is 
protected against any unauthorized access. In addition, if rights to access a fle are passed 
to a user, they should be used safely. This means the user receiving the rights should in no 
way be able to pass them further if they are not permitted to. 

• Fault tolerance: Occurrence of a fault often disrupts ongoing fle processing activity and 
results in the fle data and control data (metadata) of the fle system being inconsistent. To 
protect consistency of metadata, a DFS may employ a journaling technique like that in 
a conventional centralized time-sharing fle system, or DFS may use stateless fle server 
design, which needs no measures to protect the consistency of metadata when a fault 
occurs. To protect consistency of fle data, DFS may provide transaction semantics, which 
are useful in implementing atomic transactions so that an application may itself perform 
fault tolerance, if it so desires. 

• Heterogeneity: The scalability and openness of a distributed system inevitably require it 
to be a heterogeneous one. This is perhaps the most general formation, which consists of 
interconnected sets of dissimilar hardware and software (often independent computers) 
that provide the fexibility of employing different computer platforms interconnected by a 
wide range of different types of networks for a diverse spectrum of applications to run by 
different types of users. Consequently, a DFS should be designed in a way that can allow a 
variety of workstations with different internal formats to participate in an effective sharing 
of fles. Accepting the heterogeneity of a distributed system, the design of a DFS on such 
platform is critically diffcult to realize, yet it is considered one of the prime issues at the 
time of designing a DFS. 

• Simplicity and ease of use: Several important factors while need to be incorporated into 
the design of a DFS, but those, on other hand, attempt to negate the fle system to be simple 
and easy to use. Still, the most important factor is that the user interface to the fle system 
must be as simple as possible. This means the semantics of the fle processing commands 
should be similar to those of a fle system for a traditional centralized time-sharing system, 
and the number of commands should be as small as possible. In addition, while the DFS 
should be able to support the whole range of applications commonly used by a community 
of users, at the same time it must be user-friendly and easy–to–understand even for a not 
very skilled user. 

9.14.7 FAULT TOLERANCE 

Various types of faults can occur at any point in time due to the failure of hardware or software or 
environmental phenomena that could damage, cause loss of, or corrupt the data, resulting in a threat 
to the integrity of data stored by the system. To what extent a DFS can tolerate faults is infuenced 
by many other primary attributes of the fle system. Some of them are: 

• Availability: This refers to the fact that the fle (or a copy of it) can be opened and accessed 
by a client based on the path name (related to its locations). On the other hand, the abil-
ity to access a fle requires only the client and server nodes be functional, because a path 
between these two is guaranteed by resiliency of the network. To resolve the path being 
given to use a target fle, DFS would usually perform resolution of all path components in 
the client node itself. In this regard, replication of directories existing in remote nodes, if 



 

 

 

 

 

    

 
 

530 Operating Systems 

it appears in the path name component, would be carried out in the client node to improve 
the availability of a fle. 

• Robustness: The fault tolerance of a fle system depends on its robustness irrespective of 
its implementation. A fle is said to be robust if it can survive faults, caused mainly due to 
crashing of storage devices, in a guaranteed manner. Redundancy techniques offer stable 
storage devices; one such is disk mirroring used in RAID level 1 to clone multiple copies 
(usually two) of the server. The backup copy is always kept updated but is normally pas-
sive in the sense that it does not respond to client requests. Whenever the primary fails, 
the backup copy becomes dominant and takes over. Proven techniques using comparison 
and verifcation of the primary and backup to ensure their sameness are employed to keep 
these two in synchrony and to detect failures at the same time. Such stable storage usually 
works well for applications that require a high degree of fault tolerance, such as atomic 
transactions. 

• Recoverability: This refers to the ability of a fle to roll back to its most-recent consistent 
state when an operation on a fle fails or is aborted by the user. Out of many available 
proven mechanisms, one is the atomic update techniques used in transaction processing 
that can be exploited in fle implementation to make it recoverable. An atomic transaction 
either completes successfully and transforms a fle into a new consistent state or fails with-
out changing the state of the target fle. In effect, the previous consistent state of the fle is 
recovered in the event of transaction failure. Generally, to make fles recoverable, updates 
are not performed in place; rather updates can be tentatively written into different blocks, 
called shadow pages. If the transaction completes successfully, it commits and makes the 
tentative updates permanent by updating the directory and index structures to point to the 
new blocks, discarding the old ones. 

All three primary attributes of a fle system mentioned are independent of one another. Thus, a fle 
may be recoverable without necessarily being robust or available. Similarly, a fle may be robust and 
recoverable without being available. Likewise, a fle may be available without being recoverable or 
robust. This means different techniques can be used to ensure each of these criteria individually. 

Different fault tolerance techniques are used for faults (availability) that arise during an open 
operation and those that occur after a fle has been opened (mainly access operation). A DFS usually 
maintains many copies of the information needed for path name resolution and many copies of a fle 
to negotiate faults. However, availability techniques are very complex and even more expensive if 
faults that occur after opening and during fle processing (fle access) are to be tolerated (Quorum-
based fault tolerance techniques to handle replicated data in such cases can be used). Hence, a few 
distributed systems handle these faults. Moreover, the communication media used in many LANs 
with an inherent broadcast nature also provides numerous innovative variations in implementing 
fault tolerance in distributed systems. For example, processes often may checkpoint themselves 
across the network, and a special node may be given charge of eavesdropping and recording all 
interprocess messages. Thus, in the event of a node crash, the affected process may be reconstructed 
from its checkpoint state and restored to date by having all outstanding messages relayed to it. 

A few commonly used fault tolerance techniques employed by DFS are cached directories and 
fle replication that address faults in a fle server and in intermediate nodes during an open opera-
tion. The stateless fle server (see Section 9.9.2) design, however, addresses faults in a fle server 
during fle processing. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238 

9.14.8 CLIENT AND SERVER NODE FAILURES 

Traditional fle systems usually keep track of state information of a fle processing activity in 
metadata, such as the fle control block (FCB) of a fle, to implicitly provide a framework between 

http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 531  

 
 
 
 
 

 

 

 

the fle and a user process to simplify the implementation of fle operations (such as a read or 
write). This design approach of a fle system in which users’ state information pertaining to the 
operation performed from one access request to the next is maintained is commonly referred to as 
stateful design. This recorded current state information is subsequently used when executing the 
next immediate request. On the other hand, if any state information concerning a fle processing 
activity while servicing a user’s request is not maintained by the fle system, it is referred as state-
less design. 

• Stateful File Servers: In a DFS running on workstation–server model, use of a stateful 
design implies that there is a virtual-circuit type of connection between the client node and 
the server node. The server creates state information for a client when the client starts a 
new session (a session is the duration between an opening of a fle and a close operation on 
it) by performing an open operation, maintains the state information for the entire dura-
tion of the session, and discards the state information when the user closes the session by 
performing a close operation. The server keeps the state information of a fle processing 
activity in metadata (such as the FCB and similar others) of the fle, and this metadata can 
be maintained in memory, just as in traditional fle systems. This arrangement essentially 
provides good performance. However, DFS design based on the use of a stateful server 
faces several problems in the event of client and server failures. 

When a client crashes, the fle processing activity must be abandoned, and the fle would have 
to be restored to its previous consistent state so that the client can restart its fle processing activity 
afresh. In fact, the client and the fle server share a virtual circuit which holds the fle processing 
state and resources, like fle server metadata, and those become orphans when either a client or 
server crashes. It actually breaks the virtual circuit, so the actions would have to be rolled back 
and the already-created metadata would have to be destroyed. This can, however, be carried out, 
perhaps by the use of a client–server protocol that implements transaction semantics. If a DFS does 
not provide transaction semantics, a client process would then have to make its own arrangements 
so as to restore the fle to a recent-previous consistent state. 

On the other hand, when a fle server crashes, state information pertaining to fle processing 
activity stored in the server metadata is immediately lost, so ongoing fle processing activity has to 
be abandoned, and the fle has to then be restored to its recent-previous consistent state to make it 
once again workable. 

Therefore, the service paradigm in a stateful server requires detection as well as complex crash 
recovery procedures. Both client and server individually need to reliably detect crashes. The server 
must expend the added effort to detect client crashes so that it can discard any state it is holding for 
the client to free its resources, and the client likewise must detect server crashes so that it can per-
form necessary error-handling activities. Therefore, in order to avoid both these problems that occur 
with a stateful server in the event of failures, the fle server design in the DFS has been proposed to 
be stateless to negotiate these situations. 

• Stateless File Servers: A stateless server does not maintain any state information pertain-
ing to fle processing activity, so there exists no implied context between a client and a fle 
server. Consequently, a client must maintain state information concerning a fle processing 
activity, and therefore, every fle system called from a client must be accompanied by all 
the necessary parameters to successfully carry out the desired operations. Many actions 
traditionally performed only at fle open time are repeated at every fle operation. When 
the client receives the fle server’s response, it assumes that the fle operation (read/write) 
requested by it has been completed successfully. If the fle server crashes or communica-
tion error/failure occurs by this time, time-outs occur and retransmission is carried out 
by the client. The fle server after recovery (recovery is mostly trivial, maybe simply by 



 

  

 

     

532 Operating Systems 

rebooting) immediately continues to service the incoming requests, processes a retrans-
mitted request, and fnally provides a reply to the client. Thus, the client process only 
perceives a delayed response to a request and is completely unaware of a fle server crash. 

A stateless fle server, however, cannot detect and discard duplicate requests because these 
actions require state information; therefore, it may service a request more than once. Hence, to 
avoid any harmful effects of reprocessing, client requests must be idempotent. Read/write requests, 
however, are by nature idempotent, but directory-related requests like creation and deletion of fles 
are not idempotent. Consequently, a client may face an ambiguous or misleading situation if a fle 
server crashes and is subsequently is recovered during a fle processing activity. 

Two distinct advantages of using a stateless server approach are: when a server crashes while 
serving a request, the client need only resend the request until the server responds. When a client 
crashes during request processing, no recovery is necessary for either the client or the server. A 
stateless server must, therefore, only have the ability to carry out repeatable operations, and data 
will never be lost due to a server crash. 

Two potential drawbacks of a stateless server approach are: the diffculty of enforcing consis-
tency and also incurring a substantial performance penalty in comparison with stateful servers. 
Performance degradation is mainly due to two reasons. First, the fle server, as already mentioned, 
always opens a fle at every fle operation and passes back the state information to the client. Second, 
when a client performs a write operation, reliability considerations dictate that the data of the fle 
should be written in the form of direct write-through into the disk copy of a fle to the server imme-
diately. As a result, the fle server cannot employ buffering, fle caching, or disk caching in order to 
speed up its own operation. The other distinct drawbacks of this server are that it requires longer-
request messages from its clients that should include all the necessary parameters to complete the 
desired operation, since it does not maintain any client state information. Consequently, longer-
request processing becomes slower, since a stateless server does not maintain any state information 
to speed up processing. However, a hybrid form of fle servers can be designed that could avoid 
repeated fle open operations. A stateless fle service can be implemented on top of datagram net-
work service. It is used in Sun Microsystems’ NFS system. 

9.14.9 OPERATION OF DISTRIBUTED FILE SYSTEMS: AN OVERVIEW 

The functions of conventional fle subsystems running on single-site machines and the basics of fle 
processing in a DFS running on a workstation-based model are conceptually the same; the notable 
difference is that the functions of the DFS are partitioned between the workstations or between 
the workstations (clients) and the server. Some of the functions may be fully entrusted to a single 
party (client), and the remaining functions may be replicated or executed in a cooperative manner. 
Normally, all functions that are delegated to the client need to be replicated to all workstations 
that are clients of the fle service offered by the server. A schematic representation of the basics of 
fle processing of DFS in general is depicted in Figure 9.11 with no inclusion of any special DFS 
techniques. 

The client, at one end, needs to provide a mechanism to negotiate fle-service calls issued by the 
user by means of the set of operations called the application interface (API) or system-call inter-
face. The client, in principle, may forward all requests to the server and need not implement any of 
the fle-system layers locally. This type of fle operation is often referred to as a remote fle process-
ing model in which the server is equipped with all the information about ongoing client activities, 
including controlling concurrent access to shared fles. The mechanics of workstation/server com-
munication are handled in a way analogous to RPC or messages to implement fle accesses through 
stub processes called a fle server interface (agent) and client interface (agent). When the client 
intends to open a fle, the request is handed over to the client interface (agent). The client interface 
communicates the request to the fle server interface (agent) in the server, which then hands over 



Distributed Systems: An Introduction 533  

 

 FIGURE 9.11 A schematic representation of fundamentals of fle processing in a distributed fle system 
(DFS) environment without using any special DFS techniques. 

the request to the fle server. The fle server opens the fle and builds the FCB. Now, whenever the 
client performs a read or write operation on the fle, the operation is usually implemented through 
message passing between the client interface and the fle server interface. I/O buffers that exist for 
the fle at the server’s end participate in the operation, and only one record at a time is passed from 
the fle server to the client. 

The DFS can be organized in two ways. At one extreme, the server can be equipped with most of 
the layers of the fle system and connected to workstations (diskless) on a fast LAN that could offer 
a response time close to that of a local disk. Due to heavy reliance on the server, the remote-access 
method tends to increase the load both on the server as well as on the network. Consequently, DFS 
performance tends to decrease as the volume of network traffc generated by remote-fle accesses 
increases. In fact, network latencies can completely overshadow the effciency of access mecha-
nisms even when only a small fraction of data accesses are non-local. This fact motivates to under-
take certain measures so that network traffc can be reduced by minimizing the data transfers over 
the network during fle processing activity. 

Consequently, this gives rise to the concept at the other extreme, in which the client itself can 
contain most of the layers of the fle system, with the server providing only a low-level virtual disk 
abstraction. In this approach, a client can view or may use the server simply as an unsophisticated 
repository of data blocks. The client basically checks out the fles of interest, or portions thereof, 
from the server and performs most of the processing of fles locally. Upon closing or sometime 
thereafter, fles are returned to the server only for permanent storage or optional usage of sharing. 
In effect, the working set of fles (i.e. the portions of fles under processing) is cached by the client 
for processing using its own memory and local disk and then returned to the server only for perma-
nent storage. Under this scheme, the server may be accessed only when a client cache-miss occurs. 

The client caching approach offers several potential benefts. As a result of local availability 
of the data being cached, access speed can be signifcantly improved over remote access, espe-
cially with those data that are repeatedly referenced. Consequently, the response time is noticeably 
improved and performance is automatically enhanced due to reduced dependence on the communi-
cation network, thereby avoiding the delays imposed by the network, as well as decreasing load on 
the server. In addition, one positive advantage of the client caching approach is that it is very condu-
cive to fault tolerance. But this approach on the other hand suffers from several distinct drawbacks. 
First, local fle processing requires relatively costly and powerful workstations to be equipped with 
larger memory and possibly local disks. Second, concurrent access to shared fles by client-cached 
workstations may lead to well-known cache inconsistency (cache coherence) problems that may 
require the use of additional special client/server protocols to resolve. 

In fact, whatever design approach is followed, the DFS design must be scalable, which means 
that DFS performance would not be much degraded with an increase in the size of the distributed 
system architecture. Scalability is considered an important criteria, especially for environments that 



 

 

 

 

 

 

534 Operating Systems 

gradually grow with time; lack of scalability in these situations often hinders the performance to 
attain a desired level. 

Several techniques are commonly used in the operation of DFS that enable the DFS to achieve 
high performance. Some notable of them are: 

• Effcient File Access: File access may be said to be effcient if it can provide a lower aver-
age response time to client requests or higher throughput of client requests. These criteria, 
in turn, depend mostly on the structural design of a fle server as well as how the operation 
of it is ordered. Two common server structures, however, exist that provide effcient fle 
access. 
• Multi-Threaded File Server: In this fle server, several threads of operation exist; 

each thread is capable of servicing one client request at any point in time. Since fle 
processing is basically an I/O-bound activity, operation of several of these threads that 
service different client request can then be simultaneously performed, causing no harm 
and resulting in fast response to client requests and high throughput at the same time. 
Moreover, as the number of client requests that are active at any instant increases, the 
number of threads can also then be varied to handle all of them individually and, of 
course, with the availability of the OS resources that are required to support it, such as 
thread control blocks (TCBs). 

• Hint-Based File Server: A hint-based fle server is basically a hybrid design in the 
sense that it provides features of both a stateful and a stateless fle server. Whenever 
possible, it operates in a stateful manner for the sake of realizing increased effciency. 
At other times, it operates in a stateless manner. A hint is basically a form of informa-
tion in relation to ongoing fle processing activity, for example, the id of the next record 
in a sequential fle that would be accessed in a fle processing activity. The fle server 
always maintains a collection of hints in its volatile storage. When a fle operation is 
requested by a client, the fle server checks for the presence of a hint that would help 
in its processing. If a hint is available, the fle server effectively uses it to speed up the 
fle operation that would automatically enhance performance; otherwise, the fle server 
operates in a stateless manner: it opens the fle and uses the record/byte id provided by 
the client to access the required record or byte. In either case, after completing the fle 
operation, the server inserts a part of the state of the fle processing activity in its vola-
tile storage as a hint and also returns it to the client as is done in the case of a stateless 
fle server. However, the overall effciency of this fle server depends on the number of 
fle operations that are assisted by the presence of hints. 

• File Caching: As already explained, in more balanced systems, the client holds some por-
tions of the data from a remote fles in a buffer (main memory) or on local disk in its own 
node called the fle cache. This fle cache and the copy of the fle on a disk in the server 
node form a memory hierarchy, so operation of the fle cache and its related advantages 
are similar to those of a CPU cache and virtual memory. Chunks of fle data are loaded 
from the fle server into the fle cache. To exploit the advantages of spatial locality (spatial 
locality refers to the tendency of execution to involve a number of memory locations that 
are viewed as clustered. This refects the tendency of processing to access instructions/ 
data sequentially, such as when processing a fle of data or a table of data), each chunk is 
made large enough to service only a few fle accesses made by a client. Observations and 
studies on distributions of fle size reveal that the average fle size is usually small, hence, 
even whole-fle caching is also feasible. Considering the fact that chunk size usually varies 
per–client application, the size of the chunk is frequently taken as 8 Kbytes, which prob-
ably includes entire fles from many different applications, and the fle-cache hit ratios 
with this size are observed to exceed even 0.98. In addition, a DFS may sometimes use a 
separate attributes cache to cache information in relation to fle attributes. However, there 



Distributed Systems: An Introduction 535  

 

 

 

 

are several issues need to be addressed in the design of a fle-cache that eventually play an 
important role in DFS performance. Some of the key issues in this regard are: 
• File cache location: Clients can cache data in main memory, on local disk, or in both 

at the client node. Organizing a cache in memory would defnitely provide faster access 
to fle data but would result in low reliability, because in the event of a crash of the 
client node, the entire fle cache would be lost and may contain modifed fle data that 
are yet to be written back to the fle copy in the server. Alternatively, the cache can be 
organized on the local disk in the client node. While this approach would slow down 
fle data access, it would offer better reliability, since in the event of client node crash, 
all the data in fle cache would remain unaffected. Reliability of the fle cache organized 
on a local disk could be further enhanced with the use of RAID techniques, like disk 
mirroring. 

• File update policy: cache coherence: The read-only blocks of caches may be in mem-
ory, while the read–write blocks of caches are to be written to local disk with no delay. 
When such a write operation is to be performed on a local disk, the modifed fle data 
would have to be written immediately into the fle copy of the server at the same time. 
This policy, called write-through, is probably the simplest to use to enforce concur-
rency control. The write-through method is also reliable, because this method could be 
implemented as a transaction or an atomic operation to ensure that it completes (a trans-
action is a sequence of operations on one or more objects that transforms a [current] 
consistent state of the database/fle into a new consistent state. Temporary inconsistent 
values that may occur during the execution of a transaction are hidden by making the 
affected entities inaccessible to other clients). However, accomplishment of this method 
temporarily delays some of the conficting writers. To avoid delaying the client, the 
system performs writes to the cache and thus quickly releases writers without making 
them wait for the disk writes to complete; the update of the fle copy (disk write) can be 
performed at a later time. This policy is called the delayed write policy and can also 
result in reduced disk I/O, particularly when requests are repeated for the same data 
blocks which are already in memory. But the problem with delayed writes is that main 
memory is usually volatile and any failure in the node system in the meantime can seri-
ously corrupt and damage vital fle system data. Adequate arrangements thus should be 
provided to ensure that the modifed data would not be lost even if the client node failed 
in the meantime. To ameliorate the problematic situation that may arise from a delayed 
write, some systems fush write-backs to disk at regular time intervals. 

While client caching offers performance advantages, at the same time, it relates to the well-
known critical problem known as cache inconsistency (or cache coherence) irrespective of the 
write policy. Thus, a DFS should enforce some level of cache consistency. The consistency in caches 
holds good when they contain exact copies of remote data. Inconsistency in a cache is caused when 
multiple clients cache portions of the same shared fle and different updates are performed concur-
rently on local copies lying with each individual caches. These uncontrolled updates and inconsis-
tent caches can result in the creation of several different and irreconcilable versions of the same fle. 
Inconsistency in a cache also arises when the remote data are changed by one client that modifes 
the fle and the corresponding local cache copies already cached by other clients consequently 
become invalid but are not removed. The root of this problem perhaps lies in the choice of policy 
decisions adopted in write operations that change a fle copy. However, the choice of a particular 
policy as well as consistency guarantees are largely infuenced by the nature of the consistency 
semantics used. 

The primary objective is to somehow prevent the presence of invalid data in client caches; hence, 
a cache validation function is required that would identify invalid data in client caches and deal with 
them in accordance with the fle-sharing semantics (consistency semantics) of the DFS. File-sharing 



 

 
   

 
 
 
 

 
 

 

 

536 Operating Systems 

semantics usually specify the visibility of updates when multiple clients are accessing a shared fle 
concurrently. For example, when UNIX semantics are used, fle updates made by a client should 
be immediately visible to other clients of the fle, so that the cache validation function can either 
refresh invalid data or prevent its use by a client. It should be noted that the fle-sharing semantics 
suitable for centralized systems are not necessarily the most appropriate for distributed systems. 

• Cache validation: Cache validation can be approached in two basic ways: client-initiated 
validation and server-initiated validation. Client-initiated validation is performed by the 
cache manager at a client node. At every fle access by a client, it checks whether the 
desired data are already in the cache. If so, it checks whether the data are valid. If the check 
succeeds, the cache manager provides the data from the cache to the client; otherwise, it 
refreshes the data in the cache before supplying them to the client. Such frequent checking 
can be ineffcient, since it consumes processing cycles of both the client and the server. 
In addition, this approach leads to additional cache validation traffc over the network at 
every access to the fle, resulting in an ultimate increase in existing traffc density over the 
network. Such traffc can, however, be reduced if the validation can be performed periodi-
cally rather than at every fle access, provided such validation is not inconsistent with the 
fle sharing semantics of the DFS. This approach is followed by Sun NFS. Alternatively, 
in the server-initiated approach, the fleserver keeps track of which client nodes contain 
what fle data in their caches and uses this information in the following way: when a client 
updates data in some part k of a fle, the fle server detects the other client nodes that have 
k in their fle cache and informs their cache managers that their copies of k have become 
invalid so that they can take appropriate action. Each cache manager then has an option 
of either deleting the copy k from its cache or refreshing its cache either immediately or at 
the frst reference to it. 

A simple and relatively easy method to detect invalid data is through the use of time-stamps 
that indicate when the fle was last modifed. A time-stamp is associated with a fle and each 
of its cached chunks. When a chunk of a fle is copied into a cache, the fle’s time-stamp is 
also copied, along with the chunk. The cached chunk is declared invalid if its time-stamp is 
smaller than the fle’s time-stamp at any time. This way a write operation in some part k of a 
fle by one client can invalidate all copies of k in other clients’ caches. Each cache manager in 
that situation deletes copy k from its cache and refreshes it by reloading it at the time of its next 
reference. 

Due to its being expensive, the cache validation approach needs to be avoided, if possible. One 
way to avoid the cache validation overhead is to use fle-sharing semantics like session semantics 
which do not require that updates made by one client be visible to clients in other nodes. This feature 
avoids the need for validation altogether. Another approach may be to disable fle caching if a client 
opens a fle in update mode. All accesses to such a fle are then directly implemented in server node. 
Now, all clients wishing to use the fle would have to access the fle in a way similar to remote fle 
processing. 

• Chunk size: Similar to page size in paging systems, chunk size in the fle cache is also a 
signifcant factor and considered a vital performance metric in the fle caching approach. 
Determination of the optimum chunk size requires balancing of several competing factors. 
Usually, the chunk size should be large so that spatial locality of fle data contributes to a 
high hit ratio in the fle cache. Use of a large chunk size, on the other hand, means a higher 
probability of data invalidation due to modifcations performed by different other clients, 
which eventually leads to more cache validation overhead and thereby more delays than 
when a small chunk size is employed. So, the size of the chunk in a DFS should be decided 
after making a compromise between these two conficting considerations. Moreover, a 



Distributed Systems: An Introduction 537  

   
 
 

  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  

 

 
 
 

 
 
 

 
 
 

fxed size of chunks may not ft all the clients of a DFS. That is why some DFSs have 
adapted different chunk sizes to each different individual client. 

• Scalability: The scalability of DFS depends to a large extent on the architecture of the 
computing system on which it is run and is mainly achieved through certain techniques that 
restrict most data traffc generated by fle-processing activities to confne within a small 
section of a distributed system called clusters of nodes or simply clusters. Clusters and their 
characteristics are discussed in next section. In fact, when nodes are organized in the form 
of clusters, they exhibit certain important features that make this approach quite effcient 
and effective in terms of scalability. For instance, clusters typically represent subnets in a 
distributed system in which each cluster is a group of nodes connected by a high-speed LAN 
but essentially represents a single node of a distributed system. Consequently, the data traf-
fc within a cluster possesses a high data transfer rate, giving rise to improved response time 
as well as increased throughput. In addition, while the number of clusters in a distributed 
system is increased, it does not cause any degradation in performance, because it does not 
proportionately add much network traffc. Moreover, as the system architecture is expanded, 
due to location transparency as well as location independence of the added nodes, any fle 
could be simply moved to any cluster where the client is actually located. Even if the DFS 
does not possess location independence, still the movement of fles and similar other aspects 
can be implemented through fle replication or fle caching for read-only fles. Likewise, for 
read/write fles, the use of session semantics enables to locate a fle version in the client node 
without using any cache validation, which automatically eliminates cache validation traffc; 
hence, network traffc would ultimately be reduced. 

Brief details on fle caching with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

9.14.10 CASE STUDY: WINDOWS 

The Windows Server 2003 fle system possesses two salient features for data replication and data 
distribution: (i) remote differential compression (RDC) is a protocol for fle replication that reduces 
fle replication and fle coherence traffc between servers. (ii) DFS namespaces is a method of 
forming a virtual tree of folders located on different servers so that a client located in any node can 
access these folders. 

Replication is organized using the concept of a replication group, which is essentially a 
group of servers that replicates a group of folders. This replication arrangement although is 
expensive to run on a regular basis, but is otherwise convenient, as several folders from the 
group of folders would be accessed off the server even in the event of failure. The RDC pro-
tocol is used to synchronize copies of a replicated folder across many different servers in its 
replication group. This protocol transmits only changes made to a fle or only the differences 
between copies of a fle, or the differences between different members present in a replication 
group, thereby conserving bandwidth between servers. Copies of a fle are synchronized peri-
odically on regular basis. When a new fle is created, cross-fle RDC identifes existing fles 
that are similar to the new fle and transmits only the differences of the new fle from one of 
these fles to members of the replication group. In this way, this protocol reduces the bandwidth 
consumed by the replication operation. 

The DFS namespace is created by a system administrator. For every folder in the namespace, the 
administrator specifes a list of servers that contain a copy of the folder. When a client refers to a 
shared folder that appears in the namespace, the namespace server is contacted to resolve the name 
in the virtual tree. It sends back a referral to the client, which contains the list of servers that contain 
a copy of the folder. The client contacts the frst server in this list to access the folder. If this server 
does not respond and client failback is enabled, the client is notifed of this failure and goes on to 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

   

 
 

 
 
 
 
 
 
 
 
 

  

 

538 Operating Systems 

contact the next server in the list. Thus, if the list of servers contains two servers, the second server 
acts as a hot standby for the frst server. 

9.14.11 CASE STUDY: SUN NFS 

Sun Network File Systems, introduced in 1985, was the frst product in distributed fle service that 
achieved success both technically and commercially and has been widely adopted in industry and 
academic environments. The Sun NFS basically provides sharing of fle systems in nodes operating 
under the Sun operating system, which is a version of UNIX. All implementations of NFS support 
the NFS protocol; a set of RPCs that provide the means for clients to perform operations on a remote 
fle store. Although the NFS protocol is system-independent, but it was originally developed for use 
in networks of UNIX systems. Figure 9.12 shows a schematic diagram of the Sun NFS architecture. 
It consists of a two-level architecture: 

• The virtual fle system layer 
• The NFS layer. 

Virtual fle system layer: The implications of virtual fle systems (VFS) was described in 
Chapter 7. With the use of the VFS layer (module), NFS provides access transparency that enables 
user programs to issue fle operations for local or remote fles without it making any difference. 
Other DFSs, if they support UNIX system calls, can then also be present and be integrated in the 
same way. Addition of VFS to the UNIX kernel enables it to distinguish between local and remote 
fles, and to translate between the UNIX-independent fle identifers used by NFS and the internal 
fle identifers normally used in UNIX and other fle systems. The fle identifers used in NFS are 
called fle handles. A fle handle is opaque to clients and contains whatever information the server 
needs to distinguish an individual fle. When NFS is implemented in UNIX, the fle handle is 
derived from the fle’s inode number by adding two extra felds, fle-system identifer and i-node 
generation number. 

FIGURE 9.12 A block–structured illustration of a representative scheme of SUN NFS architecture. 



Distributed Systems: An Introduction 539  

 
 

  
 
 
 

 
 
 

 

 

 

The VFS layer implements the mount protocol and creates a system-wide unique designator for 
each fle called the v-node (virtual node). The VFS structure for each mounted fle system thus has 
one v-node per open fle. A VFS structure relates a remote fle system to the local directory on which 
it is mounted. The v-node contains an indicator to show whether a fle is local or remote. If the fle 
on which an operation is to be performed is located in one of the local fle systems, the VFS invokes 
that fle system and the v-node contains a reference to the index of the local fle (an i-node in a UNIX 
implementation); otherwise it invokes the NFS layer (Figure 9.12), and the v-node in that situation con-
tains the fle handle of the remote fle. The NFS layer contains the NFS server module, which resides 
in the kernel on each computer that acts as an NFS server. The NFS interacts with the server module at 
the remote node (computer) containing the relevant fle through NFS protocol operations. The beauty 
of this architecture is that it permits any node to be both a client and a server at the same time. 

• Mount protocol: The modifed version of the UNIX mount command can be issued by 
clients to request mounting of a remote fle system. They specify the remote host name, 
pathname of a directory in the remote fle system, and the local name with which it is to 
be mounted. Each node in the system contains an export list that contains pairs of the form 
(<directory>, <list-of-nodes). Each pair indicates that <directory>, which exists in one of 
the local fle systems, can be remotely mounted only in the nodes contained in <list-of-
nodes>. The mount command communicates with the mount service process on the remote 
host using a mount protocol. This is essentially an RPC protocol. When the superuser of 
a node makes a request to mount a remote directory, the NFS checks the validity (access 
permission for the relevant fle system) of the request, mounts the directory, and fnally 
returns a fle handle which contains the identifer of the fle system that contains the remote 
directory and the inode of the directory in that fle system. The location (IP address and 
port number) of the server and the fle handle for the remote directory are passed on to the 
VFS layer and the NFS client. In effect, users in the node can view a directory hierarchy 
constructed through these mount commands. NFS also permits cascaded mounting of fle 
systems; that is, a fle system could be mounted at a mount point in another fle system, 
which is itself mounted inside another fle system, and so on. The mounting of sub-trees 
of remote fle systems by clients is supported by a mount service process that runs at the 
user level on each NFS server computer. On each server, there is a well-known fle (/etc/ 
exports) containing the names of local fle systems that are available for remote mounting. 
An access list is associated with each fle-system name (identifer) indicating which hosts 
are permitted to mount the fle system. However, some restrictions in this regard have been 
imposed in the NFS design that carefully avoid transitivity of the mount mechanism; oth-
erwise each fle server would have to know about all mounts performed by all clients over 
its fle systems, which eventually would require the fle server to be stateful. 

• NFS protocol: The NFS protocol employs RPCs to provide remote fle processing services 
using a client–server model. In fact, Sun’s RPC system (described earlier) was developed 
for use in NFS. It can be confgured to use either UDP or TCP, and the NFS protocol is 
compatible with both. The RPC interface to the NFS server is open; any process can send 
requests to an NFS server if the requests are valid and they include valid user credentials. 
The submission of a request with signed user credentials may be required as an optional 
security feature for the encryption of data for privacy and integrity. An NFS server does 
not provide any means of locking of fles or records, and as such, users must employ their 
own mechanisms to implement concurrency control. A fle server here is truly stateless, so 
each RPC has parameters that identify the fle, the directory containing the fle, and the 
data to be read or written. In addition, being stateless, the fle server performs an implicit 
open and close for every fle operation, and for this purpose, it does not use the UNIX buf-
fer cache. The NFS provides numerous calls, such as; looking up a fle within a directory, 



 

 

   

 
 
 
 
 
 
 

  
 

   
 

  

 
  

 
 
 
 

 

 

  

540 Operating Systems 

reading directory entries, manipulating links and directories, accessing fle attributes 
(i-node information), and performing a fle read/write operations. 

• Path name translation: UNIX fle systems translate (resolve) multi-part fle pathnames to 
i-node references in a step-by-step manner whenever system calls, such as open, creat, or 
stat are used. In NFS, pathnames cannot be translated at a server, because the name may 
cross a mount point at the client; directories holding different parts of a multi-part name 
may reside in fle systems that are located at different servers. So, pathnames are parsed, 
and their translation is performed in an iterative manner by the client. Each part of a name 
that refers to a remote-mounted directory is then translated to a fle handle using a separate 
lookup request to the remote server. To explain this procedure, let us assume that a user X1 
located in node N1 uses a pathname a/b/c/d, where b is the root directory of a mounted fle 
system. To begin with, the host node N1 creates v-nodea, the v-node for a. The NFS uses 
the mount table of N1 when looking up the next component of the pathname and sees that 
b is a mounted directory. It then creates v-nodeb from the information in the mount table. 
Let us assume that v-nodeb is for a fle in node N2, so the NFS makes a copy of directory b 
in node N1. While looking for c in the copy b, the NFS again uses the mount table N1. This 
action would resolve c properly, even if c is a fle system that was mounted by a superuser 
of node N1 at some point in the remote fle system b. The fle server in node N2, which con-
tains b, has no need to know about this mounting. However, instead of using this procedural 
approach, if the pathname b/c/d were to be handed over directly to the fleserver in node 
N2, the server would then have to have all the information about each and every mount 
performed by all clients over its fle system. Consequently, this would require the fle server 
to be stateful, which directly contradicts our stateless design strategy of the fle server. To 
make this time-consuming process of entire pathname resolution relatively fast, each client 
node is usually equipped with an additional directory name cache. 

• Server and client caching: Caching in both the server and the client computer is an indis-
pensable feature of NFS implementations in order to achieve improved performance. The 
caching techniques used here work in a similar way as in a conventional UNIX environment, 
because all read and write requests issued by user-level processes pass through a single cache 
that is implemented in the UNIX kernel space. The cache is always kept up to date, and fle 
accesses cannot bypass the cache. 

The cache used for the server machine of NFS servers follows a similar line as other fle accesses. 
The use of the server’s cache to hold recently read disk blocks does not raise any cache consistency 
(cache coherence) problems, but when the server performs write operations, additional measures are 
needed, so clients can be assured the results of write operations are persistent, even in the event of 
a server’s crash. However, in different versions of the NFS protocol, the cache read/write operations 
are of different styles, providing different options to exploit. 

The NFS client module caches the result of read, write, getattr, lookup, and readdir operations 
in order to reduce the number of requests transmitted to servers, thereby minimizing the processing 
time and maximizing the speed of execution apart from avoiding network latency. Client caching 
introduces the potential for different versions of fles or portions of fles to exist in different client 
nodes, because writes by a client do not result in the immediate updating of cached copies of the 
same fle in other clients. Instead, clients are responsible for polling the server to check the currency 
of the cached data that they hold. Usually, an appropriate timestamp-based method is used to vali-
date cached blocks before they are used. Contents of a cached block are assumed to be valid for a 
certain period of time. For any access after this time, the cached block is used only if the timestamp 
is larger than the timestamp of the fle. 

In general, read-ahead and delayed-write mechanisms are employed, and to implement these 
methods, the NFS client needs to perform some reads and writes asynchronously using one or more 



Distributed Systems: An Introduction 541  

 

 

 

  
 
 
 
 
 

 
 

 
 

 
 
 
 
 

 

 
 

  
   

 
 
 

  
 

  
 
 

 
 
 
 
 

bio-daemon (block input-output; the term daemon is often used to refer to user-level processes that 
perform system tasks) processes at each client. Bio-daemon processes certainly provide improved 
performance, ensuring that the client module does not block waiting for reads to return or writes to 
commit at the server. They are not a logical requirement, since in the absence of read-ahead, a read 
operation in a user process will trigger a synchronous request to the relevant server, and the results 
of writes in user processes will be transferred to the server when the relevant fle is closed or when 
the virtual fle system at the client performs a sync operation. 

• File operations and file sharing: Every file operation in NFS should require a request 
to be made to the server to religiously obey the remote service paradigm. In addition, 
NFS employs caching of file blocks (file caching) at each client computer for greatly 
enhanced performance. Although this is important for the achievement of satisfactory 
performance, but this hybrid arrangement results in some deviation from strict UNIX 
one-copy file update semantics that consequently complicates the file sharing semantics 
offered by it. 

To speed up fle operation, NFS uses two caches. A fle-attributes cache caches i-node infor-
mation. Use of this cache is important, since it has been observed that a large percentage of 
requests issued to a fle server is related to fle attributes. The cached attributes are discarded 
after 3 seconds for fles and after 30 seconds for directories. The other cache used is the fle-
blocks cache, which is the conventional fle cache. As usual, it contains data blocks from the 
fle. The fle server uses large (normally 8 Kbytes) data blocks and uses read-ahead and delayed-
write techniques (i.e. buffering techniques, already discussed in Chapter 7) to achieve improved 
performance in fle access. A modifed block is sent to the fle server for writing into the fle at 
an unspecifed time (asynchronously). This policy is used even if clients concurrently access the 
same fle block in conficting modes, so a modifcation made by one client is not immediately 
visible to other clients accessing the fle. A modifed block is also sent to the fle server when the 
relevant fle is closed or when a sync operation is performed by the virtual fle system at the cli-
ent’s end. A directory names cache is used in each client node to expedite pathname resolution at 
the time of fle access. It usually contains remote directory names and their v-nodes. New entries 
are added to the cache when a new pathname prefx is resolved, and similarly, entries are deleted 
when a lookup fails because of mismatch between attributes returned by the fle server and those 
of the cached v-nodes. 

• Conclusion: In summary, the design of Sun NFS has been implemented for almost every 
known operating system and heterogeneous hardware platforms and is supported by a 
variety of fling systems. The NFS server implementation is stateless and by nature idem-
potent that enables clients and servers to resume execution after a failure without the need 
for recovery procedures. In fact, the failure of a client computer or a user-level process in a 
client has no effect on any server that it may be using, since servers hold no state on behalf 
of their clients. The design provides good location transparency and access transparency 
if the NFS mount service is used properly to produce similar name spaces at all clients. 
Migration of fles or fle systems is not fully achieved by NFS, but if fle systems are moved 
between servers, then manual intervention to reconfgure the remote mount tables in each 
client must then be separately carried out to enable clients to access the fle systems in 
their new location. The performance of NFS is made much enhanced by the caching of 
fle blocks at each client computer, even after deviating from strict UNIX one-copy fle 
update semantics. The performance fgures as published show that NFS servers can be 
built to handle very large real-world loads in an effcient and cost-effective manner. The 
performance of a single server can be enhanced easily by the addition of processors, disks, 
and controllers, of course within a specifed limit. When such limits are reached, additional 



 

 

 

    

 

  

 

 

 

 
 
  

542 Operating Systems 

servers can be installed and fle systems must be reallocated between them. The measured 
performance of several implementations of NFS and its widespread adoption for use in situ-
ations that generate very heavy loads are clear indications of the effciency with which the 
NFS protocol can be implemented. 

9.14.12 CASE STUDY: LINUX GENERAL PARALLEL FILE SYSTEM 

The Linux general parallel fle system (GPFS) introduced by IBM is a shared-disk high-performance 
reliable fle system that can run on various types of systems, including the IBM System p™ series 
and machines based on Intel or AMD processors. Supported operating systems for GPFS Version 
3.2 include AIX (IBM UNIX) Version 5.3 and selected versions of Red Hat and SUSE Linux dis-
tributions. GPFS concepts include direct storage area network (SAN) access; network-based block 
I/O information lifecycle management (ILM) tools; and new features including multiple NSD serv-
ers, clustered NFS, and more scalable ILM tools supporting migration to other media types. It 
successfully satisfes the needs for throughput, storage capacity, and reliability of the largest and 
most demanding problems, such as for applications like modeling weather patterns. In fact, GPFS 
distinguishes itself from other cluster fle systems by providing concurrent high-speed fle access 
to applications executing on multiple (more than 2000) nodes running under different operating 
systems, including an AIX cluster, a Linux cluster, or a heterogeneous cluster of other OS, AIX, and 
Linux nodes. It is time-proven and is used on six of the ten most powerful supercomputers in the 
world, including one of the largest: ASCI White at Lawrence Livermore National Laboratory, USA, 
providing effcient use of disk bandwidth. 

GPFS supports fully parallel access both to fle data and metadata. In truly large systems, while 
administrative actions (such as adding or removing disks from a fle system or rebalancing fles 
across disks) involve a great amount of work, but GPFS performs its administrative functions in 
parallel as well. A GPFS system consists of the cluster nodes on which the GPFS fle system and the 
applications are run, connected by a switching fabric to the scalable shared-disk architecture con-
sisting of disks or disk subsystems. All nodes in the cluster, however, have equal access to all disks. 

Performance and Scalability 

GPFS provides unparalleled performance, especially for larger data objects, and excellent perfor-
mance for large aggregates of smaller objects. GPFS achieves high performance along with fault 
tolerant I/O by: 

• Striping data using appropriate disk-block size to store data across multiple disks (to the 
extent of several thousand disks using RAID technology) attached to multiple nodes. 

• Using block-level locking based on a very sophisticated scalable distributed token man-
agement system to ensure data consistency of fle system data and metadata when multiple 
application nodes in the cluster attempt to access the shared fles concurrently. 

• Providing typical access patterns like sequential, reverse sequential, and random and opti-
mizing I/O access for these patterns. 

• Offering scalable metadata (e.g. indirect blocks in the FMT) management that allows all 
nodes of the cluster accessing the fle system to perform the same fle metadata operations. 

• Allowing GPFS fle systems to be exported to clients outside the cluster through NFS or 
Samba that when integrated form the clustered NFS which provides scalable fle service. 
This, in turn, permits simultaneous access to a common set of data from multiple nodes, 
apart from monitoring of fle services, load balancing, and IP address failover. 

• Effcient client-side caching. 
• Supporting a large block size, confgurable by the administrator, to ft I/O requirements. 
• Utilizing advanced algorithms that improve read-ahead and write-behind fle functions. 



Distributed Systems: An Introduction 543  

 

 
  

 

• Accomplishing fault-tolerance by using robust clustering features and support for continu-
ous data replication of journal logs, metadata, and fle data. The journal is located in the 
fle system under which the fle belongs and is processed. In the event of a node failure, 
other nodes can access its journal and carry out the pending operations. 

To provide adequate protection and security, GPFS ultimately enhanced access-control that pro-
tects directories and fles by providing a means of specifying who should be granted access. GPFS 
supports (on AIX) NFS V4 access control lists (ACLs) in addition to traditional ACL support. 
Traditional GPFS ACLs are based on the POSIX model. Access control lists extend the base per-
missions or standard fle-access modes, such as; read (r), write (w), and execute (x), and beyond 
these three categories; the fle owner, fle group, and other users are used to allow the defnition to 
include additional users and user groups. In addition, GPFS introduces a fourth access mode; con-
trol (c), which can be used to govern who can manage the ACL itself. 

9.15 CLUSTERS: A DISTRIBUTED COMPUTER SYSTEM DESIGN 

Advances in communication technology have facilitated to evolve a relatively recent signifcant 
development in the design of distributed computing systems called clustering. Cluster architec-
ture has appeared as a savior in mainly managing different types of numerous application areas 
that otherwise require a true distributed system for their processing. This comparatively low-cost 
cluster architecture has fully satisfed the user community with a base substitute for a true distrib-
uted system which is relatively more expensive. It looks as if the users are made happy with only 
a glass of grog when the bottle of champagne is beyond their reach! A cluster can be defned as a 
group of interconnected, self-suffcient computers (multicomputers) working together as a unifed 
computing system that can cast an illusion of single-system image (SSI) as essentially one single 
machine to the outside world. Each individual computer (node) in a cluster may be a uniprocessor 
or a multiprocessor which can even run on its own without any assistance from the cluster. The use 
of a multiprocessor as a node in the cluster, although not necessary, does improve both performance 
and availability. Since clusters are composed of independent and effectively redundant comput-
ers (nodes), they have a potential for fault-tolerance and they are also suitable for other classes of 
problems in which reliability is paramount. A clustering approach, however, can be commonly con-
sidered an alternative to symmetric multiprocessing that offers effectively unbounded processing 
power, storage capacity, high performance, and high availability that could be used to solve much 
larger problems than a single machine could. 

Cluster architecture while was developed and introduced as a base substitute for a distributed 
system, but it is essentially built on the platform of a computer networks of multicomputer systems 
comprising heterogeneous, complete, stand-alone, and autonomous machines (computers) operated 
by a loosely coupled NOS. Our traditional distributed system (per defnitions given in Section 9.4 
and 9.8) is run by a DOS, but a DOS is not supposed to manage a collection of independent comput-
ers. On the other hand, a network of computers in the premises of a computer network being run by 
a NOS never provides the view of a single coherent system. So, neither DOS nor NOS really quali-
fes as part of a distributed system in this regard. The obvious question thus arises as to whether it 
is possible to develop a distributed computing system that could have most of the salient features of 
these two different domains (DOS and NOS environments). Those features are mainly transparency 
and related ease of use provided by DOS, and scalability and openness offered by NOS. One viable 
solution in this regard was attempted simply by enhancing the services that a NOS provides, such 
that better support for distribution transparency could be realized. To implement these enhance-
ments, it was then decided to include an additional layer of software with a NOS in order to improve 
its distribution transparency and also to more or less hide the heterogeneity in the collection of 
underlying systems. This additional layer is physically placed in the middle between applications 
and NOS; hence, it is legitimately called middleware, and it lies at the heart of modern distributed 



 

  

   

 

 
 

 

 

  
 
 

544 Operating Systems 

systems of this category being currently built (Chakraborty, 2020). This architectural system design 
methodology quickly gained much importance due to the range of options it can provide to cater 
to many different operational environments, particularly in the area of server applications (Buyya, 
1999). 

Appropriate system software is thus required to fully exploit a cluster hardware confguration 
that requires some enhancements over a traditional single-system operating system. It should be 
clearly noted that cluster software is not a DOS, but it contains several features that closely resemble 
those found in DOS. Some of them are: it provides high availability through redundancy of avail-
able resources, such as CPUs and other I/O media. On the one hand, it speeds up computation by 
exploiting the presence of several CPUs within the cluster, and on the other hand, with the use of 
the same (or heterogeneous) hardware confgurations, it spreads the favor of parallel processing 
by providing a single-system image to the user. In addition, with the use of appropriate schedul-
ing software, a cluster effectively exhibits the capability to balance load in the existing computing 
system. Last but not least, the software is adequately equipped in providing fault-tolerance as well 
as failure management. 

9.15.1 DISTINCT ADVANTAGES 

Clustering method by interconnecting independent autonomous computers exhibits many distinct 
advantages. Clusters offer the following useful features that can be realized at a relatively low cost 
as indicated by Weygant: 

• High Availability: More availability of the computing resources present in the cluster 
comes from its high scalability. It also implies high fault-tolerance. Since each node in a 
cluster is an independent stand-alone computer, the occurrence of faults, and thereby fail-
ure of any node, does not create as such any loss of service. In many of today’s products, 
fault-tolerance is handled automatically in software. Moreover, clustering also possesses 
failover capability by using a backup computer placed within the cluster to take charge of 
a failed computer to negotiate any exigency. 

• Expandability and Scalability: It is possible to confgure a cluster in such a way to add 
new systems to the existing cluster using standard technology (commodity hardware and 
software components). This provides expandability, an affordable upgrade path that lets 
organizations increase their computing power while preserving their existing investment by 
incurring only a little additional expense. The performance of applications also improves 
with the aid of a scalable software environment. Clusters also offer high scalability and 
more availability of the computing resources. In fact, this approach offers both absolute 
scalability as well as incremental scalability, which means that a cluster confguration can 
be easily extended by adding new systems to the cluster in small increments, of course 
within the underlying specifed limits. 

• Openness: A clustering approach is also capable of hiding the heterogeneity that may exist 
in the collection of underlying interconnected machines (computers) and thereby ensuring 
interoperability between different implementations. 

• High Throughput: The clustering approach offers effectively unbounded processing 
power, storage capacity, high performance, and high availability. These together thereby 
offer considerably high throughput in all situations. 

• Superior Cost/Performance: By using commodity building blocks, it is possible to 
realize a cluster, that could offer an equal or even greater computing power as well as 
superior performance than a comparable single large machine, at much lower cost and 
complexity. 

A brief on this topic is given on the Support Material at www.routledge.com/9781032467238. 

http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 545  

   

 

   

  
 
 
 

 
 
 
 
 

 
 

  
 
 
 
 
 
 
 

  
 

9.15.2 CLASSIFICATION OF CLUSTERS 

Clusters can be classifed in many different ways. Perhaps the simplest classifcation is based on 
whether the nodes in a cluster access the same shared–disk. In an n-node shared-disk cluster, there 
is a disk subsystem that is directly linked to multiple nodes within the cluster. In addition, there is 
still a standard high-speed link between the nodes for message exchange to coordinate their activity. 
Since the shared common-disk subsystem is a single point of interaction between multiple comput-
ers, it generally uses a RAID system or another similar redundant disk technology to achieve high 
performance, high reliability, and better fault tolerance. 

The other alternative is an n-node cluster in which there is no common shared disk but only 
one high-speed interconnection link between the nodes for message exchange to coordinate cluster 
activity. This link can be a LAN or WAN that may be dedicated only to the participating nodes 
in the cluster or can be shared by other computers that lie outside the domain of the cluster. Here, 
remote client systems must have the provision to link with the LAN or WAN of the server cluster. 

Individual clusters may, however, be interconnected to form a larger system (cluster of clusters). 
In fact, the internet itself can be used as a computing cluster. The proliferation of WANs of com-
puter resources for high-performance computing has led to the emergence of a new feld called 
metacomputing. Discussion of metacomputing is outside the scope of this book. Interested readers 
should consult Baker (1991). 

9.15.3 DIFFERENT CLUSTERING METHODS 

Based on the functional alternatives, clustering approaches can be exploited over a spectrum of 
possibilities. This classifcation also demystifes the objectives of a specifc cluster and defnes its 
design requirements. Some common approaches in use are: 

• Separate server: In this approach to clustering, each computer is a separate server with its own 
disks and no disks shared between such systems exists. [Figure 9.39(b) given on the Support 
Material at www.routledge.com/9781032467238.] However, this approach requires software 
management and scheduling mechanisms to handle continuously arriving client requests to 
assign them to different servers in a way that load balancing can be maintained and high uti-
lization of the available resources can be attained. Consequently, this approach can offer high 
performance and also high availability. Moreover, to make this approach attractive, failover 
capability is required so that in the event of failure of one computer, any other computer in 
the cluster can take up the incomplete executing application from the point of its failure and 
continue its execution to its completion. To implement this, data must be constantly copied 
among systems so that each system has easy access to the most-current data of the other sys-
tems. However, such data exchange operations essentially involve high communication traffc 
as well as server load that can incur additional overhead for the sole purpose of ensuring high 
availability, and this, in turn, also results in a substantial degradation in overall performance. 

• Servers connected to disks (shared nothing): In order to reduce the network traffc and server 
overhead caused mostly by data exchange operations needed among the systems in a cluster, 
most clusters equipped with servers are connected to common disks [Figure 9.39(a) on the 
Support Material at www.routledge.com/9781032467238]. One variation of this approach is 
simply called shared nothing, in which the common disks (not shared disk) are partitioned into 
volumes, and each volume is owned by a single computer. If one computer fails, the cluster 
must be reconfgured so that another computer can gain ownership of the volumes owned by 
the failed computer. In this way, constant copying of data among all systems to enable each 
system to have easy access to the most-current data of the other systems can simply be foregone. 

• Shared-disk servers: In the shared-disk approach, multiple computers present in a cluster share 
the same disks at the same time so that each computer has access to all of the volumes on all of 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 

  

 
 

 

 

 

 

 

546 Operating Systems 

the disks [Figure 9.39(a) on the Support Material at www.routledge.com/9781032467238]. This 
approach, however, requires some form of locking mechanism to implement mutual exclusion 
to ensure that data can be accessed by only one computer at any point in time. 

A brief on this topic is given on the Support Material at www.routledge.com/9781032467238. 

9.15.4 GENERAL ARCHITECTURE 

Formation of a cluster by organizing computers can be accomplished in a variety of ways (Buyya, 
1999). However, a typical cluster architecture is depicted in Figure 9.13. The individual computers 
may be homogeneous or heterogeneous and are usually connected by high-speed LAN or switch 
hardware to realize faster communication. Each computer in the cluster can run on its own, apart 
from its operation as a member of the cluster. In addition, a middleware layer of software needs to 
be included in each computer, the presence of which enables each computer to operate as a cluster 
member in unison (to project it as a component of a single-system image). The other functions of 
middleware involve providing access transparency, distribution transparency, balancing of load, 
and high availability by responding to failures in individual components and many similar things. 
Moreover, a cluster will also be equipped with other software tools so as to help the cluster eff-
ciently execute programs that are capable of realizing parallel execution. However, some of the 
major representative functions and services that are common to middleware and are provided by it 
in a cluster are the following: 

• Single entry point: A user logs normally onto the cluster rather than to an individual 
computer. 

• Single control point: A default node always exists that is used for cluster management 
and control. 

• Single memory space: The presence of distributed shared memory allows programs to 
share variables. 

• Single fle hierarchy: The user views a single hierarchy of fle directories under the same 
root directory. 

FIGURE 9.13 A representative block diagram of a cluster computer architecture realized with the use of PC 
workstations and cluster middleware. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Distributed Systems: An Introduction 547  

 

 

 

  

 

 

 

 
 

   

 
 
 
 
 

  

 

 
 
 
 
 

   

 
 

• Single job-management system: A job scheduler exists in a cluster (not related to any 
individual computer) that receives jobs from all users submitted to the cluster irrespective 
of any specifcation about on which computer host a submitted job will be executed. 

• Single virtual networking: Any node can access any other point in the cluster, even 
though actual physical cluster confguration may consist of several interconnected net-
works. There exists a single virtual network operation. 

• Single user interface: Irrespective of the workstation through which a user enters the 
cluster, a common graphic interface supports all users at the same time. 

• Single process space: A uniform process-identifcation scheme is used. A process execut-
ing on any node can create or communicate with any other process on any local or remote 
node. 

• Process migration: Any process running on any node can be migrated to any other node 
irrespective of its location, which enables balancing the load in the system. 

• Single I/O space: Any node can access any local and remote I/O device, including disks, 
without having any prior knowledge of its actual physical location. 

• Checkpointing: This function periodically saves the process state, intermediate results, 
and other related information of the running process that allows implementation of roll-
back recovery (a failback function) in the event of a fault and subsequent failure of the 
system. 

Similar other services are also required for cluster–middleware in order to cast a single-
system image of the cluster. The last four items of the preceding list enhance the availability 
of the cluster, while the other items in the list are related to providing a single-system image 
of the cluster. 

9.15.5 OPERATING SYSTEM CONSIDERATIONS 

Whatever be the hardware confguration and arrangement of the cluster, it requires specifc soft-
ware (specifcally the OS) so that this form of distributed computing system can cast a single-
system image (SSI) to the user. An operating system that can project this SSI view will be of a 
special type and will be different for different cluster architectures and is thus required to fully 
match the underlying cluster hardware. It should be clearly noted that although cluster software 
is not a distributed operating system, it has several useful features that closely resemble those 
found in true distributed operating systems. Cluster software controls the entire operation of all 
the nodes present in the cluster, and it spreads the favor of parallel processing by providing a 
unifed system image to the user, known as single-system image. It speeds up computation, ren-
dering parallel processing by exploiting the services of several CPUs (nodes) present within the 
cluster, and this is accomplished by scheduling and executing independent sub-tasks of an appli-
cation simultaneously on different nodes within the cluster. It provides high availability through 
redundancy of available resources, such as CPUs and other I/O media, yet those are also del-
egated to carry out effective load balancing among the existing computer systems. This software 
is also equipped to provide enough fault-tolerance as well as failure management. Apart from 
being equipped with its usual software, a cluster will also have other software tools supported by 
the underlying OS, such as a parallelizing compiler, software interfaces, and programming 
language interfaces, etc. so that all these together can create an environment very similar to that 
of a true distributed system. 

9.15.6 CASE STUDY: WINDOWS CLUSTERS 

The Windows cluster server (also known as Wolfpack) is essentially a shared-nothing cluster 
(as already described), in which each disk volume and other resources are owned by a single 



 

 

 

 

   

 

548 Operating Systems 

system at any point in time. The Windows Cluster Server is based on the following funda-
mental concepts: 

• Cluster Service and Management: A collection of software must reside on each node 
that manages all cluster-specifc activity. A cluster as a whole is, however, managed using 
distributed control algorithms which are implemented through actions performed in all 
nodes. These algorithms require that all nodes in a cluster have a consistent view of the 
cluster; that is, they must possess identical lists of nodes within the cluster. An application 
has to use a special Cluster API and dynamic link library (DLL) to access cluster services. 

• Resources: The concept of resources in Windows is somewhat different. All resources in 
the cluster server are essentially objects that can be actual physical resources in the sys-
tem, including hardware devices, such as disk drives and network cards; logical resources, 
such as logical disk volumes, TCP/IP addresses, entire applications, and databases; or a 
resource that can even be a service. A resource is implemented by a dynamic link library 
(DLL), so it is specifed by providing a DLL interface. Resources are managed by a 
resource monitor which interacts with the cluster service via RPC and responds to cluster 
service commands to confgure and move a collection of resources. A resource is said to 
be online at a node when it is connected to that specifc node to provide certain services. 

• Group: A group is a collection of resources managed as a single unit. A resource belongs 
to a group. Usually, a group contains all of the elements needed to run a specifc applica-
tion, including the services provided by that application. A group is owned by one node in 
the cluster at any time; however, it can be shifted (moved) to another node in the event of 
a fault or failure. A resource manager exists in a node that is responsible for starting and 
stopping a group. If a resource fails, the resource manager alerts the failover manager and 
hands over the group containing the resource so that it can be restarted at another node. 

• Fault Tolerance: Windows Cluster Server provides fault-tolerance support in clusters by 
using two or more server nodes. Basic fault tolerance is usually provided through RAIDs 
of 0, 1, or 5 that are shared by all server nodes. In addition, when a fault or a shutdown 
occurs on one server, the cluster server moves its functions to another server without caus-
ing a disruption in its services. 

An illustration of the various important components of Windows Cluster Server and their rela-
tionships in a single system of a cluster is depicted in Figure 9.14. Individual cluster services are 
accessed by one manager out of many. Each node has a node manager which is responsible for 
maintaining this node’s membership in the cluster and also the list of nodes in a cluster. Periodically, 
it sends messages called heartbeats to the node managers on other nodes present in the cluster for 
the purpose of node fault detection. When one node manager detects a loss of heartbeat messages 
from another node in the cluster, it broadcasts a message on the private LAN to the entire cluster, 
causing all members to exchange messages to verify their view of current cluster membership. If a 
node manager does not respond or a node fault is otherwise detected, it is removed from the cluster, 
and each node then accordingly corrects its list of nodes. This event is called a regroup event. The 
resource manager concerned with resources now comes into action, and all active groups located 
in that faulty node are then “pulled” to other active nodes in the cluster so that resources in them 
can be accessed. Use of a shared disk facilitates this arrangement. When a node is subsequently 
restored after a failure, the failover manager concerned with nodes decides which groups can be 
handed over to it. This action is called a failback, it safeguards and ensures resource effciency in 
the system. The handover and failback actions can also be performed manually. 

In effect, the resource manager/failover manager makes all decisions regarding resource 
groups and takes appropriate actions to startup, reset, and failover. In the event of a node failure, 
the failover managers on the other active nodes cooperate to effect a distribution of resource groups 
from the failed system to the remaining active systems. When a node is subsequently restored after 



Distributed Systems: An Introduction 549  

 

  

 FIGURE 9.14 A schematic block diagram of a representative Windows cluster server. 

rectifying its fault, the failover can decide to move some groups back to the restored system along 
with the others. In particular, any group can be confgured with a preferred owner. If that owner 
fails and then restarts, it is desirable that the group in question be moved back to the node using a 
rollback operation. 

The confguration database used by the cluster is maintained by the confguration database 
manager. The database contains all information about resources and groups and node ownership 
of groups. The database managers on each of the cluster nodes interact cooperatively to maintain 
a consistent picture of confguration information. Fault-tolerant transaction software is used to 
ensure that changes in the overall cluster confguration before failure, during failure, and after 
recovery from failure are performed consistently and correctly. 

There are many other managers to perform their respective duties and responsibilities. One such 
processing entity is known as an event processor (handler) that coordinates and connects all of the 
components of the cluster service, handles common operations, and controls cluster service initial-
ization. The communication manager monitors message exchange with all other nodes present in 
the cluster. The global update manager provides a service used by other components within the 
cluster service. 



 

   

 
 
 
 

 

 

550 Operating Systems 

Windows Cluster Server balances the incoming network traffc load by distributing the traffc 
among the server nodes in a cluster. It is accomplished in the following way: the cluster is assigned 
a single IP address; however, incoming messages go to all server nodes in the cluster. Based on the 
current load distribution arrangement, exactly one of the servers accepts the message and responds 
to it. In the event of a node failure, the load belonging to the failed node is distributed among other 
active nodes. Similarly, when a new node is included, the load distribution is reconfgured to direct 
some of the incoming traffc to the new joining node. 

9.15.7 CASE STUDY: SUN CLUSTERS 

The operating system managing Sun Cluster is essentially a distributed operating system built as a 
set of extensions to the base Solaris UNIX system. It casts a single-system image to the user as well 
as to the applications and hence appears as a single computer system on which the Solaris operating 
system runs. The Sun Cluster framework integrates a cluster of two or more Sun systems operating 
under the Solaris OS to provide better availability and more scalability of services. A schematic rep-
resentation of the overall Sun Cluster architecture running on an existing Solaris kernel is depicted 
in Figure 9.15. The distinctive components of this system are: 

• Object and communication support 
• Global process management 
• Networking 
• Global DFS 

• Object and communication support: The implementation of a Sun cluster is based on 
object orientation in which the Common Object Request Broker Architecture (CORBA) 
object model is used to defne objects, and the RPC mechanism is used to support com-
munication. The CORBA Interface Defnition Language (IDL) is used to specify inter-
faces between MC components in different nodes. The elements of MC are implemented 
in the object-oriented language C++. The use of a uniform object model exploiting the 
support of IDL offers a suitable mechanism that facilitates both inter-node as well as intra-
node process communication activities. All these things are, however, built on top of a 

FIGURE 9.15 A general block-structured model of a representative Sun cluster architecture. 



Distributed Systems: An Introduction 551  

 

 

 

 

  

 

 

 

 

Solaris kernel to work together with virtually no changes required to the kernel, even if any 
changes are made in any area above the kernel. 

• Global process management: Existing process management is enhanced with the use of 
global process management, which provides globally unique process ids for each process 
in the cluster so that each node is aware of the location and status of each process. This fea-
ture is useful in process migration, wherein a process during its lifetime can be transferred 
from one node to another to balance the computational loads and ease of computation in 
different nodes or to achieve computation speed-up. A migrated process in that situation 
should be able to continue using the same pathnames to access fles from a new node. Use 
of a DFS, in particular, facilitates this feature work. The threads of a single process, how-
ever, must be on the same node. 

• Disk path monitoring: All disk paths can be monitored and confgured to automatically 
reboot a node in the case of multiple path failure. Faster reaction in the case of severe disk 
path failure provides improved availability. 

• Confguration checker: Checks for vulnerable cluster confgurations regularly and rap-
idly, thereby attempting to limit failures due to odd confguration throughout the life-time 
of the cluster. 

• Networking: A number of alternative approaches are taken by Sun clusters when handling 
network traffc. 
• Only a single node in the cluster is selected to have a network connection and is dedi-

cated to perform all network protocol processing. In particular, for TCP/IP-based pro-
cessing, while handling incoming traffc, this node would analyze TCP and IP headers 
and would then route the encapsulated data to the appropriate node. Similarly, for out-
going traffc, this node would encapsulate data from other transmitting nodes with TCP/ 
IP headers for necessary transmission. This approach has several advantages but suffers 
from a serious drawback for not being scalable, particularly when the cluster consists of 
a large number of nodes, and thus, it has fallen out of favor. 

• Another approach may be to assign a separate unique IP address to each node in the 
cluster, each node will then execute the network protocols over the external network 
directly. One serious diffculty with this approach is that the transparency criteria of 
a cluster is now adversely affected. The cluster confguration is no longer transparent 
(rather is opened) to the outside world. Another vital aspect is the diffculty of handling 
the failover situation in the event of a node failure when it is necessary to transfer an 
application running on the failed node to another active node but the active node has a 
different network address. 

• A packet flter can be used to route packets to the destined node, and all protocol pro-
cessing is performed on that node. A cluster in this situation appears to the outside 
world to be a single server with a single IP address. Incoming traffc is then appro-
priately distributed among the available nodes of the cluster to balance the load. This 
approach is found to be an appropriate one for a Sun cluster to adopt. 

Incoming packets are frst received on the node that has the physical network connection with the 
outside world. This receiving node flters the packet and delivers it to the right target node over the 
cluster’s own internal connections. Similarly, all outgoing packets are routed over the cluster’s own 
interconnection to the node (or one of multiple alternative nodes) that has an external physical net-
work adapter. However, all protocol processing in relation to outgoing packets is always performed 
by the originating node. In addition, the Sun cluster maintains a global network confguration net-
work database in order to keep track of the network traffc to each node. 

• Availability and scalability: Sun cluster provides availability through failover, whereby 
the services that were running at a failed node are transferred (relocated) to another node. 



 

 

    

 
 

  

 

552 Operating Systems 

FIGURE 9.16 A representative scheme of a general Sun cluster fle system extension. 

Scalability is provided by sharing (as well as distributing) the total load across the exist-
ing servers. 

• Multiple storage technologies and storage brands: Solaris cluster can be used in com-
bination with different storage technologies, such as FC, SCSI, iSCSI, and NAS storage on 
Sun or non-Sun storage. 

• Easy-to-use command-line interface: An object-oriented command line interface pro-
vides a consistent and familiar structure across the entire command set, making it easy to 
learn and use and limiting human error. Command logging enables tracking and replay. 

• Global distributed fle system: The beauty and the strength of the Sun cluster is its global 
fle system, as shown in Figure 9.16, which is built on the virtual node (v-node) and virtual 
fle system (VFS) concepts. The v-node structure is used to provide a powerful, general-
purpose interface to all types of fle systems. A v-node is used to map pages of memory 
into the address space of a process, to permit access to a fle system, and to map a process 
to an object in any type of fle system. The VFS interface accepts general-purpose com-
mands that operate on entire fles and translates them into actions appropriate for that 
subject fle system. The global fle system provides a uniform interface to all fles which 
are distributed over the cluster. A process can open a fle located anywhere in the cluster, 
and processes on all nodes use the same pathname to locate a fle. In order to implement 
global fle access, MC includes a proxy fle system built on top of the existing Solaris fle 
system at the v-node interface. The VFS/v-node operations are appropriately converted by 
a proxy layer into object invocations. The invoked object may reside on any node in the 
system. The invoked object subsequently performs a local v-node/VFS operation on the 
underlying fle system. No modifcation is, however, required either at the kernel level or in 
the existing fle system to support this global fle environment. In addition, caching is used 
to reduce the number of remote object invocations, which, in turn, minimizes the traffc on 
the cluster interconnect. A few of the multiple fle systems and volume managers that are 
supported by the Sun cluster are: 



Distributed Systems: An Introduction  553 

•  UFS, VxFS, and ZFS as root fle systems 
•  HA UFS, HA NFS, and HA ZFS; HA QFS and shared QFS (with Oracle RAC); and 

HA VxFS 
•  Global fle system on UFS and VxFS 
•  SVM, VxVM, ASM 

SUMMARY 

The time-sharing system of the 1970s could be considered the frst stepping stone toward distrib-
uted computing system that implemented simultaneous sharing of computer resources by mul-
tiple users located away from the main computer system. Different forms of hardware design  
of distributed computing systems, including multiprocessors and multicomputers, and the vari-
ous forms of software that drive these systems are described. The generic DOS and its design  
issues are explained. Numerous considerations used in generic multiprocessor operating systems  
with emphasis on processor management for different forms of multiprocessor architecture are  
described. Practical implementations of Linux OS and Windows OS in multiprocessor environ-
ments are presented here as case studies. Distributed systems based on different models of mul-
ticomputers (networks of computers) consisting of a collection of independent computer systems  
(homogeneous or heterogeneous) interconnected by a communication network (LAN and WAN)  
using Ethernet, token ring, and so on for the purpose of exchanging messages are illustrated. The  
formal design issues of generic multicomputer operating systems to be run on any kind of multi-
computers are presented. 

In fact, a distributed system essentially provides an environment in which users can conveniently 
use both local and remote resources. Computing of varieties of applications with the client/server 
model in computer networks is distributed to users (clients), and resources to be shared are main-
tained on server systems available to all clients. Thus, the client/server model is a blend of decen-
tralized and centralized approaches. The actual application is divided between client and server to 
optimize ease of use and performance. The basic design issues of DOSs built on the client/server 
model are briefy described. The interprocess communication required in any distributed system 
is realized either by a message-passing facility or a RPC in which different programs on differ-
ent machines interact using procedure call/return syntax and semantics that act as if the partner 
program were running on the same machine. The actual implementation of RPC in Sun systems is 
briefy described. A brief overview of distributed shared memory and its implementation aspects 
is narrated. A major part of a distributed system is the DFS, and the key design issues and a brief 
overview of its operations are described, along with an example of its actual implementation carried 
out in Windows, SUN NFS, and Linux GPFS. The most modern approach in distributed computer 
system design is the cluster, built on the client/server model in which all the machines work together 
as a unifed computing resource using an additional layer of software known as middleware that 
casts an illusion of being one machine. Its advantages, classifcations, and different methods of 
clustering are described in short, along with the general architecture of clusters and their operating 
system issues. The different aspects of implementation of Windows and SUN clusters are shown 
here as case studies. 

EXERCISES 

 1.  With respect to the salient features in hardware architectures, differentiate among the fol-
lowing types of computing systems: a. time sharing, b.  network,  c. distributed, and d. 
parallel processing. 

 2.  State and explain the salient features of a distributed computing system. 
 3.  What are the main advantages and disadvantages that distributed computing systems 

exhibit over centralized ones? 



 

  

  

  

  

 
 

 

  

  

  

  

  

  

  

   

  

  

  

   
 

  

  

554 Operating Systems 

4. What are the commonly used different models for confguring distributed computing sys-
tems? Discuss in brief their relative advantages and disadvantages. Which model is consid-
ered dominant? Give reasons to justify it. 

5. State the important issues in the design of the kernel of the operating system in symmetric 
multiprocessors. Explain in brief how these issues are being handled. 

6. What are the salient features considered in the design of the kernel of the operating sys-
tem in a distributed shared memory multiprocessor? Explain in brief how these issues are 
handled. 

7. In terms of hardware complexity, operating system complexity, potential parallelism, and 
cost involved, compare the following types of systems which consist of a large number of 
processors (say, 16 to 32): 
a. A multiprocessor system with a single shared memory (SMP). 
b. A multiprocessor system in which each processor has its own memory. The processors 

are located far from each other and are connected by a low-capacity communication line 
forming a network. Each processor can communicate with others by exchanging mes-
sages. 

c. A multiprocessor system in which each processor has its own memory in addition to 
shared memory used by all processors in the system. 

8. Discuss the suitability of various kinds of locks to satisfy the requirements of synchroni-
zation of processors in multiprocessor systems. While spin or sleep locks are used, can 
priority inversion occur? Justify your answer. 

9. Discuss the different approaches employed in scheduling of threads and related assignment 
of processors in multiprocessor systems. 

10. What are the salient features that must be considered in the design of a multicomputer 
operating system? 

11. What is middleware? In spite of having acceptable standards, such as TCP/IP, why is mid-
dleware still needed? 

12. State the different models of middleware that are available for use. Furnish in brief the 
various middleware services that are implemented in application systems. 

13. What are the reasons distributed operating systems are more diffcult to design than cen-
tralized time-sharing operating systems? 

14. What are the main differences between a network operating system and a distributed oper-
ating system? 

15. State and explain the major issues at the time of designing a distributed operating 
system. 

16. Discuss some of the important concepts that might be used to improve the reliability of a 
distributed operating system. What is the main problem faced in making a system highly 
reliable? 

17. Explain the main guiding principle to be obeyed to enhance the performance of a distrib-
uted operating system. 

18. Why is scalability an important feature in the design of a distributed system? Discuss some 
of the important issues that must be settled at the time of designing a scalable distributed 
system. 

19. “Heterogeneity is unavoidable in many distributed systems”. What are the common 
types of incompatibilities faced in heterogeneous distributed systems? What are the 
common issues that must be dealt with at the time of designing a heterogeneous distrib-
uted system? 

20. Compare and contrast between network operating systems, distributed operating systems, 
and distributed systems (middleware-based). 

21. Most computer networks use fewer layers than those specifed in the OSI model. Explain 
what might be the reason for this. What problems, if any, could this lead to? 



Distributed Systems: An Introduction 555  

  

  

  

  

  
 
 
 
 

  
  

  

  

  

  

  

  
  

 
 
 

   

  

  
 

  

  

  

22. Why is the OSI model considered not suitable for use in a LAN environment? Give the 
architecture of a communication protocol model suitable for LANs. Briefy describe the 
functions of each layer of this architecture 

23. Suggest three different routing strategies for use in networks of computers. Discuss the 
relative advantages and disadvantages of the strategies thus suggested. 

24. What are the main differences between connection-oriented and connectionless communi-
cation protocols? Discuss their relative merits and drawbacks. 

25. What is asynchronous transfer mode technology used in networking? State some of the 
most common important features ATM has that put it at the forefront of networking 
technologies. What type of impact will each of these features have on future distributed 
systems? 

26. State the mechanism used in the FLIP protocol for each of the following: 
a. Transparent communication 
b. Group communication 
c. Secure communication 
d. Easy network communication 
State at least one shortcoming of the FLIP protocol. 

27. What is a socket? Explain the mechanism followed to implement sockets. What is the 
implication of a socket interface? 

28. What is meant by internetworking? What are the main issues in internetworking? In light 
of the interconnection technologies used in internetworking, explain the differences among 
the following terms: a. bridges, b. router, c. brouter, and d. gateway. 

29. What are the main differences between blocking and non-blocking protocols used in inter-
process communication in distributed systems on a workstation-server model? 

30. Explain the nature of and reasons for differences in naming of system objects between 
centralized and distributed systems in a client–server model. 

31. Defne process migration in a distributed system. Discuss the situations and the advantages 
that can be accrued from process migration activities. 

32. What is meant by IPC semantics? Write down the most commonly used IPC semantics 
used in distributed systems along with their signifcant implications. 

33. Discuss the relative merits and demerits of blocking and non-blocking protocols. 
34. Comment on properties of the following non-blocking protocol: 

a. Sender sends a request and continues processing. 
b. Receiver sends a reply. 
c. Sender sends an acknowledgement when it receives a reply. 

35. Requests made using non-blocking send calls may arrive out of sequence at the destina-
tion site when dynamic routing is used. Discuss how a non-blocking RR protocol should 
discard duplicate requests when this property holds. 

36. Write notes on factors that infuence the duration of the timeout interval in the RRA 
protocol. How can duplicate replies received in the sender site in the RRA protocol be 
discarded? 

37. Describe a mechanism for implementing consistent ordering of messages in each of the 
following cases (essentially a group communication): a. one-to-many communication, b. 
many-to-one communication, and c. many-to-many communication. 

38. What was the basic inspiration behind the development of the RPC facility? How does an 
RPC facility make the job of the distributed application developer simpler? 

39. With reference to the defnition of synchronous and asynchronous RPC, discuss their rela-
tive merits and drawbacks. 

40. In RPC, the called procedure may be on the same computer as the calling procedure, or it 
may be on a different computer. Explain why the term remote procedure call is used even 
when the called procedure is on the same computer as the calling procedure. 



 

  

  

  
  
  

  

  
  

  
  

  

  

  

  

  

  
  

  

  

  

  

  

  

556 Operating Systems 

41. What is a “stub”? How are stubs generated? Explain how the use of stubs helps make the 
RPC mechanism transparent. 

42. The caller process of an RPC must wait for a reply from the callee process after making a 
call. Explain how this can actually be done. 

43. List some merits and drawbacks of non-persistent and persistent binding for RPCs. 
44. Compare and contrast between RPC and message passing. 
45. “Distributed shared memory should be incorporated into systems that are equipped with 

high-bandwidth and low-latency communication links”. Justify. 
46. Defne and explain the following: a. group communication, b. interprocess communica-

tion, and c. Java RMI. 
47. How can the performance of distributed shared memory be improved? 
48. State the signifcant issues that must be kept in mind at the time of designing a distributed 

shared memory system. 
49. What are the main factors that must be supported by a distributed fle system? 
50. State and explain the primary attributes that can infuence the fault tolerance of a distrib-

uted fle system. 
51. Differentiate between stateful and stateless servers. Why do some distributed applications 

use stateless servers in spite of the fact that stateful servers provide an easier programming 
paradigm and are typically more effcient than stateless servers? 

52. State the infuence of stateful and stateless fle server design on tolerance of faults in cli-
ent–server nodes. 

53. Discuss how a client should protect itself against failures in a distributed fle system using; 
a. a stateful fle server design and b. a stateless fle server design. 

54. State at least two common server structures that can provide effcient fle access in a dis-
tributed fle system. 

55. State some important techniques that are commonly used in the operation of DFS to enable 
the DFS to achieve high performance. 

56. Explain how the cache coherence problem in a distributed fle system is negotiated. 
57. Should a DFS maintain fle buffers at a server node or at a client node? What is the signif-

cance and subsequence infuence of this decision in the working of a DFS? 
58. State and explain the techniques that are commonly used in the operation of a DFS that 

enable the DFS to achieve high performance. 
59. Discuss the important issues to be handled during recovery of a failed node in a system that 

uses fle replication to provide availability. 
60. “The clustering concept is an emerging technology in the design of a distributed comput-

ing system”. State the salient features considered its major design objectives. 
61. State the simplest form of classifcation of clusters. Describe the various most commonly 

used methods in clustering. 
62. Explain with an appropriate diagram the general architecture in organizing computers to 

form a cluster system. 

SUGGESTED REFERENCES AND WEBSITES 

Baker, M. G., Hartman, J. H., et al. “Measurement of a Distributed File System”, Proceedings of the ACM 
Symposium on Operating Systems Principles, New York, ACM, pp. 98–212, 1991. 

Bovet, D. P, Cesati, M. Understanding the Linux Kernel, Sebastopol, O’Reilly, 2003. 
Buyya, R. High Performance Cluster Computing: Programming and Applications, Upper Saddle River, NJ, 

Prentice Hall, 1999. 
Chakraborty, P. Computer Organization and Architecture: Evolutionary Concepts, Principles, and Designs, 

London, CRC Press, 2020. 
Chapin, S., Maccabe, A., eds. “Multiprocessor Operating Systems, Harnessing the Power”, Special Issue of 

IEEE Concurrency, April–June, New York, IEEE, 1997. 



Distributed Systems: An Introduction 557  

 

 

 

 

Cheriton, D. “The V Distributed System”, Communications of the ACM, vol. 31, no. 3, pp. 314–333, 1998. 
Cheriton, D. R., Williamson, C. L. “VMTP as the Transport Layer for High-Performance Distributed System”, 

IEEE Communication, vol. 27, no. 6, pp. 37–44, 1989. 
Coulouris, G., Dollimore, J. Distributed Systems Concepts and Designs, Third Edition, Boston, MA, Addition 

Wesley, 2001. 
Culler, D. E., Singh, J. P. Parallel Computer Architecture: A Hardware/Software Approach, Burlington, MA, 

Morgan Kaufmann Publishers Inc, 1994. 
Dijkstra, E. W. “Guarded Commands, Nondeterminacy, and Formal Derivation of Programs”, Communications 

of the ACM, vol. 18, no. 8, pp. 453–457, 1975. 
Janet, E. L. “Selecting a Network Management Protocol, Functional Superiority vs. Popular Appeal”, 

Telephony, 1993. 
Kaashoek, M. F., Van Renesse, et al., “FLIP: An Internetwork Protocol For Supporting Distributed Systems”, 

ACM Transactions On Computer Systems, vol. 11, no. 1, pp. 73–106, 1993. 
Levy, E., Silberschatz, A. “Distributed File Systems: Concepts and Examples”, Computing Surveys, vol. 32, 

no. 4, pp. 321–374, 1990. 
McDougall, R., Laudon, J. “Multi-Core Processors are Here”, USENIX, Login: The USENIX Magazine, vol. 

31, no. 5, pp. 32–39, 2006. 
Milenkovic, M. Operating Systems: Concepts and Design, New York, McGraw–Hill, 1992. 
Mukherjee, B., Karsten, S. Operating Systems for Parallel Machines in Parallel Computers: Theory and 

Practice (Edited by T. Casavant, et al.), Los Alamitos, CA, IEEE Computer Society Press, 1996. 
Mullender, S. J., Tanenbaum, A. S., et al. “Amoeba: A Distributed Operating System for the 1990s”, IEEE 

Computer, vol. 23, no. 5, pp. 44–53, 1990. 
Russinovich, M. E., Solomon, D. A. Microsoft Windows Internals, Fourth Edition, New York, Microsoft 

Press, 2005. 
Sandberg, R. The Sun Network File System: Design, Implementation, and Experience, Mountain View, CA, 

Sun Microsystems, 1987. 
Schneider, F. B. “Synchronization in Distributed Programs”, ACM Transactions on Programming Languages 

and Systems, vol. 4, no. 2, pp. 125–148, 1982. 
Shevenell, M. “NMP v2 Needs Reworking to Emerge as a Viable Net Management Platform”. Network World, 

March 7, 1994. 
Shoch, J. F., Hupp, J. A. “The Worm programs: Early Experiences with a Distributed Computation”, 

Communication of the ACM, vol. 25, no. 3, pp. 172–180, 1982. 
Short, R., Gamache, R., et al. “Windows NT Clusters for Availability and Scalability”, Proceedings, 

COMPCON Spring 97, February, 1997. 
Srinivasan, R. RPC: Remote Procedure Call Protocol Specifcation Version 2. Internet RFC 1831, August 

1995. 
Tanenbaum, A. Distributed Operating Systems, Englewood Cliffs, NJ, Prentice–Hall, 1995. 
Tay, B. H., Ananda, A. L. “A Survey of Remote Procedure Calls”, Operating Systems Review, vol. 24, 

pp. 68–79, 1990. 
Thekkath, C. A., Mann, T., et al. “A Scalable Distributed File System”, Symposium on Operating Systems 

Principles, pp. 224–237, 1997. 
Wulf, W. A., Cohen, E. S., et al. “HYDRA: The Kernel of a Multiprocessor Operating System”, Communication 

of the ACM, vol. 17, pp. 337–345, 1974. 

WEBSITES 

http://docs.sun.com/app/docs/doc/817-5093 
Sun System Administration Guide: Devices and File Systems 
IEEE Computer Society Task Force on Cluster Computing: An International forum to promote cluster com-

puting research and education. 
Beowulf: An international forum to promote cluster computing research and education. 

http://docs.sun.com


558 DOI: 10.1201/9781003383055-10  

 

 
 
 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Real-Time Operating Systems 10 
Learning Objectives 

• To describe the background of the evolution of real-time systems and give an overview of 
the real-time task and its parameters. 

• To explain the different issues involved with real-time systems. 
• To articulate the evolution of real-time operating systems. 
• To describe the design philosophies, characteristics, requirements, and features of a real-

time operating system. 
• To demonstrate the basic components of a real-time operating system, including its kernel 

structure and scheduling mechanisms, together with an example of Linux real-time sched-
uling approach. 

• To explain the role of clocks and timers to provide time services in the system, along with 
an example of clock and timer resolutions in Linux as a case study. 

• To describe the mechanism used in the implementation of communication and synchroni-
zation required in this system. 

• To explain the signals realized in this system in the form of software interrupts. 
• To explain the memory allocation mechanism, including allocation strategies, protection, 

and locking. 
• To demonstrate practical implementations of RTOSs as case studies by presenting the 

Linux real-time extension, KURT system, RT Linux system, Linux OS, pSOSystem, and 
also VxWorks, used in Mars Pathfnder. 

10.1 BACKGROUND: REAL-TIME SYSTEMS 

In contrast to traditional commercial applications, real-time application systems are of a differ-
ent kind and belong to a different class. A few examples include embedded applications (pro-
grammable thermostats, mobile telephones, household appliance controllers, etc.), reservation 
systems, banking systems based on the use of real-time databases, and so many other types to 
mention. In handling real-time applications, specifc actions are required to control and monitor 
the activities in an external system or even to participate in them within the time constraints 
specifed by the external systems. A real-time application can thus be defned as a program(s) 
that should respond to activities in an external system within a maximum duration of time 
specifed by the external system. If the application takes too long or consumes too much time 
to respond to or complete the needed activity, a failure can occur in the external system. Thus, 
the term response requirement is used to indicate the maximum value of response time within 
which the system can to function correctly. A timely response is one whose response time is 
smaller than the response requirement of the system. A real-time application system is usually 
executed by real-time computing, defned as a type of computing in which the correctness 
of the system depends not only on the logical result of the computation but also on the time at 
which the results are produced. 

The terminology used in real-time systems can be defned here in the following way: a job (or 
an event) is a unit of work that is scheduled and executed by the system. A process is an activity of 
some kind within the job that operates under real-time constraints. A process can thus last for a long 
time, and during this period, it can perform a repetitive function in response to real-time events. For 

https://doi.org/10.1201/9781003383055-10


Real-Time Operating Systems 559  

 

 
 

  
 

 
 

 
 

 

 

the sake of clarity, such an individual function can be defned here as a task. Thus, a process can be 
viewed as progressing through a sequence of tasks. At any instant, a process is engaged in a single 
task, and it is the process/task that must be considered a unit of computation. 

Brief details on this topic with an example are given on the Support Materials at www.routledge. 
com/9781032467238 

10.2 REAL-TIME TASKS: AN OVERVIEW 

In a real-time system, some of the tasks that are time-critical are said to be real-time tasks, which 
are actually intended to control or to react to events that normally take place in the external system 
belonging to the outside world (i.e. outside the domain of the existing computer system). Since these 
events occur in “real time”, a real-time task must be able to keep up with the events with which it is 
concerned, obeying certain parameters associated with a particular task. Some of these important 
parameters that distinguish tasks (or jobs) in real-time systems from those in non–real-time are 
described in the following. 

The release time of a job is the instant at which the job becomes ready (available) for execution. 
The job can be scheduled and executed at any time at or after its release time whenever its data and 
control dependencies are met. The deadline (or absolute deadline) of a job is the time by which its 
execution is required to be completed. In other words, each job must complete its execution before 
the release time of the subsequent job. This type of deadline is normally called an ending deadline. 
There is another type of deadline of a job, usually known as starting deadline, which is defned as 
the time by which the job must start its execution. The impact of the ending deadline as one of the 
parameters in a set of jobs at the time of scheduling is quite different from that of the starting dead-
line when used as one of the parameters in the same set of jobs. Indeed, the schedules when prepared 
using these two deadlines over a set of same jobs separately differ in the ordering of jobs in the ready 
job queue and affect the performance as well as the throughput of the system to a great extent. 

Sometimes it is more appropriate to describe the timing requirement of a job in terms of its 
response time, which is defned as the length of time from the release time of the job to the instant 
when it completes. The maximum allowable response time of a job is sometimes called its relative 
deadline. Therefore, the deadline, sometimes called absolute deadline, of a job is equal to its release 
time plus its relative deadline. The timing behavior of a job can be specifed by the timing constraint 
imposed on the job. The timing constraints of a job in their simplest form can be expressed in 
terms of its release time and relative or absolute deadlines. Using these parameters, a real-time task 
may be classifed into two distinct types that give rise to two kinds of real-time systems: 

• A hard real-time task is one that must meet its deadline (hard deadline); missing this 
deadline will cause a penalty of higher-order of magnitude, leading to fatal damage or an 
unacceptable and even irreparable error to the system. A hard real-time system (e.g. an 
Avionic control) is thus typically dedicated to processing real-time applications and prov-
ably meets the response requirements of an application under the conditions. Application 
systems, such as guidance and control applications, are typically serviced using hard real-
time systems, because they fail if they cannot meet the response requirements. A ballistic 
missile may be shifted from its specifed trajectory if the response requirement is not 
rigidly obeyed. 

• A soft real-time task has an associated deadline that is desirable to obey but not manda-
tory; it still makes sense to schedule and complete the task even it has passed its deadline. 
A soft real-time system makes the best effort to meet the response requirement of a real-
time application but cannot guarantee that it will be able to meet it under all conditions. 
Typically, it meets the response requirement in a probabilistic manner, say, 95 percent of 
the prescribed deadline (time). Application systems such as multimedia applications and 
applications, like reservations and banking systems, that essentially aim to provide good 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  
 
 
 
 
 

  

   

 

 

 
 
 

 

 

 

 

 
 
 

 

560 Operating Systems 

quality of service but do not have a notion of failure, thus may be serviced using soft real-
time systems. The quality of picture on a video may deteriorate occasionally if the response 
requirement is not met, but one can still watch the video with almost no interruption. 

• Another characterization of real-time tasks can be described as follows: A set of related 
jobs (activities) is called a task. Jobs in a task may be precedence constrained to execute 
in a certain order. Sometimes jobs may be constrained to complete within a certain time 
from one another. Jobs may have data dependencies even when they are not precedence 
constrained. If pi is the minimum length of the intervals between the release times of 
consecutive tasks (inter-release interval), that is, the task period, and ai is the arrival 
time, ri is the ready time, di is the deadline, ci is the worst-case execution time, and φi is 
the release time of the frst job (activity) in task Ti, then: 
• Periodic tasks: Task Ti is a sequence of jobs. Task Ti is time-driven. The characteristics 

are known a priori, and task Ti is characterized by (pi, ci, φi). For example, the task is 
to monitor the temperature of a furnace in a factory. 

• Aperiodic tasks: Task Ti is event-driven. The characteristics are not known a priori, 
and task Ti is characterized by (ai, ri, ci, di). This task has either soft deadlines by which 
it must fnish or start or no deadlines (i.e. it may have a constraint on both start and fn-
ish time). An example is a task that is activated upon detecting a change in furnace’s 
condition (temperature). 

• Sporadic tasks: A periodic tasks with a known minimum inter-arrival time. 

We want the system to be responsive, that is, to complete each task as soon as possible. On the 
other hand, a late response might be annoying but tolerable. It is thus attempted to optimize the 
responsiveness of the system for aperiodic tasks but never at the cost of hard real-time tasks, which 
require deadlines to be met religiously at all times. 

10.2.1 REAL-TIME TASKS: PARAMETERS 

Real-time tasks, in general, are constrained by four main parameters: 

• Deadline constraint: Must be completed within the specifed time-interval. 
• Resource constraints: Shared access (read–read) and exclusive access (write-x) 
• Precedence constraints: For two arbitrary tasks T1 and T2, task T2 can start executing 

only after T1 fnishes its execution. 
• Fault-tolerant requirements: To achieve higher reliability for task execution that, in turn, 

normally needs redundancy in execution. 

10.3 REAL-TIME SYSTEMS: DIFFERENT ISSUES 

Real-time systems are entwined with many different issues. These can be classifed into three broad 
categories. They are: 

• Architectural issues: Computing subsystems, communication subsystems, I/O subsys-
tems. These issues can be addressed by the following: 
• Predictability in: Instruction execution time, memory access, context switching, inter-

rupt handling. 
• Real-time systems usually avoid caches and superscalar features. 
• Support for error handling (self-checking circuitry, voters, system monitors). 
• Support for fast and reliable communication (routing, priority handling, buffer, and 

timer management). 
• Support for execution of scheduling algorithms (fast preemptability, priority queues). 



Real-Time Operating Systems 561  

 

 

 

 

 

  

 
 
 

 
 
 
 

 

 

• Support for real-time operating system’s common activities (such as multiple contexts, 
memory management, garbage collection, interrupt handling, clock synchronization). 

• Support for real-time language features (such as language constructs for estimating 
worst-case execution time of tasks). 

• Resource management (RM) issues: Scheduling, fault-tolerance, resource reclaiming, 
communication. 

Real-time scheduling paradigms: 

• Allocate time slots for tasks onto processor(s) (i.e. where and when a given task would 
execute). 

• Objective: predictably meeting task deadlines (schedulability check, schedule 
construction). 

Real-time task scheduling can be broadly classifed as shown in Figure 10.1. The details are dis-
cussed in later sections. 

• Preemptive scheduling: Task execution is preempted and later resumed at an appropriate 
time. 
– Preemption occurs mainly to execute higher-priority tasks. 
– Offers higher schedulability. 
– Involves higher scheduling overhead due to frequent context switching. 

• Nonpreemptive scheduling: 
– Once a task starts executing, it is allowed to continue its execution until it completes. 
– Offers lower schedulability. 
– Relatively less overhead due to less context switching. 

• Optimal scheduling: defnition 

A static scheduling algorithm is said to be optimal if, for any set of tasks, it always 
produces a feasible schedule (i.e. a schedule that satisfes the constraints of the tasks) 
whenever any other algorithm can also do so. 

A dynamic scheduling algorithm is said to be optimal if it always produces a feasible 
schedule whenever a static algorithm with complete prior knowledge of all the pos-
sible tasks can do so. 

Static scheduling is used for scheduling periodic tasks, whereas dynamic scheduling is 
used to schedule both periodic as well as aperiodic tasks. 

FIGURE 10.1 A block–structured representation of a rough scheme of real-time task scheduling. 



 

 

 
 

 

 

  

 
 

 

 
 

 

 
 

 
 

 

 

  
 
 

 
 

  

 
 
 

 

562 Operating Systems 

• Software issues: Requirements, specifcations, verifcation, real-time languages, and real-
time databases. 
• Requirements: These can be broadly defned in terms of: 

– Functional requirements: These are precisely the operation of the system and their 
effects as a whole. 

– Non-functional requirements: Other factors related to the operation of the system, 
such as timing constraints. 

• Functional and non-functional requirements must be precisely defned so that they can 
be used together to construct the specifcations of the system. 

• Specifcation and verifcation: A specifcation is a mathematical statement of the 
properties to be exhibited by a system. It is abstracted such that: 
– it can be checked for conformity against the requirements, and 
– its properties can be examined independently of the way it will be implemented. 

• The usual approaches to specifying computing-system behavior entail enumerating 
events or actions that the system participates in and describing the order in which they 
can occur. It is not well understood how to extend such approaches for real-time systems. 

• Real-time languages: 
• Support for management of time: 

– Language constructs for expressing timing constraints, keeping track of resource 
utilization. 

• Schedulability analysis: 
– Aid compile-time schedulability check. 

• Reusable real-time software modules: 
– Object-oriented methodology. 

• Support for distributed programming and fault-tolerance. 

• Real-time databases. 

Conventional database systems. 
• Diskbased. 
• Use transaction logging and two-phase locking protocols to ensure transaction atomi-

city and serializability. 
• These characteristics preserve data integrity, but they also result in relatively slow and 

unpredictable response times. 

Real-time database systems: The issues include: 

• Transaction scheduling to meet deadlines. 
• Explicit semantics for specifying timing and other constraints. 
• Checking the database system’s ability to meet transaction deadlines during application 

initialization. 

10.4 REAL-TIME OPERATING SYSTEMS: EVOLUTION 

In order to manage and monitor real-time applications, a different type of operating system evolved, 
historically known as a real-time operating system (RTOS). In its early days, it was typically used 
as a small embedded operating system to handle mostly embedded applications packaged as part 
of micro-devices. Later, it was thought that some forms of kernels could be considered to meet the 
requirements of a real-time operating system. However, since other components, such as device 
drivers and control programs, are usually also needed for a particular solution, a real-time operating 
system is usually larger than just the kernel. 



Real-Time Operating Systems 563  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 
 

  

  
 

An RTOS is one that essentially guarantees a certain capability within a specifed time constraint. 
For example, an operating system could be designed to ensure that a certain object is made available 
for a robot working on an assembly line. In what is usually called a hard real-time operating system, 
if the calculation could not be performed to make the object available at the pre-specifed time, the 
operating system would terminate with a failure. Similarly, in a soft real-time operating system, the 
assembly line would not necessarily arrive at a failure but continue to function, though the production 
output might be lower as objects failed to appear at their stipulated time, causing the robot to be tem-
porarily unproductive. Some real-time operating systems are designed and developed for a special 
application, and others are more or less general purpose. Some existing general-purpose non–real-time 
operating systems, however, claim to be real-time operating systems. To some extent, almost any 
general-purpose operating system, such as Microsoft’s Windows 2000 or IBM’s OS/390, and to some 
extent Linux, can be evaluated for its real-time operating system qualities. Reasons for this choice 
include the timing requirement of applications that are not so hard. That is, even if an operating 
system does not qualify, it may have some characteristics that enable it to be considered a solution 
to a particular problem belonging to the category of real-time application. It is to be noted that the 
objective of a true real-time operating system does not necessarily have to have a high throughput. In 
fact, the specialized scheduling algorithm, a high clock-interrupt rate, and other similar related fac-
tors often intervene in the execution of the system that hinders to yield the needed high throughput. 
A good real-time operating system thus not only provides effcient mechanisms and services to carry 
out good real-time scheduling and resource management policies but also keeps its own time and 
resource consumptions predictable and accountable. In addition, a real-time operating system should 
be more modular and extensible than its counterpart, a general-purpose operating system. Some early 
large-scale real-time operating systems were the so-called control program developed by American 
Airlines and the Sabre Airline Reservations System introduced by IBM. 

10.5 REAL-TIME OPERATING SYSTEMS: DESIGN PHILOSOPHIES 

There are two basic designs: 

• An event-driven operating system that only changes tasks when an event requires service. 
• A time-sharing design that switches tasks on a clock interrupt (clock-driven), as well as on 

events. 

The time-sharing design wastes more CPU time on unnecessary task-switches (context-switches) 
but offers better multitasking, the illusion that a user has sole use of a machine. 

10.6 REAL-TIME OPERATING SYSTEMS: 
CHARACTERISTICS AND REQUIREMENTS 

Following the accepted defnition and the underlying philosophy of the real-time operating system, 
as already explained, it is expected that data, resources, users, and their computations should be 
effectively carried out in a predefned manner to meet their ultimate goals. Since, the RTOS is pri-
marily a time-critical and event-driven system, the latest consistent knowledge with respect to the 
state of the various resources lying under the RTOS is urgently needed that eventually may affect 
many things, such as management of resources, scheduling of threads and processes, and synchro-
nization of concurrent competitive and cooperating activities. To meet the primary requirements of 
the real-time operating system, the designer of such a system must deal with several design issues. 
Some of the most common key design issues are: 

• Determinism: An RTOS must be deterministic in the sense that it is able to accomplish 
all its operations at pre-specifed fxed times or within predetermined time intervals, 



 

 
 

 
 
 

  

 

 

 

 

 

 

 

  
 
 

 
 
 
 
 
 
 

564 Operating Systems 

even when the requests come from the external events with prescribed timings. To real-
ize this, it depends on several factors, mainly how quickly it can respond to interrupts 
and also the availability of both hardware and software resources that are adequate to 
manage all such requests within the specifed time. One useful way to assess deter-
minism is by measuring the maximum delay it faces when responding to high-priority 
device interrupts. In the case of traditional OSs, this delay might be in the range of tens 
to hundreds of milliseconds, while in RTOSs, this delay should not be beyond a few 
microseconds to a millisecond. 

• Responsiveness: While determinism is concerned with the time to recognize and respond 
to an interrupt, responsiveness is related to the time that an operating system takes to ser-
vice the interrupt after acknowledgement. Several aspects contribute to responsiveness. 
Some notable ones are: 
• Interrupt latency: It is the time the system takes before the start of the execution of an 

immediate interrupt service routine, including the time required for process switching 
or context switching, if there is any. 

• The amount of time required to actually execute the ISR. This is generally dependent 
on the hardware platform being used. 

• The effect of nested interrupts. It may cause further delay due to the arrival of a high-
priority interrupt when the servicing of one is in progress. 

• Dispatch latency: It is the length of time between the completion of an ISR and resump-
tion of the corresponding process (or thread) suspended due to the occurrence of the 
interrupt. 

In fact, determinism and responsiveness together constitute the response time to external events, 
one of the most critical requirements of a real-time operating system that should be religiously 
obeyed by events, devices, data fows, and above all the individuals located in the domain external 
to the system. 

• Notion of predictability: The most common denominator in a real-time system is predict-
ability, which means that with certain assumptions about workload and failures, it should 
be possible to show at design time that all the timing constraints of the application will 
be met. For static systems, 100% guarantees can be given at design time. But for dynamic 
systems, 100% guarantee cannot be given, since the characteristics of tasks are not known 
a priori. In dynamic systems, predictability means that once a task is admitted into the 
system, its guarantee that the execution of the task should never be violated as long as the 
assumptions under which the task was admitted hold. 

• Reliability: A, RTOS always responds to and controls outside events in a time-critical 
manner. Any failure in such systems may cause consequences not only of irreparable loss 
or performance degradation but may lead to a catastrophic situation ranging from fnancial 
loss to major equipment damage or, even more critically, loss of life. 

• Fault-tolerance: A real-time operating system must be able to respond to various 
modes of failures. It employs two techniques to ensure continuity of operation when 
faults occur: fault tolerance and graceful degradation. These two techniques together 
constitute what is known as fail-soft operation, which always preserves as much capa-
bility and data as possible so as to negotiate any unforeseen failure. When a typical 
traditional UNIX system detects corruption of data within the kernel, it dumps the 
memory contents to a specifed area in the disk for the sake of later failure analysis 
and fnally terminates the execution of the system. A real-time operating system, in 
contrast, will always attempt either to rectify the problem or takes action to avoid the 
problem or minimize its effects while continuing to run. To be fault-tolerant, it uses the 
redundancy of available resources that ensures the system can continue functioning 



Real-Time Operating Systems 565  

 
 

 
 
 
 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

even when a fault occurs. In the event of a fault, graceful degradation in performance 
is observed that leads only to offering a reduced level of service, but revert to normal 
operations when the fault is rectifed. When the system operates at a reduced level, cru-
cial functions are usually assigned high priorities to enable them to perform in a timely 
manner. In the event of a failure, the system typically notifes a user or a user process 
that it is about to attempt corrective measures (actions) and then continues operation 
at a reduced level of service. Even when a shutdown is necessary, an attempt is always 
made to preserve fle and data consistency. 

• Stability: A real-time system is said to be stable if, in situations where it is impossible 
to meet the deadlines of all tasks, the system will at least meet the deadlines of its most 
critical, high-priority tasks, even if that means sacrifcing relatively less important critical 
tasks, and accordingly, it then notifes the users or user processes of these affected tasks 
about its inability beforehand so that the default actions with respect to these tasks can be 
appropriately taken by the system in time. 

10.7 REAL-TIME OPERATING SYSTEMS: FEATURES 

A real-time operating system should be as small as possible in size, yet fulfll all its targeted objec-
tives. Usually it will have a microkernel that provides only essential services, such as scheduling, 
synchronization, and interrupt handling with domain-specifc interrupts and corresponding ISR to 
allow it to respond to special conditions and events in the external system in a timely manner. A hard 
real-time OS follows a policy to partition resources and allocate them permanently to competing 
processes in the application to avoid costly resource allocation overhead. In addition, hard real-time 
systems also avoid use of features whose performance cannot be precisely predicted, such as virtual 
memory. Multitasking was introduced in the design of real-time operating systems with a hierarchi-
cal interrupt approach coupled with process prioritization to ensure that key activities were given 
a greater share of available processor time. The scheduling capabilities of this system are mainly 
realized by short-term task schedulers of different types, which ensures that all hard real-time tasks 
complete (or start) by their deadline and that as many soft real-time tasks complete (or start) by 
their deadline as possible. However, modern RTOSs avoid stringent deadline scheduling techniques; 
instead they use approaches that are as responsive as possible to real-time tasks to quickly schedule 
them within their specifed deadlines to attain deterministic response times. Most RTOSs assume 
more than one clock device and use them for different purposes. The system allows a process (or 
thread) to have its own timers and may even have as many as 32 timers per process. Different OS 
functions are available in this regard: to set the value of a specifed clock; to allow a process (thread) 
to read the time measured by the specifed clock; and to create, set, cancel, and destroy its timers. 
In addition, there are functions for getting the resolution of a clock and time remaining of a timer. 

Brief details on this topic with a table are given on the Support Material at www. 
routledge.com/9781032467238. 

10.8 REAL-TIME OPERATING SYSTEMS: BASIC COMPONENTS 

The objectives of RTOSs are quite different from their counterpart, the traditional operating sys-
tem; hence, the common operating system services that it provides need to be separately addressed. 
Several basic real-time issues, such as the characteristics of threads and processes, the basic struc-
ture of the kernel, scheduling of these threads and processes, the role of the clock and timers, com-
munication between and synchronization of threads and processes, memory management, I/O, and 
several other similar issues related to RTOS should be discussed. Each of these issues is relatively 
complex and needs detailed coverage, so instead of going into deep details on these issues individu-
ally, we concentrate more on providing an overview of each to signifcantly simplify the implemen-
tation of an RTOS in general. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
  

566 Operating Systems 

10.8.1 THREADS AND TASKS 

Threads, when supported in RTOS, are the basic unit of computation activity with all its related 
aspects and have a similar meaning as in the traditional uniprocessor operating system, already 
described in Chapter 4, but include some additional specifc attributes (such as typical interrupt 
handling, priority dominance, relative deadlines, etc.) that an RTOS requires. When a task (or 
a job) is initiated (ready state) in a system, the task makes a create_thread system call, and the 
kernel creates a thread to implement the task, assigning an id to it and allocating memory space 
in the user address space of the task with which the thread is associated, then fetches the code 
to be executed by the thread into memory. Most of the state information dealing with execution 
and overall management of thread is maintained in a thread control block (TCB) created by the 
kernel. A thread is referred to by a pointer to its TCB. The kernel destroys a thread by deleting 
its TCB and deallocating its memory space. However, the approach, in which there is no distinct 
concept of thread and the thread is not even recognized, it is referred to as a single-threaded 
approach. In a multithreaded environment, there is still a single process (task) control block 
(PCB) and user address space associated with the process (or task), but now there are separate 
TCBs for each thread containing all thread-related information as well as separate stacks for 
each thread. 

When an event occurs, the kernel saves the CPU state of the interrupted thread in its TCB. After 
event handling, the scheduler considers the TCBs of all threads and selects one ready thread; the 
dispatcher uses the PCB (or task control block) pointer in its TCB to check if the selected thread 
belongs to a different process than the interrupted thread. If so, it saves the context of the task (or 
process) to which the interrupted thread belongs and loads the context of the task (or process) to 
which the selected thread belongs. It then dispatches the selected thread. Actions to save and load 
the task (or process) context are unnecessary if both threads belong to the same task (or process), 
which reduces the switching overhead. 

• Periodic threads: As an RTOS deals with periodic, aperiodic, and sporadic tasks, 
described in Section 10.2, so are there periodic threads, aperiodic threads, and sporadic 
threads. A periodic task can be implemented in the form of a thread (computational activ-
ity) that executes periodically called a periodic thread. Such a thread is supposed to be 
created and destroyed repeatedly at every period, which simply wastes costly CPU time, 
thereby degrading system performance as a whole. That is why the RTOS that supports 
periodic tasks (e.g. Real-time Mach OS), the kernel avoids such unnecessary redundancy 
in repeated creating and destroying the threads by simply reinitializing the thread putting 
it to sleep when the thread completes. Here, the kernel keeps track of the duration of time 
and releases (brings back to the ready queue) the thread again at the beginning of the next 
period. Most commercial operating systems, however, do not support periodic threads. 
At best, a periodic task can be implemented at the user level as a thread that alternately 
executes the code of the task and sleeps until the beginning of the next period. This means 
that the thread does its own reinitialization and keeps track of time for its own next release 
without any intervention of the kernel to monitor. 

• Aperiodic and sporadic threads: When an aperiodic and sporadic task (see Section 10.2) 
is implemented in the form of thread, it gives rise to an aperiodic thread or a sporadic 
thread. This type of thread is essentially event-driven and is released in response to the 
occurrence of the specifed types of events that may be triggered by external interrupts. 
Upon its completion, an aperiodic or sporadic thread is reinitialized and suspended as 
usual. The differences between these three types of tasks are covered in Section 10.2. 

Thread states: Threads and processes are analogous, so their states and state transitions are also 
analogous, except that threads do not have resource ownership. Since, the thread is an alternative 



Real-Time Operating Systems 567  

 

 

 

 

 
 
 

 
 
 

  

 

 
 
 

  
 

 
 
 
 

form of schedulable unit of computation to the traditional notion of process, it similarly undergoes 
different states in its lifetime, as follows: 

• Ready state: When the thread is waiting for its turn to gain access to the CPU which 
executes it. 

• Running state: A thread is in the running state when the code attached to the thread is 
being executed by the CPU. 

• Waiting state: A thread is said to be in the waiting state when its on–going execution is 
not completed, but it may have to go to sleep, thereby entering the sleeping state. The other 
possibility may be that some other thread suspends the currently running thread. This 
thread now enters the suspended state. Suspending the execution of a thread is deprecated 
in the new version. 

• Dead state: When the thread has fnished its execution. 

A task (and hence a thread) can be suspended or blocked for many different reasons. The operating 
system typically keeps separate queues for threads that are blocked or suspended for different reasons. 
Similarly, the kernel normally keeps a number of ready queues; each queue is of ready threads with 
specifc attributes (e.g. a queue of ready threads with the same priority). A thread scheduler, analo-
gous to the process scheduler, switches the processor among a set of competing threads, thereby caus-
ing a thread to go through its different states. The thread scheduler in some systems is a user program, 
and in others, it is part of the OS. Since threads have few states and less information to be saved while 
changing states, the thread scheduler has less work to do when actually switching from one thread to 
another than is required for switching processes; an important aspect in favor of using threads. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

10.8.2 THE KERNEL 

An RTOS, with a few exceptions, normally consists of a microkernel that provides a set of the basic 
operating system functions. Figure 10.2 shows a general structure of a microkernel. Many small 
embedded applications (such as home appliances like washing machines and traffc light signal con-
trollers) are found to require only a nanokernel, which basically provides only time and scheduling 
services and consists of only the clock interrupt part of Figure 10.2. For the sake of simplicity, we 
assume here that there are only three main reasons which insist the kernel to take control from the 
executing process (or threads) and start executing itself. Those are: 

• to respond to a system call, 
• to do scheduling and service the timers, and 
• to handle external interrupts. 

The kernel also deals with many other aspects, such as fault-tolerance, reliability, stability, and 
recovery from hardware and software exceptions; but those aspects are deliberately kept outside the 
scope of this discussion. 

• System Calls: Out of several different functions that the kernel usually provides, it also 
offers many other functions (e.g. Application Program Interface (API) functions) which, 
when called from user programs do some work at the kernel space on behalf of the call-
ing process (or thread). Any call to one of the API functions, some of which are listed 
in Figure 10.2, is essentially a system call. In systems that provide memory protection, 
user and kernel processes (or threads) are executed in separate memory spaces. When 
a system call (API function) is issued by the calling process (or thread), the process is 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 
 
 
 

  
 
 
 
 

 

568 Operating Systems 

FIGURE 10.2 A representative structure of a microkernel used in real-time operating systems (RTOS). 

blocked, and the kernel saves everything in relation to the calling process (or thread) and 
switches from user mode to kernel mode. It then takes the function name and arguments 
of the call from the process’s (or thread’s) stack and executes the function on behalf of 
the process (or thread). When the execution of the system call completes, the kernel 
executes a return from exception, causing the system to return to user mode. The calling 
process then resumes from the point where it left if it still has the highest priority. This 
line of action, followed in sequence to execute an API function, is called a synchronous 
system call. If the system call causes another process (or thread) to have a higher priority, 
then the currently executing system call will be interrupted, and the process (or thread) 
with the higher priority will be started. 

When the call is asynchronous (such as in the case of an asynchronous I/O request), the calling 
process (or thread) continues its own execution (without blocking) after issuing the call. The kernel 
then provides a separate process (or thread) to execute the called function. 

Many embedded operating system that do not provide memory protection allow the user and the 
kernel process to execute in the same space. This is often favored in order to keep the execution-
time overhead small (due to no need for a process/context switch) as well as to avoid the overhead 
of consuming extra memory space to provide full memory protection (on the order of an additional 



Real-Time Operating Systems 569  

 

 

 

few kilobytes needed per process). A system call in such a system is just like a procedure or function 
call within the application. 

• Scheduling and Timer Services: The heart of the system kernel is the scheduler which, 
in most operating systems, executes periodically as well as whenever the state of a process 
(or thread) changes. The scheduler assigns processors to schedulable jobs or, equivalently, 
assigns schedulable jobs to processors. The scheduler is triggered to come into action by 
means of raising the clock interrupts issued from the system clock device periodically. 
The period of clock interrupts is called tick size, which is on the order of 10 milliseconds 
in most operating systems. However, in a clock-driven system that uses a cyclic scheduler, 
clock interrupts occur only at the beginning of a frame. At each clock interrupt, the kernel 
performs several responsibilities to service the interrupt, some notable ones are: 

The kernel frst attempts to process the timer events by checking the queue of pending expiration 
times stored in the time order in the queue of all the timers that are bound to the clock. This way, 
the kernel can determine whether timer events have occurred since the previous time it checked 
the queue. If the kernel fnds that a timer event did occur, it carries out the specifed action. In this 
manner, the kernel processes all the timer events that have occurred and then queues all the speci-
fed actions. It subsequently carries out all these actions at appropriate times before fnally returning 
control to the user. 

The next action that kernel takes is to update the execution budget, which is the time-slice 
normally offered by the scheduler when it schedules a process (or thread) for execution based on 
policy and considering other constraints. At each clock interrupt, the scheduler usually decrements 
the budget of the executing process (or thread) by the tick size. If the process (or thread) is not 
completed when the updated budget (i.e. the remaining time-slice) becomes 0, the kernel then sim-
ply decides to preempt the executing process (or thread). Some scheduling policies, such as FIFO, 
offer an infnite time slice or do not decrement the budget of the executing process (or thread), 
thereby allowing the process (or thread) to continue its execution even when some other processes 
(or threads) of equal priority keep on waiting in the queue. 

After taking all these actions, the kernel proceeds to update the ready queue. Some threads by 
this time may be ready (e.g. released upon timer expirations), and the thread that was executing at 
the time of the clock interrupt may need to be preempted. The scheduler accordingly updates the 
ready queue to bring it to the current status and fnally gives control to the process (or thread) that 
is lying at the head of the highest-priority queue. 

Now, as the scheduler is periodically activated only at each clock interrupt, the system is criti-
cally dependent on tick size, and the length of the tick-size is an important factor. A relatively large 
tick size appears suitable for some commonly used scheduling policies, such as round-robin in time-
shared applications, but it may badly affect the schedulability of time-critical applications. On the 
other hand, while a smaller tick size nicely fts with time-critical environments, but at the same time 
degrades the system performance due to increased scheduling overhead caused mainly by frequent 
servicing of relatively expensive regular clock interrupts. That is why most operating systems prefer 
to have a combination of time-based (tick) scheduling along with event-driven scheduling. This 
way, whenever an event occurs, the kernel invokes the scheduler to update the ready queue, and it 
then quickly wakes up or releases a process (or thread), detects a process (or thread) unblocked, or 
creates a new process (or thread), and many other similar things. In this way, a process (or thread) 
is properly placed in the ready queue as soon as it is set. 

• External Interrupts: An interrupt is an important tool by which the system can moni-
tor the environment by gaining control during execution, give control to the deserving 
point for needed execution, or facilitate many similar other activities that an operating 
system needs to fulfll its objectives. Here, interrupt means hardware interrupts, and those 



 

 

570 Operating Systems 

interrupts that take place due to the occurrence of events in the external system located 
outside the domain of the computer system are referred to as external interrupts. The oper-
ating systems, in particular, the RTOS that deals with external interrupts to keep up with 
the external events with which it is concerned, a proper handling of such interrupts in time 
is an essential functional requirement of the kernel of such systems. However, these inter-
rupts may be of various types depending on the nature of the interrupt source, and as such, 
the amount of time required to handle an interrupt, including its servicing, varies over a 
wide span. That is why interrupt handling in most contemporary operating systems is clas-
sifed into two distinct categories. Those are: 

Immediate interrupt service: Interrupt handling at its frst instance is executed depending 
on the interrupt-priority level, which is entirely determined by the hardware being used, and as 
such, most modern processor architectures provide some form of priority-interrupt with different 
interrupt-priority levels. In addition, it is apparent that interrupt-priority levels (hardware-based) 
are always higher than all process (or thread) priorities (software-based) and are even higher than 
the priority at which the scheduler executes. When many interrupts with the same or different 
interrupt-priority levels are raised within a small span of time, which is usually very common, the 
interrupt-priority level attached to a particular interrupt then determines the ordering (either by 
means of polling or some other suitable mechanism), following which the interrupt is serviced. The 
corresponding service routine is then called by the kernel for execution. Moreover, if at any instant 
when the execution of an interrupt servicing routine is in progress, a higher-priority interrupt, as 
indicated by the interrupt-priority level, is raised, the ongoing interrupt servicing may be inter-
rupted to accommodate the relatively high-priority interrupt for its servicing, or the processor and 
the kernel take care of the higher-priority interrupt in another ftting manner. 

The interrupt-priority level of an interrupt determines the immediate interrupt service, which is 
linked with what is known as responsiveness of the kernel. The total time required from the time the 
interrupt is raised to the start of the execution of interrupt servicing of the interrupt after completing 
all the needed housekeeping and other related activities is called interrupt latency. The ultimate 
design objective of any kernel is to minimize the interrupt latency so as to make the kernel more 
responsive. Various attempts in different areas related to this issue have been made to minimize the 
latency. One notable one is to make the immediate interrupt handling routine as short as possible. 
Another is to modify the design of the kernel so that the device-independent part (which is the code 
for saving the processor state) of the interrupt service code can be injected into the interrupt service 
routine of the device itself (device-dependent) to enable the processor to directly jump to the inter-
rupt service routines without going through any time-consuming kernel activity. 

Scheduled interrupt service: To complete interrupt handling, after the end of the frst step, 
which is immediate interrupt service, the second step begins with the execution of another service 
routine known as scheduled interrupt service (not to be confused with interrupt servicing that actu-
ally starts from the beginning of the execution of interrupt service routine of the interrupting device 
after the end of these two steps in interrupt handling) that is invoked by the frst step after complet-
ing its own responsibilities. The function being carried out in this second step is by the execution 
of what is known as scheduled interrupt handling routine. This routine is preemptible and should 
be scheduled at ftting priority (software) in a priority-driven system. For example, in some RTOS, 
like in LynxOS, the priority of the kernel process (or thread) that executes a scheduled interrupt 
handling routine is the priority of the user process (or thread) that opened the interrupting device. 
That is why Figure 10.2 shows that after the execution of immediate interrupt service, the scheduler 
begins to execute the one that inserts and places the scheduled interrupt handling process (or thread) 
in the ready queue, and eventually lets the highest-priority process (or thread) to be scheduled that 
consequently gains control of the processor. 

Brief details of this topic with fgures are given on the Support Material at www.routledge.com/ 
9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Real-Time Operating Systems 571  

  

 

  

  
 

 

 
 

   
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

10.8.3 SCHEDULING MECHANISMS 

Real-time scheduling is one of the most vital aspects that have a direct impact on the overall per-
formance of a real-time operating system. Tasks (jobs) are usually scheduled based on a chosen set 
of algorithms, and subsequently resources (both processors and passive resources are referred to 
as resources) are allocated along with resource access-control protocols. The module which imple-
ments these algorithms is called the scheduler. It is implicitly assumed that every job executes on 
one processor, unless and otherwise it is specifcally mentioned, and that jobs do not run in parallel 
on more than one processor to speed up their execution. The scheduler always generates a valid 
schedule (or sometimes called plan), which means that no task (or job) is scheduled before its 
release time and the completion of all its predecessors, no task (or job) is scheduled on more than 
one processor at the same time, no processor is scheduled to execute more than one task (or job) at 
the same time, and the total amount of time assigned to every task (or job) is equal to the execution 
time except when the task (or job) or a portion of it can be discarded because it is optional. A valid 
schedule is a feasible schedule if every job completes by its deadline or, in general, meets its speci-
fed timing constraints. A set of tasks (or jobs) is said to be schedulable according to a scheduling 
algorithm, if when using the algorithm, the scheduler always produces a feasible schedule. 

The performance of scheduling algorithms for hard real-time applications is defned as their 
ability to fnd feasible schedules of the given application system whenever such schedules exist. 
A hard real-time scheduling algorithm is said to be optimal if (using) the algorithm always pro-
duces a feasible schedule whenever the given set of tasks (or jobs) have feasible schedules. This 
performance can also be measured in terms of commonly used parameters that include the maxi-
mum and average tardiness, lateness, response time and the miss, loss, and invalid rates. The 
tardiness and lateness of a task (or job) both are measured as the difference between its comple-
tion time and its deadline. The response time here has a similar meaning as in general-purpose, 
interactive systems. It is obvious that smaller the average response time, the better the algorithm. 
In particular, in an environment that consists of a mixture of both types of jobs with hard and 
soft deadlines, the ultimate objective is typically to minimize the average response time of jobs 
with soft deadlines while ensuring that all jobs with hard deadlines complete in time. The miss 
rate is defned as the percentage of jobs that are executed but completed too late. The loss rate 
is defned as the percentage of jobs that already arrived but are discarded, that is, not executed. 
The scheduler in some situations may prefer to sacrifce some jobs by discarding them, thereby 
increasing the loss rate but completing more jobs in time, which, in turn, reduces the miss rate. 
Therefore, while an attempt is made to minimize the miss rate, it should be reduced as much as 
possible but comply with the constraint that the loss rate should always be below some acceptable 
threshold. The same approach should also be taken while minimizing the loss rate, which may, 
in turn, increase the miss rate above a given threshold. The performance measure that follows 
this trade-off is known as the invalid rate, defned as the sum of the miss and loss rates, and 
gives the percentage of all jobs that do not produce any useful result. An all-out attempt is thus 
made to keep this invalid rate as low as possible. In addition, there is also an operating system 
architecture that offers real-time applications that run in an open environment in which hard real-
time applications can run at ease with soft real-time applications, as well as with non–real-time 
applications. The OS often makes use of two-level scheduling (the scheduling that accommodates 
sporadic and aperiodic tasks along with periodic tasks) to enable each real-time application to be 
scheduled in a way best suited for the application under the existing environment, and the schedu-
lability of the applications is determined independently of other applications that may run with it 
on the same hardware platform. 

Several other aspects come into play when various types of approaches for scheduling periodic 
tasks and aperiodic tasks are framed. The factors that mostly infuence these approaches are whether 
a system performs schedulability analysis; if so, whether it is done statically or dynamically; and 
whether the result of such analysis itself produces a schedule or a working plan based on which 



 

 

 

 

 

 

 
 
 
 
 
 
 
 

  
 
 

 
 
 

   
 

  

572 Operating Systems 

tasks can be dispatched at runtime. All these factors along with similar other ones, when considered 
together, give rise to the following categories of scheduling algorithms (as shown in Figure 10.1): 

• Static table-driven scheduling: The approaches used here to realize a scheduling mecha-
nism are applicable to periodic tasks (or jobs). The parameters associated with the tasks 
(or jobs) are used as input that includes periodic arrival time, execution time, periodic 
ending deadline, and relative priority of each task. The scheduler, using these parameters, 
attempts to develop a schedule that ensures it, meets the requirements of all such periodic 
tasks. This is essentially a predictable approach and at the same time is an infexible one, 
because any change to any task requirements demands the schedule to be restructured 
afresh. Earliest-deadline-frst (EDF) or other periodic deadline scheduling techniques are 
typical examples of this category. 

• Static priority-driven preemptive scheduling: The approaches employed here assign 
priorities to tasks, based on which traditional priority-driven preemptive scheduling is car-
ried out by the scheduler. The mechanism used by this scheduler is similar to one com-
mon to most non–real-time multitasking (multiprogramming) systems in which priority 
assignment depends on many factors. But in real-time systems, the priority assignment is 
straightaway related to the time constraints associated with each task. The rate-monotonic 
(RM) scheduling algorithm uses this approach in which static priorities are assigned to 
tasks based on the length of their periods. 

• Dynamic planning-based scheduling: The approaches determine the feasibility dynami-
cally (online) during runtime rather than statically (offine) prior to the start of execution. 
An arriving task is accepted for execution only if it is feasible to meet its time constraints 
(deadlines). One of the outcomes of this feasibility analysis is a schedule or plan that is used 
to decide when to dispatch this task. When a task arrives, but before its execution begins, the 
scheduling mechanism makes an attempt to create a fresh schedule that incorporates the new 
arrival along with the previously scheduled tasks. If the new arrival can be scheduled in such 
a way that its deadlines are satisfed, and no currently scheduled task is affected by missing 
its deadline, then the schedule is restructured to accommodate the newly arrived task. 

• Dynamic best-effort scheduling: The approaches used here do not perform any feasibility 
analysis; instead the system attempts to meet all deadlines and aborts any started task (or job) 
whose deadline is missed. Many commercially popular real-time systems favor this approach. 
When a task (or a job) arrives, the system assigns a priority to the job based on its character-
istics, and normally some form of deadline scheduling, such as, EDF scheduling, is chosen. 
Since the tasks are, by nature, typically aperiodic, no static scheduling analysis is workable. 
With this type of scheduling, until a deadline (task or job) arrives or until the task completes, it 
is not possible to know whether a timing constraint will be met. This is one of the major disad-
vantages of this form of scheduling, although it has the advantage of being easy to implement. 

This section mostly attempts to give an overview of the scheduling mechanisms and deals 
only with those scheduling services that the kernel can easily provide to signifcantly simplify 
the implementation of complex algorithms for scheduling aperiodic tasks at the user level. 

Many different increasingly powerful and appropriate approaches to real-time task (or 
job) scheduling have been proposed. All of these are based on additional information asso-
ciated with each task (or job). The scheduling algorithms are all designed with the primary 
objective of starting (or completing) tasks or jobs at the most appropriate (valuable) times, 
neither too early nor too late, and hence mostly rely on rapid interrupt handling and task 
dispatching, despite dynamic resource demands and conficts, processing overloads, and 
hardware and software faults. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Real-Time Operating Systems 573  

 

 

 

 

 

  
  

 
 

 

10.8.3.1 Clock-Driven Approach 
When scheduling decisions are made as to what jobs would be executed at what specifc time 
instants, it is called clock-driven or time-driven. In systems that use clock-driven scheduling, all 
the needed parameters of hard real-time jobs are fxed and known that are used by the scheduler to 
choose specifc time instants a priori for each job before the system begins execution. Accordingly, 
a typical schedule or a plan is produced off-line and is stored for the scheduler to schedule these jobs 
using this schedule at each scheduling decision time during execution. As a result, the system has, 
as such, no scheduling overhead during runtime. 

To realize scheduling decisions periodically at regularly spaced time instants, a hardware timer 
is used that is set to expire periodically without any intervention of the scheduler. The scheduler 
selects and schedules the job(s), then blocks itself waiting for the timer to expire. During this period, 
the selected job goes on executing until the next scheduling decision time. At the expiry of the timer, 
the scheduler once again awakes and repeats the same course of action. 

10.8.3.1.1 Weighted Round-Robin Approach 
The traditional round-robin approach, often called a processor-sharing algorithm, is one of the most 
commonly used time-shared preemptive scheduling of applications in which every job, after being 
ready for execution, joins in a frst-in-frst-out scheduling queue, and the scheduler then releases the 
job located at the head of this queue for execution, giving at most one quantum of time unit called a 
time-slice. If the job does not complete its execution by the end of this time slice, it is preempted and 
is placed at the end of the queue to wait for its next turn. Since the length of the time slice chosen 
in this approach greatly infuences the performance of the system; shorter time slices would enable 
every job to begin its execution almost immediately after it becomes ready. This attribute can be 
considered one of the attractive features of this algorithm. 

Based on this basic RR scheme, another approach known as the weighted round-robin algorithm 
has been improvised. In this approach, rather than giving all the ready jobs an equal share of the pro-
cessor, different jobs may be given different weights. The term weight for a task (or job) here indicated 
what fraction of processor time is to be allocated to the task (or job). A job with weight x gets x time 
slices every round, and the length of a round is equal to the sum of the weights of all the ready tasks (or 
jobs). One of the advantages of this scheme is that by tuning the weights of jobs, the progress of each 
job toward completion can be controlled at will so as to match the need of the existing environment. 

The weighted round-robin scheduling approach is not conducive to scheduling precedence-con-
strained jobs, since it badly affects the response time of a chain of such jobs, making it unnecessar-
ily longer. But, on the other hand, the good part of it is that it enables the successor job to effectively 
use what is produced by its predecessor (as is found in a UNIX pipe) and can even be executed 
simultaneously in a pipelined fashion. 

The inherent nature of this approach favors it to effectively use in scheduling real-time traffc 
in high-speed switched networks in which transmission of messages is carried out by the exist-
ing switches en route (thought of as being in a queue) in a pipelined fashion. Here, a switch can 
immediately begin to transmit an earlier portion of the message as soon as it receives the portion 
without having to wait for the arrival of the later portion of the message. Since the weighted round-
robin approach always uses a round-robin queue and does not require a sorted priority-queue, it 
is distinctly preferred in scheduling of message transmissions in ultrahigh-speed networks, since 
priority-queues with the required speed in this environment are expensive to implement. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

10.8.3.2 Priority-Driven Approach 
When the scheduling decisions are made on some form of priority determined by the parameters 
attached to the jobs, they are called priority-driven, which is used in a large number of different 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 
 
 

 
 
 
 
 
 
 

 
  

 

 

 

  

574 Operating Systems 

classes of scheduling algorithm. Such scheduling is precisely applicable for events, such as releases 
and completion of jobs or even interruption of executing jobs due to the occurrence of some other 
events. That is why priority-driven algorithms are event-driven. This algorithm always attempts 
to keep the resources busy whenever they are available by scheduling a ready job which requires 
them. So, when a processor or any other resource is available and some job is ready to use it to make 
progress, such an algorithm never makes the job wait. This attribute is often called greediness. 
Priority-driven scheduling is thus often called greedy scheduling, since this algorithm is always 
eager to make decisions that are locally optimal. 

A priority-driven scheduler is essentially an on–line scheduler. It does not precompute a 
schedule of the tasks (or jobs). Rather, it is, in general, implemented by assigning priorities to 
jobs at release time before execution. In fact, priority-driven algorithms differ in how priorities 
are to be assigned to jobs. The algorithms in this regard for scheduling periodic tasks are clas-
sifed into two main categories: fxed (or static) priority, in which the priority is assigned to each 
periodic task (or job) at its release time and is fxed relative to other task (or job). In a dynamic 
priority algorithm, the priority of task (or job) may change (dynamically) over the time between 
its release and completion. In fxed priority, jobs ready for execution are usually placed in one 
or more job queues arranged by the order of priority as assigned. At each scheduling decision 
time, the scheduler updates the ready job queues in the descending order of priorities and then 
the job located in front of the highest-priority queue is scheduled and executed on the available 
processor(s), and after that the next job in the queue, and so on. Hence, a priority-driven schedul-
ing algorithm essentially arranges the job to a large extent by a list of assigned priorities, and that 
is why this approach is sometimes called list scheduling. In fact, the priority list, along with the 
other relevant decisions or rules (such as whether preemption will be done) when injected into it, 
they all together constitute the scheduling algorithm as a whole. 

Most traditional scheduling algorithms are essentially priority-driven. For example, both FIFO 
and LIFO algorithms assign priorities to jobs according to their arrival times, and RR scheduling is 
the same when preemption is considered. Moreover, in RR scheduling, the priority of the executing 
job is often dynamically made lowered to the minimum of all jobs waiting for execution by placing 
it at the end of queue when the job has already executed for a time slice. The SJF, SPN, and LJF 
algorithms assign priorities on the basis of job execution times. 

However, most real-time scheduling algorithms of practical interest essentially assign fxed pri-
orities to individual jobs. The priority of each job is assigned upon its release when it is inserted into 
the ready job queue. Once assigned, the priority of the job relative to other jobs in the ready queue 
remains fxed. In the other category, priorities are fxed at the level of individual jobs, but the priori-
ties at the task (within the job) level are variable. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

10.8.3.2.1 Fixed-Priority (Static) Scheduling 
All modern operating systems, including many real-time operating systems, support fxed-priority 
scheduling. The IEEE 802.5 token ring provides eight priority levels, and RTOSs provide no more 
than 256 priority levels with non-distinct priorities to tasks (or jobs) and perform almost as an ideal 
system with an infnite number of priority levels. In contrast, a commonly used general-purpose 
operating system usually provides fewer levels. Windows NT, for example, provides only 16 real-
time priority levels. 

Priority is normally assigned by the scheduler at the time of creation of the process or thread. 
When a thread is created by a fork() function, it normally inherits the priority of the parent thread 
in the parent process, and it is stored in its TCB. In systems that support priority inheritance or 
the ceiling-priority protocol, a thread may inherit a higher priority than its assigned priority. These 
protocols assign time-varying priorities which a thread acquires as the current priority during its 
execution and is then stored in the TCB of the thread. The fxed-priority scheduling mechanism is 
implemented here in a similar fashion as in traditional OSs. Most RTOSs, including all real-time 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Real-Time Operating Systems 575  

  

 
 
 
 
 

 
 
 
 
 

 

POSIX-compliant systems, allow the user to schedule equal-priority threads belonging to the same 
ready queue with the choice between round-robin or FIFO policies, and the kernel then conveniently 
carries out either policy. 

At each scheduling time decision, the scheduler has to fnd the highest-priority nonempty queue 
to schedule the highest-priority ready threads for execution. The worst-case time complexity of this 
operation is, at least theoretically, O(β), where β is the number of priority levels supported by the 
operating system. In fact, the average number of comparisons required to scan the queues to fnd 
the highest-priority job to schedule at any instant is (β/K) + log2 K – 1, where K is the word length 
of the CPU. If a system has 256 priority levels using a 32-bit CPU (the word length of CPU is 32 
bits), then the scheduler would take at most 12 comparisons to detect the highest-priority thread to 
be scheduled. 

Brief details on this topic with a fgure are given on the Support Material at www.routledge. 
com/9781032467238. 

10.8.3.2.1.1 Rate-Monotonic Algorithm A well-known promising fxed-priority algorithm pro-
posed by Liuin 1973 is the RM algorithm that resolves multitask scheduling conficts for periodic 
tasks (or jobs). This algorithm assigns priorities to tasks (or jobs) based on their periods; the shorter 
the period, the higher the priority. 

The relevant parameter for periodic tasks used in this algorithm is the task’s period, T, which 
is the amount of time between the arrival of instance of one task and the arrival of the instance of 
the next task. The rate (of job releases) of a task (in Hertz) is simply the inverse of the period (in 
seconds). For example, a task with a period of 50 ms occurs at a rate of 20 Hz (1/50 ms = 1000/50 
sec = 20 Hz). Typically, the end of a task’s period is also the task’s hard deadline, although some 
tasks may have earlier deadlines. The execution (or computation) time, C, is the amount of pro-
cessing time required for each occurrence of the task. It should be clear that in a uniprocessor 
system, the execution time must be no greater than the period (i.e. C ≤ T). If a periodic task is 
assumed to always be run to completion, that is, if no instance of the task is ever denied service 
because of nonavailability of resources, the utilization of the processor by the task is U = C/T. 
For example, if a task has a period of 90 ms and an execution time of 50 ms, then its processor 
utilization is 50/90 = 0.5555. 

For RM scheduling, the highest-priority task is obviously the one with the shortest period, the 
second highest-priority task is the one with the second shortest period, and so on when more than 
one task is available for execution. If the priority of a set of tasks can be plotted as a function of their 
rate, the result is a monotonically increasing function, and that is why it is called rate monotonic 
scheduling. 

One of the important parameters of a periodic scheduling algorithm is its effectiveness, which 
is usually measured in one way in terms of whether it guarantees that all hard deadlines are met. If 
there are n tasks with a fxed period and associated execution time, then for it to be possible to meet 
all deadlines, the following inequality must hold: 

C C C1 2 n˜  ̃ °°˜ ˛1 
T T T1 2 n 

In other words, the sum of the processor utilizations of all the individual tasks cannot exceed a value 
1, which corresponds to total utilization of the processor. This inequality also indicates a bound on 
the number of tasks that can be successfully scheduled by a perfect scheduling algorithm. For any 
particular algorithm, the bound may be even lower. It can be shown that for RM scheduling, the 
following inequality also holds: 

C1 C2 Cn ( 1/ n ˜  ̃ °°˜  ̨  n 2 –1)
T T T1 2 n 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

  
 
 

 
 
 
 
 

 
 

 

  

 

   

 
 
 
 
 
 

576 Operating Systems 

When n = 1, the upper bound is n (21/n – 1) = 1; for n = 2, the upper bound is n (21/n – 1) = 0.828; 
n = 3, the upper bound n (21/n – 1) = 0.779; and in this way as n → ∞, the upper bound n (21/n – 1) = 
ln 2 ≈ 0.693. This shows that as the number of tasks increases, the scheduling bound converges to 
ln 2 ≈ 0.693. 

Brief details on this topic with fgures and an example are given on the Support Material at www. 
routledge.com/9781032467238. 

10.8.3.2.1.2 Deadline-Monotonic Algorithm Another well-known fxed-priority scheduling algo-
rithm is the deadline-monotonic (DM) algorithm, which assigns priorities to tasks according to their 
relative deadlines: the shorter the relative deadline, the higher the priority. The DM schedule of a system 
consisting of a certain number of tasks can be prepared in the same fashion as preparing an RM sched-
ule, except that the priorities of jobs are imposed here on the basis of their relative deadlines. However, 
if the relative deadline of every task is proportional to its period, then RM and DM algorithms become 
identical. When the relative deadlines are arbitrary, the DM algorithm performs better in the sense that it 
can sometimes produce a feasible schedule when the RM algorithm fails. More precisely, when the DM 
algorithm fails, RM algorithm always fails. Whatever it may be, some of the features exhibited by RM 
scheduling algorithms are quite advantageous and favor its wide adoption in industrial environments. 

Advantageous features of RM scheduling algorithms are given on the Support Material at www. 
routledge.com/9781032467238. 

10.8.3.2.2 Dynamic Priority Scheduling 
To be specifc, there are three categories of algorithms: fxed-priority algorithms, task-level dynamic 
priority (and job- or component-level fxed-priority) algorithms, and job (or component)-level (and 
task-level) dynamic algorithms. Except where stated otherwise, by dynamic-priority algorithms, it is 
generally meant task-level dynamic priority (and job- or component-level fxed-priority) algorithms. 

10.8.3.2.2.1 Earliest-Deadline-First Algorithm Most operating systems prefer to support 
dynamic priority. A straightforward scheme is to always schedule the ready task with the earli-
est deadline and then let that scheduled task run to completion. The EDF algorithm employs an 
approach that assigns priorities to individual tasks according to their absolute deadlines: the earlier 
the (absolute) deadline of any task (job) at any instant, the higher the priority of that particular task 
(job) at that instant. The deadline of a specifc task (job) with respect to the current time may be 
earlier or later than any other task (job) in the ready queue; hence, its priority will be accordingly 
changed and assumed to be higher or lower at that time instant. Thus, the priorities of task (jobs) 
change dynamically (as the execution proceeds), hence the name dynamic priority algorithm. This 
scheduling mechanism always schedules the eligible task based on the earliest (absolute) dead-
line, even preempting the executing task (job) with a later deadline and then letting that scheduled 
task run to completion. Thus, the EDF algorithm can also be called a task-level dynamic-priority 
algorithm. On the other hand, once a job is placed in the ready job queue according to the priority 
assigned to it, its order with respect to other jobs in the queue remains fxed. In other words, the EDF 
algorithm can also be called a job-level fxed-priority algorithm. 

Brief details on this topic with fgures and an example are given on the Support Material at www. 
routledge.com/9781032467238. 

10.8.3.2.2.2 Least-Slack-Time-First Algorithm Another well-known dynamic-priority 
algorithm that is optimal for scheduling preemptive jobs on one processor is the least-slack-
time-frst (LST) algorithm, sometimes also called the minimum-laxity-frst (MLF) algorithm. 
At any time t, the slack (or laxity) with deadline at d is equal to d – t minus the time required 
to complete the remaining portion of the job. This says that at any instant t, the slack of a job; 
s = d – t – x, where d is the deadline and x is the remaining execution time (i.e. the execution 
of its remaining portion) of the job at time t. The scheduler checks the slacks of all the ready 
jobs each time a new job is released (i.e. arrives at the ready job queue) and orders the new job 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Real-Time Operating Systems 577  

 

  

 
 

 

 

 

 

with the existing jobs once again on the basis of their slacks; the smaller the slack, the higher 
the priority. 

For example, consider a set of jobs Jk(u, v) where k = 1,2,3, . . ., in which u is the deadline, and 
v is the execution (or computation) time of the job Jk. Now, assume that a job J1 (6, 3) is released at 
time 0 with a deadline 6, and its execution time is 3. The job starts to execute at time 0. As long as 
it executes, it slack s remains at 3, because at any time t, before its completion, the slacks = d – t – 
x = 6 – t – (3 – t)= 6 – 3 = 3. Now, suppose that it is preempted at time 2 by a job J3, which executes 
from time 2 to 4. At the end of this interval (i.e. at t = 4), the slack s of J1 = d – t – x = 6 – 4 – (3 – 2) 
[the remaining portion of J1 is (3 – 2) as 2 units of work out of a total need of 3 units are already 
done in the interval 0 to 2] = 1. Thus, the slack of J1 decreases from 3 to 1 after the interval when J3 

completes its execution in the interval from 2 to 4. 
With the LST algorithm, as discussed, the scheduling decisions are made only at the times when 

jobs are released (arrive at the ready queue) or completed; this version of the LST algorithm does not 
really follow the LST rule of priority assignment rigorously at all times in its truest sense. To be very 
specifc, this version of LST algorithm thus can be, at best, called the nonstrict LST algorithm. If 
the scheduler were to adhere to LST rules strictly, then it would have to continuously monitor the 
slacks of all ready jobs and keep comparing them with the slack of the executing job. It would have 
to reassign priorities to jobs whenever their slacks changed relative to each other. Consequently, the 
runtime overhead of the strict LST algorithm includes the additional time required to monitor and 
compare the slacks of all ready job as time progresses. In addition, if the slacks of more than one 
jobs become equal at any time, they need to be serviced in a round-robin manner that results in extra 
consumption of time due to context switches suffered by these jobs. For these and many other rea-
sons, the strict LST algorithm is effectively unattractive in practice and thus has fallen out of favor. 

A relevant complicated example of this topic is given on the Support Material at www. 
routledge.com/9781032467238. 

10.8.3.2.3 Priority Inversion 
A preemptive scheduling scheme based on fxed or dynamic priority often exhibits a peculiar phe-
nomenon in the context of real-time scheduling known as priority inversion that may sometimes 
create an adverse impact on the working of the entire system. The most notable instance of priority 
inversion in recent years was observed in the Mars Pathfnder mission led by NASA. The operating 
system used there is VxWorks, and the related priority inversion, with its impact, is described in 
brief in Section 10.9.4. 

A system employing any type of priority scheduling scheme should always schedule and execute 
the task with the highest priority. But, at times, it happens within the system that a situation insists a 
relatively higher-priority task to wait for a lower-priority task. This phenomenon is so-called prior-
ity inversion. It can occur when the execution of some tasks or portions of tasks is nonpreemptible. 
Resource contention among jobs can also cause priority inversion. Because resources are allocated 
to tasks on a nonpreemptible basis, a higher-priority task can be blocked by a lower-priority task if 
the tasks confict, even when the execution of both tasks is preemptable. Many other situations can 
occur that may ultimately result in priority inversion. One such situation is; while a lower-priority 
task has already acquired a shared resource (e.g. a device or a binary semaphore) before using, 
and a higher-priority task almost at the same time attempts to acquire the same resource. The ulti-
mate consequence is that the higher-priority tasks will be simply put into a blocked state until the 
resource is available. Many different other reasons can be cited that may cause such situations to 
occur; one may cause the system to enter a deadlock. However, if the lower-priority task quickly 
fnishes its execution with the already owned resource and releases it, the higher-priority task may 
then resume, and there will be no appreciable violation in real-time constraints that can miss the 
specifed deadline to the extent that it would cause ill effects. 

Indeed, the situation may become even worse if priority inversion is unbounded or uncontrolled. 
The duration involved in unbounded priority inversion depends not only on the time consumed to 
handle a shared resource but also on unpredictable interactions and involvement of other unrelated 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 
  

 
  

  

 

  
   

 

 

 

 

 

578 Operating Systems 

tasks. More seriously, without having good resource access-control, the duration of a priority inver-
sion can be unbounded. The priority inversion experienced by Pathfnder software was precisely 
unbounded (uncontrolled) and is presented here as a good example of when this undesirable phe-
nomenon occurs. 

Brief details on this topic with fgures and an example are given on the Support Material at www. 
routledge.com/9781032467238. 

10.8.3.2.4 Priority Inheritance 
The priority inversion problem is addressed using the priority inheritance protocol, wherein a low-
priority process that holds a resource temporarily acquires the priority of the highest-priority process, 
which attempts to gain control of the resource. Each ready job Jk at any time t is scheduled by the sched-
uling algorithm and executes at its current (assigned) priority лk (t). In particular, the current priority лk 

(t) of a job Jk may be raised to the higher priority лh (t) of another job Jh. When this happens, it is said that 
the lower priority job Jk inherits the priority of the higher priority job Jh, and Jk executes at its inherited 
priority лh (t). In its simplest form, the priority-inheritance protocol is defned by the following rules 
with the assumption that some of the jobs contend for resources and every resource has only 1 unit. 

1. Scheduling Rule: Ready jobs are scheduled on the processor preemptively in a priority-
driven manner according to their current priorities. At its release time t, the current priority 
л (t) of every job J usually holds its own current priority. The job remains at its priority 
except under the condition stated in rule 3. 

2. Allocation Rule: When a job J requests a resource R at time t: 
a). If R is free, R is allocated to J until J releases the resource, and 
b). If R is not free, the request is denied, and J is blocked. 

3. Priority-Inheritance Rule: When the requesting job J becomes blocked, the job Jk which 
blocks J inherits the current priority л (t) of J. The job Jk executes at its inherited priority л 
(t) until it releases R; at that time, the priority of Jk returns to its previous priority лt (t΄) at 
time t΄ when it acquires the resource R (before its inheritance of higher priority). 

The priority inversion problem can now be explained using the priority inheritance protocol by an 
example. Assume a low-priority task (or process) P2 already holds a resource which a high-priority 
task (or process) P1 needs. So the low-priority task (or process) P2 would temporarily acquire the 
priority of the task (or process) P1, which would enable it to be scheduled and exit after fnishing 
its execution using the resource. This priority change takes place as soon as the higher-priority 
task blocks on the resource; this blocking should come to an end when the resource is released by 
the lower-priority task and the lower-priority task gets back to its previous default priority when it 
acquires the resource. In this way, the problem of unbounded priority inversion, as discussed in the 
last section, can be resolved with the use of the priority-inheritance protocol. However, use of the 
priority inheritance protocol in many situations is impractical because it would require the kernel to 
note minute details of the operation of processes (as normally happens when deadlock is handled). 

Brief details on this topic with a solution to the priority inversion problem are given on the 
Support Material at www.routledge.com/9781032467238. 

10.8.3.2.5 Priority Ceiling 
The priority-ceiling protocol essentially extends the priority-inheritance protocol to prevent dead-
locks and to further reduce the blocking time. The basic assumptions related to this protocol are: 

• Each ready job Jk at any time t is scheduled by the scheduling algorithm and executes at its 
current (assigned) priority лk (t), and the assigned priority of all such jobs is fxed. 

• A priority is associated with each resource. The resources required by all jobs are known 
apriori before the execution of any job begins. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Real-Time Operating Systems 579  

 
 

 

  

 
 
 

 
 

  
 

 

 
 
 

 

 
 

  
  

 
 
 
 
 

  
 

 

In this approach, a new parameter called priority ceiling associated with every resource is used. 
The priority ceiling of any resource Rx is one level higher than the highest priority of all the jobs 
that require Rx and is denoted by U(Rx). It is to be noted that if the resource access-control protocol 
includes the priority-inheritance rule, then a task (or job) can inherit a priority as high as k during 
its execution if it requires a resource with priority ceiling k. 

At any time t, the current priority-ceiling, or simply ceiling, Ũ(t) of the system is equal to the 
highest-priority ceiling of the resources that are in use at that time, if resources are in use. If all the 
resources are free at the time, the current ceiling Ũ(t) is equal to Ω, a nonexistent priority level that 
is lower than the lowest priority of all jobs. 

In its simplest form, the priority-ceiling protocol is defned by the following rules, with the 
assumption that some of the jobs contend for resources and that every resource has only 1 unit. 

1. Scheduling Rule: Ready jobs are scheduled on the processor preemptively in a priority-
driven manner according to their current priorities. At its release time t, the current priority 
л (t) of every job J is equal to its assigned priority. The job remains at this priority except 
under the condition stated in rule 3. 

2. Allocation Rule: When a job J requests a resource R at time t: 
a). If R is not free, the request is denied, and J is blocked. 
b). If R is free, 

– If J’s priority л (t) is higher than the current priority ceiling Ũ(t), R is allocated to J. 
– If J’s priority л (t) is not higher than the current priority ceiling Ũ(t) of the system, R 

is allocated to J only if J is the job holding the resource (s) whose priority ceiling is 
equal to Ũ(t); otherwise, J’s request is denied, and J becomes blocked. 

3. Priority-Inheritance Rule: When the requesting job J becomes blocked, the job Jk which 
blocks J inherits the current priority л (t) of J. The job Jk executes at its inherited priority 
л (t) until it releases every resource whose priority ceiling is equal to or higher than л (t); 
at that time, the priority of Jk returns to its previous priority лt (t΄) at time t΄ when it was 
granted the resource(s) (before its inheritance of higher priority). 

The priority-ceiling protocol (or ceiling-priority protocol, CPP) can be easily implemented by the 
system or at the user level in a fxed-priority system that supports FIFO within equal policy. The CPP, 
however requires prior knowledge of resource requirements (similar to the methods which are used in 
avoidance of deadlocks) of all threads. From this knowledge, the resource manager generates the pri-
ority ceiling U(R) of every resource R. In addition to the current and assigned priorities of each thread, 
the thread’s TCB also contains the names of all resources held by the thread at the current time. 

Whenever a thread requests a resource R, it actually requests a lock on R. The resource man-
ager then locks the scheduler and looks up U(R); if the current priority of the requesting thread 
is lower than U(R), it sets the thread’s current priority to U(R), allocates R to the thread, and then 
unlocks the scheduler. Similarly, when a thread unlocks a resource R, the resource manager checks 
whether the thread’s current priority is higher than U(R). The fact that the thread’s current priority 
is higher than U(R) indicates that the thread still holds a resource with a priority ceiling higher 
than U(R). The thread’s priority should be left unchanged in this case. On the other hand, if the 
thread’s current priority is not higher than U(R), the priority may need to be lowered when R is 
released. In this case, the resource manager locks the scheduler, changes the current priority of 
the thread to the highest-priority ceiling of all resources the thread still holds at that time or 
to the thread’s assigned priority (i.e. bringing back the thread’s priority to its previous value at 
the time of allocating the resource R) if the thread no longer holds any resources. 

10.8.3.2.6 Priority-Inheritance versus Priority-Ceiling Protocols 
The priority-inheritance protocol and priority-ceiling protocol are fundamentally different; the for-
mer is greedy, while the latter is not. At the time of allocation (rule 2), the priority-inheritance 



 

 
  

 
 

 
 
 

 

 

 
 
 

 
 

 

 

 

 
 

580 Operating Systems 

protocol lets the requesting job have a resource whenever the resource is free. In contrast, according 
to the allocation policy of the priority-ceiling protocol, a task (or job) may be denied its requested 
resource even when the resource is free. 

The priority-inheritance rules of these two protocols are by and large the same. Both rules 
agree with the principle that whenever a lower-priority job Jk blocks job J, whose request is just 
denied, the priority of Jk is raised to J’s priority л (t). The difference mainly arises because of 
the non-greedy nature of the priority-ceiling protocol when it is possible for job J to be blocked 
by a lower-priority job which does not even hold the requested resource, while this is not pos-
sible according to the priority-inheritance protocol. Priority-ceiling blocking is also referred to 
sometimes as avoidance blocking. The reason for this term is that the blocking caused by the 
priority-ceiling protocol is essentially at the expense of the avoidance of deadlocks among jobs. 
That is why these two terms, avoidance blocking and priority-ceiling, are often interchange-
ably used. 

The overhead of priority inheritance is rather high. Since the priority-ceiling protocol also uses 
the same mechanism, its overhead is naturally also high, although not as high as simple prior-
ity inheritance, since there is no transitive blocking. Also, each resource acquisition and release 
requires a change of priority of at most the executing thread. That is why CPP is sometimes called 
the poor person’s priority-ceiling protocol. 

10.8.3.3 Case Study: Linux Real-Time Scheduling 
The scheduler, used in Linux version 2.4 and earlier, is similar to the traditional UNIX schedul-
ing algorithms for scheduling non–real-time processes coupled with the scheduling of real-time 
processes. Its revised versions, such as version 2.6, while enhanced the capability of scheduling for 
non–real-time processes to a great extent, but essentially kept the same real-time scheduling activi-
ties as it was in its previous releases. Indeed, the entire Linux scheduler consists of three distinct 
scheduling classes. Those are: 

• SCHED_FIFO: For scheduling frst-in-frst-out real-time threads 
• SCHED_RR: For scheduling round-robin real-time threads 
• SCHED_OTHER: For scheduling non-real-time threads 

Within each class, multiple priorities may be used, with priorities for the real-time processes 
(threads) always higher than priorities for non–real-time processes (threads) belonging to the 
SCHED_OTHER class. There are altogether 100 priority levels for real-time classes, ranging from 
0 to 99 inclusive, and the SCHD_OTHER class ranges from 100 to 139. The rule is: the lower the 
number, the higher the priority. 

In Linux, processes using the SCHED_FIFO and SCHED_RR policies are scheduled on a fxed-
priority basis, whereas processes using the SCHED_OTHER policy are scheduled on a time-shar-
ing basis. Any process (thread) belonging to the class SCHED_OTHER can only begin its execution 
if there are no real-time threads ready to execute. The scheduling policies and mechanisms used for 
the non–real-time processes belonging to the class SCHED_OTHER were discussed in Chapter 4 
in which scheduling with traditional uniprocessor operating systems was explained, so this area has 
not been included in the current discussion. 

For FIFO (SCHED_FIFO) threads, the rules are: 

• The executing FIFO threads are normally nonpreemptible, but the system will interrupt an 
executing FIFO thread when: 
1. Another FIFO thread of higher priority becomes ready. 
2. The executing FIFO thread becomes blocked for one of the many reasons, such as, wait-

ing for an I/O event to occur. 



Real-Time Operating Systems 581  

 

 

 

 

  

3. The executing FIFO thread voluntarily relinquishes control of the processor following a 
system call to the primitive sched_yield. 

• When an executing FIFO thread is interrupted (blocked), it is placed in the respective 
queue associated with its priority. When it becomes unblocked, it returns to the same prior-
ity queue in the active queue list. 

• When a FIFO thread becomes ready, and if that thread has a priority higher than the pri-
ority of the currently executing thread, then the executing thread is preempted, and the 
available highest-priority ready FIFO thread is scheduled and executed. If, at any instant, 
the number of the highest-priority thread is more than one, then the thread that has been 
waiting the longest time is selected for execution. 

The SCHED_RR policy when implemented is almost similar to SCHED_FIFO, except with the 
inclusion of a usual time-slice associated with each thread. When a SCHED_RR thread has exe-
cuted for one specifed time-slice, it is preempted and is returned to its priority queue with the same 
time-slice value. A real-time thread of equal or higher priority is then selected for execution. Time-
slice values, however, are never changed. 

The implementation of FIFO and RR scheduling, taking a set of four threads with their rela-
tive priorities of an arbitrary process, is depicted in Figure 10.3, which also shows the distinction 
between these two policies when implemented. Assume that all these waiting threads are ready for 
execution at an instant when the currently executing thread waits or terminates and that no other 
higher-priority thread is awakened while a thread is under execution. 

Figure 10.3(b) shows the fow with FIFO scheduling of the threads when they all belong to the 
SCHED_FIFO class. Thread B executes until it waits or terminates. Next, although C and D have 
the same priority, thread C starts because it has been waiting longer (arrived earlier) than D. Thread 
C executes until it waits or terminates; then thread D executes until it waits or terminates. Finally, 
thread A executes. 

Similarly, Figure 10.3(c) shows the fow with RR scheduling of the threads when they all belong 
to the SCHED_RR class. Thread B executes until it waits or terminates. Next, thread C and D are 
time-sliced because they both have the same priority. Finally, thread A executes. 

It is worth noting that the user has the option to control the maximum and minimum priorities 
associated with a scheduling policy using the primitives sched_get_priority_min() and sched_get_ 
priority_max(). Similarly, one can also fnd the time-slices given to processes that are scheduled 
in a round-robin policy using sched_rr_get_interval(). Since the source is already at hand, one can 
easily change these parameters at will. 

Threads Arrival Time Priority 
A 0 6 
B 2 1 
C 3 4 
D 5 4 

B ― → C ― → D― → A ― →(a) 
(b)Execution profle of four threads 

Flow with FIFO Scheduling 

B ― → C ― → D ― → C ― → D ― → A ― → 

(c) 

Flow with RR Scheduling 

FIGURE 10.3 An example of a representative scheme of Linux Real-time scheduling using FIFO algorithm 
and Round-robin (RR) algorithm taking four threads (process). 



 

   

 
 
 
 

 
 
 
 
 
 
 

 

  

 
 
 
 
 

 

 
 

 
  

   

582 Operating Systems 

10.8.4 TIME SERVICES: CLOCKS AND TIMERS 

A clock is a hardware device that contains a counter, a timer queue, and an interrupt handler (see 
Chapter 6). At any time, the content of the counter gives a representation of the current time. The timer 
queue contains the pending expiration times of timers bound to the clock. A system may have more 
than one clock device and use them for different purposes. Most operating systems allow a process (or a 
thread) to have its own timers. In fact, there can be as many as 32 timers per process. In contrast, oper-
ating systems, such as Linux, that do not support per-process timers provide one or more system-wide 
timers. Processes cannot destroy these timers but can set them and use them for alarm purposes. Clock 
and timer interface functions make time visible to the application processes (threads). By calling the 
timer function, such as create, a process (or thread) can create a per-process (or per thread) timer, and 
in a system containing multiple clocks, this binds the timer to a specifed clock. Associated with each 
timer is a data structure which the kernel creates in response to the create timer call. This data structure 
contains several types of vital information, including the expiration time of the timer and a pointer to 
a handler routine that the calling process (or thread) wants to be executed when a timer event occurs. 

Various types of OS functions (such as; clock_settime, clock_gettime, set-timer, etc.) are avail-
able to users to properly make use of timers according to their requirements. In fact, there are two 
kinds of timers: one-shot and periodic. In addition, there is another type of timer known as a watch-
dog timer that can also be created and manipulated by the user. 

Signals are the software analog of hardware interrupts and can be generated by a variety of 
causes in addition to timers expiring. In real-time operating systems, a signal is used as the noti-
fcation mechanism realized by using an appropriate function, such as, timer_settime(). When a 
process (or thread) calls the timer_create() function to request the creation of a timer, it specifes 
the clock to which the timer is to be bound, as well as the type of signal to be delivered whenever 
the timer expires. If the type of signal is not specifed and the clock to which the timer is bound 
is CLOCK_REALTIME, the system will deliver a SIGARLM (alarm clock expired) signal by 
default. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

10.8.4.1 Case Study: Clock and Timer Resolutions in Linux 
Linux (like NT) updates the system clock and checks for timer expirations periodically, and the 
period is 10 milliseconds on most hardware platforms. In Linux, each clock interrupt period is 
called a jiffy, and time is expressed in terms of (the number of) jiffes. Consequently, the actual 
resolution of Linux timers is 10 milliseconds. 

In order to improve the clock resolution on Intel Pentium processors, the kernel reads and 
stores the timestamp counter at each clock interrupt. In response to a get-time-of-day call, it reads 
the counter again and calculates from the difference in the two readings in number of microsec-
onds that have elapsed from the time of the previous timer interrupt to the current time. In this 
way, it returns the current time to the caller in terms of jiffes and the number of microseconds 
into the current jiffy. 

In addition to reading the timestamp counter at each clock interrupt, the interrupt service routine 
checks the timer queue to determine whether any timer has expired and, for each expired timer 
found, queues the timer function that is to be executed upon the expiration of that timer. The timer 
function thus queued is executed just before the kernel returns control to the applications. Timer 
errors can be severe and unpredictable because of the delay introduced by the kernel and possibly 
large execution times of the timer functions. 

10.8.5 COMMUNICATION AND SYNCHRONIZATION 

Almost all operating systems, including RTOSs, provide various types of mechanisms for commu-
nication and synchronization between tasks. Some of the most commonly used effcient mechanisms 

http://www.routledge.com/9781032467238


Real-Time Operating Systems 583  

 
  

 

 

 

 
 
 
 
 

 

 

for these purposes are shared memory, message queues, synchronization primitives (e.g. condition 
variables, mutexes, and semaphores), and events and signals. Although shared memory provides 
a low-level, high-bandwidth and low-latency means of interprocess communication and often is 
used for communication among not only processes that run on uniprocessor, but also on processes 
that run on tightly coupled multiprocessors. However, real-time applications sometimes do not 
explicitly synchronize accesses to shared memory; rather they mostly rely on “synchronization by 
scheduling”; that is, processes (or threads) that access the shared memory are so scheduled as to 
make explicit synchronization unnecessary. Hence, the entire burden of providing reliable access to 
shared memory is shifted from “synchronization” to “scheduling and schedulability analysis”. As 
a result, the use of shared memory for realizing interprocess communication becomes costly, and 
it also makes the system brittle. For these and many other reasons, use of shared memory for the 
purpose of interprocess synchronization and communications between real-time processes is not 
helpful and thus is not considered here. 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

10.8.5.1 Communication Mechanisms 
Most RTOSs provide several communication mechanisms that can be realized in many different 
ways. Each mechanism is optimized to reliably pass a different kind of information from task to 
task. Probably the most popular kind of communication between tasks in real-time systems as well 
as in embedded systems is the passing of data from one task to another. Some of these mechanisms 
are presented here, but the details of many of them are outside the scope of this discussion. 

10.8.5.1.1 Message-Passing Mechanism: Message Queues 
Most RTOSs offer a traditional message passing mechanism for the purpose of communication 
between processes (or threads) in which each message can contain an array or buffer of data. Since 
messages are sent more quickly than they can be handled, the RTOS provides message queues, as 
shown in Figure 10.4, for holding messages until they can be processed. As some messages are more 
important than others, the message queue is not organized in FIFO order; rather message priority, 
determined by message type or by designation given by the sender, is used to organize the queue. 
An alternative may be to allow the receiver to inspect the message queue and select which message 
to receive next. 

Message queues provide a fle-like interface and a natural way of communication between 
queues and clients. They are an easy-to-use means of many-to-many communication among pro-
cesses (or threads). If the location of the message queues can be made transparent, an operating 
system can then make this mechanism as easy to use across networked machines as on a single 
machine. A system service provider can create a message queue, give a name to the message 
queue, and then introduce this name to its clients. To request service, a client process (or thread) 
opens the message queue and places its request-for-service message in the queue. The service 
provider may also use message queues as the means for returning the results it produces to cli-
ents. A client, however, can get the result by opening the result queue and can receive the related 
message in it. 

FIGURE 10.4 A representative illustration of a message-passing mechanism using message transfer via 
message queue. 

http://www.routledge.com/9781032467238


 

  

 
 
 
 
 
 
 
 

 
 

 

 
 

  

  

 

584 Operating Systems 

Brief details on this topic are given on the Support Material at www.routledge.com/9781032467238. 

• Determinism and high-speed message passing: Inter-task message communication 
is another area where different operating systems exhibit different timing characteris-
tics. Most operating systems actually copy messages twice as they transfer them from 
task to task via a message queue. From Figure 10.4, it is clear that the frst copying is 
from the message-sender task to an operating system-owned “private” area of RAM 
(implementing the “message queue”), and the second copying is from the message queue 
to the message-receiver task. Clearly, this is non-deterministic in its timing, as these 
copying activities take longer as message length increases. An approach that avoids this 
non-determinism and also improves performance is to have the operating system copy 
a pointer to the message and deliver that pointer to the message-receiver task without 
moving the message contents at all. In order to avoid access collisions, the operating sys-
tem then needs to go back to the message-sender task and destroy its copy of the pointer 
to the message. For large messages, this eliminates the need for lengthy copying and 
eliminates non-determinism. 

• Prioritization: It is expected that the message queue will be organized in the form of pri-
ority queues for the sake of making the performance of queuing activity locally optimal. 
The sending thread can then specify the priority of its message in its send message call. 
Consequently, the message will be dequeued by the service provider much earlier than 
lower-priority messages. In fact, the parameters of the real-time POSIX send function 
mq_send() contain the name of the message queue, the location and the length of the mes-
sage, and the priority of the message, with priorities usually ranging from 0 to 31 inclusive. 
Other operating systems typically support only two priority levels, normal and urgent. 
Normal messages are queued in FIFO order, while an urgent message is placed at the head 
of the queue. 

• Priority inheritance in message-based systems: A message is read (processed) only 
when a receiving thread executes a receive (e.g. mg_receive() in real-time POSIX) call. 
Therefore, having a receiving thread with a lower-priority to act upon a high-priority send-
message ultimately leads to poor performance in general. One way to alleviate this prob-
lem is to treat sending and receiving threads as two job segments with different priorities. 
Other methods to ensure consistent prioritization are providing message-based priority 
inheritance as is done in QNX. The service provider handling the message queue in QNX 
uses a server process that receives messages in priority order. It provides a work thread to 
service each request. Each work thread, in turn, inherits the priority of the request mes-
sage, which is essentially the priority of the sender. 

Other approaches to handle prioritization in message queues also exist. Real-time 
POSIX, however, does not support message-based priority inheritance. What it does (as 
suggested by Gallmeister) to emulate this mechanism is to give the service provider the 
highest-priority while it waits for messages. When it receives a message, it lowers its prior-
ity to the message priority. In this way, the service provider is able to track the priorities 
of the requests. Many other different schemes in this respect are available to handle this 
responsibility that employ numerous techniques; each one has its own merits and draw-
backs. Details on each, however, are outside the scope of this chapter. 

• Non-blocking: An effective and useful feature is non-blocking. The send function for 
the message queue mq_send() in real-time POSIX is non-blocking. As long as a message 
queue has room to accommodate its message, a thread can call the send function to put 
a message into the queue and then continue to execute its own task. However, when the 
queue is full, mq_send() may be blocked. In order to ensure that the send call will not 
be blocked even when the message queue is full (i.e. no room to store any message), the 
mode of the message queue is set to non-blocking (i.e. O_NONBLOCK). This mode is 

http://www.routledge.com/9781032467238


Real-Time Operating Systems 585  

  

 

   

 

 
 
 
 
 
 
 
 
 

 
 

 
 
 

 

essentially an attribute of the message queue which can be set when the message queue 
is opened. Similarly, by default, a thread that calls the receive function mq_receive() may 
be blocked if the message queue is empty. It is similarly possible to make the receive call 
non-blocking in the same fashion. 

• Notifcation: It is typically a means by which a message queue notifes a process when 
the queue changes from being empty to nonempty. Indeed, a notifcation facility keeps the 
service provider always aware of the current capability of the message queue, which allows 
the service provider to respond quickly in an appropriate manner to assist send and receive 
operations to smoothly continue by the respective threads. 

Other kinds of communication between tasks (or processes) in RTOSs (especially in embedded 
systems) is the passing of what might be called “synchronization information” from one task to 
another. Synchronization information is essentially like a command, where some commands could 
be positive and some negative. For example, a positive command would be something like; “I am 
facing an emergency, and I want your help to handle it”, or more generally, “Please join me in han-
dling”. A negative command, on the other hand, to a task would be something like: “Please do not 
print now, because my task is using the printer”, or more generally: “I want to lock . . . for my own 
use only”. 

10.8.5.2 Synchronization Mechanisms 
Most RTOSs offer mutexes, condition variables, semaphores, and reader/writer locks for han-
dling negative synchronization (also called “mutual exclusion”) to lock certain system resources 
for their exclusive use only and subsequently to unlock the resource when they are done. For 
positive synchronization, different RTOSs offer different mechanisms; some RTOSs offer event 
fags, while others offer signals, and yet others rely on message passing as well as data passing. 
When RTOSs attempt to implement the needed synchronization between the executing threads 
(or processes), priority inversion may occur when they contend for shared resources. Different 
types of proven protocols are in extensive use for controlling such priority inversion situations. 
One is the use of priority inheritance primitives, and numerous methods exist to implement these 
priority-inheritance primitives for mutexes and reader/writer locks to negotiate priority inversion 
in a fxed-priority system. 

10.8.5.3 Software Interrupts: Signals 
Signal was already described in Section 10.8.4. In fact, many traps detected by hardware, such 
as executing an illegal instruction or using an invalid address, are also converted into sig-
nals to the guilty process. Signals are specifcally used for process-to-process communication 
when one process wants to communicate something to another process in a hurry. It is actively 
involved in responsive mechanisms to inform threads (or processes) about many situations, 
including the occurrence of timer events, the receipt of messages, the completion of asynchro-
nous I/O operations, and similar other things required in synchronization and communication 
activities. 

In a traditional UNIX system, interrupt handlers and the kernel often use signals as a means to 
inform threads (or processes) about the occurrence of hardware exceptions (such as divide by zero, 
illegal system call etc.) or waited-for events (e.g. the expiration of a timer, arrival of a message, etc.). 
A thread (or a process) may send a signal to another process for the sake of synchronization as well 
as communication (e.g. a predecessor thread may signal a successor thread when it completes). In 
fact, a thread has a service function called a signal handler (similar to interrupt handler). When 
the kernel delivers a signal to the thread, the signal handler executes the signal in an appropriate 
manner. Thus, the signal mechanism provides asynchrony as well as immediacy, just as hardware 
interrupts do. 



 

 

 
 
 
 
 

 

  

 
 

 
 
 
 
 

586 Operating Systems 

In Windows NT, events and asynchronous procedure calls (APCs) serve the same purpose as 
signals in UNIX systems. An NT event (object) is, in fact, an effcient and powerful notifcation and 
synchronization mechanism. For being synchronous, NT event delivery has relatively low overhead 
in comparison to that of comparatively high overhead of asynchronism. Moreover, the NT event is 
many-to-many in the sense that multiple threads can wait on one event and a thread can wait for 
multiple events. Each UNIX signal, in contrast, is targeted to only an individual thread (or process), 
and each signal is handled independently of other signals. 

The pSOSystem introduced by Motorola provides both events and asynchronous signals. The 
events are essentially synchronous and point–to–point. An event is usually sent to a specifed 
receiving task. The event has, in fact, no effect on the receiving task if the task does not call the 
event-receive function. An asynchronous signal, in contrast, forces the receiving task to respond. 
A real-time POSIX signal, however, provides numerous interesting features that exemplify their 
good and practical uses in real-time applications. 

Real-time signals can be queued, while traditional UNIX signals cannot. If not queued, a signal 
to be delivered, if blocked, may be lost. Hence, queuing ensures the reliability (reliable delivery) 
of signals. Moreover, a queued real-time signal can carry data, while a traditional signal handler 
has only one parameter: the number of the associated signal. In contrast, the signal handler of a 
real-time signal whose SA_SIGINFO bit in the sa_ fags feld is set has an additional parameter, a 
pointer to a data structure that contains the data value to be passed to the signal handler. This capa-
bility increases the communication bandwidth of the signal mechanism. Using this feature, a server 
can use a mechanism to notify a client that its requested service has been completed and subse-
quently pass the result back to the client at the same time. In addition, queued signals are essentially 
prioritized and are to be delivered according to the order of priority: the lower the signal-number, 
the higher the priority. 

The signal mechanism is equally expensive, similar to hardware interrupt servicing. 
Changing mode from user to supervisor, complicated operations to service the signal, and 
fnally a return to user mode are all hugely time-consuming activities when compared to other 
commonly used synchronization and communication mechanisms. Moreover, signal handlers, 
similar to interrupt handlers, are also executed ahead of thread priority. Hence, it is mandatory 
that the duration of time needed to service signal handlers are to be kept as minimum as pos-
sible, just as it is equally an important requirement to shorten the execution time of interrupt 
service routines. 

10.8.6 MEMORY MANAGEMENT 

Similar to traditional general-purpose operating systems, the amount of available memory space 
and its proper management are also critical issues in RTOSs. In fact, most of the issues in relation 
to memory and its management, such as physical memory allocation policies, virtual memory and 
its mapping, paging, memory protection, and memory locking, that appear in conventional non-
real-time operating systems are, by and large, equally applicable to RTOSs and to the applications 
which run on them. 

10.8.6.1 Memory Allocation 
Memory allocation is even more critical in an RTOS than that in other operating systems. Many 
important issues need to be addressed in this regard. First, the chosen memory allocation mech-
anism should be as fast as possible, and not as usual to scan a linked list of indeterminate length 
to fnd a suitable free memory block, since memory allocation has to be completed within a 
fxed duration of time in an RTOS. Second, the memory fragmentation problem in physical 
memory, as discussed in Chapter 5 with traditional non-real-time operating systems, is also 
a typical potential problem in RTOSs. Memory allocation algorithms that slowly accumulate 



Real-Time Operating Systems 587  

 

 

  

  
 
 
 

 

 

fragmentation may work with as such no problem for desktop machines when rebooted periodi-
cally but are unacceptable for many RTOSs and especially for embedded systems that often run 
for years without rebooting. One way to alleviate this problem is to use the simple fxed-sized-
blocks algorithm that has been observed to be work very well for simple RTOSs and also for 
not-very-large embedded systems. 

• Use of virtual memory: The introduction of virtual memory, its related aspects, and their 
solutions in traditional non-real-time operating system were described in Chapter 5. Many 
RTOSs designed primarily for embedded real-time applications, such as data acquisition, 
signal processing, and monitoring, may not require virtual memory and its related map-
ping. For example, the pSOSystem, upon request, creates a physically contiguous blocks 
of memory for the application. The application can request variable-size segments from its 
memory block and defne a memory partition consisting of physically contiguous fxed-
size buffers. While virtual memory provides many distinctive practical advantages in the 
management of memory, but its presence equally contributes a huge amount of penalties 
in relation to mainly space and time. Indeed, the address translation table required in this 
regard itself consumes a good amount of space of main memory in the resident part of 
the operating system, and scanning of the address translation table for mapping a virtual 
address to its corresponding physical address consumes additional time that consequently 
slows down the overall execution speed. Moreover, this scheme often complicates DMA-
controlled I/O, which requires physically contiguous memory space, since the processor 
must have to set up the DMA controller multiple times, one for each physically contiguous 
block of addresses for data transfer to and from main memory. 

• Use of memory in deeply embedded systems: Most embedded OSes are stored in binary 
code in ROM for execution. That is, unlike traditional operating systems, code is never 
brought into main memory. The reason is that the code is not expected to change very 
often, as embedded devices are usually dedicated to their own individual specifc purposes. 
Indeed, the behavior of such systems is usually specifed completely at their design time. 

• Dynamic memory allocation: Dynamic allocation of main memory creates an issue relat-
ing to determinism of service times. Many general-computing non–real-time operating 
systems offer memory allocation services from a buffer known as the “heap”. Offering of 
additional memory from the heap and returning this memory to the heap when it is not 
needed ultimately give rise to the external fragmentation problem, which produces many 
scattered useless small holes in the heap. Consequently, it results in shortage of useful 
memory even though enough memory is still available in the heap, which summarily may 
cause heap services to degrade. This external fragmentation problem, however, can be 
solved by so-called garbage collection (defragmentation) software, but it is often wildly 
non-deterministic. 

Real-time operating systems thus altogether avoid both memory fragmentation and “garbage col-
lection” along with their all ill effects. Instead, one of the alternatives that RTOSs offer are non-
fragmenting memory allocation techniques by using a limited number of various sizes of memory 
chunks, which are then made available to application software. While this approach is certainly 
less fexible than the approach taken by memory heaps, it does avoid external memory fragmenta-
tion and subsequent related defragmentation. Additional memory, if required by the application, is 
offered from this pool of different sizes of memory chunks according to the requested size, and it 
is subsequently returned when it is not required and then put onto a free buffer list of buffers of its 
own size that are later available for future re-use. 

More about this topic with a fgure is given on the Support Material at www.routledge.com/ 
9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 

  

588 Operating Systems 

10.8.6.2 Memory Locking 
An RTOS often supports executions of non–real-time applications along with its targeted real-time 
applications and hence may provide a paging scheme to effectively handle the memory demand of 
these non–real-time applications during runtime. It also must provide some means and measures 
to control the paging (in other words, memory pages) system. That is why almost all operating 
systems, including general-purpose ones, offer some forms of control but, of course, with different 
granularities. 

In some operating systems (such as in Windows NT), the user may specify in the create-thread 
system call that all pages belonging to the new thread are to be pinned down in memory. Real-time 
POSIX-compliant systems allow an application to pin down all of its pages in memory [i.e. mlock-
all(. . .)], or more specifcally a range of pages [i.e. mlock(. . .) with the starting address of the address 
range and the length of the range as parameters]. Real-time Mach also follows this approach. On the 
other hand, the LynxOS operating system controls paging according to the demand paging priority. 
Memory pages of applications whose priorities are equal to or higher than the demand paging prior-
ity are pinned down in memory, while memory pages of applications whose priorities are less than 
the demand paging priority may be paged out. 

10.8.6.3 Memory Protection 
Many RTOSs do not favor providing protected address spaces either to the kernel or to the user 
processes or both. Out of many reasons in favor of using a single address space, one is that a single 
address space is always simple to manage and less expensive in handling system calls and inter-
rupts. On the other hand, it is pointed out that a change in any module in the system that runs on 
a machine supporting a single address space may require reengineering of the entire system and 
subsequent retesting of it. Consequently, this is not only a time-consuming proposition but can sig-
nifcantly increase the cost of such development. That is why many RTOSs (one such is LynxOS) 
provide memory protection. 

10.9 CASE STUDIES 

Most of the commercial real-time operating systems that run on commonly used commodity pro-
cessors and have sizable user bases are, by and large, similar in many respects. The most important 
implementation features that must be supported by these RTOSs for any real-time application to 
run are: system call handling, split interrupt handling, scheduling, priority inversion control, clock 
and timer resolution, memory management, networking, speed and effciency, modularity and scal-
ability, and of course conformation to common standards. Most of them support these features in 
some form but with a few exceptions. Hence, it may be argued that they are practically the same in 
many respects. Moreover, some of them are found better than the existing standard functions either 
in functionality, performance, or both. Nevertheless, a user may not like using system-specifc func-
tions, especially for the sake of portability. This section attempts to give a brief overview of the 
notable features of the operating systems described here. Such information will most likely to be 
out-of-date by the time the book reaches readers. Indeed, the best source of up-to-date information 
(not knowledge) on any operating system, in general, will be the home page provided by the respec-
tive vendor. 

10.9.1 LINUX: REAL-TIME EXTENSIONS 

In recent years, the Linux operating system has been constantly upgraded to become increasingly 
stable, its performance has improved, and its user base has gradually grown. More and more Linux 
applications become available over time and are extensively in use, helping Linux to consolidate 
its position in the IT industry. The inclusion of two extensions on existing Linux while enables it to 



Real-Time Operating Systems 589  

 
 

 
 
 
 
 

   

 

 

 

 

handle hard real-time application requirements, but even then, this modifed Linux falls far short in 
relation to compliance with POSIX real-time extensions. What is more serious due to this inclusion 
is its portability: applications written to execute on these extensions are neither portable to standard 
UNIX machines nor to any other commercial real-time operating systems. 

Several shortcomings of Linux have been experienced when it is used for real-time applications. 
One of the most crucial ones arises from the disabling of interrupts made by Linux subsystems when 
they are in critical sections. While most device drivers usually disable interrupts for a few microsec-
onds, the disk subsystems of Linux may disable interrupts for as long as a few hundred microseconds 
at a time, and the clock interrupts will be remained blocked during the longer duration. This causes 
the predictability of the system to be seriously affected. One of the solutions to this problem may be 
to perhaps rewrite afresh all the offending drivers to make their nonpreemptible sections as short as 
possible, like all other standard real-time operating systems. Unfortunately, neither extension released 
so far attacked this problem head on; on the contrary, one tries to live with it, while the others avoid it. 

The scheduling mechanism of Linux revised version 2.6 largely enhanced the capability of 
scheduling for non–real-time processes but includes essentially the same real-time scheduling 
activities as provided in its previous releases. In fact, the Linux scheduler handles real-time pro-
cesses on a fxed-priority basis along with the non–real-time processes on a time-sharing basis. 
The scheduling activities carried out by Linux were already discussed in detail in Section 10.8.3.3. 

The clock and timer resolution in standard Linux was explained in Sections 10.8.4 and 10.8.4.1. 
However, Linux improved its time service by introducing a high-resolution time service, UTIME, 
designed to provide microsecond clock and time granularity using both the hardware clock and the 
Pentium timestamp counter. With the use of UTIME, system calls that contain time parameters, 
such as, select and poll, can specify time down to microsecond granularity. Rather than having 
the clock device programmed to interrupt periodically, UTIME programs the clock to interrupt in 
one-short mode. At any time, the next timer interrupt will occur at the earliest of all future timer 
expiration times. Since the kernel responds as soon as a timer expires, the actual timer resolution is 
only limited by the duration of a few microseconds with UTIME, which is consumed by the kernel 
to service a timer interrupt. Due to carrying out extra work by UTIME to provide high-resolution 
time services, the execution time of the timer interrupt service routine in Linux with UTIME is 
naturally several times larger than that in standard Linux. 

With regard to use of the thread concept, Linux did not provide a thread library until recently. 
Rather, it used to offer only the low-level system call clone(), by which a process can be created that 
shares the address space of its parent process, as well as other parts of the parent’s context (such 
as open fle descriptors, message managers, signal handlers, etc.) as specifed by the call. Recently, 
Leroy developed a thread library consisting of Linux threads, which are essentially UNIX pro-
cesses created using the clone() system call. Thus, Linux threads are one-thread per process and are 
scheduled by the kernel scheduler just like UNIX processes. Since Linux threads are one-thread per 
process, the distinct advantage of this model is that it simplifes the implementation of the thread 
library and thereby increases its robustness. On the contrary, one of its disadvantages is that the con-
text switches on mutex and condition operations must go through the kernel. Still, context switches 
in the Linux kernel are found quite effcient. 

Linux threads provide most of the POSIX thread extension API functions and conform to the 
standard except for signal handling. In fact, Linux threads use signals SIGUSR1 and SIGUSR2 for 
their own work, which are no longer available to applications. Since Linux does not support POSIX 
real-time extensions, there is as such no signal available for application-defned use. In addition, 
signals are not queued and may not be delivered in order of priority. 

Two extensions of Linux (already mentioned earlier) are the KURT (Kansas University Real-
time) System and RT Linux System, which enables applications with hard real-time requirements 
to run on each such Linux platform. 

A brief discussion of this topic is given on the Support Material at www.routledge.com/ 
9781032467238. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

 

 

 

 

590 Operating Systems 

10.9.1.1 KURT System 
KURT extends Linux using UTIME, and the primary objective of its design is for hard real-time 
applications that can tolerate only a few missed deadlines. The KURT system essentially consists 
of a core (i.e. a kernel) containing a time-driven scheduler to schedule all real-time events and 
real-time modules called RTMods, which are standard Linux kernel modules that run in the same 
address space as the Linux core kernel. Each module in RTMods provides its respective function-
ality and is loadable. The only built-in real-time module is Process RTMod, which provides user 
processes with system calls for registering and unregistering KURT real-time processes as well as 
a system call that suspends the calling process until the next time it is to be scheduled. KURT dif-
ferentiates real-time processes from normal non–real-time Linux processes using three operation 
modes: focused mode, normal mode, and mixed mode. All processes run as in standard Linux when 
the system is in normal mode. The real-time processes with stringent real-time requirements should 
run in focused mode. In mixed mode, non–real-time processes run in the background of real-time 
processes. While the schedule table usually resides in main memory, but in KURT, it allows large 
schedule fles that ft only partially in available memory, and the remaining part has to be read into 
main memory from time to time as and when needed. One of the salient features of KURT is that it 
makes no change in the disk device driver to minimize the length of time the driver may block the 
timer interrupts (as already mentioned); rather it consciously prioritizes fle system processing. As 
a result, KURT does not provide suffcient predictability for hard real-time applications even when 
they run explicitly in focused mode. 

More details on this topic are given on the Support Material at www.routledge.com/ 
9781032467238. 

10.9.1.2 RT Linux System 
RT Linux (similar to KURT), now proprietary and owned by Wind River Systems, is essentially 
another extension of Linux designed with a number of features to provide standard Linux the capa-
bility to execute hard real-time applications. It considers an application system as consisting of two 
main parts: the real-time part runs on the RT kernel (thin kernel), while the other one, the non–real-
time part, runs on Linux. These parts communicate via FIFO buffers known as RT-FIFOs, which 
appear to Linux user processes as devices that are pinned down in memory in the kernel space. 
Reads and writes to RT-FIFOs by real-time tasks are atomic as well as non-blocking. 

The thin-kernel (or micro-kernel) approach uses a second kernel (lying under the usual Linux 
kernel) as an abstraction interface between the hardware and the Linux kernel that enables the real-
time tasks to run directly on it. The primary use of the thin kernel (other than hosting the real-time 
tasks) is interrupt management that intercepts the interrupts to ensure that the non–real-time Linux 
kernel cannot preempt the operation of the thin kernel. The non–real-time Linux kernel runs in the 
background as a lower-priority task of the thin kernel and hosts all non–real-time tasks. While the 
presence of the thin kernel is advantageous for hard real-time support coexisting with a standard 
Linux kernel, it does have drawbacks. Since the real-time and non–real-time tasks are independent, 
debugging them is more diffcult. Also, non–real-time tasks do not have full Linux platform support 
(the thin kernel execution is called thin for a reason). Examples of this approach also include the 
real-time application interface (RTAI), and Xenomai. The RT Linux supports real-time interrupt 
handlers and real-time periodic tasks with interrupt latencies and scheduling jitter close to hardware 
limits; even in the worst case (not “typical”), the interrupt latencies are usually less than 15 micro-
seconds. RT Linux runs Linux as its lowest-priority thread and provides access to the full power of 
Linux through a variety of communication methods. 

RT Linux eliminates the well-known problem of the Linux kernel in relation to blocking clock 
interrupts for a considerable duration of time by means of software-emulated interrupts replacing 
the existing hardware interrupts. In fact, the RT kernel provides a fag, and while it intercepts all 
the interrupts, it checks this fag and the interrupt mask. If the interrupt is for a real-time task, the 
RT kernel resets the fag, preempts Linux at once, and lets the real-time task run to completion, and 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Real-Time Operating Systems 591  

 

 

 

 

then again sets the fag to enable Linux to resume. By this time, the RT (thin) kernel queues all the 
pending interrupts to be handled by Linux and passes them to Linux when Linux enables interrupts 
again (the fag is set). But if an interrupt is intended for Linux, the RT (thin) kernel then simply 
relays it to the Linux kernel for needed action. In this way, the RT (thin) kernel enables most of the 
real-time tasks to meet their deadlines, except possibly a few missed ones, and at the same time puts 
the Linux kernel and user processes in the background of real-time tasks. 

Indeed, the real-time part of the application system is written as one or more loadable kernel 
modules that run in the kernel space. Tasks in each module may have their scheduler; the current 
version, however, provides a RM scheduler as well as an EDF scheduler. 

More details on this topic with a fgure are given on the Support Material at www.routledge.com/ 
9781032467238. 

10.9.2 LYNXOS 

The current version LynxOS 3.0 has been upgraded from its initial monolithic design to today’s 
microkernel design, the core of which mainly provides the essential services of an operating system, 
such as; scheduling, interrupt dispatch, and synchronization, while the other services are provided 
by kernel lightweight service modules, often called kernel plug-ins (KPIs). With KPIs, the system 
can be confgured to support I/O (devices) and fle systems, TCP/IP streams, sockets, and so on. 
Consequently, it functions as a multipurpose UNIX operating system, as its earlier versions do. 
KPIs are truly multithreaded. Each KPI can create as many threads as needed in order to execute its 
routines (responsibilities). In this OS, there is no context switch when sending a message (e.g. RFS) 
to a KPI, and moreover, inter-KPI communication needs only a few instructions to work. 

One of the salient features of LynxOS is that it can be confgured as a self-hosted system equipped 
with the tools such as compilers, debuggers, and performance proflers, etc. This means that in such 
a system; embedded (real-time) applications can be developed using the tools on the same system on 
which they are to be deployed and run. Moreover, the system provides adequate memory protection 
mechanisms through hardware memory management unit (MMU) to protect operating system and 
critically important applications from untrustworthy ones. In addition, it also offers demand paging 
to realize optimal memory usage while handling large memory demands issued by the applications. 

Application threads (and processes) in LynxOS use system calls when making I/O requests, such 
as open(), close(), read(), write(), and select(), etc., in the same fashion as traditional UNIX does. 
Moreover, each I/O request is sent by the kernel directly to a device driver of the respective I/O 
device. The device drivers in LynxOS follow the split interrupt handling strategy. Each driver 
contains: (i) an interrupt handler that carries out the frst step of interrupt handling at an interrupt 
request priority and (ii) a kernel thread that shares the same address space with the kernel but is 
separate from the kernel. If the interrupt handler does not complete the processing of an interrupt, it 
sets an asynchronous system trap to interrupt the kernel. When the kernel can respond to the (soft-
ware) interrupt (of course, when the kernel is in a preemptable state), it schedules an instance of the 
kernel thread at the priority of the thread, which eventually opens the interrupting device. When 
the kernel thread executes, it continues interrupt handling and re-enables the interrupt when it com-
pletes. LynxOS calls this mechanism priority tracking, and LynxOS holds a patent for this scheme. 

10.9.3 PSOSYSTEM 

pSOSystem, developed by Integrated System Inc. and introduced by Motorola, is essentially a 
modular high-performance objected-oriented operating system similar to most of the other popu-
lar commercial operating systems. The design objectives of pSOSystem are mainly to meet three 
overriding targets: performance, reliability, and ease–of–use. The result is a fast, deterministic, yet 
accessible system software solution. It provides a full multitasking environment based on open sys-
tems standards. The most well-known application of pSOSystem is Iridium, the system of commu-
nication satellites. The pSOSystem has pSOS+, which is a preemptive multitasking kernel that runs 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


 

 

   

 
 

 
 
 
 
 
 
 
 

592 Operating Systems 

on a uniprocessor system and provides each task with the choice of either preemptive priority-driven 
or time-driven scheduling. In addition, the pSOSystem 2.5 and higher versions offer priority inheri-
tance and a priority-ceiling protocol. The pSOS+m (Motorola) extending the pSOS+ feature is set to 
operate seamlessly across multiple, tightly coupled, or distributed processors. The pSOS+m has the 
same API functions as pSOS+, as well as functions for interprocess communications and synchro-
nization. The most recent release offers a POSIX real-time extension-compliant layer. Additional 
optional components provide a TCP/IP protocol stack and target, and host-based debugging tools. 
Later, the release of the pSOSystem 3.0 RTOS includes many other key technical innovations. 

A brief discussion of this topic with a fgure is given on the Support Material at www. 
routledge.com/9781032467238. 

10.9.4 VXWORKS: THE MARS PATHFINDER 

VxWorks is the world’s leading proprietary, commercial real-time operating system designed and 
developed by Wind River Systems of Alameda, California, in 1987 serving the needs of embedded 
systems of all shapes and sizes for more than a few decades. Unlike native systems, such as UNIX, 
Linux, and Windows, etc., VxWorks development is done on a host machine running UNIX or 
Windows and cross-compiling target software to run on various target CPU architectures. It is most 
widely known through one of its applications in recent years, as it was the operating system used on 
Mars Pathfnder, sent to Mars by NASA in 1997. The rover robot Pathfnder landed Mars on July 4, 
1997, and started to respond to ground commands, gathering and transmitting voluminous science 
and engineering data back to Earth. Within a few days after its landing, the related software began 
to experiencing that the entire computer system repeatedly reset itself, each resulting in losses of 
vital data. This became news worldwide. The root of the predicament was ultimately traced back to 
the occurrence of an uncontrolled priority inversion problem (see Section 10.8.3.2.3). A representa-
tive example of the situation that happened with Mars Pathfnder is depicted in Figure 10.9, with a 
related description given on Support Material at www.routledge.com/9781032467238. The problem 
was ultimately fxed on the ground and thus saved the day for the Pathfnder. 

VxWorks has maintained its leadership for over a few decades, mainly because it is a proven, com-
pletely reliable system used in more than 500 million deployed devices, from small consumer products 
to commercial airliners. It has been optimized for performance, determinism, and code footprint on 
each processor platform it runs on, along with specialized hardware support for features such as net-
work acceleration and graphics. Besides, it includes multicore and multi-OS support that provides cus-
tomers with the leading-edge solutions they require, taking advantage of the latest technology. 

VxWorks is essentially a different type of monolithic system and still provides most POSIX-
compliant real-time interface functions. Similar to many other operating systems, it has its own 
API functions to provide more essential features for its own completeness than the corresponding 
standard POSIX functions. VxWorks also support virtual memory with the aid of an optional com-
ponent, VxVMI (a virtual memory interface), a full-level memory management including protection 
of text segments, exception vector tables, and interfaces to MMU. However, the key features of the 
current OS can be summarized as follows: 

• POSIX-compliant interface functions. 
• Provisions of enabling and disabling interrupts from the user level. 
• Shared binary, counting, and mutual exclusion semaphores with priority inheritance. 
• Error-handling framework. 
• Fast, fexible interprocess communication, including TIPC. 
• Virtual memory support. 
• File system. 
• Full ANSI compliance and enhanced C++ features for exception handling and template 

support. 

http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238
http://www.routledge.com/9781032467238


Real-Time Operating Systems  593 

•  IPv6 networking stack. 
•  Local and distributed message queues. 
•  Memory protection to isolate user applications from the kernel. 
•  Multitasking kernel with preemptive and round-robin scheduling and fast interrupt 

response. 
•  POSIX PSE52-certifed conformance. 
•  Symmetric multiprocessor (SMP) support. 
•  VxSim simulator. 

In addition, VxWorks provides the VxWorks shell, which is essentially a command-line interface 
that allows one to interact directly with VxWorks through the use of respective commands. One can 
then use commands to load programs. When VxWorks is booted over the network, an automatic 
network fle system entry is created based on the boot parameters. Last but not least, since VxWorks 
performs  load-time linking (dynamic linking), it must maintain a symbol table. A symbol in this 
context is nothing but a named value. 

A brief description of the problem with Pathfnder and its solution is given on the Support  
Material at www.routledge.com/9781032467238. 

SUMMARY 

This chapter demonstrates the typical characteristics of real-time applications handled by real-time 
systems, which are monitored by real-time operating systems. We frst describe in brief the differ-
ent issues involved with real-time systems and then reveal how these issues are negotiated by the 
different components of RTOS. The timing constraints mentioned by jobs or tasks can be expressed 
in terms of response time, defned as the length of time from the release time of the job to the 
instant when it completes. The timing constraint of a real-time task can be hard or soft depending 
on how strictly the timing constraint must be obeyed (hard) or not (soft). Based on a set of basic 
needed parameters, including timing constraints, tasks can be categorized as periodic, aperiodic, 
and sporadic. However, the different issues that are closely associated with real-time systems are 
mainly architectural aspects, resource management, and software features including real-time lan-
guages and real-time databases. These issues have ultimately been negotiated by the RTOSs with 
the introduction of some basic characteristics and requirements, along with the features met by their 
various fundamental components, including threads and their different types. The kernel design of 
RTOS is the most critical one that offers some prime services, namely interrupt and system calls, 
timer services, and scheduling. Different types of scheduling mechanisms, both static and dynamic, 
based on numerous approaches, mainly clock-driven and priority-driven, are described, in which 
each one has numerous forms to meet certain predefned objectives. Linux’s scheduling mechanism 
is described as a representative case study. The most important communication and synchroniza-
tion issues in RTOS are described in brief with their related different aspects. The critical priority 
inversion problem and its ill effects are described, with a real-life example that happened with 
Mars Pathfnder. The priority inheritance and priority ceiling are explained, along with respective 
comparisons. Lastly, several studies in relation to practical implementation of RTOS are described, 
mainly with their salient features on different platforms, such as Linux; KURT; RT Linux; LynxOS; 
pSOSystem; and VxWorks, used in the Mars Pathfnder spaceship. 

EXERCISES 

 1.  How does a real-time application differ from a non–real-time one? Defne real-time com-
puting. State the features that make it different from a conventional computing. 

 2.  State and explain the differences between hard and soft real-time tasks. Enumerate the 
differences that exist between periodic, aperiodic, and sporadic real-time tasks. 

http://www.routledge.com/9781032467238


 

  

  

  
  
  

   

  

  

  

  
  

  

  

  

  

  

  

  

  

   

594 Operating Systems 

3. State and briefy explain the major design issues involved in a representative real-time 
system. 

4. State the distinctive features that an operating system must possess to be a real-time oper-
ating system. 

5. What are the design philosophies of a real-time operating system? 
6. State the basic components of the kernel of a representative real-time system. 
7. “Interrupts play a vital role in the working of a real-time operating system”: What are the 

different types of interrupts present in a representative real-time operating system? What 
are the roles played by these interrupts, and how do they work? 

8. “The scheduler is commonly described as the heart of a real-time system kernel”. 
Justify. Explain the fundamental steps followed by a basic scheduler of a representa-
tive RTOS. 

9. State the notable features of a real-time scheduling algorithm. State the metrics that are 
used as parameters to measure the performance of scheduling algorithms. 

10. Briefy defne the different classes of real-time scheduling algorithms and how they differ 
from one another. What are the pieces of information about a task (or a job) that might be 
useful in real-time scheduling? 

11. Compare and contrast offine and online scheduling when applied to hard real-time tasks 
(or jobs). 

12. Discuss the basic principles and the working mechanism of a priority-driven scheduler. 
13. What are the essential requirements of a clock-driven approach in scheduling? State and 

explain at least one method that belongs to this category of scheduling. 
14. “Scheduling carried out using a priority-driven approach is often called greedy scheduling 

as well as list scheduling”. Explain. 
15. Priority-based scheduling can be implemented both in a preemptive as well as in a non-

preemptive manner. Discuss the relative merits and drawbacks of these two different 
approaches. 

16. What are the relative advantages and disadvantages observed between fxed-priority and 
dynamic-priority approaches in scheduling of real-time tasks (or jobs)? 

17. State and explain with a suitable example the mechanism followed by a rate-monotonic 
scheduling algorithm. Enumerate its merits and drawbacks with respect to the situations in 
which it is employed. 

18. Why is a dynamic-priority scheme preferred in a priority-driven approach to real-time task 
scheduling? 

19. State and explain with a suitable example the mechanism followed by a earliest-deadline-
frst scheduling algorithm. Enumerate its merits and drawbacks with respect to the situa-
tions in which it is employed. 

20. Explain why a EDF scheduling is called a task-level dynamic-priority algorithm and on the 
other hand can also be called a job-level fxed-priority algorithm. 

21. Consider a set of fve aperiodic tasks with the execution profles given here. 

Process Arrival Time Execution Time Starting Deadline 

A 10 20 100 

B 20 20 30 

C 40 20 60 

D 50 20 80 

E 60 20 70 

Develop scheduling diagrams similar to those in Figure 10.8 (given on the Support 
Material at www.routledge.com/9781032467238) for this set of tasks. 

http://www.routledge.com/9781032467238


Real-Time Operating Systems 595  

  

  
 

 

 

 
  

  

  

  

  

  
  

  

  

 
 

22. Explain the principle and the mechanisms used by the least-slack-time-frst, sometimes 
also called minimum-laxity-frst, algorithm. Why is it considered superior in a dynamic-
priority approach to its counterpart, EDF scheduling? What are the major shortcomings of 
the LST algorithm? 

23. Consider a system with three processors P1, P2, and P3 on which fve periodic tasks X, Y, Z, 
U, and V execute. The periods of X, Y, and Z are 2, and their execution times are equal to 1. 
The periods of U and V are 8, and their execution times are 6. The phase of every task is 
assumed to be 0. The relative deadline of every task is equal to its period. 
a. Show that if the tasks are scheduled dynamically according to the LST algorithm on 

three processors, some tasks in the system cannot meet their deadlines. 
b. Find a feasible schedule of fve tasks on three processors. 
c. Parts (a) and (b) indicate that the LST algorithm is not optimal for scheduling on more 

than one processor. However, when all the jobs have the same deadline or the same 
release time, the LST algorithm is optimal. Justify this. 

24. What is meant by priority inversion? State the adverse impact of this phenomenon on 
priority-driven scheduling mechanisms. What are some methods by which the ill effects 
of this phenomenon can be avoided? 

25. What is meant by priority inheritance? What are the basic rules that must be followed by a 
priority-inheritance protocol? Explain with a suitable example how the priority-inheritance 
protocol resolves the problem of unbounded priority inversion. What are the limitations of 
the priority-inheritance protocol? 

26. What is meant by a priority ceiling? What are the basic rules that must be followed by the 
priority-ceiling protocol? How does the priority-ceiling approach resolve the shortcomings 
of the priority-inheritance protocol? 

27. Defne clock. How is a timer implemented in a RTOS? Describe the roles played by clocks 
and timers in the proper working of RTOS. 

28. How and in which ways is synchronization between tasks realized in a RTOS? 
29. Describe the message-passing scheme used as communication mechanism between tasks 

in an RTOS. 
30. Defne signal. How is the signal realized in systems? Explain how the signal is actively 

involved in responsive mechanisms in a real-time operating system. 
31. Describe the basic principles followed in the management of memory in RTOS. Describe 

the mechanisms used in memory allocation to support a RTOS to run. 

SUGGESTED REFERENCES AND WEBSITES 

Audsley, N. C., Burns, A., et al. “Hard Real-time Scheduling: The Deadline Monotonic Approach”, 
Proceedings of 11th IEEE Workshop on Real-Time Operating Systems and Software, New York, 
IEEE, 1991. 

Homayoun, N., Ramanathan, P. “Dynamic Priority Scheduling of Periodic and Aperiodic Tasks in Hard Real-
time Systems”, Real-time Systems Journal, vol. 6, no. 2, pp. 207–232, 1994. 

Jensen, E. D., Locke, C. D., Tokuda, H. “A Time-Driven Scheduling Model for Real-time Operating Systems”, 
Proceedings of the IEEE Real-time Systems Symposium, pp. 112–122, 1985. 

Joseph, M., Pandya, P. K. “Finding Response Times in Real-time Systems”, Comp Journal, vol. 29, no. 5, 
1986. 

Liu, C. L., Layland, J. W. “Scheduling Algorithms for Multiprogramming in a Hard Real-time Environment”, 
Journal of the Association for Computing Machinery, vol. 20, pp. 46–61, 1973. 

Mok, A. K. Fundamental Design Problems of Distributed Systems for the Hard Real-time Environment, PhD 
thesis, Boston, MA, Massachusetts Institute of Technology, 1983. 

Sprunt, B., Sha, L., Lehoczky, J. “Aperiodic Task Scheduling for Hard Real-time Systems”, Real-time Systems 
Journal, vol. 1, no. 1, pp. 27–60, 1989. 



 596 Operating Systems 

Stankovic, J. A. “Strategic Directions in Real-time and Embedded Systems”, ACM Computing Surveys, vol. 
28, pp. 751–763, 1996. 

Zhao, W. “Special Issues on Real-time Operating Systems”, Operating System Review, vol. 23, p. 7, 1989. 

WEBSITES 

http://qnx.com 
http://rtlinux.org 
http://windriver.com 

http://windriver.com
http://rtlinux.org
http://qnx.com


597 

 

Additional reading 
Beck, M., Bohme, H. and others: Linux Kernel Programming, 3rd edition, Pearson Education, 2002 
Ben, Ari, M.: Principles of Concurrent and Distributed Programming, Prentice–Hall International, 

Englewood Cliffs, NJ, 2006 
Brinch Hansen. P. Operating system Principles, Prentice–Hall, Englewood Cliffs, New Jersey, 1973 
Buyya, R., High Performance Cluster Computing: Architecture and Systems, Upper Saddle River, NJ: Prentice 

Hall, 1999. 
Cerf, V. G. “Spam, Spim, and Spit” Comm. of the ACM, vol. 48, pp. 39–43, April 2005. 
Chakraborty, P. Computer Organization and Architecture: Evolutionary concepts, Principles, and Designs. 

CRC Press, 2020. 
Coulouris, G., Dollimore, J. Distributed Systems—Concepts and Design, 3rd Edition, Addison–Wesley, New 

York, 2001 
Kosaraju, S.: Limitations of Dijkstra’s semaphore primitives and petri nets,” Operating Systems Review, 7, 4, 

pp. 122–126, 1973 
Krishna, C., and Lee, Y., eds. “Special Issue on Real–Time Systems.” Proceedings of the IEEE, January, 1994. 
Lewis, D. and Berg, D. Multithreaded Programming with Pthreads, Prentice–Hall, Englewood Cliffs, 1997 
Mchugh, J. A. M. and Deek, F. P. “An Incentive System for Reducing Malware Attacks.”, Comm. of the ACM, 

vol. 48, pp. 94–99, June 2005. 
Mullender, S. J., Distributed System 2nd Edition. 
Ridge, D., et al. “Beowulf: Harnessing the power of parallelism in a Pile–of–PCs.” Proceedings, IEEE 

Aerospace, 1997. 
Silberschatz, A., and Galvin, P. Operating System Concepts. Reading, MA: Addison–Wesley, 1994. 
Singhal, M. and Shivaratri, N.G. Advanced Concepts in Operating Systems, McGraw–Hill, New York, 1994 
Sinha, P. K. Distributed Operating Systems, IEEE Press, New York, 1997. 
Srinivasan, R. RPC: Remote Procedure Call Protocol Specifcation Version 2. Internet RFC 1831, August, 

1995. 
Stallings, W. Operating Systems: Internals and Design Principles, 5th edition, Prentice–Hall, Pearson 

Education, 2006. 
Tanenbaum, A. S. Modern Operating Systems, Englewood Cliffs, New Jersey, Prentice–Hall, 1992 
Tanenbaum, A. Distributed Operating Systems, Englewood Cliffs, New Jersey, Prentice–Hall, 1995. 
Wind: VxWorks Programmer’s Guide, WindRiver System Inc., 1997 
Zobel, D. “The Deadlock problem—a classifying bibliography”. Operating Systems Review, 17 ( 4 ), pp. 

6 – 15, 1983. 



http://taylorandfrancis.com


599 

Index 
A 

absolute pathname, 364 
access control lists, 411, 433 
access control matrix, security, 409 

disadvantage of, 410 
access control, security, 408 

data oriented, 409 
Linux, 432 
UNIX, 431 
user oriented, 408 

access time, disk, 323 
access token, security, 433 
access transparency, 453 
active attacks, security, 403 
active list, 298 
activity working set, 474 
adapter, 309 
adaptive lock, 468 
adaptive routing, 495 
additional process state, 100 
address 

logical, 226, 248 
physical, 226, 248 
virtual, 261 

addressable unit, 221 
address space, 38 
address translation, 248 

logical to actual physical, 248 
relocation, 223 
segmented system, 253 
simple paging system, 250 
virtual address, 265, 276 
Windows, 299 

Ad Hoc algorithm, 286 
advanced batch processing, 8 
advanced encryption standard, 429 
advised paging, 280 
advisory lock, 390 
affnity, 470 
affnity-based scheduling, 478 
alias, 366 
allocation policy, working set 

fxed, 289 
variable, 289 

allocation strategy 
fxed partition, 230 
variable partition, 239 

AMOEBA, 504 
anticipatory fetching, 280 
anticipatory I/O scheduler, Linux, 339 
antivirus, 424 

detection of, 425 
identifcation of, 425 
removal of, 425 

antivirus approaches, 423 
aperiodic task, 560 
Application Programming Interface (APIs), 54 
archive, 349 
associative mapping, 271 

asymmetric encryption, 430 
asynchronous I/O, 341 
asynchronous RPC, 519 
asynchronous transfer mode, 490 
ATM technology, 490–491 
atomic actions, 153 
atomic actions, fle system, 379 
atomic transactions, 455 
authentication, 186, 398 

artifact–based, 419 
biometrics, 419 
challenge–response, 418 
password-based, 416 
user, 416 

authorization, 398 

B 

backup 
full, 378 
incremental, 378 

bandwidth and latency, network, 499 
Banker’s algorithm, 205 
basic fle system, see fle system 
batch systems, 7 
Belady anomaly, 286 
Belady effect, 284 
best ft, 240 
binary fles, 349 
binary semaphores, 159 

lock variable implementation, 160 
biometrics, 419 
BIOS, 83 
bitmap algorithm, 238 
bit tables, 373 
block cipher, 428 
block device, 309 
blocked state, 99 
blocked / suspended state, 101 
blocking factor, 366 

choice of, 367 
blocking and non–blocking protocols, 514 
blocking receive, 183 
blocking of records, 366 

fxed–length, 367 
spanned, 367 
unspanned, 367 
variable–length, 367 

blocking send, 184 
block-serial fle, 350 
boot block, 387 
boot sector, 392 
boot sector virus, 423 
boot server, 505 
boundary tags, 241, 242 
bridges, 506 
Brinch Hansen’s approach, 171 
brouters, 507 
brute–force attack, 427 
buddy blocks, 244 



 

C 

600 Index 

buddy system, 244 
Linux, 298 

buffer 
double, 319 
multiple, 319 
single, 318 

buffer cache, 336 
buffered I/O, 336 
buffering, 7 

UNIX, 336 
buffering technique, 319 
bullet server, 505 
busy waiting, 149 
byzantine failure, 453 

cache coherence, 535 
cache manager, windows, 340 
cache memory, 301 

delayed write, 535 
cache validation, 536 
caching, server and client, 540 
capabilities 

confnement of, 413 
practical diffculties, 413 
protection of, 412 
revocation of, 413 
software, 412 

capability lists (C–list), 411 
centralized system, 438 
chained allocation, fle system, 371 
chained free blocks, 374 
challenge–response, 418 
change of context, 106 
change of process, 105 
character queue, UNIX, 337 
character-serial fle, 350 
checkerboarding, 236 
child process, 104 
chosen–plaintext attack, 428 
cipher 

block, 428 
stream, 429 

ciphertext, 426 
ciphertext–only attack, 427 
circuit switching, 492 
circular buffer, 319 
circular wait, 196 
clandestine user, 416 
classical problems, 161 
cleaning policy, 292 
client, 21 
client process, 76 
client–server computing, 76 
client–server model, 76, 444 
client-server node failures, 530 
client stub, 520 
C–lists, see capability lists 
clock, 309, 319, 582 

functions, 320, see also software 
hardware, 319 
line, 320 
programmable, 320 

software, 320 
clock algorithm, 284 
clock algorithm, modifed, 284 
clock cycle time, 319 
clock device driver, 320 
clock ticks, 319 
clock and timers, RTOS, 582 

Linux, 582 
C–LOOK policy, 330 
cluster computer, 26, 543 

architecture, 546 
classifcation, 545 
clustering methods, 545 
design, 543 
distinct advantages, 544 
operating system, 547 
salient features, 546 
services and functions, 546 
Sun, 550 
Windows, 547 

CMIP standard, 508 
command–language interpreter, 63 
command–language user, 62 
communication 

competitive, 147 
cooperative, 147 
distributed system, 511 

communication mechanisms, RTOS, 583 
non–blocking, 584 
notifcation, 585 
prioritization, 584 
priority–inheritance, 584 

communication media, 507 
communication protocols, 495 

essential requirements, 499 
standard protocols, 500 

communication and synchronization, RTOS, 582 
compaction, 243 
compare–and–swap, 469 
compatible time–sharing system (CTSS), 11 
compiler, 2 
completely fair queuing scheduler, Linux, 339 
computer networks, 19 
computer software, 1 
concurrency 

deadlock, 149 
forms and issues, 148 
mutual exclusion, 150 
race condition, 149 

concurrent access, fles, 366 
concurrent programming, 161 
conditional critical region, 167 
conditional message delivery, 501 
condition variables 

monitor synchronization, 170 
confdentiality, security, 400 
confnement of capabilities, 413 
confusion principle, 428 
connectionless protocol, 493 
connection strategies, 492 
consumable resources, 194 
contemporary allocation strategies, 246 
context switch, 106 
contiguous allocation, fle, 370 



Index 601  

 

 

contiguous memory allocation, 228 
control function 

distribution of, 454 
control, I/O operation, 309 
controller–bus interface, 309 
controller–device interface, 309 
cooperating processes, 147 
cooperative scheduler, 123 
copy–on–write, 204 
counting (general) semaphore, 157 
critical region, 167 
critical resource, see resources 
critical section, 149 
cryptanalysis, 427 
cryptography systems 

attacks on, 427 
C–SCAN policy, 330 
CTSS, see compatible time–sharing system 
cylinder, disk, 322 
cylinder skewing, 324 

D 

daemon process, 105 
data caching, 523 
Data Encryption Standard (DES), 429 
datagram communication, 503 
datagram protocol, user, 499 
datagram sockets, 503 
deadline 

ending, 559 
relative, 559 
starting, 559 

deadline scheduler, Linux, 338 
deadline scheduling, 131 
deadlock, 193 

avoidance, 203 
conditions for, 195 
consumable resources, 194 
defnition, 193 
detection, 198 
detection strategy, 198 
general resource, 195 
graphical representation, 196 
hybrid strategy, 207 
modeling, 196 
non–preemptable resource, 194 
ostrich approach, 197 
preemptable resource, 194 
prevention, 200 
principles, 197 
recovery, 198 
resource allocation, 204 
resources, 195 
reusable resources, 194 
strategies, 197 
various strategies and impacts, 209 

deadlock avoidance, 203 
Banker’s algorithm, 205 
merits and drawbacks, 205 
for multiple resources of different types, 205 
process initiation refusal, 204 
resource allocation refusal, 204 
safety evaluation, 204 

deadlock detection, 198 
deadlock detection algorithms, 198 
deadlock handling, UNIX, 208 
deadlock modeling 

graphical representation, 196 
deadlock prevention, 200 

circular wait, 202 
hold–and–wait, 201 
mutual exclusion, 200 
no preemption, 202 

deadlock recovery, 198 
merits and drawbacks, 200 

deadlock and resources, 195 
deadly embrace, 192 
dedicated devices, 313 
degree of multiprogramming, 9 
Dekker–Peterson’s algorithm, 151 
Dekker’s algorithm 

mutual exclusion, 151 
delayed write, cache, 535 
delayed write, disk, 334 
demand paging, 279 
denial of service, 403 
dentry object, 390 
DES, 429 
determinism, real–time, 563 
device characteristics, 308 
device controller (I/O controller), 309 
device drivers, 316 

clock, 320 
UNIX, 316 
Windows, 341 

device–independent I/O, 317 
device–independent software, 317 
device I/O, 311 

dedicated, 313 
shared, 313 
virtual, 313 

device–level I/O, 311 
device list, 337 
device management, 307 

functions, 36, 79, 312 
Linux, 337 
objectives, 311 
UNIX, 335 
Windows, 340 

device manager 
constituents, 314 
design principles, 314 
scheduler and interrupt handler, 315 

device table 
logical, 312 
physical, 312 

devices 
block–oriented, 309 
character–oriented, 309 
controller, 309 
dedicated, 313 
driver, 316 
interrupt, see interrupt 
shared, 313 
types of, 309 
UNIX driver, 316 
Virtual, 313 



 602 Index 

Windows driver, 341 
diffusion principle, 428 
direct fle, 361 
direct memory access (DMA), 311 
directories, fle, 350, 362 

UNIX, 387 
Windows, 392 

directory information, 362 
directory name cache, 382, 541 
directory naming, 364 
directory structure, 350, 362 

fat, 362 
graph structure, 365 
hierarchical, 363 
multi–level, 364 
single–level, 362 
two–level, 363 

directory system, 362 
disable interrupts, 152 
discretionary access control, 406 
disk, 320 

components and organization, 321 
data organization and formatting, 323 
parameters, 322 
physical characteristic, 320 
sectors, 321 
striping, 333 

disk–arm scheduling, 324 
anticipatory, 331 
C–Look, 330 
C–Scan, 330 
deadline, 331 
elevator, 329 
FCFS, 326 
FSCAN, 331 
LIFO, 327 
LOOK, 329 
N–step Scan, 331 
priority, 326 
random scheduling, 325 
SCAN, 328 
SSTF, 327 

disk block descriptor, 296 
disk cache, 333 

unifed, 335 
disk descriptor, 376 
disk duplexing, Windows, 341 
disk formatting, 323 
diskful workstation, 444 
disk I/O operations, 322 

parameters, 322 
diskless workstation, 444 
disk management, 323 

data organization and formatting, 323 
disk mirroring, 379 
disk organization, 321 
disk scheduling 

Linux, 338 
disk space allocation 

Linux, 390 
UNIX, 386 
Windows, 392 

disk status map, 373 
disk striping, 333 

dispatcher, 36 
distributed computing, 77 
distributed computing system, 438 

advantages, 439 
characteristics, 439 
client–server, 444 
clusters, 543 
different forms, 443 
disadvantages, 440 
evolution, 438 
hardware concepts, 441 
hybrid systems, 447 
minicomputer, 443 
peer–to–peer, 443 
processor pool, 446 
software concepts, 447 
workstation, 444 

distributed control, 454 
distributed documents, 486 
distributed fle system, 526 

design issues, 527 
fault tolerance, 529 
Linux GPFS, 542 
operation of, 532 
scalability, 537 
Sun, 538 
Windows, 537 

distributed message passing, 511 
group communication, 516 
IPC protocols, 513 
IPC semantics, 513 

distributed objects, 485 
distributed operating system, 23, 94, 448, 451 

Amoeba, 504 
design issues, 452 
fexibility, 456 
heterogeneity, 458 
multicomputer machine, 25 
multiprocessor machine, 24 
performance, 457 
reliability, 453 
scalability, 456 
security, 458 
transparency, 452 
workstation–server model, 20, 508 

distributed processing 
client–server computing, 444 
clusters, 543 
message passing, 511 
remote procedure calls (RPC), 518 
Sun cluster, 550 
Windows cluster, 547 

distributed shared memory, 523 
design issues, 524 
implementation issues, 525 

distributed shared memory; multiprocessor, 461 
distributed shared virtual memory, 523 
distributed systems, 448, 488 

client–server, 444 
clusters, 543 
communication protocols, 495, 499 
connection strategies, 492 
hybrid system, 447 
interprocess communication, 511 



Index 603  

 

 

network bandwidth and latency, 499 
network protocols, 495 
network topology, 489 
network types, 489 
networking concepts, 488 
networking technologies, 490 
routing strategies, 493 
sockets, 502 
standard communication protocols, 500 
workstation server model, 508 

DME standard, 508 
Domain Name System (DNS), 509 
double buffer, 319 
dynamic allocation, 238 
dynamic best effort scheduling, 572 
dynamic linking and loading, 233 
dynamic memory allocation, RTOS, 587 
dynamic partition, memory, 235 

allocation strategy, 236 
operation methodology, 235 

dynamic partition vs. fxed partition, 246 
dynamic planning–based scheduling, 572 
dynamic priority scheduling, 576 
dynamic relocation, 224 
dynamic routing, 495 
dynamic scheduling, 475 

E 

earliest-deadline-frst scheduling, 576 
elevator scheduler, 329 
E–mail virus, 424 
encryption, 426 

advanced encryption standard, 429 
block cipher, 428 
data encryption standard, 429 
one–way, 417 
public key, 430 
RSA algorithm, 431 
stream cipher, 429 
symmetric, 427 

encryption schemes, 428 
encryption techniques, 427 
ending deadline, 559 
ENIAC, 6 
environment creator, 5 
equivalence of primitives, 189 
Ethernet, 490 
event, 41 
event–driven scheduling(ED), 135 
event handler, 42 
event object, 586 
events, 166 

synchronization primitive, 166 
evolution of OS system, 5 

interactive multiprogramming, 9 
multi-access system, 10 
multiprogrammed batch systems, 8 
multiuser system, 9 
serial processing, 7 
simple batch systems, 7 
time–sharing systems, 10 

exchange instruction, 154 
execution budget, 569 

executive, 3 
exokernel, 91 
exponential distribution, see website 4.20.7 
extended machine, 69 

inner, 69 
outer, 69 

extensible nucleus, 86 
external fragmentation, 236, 241 
external interrupts, RTOS, 569 

F 

fabrication, security, 401 
failover manager, 548 
fail–safe default, 407 
fail–soft operation, 564 
failure 

Byzantine, 453 
fail–stop, 453 

fair–share scheduling, 142 
fast local internet protocol, see FLIP 
fault avoidance, 454 
fault detection and recovery, distributed 

systems 
atomic transactions, 455 
retransmission of messages, 455 
stateless servers, 455 

fault and failure, fle system, 377 
fault tolerance 

distributed fle system, 529 
distributed systems, 454 
distribution of control functions, 454 
redundancy technique, 454 

fault tolerance, real–time, 29, 564 
fault tolerance technique, fle system, 378 

atomic actions, 379 
disk mirroring, 379 
stable storage, 379 

FCFS (frst–come–frst–served), 127, 326 
feasible schedule, 571 
fetch policy, 279 
fbers, 113 
FIFO algorithm, 283 
FIFO approximation, 284 
FIFO, see FCFS 
ffty–percent rule, 241 
fle access, 351 
fle access methods, 361 
fle access rights, 366 
fle allocation 

approaches, 368 
best ft, 240 
chained allocation, 371 
contiguous, 370 
different issues, 368 
different methods, 370 
different options, 369 
dynamic, 369 
frst ft, 240 
indexed allocation, 372 
linked allocation, 371 
next ft, 240 
non–contiguous, 371 
static, 369 



 604 Index 

fle allocation table, 371, see also directory 
fle attributes, 350 
fle–cache location, 535 
fle caching, 534 
fle control block, 353 
fle descriptor, 350 

UNIX, 350, 385 
fle directories, 362 
fle management, 345 
fle management functions, 37, 79 
fle management system 

design issues and functions, 354 
design principles, 355 
Linux, 388 
requirements, 353 
UNIX, 385 
Windows, 391 

fle map table (FMT), 372 
fle naming, 347 
fle operations, 350 
fle organization 

clustering, 376 
physical representation, 376 
salvaging, 376 
skewing, 376 

fle organization and access, 356 
access methods, 361 
direct fle, 361 
hashed fle, 361 
Indexed fle, 360 
Index–sequential fle, 359 
Inverted fle, 360 
link, 365 
pile, 357 
sequential fle, 357 
structured fles, 356 

fle replication, 530 
fles, 346 

access methods, 361 
access rights, 366 
archive, 349 
binary, 349 
blocking factor, 366 
blocking of records, 366 
block–serial, 350 
character–serial, 350 
concurrent access, 366 
deblocking, 367 
descriptor, 350 
direct, 361 
directories, 350, 362 
free space management, 373 
hashed, 361 
immediate (master fle table), 392 
indexed, 360 
indexed–sequential, 359 
inverted, 360 
link, 365 
pile, 357 
regular, 349 
sequential, 357 
structured, 356 
swap, 225 
symbolic link, 366 
types, 348 

fle server, 352, 450 
hint–based, 534 
multi–threaded, 534 
stateful, 531 
stateless, 531 

fle service, 352 
fle sharing, 365 

link, 365 
symbolic link, 366 
UNIX, 386 

fle structure, 348, 385 
fle system, 346 

design principles, 355 
drivers, 341 
fault tolerance, 378 
high–level, 347 
integrity, 377 
log–structured, 383 
low–level, 347 
performance, 381 
recovery technique, 378 
reliability, 376 
structured, 347 
virtual, 379, 538 

fle system performance, 381 
factors, 382 

fle system reliability 
fault–tolerance technique, 378 
implementation, 377 
recovery technique, 378 

fle types, 348 
fle update policy (DFS), 535 
flter driver, 341 
frst–in–frst–out (FIFO), 127 
frst ft, 240 
frst generation OS, 6 
frst generation system, 6 
fxed allocation policy, 289 
fxed priority scheduling, 574 
fxed routing, 494 
fat directory, 362 
fip, 501 
fipper, 233 
fork, 104 
four–level paging, 268 
fragmentation 

external, 236, 241 
internal, 231 

free area, 242 
free space management, disk, 373 

Bit tables, 373 
chained free blocks, 374 
different techniques, 373 
disk status map, 373 
free list of blocks, 375 
group of blocks, 374 
indexing, 374 
in UNIX, 386 

full backup, fle system, 378 
full replication, 526 

G 

gang scheduling, 473 
garbage collection, 413 



Index 605  

 

I 

gateways, 507 
general resource systems, 195 
genesis of modern operating systems, 30 
graph directory structure, 365 
greedy scheduling, 574 
group communication, 505, 516 

H 

HAL (Hardware Abstraction Layer), 89 
handle, (see website 4.19) 
hard affnity, 478 
hard link, 365 
hard real–time task, 559 
hard RTOS, 563 
hashed fle, 361 
head skewing, 324 
head switching time, 324 
heap, 237 
heterogeneity, distributed systems, 458 
heterogeneous, 443 
hierarchical directory, 363 
hierarchical machine, 69 
hint-based fle server, 534 
Hoare’s approach, 171 
homogeneous, 443 
horizontal distribution, 26 
hybrid kernel, 90 

Windows NT, 91 
hybrid routing, 495 
hybrid system, distributed system, 447 
hybrid thread model, 115 

idempotent, 516 
IEEE, POSIX, 65 
immediate fle (master fle table), 392 
immediate interrupt service, 570 
incremental backup, 378 
incremental growth, 440 
indexed allocation, fle, 372 
indexed fle, 360 
indexed–sequential fle, 359 
inner extended machine, 69 
inodes 

Linux, 389 
UNIX, 385 

integrity, see security and protection 
intel pentium 

clock and timer, 582 
segmentation with paging, 277 

interactive command interpreter, 78 
interactive multiprogramming, 9 
interception, 401 
interconnection technologies, 506 
interleaving, disk, 324 
internal fragmentation, 231 
internetworking, 505 

communication media, 507 
concepts and issues, 505 
interconnection technologies, 506 
network management, 507 

interprocess communication 
conventional, 176 

distributed systems, 511 
protocols, 511 
semantics, 513 

interprocess communication and synchronization, 176 
in IBM MVS, 191 
with messages, 186 
with semaphore, see semaphore 
in UNIX, 192 
in Windows, 191 

interprocess signaling, 148 
interprocess synchronization, 147 

conditional critical region, 167 
critical region, 167 
critical section, 149 
forms and issues, 148 
hardware approach, 152 
in multiprocessor, 154 
software approaches, 150 
in UNIX, 175 
without busy waiting, 155 

interrupt–driven I/O, 311 
interrupt handler, device, 315 
interruption, security, 401 
interrupt latency, 570 
interrupt priority, 46 
interrupt priority–level, RTOS, 570 
interrupt processing, 42, 44 
interrupt queuing, 46 
interrupts, 42 

classes of, 42 
clock, 42 
external, RTOS, 569 
multiple, 46 
software, 58 
transparency, 43 

interrupt service 
immediate, 570 
scheduled, 570 

interrupt servicing, 44 
interrupt vector, 47 
intersector gap, disk, 321 
intertrack gap, disk, 321 
intruders, 416 

clandestine user, 416 
masqueraders, 416 
misusers, 416 
nontechnical users, 416 
snooping, 416 

invalid rate, RTOS, 571 
inverse of remainder quantum, 133 
inverted fles, 360 
inverted page tables, 269 
I/O 

asynchronous, 341 
channel, 311 
characteristics, 308 
control, 311 
dedicated, 313 
device, 308 
device–level, 311 
DMA, 311 
interrupt–driven, 311 
logical, 314, 356, 382 
processor, 311 
programmed, 311 



 

 

 

 

606 Index 

scheduler, 315 
shared, 313 
synchronous, 341 
transfer time, 323 
types, 309 
user-level, 318 
virtual, 313 

I/O buffering, 318 
circular buffer), 319 
double buffer, 319 
multiple buffer, 319 

I/O buffering techniques, 318 
I/O channel, 311 
I/O controller (device controller), 309 
IOCS, 2 
I/O devices 

characteristics, 308 
types of, 309 

I/O function organization, 313 
I/O interface, 311 
I/O interrupt handler, 315 
I/O interrupt, see process switch 
I/O management, 308 
I/O modules, 310 
I/O operation 

direct–memory access (DMA), 311 
interrupt–driven I/O, 311 
I/O channel, 311 
programmed I/O, 311 
types of, 311 

I/O port, 310 
I/O processor, 4 
I/O queue, 313 
I/O scheduler, 315 
I/O software 

device–independent, 317 
user–level, 318 

I/O system, 310 
I/O system organization, 311 
I/O traffc controller, 312 
I/O transfer time, 323 
IPC protocols, 511 
IPC semantics, 513 
ISO/OSI reference model, 496 

J 

Java RMI, 521 
job, 37 
job scheduler, 50 
job steps, 37 

K 

kernel, 76 
hybrid, 90 
machine–dependent, 80 
machine–independent, 80 
microkernel, 86 
monolithic, 81, 84 

kernel–based OS, 78 
Linux, 85 
UNIX, 79, 84 
Windows NT, 91 

kernel call, see system calls 
kernel–level threads, 111 
kernel memory allocation, 259 
kernel memory allocators 

in Linux, 298 
in Solaris, 259 
in UNIX, 259 

kernel time, 127 
key logger, 426 
known–plaintext attack, 428 
KURT system, 589 

L 

language translators, see compiler 
LAN (Local Area Network), 438 
latency time, 323 
lateness, 571 
layered systems, 70 

design hierarchy, 72 
lazy buddy allocator, 260 
lazy commit, Windows, 340 
lazy write, windows, 340 
lease lock, 390 
least common mechanism, 406 
least frequently used (LFU), 285 
least recently used (LRU), 285 
least-slack-time frst scheduling, 576 
lightweight process, see threads 
limited round robin, 133 
linked allocation, fle system, 371 
linked list, 239 
link (hard link), 365 

UNIX, 388 
Linux 

clock and timer resolutions, RTOS, 582 
device management, 337 
disk scheduling, 338 
disk space allocation, 390 
distributed fle system, 542 
fle management system, 388 
fle object, 390 
GPFS, 542 
kernel, 85–86 
kernel memory allocation, 298 
memory management, 296 
in multiprocessor, 477 
multiprocessor OS, 477 
page allocation, 297 
page cache, 340 
page replacement, 297 
Real–time extensions, 588 
real–time scheduling, 580 
in RTOS, 588 
scheduling, 147 
scheduling RTOS, 580 
security, 432 
virtual memory management, 297 

list scheduling, RTOS, 574 
livelock, 149 
loadable modules, 85 
load balance, 479, 510 
load–on–call, 234 
load control, 293 



Index 607  

locality of references, 270 
lock, 60 

adaptive, 468 
advisory, 386, 390 
global, 60 
lease, 390 
local, 60 
mandatory, 390 
queued, 465 
reader–write spin, 477 
sequence, 477 
sleep, 467 
spin, 60, 466 
suspend, 61 
synchronization, 465 

locked frames, 281 
locking page frames, 281 
locks–and–keys, security, 415 
lock and unlock mechanism, 160 
log fle, 383 
logical address, 226, 248 
logical device table, 312 
logical I/O, 314, 356, 382 
logical–to–physical address, 248 
logic bomb, 421 
log–structured fle system, 383 
long process, 53 
long term scheduler, 50 
loosely coupled system, 442 
loss rate, RTOS, 571 
low–level scheduler, 122 
LynxOS, 591 

M 

magnetic disk 
components and organization, 321 

magnetic disk I/O, 320 
physical characteristic, 320 

magnetic disk I/O operation, 322 
parameters, 322 

magnetic disk management 
data organization and formatting, 323 
interleaving, 324 

mailbox, 179 
mainframes, 12 
maintainability and upgradability, 64 
malicious program, 420 
malware, 420 
management of secondary storage, 368 
mandatory access control, 406 
mandatory lock, 390 
mapping cache, see TLB 
Mars Pathfnder (VxWorks), 592 
masqueraders, 416 
masquerading, 403 
master fle table (MFT), 392 
master–slave mode, 462 
Mckusick–Karels allocator, 260 
medium term scheduler, 51 
memory access 

overhead, 228 
memory allocation strategy 

for OS kernel, 259 

using free list, 239 
memory allocators 

OS Kernel, 259 
memory coherence, 524 
memory compaction, 243 
memory hierarchies, 222 
memory management, 220 

address translation, 223, 248, 250 
allocation strategy, 230, 239 
basic requirements, 222 
best ft, 240 
bit maps, 238 
boundary tag, 242 
buddy system, 244 
compaction, 243 
comparison parameters, 227 
contemporary allocation strategies, 246 
contiguous allocation, 227 
dynamic allocation, 236 
dynamic linking, 233 
dynamic loading, 233 
dynamic partition, 235 
dynamic partition vs. fxed partition, 246 
dynamic relocation, 224 
external fragmentation, 236, 241 
ffty–percent rule, 241 
frst ft, 240 
fxed partition, 230 
free lists, 239 
functions, 78, 226 
fundamental responsibilities, 226 
internal fragmentation, 231 
kernel memory, 259 
linked lists, 239 
Linux, 296 
logical and physical address, 226, 248 
logical and physical organization, 226 
multiprocessor, 475 
next ft, 240 
non–contiguous allocation strategies, 247 
overlays, 232 
paging, 249 
partition description table (PDT), 238 
partitioned, 229 
powers–of–two allocation, 245 
protection, 223, 231, 251 
quick ft, 240 
relocation, 223 
requirements, 222 
responsibilities, 226 
segmentation, 252 
separation and sharing, 222 
sharing, 222, 234 
Solaris, 295 
static allocation, 223 
swapping, 225, 231 
UNIX, 295 
unused memory rule, 242 
variable partition, 235 
virtual memory, 260 
Windows, 298 
worst ft, 240 

memory management functions, 36 
memory management, RTOS 



 

 

608 Index 

dynamic memory allocation, 587 
memory allocation, 586 
RTOS, 586 
virtual memory mapping, 587 

memory management schemes, 227 
comparison parameters, 227 
contiguous allocation, 228 
dynamic partition, 235 
fxed partition, 230 
non–contiguous allocation strategies, 247 
single user, 229 
variable partition, 235 

memory mapping, 223 
memory protection, 223 
memory relocation, 223 
memory–resident virus, 423 
memory sharing, 223 
memory swapping, 225 
memory system 

essential requirements, 221 
key characteristics, 221 

merging free areas, memory, 242 
mesa monitor semantics, 173 
mesa semantics, 173 
message addressing, 178 
message exchange, 182 

asynchronous, 182 
blocking, 183 
nonblocking, 184 
send–receive operation, 184 
synchronous, 182 

message format, 176 
message implementation 

copying, 180 
different issues, 178 
indirect naming, 179 
mailbox, 179 
message length, 182 
naming (addressing), 178 
queuing discipline, 181 
using semaphores, 190 

message naming, 178 
message passing, 58 
message–passing mechanisms, RTOS, 583 

high speed, 584 
non–blocking, 584 
notifcation, 585 
prioritization, 584 
priority–inheritance, 584 

message passing system 
design issues, 185 

message queues, RTOS, 583 
messages, 177 

for interprocess synchronization and 
communication, 186 

in interrupt signaling, 189 
in UNIX, 192 
in Windows, 191 

message switching, 493 
message usage, 189 
microkernel, 86 

object-oriented OS, 89 
Windows NT, 89 

microprocessor, 18 
middleware, 483 

different models, 485 
services, 486 

migration 
computation, 457 
data, 457 
distributed shared memory, 525 
process, 457, 483 

minicomputers, 14 
missed time, 127 
miss rate, RTOS, 571 
misusers, 416 
MLQ scheduling, 138 
mobile agent, 445 
mobile code, 445 
mode bit, 57 
modern operating system, 18 

design issues, 92 
genesis of, 29 
salient features, 92 

modifed clock algorithm, 284 
monitors, 168 

Brinch Hansen’s, 171 
conclusions, 175 
condition variables, 170 
defnition, 168 
Hoare’s approach, 171 
implementation using semaphores, 190 
in Java, 174 
merits and drawbacks, 174 
mesa semantics, 173 
notify and broadcasts, 173 
principles of operation, 169 
producer–consumer problem, 172 
using semaphores, 190 
Wait–Signal, 172 

monolithic architecture, 68 
monolithic kernel, 81 

LINUX, 85 
UNIX, 84 

monolithic structure, 68 
monolithic systems, 68 
most-frequently-used, 286 
Motorola 

four-level paging, 268 
mount protocol, 539 
MSDOS, 83 
multiaccess systems, 10 
multicomputer model, 481 

client–server, 444 
minicomputer, 443 
peer–to–peer, 443 
workstation, 444 

multicomputer operating system, 480 
considerations, 481 
salient features, 482 

multicomputers, 94 
architecture, 480 
different models, 481 
heterogeneous, 443 
homogeneous, 443 

MULTICS, 11 
multi-level directory, 364 
multilevel page table, 267 

UNIX, 295 
multiple buffer, 319 



Index 609  

 

multiple fle systems 
UNIX, 387 

multiple interrupts, 46 
multiple level adaptive scheduling, 138 
multiple level queue scheduling, 138 
multiple page sizes, 272 
multiprocessing, 24 
multiprocessor, 24, 442 

architecture, 459 
NUMA model, DSM, 461 
UMA model, SMP, 460 

multiprocessor operating system, 448, 459 
Additional hardware support, 468 
considerations, 461 
compare-and-swap instruction, 469 
device management, 476 
distributed shared memory multiprocessor, 

461 
fle management, 476 
kernel structure, 462 
Linux, 477 
memory management, 475 
multiprocessor architecture, 459 
NUMA kernel, 464 
NUMA model, 461 
processor management, 462 
processor/process scheduling, 469 
process synchronization, 464 
thread scheduling, 471 
tightly–coupled, 442 
UMA kernel, 462 
UMA model, 460 
Windows, 479 

multiprogramming, 8 
degree of, 9 
interactive, 9 
time–sharing, 10 

multitasking systems, 10, 17 
multithread fle server, 534 
multithreading, 93, 116 

cooperative, 118 
preemptive, 118 

multiuser systems, 9 
client–server model, 20 

Mutex locks, 463 
mutual exclusion, 149 

binary semaphore, 159 
counting semaphore, 157 
Dekker–Peterson’s algorithm, 151 
Dekker’s algorithm, 151 
disable interrupts, 152 
exchange instruction, 154 
general semaphore, 157 
hardware approach, 152 
implementation, 150 
messages, 186 
monitors, 168 
in multiprocessor, 154 
requirements, 149 
semaphores, 155 
software approaches, 150 
special machine instruction, 153 
switch variable, 150 
TSL instruction, 153 
without busy waiting, 155 

MVS system, 13, 73 
interprocess comm. and sync., 176 

MVS/XA, MVS/ESA, 13 

N 

nanokernel, 567 
network bandwidth and latency, 499 
network communication protocols, 495 

essential requirements, 499 
ISO/OSI model, 496 
network protocols, 495 
standard protocols, 500 
TCP/IP protocol, 497 
UDP (user datagram protocol), 498 

network of computers, 76, 488 
network connection strategies, 492 

circuit switching, 492 
message switching, 493 
packet switching, 493 

network drivers, 341 
network fle system, 20, 448 

SUN, 538 
networking 

concept and issues, 488 
networking, 488 
networking technologies, 490 

ATM, 490 
Ethernet, 490 
Token rings, 490 

network management, 507 
CMIP standard, 508 
DME standard, 508 
SNMP standard, 508 

network operating system, 20, 448 
advantages, 451 
shortcomings, 451 

network protocols, 495 
network routing strategies, 493 

adaptive routing, 494 
deterministic routing, 494 
dynamic routing, 495 
fxed routing, 494 
hybrid routing, 495 
virtual circuit, 494 

network topology, 490 
bus topology, 490 
fully–connected, 489 
partially–connected, 489 
ring topology, 490 
star topology, 489 

network types 
LAN vs. WAN, 489 

New Technology File System (NTFS), 391 
next ft, 240 
NFS protocol, 539 
node failure, 530 
noncontiguous fle allocation, 371 
noncontiguous memory allocation, 247 

address translation, 248 
implementation, 249 
logical address, 248 
logical and physical organization, 248 
physical address, 248 

nonpreemptive scheduling, 124 



 

 

610 Index 

nonpreemptive strategies, 127 
deadline scheduling, 131 
FCFS, 127 
Highest penalty ratio next (HPRN), 129 
priority scheduling, 130 
shortest process next (SPN), 128 
shortest remaining time next(SRTN), 128 

not-recently used algorithm, 282 
NTFS, 391 
NT, see executive; microkernel; subsystems; Windows NT 
NUMA model, 461 

kernel, 464 

O 

object attribute, 120 
object instance, 120 
object–oriented concept, 119 
object–oriented design, 119 
object–oriented operating system, 89 
object–oriented technology, 95 
objects, 93 

class, 120 
instance, 120 
Windows NT, 120 

off–line processing, 7 
one–shot timer, 582 
open system 

design standards, 64 
operating system, 3 

cluster computer, 547 
design factors, 63 
design issues, 40 
frst generation, 6 
objectives and functions, 35 
process-based, 107 
resource manager, 36 
second generation, 6 
support and services, 53 
third generation, 8 

optimal replacement, 282 
optimal scheduling, 561, 571 
OS, 360 12 
OS, 390 25 
OS MFT, OS MVT, 12 
OS MVS, 13, 81 
OS process, 40, see also system process 
Ostrich approach, 197 
OS/VS1, OS/VS2, OS/SVS, 13 
outer extended machine, 69 
overlays, 232 
overlay supervisor, 233 

P 

packet switching, 493 
page, 249 
page advice, 280 
page allocation, Linux, 297 
page breakage, 249 
page buffering, 286 
page cache, 334 

Linux, 340 
paged memory management, 249 

page fault frequency, 291 
page fault interrupt, 266 
page fragmentation, 249 
page frame, 249 
page frame data table, 296 
page–reference strings, 281 
page replacement 

Linux, 297 
UNIX, 296 

page sharing, windows, 301 
page size, 279 
page table 

Multi–level, 267 
two–level, 267 
UNIX, 295 

paging, 264 
address translation, 250 
Linux, 297 
merits and drawbacks, 252 
protection, 251 
sharing, 251 
two–level, 267 
UNIX, 295 
virtual memory, 264 
Windows, 299 

paging daemon, 292 
UNIX, 296 

parallel systems, 23, 448 
parasitic virus, 423 
parent process, 105 
partition description table (PDT), 238 
partitioned memory management, 229 

allocation schemes, 231 
allocation strategy, 229 
dynamic partition, 235 
fxed partition, 229 
memory allocation model, 236 
variable partition, 235 

passive attacks, 402 
password, 416 

access control, 417 
password protection, 417 

aging, 417 
encryption of, 418 
other methods, 418 

pathfnder, 592 
penalty ratio, 127 
performance, 63 

distributed fle system, 528 
distributed systems, 457 
fle system, 381 

periodic task, 560 
periodic timer, 560 
personal computers, 18 
Peterson’s algorithm, 151 
physical address, 248 
physical device table, 312 
physical I/O function organization, 313 
physical I/O functions, 313 
physical I/O operations, 311 
physical organization, I/O, 313 
pick operating system, 17 
pile, 357 
pipes, 61, 381 



Index 611  

 

 

placement policy, 293 
platter, disk 

multiple, 320 
single, 320 

polymorphic virus, 424 
portability, 87 
POSIX, 65 
powers–of–two allocation, 245 
predictability, 122 
predictability, real–time, 564 
preemptive multitasking system, 10 
preemptive scheduling, 131 
preemptive scheduling strategies, 131 

event–driven (ED), 135 
external priority methods, 144 
fair–share, 142 
hybrid methods, 143 
inverse of remainder quantum, 133 
least competed next (LCN), 135 
limited round robin, 133 
multiple–level adaptive, 138 
multiple–level queues, 136 
multiple–level queues with feedback, 138 
priority–based, 135 
round robin, 132 
selfsh round robin, 134 
shortest process next (PSPN), 134 
state–dependent priority methods, 143 
virtual round robin, 133 
worst service next, 144 

prepaging, 280 
primary memory, 220 

essential requirements, 221 
primary process state, 99 
primitives 

equivalence of, 189 
priority 

external, 126, 130 
internal, 126, 130 
interrupt, 46 

priority ceiling, 578 
priority ceiling protocol, 579 
priority inheritance, 578 

message–based system, 584 
priority inheritance protocol, 578 
priority inheritance vs. priority ceiling, 579 
priority inversion, 130, 577 

unbounded, 577 
priority problems 

inversion, 130, 577 
starvation, 130 

priority tracking, 591 
privacy, 400 
procedure call, 56 
process 

concepts and views, 98 
Daemon, 105 
long, 53 
orphan, 105–106 (see website, Chapter 4.11) 
OS, 40 
parent-child, 105–106 (see website, Chapter 4.11) 
short, 53 
states, 99 
types, 40 

user, 40 
zombie, 105–106 (see website, Chapter 4.11) 

process accounts, see process table 
process attributes, see process control block 
process–based OS, 107 
process constituents (see process data block) 103 
process control block (PCB), 103 
process control information, 104 
process creation, 104 

in UNIX, 106–107 
process creation methods, 104 
process data block, 103 
process description, 101 
process hierarchy, 105 
process image, 102 

UNIX, 104 
process list, (see website, Chapter 4.9) 
process management, 78 

functions, 98 
structure, 99 

process model, 98 
process table, 102 

UNIX, 102–103 
processor management 

functions, 36, 78, 98 
structure, 99 

processor mode, 57 
processor pool, 446 
processor scheduling 

distributed system, 469 
uniprocessor system, 121 

processor scheduling criteria, 122 
processor–synchronous method, 150 
processor–synchronous techniques, 152 
process–related events, 104–105 
process relationship, 105–106 
process scheduler, 52 

different kinds, 123 
functions, 121 
organization, 125 
system performance, 125 

process scheduling 
multiprocessor, 469 

process scheduling, 121 
criteria, 122 
strategies, 126 

process state information, 105 (see website, Chapter 4.8.2) 
process–states model, 99 

additional state, 100 
primary states, 99 

process switch, 105 
process synchronization 

multiprocessor, 464 
uniprocessor, 147 

process totality, 102 
producer-consumer problem, 162 

bounded buffer, 162 
unbounded buffer, 162 
using binary semaphores, 162 
using counting semaphores, 162 
using messages, 188 
using monitors, 172 

programmable clock, 319 
programmed I/O, 311 



 612 Index 

program relocation, 223 
static relocation, 223 

program sharing, 234 
protection, 407 

access control lists, 411 
access control matrix, 409 
artifact-based, 419 
biometrics, 419 
of capabilities, 412 
capability list, 411 
granularity of, 410 
locks and keys, 415 
paging, 273 
password-based, 416 
resolution of, 410 
software capabilities, 412 

protection domain, 413 
protection of memory, 408 
protection and security, 398 
protection structure, 408 

access control matrix, 409 
data-oriented, 409 
user-oriented, 408 

protocol 
blocking and non–blocking, 514 
IPC, 513 
Mount, 539 
network, 495–496 
NFS, 539 
reliable and unreliable, 514 
request (R), 515 
RR, 515 
RRA, 515 
standard, 500 

PsoSystem, 591 
public–key encryption, 430 

Q 

queued lock, 465 
queuing discipline, 181 
quick ft, 240 

R 

race condition, 149 
RAID, 332 

disk mirroring, 379 
disk striping, 333 
hardware, 341 
software, 341 
Windows, 341 

readers–writers problem, 165 
reader-write spin lock, 477 
read replication, 525 
real–time computing, 558 
real–time databases, 562 
real–time languages, 562 
real–time operating system (RTOS), 27, 558 

background, 558 
basic components, 565 
characteristics and requirements, 563 
clock and timers, 582 
communication and synchronization, 582 

communication mechanisms, 583 
design philosophies, 563 
different issues, 560 
dynamic memory allocation, 587 
evolution, 562 
external interrupts, 569 
features, 565 
immediate interrupt service, 570 
interrupt latency, 570 
kernel, 567 
KURT, 590 
Linux, 588 
LynxOS, 591 
memory allocation, 586 
memory locking, 588 
memory management, 586 
memory protection, 588 
message passing, 583 
message–passing mechanisms, 583 
priority ceiling, 578 
priority ceiling protocol, 579 
priority inheritance, 578 
priority inheritance protocol, 578 
priority inversion, 577 
pSOSystem, 591 
RT Linux, 590 
scheduled interrupt service, 570 
scheduling mechanisms, 571 
scheduling paradigms, 561 
scheduling and timer services, 569 
signals, 585 
software interrupts, 585 
synchronization mechanisms, 585 
system calls, 567 
tasks, 559 
thread control block (TCB), 566 
time services, 582 
virtual memory, 587 
VXWorks, 592 

real–time scheduling 
clock–driven approach, 573 
deadline–monotonic, 576 
dynamic best effort, 572 
dynamic planning–based, 572 
dynamic priority, 576 
earliest–Deadline–First, 576 
fxed–priority, 574 
greedy scheduling, 574 
least–slack–time–frst, 576 
Linux, 580 
list scheduling, 574 
priority ceiling, 578 
priority ceiling protocol, 579 
priority–driven, 573 
priority inheritance, 578 
priority inheritance protocol, 578 
priority inversion, 577 
rate–monotonic, 575 
static table–driven, 572 
static priority–driven, 572 
static scheduling, 574 
weighted round–robin, 573 

real-time system 
background, 558 



Index 613  

 

clocks and timers, 582 
different issues, 560 
hard, 27 
soft, 27 
time services, 582 

real-time task, 559 
hard, 559 
lateness, 571 
parameters, 560 
soft, 559 
tardiness, 571 

receive 
blocking, 183 
non–blocking, 184 

recoverability, 530 
recovery technique, fle system, 378 
redundancy technique, 454 
reentrant program, 235 
regular fles, 349 
relative deadline, 559 
relative pathname, 365 
release time, real–time, 559 
reliability, 23, 63, 439, 453, 528 

message passing, 185 
reliability, real–time, 564 
relocation 

dynamic, 224 
static, 223 

remote procedure call, 26, 57, 518 
caller-callee binding, 519 
implementation, 520 
Java RMI, 521 
vs. message passing, 522 
parameter handling, 518 
SUN, 520 
synchronous vs. asynchronous, 519 

replacement algorithms, 282 
replacement policy, 280 
replacement scope, 290 

global, 290 
local, 290 
Windows, 301 

replication 
full, 526 
read, 525 

resident monitor, 7, 229 
resource manager, 3, 36 
resource protection, 48 
resources 

consumable, 194 
different types, 194 
reusable, 194 

resource sharing, 48 
resource systems, 195 
response ratio, 127 
response requirement, real–time, 558 
response time, 127 
responsiveness, real–time, 564 
reusable resources, 194 
Rijndael algorithm, 430 
ring architecture, security systems, 414 
RMI, Java, 521 
robustness, 530 
rotational delay, i/o, 323 

round robin scheduling, 132 
inverse of remainder quantum, 133 
limited round robin, 133 
multiple–level feedback, 138 
virtual round robin, 133 

router, 506 
routing strategies (techniques), 494 
RPCRuntime, (see website, Chapter 9.14.4.1) 
RPC, see remote procedure call 
RT Linux system, 590 
RTOS, see real–time operating system 

S 

safe state, 204 
safety evaluation, 204 
salvaging, fle system, 376 
satellite computer, 7 
scalability 

communication protocol, 500 
distributed fle system, 537 
distributed operating system, 23, 456 
distributed systems, 456 
lock, 465 
multicomputer system, 487 
multiprocessor system, 460, 461, 487 

schedulable, RTOS, 571 
schedule RTOS 

feasible, 571 
valid, 571 

scheduled interrupt service, 570 
scheduler, 50 

design, 122 
different kinds, 123 
I/O, 50 
Job, 50 
long–term, 50 
low–level scheduler, 122 
medium–term, 51 
organization, 125 
processor, 50 
short–term, 122 

scheduling, 49 
evaluating policies, 144 
guiding principles, 146 
in Linux, 147, 580 
non–preemptive, 124 
performance comparison, 146 
preemptive, 124 
in Real–time OS, 571 
in UNIX, 147 
in Windows, 147 

scheduling approaches, RTOS, 571 
scheduling criteria, 122 
scheduling levels, 145 
scheduling mechanisms, 123 
scheduling mechanisms, RTOS, 571 

performance, 571 
scheduling methods 

affnity-based, 478 
clock–driven, 573 
deadline–Monotonic, 576 
deadline scheduling, 131 
dynamic best effort, 572 



 

 

 

 

 
  

614 Index 

dynamic planning–based, 572 
dynamic priority, 576 
earliest–Deadline–First, 576 
evaluating policies, 144 
event–driven (ED), 135 
external priority methods, 144 
fair–share, 142 
FCFS, 127 
fxed–priority, 574 
guiding principles, 146 
Highest penalty ratio next (HPRN), 129 
hybrid methods, 143 
inverse of remainder quantum, 133 
least competed next (LCN), 135 
Least–Slack–Time–First (LST), 576 
limited round robin, 133 
Linux, 147, 580 
list, 574 
MLQ with Feedback, 138 
multiple–level adaptive, 138 
multiple–level queues (MLQ), 136 
nonpreemptive priority scheduling, 130 
performance comparison, 146 
performance RTOS, 571 
preemptive priority scheduling, 135 
preemptive shortest process next (PSPN), 134 
priority ceiling, 578 
priority–driven, 573 
priority inheritance, 578 
priority inheritance vs. priority ceiling, 579 
priority inversion, 130, 577 
Rate–Monotonic (RM), 575 
round–robin (RR), 132 
selfsh round robin (SRR), 134 
shortest process next (SPN), 128 
shortest remaining time next(SRTN), 128 
state–dependent priority methods, 143 
static table–driven, 572 
static priority–driven preemptive, 572 
static scheduling, 574 
UNIX, 147 
virtual round robin (VRR), 133 
weighted round–robin, 573 
Windows NT, 147 
worst service next (WSN), 144 

scheduling parameters, 126 
scheduling policies 

classifcation of, 142 
scheduling strategies, 126 
scheduling and timer services, RTOS, 569 
secondary storage 

free space management, 373 
management of, 368 

second chance algorithm, 284 
second generation OS, 6 
secrecy, 400 
sectors, disk, 321 
security 

design issues, 405 
distributed system, 458 
Linux, 432 
policy and mechanisms, 405 
UNIX, 431 
Windows, 432 

security attacks, 401 
active attacks, 403 
passive attacks, 402 

security descriptors, 433 
Security ID (SID), 433 
security policy, 405 

basic principles, 405 
security policy and mechanisms 

design issues, 405 
mechanism and design principles, 406 

security and protection, 397 
goals of, 400 
overview, 398 
policy and mechanisms, 399 

security threats 
types of, 401 

seek time, disk, 323 
segment, 252 
segmentation, 252 

address translation, 253 
hardware requirements, 255 
merits and drawbacks, 256 
principles of operation, 253 
protection, 255 
sharing, 256 

segmentation with paging, 257, 275 
Intel Pentium, 277 

segmentation, virtual memory, 274 
address translation, 274 
protection, 275 
sharing, 275 

segmentation vs. paging, 257 
segment descriptor caching, 255 
semaphores, 155 

binary, 159 
characteristics, 161 
counting (general), 157 
drawbacks and limitations, 166 
events, 166 
granularity, 160 
implementation, 160 
producer-consumer problem, 162 
properties, 161 
reader-writer problem, 165 
service ordering, 160 
strong, 160 
system calls, 160 
in UNIX, 175 
weak, 160 

send–receive operation, 184 
sequence lock, 477 
sequential fle, 357 
serial processing, see batch systems 
server, 21 
server process, 76 
server stub, 520 
service time, 126 
shared devices, 313 
shared memory, for IPC, 511–512 (see website, 

Chapter 4.22.9.3, detailed 
description) 

shared memory multiprocessor, 460 
shared pages, 251, 273 
shared segments, 256 



Index 615  

sharing 
dynamic, 234 
memory, 223 
page, 251, 273, 301 
programs, 234 
segments, 256 
static, 234 
virtual memory, 251, 256, 273 

Shell, 78 
UNIX, 79 

shortcut, 366 
short process, 53 
short–term scheduler, 52, 122 

design, 122 
mechanism, 123 

signals, 60 
UNIX, 60, 192 

signals, RTOS, 582, 585 
simple batch system, 7 
simple paging, 249 

address translation, 250 
merits and drawbacks, 252 
protection, 251 
sharing, 251 

simulation, 145 
single buffer, device, 318 
single–level directory, 362 
single shot threads, 111 
single system image, 451 
skewing 

disk cylinder, 324 
disk head, 324 
File organization, 376 

slab allocator, 260, 298 
sleep lock, 467 
SLIC bus, 468 
SNMP standard, 508 
snooping, security systems, 416 
sockets, 502 

datagram, 503 
raw, 503 
stream, 503 

soft affnity, 478 
software capabilities, 412 
software interrupts, 58 
software interrupts, RTOS, 585 
software real time task, 559 
Solaris 

Kernel memory, 259 
memory management, 295 
threads, 118 

special machine instruction, 153 
Exchange instruction, 154 
TSL instruction, 153 

spin lock, 466 
split interrupt handling, 591 
spooling, 7 
sporadic task, 560 
spyware, 426 
squirrel checking, 407 
SRTN (shortest remaining time next), 128 
stability, real–time, 565 
stable storage, fle system, 379 
stackable module (see website, Chapter 3.1.8.1) 

starting deadline, 559 
starvation, 211 

avoidance, 211 
detection, 211 
various strategies, 211 

Stateful File Server, 455, 531 
stateless server, 455 531 
static allocation, 230 

allocation method, 231 
allocation schemes, 231 
allocation strategy, 230 
conclusion, 232 
fragmentation, 231 
protection, 231 
swapping, 231 

static binding, 251 
static relocation, 223 
static scheduling, 574 
stealth virus, 423 
store–and–forward, 493 
store–synchronous methods, 150 
stream cipher, 429 
stream communication, 504 
stream sockets, 503 
structured fles, 346 
Sun cluster, 550 
Sun NFS, 538 

directory name cache, 541 
fle operations, 541 
Mount protocol, 539 
NFS protocol, 539 
path–name translation, 540 
server and client caching, 540 
VFS layer, 538 

Sun RPC, 520 
SUN SPARC 

three-level paging, 268 
superblock 

Linux, 389 
UNIX, 387 

superminis, 22 
superpage, 272 
supervisor, 3 
suspended process 

characteristics, 101 
importance, 101 

suspended state, 100 
swap fle, 225 
swapping, 51, 225 

Importance, 100 
UNIX, 296 

swapping policy, 226 
swapping space (area), 225 
swapping technique, 225 
switch variable, 150 
symbolic link, 366 
symmetric encryption, 427 
symmetric multiprocessor, 460 
synchronization, scheduling based, 468 
synchronization lock, 465 

adaptive, 468 
queued lock, 465 
sleep lock, 467 
spin lock, 60, 466 



 

 
 

 

616 Index 

synchronization mechanisms, RTOS, 585 
synchronization objects, see Windows NT 
synchronous I/O, 341 
system access control list (SACL), 433 
system calls, 54 

fle system, 350 
real–time systems, 567 
semaphores, 160 
UNIX, 56 
Windows, 56 
working, 55 

system–call user, 32 
system performance, 125 
system process, 40 
system–related services, 53 
system software, 1 

T 

table fragmentation, see wasted memory 
tagged architecture, 412 (see website Section 5.6 

“static relocation”) 
tardiness, 571 
task 

conventional, 37 
real–time, 559 

TCP/IP model, 497 
TCP/IP protocol, 497 
test–and–set lock instruction 

conventional, 153 
multiprocessor implementation, 154, 466 

third generation OS, 8 
thrashing, 124, 262, 288 
thread control block (TCB) 

hybrid thread, 115 
kernel thread, 112 
user thread, 113 

thread and fber, 115 
thread priority 

conventional, 116 
RTOS, 573 (see priority-driven approach) 

threads, 93, 108 
aperiodic, 566 
characteristics, 109 
different issues, 115 
hybrid, 115 
implementation, 118 
introduction, 108 
kernel–level, 111 
Linux, 589 
periodic, 566 
priority, 116 
scheduling, 471 
single–shot, 111 
Solaris, 118 
sporadic, 566 
states, 110, 566 
types of, 111 
user–level, 113 
Windows NT, 116, 118, 120, 147, 391, 574, 586 

thread scheduler, 567 
thread scheduling, multiprocessor, 471 
threads and processes, 117 
threads, real–time systems, 566 

thread states 
conventional, 110 
real–time, 566 

thread synchronization, NT, 114 
three level paging, 268 
three–tier architectures, 446 
throughput, 122 
tightly–coupled system, 442 
timers, 319, 582 
timer services, real–time, 582 
time–sharing multitasking system, 10 
time–slice scheduling, 132 
timing constraints, RTOS, 559 
TLB, 270 
token rings, 490 
track, disk, 321 
traffc controller 

I/O, 312 
process, 99 

traffc scheduler, 98 
transfer time, disk, 323 
transfer vector, see interrupt vector 
translation lookaside buffer, 270 
transparency, 452 

access, 453 
distributed fle system, 526 
failure, 453 
location, 453 
migration, 453 
name, 509 
performance, 453 
replication, 453 
scaling, 453 

trap door, 420 
traps, 42, 44 
tree–structured directory, see directory structure 
Trojan horse, 421 
TSL instruction, 153 

multiprocessor implementation, 154, 466 
turnaround time, 127 
two–level directory, 363 
two–level paging, 267 

U 

UDP (user datagram protocol), 499 
UMA model, 460 

kernel, 462 
unbounded priority inversion, RTOS, 577 
unbuffered I/O, 337 
UNICS / UNIX, 15 
unifed disk cache, 335 
unit control block, 312 
UNIX kernel, 79 
UNIX systems, traditional, 84 

buffer cache, 336 
buffer I/O, 336 
character queue, 337 
deadlock handling, 208 
device driver, 316 
device management, 335 
fle descriptor, 350 
fle management system, 385 
interprocess communication, 192 



Index 617  

  

V 

interprocess synchronization, 192 
kernel, 79, 84 
kernel memory, 259 
kernel, monolithic, 84 
memory management, 295 
multiple fle systems, 387 
page table, 295 
paging system, 295 
process table, 102, 104 (see website, 

Chapter 4.7) 
process creation, 105 (see website, Chapter 4.12) 
process image, 22 (see website, Chapter 4.8) 
scheduling, 147 
security, 431 
shell, 79 
swapping, 296 
unbuffered I/O, 337 
volume structure, 387 

unsafe state, 204 
unused memory rule, 242 
user authentication, 416 
user datagram protocol, UDP, 499 
user-level I/O software, 318 
user–level threads, 113 

merits and drawbacks, 114 
user process, 40 
utilities, 6 

valid schedules, 571 
variable allocation policy, 289 
variable partition, 235 

allocation strategy, 236 
operation methodology, 235 

VAX 
two–level paging, 268 

vectored interrupts, 47 
versatile message transport protocol, see VMTP 
vertical distribution, 26 
virtual address, Linux, 297 
virtual circuit, 494 
virtual communication channel, 61, see also pipes 
virtual devices, 313 
virtual fle system, 379 

Linux, 388 
Sun, 538 

virtual fle system layer, 379, 538 
virtual machine monitor, 74 
virtual machines OS, 73 
virtual machines (VM), 14 

operating system, 73 
virtual memory, 13, 261 

background, 262 
basic concepts, 263 
implementation, 264 
Linux, 297 
locality, 262 
paging, 264 
protection and sharing, 275 
segmentation, 274 
segmentation with paging, 275 

virtual memory management, 278 
Ad Hoc algorithm, 286 

advised paging, 280 
anticipatory fetching, 280 
Belady anomaly, 286 
Belady effect, 284 
cleaning policy, 292 
clock page replacement, 284 
demand paging, 279 
fetch policy, 279 
FIFO approximation, 284 
First–in–frst–out (FIFO), 283 
fxed allocation policy, 289 
Least–frequently–used, 285 
Least–recently–used, 285 
load control, 293 
locking page frames, 281 
modifed clock algorithm, 284 
Most–frequently–used (MFU), 286 
Not–recently–used (NRU), 282 
optimal replacement, 282 
page buffering, 286 
page fault frequency, 291 
page–reference strings, 281 
page size, 279 
paging daemon, 292 
placement policy, 293 
prepaging, 280 
replacement algorithms, 282 
replacement policy, 280 

global, 290 
local, 290 

replacement scope, 290 
second chance, 284 
shared page frames, 281 
stack algorithm, 285 
variable allocation policy, 289 
working set management, 289 
working set model, 288 
working set principle, 288 
working set size, 289 
working set strategy, 290 
working set theory, 287 

virtual memory mapping, RTOS, 587 
virtual memory with paging, 264 

address translation, 265 
associative mapping, 271 
four–level paging, 268 
inverted page table, 269 
Linux, 296 
mapping cache, see TLB 
multilevel page sizes, 272 
multilevel page tables, 267 
page faults, 266 
paging, 264 
protection, 273 
shared pages, 273 
sharing, 273,301 
Solaris, 295 
superpages, 272 
three–level paging, 268 
translation lookaside buffer (TLB), 270 
two–level paging, 267 
UNIX, 295 

virtual memory with segmentation, 274 
address translation, 274 



 618 Index 

protection, 275 
sharing, 275 

virtual networking (ATM), 491 
virtual round robin, 133 
virus, 422 

boot sector, 423 
E–mail, 424 
memory–resident, 423 
parasitic, 423 
polymorphic, 424 
state of, 423 
stealth, 423 
types of, 423 

VMTP, 501 
Vnode, 380 
volume structure 

UNIX, 387 
Windows, 392 

Vxworks (operating system), 592 

W 

waiting time, 127 
wait–signal monitor, 172 
wait and signal operation, 156 
WAN (Wide Area Network), 438 
wasted memory, 228 
watchdog timer, 320 
wave scheduling, 470 
windows, in multiprocessor, 479 
Windows NT 

cache manager, 340 
cluster computer, 547 
device management, 340 
disk duplexing, 341 
distributed fle system, 537 
fle management system, 391 
fle system drivers, 341 
hardware device drivers, 341 
hardware RAID, 341 
hybrid kernel, 91 
IPC, 191 
kernel, 89 
lazy commit, 340 

lazy write, 340 
memory management, 298 
messages, 191 
multiprocessor, 479 
network drivers, 341 
objects, 120 
page sharing, 301 
replacement scope, 301 
scheduling, 147 
security, 432 
software RAID, 341 
synchronous and asynchronous I/O, 341 

working set management, 289 
working set model, 288 
working set principle, 288 
working set size, 289 
working set theory, 287 
workstation, 20, 438 
workstation model, 44 
workstation–server model, 444, 508 

client & server node failures, 531 
distributed fle system, 526 
distributed message passing, 511 
distributed shared memory, 523 
fault tolerance, 529 
group communication, 516 
IPC protocols, 513 
IPC semantics, 513 
Java RMI, 521 
naming, 509 
process migration, 510 
remote procedure call (RPC), 517 
SUN RPC, 520 

worms, 425 
worst ft, 240 
worst service next, 144 
Wsclock, 289 

Z 

Z1, Z2, Z3 system, 5 
Zombie process, 105–106 (see website, Chapter 4.11) 
Zombies, security, 426 
Zombie state, 99–101 (see website, Chapter 4.5) 


	Cover
	Half Title
	Title
	Copyright
	Contents
	Preface
	Author Bio
	Chapter 1 Computers and Software
	1.1 Introduction
	1.2 Computer Software: System Software
	1.3 Operating Systems
	1.4 Hardware Structure Terminology
	1.5 Programming Terminology
	1.6 Evolution of Operating Systems and Their Role
	1.6.1 The First-Generation System and Zero-Generation OS (1945–1954)
	1.6.2 The Second-Generation System and First-Generation OS (1955–1964)
	1.6.3 The Third-Generation System and Third-Generation OS (1965–1980)
	1.6.4 Modern Operating Systems
	1.6.5 Distributed Operating Systems
	1.6.6 Clusters: A Distributed Computer System Design
	1.6.7 Real-Time Operating Systems
	1.6.8 Genesis of Modern Operating Systems and Grand Challenges

	Summary
	Exercises
	Suggested References and Websites
	Websites

	Chapter 2 Operating Systems: Concepts and Issues
	2.1 Operating Systems: Objectives and Functions
	2.1.1 Operating Systems: Resource Manager

	2.2 Process: Concepts and Views
	2.2.1 Process Types

	2.3 Operating Systems: Design Issues
	2.3.1 Event: A Fundamental Concept
	2.3.2 Interrupts and Traps
	2.3.3 Resource Sharing and Protection
	2.3.4 Scheduling and Its Role

	2.4 Operating System: Supports and Services
	2.4.1 System Calls
	2.4.2 Procedure Calls
	2.4.3 Processor Modes: Mode Bit
	2.4.4 Software Interrupt
	2.4.5 Message Passing
	2.4.6 Signals
	2.4.7 Locks
	2.4.8 Pipes
	2.4.9 Command Language Users

	2.5 Design Factors and Related Issues
	Summary
	Exercises

	Chapter 3 Operating System: Structures and Designs
	3.1 Evolution of System Structure
	3.1.1 Monolithic Systems
	3.1.2 Hierarchical and Extended Machines
	3.1.3 Layered Systems—Modular Hierarchical Design
	3.1.4 Virtual Machine Operating Systems—A Revolutionary Approach
	3.1.5 Networks of Computers: Client–Server Model: A New Direction
	3.1.6 Comparing MVS and UNIX: Concepts and Terms
	3.1.7 Monolithic Kernel
	3.1.8 Case Study: Monolithic Kernel-Based Operating System
	3.1.9 Microkernel: The Extensible Nucleus
	3.1.10 Hybrid Kernel
	3.1.11 Exokernel

	3.2 Modern Operating Systems: Design Issues and Salient Features
	Summary
	Exercises
	Suggested References and Websites

	Chapter 4 Processor Management
	4.1 Introduction
	4.2 The Concept and Implementation of Process Model
	4.3 Processor Management Functions
	4.4 Structure of Processor Management
	4.5 Process–States Model
	4.5.1 Additional Process States: Suspended State
	4.5.2 Suspended Processes: Their Characteristics and Importance

	4.6 Process Description
	4.7 Process Image: Process Totality
	4.7.1 Process Data Block and Process Control Block

	4.8 Process Creation
	4.9 Process Creation Methods
	4.10 Process Hierarchy and Daemon Processes
	4.11 Process Switch: Change of Process
	4.12 Context Switch: Change of Context
	4.13 Process-Based Operating Systems
	4.14 Threads: An Alternative Approach
	4.14.1 Introduction to Threads
	4.14.2 Conventional Thread States
	4.14.3 Single-Shot Threads
	4.14.4 Types of Threads
	4.14.5 Threads: Priority
	4.14.6 Multithreading
	4.14.7 Threads and Processes: A Comparative Overview
	4.14.8 Thread Implementations
	4.14.9 Case Study: Solaris Threads Implementations

	4.15 Objects: Object-Oriented Concept
	4.15.1 Case Study: Windows NT Implementation

	4.16 Process Scheduling (Uniprocessor): Time Management
	4.16.1 Scheduling Criteria: Short-Term Scheduler
	4.16.2 Scheduler Design
	4.16.3 Scheduling Mechanisms
	4.16.4 Process Schedulers: Different Kinds
	4.16.5 Process Scheduler Organization
	4.16.6 System Performance
	4.16.7 Scheduling Strategies
	4.16.8 Nonpreemptive Strategies
	4.16.9 Preemptive Strategies
	4.16.10 Classification of Scheduling Policies
	4.16.11 Fair-Share Scheduling
	4.16.12 Hybrid Methods
	4.16.13 State-Dependent Priority Methods
	4.16.14 External Priority Methods
	4.16.15 Other Scheduling Systems
	4.16.16 Evaluating Policies
	4.16.17 Scheduling Levels
	4.16.18 Performance Comparison
	4.16.19 Guiding Principles
	4.16.20 Case Study: UNIX, Linux, Windows NT

	4.17 Interprocess Synchronization
	4.17.1 Introduction
	4.17.2 Concurrency: Forms and Issues
	4.17.3 Race Condition
	4.17.4 Mutual Exclusion: Requirements
	4.17.5 Mutual Exclusion Implementation

	4.18 Interprocess Communication and Synchronization
	4.18.1 Messages
	4.18.2 Message Format
	4.18.3 Message Implementation: Different Issues
	4.18.4 Message Exchange: Synchronous versus Asynchronous
	4.18.5 Design Issues: Message-Passing Systems
	4.18.6 Messages: For Interprocess Synchronization and Communication
	4.18.7 Message Usage: A Possibility in Interrupt Signaling
	4.18.8 Equivalence of Primitives
	4.18.9 Implementation: Interprocess Communication and Synchronization

	4.19 Deadlock and Starvation
	4.19.1 Resources: Different Types
	4.19.2 General Resource Systems
	4.19.3 Deadlocks and Resources
	4.19.4 The Conditions for Deadlocks
	4.19.5 Deadlock Modeling: Graphical Representation
	4.19.6 Deadlock Detection and Subsequent Recovery
	4.19.7 Deadlock Prevention
	4.19.8 Deadlock Avoidance
	4.19.9 The Banker’s Algorithm
	4.19.10 Hybrid Strategy: A Combined Approach
	4.19.11 Case Study: Deadlock Handling in UNIX
	4.19.12 Discussions: Various Strategies and Their Impacts
	4.19.13 Starvation

	Summary
	Exercises
	Suggested References and Websites

	Chapter 5 Memory Management
	5.1 Introduction
	5.2 Key Characteristics of Memory Systems
	5.3 Primary Memory: Essential Requirements
	5.4 Memory Hierarchies: Access-Time Reduction
	5.5 Memory Management: Some Basic Requirements
	5.5.1 Separation and Sharing: Importance and Different Approaches
	5.5.2 Protection: Importance and Implementation
	5.5.3 Relocation: Address Translation
	5.5.4 Swapping: Impact and Implementation
	5.5.5 Logical Addresses and Logical Organization
	5.5.6 Physical Addresses and Physical Organization

	5.6 Memory Management: Functions and Responsibilities
	5.7 Different Memory-Management Schemes: Comparison Parameters
	5.8 Memory Management Schemes
	5.8.1 Contiguous Memory Allocation
	5.8.2 Noncontiguous Memory Allocation
	5.8.3 Memory Allocation Strategy: For OS Kernel Usage

	5.9 Virtual Memory
	5.9.1 Background and History
	5.9.2 Virtual Memory and Locality
	5.9.3 Basic Concepts
	5.9.4 Virtual Memory Implementation
	5.9.5 Virtual Memory Management: Design Issues

	5.10 Case Study: Memory Management in UNIX and Solaris
	5.11 Case Study: Memory Management in Linux
	5.12 Case Study: Memory Management in Windows
	5.13 Cache Memory
	Summary
	Exercises
	Suggested References and Websites

	Chapter 6 Device Management
	6.1 Introduction
	6.2 I/O Devices: General Characteristics
	6.3 Types of I/O Devices
	6.4 I/O Controllers: Device Controllers
	6.5 I/O Systems: I/O Modules
	6.6 I/O System Organization: Types of I/O Operation
	6.7 Physical I/O Operation: Device-Level I/O
	6.8 Device Management: Objectives
	6.9 Device Management: Functions
	6.9.1 Dedicated, Shared, and Virtual Devices

	6.10 Physical I/O Function Organization: Logical Structuring
	6.11 Device Manager: Its Constituents and Design Principles
	6.11.1 Scheduler and Interrupt Handler
	6.11.2 Device Drivers
	6.11.3 Device-Independent Software
	6.11.4 User-Level I/O Software

	6.12 I/O Buffering
	6.13 Clock
	6.13.1 Clock Hardware
	6.13.2 Clock Software (Clock Device Drivers)

	6.14 Magnetic Disk I/O
	6.14.1 Physical Characteristics
	6.14.2 Disk Components and Organization

	6.15 Disk I/O Operation: Parameters
	6.16 Disk Management: Data Organization and Formatting
	6.17 Disk Access Time Management: Disk Arm Scheduling Policies
	6.17.1 Random Scheduling
	6.17.2 First-In-First-Out/First-Come-First-Serve
	6.17.3 Priority
	6.17.4 Last-In-First-Out
	6.17.5 Shortest-Seek (Service)-Time-First
	6.17.6 SCAN
	6.17.7 LOOK or Elevator Algorithm
	6.17.8 Circular SCAN or C-SCAN
	6.17.9 C-LOOK
	6.17.10 N-step-SCAN
	6.17.11 FSCAN
	6.17.12 Deadline Scheduling
	6.17.13 Anticipatory Scheduling

	6.18 Raid
	6.19 Disk Cache
	6.19.1 Design Considerations

	6.20 Page Cache
	6.21 Unified Disk Cache
	6.22 Case Study: Device Management in UNIX
	6.23 Case Study: Device Management in Linux
	6.24 Case Study: Device (I/O) Management in Windows
	Summary
	Exercises
	Suggested References and Websites

	Chapter 7 File Management
	7.1 Introduction
	7.2 Files
	7.3 File Systems
	7.3.1 File Naming
	7.3.2 File Structure
	7.3.3 File Types
	7.3.4 File Attributes
	7.3.5 File Operations: System Calls
	7.3.6 File Access

	7.4 File Service: File Servers
	7.5 File Control Blocks
	7.6 File Management Systems: Requirements
	7.7 File Management Systems: Functions and Design Issues
	7.8 File Management Systems: Design Principles
	7.9 File Organization and Access: Structured Files
	7.9.1 The Pile
	7.9.2 The Sequential File
	7.9.3 Indexed Sequential Files
	7.9.4 Indexed Files: Inverted Files
	7.9.5 The Direct (or Hashed) File
	7.9.6 Access Methods

	7.10 File Directories
	7.10.1 Structure

	7.11 Graph Directory Structure: File Sharing
	7.12 Blocking of Records: Logical to Physical
	7.12.1 Fixed-Length Blocking
	7.12.2 Variable-Length Spanned Blocking
	7.12.3 Variable-Length Unspanned Blocking
	7.12.4 Choice of Blocking Factor

	7.13 Management of Secondary Storage
	7.14 File Allocation: Different Issues and Approaches
	7.14.1 Static (Pre-Allocation) and Dynamic Allocation

	7.15 File Allocation: Different Methods
	7.15.1 Contiguous Allocation
	7.15.2 Noncontiguous Allocation: Linked (or Chained) Allocation
	7.15.3 Indexed Allocation

	7.16 Free Space Management: Different Techniques
	7.16.1 Disk Status Map or Bit Tables
	7.16.2 Chained Free Blocks and Groups of Blocks
	7.16.3 Indexing
	7.16.4 Free List of Blocks

	7.17 File Organization: Physical Representation
	7.18 File System Reliability
	7.18.1 File System Integrity: Importance
	7.18.2 Reliability Implementation: Different Techniques

	7.19 Virtual File Systems
	7.20 Pipes
	7.21 File System Performance
	7.22 Log-Structured File Systems
	7.23 Case Study: File Management Systems in UNIX
	7.24 Case Study: File Management Systems in Linux
	7.25 Case Study: File Management Systems in Windows
	Summary
	Exercises
	Suggested References and Websites

	Chapter 8 Security and Protection
	8.1 Introduction
	8.2 Security and Protection: An Overview
	8.3 Goals of Security and Protection: Security Threats
	8.4 Security: Types of Threats
	8.5 Security Attacks: Penetration Attempts on Computer System Assets
	8.5.1 Passive Attacks
	8.5.2 Active Attacks

	8.6 Security Policies and Mechanisms: Design Issues
	8.7 Protection
	8.8 Protection of Memory
	8.9 Protection Structure: Access Control
	8.9.1 User-Oriented
	8.9.2 Data-Oriented

	8.10 Intruders
	8.11 User Authentication
	8.11.1 Passwords
	8.11.2 Artifact-Based Authentication
	8.11.3 Biometrics

	8.12 Malicious Programs
	8.12.1 Trap Door
	8.12.2 Logic Bomb
	8.12.3 Trojan Horse
	8.12.4 Viruses
	8.12.5 Worms
	8.12.6 Zombies

	8.13 Encryption
	8.13.1 Encryption Techniques

	8.14 Case Study: UNIX Security
	8.15 Case Study: Linux Security
	8.16 Case Study: Windows Security
	Summary
	Exercises
	Suggested References and Websites
	Recommended Websites

	Chapter 9 Distributed Systems—An Introduction
	9.1 Distributed Computing Systems: Evolution
	9.2 Characteristics of Distributed Computing Systems: Advantages
	9.3 Distributed Computing Systems: Disadvantages
	9.4 Distributed Computing Systems: Hardware Concepts
	9.5 Distributed Computing Systems: Different Forms
	9.5.1 Systems Consisting of Minicomputers
	9.5.2 Systems Containing Workstations
	9.5.3 Workstation–Server Model: Client–Server Model
	9.5.4 Systems with Processor Pools
	9.5.5 Hybrid Systems

	9.6 Distributed Computing Systems: Software Concepts
	9.7 Network Operating Systems and NFS
	9.8 Distributed Operating Systems
	9.9 Distributed Operating Systems: Design Issues
	9.9.1 Transparency and Its Different Aspects
	9.9.2 Reliability
	9.9.3 Flexibility
	9.9.4 Scalability
	9.9.5 Performance
	9.9.6 Security
	9.9.7 Heterogeneity

	9.10 Multiprocessor Operating Systems
	9.10.1 Multiprocessor Architecture
	9.10.2 Operating System Considerations
	9.10.3 Case Study: Linux in Multiprocessors
	9.10.4 Priorities and Time Slices
	9.10.5 Case Study: Windows in Multiprocessors (SMP)

	9.11 Multicomputer Operating Systems
	9.11.1 Multicomputer Architecture
	9.11.2 Operating System Considerations
	9.11.3 Middleware

	9.12 Comparison between Various Types of Operating Systems
	9.13 Distributed Systems: Network of Computers
	9.13.1 Networking: Concepts and Issues
	9.13.2 Communication Protocols for Distributed Systems: Essential Requirements
	9.13.3 Standard Communication Protocols
	9.13.4 Sockets
	9.13.5 A Traditional Distributed Operating System: Amoeba
	9.13.6 Internetworking: Concepts and Issues

	9.14 Distributed Operating Systems: Workstation–Server Model
	9.14.1 Naming
	9.14.2 Process Migration
	9.14.3 Communication in Distributed Systems: Distributed Message Passing
	9.14.4 Remote Procedure Calls
	9.14.5 Distributed Shared Memory
	9.14.6 Distributed File Systems
	9.14.7 Fault Tolerance
	9.14.8 Client and Server Node Failures
	9.14.9 Operation of Distributed File Systems: An Overview
	9.14.10 Case Study: Windows
	9.14.11 Case Study: Sun NFS
	9.14.12 Case Study: Linux General Parallel File System

	9.15 Clusters: A Distributed Computer System Design
	9.15.1 Distinct Advantages
	9.15.2 Classification of Clusters
	9.15.3 Different Clustering Methods
	9.15.4 General Architecture
	9.15.5 Operating System Considerations
	9.15.6 Case Study: Windows Clusters
	9.15.7 Case Study: Sun Clusters

	Summary
	Exercises
	Suggested References and Websites
	Websites

	Chapter 10 Real-Time Operating Systems
	10.1 Background: Real-Time Systems
	10.2 Real-Time Tasks: An Overview
	10.2.1 Real-Time Tasks: Parameters

	10.3 Real-Time Systems: Different Issues
	10.4 Real-Time Operating Systems: Evolution
	10.5 Real-Time Operating Systems: Design Philosophies
	10.6 Real-Time Operating Systems: Characteristics and Requirements
	10.7 Real-Time Operating Systems: Features
	10.8 Real-Time Operating Systems: Basic Components
	10.8.1 Threads and Tasks
	10.8.2 The Kernel
	10.8.3 Scheduling Mechanisms
	10.8.4 Time Services: Clocks and Timers
	10.8.5 Communication and Synchronization
	10.8.6 Memory Management

	10.9 Case Studies
	10.9.1 Linux: Real-Time Extensions
	10.9.2 LynxOS
	10.9.3 pSOSystem
	10.9.4 VxWorks: The Mars Pathfinder

	Summary
	Exercises
	Suggested References and Websites
	Websites

	Additional Reading
	Index



